
Image And Video Compression:
Human And Computer Vision

Perspectives

by

Hossam Amer

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2020

© Hossam Amer 2020

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

As we start a new decade, image and video compression should further improve to sat-
isfy each of the human and computer visions. Human and computer visions have different
perspectives on the perceived images and videos, which are compressed due to bandwidth
and storage requirements. From a human vision (HV) perspective, one key aspect of hu-
man satisfaction is the perceived quality of these compressed images and videos. From
a computer vision (CV) perspective, especially in image classification, one crucial aspect
for machine satisfaction is the ability to accurately recognize patterns or objects in these
compressed images and videos. This thesis is motivated to address a variety of image/video
compression problems to serve each of human and computer vision perspectives. For HV,
our goal is focused on video compression to improve the trade-off between compression rate,
compression distortion, and time complexity, while our goal for CV is to show that com-
pression if used in the right manner, helps improve deep neural network (DNN) machines
in terms of classification accuracy while reducing the size in bits of the input image.

Towards the HV perspective, we first introduced a global rate-distortion optimization
(RDO) model rather than the existing RDO in the state-of-the-art video codec, High
Efficiency Video Coding (HEVC), that is traditionally performed within each frame with
fixed quantization parameters (QPs), without fully considering the coding dependencies
between the current frame and future frames within a temporal propagation chain. To
further improve the coding efficiency of HEVC, it is desirable to perform a global RDO
among consecutive frames while maintaining a similar coding complexity. To address this
problem, temporal dependencies are first measured via a model for the energy of prediction
residuals that enables the formulation of the global RDO in low-delay (LD) HEVC. Second,
we introduce the notion of propagation length, which is defined as the impact length of the
current frame on future frames. This length is estimated via offline experiments and used
to propose two novel methods to predict the impact of the coding distortion of the current
frame on future frames from previous frames of similar coding properties. Third, we apply
these two methods to adaptively determine the Lagrangian multiplier and its corresponding
QP for each frame in the LD configuration of HEVC. Experimental results show that, in
comparison to the default LD HEVC, the first method can achieve, on average, BD-rate
savings of 5.0% and 4.9% in low-delay-P (LDP) and low-delay-B (LDB) configurations,
respectively, and the second can achieve, on average, BD-rate savings of 4.9% and 4.9% in
the LDP and LDB configurations, respectively, all with only 1% increase in the encoding
time. This work has piqued serious interest from industry, such as Google.

Along with the HV perspective, despite the rate distortion performance improvement
that HEVC offers, it is computationally expensive due to the adoption of a large variety of

iii

coding unit (CU) sizes in its RDO. Thus, we investigated the application of fully connected
neural networks (NNs) to this time-sensitive application to improve its time complexity,
while controlling the resulting bitrate loss. Specifically, four NNs are introduced with
one NN for each depth of the coding tree unit. These NNs either split the current CU
or terminate the CU search algorithm. Because the training of NNs is time-consuming
and requires large training data, we further propose a novel training strategy in which
offline training and online adaptation work together to overcome this limitation. Our
features are extracted from original frames based on the Laplacian Transparent Composite
Model (LPTCM). Experiments carried out on all-intra configuration for HEVC reveal that
our method is among the best NN methods, with an average time saving of 32% and an
average controlled bitrate loss of 1.6%, compared to the original HEVC. In our CU partition
algorithm, a fully connected NN machine ’saw’ extracted LPTCM features to help reduce
the computational intensity of compression at a controlled trade-off between compression
rate and compression distortion.

Turning to CV perspective where DNNs typically ’see’ the input as a JPEG image, we
revisited the impact of JPEG compression on deep learning (DL) in image classification.
Given an underlying DNN pre-trained with pristine ImageNet images, we demonstrated
that if for any original image, one can select, among its many JPEG compressed versions
including its original version, a suitable version as an input to the underlying DNN, then
the classification accuracy of the underlying DNN can be improved significantly while
the size in bits of the selected input is, on average, reduced dramatically in comparison
with the original image. This is in contrast to the conventional understanding that JPEG
compression generally degrades the classification accuracy of DL. Specifically, for each
original image, consider its 10 JPEG compressed versions with their quality factor (QF)
values from {100, 90, 80, 70, 60, 50, 40, 30, 20, 10}. Under the assumption that the ground
truth label of the original image is known at the time of selecting an input, but unknown
to the underlying DNN, we presented a selector called Highest Rank Selector (HRS). It
is shown that HRS is optimal in the sense of achieving the highest top-k accuracy on
any set of images for any k among all possible selectors. When the underlying DNN is
Inception V3 or ResNet-50 V2, HRS improves, on average, the top-1 classification accuracy
and top-5 classification accuracy on the whole ImageNet validation dataset by 5.6% and
1.9%, respectively, while reducing the input size in bits dramatically—the compression
ratio (CR) between the size of the original images and the size of the selected input images
by HRS is 8 for the whole ImageNet validation dataset. When the ground truth label of
the original image is unknown at the time of selection, we further propose selectors that
either maintain the top-1 accuracy, the top-5 accuracy, or the top-1 and top-5 accuracy of
the underlying DNN, while achieving CRs of 8.8, 3.3, and 3.1, respectively.

iv

Acknowledgements

First and foremost, I am heartily thankful to my thesis supervisor, Prof. En-hui Yang,
whose guidance and support paved the road to complete my PhD degree. Throughout
my PhD training, Professor Yang taught me the fundamentals of high-quality research,
presentation, and writing. Professor Yang not only inspired my research quality with his
constant feedback, but also shaped my logical and critical thinking process. Professor Yang
always took the extra step to show his care to my current and future success.

I wish to thank Professor Alex Wong and Professor Fakhri Karray, and Professor Zhou
Wang, for being my thesis committee members and their valuable feedback on my work.
Also, I wish to thank Professor Jie Liang from the Simon Fraser University for his com-
mitment to serve as my external examining committee member.

Not forgetting also the support of my lab-mates in Multimedia Lab who are the in-
valuable resource of my improvement and happiness. Special thanks also to the graduate
team whose support was vital to complete my PhD degree and to my friends for their great
memories, continuous support, and care.

Finally, an honorable mention goes to my family for their understanding and support
throughout the PhD journey. They were behind my back during the hard times before the
good times. In particular, I would like to express my sincere gratitude to my father, Prof.
Mostafa Amer, whose words were constant fuel to overcome any challenges. Sign of love
and gratitude especially go to my mother, Mrs. Soad Lotfy, who is a flowing river of love
and kindness. Since I was born, I achieved what I achieved because of my mother. A lot
of times, my mum listened and supported me to always be the best version of myself. I
also would like to thank my brother and companion, Dr. Ihab Amer, whose advice and
encouragement helped me a lot in my life. When my brother completed his thesis, he
wrote that he saw himself in me, and I am happy that I reached this stage with his support
and motivation. Special thanks also to my sister, Mrs. Samah Amer, whose non-stop
understanding, love, and support right from my childhood are pillars in my life. Seeing
how my sister successfully manage her life is no doubt an immense source of motivation.
May my brother and sister see their kind legacy reflect on their kids: Salma, Seif, Mostafa,
Serene, Selim, Ahmed. Sign of special gratitude to my sister in-law, Mrs. Nora Ahmed,
for her true and valuable care, friendship, and support that helped ease a lot of things in
my life. Many thanks to my brother in-law, Dr. Samer AlGhazaly, for his support.

Any acknowledgement ends up with incomplete list inevitably, but I still wish to thank
those professors, who are the instructors of classes I have attended, mentors, who I learnt a
lot from, people that I met during this period, who supported me to earn the PhD degree,
and experiences, which shaped who I am today.

v

My family: I always feel the pleasure to be a part of such a kind family. Your care and
support are keys to where I am today and everyday.

My mother, Mrs. Soad Lotfy: Your love, understanding and support were always
inspiring my success. Your happiness in general, for me, and about me is my life-time

goal.

My father, Prof. Mostafa Amer: My entire life is all about you. Seeing you, or
even remembering you is enough to get through any challenges.

My mission, My life is just to make you happy.

You are in my heart and I will never let you down.

This is for your soul, Dady

Table of Contents

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Thesis motivation . 3

1.2 Thesis contributions . 6

1.3 Thesis organization . 7

2 Background 8

2.1 Overview on the JPEG Standard . 8

2.2 Overview on the HEVC Standard . 13

2.2.1 Block Structure in HEVC . 14

2.2.2 Inter/Intra-Picture Prediction & Mode decision in HEVC 14

2.2.3 HEVC Transform and Quantization 22

2.2.4 HEVC Entropy Coding . 22

2.2.5 In-Loop Filters in HEVC . 23

2.2.6 HEVC Configurations . 23

2.3 Classification and Neural Networks . 23

2.3.1 AlexNet Architecture . 24

2.3.2 Inception and Residual Architectures 26

vii

2.3.3 ImageNet Dataset . 26

2.4 Chapter Summary . 27

3 Adaptive Quantization Parameter Selection for Low-Delay HEVC via
Temporal Propagation Length Estimation 28

3.1 Literature Review . 28

3.2 Adaptive QP Selection Problem For Low-Delay HEVC 32

3.2.1 Low-Delay Coding Structure in HEVC 32

3.2.2 Problem Formulation of the QP Selection in LD HEVC 34

3.3 Accumulated Coding Propagation Effect in Low-Delay HEVC 35

3.3.1 Review for the Linear Distortion Model 35

3.3.2 Accumulated Propagation Effects for LD HEVC 37

3.4 Estimating the propagation parameters for Lagrangian Multiplier Determi-
nation . 39

3.4.1 Estimation of the Impact Propagation Length 40

3.4.2 Two Methods for εi Prediction . 41

3.4.3 Adaptive Lagrangian Multiplier Determination 45

3.5 Adaptive QP Selection . 46

3.5.1 QP Determination via QP-λ Relationships 46

3.5.2 Initialization . 48

3.5.3 Overall Adaptive QP Selection Algorithm 48

3.6 HEVC Encoder Testing Methodology: Objective Video Assessment Tool
(MCTest) . 49

3.7 Experimental Results . 49

3.7.1 Coding Efficiency Comparison . 51

3.7.2 Analysis for the Coding Efficiency Results 54

3.7.3 Quality Fluctuation . 56

3.7.4 Computational Complexity Analysis 58

3.8 Chapter Summary . 58

viii

4 Neural Network for HEVC CU Split Decision equipped with Laplacian
Transparent Composite Model 62

4.1 Literature Review . 62

4.2 Fully Connected Network for HEVC’s CU Partition Problem 64

4.2.1 Feature Extraction: CTU-based LPTCM 64

4.2.2 Neural Network Structure . 67

4.2.3 Offline Training Stage For Low Resolutions 69

4.2.4 Online Training/Adaptation Stage 69

4.2.5 Online Testing Stage . 70

4.3 Experimental Results . 76

4.4 Chapter Summary . 77

5 Compression Helps Deep Learning In Image Classification 83

5.1 Literature Review . 84

5.2 Motivation: Case Study . 87

5.3 Highest Rank Selector . 89

5.3.1 HRS and its Optimality . 91

5.3.2 Empirical Results and Analysis . 93

5.4 Selectors Maintaining Classification Accuracy While Reducing Input Size . 103

5.5 Chapter Summary . 105

6 Conclusion and Future Work 107

6.1 Conclusion . 107

6.2 Future Work . 109

6.2.1 Human Vision Perspective: CTU-based Adaptive QP Selection and
Inter-dependency Aware Rate Control 109

6.2.2 Machine Vision Perspective: Design of Compression targeting Ma-
chine Vision . 109

References 112

ix

List of Tables

2.1 Rough Mode Decision in HEVC Intra coding. 19

2.2 Indexes of intra prediction modes. 20

3.1 QP Pattern and Referencing Structure Under LD HEVC. 33

3.2 Average Pearson correlation coefficient for each p from 1 to 8 across Basket-
ballPass, BQSquare, BlowingBubbles for all Fpred from 16 to 23. 41

3.3 Coding Efficiency Comparisons Between LD HEVC And the Proposed Meth-
ods With Respect To The Default HM In Terms of Luma BDBR(%) 52

3.4 Coding Efficiency Improvements For Our Proposed Methods With Respect
To LD HEVC In Terms of Luma BDBR(%) For Video Conferencing Sequences. 53

3.5 Coding Efficiency Improvements For Our Proposed Methods With Respect
To LD HEVC In Terms of Luma BDBR(%) For Merged Sequences. 53

3.6 Quality Fluctuation Comparison Between The Default HM And The Pro-
posed Methods Under LDP Configuration. Numbers Between Parenthesis
Indicate The Differences Between The Proposed Methods And The Default
HM In Terms of std. 60

3.7 Encoding Time Ratio of µ−prediction Under LDP Configuration 61

4.1 Look-up Table for g0, g1 when QP=22 or 37. N/C: No Change 76

4.2 BD Rate Loss and Time Savings (TS) Percentage for the Standard HEVC
Sequences. 81

4.3 Comparison between the Proposed Method and Methods from the Literature. 82

5.1 Top-1 Accuracy and Top-5 Accuracy of HRS on the whole ImageNet vali-
dation dataset. 93

x

5.2 Compression performance of HRS for the whole ImageNet validation dataset. 95

5.3 Percentages of QF values selected by HRS with the Original Image and its
21 QF Versions using Inception V3 and ResNet-50 V2. 99

5.4 Top-1 and top-5 accuracy results of T1K and T5K on the whole ImageNet
validation dataset. 104

5.5 Compression ratio results of T1K, T5K, and TTK for the whole ImageNet
validation dataset with Inception V3 as the underlying DNN. 104

5.6 Compression ratio results of T1K, T5K, and TTK for the whole ImageNet
validation dataset with ResNet-50 V2 as the underlying DNN. 104

xi

List of Figures

1.1 A Typical Digital Image/Video Compression Scenario 2

1.2 Overview on Thesis Research Questions. 3

2.1 Overview on JPEG image encoder. 9

2.2 Example of DCT decorrelation and compaction features (reprinted from [102]). 10

2.3 Effect of removing less-important coefficients per block on the input JPEG
image. 11

2.4 Effect of quantization on the transformed coefficients matrix (reprinted from
[102]). 13

2.5 Generalized block diagram of the HEVC video encoder with motion com-
pensation (reprinted from [119]). 15

2.6 Quad-tree structure and supported modes of the CU in HEVC. 16

2.7 HEVC Recursive Process for Quad-Tree Intra CTU Partitioning. 18

2.8 HEVC Encoder Mode Decision using uni-directional Inter-prediction for
Frame 139 and 140 in the Kimono Video Sequence. 20

2.9 Original and corresponding residual frames for picture order counts 139,
140 and 141 of Kimono Video Sequence, where in residual frames, black and
white indicate low and high levels of residual energy, respectively. 21

2.10 Convolutional Neural Network (CNN) For Image Classification Schematic
Diagram. 25

2.11 AlexNet Convolutional Neural Network Architecture. 25

3.1 HEVC LD Coding Structure. 34

xii

3.2 Relationships between MSEref and MSEpred at different Fref : Left: Bas-
ketballPass, Middle: BlowingBubbles, Right: BQSquare. 42

3.2 Relationships between MSEref and MSEpred at different Fref : Left: Bas-
ketballPass, Middle: BlowingBubbles, Right: BQSquare. 43

3.3 Results of θi+1,i · · · θN,i from Equation (3.14) that enable setting p to 4. A
zoomed-in version is stacked on each plot. 44

3.4 Sequence Diagram for the Objective Video Quality Assessment Framework
(MCTest). 50

3.5 Objective Video Quality Assessment Framework (MCTest). 50

3.6 RD curves for the proposed algorithms and the default LDP. 51

3.7 First frame of the BQTerrace video sequence divided into quads where quad
one and three contain less complex structures than quad two and four. . . 55

3.8 QP Per Frame for Fourpeople, Kimono at QP = 27 using µ−prediction for
LDP. 57

4.1 Overview on the CTU-based LPTCM Feature Extraction Method. 66

4.2 Left: Original POC = 0 Racehorses at QP = 22 Right: CTU-based LPTCM
POC = 0 Racehorses at QP = 22. Black = Inliers and DC, White = Outliers 66

4.3 Proposed Fully Connected Neural Network Structure. 67

4.4 Encoded Structure of the second 64x64 CTU in the first row of POC = 0 in
Racehorses at QP=22 . 68

4.5 Training Strategy for the CU Partition Problem. 69

4.6 Percentages of each depth for Traffic video sequence using the default HEVC
Intra Coding. 70

4.7 Percentages of each depth for Kimono video sequence using the default
HEVC Intra Coding. 71

4.8 Percentages of each depth for RacehorsesC video sequence using the default
HEVC Intra Coding. 72

4.9 Percentages of each depth for RacehorsesD video sequence using the default
HEVC Intra Coding. 73

4.10 Percentages of each depth for FourPeople video sequence using the default
HEVC Intra Coding. 74

xiii

4.11 Tensorflow Timing Diagram for one sample of Racehorses video sequence at
QP=22 . 76

4.12 Traffic CU partition comparisons between HM-16.0 and fast algorithm. POC
= 20 (Best viewed in electronic format). 78

4.13 FourPeople CU partition comparisons between HM-16.0 and fast algorithm.
POC = 20 (Best viewed in electronic format). 79

5.1 A DNN with a JPEG compressed version of an image as an input, where
QF is a constant. 85

5.2 Selection of a compressed version of an image as an input to a given DNN,
where P is the prediction vector of the DNN in response to the chosen Ij. . 86

5.3 Top-1 accuracy and Top-5 accuracy degradation phenomenon for Inception
V3 and ResNet-50 V2 in the case of the “one QF vs all images” approach. 88

5.4 The perspective of one image vs all QFs—the ranks and probabilities of the
GT label of an image across different QFs: (a) image # 651; (b) image # 37. 89

5.5 Image #651 from ImageNet validation set with its GT GT label “Bram-
bling”: (a) the original image for which the GT label ranks second with
probability 37%; (b) the JPEG compressed image with QF = 10 for which
the GT label ranks first with probability 72%. Best viewed in electronic
format. 90

5.6 Feature Maps extracted from the original image #651 and its JPEG com-
pressed version with QF=10 by Layer 1 of Inception V3. Best viewed in
electronic format. 91

5.7 The histogram of QF values selected by HRS for Inception V3. 94

5.8 The histogram of QF values selected by HRS for ResNet-50 V2. 95

5.9 Feature maps extracted by Layer 2 of Inception V3 from the original Im-
age#651 with GT label “Brambling” from the ImageNet validation dataset
and its JPEG compressed version with QF = 10. Best viewed in electronic
format . 97

5.10 Feature maps extracted by Layer 3 of Inception V3 from the original Im-
age#651 with GT label “Brambling” from the ImageNet validation dataset
and its JPEG compressed version with QF = 10. Best viewed in electronic
format . 98

xiv

5.11 Image #37 from the ImageNet Validation dataset with its GT label “Tailed
frog”: (a) the original image; (b) the JPEG compressed version with QF =
10. Best viewed in electronic format. 100

5.12 Feature maps extracted by Layer 2 of Inception V3 from the original Im-
age#37 with GT label “Tailed Frog” from the ImageNet validation dataset
and its JPEG compressed version with QF = 10. Best viewed in electronic
format . 101

5.13 Feature maps extracted by Layer 3 of Inception V3 from the original Im-
age#37 with GT label “Tailed Frog” from the ImageNet validation dataset
and its JPEG compressed version with QF = 10. Best viewed in electronic
format . 102

xv

Chapter 1

Introduction

Every second 725 images are posted on Instagram, more than 2,000 to Facebook and about
50 hours of video are uploaded to YouTube. On top of that, recent statistics from Cisco
forecast an increase in video traffic by four-fold, and an increase by more than seven-fold
in machine-to-machine communication in the period between 2017 and 2022. This shows
that this ongoing and increasing flow of images or videos, which are typically compressed
to meet storage or bandwidth requirements, could be ’seen’ by either humans or machines.

To see the big picture, this thesis addresses a group of image/video compression prob-
lems in today’s practical multimedia system. As shown in Figure 1.1, this system consists
of an information source or a camera that captures digital images and videos, an encoder to
compress these images to meet the expensive channel bandwidth requirements or limited
space of the storage media, and decoder to reconstruct these images and videos, which
are seen by either humans or machines. From a human vision perspective, one key aspect
for human satisfaction is the perceived fidelity of these images and videos. On the other
hand, from a computer vision perspective, one crucial aspect for machine satisfaction in
the context of image classification is their ability to accurately recognize patterns or ob-
jects in these images and videos. Thus, the first major part of this thesis takes the human
vision perspective into account and tackles video compression to find an improved trade-off
between compression rate, compression distortion, and computational intensity. As for the
computer vision perspective, we can see from Figure 1.1 that compression has an impact
on the task of image classification in accurately recognizing patterns or objects in the input
images, which we investigate in the second major part of this thesis.

Towards human vision, the foundation of video compression is to reduce the size of video
data to the least possible accompanied with a negligible difference in the video quality that

1

Inform.
Source

Encoder
Channels
or Storage

Media
Decoder

Human
Vision or
Computer

Vision

Figure 1.1: A Typical Digital Image/Video Compression Scenario

can not be noticed with a human eye [101]. From this view, to reach the best coding effi-
ciency, the state-of-the-art video coding standard, High Efficiency Video Coding (HEVC),
encompass several advanced techniques that have many coding parameters, such as quan-
tization parameters (QPs), block structures called CU structures, and coding modes, that
require optimization in the midst of the encoding process [119]. A complex procedure
called the rate-distortion optimization (RDO) is pivotal to select these parameters in order
to minimize the coding distortion subject to a given coding rate [116, 96, 135, 131, 119].
Despite the need of RDO and other complex encoding operations, the encoding speed is
rather an important factor that should be considered due to its impact on the video viewing
experience. In the first major part thesis, we propose better RDO algorithms that improve
video compression in terms of the trade-off between compression rate, compression distor-
tion, and encoding time. These algorithms are applied on the state-of-the-art video coding
standard, HEVC (see Chapter 3 and 4 for details).

Turning to computer vision, deep neural network (DNN) machines proved a great suc-
cess in several tasks such as image classification and recognition due to their computer
vision system [124, 35, 84, 91]. The visual system of these machines were inspired from
human brains, whereby humans solves the image classification task via hierarchical pro-
cessing along the ventral pathway of the visual cortex [38, 39]. Similarly, DNNs learn the
parameters of non-linear activation functions using a mini-batch gradient descent learning
algorithm, where these functions progressively transform raw pixels of the input image to
produce the output predicted label. These non-linear functions provide multi-layer repre-
sentations to the input image, where each representation is a feature that amplifies certain
aspects of the raw pixels required for classification and suppress irrelevant information.
Traditionally, images in DNNs’ large datasets are stored in JPEG format [127]. The de-
sign of the JPEG codec influences the raw pixels of the input image to DNNs and their
subsequent representations. Thus, we dedicate the second major portion of this thesis to
study the impact of JPEG compression on DNN computer vision in the context of image
classification in terms of classification accuracy, which turns out to be positive in contrast
to the conventional understanding (as demonstrated in Chapter 5).

Future work of this thesis can be well pictured in the multimedia system in Figure

2

1.1. The first one is for human vision where improved versions of the proposed RDO
algorithm can be introduced to further improve the coding efficiency of video compression.
The second one is for computer vision where we believe that compressionists should think
about designing better compression algorithms favourable to computer vision rather than
the existing ones that are solely focusing on the bitrate vs perceived quality criterion. Both
pieces of work will be discussed in more detail in the last chapter.

1.1 Thesis motivation

This thesis is primarily motivated by a desire to answer the following three questions
inspired by the multimedia system shown in Figure 1.1. Figure 1.2 shows a helicopter view
for these research questions, which we describe in details as follows:

The first two research questions
focus on video compression (HEVC)
to improve the trade-off between
compression rate, compression
distortion, and time complexity.

The third question investigates the
impact of image compression on
DNN machine vision, especially in
image classification.

Human Vision

Computer Vision

Figure 1.2: Overview on Thesis Research Questions.

1. For human vision perspective, how can RDO further be improved for video com-
pression to achieve a better trade-off between compression rate and compression
distortion with insignificant increase in encoding time?

3

RDO is a pivotal component in video compression to select the best coding parame-
ters in the midst of the encoding process [131, 119]. Due to the inherent complexity
of HEVC, RDO is typically performed on each frame by identifying the best coding
mode given predefined QP values. In low-delay HEVC, it typically encodes P/B
frames that are strongly connected to the coding efficiency of all their past reference
frames, which leads to inter-frame dependency. This dependency results in a coding
propagation effect, in which the coding of the current frame can impact the coding
of its future frames in the temporal chain. Without fully considering this propa-
gation effect, the potential impact on the trade-off between compression rate and
compression distortion, or the coding efficiency, is bounded.

Therefore, it is desirable to revisit the global RDO problem among consecutive frames
while controlling the time complexity. To address this problem, we are motivated to
measure the temporal dependencies via a model for the energy of prediction residuals
that enables the formulation of the global RDO in low-delay HEVC. Then, we are
motivated to introduce the notion of propagation length, which is defined as the
impact length of the current frame on future frames. This length aligns with one’s
intuition, in view that the impact of the coding distortion for the current frame
on future frames has a damping effect. If this length can be estimated, methods
that predict the coding dependencies via past frames can be created. Accordingly, a
Lagrangian multiplier and QP for each frame can adaptively be calculated, which in
turn can improve the coding efficiency.

2. Along the human vision perspective, how can you adopt a neural network machine
online to minimize the encoding time in the HEVC CU partition process, while
controlling the trade-off between the compression rate and compression distortion?

There is a quite rich literature for optimizing the time complexity of HEVC through
predicting the CU partition structure while controlling the trade-off between com-
pression rate and compression distortion. Some of these methods are threshold-based
and have fixed designs [143, 111]. Other methods extracted features from the newly
emerged Laplacian Transparent Composite Model (LPTCM) [100]. These features
were employed to train a Baye’s model to decrease the complexity of HEVC [62].
Similar features were also used to train an SVM for the same purpose [110]. All of
these methods were developed due to the inherent complexity of HEVC owing to its
large variety of CU sizes that are selected via RDO.

With the increasing success of neural network machines in several tasks, we are
motivated to adopt neural networks to improve the complexity of the HEVC CU
partition process in intra coding as a classification problem. Applying NNs, however,

4

to time-sensitive applications such as the HEVC CU partition problem is challenging.
First, the learning process requires a large amount of data and long training time.
Second, even if an NN is properly populated, the time required for it to make a
decision may not be negligible, especially when it is deep. Techniques in the literature
typically utilize deep networks trained offline without updation to circumvent these
two problems [44, 88, 132]. Therefore, we are motivated to examine the effect of
creating a neural network based learning strategy to work online and minimize the
encoding time in the HEVC CU partition process, while controlling the trade-off
between compression rate and compression distortion.

3. For the computer vision perspective, which version of compressed raw data is good
to deep learning (DL) and its related applications?

The literature investigated this question to some extent in the context of image
classification on the basis of constant quality factors (QFs) which are the same for
all images in a whole set of JPEG images [66, 40, 145, 47, 50, 90]. It has been
shown that compression has a negative impact on the top-1 and top-5 classification
accuracy of deep neural network computer vision. Based on this understanding, some
other methods such as stability training took this negative impact into account to
improve the robustness of NNs against compression [145]. Inspite of the robustness
improvement, there is still a significant degradation (as high as 10%) in classification
accuracy when these newly trained DNN models are applied to low quality JPEG
compressed images. Based on these findings, it is generally believed that compression,
especially JPEG compression, would hurt the classification accuracy of deep learning
(DL) in image classification.

We are motivated to investigate this question in the context of JPEG compression
from a different perspective. Instead of using a constant QF in JPEG compression
for all images, we would allow each image to be compressed first with a possibly
different QF and then fed into a DNN. Suppose that each image is compressed with
QF values from 10 to 100 with a step size of 10. For each image, there are now 11
different versions: 1 original version plus 10 compressed versions. For each original
image, we are free to select one version out of its 11 versions to be fed into the DNN.
This discussion culminates into this interesting question: Is there any selector that
can select, for each original image, a suitable version to be fed into the DNN so that
both the top-1 classification accuracy and top-5 classification accuracy of the DNN
can be improved significantly while the size (in bits) of the input image to the DNN
can be reduced dramatically in general?

