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Abstract

A notion of geometric structure can be given to a set of points without using a co-
ordinate system by instead describing geometric relations between finite combinations of
elements. The fundamental problem is to then characterize when the points of such a
“geometry” have a consistent coordinatization. Matroids are a first step in such a charac-
terization as they require that geometric relations satisfy inherent abstract properties.

Concretely, let E be a finite set and I be a collection of subsets of E. The problem
is to characterize pairs (E, I) for which there exists a “representation” of E as vectors
in a vector space over a field F where I corresponds to the linear independent subsets
of E. Necessary conditions for such a representation to exist include: the empty set is
independent, subsets of independent sets are also independent, and for each subset X, the
maximal independent subsets of X have the same size. When these properties hold, we
say that (E, I) describes a matroid. As a result of these properties, matroids provide many
useful concepts and are an appropriate context in which to consider characterizations.

Mayhew, Newman, and Whittle showed that there exist pathological obstructions to
natural axiomatic and forbidden-substructure characterizations of real-representable ma-
troids. Furthermore, an extension of a result of Seymour illustrates that there is high
computational complexity in verifying that a representation exists. This thesis shows that
such pathologies still persist even if it is known that there exists a coordinatization with
complex numbers and a sense of orientation, both of which are necessary to have a coor-
dinatization over the reals.
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The fundamental question of completely characterizing systems which rep-
resent matrices is left unsolved.

— Hassler Whitney, 1935

x



Chapter 1

The fundamental question of matroid
theory

How easily can we describe points from a Euclidean space without using coordinates?
An appropriate context for this question is matroid theory, as it provides a convenient
geometric framework with many useful concepts [34]. Matroids were first introduced in
1935 by Nakasawa and by Whitney to abstract the geometric structure of a finite collection
of vectors in a vector space [31,45]. Once we forget the underlying vector space, the
resulting geometric structure is that of a matroid (which will be properly defined later).

Any axiomatization of matroids arises from fundamental conditions on collections of
vectors. However, Whitney gave an example of a matroid that does not come from any
collection of vectors in a real vector space (see Figure 1.1). Whitney asked for a char-
acterization of “Euclidean” matroids, or equivalently, those that can be represented as a
collection of vectors from a real vector space. So far any attempt to usefully characterize
real-representability has failed spectacularly [27,28]. This thesis will prove several results
that reinforce how intractable this question is.

Real-representability can potentially be characterized algorithmically, by adding extra
axioms, or by describing structural obstructions. While each of these approaches will be
elaborated upon later, any natural implementation is found wanting. A useful characteriza-
tion of real-representability would need to use conditions that are comparably complicated
to real-representability in each of these settings.

For any field F, having an F-representation is a strong property quantitatively. Matroids
in general are incredibly wild in comparison to the class of matroids that can be represented

over at least one field. The number of n-element matroids is 2
1

poly(n)
2n whereas the number
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(i) A real-representable matroid
(as it has a straight line drawing).

(ii) The non-real-representable matroid given by
Whitney (see Theorem 5.1.2 for an algebraic
technique to show this).

Figure 1.1: Although very similar to each other, only (i) is real-representable, while (ii) is
minimally non-real-representable.

of n-element representable matroids is only 2poly(n), where, in each case, poly(n) is some
function that is bounded above and below by polynomials; see Knuth [20] and Nelson [32],
respectively.

A representation with complex vectors is an immediate necessary condition for real-
representability. Complex-representability is also found to be difficult to describe in the
aforementioned settings [27,28]. This would lead one to have strong hopes for characterizing
real-representability for the complex-representable matroids. Remarkably, however, this
simplification makes no discernible difference from the perspective of the methodologies
alluded to above. Algebraic considerations are found to still play a large role even when
the geometric structure is well-behaved.

1.1 Formalism

We will now go into further detail on the characterization techniques considered. First,
however, we see concrete ways we could describe the structure of a matroid.

Imagine that you are given a pair (E, I) consisting of a ground set E together with
a collection I of independent subsets of E. Consider whether I relates the linearly inde-
pendent subsets of some collection of vectors. Is there a multiset, {ve}e∈E, of vectors in a
vector space over a field F such that I corresponds to the linearly independent subsets of
{ve}e∈E? Some of the elementary conditions that such an I must satisfy give rise to the
definition of a matroid. Specifically: the empty set is independent, subsets of independent
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sets are also independent, and each for each subset, X, the maximal independent subsets
of X have the same size (called the rank of X, denoted r(X)). When these properties hold,
we call M = (E, I) a matroid.

We can get alternate axiomatizations of matroids with equivalent conditions if we in-
stead use different concepts to capture the geometric structure. For instance, the maximal
independent sets (the bases), or the maximal sets not containing a basis (the hyperplanes).
both of which are analogous to their eponyms for vector spaces.

We say that M = (E, I) is an F-representable or representable matroid when there
actually exists a multiset {ve}e∈E of F-vectors that has the same set of independent subsets,
or equivalently, has the same structure as M in terms of any of the notions just mentioned.
We now consider possible characterizations of real-representable matroids.

1.2 Axiomatic characterization

Consider whether we can define real-representability by adding more constraints to I in
the same language as we used to define matroids in the first place. We already know that
we can define representable matroids if we have a strong enough logical language: we have
already done so informally above. In Section 3.0.1, we will give a natural independent-set
language, MS0, first developed by Mayhew, Newman, and Whittle [27] and equivalent to
one used by Hliněný [15]. With this independent-set language in mind, Mayhew, Newman,
and Whittle [27] showed that real-representability is ineffable.

[Theorem ?? (Mayhew, Newman, Whittle [27])]. Then is no sentence φR in MS0 such
that a matroid is real-representable precisely when it satisfies φR.

They further showed that neither representability nor complex-representability is
finitely axiomatizable in MS0. Square brackets were used around the above theorem and
are used in general to indicate where the corresponding statement occurs most naturally.

One might hope that the difficulty lies in defining representability, and once we have a
characterization of representability, it is an easier matter to define representability over
a specific field. However, knowing that a matroid is representable or even complex-
representable does not lead to a finite condition (in MS0) for real-representability.

[Theorem 3.4.2 (Campbell)]. There is no sentence φ in MS0 such that a complex-
representable matroid is real-representable precisely when it satisfies φ.

3



1.3 Forbidden-substructure characterization

We now consider characterizing obstructions to real-representability. Given a matroid
M = (E, I) and an element e ∈ E, there are two natural methods to derive a new matroid
M ′ = (E − {e}, I ′). We can take I ′ to be all the sets in I that do not contain e (deletion
of e, denoted M \ e). Alternatively, we can “project” from e when {e} ∈ I by taking I ′
to be all the sets I − e where e ∈ I ∈ I (contraction of e, denoted M/e). When there
is no set in I containing e, we define M/e = M\e. Intuitively, these operations get rid of
some of the structure of M and create a “smaller” matroid. When a matroid N can be
obtained from M with a sequence of these operations, we call N a minor of M . If we only
used deletion to obtain N on ground set S ⊆ E, we say that N is the restriction of M to
S, denoted M |S.

The class of real-representable matroids is closed under taking minors. This means
that we can characterize real-representable matroids by giving the minor-minimal matroids
that are not real-representable — the excluded minors. However, Mayhew, Newman, and
Whittle [28] showed that, remarkably, the excluded minors are at least as wild as the class
of real-representable matroids themselves. More precisely, the following is a special case of
Theorem 4.0.1.

Theorem 1.3.1 (Mayhew, Newman, Whittle [28]). Each real-representable matroid is a
minor of an excluded minor for real-representability.

This is not as surprising when we recall the quantitative comparison between matroids
and representable matroids: almost all matroids are non-representable [32]. However, the
class of obstructions for real-representability remains intractable even when restricting to
those that are complex-representable.

[Theorem 4.0.2 (Campbell, Geelen [8])]. Each real-representable matroid is a minor of
a complex-representable excluded minor for real-representability.

1.4 Algorithmic characterization

What can one say about the representability of a matroid and how easily? Mercifully,
real-representability is decidable: we can characterize real-representability algorithmically
(folklore with quantifier elimination [40]; see Section 5.1). However, we should consider the
required complexity of such an algorithm. Concretely, how much of the matroid’s structure
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needs to be queried to determine whether or not the matroid is real-representable? If we
already know the answer, how much structure do we need to prove this to another party?
This will be measured as the size of the ground set grows; we will make this precise in
Section 5.2. By applying a technique of Seymour [36], we will see that we cannot always
show that a matroid is real-representable with a polynomial number of queries of I. To
even certify that a matroid is not real-representable may require more than a polynomial
number of queries in the worst case.

Certification does not become any more feasible in computational complexity even if
we have prior knowledge that the given matroid is complex-representable.

[Theorem 5.0.1 (Campbell)]. Real-representability is not polynomially certifiable even
within the class of complex-representable matroids.

[Theorem 5.6.2 (Campbell)]. Non-real-representability is not polynomially certifiable
even within the class of complex-representable matroids.

1.5 Orientable matroids

Geometric structure can be further constrained by considering matroid “orientations”.
These impose a relative sense of direction in the structure given by a matroid. The axioms
governing matroid orientations arise naturally when considering collections of vectors over
an ordered field. Specifically, they give “signs” in dependencies and “sides” to the comple-
ments of hyperplanes. Notably, every real-representable matroid is orientable. Conversely,
there are non-orientable matroids that are representable over some field, and orientable
matroids that are not representable over any field [2]. However, Whittle suggested that
together these two necessary conditions for real-representability may be sufficient (personal
communication, 2017):

[Conjecture 6.0.1 (Whittle)]. A matroid is real-representable if and only if it is orientable
and representable over some field.

We will see that this conjecture is false. Indeed,

[Theorem 6.2.1 (Campbell)]. For every finite field F with |F∗| = |F|−1 composite, there is
an F-representable, complex-representable, orientable matroid that is not real-representable.
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In other words, for each prime power q ≥ 5, if q is not 2n for some integer n where
2n − 1 is a (Marsenne) prime, then there is a GF(q)-representable counterexample to
Conjecture 6.0.1, above, that is also complex-representable.

Finally, we see that, even with orientability and complex-representability, it still seems
impractical to characterize real-representability algorithmically, by adding axioms, or by
forbidding substructures.

While all of these negative results rule out many possible characterizations, they do
keep us realistic in our expectations of structure related to representability over infinite
fields; we now know where to look. For instance, we may still hope that an alteration to
Whittle’s conjecture holds.

[Conjecture 6.3.5 (Revision of Whittle’s conjecture)]. If an orientable matroid is repre-
sentable over some field, then it is complex-representable.

6



Chapter 2

Encoding algebra in matroids

Matroids are defined by using some of the most natural properties of linear independence.
However, there are other geometric conditions a matroid must satisfy to be representable.
One of the most basic is Ingleton’s inequality, which is an inclusion-exclusion principle on
the dimensions of subspaces (see Section 3.1.3). This necessary condition for representabil-
ity and others like it, see [19], can be violated to cause pathologies in some of the basic
characterizations discussed in the previous chapter, see [7,28,36]). However, if we wish
to show that distinguishing real-representability is complicated within the class of repre-
sentable matroids, we do not have the liberty to use such conditions. Instead, the matroid
obstructions must be algebraic in nature, relying on algebraic conditions that are not pos-
sible in the reals but that can be satisfied in other fields. To construct such obstructions,
we need to be able to encode these algebraic conditions geometrically.

The idea of using geometry to encode algebra dates back to the ancient Greeks. How-
ever, Greek constructions rely on lengths, a concept we do not have in matroids. Con-
structions that only use points and lines were first developed in 1857 by von Staudt in
what he called an “algebra of throws” [38]. MacLane published the first matroid theory
application of these in 1936, where he gave an example of a real-representable matroid
that is not representable over the rationals [24]. Since then, there have been many results
where von Staudt constructions are used to give examples of matroids that are only repre-
sentable when certain algebraic conditions are met, see [39,5]. Of particular note, Mnëv’s
Universality Theorem further considers all real-representations that are possible for a given
“oriented” matroid, see [29].
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2.0.1 Representations

For a representable matroid M , we may consider a representation {ve}e∈E(M) of M as a
function that takes e ∈ E(M) to ve or as a matrix where ve is the column indexed by
e ∈ E(M). Here, we consider the index sets of rows and columns as unordered, but pick
some ordering with which to write the matrix. We will only compute determinants to
identify singular submatrices, so the sign of the determinant and hence the order of the
index sets do not matter.

We say that two matrices are row equivalent when one can be obtained from the other
by elementary row operations. We say that two matrices are projectively equivalent when
one can be obtained from the other by elementary row operations and column scaling.
When comparing matrices with a different number of rows we will adjoin zero rows as
necessary as this does not change the row space. While row equivalent matrices are pro-
jectively equivalent, and projectively equivalent matrices represent isomorphic matroids,
the converses do not hold in general. However, certain matrix representations will be more
convenient, so we will often consider matrices up to some equivalence.

2.0.2 Parametrization

As representable-matroid constructions are often not dependent on the representation or
the field, we will parametrize them. Representations will be over a field that is generated
by a set X of indeterminates and a set Q of irreducible integer polynomials that we equate
with zero (and cannot divide by). This is the field of fractions of the quotient polynomial
ring Z[X]/〈Q〉. Here, Z[X] denotes integer polynomials in X and 〈Q〉 denotes the ideal
generated by Q ⊆ Z[X]. We will typically assume that Q is empty unless otherwise required
by the algebraic relations that exist.

We say that α1, . . . , αk in a field F are n-algebraically independent modulo Q when, for
any integer polynomial f of degree at most n, we have f(α1, . . . , αk) = 0 if and only if
f ∈ 〈Q〉. We observe the following:

Lemma 2.0.1. Let M be a matroid with matrix representation A(X) over Z[X]/〈Q〉 where
the determinants of submatrices of A(X) have degree at most n. Let f be a ring homomor-
phism from Z[X]/〈Q〉 to a field F which maps elements of X to distinct values α1, . . . , α|X|
that are n-algebraically independent modulo Q. The matrix, A(α1, . . . , α|X|), obtained by
applying f to every entry of A(X), is an F-representation of M .

Proof. Let S be a subset of E of size r(M). Consider the square submatrix A(X)[S],
consisting of the columns of A(X) indexed by S. If S is a basis of M , then det(A(X)[S])
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is not in 〈Q〉 and has degree at most n by the choice of n. Thus det(A(f(X))[S]) =
det(A(α1, . . . , α|X|)[S]), the evaluation of this polynomial at α1, . . . , α|X| ∈ F, is non-zero by
choice of α1, . . . , α|X|. Conversely, if S is dependent in M , then det(A(X)[S]) is in 〈Q〉, and
by the choice of α1, . . . , α|X| ∈ F, we have det(A(f(X))[S]) = det(A(α1, . . . , α|X|)[S]) = 0.
Thus the evaluation A(α1, . . . , α|X|) is a F-representation of M .

We may thus evaluate the indeterminates in a representation A(X) at elements from a
field F that respect the relations in Q and are otherwise sufficiently algebraically indepen-
dent.

2.0.3 Encoding values as points on lines

We first look at how we will encode values of a field. For simplicity, this will be done as
“points” on a “line” in the matroid. For a represented matroid, the number of vectors
required to specify a flat is the rank of that flat. So for a matroid, a point is a rank-1 flat,
while a line is a rank-2 flat. A matroid is simple when every point only consists of a single
element.

