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Abstract

Today, autonomous vehicles have the capacity to achieve fully autonomous driving
in predefined environments. This ability can be in part attributed to advancements in
motion planning, which plans the vehicle’ behaviours and navigation through complex
environments. This thesis introduces a novel hierarchical expert system architecture along
with a rule set development method for expanding an operational design domain. In
the method, the knowledge engineering is tool-assisted and supports semi-automatic rule
creation based on test cases. Additionally, the method incorporates a qualitative analyzer
that probes the maintainability and the run time efficiency of the rule set. Moreover, the
proposed architecture and method are successfully applied to implement a behavioural
planner for an actual autonomous vehicle. The thesis also describes additional strategies
to address noisy perception, avoid jittery behaviour, and improve the overall run time
efficiency, which were necessary to achieve satisfactory performance of the planner on the
road. This system was tested and proven effective in an open road test, which involved over
110 kilometres of autonomous driving in populated urban environments. During the open
road test, 58 interventions were required due to perception noise or limitations arising by
the small range of the lidar sensor. Finally, the strengths and weaknesses of the proposed
methodology and architecture, along with an outlook on the role rule-based planning in
autonomous driving, are discussed.
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Chapter 1

Introduction

Recently, a large community of researchers and practitioners have been directing their
efforts towards the development of a fully autonomous vehicle. Today, there exist au-
tonomous vehicles capable of driving in predefined environments with multiple road users
and with limited human intervention. The recent advancements in this field can be at-
tributed to the improvements in both the perception and adaptation to a complex urban
environment. This adeptness capability is typically handled by the motion planning system
of the autonomous vehicle.

The motion planning problem can be defined as providing a feasible reference trajec-
tory to be executed by the autonomous vehicle through the environment. This trajectory
is subject to requirements of safety, comfort, traffic regulations and continued progress
towards a goal, which can be executed by the vehicle hardware, considering the vehicle’s
dynamics [1].

The motion planning problem is computationally difficult to solve and is thus, typically
decomposed into three sub-problems [2]: (i) mission planning; (ii) behaviour planning; and
(iii) local planning. In this thesis, the focus is on behaviour planning, which generates
a sequence of high-level driving maneuvers to safely and efficiently navigate through the
environment towards the specified goal.

Traditionally, behaviour planning algorithms were implemented with state machines
that relied on environmental triggers to transition to the required maneuver [3]. Meanwhile,
an alternative implementation based on the Rete family of expert systems has also proven
that a knowledge base and inferential mechanism can facilitate the coverage of a small
operational design domain [4]. However, in recent years, machine learning techniques
for behaviour planning have become an active area of research, especially following the
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success of deep learning. For instance, Bojarski et al. demonstrate the transformation of
raw sensor data directly to steering control inputs without any explicit rules or logic [5],
whereas Abbeel et al. use demonstrations from a human driver to infer good driving paths
[6].

Although machine learning approaches show a lot of promise, there are two main issues
that hinder their practicality. Firstly, even simple machine learning networks that tackle
behaviour planning require a large amount of data to train [7]. To be effective, this data
must be relevant, error-free, and often accurately hand-labelled, which is costly. Secondly,
the insufficient explainability of the results produced by a machine learning agent compli-
cates requirements engineering. Despite interpretability being an active area of research
[8], state-of-the-art machine-learned models are currently largely black boxes. They lack
reliable methods for explaining their decisions and assuring proper behaviour when pre-
sented with new inputs, and ultimately for guaranteeing the safety and reliability of the
learned driving policy.

Considering these drawbacks, this thesis introduces a behaviour planning approach
based on a novel hierarchical expert-system design, which tackles knowledge acquisition
without requiring large datasets. The driving policy development strongly relies on the
interpretability of the inference mechanism used in the system, and supports incremental
growth of the operational design domain. To ensure the scaleability of the proposed ar-
chitecture, a tool-assisted method is presented, which is based on an analysis framework
that agglomerates metrics to assess and reduce the number of rules by maximizing their
utility. In addition to providing insights about the scaleability of a knowledge base, the
effectiveness of the proposed methodology is demonstrated by autonomously driving 110
kilometres in populated urban environments. Although 58 interventions were required dur-
ing this demonstration, none of them were due to erroneous behavior planning, but rather
due to perception noise or range limitations of the used lidar sensor.

The design objectives for the proposed behavior planning approach are described in
Chapter 2. Chapter 3 presents the high-level architecture of the proposed design, along
with the notation used throughout this thesis. Chapter 4 describes the proposed inferen-
tial process, illustrated by deriving the track-speed maneuver in a simple scenario without
interaction with dynamic objects. Interactive behaviours are then introduced in Chap-
ter 5, where we detail the preprocessing mechanism that deal with partial observability.
Then, Chapter 6 discusses a method to maximize the coverage of a behavioural test suite
while minimizing the number of situations to model. The chapter ends with a collection
of metrics for measuring the quality of the domain knowledge. Chapter 7 describes the
discrepancy detection task, which is used to identify missing requirements and calibrate
or extend the domain knowledge. Furthermore, we demonstrate the practicality of the
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proposed architecture and report on the performance outside a virtual environment, by
discussing in Chapter 8 the results of a successful implementation on an autonomous ve-
hicle. Chapter 9 discusses the fulfillment of the design objectives that guided the creation
of the proposed system design and development method. Chapter 10 relates our design
and method with important works in the literature covering behaviour planning, expert
systems, and world abstraction models. Finally, the thesis ends with Chapter 11, which
summarizes the presented work and suggests future research.

The contributions of this thesis include: (i) The specialized rule-based design using
two stratified rule sets: one for maneuver decision and a subsequent one for maneuver
constraint determination, with parallel evaluation of rules in each set. Further, the design
uses a precedence table to resolve conflicting maneuver decisions. The stratified design
avoids the understandability and maintainability challenges of the existing general-purpose
rule-based systems, which use ordered rules and forward chaining. The design also opti-
mizes performance by eliminating unnecessary rule executions. (ii) A tool-assisted quality
assurance method to assess the efficiency and maintainability of the rule sets. (iii) A
semi-automated rule creation algorithm which updates the knowledge base to satisfy a
behavioural test suite. (iv) A proof of concept implementation of the proposed design and
method involving an open-road test, with no disengagements due to behavioral planning
errors.
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Chapter 2

Design Objectives

Driving is a complex task for a robot, necessitating an incremental development approach
for the behavior planner. During development, the behavior planner functionality needs to
be adjusted and extended on a case-by-case basis [9]. Such long-term maintenance poses
significant methodological challenges, including correctness, efficiency, interpretability, and
maintainability.

Correctness: The development cycle of a behaviour planner requires to incrementally
design the proper behavior within its operational design domain. This behavior is subject
to requirements of safety, comfort, traffic regulations and continued progress towards a
goal. The behavior planner design and development method should provide some way of
specifying desired behavior and ensuring that behavior is implemented correctly.

Efficiency: Since driving requires decisions to be taken in a timely manner and on-board
computing resources are limited, the behaviour planner should minimize its execution
time, in addition to providing a recovery mechanism to ensure that stacking requests can
be merged to avoid producing outdated decisions.

Interpretability: At any time, a user of the system might ask, “Why the behaviour
planner selected such a behavioural sequence?”. To increase the user trust in the system,
the behaviour planner should offer behavioural inspection. During those inspections, the
behaviour planner should highlight the causal links from the important properties of the in-
put world model to the output behaviour. Indeed, this causality should be understandable
by the developers.

Maintainability: The large list of situations to be supported by the planner are rarely
known in advance. Thus, the planner design and development method should support
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adjusting the behavior in covered situations and the incremental addition of new situations,
while ensuring that existing desired functionality is preserved.

Given these methodological challenges, we opted to develop an expert system. Expert
systems represent knowledge using a set of declarative rules. They use the rules and a set
of atomic propositions, along with an inference mechanism, to deduce new propositions.
Expert systems aid interpretability since the decision making can be defined by a set of
easy-to-understand rules. In particular, the conjunctive clauses of each rule represent the
decision boundaries of the system, which aid both understanding and testing.

Further, we also decided to use test-driven development to address the correctness
and maintainability challenges. Consequently, the proposed development method uses a
behavioral test suite to specify and assess the behavioral decisions. Black box tests are
inexpensive and ensure the consistency of the outputs since the developers can count the
number of failing tests to approximate the impact of each update to the rules.

We also decided to create a specialized design for the rule-based system to fit the needs
of behavior planning. Existing rule-based approaches, such as the Rete family of algorithms
[10], represent knowledge by a set of ordered rules. This ordering is used in forward chaining
to provide execution semantics for the rules, which also allows controlling rule precedence
by ordering. Such design negatively impacts interpretability and extensibility, since any
permutation of the rules might affect the output of the system, that is, the complexity of
the rule base grows with the factorial of the number of rules. Rete systems commonly use
alpha and beta caches to allow the system to discover which of the previous rules should
be revaluated. Unfortunately, the resulting system is becomes more difficult to trace and
comprehend. The re-evaluations also add computational cost.

To address the challenges of the existing rule-based systems, the proposed design im-
plements inference using rule stratification and a precedence table. In particular, we use
one set of rules for maneuver decisions and a subsequent one to decide constraints on
maneuvers. Stratification prevents cycles in rule chaining, which would be difficult to
comprehend. Further, the rules are unordered, which eliminates the need to reason about
order. Instead, a precedence table is used to resolve conflicting decisions of a set of rules,
which are evaluated in parallel. This design aids to address correctness, interpretability,
and extensibility challenges. Finally, the design also optimizes the rule execution, elmi-
nating the need to execute rules whose output would not change given the input of the
current execution cyle. This optimization helps addresses the efficiency challenge.

Further, the proposed development method, in addition to exploiting test-driven de-
velopment, provides techniques to improve efficiency, interpretability, and extensibility. In
particular, it offers set of metrics to assess the efficiency and complexity of the rule base,
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and it also provides tool support to explain decisions and to aid extensions by synthesizing
rule conditions and rule improvements.

In the next three chapters, we present the architecture of our expert system that uses
rule stratification. The chapters are organized to describe the system from high to low
levels. Then the subsequent two chapters describe the development method.
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Chapter 3

High-Level Architecture

The behaviour planner has the responsibility to determine the most beneficial maneu-
ver which can be executed by the local planner considering the environment representa-
tion, subject to driving constraints. Temporally, the sequence of constrained maneuvers
produced by the behaviour planner should be safe and ensures progress towards the de-
sired location. This chapter describes the purpose of each major component used in this
decision-making process, provides insight on the data flow, and exemplifies the maneuver
and constraint selection with three specifications. For ease of understanding, perception
noise will only be introduced in Chapter 5.

As depicted in Fig. 3.1, the behaviour planner takes the environment representation,
usually provided by perception and prior map modules, and produces a high-level driv-
ing maneuver along with a set of constraints restricting its execution in the environment.
The maneuver and the constraints are then passed to a local planner, which generates a
derivable trajectory to be executed by the vehicle’s controller. The environment represen-
tation consists of a set of discrete and continuous features, which include: a predefined
environment map, a set of all road users in the environment, and the egocentric local-
ization. Throughout this thesis, we will name the autonomous vehicle “Ego” and thus,
an egocentric localization shall be interpreted as a coordinate system using a reference
point attached to the autonomous vehicle as the origin (specifically, we use the so-called
base-link frame with the origin being the centre of the rear axle). This mostly continuous
world representation is then abstracted into a set of attributes that can be processed by an
expert system, the Rule-Engine, which decides the behaviour to undertake. Afterwards,
this behaviour, constituted by a maneuver and a set of constraints, is refined and converted
into a specification of a continuous constrained maneuver, which is then submitted to the
local planner for implementation.
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Figure 3.1: High-level architecture diagram.

3.1 Environment Abstraction

The environment representation that the behaviour planner receives is mostly continu-
ous and also contains extraneous information. To facilitate the decision making of the
Rule-Engine, the representation is filtered and abstracted into a minimal relevant world
abstraction. This new model is represented by abstracting the information into discrete
attributes that accurately describe the environment at a higher level. The attributes are
divided into the following types depending on the information source.

Ego’s Attributes

The information about the state of the ego vehicle is abstracted to a few relevant attributes,
avoiding continuous values as much as possible except for a few attributes such as the
current speed. Ego’s location on the map is specified using keywords that relate it to
relevant features on the map, such as ‘approaching’, ‘at’ and ‘on’, followed by an abstracted
location such as ‘intersection’, ‘drive-lane’ and ‘off-road’. In addition to these, the ego
intent to take turns is described using keywords such as ‘left’, ‘right’ and ‘straight’.
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Travel Attributes

Travel attributes are features abstracted from the map pertaining to the current route of
the ego vehicle. They include the road’s speed limit and details about any relevant features
on the map that ego vehicle will encounter. For example, if there is an intersection on ego’s
path, a set of features are required that specify whether there is a stop sign or traffic lights,
along with the state of the traffic lights.

Dynamic Objects’ Attributes

Other road users in the environment are referred to as dynamic objects. Like for ego
attributes, real-valued attributes are mostly avoided except for their speed and their rel-
ative position with respect to the ego vehicle. Moreover, objects identified as vehicles are
tagged with additional information such as Boolean values indicating the parked state or
the leading role with respect to ego. Furthermore, objects identified as pedestrians use an
extended set of discrete localization values such as ‘left-along’, ‘left-towards’, ‘right-along’,
and ‘right-towards’, since their motion is less constrained then vehicles. Also, they are
tagged with additional information, such as a Boolean value indicating the standing state.

Deciding the behaviour that an autonomous vehicle must undertake requires an accurate
model predicting the dynamic object’s intent, location and motion. While intent and
motion depend on the sequence of temporal behaviours, the location can be represented
in two ways: (i) For most encounters, the road geometry can be neglected such that the
location is only described along the ego vehicle trajectory. In this representation, lateral
position describes the number of lanes between a dynamic object and the ego vehicle,
while the longitudinal position describes the discrete relative position of the vehicle along
ego’s heading such as ‘behind’, ‘centre’ and ‘in front’. For any off-road dynamic object
or dynamic object driving in a lane that is not parallel to ego trajectory (and thus is not
part of the same road that ego travels on), both lateral and longitudinal position is set to
null. (ii) The first representation is insufficient when the autonomous vehicle might get
close or cross the path of another vehicle, such as near an intersection. In such an event,
an alternative location specification is used where each dynamic object has a lateral and
longitudinal coordinate using the ego vehicle rear axle as the origin. This representation
gives a concrete notion of distance which helps to identify collision risks. In the world
abstraction model, the dynamic objects are described using both representations and it is
left to the Rule-Engine to make appropriate use of them.
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Figure 3.2: High-level architecture of the Rule-Engine.

3.2 Rule-Engine

The Rule-Engine is an implementation of an expert system using two sets of unordered
rules:

i. The maneuver rules, each describing a situation that the autonomous vehicle may en-
counter in the environment. When this situation matches the current world state, the
maneuver rule suggests a behaviour composed by a maneuver and a set of constraints
restricting its execution in the environment.

ii. The constraint rules, each describing how to reconcile the behaviours produced by the
maneuver rules. This set of rules receives in input the constraints of each behaviour
containing the maneuver chosen by the precedence table. The rules entail the logic
to filter inconsistency in the set of constraints. The constraints retained by this set
of rule along with the maneuver selected by the precedence table constitute the final
behaviour that ego must initiate during the next time step.

For instance, suppose that ego is driving on a straight line regulated at 50 km/h,
that it approaches a crosswalk, and that no dynamic objects are perceived. A maneuver
rule might consider only the speed limit and suggest to “track-speed” at “50 km/h”.
Another maneuver rule might consider the crosswalk and decide to lower the speed by
40%, suggesting to “track-speed” at “30 km/h”. If we assume that only those two rules
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produced a behaviour, than obviously, the precedence table will select “track-speed” as the
maneuver to perform. However, ego cannot drive simultaneously at 50 km/h and 30 km/h.
Therefore, a constraint rule might simply tell “Amongst all the retained speed constraints,
select the smallest speed”. In that case, the constraint rule reconciles the input speeds to
30 km/h, and the final behaviour is “track-speed” at “30 km/h”.

At a high level, the Rule-Engine data flow can be decomposed in four stages as depicted
in Fig. 3.2. At each time step, t, the Rule-Engine will go over the whole process before
committing on the behaviour to initiate.

The preprocessing stage aims to convert the mostly discrete input model into a repre-
sentation that is more suited for searching purposes. Namely, in the preprocessing stage,
the Rule-Engine receives the mostly discrete world abstraction model, Wt, and converts it
into a world atomic abstraction model represented using nullable-Boolean attributes, Wt,
where discrete attributes have one of the three values: true, false, or null. The null is
used to represent the absence of a meaningful Boolean value (because the attribute is not
applicable in a given situation—such as dimensions of the next intersection, when there is
none) or the Boolean value being unknown (such as the Rule-Engine assuming the validity
of an attribute in the given situation, but not having yet received a reliable value—such
as the heading of an already detected dynamic object, estimation of which requires longer
observation time). The maneuver and constraint rules can check for true, false, and null
explicitly, and, in particular, react to the absence of a meaningful value (denoted by null)
accordingly.

During the preprocessing, the system reduces each attribute into a set of atomic propo-
sitions, refines the model by deriving additional atomic propositions, and carries the tem-
poral proposals of the previous and predicted steps. As an example, the abstract location
attribute named ‘approaching’ could be arbitrarily discretized into the following set of
atomic propositions {‘approachingIntersection’, ‘approachingDriveLane’, ‘approachingOf-
fRoad’}, while a carried temporal attribute could be ‘wasRegulatedByAStopSign’ that
extends the time-free attribute ‘isRegulatedStop’. When Ego is in the physical area of the
intersection, ‘isRegulatedStop’ describes the next intersection along Ego’s trajectory, while
‘wasRegulatedByAStopSign’ still describes the road geometry of the current intersection
allowing, for instance, the system to disable the constraint rules producing the left turn
across path constraint.

The maneuver rules stage evaluates the first set of rules. Each maneuver rule decides
a maneuver in the following complete set, M := {track-speed, follow-leader, overtake,
decelerate-to-halt, yield, stop, emergency-stop}. When a rule is evaluated, it assesses if
the atomic world abstraction, Wt, matches the encapsulated situation. If it does, the rule
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outputs a maneuver restricted by a set of constraints. The collection of outputs, R(Wt) `
Mt, where R represents the set of maneuver rules, describes the potential behaviours for
the autonomous vehicle during the next time step, t.

To decide which maneuver should be performed, the set of potential behaviours,Mt, is
then prioritized based on a precedence table. The precedence is given by the totally ordered
maneuver set, M , where track-speed has the lowest priority. Amongst the maneuvers
in Mt, the one with the highest priority, denoted as Mt, is retained. Thereafter, each
behaviour containing this maneuver is converted into a nullable-Boolean representation
that we refer to as the considered constraint model, Ct.

Finally, the constraint rules stage corresponds to the evaluation of the second set of
rules. Its main purpose is to analyze the dynamic/static objects conditioning the behaviour
of the autonomous vehicle during the next time step, t. The output of this set of rules,
R(Ct) ` Ct, constitutes the restrictions that the autonomous vehicle must enforce when
performing the selected maneuver, Mt. The outputted constraints are then paired with
the selected maneuver to describe the behaviour to execute, (Mt, Ct).

3.3 Example Scenarios

To better understand the proposed architecture, we will use a list of scenarios that an
autonomous vehicle may encounter when travelling in an urban environment. We will
define a scenario as a sequence of behaviours that allows the autonomous vehicle to travel
from an initial point to a target location. By convention, we will indicate Ego’s initial
position as the starting point of the scenario and represent the target location by a green
target. Throughout this thesis, the scenarios presented will be discussed thoroughly and
will serve to depict the data flow.

Figure 3.3 presents the first scenario where Ego is on a two-way road and must navigate
to the target location. In this scenario, this road stretch is limited to 50 km/h and no
dynamic object will interfere, allowing the autonomous vehicle to drive freely. Therefore,
Ego will have to repeatedly execute the “track-speed” maneuver until the target location
is reached. In addition, it will also have to consider the speed limit as a constraint to
establish its cruising speed.

Figure 3.4 shows the second scenario in which Ego is stopped behind a parked vehicle,
V1. It will seek to pass this vehicle as well as the next parked vehicle, V3, while keeping a
safety gap to the lead vehicle, V2. This scenario has a road structure like the previous one,
since it is also a two-way road with a speed limit of 50 km/h.
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Figure 3.5 presents the third scenario in which Ego is approaching an intersection
regulated by a stop sign in all directions. The autonomous vehicle will have to anticipate
that the leading vehicle, V1, will want to stop at the stop line. Thus, it must stop behind
the leader and must consider the future position of the pedestrian, P1, before entering the
intersection, regardless of the turn made by the leading vehicle. From a geometric point of
view, this junction consists of a pair of two-way roads each with a speed limit of 50 km/h.

The scenarios presented in this chapter demonstrate the need for a behaviour planner
within an autonomous vehicle since the situations encountered by Ego influence the ma-
neuver to initiate. The temporal nature of the behavioural planning problem suggests that
a good planner must both consider the constraints of the present state, but also anticipate
the result of the interactions among the dynamic objects. We will see how to establish
these foundations in the next two chapters.

In this chapter, we have classified the properties of the environment into three cate-
gories: ego, travel, and the dynamic objects. We have also briefly introduced the four main
components of our expert system: the preprocessor, the maneuver rules, the precedence
table, as well as the constraint resolution rules. Finally, we illustrated three scenarios on
which we will later demonstrate the properties of our system.

Figure 3.3: [Scenario 1] Ego navigating freely on a two-way road.
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Figure 3.4: [Scenario 2] Ego passing a sequence of parked vehicles.

Figure 3.5: [Scenario 3] Ego crossing an intersection regulated with an all-way stop.
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Chapter 4

Mid-Level Architecture

In this chapter, we illustrate the Rule-Engine’s decision flow using the first scenario where
Ego drives freely on a two-way road (Fig. 3.3). We review the four main stages of the
expert system, depicted in light blue in Fig. 4.1, by detailing their inputs and outputs
represented in light green. To facilitate the understanding of the methodology, the data
flow studied is simplified and only highlights the attribute subset that is relevant to the
decision-making process. We invite, however, the reader to consult the book of rules
appendices B to discover concrete examples.

Figure 4.1: Mid-level architecture of the Rule-Engine.
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4.1 World Abstraction Model

In Chapter 3.1, we saw that the Rule-Engine receives a data model decomposed into three
categories of attributes: Ego, Travel, and Dynamic Objects that we further divided into
Pedestrians and Vehicles. Considering the specificities of the first scenario, we can omit
the attributes of Pedestrians as well as Vehicles since they will not intervene during the
scenario. We will represent this absence of dynamic objects by using the empty list. With
that in mind, we will only describe Ego and Travel attributes.

Ego’s Attributes

The following list describes the Ego attributes for the inputted model to the Rule-Engine.
This list is also synthesized in Listing 1 where each attribute enumerates the set of discrete
or continuous values to which it can be valuated. In Listing 1, we use || to denote the
logical or.

Listing 1 Ego’s Attributes

1 {

2 "location": {

3 "approaching": "crosswalk" || "intersection" || "",

4 "at": "crosswalk" || "intersection" || "",

5 "on": "crosswalk" || "drive-lane" || "intersection" ||

6 "off-road" || "",

7 "timeOfArrival": A_REAL_NUMBER

8 },

9 "navigation": "left" || "right" || "straight" || "",

10 "speed": A_REAL_NUMBER

11 }
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Approaching: An enumeration indicating that the ego vehicle is approaching a critical
point. For instance, to approach an intersection means that Ego is between 0 and x metres,
excluding the bounds, from the stop line, without having passed it, where x is a parameter.

At: An enumeration indicating that the ego vehicle is currently at a critical point. For
instance, to be at an intersection means that Ego is about to enter the intersection which
can be at a stop line or the end of the lane.

Navigation: An enumeration that gives information to the Rule-Engine about the Ego’s
next goal such as turning left or right or going straight.

On: An enumeration that provides information on where the ego vehicle is travelling. For
example, to be on an intersection means that Ego is beyond the stop line and therefore in
the physical area of the intersection.

Speed: A real number that represents the speed of Ego in kilometres per hour.

Time of arrival: A real number representing the estimated time in seconds since Ego has
arrived at a specific abstract location. This property will be used to determine which road
users have the right of way.

Travel Attributes

The following list describes the travel attributes for the inputted model to the Rule-Engine.
This list is also synthesized in Listing 2 where each attribute enumerates the set of discrete
or continuous values to which it can be valuated. In Listing 2, we use || to denote the
logical or.

Distance: A distance in metres to some location or object of interest considering the road
geometry, e.g., along the lane centre line.

Intersection Center X: The actual distance, in metres using base-link frame, between
Ego and the width centre of the intersection. In Figure 4.2, this attribute is depicted by
the longitudinal distance of the turquoise arrow.

Intersection Center Y: The actual distance, in metres using base-link frame, between
Ego and the height centre of the intersection. In Figure 4.2, this attribute is depicted by
the lateral distance of the turquoise arrow.

Intersection Distance: The actual distance, in metres, that Ego will have to travel to
get to the location atIntersection of the nearest intersection. In Figure 4.2, this attribute
is depicted by the orange arrow.
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Intersection Length: The length of the intersection is the longitudinal distance, in
metres, from the end of the location atIntersection to the end of the location onIntersection
assuming that Ego would navigate straight. In Figure 4.2, this attribute is depicted by the
green arrow.

Intersection Width: The width of the intersection is the lateral distance, in metres, from
the end of the location atIntersection to the end of the location onIntersection along the
crossing road from left to right. In Figure 4.2, this attribute is depicted by the red arrow.

Left Traffic Light: The left light corresponds to the signal dedicated to left turns. For
example, the left turn priority.

Main Traffic Light: The main light represents the general priority level of the traffic
light if the left and right lights are omitted, otherwise it represents the priority for vehicles
crossing in a straight line.

Regulation: A traffic control device indicating whom to prioritize at a junction and what
behaviour is expected.

Right Traffic Light: The right light corresponds to the signal dedicated to right turns.
For example, the right turn priority.

Special Traffic Light: Represents an additional indicator for special vehicles such as an
ambulance, a bus, a fire truck and a taxi.

Figure 4.2: Travel attributes for an intersection.
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Speed Limit: A real number that represents the speed limit in kilometres per hour that
Ego would like to follow and should not exceed. Among others, it will be used to determine
if we want to overtake a vehicle.

Time till clear: A set of real numbers representing the estimated time in milliseconds
where the crosswalk will be freed of any pedestrian.

Time till pedestrian enters: A set of real numbers representing the estimated time in
milliseconds where at least one pedestrian will be on the crosswalk region.

Listing 2 Travel Attributes

1 {

2 "crosswalk": {

3 "distance": REAL_NUMBER,

4 "timeTillClear": [REAL_NUMBER, ..., REAL_NUMBER],

5 "timeTillPedestrianEnters": [REAL_NUMBER, ..., REAL_NUMBER]

6 },

7 "intersection": {

8 "center": {

9 "x": A_REAL_NUMBER,

10 "y": A_REAL_NUMBER

11 },

12 "distance": A_REAL_NUMBER,

13 "length": A_REAL_NUMBER,

14 "width": A_REAL_NUMBER,

15 },

16 "regulation": "stop" || "yield" || "",

17 "speedLimit": A_NATURAL_NUMBER,

18 "trafficLight": {

19 "left": "red" || "yellow" || "green" || ""

20 "main": "red" || "yellow" || "green" || "green-blink" ||

21 "yellow-blink" || "red-blink" || "",

22 "right": "red" || "yellow" || "green" || "",

23 "special": "bus-cab" || "emergency" || ""

24 }

25 }
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The attributes that we have listed correspond to the operational-design domain and
the perception capacities of our autonomous vehicle. The model remains rather simple and
hides advanced concepts of the other modules such as perception, tracking, local planning
etc. Such a model allows newcomers to quickly grasp the behavioural planning concepts
required to operate in urban areas. However, it is expected that the set of attributes can
be improved by more accurate representations such as the use of lanelets as well as by new
actions such as overtaking dynamic objects and changing lanes.