5

1.2 Thesis contributions

The scope of this thesis is to contribute to the three questions raised in the last section as
follows:

1. In answering the first question in Section 1.1, we proposed an adaptive frame-level
QP selection algorithm for the hierarchical coding structure in LD HEVC by charac-
terizing the coding propagation effect through a notion called temporal propagation
length, which is defined as the impact length of the current frame on its future
frames. This length is estimated via offline experiments that led to solving the global
RDO problem and creating two novel methods that predict the coding dependen-
cies via past frames without the need of look-up-tables to store pre-estimated values
of the reconstruction distortion of future frames. Using these methods, our overall
coding efficiency savings go up to 5.0% for LD HEVC, respectively at insignificant
increase in encoding time of 1%. In addition, the proposed methods provide con-
siderable improvements to the coding efficiency of slow motion sequences and video
conferencing sequences that can on average go up to 12.9%, 9.5%, respectively. Our
algorithms and results piqued serious interest from Google1 due to their practicality
and interoperability.

2. in answering the second question in Section 1.1, we presented a new CU partition pre-
diction method equipped with hierarchical fully connected NN models and features
from LPTCM to minimize the encoding time in the HEVC CU partition process,
while controlling the trade-off between the compression rate and compression dis-
tortion. Also, we highlighted challenges to equip NN online learning with HEVC
and proposed adaptive training strategies to these challenges. Experimental results
demonstrated that our technique is among the best NN methods with controlled
BD-rate loss and of comparable performance to others. Our technique achieves 32%
TS average with 1.6% BD-rate average, and attains time savings that can go as
high as 60% at low bitrates. In this CU partition algorithm, a fully connected NN
machine ’saw’ manually extracted LPTCM features to make a classification decision
to help reduce the encoding time of compression at a controlled trade-off between
compression rate and compression distortion.

3. in answering the third question in Section 1.1, we formulated a new framework to
investigate the impact of JPEG compression on DL in image classification. Fix

1A collaboration proposal was accepted based on this work.

6

an underlying DNN pre-trained with pristine images. For any original image, the
framework allows one to select, among many JPEG compressed versions of the orig-
inal image including possibly the original image itself, a suitable version as an input
to the underlying DNN. It is demonstrated that within this framework, a selector
can be designed so that the classification accuracy of the underlying DNN can be
improved significantly while the size in bits of the selected input is, on average, re-
duced dramatically in comparison with the original image. Therefore, compression,
if used in the right manner, helps DL in image classification.

1.3 Thesis organization

The remainder of this thesis is organized as follows: Chapter 2 provides an overview to
the core concepts required for this thesis contributions. Chapter 3 introduces the adaptive
QP algorithm for the LD HEVC. Chapter 4 proposes the fast CU split algorithm based
on NN and LPTCM for HEVC coding. Chapter 5 introduces the framework with JPEG
compression and deep learning and show that compression can help deep learning. Last
but not least, Chapter 6 concludes this thesis and proposes related future work.

7

Chapter 2

Background

This chapter covers the core concepts and background related to the research conducted in
this thesis. Section 2.1 and Section 2.2 review the details of JPEG and HEVC compression
schemes, respectively. Section 2.3 introduces classification and present popular neural
network architectures within the context of classification. Last but not least, Section 2.4
summarizes this chapter.

2.1 Overview on the JPEG Standard

JPEG is a well-known lossy and DCT-based image compression standard for 2D digital
images that appeared in late 1980s [127, 98]. It contains the basic structure of other block-
based video codecs [131, 119]. As shown in Figure 2.1, RGB channels are first converted
into YCbCr channels to exploit the psychovisual redundancy. Then, each channel of the
YCbCr channels of the input image is partitioned into 8x8 non-overlapping blocks and
then chroma sub-sampling is applied. Luminance is indicated by Y, while chrominance
is denoted by Cb and Cr. Typically, 4:2:0 chroma sub-sampling is the one applied in
JPEG compression, where each 8x8 luma block corresponds to two 2x2 chroma blocks.
Next, the current 8x8 block is transformed using the 2D DCT transform to produce 64
DCT coefficients divided into one DC coefficient, d(0,0), and 63 AC coefficients, d(i,j), where
0 ≤ i ≤ 7, 0 ≤ j ≤ 7 and i 6= j 6= 0. The DCT transformation is defined as follows:

8

du,v =

1

4
α(u)α(v)

7∑
x=0

7∑
y=0

gx,ycos[
(2x+ 1)uπ

16
]cos[

(2y + 1)vπ

16
]

(2.1)

Figure 2.1: Overview on JPEG image encoder.

where u ∈ [0, 7] and v ∈ [0, 7] are the horizontal and vertical spatial coordinate in frequency
domain, gx,y is the spatial domain value at coordinate (x, y). α(·) is a normalizing scale
factor to make the transformation orthogonal, where α(i) equals to 1√

2
if i = 0 and 1

otherwise. DCT is typically applied to achieve energy compaction and decorrelation, as
depicted in Figure 2.2. Clearly, most of the energy of the transformed block resides in
the top-left corner of the transformed coefficients matrix. Hence, preserving a selected
number of these coefficients, while removing the remainder, will have a minor effect on
the reconstructed block when converted back to the spatial domain. An example that
demonstrates the unimportance of the high-frequency coefficients due to limitations of the
human visual system is shown in Figure 2.3.

The more coefficients that are ignored, the more distortion is introduced in the recon-
structed block. Figure 2.3 illustrates that keeping only the 6 top-left coefficients (out of
64) of the transformed matrix per 8x8 block would result in a reconstructed frame with
an extremely high similarity with the original frame (all coefficients are preserved) which
shows the importance of the next step: quantization.

Quantization is a non-linear operation responsible for removing unimportant high-
frequency coefficients (equivalent to low-pass filtering the blocks) in each 64 coefficients
per block. The produced 64 coefficients per block are quantized and rounded via user-
specified quantization tables. In this thesis, we utilize the default quantization tables for

9

13

proposals in the literature for fast DCT algorithms (with various dimensions and different

varieties) and architectures (both, software and hardware oriented) in order to achieve

high compressibility via less complex implementations. Examples of such algorithms and

architectures might be found in [17]- [23].

The Inverse DCT (IDCT) reconstructs a block of image samples (pixels) from an

array of DCT coefficients (usually quantized and scaled). Equation (2) shows the general

formula for IDCT.

)
2

)12(cos()
2

)12((cos
2

)()(1

0

1

0
,, N

yj
N

xiF
N

yCxCf
N

x

N

y
yxji

ππ ++
= ∑∑

−

=

−

=

(2)

where C(n) is the same as introduced in (1).

An example that shows the decorrelation and compaction capabilities of DCT is

given in Figure 4 [4] .

Figure 4. Example of DCT decorrelation and compaction features2

2 Figure used with author permission

Figure 2.2: Example of DCT decorrelation and compaction features (reprinted from
[102]).

10

(a) Keep all coefficients per block (b) Keep 6 top-left coefficients per
block

(c) Keep 3 top-left coefficient per
block

(d) Keep 1 top-left coefficient per
block

Figure 2.3: Effect of removing less-important coefficients per block on the input JPEG
image.

11

luminance (QY) and chrominance (QC) for JPEG compression to produce quantized DCT
coefficients (d′(i,j)). The entries of these quantization tables are customized based on the
desired QF. Default quantization tables and the quantization process can be expressed in
the following mathematical equations [127, 99, 32]:

q(Y)i,j =

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

(2.2)

q(C) i,j =

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

(2.3)

q′i,j = round(
50 + S × qi,j

100
) (2.4)

d′i,j = round(
di,j
q′i,j

) (2.5)

Here, q(·)i,j, where 0 ≤ i ≤ 7 and 0 ≤ j ≤ 7, represents the entries of the default quanti-
zation tables for luminance and chrominance, respectively. q′i,j are the actual quantization
table entries after have been adjusted with the input QF and a parameter called S equals
to 5000/QF if QF < 50 and 200 − 2 × QF otherwise. These entries are used to produce
the 64 quantized DCT coefficients, d′i,j.

After quantization, these coefficients are scanned in zigzag manner depending on their
frequency order. Last but not least, the differential coded DC and run-length coded AC
coefficients will be passed to Huffman encoding. Huffman encoding encodes the image

12

based on its input statistics and produce a new JPEG image. To decompress the im-
age and extract its YCbCr channels, JPEG decoder simply performs the reverse of the
aforementioned steps.

15

unimportant high-frequency coefficients (equivalent to low-pass filtering the blocks).

Typically, the level of distortion introduced by the transform is controlled by a quality

parameter that allows the user to a trade-off between quality and compressibility. Figure

6 shows an example of applying quantization to the matrix of transformed coefficients

 [4].

Figure 6. Effect of quantization on the transformed coefficients matrix4

Quantization is typically achieved by dividing each element in the transformed

coefficients matrix by the corresponding element in a pre-determined quantization

matrix, and then rounding to the nearest integer value. This process usually results in a

matrix with a few non-zero coefficients, which is ready for statistical coding.

1.2.4 Statistical Coding

Typically, after the techniques for reducing spatial and temporal redundancies in

video signals are applied, the remaining data are highly correlated (e.g. long runs of zero

quantized transform coefficients), and can be further reduced using some statistical

lossless methods.

4 Figure used with author permission

Figure 2.4: Effect of quantization on the transformed coefficients matrix (reprinted from
[102]).

The most common coding process in JPEG is the Baseline method, which supports two
modes of operation: sequential and progressive. The key difference between sequential and
progressive modes is that JPEG encodes all the DCT coefficients of the current block in
one scan, whereas progressive JPEG encodes similar-positioned batch of DCT coefficients
of all blocks in one scan.

We wrote an optimized implementation of Baseline JPEG decoder and encoder that
supports sequential and progressive modes of operation, which we make available publicly1.

2.2 Overview on the HEVC Standard

Due to the cumulative experience of about four decades of research and three decades of
international standardization for digital video coding technology from JPEG in 1980 until
2012, a new standard now known as High Efficiency Video Coding (HEVC) has emerged

1https://github.com/HossamAmer12/jpeg_customised_huffman

13

https://github.com/HossamAmer12/jpeg_customised_huffman

[119, 117, 27]. Collective efforts from two highly reputable international video coding stan-
dardization organizations, namely the ITU-T Video Coding Experts Group (VCEG) and
the ISO/IEC Moving Picture Experts Group (MPEG) defined the HEVC standard. Com-
pared to its predecessor, H.264/AVC standard [101, 103], the High Efficiency Video Coding
Standard (HEVC) standard improves video coding rate distortion (RD) performance sig-
nificantly, especially for high resolution sequences.

Many experiments were carried out in the literature to prove the superiority of HEVC
in coding efficiency over other codecs such as its predecessor, H.264/AVC and Google VP9
[93]. The VP9 video codec includes similar coding tools as in AVC and HEVC, yet it offers
some alternative tools such as adaptive mixing strategies for artificial reference frames,
processor adaptive real time encoding, or a low complexity loop filter [9]. Relative to
H.264/AVC high profile and Google VP9 codec, HEVC can save approximately 43.3% and
39.3%, respectively, of bit rate at the same video reconstruction quality [51, 14].

Compared to JPEG, HEVC is a predictive video codec that inherited the block-based
structure of JPEG, but added advanced coding tools such as variable block size, intra/inter
prediction and in-loop deblocking filtering. In the next few sections, we will provide an
overview on the structure of the HEVC encoder shown by Figure 2.5.

2.2.1 Block Structure in HEVC

HEVC is designed along the successful principle of block-based hybrid video coding. Fol-
lowing this principle, as depicted in Figure 2.5, a picture is first partitioned into non-
overlapping blocks and then each block is predicted by using either intra-picture (I-picture)
or inter-picture prediction (P-picture or B-picture). In most of the previous standards, the
basic coding unit was the macroblock, which contains a 16x16 pixel area. Conversely, the
analogous structure in HEVC is the coding true unit (CTU) [67]. The size of the CTU
is typically set to 64x64 in order to boost the coding efficiency for high resolution videos.
Each CTU can be split into multiple coding units (CUs) of different sizes. Luma CUs cover
a picture area of 2Nx2N, where N can be any of 32 (depth=0), 16 (depth=1), 8 (depth=2),
4 (depth=3). Allowed CU sizes are determined based on the CU type: intra or inter. In
the following section, we give an overview of these types.

2.2.2 Inter/Intra-Picture Prediction & Mode decision in HEVC

Inter and intra prediction methods are switched based on configuration and features of
current frame. For example, intra (I) frames only allow intra prediction while inter (P or

14

3 Block Structures and Parallelism Features in HEVC 51

Subdivision into
Coding Tree Blocks

Scaling &
Inverse Transform

Intra-Picture
Prediction

Inter-Picture
Prediction

CABAC
Entropy
Coding

In-Loop Filter

Coding Quadtree
with
Coding Blocks

Prediction Blocks

Residual Quadtree
with
Transform Blocks

Video Signal

Bitstream

Output

Input

Mode-, Quadtree-,
Motion- and
Filter Information

Quantized
Transform
Coefficients

010110...
Transform,
Scaling &

Quantization

Decoded Picture Buffer

Output

Video Signal

Motion Estimation

Encoder Control

Decoder

-

Fig. 3.1 Block diagram of an HEVC encoder with built-in decoder (gray shaded)

new features of tiles and wavefront parallel processing (WPP). Also, it is described
how these picture partitioning features can be used together with the concept of
slice segments for improved bitstream access. Section 3.3.3 deals with the same
combination of tools but from the different perspective of support for ultra-low delay
applications. Finally, in Sect. 3.3.4, the assets and drawbacks of tiles and WPP are
discussed. The whole chapter is concluded in Sect. 3.4.

3.2 Block Partitioning for Prediction and Transform Coding

All ITU-T and ISO/IEC video coding standards since H.261 [14] follow the
approach of block-based hybrid video coding, as it was already briefly discussed
above and illustrated in Fig. 3.1. One significant difference between the different
generations of video coding standards is that they provide different sets of coding
modes for a block of samples. On the one hand, the selected coding mode determines
whether the block of samples is predicted using intra-picture or inter-picture
prediction. On the other hand, it can also determine the subdivision of a given block
into subblocks used for prediction and/or transform coding. Blocks that are used for
prediction are typically additionally associated with prediction parameters, such as
motion vectors or intra prediction modes.

Figure 2.5: Generalized block diagram of the HEVC video encoder with motion compen-
sation (reprinted from [119]).

B) frames allow both inter and intra prediction methods. Intra-picture prediction exploits
the spatial redundancy within the same frame while inter-picture prediction (motion esti-
mation) exploits the temporal redundancy by using the displaced blocks of already decoded
pictures as a reference. For P frames, inter-prediction is done only from previously decoded
frames, whereas B frames are predicted from previous and future frames in the temporal
order. Typically, the prediction compensates for the motion of real-world objects between
pictures of the given video sequence. The difference between the original block and its
prediction, or the so-called residual signal, is transmitted using transform coding.

Based on whether the current CU is encoded as skip, inter or intra, HEVC supports
different symmetric and asymmetric partitioning into prediction units (PUs), as shown

15

CU0

split_flag=0 split_flag=1

0 1

2 3

CU Size = 64
CU Depth = 0

N0 = 32

2N0

2N0

CU1

split_flag=0 split_flag=1

0 1

2 3

2N1

2N1

CU2

split_flag=0 split_flag=1

0 1

2 3

2N2

2N2

CU3

Last Depth —No Split flag

2N3

2N3

PU_Skip

NdxNd

2Ndx2Nd

2Ndx2Nd
PU_Intra

2Ndx2Nd 2NdxNd

Ndx2Nd NdxNd

PU_Inter

CU Size = 32
CU Depth = 1

N1 = 16

CU Size = 16
CU Depth = 2

N2 = 8

CU Size = 8
CU Depth = 3

N3 = 4

Figure 2.6: Quad-tree structure and supported modes of the CU in HEVC.

in Figure 2.6. Skip mode often happens when the residual energy between the current
and predicted block is equal to zero. Given that 2N is the side length of the CU, any
2Nx2N can be encoded as skip, intra, or inter modes. Skip implies a size of 2Nx2N to the
current CU. In the inter-prediction case, a CU can be further recursively split into four
symmetrically sized CUs until the size of the CU becomes 8x8 pixels which is the smallest
default size of the CU. In addition, if the side length of the CU (2N) is greater than 16, it
is typically allowed to further split into any of these partitions: 2N/4×2N from either left
or right, 2N/4×2N from either up or down [117]. In intra prediction, HEVC only supports
splitting the current CU into either the 2Nx2N mode or four NxN sub-CUs. Typically,
homogeneous areas are coded in larger blocks, whereas highly textured regions are coded
in smaller blocks.

Quad-tree CTU partitioning structure and mode decision in HEVC is a depth-first
process which starts at depth 0 with the CU size equal to 64x64 pixels until it reaches
a maximum depth set to three by default with CU size equal to 8x8 pixels. At every
split, a comprehensive rate-distortion optimization (RDO) is done for every CU. The CU
partitioning structure is decided after comparing and selecting the best RD cost among
the CU itself and its four sub-CUs. This RD cost also depends on the prediction mode of

16

the current CU and its four sub-CUs. Take intra coding as an example. In addition to
the variable CU structure, each CU is further predicted from its neighboring reconstructed
pixel samples with up to 35 different Intra Prediction Modes (IPMs). Figure 2.7 illustrates
the recursive process to obtain the best CU structure for each CTU in HEVC’s intra coding,
where a check RD cost function is continuously called to get the best CU structure in terms
of IPM and CU splitting structure. We first start with a CU size set to 64x64 and check
the RD costs if we encode the CU as is. As long as we did not reach the maximum depth
or the minimum CU size, we recursively split the parent CU into four sub CUs; otherwise,
we compute the RD cost of each sub CU and backtrack the recursion to get the best CU
structure in terms of RD costs. The RD cost of the quadtree partitioning, JRDO, is given
by:

JRDO = SSE + λ ∗RTotal (2.6)

where SSE is the sum of squared errors between the original image I(x, y) and recon-
structed image I ′(x, y), RTotal is the total number of bits to encode the current CU, and
λ is the Lagrangian multiplier that decides the trade-off between the rate and distortion
based on a selected quantization parameter (QP). SSE is defined as follows:

SSE =
∑
x,y

|I(x, y)− I ′(x, y)|2 (2.7)

In HEVC’s intra coding, the RDO process also includes the calculation of the rate-
distortion (RD) cost for each of 35 IPMs and the determination of the best IPM for each
CU. These 35 IPMs include 33 angular modes, 1 DC mode, and 1 planar mode. To reduce
the IPM candidates of HEVC and in turn slightly reduce its complexity, HEVC adopts a
Rough Mode decision (RMD) based on an approximated RD-cost, JRMD [123], and it is
given by:

JRMD = SATD + λ ∗REst (2.8)

where SATD is the absolute Summation of Hadamard Transformed Coefficients (SATD)
of residual data, and REst is an estimated rate cost. Table 2.1 shows the steps for the RMD
algorithm, which consists of three main stages. The first stage encompasses applying the 35
IPMs to the current CU, calculating the SATD for the 35 intra modes available in HEVC,
and selecting N modes with minimum SATD for further RDO. At the second stage, these
selected modes are appended to a candidate list of MPMs, which already includes three

17

Check RDCost
2Nx2N

Reached
MaxDepth-1?

Check RDCost
NxN

Backtrack to return
the best CU structure

Yes

No

Parent
CU

Sub
CU

Sub
CU

Sub
CU

Sub
CU

No No
No

Figure 2.7: HEVC Recursive Process for Quad-Tree Intra CTU Partitioning.

MPMs based on the best MPM of the left and top neighbouring CUs. Algorithm 1 shows
the method to obtain the indexes of these three MPMs. Table 2.2 indicates the indexes of
the IPM modes, their corresponding IPM mode type, and target content. The third stage
encompasses taking this candidate list to apply complete RDO and selecting the best IPM.
According to [123], values of N are set to 1, 2, 2, and 4 for 64x64, 32x32, 16x16, 8x8, and
4x4 CUs, respectively.

Figure 2.8 illustrates the intra/inter mode decision as well as the quad-tree CU structure
in HEVC under the uni-directional inter prediction for frames 139 and 140 of Kimono
video sequence. It can be seen from this figure that areas with strong temporal correlation
(green) utilize inter prediction, and areas with weak temporal correlation and strong spatial
correlation (blue) utilize intra prediction. The majority of frame 140 in Kimono video
sequence was encoded with intra prediction because it is a scene change (SC) and there is no
correlation between this frame and its past frames in the encoding order. To illustrate the
meaning of residuals in HEVC, Figure 2.9 shows Frames 139, 140, and 141 in the Kimono
video sequence and their corresponding residual frames generated from HEVC. Due to the
sudden change in temporal correlation, frame 140 has a relatively higher residual energy
compared to frame 139 and frame 141.

Owing to the variable prediction block size in HEVC, it can achieve noticeable coding

18

Table 2.1: Rough Mode Decision in HEVC Intra coding.

Steps

Apply 35 IPMs and generate CU data

Stage One
Calculate estimated cost of for 35 IPMs
Select N IPMs with minimum costs and

append them to the candidate set

Stage Two Add MPM in the candidate set

Stage Three
Calculate RD cost for IPMs in the

candidate set
Return the best IPM

Algorithm 1 Pseudo code to return the index of the three MPMs in HEVC Intra coding.
A: the best IPM in the left CU neighbour, B: the best IPM in the right CU neighbour.

1: procedure getMPMs
2: Input: A, B
3: Output: MPM [0], MPM [1], MPM [2]
4: if A == B
5: MPM [0] = A
6: MPM [1] = 2 + ((A− 2− 1 + 32)%32)
7: MPM [2] = 2 + ((A− 2− 1 + 32)%32)
8: else
9: MPM [0] = A

10: MPM [1] = B
11: if MPM [0] 6= 1 & MPM [1] 6= 1
12: MPM [2] = 1
13: else
14: if MPM [0] 6= 0 & MPM [1] 6= 0
15: MPM [2] = 0
16: else
17: MPM [2] = 26

18: return MPM [0],MPM [1],MPM [2]

19

Table 2.2: Indexes of intra prediction modes.

Mode Index Mode Type Target Content
0 DC Homogeneous
1 Planar Gradually Changing

2-34 Angular Directional

efficiency improvements. For example, [119] conducted a coding efficiency comparison
between HEVC with its different block sizes (configuration A) and HEVC with a restricted
set of only {16x16, 8x8} prediction block sizes (configuration B) relative to a configuration
with only 16x16 prediction block sizes. The coding efficiency improvement of configuration
A can go up to 30.3% vs 4.4% for configuration B. These coding efficiency improvements
show the importance of more flexible prediction block partitioning in HEVC. However,
these benefits come at the expense of significant increase in time complexity. Indeed, it is
reported that HEVC encoding is 3.2 times more complex than its predecessor, H.264/AVC
encoding [126].

After prediction, each frame can be further divided into transform units (TUs) to start
the transform coding process.

 Intra
Inter

Figure 2.8: HEVC Encoder Mode Decision using uni-directional Inter-prediction for
Frame 139 and 140 in the Kimono Video Sequence.

20

(a) Original F139 (b) Original F140 (c) Original F141

(d) Residual F139 (e) Residual F140 (f) Residual F141

Figure 2.9: Original and corresponding residual frames for picture order counts 139, 140
and 141 of Kimono Video Sequence, where in residual frames, black and white indicate low
and high levels of residual energy, respectively.

21

2.2.3 HEVC Transform and Quantization

Transform coding consists of a decorrelating linear transformation, scalar quantization of
the transform coefficients and entropy coding of the resulting transform coefficient levels.
In HEVC, discrete cosine transform (DCT) is employed for all possible sizes of TUs, namely
4×4, 8×8, 16×16, and 32×32. It also uses discrete sine transform (DST) which is only
applied on 4×4 TUs. Similar to the JPEG standard, the DCT in HEVC shares similar
characteristics with the DCT in JPEG explained in Subsection 2.1. Yet, one of the major
differences is the variable transform block size. After residuals are obtained via prediction,
a residual quad tree is built and the TU size is also decided based on rate-distortion
optimization process. With respect to fixed 4x4 TU size on high resolution sequences,
HEVC with maximum TU size of 8x8 can achieve coding efficiency improvements up to
8.5%. When the maximum TU size is set to 16x16, the coding efficiency improvements
increase to 14.7% and further increase to 17.5% when the maximum TU size is set to 32x32
[119].

In HEVC, quantization is done by dividing each element in the transformed coefficients
matrix by the corresponding element in pre-determined quantization matrix, which results
in having a highly sparse matrix of non-zero coefficients ready for entropy coding. This
quantization strategy is similar to JPEG, but HEVC uses different quantization tables
for different size and types of the transform block [119]. These quantization tables are
customized based on a parameter called quantization parameter (QP) that controls the
trade-off between rate and distortion.

2.2.4 HEVC Entropy Coding

After exploiting the temporal and spatial redundancies, the remaining data are highly
correlated (e.g long runs of zero quantized transform coefficients), and can be further
compressed using some statistical lossless methods, or, entropy coding. Entropy is a math-
ematical measure of the amount of information contained in a series of numbers of systems
[94]. In addition, entropy is used as a measure of image (or a frame) compressibility.
Entropy coding is a lossless compression scheme that uses the statistical properties to
compress data such that the number of bits used to represent the data is logarithmically
proportional to the probability of the data. For example, if the data being compressed is
a string of characters, the frequently used characters are each represented by a few bits,
while infrequently used characters are each represented by many bits. HEVC entropy cod-
ing scheme is called context adaptive binary arithmetic coding (CABAC) [92]. In entropy
coding, the quantized coefficients are coded in groups of 16 coefficients for each TU no

22

matter what size of the TU is. A group of TU coefficients is called coefficients group (CG).
Scan order of each CG may vary unlike H.264/AVC which uses only zigzag scan for every
4x4 coefficients. The encoded coefficients information, such as levels and coefficient bits,
uses a scan index from 0 to 15 in each CG.

2.2.5 In-Loop Filters in HEVC

Due to lossy compression, the existence of visible artifacts, or the so-called checker board
effect at block boundaries in reconstructed video sequences are unavoidable in lossy com-
pression engines such as HEVC. Independent block-based inter and intra prediction coding
of the blocks is essentially the main reason for these discontinuities. To get rid of these
artifacts and obtain better reconstruction, a deblocking filter and sample adaptive (SAO)
filter are employed in the HEVC encoder. SAO is essentially used to reduce the mean sam-
ple distortion of a region by first classifying the region samples into multiple categories.
For each category, an offset is derived and added to each sample in that category.

2.2.6 HEVC Configurations

HEVC defines three configurations: All Intra (AI), Low Delay (LD) and Random Access
(RA) configurations. HEVC utilizes only intra frame coding under the AI configurations.
As for the LD configuration, HEVC enforces the first frame of any given video sequence to
be an I frame while the rest are P or B frames. RA, however, has a relatively frequent intra-
frame refresh (every 32 frames) with B frames in between. Frames in each configuration
are encoded via pre-defined QP settings based on the configuration type to reduce the
inherent complexity of HEVC.

2.3 Classification and Neural Networks

Classification is a supervised machine learning task whereby the computer program is asked
to identify for each input its corresponding correct category out of k categories. More
formally, suppose that we are given n observations. Each observation consist of a pair: a
vector xi ⊂ Rd, i = 1, 2, · · · , n, and the associated label yi. Here xi = (xi1, xi2, ...xid) ∈
X ⊂ Rd, and the associated label Yi belongs to some finite set Y [49]. A machine learning
learning algorithm such as neural networks should learn the label yi of each input from its

23

corresponding features xi using a certain predefined loss function, where this loss should
decrease by experience over time.

Inspired by the biological brain, neural networks (NNs) were born in 1988 for computer
vision and were named as the ”Optimal Brain Damage” regularization methods [75]. NNs,
especially deep neural networks (DNNs), have become the de facto approach in the classi-
fication task under the image and video domain due to their steady classification accuracy
improvement from 74.2% to 95.2% on large-scale datasets [73, 44, 124, 88, 35, 132, 68, 91].
For example, DNNs have been used to speed up the HEVC encoding mode and parti-
tion decisions at the minimum coding efficiency loss [44, 124, 88, 35, 132, 16, 91]. Also,
DNNs have been used to enhance the quality of the reconstructed video at the decoder end
[35, 137]. Further, neural networks have recently been utilized to replace some or all basic
components of the image/video compression for better coding efficiency [124, 132, 104].
Not to mention, DNNs have been widely used in image classification and recognition tasks.
All in all, it is worth noting that DNN machines have positively contributed in several
fronts of image/video compression and understanding.