We will think think of a labelling of a simple line L using a field F as an injective map
from L to F ∪ {∞} or F ∪ {−∞}. When an element α of F{−∞,∞} is being used as
a label, we will denote it [α] to avoid confusion. We often only care about an element
because of the algebraic connotation provided by a labelling. To simplify notation, we will
often refer to an element using its label on a given line.

Let [0] and [∞] label two fixed non-parallel elements on a line L in a matroid M . Note
that {[0], [∞]} will form a circuit with each element on L that is not parallel to either [0]
or [∞]. For a fixed representation f of M , we will label an element on L by [α] when
f([α]) = λα (f([0]) + αf([∞])), for some non-zero scalar λα, see Figure 2.1. We say that
the point with elements labelled [α] is the value α encoded on the line L with respect to
[0] and [∞]. We may instead encode with respect to [0] and a non-parallel element [−∞]
where an element on L is labelled by [α] when f([α]) = λα (f([0])− αf([−∞])) for some
non-zero scalar λα. This is the correspondence used for representations of gain graphs and
Dowling geometries, see [34, 6.10].

Note we may swap between the labelling [∞] and [−∞] by negating the corresponding
column. Also note that row equivalent representations have the same encoding for each
point. However, when considering projectively equivalent representations we may scale
the representations of [0] and [±∞] and thus scale all other encodings on L by a common
factor.

9



( [0] [∞] [α]

1 0 1
0 1 α

)
.

Figure 2.1: A representation restricted to possible elements of L, up to row equivalence.

We may simultaneously encode values on multiple lines in a matroid. We say that
encodings that come from the same representation are kindred. At times a labelling will
give us sufficient information to obtain a representation of the matroid that encodes this
labelling, if it exists. For a field F, we say that a labelling is F-consistent or consistent
when there exists an F-representation that encodes this labelling.

2.0.4 Algebraic relations through restrictions

We will encode algebraic relations by “connecting” geometric gadgets to lines that encode
values. Imposing algebraic structure can be done with two flavours of gadgets, local and
global. Local algebraic structures encode a single relation between values encoded on the
same line, while global algebraic structures encode many similar relations between values
in kindred encodings on a collection of lines.

2.1 Local algebraic structure; von Staudt construc-

tions

Here we look at matroids that encode a single algebraic relation on a single line. We would
like to use gadgets that impose a relation on the representations of certain points but do
not otherwise interact with the line. For a matroid M , we say that a subset D of E(M)
is modular, when r(D) + r(F ) = r(D ∪ F ) + r(D ∩ F ) for all flats F in M . Intuitively, a
modular set D only interacts with other structure of the matroid at subsets of D.

We first see constructions to enforce nondegenerate additive and multiplicative rela-
tions. We then see the squaring or inversion relation as a degenerate case of the mul-
tiplicative relation. Similarly, the doubling and negation relations are degenerate cases
of the additive relation. More complicated algebraic relations may require intermediate
calculations and “glueing” multiple gadgets to a single line, see Section 2.3.
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2.1.1 Non-degenerate addition

Let O+ be the matroid with representation

A(x, y) =


[0] [∞] [x] [y] [x+ y] ix iy ox oy
1 0 1 1 1 0 1 1 0
0 1 x y x+ y 0 0 x −y
0 0 0 0 0 1 1 1 1


over Q(x, y). It is not difficult to check that L = {[0], [∞], [x], [y], [x+ y]} is a modular line
in O+.

[0] [x] [y]

[x+ y]

[∞]

ix oy

iy ox

Figure 2.2: O+

Lemma 2.1.1. Let x̄, ȳ, w̄ be distinct nonzero elements in some field F. Then O+ has a
representation A over F such that

A|L =


[0] [∞] [x] [y] [x+ y]

1 0 1 1 1
0 1 x̄ ȳ w̄
0 0 0 0 0


11



if and only if w̄ = x̄+ ȳ.

Proof. If w̄ = x̄+ ȳ, then A = A(x̄, ȳ) is the appropriate representation over F. Conversely,
suppose we have such a representation A. We will extend A|L to uniquely determine A up
to projective equivalence. As ix is not contained in the flat L, without losing generality
we may assume that A|ix = (0, 0, 1)T through appropriate row operations. As {[0], ix, iy}
is a circuit, we may also assume that A|iy = (1, 0, 1)T by scaling the third row and the
columns corresponding to ix and iy. As ox is spanned by {[x], ix} and by {[∞], iy}, we may
assume A|ox = (1, x̄, 1)T through scaling. Similarly, as oy is spanned by {[y], iy} and by
{[∞], ix}, we may assume A|oy = (0,−ȳ, 1)T through scaling. Finally, as [x+y] is spanned
by {ox, oy} and by {[0], [∞]}, we have that (1, w̄, 0)T = A|[x + y] = (1, x̄ + ȳ, 0)T . Thus
w̄ = x̄+ ȳ, as we wanted to show.

2.1.2 Non-degenerate multiplication

Let O∗ be the matroid with representation

P (x, y, z) =


[0] [∞] [x] [y] [z] [xy/z] p oyz ixz oxw iyw
1 0 1 1 1 1 0 1 0 1 0
0 1 x y z xy/z 0 0 −z 0 −y
0 0 0 0 0 0 1 1 1 x/z 1


over Q(x, y). It is not difficult to check that L = {[0], [∞], [x], [y], [z], [xy/z]} is a modular
line in O∗.

Lemma 2.1.2. Let x̄, ȳ, z̄, w̄ be distinct nonzero elements in some field F. Then O∗ has a
representation P over F such that

P |L =


[0] [∞] [x] [y] [z] [xy/z]

1 0 1 1 1 1
0 1 x̄ ȳ z̄ w̄
0 0 0 0 0 0


if and only if w̄z̄ = x̄ȳ.

Proof. If w̄z̄ = x̄ȳ, then P = P (x̄, ȳ, z̄) is the appropriate representation over F. Con-
versely, suppose we have such a representation P . We will extend P |L to uniquely de-
termine P up to projective equivalence. As p is not contained in the flat L, without
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[0]

[z]

[x] [y]
[
xy
z

]
[∞]

p ixz

oyz

oxw

iyw

Figure 2.3: O∗

losing generality we may assume that P |p = (0, 0, 1)T through appropriate row opera-
tions. As {[0], p, oyz} is a circuit, we may also assume that P |oyz = (1, 0, 1)T by scaling
the third row and the columns corresponding to p and oyz. As ixz is spanned by {[∞], p}
and {[z], oyz}, we may assume P |ixz = (0,−z̄, 1)T through scaling. Similarly, as iyw is
spanned by {[∞], p} and {[y], oyz}, we may assume P |iyw = (0,−ȳ, 1)T through scaling.
And as oxw is spanned by {[0], p} and {[x], ixz}, we may assume P |oxw = (1, 0, x̄/z̄)T

through scaling. Finally, as [xy/z] is spanned by {[0], [∞]} and {iyw, oxw}, we have that
(1, w̄, 0)T = P |[xy/z] = (1, x̄ȳ/z̄, 0)T . Thus w̄z̄ = x̄ȳ, as we wanted to show.

2.1.3 Squaring/Inversion

We want to be able to consider squaring and inversion relations. However, [x] and [y] lie
on different points of O∗ which enforces the condition that x 6= y, even after evaluation
in a specific field. We instead replace y with x in the matrix P (x, y, z) from the previous
section and get rid of the duplicated vector. Let O/ be the matroid represented by this
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new matrix

Q(x, z) =


[0] [∞] [x] [z] [xx/z] p oxz ixz oxw ixw
1 0 1 1 1 0 1 0 1 0
0 1 x z xx/z 0 0 −z 0 −x
0 0 0 0 0 1 1 1 x/z 1


over Q(x, z). It is not difficult to check that L = {[0], [∞], [x], [z], [xx/z]} is a modular line
O/.

By taking the proof of Lemma 2.1.2 from the previous section, and replacing the inde-
terminant y with x and matrices P with Q, we get a proof of the following.

Lemma 2.1.3. Let x̄, z̄, w̄ be distinct nonzero elements in some field F. Then O/ has a
representation P over F such that

Q|L =


[0] [∞] [x] [z] [xx/z]

1 0 1 1 1
0 1 x̄ z̄ w̄
0 0 0 0 0


if and only if w̄z̄ = x̄x̄.

Similarly, we can construct matroids O− and O2 that enforce the negation and doubling
relations, respectively. A further degeneracy, to enforces the relation x+x = 0 with x 6= 0,
yields the “Fano matroid”, as depictied in Figure 1.1(ii).

2.1.4 Algebraic extensions

In Section 2.3, we will see that we can “glue” von Staudt matroids along their modular
line to other matroids. By attaching copies of O+, O∗, O/, O−, and O2 to a single line,
we can enforce more complicated algebraic relations using intermediate calculations.

For example, consider the algebraic relation x2+1 = 0. Let L be a line with non-parallel
elements labelled [0], [1], [x], [xx] = [−1], and [∞] over the field Q[x]/〈x2 + 1〉. We can
enforce the multiplicative relation between the labels [1], [x], and [xx]. by appropriately
attaching O/ to this line. Similarly, the matroid O/ can be used to enforce the additive
relation between the labels [0], [1], and [−1]. Let M be the resulting matroid “amalgam”.

Consider a representation f of M over some field F. By projective equivalence, we
may assume that f correctly encodes [1] on L with respect to [0] and [∞]. Together, the
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gadgets O/ and O/ we have used enforce that the element labelled [x] encodes a solution
to x2 + 1 = 0 in F. However, note that we have also inadvertently imposed the condition
that 0, 1, x, and x2 = −1 are distinct, as they labelled non-parallel elements in L. Thus we
have imposed the additional constraint that the characteristic of F is not two, for instance.
However, as a result of Lemma 2.3.4, the matroid M is representable in fields where x2 + 1
is irreducible and has a root.

We have the following generalizations for fields of characteristic zero.

Theorem 2.1.4 (Maclane [24, Theorem 3]). Let F be a finite extension of the rationals.
There exists a matroid MF such that MF is representable over an extension F′ of the ratio-
nals if and only if F′ ⊇ F.

One can check that there is an analogues of this results for each characteristic.

2.2 Global algebraic structure

Here we look at matroids that encode a set of algebraic relations on a collection of lines. Let
L = {L1, . . . , Ln} be a collection of lines with a point denoted [∞]i or [−∞]i on each line
Li ∈ L. We say that T = {a1, . . . , an} is a transversal of L when ai ∈ Li − {[∞]i, [−∞]i}
for each i. For certain kindred encodings of L, the set T of dependent transversals will
encode which values satisfy a prescribed algebraic relation.

2.2.1 Sums; Spikes

Say that we would like to encode within a matroid a relation of the form
∑n

i=1 αi = 0. For
a given set of values {α1, . . . , αn}, consider the matrix of the form

1 0 . . . 0 −1
0 1 . . . 0 −1
...

...
. . .

...
...

0 0 . . . 1 −1
α1 α2 . . . αn−1 αn

 . (2.1)

Note this matrix is singular precisely when
∑n

i=1 αi = 0.

To make use of this fact, we would like to encode the values αi appropriately. We need
to be able to determine each line Li and the points that would correspond to [0]i and [∞]i
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on Li. Consider introducing vectors corresponding to the points [0]1, . . . , [0]n as in the
matrix below. Note that for each i ∈ {1, . . . , n}, if αi 6= 0 then the points [0]i and [αi]i
span a line Li in the represented matroid.



[0]1 [0]2 . . . [0]n−1 [0]n [α1]1 [α2]2 . . . [αn−1]n−1 [αn]n
1 0 . . . 0 −1 1 0 . . . 0 −1
0 1 . . . 0 −1 0 1 . . . 0 −1
...

...
. . .

...
...

...
... . . .

...
...

0 0 . . . 1 −1 0 0 0 1 −1
0 0 . . . 0 0 α1 α2 . . . αn−1 αn


Suppose we have a representation of a matroid that is projectively equivalent to the above.
As long as we have at least two lines Li = {[0]i, [αi]i} and Lj = {[0]j, [αj]j}, we can
determine the representation of a new element, p, that would lie in their intersection.
With the representation above, p is represented by the n-th standard basis vector, en. For
each i ∈ {1, . . . , n}, we now have that the label [αi]i actually encodes αi on the line Li with
[0]i and [∞]i = p. So, as we can retrieve the appropriate [∞]i for each line, a matroid that
has a representation projectively equivalent to the matrix above can be used to encode
whether or not

∑n
i=1 αi is zero.

We now see matroids that can each encode a family of relations of the form
∑n

i=1 αi = 0.
However, such a matroid may be non-representable if the relations it would encode are
inconsistent (see Theorem 5.3.1 for an example).

Spike-like matroids

A spike-like matroid on n lines with tip p is a simple matroid that is the union of a set of
lines {L1, . . . , Ln} which all contain p and where, for any transversal T = {a1, . . . , an} with
ai in leg Li − {p}, we have that each (T ∪ {p})− {ai} is a basis. Thus each transversal is
either a basis or a circuit-hyperplane. We say that a matroid is spike-like on these n lines
when it is a restriction of such a matroid. It is not hard to check that a spike-like matroid
is determined by its lines L1, . . . , Ln and its dependent transversals. Furthermore, for any
set T of transversals in which no two transversals differ on only a single leg, there is a
spike-like matroid with T as its set of dependent transversals, see [34, Proposition 1.5.17].

Representations

Let Λ = (E, C) be a representable spike-like matroid with at least four legs, each containing
at least two points. Let f be a representation of Λ over a field F. As we have four legs that
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define lines of Λ, we can determine a representation of a tip p for Λ. Let T = {a1, . . . , an} be
a dependent transversal and fix an element of T , say an for convenience. As (T∪{p})−{an}
is a basis, by row operations and nonzero column scaling we may assume that this basis
is mapped to the standard basis vectors. For i ∈ {1, . . . , n − 1}, let ai be represented by
the i-th standard basis vector ei and label ai by [0]i. Let p be represented by the n-th
standard basis vector en. Note that an is represented by

∑n−1
i=1 ei, denoted 1 − en and

label an by [0]n. By column scaling, we may assume that, for i ∈ {1, . . . , n − 1}, each
element xi ∈ Li − {p} is represented by ei + αien for some αi ∈ F, and we henceforth
label xi as [αi]i. Similarly, each xn ∈ Ln − {p} is represented by (1− en) + αnen for some
αn ∈ F, and we henceforth label xn as [αn]n. When this is done, we will say this encoding
is with respect to the dependent transversal T . Recalling (2.1), we have that a transversal
T ′ = {[α1]1, . . . , [αn]n} is dependent if and only if

∑n
i=1 αi = 0.

There is some freedom in scaling when converting to a representation of this form.
Specifically, we may scale all values αi of the encoding by a common non-zero factor
λ ∈ F− {0}. Up to this scaling factor, each representation of Λ is projectively equivalent
to a unique encoding with respect to T .

2.2.2 Products; Swirls

Say that we would like to encode within a matroid relations of the form
∏n

i=1 αi = 1. For
a given set of values {α1, . . . , αn}, consider the matrix of the form

1 0 0 . . . 0 −αn
−α1 1 0 . . . 0 0

0 −α2 1
. . . 0 0

...
...