Model Integrity

To enforce a proper usage of the World Abstraction model presented in this section, the
knowledge expert can add a special type of rule aimed solely at validating the input data
integrity. This set of rules can, for instance, introduce a series of emergency-stop maneuvers
preventing the autonomous vehicle to initiate any alternative maneuver when a problem is
detected during the stage of data ingestion. For example, these rules could verify that the
speed of dynamic objects cannot be negative or that, when a group of attributes require
to have meaningful values such as when Ego is navigating nearby an intersection, the
following attributes must also be declared: intersection height and width, the x and y
coordinates of the central point of the intersection, etc. Therefore, this superfluous set
of rules facilitate the integration of the Rule-Engine with the other components of the
autonomous stack. When this development stage is achieved, such as when the usage
of the world abstraction model is aligned with the semantics of its ontology, this set of
rules can be safely removed without causing disparities in the sequence of behaviours
undertaken by the autonomous vehicle. Furthermore, in Chapter 8 when we will have
studied the misbehaviour diagnosis capability of the Rule-Engine, we will see that the
model integrity rules also provide improved diagnosis and promote independence between
teams, because component teams can benefit from analysis and debugging capabilities
without solely relying on the knowledge expert.

Scenario 1: Model Instance

Now that we have defined the attributes of the data transfer object (DTO), we can look
at an example of model instantiation. Listing 3 represents the values, Wt, submitted as
input to the Rule-Engine when Ego is at its initial location.
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Listing 3 [Scenario 1] Model Instance

1 {

2 "ego": {

3 "location": {

4 "approaching": "",

5 "at": "",

6 "on": "drive-lane",

7 "timeOfArrival": NULL

8 },

9 "navigation": "",

10 "speed": 0

11 },

12 "pedestrians": [],

13 "travel": {

14 "crosswalk": NULL,

15 "intersection":NULL,

16 "regulation": "",

17 "speedLimit": 50,

18 "trafficLight": NULL

19 },

20 "vehicles": []

21 }

4.2 Preprocessing

At every time step, t, the world abstraction, Wt, is converted into an atomic world abstrac-
tion, Wt, by a preprocessing phase. This process begins by discretizing the natural/real
values of Wt into a series of ternaries (nullable Boolean) using thresholding. A threshold-
ing function returns null when the value of the attribute is undefined, or either true or
false depending on whether the value of the attribute matches a test clause or not. Each
threshold comes from empirical testing either in a simulated environment or a closed-course
environment.

Similarly, the discrete attributes are also discretized to ternaries. To do so, each value
in the enumeration type of an attribute of that type is converted to a nullable Boolean
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attribute. Again, when the value of an attribute is undefined, the ternary is set to null
and when the value is known, then the ternary is either true or false.

When every attribute is Boolean, the preprocessor combines several attributes creating
new derived propositions. This addition of derived attributes simplifies the management
of the rule base as well as reduces the overall rule activation frequency as described later
in Chapter 8.

Listing 4 [Scenario 1] Atomic World Abstraction

1 {

2 "ego": {

3 "exceedSpeedLimit": false,

4 "hasLowSpeed": false,

5 "hasPrecedence": false,

6 "hasSpeed": false,

7 "location": {

8 "approachingCrosswalk": false,

9 "approachingIntersection": false,

10 "atCrosswalk": false,

11 "atIntersection": false,

12 "onCrosswalk": false,

13 "onDriveLane": true,

14 "onIntersection": false,

15 "onOffRoad": false

16 },

17 "navigationLeft": false,

18 "navigationRight": false,

19 "navigationStraight": false

20 },

21 "travel": {

22 "regulationStop": false,

23 "regulationYield": false

24 }

25 }
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For example, if we take the attribute location.approaching from the Ego category, each
value recognized by this enumeration becomes a Boolean, such as location.approachingCross-
walk and location.approachingIntersection. For numeric values such as speed of the Ego
category, several Booleans will be extracted according to the rules’ needs. For example, we
extract hasSpeed (i.e., speed is nonzero) and hasLowSpeed (i.e., speed is below a thresh-
old). Finally, some propositions are derived, such as exceedSpeedLimit of the Ego’s atomic
model. This proposition is derived from the speed in the Ego category and speedLimit from
the Travel category.

At the end of this conversion process, the generated atomic world abstraction includes
a subset of the atomic world abstraction model propositions, Wt ⊆ W . Let’s apply this
process to the world abstraction, Wt, of our first scenario. We will obtain the Boolean
variable assignment depicted by Listing 4.

The preprocessing stage also includes several other discretization mechanisms that in-
crease noise robustness and allow the rules to manage the dynamic objects more efficiently.
However, they are not needed to understand the studied scenario and are therefore omitted
until Chapter 5.

4.3 Maneuver Rules Evaluation

One of the design goals for the Rule-Engine is to reduce its workload such that it can replan
behaviours at high frequency. To achieve this, Wt and Wt−1 are assumed to be highly
correlated such that, if the history of atomic world abstractions constitutes a sequence of
logical observations, the outputs of many rules at time t should be identical to those at
time t− 1.

Since each rule, Ri, is expressed with clauses and consequences over a subset Wi of
the propositions that constitute the atomic model, namely Wi ⊆ W , then the system only
needs to evaluate a rule if (Wt −Wt−1) ∩Wi 6= ∅. Here, the difference between Wt and
Wt−1 results in key-value pairs that change between these two time steps. This monitoring,
which we refer to as the maneuver rule activation function, allows the Rule-Engine to retain
in memory the output of a rule when its proposition has not changed.

We denote the evaluation of a maneuver rule on the atomic world abstraction, Wt,
as Ri(Wt) ` Mi,t. The proposed constrained maneuver Mi,t represents a behaviour that
the autonomous vehicle may adopt, partially adopt, or reject. The agglomeration of the
output of each rule at time step t, become the set of potential behaviours Mt, which the
ego vehicle can initiate.
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Formally, the rule clauses are specified in the disjunctive normal form. Thus, let A,
B, and C be the literals required for the clauses of a rule, and let D be the consequence
of the rule. Any of the following combination of conjunctions and disjunctions are well-
constructed rules: (A∧B∧C) ` D, (A∨B∧C) ` D, (A∧B∨C) ` D, or (A∨B∨C) ` D.
When one of the sequences of conjunctions returns true, the rule can deduce the constraint
D from the literals and may also use any values from the world abstraction in D.

More concretely, if we return to our scenario, we could model the following rule: When
Ego is on a two-lane road then it must track-speed to the speed limit regulated on this
stretch. In this example, the propositions used for the clauses of the rule are (A) loca-
tion.onDriveLane, (B) location.approachingCrosswalk, (C) location.approachingIntersection,
(D) location.atCrosswalk, (E) location.atIntersection, all from the atomic Ego category.
The value from the world abstraction (F ) speedLimit of the Travel category is used as a
constraint. This rule can be written as (A∧¬B ∧¬C ∧¬D ∧¬E) ` (track-speed, F ). By
judiciously memorizing the inputs and outputs of the preprocessing, the activation func-
tion will only re-evaluate the rule if one of the ternary A, B, C, D, or E changes or if the
discrete value, F , changes. Thus, any other atomic proposition changes will not influence
the decision of the behaviour planner and may therefore be neglected.

Scenarios 2 and 3 are examples where the rules will use the clauses to target the dynamic
objects constraining the maneuver. Therefore, we will omit these details until Chapter 5.

4.4 Precedence Table

A maneuver Mt is chosen from Mt by following the totally ordered set of the prece-
dence table, M := {track-speed, follow-leader, overtake, decelerate-to-halt, yield, stop,
emergency-stop}, where track-speed has the lowest priority. This ordering is based on
conservatism to ensure safety and ease of rule creation. For instance, the conservatism
prioritizes deceleration and standstill maneuver since collision at low velocity are usually
less lethal.

This conservatism is extended such that if there is no achievable maneuver, that is,
Mt is the empty set, Mt falls back to emergency-stop. In our system, emergency-stop is
the safest maneuver since it emits an audible signal telling the safety driver to take over.
In addition, the fallback formulation allows the knowledge expert to only focus on the
rule that allows safe progress rather than exhaustively listing the risky situations. This
significantly reduces the number of required rules and increases the trustworthiness in the
system since the knowledge expert can control the fallback behaviours when Ego encounters
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an unhandled case. For example, when the ego vehicle navigates on a road segment with
high collision risk, such as an intersection, the knowledge expert can produce rules based
on pessimism by only describing the conditions allowing Ego to enter the intersection.
Otherwise, the rules can also be modelled optimistically, such as the track-speed rule we
have created previously for two-way roads. In that optimistic case, since the track-speed
rule acts greedily, the remaining cases to describe are the events that constrain Ego’s
driving.

For now, consider the track-speed rule that we created. This rule does not have a
disjunction, which implies that all the conjunctions must be satisfied to get a non-empty
output. Note that the atomic world abstraction, Wt, we obtained in Chapter 4.2 makes
the clause true and therefore the rule produces the track-speed maneuver and the 50 km/h
constraint. Since this is the only rule declared so far, we can assume that this is the
only option available in the system and therefore it takes precedence. By applying the
aforementioned principle of greediness, we can anticipate that this rule will fire as long
as Ego does not reach location.approachingCrosswalk, location.approachingIntersection, or
location.onOffRoad. If any of these locations were reached, then the system would apply
emergency-stop since no other rule is present and the proposed maneuver set would be
empty.

Even if this example is simplistic, it provides an insight on how the rules work. By the
greedy nature of the rule created, we can anticipate that this rule also applies to scenario 2
where Ego is on a two-lane road and must pass two parked vehicles by maintaining a safe
distance from the leading vehicle. However, in this scenario, a rule suggesting the overtake
maneuver constrained by the two vehicles to overtake as well as the leading vehicle will
have to be modelled. Thereafter, the system will have the choice between track-speed,
follow-leader and overtake and given the precedence table, M , we can anticipate that the
overtake maneuver will be chosen.

Once a maneuver Mt is chosen, the constraints produced by the maneuver rules that
yield the tuple (Mt, ), where denotes any value, are merged together and preprocessed
into an atomic considered constraint set, Ct. This second preprocessing stage follows the
same idea as the preprocessing of the world abstraction presented in this chapter. In the
next chapter, we will briefly exemplify the constraints preprocessing when analyzing a
scenario with conflicting opportunities. In the simple scenario under study in this chapter,
since we only have one rule modelled and since that rule produces the intended track-speed
maneuver, there is nothing to merge and this preprocessing is not needed.
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4.5 Constraint Rules Evaluation

At this stage, the Rule-Engine knows the maneuver to undertake and now seeks to choose
the most appropriate, reconciled restrictions in the considered constraints model, Ct. When
there is only one candidate constraint, the choice is trivial since it suffices to apply it.
Nevertheless, when the system has several conflicting options, it will seek to reconcile
constraints by applying a set of conservative rules.

For example, the rules covering the track-speed maneuver will seek to establish the
lowest speed limit among those suggested. The follow-leader maneuver will seek to establish
the lowest speed limit proposed, but at the same time will require to establish a safe
following distance to the dynamic object. The overtake maneuver will look for one to
several vehicles to overtake, the existence of a leading vehicle as well as the lowest speed
limit suggested. The decelerate-to-halt maneuver, for its part, will want to identify the
closest deceleration target such as a stop line, an end of the lane, a left turn across the
path, or a dynamic object. Finally, the yield, stop, and emergency-stop maneuvers do not
require any particular constraints, but still attempt to identify the causality of this stop,
such as the dynamic object to yield to.

In the sample scenario, we are facing the trivial case where the system has only one
constraint available, namely, the speed limit of 50 km/h. Thus, since there is nothing to
filter, the system will apply it. However, we could imagine the case where the ego vehicle
is approaching a school zone limited to 30 km/h with dedicated rule for the speed limit in
school zones. Therefore, both rules will suggest the track-speed maneuver and the system
now has to choose between 30 km/h or 50 km/h. By conservative modelling, the vehicle
would begin to regulate its speed limit to reach the 30 km/h.

This chapter has illustrated the decision-making process of the Rule-Engine in a scenario
that does not involve any dynamic object. We started our journey by listing the attributes
of the Ego and Travel categories that were essential to understanding the scenario. We
then motivated the conversion of the data transfer object into the data search object in the
preprocessing stage. Subsequently, we saw how to model a rule and illustrated the output
of the maneuver rules. We also discussed the first level of reconciliation of our inferential
process, namely the precedence table. This table allows mainly to select the maneuver to
execute from a list that may be inconsistent. This process ended with the reconciliation
of the constraints embedded in the behaviours including the chosen maneuver. Those
constraint were derived by the maneuver rules, but need to be reconciled by the constraint
rules. This reconciliation produces a consistent set of constraints. Thereafter, the chosen
maneuver and the reconciled set of constraints are merged defining the behaviour to execute
during the next time step.
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Chapter 5

Low-Level Architecture

Now that we know the basics of the Rule-Engine’s decision-making process, we are ready to
evaluate a more complex example where the system must deal with noisy data and partial
observability. To do this, we will study the third scenario depicted in Figure 3.5 where
Ego wants to cross an intersection regulated by an all-way stop while a leading vehicle
navigates in front of it and a pedestrian crosses concurrently at the intersection.

As in the previous chapter, we will review the full data flow by observing the system’s
inputs and outputs in the four main phases, namely the preprocessing, the maneuver
rules evaluation, the precedence table, and the constraint rules evaluation. However, this
example will require a deeper understanding of the concepts presented since the decision-
making will have several conflicts to reconcile.

5.1 Dynamic Objects Abstraction

In Chapter 4.1, we saw the Ego and Travel attribute categories of the input model received
by the Rule-Engine. In this section, we describe the dynamic object attributes which can
be decomposed in Pedestrians (Listing 5) and Vehicles (Listing 6) categories. As usual, we
end the section by showing the model valuation when Ego is at the starting position of the
third scenario.
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Dynamic Object Attributes

Approaching: An enumeration indicating that a pedestrian/vehicle is approaching a
critical point. For instance, for a pedestrian/vehicle to approach an intersection means
that he/she/it is between 0 and x metres from the physical area of the intersection, where
x is a parameter.

At: An enumeration indicating that a pedestrian/vehicle is currently at a critical point.
For instance, to be at an intersection means that the pedestrian/vehicle is about to enter
the intersection.

Distance x: According to the base-link of the ego vehicle, this distance in metres is
positive when the pedestrian/vehicle is somewhere in front of Ego’s rear axle.

Distance y: According to the base-link of the ego vehicle, this distance in metres is
positive when the pedestrian/vehicle is somewhere to the left of the center of Ego’s rear
axle.

Heading (orientation): This attribute represents the direction of the pedestrian’s/vehicle’s
velocity vector relative to Ego’s path. This direction is used to determine potential col-
lision risk, while considering the road geometry. The discrete values of this attribute are
illustrated in Figure 5.2 (right). In Figure 5.1, this heading is along-ego since the velocity
vector of each vehicle is following the same path.

Heading (relative orientation): This attribute represents the direction of the pedes-
trian’s/vehicle’s velocity vector relative to Ego’s orientation. This direction is used to

Figure 5.1: Definition of the two heading types.
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Figure 5.2: Heading (relative orientation) of a dynamic object, shown on the left, is defined
by the orientation of its velocity vector (black arrow) relative to Ego’s current position.
Heading (orientation) of a dynamic object, shown on the right, is defined by the orientation
of its velocity vector (black arrow) relative to Ego’s future position being the point on Ego’s
future path that is closest to the dynamic object.

determine potential collision risk, independent of the road geometry. The discrete val-
ues of this attribute are illustrated in Figure 5.2 (left). In Figure 5.1, this heading is
towards-ego since the velocity vector of each vehicle have opposite direction.

Id: This attribute is a unique identifier that allows maintaining pedestrian’s/vehicle’s
identity over time.

Is leading: This Boolean attribute, when true, indicates that the pedestrian/vehicle ob-
structs Ego in front, but is also moving in the same direction as Ego (but it also could
be temporarily stopped). This target must be the one closest to the ego vehicle. There
cannot be multiple leaders.

Is obstructing: Boolean attribute that, when true, indicates that the pedestrian/vehicle
is crossing the trajectory of Ego or is leading the ego vehicle. If several entities obstruct the
trajectory, only the one closest to Ego is marked. There cannot be multiple obstructions.

Lateral orientation: If we divide the area around Ego into a 3x3 grid (see Figure 5.3), we
can determine a relative horizontal position with respect to the column in which the pedes-
trian/vehicle is located, i.e., whether the pedestrian/vehicle is on Ego’s path or adjacent
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Figure 5.3: Definition of longitudinal and lateral orientation where Ego is always located
in the gray square and where the distances between the ego vehicle and each of the four
red lines are hyperparameters.

to it on the left or right.

Longitudinal orientation: If we divide the area around Ego into 3x3 grid (see Fig-
ure 5.3), we can determine a relative vertical position with respect to the row in which the
pedestrian/vehicle is located, i.e., whether the pedestrian/vehicle is in front, next to, or
behind Ego.

On: An enumeration providing information on where the pedestrian/vehicle is travelling.
For example, to be on an intersection implies that the pedestrian/vehicle is on the roadway.

Speed: This real number attribute represents the pedestrian/vehicle speed in kilometres
per hour.

Time of arrival: This real number attribute represents the estimated time in seconds
since the pedestrian/vehicle has arrived at a specific abstract location. This property will
be used to determine which road users have the right of way.
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Listing 5 Pedestrian Attributes

1 [{

2 "id": A_UNIQUE_NUMBER || A_UNIQUE_STRING,

3 "distance": {

4 "x": A_REAL_NUMBER,

5 "y": A_REAL_NUMBER

6 },

7 "isLeading": true || false,

8 "isObstructing": true || false,

9 "location": {

10 "approaching": "crosswalk" || "intersection" || "",

11 "at": "crosswalk" || "intersection" || "",

12 "on": "crosswalk" || "drive-lane" || "intersection" ||

13 "off-road" || "",

14 "timeOfArrival": A_REAL_NUMBER

15 },

16 "orientation": {

17 "heading": "left" || "right" || "along-ego" ||

18 "towards-ego" || "left-towards", ||

19 "left-along" || "right-towards" || "right-along",

20 "lateral": "left" || "right" || "center",

21 "longitudinal": "front" || "behind" || "center"

22 },

23 "relativeOrientation": {

24 "heading": "left" || "right" || "along-ego" ||

25 "towards-ego" || "left-towards", ||

26 "left-along" || "right-towards" || "right-along"

27 },

28 "speed": A_REAL_NUMBER

29 }]
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Vehicle Specific Attributes

Is parked: A Boolean which represents a stationary vehicle subject to remain in this
position when the traffic will move forward.

Regulation: A traffic control device indicating whom to prioritize at a junction and what
behaviour is expected.
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Listing 6 Vehicle Attributes

1 [{

2 "id": A_UNIQUE_NUMBER || A_UNIQUE_STRING,

3 "distance": {

4 "x": A_REAL_NUMBER,

5 "y": A_REAL_NUMBER

6 },

7 "isLeading": true || false,

8 "isObstructing": true || false,

9 "isParked": true || false,

10 "location": {

11 "approaching": "crosswalk" || "intersection" || "",

12 "at": "crosswalk" || "intersection" || "",

13 "on": "crosswalk" || "drive-lane" || "intersection" ||

14 "off-road" || "",

15 "timeOfArrival": A_REAL_NUMBER

16 },

17 "orientation": {

18 "heading": "left" || "right" || "along-ego" ||

19 "towards-ego",

20 "lateral": "left" || "right" || "center",

21 "longitudinal": "front" || "behind" || "center"

22 },

23 "regulation": "stop" || "yield" || "",

24 "relativeOrientation": {

25 "heading": "left" || "right" || "along-ego" ||

26 "towards-ego" || "left-towards", ||

27 "left-along" || "right-towards" || "right-along"

28 },

29 "speed": A_REAL_NUMBER

30 }]
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Figure 5.4: Visualization of the relative (egocentric) orientation coordinate system, with
two sample classified dynamic objects.

Note that we apply the nine-grid partitioning of the space around Ego both to the rel-
ative orientation (relative to Ego’s position and represented by the relativeOrientation

block in Listing 6) and the (path-relative) orientation (relative to Ego’s future position
and represented by the orientation block in Listing 6).

Both orientation and relative orientation consist of heading and lateral/longitudinal
position; however, since the distance.x and distance.y positions are already part of the
input, we do not include the lateral/longitudinal positions in the relativeOrientation

block.

Figure 5.4 shows the coordinate system used for the relative (egocentric) orientation of
dynamic objects (represented by the red lines). The figure also shows two example cars
and their classification using the coordinate system.
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Figure 5.5: Visualization of the (path-relative) orientation coordinate system, with two
sample classified dynamic objects.

Similarly, Figure 5.5 illustrates the coordinate system used to determine the (path-
relative) orientation of dynamic objects. The coordinate system is defined relative to the
sequence of road sections that Ego is traveling on. In our example, Ego arrives from the
left and travels around the roundabout towards the green goal point. The figure also
shows two sample cars and their classification. Note that the right car is outside the road
segments travelled by Ego, and thus its orientation coordinates are undefined, i.e., all three
attributes are null.

Scenario 3: Model Instance

Now that the attributes of each category of the world abstraction model, Wt, are known,
we will apply these schemas to scenario 3 when Ego is at the initial location as depicted
in Figure 3.5. In this scenario, we arbitrarily give to the pedestrian the identifier P1 and
to the vehicle the identifier V1. Considering this, we obtain the valuation of the model
depicted in Listing 7.
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Listing 7 [Scenario 3] Model Instance

1 {

2 "ego": {

3 "location": {

4 "approaching": "intersection",

5 "at": "",

6 "on": "drive-lane",

7 "timeOfArrival": NULL

8 },

9 "navigation": "straight",

10 "speed": 50

11 },

12 "pedestrians": [{

13 "id": "P1",

14 "distance": {

15 "x": 856

16 "y": -1.25

17 },

18 "isLeading": false,

19 "isObstructing": true,

20 "location": {

21 "approaching": "",

22 "at": "",

23 "on": "intersection",

24 "timeOfArrival": NULL

25 },

26 "orientation": {

27 "heading": "left",

28 "lateral": "center",

29 "longitudinal": "front"

30 },

31 "relativeOrientation": {

32 "heading": "left"

33 },

34 "speed": 2.25

35 }],
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1 "travel": {

2 "crosswalk": NULL,

3 "intersection": {

4 "center": { "x": 849.99, "y": 4.12 },

5 "distance": 850,

6 "length": 6,

7 "width": 6,

8 },

9 "regulation": "stop",

10 "speedLimit": 50,

11 "trafficLight": NULL

12 },

13 "vehicles": [{

14 "id": "V1",

15 "distance": { "x": 325, "y": 0 },

16 "isLeading": true,

17 "isObstructing": false,

18 "location": {

19 "approaching": "intersection",

20 "at": "",

21 "on": "drive-lane",

22 "timeOfArrival": NULL

23 },

24 "orientation": {

25 "heading": "along-ego",

26 "lateral": "center",

27 "longitudinal": "front"

28 },

29 "relativeOrientation": {

30 "heading": "along-ego"

31 },

32 "speed": 35

33 }]

34 }
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5.2 Temporal Difference

Previously in Chapter 3.2, we mentioned that the preprocessing extracts historical and
predicted attributes, and subsequently performs a temporal difference. However, in our
minimalist study of the data flow in Chapter 4, we omitted these details that did not influ-
ence the decision-making process. However, in this section, we define what this temporal
difference accomplishes.

At first, the system computes additional derived attributes by comparing the propo-
sitions at time t with that of time t − 1. During this comparison, the atomic and raw
world abstraction are compared to derive new attributes allowing the Rule-Engine to
remember important historical information about the perceived environment. For in-
stance, imagine that the memorized atomic world abstraction at time t − 1 contains the
proposition regulatedStop = True and that the world abstraction at time t contains the
proposition on = ‘intersection’. Then, the system can derive the following proposition
wasRegulatedByAnIntersectionStop = True that can be appended to the world abstraction
at time t. Following this principle, the atomic world abstraction memorized at time t
will constitute a time-free snapshot where the history of some state changes is abstracted
into ternary attributes, which simplifies the development of the behavioural test suite as
described in Chapter 6.

Ego’s Temporal Attributes

Last maneuver: The maneuver initiated at the latest time step that has not produced
an emergency-stop is used to remember, for instance, that the ego vehicle is performing an
overtake and therefore it currently is allowed to travel in the opposite lane.

Stop begin at: The time at which the mandatory stop was first performed at the current
intersection.

Stop time elapsed: The time period elapsed between the stop begin and the current
time.

Travel Temporal Attributes

Crosswalk is conflicted: A ternary coming from a prediction algorithm indicating if
Ego will collide with at least one pedestrian crossing the street at a crosswalk during the
projected time period where Ego is expected to be on the crosswalk.
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Was regulated by an intersection stop: A ternary remembering if the intersection
on which Ego is travelling was regulated by a stop sign, such that it does not idle in the
middle of the road to perform a left turn across the path.

After that, the system performs the temporal difference operation that we define as an
attribute union. As you will see at the end of Chapter 5.5, the number of propositions is
large even when there is only one vehicle and one pedestrian involved in the environment.
In a real situation, the expected number of vehicles (including parked vehicles and misde-
tections) and the expected number of pedestrians can be considerably larger. Knowing that
an autonomous vehicle wants to maximize the number of exchanges with the behavioural
planner to increase the robustness of the sequence of behaviours derived from the driving
policy, it is essential to minimize the computation time required to process each request.

The first step toward this minimization is to reduce the amount of data that the Rule-
Engine requires for preprocessing and analysis to derive the next behaviour to initiate. To
achieve this goal, suppose that for each attribute a = (p, v), p is a proposition and v is
its value (true, false, or null). Then, let the set of propositions in Wt be denoted by Pt.
To encode temporal information, the system performs the following temporal difference on
the world abstraction model, Wt ← {(p, v) ∈ Wt | v∨¬v}∪{(p, v) ∈ Wt−1 | p ∈ Pt−1 \Pt}.
Namely, the condition v ∨ ¬v is used to extract the non-null attributes from the atomic
world abstraction.

To exemplify the temporal difference, suppose the input received is Wt = {a,¬b, ◦c},
where

◦
c denotes a null value, and that the memory state is Wt−1 = {¬a, b, c, d,¬e}, where

a, b, c, d, and e are, to simplify the example, atoms. Then, Wt ← {a,¬b} ∪ {d,¬e} since
◦
c

is null in Wt and the literals d, and e are not included in Pt.

The second step of this temporal difference constitutes the foundations of a memoization
scheme. For instance, recall the previous example where Wt ← {a,¬b} ∪ {d,¬e}. If we
compare the attributes of this valuation of the world abstraction model with those of the
previous step, we can easily discover that {a, b, c} are the propositions that have changed
at the current time step. Therefore, the system can use this information to memorize the
output produced by each rule and only reactivate the subset of rules using at least one
of these propositions in at least one of the disjuncts of its clauses. Moreover, it should
also be noted that when the communication is minimal between the machine interface and
the Rule-Engine, the proposition subset should always correspond to the attributes of the
input model such as in the example of this section.
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5.3 Long Short-Term Memory

Long short-term memory is a layer of the preprocessing stage that allows the Rule-Engine
to remove dynamic objects from its memory. It should be remembered that the rule-based
system performs incremental updates and therefore the absence of a dynamic object from
the received scene can mean that (i) its attributes remain unchanged, or (ii) it is out of
bound of the decision-making system, or (iii) it is temporarily obstructed by a dynamic or
static object. To optimize memory management, this layer allows the knowledge expert
to establish rules such as an update absence time or a distance to travel before deleting
a dynamic object in the memory. If we assumed perfect perception, a dynamic object
that has constant speed (including being stationary) might not produce any update for
extended periods of time, and thus be deleted from the memory. However, we do not
face this problem since perception is not perfect, and causes attributes such as speed and
relative position to oscillate around their true value, and these changing values will be
reported as updates. This in turn, will prevent the system from deleting these constant-
speed or stationary visible dynamic object. Therefore, this layer decreases the system noise
sensitivity allowing Ego to behave smoothly even when it travels in a partially observed
environment.