DNNs or specifically convolutional neural networks (CNNs) are known to be universal
approximators because of their ability in extracting the required features for classification
from the raw pixels of images [49]. To extract these features, CNNs encompass one or more
convolutional layers [49] with several fully connected layers at their tail, as indicated in
Figure 2.10. These layers include parameters of non-linear activation functions, which are
learnt using a backpropagation learning algorithm. These functions progressively transform
raw pixels of the input image to produce the output predicted label. These non-linear
functions provide multi-layer representations to the input image, where each representation
is a feature that amplifies certain aspects of the raw pixels required for classification and
suppress irrelevant information. Typically, the first few representations project primitive
features such as existence of edges, their orientations, and their arrangements. Subsequent
layers combine representations from previous layers to classify familiar objects [73]. As
such, CNNs are machines that ”see” images as group of pixels and extrapolate relationships
among these pixels to finally reach a decision, which is hopefully be the ground truth label
decision in the supervised learning context.

2.3.1 AlexNet Architecture

Figure 2.11 illustrates the AlexNet architecture, one of the early CNN architectures in the
domain of image classification [70]. As seen by the figure, an RGB image is typically the
input stimuli to the architecture with pixel intensties range from 0 to 255. A series of

24

Figure 2.10: Convolutional Neural Network (CNN) For Image Classification Schematic
Diagram.

convolution and max pooling layers with variable number of kernels of variable dimensions
are applied to the input image to extract the required features for classification. These
convolutional layers include non-linear activation functions, while max pooling layers spa-
tially subsample the output from convolutional layers i.e, feature maps. Last but not least,
the output from the last max pooling layer is connected to fully connected layer. The
name ”fully connected” originated from having each neuron from the last max pooling
layer connected to the output neurons (the prediction). The fully connected layer typically
utilizes matrix multiplication, matrix flattening to yield a 1D probability vector indicating
the probability of each class. As shown in Figure 2.11, the number of classes for AlexNet
is 1000.

Figure 2.11: AlexNet Convolutional Neural Network Architecture.

25

2.3.2 Inception and Residual Architectures

Based primarily on AlexNet and many others, inception and residual types of architec-
tures were introduced and led to major advances in the accuracy of deep neural network
in the task of image classification [122, 120, 56, 57, 121]. Both types of architectures were
developed through continuous efforts that started in 2014. For inception, its first version,
Inception V1, appeared with lower computational complexity than its predecessors because
it was constructed using multiple parallel inception modules that can capture several fea-
tures from input images. These modules contain convolutions, pooling, and non-linear
activation functions such as ReLU. Inception V2 and V3 were later created and introduced
new strategies of constructing the model and training such as convolutional factorization,
auxiliary classifier, batch normalization, and label smoothing [120]. Turning to residual
type of architectures, the accuracy degradation phenomenon of deeper networks compared
to shallower networks was observed due to vanishing gradients. As a result, residual net-
works called ResNet V1 and ResNet V2 added identity mappings to transfer the output
of the former layer directly to the latter layer(s). The main difference between ResNet V1
and V2 lies in the underlying structure of the residual unit, which improved the accuracy
of ResNet V1.

In this thesis, we consider Inception V3 and ResNet-50 V2 architectures pre-trained for
the machine vision experiments [5, 7]. Despite the widespread of DNN architectures for
image classification, Inception V3 and ResNet-50 V2 architectures are common represen-
tatives of inception and residual type of learning. On one hand, Inception V3 contains 42
layers and 24M parameters. Inception V3 starts off by decoding the input JPEG image
and resizing it to 299 × 299 × 3 using bilinear interpolation. A series of convolutions, 10
inception blocks, a pooling operation, softmax activation function are applied to the re-
sized image in order to produce a sorted probability vector for the predicted labels. This
probability vector is sorted based on the confidence of the predicted labels. On the other
hand, ResNet-50 V2 is 50 layers deep and contains 25M parameters. ResNet-50 V2 resizes
the input image to 299× 299× 3 for which it applies convolution, pooling, and then four
ResNet blocks. Each block contains the necessary residual units to finally produce a sorted
probability vector. This vector contains an ordered list of predicted labels.

2.3.3 ImageNet Dataset

ImageNet dataset is our input stimuli for all of our machine vision experiments and one
of the keys to improving DNNs in the task of image classification [36, 70, 65, 28, 105,
114, 122, 120, 56, 57]. Images of this dataset were collected from several search engines

26

and labeled by a majority vote from human labers using Amazon’s Mechanical Turk crow-
sourcing tool. Using this dataset, an annual competition called the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) was held. Although this challenge for image
classification was stopped in 2017, this dataset is considered as a standard benchmark for
image classification [65, 28, 114, 122, 120, 56, 57]. This dataset consists of 1.3 million
training images, 50,000 validation images, and 150,000 testing images. All of these images
are split into 1000 distinct classes. The vast majority of these images have high QF with
a relatively-high average resolution of 469x387 pixels.

2.4 Chapter Summary

In this chapter, we covered the core concepts of compression and neural network machines
to easily layout our thesis contributions in the human vision as well as machine vision
perspectives. As discussed in this chapter, to reduce the complexity of RDO in HEVC,
frames are encoded via pre-defined QP settings, which does not fully consider the inter-
frame dependency. These settings bounds the potential improvements in terms of the
trade-off between compression rate and compression distortion for humans. In the next
chapter, we propose an adaptive frame-level QP selection algorithm for the hierarchical
coding structure in LD HEVC by characterizing the coding propagation effect through a
notion called temporal propagation length.

27

Chapter 3

Adaptive Quantization Parameter
Selection for Low-Delay HEVC via
Temporal Propagation Length
Estimation

This chapter proposes an adaptive frame-level QP selection algorithm for the hierarchi-
cal coding structure in LD HEVC by characterizing the coding propagation effect and
integrating it into rate-distortion optimization (RDO) through a notion called temporal
propagation length. Section 3.1 reviews the related work, Section 3.2 formulates the QP
selection problem for the LD HCS in HEVC, and Section 3.3 investigates the inter-frame
dependencies in LD HEVC and derives its accumulated propagation effects. Our proposed
adaptive QP selection algorithms along with their initialization settings are presented in
Section 3.5. The experimental settings, results and analysis are illustrated in Section 3.7.
Finally, Section 3.8 concludes the chapter.

3.1 Literature Review

According to Cisco, video traffic is forecasted to increase by four-fold from 2017 to 2022
[1]. To cope with this increasing demand, the state-of-the-art video coding standard,
High Efficiency Video Coding (HEVC), introduces an average of 50% improvements to
the coding efficiency of its predecessors [126, 119, 117]. In HEVC, an important key to

28

these improvements is the adoption of many advanced coding techniques such as quad-
tree block partitioning [67], more intra prediction modes [71], merge mode [58], advanced
motion vector prediction (AMVP) [119], etc. These advanced techniques have many cod-
ing parameters, such as coding modes and quantization parameters (QPs), that require
optimization in the midst of the encoding process. Thus, an encoding procedure known
as RDO is pivotal to select these parameters in order to minimize the coding distortion
subject to a given coding rate [116, 96, 135].

To alleviate HEVC’s coding complexity, RDO is typically performed on each basic
unit by identifying the best coding mode given predefined QP values. This scheme is
employed in the random access (RA) and low-delay (LD) hierarchical coding structures
(HCS) of the HEVC test model, HM [4], in which a basic unit can be a frame, a slice,
or a coding unit (CU). Adopting this RDO scheme, however, is detrimental to the coding
performance. For instance, low-delay (LD) HEVC typically encodes P/B frames that are
strongly connected to the coding efficiency of all their past reference frames, which leads
to inter-frame dependency. This dependency results in a coding propagation effect, in
which the coding of the current frame can impact the coding of its future frames in the
temporal chain. Running RDO with a predefined QP for the current frame ignores the
coding propagation effect to some extent, leading to a coding performance plateau. To
further improve the coding performance, one way is to integrate the coding propagation
effect into RDO to select a QP for each frame adaptively, which is the purpose of this
chapter.

Reviewing the literature, a number of independent RDO techniques did not consider the
coding propagation effect aiming at relatively simpler implementations of video encoders.
Approaches in [79, 78, 142] are instances of the independent RDO. Specifically, RDO
schemes in [79, 78] presented a retrained relationship that can compute a QP value for
any given λ and can be utilized for any basic unit. The method in [78] was dubbed as the
QP refinement (QPR) method and provided one retrained relationship based on all coding
configurations of HEVC. Other methods as in [142] leveraged some perceptual features,
such as the spatial energy ratio and the temporal motion activity, to adaptively select λ.
All these methods did not consider the temporal dependency among basic units, which in
turn bounds the potential impact on the coding efficiency.

On the contrary, there are some works in the literature that proposed dependent RDO
schemes to incorporate the coding propagation effect among blocks or frames into the
encoding process of HEVC’s predecessors aiming at a better coding efficiency [86, 53, 85,
63, 138]. For example, a trellis-based dynamic programming technique was implemented
for bit allocation in H.263+ [33], in which the authors derived the best combination of
QP values for each frame by minimizing the RD cost [86]. This dynamic programming

29

method aggravates the computational complexity due to the required multi-pass encoding
process. Also, a graph based approach was developed in [135, 53] to jointly optimize the
motion estimation, quantization, and entropy coding in HEVC’s predecessor, H.264/AVC
encoder [131]; hence, the optimal coding performance can be achieved by considering the
coding dependencies among different macroblocks (MBs) within a frame. Further, an RDO
scheme was designed in [138] under IPPP/IBBB coding structure in H.264. This RDO
scheme was based on a source distortion propagation model to account for the temporal
propagation effect of the current MB on its future MBs in the temporal propagation chain.
To pre-estimate the reconstructed distortion of future MBs and in turn estimate the coding
dependency among MBs in [138], a well-trained look-up table was constructed with different
MB content and quantization step sizes. Method in [138] successfully improved the coding
efficiency of H.264. However, relative to HEVC, the referencing structure in H.264 is
simpler because in H.264 frames only affect one following frame in encoding order and
affect other frames indirectly through this following frame. On the other hand, multiple
reference frames in the hierarchical structure of LD HEVC can affect the to-be-coded frame
leading to dispersed temporal relationship. Hence, the temporal propagation problem in
LD HEVC has more aspects that make the problem settings different.

Along the same line, other dependent RDO methods incorporated the coding propaga-
tion effect to improve the coding efficiency of RA HEVC [46, 54]. For example, a temporally
dependent RDO scheme was proposed in [46] based on the temporal relationship among
layers within RA HEVC. In [46], they modeled the uni-prediction and bi-prediction of RA
HEVC and enhanced its coding efficiency. Furthermore, authors in [54] considered the
inter-dependency of RA HEVC to obtain adaptive QP values. The main contribution of
[54] is a linear distortion model that represents the distortion of a predicted frame as a
function of its reference frame, in which they successfully improved the coding efficiency
of RA HEVC. Unlike RA HEVC, all frames in LD HEVC are used as references, i.e.,
multiple frames may be directly affected by the to-be-coded frame, creating a dispersed
temporal chain. On the other hand, RA HEVC always has a periodic I-frame segregating
this temporal chain into independent groups. In addition, some frames in RA HEVC are
never used as references. Based on these characteristics of RA HEVC, algorithms in [54]
and [46] operate on every distinct group of frames independently. As alluded in the future
work of [54], therefore, the straightforward application of adaptive QP algorithms for RA
HEVC to LD HEVC is somewhat limited due to the inherent differences in terms of coding
structure between LD HEVC and RA HEVC.

To serve the LD HEVC configuration, some RDO methods in the literature were pro-
posed to take into consideration the temporal dependency of LD HEVC [81, 45, 144].
In [81], a temporally dependent RDO scheme adapted the Lagrangian multiplier on LD

30

HEVC. This scheme relies on the high-rate distortion approximation and in turn overcomes
the issue of distortion propagation. As a result, the dependent RDO formulation in [81]
was simplified by only modelling the inter-frame rate relationship. Also, the Lagrangian
multiplier was further regularized to ensure that the high-rate approximation assumption
still holds. In [45], a temporally dependent RDO method extended the source distortion
temporal propagation model in [138] to account for the temporal dependency among CUs
in the hierarchical structure of LD HEVC. Similar to [138], the RDO algorithm in [45]
required the re-construction of a look-up table to store the reconstructed distortion of fu-
ture CUs under the LD HEVC configuration. The RDO scheme in [45] showed success in
improving the coding efficiency of LD HEVC, but the interoperability of this method may
have some limitation because it requires the storage and construction of a well-trained
look-up-table that accounts for different types of CU-based content and video encoders
[138, 45]. In [144], the characteristics of a video sequence, i.e., video content textures,
motion, and inter-layer dependencies were integrated into an adaptive quantization pa-
rameter cascading (QPC) scheme. Nonetheless, the inter-layer dependency is not video
sequence adaptive. Furthermore, the so-called CU tree was adopted in the X.265 open
source codec, in which it enables the use of look-aheads low-res motion vector fields to de-
termine the amount of reuse of each block to tune adaptive quantization factors [11]. Due
to the need of look-aheads, this implementation may not be very well-suited for low-delay
communication.

Enable the use of lookahead’s low-res motion vector fields to determine the amount of
reuse of each block to tune adaptive quantization factors. CU blocks which are heavily
reused as motion reference for later frames are given a lower QP (more bits) while CU
blocks which are quickly changed and are not referenced are given less bits. This tends to
improve detail in the backgrounds of video with less detail in areas of high motion. Default
enabled

Looking at all the aforementioned dependent methods in both HEVC and its prede-
cessors, we can conclude that each method successfully made progress towards solving the
temporal propagation problem in LD HEVC. However, these methods did not fully con-
sider all aspects. Therefore, we believe that the frame-level temporal propagation problem
in LD HEVC still has room for improvement.

To take some steps towards this improvement, we propose in this chapter an adaptive
frame-level QP selection algorithm for the hierarchical coding structure in LD HEVC by
characterizing the coding propagation effect through a notion called temporal propagation
length. First, after reviewing the linear distortion model of [54] between a coding frame and
its reference frame that is still valid in LD HEVC, we use it to help characterize the inter-
frame coding dependencies in LD HEVC by taking the accumulated coding propagation

31

effects into consideration. Second, we introduce the notion of propagation length, which is
defined as the impact length of the current frame on its future frames. Estimation of this
length is done via offline experiments. With the given propagation length, we then propose
two novel methods for predicting the impact of the current frame’s coding distortion on
future frames based on previous frames of similar coding characteristics. The first method
makes a prediction in a group-of-frames manner based on a group of frames, while the
second one makes a prediction individually based on each frame on its own. Third, each
of these two methods is applied to adaptively determine Lagrangian multiplier and its
corresponding QP for each frame in the LD configuration of HEVC. Experimental results
prove the effectiveness of our RDO schemes in terms of BD-rate results: (1) the RDO
scheme based on the first prediction method can outperform the HM-16.0 by -5.0% and -
4.9% in low-delay-P (LDP) and low-delay-B (LDB) configurations, respectively, and (2) the
second prediction method can outperform the HM-16.0 by 4.9% and -4.9% in the LDP and
LDB configurations, respectively. These improvements are achieved with an insignificant
1% increase in encoding time as well as insignificant and consistent increase in terms of
quality fluctuation of the coded video in the majority of content types compared to HM-
16.0. It is worth noting that our experiments also show the effectiveness of our methods on
low-motion sequences with BD-rate savings that can go up to 12.9%, which piqued serious
interest from industry, such as Google.

3.2 Adaptive QP Selection Problem For Low-Delay

HEVC

HEVC encompasses two LD coding configurations, namely LDP and LDB. The first frame
in both LDP and LDB is an I-frame. For LDP, the rest are P frames, whereas they are
all B-frames for LDB. In these configurations, every group of frames form a predefined
coding structure called a Group-of-Picture (GOP) [108, 6]. Each GOP contains a fixed
number of frames (four by default). These frames follow a pre-defined content-independent
pattern of relatively small and large QP values that correspond to the level of involvement
in prediction according to the referencing structure. In this section, we review the LD
HEVC coding structure and present the formulation of the adaptive QP selection problem.

3.2.1 Low-Delay Coding Structure in HEVC

For real-time video applications, HEVC adopts LDP and LDB configurations because they
employ forward predictions in order to limit the coding latency. Figure 3.1 illustrates the

32

LD coding structure in HEVC, in which the numbers denote the picture order count (POC)
of each frame according to display order. Arrows in this figure represent the prediction
relationship among these frames and their temporal levels (from L0 to L3). In figure 3.1,
we refer to frames in one GOP by the relative POC (rPOC) from 1 to 4 as shown in
Table 3.1. Frames sharing the same rPOC, for example POC=1 and POC=5, have the
same QP pattern and referencing structure. Furthermore, QP offsets define the values
added to the QP of the I-frame to calculate QP of the current rPOC. For example, frames
at rPOC=4 always have a relatively lower QP offset than the rest of the frames because
they are key frames. A key frame is the most frequently used reference frame; assigning
a low QP offset to it results in high reconstruction quality, which in turn provides better
referencing for future frames. Looking at Table 3.1, we can see that multiple reference
frames are employed in LD HEVC. Any given current frame has four references represented
by Refi that defines the difference between the POC of the reference frame and that of
the current frame. Specifically, the referencing structure for each rPOC always contains
the immediately previous frame and three previous frames that are utilized in the inter-
prediction process. The coding distortion of each reference frame can indirectly or directly
affect the coding distortion of future frames leading to a coding propagation effect.

According to RDO, each frame chooses an optimal reference frame from its set of
references for each prediction unit (PU). Such a prediction scheme disperses the temporal
dependency relationship. However, the work in [81, 45] showed that the immediately
preceding frame is the most frequently used reference in the inter-prediction process of LD
HEVC; thus, this frame should have the highest impact on the coding distortion. For this
reason, we consider only the nearest reference frame in the following analysis as shown in
Fig. 3.1. However, all our experimental results are carried out on the default LD HEVC
reference settings.

Table 3.1: QP Pattern and Referencing Structure Under LD HEVC.

rPOC Ref1 Ref2 Ref3 Ref4 QP Offset

1 -1 -5 -9 -13 +3

2 -1 -2 -6 -10 +2

3 -1 -3 -7 -11 +3

4 -1 -4 -8 -12 +1

33

0

1

2

3 5 7

6

4 8

L0

L1

L2

L3

Figure 3.1: HEVC LD Coding Structure.

3.2.2 Problem Formulation of the QP Selection in LD HEVC

Taking the coding propagation effect into account, the QP selection problem in LD HEVC
can be described as an RDO problem of minimizing the total coding distortion D across
multiple frames subject to a target bit budget RT for all frames as follows [119]:

Q∗ = (Q∗0, Q
∗
1, Q

∗
2, · · · , Q∗N)

= arg min
Q

N∑
i=0

Di s.t

N∑
i=0

Ri ≤ RT

(3.1)

where N + 1 is the total number of frames, and Di and Ri are the coding distortion
and the number of coding bits of the ith frame, respectively. Both Di and Ri depend
on Q = (Q0, Q1, · · · , Qi) with Qi representing the QP for the ith frame while the set
of optimal QP values is Q∗ = (Q∗0, Q

∗
1, · · · , Q∗N). To solve the constrained optimization

problem above, the Lagrangian multiplier method [64] is employed to convert Equation
(3.1) into an unconstrained form as follows:

34

Q∗ = (Q∗0, Q
∗
1 · · ·Q∗N)

= arg min
Q

J,

where J =
N∑
i=0

Di + λ

N∑
i=0

Ri (3.2)

In Equation (3.2), we define J as the total rate-distortion (RD) cost function with λ
being the global Lagrangian multiplier that represents the trade-off between the coding
distortion and the number of coding bits. A straightforward solution for the present prob-
lem is to exhaustively search for all possible QP combinations for all frames and select the
best combination producing the minimum RD cost. Such a solution is clearly impractical
due to its expensive computational requirements. These requirements become even more
challenging in LD HEVC, because encoding any frame i in LD HEVC impacts all frames
in the future leading to a coding propagation effect. To circumvent this challenge, we
analyze the coding propagation effect of LD HEVC in the following sections to solve this
optimization problem.

3.3 Accumulated Coding Propagation Effect in Low-

Delay HEVC

This section continues building the adaptive QP problem formulation. In Subsection 3.3.1,
we review the linear distortion model derived from [54] that is still applicable in LD HEVC.
In Subsection 3.3.2, we utilize this model to develop the problem formulation of LD HEVC,
which leads to considering the accumulated propagation effects.

3.3.1 Review for the Linear Distortion Model

In the inter-prediction process, motion compensation is executed to produce the residual
signal between the original and reconstructed frames. Afterward, this residual signal is
transformed, quantized and entropy coded to further compress it. The reconstructed (i.e.,
distorted) version of a frame is the one used as a reference for other frames; thus, the coding
distortion of the current frame may impact the RD performance of the future frames in
the encoding order.

35

Experiments were carried out in [54] to investigate the relationship between the coding
distortion and the number of coding bits of the predicted frame i+ 1 and coding distortion
of its directly preceding reference frame i. In these experiments, the first three frames
of some standard HEVC sequences were encoded using I-P-P structure. The last two P
frames in this structure only used their directly preceding frame as reference. For each of
the last two P frames, the QP of frame i+ 1 was fixed to 32 while the QP of frame i was
varied from 20 to 31. Based on this experiment, it was observed in [54] that the coding
distortion of frame i+ 1 varies linearly with the coding distortion of frame i. In addition,
the number of coding bits of frame i + 1 had approximately a constant relation with the
coding distortion of frame i, which could also be confirmed according to [138, 45]. From
the findings of these experiments, the following equations were defined in [54] for coding
distortion and number of coding bits of frame i+ 1:

Di+1 ≈ µi+1,iDi +D
(0)
i+1

Ri+1 ≈ R
(0)
i+1 (3.3)

Here Di+1 and Ri+1 are the coding distortion and the number of coding bits, respectively,
of the predicted frame i+1, whereas Di and Ri are the coding distortion and the number of
coding bits, respectively, of the reference frame i. µi+1,i is the linear coefficient or in other

words, the slope of the linear distortion between frame i+ 1 and frame i. D
(0)
i+1 denotes the

coding distortion of the predicted frame i + 1 when all its preceding reference frames are
coded losslessly or without distortion, while R

(0)
i+1 is the equivalent number of coding bits

under the same condition.

Clearly, accurately estimating the distortion dependency, µi+1,i, between the predicted
and reference frame is an essential key to solve the adaptive QP optimization problem in
(3.2).

Estimating the distortion dependency coefficient, µ, has recently been done in [54]
based on the high rate theory. Suppose that pi+1 defines the original pixel value of the
predicted frame i + 1, pi defines the original pixel value of the reference frame i, and p̂i
defines the reconstructed pixel value of the reference frame i. Define DMCP

i+1 as the variance
of the motion prediction residual. DMCP

i+1 was given in [54] as follows:

DMCP
i+1 = E[(pi+1 − p̂i)2]

≈ E[(pi+1 − pi)2 + (pi − p̂i)2]

= σ2
ori +Di (3.4)

36

where σ2
ori is the variance of the residual signal produced by motion estimation based on

original reference frames and Di is the coding distortion of the nearest reference frame i.

The high rate theory provides an approximate relationship among the coding distortion
of the predicted frame Di+1, the variance σ2, and the coding rate R (in bits per pixel),
which is defined as follows [54, 48, 34]:

Di+1 = 2−2Ri+1 ∗DMCP
i+1 (3.5)

From Equation (3.4) and Equation (3.5),

Di+1 = 2−2Ri+1 ∗ (Di + σ2
ori) (3.6)

We know that Di does not impact Ri+1 so we can make an observation that there is
a linear relationship between Di+1 and Di for a given Ri+1 and the slope is 2−2Ri+1 . In a
practical video encoding scenario, it is difficult to find an estimate to the coding rate Ri+1

given the complex CABAC entropy coding scheme in HEVC. Therefore, the distortion
dependency metric, µ, in [54] was given by:

µi+1,i =
Di+1

Di + σ2
ori

(3.7)

Here σ2
ori is the variance of the residual signal, which is produced by executing a 2Nx2N,

where N=16, mode motion estimation based on original reference frames. Di is the coding
distortion of the nearest reference frame i in terms of mean squared error (MSE), and Di+1

is the coding distortion of the predicted frame i + 1 in terms of MSE. The definition in
(3.7) is consistent with one’s intuition, because if σ2

ori is large, then the coding distortion
of the reference frame and predicted frame is less correlated, and as a result, the distortion
dependency, µ, is less.

3.3.2 Accumulated Propagation Effects for LD HEVC

The first frame in LD HEVC is coded as an I-frame, and thus its coding distortion depends
only on itself, i.e.

D0 = D
(0)
0 (3.8)

37

Based on the linear model we reviewed in (3.3), the distortion of the rest of the frames
can also be written as follows:

D1 = µ1,0D0 +D
(0)
1

= µ1,0D
(0)
0 +D

(0)
1

D2 = µ2,1D1 +D
(0)
2

= µ2,1µ1,0D
(0)
0 + µ2,1D

(0)
1 +D

(0)
2

D3 = µ3,2D2 +D
(0)
3

= µ3,2µ2,1µ1,0D
(0)
0 + µ3,2µ2,1D

(0)
1 + µ3,2D

(0)
2 +D

(0)
3

D4 = µ4,3D3 +D
(0)
4

= µ4,3µ3,2µ2,1µ1,0D
(0)
0 + µ4,3µ3,2µ2,1D

(0)
1

+ µ4,3µ3,2D
(0)
2 + µ4,3D

(0)
3 +D

(0)
4

.

.

.
(3.9)

From (3.9), we can write the distortion of frame i as follows:

Di = D
(0)
i +

i−1∑
k=0

θi,k(µ)D
(0)
k (3.10)

Here θi,k, k = 0, 1, · · · , i−1, is a function of µ indicating the total impacts of the distortion
of frame k on frame i. Looking at (3.10), we can see that Di is described as a linear

combination of D
(0)
0 , D

(0)
1 , · · · , D(0)

i . By substituting (3.3) and (3.10) into our optimization
problem in (3.2):

38

J =
N∑
i=0

Di + λ

N∑
i=0

Ri

=
N∑
i=0

(
D

(0)
i +

i−1∑
k=0

θi,k(µ)D
(0)
k

)
+ λ

N∑
i=0

R
(0)
i

=
N∑
i=0

εiD
(0)
i + λ

N∑
i=0

R
(0)
i (3.11)

In (3.11), εi is the impact of the coding distortion of frame i propagated to all future
frames due to the nature of the LD configuration, which is recursively expressed as follows:

εi =

{
1 if i = N

1 + εi+1µi+1,i if i 6= N .
(3.12)

Looking at (3.11), D
(0)
i and R

(0)
i are the coding distortion and the number of coding bits

of frame i when all references frames are losslessly coded or frame i is motion compensated
from original reference frames. In this particular case, if all impact factors εi are known,
the total RD cost function in (3.11) can be the aggregate sum of the RD cost functions
of each coding frame. Hence, the RDO function in (3.11) can be solved by individually
optimizing the RDO function of each frame as follows:

min{Ji}, where Ji = εiD
(0)
i + λR

(0)
i ,

for i = 0, 1, · · · , N. (3.13)

3.4 Estimating the propagation parameters for La-

grangian Multiplier Determination

It is clear that accurately estimating εi for each frame is another essential key to solving
the present QP optimization problem. As seen in Equation (3.12), getting exact values
for εi is intractable because all the information about the future frames must be available
for each frame i, which is certainly undesirable in LD scenarios. Instead, we introduce the

39

notion of the propagation length, estimate it, and propose two novel methods to predict εi.
This contribution will be discussed in this section and will be assessed in the experimental
results section.