. . . . . . . . .
...

0 0 0
. . . 1 0

0 0 0 . . . −αn−1 1


. (2.2)

Note that this matrix has determinant 1 −
∏n

i=1 αi. Thus the above matrix is singular
precisely when

∏n
i=1 αi = 1.

To make use of this fact, we would like to encode the values αi appropriately. We
need to be able to determine each line Li and the points that would correspond to [0]i and
[−∞]i on Li. Consider introducing vectors corresponding to the points [1]1, . . . , [1]n as in
the matrix below. Note that for each i ∈ {1, . . . , n}, if αi 6= 1 then the points [1]i and [αi]i
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span a line Li in the represented matroid.



[1]1 [1]2 . . . [1]n−1 [1]n [α1]1 [α2]2 . . . [αn−1]n−1 [αn]n
1 0 . . . 0 −1 1 0 . . . 0 −αn
−1 1

. . .
... 0 −α1 1

. . .
... 0

0 −1
. . . 0

... 0 −α2
. . . 0

...
... 0

. . . 1 0
... 0

. . . 1 0

0
... . . . −1 1 0

... . . . −αn−1 1


.

Suppose we have a representation of a matroid that is projectively equivalent to the above.
If we have two consecutive lines Li−1 = {[1]i−1, [αi−1]i−1} and Li = {[1]i, [αi]i}, we deter-
mine the representation of a new element, bi, that lies in the intersection of Li−1 and Li.
With the representation above, bi is represented by the i-th standard basis vector, ei. For
each i ∈ {1, . . . , n}, we now have that the label [αi]i actually encodes αi on the line Li
with [0]i = bi and [−∞]i = bi+1. So, as we can retrieve the appropriate [0]i and [−∞]i for
each line, a matroid that has a representation projectively equivalent to the matrix above
can be used to encode whether or not

∏n
i=1 αi is one.

We now see matroids that can each encode a family of relations of the form
∏n

i=1 αi = 1.
However, such a matroids may be non-representable if the relations it would encode are
inconsistent.

Swirl-like matroids

A swirl-like matroid on n lines with joints b1, . . . , bn is a simple matroid that is the union
of a set of lines {Li|i ∈ Zn} where {bi|i ∈ Zn} is a basis and each line Li contains bi and
bi+1. Note that each transversal T = {a1, . . . , an} with ai in edge Li − {bi, bi+1} is either
a basis or a circuit-hyperplane. We say that a matroid is swirl-like on these n lines when
it is a restriction of such a matroid. It is not hard to check that a swirl-like matroid is
determined by its lines L1, . . . , Ln and its dependent transversals. Furthermore, for any
set T of transversals in which no two transversals differ on only a edge, there is a swirl-like
matroid with T as its set of dependent transversals.

Representations

Let Ω = (E, C) be a representable swirl-like matroid with joints b1, . . . , bn. Let f be a
representation of Ω over a field F. As B = {bi|i ∈ Zn} is a basis, by row operations
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and column scaling, we may assume that, for each i ∈ Zn, the joint bi is represented by
the i-th standard basis vector ei. By column scaling, we may assume that each element
ai ∈ Li − {bi, bi+1} is represented by ei − αiei+1 for some αi ∈ F− {0}, and we henceforth
label ai as [αi]i. Recalling (2.2), we have that a transversal T = {[α1]1, . . . , [αn]n} is
dependent if and only if

∏n
i=1 αi = 1.

There is some freedom in scaling when converting to a representation of this form. For
a fixed dependent transversal T = {[α1]1, . . . , [αn]n} of Ω, we can scale the representation
so that αi = 1 for each i ∈ Zn. When this is done, we will say this encoding is with respect
to the dependent transversal T . Each representation of Ω is projectively equivalent to a
unique encoding with respect to a given dependent transversal T .

2.3 Sharing structure; Amalgams

The matroid structures from the previous sections each have limited use algebraically.
However, we will now see how we can “glue” matroids together.

Say we have two matroids M1 and M2 on ground sets E1 and E2, respectively. An
amalgam of M1 and M2 is a matroid M with ground set E1 ∪ E2 such that M |E1 = M1

and M |E2 = M2.

For this to exist, M1 and M2 must have compatible structure over the set L = E1 ∩E2

which the amalgam occurs across. An immediate necessary condition, for instance, is that
M1 and M2 have the same structure at L, that is, a common restriction R = M1|L = M2|L.
However, this may not be sufficient.

Recall that for a matroid M , a subset L of E(M) is modular, when

r(L) + r(F )− r(L ∪ F ) = r(L ∩ F ) (2.3)

for all flats F in M . For two sets X and Y of a matroid M , the value r(X)+r(Y )−r(X∪Y ),
is the local connectivity between X and Y , denoted u(X, Y ). Intuitively, this would be the
rank of the intersection of cl(X) and cl(Y ) if M was actually a vector space, see Figure 2.4.
Noting F = cl(F ) for each flat F in (2.3), we can interpret a modular set, L, as one which
behaves as a vector subspace in how it intersects flats of the matroid.

Brylawski [6], showed that if L = E1 ∩ E2 is modular in one of M1 or M2 then we
can define an amalgam. Specifically, if M1 = (E1,F1) and M2 = (E2,F2) are matroids
described by their flats, and R = M1|L = M2|L with L = E1 ∩ E2 modular in one of M1

or M2, then
F = {F ⊆ E1 ∪ E2 : F ∩ E1 ∈ F1 and F ∩ E2 ∈ F2} (2.4)
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u(X,Y )

Figure 2.4: Local connectivity in a representable matroid

is the set of flats of an amalgam of M1 and M2, see [34, Proposition 11.4.13]. This amalgam
is known as the general parallel connection of M1 and M2, denoted PR(M1,M2). If L =
E1 ∩ E2 = ∅, then we call the general parallel connection of M1 and M2 the direct sum of
M1 and M2, denoted M1 ⊕M2.

The general parallel connection is an example of a “proper” amalgam. An amalgam M
of M1 and M2 is the proper amalgam when, for every flat F of M , the rank function r of
M satisfies

r(F ) = r(F ∩ E1) + r(F ∩ E2)− r(F ∩ L), (2.5)

see [34, Theorem 11.4.3]. In other words, r(F ∩ L) = u(F ∩ E1, F ∩ E2), so intuitively
flats can only cross between E1 and E2 within L = E1 ∩ E2. More generally, when the
proper amalgam of M1 = (E1, r1) and M2 = (E2, r2) exists, it is denote M1 ⊕R M2 where
R = M1|L = M2|L and has rank function given by

r(X) = min{r1(S ∩ E1) + r2(S ∩ E2)− r1(S ∩ L) : X ⊆ S ⊆ E1 ∪ E2} (2.6)

for a subset X of E1 ∪ E2 [34, Theorem 11.4.2]. Besides the instance of general parallel
connections, the proper amalgam also exists when all the flats of R = M1|L = M2|L are
modular [34, Theorem 11.4.10]. This is the case when R is a line, but more generally R
can be the direct sum of finite projective geometries, see [4, pp 90–93]. When the notation
M1 ⊕R M2 is used, we will assume that elements of E(M1) − E(R) have been renamed if
necessary to ensure that E(M1) ∩ E(M2) = E(R).

Recall that a hyperplane of a matroid M = (E, r) is a flat H for which r(H) = r(M)−1.
By (2.4) and (2.5) and the observation that r (PR(M1,M2)) = r(M1) + r(M2)− r(D), we
have the following.

Remark 2.3.1. Let M1 = (E1,F1) and M2 = (E2,F2) be matroids with R = M1|L = M2|L
and L = E1 ∩ E2 modular in one of M1 or M2. Then H is a hyperplane of PR(M1,M2) if
and only if
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� H ⊇ E1 and H ∩ E2 ⊃ L is a hyperplane of M2,

� H ⊇ E2 and H ∩ E1 ⊂ L is a hyperplane in M1, or

� H + L and H ∩ E1 and H ∩ E2 are hyperplanes in M1 and M2, respectively.

Let M = (E, r) be a representable matroid with matrix representation A, that is,
r(X) = rank(A|X) for X ⊆ E. Let H be a hyperplane of M , that is, a maximal set of
rank r(M)− 1. Thus rank(A|H) = r(H) = r(X)− 1 = rank(A|X)− 1 = rank(A)− 1 for
any X ⊇ M that properly contains H. By the rank-nullity theorem, there is a vector wH

in the nullspace of (A|H)T that is orthogonal to precisely the columns that are indexed by
elements of H. We can summarize this as the follows.

Remark 2.3.2. If M is a representable matroid with representation {ve}e∈E(M), then for
any hyperplane H of M there is a vector wH such that H = {e ∈ E(M) : (wH)Tve = 0}.

By using the hyperplane description of general parallel connection, Remark 2.3.1, in
conjunction with the characterizing vectors of hyperplanes, Remark 2.3.2, we get the fol-
lowing.

Theorem 2.3.3. Let F be a field. Let M1 and M2 be matroids on ground sets E1 and
E2, respectively. Let L = E1 ∩ E2 be a common modular line in M1 and M2 with R =
M1|L = M2|L. The general parallel connection PR(M1,M2) has F-representation A with
A|E1 and A|E2 row equivalent to A1 and A2, respectively, if and only if M1 and M2 have
F-representations A1 and A2, respectively, with A1|L and A2|L row equivalent to each other.

By first using “principal extensions” (see Section 4.0.2) to ensure two lines have the
same elements, we have the following more general result.

Lemma 2.3.4. Let F be a field. Let M1 and M2 be simple matroids with F-representations
A1 and A2 and modular lines L1 and L2, respectively. Let L = L1 ∩ L2 = E(M1) ∩E(M2)
and have common restriction R = M1|L = M2|L of rank 2. Let A′ be a matrix over F that
represents a simple rank-2 matroid on ground set L1 ∪ L2. If A′|L1 is row equivalent to
A1|L1 and A′|L2 is row equivalent to A2|L2 then there is a F-representation A of M1⊕RM2

for which A|E(M1) = A1 and A|E(M2) = A2.

In other words, if M1 and M2 are matroids that have consistent F-encodings on modular
lines L1 and L2, respectively, such that the elements in L = L1∩L2 have the same labelling
in L1 and L2 with the only labels that occur for both, then there is a consistent F-encoding
of the line L1∪L2 in M1⊕RM2 with this labelling. This lemma is what allows us to “glue”
consistent gadgets together.
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Proof of Lemma 2.3.4. We see that we may extend L1 by elements in L2 − L1 in such a
way that the only flats of M1 that span these new elements are those that contain L1.
Specifically, we represent each new element on the line L1 according to the row equivalence
of A1|L1 with the rank-2 matrix A′. As L1 is modular in M1 and A′ represents a simple
matroid, each new element only lies in flats spanning L1, so this extended line L′ = L1∪L2

is modular in our new matroid M ′
1. Similarly, we can extend M2 to a matroid M ′

2 where
L′ is a modular line. Note A′ represents M ′

1|L′ = M ′
2|L′, which we denote R′. We may

now consider the general parallel connection PR′(M ′
1,M

′
2) with ground set E(M1)∪E(M2).

By construction, both A′1|L′ and A′2|L′ are row equivalent to A′. So by Theorem 2.3.3,
PR′(M ′

1,M
′
2) is F-representable. Note that M1 ⊕R M2 and PR′(M ′

1,M
′
2) have the same

ground set and the same rank function as they are both proper amalgams. Thus we have
that M1 ⊕RM2 = PR′(M ′

1,M
′
2) is F-representable.

2.3.1 Cannibalizing structure; Pinned extensions

Once we have shared structure by an amalgam across a line, there may be elements on the
line that are “pointed at” from both sides of the amalgam, or “pinned”. We will see that
if we remove an element that is “pinned” on the line, we can “reinsert” it to retrieve the
original matroid. This will allow us to take advantage of useful structure in a matroid to
get new constructions.

Recall that the local connectivity between two sets S and T of a matroid M is

uM(S, T ) = rM(S) + rM(T )− rM(S ∪ T ).

Now, for disjoint sets X, Y , and C in M , we have

uM/C(X, Y ) = uM(X, Y ∪ C)− uM(X,C),

which can be easily verified by expanding both sides. We will also use the fact that, if
uM(X, Y ) = 0 and e is spanned by both X and Y , then e is a loop; this follows since

rM({e}) ≤ rM(clM(X) ∩ clM(Y ))

≤ rM(clM(X)) + rM(clM(Y ))− rM(clM(X) ∪ clM(Y ))

= rM(X) + rM(Y )− rM(X ∪ Y )

= uM(X, Y ) = 0.

22



Let (S1, S2) be a partition of the ground set of a matroid M ′ such that u(S1, S2) = 2.
This is called a 3-separation of M ′. Let M be obtained from M ′ by extending by a non-
loop element e into the closures of both S1 and S2. Unlike the case with 2-separations, this
does not uniquely determine M . However, under some additional hypotheses, the following
result shows that we can uniquely determine M .

Lemma 2.3.5. Let e be a non-loop element of a matroid M , let (S1, S2) be a 3-separation
of M\e, and let Y1 ⊆ S1 and Y2 ⊆ S2 such that uM(Y1, S2) = 1, uM(S1, Y2) = 1, and e is
spanned by both Y1 and Y2 in M . Then a flat F of M spans e if and only if either

(i) uM(F ∩ S1, Y2) = 1 or uM(Y1, F ∩ S2) = 1, or

(ii) uM(F ∩ S1, S2) = uM(S1, F ∩ S2) = 1 and uM(F ∩ S1, F ∩ S2) = 0.

Proof. Let F1 = F ∩ S1 and F2 = F ∩ S2. First, suppose that uM(F1, Y2) = 1. Then
uM/F1(S1 − F1, Y2) = uM(S1, Y2) − uM(F1, Y2) = 0. However, e is in the closure of both
S1 − F1 and Y2 in M/F1. Thus e is a loop in M/F1 and hence e is spanned by F . By
symmetry, if uM(Y1, F2) = 1, then e is spanned by F .

Now suppose that uM(F1, S2) = uM(S1, F2) = 1 and uM(F1, F2) = 0. Then

uM/F (S1 − F1, S2 − F2) = uM/F1(S1 − F1, S2)− uM/F1(S1 − F1, F2)

= uM(S1, S2)− uM(F1, S2)

− uM (S1, F2) + uM(F1, F2)

= 0.

However, e is spanned by both S1 − F1 and S2 − F2 in M/F . Thus e is a loop in M/F
and, hence, F spans e.

Conversely, suppose that F spans e and hence that e is a loop in M/F . We may assume
that e is not spanned by either F1 or F2 since otherwise (i) holds. Since e is spanned by
F2 in M/F1, we have uM(F1, S2) = 1. Similarly uM(S1, F2) = 1. Moreover, again since e
is spanned by F2 in M/F1, we have 1 = uM/F1(S1 − F1, F2) = uM(S1, F2)− uM(F1, F2) =
1− uM(F1, F2) and, hence uM(F1, F2) = 0, so (ii) holds.

When the hypotheses from the previous theorem are satisfied, we say that (Y1, Y2) pins
e and that M is a pinned extension into a 3-separation of M\e. Oxley characterized when
such an extension exists in general [35], but the following is an easier case.