Another goal of long short-term memory is to reconcile a small quantity of noisy data.
In our system implementation, perception would provide only very noisy heading estimate
for slowly moving dynamic objects, where the heading would change at random over time.
This layer thus allows memorizing a history of values to establish whether the environment
perceived at time step t is coherent with its history. For example, a vehicle that has
decelerated from 10 km/h to 5 km/h in the history cannot suddenly have a heading that
would suggest a reversed trajectory. Therefore, even if the world abstraction suggests that
the value of an attribute has changed, the long short-term memory may overwrite it with
a value deemed more likely. Indeed, one can design closely accurate overriding functions
only based on empirical observation and analysis, since the approximated value depends
of the sensor capabilities and the recovery mechanisms implemented in the autonomous
vehicle stack.

5.4 Grouping Operations

Suppose that Di is a dynamic object that Ego wants to locate using a relative orientation,
where the middle of Ego’s rear axle is the origin. Also suppose that Ego wants to locate Di

according to its path. Achieving these goals requires defining the set depicted in Listing 8.
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Listing 8 Location of dynamic objects

1 {

2 (...),

3 "dynamicObjects": [{

4 "identifier": "D1",

5 (...)

6 "orientation": {

7 (...),

8 "lateralCentre": true,

9 "lateralLeft": false,

10 "lateralRight": false,

11 "longitudinalBehind": false,

12 "longitudinalCentre": false,

13 "longitudinalFront": true

14 },

15 "relativeOrientation": {

16 (...),

17 "lateralCentre": true,

18 "lateralLeft": false,

19 "lateralRight": false,

20 "longitudinalBehind": true,

21 "longitudinalCentre": false,

22 "longitudinalFront": false

23 }

24 }, (...)],

25 (...)

26 }
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The problem with the object representation in Listing 8 is that each rule that checks
for the presence of objects with a certain property will need to redundantly filter the
collection. In addition, the memoization performs poorly because this entire large collection
is flagged as changed whenever any attribute of its member object is updated, and thus
the collection will trigger reevaluation of all rules that operate on it. Denoting R as the
number of rules, these operations require O(R|D|), which decreases the inferential process
run time efficiency. A method to attenuate this problem is to flatten the dynamic object
set using the Boyce-Codd Normal Form (BCNF) [11]. BCNF is a normal form commonly
used in relational databases. It involves flattening all nested attributes, such as arrays
and collections. This flattening allows rules to register more specific interest on attributes
of subsets of dynamic objects. In our implementation, BCNF uses identifiers to reference
each dynamic object, generating the set depicted in Listing 9.

Listing 9 Location of dynamic objects using BCNF

1 {

2 (...),

3 "dynamicObjects": {

4 "D1": { (...) },

5 "D2": { (...) },

6 (...)

7 },

8 (...)

9 }

The normalization of Listing 9 creates a relational data schema ensuring that each
proposition is accessible in constant time. As a result, the dynamic object set can be
targeted directly by the rules such as ”IF D1 is [...]”. While being time efficient, BCNF
is limiting as some atomic propositions used in the clauses require to be quantified. To
overcome this drawback, the preprocessing phase ends with grouping operations. Grouping
avoids bounding the number of elements in the environment and enhances the dissimilarities
amongst the propositions of the dynamic object set as depicted in Listing 10.

Although it may seem counter-intuitive to apply BCNF and then recreate collections,
this process, in addition to allowing constant time access, avoids the run time complexity of
redundantly finding a common collection of dynamic object amongst the rules (i.e. multiple
rules requiring to find the subcollection representing the incoming traffic). Furthermore, it
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also improves the memoization efficiency since the system can monitor the changes of atoms
over the subcollections. For instance, let B be the orientation.behind subcollection, moni-
toring a predicate such as (∃d ∈ Bt ∧ ∃d′ ∈ Bt−1|d.id = d′.id ∧ d.hasSpeed 6= d′.hasSpeed)
is necessarily more efficient than monitoring it over the whole collection of dynamic objects,
since B ⊆ D.

In the example studied in this section, we use the terminology of dynamic objects to
simplify the notation, but in our system implementation we split them in pedestrian and
vehicle since Ego takes different precautions when interacting with either category of these
dynamic objects. For the remaining chapters of this thesis, we will use a subset of the 58
grouping operations performed by the Rule-Engine since these operations are only meant
to boost the run time efficiency.
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Listing 10 Improved location of dynamic objects using BCNF subcollections

1 {

2 (...),

3 "dynamicObjects": {

4 "orientation": {

5 "behind": ["D4", "D5"],

6 "front": ["D1"],

7 "left": ["D3", "D4"],

8 "right": ["D2", "D5"]

9 },

10 "relativeOrientation": {

11 "behind": ["D1"],

12 "front": ["D2", "D5"],

13 "left": ["D4"],

14 "right": ["D3"]

15 },

16 "references": {

17 "D1": { (...) },

18 "D2": { (...) },

19 [...]

20 }

21 },

22 (...)

23 }
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5.5 Preprocessing

We saw in the previous subsections of this chapter that the preprocessing stage is de-
composed into several micro-tasks aiming to deduce new predicates, recover from noisy
observations, and reshape the dataset used by the succeeding processes. We can now show
the data format following the complete execution of this stage where this time, we de-
cided to use “all”, “behind”, “front”, “left”, “leading”, “right” and “offRoad” as grouping
operation.
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Listing 11 [Scenario 3]: Complete Preprocessing Valuation

1 {

2 "ego": {

3 "exceedSpeedLimit": false,

4 "hasLowSpeed": false,

5 "hasPrecedence": false,

6 "hasSpeed": true,

7 "lastManeuver": {

8 "decelerateToHalt": false,

9 "emergencyStop": false,

10 "followLeader": true,

11 "overtake": false,

12 "stop": false,

13 "trackSpeed": false,

14 "yield": false

15 },

16 "location": {

17 "approachingCrosswalk": false,

18 "approachingIntersection": true,

19 "atCrosswalk": false,

20 "atIntersection": false,

21 "onCrosswalk": false,

22 "onDriveLane": true,

23 "onIntersection": false,

24 "onOffRoad": false

25 },

26 "navigationLeft": false,

27 "navigationRight": false,

28 "navigationStraight": true

29 },

30 (...)
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1 (...)

2 "references": {

3 "P1": {

4 "hasPrecedence": true,

5 "hasSpeed": true,

6 "isLeading": false,

7 "isObstructing": true,

8 "location": {

9 "approachingCrosswalk": false,

10 "approachingIntersection": false,

11 "atCrosswalk": false,

12 "atIntersection": false,

13 "onCrosswalk": false,

14 "onDriveLane": false,

15 "onIntersection": true,

16 "onOffRoad": false

17 },

18 "orientation": {

19 "headingAlongEgo": false,

20 "headingLeft": true,

21 "headingLeftAlongEgo": false,

22 "headingLeftTowardsEgo": false,

23 "headingRight": false,

24 "headingRightAlongEgo": false,

25 "headingRightTowardsEgo": false,

26 "headingTowardsEgo": false,

27 "lateralCentre": true,

28 "lateralLeft": false,

29 "lateralRight": false,

30 "longitudinalBehind": false,

31 "longitudinalCentre": false,

32 "longitudinalFront": true

33 },

34 (...)

35 },

36 (...)

37 }

38 (...)
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1 (...)

2 "references": {

3 "P1": {

4 (...)

5 "relativeOrientation": {

6 "headingAlongEgo": false,

7 "headingLeft": true,

8 "headingLeftAlongEgo": false,

9 "headingLeftTowardsEgo": false,

10 "headingRight": false,

11 "headingRightAlongEgo": false,

12 "headingRightTowardsEgo": false,

13 "headingTowardsEgo": false,

14 "lateralCentre": true,

15 "lateralLeft": false,

16 "lateralRight": false,

17 "longitudinalBehind": false,

18 "longitudinalCentre": false,

19 "longitudinalFront": true

20 }

21 },

22 "V1": {

23 "hasLowSpeed": false,

24 "hasPrecedence": true,

25 "hasSpeed": true,

26 "isLeading": true,

27 "isObstructing": false,

28 "isParked": false,

29 (...)

30 }

31 }

32 (...)
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1 (...)

2 "references": {

3 [...]

4 "V1": {

5 (...)

6 "location": {

7 "approachingCrosswalk": false,

8 "approachingIntersection": true,

9 "atCrosswalk": false,

10 "atIntersection": false,

11 "onCrosswalk": false,

12 "onDriveLane": false,

13 "onIntersection": false,

14 "onOffRoad": false

15 },

16 "orientation": {

17 "headingAlongEgo": true,

18 "headingLeft": false,

19 "headingRight": false,

20 "headingTowardsEgo": false,

21 "lateralCentre": true,

22 "lateralLeft": false,

23 "lateralRight": false,

24 "longitudinalBehind": false,

25 "longitudinalCentre": false,

26 "longitudinalFront": true

27 },

28 "relativeOrientation": {

29 "headingAlongEgo": true,

30 "headingLeft": false,

31 "headingRight": false,

32 "headingTowardsEgo": false,

33 "lateralCentre": true,

34 "lateralLeft": false,

35 "lateralRight": false,

36 "longitudinalBehind": false,

37 "longitudinalCentre": false,

38 "longitudinalFront": true

39 }

40 }

41 }

42 (...)
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1 (...)

2 "pedestrians": {

3 "all": [ "P1" ],

4 "behind": [],

5 "front": [ "P1" ],

6 "left": [],

7 "leading": "",

8 "right": [ "P1" ],

9 "offRoad": []

10 },

11 "travel": {

12 "intersection": {

13 "centerPointInFront": true,

14 "isObstructed": {

15 "crossing": true,

16 "leftTurn": false,

17 "rightTurn": false

18 }

19 },

20 "regulationStop": true,

21 "regulationYield": false,

22 "wasRegulatedByAnIntersectionStop": false

23 }

24 "vehicles": {

25 "all": [ "V1" ],

26 "behind": [],

27 "front": [ "V1" ],

28 "left": [],

29 "leading": "V1",

30 "parked": [],

31 "right": [],

32 "offRoad": []

33 }

34 }
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5.6 Maneuver Rules Evaluation

In the scenario under study, Ego must undertake several maneuvers before reaching the
opposite side of the intersection. These maneuvers include: establish a deceleration point
(decelerate-to-halt); wait for the leading vehicle to enter the intersection (yield); make a
full stop for three seconds (stop); wait for precedence (yield); enter the intersection (track-
speed); and finally, reach the marker when leaving the intersection (track-speed). Each of
these maneuvers requires to model a set of rules allowing Ego to drive safely. In this thesis,
we will only describe the rules to accomplish the first maneuver: establish a deceleration
point. The remaining rules are given in the rule book B.

A set of rules should generalize to many situations. Thus, even if the anticipated stop-
ping point must be behind the leading vehicle in the specific scenario, we must consider all
the desirable stopping locations knowing that Ego intends to cross the intersection. Con-
sidering only the intersection entrance, we can already identify the following possibilities:
stop at the stop line, and stop behind the leading vehicle at the stop line. On the other
hand, we can also improve our modelling by employing courtesy rules such as: “When a
pedestrian crosses a junction on our way, it is better to avoid blocking the intersection
and thus, potentially allowing vehicles without precedence to cross meanwhile”. Note that
these courtesy rules apply regardless of whether the intersection is regulated by a stop sign
or not. Therefore, we will add the following possibilities: stop at the end of the lane and
stop behind the leading vehicle at the end of the lane.

Now that we have an idea of the range of our maneuvers, we will list the pred-
icates used: (A) ego.location.approachingIntersection, (B) travel.regulatedStop, (C) ve-
hicles.leading, (D) v → references[v].location.approachingIntersection, (E) v → referen-
ces[v].location.atIntersection, (F ) pedestrians.all, (G) p → references[p].location.onInter-
section, and (H) p → references[p].isObstructing. Unlike the previous chapter, some of
these predicates are quantifiable, such as the predicate functions D, E, G and H. There-
fore, the dynamic objects on the scene should be appropriately quantified in the rules.

(A ∧B) ` (decelerate-to-halt, α) (5.1)

(A ∧B ∧ (∃v ∈ C|D(v)) ∨ A ∧B ∧ (∃v ∈ C|E(v))) ` (decelerate-to-halt, β) (5.2)

(A ∧ (∃p ∈ F |G(p) ∧H(p)) ` (decelerate-to-halt,ω) (5.3)

(A ∧ (∃v ∈ C|D(v)) ∧ (∃p ∈ F |G(p) ∧H(p))) ` (decelerate-to-halt, λ) (5.4)

(A ∧ (∃v ∈ C|E(v)) ∧ (∃p ∈ F |G(p) ∧H(p))) ` (decelerate-to-halt, λ) (5.5)
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Here, we should notice that the Equations 5.4 and 5.5 are meant to be a single rule in
disjunctive normal form like Equation 5.2, but to improve readability we have split it in
two equations.

According to Listing 11 which lists all the properties after the preprocessing stage, all
these rules match the current state and therefore, they produce the outputs α, β, ω, and
λ, which are the following set of values.

Listing 12 [Scenario 3]: Maneuver rule outputs

1 α: {

2 "abstractLocation": "stop-line"

3 }

4

5 β: {

6 "abstractLocation": "stop-line",

7 "leadingVehicle": "V1"

8 }

9

10 ω: {

11 "abstractLocation": "end-of-lane"

12 }

13

14 λ: {

15 "abstractLocation": "end-of-lane",

16 "leadingVehicle": "V1"

17 }
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5.7 Precedence Table

As mentioned in the previous subsection, each rule in our example matches the World
Abstraction, Wt. Thus, when the precedence table seeks the priority maneuver, there is
only one option, making the choice of the decelerate-to-halt maneuver trivial. Nevertheless,
since we have several constraint outputs disagreeing, we can illustrate the second layer of
preprocessing.

Listing 13 [Scenario 3]: Considered Constraints Input Model

1 {

2 "abstractLocation": {

3 "endOfLane": true,

4 "stopLine": true

5 },

6 "leadingVehicle": true,

7 "leadingPedestrian": false,

8 "maneuver": {

9 "decelerateToHalt": true,

10 "emergencyStop": false,

11 "followLeader": false,

12 "overtake": false,

13 "stop": false,

14 "trackSpeed": false,

15 "yield": false

16 }

17 }

This preprocessing is like the one we saw earlier for the input model of the Rule-
Engine: it consists of merging the received proposals, transforming them into propositions,
and adding the selected maneuver as a proposition. To do this, the preprocessor applies
the same strategies as previously established such as to transform each discrete value into a
ternary and to occasionally merge several ternaries creating derived propositions aiming to
reduce the activation frequency of the constraint rules. As we have already seen the whole
theory to understand these concepts, we can immediately examine the data generated for
our current example shown in Listing 13.
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5.8 Constraint Rules Evaluation

Recall that the purpose of the constraint rules is to filter the propositions issued by the
maneuver rules such that the end behaviour constitutes a safe reconciliation of the given
constraints. In the previous chapter, we had already illustrated the track-speed constraints
resolution mechanism searching for the minimum cruising speed amongst the generated
upper bounds. Now, let’s use the nullable-Boolean constraint’s model, Ct, to formulate
the following rules: “When the selected maneuver is decelerate-to-halt and Ego can stop
at the stop line, it should be included in the final constraint” (Equation 5.6), “When the
maneuver is decelerate-to-halt and a leading vehicle exists, the vehicle should be included
in the final constraint” (Equation 5.7), and “When the selected maneuver is decelerate-to-
halt and there is no stop line but there is the end of the lane, the end of the lane should
be included in the final constraint” (Equation 5.8).

As we have seen, rules are built to include or exclude information from the input
model. More concretely, let the predicates: (A) maneuver.decelerateToHalt, (B) abstract-
Location.stopLine, (C) leadingVehicle, and (D) abstractLocation.endOfLane be attributes
of the considered atomic constraint model (see Listing 13) as well as (E) leadingVehicle be
the referential string of the considered non-atomic constraint model (see Listing 12). With
these predicates, we can build the following rules:

(A ∧B) ` { “abstractLocation”: “stop-line” } (5.6)

(A ∧ C) ` { “leadingVehicle”: E } (5.7)

(A ∧ ¬B ∧D) ` { “abstractLocation”: “end-of-lane” } (5.8)

When we apply these rules to the atomic input model, Ct, and perform the union
of retained propositions, we obtain the behaviour that Ego will initiate: (decelerate-to-
halt, { “abstractLocation”: “stop-line”, “leadingVehicle”: “V1” }). In this case, the final
behaviour corresponds exactly to the rule in Equation 5.2. However, it is also possible
that the selected behaviour is the complete or partial union of several maneuver rules.
For instance, suppose that the active maneuver rules were Equation 5.1, 5.3, 5.4 and 5.5.
According to the constraint rules, the selected behaviour remains unchanged (decelerate-
to-halt, { “abstractLocation”: “stop-line”, “leadingVehicle”: “V1” }). Therefore, this
behaviour is the partial union of Equation 5.1, 5.4 and 5.5 since in the proposition α,
the abstract location has been retained while the leading vehicle was unspecified, and in
the proposition λ, the abstract location has been rejected while the leading vehicle was
retained.
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In this chapter, we saw the properties of the dynamic objects inputted to the Rule-
Engine. We applied them on the third scenario depicted in Figure 3.5. This scenario
illustrates an interaction amongst Ego, a leading vehicle and a pedestrian nearby an inter-
section. This scenario allowed us to review the stages of preprocessing, maneuvers rules,
precedence table and constraint resolution rules. In particular, we have seen that the pre-
processor performs temporal difference operations, long-short term memory with potential
attribute overwrite, grouping operations and uses a memoization scheme to accelerate the
deduction of the maneuver to be executed at the next time step. We then refined the
design of the rules by adding functions to iterate over collections of dynamic objects. We
illustrated this design process by defining four rules controlling the Ego behaviour when
approaching the stop line of an intersection regulated by an all-way stop. Next, we detailed
the merging process of the precedence table by agglomerating the constraints of the four
rules created. This set of inconsistent constraints was further filtered by the constraint
rules until a consistent constraint set is obtained. Afterward, we defined the end behaviour
by creating the tuple composed with the maneuver retained by the precedence table as
well as the constraints filtered by the constraint rules. This concludes the description of
the decision-making process of our expert system. In the next chapter we will discuss how
to qualify a rule set aiming for developing better rules.
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Chapter 6

Tool Assisted Quality Assurance
Method

In the three previous chapters, we viewed a design of an expert system applied to be-
havioural planning for urban self-driving. Nevertheless, one of the deficiencies commonly
attributed to this type of architecture is that it is difficult for a human to build a book of
rules covering exhaustively an operational design domain. Although the objective of this
thesis is not to produce a complete rule set, we present a rule production methodology that
allows us to increase the capabilities of our system while the operational design domain is
growing.

An effective methodology is essential since the number of collisions amongst rules in
an unordered rule-based system, such as the Rule-Engine, grows exponentially with the
number of rules. As a result, it becomes unmanageable for a human to comprehend the
impact of creating or altering a rule. Fortunately, we implemented a test-driven technique
that can address this challenge. In this tool-assisted technique, the developers can use
their intuition to improve the rules until the generated set supports the operational design
domain, while, concurrently, the machine checks if all the situations tested satisfy the
expected behaviours and suggests new edits by providing a rationale on what went wrong.

In this chapter, we will discuss how the tool ensures the desired behaviour of the rule
set, the metrics used to qualify the rule set, as well as its integration with the Rule-Engine
architecture.
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6.1 Unit Test Method

The primary purpose of this tool-supported method is to ensure that the Rule-Engine
gradually reaches a comprehensive and correct set of rules. To do this, the tool assures
that the built rules support their test cases. Whenever a test fails, the tool assisted-
method uses the traceability of the Rule-Engine to identify the set of rules along with their
matching clauses reported in the failing test case. This allows the developer to focus only
on the outputted subset of rules and clauses. While incrementally editing the knowledge
base, this process is repeated until the test suite is satisfied.

In our system, we define a test case as a valuation of the World Abstraction Model,Wk,
where the internal state of the rule-based system must match the label produced by the
knowledge expert. Each label corresponds to a quadruplet, (Wk, Rm,M

∗, C∗), whereWk is
a valuation of the World Abstraction Model, Rm is the maneuver rule number that should
survive to the system filtering (i.e. the constraints, Cm, outputted by the maneuver rule
Rm correspond exactly to the retained constraints, Cm = C∗ subject to C∗ being derived
from Rm), M∗ is the desired maneuver, and C∗ is the desired constraints to be respected,
as associated with the maneuver. Later, in Chapter 7.4, we will see that Rm is helpful
when identifying gaps amongst test cases during the knowledge acquisition.

For this verification to be gradual, the knowledge expert builds the labels by applying
the principles of Test-Driven Development (TDD). Its purpose is to create a behavioural
test suite, B, consisting of labels covering the extent of the operational design domain in
which the autonomous vehicle must drive. Since, in an expert system using an unordered
set of rules, each rule acts concurrently, these tests are designed to ensure that the rule
set produces the right maneuvers and constraints. Thus, the tests check the integration
amongst the rules rather than their standalone behaviour.

As previously mentioned, in an unordered rule-based system, adding a new rule may
influence the precedence of any subset of its previous rules. For example, even if a situation
was once covered by rule A, the inclusion of a new rule that uses a subset of the attributes
of rule A may be enough to change the domain in which, in a collective evaluation, the
maneuver and constraints produced by rule A survives to the system filtering. Thus, for
each modification, the knowledge expert wants to be convinced that the modification still
allows the autonomous vehicle to achieve the behaviours already included in the test suite
as well as the new ones.

It is clear that the knowledge expert cannot cover all valuations of the World Ab-
straction Model, W , since this model includes continuous attributes such as positions and
velocities as well as an indefinite number of dynamic objects. Therefore, the knowledge ex-
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pert looks for an incomplete test suite that will be refined during the development process
of the various modules integrated in the autonomous vehicle.

The test choice is intuitively correlated with the rule set constituting the Rule-Engine.
Since the rules are defined in the disjunctive normal form, each disjunct describes a situ-
ation to be assessed. Moreover, as each rule only uses a subset of the World Abstraction
Model propositions, it is unclear whether we should instantiate each attribute of the World
Abstraction Model to describe a complete environment or whether the value of the remain-
ing attribute should be left unspecified. For instance, a disjunct of a rule premise can be
used to define one or more test cases. A disjunct is a conjunction of constraints on at-
tributes, often equalities, and any test case derived from it will respect these constraints.
When deriving a test case, we need to decide what to do with the attributes that are
not mentioned in the disjunct. We could either create minimal test cases, which try to
omit the unmentioned attributes (sometimes the wellformedness of a model might require
some of the unmentioned attributes to be included), or test cases that include additional
unmentioned attributes. When defining a test case that includes additional unmentioned
attributes, the test case increases the chance to match additional rules, either existing or
future, which would make defect localization difficult. On the other hand, minimal test
cases may sometimes represent contrived situations that do not occur in reality. As a
result, the test designer needs to find a balance between these concerns.

To illustrate the contrived situations claim, suppose we design a rule using the fol-
lowing predicates: (A) ego.location.onIntersection and (B) ego.hasPrecedence such that
(A∧B) =⇒ a. The rule is well-formed and uses a subset of the predicates from the World
Abstraction Model. Unfortunately, the predicate ego.hasPrecedence means that Ego has
the precedence at a stop or yield sign. Since there does not exist such signal on the physical
area of an intersection, then this combination of attributes is already unattainable. Some-
times, the designer can also create a rule that does not violate the meaning of any attributes
but that remains unattainable. Introducing the predicate (C) ego.location.onOffRoad, sup-
pose the following pair of rules (A) =⇒ α and (A ∧ ¬C) =⇒ β. Since onIntersection
implies to be on the physical area of an intersection, it is obvious that Ego cannot be
off-road simultaneously. Therefore, even if the ontology is properly used, we are still in a
situation where the behaviour α will always be overridden by the behaviour β or vice-versa
depending on the precedence of these maneuvers.

Beyond covering maneuver rules, a knowledge expert also needs to check the constraint
rules. For this task, the system compares the quintuplet, (Wk, Rm, Rc,M

∗, C∗), where Rm

is now a set of maneuver rule numbers, Rc is a set of constraint rule numbers, whereas
Wk, M∗ and C∗ remain unchanged. Here, the knowledge expert does not seek to isolate a
situation targeted by a single rule but rather wants to consider the interaction of multiple
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rules having the same level of precedence. For example, the third scenario that we described
in the previous chapter is a suitable example since four rules with the same precedence
(i.e., decelerate-to-halt) were juxtaposed in the decision-making.

Finally, when the behavioural test suite, B, is well defined and includes both test types,
the knowledge expert has a test methodology to probe the behaviours of the autonomous
vehicle in polynomial time such as O(|B|∗p), where p is the mean polynomial time required
by the Rule-Engine to process each query.

6.2 Quantitative Evaluation

The behavioural test suite, B, is an approximation of the desired behavior-defining function
that can be covered by several distinct rule sets. Therefore, the second goal of our tool
assisted method is to compare two sets of rules based on the efficiency of their execution
and their maintainability as stated in the design objectives of Chapter 2. This comparison
focuses primarily on the interaction among the rules. The metrics defined in this chapter
are used to assess the most desirable rule set generated by Algorithm 1 of Chapter 7.5.

With respect to efficiency, our method considers a single metric which is the number of
activations of a rule defined as follows.

Activation: Number of times a rule Ri is evaluated such that the value of at least one of
the predicates included in its clauses has changed.

This metric identifies the frequency at which the rules must be evaluated. For in-
stance, the rule created in Chapter 4.3 depended on the following six attributes: (A) loca-
tion.onDriveLane, (B) location.approachingCrosswalk, (C) location.approachingIntersection,
(D) location.atCrosswalk, and (E) location.atIntersection from the atomic Ego category
and, finally, the value from the world abstraction (F ) speedLimit of the Travel cate-
gory, used as a constraint. In comparison, we can consider another rule which com-
bines all the Ego location category attributes in a new derived predicate called (G) loca-
tion.onlyOnDriveLane. With this alternative design, the rule can be expressed as Equation
6.2, which is simpler than Equation 6.1.

(A ∧ ¬B ∧ ¬C ∧ ¬D ∧ ¬E) =⇒ (track-speed, F ) (6.1)

G =⇒ (track-speed, F ) (6.2)
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From the efficiency point of view, the designer must determine the fastest implemen-
tation. For example, the boolean location.onlyOnDriveLane could be obtained using: IF
location.approaching is empty AND location.at is empty THEN location[’onlyOn’ + lo-
cation.on] = true. In this case, the method evaluates the entire behavioural test suite, B,
checking whether it is better to execute Equation 6.1 each time one of the five monitored
boolean values changes or to incorporate the derived predicate by performing the two com-
parisons of the derived clause at each time step, t, such as in Equation 6.2. Intuitively, we
see that Equation 6.2 is significantly less active since it evaluates to true for only one of
the 25 boolean combinations of Equation 6.1. Nevertheless, we still run both versions to
determine whether using the derived predicate is an actual improvement.

One could wonder why we use the activation metric rather than the execution time of
the behavioural test suite. Knowing that the activation metric is used to avoid rule re-
evaluation, it requires a temporally correlated observation sequence to determine the actual
execution time saving. However, the behavioural test suite, is not temporally correlated
since the tests aim to evaluate the autonomous vehicle behaviours in specific independent
situations. Thus, the observation history during the execution of the suite is not a realistic
approximation of the expected histories during actual driving. Therefore, to overcome this
limitation, we have setup the following weight matrix P using the problem decomposition
described in Chapter 7.1 where we define the cost of accessing an attribute using the
average number of dynamic objects (i.e., ~α, and ~β) encountered during public drive.