3.4.1 Estimation of the Impact Propagation Length

If we expand the definition of εi in (3.12), we can see the following:

εi = 1 + µi+1,i + µi+2,i+1µi+1,i + µi+3,i+2µi+2,i+1µi+1,i

+ µi+4,i+3µi+3,i+2µi+2,i+1µi+1,i

+ · · ·+ µN,N−1µN−1,N−2µN−2,N−3 · · ·µi+1,i

= 1 + θi+1,i(µ) + θi+2,i(µ) + θi+3,i(µ)

+ θi+4,i(µ) + · · ·+ θN,i(µ) (3.14)

From (3.14), it is difficult to calculate εi because all µi+1,i · · ·µN,N−1 are unavailable
for the current frame i. To overcome this difficulty, we carried out two experiments to
examine the possibility of truncating the expansion of εi in (3.14) at a certain length p,
where 0 ≤ p ≤ N , and to estimate p, respectively. Here, p is the propagation length or
in other words, the impact length of the current frame on future frames in the temporal
propagation chain.

First, we carried out an experiment to investigate the possibility of truncating the
expansion of εi in (3.14). In this experiment, three sequences were used: namely Basket-
ballPass, BlowingBubbles, and BQSquare. These sequences were encoded under the I-P-P
coding structure with P frames using only their most adjacent frame as reference. In addi-
tion, we fixed the QP pattern of all frames except one reference frame, Fref , for which we
change its QP from 20 to 31. The predicted frame, Fpred, had a fixed QP equal to 32. We
started by setting the Fref to the nearest reference frame and then progressively decreased
its POC until we see a negligible impact on the coding distortion of frame Fpred. Negligi-
ble impact means that the coding distortion of Fref , MSEref , does not really change the
coding distortion of Fpred, MSEpred. Figure 3.2 plots the relationship between MSEref
and MSEpred for Fref from 15 to 11 when Fpred = 16. At Fref = 11, a negligible impact
for the sequences under test between MSEref and MSEpred starts to occur compared to
Fref = 15, 14, 13, 12 until it becomes apparent at a lower POC. To further support our
observation, we did the same experiment for Fpred = 17, 18, 19, 20, 21, 22, 23. Table 3.2
shows the average Pearson correlation coefficient between MSEref and MSEpred for all

40

Fpred from 16 to 23 at different p across BasketballPass, BQSquare, and BlowingBubbles
where the correlation coefficient decreases as p increases. The same observation can be
seen in other videos sequences, which enlightens the possibility of introducing the notion
of propagation length and limiting the expansion of εi in Equation (3.14).

Table 3.2: Average Pearson correlation coefficient for each p from 1 to 8 across Basket-
ballPass, BQSquare, BlowingBubbles for all Fpred from 16 to 23.

1 2 3 4 5 6 7 8

AVERAGE 0.9 0.7 0.5 0.5 0.2 0.2 0.2 0.1

Second, we examined the values of each θj,i(µ), where i + 1 ≤ j ≤ N , to estimate
p in order to enable εi computation. We ran an experiment on the first 100 frames of
two sequences, BasketballPass and Racehorses at QP = 22, 27, 32, 37 and default λHM .
To give enough room to observe θj,i(µ), we choose i to be three GOPs before the end of
the sequence. Therefore, at i = 88, we calculate all θi+1,i(µ) · · · θN,i(µ) and plot them as
shown in Figure 3.3; this figure includes a plot and its zoomed-in version. As seen in the
figure, θi+1,i(µ), θi+2,i(µ), θi+3,i(µ), θi+4,i(µ) are significant while the rest are insignificant
or zero, which was also a typical behaviour in other i and other sequences. Hence, θi+1,i(µ),
θi+2,i(µ), θi+3,i(µ), θi+4,i(µ) can be enough to approximate εi. This finding aligns with one’s
intuition, in view that the impact of the coding distortion for frame i on future frames has
a damping effect. In other words, the significance of εi decreases with time until it finally
dies out at a certain propagation length, p.

Based on the outcomes of the previous two experiments, we can introduce the notion of
the propagation length and can truncate the series of εi at p. In addition, these experiments
enabled the possibility of setting p to 4 in the rest of our experiments. Hence, we can now
write εi as follows:

εi ≈ 1 + µi+1,i + µi+2,i+1µi+1,i + µi+3,i+2µi+2,i+1µi+1,i

+ µi+4,i+3µi+3,i+2µi+2,i+1µi+1,i (3.15)

3.4.2 Two Methods for εi Prediction

Equation (3.15) truncates εi at the fourth order term, but still leaves out the challenge of
estimating εi from future frames. There are two ways to circumvent this challenge: (1)

41

0 1 2 3 4 5 6

MSE of Reference Frame

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

M
S

E
 o

f
P

re
d
ic

te
d
 F

ra
m

e

(a) Fpred = 16, Fref = 15

0 2 4 6 8 10 12

MSE of Reference Frame

10.5

11

11.5

12

12.5

13

13.5

M
S

E
 o

f
P

re
d
ic

te
d
 F

ra
m

e

(b) Fpred = 16, Fref = 15

0 2 4 6 8 10 12 14

MSE of Reference Frame

12

12.5

13

13.5

14

14.5

15

M
S

E
 o

f
P

re
d
ic

te
d
 F

ra
m

e

(c) Fpred = 16, Fref = 15

0 1 2 3 4 5 6

MSE of Reference Frame

5.3

5.35

5.4

5.45

5.5

5.55

5.6

5.65

M
S

E
 o

f
P

re
d
ic

te
d
 F

ra
m

e

(d) Fpred = 16, Fref = 14

0 2 4 6 8 10 12

MSE of Reference Frame

11.6

11.7

11.8

11.9

12

12.1

12.2

12.3

M
S

E
 o

f
P

re
d
ic

te
d
 F

ra
m

e

(e) Fpred = 16, Fref = 14

0 2 4 6 8 10 12 14

MSE of Reference Frame

13.2

13.3

13.4

13.5

13.6

13.7

13.8

M
S

E
 o

f
P

re
d
ic

te
d
 F

ra
m

e

(f) Fpred = 16, Fref = 14

0 1 2 3 4 5 6

MSE of Reference Frame

5.4

5.45

5.5

5.55

5.6

M
S

E
 o

f
P

re
d
ic

te
d
 F

ra
m

e

(g) Fpred = 16, Fref = 13

0 2 4 6 8 10 12

MSE of Reference Frame

11.7

11.75

11.8

11.85

11.9

11.95

12

12.05

M
S

E
 o

f
P

re
d
ic

te
d
 F

ra
m

e

(h) Fpred = 16, Fref = 13

0 2 4 6 8 10 12

MSE of Reference Frame

13.3

13.4

13.5

13.6

13.7

M
S

E
 o

f
P

re
d
ic

te
d
 F

ra
m

e

(i) Fpred = 16, Fref = 13

0 1 2 3 4 5 6

MSE of Reference Frame

5.4

5.45

5.5

5.55

5.6

5.65

M
S

E
 o

f
P

re
d
ic

te
d
 F

ra
m

e

(j) Fpred = 16, Fref = 12

0 2 4 6 8 10 12

MSE of Reference Frame

11.85

11.9

11.95

12

12.05

12.1

M
S

E
 o

f
P

re
d
ic

te
d
 F

ra
m

e

(k) Fpred = 16, Fref = 12

0 2 4 6 8 10 12 14

MSE of Reference Frame

13.5

13.55

13.6

13.65

13.7

M
S

E
 o

f
P

re
d
ic

te
d
 F

ra
m

e

(l) Fpred = 16, Fref = 12

Figure 3.2: Relationships between MSEref and MSEpred at different Fref : Left: Basket-
ballPass, Middle: BlowingBubbles, Right: BQSquare.

42

0 1 2 3 4 5 6

MSE of Reference Frame

5.45

5.5

5.55

5.6

M
S

E
 o

f
P

re
d
ic

te
d
 F

ra
m

e

(m) Fpred = 16, Fref = 11

0 2 4 6 8 10 12

MSE of Reference Frame

11.8

11.85

11.9

11.95

12

M
S

E
 o

f
P

re
d
ic

te
d
 F

ra
m

e

(n) Fpred = 16, Fref = 11

0 2 4 6 8 10 12 14

MSE of Reference Frame

13.45

13.5

13.55

13.6

13.65

13.7

M
S

E
 o

f
P

re
d
ic

te
d
 F

ra
m

e

(o) Fpred = 16, Fref = 11

Figure 3.2: Relationships between MSEref and MSEpred at different Fref : Left: Basket-
ballPass, Middle: BlowingBubbles, Right: BQSquare.

predict the current εi via previous potentially similar impact propagation factors, dubbed
as the ε-prediction method, and (2) predict the current εi by estimating the coding de-
pendency elements θi+1,i(µ), θi+2,i(µ), θi+3,i(µ), θi+4,i(µ) from past frames with potentially
similar characteristics, dubbed as the µ-prediction method. In LD HEVC, frames with the
same rPOC share the same QP pattern and referencing structure. Following this fact, we
assume that the impact of frame i on the future is approximately stationary among frames
with the same rPOC, and hence we write the following:

εi+4 ≈ εi (3.16)

From this assumption, we outline the first method for approximating εi in a sliding
window in Algorithm 2. This algorithm starts off by calculating εk from k=1 to k=4 using
(3.15). Afterward, εj, where 9 ≤ j ≤ 12, is substituted with εj−8. Then, the algorithm
continues its group-based prediction to εi by incrementing k and j by four frames.

Algorithm 2 ε−Prediction Method

1: procedure epsilonPredMethod
2: start← 1; end← 4;
3: Compute εk from (3.15), where start ≤ k ≤ end
4: Based on (3.16), ∀j∈[start+8,end+8] εj ← εj−8;
5: start← start+ 4;
6: end← end+ 4; go to #3

43

0 10 20 30 40 50

j

0

0.2

0.4

0.6

0.8

1

(j
 +

 i
)(

)

BasketballPass

Racehorses

0 1 2 3 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) BasketballPass and RaceHorses; QP = 22

0 10 20 30 40 50

j

0

0.2

0.4

0.6

0.8

1

(j
 +

 i
)(

)

BasketballPass

Racehorses

0 1 2 3 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) BasketballPass and RaceHorses; QP = 27

0 10 20 30 40 50

j

0

0.2

0.4

0.6

0.8

1

(j
 +

 i
)(

)

BasketballPass

Racehorses

0 1 2 3 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) BasketballPass and RaceHorses; QP = 32

0 10 20 30 40 50

j

0

0.2

0.4

0.6

0.8

1
(j
 +

 i
)(

)

BasketballPass

Racehorses

0 1 2 3 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) BasketballPass and RaceHorses; QP = 37

Figure 3.3: Results of θi+1,i · · · θN,i from Equation (3.14) that enable setting p to 4. A
zoomed-in version is stacked on each plot.

Another approach for predicting εi is to predict µ from frames with similar rPOC, and
thus we replace Equation (3.15) with the following:

εi ≈ 1 + µi−3,i−4 + µi−2,i−3µi−3,i−4

+ µi−1,i−2µi−2,i−3µi−3,i−4

+ µi−4,i−5µi−1,i−2µi−2,i−3µi−3,i−4 (3.17)

From the definition in (3.17), we propose another method to approximate εi in a sliding

44

window as outlined in Algorithm 3. The first step in this algorithm is to calculate µk+1,k,
where 3 ≤ k ≤ 7, from (3.7). This calculation enables computing ε8 from (3.17). This
algorithm continues predicting εi in a frame-based manner by moving its sliding window
by one frame.

Algorithm 3 µ−Prediction Method

1: procedure muPredMethod
2: start← 3; end← 7;
3: Compute µk+1,k from (3.7) for start ≤ k ≤ end
4: Compute εi from (3.17), where i← end+ 1
5: start← start+ 1;
6: end← end+ 1; go to #3

Using these two algorithms, we adaptively determine the Lagrangian multiplier and QP
of each frame in LD HEVC as will be shown in the following parts of this paper.

3.4.3 Adaptive Lagrangian Multiplier Determination

Given the optimization problem in (3.13), the optimal RD cost for each frame can be
achieved when

∂Ji

∂R
(0)
i

=
∂
(
εiD

(0)
i + λR

(0)
i

)
∂R

(0)
i

= εi
∂D

(0)
i

∂R
(0)
i

+ λ = 0 (3.18)

Using
∂D

(0)
i

∂R
(0)
i

= −λ∗i , then

λ∗i =
λ

εi
(3.19)

Here the Lagrangian multiplier for each frame i is adapted based on its impact propagation
factor εi. From (3.19), it can be observed that there is an inverse correlation between the
adapted λ∗i and its propagation factor εi. This observation is reasonable because when εi

45

is large i.e, this frame is a key frame and has a high impact on subsequent frames, λ∗i will
be small leading to smaller coding distortions in subsequent frames. Thus, less propagated
distortions will flow through the temporal chain and a better coding performance can be
attained. Conversely, small values of εi result in large values of λ∗i , which always happens
in frames not frequently used as references i.e rPOC = 1, 2, 3.

3.5 Adaptive QP Selection

3.5.1 QP Determination via QP-λ Relationships

In the HEVC test model, HM [4], there is a fixed relationship between QP and λ. For each
frame i, λ is defined as:

λHMi
= qpfactor,HMi

∗ 2
(QPHMi

−12)

3 (3.20)

Here λHMi
is the lambda used in the HEVC’s reference software given a qpfactor,HMi

related
to the coding configuration and QPHMi

is calculated by knowing the QP offset of frame i
depending on its rPOC as specified in Table 3.1.

In LD HEVC, qpfactor,HMi
is fixed for each rPOC and is defined as follows:

qpfactor,HMi
=

0.4845, for POC=0,

0.4624, for rPOC=1,

0.4624, for rPOC=2,

0.4624, for rPOC=3,

0.5780, for rPOC=4,

(3.21)

To obtain λ∗i , the global Lagrangian multiplier λ has to be estimated. The RDO schemes
in HM and the temporally dependent RDO produce different rates and distortions. And yet
the temporally dependent RDO scheme takes the propagation factor εi into consideration.
For fair comparision between the default HM and the proposed RDO scheme, we follow
the way proposed in [138, 45] to estimate λ based on the high rate theory [34] from (3.5)
as follows:

46

λHMi
= −∂DHMi

∂RHMi

= ln(2) ∗ 2−2RHMi ∗DMCP
HMi

= ln(2) ∗DHMi
(3.22)

In correspondence with (3.22) while taking the propagation factor εi into consideration,
we write the following from (3.18):

λ = −εi
∂D

(0)
i

∂R
(0)
i

= εi ∗ ln(2) ∗ 2−2R
(0)
i ∗DMCP (0)

i

= ln(2) ∗ εiD(0)
i (3.23)

Based on (3.22) and (3.23), we write:

λ = λHMi
∗ εiD

(0)
i

DHMi

(3.24)

Since DHMi
and D

(0)
i are unavailable in our practical implementation, Equation (3.24)

may be approximated as follows:

λ ≈ λHMi
∗

n∑
i=0

εi ∗Di

n∑
i=0

Di

(3.25)

where n is the number of available frames for which εi can be computed according to either
the ε or µ methods.

Now substituting (3.25) in (3.19), we get the following:

λ∗i ≈
λHMi

εi
∗

n∑
i=0

εi ∗Di

n∑
i=0

Di

(3.26)

47

We update λ∗i every frame in our implementation. By updating λHMi
into λ∗i and

reversing (3.20), we update QPHMi
accordingly as follows:

QPi = 3log2(
λ∗i

qpfactor,HMi

) + 12 (3.27)

Due to the accumulated propagation impact factor εi, λ
∗
i is adaptive to each frame i,

and so is QPi.

3.5.2 Initialization

Because our ε−prediction and µ−prediction methods predict each εi from previous frames,
we decrease the QP value of the I-frame to reduce the respective distortion and in turn
improves prediction. The QP values of the first 9 frames in the case of ε−prediction and
the first 8 frames in the case of µ−prediction are initialized to be the same as the those
default values of the respective frames in HM except that the QP value of the I-frame is
lowered by a notch and set to be 22, 22, 27, 32, which are corresponding, respectively, to
the HM’s default values QP = 22, 27, 32, 37.

3.5.3 Overall Adaptive QP Selection Algorithm

To put together the analysis conducted in the previous sections, we list the steps of our
overall algorithm to adaptively determine QP values for all frames as follows:

Step 1 Specify the start and end of the sliding window according to either ε−Prediction
method or µ−Prediction method.

Step 2 For the first set of frames in the sliding window, select their initialized QP
values according to subsection 3.5.2, and encode them.

Step 3 For the rest of the frames, follow these steps:

Step 3.1 Compute µi+1,i between each predicted frame i + 1 and its nearest
reference frame i in the sliding window according to Equation (3.7). Di+1 and
Di are the coding distortions in MSE of a predicted frame i+ 1 and its nearest
reference frame i.

48

Step 3.2 Get εi according to either ε−Prediction method or µ−Prediction
method.

Step 3.3 Calculate λ∗i and its corresponding QPi using Equation (3.27).

Step 3.4 Encode the current frame with the updated QPi.

Step 3.5 Move the sliding window as instructed by ε−Prediction or µ−Prediction
methods.

3.6 HEVC Encoder Testing Methodology: Objective

Video Assessment Tool (MCTest)

To have fast access of experimental results and to facilitate the comprehensive analysis,
we implemented a testing framework called MulticomTest or abbreviated as MCTest using
bash script for the HM encoder 1. Figure 3.4 explains the sequence diagram for the MCTest,
or the testing process. First, we start inputting n video sequences, their configuration files,
arbitrary number of encoder configuration files, and arbitrary number of frames required
for analysis to the main bash script which executes the HM encoder. The main script also
instructs the encoder to generate its outputs in a specific naming convention and collects
HM-generated files from the log files and places them in formatted text. Afterwards, the
main bash script decodes all generated bitstreams using HM decoder creating YUVs for
comparison. Then, it forces the decoder to generate the reconstructed YUVs into a specific
filename format. Finally, the results bash scripts generate integrated bitrate and PSNR
log files of selected frames at arbitrary number of QP values. They also gather formatted
text HM generated files and create a log file containing the bitrate and PSNR per frame
for n sequences (at different configurations under test) with j different QP values for every
configuration. Figure 3.5 explains how the bash scripts are integrated into the HM encoder
and decoder.

3.7 Experimental Results

In this section, we assess the effectiveness of our pair of techniques, namely ε and µ
prediction techniques under both the LDP and LDB configurations of the common test
conditions (CTC) of HEVC [26]. Four classes of 20 sequences covering a wide range of

1https://github.com/HossamAmer12/hevc

49

https://github.com/HossamAmer12/hevc

Main Bash Script

n YUV Video
Sequences and

CFG Files

m Encoder
CFG Files

k Selected frames
required for analysis

HM Encoder

HM Decoder

Results Bash
Scripts

Log files and
Encoded Videos
are generated

1) Executes the HM encoder!
2) Instructs the encoder to generate its outputs in a specific

naming convention!
3) Collects HM-generated files from the log files and placing

them in formatted text

1) Decodes all generated bitstreams using HM decoder creating YUVs for comparison!
2) Forces the decoder to generate the reconstructed YUVs into a specific filename format

Decoded Videos
are produced

1) Generates integrated bitrate and PSNR log files of selected frames at arbitrary number of Qp values!
2) Gathers formatted text HM generated files and creates a log file containing the bitrate and PSNR per frame for

n sequences (at different configurations under test) with m different Qp values for every configuration.!
3) Gathers formatted text HM generated files and creates a log file containing the frame type, its references,

frequency of being referenced, and corresponding QP value

Figure 3.4: Sequence Diagram for the Objective Video Quality Assessment Framework
(MCTest). Video Quality Assessment

Framework

1

Shell Scripts

n YUV Video
Sequences

m Encoder
CFG File

n Sequences
CFG Files

HM
Encoder

1) Execute the HM encoder (using different
configurations under test) with n different Qp

values for every configuration!
2) Instruct the encoder to generate its outputs in a

specific naming convention!
3) Collect HM-generated files from the log files and

placing them in formatted text

Shell Scripts

1) Decode all generated bitstreams using HM
decoder creating YUVs for comparison!

2) Force the decoder to generate the
reconstructed YUVs into a specific filename

format

HM
Decoder

Reconstructed
YUV files for j

different Qp values

(i) Objective Video
Quality Assessment

(ii) Subjective Video Quality
Assessment

Figure 3.5: Objective Video Quality Assessment Framework (MCTest).

50

content and resolutions were tested under the HM 16.0 software version of HEVC. Four
different initial QPs equal to 22, 27, 32, and 37 are used to observe the R-D performance of
these sequences under different bitrates. Three other related methods are used for coding
efficiency comparisons with respect to the default LD configurations. These methods are
the QP cascading algorithm (QPC) in [144], the QP refinement (QPR) method in [78],
and the CTU-based method that accounts for temporal dependencies specified in [45]. All
experiments were carried out on an 8GB memory Quad-Core Intel Xeon (2×2.26GHz).

0 1000 2000 3000 4000 5000

Bitrate (kbps)

32

34

36

38

40

42

P
S

N
R

 (
d
B

)

BasketballDrillText

Default LDP

Proposed-

(a) BasketballDrillText LDP
HEVC RD-curve

0 1000 2000 3000 4000 5000 6000

Bitrate (kbps)

35

36

37

38

39

40

41

42

43

P
S

N
R

 (
d
B

)
Kimono

Default LDP

Proposed-

(b) Kimono LDP HEVC RD-curve

0 1000 2000 3000 4000

Bitrate (kbps)

32

34

36

38

40

42

P
S

N
R

 (
d
B

)

BasketballDrill

Default LDP

Proposed-

(c) BasketballDrill LDP HEVC
RD-curve

0 500 1000 1500 2000

Bitrate (kbps)

30

32

34

36

38

40

42

P
S

N
R

 (
d
B

)

BasketballPass

Default LDP

Proposed-

(d) BasketballPass LDP HEVC
RD-curve

0 500 1000 1500 2000 2500

Bitrate (kbps)

34

36

38

40

42

44

P
S

N
R

 (
d
B

)

FourPeople

Default LDP

Proposed-

(e) FourPeople LDP HEVC RD-
curve

0 1000 2000 3000 4000 5000 6000

Bitrate (kbps)

32

34

36

38

40

42

44

P
S

N
R

 (
d
B

)

ChinaSpeed

Default LDP

Proposed-

(f) ChinaSpeed LDP HEVC RD-
curve

Figure 3.6: RD curves for the proposed algorithms and the default LDP.

3.7.1 Coding Efficiency Comparison

The R-D performance for the proposed techniques are measured via the BD-rate (BDBR)
for the luminance component [82] where negative numbers of BDBR indicate performance

51

T
a
b

le
3
.3

:
C

o
d
in

g
E

ffi
ci

en
cy

C
om

p
ar

is
on

s
B

et
w

ee
n

L
D

H
E

V
C

A
n
d

th
e

P
ro

p
os

ed
M

et
h
o
d
s

W
it

h
R

es
p

ec
t

T
o

T
h
e

D
ef

au
lt

H
M

In
T

er
m

s
of

L
u
m

a
B

D
B

R
(%

)

C
la
ss

S
e
q
u
e
n
c
e

[1
4
4
]

[7
8
]

[4
5
]

P
ro

p
ε

P
ro

p
µ

L
D

P
L

D
B

L
D

P
L

D
B

L
D

P
L

D
B

L
D

P
L

D
B

L
D

P
L

D
B

B
a
sk

e
tb

a
ll
D
ri
v
e

/
/

-1
.5

-1
.2

-4
.1

-3
.7

-1
.6

-1
.7

-1
.2

-1
.2

B
Q
T
e
rr
a
c
e

/
/

-1
.3

-0
.2

-1
.6

0.
0

2.
6

2.
3

3.
6

2.
7

B
C
a
c
tu

s
/

/
-2

.3
-1

.7
-3

.8
-3

.2
-6

.8
-7

.1
-6

.5
-6

.8
K
im

o
n
o

/
/

-1
.7

-1
.2

-1
.8

-0
.9

-3
.5

-3
.5

-3
.1

-2
.8

P
a
rk

S
c
e
n
e

/
/

-1
.1

-0
.9

-4
.0

-4
.0

-2
.9

-2
.9

-6
.5

-2
.7

A
v
e
ra

g
e

/
/

-1
.6

-1
.1

-3
.0

-2
.4

-2
.5

-2
.6

-2
.0

-2
.2

B
a
sk

e
tb

a
ll
D
ri
ll

-2
.8

-2
.9

-2
.1

-1
.6

-9
.1

-8
.4

-6
.0

-5
.9

-5
.8

-5
.6

B
Q
M

a
ll

-0
.6

-0
.7

-1
.1

-0
.8

-2
.8

-2
.8

-2
.4

-2
.5

-2
.4

-2
.3

C
P
a
rt
y
S
c
e
n
e

-2
.4

-2
.5

-1
.5

-1
.0

-2
.9

-2
.6

-4
.5

-4
.6

-4
.4

-4
.5

R
a
c
e
H
o
rs
e
s

1.
9

2.
0

-1
.5

-1
.3

-0
.3

0.
0

0.
1

0.
1

0.
5

0.
4

A
v
e
ra

g
e

-1
.0

-1
.0

-1
.5

-1
.2

-3
.8

-3
.5

-3
.2

-3
.2

-3
.0

-3
.0

B
a
sk

e
tb

a
ll
P
a
ss

-0
.2

-0
.1

-1
.9

-1
.7

-4
.6

-4
.5

-3
.7

-3
.9

-3
.5

-3
.4

D
B
lo
w
in
g
B
u
b
b
le
s

-1
.9

-1
.8

-1
.2

-1
.0

-2
.9

-2
.6

-3
.5

-3
.5

-3
.8

-3
.9

B
Q
S
q
u
a
re

-2
.5

-2
.0

-1
.4

-1
.1

-0
.3

0.
6

-2
.7

-2
.2

-2
.6

-2
.5

R
a
c
e
H
o
rs
e
s

1.
0

0.
9

-1
.3

-1
.2

-1
.3

-1
.3

-0
.7

-0
.7

-0
.5

-0
.5

A
v
e
ra

g
e

-0
.9

-0
.8

-1
.4

-1
.1

-2
.3

-2
.0

-2
.7

-2
.6

-2
.6

-2
.6

F
o
u
rP

e
o
p
le

/
/

-3
.1

-2
.7

-8
.6

-7
.7

-1
3.

4
-1

3.
0

-1
3.

6
-1

2.
9

E
J
o
h
n
n
y

/
/

-2
.5

-1
.7

-3
.2

-2
.4

-1
0.

4
-9

.5
-1

0.
4

-9
.5

K
ri
st
e
n
A
n
d
S
a
ra

/
/

-3
.4

-2
.3

-4
.4

-4
.1

-1
4.

5
-1

4.
1

-1
4.

6
-1

4.
2

A
v
e
ra

g
e

/
/

-3
.0

-2
.3

-5
.4

-4
.7

-1
2.

8
-1

2.
2

-1
2.

9
-1

2.
2

B
a
sk

e
tb

a
ll
D
ri
ll
T
e
x
t

-3
.0

-3
.0

-2
.0

-1
.7

-7
.2

-6
.7

-6
.2

-6
.1

-6
.0

-5
.7

F
C
h
in
a
S
p
e
e
d

-2
.4

-2
.3

-2
.1

-2
.1

-2
.9

-2
.7

-7
.4

-7
.6

-7
.2

-7
.1

S
li
d
e
E
d
it
in
g

-0
.3

-2
.3

-0
.5

-0
.5

-0
.2

-0
.6

-2
.0

-1
.9

-0
.7

-1
.7

S
li
d
e
S
h
o
w

-1
.6

-1
.6

-1
.2

-0
.9

-6
.6

-6
.4

-9
.5

-9
.2

-1
3.

3
-1

2.
9

A
v
e
ra

g
e

-1
.8

-2
.0

-1
.5

-1
.3

-4
.2

-4
.1

-6
.3

-6
.2

-6
.8

-6
.8

O
v
e
ra

ll
A

v
e
ra

g
e

-1
.2

-1
.3

-1
.7

-1
.3

-3
.6

-3
.2

-5
.0

-4
.9

-4
.9

-4
.9

52

Table 3.4: Coding Efficiency Improvements For Our Proposed Methods With Respect To
LD HEVC In Terms of Luma BDBR(%) For Video Conferencing Sequences.

Sequence
Prop ε Prop µ

LDP LDB LDP LDB

vidyo1 -10.5 -9.9 -10.7 -10.1
vidyo3 -6.8 -7.2 -7.2 -7.2
vidyo4 -10.2 -9.5 -9.5 -10.1

AVERAGE -9.2 -8.9 -9.5 -9.1

Table 3.5: Coding Efficiency Improvements For Our Proposed Methods With Respect To
LD HEVC In Terms of Luma BDBR(%) For Merged Sequences.