Lemma 2.3.6. Let F be a field. The class of F-representable matroids is closed under
pinned extensions into 3-separations.
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Proof. Let M be a matroid with F-representation g. Let Y1 and Y2 be subsets of E(M) with
u(Y1, Y2) = 1. By the modularity of the dimension of subspaces, the subspace spanned by
g(Y1) intersects the subspace spanned by g(Y2). A non-trivial vector v in this intersection
subspace gives us a representation of an extension point e that is spanned by both Y1 and
Y2.

Once we have a matroid N that is not real-representable, this lemma provides a tech-
nique to construct a new matroid that are not real-representable. Specifically, consider M\p
where M is the amalgam of N with another matroid such that an element p of N is pinned
across a 3-separation of M . The matroid M\p is not real-representable as otherwise M is
real-representable by Lemma 2.3.6 and this contradicts the assumption that the restriction
N is not real-representable.
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Chapter 3

Axiomatization

This chapter is mostly [27] by Mayhew, Newman, and Whittle.

Here we consider using logical conditions to characterize real-representability. With a
strong enough logical language, we can define whatever we can conceive of. Instead, we
will use a natural independent-set language MS0. Properties that are finitely axiomatizable
in this language are intuitively not too complicated from a combinatorial perspective. We
will see that we can state matroid axioms with this language — as opposed to Vámos’s
language [43] — and explore some matroid properties that we can also finitely axioma-
tize. Surprisingly, we will see that the prototypical class of matroids — real-representable
matroids — is not so easily defined [27], even within the class of representable matroids.

3.0.1 The independent-set language MS0

As matroids are combinatorial in nature, we will use a second-order language: one with
variables for elements, but also for sets of tuples of elements. We use the independent-
set formulation of matroids, as this requires only element and set variables — a monadic
second-order language. We will use the language MS0 given by Mayhew, Newman, and
Whittle in [27], where, instead of element variables, there is a relation identifying singleton
sets. This is equivalent to the language used by Hliněný in [15].

The language MS0 will be used to finitely encode conditions on pairs (E, I), where E
is a set of elements and I is the set of “independent” subsets of E. The language MS0

consists of: countably many variables X1, X2, . . . ; unary predicates Sing and Ind, and the
binary predicate ⊆; the connectives ¬, ∧, ∨, and →; and the quantifiers ∃ and ∀. For
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a pair (E, I), if the variable Xi is assigned to the subset Ai of E, then Sing(Xi) is true
precisely when Ai is a singleton, and Ind(Xi) is true precisely when Ai ∈ I.

3.1 Matroid axiomatization

We now recall the prototypical example of linear independence. Let I be a collection of
subsets of a finite set E. We have that (E, I) is representable over a field F when there is
a multiset A = {ve}e∈E of vectors from a vector space over F such that I corresponds to
linearly independent subsets of A. Can we give criteria for when (E, I) is representable?
There are some fundamental conditions which I must satisfy. For instance:

(I1): I is not empty.

(I2): Any subset of an element of I is also in I.

(I3): If B is maximal in I and S is in I but not maximal, then there is an e ∈ B − S for
which there is T in I that contains exactly the elements t ∈ S ∪ {e}.

The condition (I3) is not a commonly used independence axiom and is closer to the “basis
exchange” axiom, but we wish to avoid using the size of sets. Since this is done, we can
encode each of these properties over the language MS0 as a sentence, that is, a finite
expression where all variables are quantified [27].

φ(I1) : ∃X1 Ind(X1)

φ(I2) : ∀X2∀X3 (Ind(X2) ∧ (X3 ⊆ X2))→ Ind(X3)

φ(I3) : ∀B∀S (Ind(B) ∧ (∀B+ (B ⊆ B+ → (B+ ⊆ B ∨ ¬ Ind(B+))))∧
Ind(S) ∧ (∃S+ Ind(S+) ∧ (S ⊆ S+) ∧ ¬(S+ ⊆ S)))→

(∃ιe Sing(ιe) ∧ (ιe ⊆ B) ∧ ¬(ιe ⊆ S)∧
∃T Ind(T ) ∧ (∀ιt Sing(ιt)→ (ιt ⊆ T ↔ ((ιt ⊆ S) ∨ (ιt ⊆ ιe))

For consistency with (I3) above, X4, X5, X6, X7, X8, X9, X10 have been renamed in φ(I3) as
B, S,B+, S+, ιe, T, ιt respectively.

Whitney named the class of structures (E, I) that satisfy these conditions matroids [45].
Thus, the class of matroids is finitely axiomatizable over MS0. Equivalently, by considering
the conjunction of the axioms, we have:
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Remark 3.1.1 (Mayhew, Newman, Whittle [27]). A pair (E, I) is a matroid precisely
when it satisfies the sentence φ(I1) ∧ φ(I2) ∧ φ(I3).

By definition, being a matroid is a necessary condition for a pair (E, I) to be repre-
sentable. We will see that it is impossible to expand this to a finite list of conditions that
characterize representability. Equivalently, as we could take the conjunction of such a list:

[Theorem 3.3.1 (Mayhew, Newman, Whittle [27])]. There is no sentence φ in MS0 such
that a matroid is representabile precisely when it satisfies φ.

This is also the case when we restrict to real-representability.

Theorem 3.1.2 (Mayhew, Newman, Whittle [27]). Let F be an infinite field. There is no
sentence φF in MS0 such that a matroid is F-representable precisely when it satisfies φF.

This was also shown to be the case for any infinite field, see Theorem 3.4.1. Even
assuming that the matroids in question are representable does not necessarily improve the
situation. In this chapter we prove the following strengthening of the real case of the
previous result.

[Theorem 3.4.2 (Campbell)]. There is no sentence φ in MS0 such that a complex-
representable matroid is real-representable precisely when it satisfies φ.

That is to say, within the class of complex-representable matroids, real-representability
is not finitely axiomatizable.

Before we get to the proofs of these theorems, we will see some matroid properties that
can be defined with this independent-set language.

3.1.1 Important sets in a matroid

We can use MS0 to define some useful types of sets in a matroid.

Bases

A subset S of E is a basis when it is maximally independent, that is, S is a basis when it
satisfies the formula

Ind(S) ∧ (∀X (S ⊆ X → (X ⊆ S ∨ ¬ Ind(X))))
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Circuits

A subset S of E is a circuit when it is minimally dependent, that is, S is a circuit when it
satisfies the formula

(¬ Ind(S)) ∧ (∀X (X ⊆ S → (S ⊆ X ∨ Ind(X))))

3.1.2 Minors

Given a set system (E, I), minor operations are the natural way to restrict the scope of
the structure. Given an element e in E, we get a new set system (E − {e}, I ′) where I ′ is
all the sets in I that do not contain e (deletion). Alternatively, we can “project” from e
when {e} ∈ I by instead taking I ′ to be all the sets I − e where e ∈ I ∈ I (contraction
of e, denoted M/e). When there is no set in I containing e, we define M/e = M\e. When
a matroid N can be obtained from M with a sequence of these operations, we call N a
minor of M .

For a fixed matroid N on ground set {1, . . . , n} and with I ′ as its set of independent
sets, a matroid M contains a minor isomorphic to N precisely when M satisfies:

There exist disjoint singleton sets X1, . . . , Xn and a disjoint independent set
Xn+1 (the set to be contracted) such that:

� for each {i1, . . . , it} ∈ I ′, there is an independent set Y for which a sin-
gleton is a subset of Y precisely when this singleton is a subset of one of
Xi1 , . . . , Xit , Xn+1 (namely, Y is the set Xi1 ∪ · · · ∪Xit ∪Xn+1),
and

� for each {i1, . . . , it} /∈ I ′ there is a dependent set that contains a singleton
precisely when it is contained in one of Xi1 , . . . , Xit , Xn+1 (again, it is the
set Xi1 ∪ · · · ∪Xit ∪Xn+1).

This can be explicitly written in MS0, see [27], to give us:

Lemma 3.1.3. Let N be a matroid. There is a sentence φN in MS0 such that a matroid
M has minor isomorphic to N precisely when M satisfies φN .

This is useful as it means that MS0 is sufficient to define classes with finitely many
obstructions. In particular, we can MS0-axiomatize F-representability when F is a finite
field [13].
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3.1.3 Ingleton’s inequality

Note that minors provide an infinite axiomatization of representability: we simply have an
axiom for every excluded minor. However it is conceivable that these could be replaced
by a finite set of necessary and sufficient conditions for real-representability. Indeed, there
are necessary conditions for representability that rule out infinitely many excluded minors
for real-representability.

For example, Ingleton observed an inclusion-exclusion principle on the dimensions of
the intersection of two subspaces with relation to another two subspaces [17]. For four
subspaces A,B,C,D of a vector space, the dimension of the intersection of A and B is less
than or equal to the sum of the dimension-deficit of C in their intersection, the dimension-
deficit of D in their intersection, and the dimension of the intersection of C and D:

dim(A∩B) ≤ [dim(A ∩B)− dim(A ∩B ∩ C)]+[dim(A ∩B)− dim(A ∩B ∩D)]+dim(C∩D)

We can rephrase this as follows in terms of bases A0, B0, C0, D0 of A,B,C,D and to
allow a conversion to MS0:

For all independent subsets A0, B0, C0, D0 and each independent subset S
for which A0 and B0 are maximal independent sets in A0 ∪ S and B0 ∪ S,
respectively, there exist independent sets X, Y, Z whose union contains S and
such that:

� X ∪ C0 is independent and A0 and B0 are maximal independent sets in
A0 ∪X and B0 ∪X, respectively,

� Y ∪ D0 is independent and A0 and B0 are maximal independent sets in
A0 ∪ Y and B0 ∪ Y , respectively,
and

� C0 and D0 are maximally independent sets in C0 ∪Z and D0 ∪Z, respec-
tively.

Ingleton’s inequality rules out infinitely many obstructions to real representability [28].
One might hope that we only need finitely many more conditions to axiomatize repre-
sentability. How can we show that this is not the case?
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3.2 Ineffable properties

We now need a way to show that a property P is not finitely axiomatizable. The strategy
presented is similar to Myhill and Nerode’s characterization of regular languages [33] and
was used by Mayhew, Newman and Whittle. We find two matroids that should satisfy the
same MS0-sentences on a given number of variables, yet have one that has the property P
and one that does not. First, however, we need a better understanding of what we can say
about matroids using finitely many variables.

3.2.1 Depth-k truth tables

We introduce depth-k truth tables as a data structure that captures what we can say about
a pair (E, I) using k quantifiers. For a positive integer k, we define depth-k truth tables
recursively.

For A1, . . . , An ⊆ E, the depth-0 truth table T0(E, I;A1, . . . , An) of a pair (E, I) is
a (n + 2) × n-table whose rows are indexed by X1, . . . , Xn, Ind, Sing and whose columns
are indexed by X1, . . . , Xn. It is essentially a truth table for atomic expressions, that is,
expressions with no connectives or quantifiers. The (Xi, Xj)-entry is > if Ai ⊆ Aj and ⊥
otherwise and the (Ind, Xj)-entry is > if Aj is independent and ⊥ otherwise. However, the
(Sing, Xj)-entry is defined slightly differently: it is > if Aj is a singleton, but it takes on
a value of 0 if Aj is empty and ⊥ if Aj has at least two elements. Note that we get the
same depth-0 truth table for different (E, I) and A1, . . . , An precisely when the the same
atomic expressions are satisfied and the empty sets remain the same.

The following illustrates the key property of depth-0 truth tables. Suppose we are
given a quantifier-free formula φ(X1, . . . , Xk). We may use the depth-0 truth table
T0(E, I;A1, . . . , An) to determine whether or not the sets A1, . . . , An satisfy φ(X1, . . . , Xn)
according to (E, I). Indeed, the table gives us the truth value of all atomic expressions
that may occur as constituents and we may use boolean arithmetic to calculate the result of
evaluating φ(E,I)(A1, . . . , An). We now adapt truth tables to allow us to consider formulae
with a fixed number of quantified variables.

For a positive integer k, and A1, . . . , An ⊆ E, we define the depth-k truth table
Tk(E, I;A1, . . . , An) of a pair (E, I) as the set of all the depth-(k − 1) truth tables that
are possible in (E, I) with the given A1, . . . , An and an additional parameter An+1 ⊆ E;
that is

Tk(E, I;A1, . . . , An) := {Tk−1(E, I;A1, . . . , An, An+1) : An+1 ⊆ E}.
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Note that truth tables with depth at least 1 are the same precisely when they have the
same elements, regardless of the choice of (E, I) and A1, . . . , An.

Suppose that we are given a formula φ(X1, . . . , Xn) with an additional k variables
Xn+1, . . . , Xn+k that are quantified. By standard conversion rules, we may assume that φ
is of the prenex normal form — with all quantifiers and their variables occurring as a prefix.
This implies that φ is of the form ∀Xn+1ψ or ∃Xn+1ψ, for a formula ψ(X1, . . . , Xn, Xn+1)
with quantifier depth k− 1. As an induction hypothesis, we assume that the depth-(k− 1)
truth table Tk−1(E, I;A1, . . . , An, An+1) is sufficient to determine ψ(E,I)(A1, . . . , An, An+1),
the truth value of ψ interpreted for (E, I) with Xi assigned to Ai for i from 1 to n + 1.
However, the depth-k truth table Tk(E, I;A1, . . . , An) contains all the possible truth tables
arising from different choices of An+1. Because of this, Tk(E, I;A1, . . . , An) is then sufficient
to determine the truth value of φ for Xi assigned to Ai for i from 1 to n. Specifically, if
φ is of the form ∀Xn+1ψ, then Tk(E, I;A1, . . . , An) determines a value of “true” precisely
when all of its elements determine a value of “true” for ψ. Similarly, if φ is of the form
∃Xn+1ψ, then Tk(E, I;A1, . . . , An) determines a value of “true” precisely when one of its
elements determine a value of “true” for ψ.

We have also just given the idea of the proof of the following theorem.

Theorem 3.2.1 (Mayhew, Newman, Whittle [27]). To determine whether or not (E, I)
satisfies a k-variable sentence, it is enough to have the zero-parameter depth-k truth table
Tk(E, I).

It is not difficult to check the following by inducting on k.

Remark 3.2.2 (Mayhew, Newman, Whittle [27]). There are finitely many depth-k truth
tables on zero parameters.

It is also useful to note that the zero-parameter depth-k truth table of two matroids
determines the zero-parameter depth-k truth table of their direct sum:

Lemma 3.2.3 (Mayhew, Newman, Whittle [27]). Given zero-parameter depth-k truth
tables T and T ′, there is a unique zero-parameter depth-k truth table T ⊕ T ′ such that if
M and M ′ have zero-parameter depth-k truth table T and T ′ respectively, then M ⊕M ′

has zero-parameter depth-k truth table T ⊕ T ′.

3.2.2 k-equivalence

We now introduce equivalence relations that give a notion of which matroids are indis-
tinguishable when we limit our descriptive power to a given number of variables. For a
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positive integer k, we say that M1 and M2 are k-equivalent when M1 and M2 have the
same zero-parameter depth-k truth table.