Predicate Type P1 P2 P3 P4 P5 P6 P7
Ego 1 1 1 1 1 1 1

P := Travel 1 1 1 1 1 1 1
Pedestrian α1 α2 α3 α4 α5 α6 α7

Vehicle β1 β2 β3 β4 β5 β6 β7

Predicate Type P1 P2 P3 P4 P5 P6 P7
Ego e1 e2 e3 e4 e5 e6 e7

Ci := Travel t1 t2 t3 t4 t5 t6 t7
Pedestrian p1 p2 p3 p4 p5 p6 p7

Vehicle v1 v2 v3 v4 v5 v6 v7

To approximate the computation cost of a rule set, let ~ab be an indicator vector that
specifies whether a rule has been activated during a behavioural assessment. Also, let
Ci be a sparse matrix telling the number of Ego, Travel, Pedestrian, and Vehicle atomic
attributes included in the clause of a rule Ri for each of the seven subproblems described
in Chapter 7.1. Thus, the computation cost of the rule set can be approximated with
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Equation 6.3 which compensates for the lack of temporality and the restricted number of
dynamic object on the scene.

∑
b

|R|∑
i=1

ab,i

4∑
j=1

7∑
k=1

Pj,kCi,j,k (6.3)

In addition to evaluating the run time effectiveness of the rule sets, the method estab-
lishes a maintainability score for each rule set covering the behavioural test suite, B. We
define maintainability as the ease for the knowledge expert to modify the knowledge base.
The maintainability of the rules can be estimated by observing whether the rules that
matched the valuation of the World Abstraction, Wk, contributed to the final behaviour
determined by the Rule-Engine. This aspect can be decomposed into the following four
metrics computed for B:

Support: Number of times the output of the rule Ri was included in the adopted be-
haviour.

Redundancy: Number of times a rule Ri leads to the same constrained maneuver as
another rule Rj during the same situation.

Greediness: Number of times the output of rule Ri was prioritized and therefore masks
the output of another rule Rj.

Rejection: Number of times the output of rule Ri is masked by the output of another
rule Rj after the prioritization.

At first glance, we already know that the rule sets being compared must each cover the
behavioural test suite, B, and the suite must cover the rules in each set before probing rule
maintainability. Thus, one could wonder about the utility of calculating the number of
supports since each rule is necessarily supported. Even though this is a fair intuition, the
support metric helps to establish the importance of each rule. For instance, a system with
a balanced number of supports amongst the rules does not rely on the trustworthiness of
a single rule. Therefore, it includes a natural redundancy mechanism to restore a viable
state if an observation was to be misdetected.

To illustrate this claim, imagine that the ego vehicle is approaching an intersection
regulated by a stop sign. The rules could be constructed such that the intersection state
is only observed once Ego starts its mandatory stop since it necessarily must stop be-
fore getting the option to enter the intersection. Unfortunately, suppose the stop sign is
obstructed so that Ego does not anticipate the need to decelerate. If the system is well
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balanced in its supports, an alternative observation such as “a vehicle not controlled by
a stop sign is approaching” will allow Ego to slow down/yield and therefore make a stop
even if the mandatory stop situation should have taken precedence if it was detected suc-
cessfully. Thus, this model with the additional support for the situation is more robust
and desirable since the rule “If Ego encounter a stop sign, it must stop” alone would be
too brittle.

Further, the number of supports is also used to assess if the rule has at least one
unique support. For instance, if we take the Equations 6.1 and 6.2 we can conclude that
the two rules have exactly the same domain and range. However, in a large-scale design,
the number of rules could be significant to a point where it is difficult to detect these
redundancies. To establish whether a Rule A could be removed, it must be ascertained
whether an agglomeration of one or more rules resulting in the same decision covers the
domain of Rule A. With the metrics mentioned above, we can establish that a rule is not
needed and can be removed if its support number is equal to its redundancy number.

Furthermore, the greediness and rejection metrics allow us to establish the level of
coupling amongst the rules. Naturally, a rule set is more easily extensible if the number
of situations activating multiple rules simultaneously is minimal. For example, if for a
valuation of World Abstraction, Wk, the maneuver rules are voting for decelerate-to-halt,
yield, stop, and emergency-stop, then it becomes very difficult to change the resulting
behaviour since a significant number of rules have to be analyzed because of the precedence
table and the constraint resolution rules succeeding it.

It is also of interest to note that greediness necessarily implies the presence of rejec-
tion. Nevertheless, these metrics do not constitute a one-to-one relationship. That is, for
example, for a given decision, there could be two counts of greediness for five rejections.
Therefore, we define the coupling as the sum of these two metrics, which encapsulate the
ease for the knowledge expert to modify existing behaviours.

Now that we have gained insight on the proposed metrics, we can describe the impact
of the Chapter 5.8 statement “it is also possible that the selected behaviour is the com-
plete or partial union of several maneuver rules”. Since the behaviour derived from the
driving policy does not have to correspond exactly to one of the maneuver rule suggested
constraints, we refine our notion of support by adding that the support of a behaviour is
the subset of constraints with minimum cardinality that suffice to generate the behaviour.
As an example, let’s return to the third scenario where the maneuver rule constraints were
α, β, ω, and λ. Knowing that the final decision exactly matches β and that α is a non-strict
subset of β, we determine that only β supports the decision while all others are rejected.
This means that the maneuver rule output pair (α, β), even if it produces the same derived
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behaviour, does not count as a support. Thus, the rule generating β has greedy support
while the rules generating α, ω, and λ count as rejected options. There is no redundancy in
this example since no other rule produces exactly β. In other words, if at another time step
the candidate constraints would have been α, β, ω, and α (i.e., two distinct rules producing
α), there would still be no redundancy since α is not the behaviour retained.

Finally, consider the second scenario where Ego wants to pass two parked vehicles, V1
and V3. Even if we did not concretely define the rules modelling this scenario, suppose
that our alternatives are (A) passing V1 (B) passing V3, and (C) passing V3 considering
the leading vehicle V2. Moreover, suppose that after the constraint rules, the adopted
behaviour is passing V1 and V3 considering the leading vehicle V2. In this example, the
union of A and C becomes our support even if the union of A, B, and C would also
have been a candidate. We retain the union of A and C since this union is the smallest
subset supporting the decision. With respect of this union, A and C are greedy supports
while B is a rejection. The only exception where we will accept several alternatives as a
behavioural support is when several unions have the same cardinality. Let us arbitrarily
define the union of A, B, and C as well as the union B, D, and E generating the same end
behaviour which is indistinguishable since they each have a cardinality of three. From this
perspective we shall say that A, B, C, D, and E are supports while all of them except B
are redundant.

Our restrictions on computation of the metrics are primarily used to provide an un-
ambiguous definition that can be applied to qualify a rule set in practice. These defini-
tions, although debatable, avoid emphasizing negligible information when comparing two
rule sets. For example, it is appropriate to prefer a set of rules where the decisions are
minimally redundant, and we want to avoid being skewed by the intrinsic redundancies
generated by decisions that are not retained and therefore superfluous. On the other hand,
since our method penalizes equally the greediness, redundancy and rejection metric, we can
arbitrarily label all constraints subset with higher cardinality than the supporting subset
as a rejection even if some of them could have been labelled as redundancies. We will see
in the next chapter how to use these metrics to help us model our knowledge base.

6.3 Test Interface

This chapter ends with additional guidance on the design of the behavioural test suite, B.
On the one hand, we have previously mentioned that the behavioural test suite, B, is not
temporally correlated. This requirement stems mainly from the fact that the Rule-Engine
does not simulate a continuous interaction among the dynamic objects since most of the
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Figure 6.1: Splitted High-level architecture diagram.

received attributes are abstract and therefore already reflect an imprecise situation. This
imprecision is caused by the existence of several environment representations that can be
abstracted using the same attribute valuation. Thus, the mandate of the tool assisted
technique is to build a sample test suite to validate the behaviour of the autonomous
vehicle while abstracting from the concrete meaning of each situation and their temporal
sequence.

To avoid having to model realistic situation sequences, the behavioural test suite, B,
must be able to remove the effects of the preprocessing that corrects the attributes based
on the observation’s history. To achieve this, we created a process that sends a World
Abstraction, Wt, where each attribute has a null value between each behavioural assess-
ment. This empty entry suffices to remove any kind of correlation between the behavioural
assessment since the disparity between this state compared with the observation history is
too significant for the Rule-Engine to successfully reconcile the data.

To ensure that each component of the Rule-Engine is properly tested, we allowed the
behavioural test suite, B, to submit a time-free snapshot Wk (in red in Figure 6.1) of the
World Abstraction Model. The attributes inWk included in the World Abstraction Model,
Wt, (in blue in Figure 6.1) are first processed conventionally (Listing 14) and generate an
Atomic World Abstraction, Wt. Using the restructuring properties wisely, the remaining
attributes not included in Wt are fused using the temporal difference operation defined in
Chapter 5.2. This restructuring overwrites the values ofWt which could not be interpreted
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Listing 14 Ego’s fragment of a world abstraction snapshot submitted to the Rule-Engine
containing temporal (Wt) and time-free (Wk) attributes

1 {

2 "ego": {

3 "location": {

4 "approaching": "", // Wt

5 "at": "intersection", // Wt

6 "on": "drive-lane" // Wt

7 },

8 "navigation": "straight", // Wt

9 "speed": 0, // Wt

10 "stopBeginAt": 100, // Wk

11 "stopTimeElapsed": 3100 // Wk

12 },

13 [...]

14 }

successfully by the preprocessing stage (Listing 15).

To illustrate this override, let’s exemplify this process using the three-second mandatory
stop situation. We can break this scenario into three distinct situations: (A) When Ego
reaches the stop line, it makes a complete stop; (B) Immediately before 3 seconds, the
ego vehicle is still restricted in a stationary position; (C) From 3 seconds and beyond,
Ego can resume its journey. Thus, in the behavioural test suite, Wk will have information
on the attributes ego.stopBeginAt and ego.stopTimeElapsed which are normally calculated
internally by the Rule-Engine. This override accelerates the test suite execution, which can
then independently test each situation without worrying about the test execution order.

The presented method allows the knowledge engineer to quickly compare alternative
designs when extending a rule base. Even if the test suite is insensitive to temporal
attributes, for the tool assisted quality assurance method to be realistic, the knowledge
expert must frequently compare the results of the behavioural test suite with concrete
urban self-driving scenarios. The goal is to assess if the test suite includes enough examples
involving various combination of rules such that the metrics approximate fairly the reality.
The process is covered in the next chapter.
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Listing 15 The preprocessing giving precedence to the attributes of Wk on Ego’s fragment.

1 {

2 "ego": {

3 "exceedSpeedLimit": false,

4 "hasLowSpeed": false,

5 "hasPrecedence": false, // Derived from Wt

6 "hasPrecedence": true, // Derived from Wk + Overridden

7 "hasSpeed": false,

8 "lastManeuver": {

9 "decelerateToHalt": false,

10 "emergencyStop": false,

11 "followLeader": false,

12 "overtake": false,

13 "stop": false,

14 "trackSpeed": false,

15 "yield": false

16 },

17 "location": {

18 "approachingCrosswalk": false,

19 "approachingIntersection": false,

20 "atCrosswalk": false,

21 "atIntersection": true,

22 "onCrosswalk": false,

23 "onDriveLane": true,

24 "onIntersection": false,

25 "onOffRoad": false

26 },

27 "navigationLeft": false,

28 "navigationRight": false,

29 "navigationStraight": true,

30 "stopBeginAt": null, // In the wiped history

31 "stopBeginAt": 100, // Overridden by Wk

32 "stopTimeElapsed": null, // In the wiped history

33 "stopTimeElapsed": 3100 // Overridden by Wk

34 },

35 [...]

36 }
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In this chapter, we have developed a series of metrics to qualify the efficiency and main-
tainability of a set of rules. We first explained that the efficiency metric must correspond
to the number of activations since the test suite lack of a temporality notion and therefore
does not reflect the reality of autonomous driving. On the other hand, we have partitioned
the maintainability metric into the sum of four sub-metrics, namely the number of greed-
iness, redundancies, rejections, and supports. In our way of designing rule sets, we prefer
those that balance efficiency and maintainability to fit the design objectives of Chapter 2.
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Chapter 7

Rule Set Development

So far, we have discussed an architecture to infer the behaviour that an autonomous vehicle
must adopt at the next time step, t. We also described a tool assisted method for testing
and comparing multiple rule sets and we have provided insight about how the Rule-Engine
integrates with the tool. This chapter describes the overall process of creating the rule
base using the test-driven and metric-driven method.

To achieve this, we first discuss a modelling strategy using a pivot point to control
the applicability of each rule. Next, we describe the overall rule development process with

Figure 7.1: Rule Set Development high-level process flow
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four stages (in Figure 7.1): Discrepancy Identification identifies one or more inadequate
behaviours (issues) in a system using the rule set A; Misbehaviour Diagnosis extracts,
from a given issue, an abstraction of the scene that exhibits the issue such that only the
essential dynamic objects are included; Knowledge Acquisition compares the abstraction of
the scene with the situations involving the same rule or group of rules in the behavioural
test suite. During the process, the knowledge expert determines if the misbehaviour is
justified by some limitations of the operational design domain or if it is caused by a gap in
the behavioural assessments. In other words, Knowledge Acquisition uses the test suite to
provide a rationale describing the derivation of each maneuver and constraint matching the
world abstraction and causing the misbehaviour; Finally, Knowledge Engineering derives
a set of candidate rule sets each satisfying the behavioural test suite and determines with
the tool assisted quality assurance method which rule set exhibits the best efficiency and
maintainability score. The selected rule set would then become the new implementation
of the grown operational design domain specification.

7.1 Modelling Strategy

An unordered set of rules, R, is directly affected by the curse of dimensionality since, given
a situation, each rule may vote leading to a worst-case complexity of 2|R| combinations that
could affect the end behaviour. This number increases significantly during the development
of the knowledge base leading to difficulties for a human to understand the impact of each
individual rule. Therefore, we will introduce the notion of a pivot attribute to partition
the input space and reduce the worst-case complexity.

The idea is to partition the input space with a discrete attribute used to decide if a

Table 7.1: Rule-Engine problem space

Problem Description
P1 Ego drives on a two-lane road excluding intersections
P2 Ego is approaching an intersection with a mandatory stop
P3 Ego is at a stop line
P4 Ego is on an intersection after a mandatory stop
P5 Ego approaches an intersection without a mandatory stop
P6 Ego is about to enter an intersection without a mandatory stop
P7 Ego is on an intersection without a mandatory stop
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rule could vote in a given subspace. In our implementation, we selected Ego’s abstract
location type as our pivot attribute. This means that each rule created will first declare
in which location Ego can be for this rule to hold. Under this assumption, the worst-case
complexity can be defined as the maximum subspace complexity. In our experiment, our
operational design domain contains the seven subspaces shown in Table 7.1. Naturally,
each subspace could be seen as an independent problem to solve as depicted in Figure 7.2.

Figure 7.2 depicts two sets of two lane roads which eventually crosses at an intersection.
Suppose that the horizontal road is regulated by a stop sign and that the vertical road
is not regulated by a stop sign, and thus the vehicles have precedence. Whenever Ego
needs to cross an intersection regulated by a stop sign, it will follow the state flow of the
horizontal road. Thus, it sequentially encounters the problem spaces P1 → P2 → P3 →
P4 → P1. Whenever Ego needs to cross an intersection not regulated by a stop sign, it
will follow the state flow of the vertical road. Thus, it sequentially encounters the problem
spaces P1 → P5 → P6 → P7 → P1. Although that P4 and P7 represent the same
physical area, their problem spaces are still mutually exclusive by the temporal attribute
wasRegulatedByAStopSign.

The pivot choice influences the ease of rule set development. For instance, suppose that
the Ego vehicle is navigating in the orange area delimited by Problem 5. Also assume that
suddenly, Ego is observing that a vehicle with a mandatory stop has a too high velocity
to stop at its stop line. In such event, Ego would like to perform a hard brake to avoid
the potential collision. This means that the Rule-Engine must decide a target location
where the autonomous vehicle can safely reach and stand according to the laws of physics.
Unfortunately, if Ego must navigate in multiple problem sets such as the pink area of
Problem 6 and the yellow area of Problem 7, this mean that the rules must consistently
select the same target location to avoid jerkiness in the sequence of behaviours. The
knowledge expert can decide to either create a rule overlapping all these problem sets, or
to decompose the rule into a set of specialized rules each applying in only one problem
set. While the first option seems more convenient, this solution implies a higher activation
frequency since the domain of the rule uses more atoms. On the other hand, the second
option can be hard to model since each problem set will require to mathematically derive
the proximal bounds involving this behaviour. In our implementation, the location type
has proven to be a wise choice since it simplifies this behaviour decomposition.

70



7.2 Discrepancy Identification

Periodically, the knowledge expert must perform the task of Discrepancy Identification.
This task involves confronting the rule-based system with various scenarios in which the
knowledge expert looks for inappropriate behaviours of the autonomous vehicle operating
with a given set of rules. Depending on the level of integration of the tests executed,
the behaviours will be considered unsuitable if they lead the autonomous vehicle towards
a situation with high probability to collide with at least one static/dynamic object, if
they neglect some rules of the applicable highway code or if they generate uncomfortable
situations for the road users. As long as the knowledge expert is unable to identify one
of these situations, the system will be optimistically judged to exhaustively cover the
operational design domain.

In our experience, we have found that at least four test types are necessary to give a
realistic approximation of the rule set range. Figure 7.3 illustrates this classification using
a process flow, which suggests that this stage continues as long as the knowledge expert
does not identify an inappropriate behaviour. Thus, our development process is enhanced
as the knowledge expert detects behaviours that have not been well generalized by the set

Figure 7.2: Mutual Exclusivity of the Problem Space Decomposition
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of rules. This discovery is the entry point to the next stages where the knowledge expert
analyzes the misbehaviours.

The first of the four test types performed is the unit tests. These tests only invoke the
Rule-Engine by providing the behavioural test suite, B, as an input where the adopted
behaviour is compared with the expectation previously hand labelled by the knowledge
expert. This test type has the advantage of being fast because the model provided in input
is concise and avoids the memoization process, allowing it to ignore the temporal properties
of the situations. However, this freedom given to the knowledge expert when declaring the
values of each attribute does not enforce the physics of dynamic or static objects and lacks
realism in the temporality of the interaction model.

The second test type is the simulation tests. This time, the system is partially inte-
grated with the other components including the tracker, the mission planner, the perception
module as well as the local planner. These tests have the advantage of being temporally
correlated, more accurately estimating the physic of dynamic or static objects as well as
their model of interaction and allow investigating a first layer of integration bugs coming
from the assumptions and limitations of each system. However, these tests are done using
a completely observable simulation environment and are much slower and expensive to
implement since the interaction depends on several systems. During these tests, instead
of manually labelling the expected behaviours, the simulator will check whether the au-
tonomous vehicle collides with a static or dynamic object while the knowledge expert will
look at the graphical interface to assess if the behaviours of the vehicle controlled by the

Figure 7.3: Discrepancy Identification Process Flow
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rule-based system constitute a sequence of maneuvers expected from a human driver.

The third test type is closed track tests. This time, the system is completely inte-
grated in a vehicle and navigates with the same operating mode as if it would drive in
an urban environment. Nevertheless, the environment is completely controlled by the test
team, which ensures that safety measures are taken to address the potential behavioural
deficiencies that the autonomous vehicle may suffer from. These tests have the advantage
of being realistic since the system is fully integrated, estimating the communication needs
between the systems, exposing integration bugs as well as minimizing the harmful impact
of misbehaving since the test team is aware of the limitations and risks involved in the sce-
narios. However, these tests are requiring much more human resources and are restricted
to evaluate situations where the life of the test personnel is not endangered. Therefore,
these tests do not replace those of the previous levels.

Finally, the fourth test type is public road tests. While many driving scenarios have
been envisioned and tested during the close track testing, it is almost impossible to cover
the range of scenarios that can be found during public driving. Thus, to fully assess the
rule base ability to drive in urban areas, several rounds of testing must be performed on
public roads. These tests should be executed with a clearly marked autonomous vehicle
along with a safety driver and additional safety engineers observing different parts of the
autonomous stack. If the tests previously done are well crafted, there should be a limited
amount of misbehaviour identified at this level. However, as urban road conditions are
difficult to reproduce and because behavioural planning routinely evaluates on a case-by-
case basis, these tests are still necessary to assure that the autonomous vehicle is really
able to drive in an urban environment.

7.3 Misbehaviour’s Diagnosis

Once issues have been identified, the knowledge expert seeks to analyze them. We have
seen previously that the data set inputted to the Rule-Engine can be difficult to understand
when several dynamic objects are sharing the same environment. Remember that the five
pages presenting the data after preprocessing of Chapter 5.5 only involved two dynamic
objects and imagine the amount of data to be analyzed when there are more than twenty
objects on the scene, such as suggested in Figure 7.4. Given the magnitude of this scenario,
we can anticipate that several rules will detect opportunities to undertake maneuvers.
Nevertheless, it is also foreseeable that most of the information is superfluous.

Imagine that Figure 7.4 is one of the issues reported in the previous stage. For sim-
plicity, assume that Ego has perfect perception of its environment. Suppose that the
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desired maneuver is overtake but that the behaviour produced was emergency-stop. Using
only the information mentioned so far, it can be difficult to explain the logical reason-
ing behind the emergency-stop maneuver. To better understand the implication of each
attribute in the decision-making process, the Rule-Engine will first sanitize the environ-
ment by only preserving the dynamic objects that has generated the analyzed maneuver.
For example, if we would like to understand the emergency-stop maneuver, we might
notice that the following rule (∃v ∈ vehicles.front|v.orientation.headingTowardsEgo ∧
v.orientation.lateralCenter) =⇒ (emergency-stop, v) is the only rule to vote for this
maneuver type in the issue reported. Thus, by identifying v in this equation, the system
can filter the dynamic objects included in this environment by dropping the irrelevant
observations such as depicted in Figure 7.5.

In this reduced situation, the cause for the emergency-stop maneuver is much easier
to deduce. Currently, our autonomous vehicle anticipates that the vehicle turning left
can potentially collide with it because the vehicle has a relatively high velocity and its
heading is roughly pointing in the opposite direction to Ego. This finding constitutes the
foundations of the knowledge required to improve the set of rules.

Finally, the knowledge expert must also ensure that the expected maneuver is produced

Figure 7.4: [Scenario 4] Unwanted emergency-stop in a busy intersection.
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by the Rule-Engine. In the case of Figure 7.4, we can imagine that the rules producing
overtake are the same as in the third scenario discussed in the previous chapter. Nev-
ertheless, in the case where the desired maneuver would not have been in the maneuvers
produced, the knowledge expert must write the draft of a rule to infer the desired maneuver
even if this new option is not yet appropriately prioritized.

7.4 Knowledge Acquisition

With the decomposition of the issues, the knowledge expert has several microscopic maneuver-
oriented situations each involving a subset of the elements present in the initial environ-
ment. These microscopic views are now ready to be compared with those of the behavioural
test suite, B, to validate whether the deductions reflect the knowledge acquired or whether
there remain gaps. To achieve this, let us remember that in our behavioural test suite, B,
we associated each test with a rule number or rule group numbers allowing later to split
it into concepts. The knowledge expert therefore uses the rule numbers involved in the
decision-making process to determine whether the inferred maneuver is covered in this test
space.

Figure 7.5: [Scenario 4] Emphasis on the emergency-stop maneuver in a busy intersection.
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Figure 7.6: [Scenario 4] Closely related emergency-stop behaviour.

In the event that the rules are covered, the knowledge expert has a proof that the issued
behaviour is necessary or indistinguishable from another desired behaviour. Otherwise,
the knowledge expert must identify the patterns not covered in the microscopic view.
If we take the example of the emergency-stop maneuver shown in Figure 7.5, we can
identify that the targeted rule was initially used to cover the case of Figure 7.6. While
studying the desirability of the maneuver produced in these two cases, we can induce that
the situation expressed in Figure 7.6 does not generalize well to that of Figure 7.5 since
the autonomous vehicle should not be impacted by a vehicle turning in an intersection.
Therefore, the knowledge expert can improve the behavioural test suite, B, by adding new
examples or by altering the misgeneralizations. In our example, it suffices to specify that
the behaviour in the situation described in Figure 7.6 must exclude the vehicles in the
physical area of an intersection. This change will remove the emergency-stop maneuver
from the options considered in the original issue thus allowing the precedence table to
select another maneuver.

This process is repeated for each rule involved in the decision-making process. We can
see that this approach allows us to design progressively a more complete test suite defining
the behaviour that an autonomous vehicle must adopt in a composition of situations. It is,
however necessary, to show that the behavioural test suite, B, is consistent, that is, there
exists a satisfying set of rules. In other words, the test suite is free from contradictions.
An example of contradiction could be “When Ego wants to avoid a collision, it must
accelerate” with “When Ego wants to avoid a collision, it must decelerate promptly”.
Since the premises are the same and the conclusion varies, we see that the behavioural test
suite, B, is unsatisfiable and therefore is incorrect.
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7.5 Knowledge Engineering

The knowledge engineering stage aims to update the rule set to make it satisfy the be-
havioural test suite, B, edited during knowledge acquisition. To ensure that generalization
is adequate, the knowledge expert has to draft the required rules before letting the system
deduce the missing predicates. These drafts mainly stem from the fact that the behavioural
test suite, B, consists of representative cases and therefore lacks a large bank of examples
which help to build an adequate generalization of the predicates required in the updated
rules. However, when these drafts are constructed, the system can automatically fix their
unsatisfiability by introducing a minimum of new predicates in the rules’ clauses.

In relation to the metrics presented in Chapter 6.2, the coupling metric defined as
the sum of the number of greediness, redundancies, rejections and supports is used to
approximate the maintainability of the rule sets. The algorithm proposed in this thesis
implements a variant of Hill-Climbing that minimizes the number of new attributes to
introduce in the rules. Hill-Climbing starts with the implemented rules supporting the
previous version of the operational design domain and add one attribute per step in a rule
causing a behavioural defect. The algorithm continues to derive new attributes until it
satisfies the test suite and that adding a new attribute in one of the previously edited rules
does not improve the efficiency/maintainability trade-offs. Hill-Climbing is a reasonable
choice under the assumption that the implemented rules supporting the previous version of
the operational design domain should be correlated with the rules required by the updated
version. For this reason, we can start the algorithm with the current rule set instead of
starting with an empty knowledge base.

Algorithm 1 presents the skeleton of the knowledge engineering task. To ensure the
requirement of introducing a minimum number of predicates, the for loop (Algorithm 1,
lines 6-22) derives from a set of rules a new version of one of its rules where a single new
predicate is introduced in one of the rule disjuncts. To decide which disjunct to choose,
the algorithm relies on an error signal corresponding to the existence of an unsatisfied test
case. When there exists an unsatisfied test case (Algorithm 1, lines 9-18), the goal of the
algorithm is to satisfy this test case. When there does not exist an unsatisfied test case
(Algorithm 1, lines 19-21), the goal of the algorithm is to improve the trade-off between
efficiency and maintainability.