Sequence
Prop µ

LDP LDB

BasketballDrillPartyScene400 -6.2 -6.2
BasketballPassBQSquare400 -3.3 -2.9
KristenAndSaraJohnny400 -8.5 -8.1

AVERAGE -6.0 -5.73

53

gains over the default LD HEVC benchmark. Table 3.3 shows the overall luminance BDBR
results for the QPC [144], QPR [78], CTU-based [45], and the proposed methods (Prop),
respectively. From Table 3.3, it can be seen that the QPC method achieves -1.2% and
-1.3% BDBR improvements for LDP and LDB, respectively, the QPR method achieves -
1.7% and -1.3% BDBR improvements for LDP and LDB, respectively, and the CTU-based
method achieves -3.6% and -3.2% BDBR improvements for LDP and LDB, respectively.
Table 3.3 also shows that the ε−prediction achieves -5.0% and -4.9% BDBR improvements
for LDP and LDB, respectively, and the µ−prediction achieves -4.9% and -4.9% BDBR
improvements for LDP and LDB, respectively. From these results, it can be seen that our
proposed methods provide higher coding efficiency gains than the QPC, QPR, and CTU-
based methods. Figure 3.6 shows some RD curve comparisons for our methods for some
sequences, where the proposed methods on average outperform the default LDP HEVC.
Furthermore, we can observe from Table 3.3 that there are more than 10.0% BDBR savings
for sequences in Class E, and more than 3.0% BDBR saving for Kimono, which will be
discussed in the following subsection.

3.7.2 Analysis for the Coding Efficiency Results

It is expected for our proposed methods to work well in terms of coding efficiency on se-
quences with strong temporal dependency because they exploit the temporal dependency
among the input frames, especially that the proposed RDO model predicts its parameters
from past frames. This is indeed the case as shown in Class E sequences, for example.
Conversely, our proposed methods do not achieve the same gains with Racehorses, BQTer-
race, and SlideEditing because they contain complex scenes and large motion leading to
poor leverage of the frame-level temporal dependency.

To get some insight about our methods with sequences with complex scenes, we carried
out an experiment where we spatially divided BQTerrace video sequence into four different
quads. The four quads of the first frame are shown in Figure 3.7. As shown in this
figure, quad 1 and quad 3 contain less complex structures than quad 2 and quad 4, which
contain more subtle movements of water leading to difficulty of leveraging the temporal
correlation. The coding efficiency of our proposed methods computed on the first 100
frames of BQTerrace with respect to the default HM confirmed our understanding: (1)
the µ-prediction method achieved a coding efficiency of -2.2%, -0.4%, -1.0%, and -1.2%,
for quad 1, 2, 3, and 4, respectively under the LDP configuration, (2) the ε-prediction
method achieved a coding efficiency of -3.2%, -1.5%, -2.6%, and -0.4%, for quad 1, 2, 3,
and 4, respectively under the LDP configuration. From these results, we can conclude that
our proposed methods can work on regions of frames where temporal dependencies can

54

be leveraged. In addition, the ε−prediction method can work better in sequences with
complex scenes than the µ−prediction method.

(a) BQTerrace Quad One (b) BQTerrace Quad Two

(c) BQTerrace Quad Three (d) BQTerrace Quad Four

Figure 3.7: First frame of the BQTerrace video sequence divided into quads where quad
one and three contain less complex structures than quad two and four.

To confirm that our methods perform particularly well on sequences with strong tem-
poral dependency, we carried an experiment on extra three stationary and low-motion
sequences, namely vidyo1, vidyo3, and vidyo4. This experiment followed the adaptive QP
algorithm explained in subsection 3.5.3 for ε and µ methods. Table 3.4 indicates that
the proposed ε has 9.2%, 8.9% BDBR savings for LDP and LDB, respectively, and the
µ has 9.5%, 9.1% BDBR savings for LDP and LDB, respectively. From these results, it
can be observed that the proposed µ-method works better than ε−method in slow motion
sequences. On top of that, we can deduce that our proposed methods can improve the
coding efficiency of video conferencing sequences by a large margin.

As seen by Algorithms 2 and 3, our proposed methods are predictive in nature because
they use past distortion information to predict the future distortion information to calculate

55

the temporal distortion dependency relationship, µ, and eventually the impact factor of
each frame, εi. This approach is beneficial in sequences that have scene changes or sudden
changes of content as reflected by Kimono where our adaptive QP methods can achieve
-3.5% coding efficiency improvement in the LDP configuration.

To gain more insight about this phenomenon into our proposed algorithms, we carried
out two experiments. First, we plot the QP per frame from the µ−prediction LDP method
for FourPeople and Kimono at initial QP = 27 as shown in Figure 3.8. From this figure,
it can be seen that FourPeople has a relatively fixed QP pattern because this sequence
has a very strong temporal dependency. Comparing FourPeople with Kimono, we can see
that Kimono’s QP pattern suddenly changes at POC=144 and is relatively decreased with
respect to the first part of Kimono because a scene change occurs at POC=140 and Ki-
mono’s second part has a stronger temporal correlation than its first part. Second, to get
an even deeper look at this phenomenon for our methods, we carried out another experi-
ment where we created three sequences by merging the first 200 frames of two sequences in
Class C, D, E. Similar to Kimono, each of these sequences has only one scene change. For
Class C, we merged BasketballDrill and PartyScene, merged BasketballPass and BQSquare
for Class D, and merged KristenAndSara and Jhonny for Class E. Afterward, we run our
µ−prediction method under the LDP and LDB configurations on these three sequences
and observe the results. The experiment settings are the same as the ones for the standard
HEVC sequences. Table 3.5 demonstrates that the µ−prediction method provides some
average coding efficiency improvements in the extra merged sequences under test. Based on
these two experiments, our proposed methods can react to sequences with sudden changes
in content and can on average improve the RD performance of scene change sequences.

3.7.3 Quality Fluctuation

Quality fluctuation is one of the important aspects to evaluate for the encoded video
because if the amount of quality fluctuations is relatively high, then the decoded video will
not be as appealing to human perception.

To assess the quality fluctuations of our proposed methods, we carried out an experi-
ment to measure the standard deviation (std) of PSNR for the default HM, the ε−method,
and the µ−method under the LDP configuration, as indicated in Table 3.6. This table
shows the average std of PSNR for each sequence across QPs equals to {22, 27, 32, 37}.
Each row in Table 3.6 corresponds to particular sequence, its average std of PSNR under
default LDP HM, its average std of PSNR under the ε−method with a number between
parenthesis indicating the difference between the std of ε−method and default HM, its

56

0 50 100 150 200 250

Picture Order Count

22

24

26

28

30

32

34

36

Q
P

FourPeople

(a) Fourpeople at QP = 27

0 50 100 150 200 250

Picture Order Count

22

24

26

28

30

32

34

36

Q
P

Kimono

(b) Kimono at QP = 27

Figure 3.8: QP Per Frame for Fourpeople, Kimono at QP = 27 using µ−prediction for
LDP.

average std of PSNR for the µ−method with a number between parenthesis indicating
the difference between the std of ε−method, respectively. At the end of each class of
sequences, we compute the overall average of HM and proposed methods as well as the
average differences between the proposed methods and the default HM.

Table 3.6 indicates that the overall average std for the proposed ε−method is 0.14 dB
away from default HM, and the overall average std for the proposed µ−method is 0.17 dB
away from the default HM. Except for sequences that contain significantly large motion,
this average difference is approximately consistent across the vast majority of sequences
and also decreases to 0.06 dB in some sequences. For example, the BDBR savings in class
E under LDP HEVC are 12.8% and 12.9% in ε−method and µ−method, respectively.
These BDBR savings are at the expense of an average difference in terms of PSNR std of
only 0.12 dB, 0.13 dB for ε−method and µ−method, respectively. Furthermore, Table 3.6
shows that sequences with significantly large motion may lead to high PSNR std produced
from our methods because they predict their parameters from past frames. For instance,
the average PSNR std of SlideEditing is 0.36 dB and 0.43 dB away from the default HM
for ε−method and µ−method, respectively. These differences are also reasonable because
SlideEditing in particular contains a lot of large motion. Additionally, although the QP
pattern for our proposed methods shown in Figure 3.8 for Kimono and FourPeople appear
to cause more quality fluctuations compared to default HM, the average std of Kimono
and FourPeople in the µ-method is only 0.02 dB and 0.14 dB away from the default HM.

57

Further, Table 3.6 demonstrates that the differences in terms of PSNR std align with the
way how the ε and µ methods predict the coding dependency parameters. The ε method
is a group-based prediction method and thus it is expected to have slightly less PSNR std
than that of the µ-method. All the aforementioned observations were also found with our
methods under the LDB HEVC configuration. Based on this experiment, we can conclude
that the difference in terms of PSNR std between our proposed methods and the default
HM is on average range from only 0.14 dB to 0.17 dB and can decrease to ≈0.06 dB for
some sequences. Relative to the default HM encoding, we believe that these differences
may not have a significant impact on human perception.

3.7.4 Computational Complexity Analysis

To evaluate the computational complexity of our techniques, we measure the execution
time of the default LD HEVC and compare it against the execution time of our methods.
Encoding time (ET) ratio is the ratio of geometric means of encoding time. Table 3.7
shows the ET ratio per sequence, class, and overall ET ratio of the µ−prediction method
with default initialization under the LDP configuration (similar results under other settings
or configurations). It can be seen that the µ−prediction method increases the encoding
time only by 1% on average given the present coding efficiency gains. This complexity
increase is due to the additional motion estimation process required to estimate the coding
dependency for each frame (see the subsection 3.3.1). In some cases, the complexity may
decrease with respect to the default HM because if one frame in our proposed methods have
a high reconstruction quality, this will lead to smaller residuals, which in turn decreases
the time for transform, quantization, and entropy coding processes.

3.8 Chapter Summary

In this chapter, we proposed adaptive frame-level QP selection methods for the LD HEVC
by integrating the coding propagation effect into RDO through a notion called the temporal
propagation length. Based on a linear model to model the inter-frame distortion depen-
dency and analysis for the temporal propagation length, we adaptively determined the QP
value and the Lagrangian Multiplier of each frame. Experimental results demonstrated
that our methods can achieve BDBR savings for the LD configurations of 5.0% and 4.9%
for the ε−prediction method, and 4.9% and 4.9% for the µ−prediction method. All these
improvements at the expense of an insignificant average increase of 1% time overhead. In
addition, the results also show that our proposed method can provide considerable coding

58

efficiency improvements for video conferencing sequences in specific. These improvements
can go up to -12.9% and -12.2%, respectively. Overall, this chapter focused on the human
vision perspective and introduced improvements in terms of the trade-off between com-
pression rate and compression distortion at insignificant increase in encoding time. Yet,
this chapter did not tackle the huge computational intensity of HEVC due to its numerous
advanced coding tools. Along the same line of the human vision perspective, in the next
chapter, we examine the effect of creating a fully connected neural network machine based
learning strategy to work online and minimize the computational intensity in the HEVC
CU partition process, while controlling the trade-off between the compression rate and
compression distortion.

59

Table 3.6: Quality Fluctuation Comparison Between The Default HM And The Pro-
posed Methods Under LDP Configuration. Numbers Between Parenthesis Indicate The
Differences Between The Proposed Methods And The Default HM In Terms of std.

Class Sequence HM std (dB) ε std (dB) µ std (dB)

BasketballDrive 0.83 0.86 (0.03) 0.87 (0.04)
BQTerrace 0.88 0.96 (0.08) 0.98 (0.1)

B
Cactus 0.48 0.53 (0.05) 0.54 (0.06)
Kimono 0.71 0.7 (-0.01) 0.72 (0.02)

ParkScene 0.48 0.63 (0.15) 0.66 (0.18)

AVERAGE 0.68 0.74 (0.06) 0.75 (0.07)

BasketballDrill 0.52 0.6 (0.08) 0.66 (0.14)
BQMall 0.89 0.94 (0.05) 0.95 (0.06)

C
PartyScene 0.77 0.97 (0.2) 0.99 (0.22)
RaceHorses 1.44 1.47 (0.03) 1.5 (0.06)

AVERAGE 0.9 0.99 (0.09) 1.0 (0.1)

BasketballPass 1.2 1.3 (0.1) 1.36 (0.16)

D
BlowingBubbles 0.8 1 (0.2) 1 (0.2)

BQSquare 0.7 0.8 (0.1) 0.85 (0.15)
RaceHorses 1 1 (0) 1 (0)

AVERAGE 0.93 1.0 (0.07) 1.0 (0.07)

FourPeople 0.3 0.43 (0.13) 0.44 (0.14)

E
Johnny 0.2 0.3 (0.1) 0.31 (0.11)

KristenAndSara 0.3 0.41 (0.11) 0.42 (0.12)

AVERAGE 0.26 0.38 (0.12) 0.39 (0.13)

BasketballDrillText 0.6 0.75 (0.15) 0.77 (0.17)

F
ChinaSpeed 0.9 1 (0.1) 1 (0.1)
SlideEditing 0.4 0.9 (0.5) 1 (0.6)
SlideShow 3.24 3.6 (0.36) 3.67 (0.43)

AVERAGE 1.28 1.56 (0.28) 1.6 (0.32)

Overall AVERAGE 0.83 0.97 (0.14) 1.0 (0.17)

60

Table 3.7: Encoding Time Ratio of µ−prediction Under LDP Configuration

Class Sequence Encoding Time Ratio

BasketballDrive 102.3%
BQTerrace 101.6%

B
Cactus 101%
Kimono 101.9%

ParkScene 101.4%

Encoding Time Ratio 101.6%

BasketballDrill 100.1%
BQMall 101.7%

C
PartyScene 100.4%
RaceHorses 101.4%

Encoding Time Ratio 100.9%

BasketballPass 99.9%

D
BlowingBubbles 99.4%

BQSquare 99.8%
RaceHorses 100.9%

Encoding Time Ratio 100%

FourPeople 102.1%

E
Johnny 102.7%

KristenAndSara 102.3%

Encoding Time Ratio 102.4%

BasketballDrillText 99.9%

F
ChinaSpeed 102.5%
SlideEditing 102.8%
SlideShow 102.7%

Encoding Time Ratio 101.9%

Overall Encoding Time Ratio 101%

61

Chapter 4

Neural Network for HEVC CU Split
Decision equipped with Laplacian
Transparent Composite Model

This chapter examines the effect of creating a fully connected neural network based learn-
ing strategy to work online and minimize the computational intensity in the HEVC CU
partition process, while controlling the trade-off between the compression rate and com-
pression distortion. Section 4.1 reviews some related method to shrink the computational
intensity of HEVC. Section 4.2 outlines our fully connected based method to reduce the
the computational intensity of HEVC and shows some analysis, Section 4.3 demonstrate
our method with some experimental results, and Section 4.4 concludes this chapter.

4.1 Literature Review

In the literature, many methods that do not rely on neural networks (NNs) have been
proposed to shrink the computational intensity gap between HEVC and its predecessor(s).
Some of these methods are threshold-based and have fixed designs [143, 111]. For example,
method in [143] consisted of two levels: micro-level and macro-level. At the micro-level, the
number of modes of the rough mode decision (RMD) of the HEVC has been reduced via a
progressive rough mode decision (pRMD). In pRMD, a chosen subset of the 35 modes were
first tested and their corresponding sum of absolute differences (SATDs) are pre-estimated.
For the mode of the minimum SATD, another RMD would be applied to its neighbouring

62

modes, and the mode with lowest SATD is added to the result set. This algorithm halts
when there are specific number of modes added to the result set, which already has the
three MPMs. At the macro-level, an early termination for the CU splitting process exists
if the predicted RD cost of split CUs was larger than that of current CU.

Other methods, as in [62], extracted a feature dubbed as the Outlier Block Flag
(OBF) extracted from the newly emerged model, Laplacian Transparent Composite Model
(LPTCM). This feature was employed to train a Bayes model in order to decrease the
complexity of HEVC encoding. In [110], the OBF feature was extended and further com-
bined with two support vector machines (SVM) to make fast CU decisions. Each of the
two SVMs were designed to either precisely terminate or continue the partitioning process
without checking the current depth. Based on the precision statistics of each of these
SVMs, a final decision to either terminate or continue CTU partitioning will be taken.
Furthermore, SVMs were also used in [87], in conjunction with other features, for fast CU
decisions.

In this chapter, we take a different approach by applying neural networks (NNs) to
improve the complexity of the HEVC CU partition process in intra coding as a classification
problem. Our motivation comes from the recent noticeable activities of NNs in image and
video applications. For instance, an entire framework based on NNs was proposed in [124]
to build an image compression engine for the JPEG standard. In [35], a convolutional NN
(CNN) was used as a post-processing step to reduce video artifacts resulting from HEVC’s
encoding.

However, applying NNs to time-sensitive applications such as the HEVC CU partition
process is challenging. First, the learning process requires a large amount of data and long
training time. Second, even if an NN is properly populated, the time required for it to
make a decision may not be negligible, especially when it is deep. In the literature, offline
training without updation is often used to circumvent the first problem. For example,
Duanmu et. al proposed a method that utilizes CU raw pixel statistics and input them
to an NN to optimize the screen content coding (SCC) version of HEVC [44]. In their
method, the first 30 frames of the SCC sequences were extracted to offline train the NN
to provide enough samples for the NN to converge. The technique in [72] followed a
similar approach to Duanmu’s method. Likewise, CNNs were employed to ameliorate the
computational intensity of the intra encoding for HEVC in [88, 132]. In the CNN method,
the training was done offline using specific set sequences, which decreases this method’s
content adaptivity.

Instead, in this chapter, we examine the effect of creating a learning strategy to work
online and minimize the computational intensity in the HEVC CU partition process, while

63

controlling the resulting bitrate loss. Also, our goal is to propose a method to be among
the best of its NN’s counterparts. In our work, four NNs are hierarchically inserted with
one NN for each depth of the CTU. Each NN instructs the HEVC encoder to either split
the current CU and skip the RDO process at the current depth or terminate the CU search
algorithm. To alleviate the the above mentioned problems associated with NNs, we adopt
the following strategies:

• Our NNs are trained using a novel feature called CTU-based LPTCM derived from
LPTCM. This model proved its success in video content analysis [62, 110, 19].

• We propose a novel training strategy to resolve the big data challenge, allow for
adaptivity, and maximize our gains. Specifically, we periodically segment the input
video to online train the NNs and adapt them afterwards. These NNs are only trained
offline at low resolutions.

• In both online and offline training, we define a new RD-weighted cross entropy loss
and use it to maximize the accuracy.

• To control the bitrate loss and increase the time savings (TS), we selectively listen
to our NNs based on accuracy constrains.

4.2 Fully Connected Network for HEVC’s CU Parti-

tion Problem

In this section, we explain the main components of our algorithm to classify between two
classes: skip and termination. The skip class, or class 1, means to skip the current CU size
mode check and jump directly to the next depth in the CTU, whereas the termination class,
or class 0, means to stop the RDO search and move on to the next CU. CU labelling is done
by running HEVC’s reference software (HM 16.0) and getting its optimal CTU structure.
All our NNs are designed via one of the strongest NN design platforms, Google’s Tensorflow
[15].

4.2.1 Feature Extraction: CTU-based LPTCM

A lot of effort has been done in the literature to estimate the statistical distribution of
images in the DCT frequency domain. Most of those distributions suffer from the so-
called heavy tail phenomenon which happens when the tail portion decay faster than the

64

actual distribution of the frequency coefficients of the image. Transparent Composite
Model (TCM) solves this problem by modeling the tail frequency coefficients separately
from the central portion [134]. A uniform distribution is used to model the tail portion
while the main portion is modeled using a parametric distribution. To balance between
simplicity and accuracy, the Laplacian distribution is used to fit the main portion of the
image frequency coefficients. The Laplacian Transparent Composite Model (LPTCM) is
given by:

p(y|yc, b, λ)
∆
=

b

1−e
−yc
λ

1
2λ
e
−|y|
λ if |y| < yc

1−b
2(a−yc) if yc < |y| ≤ a

max

{
b

1−e
−yc
λ

1
2λ
e
−|y|
λ , 1−b

2(a−yc)

}
if |y| = yc

0 otherwise

(4.1)

where 0 ≤ b, ≤ 1, 0 < yc < a, and a represents the largest magnitude an input sample
y can take. As seen by equation 4.1, the LPTCM separates the tail of the input DCT
coefficients from its main body. It models the tail of the input DCT coefficients with a
uniform distribution while a Laplacian distribution is used to model the DCT coefficients
in the main body. According to [136], LPTCM offers very high modelling accuracy with
simplicity similar to those of pure Laplacian models.

Based on LPTCM, we create a feature extraction (FE) method that consists of four
main steps as shown in Figure 4.1. First, we divide each input CTU into 4x4 non-
overlapping blocks and transform them by a 4x4 DCT to get a coefficient map for the
frame. Second, for each 64x64 CTU, we collect 15 AC coefficient vectors corresponding to
all 4x4 coefficient blocks in this 64x64 CTU. Third, we model these vectors via LPTCM
and produce 15 LPTCM models. Each model segregates the DCT coefficients in the main
portion, inliers, from the DCT coefficients in the tail portion, outliers, via yc. As stated
in [134], outliers carry important information about the image. Therefore, our fourth step
is setting all inliers to zero and quantizing the outliers to one based on the yc of the given
LPTCM model. Then, for each w*w CU, we use its corresponding inliers and outliers
as features, while ignoring the DC coefficients from DCT [134]. This procedure is repet-
itively done for all CTUs in a given input frame. For instance, Figure 4.2 illustrates the
produced features for the zeroth picture order count (POC) of Racehorses video sequence
at QP = 22. In this figure, highly textured regions, such as the front horse’s head, are
generally characterized by more outliers and typically encoded with smaller blocks, while
the opposite is true for homogeneous regions as the CU in the top left corner.

65

64 pixels

64 pixels

4x4
DCT

[DC]

[AC1]

[AC15]

[AC2]

LPTCM1

LPTCM2

LPTCM15

Input CTU c

−200 −150 −100 −50 0 50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

0.03

−200 −150 −100 −50 0 50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

0.03

−200 −150 −100 −50 0 50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

0.03

Set the DC and inliers to zero
Set the outliers to oneOutlier

CTU

Figure 4.1: Overview on the CTU-based LPTCM Feature Extraction Method.

Figure 4.2: Left: Original POC = 0 Racehorses at QP = 22 Right: CTU-based LPTCM
POC = 0 Racehorses at QP = 22. Black = Inliers and DC, White = Outliers

66

4.2.2 Neural Network Structure

As shown in Figure 4.3, our NNs are fully connected and consist of an input layer, two
hidden layers, and an output layer. Here, only two hidden layers were employed to align
with HEVC’s time complexity demands. To avoid loss of information, the number of
neurons in the input layer is adaptive to the CU input size and equal to w ∗w, where w is
the width of the CU. Next, the first hidden layer consists of 32 neurons, while the second
hidden layer encompasses two neurons for skip and termination classes. At the end, there
is a softmax layer to compute a 2-dimensional vector p corresponding to the probabilities
of the two classes for each CU c, where 1 ≤ c ≤ n, and n denotes the total number of input
CUs.

Input 1

Input 2

...

Input w*w

...

Hidden
layer 1

Hidden
layer 2

Output

Input
layer

Output
layer

Figure 4.3: Proposed Fully Connected Neural Network Structure.

For each CU, we define an equivalent size feature vector x corresponding to its CTU-
based LPTCM output. Given that W1, W2, b1, and b2 are the weights and biases of hidden
layer one and two, respectively, we compute the output probabilities as follows:

o1 = ReLU(W T
1 x+ b1), o2 = W T

2 o1 + b2 (4.2)

p = softmax(o2) (4.3)

Here o1 and o2 are the outputs from the first and second hidden layers, respectively.
ReLU is the rectifier linear unit activation function defined as ReLU(x) = max(0, x),
and softmax is the softmax activation. Softmax computes for every CU c a normalized
probability vector as pck = e

o2k∑
j
e
o2j

, where 1 ≤ c ≤ n and k is 0 or 1.

67

Figure 4.4 shows the encoded structure of the second 64x64 CTU in the first row of
POC = 0 in Racehorses at QP = 22. As shown by the figure, despite the existence of
homogeneous regions that are visually similar such as the green grass, the RDO’s optimal
structure for some of these regions require smaller blocks than others. Normally, focusing
the neural network training on CUs with major differences in terms or R-D cost is important
to the overall trade-off between the overall coding efficiency loss and encoding time [88].
Therefore, we train our NNs with a weighted cross entropy (CE) loss to accurately predict
CUs with significant difference in R-D cost between the skip and termination classes. We
define this loss for each CU c as follows:

Lc = −wc ∗
K∑
i=1

tci ln pci (4.4)

where Lc is each CU’s loss, wc is defined as C2N−CN
C2N+CN

, C2N is the RD cost for the CU encoded
as 2Nx2N, CN is for the NxN mode, and K is the total number of classes (two in our case).
Here, tci is either 1 or 0. If tci = 1, then c ∈ class one, and tci = 0, otherwise. From
(4.4), our NNs are penalized when they misclassify CUs with significant difference between
2Nx2N and NxN modes, which controls the resulting bitrate loss as will be shown by our
experiments.

Figure 4.4: Encoded Structure of the second 64x64 CTU in the first row of POC = 0 in
Racehorses at QP=22

68

4.2.3 Offline Training Stage For Low Resolutions

In general, enough data samples are necessary for training any NN to have better estimation
of the weight parameters. As a result, at low resolutions when there are not enough samples,
we employ an offline training method in order to obtain initial NN models. This training
begins with partitioning the input video into periodic segments 0 · · · i · · ·N of 60 frames
(P = 60). Next, we obtain an initial NN model, NN(i = 0), for each of the four depths by
considering the first 30 frames as training (T = 30), and the next 30 frames as validation
(V = 30). For all QPs, initial NNs are created for all CUs in 416x240 videos and for only
16x16 and 8x8 CUs in 832x480 sequences. For these initial NNs, a learning rate equals to
0.001 was used.

4.2.4 Online Training/Adaptation Stage

Enabling adaptivity in our algorithm is done through online training and adaptation of
neural networks created within segments as shown in Figure 4.5. For any input video
sequence, we set P to 60, but T and V are set to 2 and 1, respectively. To encode the
current segment i, we restore the parameters for NN(i − 1) that is previously trained by
segment i− 1 to leverage the temporal similarities among video segments. At the start, if
i = 1 and we have offline-trained models, we consider them as a starting point. Adaptation
of NN(i − 1) to suit the current segment i is done via the first two frames in segment i
to produce a new model NN(i) used for testing. A relatively slow learning rate equals to
0.0001 was used to avoid drifting the initial offline weights.

Training Validation Testing

NNs
(i-1)

NNs
(i)

Load NNs(i-1)

Figure 4.5: Training Strategy for the CU Partition Problem.

To show the importance of adaptation, we carried out an experiment on five standard

69

HEVC sequences: Traffic, Kimono, RacehorsesC, RacehorsesD, and FourPeople. In this
experiment, we executed HEVC default intra coding and recorded the percentage of en-
coded CUs at each depth from 0 to 4 and each QP from 22 to 37 with a step size of
5. Figures 4.6, 4.7, 4.8, 4.9, and 4.10 show these percentages for Traffic, Kimono, Race-
horsesC, RacehorsesD, and FourPeople, respectively. These depth percentages show the
different behaviour of HEVC’s intra coding at each depth and each QP for each input
sequence. Therefore, online training and adaptation for our neural networks is important.

POC

Pe
rc

en
ta

ge
 (%

)

0

20

40

60

0 50 100 150

Depth 4

Depth 3

Depth 2

Depth 1

Depth 0

Traffic_22_Depth_Percent

(a) Traffic @ QP = 22

POC

Pe
rc

en
ta

ge
 (%

)

0

20

40

60

0 50 100 150

Depth 4

Depth 3

Depth 2

Depth 1

Depth 0

Traffic_27_Depth_Percent

(b) Traffic @ QP = 27

POC

Pe
rc

en
ta

ge
 (%

)

0

20

40

60

0 50 100 150

Depth 4

Depth 3

Depth 2

Depth 1

Traffic_32_Depth_Precent

(c) Traffic @ QP = 32

POC

Pe
rc

en
ta

ge
 (%

)

0

20

40

60

0 50 100 150

Depth 4

Depth 3

Depth 2

Depth 1

Depth 0

Traffic_37_Depth_Percent

(d) Traffic @ QP = 37

Figure 4.6: Percentages of each depth for Traffic video sequence using the default HEVC
Intra Coding.