Note that as there are finitely many depth-k truth tables on zero parameters
(Lemma 3.2.2),

Remark 3.2.4 (Mayhew, Newman, Whittle [27, Lemma 1.3]). There are finitely many
k-equivalence classes for a given k.

As the depth-k truth table of a direct sum is determined by the depth-k truth tables
of its summands (see Lemma 3.2.3), we could have defined k-equivalence as follows:

Remark 3.2.5. M1 and M2 are k-equivalent when, for any sentence φ in MS0 of quantifier
depth at most k and any matroid N with E(N) ∩ E(M1) = E(N) ∩ E(M2) = ∅, we have
that M1 ⊕N satisfies φ if and only if M2 ⊕N satisfies φ.

This phrasing is more useful as we will have a sentence φ and matroid N as a certificate
of inequivalence. When stated as above, it is also clear that k-equivalence is analogous to
the equivalence on strings used by Myhill and Nerode [33].

3.3 The non-axiomatizability of representability

We now present Mayhew, Newman, and Whittle’s lovely proof that representability is not
axiomatizable in MS0 [27].

Theorem 3.3.1 (Mayhew, Newman, Whittle [27, Theorem 1.1]). There is no sentence φ
in MS0 such that a matroid is representable precisely when it satisfies φ.

Proof. Suppose that a sentence φ characterizes representability. Say φ has k variables.
There are infinitely many primes, but only finitely many equivalence classes for k-
equivalence by Lemma 3.2.4. Thus we have two projective planes M = PG(2, p) and
M ′ = PG(2, p′) in the same equivalence class for distinct primes p and p′. However,
M ⊕M is a representable matroid, while M ′ ⊕M is not. So φ and N = M = PG(2, p)
certify that M and M ′ are not in the same equivalence class, our contradiction.
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3.4 The non-axiomatizability of real-representability

The proof that representability is not finitely axiomatizable (Theorem 3.3.1) required that
representability not be closed under direct sums. However, representability over a fixed
field is closed under direct sums; we need another operation to take its place. This will
be proper amalgamation (see Section 2.3). With appropriate alterations to the previous
technique, Mayhew, Newman, and Whittle proved the following:

Theorem 3.4.1 (Mayhew, Newman, Whittle [27, Theorem 1.2]). Let F be an infinite field.
There is no sentence φF in MS0 such that a matroid is F-representable precisely when it
satisfies φF.

We will use the same tools they introduce but different constructions to prove the
following, slightly stronger result for the case where F = R:

Theorem 3.4.2 (Campbell). There is no sentence φ in MS0 such that a complex-
representable matroid is real-representable precisely when it satisfies φ.

3.4.1 Alterations to the previous technique

We now look at how we must modify k-equivalence and depth-k truth tables to deal with
proper amalgams across a fixed matroid. Here we restrict to amalgams across a fixed line,
but this can be done more generally.

We first adapt the equivalence relation; to do so, we draw inspiration from Remark 3.2.5
(and Myhill and Nerode [33]). Fix a matroid R consisting of a single line. Let MR be
the set of all matroids that contain R as a restriction. For a positive integer k, we say
that M1 and M2 inMR are (k;R)-equivalent when, for any k-variable sentence φ and any
matroid N inMR with E(N)∩E(M1) = E(N)∩E(M2) = E(R), we have that the proper
amalgam M1 ⊕R N satisfies φ if and only if M2 ⊕R N satisfies φ.

We now modify depth-k truth tables so that for a given M in MR there is enough
information to determine whether an amalgam M ⊕R N satisfies a k-variable sentence φ.
While quantifiers behave as before, we must include additional information in the depth-0
truth tables. To be able to determine the independent sets in the proper amalgam M⊕RN ,
we need to know how the subsets of E(M) interact with R. Specifically, for a subset Aj of
E(M), we need to know whether Aj is dependent, but otherwise the elements in Aj∩E(R)
and the elements of R in the span of Aj − E(R). We can do this by simply including
this information: the (Ind, Xj)-entry of the depth-0 truth table T0(M ;A1, . . . , An) is ⊥
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if Aj is dependent and the ordered pair (Aj ∩ E(R), cl(Aj − E(R)) ∩ E(R)) ∈ E(R) ×
E(R) otherwise. With this additional information included in each entry on each Ind-row,
Mayhew, Newman, and Whittle proved the following analogue of Lemma 3.2.4.

Lemma 3.4.3 (Mayhew, Newman, Whittle [27, Lemma 1.4]). For each integer k, there
are only finitely many equivalence classes for (k;R)-equivalence.

3.4.2 New constructions

We now consider the constructions that will take the place of the projective geometries from
the previous section. Here we differ from the proof of Mayhew, Newman, and Whittle [27].

For an odd prime p, let Mp be the rank-(p + 1) swirl-like matroid given by the Q(x)-
matrix

Ap(x) =



b0 [1]0 [x−1]0 . . . [x−p]0 b1 [1]1 [x]1 [1]2 [x]2 . . . [1]p [x]p
1 1 1 . . . 1 0 0 0 0 0 . . . −1 −x
0 −1 −x−1 . . . −x−p 1 1 1 0 0 . . . 0 0
0 0 0 . . . 0 0 −1 −x 1 1 . . . 0 0
0 0 0 . . . 0 0 0 0 −1 −x . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

0 0 0 . . . 0 0 0 0 0 0 . . . 0 0
0 0 0 . . . 0 0 0 0 0 0 . . . 0 0
0 0 0 . . . 0 0 0 0 0 0 . . . 1 1


Note that the labellings are encoded with respect to the transversal {[1]0, . . . , [1]p}.

The dependent transversals of Mp are those whose labels multiply to 1, as in Sec-
tion 2.2.2. This enforces representations that encode this labelling.

Let z = xp, so we can also label the element [x−p]0 as [z−1]0. Now let R be the line
restriction on the set {b0, [1]0, [z

−1]0, b1}. So that we may consider an amalgam across R,
let M ′

p be a copy of Mp where all the elements not in R have been renamed and where the
indeterminant x has been replaced with y in labellings.

Intuitively, when we consider the matroid Mq ⊕R M ′
p for odd primes p and q, the

encodings enforce xq = z = yp with x 6= y. This leads to the following two propositions.

Proposition 3.4.4. If q and p are distinct odd primes, then Mq⊕RM ′
p is real-representable.
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Proof. Let γ be a positive transcendental real number. Let α = γ
1
q and β = γ

1
p . Consider

the homomorphism from Q(z, x, y) to R by evaluating z, x, y as γ, α, β, respectively.

Let Lq and L′p be the closures of E(R) in Mq and M ′
p respectively. As q and p are

distinct primes, Lq and L′p have no coincident values labelled besides those in E(R). Thus
by Lemma 2.3.4, the proper amalgam Mq ⊕RM ′

p is real-representable.

Proposition 3.4.5. For any odd prime p, the amalgam Mp⊕LM ′
p is complex-representable

but not real-representable.

Proof. Let γ be a transcendental complex number, and ω be a primitive pth root of unity.

Let α = γ
1
p and β = γω. Consider the homomorphism from Q(z, x, y) to C by evaluating

z, x, y as γ, α, β, respectively.

Let Lp and L′p be the closures of E(R) in Mp and M ′
p respectively. As ω is a primi-

tive root of unity, Lp and L′p have no coincident values besides those in E(R). Thus by
Lemma 2.3.4, the proper amalgam Mp ⊕RM ′

p is complex-representable.

Suppose that Mp ⊕R M ′
p has a real-representation. Say z is evaluated as γ on the

line E(R). The representation of Mp ⊕R M ′
p induces encodings on the swirl-like matroid

restrictions Mp and M ′
p. Say x, y are evaluated as α, β in Mp and M ′

p respectively. The
encoding of E(R) in the restriction Mp enforces that α is the pth root of γ. However, the
restriction M ′

p enforces that the pth root of γ is β. However, as p is odd, γ only has one
real pth root by distribution of the absolute value over products. Thus Mp ⊕R M ′

p is not
real-representable.

3.4.3 Analogous proof

Proof of Theorem 3.4.2: Suppose that we have a sentence φ in MS0 that characterizes
real-representability for complex-representable matroids. Say φ has k variables. There are
infinitely many primes, but only finitely many equivalence classes for (k;R)-equivalence
by Lemma 3.4.3. Thus we have two swirls Mp and Mq in the same equivalence class for
distinct primes p and q. Note that both Mq⊕RM ′

p and Mp⊕RM ′
p are complex-representable

by Propositions 3.4.4 and 3.4.5. However, by these same propositions, Mq ⊕R M ′
p is real-

representable, while Mp ⊕R M ′
p is not. So φ and N = M ′

p certify that Mp and Mq are
not in the same equivalence class for (k;R)-equivalence, a contradiction. This means,
that we cannot have such a sentence φ in MS0 that characterizes real-representability for
complex-representable matroids.
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Chapter 4

Excluded minors

This section is based on [8] co-authored with Jim Geelen and published in the Journal of
Combinatorial Theory, Series B.

Instead of inspecting why a matroid is real-representable, it may be easier to say why a
matroid is not real-representable. This has turned out to be the case for representability
over a finite field. Indeed, Tutte showed that a matroid is not GF(2)-representability if and
only if it contains the 4-point line as a minor [41]. Geelen, Gerards, and Whittle announced
a proof of Rota’s Conjecture [13], that is, for any finite field F, there is a finite collection
of matroids, EF, such that a matroid is non-F-representable precisely when it contains a
member of EF as a minor.

4.0.1 Excluded minors for real-representability

We consider characterizing the set of excluded minors for the class of real-representable
matroids. In contrast to the case for finite fields, Lazarson [22, Theorem 1] showed that
there are infinitely many excluded minors for real-representability. This in itself does not
preclude the possibility of a simple structural description. For example, Bonin [3, Theorem
3.1] described the excluded minors for lattice-path matroids, despite the fact that the list
is infinite.

Mayhew, Newman, and Whittle [28] have effectively settled the matter by proving the
following striking result.

Theorem 4.0.1 (Mayhew, Newman, Whittle [28]). For any infinite field F, each F-
representable matroid is a minor of an excluded minor for F-representability.
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This essentially implies that the excluded minors are at least as structurally com-
plicated as the real-representable matroids themselves. This is less surprising when we
consider that non-representable matroids are rather wild in comparison to representable
matroids. For instance, Nelson showed that asymptotically almost all matroids are non-
representable [32]. Thus it is more unexpected that the same issue arises even if we only try
to describe the representable excluded minors for real-representability: we see that even the
complex-representable excluded minors are at least as wild as the class of real-representable
matroids.

Theorem 4.0.2 (Campbell, Geelen [8]). Each real-representable matroid is a minor of a
complex-representable excluded minor for real-representability.

Given a real-representable matroid, M , we wish to construct an excluded minor for
real-representability, XM , that is complex-representable and contains M as a minor. We
will do this by combining a known complex-representable excluded minor, N , with M using
complexity-preserving operations.

4.0.2 Complex-representability preserving operations

For a field F, it is well-known and easy to show that the class of F-representable ma-
troids is closed under isomorphisms, minors, adding coloops, and direct sums. Direct sums
(and adding coloops) allow us to make a “foundation” and build “scaffolding” for our con-
struction, while isomorphism and minors allow us to manipulate and get rid of auxiliary
structure we use during construction. However, we need a method to “fill in” and add
structure to our construction. We will use principal extensions for this.

Principal Extension

Let F be a flat of a matroid M . A principal extension of M into the flat F is the matroid
M ′ on a ground set E(M) ∪ {e} where M ′\e = M and a subset of E(M) spans e if and
only if it spans F . We say that M ′ is obtained by freely placing e in F , and freely placing
e when F = E(M).

It is standard material that principal extension is well defined [34, Proposition 7.2.6]
and preserves F-representability for all infinite fields F, see [28, Lemma 2.1].
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M-constructed matroids

For a matroid M , we say that a matroid M ′ is M-constructed if it can be obtained from
M by a sequence of the following operations: renaming elements, deletion, contraction,
adding coloops, and principal extensions. Consequently, if M is F-representable for an
infinite field F and M ′ is an M -constructed matroid, then M ′ is also F-representable

Let e be an element of a matroid M . The series extension of e in M is the matroid M ′

obtained by coextending M by an element e′ so that {e, e′} is a series pair.

Lemma 4.0.3. Let e be an element of a matroid M . If M ′ is the series extension of e in
M , then M ′ is M-constructed.

Proof. Let M1 be obtained from M by adding a coloop e′ and then freely placing an element
e′′ in the flat spanned by {e, e′}. Then M ′ is obtained from M1\e by renaming e′′ as e.

4.1 Natural classes

As the construction we will consider only requires the aforementioned operations, we in-
stead prove generalization of Theorem 4.0.2. Similarly, with inspired by Mayhew, New-
man, and Whittle’s construction, Matúš explored classes for which a generalization of
Theorem 4.0.1 holds [26].

We say that a classM is natural, when it is non-empty and closed under isomorphism,
minors, adding coloops, direct sums, and principal extensions. Consequently, if M is a
matroid in a natural class M and M ′ is an M -constructed matroid, then M is contained
in M. So by Lemma 4.0.3, natural classes are closed under series extensions.

Recall that a pinned extension into a 3-separation includes a new element that is
“pinned” on either side of the 3-separation, see Section 2.3.1. We prove the following
generalization of Theorem 4.0.2.

Theorem 4.1.1 (Campbell, Geelen [8]). Let M and N be natural classes where M ( N .
If M is closed under pinned extensions into 3-separations, then each matroid in M is a
minor of an excluded minor of M that is also in N .

Note that the class of all matroids is natural. Furthermore, it follows directly from the
definition that arbitrary intersections of natural classes are also natural. Thus, under the

38



subset relation, natural classes of matroids form a lattice. This is also true for classes that
are closed under pinned extensions into 3-separations.

We already know that for an infinite field F, the F-representable matroids form a
natural class that is closed under pinned extensions into 3-separations, see Sections 4.0.2
and Lemma 2.3.6, respectively. The “algebraic matroids” for a fixed field can also be shown
to be a natural class, see [34, Corollary 6.7.14;26, Lemma 13]. As we will use in Section 6,
the class of “orientable matroids” is natural [1, page 330]. Of particular interest to us is
the class of “gammoids”, as in Corollary 4.1.3 we will see that this is the minimal natural
class.

There are certainly interesting classes that are not “natural”. For a prime power q,
the GF(q)-representable matroids are not a natural class: the uniform matroid U2,q+1 is
GF(q)-representable while the principal extension U2,q+2 is not. More generally, as the
class of gammoids is the minimal natural class, any class of matroids that does not contain
all gammoids is not natural, regardless of how basic it is.

4.1.1 Gammoids

Let H be a bipartite graph whose vertices have bipartition AtB. Let I be the set of subsets
of A that can be covered by a matching in H. Edmonds and Fulkerson showed that T =
(A, I) is a matroid [9], and named such matroids transversal matroids. Brylawski showed
that this transversal matroid T = (A, I) can be real-represented by labelling the vertices
of the standard basis vector simplex in R|B| with B and mapping each a ∈ A to a freely
placed point on the face spanned by its neighbours in H [5, Theorem 3.1 and Corollary 3.1]
(see also Oxley [34, Proposition 11.2.26]). Recall that while B was again used for this
description, it is not part of the ground set of the matroid T = (A, I).