Let’s first focus on the existence of an unsatisfied test case. In such event, one of the
failing test cases is randomly selected (Algorithm 1, line 9). Because we labelled each test
case with a rule number in our behavioural test suite, we already know which rule should
ensure that behaviour. To decide the procedure that will lead the algorithm closer to satisfy
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Algorithm 1 Maneuver Rule Set Improvement
Input:

B, the behavioural test suite
R, the set of rules to improve
W , the world abstraction atomic model

Output: An improved set of rules, R′, satisfying the behavioural test suite, B
1: previousRuleSets← ∅
2: candidateRuleSets← {R}
3: while previousRuleSets 6= candidateRuleSets do
4: previousRuleSets← candidateRuleSets
5: candidateRuleSets← ∅
6: for R′ ∈ previousRuleSets do
7: ε← {(W, ,M∗, C∗) ∈ B|R′(W ) 6= ( ,M∗, C∗)}
8: if ε 6= ∅ then
9: δ ← selectARandomTest(ε)
10: (W,Ri, , )← δ
11: (M, , )← R′(W )
12: if Ri 6∈ M then
13: pivot← getP ivotPredicate(W )
14: newRuleSet← (R′ \Ri) ∪ (Ri ∨ pivot)
15: candidateRuleSets← candidateRuleSets ∪ newRuleSet
16: else
17: candidateRuleSets← candidateRuleSets∪StrengthenARule(W , δ, R′)
18: end if
19: else
20: candidateRuleSets← candidateRuleSets ∪R′ ∪OptimizeRules(W , R′)
21: end if
22: end for
23: candidateRuleSets← keepKBestRuleSets(candidateRuleSets, k)
24: end while
25: return keepKBestRuleSets(candidateRuleSets, 1)
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Algorithm 2 Strengthen A Rule
Input:

δ, a failing test case
R′, the set of rules to improve
W , the world abstraction atomic model

Output: Many new candidate rule sets
1: newRuleSets← ∅
2: (W, ,M∗, C∗)← δ
3: (M, , )← R′(W )
4: Rj ← selectARandomGreedyRule(M,M∗, C∗)
5: for disjunct ∈ matchingDisjuncts(W,Rj) do
6: for predicate ∈ W \ (W ∪ disjunct) do
7: newRule← (Rj \ disjunct) ∨ disjunct ∧ predicate
8: newRuleSet← (R′ \Rj) ∪ newRule
9: newRuleSets← newRuleSets ∪ newRuleSet
10: end for
11: end for
12: return newRuleSets

Algorithm 3 Optimize Rules
Input:

R′, the set of rules to improve
W , the world abstraction atomic model

Output: Many new candidate rule sets
1: newRuleSets← ∅
2: for Rk ∈ findUpdatedRules(R′) do
3: for disjunct ∈ findUpdatedDisjuncts(Rk) do
4: for predicate ∈ W \ disjunct do
5: newRule← (Rk \ disjunct) ∨ disjunct ∧ predicate
6: newRuleSet← (R′ \Rk) ∪ newRule
7: newRuleSets← newRuleSets ∪ newRuleSet
8: end for
9: end for
10: end for
11: return newRuleSets
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the selected test case, we first need to understand if the behaviour is at least derived. To
do so, we look in the potential maneuvers (before the precedence table filtering), if the
rule number appears in the potential behaviours. When it is not the case, then we want
to force the rule to match the assessed situation by creating a new disjunct using only the
pivot predicate (Algorithm 1, lines 13-15). This pivot could be directly extracted from
the assessed test case, therefore providing a guarantee that the behaviour of this rule will
appear in the list of potential behaviours. At this time, if the new rule set already satisfies
the behavioural test suite, it would mean that there exists an abstract location where only
one behaviour can be performed. If this is expected, than the algorithm terminates and
the rule set is returned, but most of the time, this situation should be unrealistic. Thus,
it is expected that the newly created rule will cause many new failing test cases.

Increasing the number of failing test cases do not mean that the rule set is worst. It
simply means that there is more work to do before reaching a better set of rules. To
complete the rule we have previously created, the algorithm falls in the case where it can
find a failing test case where the intended rule number appears in the potential behaviours,
but was not retained (Algorithm 1, lines 16-18). This implies that at least one other rule
acts greedily over the intended behaviour. In such event, the algorithm selects one of
the greedy rules (Algorithm 2, line 4) and add a new predicate in one of the disjunct
matching the failing test case (Algorithm 2, lines 5-11). By doing this update, the disjunct
will eventually stop matching the assessed behaviour, but it may require more than one
iteration of the main loop (Algorithm 1, lines 3-24). As you can guess, the choice of
predicate is subject to influence the behavioural test suite satisfaction. By exhaustively
trying all the predicates not included in the failing test case and not already in the selected
disjunct (Algorithm 2, lines 6-10), the algorithm uses the new number of failing test cases
as a signal to decide the k most suited predicates (Algorithm 1, line 23). We retain only
the best k predicates (which can be referred as candidate rule sets) since this algorithm
is exponential and thus, we want to restrict our exploration with the most promising rule
sets.

Eventually, the goal of satisfying the test suite is met (Algorithm 1, lines 9-18) and thus,
we are left with k satisfying rule sets. From there, we do not want to terminate yet since the
overall performance of our rule sets might be improvable. Thus, we continue to introduce
new predicates by focussing only on the updated disjuncts of the updated rules (Algorithm
3, lines 2-10). The goal of this expansion is to decide if mutual exclusivity achieves a
better performance. When possible, the algorithm attempts to reach mutual exclusivity
by adding one predicate at the time. The new predicate decreases the efficiency since each
time the attribute value changes, the rule is activated. Meanwhile, the predicate improves
maintainability since the condition for the rule to be true is restricted. At some point,
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adding new predicates will only decrease the performance, and thus, keepKBestRuleSets
(Algorithm 1, line 23) will return the candidate rule sets corresponding exactly to those of
the previous iteration. This stability is the termination criterion of our algorithm (Algo-
rithm 1, line 3) that can now return the best of the candidate rule sets (Algorithm 1, line
25) as our improved version of the inputted rule set.

Figures 7.5 and 7.6 constitute an example of a trivial rule improvement that can be
performed by this algorithm. Assuming that the world reprensentation entails in Figure
7.5 is added in a test case where the intended behaviour is track-speed at 50km/h, the
algorithm starts with this test case as the only failing test case. It exhaustively derives
rule sets with a new predicate in the only disjunct of the emergency-stop rule acting greedily
over the track-speed maneuver and discover that ego.location.onIntersection = false
can satisfy the test suite in one step. Thereafter, the algorithm continues expanding the
only rule and disjunct it has previously updated, and discover that further expansions
decrease the metrics. Thus, the algorithm reach stability and return the improved set of
rules.

The example studied in this section was very abstract because we wanted to em-
phasize the utility of the test suite and the explainability mechanism. Let’s now con-
sider a toy example where we can concretely see what the algorithm is doing. Let’s as-
sume that the available propositions in the World Abstraction Atomic Model, W , are
(A)ego.location.atIntersectionRegulatedByStopSign, (B)ego.hasPrecedence and
(C)ego.hasPerformedAFullStop.

For the convenience of this demonstration, let’s assume that the precedence table is rep-
resented by the following set, {track-speed, stop, decelerate-to-halt}, such that track-speed
has the lowest priority.

Let’s also suppose that the behavioural test suite is defined as follows.

B1 :=(A ∧ ¬B ∧ ¬C) =⇒ (decelerate-to-halt, stop-line)

B2 :=(A ∧ B ∧ C) =⇒ (track-speed, 50km/h)

B3 :=(A ∧ B ∧ ¬C) =⇒ (stop, time-buffer)

Also suppose that we start the algorithm with the following rule set.
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R1 :=(A ∧ ¬B) =⇒ (decelerate-to-halt, stop-line)

R2 :=(A ∧ B) =⇒ (track-speed, 50km/h)

R3 :=( ) =⇒ (stop, time-buffer)

For simplicity, let’s assume that each Bi associated rule number is Ri. In addition,
let’s assume that we have represented, Bi := Wi =⇒ (M∗

i , C
∗
i ). Because we wanted

to emphasize the relationships, we did not use the tuple notation represented earlier, but
Bi = (Wi, Ri,M

∗
i , C

∗
i ) can be deduced easily.

In the current setup, you can imagine that the first two test cases were supported by the
first two rules and a third test case was designed during the knowledge acquisition when
the knowledge expert realized that Ego was performing stop and go. Thus, the knowledge
expert added a new rule with an empty condition producing the expected behaviour. Since
the clause is empty, the rule can never evaluate to true and thus, is currently useless.

In the following algorithm trace, we use k = 1 as the maximum number of rule sets
to preserve. In practice, this number performs poorly when the rules disjuncts require
introducing many new predicates before reaching a satisfying state and when the number
of predicates in the World Abstraction Atomic Model is large. We use k = 1 because it
simplifies the trace and does not affect the generation of the improved rule set.

During the first iteration, B1 and B2 are satisfied leaving B3 as the only failing test case.
Therefore, the algorithm enters the clause body where it wants to satisfy the test suite (Al-
gorithm 1, lines 9-18). TheM of this test case contains {R2 =⇒ (track-speed, 50km/h)},
thus R3 is not a member of the potential behaviours. The algorithm then extracts the pivot
predicate that, in this case, is (A)ego.location.atIntersectionRegulatedByStopSign, and
creates the following new version of R3.

R3 := (A) =⇒ (stop, time-buffer)

Since this rule set is currently the only option that the algorithm has generated so far,
the keepKBestRuleSets function (Algorithm 1, line 23) does nothing and we are entering
the second iteration since the rule set is not identical to the rule set we started with.
This time, given the precedence of the maneuvers, B1 and B3 are satisfied and thus, the
algorithm selects B2 has the failing test case. In this assessment, the M corresponds to
{R2 =⇒ (track-speed, 50km/h), R3 =⇒ (stop, time-buffer)}. As we can see, the
intended behaviour is in the potential behaviour list and thus, the algorithm falls in the
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clause body where it wants to force R3 to stop matching in the environment representation.
Since in B2, the predicates B and C are used, there is only ¬B and ¬C for potential
predicate that the algorithm can use. Thus, it generates the following two versions of R3.

R′3 :=(A ∧ ¬B) =⇒ (stop, time-buffer)

R′′3 :=(A ∧ ¬C) =⇒ (stop, time-buffer)

According to keepKBestRuleSets with k = 1, the algorithm must filter out one of
these alternatives. Since R′3 leads to one failing test case (B3) and that R′′3 satisfies the
test suite, then R′′3 is selected. Again, the produced rule set is different from the previous
step leading to another iteration of the main loop. This time, since the behavioural test
suite is satisfied, the algorithm goes over each updated rule and disjunct and continue to
expand the clause generating the following two new version of R3.

R′′′3 :=(A ∧ ¬C ∧ B) =⇒ (stop, time-buffer)

R′′′′3 :=(A ∧ ¬C ∧ ¬B) =⇒ (stop, time-buffer)

Thus, the algorithm currently has three candidate rule sets. Respectively, {R1, R2, R
′′
3},

{R1, R2, R
′′′
3 }, and {R1, R2, R

′′′′
3 }. Naturally, R′′′3 will be filtered out since it does not satisfy

the behavioural test suite. Whether R′′3 or R′′′′3 is more desirable cannot currently be
determined in our example. R′′3 is more efficient since it relies on fewer parameters while
R′′′′3 is more maintainable because it is mutually exclusive with R2. If R′′3 is retained, then
the algorithm will terminate since this is the same rule set as in the previous iteration. If
R′′′′3 is retained, the algorithm will continue to expand, but since there is no more predicate
available, it generates the same rule set and terminates.

In any case, we have depicted that our algorithm can improve the inputted rule set
such that the new rule set satisfies the behavioural test suite. In a more complex scenario,
the branching factor of this algorithm is expected to be exponential, but the pruning done
by keepKBestRuleSets keeps the algorithm manageable.
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Chapter 8

Empirical Evaluation

The proposed architecture and methodology were evaluated through a practical application
in the autonomous vehicle of the University of Waterloo depicted in Figure 8.1. This
methodology was proven to be effective in driving on populated public roads in the city of
Waterloo [12].

The public drive was performed on a network of two-lane commercial roads constrained
by four-way intersections, and t-intersections with precedence varying between the ego
vehicle as well as other dynamic objects. Due to the planned mission through the road
network, the ego vehicle had, for instance, to effectively handle unprotected left-hand
turns. The roads selected for the public drive had a myriad of parked vehicles impeding
Ego’s progress. In that sense, the rules were implemented to ensure that Ego was able to
safely overtake parked vehicles by encroaching on the lane of oncoming traffic similarly to
a human-controlled vehicle.

8.1 Implementation

The machine interface used to abstract and discretize the data coming from the various
sensors acts as a middleware between the Rule-Engine and the Local Planner. The sensors
used include cameras, lidar, dashboard and embedded computers within the autonomous
vehicle. The machine interface is implemented in C++ and depends on the Kinetic version
of the Robot Operating System (ROS). Its data exchanges are mainly done using ROS
topics except for the Rule-Engine which uses web sockets to transfer JSON streams.
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(a) Autonomoose (b) Lidar Point Cloud Map

Figure 8.1: Autonomoose, the University of Waterloo autonomous vehicle used to perform
the 100 kilometres of autonomous urban driving with the rule-based system behaviour
planner.

The Rule-Engine has been developed following the functional principles of a backend
web application. It runs in a terminal where it opens intranet protocols that serve JSON
streams. The expert system is intended to be used in conjunction with an interpreter such
as Google’s V8 engine which can be used on any operating system. The rule-based system
was developed following the semantic standard proposals of ECMA Script 2016-2017 [13]
and uses polyfills to ensure uniform behaviours regardless of the interpreter used. The
application takes advantage of the destructuring and restructuring techniques popularized
by functional languages. The system data is stored via the Reducer View Action (RVA)
[14] design pattern using the Redux library.

8.2 Knowledge Base

In the context of our experience, in addition to solving the seven problems presented in
Chapter 7.1, we have also developed the set of data integrity rules introduced in Chapter
4.1. This set of rules aims primarily to facilitate the integration of the Rule-Engine with the
other components of the autonomous stack since the mechanisms of Misbehaviour Diagnosis
presented in Chapter 7.3 can be used to produce diagnostics enabling greater cohesion
and promoting autonomy between teams that can benefit from analysis and debugging
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capabilities without solely relying on the knowledge expert.

During the numerous demonstrations of autonomous urban driving in the region of
Waterloo, the modified Lincoln MKZ depicted in Figure 8.1 was using a set of 75 rules
whose distribution is shown in Figure 8.2. From that figure, we can see that 52% of
the rules enforce an emergency-stop maneuver to delimit the operational design domain.
However, 30 of these rules cover integrity issues which can be removed when the integration
is complete, and the incoming model is considered well-formed since it will lead to the same
sequence of outputted behaviours. Thus, we can consider that an autonomous vehicle can
drive freely in an urban environment with as few as 45 rules. This practical demonstration
shows the feasibility of expert systems to solve problems involving a significant number of
uncertainties both in the integration limitations of a series of logical components and in
the quantification of inputted noise.

Moreover, Figure 8.3 provides an overview of the number of disjuncts used in the
maneuver rules. From the graphic, we can see that most of the rules contains less then
three disjuncts which means that the attributes used in the clauses of these rules do not
significantly overlap. Furthermore, the graphic also depicts that one rule has 21 disjuncts
which is far away from the other rules. This rule entails the concept of overtaking in which
there is many clauses all relying on the same subset of attributes. Therefore, the necessity
to partition this rule remains debatable from the efficiency perspective.

Figure 8.2: Rule distributions used during the public drive
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Figure 8.3: Number of disjuncts per rule in the maneuver rule set

Figure 8.4: Number of attributes per rule in the maneuver rule set
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Finally, Figure 8.4 provides an overview of number of attributes used in the maneuver
rules. From the graphic, we can mainly observe two distributions. The first one have
its median at 3 attributes and the second have its median at 13 attributes. The former
are usually rules involving only Ego’s with potentially a leading vehicle while the latter
are usually rules involving interaction with numerous dynamic objects such as nearby an
intersection or during an overtaking maneuver.

8.3 Timed Memoization Efficiency

The memoization scheme introduced in Chapter 4.3 was tested through 110 kilometres of
public driving in the areas of Bathurst Drive, Colby Drive, and Fire Tower Road. The
activity was monitored while the vehicle was in full autonomy in 31 different scenarios
involving the problems P1, ..., P7. On average, the memoization scheme reduced the
activation of more than two thirds of the 75 rules.

Figure 8.5 summarizes the system activity of one of these scenarios, highlighting several
advantages of this scheme. In the depicted scenario, the autonomous vehicle is required
to perform the following maneuvers: (i) follow a human-controlled vehicle, (ii) stop at an
intersection, (iii) wait for precedence at the stop line, and (iv) handle jaywalking pedes-
trians. In the figure, the term vote means that a rule has been activated and produced
a behaviour to add in the memory whereas revoke means that a rule has been activated
but did not produced a behaviour requiring the system to wipe the propositions associated
with this rule in its memory. Finally, the term total activity is simply the sum of the
number of votes and revokes.

As supported by the Figure 8.5, the nature this scheme results in peaks of high activity
followed by an extended period of low activity in which the system can computationally
recover. The periodic damping cycles support the idea that it would be possible to signifi-
cantly increase the number of requests and/or number of rules to evaluate before observing
a loss of performance.

Figure 8.5 also depicts that the average number of activated rules voting at any time
step is less than one which means that the constraints’ rules execution is mostly trivial and
intrinsically demonstrating the low coupling as well as the memoization schemes ability to
avoid recomputation.

Finally, around the ticks 200 to 260, a strong presence of repeated peaks can be ob-
served. This event happens when the environment perceived is noisy and the discrete
parameters oscillate between multiple values. In these situations, the safety driver must
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Figure 8.5: Memoization effect on a scenario involving ego following a leading vehicle
through an intersection with random encounter on the opposite lane.

be warned since the proposals submitted to the Rule-Engine does not allow to choose a
consistent sequence of behaviours to initiate. Thus, the memoization scheme can also be
used to identify inconsistencies and prevent dangerous situations.

8.4 Timeless Memoization Efficiency

One might be interested in knowing the effect of the memoization scheme if the hypothesis
of temporal correlation amongst a sequence of observations is missing. Using the be-
havioural test suite, we can simulate this lack of correlation since these tests are performed
by resetting the value of all attributes between each query. Thus, in each assessment of the
behavioural test suite, the temporal difference depicts the average number of rules required
to evaluate an observation.

In Figure 8.6, we executed the set of rules used during the public drive on the 685 un-
correlated tests constituting the behavioural test suite. The figure shows that, on average,
the system must evaluate two thirds of its rules and cannot benefit from a low activity
period which directly affects the scaleability of the system. With the reported data, it
can be said that the memoization scheme and the temporal difference operations reduce
the run time by a third. This performance reflect the ability of the system to react in a
critical situation such as when perception is so noisy that the dynamic objects are flicking
in the inputted environment. More generally, we can anticipate that increasing the fre-

89



Figure 8.6: Activation function on the behavioural test suite using the same rule set as
during the public drive.

quency of the system driving on public roads will also increase the correlation amongst the
observations, thus improving the effect of the memoization.

8.5 Qualitative Analysis

To prove the viability of the expert system within its operational design domain, the
autonomous vehicle was tested in a 110 kilometre drive on public roads in full autonomy.
During this test it required a total of 58 interventions by the safety driver with an average
time of over 5 minutes and 30 seconds between interventions. These disengagements were
due to three main contributing factors: the driving scenario encountered outside of the
operational design domain; the conservative design of the system resulting in a deadlock at
some intersections due to perceptual noise corrupting behaviour interpretation of dynamic
objects on the road; the misdetections of dynamic objects in the environment. During the
public drive, the Rule-Engine deployed in autonomous vehicle was able to serve queries
up to a speed of 300 Hertz. Knowing that the average speed of a component on this
stack runs at 10 Hertz, the rule-based system is far from being the bottleneck of this
integration. While we acknowledge that the empirical data is unable to provide guaranties
of rule quality, based on the results obtained, we have shown the suitability of the rule-based
architecture within an actual autonomous vehicle and its capability to support incremental
development expanding the system’s operational design domain.
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Chapter 9

Method Discussion

This chapter discusses the fulfillment of the design objectives presented in the Chapter 2 of
this thesis. In particular, we explain how we improve the interpretability of the inferential
process, how we maximize the coverage of the behavioural test suite while minimizing the
number of situations to model, how we measure the maintainability of the domain knowl-
edge as well as how we approximate the system performance outside a virtual environment,
then finally, how we design a synthesis process to elicit the missing requirements as well as
to adjust the rule base when deficiencies are detected.

9.1 Expert System

We briefly discuss the how our expert system design addresses interpretability, efficiency,
and maintainability.

There are several ways to formalize and structure knowledge. Taking the example of
databases, one could wonder the advantages of object versus relational structures. On
the one hand, the object structures have the advantage of being easier to comprehend.
They allow the knowledge expert to interpret the data more efficiently since relevant in-
formation is self contained inside each entity. On the other hand, relational structures
avoid redundancies in the model to the detriment of a join requirement when accessing
data. Relational structures make the repeated updating more efficient since the data is
processed atomically.

For example, imagine that our model incorporates, for each dynamic object, a notion
of relative location of dynamic and static objects within the environment. Thus, each
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object is used differently by the various entities. When one of these objects is updated,
it is therefore necessary to propagate this information in each entity using it. These
updates are expensive because they require synchronisation in several collections and are
subject to cascade effects where an update can cause another. This procedure complicates
the development of a database since it becomes difficult to identify which portion of a
cascading update causes a discrepancy, or sometimes, even an infinite update cycle.

The problem described above also affects ordered knowledge bases. In these, the knowl-
edge derived by a rule is immediately accessible by the rules succeeding it. This forward
chaining allows building generic-to-specialized rules since the hierarchy enriches the knowl-
edge during the execution. However, this expansion hampers maintainability of the system
since the knowledge expert must consider the permutations among the rules when updat-
ing the knowledge base. Further, some ordered rule-based systems rerun previous rules
ensuring that the facts discovered later also benefit from the previous forward chaining.
This loop corresponds to the cascading effect described for the databases and entails the
same identification complexity.

As part of the design of a behaviour planner for an autonomous vehicle, it is necessary
that the reactivity of the expert system should be the main focus since it must respond
to a continuous information flow. In this perspective, a relational structure is more suited
to the demand. Nevertheless, a competing need is the interpretability of the inferential
process.

To meet these competing demands, our approach is to model a volatile database some-
where between the object and the relational structure. To achieve this, the input data is
flattened using the Boyce Codd Normal Form (BCNF), but we allow entities to have nested
properties providing syntactic sugar that helps interpretability. In the knowledge base, we
want to preserve the beneficial property of forward chaining, which allows us to design
generic to specialized rules. However, to avoid the problems of permutations and cascade
effects, we suggest developing a unordered rule set hierarchy. In this setup, members of
the same rule set all have access to the same input data, but the derived knowledge is
combined.

The inferential process suggested is subject to the production of inconsistent knowledge.
In contrast with the ordered inferential process, rule ordering cannot be used to express
rule priority. Thus, taking the example of autonomous vehicles, a rule could declare that
it is better to maintain the speed, while another rule can claim the necessity to decelerate.
Clearly, these objectives are competing and cannot be achieved in parallel. Thus, to restore
the consistency after executing a rule set, we propose implementing a filtering policy that,
in our system, consist of taking the most conservative action. This policy retains only
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a portion of the derived knowledge and thus narrows the number of properties to be
considered by the next rule sets.

Since some of the derived knowledge is discarded, it is better to reduce the computation
costs of the inferential process by minimizing the number of rules to evaluate. To do so,
we used a memoization technique where the temporal difference between two iterations
identifies the altered input propositions in this time interval. Thus, we can preserve the
output of each rule as long as no proposition is found in the intersection between the
temporal difference and the propositions used in the clauses of the rule.

Finally, a last property that favors the traceability, and thus interpretability, of the
inferential process is the identification of matching clauses, commonly called backward
chaining. When a knowledge expert models a knowledge base, it is natural to elaborate
the rules by enumerating the premises required to deduce a behaviour. Nevertheless,
when trying to understand why the system behaves in a specific way, several premises are
associated to the same conclusion. To identify the causality of a behaviour, we dynamically
rewrite a rule set by creating a rule for each disjunct in the rule set disjunctive normal
form (DNF). Thus, by partitioning the conjunctions of this normal form, the system will
be able to identify the premises involved in the decision-making process without restricting
the expressiveness of the rules.

9.2 Behavioural Test Suite

We now summarize how the test-driven approach and the proposed form of the behavioral
test suite aid maintainability and correctness.

The problem of behavioural planning is deemed to be defined on a case-by-case basis
[9]. Given the extent of the scenarios that the autonomous vehicle may encounter, it is
natural to want to demonstrate that the driving policy induced by the planner is safe and
adapted to each situation. While we recognize the importance of this goal, we believe that
this demonstration should be primarily covered in system-level simulation testing. A key
objective in the rule development is not only to correctly cover the tested situations, but
to avoid producing very narrowly focused rules. Instead, the focus should be on capturing
the representative corner cases that delineate the domain in which a rule holds. Recall
that we chose to use a rule-based system for its interpretability property. Thus, it would
be counterproductive to overwhelm it with narrowly-focused rules, each representing very
specific examples. On the contrary, the knowledge expert wants to use the traceability
of backward chaining to understand discrepancies in the inductive process and therefore,
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the usage of such representatives naturally filters the amount of information that must be
reviewed during knowledge acquisition.

The discrepancies to identify are (i) the cases that are not well generalized, as well as (ii)
the contradictory specifications that demonstrate an incompleteness of the model used in
the inductive process. To facilitate the understanding of the discrepancies in the inductive
process, we first want to achieve temporal independence. Given that behaviours of an
autonomous vehicle are strongly influenced by an action/reaction system with the users in
the environment, the driving policy is time sensitive. Therefore, to reduce effort in unit
testing, we would like to assess the behaviours of the autonomous vehicle without having
to describe a realistic sequence of interaction which require tuning the attributes given as
input. By taking a snapshot of the temporal attributes and allowing the expert-system
to override its memory with this snapshot, we create a time-free extension of the input
model enhancing the testing process. Therefore, the test suite can use the time-free model
to describe standalone assessment which can run in parallel and require fewer attribute
tuning.

This time-free implementation makes sense when we consider our main goal of mini-
mizing the number of situations included in the behavioural test suite. This minimization
objective is explained by the fact that we will later compare the misbehaviour of the au-
tonomous vehicle with the representative cases to elicit the missing requirements. Thus,
we want to avoid biasing the analysis and design with irrelevant attributes. On the con-
trary, we believe that a test only needs to specify the most important attributes, even if
the specification does not describe a real concrete situation. The objective of this model
is to tightly cover the disjunctive normal form (DNF) of the rules matching the situation.
Thus, in the context of our experience, we judge that our behavioural test suite is effec-
tive if (i) it exhaustively represents the disjoint minimum requirements of each rule, (ii)
it approximates the range of the feasible join amongst the rules, and if (iii) it describes
understandable situations for the knowledge expert.

The remaining properties desired for the behavioural test suite are primarily to ensure
the maintainability of the rule sets. On the one hand, we want to define a pivot attribute
that is used in each rule. This attribute allows us to manage the complexity of the in-
terleaving amongst the rules since its range of values partitions them, thereby exposing
the feasible joins. As part of our implementation, the retained pivot attribute is the road
geometry, since it is a natural pivot decomposing the problem of autonomous driving. On
the other hand, we also want to associate the rules with one or more representatives. This
extra classification allows us to expose to the knowledge expert the representative cases
covered by the rule such that he can decide if the causality of a misbehaviour comes from
a misgeneralization.
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9.3 Rule Base Metrics

A challenging task of rule-based system development is to evaluate the performance and
maintainability of its knowledge base. Assuming that the advice given previously has
been followed, the specification encapsulated by the behavioural test suite that the system
seeks to satisfy contains a small number of representative samples allowing us to quickly
certify the specification support. Nevertheless, a specification of the driving policy, by
its definition, may allow several distinct rule sets that support its requirements. From
this perspective, we had to develop a set of heuristics to determine which rule set is more
suitable.

To do so, we have defined the two main optimization axes. The first is the performance
metric, motivated by the need to allow a high frequency re-evaluation of the driving pol-
icy. Faster execution enables the autonomous vehicle to quickly adapt to behavioural and
environmental changes, thus aiding a more reactive driving style. The second is maintain-
ability of the rule set, which we define as the ease of updating an existing rule or adding a
new rule that would get precedence in the inferential process. The proposed heuristics are
approximations of the real system qualities because in the case of the performance, it is
difficult to anticipate the actual scenarios that the autonomous vehicle will met, whereas
for maintainability, the specific modifications are difficult to predict.