4.2.5 Online Testing Stage

Accuracy statistics, represented via recall (R) and precision (P), are collected every seg-
ment in the validation stage to minimize the resulting bitrate loss and maximize R and P

70

POC

Pe
rc

en
ta

ge
 (%

)

0

20

40

60

0 50 100 150 200

Depth 4

Depth 3

Depth 2

Depth 1

Depth 0

Kimono_22_Depth_Percent

(a) Kimono @ QP = 22

POC

Pe
rc

en
ta

ge
 (%

)

0

20

40

60

0 50 100 150 200

Depth 4

Depth 3

Depth 2

Depth 1

Depth 0

Kimono_27_Depth_Percent

(b) Kimono @ QP = 27

POC

Pe
rc

en
ta

ge
 (%

)

0

10

20

30

40

50

0 50 100 150 200

Depth 4

Depth 3

Depth 2

Depth 1

Kimono_32_Depth_Precent

(c) Kimono @ QP = 32

POC

Pe
rc

en
ta

ge
 (%

)

0

10

20

30

40

50

0 50 100 150 200

Depth 4

Depth 3

Depth 2

Depth 1

Depth 0

Kimono_37_Depth_Percent

(d) Kimono @ QP = 37

Figure 4.7: Percentages of each depth for Kimono video sequence using the default HEVC
Intra Coding.

71

POC

Pe
rc

en
ta

ge
 (%

)

0

20

40

60

0 100 200 300

Depth 4

Depth 3

Depth 2

Depth 1

Depth 0

RaceHorsesC_22_Depth_Percent

(a) RacehorsesC @ QP = 22

POC

Pe
rc

en
ta

ge
 (%

)

0

20

40

60

0 50 100 150 200 250

Depth 4

Depth 3

Depth 2

Depth 1

Depth 0

RaceHorsesC_27_Depth_Percent

(b) RacehorsesC @ QP = 27

POC

Pe
rc

en
ta

ge
 (%

)

0

20

40

60

80

0 50 100 150 200 250

Depth 4

Depth 3

Depth 2

Depth 1

RaceHorsesC_32_Depth_Precent

(c) RacehorsesC @ QP = 32

POC

Pe
rc

en
ta

ge
 (%

)

0

20

40

60

80

0 50 100 150 200 250

Depth 4

Depth 3

Depth 2

Depth 1

Depth 0

RaceHorsesC_37_Depth_Percent

(d) RacehorsesC @ QP = 37

Figure 4.8: Percentages of each depth for RacehorsesC video sequence using the default
HEVC Intra Coding.

72

POC

Pe
rc

en
ta

ge
 (%

)

0

20

40

60

0 100 200 300

Depth 4

Depth 3

Depth 2

Depth 1

Depth 0

RaceHorses_22_Depth_Percent

(a) RacehorsesD @ QP = 22

POC

Pe
rc

en
ta

ge
 (%

)

0

20

40

60

0 50 100 150 200 250

Depth 4

Depth 3

Depth 2

Depth 1

Depth 0

RaceHorses_27_Depth_Percent

(b) RacehorsesD @ QP = 27

POC

Pe
rc

en
ta

ge
 (%

)

0

20

40

60

80

0 50 100 150 200 250

Depth 4

Depth 3

Depth 2

Depth 1

Depth 0

RaceHorses_32_Depth_Precent

(c) RacehorsesD @ QP = 32

POC

Pe
rc

en
ta

ge
 (%

)

0

20

40

60

80

0 50 100 150 200 250

Depth 4

Depth 3

Depth 2

Depth 1

Depth 0

RaceHorses_37_Depth_Percent

(d) RacehorsesD @ QP = 37

Figure 4.9: Percentages of each depth for RacehorsesD video sequence using the default
HEVC Intra Coding.

of our skip and termination classes. R is the percentage of true decisions made for class 0
or 1 detected during the experiment and P is the percentage of detected decisions for class
0 or 1 that are actually correct. Now, assume that the probability vector pc = (a0, a1) is
obtained by the NN for a CU c at depth d. Here, a0 is the probability of the termination
class, whereas a1 is for the skip class. Also, suppose that pre0 and pre1 are the overall
precision of the NN at depth d for termination and skip classes, respectively. The default
execution mode for any CU is done via the default HM, but any CU executes a termination
mode only if a0 > t0 & pre0 > g0 is satisfied. On the other hand, any CU does the skip
mode if a1 > t1 & pre1 > g1. The thresholds t0, t1 are used to boost the precision so
that the majority of the predicted decisions are correct. Also, we listen to our NNs if their
precision exceed g0, g1.

After extensive simulations, we derived Algorithm 4 and Look-up Table 4.1 to select

73

POC

Pe
rc

en
ta

ge
 (%

)

0

20

40

60

0 200 400 600

Depth 4

Depth 3

Depth 2

Depth 1

Depth 0

FourPeople_22_Depth_Percent

(a) FourPeople @ QP = 22

POC

Pe
rc

en
ta

ge
 (%

)

0

20

40

60

0 200 400 600

Depth 4

Depth 3

Depth 2

Depth 1

Depth 0

FourPeople_27_Depth_Percent

(b) FourPeople @ QP = 27

POC

Pe
rc

en
ta

ge
 (%

)

0

20

40

60

0 200 400 600

Depth 4

Depth 3

Depth 2

Depth 1

Depth 0

FourPeople_32_Depth_Precent

(c) FourPeople @ QP = 32

POC

Pe
rc

en
ta

ge
 (%

)

0

20

40

60

0 200 400 600

Depth 4

Depth 3

Depth 2

Depth 1

Depth 0

FourPeople_37_Depth_Percent

(d) FourPeople @ QP = 37

Figure 4.10: Percentages of each depth for FourPeople video sequence using the default
HEVC Intra Coding.

74

t0, pre0, t1, pre1, and g0, g1, respectively. In Algorithm 4, for class 0 and 1, we compute a
recall list (rl) and precision list (pl) for thresholds from 0.5 to 0.8 with an offset equals to
0.1 and from 0.8 to 0.99 with an offset equals to 0.01. This offset setting is because R and
P do not vary much for thresholds between 0.5 and 0.8.

Afterward, we look for the best index, oid, to thresholds and pl that has a good tradeoff
between the bitrate loss represented by P and TS represented by R. Hence, we output
t0, pre0 and t1, pre1 that either produce the maximum precision with index mp in the
lists, or the maximum weighted sum of R and P . Max does this maximization with a
second parameter as the lower bound for precision. For g0 and g1, they are set to 80% by
default. However, to balance between the tradeoff between R and P , we change g0 and g1

at QP=22 or 37 when the CU width, w, meet Table 4.1’s conditions in the corresponding
HEVC classes, otherwise g0 and g1 are set as default (N/C).

Algorithm 4 Refinement Algorithm: Get t0, pre0 or t1, pre1

1: procedure searchThresholds
2: Input: rl, pl
3: Output: t0, pre0 or t1, pre1

4: c = 0.4, oid = mp
5: if Class C, D, E then x = 65 else x = 100
6: if pl(mp) ≥ 80 & rl(mp) < x OR
7: 70 ≤ pl(mp) < 80 & rl(mp) < 70 then
8: if pl(mp) ≥ 80 then
9: if 416 ≤ W < 832 then

10: oid = Max(c ∗ rl + (1− c) ∗ pl, 80)
11: else oid = Max(rl, 80)

12: else
13: oid = Max(c ∗ rl + (1− c) ∗ pl, 70)

14: if rl(oid) < 45 & 80 ≤ pl(oid) < 83 then
15: if pl(oid) ≥ 80 then
16: oid2 = Max(c ∗ rl + (1− c) ∗ pl, 77)
17: else oid2 = Max(c ∗ rl + (1− c) ∗ pl, 70)

18: if rl(oid2) > rl(oid) + 10 then oid = oid2

19: return thresholds(oid), pl(oid)

From our NNs, we found that incrementally obtaining the labels corresponding to each
CU is inefficient. If labels are incrementally obtained, it takes about 500 milliseconds

75

to compute all the labels for the first frame in Racehorses (416x240 pixels). This high
complexity is due to the large cost of the matrix multiplication operations. Figure 4.11
shows the timing diagram of the internal operations of the NN for one CU in the first frame
of Racehorses at QP=22, where the majority of the time is spend on matrix multiplications.
At QP = 22, it is important to note that this frame’s encoding time using the original
HEVC is ≈1.2 seconds. Adding the label-fetch overhead can diminish the possibility of
time savings. Given that our features are available prior encoding, we overcome this
challenge in the testing stage by leveraging these features and sending them in batches to
NNs prior encoding to prepare the labels for all possible CUs and use them to encode the
frame. This batching strategy enabled executing the matrix multiplications for all CUs all
at once in parallel and in turn minimized the label-fetch time to ≈2-9 milliseconds on the
same video frame, which enables the possibility of time savings as shown in section 4.3.

Figure 4.11: Tensorflow Timing Diagram for one sample of Racehorses video sequence
at QP=22

Table 4.1: Look-up Table for g0, g1 when QP=22 or 37. N/C: No Change

w=8 w=16 w=32

Class A g1=70, if QP=22 then g0=70
Class B, C, E g0, g1=70 N/C

Class D g1=70 N/C

4.3 Experimental Results

In this section, we demonstrate that our method is among the best NN methods with less
overall BD-rate loss (BR), and it has a potential over other methods in the literature. All
experiments are carried out on top of the intra main configuration for HM 16.0 test model
with QP=22, 27, 32, 37. All experiments are executed on a 16GB memory AMD six-core
machine, where standard HEVC sequences were used for testing.

Table 4.2 shows the BR and TS for our technique. As seen in this table, we can conclude
that our method can provide high time savings, 38% on average, while keeping the BD-rate

76

loss under control, 1.6% on average. Also, our method performs obviously better in high
motion sequences than in low motion sequences as in Class E. To compare the CU partition
structure of our fast CU algorithm vs HEVC, Figure 4.12 shows the CU split structure of
frame 20 of the Traffic video sequence at QP = 22, 37.

Table 4.2 shows the detailed results for BR and TS for our technique. As seen in this
table, we can conclude that our method can provide high time savings, 32% on average,
while keeping the BD-rate loss under control, 1.6% on average. Also, our method performs
obviously better in high motion sequences than in low motion sequences as in Class E.
To get some insight about this phenomenon, we extracted the CU structure of the default
HM at different QPs and compared it to the CU structure produced by the HM encoder
equipped with our NN algorithm for the FourPeople sequence. For the majority of the
smooth regions, Figure 4.13 indicate that our NNs tend to skip the current depth of the
tree and go to smaller CU sizes. This behaviour will be effective for sequences that have
large motion as Traffic, but may not be as effective for sequences characterized by low
motion as FourPeople.

We compare our method against others from the literature in Table 4.3. It is clear that
due to our adaptive training strategy and LPTCM features, our method provides TS while
controlling the BR compared to the other NN methods [132, 88]. Similarly, compared to the
first SVM approach [87], our method clearly controls the BR while providing time-savings.
Because [110] utilizes multiple SVMs as classifiers, the method performs better; for this
reason, multiple classifiers could be an interesting extension for our method in the future.
Looking at [62] from TS perspective, our method has 39%-40% average TS for classes A,
C, while it is 37% for [62]. In addition, our method’s TS start from 35% and can go up to
60% for high resolution sequences, which beside our overall results show the effectiveness
of the present method. Due to our online training/adaptation, we also believe that our
methods could be also extended to inter-frame coding mode decision where inter-frame
dependencies among frames and scene changes exist.

4.4 Chapter Summary

This chapter presented a new CU partition prediction method equipped with hierarchical
fully connected NN models and features from LPTCM. We proposed some adaptive train-
ing strategies to counteract the challenges of equipping NN online learning with HEVC.
Experimental results demonstrate that our technique is among the best NN methods with
controlled BD-rate loss and of comparable performance to others. Our technique achieves
32% TS average with an 1.6% BR average. In this chapter, a fully connected neural network

77

(a) HM CU Split at QP = 22 (b) NN CU Split at QP = 22

(c) HM CU Split at QP = 37 (d) NN CU Split at QP = 37

Figure 4.12: Traffic CU partition comparisons between HM-16.0 and fast algorithm.
POC = 20 (Best viewed in electronic format).

78

(a) HM CU Split at QP = 22 (b) NN CU Split at QP = 22

(c) HM CU Split at QP = 27 (d) NN CU Split at QP = 27

(e) HM CU Split at QP = 32 (f) NN CU Split at QP = 32

(g) HM CU Split at QP = 37 (h) NN CU Split at QP = 37

Figure 4.13: FourPeople CU partition comparisons between HM-16.0 and fast algorithm.
POC = 20 (Best viewed in electronic format).

79

’saw’ the manually extracted LPTCM features from an input image to make a classification
decision to help reduce the computational intensity of compression at a controlled trade-
off between compression rate and compression distortion. In the next chapter, we turn to
computer vision where we utilize much deeper CNNs that ’see’ images to extract features
and recognize objects in these images, and formulate a new framework to investigate the
impact of JPEG compression on deep learning (DL) in image classification for computer
vision perspective.

80

Table 4.2: BD Rate Loss and Time Savings (TS) Percentage for the Standard HEVC
Sequences.

Class Sequence BR loss (%) TS (%)

A
Traffic 1.13 33

PeopleOnStreet 2.4 44

AVERAGE 1.76 39

BasketballDrive 1.59 40.7
BQTerrace 1.97 31

B
Cactus 0.9 28.5
Kimono 1.7 54

ParkScene 0.2 21.4

AVERAGE 1.2 36

BasketballDrill 2.1 40.7

C
BQMall 2.4 40.12

PartyScene 0.96 37
RaceHorses 1.8 40.27

AVERAGE 1.8 40

BasketballPass 2.1 22.12
BlowingBubbles 0.78 37

D
BQSquare 1.8 37
RaceHorses 1.6 36

AVERAGE 1.57 34

FourPeople 1.1 13

E
Johnny 2.9 6

KristenAndSara 3.7 7.3

AVERAGE 2.5 9

Overall AVERAGE 1.6 32

81

Table 4.3: Comparison between the Proposed Method and Methods from the Literature.

Source BR loss(%) TS(%)

CNN-[88] 2.6 58
CNN-[132] 2.2 62
SVM-[87] 2.2 46.5
SVM-[110] 0.78 48.03
Baye’s-[62] 0.46 39.29
Proposed 1.6 32

82

Chapter 5

Compression Helps Deep Learning In
Image Classification

In Chapters 3 and 4, we focused our efforts on the human vision perspective. For exam-
ple, in Chapter 4, we have proposed a fully connected neural network that ’sees’ manually
extracted LPTCM features to make a classification decision to help reduce the compu-
tational intensity of compression at a controlled trade-off between compression rate and
compression distortion. In this chapter, we turn to machine vision where convolution neu-
ral networks directly ’see’ the input image coming from JPEG compression and formulate
a new framework to investigate the impact of JPEG compression on deep learning (DL) in
image classification. Section 5.2 provides a case study that motivates this new framework,
while Section 5.1 reviews the related work. In contrast to the conventional understand-
ing that JPEG compression generally hurts the classification accuracy of DL, we show in
Section 5.3 that our framework, for any original image, allows one to select, among many
JPEG compressed versions of the original image including possibly the original image itself,
a suitable version as an input to the underlying DNN, which helps improve the classifi-
cation accuracy of the underlying DNN while the size in bits of the selected input is, on
average, reduced dramatically in comparison with the input original image. Therefore,
compression, if used in a right manner, helps DL in image classification. Section 5.4 also
shows that within this framework other selectors can be designed to maintain the classi-
fication accuracy and reduce the size in bits of the selected input relative to the original
image. Finally, Section 5.5 concludes the chapter.

83

5.1 Literature Review

Deep learning (DL) is becoming increasingly ubiquitous in the task of image classification
due to its ability to extract desired features from raw data [70, 109, 65, 28, 112, 106, 122,
56, 120, 31]. DL is created through cascading non-linear layers that progressively produce
multi-layers of representations with increasing levels of abstraction, starting from the raw
input data and ending with the predicted output label [23, 141, 112, 73, 122, 59, 49, 91].
These multi-layers of representations are features not designed by human engineers with
considerable domain expertise, but learned from the raw data through a backpropagation
learning algorithm.

In image classification, the raw data fed into a DL machine is the pixel values of an
image to be classified. Note that the meaning of raw data in the context of DL here is with
respect to subsequently extracted features, but not in the context of compression. In the
whole pipeline of data acquisition, data encoding (i.e., compression), data transmission,
and data processing/utilization, the raw data fed into a DL machine is not ”raw”; instead,
it is generally compressed in a lossy manner. Since lossy compression is about the trade-off
between compression ratio (CR) and compression quality, many versions of compressed raw
data in the context of DL can be produced with each version having a different compression
ratio and compression quality. This in turn brings forth the following interesting question
to DL:

Question 1 which version of compressed raw data is good to DL and its related applica-
tions?

In practice, images are often compressed by JPEG encoders [10, 127, 98]. For most
practical applications with JPEG, both the CR and compression quality of a JPEG image
are controlled by a parameter called the quality factor (QF); the higher the QF, the lower
the CR and the better the compression quality. With the maximum value of QF at 100,
the majority of JPEG images in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) 2012 dataset [36, 105] have high QF values ranging from 91 to 100, implying
that they all have high compression quality.

In the literature, Question 1 was investigated to some extent on the basis of constant
QFs which are the same for all images in a whole set of JPEG images [66, 40, 145, 47, 50, 90],
as shown in Figure 5.1. Specifically, four deep neural network (DNN) models were tested
in [40] on a subset of the validation set of the ILSVRC 2012 dataset [36]. To evaluate
the impact of compression on the classification performance of these four DNN models, all
images in the subset were further compressed by JPEG with the same constant QF. These

84

compressed images with the constant QF were then fed into each of these four DNN models.
Both the top-1 classification accuracy and top-5 classification accuracy were recorded. As
the value of the constant QF decreases, curves of the top-1 classification accuracy vs QF
and the top-5 classification accuracy vs QF were plotted in [40] in the QF range from
20 to 2. It was shown in [40] that both the top-1 classification accuracy and the top-5
classification accuracy of each of the four DNN models decay as the value of the constant
QF decreases. This phenomenon of negative impact of compression on the classification
performance of DNN models was also reported in [90].

JPEG
Constant

QF
DNN

Original image

I

Prediction vector

Figure 5.1: A DNN with a JPEG compressed version of an image as an input, where QF
is a constant.

To alleviate the negative impact of JPEG compression on the classification performance
of DNN models to some extent, several methods were proposed in the literature, including
data augmentation, stability training, and due-channel training with preprocessing [145,
139, 90, 42, 24, 25]. For example, stability training was proposed in [145], where during the
training stage of a DNN model, both the original image and its distorted version are fed
into the model, and training is performed to minimize a modified cost function which takes
stability into consideration. Although these methods improve the classification robustness
of DNN models against JPEG compression and other types of distortion, there is still
a significant degradation (as high as 10%) in classification accuracy when these newly
trained DNN models are applied to low quality JPEG compressed images. Based on these
findings, it is generally believed that compression, especially JPEG compression, would
hurt the classification accuracy of deep learning in image classification.

In this chapter, we investigate Question 1 in the context of JPEG compression from a
different perspective. Instead of using a constant QF in JPEG compression for all images
in the ILSVRC 2012 dataset, we would allow each image to be compressed first with
a possibly different QF and then fed into a DNN. Specifically, let QF take values from
{100, 90, 80, 70, 60, 50, 40, 30, 20, 10}1. We associate each original image in the ILSVRC
2012 dataset with its 10 compressed versions, each compressed version corresponding to a
different QF from {100, 90, 80, 70, 60, 50, 40, 30, 20, 10}. For each image, there are now 11

1This set of QF values is simply used as an example. The idea of this chapter, however, can be applied
to any set of QF values. In addition, QF = 10 is regarded in this example as the lowest compression
quality acceptable to human.

85

different versions: 1 original version plus 10 compressed versions. Fix a DNN. As shown
in Figure 5.2, for each original image I, we now have freedom to select one version Ij out
of its 11 versions Ii, i = 0, 1, · · · , 10, to be fed into the DNN. Is there any selector that
can select, for each original image I, a suitable version Ij to be fed into the DNN so that
both the top-1 classification accuracy and top-5 classification accuracy of the DNN can
be improved significantly while the size (in bits) of the input image to the DNN can be
reduced dramatically in general?

Selector

I0 = I

JPEG
QF=100

JPEG
QF=90

...

JPEG
QF=10

DNN

I0

I1

I2

I10

Ij PI

Figure 5.2: Selection of a compressed version of an image as an input to a given DNN,
where P is the prediction vector of the DNN in response to the chosen Ij.

One of our purposes in this chapter is to settle the above question. We show that
the answer to the above question turns out to be positive. Therefore, in contrast to the
conventional understanding, compression, if used in a right manner, actually improves the
classification accuracy of a DNN significantly while also reducing dramatically the number
of bits needed to be fed into the DNN. Specifically, fix a DNN pre-trained with pristine
ImageNet images. That is, the DNN was trained with the original images in the training
set of the ILSVRC 2012 dataset. Suppose that the ground truth label of each original
image I is known to the selector in Figure 5.2, but unknown to the DNN. Under this
assumption, we propose a selector called Highest Rank Selector (HRS). For each original
image I, HRS works as follows. Examine the prediction vector Pi of the DNN in response
to each version Ii, determine the rank of the ground truth label in the sorted Pi, where
labels in Pi are sorted according to their probabilities in descending order with rank 1 being
the highest ranking, and then select the compressed version Ij as the desired input to the
DNN if the rank of the ground truth label in the sorted Pj is the highest among all sorted
Pi, where in the case of tie, HRS selects the compressed version with the lowest QF. It
can be shown that among all selectors one could possibly design, HRS achieves the highest

86

top-1 and top-5 classification accuracy and hence is optimal. When applied to Inception
V3 and ResNet-50 V2 architectures pre-trained with pristine ImageNet images [5, 7], HRS
improves, on average, the top-1 classification accuracy by 5.6% and the top-5 classification
accuracy by 1.9% on the whole ImageNet validation set. In addition, compared with the
original image, the compressed version selected by HRS also achieves, on average, the CR
of 8.

When the ground truth label of each input image is unknown to the selector in Figure 5.2
either, HRS is not applicable. Thus, we propose a selector which can maintain the same
the top-1 classification accuracy and top-5 classification accuracy as those of the given
DNN with the original image as its input. When applied to Inception V3 and ResNet-50
V2, the compressed version selected by the proposed selector achieves, on average, the CR
of 3.1 in comparison with the original image.

5.2 Motivation: Case Study

This section motivates our approach to Question 1 as illustrated in Figure 5.2. To begin
with, let us first reproduce results which lead people to the conventional understanding
that JPEG compression generally degrades classification performance of DNNs.

The conventional understanding is based on the approach shown in Figure 5.1, where
a constant QF is used to compress all images in a whole set of images. This approach can
be dubbed as “one QF vs all images”. For Inception V3 and ResNet-50 V2 pre-trained
with the original images in the training set of the ILSVRC 2012 dataset, Figure 5.3 shows
their respective curves of the top-1 classification accuracy and top-5 classification accuracy
on the whole ImageNet validation dataset vs the constant QF as the value of the constant
QF in Figure 5.1 decreases from 100 to 10 with a step size of 10. From Figure 5.3, it is
clear that classification performance deteriorates as the value of the constant QF decreases,
hereby reconfirming the conventional understanding.

Note that the concept of classification accuracy is a group notion with respect to a
whole set of images. If, however, we focus on a particular image and examine the impact
of JPEG compression with different QFs on the predicted vector of the underlying DNN—
such a perspective is dubbed as “one image vs all QFs”—the rank and probability of the
ground truth (GT) label of the image in the predicted vector do not necessarily go down
as the value of QF decreases. This is indeed confirmed by Figure 5.4. With Inception V3
pre-trained with ImageNet pristine images as the underlying DNN, Figure 5.4 shows the
ranks and probabilities of the GT labels of image #651 and #37 in the ImageNet validation

87

102030405060708090100ORG

Quality Factor (QF)

68

70

72

74

76

78

T
o

p
-1

 A
c
c
u

ra
c
y
 (

%
)

Top-1 Accuracy

Inception V3

ResNet-50 V2

(a) Top-1 Accuracy Trend

102030405060708090100ORG

Quality Factor (QF)

88

89

90

91

92

93

94

T
o

p
-5

 A
c
c
u

ra
c
y
 (

%
)

Top-5 Accuracy

Inception V3

ResNet-50 V2

(b) Top-5 Accuracy Trend

Figure 5.3: Top-1 accuracy and Top-5 accuracy degradation phenomenon for Inception
V3 and ResNet-50 V2 in the case of the “one QF vs all images” approach.

set as the value of QF decreases. From this Figure, it is clear that for a given image, a
JPEG compressed version with a lower QF could yield a higher rank of the GT label and
a larger probability of the GT label in comparison with the original image. For example,
for image #651 shown in Figure 5.5, when the original image is fed into the underlying
DNN, the GT label ranks second with probability 37% in the corresponding predicted
vector. On the other hand, when its JPEG compressed version with QF = 10 shown
in Figure 5.5 is fed into the underlying DNN, the GT label ranks first with probability
72% in the corresponding predicted vector; both the rank and probability of the GT label
are improved. The same phenomenon is observed for image #37 and in the case of the
ResNet-50 V2 architecture as well.

To shed light on why for a particular image, both the rank and probability of its GT
label resulting from a JPEG compressed version with a low QF could be higher than those
resulting from the original image, Figure 5.6 shows a pair of corresponding feature maps
extracted from the original image #651 and its JPEG compressed version with QF = 10,
respectively, by Layer 1 of Inception V3. In Figure 5.6, the feature map extracted from the
JPEG compressed image with QF = 10 is a lot of cleaner and has much better contrast
between the foreground and background than the one extracted from the original image.
This is likely due to the unequal quantization performed by JPEG on different discrete
cosine transform (DCT) coefficients, which is non-linear and reduces more energy in the
background than the foreground. This, combined with the subsequent rectified linear unit

88

102030405060708090100ORG

Quality Factor (QF)

20

30

40

50

60

70

80

G
T

 P
ro

b
a

b
ili

ty
 (

%
)

651-brambling, Fringilla montifringilla

(2)
(1)

(2) (2)

(1)

(1)

(1)

(2)

(1)

(2)

(1)

(a) Image # 651, GT label: Brambling

102030405060708090100ORG

Quality Factor (QF)

0

1

2

3

4

5

G
T

 P
ro

b
a

b
ili

ty
 (

%
)

37-Tailed frog, bell toad

(6) (6) (6) (6) (6) (7) (6) (7) (6)

(6)

(5)

(b) Image # 37, GT label: Tailed Frog

Figure 5.4: The perspective of one image vs all QFs—the ranks and probabilities of the
GT label of an image across different QFs: (a) image # 651; (b) image # 37.

(ReLU) function in Inception V3, essentially wipes out the background information.

The above case study suggests that if for any image, one can select, among its many
compressed versions including its original version, a suitable version as an input to the un-
derlying DNN, then the classification accuracy of the underlying DNN could be improved.
In addition, if a highly compressed version is selected most of time, then the size in bits of
the input is also reduced dramatically in comparison with the original image. The ques-
tion, of course, is how to select such a compressed version, which is addressed in the next
section when the GT label of the image is known to the selector.

5.3 Highest Rank Selector

With reference to Figure 5.2, in this section, we assume that the GT label of each original
image is known to the selector, but unknown to the underlying DNN. We present Highest
Rank Selector (HRS) and demonstrate its optimality in the sense of achieving the highest
classification accuracy for a given underlying DNN among all possible selectors. We also
provide empirical analysis on the performance of HRS in terms of classification accuracy
improvement and compression ratio for Inception V3 and ResNet-50 V2 pre-trained with
the original images in the training set of the ILSVRC 2012 dataset.

89

(a) Original Image

(b) QF=10 Image

Figure 5.5: Image #651 from ImageNet validation set with its GT GT label “Brambling”:
(a) the original image for which the GT label ranks second with probability 37%; (b) the
JPEG compressed image with QF = 10 for which the GT label ranks first with probability
72%. Best viewed in electronic format. 90

(a) Original Feature Map (b) QF=10 Feature Map

Figure 5.6: Feature Maps extracted from the original image #651 and its JPEG com-
pressed version with QF=10 by Layer 1 of Inception V3. Best viewed in electronic format.