Here we define a gammoid as a matroid that can be obtained from a transversal matroid
with a sequence of contractions. Gammoids are usually defined by the connectivity function
to a fixed set in a digraph, as in Oxley [34, page 97 and 109], and the equivalence of these
definitions was shown by Ingleton and Piff [18, Theorem 3.5].

We now show that the class of gammoids is the minimal class that is closed under
isomorphisms, minors, adding coloops, and principal extensions. We can restate this as
the follows.

Theorem 4.1.2. A matroid is a gammoid if and only if it is U0,0-constructible.
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Proof. As an immediate consequence of Brylawski’s description above, all transversal ma-
troids are U0,0-constructible. Next, by Ingleton and Piff description of the class of gam-
moids, all gammoids are U0,0-constructible.

Another consequence of the aforementioned descriptions is that gammoids are closed
under isomorphisms, minors, and adding coloops. It remains to be shown that the class of
gammoids is closed under principal extensions. For a gammoid G with ground set E, say G
is the contraction of a transversal matroid T by a set X ⊆ E(T ). Consider T represented
by points S in Rr which are freely placed on the faces of the simplex whose vertex set
B ⊆ Rr is the standard basis. Suppose we have e ∈ E that does not lie on a vertex of
this simplex, but lies in the affine span of Be ⊆ B. We coextend T , by turning e into a
series pair {x, e} to get T ′ as in Lemma 4.0.3. By embedding Rr in Rr+1, we have that
T ′ is represented by points that lie in the faces of the standard simplex with vertex set
B ∪{e}; the points in S−{e} lie in the span of B as before, but x lies in the face spanned
by Be ∪ {e}. Note T ′/X ∪ {x} = T/X = G but now e is on a vertex of the simplex in the
representation. In this way we may assume that all of E lies on the standard basis of a
representation of T . Consider a principal extension GF into a flat F ⊆ E. Note that the
principal extension TF into F ⊆ E is also a transversal matroid as F are the vertices of a
face. Thus TF/X = GF is a gammoid, as we wanted to show.

As it is also easy to show that the class of gammoids is closed under direct sums, we
have the following.

Corollary 4.1.3. The class of gammoids is the minimal natural class.

In a matroid N , we say an element p is freer than an element q, when every subset of
E(N) − {p, q} that spans p also spans q. A pair of elements {p, q} is incomparable when
there exist subsets Yp and Yq of E(N) − {p, q} such that Yp spans p but not q while Yq
spans q but not p.

Lemma 4.1.4. Matroids with no incomparable pair are gammoids.

Proof. Suppose that N has no incomparable pair. Then there is an ordering (e1, . . . , en)
of E(N) such that ej is freer than ei whenever 1 ≤ i < j ≤ n. So either N is the
empty matroid and hence U0,0-constructible, or else N has a freest element en. Now either
en is a coloop in N or N is obtained by placing en freely in N\en. Note that N\en has
no incomparable pair so we may inductively assume that N\en is U0,0-constructible, and,
hence, N is U0,0-constructible.
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4.2 Constructing a “major” excluded minor

Our construction for the proof of Theorem 4.1.1 is based on a known excluded minor N
contained in N . However, we cannot take an arbitrary excluded minor for the class M;
we require that N has a “special” pair of elements {p, q}. We see that there exist such an
N in Section 4.2.1. In Section 4.2.2, we see that given a matroid M in M, we do not lose
generality by assuming that the ground set of M can be partitioned into two bases A and
B: otherwise M is the minor of such a matroid inM. Finally, in Section 4.2.3 we see how
we can modify M ⊕N so that we have collections of elements “pointing at” p and q in a
copy of N , and how this gives us our desired excluded minor.

4.2.1 Picking a base excluded minor N in N

If N1 and N2 are matroids on a common ground set E, then we say that N2 is freer than
N1 if rN2(X) ≥ rN1(X) for each subset X of E. Let p and q be distinct elements of a
matroid N and let N ′ denote the matroid obtained from N by freely adding a new element
e into the flat spanned by {p, q}. We denote by Np→q the matroid obtained from N ′\p by
renaming e as p. Note that e is freer than p in N ′ and so any subset X spanning e would
also span p in N ′. Hence rNp→q(X) ≥ rN(X) for each subset X of E and so Np→q is freer
than N .

Lemma 4.2.1. Let M and N be natural classes of matroids. If M ( N , then there is an
excluded minor N for M in N with a pair {p, q} of incomparable elements such that Np→q
and Nq→p are both contained in M.

Proof. SinceM ( N , there is an excluded minor forM in N . Among all excluded minors
for M in N we choose N satisfying:

� |E(N)| is minimum, and

� subject to this, N is freest with ground set E(N) (that is, there is no other excluded
minor N ′ with ground set E(N) that is freer than N).

By Theorem 4.1.2,M contains all gammoids and, by Lemma 4.1.4, N has an incomparable
pair {p, q}. Note that Np→q and Nq→p are both N -constructed and hence they are both
contained in N . Moreover, both Np→q and Nq→p are freer than N . So, by our choice of N ,
both Np→q and Nq→p are contained in M, as required.
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4.2.2 Preprocessing M ; Bipartition by bases

The following result is essentially due to Mayhew, Newman, and Whittle [28, Lemma 2.2].

Lemma 4.2.2. For any matroid M , there is an M-constructed matroid M ′ such that M ′

has an M-minor and the ground-set of M ′ can be partitioned into two bases.

Proof. Let A0 and B0 denote two r(M)-element sets that are disjoint from E(M) and from
each other. We extend M by adding the elements A0 ∪ B0 freely to obtain the matroid
M1. Note that the only circuits containing members of A0 or B0 are spanning circuits and
so A0 and B0 are bases. Next, we construct M ′ from M1 by a sequence of series extensions
for each element in E(M); we rename the elements so that, for each e ∈ E(M), the
corresponding series-pair in M ′ is {e1, e2}. Note M ′ has bases A1 = A0 ∪ {e1 : e ∈ E(M)}
and B1 = B0 ∪ {e2 : e ∈ E(M)} which partition E(M ′), as required.

Recall that we are trying to find an excluded minor forM that contains M as a minor.
By Lemma 4.2.2, we lose no generality in assuming that M can be partitioned into two
bases. To prove Theorem 4.0.1, Mayhew, Newman, and Whittle use a similar assumption
to construct a matroid with a circuit-hyperplane whose relaxation does not lose M as
a minor but creates a violation of Ingleton’s inequality (similar to the Vámos matroid).
As we would like our excluded minor to be in N , we will instead use the bases given
by Lemma 4.2.2 to “point at” the elements p and q in the excluded minor N given by
Lemma 4.2.1.

4.2.3 Using M to cannibalize N

In the construction and in all subsequent results in this section,

� N and M are matroids with disjoint ground sets,

� (A,B) is a partition of E(M) into two bases, and

� p and q are distinct elements of N .

We build an (M ⊕N)-constructed matroid X (N, p, q;M,A,B) as follows. The input and
output of the construction process are depicted in Figure 4.1.

We first build a matroid X1(N, p, q;M,A,B) from M ⊕ N by freely placing elements
a and b in the flats spanned by E(M) ∪ {p} and E(M) ∪ {q} respectively; then, for each
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p qp qN

M A B

(i) M ⊕N

p qp qN

M

a b

A B

(ii) X (N, p, q;M,A,B)

Figure 4.1: The input and output of the construction process.

x ∈ A, we freely place an element xa in {x, a}, and, for each y ∈ B, we freely place an
element yb in {y, b}.

We then obtain X2(N, p, q;M,A,B) from X1(N, p, q;M,A,B) as follows: for each x ∈ A
and y ∈ B, we delete x and y and rename xa and yb as x and y respectively. Finally, we let
X (N, p, q;M,A,B) = X2(N, p, q;M,A,B)\{p, q}. Note that if {p, q} is an independent pair
in N , then X (N, p, q;M,A,B) contains M as the minor X (N, p, q;M,A,B)/{a, b}\E(N).

The main result in this section is the following.

Theorem 4.2.3. Let M be a natural class that is closed under pinned extensions into
3-separations. If

(i) N is an excluded minor for M,

(ii) p and q are an incomparable pair of elements in N such that Np→q and Nq→p are both
in M,

(iii) M is in M, and

(iv) (A,B) is a partition of E(M) into bases,

then X (N, p, q;M,A,B) is an excluded minor for the class M.
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X (N, p, q;M,A,B) is not in M

We will start by proving that X (N, p, q;M,A,B) is not in M. For this we require the
following results. The first of these results gives us some simple structural properties of
X (N, p, q;M,A,B).

Lemma 4.2.4. Let X = X (N, p, q;M,A,B). If {p, q} is independent and coindependent
in N , then (E(N)−{p, q}, E(M)∪{a, b}) is a 3-separation in X and uX (A∪{a}, E(N)−
{p, q}) = uX (B ∪ {b}, E(N)− {p, q}) = 1.

Proof. Let X = X (N, p, q;M,A,B) and X2 = X2(N, p, q;M,A,B). Note that
uX2(E(N), E(M) ∪ {a, b}) = 2 and uX2(A ∪ {a}, E(N)) = uX2(B ∪ {b}, E(N)) = 1.
Then, since {p, q} is coindependent in N , we have that (E(N)−{p, q}, E(M)∪{a, b}) is a
3-separation in X and uX (A∪ {a}, E(N)−{p, q}) = uX (B ∪ {b}, E(N)−{p, q}) = 1.

The following result shows that, if we extend X (N, p, q;M,A,B) by nonloop elements
p and q such that p is spanned by both A ∪ {a} and E(N) − {p, q} whereas q is spanned
by both B ∪ {b} and E(N)− {p, q}, then we retrieve X2(N, p, q;M,A,B).

Lemma 4.2.5. Let X ′ be an extension of X (N, p, q;M,A,B) by nonloop elements p and q
such that p is spanned by both A∪{a} and E(N)−{p, q} whereas q is spanned by both B∪{b}
and E(N)−{p, q}. If {p, q} is an incomparable pair in N , then X ′ = X2(N, p, q;M,A,B).

Proof. Let X = X (N, p, q;M,A,B) and X2 = X2(N, p, q;M,A,B). Since {p, q} is an
incomparable pair in N , {p, q} is both independent and coindependent and there exist
sets Yp, Yq ⊆ E(N) − {p, q} such that Yp spans p but not q and Yq spans q but not p.
Note that uX (Yp, E(M) ∪ {a, b}) = uX (Yp, A ∪ {a}) = 1, and uX (Yq, E(M) ∪ {a, b}) =
uX (Yq, A ∪ {a}) = 1. Combining these with Lemma 4.2.4 gives us that (Yp, A ∪ {a}) pins
p and (Yq, B ∪ {b}) pins q. Moreover X ′\{p, q} = X2\{p, q} = X . As pinned extensions are
unique by Lemma 2.3.5, it follow that X ′ = X2.

We can now show that X (N, p, q;M,A,B) is not in M.

Lemma 4.2.6. If N is not in the natural class M and {p, q} is an incomparable pair in
N , then X (N, p, q;M,A,B) is not in M either.

Proof. Let X = X (N, p, q;M,A,B) and X2 = X2(N, p, q;M,A,B). Since {p, q} is an
incomparable pair in N , {p, q} is both independent and coindependent. We may assume,
towards a contradiction, that X is inM. By Lemma 4.2.4, there is a pinned extension X ′ of
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p qp qN
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(i) X (N, p, q;M,A,B)
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(ii) X (Np→q, p, q;M,A,B)

Figure 4.2: Matroids that have the same minor when an element of A ∪ {a} is deleted or
an element of B ∪ {b} is contracted.

X by nonloop elements p and q such that p is spanned by both A∪{a} and E(N)−{p, q}
whereas q is spanned by both B ∪ {b} and E(N) − {p, q}. By Lemma 4.2.5, we have
X ′ = X2. However, X ′|E(N) = X2|E(N) = N , which is not in M. As M is closed under
pinned extensions and deletion, this is a contradiction, which completes the proof.

Proper minors of X (N, p, q;M,A,B) are in M

It remains to prove that proper minors of X (N, p, q;M,A,B) are in M. We do this
by showing that every proper minor of X (N, p, q;M,A,B) is also a minor of one of
X (Np→q, p, q;M,A,B), X (Nq→p, p, q;M,A,B), or X (N ′, p, q;M,A,B), where N ′ is a
proper minor of N . For this we need two preliminary lemmas; the first shows that there is
a unique set in A ∪B ∪ {a, b} that spans p but not q.

Lemma 4.2.7. If X ⊆ A ∪ B ∪ {a, b} spans p but not q in X2(N, p, q;M,A,B), then
X = A ∪ {a}.

Proof. Let M2 denote the restriction of X2(N, p, q;M,A,B) to A ∪ B ∪ {a, b, p, q}. We
consider an alternate construction of M2. Let M1 be obtained from M by adding coloops
p and q and adding a freely to the flat spanned by A∪{p} and b freely to the flat spanned
by B ∪ {q}; then, for each x ∈ A, we freely place xa in {x, a} and, for each element y ∈ B,
freely place yb in {y, b}. Then, we let M2 be obtained by deleting each x ∈ A and y ∈ B and
renaming each xa and yb as x and y respectively. Let C1 = A∪{a, p} and C2 = B ∪{b, q}.
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Note that C1 is a circuit of M1 and hence also in M2. Moreover, since each of the elements
of B has been “lifted” towards b, the set C1 is also a hyperplane of M2.

Note that, with C1 a circuit-hyperplane, it suffices to show that C1 is the only cyclic
flat of M2 that contains p but not q. Suppose that F 6= C1 is a cyclic flat of M2 that
contains p but not q. Thus F ∩ C2 = F ∩ (E(M2) − C1) 6= ∅. Since F is cyclic and C2 is
a cocircuit, |C2 ∩ F | ≥ 2 by orthogonality. Since q 6∈ F , the flat F contains an element
y ∈ B. Since each element in B is freer than b in M2, we have b ∈ F . Similarly a ∈ F . So
F − {a, b} is a union of cycles in M2/{a, b}. However, M2/{a, b} = M1/{a, b}. In M1, we
have a freely placed in the flat E(M) ∪ {p} and {a, p} a series-pair, and hence p is freely
placed in M1/{a, b}. However, p ∈ F − {a, b}, and hence F − {a, b} contains a basis of B′

of M . Thus B′ ∪ {a, b} ⊆ F is a basis of M2, contrary to the fact that q is not contained
in the flat F .

The following result captures the difference between the matroids X (N, p, q;M,A,B)
and X (Np→q, p, q;M,A,B). It will let us show that when we delete an element in A ∪ {a}
or contract an element in B ∪ {b} we will get the same minor, Figure 4.2.

Lemma 4.2.8. Let {p, q} be an incomparable pair in N . Let X be a set of elements in
X (N, p, q;M,A,B). If X (N, p, q;M,A,B) and X (Np→q, p, q;M,A,B) differ in rank on X,
then X ∩ (A ∪B ∪ {a, b}) = A ∪ {a}.

Proof. Let X = X2(N, p, q;M,A,B) and X ′ = X2(Np→q, p, q;M,A,B). Assume that X
and X ′ differ in rank on X. As Np→q is freer than N , we have that X ′ is freer than X and,
hence, rX ′(X) > rX (X). Let S1 = E(N), S2 = A∪B ∪ {a, b}, X1 = X ∩ S1, X2 = X ∩ S2,
and L = cl({p, q}).