We approximate the performance of a rule set supporting the behavioural test suite
by associating an execution cost for each activation of a rule. This cost is derived from
the number of attributes used in the clauses multiplied by the average number of dynamic
objects in which the attribute is defined. This average number comes from empirical ob-
servations made by agglomerating statistics of Ego’s driving on public roads. Furthermore,
since the situations tested in the behavioral test suite are not temporally correlated, we
empty the volatile memory between each situation assessment. This deletion does not
necessarily mean that the system will reevaluate the complete set of rules, since it can still
memorize that no rule is active when it starts its deductive process. Thus, the system can
choose to activate only the rules depending on the predicates included in the premise of
the tested situation. Although this approximation overestimates the reactive capabilities of
the system in an environment where the sequences of situations are temporally correlated,
this approximation is nevertheless a good indicator of the system’s reaction time when an
unpredictable situation occurs. For instance, this unpredictability can occur when the per-
ception algorithm is uncertain about the components within the environment. We believe
that it is in these critical situations that the reactive capabilities of a system become an
asset.

In terms of maintainability, we want to approximate the interaction amongst the rules.
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To do this, we empirically compute the number of rules that generated a deduction during
the behavioural test suite execution. This count allows us to define the notion of redundant
rules and to quantify the superfluous deductions produced. Thus, a rule set generating
fewer deductions (and thus leading to less greediness and rejection) is said to be more
maintainable since the domain of the rules is narrower.

From that, we can claim that there exists a trade-off between the performance and
maintainability metric. For example, if we want to create a rule that only supports the
situation described by a behavioural assessment, the rule would depend on a maximum
number of predicates. Thus, the rule would activate many times during the execution of
the behavioural test suite since the probability that one of these predicates is included in
another assessment increase significantly. Therefore, if we take the maintainability metric
and push it to the extreme then the system performance approaches its worst-case, reducing
the rule set desirability. Similarly, suppose we want to minimize the number of predicates
used by rules to maximize the performance metric. Even if the rules are activated less often,
the probability of a rule producing a deduction increase due to the lack of constraints. Once
again, we see the trade-off where maximizing the performance affects the maintainability
of the system. Thus, a good rule set must balance the collective domain of its rules by
reconciling these two objectives.

9.4 Rule Set Development

Previously, we have seen heuristics comparing sets of rules satisfying the behavioural test
suite. The final element of our method is an approach to find such sets. In the context
of our experience, we propose that this task is done through program synthesis. Since the
knowledge expert carefully designed a behavioural test suite consisting of representative
situations labeled with the desired behaviour, it is feasible to produce many distinct rule
sets that satisfy the specification.

Unlike supervised learning, we do not want to generalize potentially contradictory ex-
amples, but rather learn to recognize incomplete models as well as forgotten constraints or
fallacies in the rules. This thesis proposes a semi-automatic synthesis process that takes
advantage of both the analytical skills of the knowledge expert and the exploratory and
validation capabilities of a computer system. Assuming that the majority of the subsys-
tems of a autonomous vehicle are imperfect and that their development cycle is continuous,
an interactive program synthesis algorithm using representative cases will better adapt its
driving policy compared to automatic methods that are typical of machine learning. For
instance, since the behavioural test suite is built to delimit the scope of the rules, it is
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often enough to modify these human-understandable boundary clauses to entail the new
requirements. As an example, assume that a new perception system is deployed such that
it can detect dynamic objects farther. In such event, we might want to adjust the level of
conservatism in the rules allowing smoother sequence of behaviours. Therefore, the knowl-
edge expert only have to reconsider the clauses of the rules dealing with dynamic object
crossing Ego’s path, which is only a subset of the rules. Therefore, simulation and testing
can focus only on dynamic objects crossing scenarios and can assume that the remaining
rules are still accurately modeling the operation design domain.

The proposed development process begins with the identification of a discrepancy. In
most cases, this process corresponds to fulfilling an objective not covered by the current
operational design domain or the identification of a misbehaviour during simulation testing,
closed track testing or public driving. Thereafter, the backward chaining of the expert
system is queried to identify the causality of the discrepancy. Since the environment in
which the misbehaviour has occurred may contain an exorbitant amount of attributes, it
is essential to use the backward chaining process to filter them such that each deduction
can be associated with a microenvironment. These microenvironments are thereafter used
to identify whether the behaviour of the autonomous vehicle is justified or if changes to
the knowledge base are required.

In the event that modifications are required, the knowledge expert wants to understand
whether the behaviour is the result of a misgeneralization of a situation already included
in the behavioural test suite or whether it is a new situation to incorporate. To facilitate
this deduction, the backward chaining mechanism must associate the erroneous deduction
with similar examples in the behavioural test suite. Remember that we suggested that this
test suite is classified by the pivot attribute, the maneuver and the rule number. Thus,
the algorithm should have the ability to perform the relevant associations such that the
knowledge expert can identify the problem.

For each problem that the knowledge expert solves, we suggest that he first models the
draft of the new rule. This manual modeling activity gives the opportunity to set up the
prominent attributes that should be used as well as annotate the overall objective of the
rule such that it can be revised later. This annotation is essential since if all the rules were
in their disjunctive normal form (DNF) and no hierarchy or grouping would have been
modeled, the exponential deduction growth combined with the lack of correlation amongst
the rules would decrease the global interpretability of the system. Nevertheless, it is
imminent that the knowledge expert unintentionally omits certain attributes mandatory
to the satisfaction of the specification due to the complexity of the modeling process. This
is where the rule set generator algorithm takes over and completes the rules until they
produce a certificate showing that the specification is supported by the rule set. Along
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this process, multiple sets of rules are generated and the performance and maintainability
metrics are used to order the rule sets to select the most promising one. As a result, the
knowledge expert only needs to do a sanity check and confirm that the system’s proposal
is well-founded and can be safely deployed.
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Chapter 10

Related Works

10.1 Expert Systems

Traditionally, expert systems comprise an inferential mechanism and a knowledge base,
typically specified through a set of rules [15]. A popular approach to implement such
system is forward chaining and the Rete family of algorithms [10]. In such systems, a
set of ordered rules operates over and mutates a workspace, which is a network (in Latin
“rete”) of facts. The network represents the buildup of compound facts used in the rule
conditions from more basic facts, and allows reusing the basic facts when computing more
complex ones. As part of the Rete algorithm, facts are recomputed by change propagation,
avoiding unnecessary computations. The rules in a forward chaining system are typically
ordered and may be fired in response to previous rule firings, possibly even the same ones.
In this thesis, the approach differs from classical forward chaining by using two sets of
unordered rules, as depicted in Fig. 3.2. In other words, the chaining is constrained by
rule stratification, where the rules from the second set follow the rules form the first set.
Using unordered and stratified rules avoids the explosion of permutations that a knowledge
expert must analyze when the knowledge base is extended. While ordering is still needed to
resolve rule conflicts, our architecture exploits the domain-specific setting and encapsulates
ordering in the priority-based filtering stage. To cover the need of workspace mutations,
the proposed approach chains a hierarchy of immutable workspaces and rule sets that
preserve the traceability of the inference mechanism along the behavioural deduction. The
proposed runtime optimization based on temporal difference is somewhat reminiscent of
the Rete spirit. However, Rete optimizes a much more complex forward chaining paradigm
than ours, our defined by stratified rules. Yet the Rete ideas to reuse simpler facts to build
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larger ones and propagate change in such a network would likely benefit our approach
too. In particular, it would allow us to write more maintainable rules without being overly
concerned with runtime performance. We leave this extension for future work.

A recurrent shortcoming of expert systems is the difficulty to identify, formalize and
structure the domain knowledge [16]. To facilitate this process, Zhang et al. focus on
the detection of redundant rules to reduce the size of their knowledge base [15], whereas
Suwa et al. concentrate on model-checking to identify contradictions and gaps in the
requirements [17]. Other approaches focus on the development of visualization tools
that emphasize the relationships amongst the axioms [18]. In this work, the knowledge
engineering process does not minimize the size of the rule base but instead focuses on
balancing the maintainability and runtime performance. The overall architecture using
unordered and stratified rules avoids many of the complexities of more general forward
chaining systems. Further, the use of pivot attributes, knowledge base quality metrics,
systematically designed unit test suites based on rule premise disjuncts, and tool support
for rule synthesis collectively yield an effective method for incremental development of rule
bases.

10.2 Behaviour Planning

Early approaches to behaviour planning used finite state machines [19, 20]. These systems
construct an automaton over a set of relevant driving states which is evaluated to produce
a driving decision. Unfortunately, such systems are difficult to maintain because of the
inherent space complexity of the driving problem. Therefore, combination of state machines
which effectively decomposes the problem space into easier sub-problems has been studied
[21]. In addition to partition the scenario being handled, this hierarchy of state machines
can introduce precedence tables to reduce the lack of maintainability [22, 23]. To contrast
with the approach presented in this thesis, our hierarchy splits the decision making process
into choosing a maneuver and subsequently reconciliating the remaining set of constraints
while precedence tables are only applied between these two rule sets.

A recent trend in behaviour planning has been to use machine learning for decision
making. For instance, end-to-end machine learning approaches can handle basic driving
tasks [5, 24] while imitation learning tries to imitate an expert policy to produce a safe
and robust driving experience [7]. Imitation learning theory can also be extended to learn
from demonstrated trajectories [6, 25], but learning over many examples requires hyper-
parameter tuning and long training times. Moreover, the common usage of neural network
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to encapsulate the policy often leads to uncertainty of what decisions would be taken for
new inputs [26].

In this thesis, the focus is on interpretability which, usually, is a design advantage of
declarative systems, for example, Rete family of algorithms [27] and hierarchical proba-
bilistic systems [28].

Overall, the proposed approach differs from the previous works by demonstrating with
real-world scenarios how expert system interpretability can be effectively exploited to pro-
duce insights for requirements engineering and knowledge acquisition. It also demonstrates
how to prevent the autonomous vehicle from navigating in situations in which perceptual
denoising cannot be confidently achieved due to the lack of correlation in a sequence of
environmental representations. Further, using the proposed analysis framework and the
program synthesis algorithms, rule sets can be compared in order to produce a maintainable
knowledge base with low coupling.
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Chapter 11

Conclusion

In this thesis, we introduced an architecture and a method for building an expert system
using two sets of unordered rules. The architecture discretizes the input space using nul-
lable Boolean (true, false, null) and applies a temporal difference to compute historical
attributes. We also proposed a strategy to reduce the noise of the perception module by
incorporating a tractable long-short term memory which overrides the propositions with
values deemed more likely. Then, these atomic propositions are submitted to a first set of
rules which evaluates the feasibility of each maneuver in the perceived environment. The
proposed maneuvers are filtered using a precedence table based on conservatism to deter-
mine which maneuver the Ego vehicle must perform. Then, a second set of rules is used
to reconcile the remaining constraints. The finally remaining maneuver and constraints
constitute the behaviour that the autonomous vehicle will execute during the next time
step, t.

Along with the proposed architecture, we also proposed a method to incrementally build
a behavioural test suite supporting the growth of an operational design domain. As part of
the method, we proposed a series of metrics to approximate the real-time performance and
maintainability of the candidate rule sets satisfying the behavioural test suite. The tool-
assisted method consists of four steps. At first, the method identifies the discrepancies in all
the testing environments. Then, the Misbehaviour Diagnosis analyzes the scene to identify
the attributes of the dynamic and static objects causing the discrepancy. Afterwards,
the Knowledge Acquisition uses the rule numbers involved in the inferential process to
correlate the perceived situation with those included in the behavioural test suite. This
comparison helps the knowledge expert to establish if the misbehaviour is justified by a
limitation in the operational design domain or if it is caused by a gap in the behavioural
assessments. Finally, the Knowledge Engineering algorithm updates the knowledge base
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with the candidate rule set satisfying the behavioural test suite while achieving the best
efficiency and maintainability score.

At the end of this thesis, we demonstrated the feasibility of the proposed architecture
and method by using both to create a behavioural planner and successfully testing it in the
field. In particular, the planner was developed as part of and integrated into Autonomoose,
a complete automated driving system software deployed on the research vehicle dubbed
“University of Waterloo Moose”. The field test involved 110 km of driving in autonomous
mode on public roads in Waterloo. During the field test, 58 interventions were required
due to perception noise or limitations arising by the short range of the used lidar sensor.
Throughout the development of the knowledge base, we demonstrated that the method
presented in this thesis can scale with the growing operational design domain. In particular,
the operational design domain was incrementally grown by adding new capabilities over
time, such as handling additional intersection configurations and crosswalks. However,
we experienced some limitations that slowed down the development of the planner. Like
in other rule-based systems, modifying the set of rules is time consuming, even with the
proposed tool-assisted method. The knowledge acquisition stage is a key bottleneck, where
the human expert still has to establish the causality of the misbehaviour. In addition, this
thesis did not attempt to solve the problem of hyperparameter tuning. Therefore, once the
knowledge base has been updated, the knowledge expert still needs to perform rigorous
testing with real-world data to adjust the parameters of the rule set, such as the thresholds
used to establish the discrete heading of the vehicle, the coordinate system (longitudinal /
lateral relative position threshold and longitudinal / relative path position threshold) used
to compute the time to collision, etc.

11.1 Suggestions for Future Work

The presented work opens up several opportunities for extensions to explore in the future.

11.1.1 Program Synthesis

The basic rule synthesis approach presented in Chapter 7.5 could be developed further
using more sophisticated optimization techniques than Hill Climbing. For instance, we
could use simulated annealing to produce a broader variety of rule sets to compare. In
contrast to the possibility of Hill Climbing getting stuck in a local minimum, simulated
annealing is more likely to explore a wider variety of rule sets and arrive at a better
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solution, at the cost of increased computational effort. As long as the testing speed is not
an issue, we could accumulate many distinct instances of the same misbehaviour using the
testing environment and use them to ensure that the algorithm has a greater opportunity to
generalize. With more representatives of the defects, we could reduce the time spent by the
knowledge expert when identifying gaps amongst the requirements. However, whenever this
technique becomes a bottleneck, we could also sample the domain with world abstractions
near the situation causing the misbehaviour to find a subset of attribute assignments
involving the same set of rules. The extrema of this subset could then become the clauses
of a new rule inferring the intended behaviour.

11.1.2 Fault Injection

A potentially insightful analysis could be performed by creating mutated copies of the
knowledge base and use them to simulate multiple interacting vehicles. For example, if
in one instance of the knowledge base we remove the rule specifying the three mandatory
seconds of immobility before crossing an intersection, the vehicle following this driving
policy will perform a stop-and-go that changes the intended precedence at the intersection.
Therefore, by disabling some rules, it would be interesting to assess if each instance of the
Rule-Engine can avoid collisions properly even when the vehicles do not behave uniformly.
Like stated in Chapter 6.2, assuming that a well-modelled rule set should include redundant
supports for attenuating the sensitivity to misdetections, this fault injection procedure
should help the knowledge expert to model a more robust knowledge base where the faulty
behaviours can coexist safely.

11.1.3 Operational Design Domain Growth

With the method presented in this thesis, it is difficult to assess the coverage of the opera-
tional design domain. Using the time-free world abstraction model introduced in Chapter
6.3, we believe that a reinforcement learning agent could learn to generate traces where
the rules produce an emergency-stop maneuver because there was no vote or there was
at least a vote (for the emergency-stop maneuver) by a rule not ensuring the integrity
of the world abstraction. These traces could than be restructured as a lookup table to
help the knowledge engineers to identify the disparities amongst the implementation and
the operational design domain. Furthermore, this lookup table also describes the atomic
propositions causing the autonomous vehicle to enter dangerous or deadlock situations,
which should be relevant for the growth of the operational design domain.
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11.1.4 Inferential Pipeline

The implementation of the expert system deployed in the autonomous vehicle uses a single
thread requiring evaluating the belief of each maneuver rule before selecting a maneuver
and filtering the constraints. Although it is conventional to model a rule interpreter by
sequentially evaluating the knowledge base, the unordered property of the rule sets com-
bined with the memory state in Boyce-Codd Normal Form allow a variety of parallelization
strategies which may increase the run-time efficiency.

Since each rule can be evaluated independently, we can design an inferential pipeline
where the evaluation of the knowledge base is performed asynchronously. Moreover, we
already shown in Chapter 5.6 that the constrained maneuvers produced by the maneuver
rules are agglomerated, and further, preprocessed before evaluating the constraint rules.
Therefore, using the memoization suggested in Chapter 5.2 we can update the atomic
propositions of any model and only recompute the rules having clauses relying on this
literal. Therefore, each rule set can also run asynchronously with a trade-off that the
same rule might have to be evaluated more than once because the atomic propositions are
updated whenever the belief of a rule in the maneuver rule set is available.

In addition, even if the implementation presented in this thesis only incorporates two
sets of rules, it is expected that when the operational design domain will cover lane changes,
there could be rule sets inferring the best behaviour to initiate in each lane, and thereafter,
another rule set rating the utility of each behaviour allowing the autonomous vehicle to
select a behaviour according to safety, comfort and the user driving preferences.

11.1.5 Driving Preference Tuning

Another research area could be to allow drivers to setup the knowledge base according to
their driving preferences. Since rule-based systems have the potential of being understand-
able by non-programmers, we believe that the set of rules can be modified at run time.
For instance, Tiugashev implemented an expert system for spacecraft where the astronaut
can change the onboard rule interpreter at runtime to explore alternative inferential design
when some equipment is not operable [18]. It would be interesting to study how the
explainable properties of a rule-based system could be used to educate the autonomous
vehicle owners and demonstrate the impact on safety for each of their driving preferences.
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Appendix A

Assumptions and Limitations

Set I – Communication Layer

• The time gap used is sufficient between queries to eliminate the problems of delayed
decisions.

• The time gap used is fast enough for the autonomous vehicle to react quickly in the
environment.

• The machine interface abstracting the environment communicates at a constant speed
with the Rule-Engine by sending promises that can be aborted as needed.

• No device connected to the local network will send requests via the web socket to
overload the network or corrupt the temporal logic of the Rule-Engine.

• The machine interface abstracting the environment can handle queries that result in
an internal error within the Rule-Engine.

Set II – Data Layer

• Queries sent by the machine interface abstracting the environment use a partial
approach where recursive observations are not re-sent or a total approach where all
observations are sent, and a null value covers a missing observation.

• The data sent by the machine interface abstracting the environment does not contain
any noise from high velocity dynamic object.
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Set III – Integration

• The vehicle will behave respecting the decisions issued by the Rule-Engine or it
cannot guarantee the phases of temporal logic.

• Only one machine requiring write rights will be integrated by Rule-Engine instance.

• The version of the Rule-Engine used in the autonomous vehicle will start with the
command npm run monitor to ensure that the machine can restart in case of a glitch.

• Throughout the autonomous vehicle journey, the npm run monitor script will run
indefinitely, without interruption.

• If the Rule-Engine needs to restart, the machine interface abstracting the environ-
ment queries will run through the secondary instance of the Rule-Engine.

• The autonomous vehicle responds properly when the Rule-Engine produces a panic
decision (emergency-stop)

• There should be no system who overrule the behaviour produced by the Rule-Engine.

Set IV – Localization

• Each dynamic object is located horizontally and vertically in baselink using a mea-
surement in meter.

• Each dynamic object must also be located using a Frenet Frame under the principle
of a 3x3 grid.

• The intersection sectors (approaching / at / on) are relative to the lanelets.

• The approaching-intersection sector is large enough to allow the autonomous vehicle
traveling at the speed limit to be able to brake in time at the stop.

•

Set V – Interaction with road users

• The autonomous vehicle will not attempt to perform maneuvers where it must drive
in the opposite direction.
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• The autonomous vehicle will not attempt to perform maneuvers indoors in an en-
closed area such as a building, tunnel, enclosed bridge, etc.

• The autonomous vehicle will not attempt to perform maneuvers requiring the vehicles
to move in turn.

• The autonomous vehicle will not attempt to perform maneuvers near an intersection
with a traffic light.

• The autonomous vehicle will not approach ATVs, bicycles, motorcycles, scooters,
snowmobiles, etc.

• The autonomous vehicle will maintain a reasonable distance with any vehicle with a
trailer, such as a fifth wheel, a road train, a towing, a van, etc.

• Road users must behave indifferently with the autonomous vehicle and must not try
to trap it to test its limits.

Set VI – Safety Driver

• If an emergency vehicle must interact near the autonomous vehicle, the safety driver
must take over.

• The safety driver does not kick the steering wheel to trick the Rule-Engine.

• The safety driver must know the Rule-Engine assumptions and limitations and be
ready to act accordingly.

• The safety driver should take over if the produced behavior seems to be unsafe in
the current environment.

Set VII – Limitations

• The autonomous vehicle must not drive between two lanelets except during an over-
take.

• The autonomous vehicle must not drive on lanelets which are prohibited to him.

• The Rule-Engine must not be used on a road with more than one lane driving in the
same direction.
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• Intersections are reasonably spaced to avoid confusing the signalization of two inter-
sections.

• The Rule-Engine is only used on North American roads.

• The Rule-Engine should not be used in construction zones.
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Book of rules 

Set I – Model Integrity 
 
System Id : RMI1 
Decision  : emergency-stop 
Constraint: None 
Goal: Make sure there is never more than one 
leader. 
 
SOME-OF { 
  many-vehicles { 
    isLeading: true 
  } 
   
  many-pedestrians { 
    isLeading: true 
  } 
 
  ALL { 
    a-vehicle { 
      isLeading: true 
    } 
 
    a-pedestrian { 
      isLeading: true 
    } 
  } 
 
} 

System Id : RMI2 
Decision  : emergency-stop 
Constraint: None 
Goal: Make sure that a leading vehicle always go 
in the same direction as us. 
 
SOME-OF { 
  a-vehicle { 
    orientation: { 
      heading: 'not-along-ego', 
      longitudinal: 'not-front' 
    }, 
    isLeading: true, 
    isParked: false 
  } 
 
  a-vehicle { 
    orientation: { 
      longitudinal: 'not-front' 
    }, 
    isLeading: true, 
    isParked: true 
  } 
}

System Id : RMI3 
Decision  : emergency-stop 
Constraint: None 
Goal: Obligates the consideration of the nearest 
spontaneous collision. 
 
SOME-OF { 
  many-vehicles { 
    isObstructing: true 
  } 
 
  many-pedestrians { 
    isObstructing: true 
  } 
 
  ALL { 
    a-vehicle { 
      isObstructing: true 
    } 
 
    a-pedestrian { 
      isObstructing: true 
    } 
  } 
} 
 
System Id : RMI4 
Decision  : emergency-stop 
Constraint: None 
Goal: Require entities to have identifiers. 
 
SOME-OF { 
  a-pedestrian { 
    id: null 
  } 
 
  a-vehicle { 
    id: null 
  } 
} 
 
System Id : RMI5 
Decision  : emergency-stop 
Constraint: None 
Goal: A parked vehicle cannot have a speed. 
 
ALL { 
  a-vehicle { 
    isParked: true, 
    speed: > THRESHOLD 
  } 
}
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System Id : RMI6 
Decision  : emergency-stop 
Constraint: None 
Goal: Each vehicle should be oriented. 
 
ALL { 
  a-vehicle { 
    SOME-OF { 
      distance: { 
        SOME-OF { 
          x: null, 
          y: null 
        } 
      }, 
      relativeOrientation: { 
        heading: '' 
      } 
    } 
  } 
} 
 
System Id : RMI7 
Decision  : emergency-stop 
Constraint: None 
Goal: Each pedestrian should be oriented. 
 
ALL { 
  a-pedestrian { 
    SOME-OF { 
      distance: { 
        SOME-OF { 
          x: null, 
          y: null 
        } 
      }, 
      relativeOrientation: { 
        heading: '' 
      } 
    } 
  } 
} 
 
System Id : RMI8 
Decision  : emergency-stop 
Constraint: None 
Goal: All vehicles with a stop must have a time 
of arrival. 
 
SOME-OF { 
  ALL { 
    ego { 
      location: { 
        at: 'intersection', 
        timeOfArrival: null 
      } 
    }, 
    travel { 
      regulation: 'stop' 
    } 
  } 

 
  a-vehicle { 
    location: { 
      at: 'intersection', 
      timeOfArrival: null 
    }, 
    regulation: 'stop' 
  } 
}

System Id : RMI9 
Decision  : emergency-stop 
Constraint: None 
Goal: Ego cannot be simultaneously to several 
diacritics zones at the same time. 
 
ALL { 
  ego { 
    location: { 
      NOT-ALL-DIFFERENT { 
        approaching, 
        at, 
        on 
      } 
    } 
  } 
} 
 
System Id : RMI10 
Decision  : emergency-stop 
Constraint: None 
Goal: Each vehicle cannot be simultaneously to 
several diacritics zones at the same time. 
 
ALL { 
  a-vehicle { 
    location: { 
      NOT-ALL-DIFFERENT { 
        approaching, 
        at, 
        on 
      } 
    } 
  } 
} 
 
System Id : RMI11 
Decision  : emergency-stop 
Constraint: None 
Goal: Each pedestrian cannot be simultaneously to 
several diacritics zones at the same time. 
 
ALL { 
  a-pedestrian { 
    location: { 
      NOT-ALL-DIFFERENT { 
        approaching, 
        at, 
        on 
      } 
    } 
  } 
} 

 
System Id : RMI12 
Decision  : emergency-stop 
Constraint: None 
Goal: Each vehicle should not collide with ego. 
 
ALL { 
  a-vehicle { 

orientation: { 
  lateral: 'center', 

      longitudinal: 'center' 
    } 
  } 
}
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System Id : RMI13 
Decision  : emergency-stop 
Constraint: None 
Goal: Each pedestrian should not collide with 
ego. 
 
ALL { 
  a-pedestrian { 

orientation: { 
  lateral: 'center', 

      longitudinal: 'center' 
    } 
  } 
} 
 
System Id : RMI14 
Decision  : emergency-stop 
Constraint: None 
Goal: Each vehicle should be located somewhere 
relevant. 
 
ALL { 
  a-vehicle { 
    location: { 
      approaching: '', 
      at: '', 
      on: '' 
    } 
  } 
} 
 
System Id : RMI15 
Decision  : emergency-stop 
Constraint: None 
Goal: Each pedestrian should be located somewhere 
relevant. 
 
ALL { 
  a-pedestrian { 
    location: { 
      approaching: '', 
      at: '', 
      on: '' 
    } 
  } 
} 

 
System Id : RMI16 
Decision  : emergency-stop 
Constraint: None 
Goal: Ego should be located somewhere relevant. 
 
ALL { 
  ego { 
    location: { 
      approaching: '', 
      at: '', 
      on: '' 
    } 
  } 
}

System Id : RMI17 
Decision  : emergency-stop 
Constraint: None 
Goal: Each vehicle observation must have a unique 
identifier. 
 
ALL { 
  a-vehicle { 
    id: A_VALUE 
  } 
 
  another-vehicle { 
    id: A_VALUE 
  } 
} 
 
System Id : RMI18 
Decision  : emergency-stop 
Constraint: None 
Goal: Each pedestrian observation must have a 
unique identifier. 
 
ALL { 
  a-pedestrian { 
    id: A_VALUE 
  } 
 
  another-pedestrian { 
    id: A_VALUE 
  } 
} 
 
System Id : RMI19 
Decision  : emergency-stop 
Constraint: None 
Goal: An identifier cannot be reused to represent 
a pedestrian and a vehicle at the same time. 
 
ALL { 
  a-pedestrian { 
    id: A_VALUE 
  } 
 
  a-vehicle { 
    id: A_VALUE 
  } 
} 
 
System Id : RMI20 
Decision  : emergency-stop 
Constraint: None 
Goal: A vehicle off road cannot be considered the 
leader. 
 
ALL { 
  a-vehicle { 
    isLeading: true, 
    location: { 
      on: 'off-road' 
    } 
  } 
}
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System Id : RMI21 
Decision  : emergency-stop 
Constraint: None 
Goal: A pedestrian off road cannot be considered 
the leader. 
 
ALL { 
  a-pedestrian { 
    isLeading: true, 
    location: { 
      on: 'off-road' 
    } 
  } 
} 

 
System Id : RMI22 
Decision  : emergency-stop 
Constraint: None 
Goal: An intersection must have a positive length 
and width. 
 