5.3.1 HRS and its Optimality

Fix an underlying DNN. As illustrated in Figure 5.2, each original image I is now associated
with 11 JPEG compressed images (including the original image itself) Ii, i = 0, 1, · · · , 10.
Let Pi denote the prediction vector of the underlying DNN in response to the input Ii.
HRS now works as follows:

Step 1 For each 0 ≤ i ≤ 10, determine the rank ri of the GT label of I in the sorted Pi,
where labels in Pi are sorted according to their probabilities in descending order with
rank 1 being the highest ranking.

Step 2 Select Ij as an input to the underlying DNN if and only if

rj = min{ri : 0 ≤ i ≤ 10} (5.1)

where whenever there are multiple is achieving the above minimum, j is selected to
be the largest among those is.

Example 1 : Let the underlying DNN be Inception V3 pre-trained with the original
images in the training set of the ILSVRC 2012 dataset. For image # 651, in view of

91

Figure 5.4, HRS selects I10, the JPEG compressed image with QF=10 as an input to the
underlying DNN. For image # 37, the same is true as well since for image # 37, r10 is the
smallest as shown again in Figure 5.4.

For any selector S, let PS(I) denote the prediction vector at the output of the system
shown in Figure 5.2 with S as the selector in response to I. Let rS(I) be the rank of the
GT label of I in the sorted PS(I). For any set of images A, let AS(k) denote the top-k
classification accuracy of the system shown in Figure 5.2 with S as the selector on the image
set A. For convenience, AS(k) will be referred to as the top-k accuracy of the selector S
on the image set A as well in the rest of the chapter. The following theorem implies that
HRS achieves the highest top-k accuracy on any image set A among all possible selectors,
and hence is optimal.

Theorem 1. For any image set A, any selector S, and any k, the following holds

AHRS(k) ≥ AS(k) (5.2)

Proof. For any image I ∈ A, it follows from (5.1) that

rHRS(I) ≤ rS(I)

which further implies

{I ∈ A : rHRS(I) ≤ k} ⊇ {I ∈ A : rS(I) ≤ k}

Therefore

AHRS(k) =
|{I ∈ A : rHRS(I) ≤ k}|

|A|

≥ |{I ∈ A : rS(I) ≤ k}|
|A|

= AS(k)

where for any set C, |C| denotes the cardinality of C. This completes the proof of Theo-
rem 1.

Before we conclude this subsection, let us mention an application scenario where the
GT label of the image I is indeed known to the selector in Figure 5.2, but unknown to
the underlying DNN. Consider, for example, a party gathering with a lot of participants
and high security requirements. Before the party gathering, each invited participant is

92

requested to provide his/her high quality photo along with his/her identification (ID) in-
formation to the party organizer. Upon receiving the photo and ID information of an
invited participant, the organizer later on issues to the invited participant a formal invita-
tion letter with the photo (possibly further compressed by JPEG) embedded in a chip. At
the time of party gathering, each invited participant will go through security by presenting
the invitation letter to an underlying DNN which in turn reads the photo inside the chip
of the letter to determine the ID of the invited participant. In this case, the organizer can
act as a selector with the knowledge of the ID of each invited participant (i.e., the GT
label of the original high quality photo corresponding to the invited participant), which is
unknown to the underlying DNN; the photo put inside the chip is the JPEG compressed
version selected by the selector. Both the classification accuracy of the selector and the size
in bits of the selected JPEG compressed image inside the chip of each letter are important.

5.3.2 Empirical Results and Analysis

Table 5.1 tabulates the top-1 and top-5 accuracy results of HRS on the whole ImageNet
validation dataset for Inception V3 and ResNet-50 V2 pre-trained with the original images
in the training set of the ILSVRC 2012 dataset, respectively. As shown in this table, the
average accuracy improvement for Inception V3 and ResNet-50 V2 is 5.6% in terms of
top-1 accuracy and 1.9% in terms of top-5 accuracy.

Table 5.1: Top-1 Accuracy and Top-5 Accuracy of HRS on the whole ImageNet validation
dataset.

Underlying Default HRS Default HRS
DNN Top-1 Top-1 Top-5 Top-5

Inception V3 77.6% 83.37% 93.8% 95.79%
ResNet-50 V2 75.58% 80.95% 92.8% 94.64%
Average Diff - 5.6% - 1.9%

Figures 5.7 and 5.8 show the histograms of the QF values selected by HRS for Inception
V3 and ResNet-50 V2, respectively. It is observed from Figures 5.7 and 5.8 that in both
cases, a JPEG compressed version with a lower QF is selected by HRS more often than its
counterpart with a higher QF, and the lowest QF value QF = 10 is selected by HRS more
than 76% times. This in turn translates into a dramatic reduction in the size (in bits) of
the selected input to the underlying DNN in comparison with the original image, as shown
in Table 5.2, where the default size is the total size in Gigabytes (GB) of all original images

93

in the ImageNet validation dataset, and the HRS size is the total size of all selected images
by HRS. The compression ratio achieved by HRS is, on average, 8.

0.3% 0.6% 0.9% 1% 1.1% 1.2% 1.6% 2.2%
4%

10.6%

76.5%

ORG 100 90 80 70 60 50 40 30 20 10

QF Selected

0

0.5

1

1.5

2

2.5

3

3.5

4

Im
a

g
e

 C
o

u
n

t

10
4

Figure 5.7: The histogram of QF values selected by HRS for Inception V3.

Now take A to be the whole ImageNet validation dataset. Let D be the default selector
which always selects the original image I as an input to the underlying DNN. Note that
for any I ∈ {I ∈ A : rHRS(I) ≤ k} − {I ∈ A : rD(I) ≤ k}, HRS improves the rank of the
GT label of I from being below top-k to top-k. To have a better understanding on HRS,
let us examine, through examples, feature maps extracted by some layers of the underlying
DNN from the original image I and the compressed image selected by HRS, respectively,
for I ∈ {I ∈ A : rHRS(I) ≤ k}−{I ∈ A : rD(I) ≤ k} 2. To be specific, take the underlying

2https://github.com/HossamAmer12/visualize_inception_featureMaps

94

https://github.com/HossamAmer12/visualize_inception_featureMaps

0.2% 0.6% 1% 1.1% 1.2% 1.4% 1.7% 2.4%
4.3%

10.2%

76%

ORG 100 90 80 70 60 50 40 30 20 10

QF Selected

0

0.5

1

1.5

2

2.5

3

3.5

4

Im
a
g
e
 C

o
u
n
t

10
4

Figure 5.8: The histogram of QF values selected by HRS for ResNet-50 V2.

Table 5.2: Compression performance of HRS for the whole ImageNet validation dataset.

Underlying Default size HRS CR
DNN (GB) size (GB)

Inception V3 6.7 0.83 8.1x
ResNet-50 V2 6.7 0.84 8x

Average 6.7 0.84 8x

95

DNN to be Inception V3 pre-trained with the original images in the training set of the
ILSVRC 2012 dataset.

Example 2 : Let I be image # 651. In view of Figure 5.4, HRS selects I10, and rHRS(I) =
1 while rD(I) = 2. Therefore, I ∈ {I ∈ A : rHRS(I) ≤ 1}−{I ∈ A : rD(I) ≤ 1}. Figure 5.9
shows feature maps extracted by Layer 2 of Inception V3 from the original image #651
and the compressed image I10 selected by HRS, respectively. From this Figure, it can be
observed that feature maps extracted from the compressed image are generally a lot of
cleaner and have much better contrast between the foreground information, i.e the bird,
and the background information than their counterparts from the original image. For
any particular pair of feature maps extracted from the original image and the compressed
image I10, respectively, the bird is either visible or invisible in both of them. Whenever the
bird is visible, the background of the feature map extracted from the compressed image
is simple or more less wiped out, whereas the background of the feature map extracted
from the original image is complicated and still contains significant energy most of times.
These differences will be propagated to subsequent layers of Inception V3 (see Figure 5.10
for example). It is these difference along with the clearer texture on the body of the bird
in the compressed image (see Figure 5.5) that makes the underlying DNN to distinguish
a Brambling bird from a Junco snowbird that was original ranked first in the probability
vector produced by the original image.

Example 3 : Let I be image # 37. In view of Figure 5.4, HRS selects I10, and rHRS(I) =
5 while rD(I) = 6. Therefore, I ∈ {I ∈ A : rHRS(I) ≤ 5} − {I ∈ A : rD(I) ≤ 5}.
Figure 5.11 shows the original image I and its JPEG compressed version with QF = 10.
Their respective feature maps extracted by Layer 2 of Inception V3 are illustrated in
Figure 5.12. From these figures, the same understanding as explained in Example 2 can be
confirmed. In feature maps extracted from the JPEG compressed version with QF = 10,
the contrast is improved and interference information such as tiny spots on the frog’s body
is removed. Also, key features for the frog, such as the outlier of its body, are retained.
The tiny spots in the frog’s body make image #37 confused with a spotted salamander,
which was ranked fifth with the original input image. Again, all of these differences will
be propagated to subsequent layers of Inception V3 (see Figure 5.13 for example).

To further study impact of JPEG quality factor variations, we applied HRS on a dif-
ferent set of quality factors for each input original image than what we use in this chapter.
This set of quality factors start from 0 until 100 with a step size of 5. In this case, we input
the original input image in addition to its 21 quality factor versions to the HRS selector
to output the final selection to feed it to the underlying subsequent DNN. Experimental
results show that using HRS selector: (1) the top-1 accuracy of Inception V3 and ResNet-
50 V2 became 85.302%, and 83.126%, respectively, (2) the top-5 accuracy of Inception

96

(a) Feature maps from the original image

(b) Feature maps from the compressed image with QF = 10

Figure 5.9: Feature maps extracted by Layer 2 of Inception V3 from the original Im-
age#651 with GT label “Brambling” from the ImageNet validation dataset and its JPEG
compressed version with QF = 10. Best viewed in electronic format

97

(a) Original Image Visualization

(b) Compressed Image Visualization

Figure 5.10: Feature maps extracted by Layer 3 of Inception V3 from the original Im-
age#651 with GT label “Brambling” from the ImageNet validation dataset and its JPEG
compressed version with QF = 10. Best viewed in electronic format

98

V3 and ResNet-50 V2 became 96.348%, and 95.262%, respectively. These classification
accuracy results are improved with respect to the results in Table 5.1 due to the increased
granularity of the QF range, which gives more freedom to the HRS selector. Table 5.3 also
shows the contributions of the QF values selected by HRS for Inception V3 and ResNet-50
V2, respectively. This table confirms in both cases that a JPEG compressed version with
a lower QF is selected by HRS more often than its counterpart with a higher QF.

Table 5.3: Percentages of QF values selected by HRS with the Original Image and its 21
QF Versions using Inception V3 and ResNet-50 V2.

Image Version Inception V3 (%) ResNet-50 V2 (%)
ORG 0.084 0.058
100 0.134 0.126
95 0.338 0.490
90 0.334 0.346
85 0.472 0.552
80 0.426 0.456
75 0.386 0.048
70 0.432 0.298
65 0.470 0.318
60 0.484 0.464
55 0.450 0.114
50 0.542 0.510
45 0.668 0.480
40 0.742 0.684
35 1.084 2.612
30 1.328 1.552
25 2.016 2.224
20 3.266 3.304
15 6.476 6.360
10 20.666 18.476
5 32.250 26.820
0 26.952 33.708

To summarize, we have shown that if a JPEG compressed version of an image is selected
on an individual image base as an input to an underlying DNN and the GT label of
the original image is known to the selector (but unknown to the underlying DNN), the

99

(a) Original Image

(b) QF=10 Image

Figure 5.11: Image #37 from the ImageNet Validation dataset with its GT label “Tailed
frog”: (a) the original image; (b) the JPEG compressed version with QF = 10. Best viewed
in electronic format.

100

(a) Original Image Feature Maps

(b) Compressed Image Feature Maps

Figure 5.12: Feature maps extracted by Layer 2 of Inception V3 from the original Im-
age#37 with GT label “Tailed Frog” from the ImageNet validation dataset and its JPEG
compressed version with QF = 10. Best viewed in electronic format

101

(a) Original Image Visualization

(b) Compressed Image Visualization

Figure 5.13: Feature maps extracted by Layer 3 of Inception V3 from the original Im-
age#37 with GT label “Tailed Frog” from the ImageNet validation dataset and its JPEG
compressed version with QF = 10. Best viewed in electronic format

102

classification performance of the underlying DNN can be improved significantly while the
size in bits of the input image can be reduced dramatically. In addition, in our paper
[133], we trained Inception V3 and ResNet-50 V2 with a strategy inspired by the HRS
selector. This strategy assumes that the GT label is unknown to the selector as well
as the underlying DNN and yields an average increase of classification accuracy of 0.4%.
Therefore, in contrast to conventional understanding, JPEG compression indeed helps DL
in image classification. In the next section, we will show other selectors that maintain the
accuracy of DNNs, but while significantly reducing the size in bits of the input images for
long-term storage purposes.

5.4 Selectors Maintaining Classification Accuracy While

Reducing Input Size

Let us now go back to Figure 5.2 and assume that the GT label of the original image is
unknown to the selector therein. In this section, we present three selectors which maintain
the same top-1 accuracy, the same top-5 accuracy, and the same top-1 accuracy and top-5
accuracy as those of the underlying DNN, respectively, while reducing the size in bits of
the input image to the underlying DNN to some degree. These three selectors are referred
to as Top-1 Keeper (T1K), Top-5 Keeper (T5K), and Top-1 and Top-5 Keeper (TTK),
respectively.

For any original image I, T1K selects Ij as an input to the underlying DNN if and only
if 0 ≤ j ≤ 10 is the largest integer such that the top-1 label in the sorted Pj is the same
as that in the sorted P0. Similarly, for any original image I, T5K selects Ij as an input
to the underlying DNN if and only if 0 ≤ j ≤ 10 is the largest integer such that the set
of top-5 labels within the sorted Pj is the same as that in the sorted P0. Likewise, TTK
selects Ij as an input to the underlying DNN if and only if 0 ≤ j ≤ 10 is the largest integer
such that both the top-1 label in and the set of top-5 labels within the sorted Pj are the
same as those in the sorted P0, respectively. It is clear that on any set of images, T1K
achieves the same top-1 accuracy as that of the underlying DNN, T5K achieves the same
top-5 accuracy as that of the underlying DNN, and TTK achieves the same top-1 accuracy
and top-5 accuracy as those of the underlying DNN.

Table 5.4 shows the top-1 accuracy and top-5 accuracy of T1K and T5K on the whole
ImageNet validation dataset when the underlying DNN is Inception V3 and ResNet-50
V2 pre-trained with the original images in the training set of the ILSVRC 2012 dataset,
respectively. As seen from this table, T1K degrades the top-5 accuracy by up to 1.5%, and

103

T5K reduces the top-1 accuracy by up to 1.26%. However, the advantage is the dramatic
reduction in the input size in bits. Tables 5.5 and 5.6 show CR results of T1K, T5K, and
TTK for the whole ImageNet validation dataset when the underlying DNN is Inception
V3 and ResNet-50 V2, respectively. In Tables 5.5 and 5.6, the default size is the total size
in GB of all original images in ImageNet validation dataset, while the new size is the total
size of all selected input images by T1K, T5K, or TTK as the case may be. As seen in
these tables, the compression ratios achieved by T1K, T5K, and TTK, are on average 8.8,
3.3, and 3.1, respectively.

Table 5.4: Top-1 and top-5 accuracy results of T1K and T5K on the whole ImageNet
validation dataset.

Selector Inception Inception ResNet-50 ResNet-50
V3 Top-1 V3 Top-5 V2 Top-1 V2 Top-5

Default 77.6% 93.8% 75.58% 92.8%
T1K 77.6% 92.5% 75.58% 91.3%
T5K 76.7% 93.8% 74.32% 92.8%

Table 5.5: Compression ratio results of T1K, T5K, and TTK for the whole ImageNet
validation dataset with Inception V3 as the underlying DNN.

Selector Default size New size CR
(GB) (GB)

T1K 6.7 0.76 8.8x
T5K 6.7 2.1 3.1x
TTK 6.7 2.3 2.9x

Table 5.6: Compression ratio results of T1K, T5K, and TTK for the whole ImageNet
validation dataset with ResNet-50 V2 as the underlying DNN.

Selector Default size New size CR
(GB) (GB)

T1K 6.7 0.76 8.8x
T5K 6.7 1.9 3.5x
TTK 6.7 2.0 3.3x

104

These results demonstrate the advantage of selectors in Figure 5.2 in terms of input
storage savings while roughly maintaining the classification accuracy of the underlying
DNN. Applications that require long-term storage of multimedia such as image surveillance
will benefit from these selectors.

5.5 Chapter Summary

We have formulated, in this chapter, a new framework to investigate the impact of JPEG
compression on deep learning (DL) in image classification. Fix an underlying deep neural
network (DNN) pre-trained with pristine ImageNet images. For any original image, the
framework allows one to select, among many JPEG compressed versions of the original
image including possibly the original image itself, a suitable version as an input to the
underlying DNN. It has been demonstrated that within the framework, a selector can
be designed so that the classification accuracy of the underlying DNN can be improved
significantly while the size in bits of the selected input is, on average, reduced dramatically
in comparison with the original image. Therefore, compression, if used in a right manner,
helps DL in image classification, which is in contrast to the conventional understanding
that JPEG compression generally degrades the classification accuracy of DL.

Specifically, in the case where the ground truth label of the original image is known
to the selector but unknown to the underlying DNN, a selector called Highest Ranking
Selector (HRS) has been presented and shown to be optimal in the sense of achieving the
highest top-k accuracy on any set of images for any k among all possible selectors. When
the selection is made among the original image and its 10 JPEG compressed versions with
their quality factor (QF) values ranging from 100 to 10 with a step size of 10, HRS improves,
on average, the top-1 accuracy and top-5 accuracy of Inception V3 and ResNet-50 on the
whole ImageNet validation set by 5.6% and 1.9%, respectively while reducing the input size
in bits dramatically—the compression ratio (CR) between the size of the original images
and the size of the selected input images by HRS is 8 for the whole ImageNet validation
dataset.

Selectors without the knowledge of the ground truth label of the original image have
also be proposed. They either maintain the top-1 accuracy, top-5 accuracy, or top-1 and
top-5 accuracy of the underlying DNN. It has been shown that when applied to Inception
V3 and ResNet-50, these selectors achieve CRs of 8.8, 3.3, and 3.1, respectively for the
whole ImageNet validation dataset.

Although only JPEG compression has been considered, the proposed framework can be
applied to any other codecs such as HEVC and H.264 [119], [131] as well. For example, we

105

applied our HRS selector to the ImageNet validation set under HEVC compression with
the following QP set {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42,
44, 46, 48, 50, 51}. Experimental results show that using HRS selector improved the default
accuracy of Inception V3 and ResNet-50 V2: (1) the top-1 accuracy of Inception V3
and ResNet-50 V2 became 86.56%, and 84.384%, respectively, (2) the top-5 accuracy of
Inception V3 and ResNet-50 V2 became 96.77%, and 95.624%, respectively. It is worth
noting that HEVC’s least quality level, QP = 51, was the most selected with percentages
equals to 28.706% and 29.6% in the case of Inception V3 and ResNet-50 V2, respectively.

Therefore, our results also motivate the development of new compression theory and
algorithms for DL, which have to achieve good trade-offs among the compression rate,
compression distortion, and classification accuracy, where the compression distortion is for
human, and the classification accuracy is for DL machines. Developing these new and
hopefully universal compression theory and algorithms is left open for future research. We
also believe that compression will be a vital component in the pre-processing stage of DNN
design to improve performance.

106

Chapter 6

Conclusion and Future Work

This chapter concludes the thesis with a summary of contributions and presents a few
thoughts on future research.

6.1 Conclusion

This thesis has proposed a variety of novel image/video compression algorithms to serve
today’s multimedia system that should serve each of human and machine visions. For
human vision, our goal was focused on video compression to improve the trade-off be-
tween compression rate, compression distortion, and time complexity, while our goal for
machines was to show that compression, if used in the right manner, can help improve
the classification accuracy for DNN machines, while reducing the size in bits of the input
image.

Towards the human vision perspective, we proposed adaptive frame-level QP selection
methods for the LD HEVC by integrating the coding propagation effect into RDO through
a notion called the temporal propagation length, which is defined as the impact length of
the current frame on its future frames. Based on a linear model to model the inter-frame
distortion dependency and analysis for the temporal propagation length, we adaptively
determined the QP value and the Lagrangian Multiplier of each frame. Experimental
results demonstrated that our methods can achieve BDBR savings for the LD configurations
of 5.0% and 4.9% for the ε−prediction method, and 4.9% and 4.9% for the µ−prediction
method. All these improvements at the expense of an insignificant average increase of 1%
time overhead. In addition, the results also show that our proposed method can provide

107

considerable coding efficiency improvements for video conferencing sequences in specific.
These improvements can go up to -12.9% and -12.2%, respectively. It is worth nothing that
our algorithm and results piqued the serious interest of Google in adopting the proposed
LD adaptive QP algorithm in their VP9 codec. Hence, we plan to push our adaptive QP
algorithm in their systems.

Along the same line of the human vision perspective, we presented a new CU parti-
tion prediction method equipped with hierarchical fully connected NN models and features
from LPTCM to minimize the computational intensity in the HEVC CU partition process,
while controlling the trade-off between the compression rate and compression distortion.
Also, we highlighted challenges to equip NN online learning with HEVC and proposed
adaptive training strategies to these challenges. Experimental results demonstrated that
our technique is among the best NN methods with controlled BD-rate loss and of compa-
rable performance to others. Our technique achieves 32% TS average with 1.6% BD-rate
average, and attains time savings that can go up to 60% for high resolution sequences at
low bitrates.

In the proposed CU partition algorithm, a fully connected NN machine ’saw’ manually
extracted LPTCM features to make a classification decision to help reduce the compu-
tational intensity of compression at a controlled trade-off between compression rate and
compression distortion.

Turning to the machine vision perspective where convolutional neural network directly
’see’ the input JPEG image, we formulated a new framework to investigate the impact of
JPEG compression on deep learning (DL) in image classification. Fix an underlying deep
neural network (DNN) pre-trained with pristine ImageNet images. For any original image,
the framework allows one to select, among many JPEG compressed versions of the original
image including possibly the original image itself, a suitable version as an input to the un-
derlying DNN. It is demonstrated that within the framework, a selector can be designed so
that the classification accuracy of the underlying DNN can be improved significantly while
the size in bits of the selected input is, on average, reduced dramatically in comparison
with the original image. Therefore, compression, if used in the right manner, helps deep
learning in image classification. With the proposed framework, we demonstrate for the first
time that JPEG image compression helps improve the classification accuracy of the under-
lying DNN while the size in bits of the selected input is, on average, reduced dramatically
in comparison with the input original image. This demonstration is on the contrary of
the conventional understanding that JPEG compression generally hurts the classification
accuracy of DL. We also proposed other selectors to maintain the top-1 accuracy, top-5
accuracy, top-5 accuracy, while reducing the size in bits of the input images.

108

6.2 Future Work

Needless to say, the research in this thesis can be extended in several ways. That being
said, we discuss some of these ways in the following that can be pictured in Figure 1.1 as
mentioned in the introduction section.

6.2.1 Human Vision Perspective: CTU-based Adaptive QP Se-
lection and Inter-dependency Aware Rate Control

In this thesis, we have proposed an adaptive frame-level QP selection algorithm for the
hierarchical coding structure in LD HEVC by characterizing the coding propagation ef-
fect through a notion called temporal propagation length. This algorithm achieved overall
BDBR savings that go up to 5.0% and 4.9% for LDP and LDB HEVC, respectively. How-
ever, this work could be extended in several ways. To tackle one way, as reported in
Section 3.7, our algorithm do not achieve the same improvements with sequences with
complex scenes and large motion leading to poor leverage of the frame-level temporal
dependency. As part of future work, we believe that extending our algorithm to the CTU-
level while taking into consideration the utilization percentages of all past frames in the
encoding order as well as adaptive temporal propagation lengths can enhance the current
global RDO model leading to an increase in the coding efficiency improvements. To tackle
another way, the R-λ based rate control scheme has been adopted in HEVC due to its
coding efficiency improvements of 15.9% in LD coding over the previous rate control tech-
niques [80]. The R-λ involves two main steps: bit allocation and quantisation parameter
selection, where bit allocation is an important key to coding efficiency improvements. We
believe that our proposed RDO model can be combined with the bit allocation step in
the current R-λ method under the LD HEVC configuration; thus, more potential coding
efficiency improvements can be realized [55].

6.2.2 Machine Vision Perspective: Design of Compression tar-
geting Machine Vision

To date, all image/video data has been typically consumed by humans, but there will
be an increasing demand for this video data to be consumed and processed by machines.
According to Cisco’s visual networking index published in February 2019, it has been
estimated that global machine-to-machine (M2M) traffic will increase more than seven-
fold from 2017 to 2022. In a few years, imagine that you are driving your self-driving car

109

and you approach a reckless motorcycle. Your car should recognize this motorcycle, slow
down, pull to the right, and communicate with other cars of different models about this
potential accident; all of this should happen, while you are checking your email, watching
a movie or even reading a book. This example among others implies a strong need in
optimizing image/video for machine vision [113, 43].

Neural networks were built and inspired based on human brains. In particular, hu-
man visual system solves the image recognition task through hierarchical processing along
the ventral pathway of the visual cortex. Given this hierarchy, the visual preference of
neurons gradually increases from oriented bars in primary visual cortex (V1) to complex
objects in inferotemporal cortex (IT), where neural activity provides a robust, invariant,
and linearly-separable object representation [38, 39]. Along the same line, DNNs are
widely-used because of their ability in extracting the required features for classification
from the raw pixels of images [49]. To extract these features, DNNs learn the parame-
ters of non-linear activation functions using a backpropagation learning algorithm. These
functions progressively transform raw pixels of the input image to produce the output pre-
dicted label. These non-linear functions provide multi-layer representations to the input
image, where each representation is a feature that amplifies certain aspects of the raw
pixels required for classification and suppress irrelevant information. Typically, the first
few representations project primitive features such as existence of edges, their orientations,
and their arrangements. Subsequent layers combine representations from previous layers
to classify familiar objects [73].

Since late 1980s, a range of image and video lossy codecs from JPEG to HEVC and
beyond have been introduced to obtain better trade-off between compression rate and
compression distortion, while paying little attention to the DNN machine’s classification
accuracy [127, 98, 131, 119]. In the literature, some compression methods targeting machine
vision have been proposed. For example, [90] proposed a three-level quantization step size
method based on the importance of the frequency coefficients to specific DNN. Their results
show that they can reduce the size in bits of the input image, while only maintaining the
accuracy of DNNs.

This thesis showed that the compression, if used in the right manner, can improve the
accuracy of DNNs and reduce the size in bits of the input image. However, our selectors
in this thesis were based on JPEG compression and utilized, for each original image, 11
compressed versions including the original itself. The HRS optimal selector with the most
gains in terms of accuracy and compression ratio required the knowledge of the ground
truth label. This discussion culminates in the following two questions: Can we design a
selector that can achieve the gains of the HRS selector without the need of the ground
truth label? How can we develop new compression theory and algorithms for DL, which

110

have to achieve good trade-offs among the compression rate, compression distortion, and
classification accuracy, where the compression distortion is for human, and the classification
accuracy is for DL machines?

To take some steps towards these two questions, one way is to model JPEG’s uniform
mid-tread dead-zone quantization function as a summation of rectifier linear unit functions
with trainable parameters. Then, within the JPEG framework, we should design a differen-
tiable loss function that optimizes between compression rate, compression distortion, and
DNN’s accuracy, and in turn we can jointly train the compression system with machine
vision via mini-batch learning algorithm.

It is worthwhile mentioning that the topic of video compression targeting machine
vision is recently creating a strong research traction. In July 2019, MPEG has created a
group called the Video Compression for Machines (VCM) group to create standards for
”compression coding for machine vision as well as compression for human-machine hybrid
vision.” This standard will be dedicated for broad use with any video-related Internet of
Things (IoT) devices. According the MPEG Chairman, the main focus of this group is to
answer the following question: “So far, video coding ’descriptors’ were designed to achieve
the best visual quality—as assessed by humans—at a given bitrate. The question asked by
video coding for machines is: What descriptors provide the best performance for use by a
machine at a given bitrate?”