For X and X ′ to differ in rank on X it must be the case that N and Np→q to differ in
rank on X1 ∪ {p}. Thus X1 spans p but not q in N .

Note that rX (X) = rX (X1) + rX (X2)−uX (X1, X2) and rX ′(X) = rX ′(X1) + rX ′(X2)−
uX ′(X1, X2), so uX (X1, X2) > uX ′(X1, X2). However, uX (X1, L) = uX ′(X1, L) = 1 and
uX (X2, L) = uX ′(X2, L). Hence uX (X1, X2) = 1 and uX ′(X1, X2) = 0. So X2 spans p in
X and, since X|(S2 ∪ L) = X ′|(S2 ∪ L), X2 also spans p in X ′. Since uX ′(X1, X2) = 0, we
have that X does not span q in X ′ or in X .

Now the result follows from Lemma 4.2.7.

We are now ready to prove that proper minors of X (N, p, q;M,A,B) are in M. We
will, in fact, prove the following more general result.
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Theorem 4.2.9. Let M be a natural class of matroids. If

(i) N is an excluded minor for M,

(ii) p and q are an incomparable pair of elements in N such that Np→q and Nq→p are
contained in M,

(iii) M is a matroid in M with E(M) ∩ E(N) = ∅, and

(iv) (A,B) is a partition of E(M) into bases,

then each proper minor of X (N, p, q;M,A,B) is contained in M.

Proof. Let X = X (N, p, q;M,A,B). If e ∈ E(N) − {p, q}, then, by construction, X\e =
X (N\e, p, q;M,A,B) and X/e = X (N/e, p, q;M,A,B). Then, since N\e, N/e and M are
all contained in M, the minors X\e and X/e are also contained in M.

Now, for e ∈ A ∪ {a} and f ∈ B ∪ {b}, it follows from Lemma 4.2.8 that X\e =
X (Np→q, p, q;M,A,B)\e and X/f = X (Np→q, p, q;M,A,B)/f . Then, since Np→q and M
are all contained in M, the minors X\e and X/e are also contained in M.

Finally, since X (N, q, p;M,B,A) = X (N, p, q;M,A,B), it follows that, for e ∈ A∪{a}
and f ∈ B ∪ {b}, the minors X/e and X\f are contained in M.

By Lemma 4.2.6 we have that X is not in M, and by Lemma 4.2.9 all the proper
minors of X are in M. Thus X = X (N, p, q;M,A,B) is an excluded minor for M This
was Theorem 4.2.3.

We can now prove Theorem 4.1.1, which we restate here for convenience.

[Theorem 4.1.1 (Campbell, Geelen [8])]. LetM and N be natural classes whereM ( N .
If M is closed under pinned extensions into 3-separations, then each matroid in M is a
minor of an excluded minor of M that is also in N .

Proof. Let M0 be a matroid in the class M. By Lemma 4.2.2, there is an M0-constructed
matroid M , containing M0 as a minor, and a partition (A,B) of E(M) into two bases. By
Lemma 4.2.1, there is an excluded minor N forM such that N is contained in N and such
that N contains an incomparable pair {p, q} of elements where Np→q and Nq→p are both
in M.

Let X = X (N, p, q;M,A,B). Note X contains M as the minor X/{a, b}\E(N). By
Theorem 4.2.3, X is an excluded minor for M. Moreover, since M and N are both
contained in the natural class N , the matroid X is also contained in N .
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Chapter 5

Computational Complexity

We now consider the feasibility of practical approaches. Can we have an actual technique
to determine whether a given matroid (E, I) is or is not real-representable? If so, how
complicated must this technique be?

We will see that we can in fact construct an algorithm to determine real-representability;
real-representability is decidable. Indeed, it is well established that, for any field F, the
F-representability of matroids is decidable if and only if the F-solvability of systems of Dio-
phantine equations is decidable. However, we will see that even to demonstrate whether
or not a matroid (E, I) on n elements is real-representable requires us to review the inde-
pendence of an exponential number of sets — still less than the number we may need to
consider to determine real-representability in the first place.

[Theorem 5.3.2 (folklore)]. Real-representability is not polynomially certifiable.

[Theorem 5.5.3 (Ben David, Geelen)]. Non-real-representability is not polynomially cer-
tifiable.

While complex-representability is a necessary condition that is similarly difficult to
demonstrate, prior knowledge of complex-representability does not seem to help:

Theorem 5.0.1 (Campbell). Real-representability is not polynomially certifiable within
the class of complex-representable matroids.

[Theorem 5.6.2 (Campbell)]. Non-real-representability is not polynomially certifiable
within the class of complex-representable matroids.

Instead of Theorem 5.0.1 above, we will prove a more general result that holds for
natural classes closed under pinned extensions into 3-separations, see Theorem 5.6.1.
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5.1 Decidability; solvability of systems of integer

polynomial equations

In Section 2.1, we saw that we can encode elementary algebraic relations between values
encoded as points on a line. By introducing intermediate calculations, we could plausibly
encode algebraic relationships that are expressible as a set of integer polynomial equations.
However, as there may be values that coincide, there is a matroid that encodes each possible
collection of coincidences. This type of construction was first discussed in a matroid context
by MacLane [24], then White [44, Section 1.7] and Sturmfels [39]. While each author was
interested in specific applications, the following holds in general.

Theorem 5.1.1 (folklore). There is an algorithm to encode a finite set of integer polyno-
mials S ⊆ Z[x1, . . . , xn] as a finite set MS of matroids such that for each infinite field F
the polynomials in S have a common root in F if and only if at least one of the matroids
in MS is F-representable.

Conversely, we can reduce the problem of representing a matroid over a field to solving
a integer polynomial system over that field:

Theorem 5.1.2 (Folklore). There is an algorithm that converts a given matroid M into
a finite set of integer polynomials SM ⊆ Z[X], such that M is representable over a field F
if and only if the polynomials in SM have a common root in F.

Proof. Assign a variable to each entry of an r(M) × E(M)-matrix. For this matrix to
represent M , each r(M) × r(M)-submatrix must be invertible if and only if its columns
corresponds to the elements of a basis of M . We relate whether each submatrix as being
either invertible or singular by the determinant either having a multiplicative inverse or
equalling zero respectively. For a field F, an F-representation corresponds to a solution of
this integer polynomial system over F.

Integer polynomial systems are known to be decidable over a given algebraically closed
field by the effective Nullstellensatz [21], and over the reals using quantifier elimination [40].
So, by Theorem 5.1.2, we can also decide representability over these fields.

5.2 Certification

We still do not have a sense of how complicated it is to determine whether or not a given
property, P , holds for a pair (E, I). Even if the answer is already known, to demonstrate
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or prove whether or not P holds will require using some information of (E, I) — though
less than that to determine whether or not P holds. While this is the perspective we will
take, it is equivalent to considering non-deterministic algorithms with an “oracle”.

Recall that I is a collection of subsets of E. An independence evaluation with the
independence oracle of a subset S ⊆ E will declare whether or not S is in I. For a pair
(E, I) that satisfies a property P , we consider having a “Claimant” that knows everything
about (E, I) that wishes to prove to an “Adjudicator” that (E, I) satisfies P with few
petitions to the independence oracle [14]. For example, to demonstrate that (E, I) is
indeed (E, I) the Claimant must show the Adjudicator an independence evaluation of
each the 2|E| subsets of E.

Let (E, I) satisfy property P . A collection C of subsets of E is said to certify that
(E, I) satisfies P when every possible (E, I ′) that has the same independents sets in C
as (E, I) also satisfies P . We say that we can polynomially certify P when there exists a
polynomial f such that, for each (E, I) we consider that satisfies P , there is a collection
of size at most f(|E|) that certifies P for (E, I).

5.2.1 Certifying minors

Remark 5.2.1. For a given matroid N , we only require a constant number of independence
evaluations to certify that a matroid M = (E, I) contains N as the minor.

Specifically, if N = M/C\D, then the collection of 2|N | sets {S ∪C : S ⊆ E − (C ∪D)}
certifies that N is a minor of M .

5.2.2 Not polynomially certifiable

To prove that a property P is not polynomially certifiable in M, we need to construct an
infinite family of matroids {Mn}n∈I in M that satisfy P , yet where each Mn differs on
only a few independent sets from exponentially (in |Mn|) many matroids inM that do not
satisfy P . To show that Mn is not one of these exponentially many matroids not satisfying
P will require exponentially many probes.

Our global algebraic structures from Section 2.2 will play a key role in constructing
such a family {Mn}n∈I .
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5.3 Real-representability is not polynomially certifi-

able

Seymour [36] proved that even to demonstrate whether or not a matroid (E, I) on n
elements is GF(2)-representable may require evaluating the independence of an exponential
number of sets. He considers the rank-n binary spike Mn represented by the binary matrix
[In|Jn−In], where In and Jn are the n×n identity and all ones matrices, respectively. This
matroid has 2n−1 dependent transversals and relaxing any one of these circuit-hyperplanes
to a basis yields a non-binary matroid. Thus a certificate that Mn is binary will contain
each of these 2n−1 dependent transversals. Folklore has it that this result extends to any
field, and this technique underlies each of the results from this chapter.

We will explicitly consider a construction for the R-analogue of Seymour’s result.

Theorem 5.3.1 (folklore). Real-representability is not polynomially certifiable.

However, as this construction is representable over all infinite fields, we will actually
prove the following strengthening. Note that the Adjudicator is not aware that the matroids
we are considering are representable over all infinite fields.

Theorem 5.3.2. For matroids representable over all infinite fields, representability is not
polynomially certifiable.

This sharply contrasts with the class of matroids representable over all fields, known
as regular matroids. Seymour proved a decomposition theorem for matroids representable
over all fields that gives us the following.

Theorem 5.3.3 (Seymour [37]). Representable-over-all-fields is polynomially certifiable.

To prove Theorem 5.3.2, we use a spike to encode a sum
∑n

i=1 αi = 0 (see section 2.2.1).
This sum has exponentially many complementary partial sums that must be confirmed to
either both be zero or non-zero. One can check that a similar proof using swirls and
products also works.

Proof of Theorem 5.3.2. For an integer n ≥ 4, consider a representable spike M with a
pair of disjoint dependent transversals. By putting M in standard form with respect to
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one of these transversals, we may assume that M has legs [0]1, [α1]1, . . . , [0]n, [αn]n for some
non-zero α1, . . . , αn that sum to zero. That is to say, M has representation



[0]1 [0]2 . . . [0]n−1 [0]n [α1]1 [α2]2 . . . [αn−1]n−1 [αn]n
1 0 . . . 0 −1 1 0 . . . 0 −1
0 1 . . . 0 −1 0 1 . . . 0 −1
...

...
. . .

...
...

...
... . . .

...
...

0 0 . . . 1 −1 0 0 0 1 −1
0 0 . . . 0 0 α1 α2 . . . αn−1 αn

.

Consider each partition StT of 1, . . . , n with |S|, |T | ≥ 2. As
∑n

i=1 αi = 0, the partial sum∑
i∈S αi is zero if and only if the partial sum

∑
i∈T αi is zero. Geometrically, this means

that complementary transversals of M are either both bases or both circuits. However,
recall that as long as there are no dependent transversals that only differ on a single leg,
we still have a spike, but not necessarily a representable one; see [34, Proposition 1.5.17].

Let Mn be the representable spike with legs [0]1, [α1]1, . . . , [0]n, [αn]n for some non-zero
α1, . . . , αn in any field, that minimally sum to zero. To certify that Mn is representable,
we need to show that there is no independent transversal whose complement is dependent.
Thus a certificate of representability contains each of the 2n−2−2n independent transver-
sals that differ on at least two elements from both {[0]1, . . . , [0]n} and {[α1], . . . , [αn]}.

In any infinite field, we can choose such α1, . . . , αn for any integer n ≥ 4.

5.4 Certifying non-representability for finite fields

Certifying non-representability shows promise at first. Tutte proved that a matroid is
non-binary precisely when it contains a 4-point line as a minor [41]. By Remark 5.2.1,
the (non-)independence of only a constant number of sets is required to demonstrate this
minor (eight in this case) and thus non-GF(2)-representability.

Similarly, as a result of Rota’s Conjecture that representability over each finite field
has finitely many excluded minors (a proof of which was announced by Geelen, Gerards,
and Whittle [13]):

Theorem 5.4.1. Let F be a finite field. Non-F-representability can be certified with a
constant number of probes of the collection of independence sets.
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5.5 Non-real-representability is not polynomially cer-

tifiable

This section is based on yet unpublished research in collaboration with Shalev Ben David
and Jim Geelen.

Unfortunately, we will see that certifying non-representability is not as tractable over infi-
nite fields.

Theorem 5.5.1 (Ben David, Campbell, Geelen). For any infinite field F, non-F-
representability is not polynomially certifiable.

We will prove the following strengthening of the previous theorem.

Theorem 5.5.2 (Ben David, Campbell, Geelen). For non-representable matroids, non-
[representable-over-all-infinite-fields] is not polynomially certifiable.

That is to say, there are non-representable matroids that the Claimant cannot polyno-
mially certify to be non-F-representable for their choice of infinite field F. Note that this
also has the following corollary.

Corollary 5.5.3 (Ben David, Geelen). Non-representability is not polynomially certifiable.

To prove Theorem 5.5.2, we build a family of matroids that each of which encode a set
of inconsistent algebraic relations. Specifically, the nth matroid M ′′

n in this family would
encode that xm /∈ Pm where m = 2n and Pm = {

∏m
i=1 zi : zi ∈ {x, y}}. Showing that M ′′

n

is non-representable amounts to verifying that xm 6=
∏m

i=1 zi for each
∏m

i=1 zi ∈ Pm.

We first consider a family of swirl-like matroids where we artificially impose the condi-
tion that zi ∈ {x, y} in representations.

5.5.1 A restricted representation problem

For m ≥ 1, let Ωm be a rank-(m + 1) swirl-like matroid with no dependent transversals,
where the zero-th edge has one element while, for i ∈ {1, 2, . . . ,m}, the ith edge has two
elements. When the swirl-like matroid Ωm is clear, denote its lines L0, . . . , Lm and its joints
bi ∈ Li−1 ∩ Li for i ∈ Zm+1. For i ∈ {1, 2, . . . ,m}, label the two non-joint elements of Li
by [xi]i and [yi]i, and label the non-vertex element of Lm+1 = L0 by [x−m0 ]0.
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Recall α, β are k-algebraically independent in a field F when, for any non-zero polyno-
mial p over F of degree at most k, we have p(α, β) 6= 0.

Recall from Section 2.0.3, that a representation f that corresponds to this encoding is
one where, for every i ∈ Zm+1, f([σ(xi, yi)]i) = f(bi−1) − σ(xi, yi)f(bi) for every rational
function σ. We consider representations where there exist distinct, non-zero α, β in a field
F such that, for all i ∈ Zm+1, we have evaluated {xi, yi} as {α, β}, but not necessarily
respecting this order. We see that there are no such representations and that a certificate
of this non-representability contains all transversals and thus has size at least 2m.