ALL { 
  ego { 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection', 
        on: 'intersection' 
      } 
    } 
  }, 
  travel { 
    intersection: { 
      SOME-OF { 
        length: this <= 0,  
        width: this <= 0 
      } 
    } 
  } 
} 
 
System Id : RMI23 
Decision  : emergency-stop 
Constraint: None 
Goal: An intersection must have a central 
landmark. 
 
ALL { 
  ego { 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection', 
        on: 'intersection' 
      } 
    } 
  }, 
  travel { 
    intersection: { 
      center: { 
        SOME-OF { 
          x: null, 
          y: null 
        } 
      } 
    } 
  } 
}

System Id : RMI24 
Decision  : emergency-stop 
Constraint: None 
Goal: The maneuver to be performed at the 
intersection must always be indicated near an 
intersection. 
 
ALL { 
  ego { 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection', 
        on: 'intersection' 
      } 
    }, 
    navigation: null 
  } 
} 
 
System Id : RMI25 
Decision  : emergency-stop 
Constraint: None 
Goal: Each vehicle should have a relative 
orientation. 
 
ALL { 
  a-vehicle { 
    relativeOrientation: { 
      SOME-OF { 
        lateral: '', 
        longitudinal: '' 
      } 
    } 
  } 
} 
 
System Id : RMI26 
Decision  : emergency-stop 
Constraint: None 
Goal: Each pedestrian should have a relative 
orientation. 
 
ALL { 
  a-pedestrian { 
    relativeOrientation: { 
      SOME-OF { 
        lateral: '', 
        longitudinal: '' 
      } 
    } 
  } 
} 
 
System Id : RMI27 
Decision  : emergency-stop 
Constraint: None 
Goal: A vehicle going at the same direction as 
ego cannot obstruct him. 
 
ALL { 
  a-vehicle { 
    isObstructing: true, 
    orientation: { 
      heading: 'along-ego' 
    } 
  } 
}
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System Id : RMI28 
Decision  : emergency-stop 
Constraint: None 
Goal: Ensures that the at intersection zone 
cannot contain ego and another vehicle. 
 
ALL { 
  ego: { 
    location: { 
      at: 'intersection' 
    } 
  } 
 
  a-vehicle { 
    beliefs: { 
      SOME { 
        heading: 'along-ego', 
        heading: 'untrusted' 
      } 
    }, 
    location: { 
      at: 'intersection' 
    } 

orientation: { 
  lateral: 'center', 

      longitudinal: 'front' 
    } 
  } 
} 
 
System Id : RMI29 
Decision  : emergency-stop 
Constraint: None 
Goal: Each vehicle should have a path relative 
heading. 
 
ALL { 
  a-vehicle { 
    orientation: { 
      heading: '' 
    } 
  } 
} 
 
System Id : RMI30 
Decision  : emergency-stop 
Constraint: None 
Goal: Each pedestrian should have a path relative 
heading. 
 
ALL { 
  a-pedestrian { 
    orientation: { 
      heading: '' 
    } 
  } 
}

System Id : RMI31 
Decision  : emergency-stop 
Constraint: None 
Goal: A pedestrian crosswalk must have a positive 
distance landmark. 
 
ALL { 
  ego { 
    location: { 
      SOME-OF { 
        approaching: 'crosswalk', 
        at: 'crosswalk' 
      } 
    } 
  }, 
  travel { 
    crosswalk: { 
      SOME-OF { 
        distance: null, 
        distance: < 0 
      } 
    } 
  } 
} 
 
System Id : RMI32 
Decision  : emergency-stop 
Constraint: None 
Goal: The speed limit should always be defined 
and positive. 
 
ALL { 
  travel { 
    SOME-OF { 
      speedLimit: null, 
      speedLimit: < 0 
    } 
  } 
} 
 
System Id : RMI32 
Decision  : emergency-stop 
Constraint: None 
Goal: The speed limit should always be defined 
and be positive. 
 
ALL { 
  travel { 
    SOME-OF { 
      speedLimit: null, 
      speedLimit: < 0 
    } 
  } 
} 
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System Id : RMI33 
Decision  : emergency-stop 
Constraint: None 
Goal: The time till a pedestrian enters a 
crosswalk should always be smaller than the time 
till the crosswalk is clear. 
 
ALL { 
  travel { 

crosswalk: { 
      timeTillClear: < timeTillPedestrianEnters, 
    } 
  } 
} 
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Set II – Greedy Preventive Rules 
System Id : GPR1 
Decision  : decelerate-to-halt 
Constraint: Pedestrian 
Goal: Avoid a spontaneous pedestrian when it is 
not on a crosswalk. 
 
ALL { 
  a-pedestrian { 

isObstructing: true, 
location: { 
  on: 'not-crosswalk' 
} 

  } 
} 
 
System Id : GPR2 
Decision  : decelerate-to-halt 
Constraint: Pedestrian + Vehicle 
Goal: Avoid a spontaneous pedestrian with a 
secure buffer for the leading vehicle when the 
pedestrian is not on the crosswalk. 
 
ALL { 
  a-vehicle { 
    beliefs: { 
      heading: 'not-untrusted' 
    }, 
    isLeading: true, 
    location: { 
      on: 'not-off-road' 
    } 
  }   
 
  a-pedestrian { 

isObstructing: true, 
location: { 
  on: 'not-crosswalk' 
} 

  } 
} 
 
System Id : GPR3 
Decision  : decelerate-to-halt 
Constraint: Vehicle 
Goal: Avoid a spontaneous vehicle. 
 
ALL { 
  a-vehicle { 
    isObstructing: true 
  } 
}

System Id : GPR4 
Decision  : decelerate-to-halt 
Constraint: 2 Vehicles 
Goal: Avoid a spontaneous vehicle with a secure 
buffer for the leading vehicle. 
 
ALL { 
  a-vehicle { 
    beliefs: { 
      heading: 'not-untrusted' 
    }, 
    isLeading: true, 
    location: { 
      on: 'not-off-road' 
    } 
  }   
 
  a-vehicle { 
    isObstructing: true 
  } 
} 
 
System Id : GPR5 
Decision  : decelerate-to-halt 
Constraint: Vehicle 
Goal: Avoid a vehicle crossing your lane. 
 
ALL { 
  a-vehicle { 
    beliefs: { 
      SOME-OF { 
        heading: 'left', 
        heading: 'right', 
        heading: 'untrusted' 
      } 
    }, 
    distance: { 
      x: < THRESHOLD, 
      y: < THRESHOLD 
    }, 
    location: { 
      ALL { 
        on: 'not-off-road', 
        on: 'not-on-intersection' 
      } 
    }, 

orientation: { 
  lateral: 'center', 

      longitudinal: 'front' 
    } 
  } 
}
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System Id : GPR6 
Decision  : decelerate-to-halt 
Constraint: 2 Vehicles 
Goal: Avoid a vehicle crossing your lane with a 
secure buffer for the leading vehicle. 
 
ALL { 
  a-vehicle { 
    beliefs: { heading: 'not-untrusted' }, 
    isLeading: true, 
    location: { on: 'not-off-road' } 
  } 
  a-vehicle { 
    beliefs: { 
      SOME-OF { 
        heading: 'left', 
        heading: 'right', 
        heading: 'untrusted' 
      } 
    }, 
    distance: { 
      x: < THRESHOLD, 
      y: < THRESHOLD 
    }, 
    location: { 
      ALL { 
        on: 'not-off-road', 
        on: 'not-on-intersection' 
      } 
    }, 

orientation: { 
  lateral: 'center', 

      longitudinal: 'front' 
    } 
  } 
} 
 
System Id : GPR7 
Decision  : emergency-stop 
Constraint: None 
Goal: Avoid dangerous driver maneuvers. 
 
ALL { 
  a-vehicle { 
     beliefs: { 
 heading: 'towards-ego' 
     }, 
     location: { 
       ALL { 
        on: 'not-off-road', 
        on: 'not-on-intersection' 
      } 
     }, 
     orientation: { 
       SOME-OF { 
         lateral: 'center', 
         lateral: 'right' 
       }, 
       longitudinal: 'front' 
    } 
  } 
}

System Id : GPR8 
Decision  : emergency-stop 
Constraint: None 
Goal: Panic when a collision has too high 
probability of colliding with ego. 
 
ALL { 
  ego { 
    location: { 
      on: 'intersection' 
    } 
  } 
 
  a-vehicle { 
    location: { 
      on: 'intersection' 
    }, 
    SOME-OF { 
      ALL { 
        beliefs: {  
          heading: 'left' 
        }, 
        relativeOrientation: { 
          lateral: 'not-left', 
          longitudinal: 'front' 
        } 
      } 
      ALL { 
        beliefs: {   
          heading: 'right' 
        }, 
        relativeOrientation: { 
          lateral: 'not-right', 
          longitudinal: 'front' 
        } 
      } 
    } 
  } 
} 
 
System Id : GPR9 
Decision  : emergency-stop 
Constraint: None 
Goal: Immobilize the vehicle if there is a parked 
vehicle on your way near an intersection. 
 
ALL { 
  ego { 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection' 
      } 
    } 
  } 
 
  a-vehicle { 
    isParked: true, 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection' 
      } 
    }, 

orientation: { 
  lateral: 'center', 

      longitudinal: 'front' 
    } 
  }} 
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System Id : GPR10 
Decision  : emergency-stop 
Constraint: None 
Goal: Immobilize the vehicle when there is a 
parked vehicle on an intersection. 
 
ALL { 
  ego { 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection', 
        on: 'intersection' 
      } 
    } 
  } 
 
  a-vehicle { 
    isParked: true, 
    location: { 
      on: 'intersection' 
    }, 
    orientation: { 
      longitudinal: 'not-behind' 
    } 
  } 
} 
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Set III – Two-lane road 
 
System Id : RTLR1 
Decision  : track-speed 
Constraint: Speed Limit 
Goal: Continue to move to the next destination. 
 
ALL { 
  ego { 
    location: { 
      approaching: '', 
      at: '', 
      on: 'drive-lane' 
    } 
  } 
} 
 
System Id : RTLR2 
Decision  : follow-leader 
Constraint: Vehicle + Speed Limit 
Goal: Follow the vehicle in single file. 
 
ALL { 
  ego { 
    location: { 
      approaching: '', 
      at: '', 
      on: 'drive-lane' 
    } 
  } 
 
  a-vehicle { 
    beliefs: { 
      heading: 'not-untrusted' 
    }, 
    isLeading: true, 
    location: { 
      on: 'not-off-road' 
    } 
  } 
} 
 
System Id : RTLR3 
Decision  : follow-leader 
Constraint: Pedestrian + Speed Limit 
Goal: Follow the indications of an authoritarian 
pedestrian (i.e. construction guy). 
 
ALL { 
  ego { 
    location: { 
      approaching: '', 
      at: '', 
      on: 'drive-lane' 
    } 
  } 
 
  a-pedestrian { 
    beliefs: { 
      heading: 'not-untrusted' 
    }, 
    isLeading: true, 
    location: { 
      on: 'not-off-road' 
    } 
  } 
}

System Id : RTLR4 
Decision  : yield 
Constraint: N Vehicles 
Goal: Yield until the road is clear before 
starting an overtaking procedure for one or more 
parked vehicle. 
 
ALL { 
  ego { 
    location: { 
      approaching: '', 
      at: '', 
      on: 'drive-lane', 
    }, 
    speed: this <= THRESHOLD 
  } 
 
  a-vehicle { 
    beliefs: { 
      heading: 'not-untrusted' 
    }, 
    distance: { 
      x: this <= THRESHOLD, 
      y: this <= THRESHOLD 
    }, 
    isLeading: true, 
    isParked: true, 
    location: { 
      on: 'not-off-road' 
    }, 

orientation: { 
  lateral: 'center', 

      longitudinal: 'front' 
    } 
  } 
   
  SOME-OF { 
    a-vehicle { 
      location: { 
        on: 'not-off-road' 
      }, 
      orientation: { 
        lateral: 'left', 
        longitudinal: 'center' 
      } 
    } 
 

    a-vehicle { 
      beliefs: { 
        SOME-OF { 
          heading: 'along-ego', 
          heading: 'untrusted' 
        } 
      }, 
      isParked: false, 
      location: { 
        on: 'not-off-road' 
      }, 
      orientation: { 
        longitudinal: 'front' 
      }, 
      speed: <= THRESHOLD 
    }
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    a-vehicle { 
      beliefs: { 
        SOME-OF { 
          heading: 'along-ego', 
          heading: 'untrusted' 
        } 
      }, 
      isParked: false, 
      location: { 
        on: 'not-off-road' 
      }, 
      orientation: { 
        longitudinal: 'behind' 
      }, 
      speed: > ego 
    } 
 
    a-vehicle { 
      beliefs: { 
        heading: 'not-along-ego' 
      }, 
      location: { on: 'not-off-road' }, 
      orientation: { 
        longitudinal: 'front' 
      } 
      SOME-OF { 
        speed: this > THRESHOLD, 
        ALL {   
          distance: { 
            x: this <= THRESHOLD, 
            y: this <= THRESHOLD 
          }, 
          speed: this <= THRESHOLD 
        } 
      } 
    } 
  } 
} 
 
System Id : RTLR5 
Decision  : overtake 
Constraint: N Vehicles + Speed Limit 
Goal: Start an overtaking procedure for one or 
more parked vehicle. 
 
ALL { 
  ego { 
    location: { 
      approaching: '', 
      at: '', 
      on: 'drive-lane', 
    }, 
    speed: this <= THRESHOLD 
  } 
 
  a-vehicle { 
    beliefs: { heading: 'not-untrusted' }, 
    distance: { 
      x: this <= THRESHOLD, 
      y: this <= THRESHOLD 
    }, 
    isLeading: true, 
    isParked: true, 
    location: { on: 'not-off-road' }, 

orientation: { 
  lateral: 'center', 

      longitudinal: 'front' 
    } 
  } 

  no-vehicle { 
    location: { 
      on: 'not-off-road' 
    }, 

orientation: { 
  lateral: 'left', 

      longitudinal: 'center' 
    } 
  } 
 
  no-vehicle { 
    beliefs: { 
      SOME-OF { 
        heading: 'along-ego', 
        heading: 'untrusted' 
      } 
    }, 
    isParked: false, 
    location: { 
      on: 'not-off-road' 
    }, 
    orientation: { 
      longitudinal: 'front' 
    }, 
    speed: <= THRESHOLD 
  } 
 
  no-vehicle { 
    beliefs: { 
      SOME-OF { 
        heading: 'along-ego', 
        heading: 'untrusted' 
      } 
    }, 
    isParked: false, 
    location: { 
      on: 'not-off-road' 
    }, 
    orientation: { 
      longitudinal: 'behind' 
    }, 
    speed: > ego 
  } 
 
  no-vehicle { 
    beliefs: { 
      heading: 'not-along-ego' 
    }, 
    location: { 
      on: 'not-off-road' 
    }, 
    orientation: { 
      longitudinal: 'front' 
    } 
    SOME-OF { 
      speed: this > THRESHOLD, 
      ALL {   
        distance: { 
          x: this <= THRESHOLD, 
          y: this <= THRESHOLD 
        }, 
        speed: this <= THRESHOLD 
      } 
    } 
  } 
}
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System Id : RTLR6 
Decision  : overtake 
Constraint: N Vehicles + Speed Limit 
Goal: Proceed in the overtaking procedure for one 
or more parked vehicle. 
 
ALL { 
  ego { 
    lastManeuver: 'overtake', 
    location: { 
      approaching: '', 
      at: '', 
      on: 'drive-lane', 
    } 
  } 
 
  a-vehicle { 
    distance: { 
      x: this <= THRESHOLD, 
      y: this <= THRESHOLD 
    }, 
    isParked: true, 
    location: { 
      on: 'not-off-road' 
    }, 
    orientation: { 
      SOME-OF { 
        ALL { 
          lateral: 'right', 
          longitudinal: 'center' 
        }, 
        ALL { 
          SOME-OF { 
            lateral: 'center', 
            lateral: 'right' 
          } 
          longitudinal: 'front' 
        } 
      }, 
    } 
  } 
 
  no-vehicle { 
    location: { 
      on: 'not-off-road' 
    }, 

orientation: { 
  lateral: 'left', 

      longitudinal: 'center' 
    } 
  } 
 

  no-vehicle { 
    beliefs: { 
      SOME-OF { 
        heading: 'along-ego', 
        heading: 'untrusted' 
      } 
    }, 
    isParked: false, 
    location: { 
      on: 'not-off-road' 
    }, 
    orientation: { 
      longitudinal: 'front' 
    }, 
    speed: <= THRESHOLD 
  }

  no-vehicle { 
    beliefs: { 
      heading: 'not-along-ego' 
    }, 
    location: { 
      on: 'not-off-road' 
    }, 
    orientation: { 
      longitudinal: 'front' 
    } 
    SOME-OF { 
      speed: this > THRESHOLD, 
      ALL {   
        distance: { 
          x: this <= THRESHOLD, 
          y: this <= THRESHOLD 
        }, 
        speed: this <= THRESHOLD 
      } 
    } 
  } 
 
  no-vehicle { 
    isParked: false, 
    location: { 
      on: 'not-off-road' 
    }, 
    orientation: { 
      heading: 'along-ego', 
      longitudinal: 'behind' 
    }, 
    speed: > ego 
  } 
}
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System Id : RTLR7 
Decision  : emergency-stop 
Constraint: None 
Goal: Cancelling the overtaking decision if a 
source of danger is visible. 
 
ALL { 
  ego { 
    lastManeuver: 'overtake', 
    location: { 
      approaching: '', 
      at: '', 
      on: 'drive-lane', 
    } 
  } 
 
  a-vehicle { 
    distance: { 
      x: this <= THRESHOLD, 
      y: this <= THRESHOLD 
    }, 
    isParked: true, 
    location: { 
      on: 'not-off-road' 
    }, 
    orientation: { 
      SOME-OF { 
        ALL { 
          lateral: 'right', 
          longitudinal: 'center' 
        }, 
        ALL { 
          SOME-OF { 
            lateral: 'center', 
            lateral: 'right' 
          }, 
          longitudinal: 'front' 
        } 
      }, 
    } 
  } 
 
  SOME-OF { 
    a-vehicle { 
      location: { 
        on: 'not-off-road' 
      }, 
      orientation: { 
        lateral: 'left', 
        longitudinal: 'center' 
      } 
    } 
 
    a-vehicle { 
      beliefs: { 
        SOME-OF { 
          heading: 'along-ego', 
          heading: 'untrusted' 
        } 
      }, 
      isParked: false, 
      location: { 
        on: 'not-off-road' 
      }, 
      orientation: { 
        longitudinal: 'front' 
      }, 
      speed: <= THRESHOLD 
    }

    a-vehicle { 
      beliefs: { 
        SOME-OF { 
          heading: 'along-ego', 
          heading: 'untrusted' 
        } 
      }, 
      location: { 
        on: 'not-off-road' 
      }, 
      orientation: { 
        longitudinal: 'behind' 
      }, 
      speed: > ego 
    } 
 
 
    a-vehicle { 
      beliefs: { 
        heading: 'not-along-ego' 
      }, 
      isParked: false, 
      location: { 
        on: 'not-off-road' 
      }, 
      orientation: { 
        longitudinal: 'front' 
      } 
      SOME-OF { 
        speed: this > THRESHOLD, 
        ALL {   
          distance: { 
            x: this <= THRESHOLD, 
            y: this <= THRESHOLD 
          }, 
          speed: this <= THRESHOLD 
        } 
      } 
    } 
  } 
} 
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Set IV – Crosswalk 
System Id : RCW1 
Decision  : track-speed 
Constraint: Reduced Speed 
Goal: Reduce ego’s speed when nearby a crosswalk. 
 
ALL { 
  ego { 

location: { 
      SOME-OF { 
        approaching: 'crosswalk', 
        at: 'crosswalk', 
        on: 'crosswalk' 
      } 
    } 
  } 
} 
 
System Id : RCW2 
Decision  : decelerate-to-halt 
Constraint: Crosswalk 
Goal: Yield to pedestrians on the crosswalk. 
 
ALL { 
  ego { 

location: { 
      approaching: 'crosswalk' 
    } 
  }, 
  travel: { 

crosswalk: { 
  timeTillPedestrianEnters: <= THRESHOLD, 
  timeTillClear: >= THRESHOLD 
} 

  } 
} 
 

 
System Id : RCW3 
Decision  : yield 
Constraint: Crosswalk 
Goal: Remain stationary until the crosswalk is 
freed 
 
ALL { 
  ego { 

location: { 
      at: 'crosswalk' 

}, 
speed: <= THRESHOLD 

  }, 
  travel: { 

crosswalk: { 
  timeTillPedestrianEnters: <= THRESHOLD, 
  timeTillClear: >= THRESHOLD 
} 

  } 
}

System Id : RCW4 
Decision  : emergency-stop 
Constraint: None 
Goal: Warn the safety driver about a potential 
unavoidable collision at a crosswalk. 
 
ALL { 
  ego { 

location: { 
      at: 'crosswalk' 

}, 
speed: > THRESHOLD 

  }, 
  travel: { 

crosswalk: { 
  timeTillPedestrianEnters: <= THRESHOLD, 
  timeTillClear: >= THRESHOLD 
} 

  } 
} 
 
 
System Id : RCW5 
Decision  : emergency-stop 
Constraint: None 
Goal: Warn the safety driver about a potential 
unavoidable collision on a crosswalk. 
 
ALL { 
  ego { 

location: { 
      on: 'crosswalk' 

} 
  }, 
  travel: { 

crosswalk: { 
  timeTillPedestrianEnters: <= THRESHOLD, 
  timeTillClear: >= THRESHOLD 
} 

  } 
} 
 

 
System Id : RCW6 
Decision  : follow-leader 
Constraint: Vehicle + Reduced Speed 
Goal: Keep following the leading vehicle with a 
reduced speed when nearby a crosswalk. 
 
ALL { 
  ego { 

location: { 
      SOME-OF { 
        approaching: 'crosswalk', 
        at: 'crosswalk', 
        on: 'crosswalk' 
      } 
    } 
  }, 
  a-vehicle: { 
    isLeading: true, 
    location: { 
      on: 'not-off-road' 
    } 
  } 
}
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System Id : RCW7 
Decision  : decelerate-to-halt 
Constraint: Vehicle + Crosswalk 
Goal: Yield to pedestrians on the crosswalk with 
a gap for the leading vehicle. 
 
ALL { 
  ego { 

location: { 
      approaching: 'crosswalk' 

} 
  }, 
  a-vehicle: { 
    isLeading: true, 

location: { 
      SOME-OF { 
        approaching: 'crosswalk', 
        at: 'crosswalk' 
      } 
      on: 'not-off-road' 
    } 
  } 
  travel: { 

crosswalk: { 
  timeTillPedestrianEnters: <= THRESHOLD, 
  timeTillClear: >= THRESHOLD 
} 

  } 
} 
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Set V – Miscellaneous obstacles, Speedbump 
System Id : MOS1 
Decision  : track-speed 
Constraint: Reduced Speed + Speedbump 
Goal: Reduce the speed when ego’s is approaching 
a speedbump. 
 
ALL { 
  ego { 

location: { 
      approaching: 'speedbump' 
    } 
  } 
} 
 
 
System Id : MOS2 
Decision  : track-speed 
Constraint: Reduced Speed 
Goal: Make a slow collision with the speedbump. 
 
ALL { 
  ego { 

location: { 
  SOME-OF { 

        at: 'speedbump', 
        on: 'speedbump' 
      } 
    } 
  } 
} 

 
System Id : MOS3 
Decision  : emergency-stop 
Constraint: None 
Goal: Warn the safety driver about an unintended 
high velocity during the collision with the 
speedbump. 
 
ALL { 
  ego { 

location: { 
  SOME-OF { 

        at: 'speedbump', 
        on: 'speedbump' 
      } 

}, 
speed: > THRESHOLD 

  } 
}

System Id : MOS4 
Decision  : follow-leader 
Constraint: Vehicle + Reduced Speed + Speedbump 
Goal: Reduce the speed when ego’s is approaching 
a speedbump and there exists a leading vehicle. 
 
ALL { 
  ego { 

location: { 
      approaching: 'speedbump' 
    } 
  }, 
  a-vehicle: { 
    isLeading: true, 
    location: { 
      on: 'not-off-road' 
    } 
  } 
} 
 
System Id : MOS5 
Decision  : follow-leader 
Constraint: Vehicle + Reduced Speed 
Goal: Make a slow collision with the speedbump in 
line with a leading vehicle. 
 
ALL { 
  ego { 

location: { 
  SOME-OF { 

        at: 'speedbump', 
        on: 'speedbump' 
      } 
    } 
  }, 
  a-vehicle: { 

isLeading: true, 
    location: { 
      on: 'not-off-road' 
    } 
  } 
} 
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Set VI – Intersection with stop sign for ego 
 
System Id : RIS1 
Decision  : track-speed 
Constraint: Speed Limit 
Goal: Cross the intersection if no danger zone is 
visible. 
We should have a distance/speed gap for the 
vehicle approaching intersection 
 
ALL { 
  ego { 
    location: { 
      on: 'intersection' 
    } 
  } 
 
  no-vehicle { 
    beliefs: { 
      heading: 'not-along-ego 
    }, 
    isParked: false, 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection' 
      }, 
      on: 'not-off-road' 
    }, 
    regulation: 'no-stop' 
  } 
 
  no-vehicle { 
    location: { 
      on: 'intersection' 
    }, 
    SOME-OF { 
      relativeOrientation: { 
        heading: 'towards-ego' 
      }, 
      ALL { 
        beliefs: { 
   heading: 'untrusted' 
        }, 
        relativeOrientation: { 
          longitudinal: 'front' 
        } 
      } 
      ALL { 
        relativeOrientation: { 
          heading: 'left', 
          lateral: 'not-left', 
          longitudinal: 'front' 
        } 
      } 
      ALL { 
        relativeOrientation: { 
          heading: 'right', 
          lateral: 'not-right', 
          longitudinal: 'front' 
        } 
      } 
    } 
  } 
}

System Id : RIS2 
Decision  : follow-leader 
Constraint: Vehicle + Speed Limit 
Goal: Cross the intersection in line if no danger 
zone is visible. 
We should have a distance/speed gap for the 
vehicle approaching intersection 
 
ALL { 
  ego { 
    location: { 
      on: 'intersection' 
    } 
  } 
 
  a-vehicle: { 
    beliefs: { 
      heading: 'not-untrusted' 
    }, 
    isLeading: true, 
    location: { on: 'not-off-road' } 
  } 
 
  no-vehicle { 
    beliefs: { heading: 'not-along-ego }, 
    isParked: false, 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection' 
      }, 
      on: 'not-off-road' 
    }, 
    regulation: 'no-stop' 
  } 
 
  no-vehicle { 
    location: { on: 'intersection' }, 
    SOME-OF { 
      relativeOrientation: { 
        heading: 'towards-ego' 
      }, 
      ALL { 
        beliefs: { heading: 'untrusted' }, 
        relativeOrientation: { 
          longitudinal: 'front' 
        } 
      } 
      ALL { 
        relativeOrientation: { 
          heading: 'left', 
          lateral: 'not-left', 
          longitudinal: 'front' 
        } 
      } 
      ALL { 
        relativeOrientation: { 
          heading: 'right', 
          lateral: 'not-right', 
          longitudinal: 'front' 
        } 
      } 
    } 
  } 
}
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System Id : RIS3 
Decision  : decelerate-to-halt 
Constraint: Stop Line 
Goal: Slow down to stop at the stop line of the 
intersection. 
 
ALL { 
  ego { 
    location: { 
      approaching: 'intersection' 
    } 
  } 
 
  travel: { 
    regulation: 'stop' 
  } 
} 
 
System Id : RIS4 
Decision  : decelerate-to-halt 
Constraint: Stop Line + Vehicle 
Goal: Slow down to stop in line at the stop sign. 
 