111

References

[1] Cisco visual networking index: Forecast and trends. https://www.cisco.com/c/en/
us/solutions/collateral/service-provider/visual-networking-index-vni/

white-paper-c11-741490.html.

[2] Elecard videos download page. www.elecard.com/en/download/videos.html.

[3] FFmepg. http://www.ffmpeg.org.

[4] HM. https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/.

[5] Inception v3 Tensorflow model. http://download.tensorflow.org/models/

image/imagenet/inception-2015-12-05.tgz.

[6] JSVM, H.264/SVC joint scalable video coding model. ftp://garcon.ient.

rwth-aachen.de/.

[7] Resnet-50 v2 Tensorflow model. http://download.tensorflow.org/models/

resnet_v2_50_2017_04_14.tar.gz.

[8] Standard hevc test sequences. ftp://ftp.tnt.uni-hannover.de.

[9] VP9 Standard, howpublished = http://www.webmproject.org/vp9/.

[10] Web technology surveys for JPEG usage statistics. https://w3techs.com/

technologies/details/im-jpeg/all/all.

[11] X.265. https://x265.readthedocs.io/en/default/cli.html#

mode-decision-analysis.

[12] Xiph.org video test media page. https://media.xiph.org/video/derf/.

112

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
www.elecard.com/en/download/videos.html
http://www.ffmpeg.org
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
ftp://garcon.ient.rwth-aachen.de/
ftp://garcon.ient.rwth-aachen.de/
http://download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz
http://download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz
ftp://ftp.tnt.uni-hannover.de
http://www.webmproject.org/vp9/
https://w3techs.com/technologies/details/im-jpeg/all/all
https://w3techs.com/technologies/details/im-jpeg/all/all
https://x265.readthedocs.io/en/default/cli.html#mode-decision-analysis
https://x265.readthedocs.io/en/default/cli.html#mode-decision-analysis
https://media.xiph.org/video/derf/

[13] Subjective quality evaluation of the upcoming HEVC video compression standard,
volume 8499, 2012.

[14] Comparison of compression efficiency between HEVC/H.265 and VP9 based on sub-
jective assessments, volume 9217, 2014.

[15] Mart́ın Abadi et al. Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. CoRR, abs/1603.04467, 2016.

[16] H. Amer, A. Rashwan, and E. Yang. Fully connected network for HEVC cu split
decision equipped with Laplacian transparent composite model. In 2018 Picture
Coding Symposium (PCS), pages 189–193, June 2018.

[17] H. Amer and E. H. Yang. Adaptive quantization parameter selection for low-delay
HEVC via temporal propagation length estimation. Signal Processing: Image Com-
munication, 70:114–130, 2020.

[18] H. Amer and E. H. Yang. Scene change detection techniques based on adaptive and
sequential outlier detection for real-time video coding applications. IEEE Transac-
tions on Circuits and Systems Video Technology, In Preparation.

[19] H. Amer and En-Hui Yang. Scene-based low delay HEVC encoding framework based
on transparent composite modeling. In 2016 IEEE International Conference on
Image Processing (ICIP), September 2016.

[20] H. Amer and En-Hui Yang. Low-delay HEVC adaptive quantization parameter selec-
tion through temporal propagation length estimation. In 2018 IEEE International
Conference on Image Processing, ICIP 2018, Athens, Greece, October 7-10, pages
211–215, 2018.

[21] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson correlation
coefficient. In Noise reduction in speech processing, pages 1–4. Springer, 2009.

[22] Yoshua Bengio, Frédéric Bastien, Arnaud Bergeron, Nicolas Boulanger-Lewandowski,
Thomas Breuel, Youssouf Chherawala, Moustapha Cisse, Myriam Côté, Dumitru
Erhan, Jeremy Eustache, et al. Deep learners benefit more from out-of-distribution
examples. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pages 164–172, 2011.

[23] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A
review and new perspectives. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1798–1828, 2013.

113

[24] Alessandro Bianchi, Moreno Raimondo Vendra, Pavlos Protopapas, and Marco
Brambilla. Improving image classification robustness through selective CNN-filters
fine-tuning. arXiv preprint arXiv:1904.03949, 2019.

[25] Tejas S Borkar and Lina J Karam. Deepcorrect: Correcting DNN models against
image distortions. IEEE Transactions on Image Processing, 2019.

[26] F. Bossen. Common HM test conditions and software reference configurations.
JCTVC-L1100, April 2013.

[27] B. Bross, W.-J. Han, J.-R Ohm, G. J. Sullivan, Y.-K. Wang, and T. Wiegand. High
efficiency video coding (hevc) text specification draft 10 (for fdis & consent). JCT-
VC, Doc. JCTVC-L1003, 10, Jan 2013.

[28] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Return
of the devil in the details: Delving deep into convolutional nets. arXiv preprint
arXiv:1405.3531, 2014.

[29] Zhuo Chen, Weisi Lin, Shiqi Wang, Long Xu, and Leida Li. Image quality assessment
guided deep neural networks training. arXiv preprint arXiv:1708.03880, 2017.

[30] J. C. Chiang et al. A fast h.264/avc-based stereo video encoding algorithm based
on hierarchical two-stage neural classification. IEEE Journal of Selected Topics in
Signal Processing, 5(2):309–320, April 2011.

[31] Sandeep P Chinchali, Eyal Cidon, Evgenya Pergament, Tianshu Chu, and Sachin
Katti. Neural networks meet physical networks: Distributed inference between edge
devices and the cloud. In Proceedings of the 17th ACM Workshop on Hot Topics in
Networks, pages 50–56. ACM, 2018.

[32] Rémi Cogranne. Determining JPEG Image Standard Quality Factor from the Quan-
tization Tables. arXiv e-prints, page arXiv:1802.00992, Feb 2018.

[33] G. Cote, B. Erol, M. Gallant, and F. Kossentini. H.263+: video coding at low bit
rates. IEEE Transactions on Circuits and Systems for Video Technology, 8(7):849–
866, Nov 1998.

[34] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley
& Sons, 2012.

[35] Yuanying Dai et al. A convolutional neural network approach for post-processing in
HEVC intra coding. CoRR, abs/1608.06690, 2016.

114

[36] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

[37] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional
neural networks with cutout. arXiv preprint arXiv:1708.04552, 2017.

[38] James J DiCarlo and David D Cox. Untangling invariant object recognition. Trends
in cognitive sciences, 11(8):333–341, 2007.

[39] James J DiCarlo, Davide Zoccolan, and Nicole C Rust. How does the brain solve
visual object recognition? Neuron, 73(3):415–434, 2012.

[40] Samuel Dodge and Lina Karam. Understanding how image quality affects deep neural
networks. In 2016 eighth international conference on quality of multimedia experience
(QoMEX), pages 1–6. IEEE, 2016.

[41] Samuel Dodge and Lina Karam. A study and comparison of human and deep learn-
ing recognition performance under visual distortions. In 2017 26th international
conference on computer communication and networks (ICCCN), pages 1–7. IEEE,
2017.

[42] Samuel F Dodge and Lina J Karam. Quality robust mixtures of deep neural networks.
IEEE Transactions on Image Processing, 27(11):5553–5562, 2018.

[43] Ling-Yu Duan, Jiaying Liu, Wenhan Yang, Tiejun Huang, and Wen Gao. Video
Coding for Machines: A Paradigm of Collaborative Compression and Intelligent
Analytics. arXiv e-prints, page arXiv:2001.03569v2, Jan 2020.

[44] F. Duanmu et al. Fast cu partition decision using machine learning for screen content
compression. In 2015 IEEE International Conference on Image Processing (ICIP),
pages 4972–4976, Sept 2015.

[45] Y. Gao, C. Zhu, S. Li, and T. Yang. Temporally dependent rate-distortion optimiza-
tion for low-delay hierarchical video coding. IEEE Transactions on Image Processing,
26(9):4457–4470, Sept 2017.

[46] Y. Gao, C. Zhu, S. Li, and T. Yang. Source distortion temporal propagation analysis
for random-access hierarchical video coding optimization. IEEE Transactions on
Circuits and Systems for Video Technology, 29(2):546–559, Feb 2019.

115

[47] Robert Geirhos, David HJ Janssen, Heiko H Schütt, Jonas Rauber, Matthias Bethge,
and Felix A Wichmann. Comparing deep neural networks against humans: object
recognition when the signal gets weaker. arXiv preprint arXiv:1706.06969, 2017.

[48] Herbert Gish and John Pierce. Asymptotically efficient quantizing. IEEE Transac-
tions on Information Theory, 14(5):676–683, 1968.

[49] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. The MIT Press,
2016.

[50] Klemen Grm, Vitomir Štruc, Anais Artiges, Matthieu Caron, and Hazım K Ekenel.
Strengths and weaknesses of deep learning models for face recognition against image
degradations. IET Biometrics, 7(1):81–89, 2017.

[51] D. Grois, D. Marpe, A. Mulayoff, B. Itzhaky, and O. Hadar. Performance com-
parison of h.265/mpeg-hevc, vp9, and h.264/mpeg-avc encoders. In Picture Coding
Symposium (PCS), 2013, pages 394–397, Dec 2013.

[52] Lionel Gueguen, Alex Sergeev, Ben Kadlec, Rosanne Liu, and Jason Yosinski. Faster
neural networks straight from jpeg. In Advances in Neural Information Processing
Systems, pages 3933–3944, 2018.

[53] E. h. Yang and X. Yu. Soft decision quantization for H.264 with main profile compat-
ibility. IEEE Transactions on Circuits and Systems for Video Technology, 19(1):122–
127, Jan 2009.

[54] J. He, E. H. Yang, F. Yang, and K. Yang. Adaptive quantization parameter selec-
tion for H.265/HEVC by employing inter-frame dependency. IEEE Transactions on
Circuits and Systems for Video Technology, PP(99):1–1, September 2017.

[55] Jing He and Fuzheng Yang. Efficient frame-level bit allocation algorithm for h.
265/hevc. IET Image Processing, 11(4):245–257, 2017.

[56] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[57] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in
deep residual networks. In European conference on computer vision, pages 630–645.
Springer, 2016.

116

[58] P. Helle, S. Oudin, B. Bross, D. Marpe, M. O. Bici, K. Ugur, J. Jung, G. Clare,
and T. Wiegand. Block merging for quadtree-based partitioning in HEVC. IEEE
Transactions on Circuits and Systems for Video Technology, 22(12):1720–1731, Dec
2012.

[59] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data
with neural networks. science, 313(5786):504–507, 2006.

[60] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580, 2012.

[61] Md Tahmid Hossain, Shyh Wei Teng, Dengsheng Zhang, Suryani Lim, and Guojun
Lu. Distortion robust image classification with deep convolutional neural network
based on discrete cosine transform. arXiv preprint arXiv:1811.05819, 2018.

[62] Nan Hu and En-Hui Yang. Fast mode selection for HEVC intra-frame coding with
entropy coding refinement based on a transparent composite model. IEEE Transac-
tions on Circuits and Systems for Video Technology, 25(9):1521–1532, Sept 2015.

[63] S. Hu, H. Wang, S. Kwong, T. Zhao, and C. C. J. Kuo. Rate control optimization for
temporal-layer scalable video coding. IEEE Transactions on Circuits and Systems
for Video Technology, 21(8):1152–1162, Aug 2011.

[64] III Hugh Everett. Generalized lagrange multiplier method for solving problems of
optimum allocation of resources. Operations Research, 11(3):399–417, 1963.

[65] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. In Proceedings of the 22nd ACM international conference
on Multimedia, pages 675–678. ACM, 2014.

[66] Samil Karahan, Merve Kilinc Yildirum, Kadir Kirtac, Ferhat Sukru Rende, Gultekin
Butun, and Hazim Kemal Ekenel. How image degradations affect deep cnn-based
face recognition? In 2016 International Conference of the Biometrics Special Interest
Group (BIOSIG), pages 1–5. IEEE, 2016.

[67] Il-Koo Kim, Junghye Min, T. Lee, Woo-Jin Han, and JeongHoon Park. Block parti-
tioning structure in the HEVC standard. IEEE Transactions on Circuits and Systems
for Video Technology, 22(12):1697–1706, Dec 2012.

117

[68] J. Kim, H. Zeng, D. Ghadiyaram, S. Lee, L. Zhang, and A. C. Bovik. Deep con-
volutional neural models for picture-quality prediction: Challenges and solutions to
data-driven image quality assessment. IEEE Signal Processing Magazine, 34(6):130–
141, Nov 2017.

[69] Alex Krizhevsky and Geoffery Hiton. Learning multiple layers of features from tiny
images. Technical report, Citeseer, 2009.

[70] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[71] J. Lainema, F. Bossen, W. J. Han, J. Min, and K. Ugur. Intra coding of the
HEVC standard. IEEE Transactions on Circuits and Systems for Video Technol-
ogy, 22(12):1792–1801, Dec 2012.

[72] T. Laude and J. Ostermann. Deep learning-based intra prediction mode decision for
hevc. In 2016 Picture Coding Symposium (PCS), pages 1–5, Dec 2016.

[73] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

[74] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[75] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances
in neural information processing systems, pages 598–605, 1990.

[76] B. Li, H. Li, L. Li, and J. Zhang. λ domain rate control algorithm for High Efficiency
Video Coding. IEEE Transactions on Image Processing, 23(9):3841–3854, Sept 2014.

[77] B Li, GJ Sullivan, and J Xu. Comparison of compression performance of HEVC
draft 9 with avc high profile and performance of hm9.0 with temporal scalability
characteristics. In JCTVC-L0322, 12th JCT-VC meeting, Geneva, Switzerland, 2013.

[78] B. Li, J. Xu, D. Zhang, and H. Li. Qp refinement according to Lagrange multiplier
for High Efficiency Video coding. In 2013 IEEE International Symposium on Circuits
and Systems (ISCAS2013), pages 477–480, May 2013.

118

[79] Bin Li, Dong Zhang, Houqian Li, and J Xu. Qp determination by lambda value.
In JCT-VC of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 9th Meeting,
Geneva, Switzerland, Doc. JCTVC-I0426, 2012.

[80] Li Li, Bin Li, Houqiang Li, and Chang Wen Chen. λ-domain optimal bit alloca-
tion algorithm for high efficiency video coding. IEEE Transactions on Circuits and
Systems for Video Technology, 28(1):130–142, 2016.

[81] S. Li, C. Zhu, Y. Gao, Y. Zhou, F. Dufaux, and M. T. Sun. Lagrangian multi-
plier adaptation for rate-distortion optimization with inter-frame dependency. IEEE
Transactions on Circuits and Systems for Video Technology, 26(1):117–129, Jan 2016.

[82] Xiang Li et al. Rate-complexity-distortion evaluation for hybrid video coding. In
2010 IEEE International Conference on Multimedia and Expo (ICME), pages 685–
690, July 2010.

[83] Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John E Hopcroft. Convergent
learning: Do different neural networks learn the same representations?

[84] Dong Liu, Yue Li, Jianping Lin, Houqiang Li, and Feng Wu. Deep learning-based
video coding: A review and a case study. arXiv preprint arXiv:1904.12462, 2019.

[85] J. Liu, Y. Cho, Z. Guo, and J. Kuo. Bit allocation for spatial scalability coding of
H.264/SVC with dependent rate-distortion analysis. IEEE Transactions on Circuits
and Systems for Video Technology, 20(7):967–981, July 2010.

[86] Shan Liu and C. C. J. Kuo. Joint temporal-spatial bit allocation for video coding
with dependency. IEEE Transactions on Circuits and Systems for Video Technology,
15(1):15–26, Jan 2005.

[87] Y. C. Liu et al. Svm-based fast intra cu depth decision for hevc. In 2015 Data
Compression Conference, pages 458–458, April 2015.

[88] Z. Liu et al. Cu partition mode decision for hevc hardwired intra encoder using
convolution neural network. IEEE Transactions on Image Processing, 25(11):5088–
5103, Nov 2016.

[89] Z. Liu, X. Yu, S. Chen, and D. Wang. Cnn oriented fast hevc intra cu mode decision.
In 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pages
2270–2273, May 2016.

119

[90] Zihao Liu, Tao Liu, Wujie Wen, Lei Jiang, Jie Xu, Yanzhi Wang, and Gang Quan.
DeepN-JPEG: A deep neural network favorable JPEG-based image compression
framework. In Proceedings of the 55th Annual Design Automation Conference,
page 18. ACM, 2018.

[91] Siwei Ma, Xinfeng Zhang, Chuanmin Jia, Zhenghui Zhao, Shiqi Wang, and Shan-
she Wanga. Image and video compression with neural networks: A review. IEEE
Transactions on Circuits and Systems for Video Technology, 2019.

[92] D. Marpe, H. Schwarz, and T. Wiegand. Context-based adaptive binary arithmetic
coding in the h.264/avc video compression standard. IEEE Transactions on Circuits
and Systems for Video Technology, 13(7):620–636, July 2003.

[93] D. Mukherjee, J. Bankoski, A. Grange, Jingning Han, J. Koleszar, P. Wilkins, Yaowu
Xu, and R. Bultje. The latest open-source video codec vp9 - an overview and pre-
liminary results. In Picture Coding Symposium (PCS), 2013, pages 390–393, Dec
2013.

[94] Mark Nelson. The Data Compression Book. Henry Holt and Co., Inc., New York,
NY, USA, 1991.

[95] J. R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand. Comparison
of the coding efficiency of video coding standards —including high efficiency video
coding (hevc). IEEE Transactions on Circuits and Systems for Video Technology,
22(12):1669–1684, Dec 2012.

[96] A. Ortega and K. Ramchandran. Rate-distortion methods for image and video com-
pression. IEEE Signal Processing Magazine, 15(6):23–50, Nov 1998.

[97] Edouard Oyallon, Eugene Belilovsky, Sergey Zagoruyko, and Michal Valko. Com-
pressing the input for cnns with the first-order scattering transform. In Proceedings
of the European Conference on Computer Vision (ECCV), pages 301–316, 2018.

[98] William B Pennebaker and Joan L Mitchell. JPEG: Still image data compression
standard. Springer Science & Business Media, 1992.

[99] T Recommendation. CCITT T. 81. 1993.

[100] Shaoqing Ren et al. Faster R-CNN: towards real-time object detection with region
proposal networks. CoRR, abs/1506.01497, 2015.

120

[101] Iain E. Richardson. The H.264 Advanced Video Compression Standard. Wiley, 2nd
edition, August 2010.

[102] I.E. Richardson. Video Codec Design: Developing Image and Video Compression
Systems. John Wiley & Sons, 2002.

[103] I.E. Richardson. H.264 and MPEG-4 Video Compression: Video Coding for Next-
generation Multimedia. Wiley, 2003.

[104] Oren Rippel and Lubomir Bourdev. Real-time adaptive image compression. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 2922–2930. JMLR. org, 2017.

[105] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
ImageNet large scale visual recognition challenge. International journal of computer
vision, 115(3):211–252, 2015.

[106] Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet: A unified em-
bedding for face recognition and clustering. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 815–823, 2015.

[107] H. Schwarz, D. Marpe, and T. Wiegand. Overview of the scalable video coding
extension of the H.264/AVC standard. IEEE Transactions on Circuits and Systems
for Video Technology, 17(9):1103–1120, Sept 2007.

[108] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. Analysis of hierarchical b
pictures and mctf. In Multimedia and Expo, 2006 IEEE International Conference
on, pages 1929–1932. IEEE, 2006.

[109] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and
Yann LeCun. Overfeat: Integrated recognition, localization and detection using
convolutional networks. arXiv preprint arXiv:1312.6229, 2013.

[110] Y. Shan and En-Hui Yang. Fast hevc intra coding algorithm based on machine learn-
ing and laplacian transparent composite model. In 2017 International Conference on
Acoustics, Speech, and Signal Processing, March 2017.

[111] X. Shang et al. Fast cu size decision and pu mode decision algorithm in hevc intra
coding. In 2015 IEEE International Conference on Image Processing (ICIP), pages
1593–1597, Sept 2015.

121

[112] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson.
CNN features off-the-shelf: an astounding baseline for recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition workshops, pages
806–813, 2014.

[113] Qiu Shen, Juanjuan Cai, Linfeng Liu, Haojie Liu, Tong Chen, Long Ye, and Zhan
Ma. Codedvision: Towards joint image understanding and compression via end-
to-end learning. In Richang Hong, Wen-Huang Cheng, Toshihiko Yamasaki, Meng
Wang, and Chong-Wah Ngo, editors, Advances in Multimedia Information Processing
– PCM 2018, pages 3–14, Cham, 2018. Springer International Publishing.

[114] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[115] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.

[116] G. J. Sullivan and T. Wiegand. Rate-distortion optimization for video compression.
IEEE Signal Processing Magazine, 15(6):74–90, Nov 1998.

[117] G.J. Sullivan, J. Ohm, Woo-Jin Han, and T. Wiegand. Overview of the High Effi-
ciency Video Coding (HEVC) standard. IEEE Transactions on Circuits and Systems
for Video Technology, 22(12):1649–1668, Dec 2012.

[118] C. Sun and E. Yang. An efficient dct-based image compression system based on
laplacian transparent composite model. IEEE Transactions on Image Processing,
24(3):886–900, March 2015.

[119] Budagavi Madhukar Sullivan Gary J. Sze, Vivienne. High Efficiency Video Coding
(HEVC). Springer International Publishing, 2014.

[120] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception
architecture for computer vision. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2818–2826, June 2016.

[121] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learning.
In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

122

[122] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1–9, 2015.

[123] TK Tan, Madhukar Budagavi, and Jani Lainema. Summary report for te5 on sim-
plification of unified intra prediction.

[124] George Toderici et al. Full resolution image compression with recurrent neural net-
works. CoRR, abs/1608.05148, 2016.

[125] Matej Ulicny and Rozenn Dahyot. On using cnn with dct based image data. In Pro-
ceedings of the 19th Irish Machine Vision and Image Processing conference IMVIP,
2017.

[126] J. Vanne, M. Viitanen, T. D. Hamalainen, and A. Hallapuro. Comparative rate-
distortion-complexity analysis of hevc and avc video codecs. IEEE Transactions on
Circuits and Systems for Video Technology, 22(12):1885–1898, Dec 2012.

[127] G. K. Wallace. The JPEG still picture compression standard. IEEE Transactions
on Consumer Electronics, 38(1):xviii–xxxiv, Feb 1992.

[128] Cheng Wang, Yifei Han, and Weidong Wang. An end-to-end deep learning image
compression framework based on semantic analysis. Applied Sciences, 9(17):3580,
2019.

[129] S. Wang, S. Ma, D. Zhao, and W. Gao. Lagrange multiplier based perceptual op-
timization for High Efficiency Video Coding. In Signal and Information Processing
Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific, pages
1–4, Dec 2014.

[130] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simoncelli, et al. Image quality
assessment: from error visibility to structural similarity. IEEE transactions on image
processing, 13(4):600–612, 2004.

[131] T. Wiegand et al. Overview of the H.264/AVC video coding standard. IEEE Trans-
actions on Circuits and Systems for Video Technology, 13(7):560–576, July 2003.

[132] Mai Xu, Tianyi Li, Zulin Wang, Xin Deng, and Zhenyu Guan. Reducing complexity
of HEVC: A deep learning approach. CoRR, abs/1710.01218, 2017.

123

[133] E. H. Yang, H. Amer, and Y. Jiang. Compression helps deep learning in image
classification. Transactions on Image Processing, Under Review.

[134] E.-H. Yang et al. Transparent composite model for dct coefficients: Design and
analysis. IEEE Transactions on Image Processing, 23(3):1303–1316, March 2014.

[135] E. H. Yang and X. Yu. Rate distortion optimization for H.264 interframe cod-
ing: A general framework and algorithms. IEEE Transactions on Image Processing,
16(7):1774–1784, July 2007.

[136] E.-H. Yang and X Yu. Transparent composite model for large scale image/video
processing. In 2013 IEEE International Conference on Big Data, pages 38–44, Oct
2013.

[137] R. Yang, M. Xu, and Z. Wang. Decoder-side hevc quality enhancement with scalable
convolutional neural network. In 2017 IEEE International Conference on Multimedia
and Expo (ICME), pages 817–822, July 2017.

[138] T. Yang, C. Zhu, X. Fan, and Q. Peng. Source distortion temporal propagation model
for motion compensated video coding optimization. In 2012 IEEE International
Conference on Multimedia and Expo, pages 85–90, July 2012.

[139] Jonghwa Yim and Kyung-Ah Sohn. Enhancing the performance of convolutional
neural networks on quality degraded datasets. arXiv preprint arXiv:1710.06805,
2017.

[140] X. Yu, Z. Liu, J. Liu, Y. Gao, and D. Wang. Vlsi friendly fast cu/pu mode decision
for hevc intra encoding: Leveraging convolution neural network. In 2015 IEEE
International Conference on Image Processing (ICIP), pages 1285–1289, Sept 2015.

[141] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In European conference on computer vision, pages 818–833. Springer, 2014.

[142] H. Zeng, K. N. Ngan, and M. Wang. Perceptual adaptive Lagrangian multiplier for
High Efficiency Video Coding. In 2013 Picture Coding Symposium (PCS), pages
69–72, Dec 2013.

[143] H. Zhang and Z. Ma. Fast intra mode decision for high efficiency video coding (hevc).
IEEE Transactions on Circuits and Systems for Video Technology, 24(4):660–668,
April 2014.

124

[144] T. Zhao, Z. Wang, and C. W. Chen. Adaptive quantization parameter cascading
in HEVC hierarchical coding. IEEE Transactions on Image Processing, 25(7):2997–
3009, July 2016.

[145] Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. Improving the
robustness of deep neural networks via stability training. In Proceedings of the ieee
conference on computer vision and pattern recognition, pages 4480–4488, 2016.

125

	List of Tables
	List of Figures
	Introduction
	Thesis motivation
	Thesis contributions
	Thesis organization

	Background
	Overview on the JPEG Standard
	Overview on the HEVC Standard
	Block Structure in HEVC
	Inter/Intra-Picture Prediction & Mode decision in HEVC
	HEVC Transform and Quantization
	HEVC Entropy Coding
	In-Loop Filters in HEVC
	HEVC Configurations

	Classification and Neural Networks
	AlexNet Architecture
	Inception and Residual Architectures
	ImageNet Dataset

	Chapter Summary

	Adaptive Quantization Parameter Selection for Low-Delay HEVC via Temporal Propagation Length Estimation
	Literature Review
	Adaptive QP Selection Problem For Low-Delay HEVC
	Low-Delay Coding Structure in HEVC
	Problem Formulation of the QP Selection in LD HEVC

	Accumulated Coding Propagation Effect in Low-Delay HEVC
	Review for the Linear Distortion Model
	Accumulated Propagation Effects for LD HEVC

	Estimating the propagation parameters for Lagrangian Multiplier Determination
	Estimation of the Impact Propagation Length
	Two Methods for i Prediction
	Adaptive Lagrangian Multiplier Determination

	Adaptive QP Selection
	QP Determination via QP- Relationships
	Initialization
	Overall Adaptive QP Selection Algorithm

	HEVC Encoder Testing Methodology: Objective Video Assessment Tool (MCTest)
	Experimental Results
	Coding Efficiency Comparison
	Analysis for the Coding Efficiency Results
	Quality Fluctuation
	Computational Complexity Analysis

	Chapter Summary

	Neural Network for HEVC CU Split Decision equipped with Laplacian Transparent Composite Model
	Literature Review
	Fully Connected Network for HEVC's CU Partition Problem
	Feature Extraction: CTU-based LPTCM
	Neural Network Structure
	Offline Training Stage For Low Resolutions
	Online Training/Adaptation Stage
	Online Testing Stage

	Experimental Results
	Chapter Summary

	Compression Helps Deep Learning In Image Classification
	Literature Review
	Motivation: Case Study
	Highest Rank Selector
	HRS and its Optimality
	Empirical Results and Analysis

	Selectors Maintaining Classification Accuracy While Reducing Input Size
	Chapter Summary

	Conclusion and Future Work
	Conclusion
	Future Work
	Human Vision Perspective: CTU-based Adaptive QP Selection and Inter-dependency Aware Rate Control
	Machine Vision Perspective: Design of Compression targeting Machine Vision

	References