ALL { 
  ego { 
    location: { 
      approaching: 'intersection' 
    } 
  } 
 
  travel: { 
    regulation: 'stop' 
  } 
 
  a-vehicle: { 
    isLeading: true, 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection' 
      }, 
      on: 'not-off-road' 
    } 
  } 
}

System Id : RIS5 
Decision  : decelerate-to-halt 
Constraint: Stop Line 
Goal: Smoothly end the deceleration to stop at 
the stop line of the intersection. 
 
ALL { 
  ego { 
    location: { 
      at: 'intersection' 
    }, 
    speed: > THRESHOLD, 
    SOME-OF { 
      stopBeginAt: 0, 
      stopElapsedTime: this / 1000 <= 
STOP_THRESHOLD 
    } 
  } 
 
  travel: { 
    regulation: 'stop' 
  } 
} 
 
System Id : RIS6 
Decision  : stop 
Constraint: None 
Goal: Make a complete stop according to the 
Canadian Highway Code. 
 
ALL { 
  ego { 
    location: { 
      at: 'intersection' 
    }, 
    speed: < THRESHOLD, 
    SOME-OF { 
      stopBeginAt: 0, 
      stopElapsedTime: this / 1000 <= 
STOP_THRESHOLD 
    } 
  } 
 
  travel: { 
    regulation: 'stop' 
  } 
}
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System Id : RIS7 
Decision  : track-speed 
Constraint: Speed Limit 
Goal: Take the right of way when all vehicles 
have a mandatory stop and we have the precedence. 
 
ALL { 
  ego { 
    location: { 
      at: 'intersection' 
      timeOfArrival: T1 
    } 
  } 
 
  travel: { 
    regulation: 'stop' 
  } 
 
  no-vehicle: { 
    isParked: false, 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection' 
      }, 
      on: 'not-off-road' 
    }, 
    regulation: 'no-stop' 
  } 
 
  no-vehicle: { 
    isParked: false, 
    location: { 
      at: 'intersection', 
      on: 'not-off-road', 
      timeOfArrival: <= T1 
    }, 
    regulation: 'stop',     
  } 
 
  no-vehicle { 
    location: { on: 'intersection' }, 
    SOME-OF { 
      relativeOrientation: { 
        heading: 'towards-ego' 
      }, 
      ALL { 
        beliefs: { heading: 'untrusted' }, 
        relativeOrientation: {  
          longitudinal: 'front' 
        } 
      } 
      ALL { 
        relativeOrientation: { 
          heading: 'left', 
          lateral: 'not-left', 
          longitudinal: 'front' 
        } 
      } 
      ALL { 
        relativeOrientation: { 
          heading: 'right', 
          lateral: 'not-right', 
          longitudinal: 'front' 
        } 
      } 
    } 
  } 
}

System Id : RIS8 
Decision  : follow-leader 
Constraint: Vehicle + Speed Limit 
Goal: Take the right of way when all vehicles 
have a mandatory stop and we have the precedence 
even if there is a leading vehicle. 
ALL { 
  ego { 
    location: { 
      at: 'intersection' 
      timeOfArrival: T1 
    } 
  } 
  travel: { regulation: 'stop' } 
  a-vehicle: { 
    beliefs: { heading: 'not-untrusted' }, 
    isLeading: true, 
    location: { on: 'not-off-road' } 
  } 
  no-vehicle: { 
    isParked: false, 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection' 
      }, 
      on: 'not-off-road' 
    }, 
    regulation: 'no-stop' 
  } 
  no-vehicle: { 
    isParked: false, 
    location: { 
      at: 'intersection', 
      on: 'not-off-road', 
      timeOfArrival: <= T1 
    }, 
    regulation: 'stop' 
  } 
  no-vehicle { 
    location: { on: 'intersection' }, 
    SOME-OF { 
      relativeOrientation: { 
        heading: 'towards-ego' 
      }, 
      ALL { 
        beliefs: { heading: 'untrusted' }, 
        relativeOrientation: { 
          longitudinal: 'front' 
        } 
      } 
      ALL { 
        relativeOrientation: { 
          heading: 'left', 
          lateral: 'not-left', 
          longitudinal: 'front' 
        } 
      } 
      ALL { 
        relativeOrientation: { 
          heading: 'right', 
          lateral: 'not-right', 
          longitudinal: 'front' 
        } 
      } 
    } 
  } 
}
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System Id : RIS9 
Decision  : yield 
Constraint: N Vehicles 
Goal: Yield the right of way when incoming 
traffic does not have a mandatory stop or we 
don’t have the precedence. 
ALL { 
  ego { 
    location: { 
      at: 'intersection' 
      timeOfArrival: T1 
    } 
  } 
  travel: { 
    regulation: 'stop' 
  } 
  SOME-OF { 
    a-vehicle: { 
      isParked: false, 
      location: { 
        SOME-OF { 
          approaching: 'intersection', 
          at: 'intersection' 
        }, 
        on: 'not-off-road' 
      }, 
      regulation: 'no-stop' 
    } 
    a-vehicle: { 
      isParked: false, 
      location: { 
        at: 'intersection', 
        on: 'not-off-road', 
        timeOfArrival: <= T1 
      }, 
      regulation: 'stop' 
    } 
    a-vehicle { 
      location: { 
        on: 'intersection' 
      }, 
      SOME-OF { 
        relativeOrientation: { 
          heading: 'towards-ego' 
        }, 
        ALL { 
          beliefs: { heading: 'untrusted' }, 
          relativeOrientation: {  
            longitudinal: 'front'  
          } 
        } 
        ALL { 
          relativeOrientation: { 
            heading: 'left', 
            lateral: 'not-left', 
            longitudinal: 'front' 
          } 
        } 
        ALL { 
          relativeOrientation: { 
            heading: 'right', 
            lateral: 'not-right', 
            longitudinal: 'front' 
          } 
        } 
      } 
    } 
  } 
} 

System Id : RIS10 
Decision  : yield 
Constraint: N Pedestrians 
Goal: Go straight to the intersection will only 
wait if an unparallelly pedestrian cross at the 
same time. 
 
ALL { 
  ego { 
    location: { 
      at: 'intersection' 
    }, 
    navigation: 'straight' 
  }, 
 
  travel: { 
    regulation: 'stop' 
  }, 
 
  a-pedestrian: { 
    distance: { 
      x: potentiallyCollide(ego), 
      y: potentiallyCollide(ego) 
    }, 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection', 
        on: 'intersection' 
      } 
    } 
  } 
} 
 
 
System Id : RIS11 
Decision  : emergency-stop 
Constraint: None 
Goal: Go straight to the intersection with 
unpredicted pedestrian will only stop if an 
unparallelly pedestrian cross at the same time. 
 
ALL { 
  ego { 
    location: { 
      on: 'intersection' 
    }, 
    navigation: 'straight' 
  } 
 
  travel { 
    wasRegulatedByIntersectionStop: true 
  } 
 
  a-pedestrian: { 
    distance: { 
      x: potentiallyCollide(ego), 
      y: potentiallyCollide(ego) 
    }, 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection', 
        on: 'intersection' 
      } 
    } 
  } 
}
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System Id : RIS12 
Decision  : yield 
Constraint: N Pedestrians 
Goal: Go left to the intersection will only wait 
if a pedestrian cross at angle the same time. 
 
ALL { 
  ego { 
    location: { 
      at: 'intersection' 
    }, 
    navigation: 'left' 
  } 
 
  travel: { 
    regulation: 'stop' 
  }, 
 
  a-pedestrian: { 
    distance: { 
      x: potentiallyCollide(ego), 
      y: potentiallyCollide(ego) 
    }, 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection', 
        on: 'intersection' 
      } 
    } 
  } 
} 
 
 
System Id : RIS13 
Decision  : emergency-stop 
Constraint: None 
Goal: Go left to the intersection with 
unpredicted pedestrian will only stop if a 
pedestrian cross at angle the same time. 
 
ALL { 
  ego { 
    location: { 
      on: 'intersection' 
    }, 
    navigation: 'left' 
  } 
 
  travel { 
    wasRegulatedByIntersectionStop: true 
  } 
 
  a-pedestrian: { 
    distance: { 
      x: potentiallyCollide(ego), 
      y: potentiallyCollide(ego) 
    }, 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection', 
        on: 'intersection' 
      } 
    } 
  } 
}

System Id : RIS14 
Decision  : yield 
Constraint: N Pedestrians 
Goal: Go right to the intersection will only wait 
if a pedestrian cross at angle the same time. 
 
ALL { 
  ego { 
    location: { 
      at: 'intersection' 
    }, 
    navigation: 'right' 
  } 
 
  travel: { 
    regulation: 'stop' 
  }, 
 
  a-pedestrian: { 
    distance: { 
      x: potentiallyCollide(ego), 
      y: potentiallyCollide(ego) 
    }, 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection', 
        on: 'intersection' 
      } 
    } 
  } 
} 
 
 
System Id : RIS15 
Decision  : emergency-stop 
Constraint: None 
Goal: Go right to the intersection with 
unpredicted pedestrian will only stop if a 
pedestrian cross at angle the same time. 
 
ALL { 
  ego { 
    location: { 
      on: 'intersection' 
    }, 
    navigation: 'right' 
  } 
 
  travel { 
    wasRegulatedByIntersectionStop: true 
  } 
 
  a-pedestrian: { 
    distance: { 
      x: potentiallyCollide(ego), 
      y: potentiallyCollide(ego) 
    }, 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection', 
        on: 'intersection' 
      } 
    } 
  } 
} 
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Set VII – Intersection without stop sign for ego 
 
System Id : RIWS1 
Decision  : track-speed 
Constraint: Speed Limit 
Goal: Cross an intersection if no source of 
danger is visible. 
 
ALL { 
  ego { 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection' 
      } 
    } 
  } 
  travel: { 
    regulation: 'no-stop' 
  } 
  no-vehicle { 
    SOME-OF { 
      beliefs: { heading: 'untrusted' }, 
      relativeOrientation: { 
        heading: 'left', 
        heading: 'right' 
      } 
    } 
    isParked: false, 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection' 
      }, 
      on: 'not-off-road' 
    }, 
    regulation: 'no-stop', 

relativeOrientation: { 
  longitudinal: 'front' 
} 

  } 
  no-vehicle { 
    location: { on: 'intersection' }, 
    SOME-OF { 
      ALL { 
        beliefs: { heading: 'untrusted' }, 
        relativeOrientation: { 
          longitudinal: 'front' 
        } 
      } 
      ALL { 
        relativeOrientation: { 
          heading: 'left', 
          lateral: 'not-left', 
          longitudinal: 'front' 
        } 
      } 
      ALL { 
        relativeOrientation: { 
          heading: 'right', 
          lateral: 'not-right', 
          longitudinal: 'front' 
        } 
      } 
    } 
  } 
}

System Id : RIWS2 
Decision  : track-speed 
Constraint: Speed Limit 
Goal: Cross an intersection if no source of 
danger is visible. 
 
ALL { 
  ego { 
    location: { 
      on: 'intersection' 
    } 
  } 
 
  travel: { 
    wasRegulatedByIntersectionStop: false 
  } 
 
  no-vehicle { 
    SOME-OF { 
      beliefs: { heading: 'untrusted' }, 
      relativeOrientation: { 
        heading: 'left', 
        heading: 'right' 
      } 
    } 
    isParked: false, 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection' 
      }, 
      on: 'not-off-road' 
    }, 
    regulation: 'no-stop', 
    relativeOrientation: { 
      longitudinal: 'front' 
    } 
  } 
 
  no-vehicle { 
    location: { on: 'intersection' }, 
    SOME-OF { 
      ALL { 
        beliefs: { heading: 'untrusted' }, 
        relativeOrientation: { 
          longitudinal: 'front' 
        } 
      } 
      ALL { 
        relativeOrientation: { 
          heading: 'left', 
          lateral: 'not-left', 
          longitudinal: 'front' 
        } 
      } 
      ALL { 
        relativeOrientation: { 
          heading: 'right', 
          lateral: 'not-right', 
          longitudinal: 'front' 
        } 
      } 
    } 
  } 
}
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System Id : RIWS3 
Decision  : decelerate-to-halt 
Constraint: End of Lane 
Goal: Slow down before entering the intersection 
if some source of danger is visible. 
 
ALL { 
  ego { 
    location: { 
      approaching: 'intersection', 
    } 
  } 
 
  travel: { 
    regulation: 'no-stop' 
  } 
   
  SOME-OF { 
    a-vehicle { 
      SOME-OF { 
        beliefs: { heading: 'untrusted' }, 
        relativeOrientation: { 
          heading: 'left', 
          heading: 'right' 
        } 
      } 
      isParked: false, 
      location: { 
        SOME-OF { 
          approaching: 'intersection', 
          at: 'intersection' 
        }, 
        on: 'not-off-road' 
      }, 
      regulation: 'no-stop', 
      relativeOrientation: { 
        longitudinal: 'front' 
      } 
    } 
 
    a-vehicle { 
      location: { 
        on: 'intersection' 
      }, 
      SOME-OF { 
        ALL { 
          beliefs: { heading: 'untrusted' }, 
          relativeOrientation: {  
            longitudinal: 'front' 
          } 
        } 
        ALL { 
          relativeOrientation: { 
            heading: 'left', 
            lateral: 'not-left', 
            longitudinal: 'front' 
          } 
        } 
        ALL { 
          relativeOrientation: { 
            heading: 'right', 
            lateral: 'not-right', 
            longitudinal: 'front' 
          } 
        } 
      } 
    } 
  } 
}

System Id : RIWS4 
Decision  : decelerate-to-halt 
Constraint: End of Lane 
Goal: Decelerate safely to wait until the 
intersection is safe if some source of danger is 
visible. 
 
ALL { 
  ego { 
    location: { 
      at: 'intersection', 
    }, 
    speed: <= THRESHOLD 
  } 
  travel: { 
    regulation: 'no-stop' 
  } 
 
  SOME-OF { 
    a-vehicle { 
      SOME-OF { 
        beliefs: { heading: 'untrusted' }, 
        relativeOrientation: { 
          heading: 'left', 
          heading: 'right' 
        } 
      } 
      isParked: false, 
      location: { 
        SOME-OF { 
          approaching: 'intersection', 
          at: 'intersection' 
        }, 
        on: 'not-off-road' 
      }, 
      regulation: 'no-stop', 
      relativeOrientation: { 
        longitudinal: 'front' 
      } 
    } 
 
    a-vehicle { 
      location: { on: 'intersection' }, 
      SOME-OF { 
        ALL { 
          beliefs: { heading: 'untrusted' }, 
          relativeOrientation: {  
            longitudinal: 'front' 
          } 
        } 
        ALL { 
          relativeOrientation: { 
            heading: 'left', 
            lateral: 'not-left', 
            longitudinal: 'front' 
          } 
        } 
        ALL { 
          relativeOrientation: { 
            heading: 'right', 
            lateral: 'not-right', 
            longitudinal: 'front' 
          } 
        } 
      } 
    } 
  } 
}
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System Id : RIWS5 
Decision  : emergency-stop 
Constraint: None 
Goal: Panic when an intersection has an ambiguous 
shape that may lead to a collision with ego. 
 
ALL { 
  ego { 
    location: { 
      at: 'intersection' 
    }, 
    speed: > THRESHOLD 
  } 
 
  travel: { 
    regulation: 'no-stop' 
  } 
 
  SOME-OF { 
    a-vehicle { 
      SOME-OF { 
        beliefs: { heading: 'untrusted' }, 
        relativeOrientation: { 
          heading: 'left', 
          heading: 'right' 
        } 
      } 
      isParked: false, 
      location: { 
        SOME-OF { 
          approaching: 'intersection', 
          at: 'intersection' 
        }, 
        on: 'not-off-road' 
      }, 
      regulation: 'no-stop', 
      relativeOrientation: { 
        longitudinal: 'front' 
      } 
    } 
 
    a-vehicle { 
      location: { on: 'intersection' }, 
      SOME-OF { 
        ALL { 
          beliefs: { heading: 'untrusted' }, 
          relativeOrientation: {  
            longitudinal: 'front' 
          } 
        } 
        ALL { 
          relativeOrientation: { 
            heading: 'left', 
            lateral: 'not-left', 
            longitudinal: 'front' 
          } 
        } 
        ALL { 
          relativeOrientation: { 
            heading: 'right', 
            lateral: 'not-right', 
            longitudinal: 'front' 
          } 
        } 
      } 
    } 
  } 
}

System Id : RIWS6 
Decision  : follow-leader 
Constraint: Vehicle + Speed Limit 
Goal: Cross in line at an intersection if no 
source of danger is visible. 
 
ALL { 
  ego { 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection' 
      } 
    } 
  } 
  travel: { regulation: 'no-stop' } 
  a-vehicle: { 
    beliefs: { heading: 'not-untrusted' }, 
    isLeading: true, 
    location: { on: 'not-off-road' } 
  } 
  no-vehicle { 
    SOME-OF { 
      beliefs: { heading: 'untrusted' }, 
      relativeOrientation: { 
        heading: 'left', 
        heading: 'right' 
      } 
    } 
    isParked: false, 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection' 
      }, 
      on: 'not-off-road' 
    }, 
    regulation: 'no-stop', 

relativeOrientation: { 
  longitudinal: 'front' 
} 

  } 
  no-vehicle { 
    location: { on: 'intersection' }, 
    SOME-OF { 
      ALL { 
        beliefs: { heading: 'untrusted' }, 
        relativeOrientation: { 
          longitudinal: 'front' 
        } 
      } 
      ALL { 
        relativeOrientation: { 
          heading: 'left', 
          lateral: 'not-left', 
          longitudinal: 'front' 
        } 
      } 
      ALL { 
        relativeOrientation: { 
          heading: 'right', 
          lateral: 'not-right', 
          longitudinal: 'front' 
        } 
      } 
    } 
  } 
}
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System Id : RIWS7 
Decision  : follow-leader 
Constraint: Vehicle + Speed Limit 
Goal: Cross in line at an intersection if no 
source of danger is visible. 
 
ALL { 
  ego { 
    location: { 
      on: 'intersection' 
    } 
  } 
  travel: { 
    wasRegulatedByIntersectionStop: false 
  } 
  a-vehicle: { 
    beliefs: { heading: 'not-untrusted' }, 
    isLeading: true, 
    location: { on: 'not-off-road' } 
  } 
 
  no-vehicle { 
    SOME-OF { 
      beliefs: { heading: 'untrusted' }, 
      relativeOrientation: { 
        heading: 'left', 
        heading: 'right' 
      } 
    } 
    isParked: false, 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection' 
      }, 
      on: 'not-off-road' 
    }, 
    regulation: 'no-stop', 

relativeOrientation: { 
  longitudinal: 'front' 
} 

  } 
 
  no-vehicle { 
    location: { on: 'intersection' }, 
    SOME-OF { 
      ALL { 
        beliefs: { heading: 'untrusted' }, 
        relativeOrientation: { 
          longitudinal: 'front' 
        } 
      } 
      ALL { 
        relativeOrientation: { 
          heading: 'left', 
          lateral: 'not-left', 
          longitudinal: 'front' 
        } 
      } 
      ALL { 
        relativeOrientation: { 
          heading: 'right', 
          lateral: 'not-right', 
          longitudinal: 'front' 
        } 
      } 
    } 
  } 
}

System Id : RIWS8 
Decision  : decelerate-to-halt 
Constraint: Vehicle + End of Lane 
Goal: Slow down in line before entering the 
intersection if some source of danger is visible. 
 
ALL { 
  ego { 
    location: { 
      approaching: 'intersection', 
    } 
  } 
  travel: { 
    regulation: 'no-stop' 
  } 
  a-vehicle: { 
    beliefs: { heading: 'not-untrusted' }, 
    isLeading: true, 
    location: { on: 'not-off-road' } 
  } 
  SOME-OF { 
    a-vehicle { 
      SOME-OF { 
        beliefs: { heading: 'untrusted' }, 
        relativeOrientation: { 
          heading: 'left', 
          heading: 'right' 
        } 
      } 
      isParked: false, 
      location: { 
        SOME-OF { 
          approaching: 'intersection', 
          at: 'intersection' 
        }, 
        on: 'not-off-road' 
      }, 
      regulation: 'no-stop', 
      relativeOrientation: { 
        longitudinal: 'front' 
      } 
    } 
    a-vehicle { 
      location: { on: 'intersection' }, 
      SOME-OF { 
        ALL { 
          beliefs: { heading: 'untrusted' }, 
          relativeOrientation: {  
            longitudinal: 'front' 
          } 
        } 
        ALL { 
          relativeOrientation: { 
            heading: 'left', 
            lateral: 'not-left', 
            longitudinal: 'front' 
          } 
        } 
        ALL { 
          relativeOrientation: { 
            heading: 'right', 
            lateral: 'not-right', 
            longitudinal: 'front' 
          } 
        } 
      } 
    } 
  } 
}
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System Id : RIWS9 
Decision  : decelerate-to-halt 
Constraint: End of Lane + Vehicle 
Goal: Wait in line until the intersection is safe 
if some source of danger is visible. 
 
ALL { 
  ego { 
    location: { 
      at: 'intersection' 
    }, 
    speed: <= THRESHOLD 
  } 
  travel: { regulation: 'no-stop' } 
  a-vehicle: { 
    beliefs: { heading: 'not-untrusted' }, 
    isLeading: true, 
    location: { on: 'not-off-road' } 
  } 
  SOME-OF { 
    a-vehicle { 
      SOME-OF { 
        beliefs: { heading: 'untrusted' }, 
        relativeOrientation: { 
          heading: 'left', 
          heading: 'right' 
        } 
      } 
      isParked: false, 
      location: { 
        SOME-OF { 
          approaching: 'intersection', 
          at: 'intersection' 
        }, 
        on: 'not-off-road' 
      }, 
      regulation: 'no-stop', 
      relativeOrientation: { 
        longitudinal: 'front' 
      } 
    } 
    a-vehicle { 
      location: { on: 'intersection' }, 
      SOME-OF { 
        ALL { 
          beliefs: { heading: 'untrusted' }, 
          relativeOrientation: {  
            longitudinal: 'front' 
          } 
        } 
        ALL { 
          relativeOrientation: { 
            heading: 'left', 
            lateral: 'not-left', 
            longitudinal: 'front' 
          } 
        } 
        ALL { 
          relativeOrientation: { 
            heading: 'right', 
            lateral: 'not-right', 
            longitudinal: 'front' 
          } 
        } 
      } 
    } 
  } 
}

System Id : RIWS10 
Decision  : decelerate-to-halt 
Constraint: LTAP 
Goal: Slow down to the incoming traffic before 
starting a left turn. 
 
ALL { 
  ego { 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection' 
      } 
    }, 
    navigation: 'left' 
  } 
 
  travel: { 
    regulation: 'no-stop' 
  } 
 
  SOME-OF { 
    a-vehicle { 
      isParked: false, 
      location: { 
        SOME-OF { 
          approaching: 'intersection', 
          at: 'intersection' 
        }, 
        on: 'not-off-road' 
      }, 
      regulation: 'no-stop', 
      relativeOrientation: { 
        heading: 'towards-ego', 
        longitudinal: 'front' 
      } 
    } 
 
    a-vehicle { 
      location: { 
        on: 'intersection' 
      }, 
      relativeOrientation: { 
        heading: 'towards-ego', 
        longitudinal: 'front' 
      } 
    } 
  } 
}
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System Id : RIWS11 
Decision  : decelerate-to-halt 
Constraint: LTAP 
Goal: Slow down to the incoming traffic nearby 
the intersection center before starting a left 
turn. 
 
ALL { 
  ego { 
    location: { on: 'intersection' }, 
    navigation: 'left' 
  } 
  travel: { 
    wasRegulatedByIntersectionStop: false 
  } 
  SOME-OF { 
    a-vehicle { 
      SOME-OF { 
        beliefs: { heading: 'untrusted' }, 
        relativeOrientation: { 
          heading: 'towards-ego' 
        } 
      } 
      distance: { 
        x: <= THRESHOLD, 
        y: <= THRESHOLD 
      }, 
      isParked: false, 
      location: { 
        approaching: 'intersection', 
        on: 'not-off-road' 
      }, 
      regulation: 'no-stop', 
      relativeOrientation: { 
        longitudinal: 'front' 
      } 
    } 
    a-vehicle { 
      SOME-OF { 
        beliefs: { heading: 'untrusted' }, 
        relativeOrientation: { 
          heading: 'towards-ego' 
        } 
      } 
      isParked: false, 
      location: { 
        at: 'intersection', 
        on: 'not-off-road' 
      }, 
      regulation: 'no-stop', 
      relativeOrientation: { 
        longitudinal: 'front' 
      } 
    } 
 
    a-vehicle { 
      SOME-OF { 
        beliefs: { heading: 'untrusted' }, 
        relativeOrientation: { 
          heading: 'towards-ego' 
        } 
      } 
      location: { on: 'intersection' }, 
      relativeOrientation: { 
        longitudinal: 'front' 
      } 
    } 
  } 
}

System Id : RIWS12 
Decision  : decelerate-to-halt 
Constraint: LTAP + Vehicle 
Goal: Slow down in line to the incoming traffic 
before starting a left turn. 
 
ALL { 
  ego { 
    location: { 
      SOME-OF { 
        approaching: 'intersection', 
        at: 'intersection' 
      } 
    }, 
    navigation: 'left' 
  } 
 
  travel: { 
    regulation: 'no-stop' 
  } 
 
  a-vehicle: { 
    beliefs: { 
      heading: 'not-untrusted' 
    }, 
    isLeading: true, 
    location: { 
      on: 'not-off-road' 
    } 
  } 
 
  SOME-OF { 
    a-vehicle { 
      isParked: false, 
      location: { 
        SOME-OF { 
          approaching: 'intersection', 
          at: 'intersection' 
        }, 
        on: 'not-off-road' 
      }, 
      regulation: 'no-stop', 
      relativeOrientation: { 
        heading: 'towards-ego', 
        longitudinal: 'front' 
      } 
    } 
 
    a-vehicle { 
      location: { 
        on: 'intersection' 
      }, 
      relativeOrientation: { 
        heading: 'towards-ego', 
        longitudinal: 'front' 
      } 
    } 
  } 
}
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System Id : RIWS13 
Decision  : decelerate-to-halt 
Constraint: LTAP + Vehicle 
Goal: Slow down in line to the incoming traffic 
nearby the intersection center before starting a 
left turn. 
 
ALL { 
  ego { 

location: {  
  on: 'intersection' 
}, 

    navigation: 'left' 
  } 
 
  travel: { 
    wasRegulatedByIntersectionStop: false 
  } 
 
  a-vehicle: { 

beliefs: {  
  heading: 'not-untrusted' 
}, 

    isLeading: true, 
location: { 
  on: 'not-off-road' 
} 

  } 
 
  SOME-OF { 
    a-vehicle { 
      SOME-OF { 
        beliefs: { 
          heading: 'untrusted' 
        }, 
        relativeOrientation: { 
          heading: 'towards-ego' 
        } 
      } 
      distance: { 
        x: <= THRESHOLD, 
        y: <= THRESHOLD 
      }, 
      isParked: false, 
      location: { 
        approaching: 'intersection', 
        on: 'not-off-road' 
      }, 
      regulation: 'no-stop', 
      relativeOrientation: { 
        longitudinal: 'front' 
      } 

}

    a-vehicle { 
      SOME-OF { 
        beliefs: {  
          heading: 'untrusted' 
        }, 
        relativeOrientation: { 
          heading: 'towards-ego' 
        } 
      } 
      isParked: false, 
      location: { 
        at: 'intersection', 
        on: 'not-off-road' 
      }, 
      regulation: 'no-stop', 
      relativeOrientation: { 
        longitudinal: 'front' 
      } 

} 
 

    a-vehicle { 
      SOME-OF { 
        beliefs: { 
          heading: 'untrusted' 
        }, 
        relativeOrientation: { 
          heading: 'towards-ego' 
        } 
      } 
      location: { 
        on: 'intersection' 
      }, 
      relativeOrientation: { 
        longitudinal: 'front' 
      } 
    } 
  } 
} 
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