Lemma 5.5.4. Let m ≥ 1. Let Ωm be the rank-(m+1) swirl-like matroid with no dependent
transversals given by the matrix

A(X) =



b0 b1 b2 . . . bm [x1]1 [y1]1 [x2]2 [y2]2 . . . [xm]m [ym]m [x−m0 ]0
1 0 0 . . . 0 1 1 0 0 . . . 0 0 −x−m0

0 1 0 . . . 0 −x1 −y1 1 1 . . . 0 0 0
0 0 1 . . . 0 0 0 −x2 −y2 . . . 0 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...
...

0 0 0 . . . 0 0 0 0 0 . . . 1 1 0
0 0 0 . . . 1 0 0 0 0 . . . −xm −ym 1


over the field of fractions of Z[X].

Let F be a field and α, β be distinct, non-zero values in F. There is no representation
of Ωm of the form A(X) for X ⊆ F where {xi, yi} = {α, β} for all i ∈ {1, . . . ,m, 0}.
Furthermore, a certificate that no such representation exists contains all transversals of
Ωm and thus has size at least 2m.

Proof. Suppose that Ωm has a representation A according to the evaluation {xi, yi} =
{α, β} for all i ∈ {1, . . . ,m, 0}. For all i ∈ {1 . . . ,m, 0}, we can interchange the labelling
of each xi and yi so we lose no generality in assuming that xi = α and yi = β. Thus

A =



b0 b1 b2 . . . bm [x1]1 [y1]1 [x2]2 [y2]2 . . . [xm]m [ym]m [x−m0 ]0
1 0 0 . . . 0 1 1 0 0 . . . 0 0 −α−m
0 1 0 . . . 0 −α −β 1 1 . . . 0 0 0
0 0 1 . . . 0 0 0 −α −β . . . 0 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...
...

0 0 0 . . . 0 0 0 0 0 . . . 1 1 0
0 0 0 . . . 1 0 0 0 0 . . . −α −β 1


.
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However, the submatrix corresponding to the transversal T = {[x1]1, . . . , [xm]m, [x
−m
0 ]0} is

singular, while Ωn had no dependent transversals by construction. Thus we can have no
such representation f .

Now suppose that we have a certificate C ⊆ 2E(Ωm) that there is no representation
given by an evaluation {xi, yi} = {α, β} for all i ∈ {1, . . . ,m, 0}. Suppose that C does
not contain some transversal T . By interchanging xi and yi where necessary, we may
assume that T = {[x1]1, . . . , [xm]m, [x

−m
0 ]0} without losing generality. Let ΩT be the swirl-

like matroid on E(Ωm) with the same lines as Ωm given by taking (m + 1)-algebraically
independent α and β in F and assigning xi to α and yi to β to get an F-encoding. This
gives us an F-representation up to row equivalence. In particular, ΩT has a represention
with the matrix A above for α and β that are (m + 1)-algebraically independent. Recall
that the matrix 

1 0 0 . . . 0 −γ0

−γ1 1 0 . . . 0 0

0 −γ2 1
. . . 0 0

...
...

. . . . . . . . .
...

0 0 0
. . . 1 0

0 0 0 . . . −γm 1


. (5.1)

is singular precisely when its determinant 1 −
∏n

i=1 γi is zero. Any transversal S of ΩT

that is not T will contain an element labelled [yi]i for some i ∈ {1, 2, . . . ,m}. Thus the
determinant of the submatrix corresponding to S 6= T has a positive degree for β and
is therefore not the zero polynomial. As α, β are (m + 1)-algebraically independent by
assumption, this determinant is non-zero and thus S is an independent transversal. Thus
Ωm and ΩT agree on the independence of every transversal except for T . As they have the
same lines, the independence of all non-transversal sets is also the same for Ωm and ΩT .
Thus the certificate C ⊆ 2E(Ωm) must contain all 2m transversals T .

5.5.2 Enforcing this restricted problem

We will now modify each swirl-like matroid Ωm from the previous section so as to enforce
the constraint that {xi, yi} is a constant set. To do this, we will make use of the following
lemma.

Lemma 5.5.5. For distinct α, β ∈ F, let s = α + β and t = αβ − 1. If x + y = s and
xy − 1 = t, then {x, y} = {α, β}.
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Proof. The quadratic in z,

(z − x)(z − y) = z2 − sz + (t+ 1) = (z − α)(z − β)

only has two solutions as there is a division algorithm for F[z].

For a fixed m ≥ 1, we construct a rank-(m+ 2) swirl-like matroid Ω′m from the rank-m
swirl-like matroid Ωm by adding a new line L−1 and corresponding joints between Lm and
L0 and adding new elements to existing lines. This new line L−1 will contain three non-
joint points labelled [1]−1, [s−1]−1, [t−1]−1. For each i ∈ {1, 2, . . . ,m}, the line Li will still
contain [xi]i,[yi]i and new non-joints labelled [1]i, [xi + yi]i, [xiyi− 1]i, and [xiyi]i. The line
L0 will still contain [x−m0 ]0, as well as new non-joints labelled [1]0, [x0 + y0]0, [x0y0 − 1]0,
[x0y0]0, but also [y0]0 and [x0]0, [x2

0]0, . . . , [xm0 ]0. Counting the joints b−1, b0, b1, . . . , bm,
note that Ω′m will have 8m+ 11 elements.

We can now define Ω′m as the unique rank-(m + 2) swirl-like matroid with lines as
described above whose only dependent transversals are I = {[1]−1, [1]0, [1]1, . . . , [1]m}, and
Si = (I−{[1]−1, [1]i})∪{[s−1]−1, [xi+yi]i} and Ti = (I−{[1]−1, [1]i})∪{[t−1]−1, [xiyi−1]i}
for each i ∈ {0, 1, . . . ,m}.

As the dependent transversal I contains all elements labelled [1]i, this encoding is done
with respect to I. The dependent transversals Si and Ti will allow us to apply the algebraic
Lemma 5.5.5 to {xi, yi} to enforce the restricted evaluations from the previous section. By
reducing to Lemma 5.5.4, we will prove the following.

Proposition 5.5.6. Let m ≥ 1. For any field F, there is no F-representation of Ω′m
encoding its labels for some evaluation of {s, t} ∪ {xi, yi}mi=0. Furthermore, a certificate of
this non-representability contains all transversals and thus has size at least 2m.

Proof. Suppose that for some field F we have a representation f of Ω′m. Recall from
Section 2.2.1, that the restriction of f to a transversal {[γ1]1, . . . , [γm]m, [γ−1]−1, [γ0]0} is
projectively equivalent to the matrix



[γ1]1 [γ2]2 [γ3]3 . . . [γ−1]−1 [γ0]0
1 0 0 . . . 0 −γ0

−γ1 1 0 . . . 0 0

0 −γ2 1
. . . 0 0

...
...

. . . . . . . . .
...

0 0 0
. . . 1 0

0 0 0 . . . −γ−1 1


(5.2)
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which has determinant 1−
∏n

i=1 γi. Thus for each i ∈ {0, 1, . . . ,m}, the dependent transver-
sals Si and Ti indicate that xi + yi = s and xiyi− 1 = t. By Lemma 5.5.5, this implies that
for some α, β in F we have {xi, yi} = {α, β} for all i ∈ {0, 1, . . . ,m}. Consider [1]−1 in the
dependent transversal I we have encoded with respect to. Transversals through [1]−1 have
γ−1 = 1 in the matrix 5.2 above. Thus contracting [1]−1 identifies b−1 with b0 and pre-
serves the labelled encoding of points on the lines L0, . . . , Lm in the new F-representation.
In particular, this representation contradicts the first part of Lemma 5.5.4.

Now suppose that we have a certificate C ⊆ 2E(Ω′
m) that there is no representation

of Ω′m that respects its labelling. Suppose that C does not contain T ∪ {[1]−1} for every
transversal T of Ωm. By Lemma 5.5.4, we can take (3m + 2)-algebraically independent α
and β in a field F such that we have a representation that is consistent with the encoding
where {xi, yi} = {α, β} for i ∈ {0, 1, . . . ,m}. Thus xi+yi = α+β and xiyi−1 = αβ−1 for
i ∈ {0, 1, . . . ,m}. By assigning s and t to α+ β and αβ − 1, respectively, we have that Si
and Ti are dependent transversals. For every other transversal besides I, the determinant
of its corresponding matrix, (5.2), is a non-zero polynomial expression in α and β of degree
at most (3m+ 2). Thus by choice of α and β, this expression is non-zero for independent
transversals. Thus we have a representation of Ω′m that respects its labelling. Thus the
certificate C ⊆ 2E(Ωm) must contain all 2m transversals arising from transversals of Ωm.

This proposition immediately has the following corollary.

Corollary 5.5.7. Non-representability over Q(X) subject to a labelled encoding is not
polynomially certifiable.

However, we would like to prove that non-representability is not polynomially certifiable
regardless of whether we are subject to a labelled encoding. We do this by by “gluing” von
Staudt matroids to impose the necessary algebraic relations on each line, see Section 2.1.
Recall that a sufficient condition to define the proper amalgam of M and M ′ across F is
for the set F are “gluing” across to be a modular flat of M ′ (see Section 2.3).

Proof of Theorem 5.5.2. Let n ≥ 1 We will construct Mn by starting with Ω′n and taking
a sequence of proper amalgams with the von Staudt matroids O+, O∗, and O/ to encode
the algebraic relations on each line Li of Ω′n. We proceed as follows. For each edge
i ∈ {0, 1, 2, . . . , n}, glue O+ to bi = [0]i, bi+1 = [−∞]i, [xi]i, [yi]i, [xi + yi]i, appropriately;
glue O∗ to bi = [0]i, bi+1 = [−∞]i, [xi]i, [yi]i, [1]i, [xiyi]i, appropriately; and finally glue
O+ to bi = [0]i, bi+1 = [−∞]i, [1 − xiyi]i, [xiyi]i, [1]i, appropriately. Along the line L0,
we additionally glue a copy of O/ to b0 = [0]0, b1 = [−∞]0, [x0]0, [1]0, [x

2
0]0; for each j ∈

{3, . . . , n}, a copy of O∗ to b0 = [0]0, b1 = [−∞]0, [x
j−1
0 ]0, [x0]0, [1]i, [x

j
0]0; and finally a copy
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of O/ to b0 = [0]0, b1 = [−∞]0, [x
n
0 ]0, [x

−n
i ]0. Call each line Li of Mn together with the

matroids attached to Mn at Li a petal of Mn, and label it by Pi.

Suppose that we have a representation f for Mn over a field F. As projective equiva-
lence preserves the matroid, we may assume that f respects the labels of the dependent
transversal I = {[1]−1, [1]0, [1]1, . . . , [1]n}, (see Section 2.2.2). That is to say, f([1]i) =
f([0]i)− f([−∞]i) for all i ∈ Zn+2. Note for all i ∈ {0, . . . , n}, we have the [xi]i, [yi]i, [0]i,
and [−∞]i on the same line but with no parallel pairs. Thus f([xi]i) = f([0]i)−xif([−∞]i)
and f([yi]i) = f([0]i) − xif([−∞]i) for some distinct non-zero xi, yi in F. By this choice,
we have that f encodes the labels [xi]i and [yi]i for all i ∈ {0, . . . , n}. By the von Staudt
Lemmas 2.1.1, 2.1.2, 2.1.3 applied in order to the matroids O+, O∗, and O/ we glued to
Ω′n, we have that f respects all the labels on L0, . . . , Ln. Finally, by taking s = x0 +y0 and
t = x0y0− 1, we have that f is subject to encoding Ω′n according to its labelling. Thus, by
Proposition 5.5.6, no representation of Mn exists.

Suppose that we have a certificate C that Mn is not representable over some infinite
field F. We now will construct a certificate CΩ that Ω′n is not representable subject to its
labelled encoding. For each set A ∈ C and each i ∈ Zn+2, let Ai be the set of points in
Li that are spanned by A ∩ Pi. Let AΩ =

⋃
i∈Zn+2

Ai. Recall Mn is formed by taking the
amalgam of Ω′n and a petal Pi at each line Li of Mn and that E(Ω′n) =

⋃
i∈Zn+2

Li. Thus,
the collection {A∩Pi}i∈Zn+2 of the restrictions of A to each petal and the set AΩ of points
spanned by these restrictions are enough to determine the independence of A. Specifically,
A is independent in Mn precisely when AΩ is independent in Ω′n and A∩Pi is independent
in Pi for each i ∈ Zn+2. Let CΩ = {AΩ : A ∈ C} and note |CΩ| ≤ |C|.

Suppose that CΩ is not a certificate that Ω′n is not representable subject to its la-
belled encoding. Then there is a swirl-like matroid Ω′C with the same labelling as Ω′n
and an F-representation f that respects this labelling but that may differ on the inde-
pendence of transversals not in CΩ. As f respects the labelling of each line Li, we can
extend f to a representation of each petal Pi by the easy direction of the von Staudt
Lemmas 2.1.1, 2.1.2, 2.1.3. This extended F-representation defines a matroid MC with
E(MC) = E(Mn). Since MC and Mn have the set of same petals {Pi}i∈Zn+2 , for A ∈ C,
the restriction of A to each petal is the same in MC and Mn. As the on the independence
of each set A ∈ C is determined by these restrictions and the set AΩ in CΩ, we have that
MC and Mn agree on the independence of each A ∈ C. Thus contradicts the assumption
that C is a certificate of non-F-representability. So CΩ is indeed a a certificate that Ω′n
is not representable subject to its labelled encoding. By Proposition 5.5.6, CΩ has size at
least 2n and hence C has size at least 2n.

58



5.6 Assuming complex-representability

By Theorem 5.3.2, we have that complex-representability is not polynomially certifi-
able. What if we assume complex-representability is known to the Adjudicator when the
Claimant is trying to certify whether or not a matroid is real-representable?

Theorem 5.5.2 already tells us that non-complex-representability is not polynomially-
certify when non-real-representability is assumed.

5.6.1 Real-representability is still not polynomially certifiable

Recall that a pinned extension into a 3-separation includes a new element that is “pinned”
on either side of the 3-separation, see Section 2.3.1.

We prove the following generalization of Theorem 5.0.1.

Theorem 5.6.1. Let M and N be classes of matroids closed under isomorphism, adding
coloops, deletion, and principal extension. Let M also be closed under pinned extensions
into 3-separations. If N −M 6= ∅, then membership in M is not polynomially certifiable
even within the class N .

Notably M may be a class matroids representable over a fixed infinite field F and N
may be any “natural” class (see Section 4.1). However, as we do not require that M and
N be closed under direct sums,M and N may also be arbitrary unions (and intersections)
of these classes.

Proof of Theorem 5.6.1. Let N be a matroid in N−M with |E(N)| minimum and, subject
to this, with N freest on ground set E(N). Let p and q be distinct elements of N and let
N ′ denote the matroid obtained from N by freely adding a new element e into the line
spanned by {p, q}. Let L ⊇ {p, e, q} be the line spanned by {p, q} in N ′. Note that e is
freer than p in N ′, so there is a subset Yp of E(N ′) − {p} that spans p and not e in N ′.
We have N ′\p in M, as otherwise renaming e as p in N ′\p contradicts the choice of N .
However, N ′ /∈M as it contains N /∈M as a restriction.

For n ≥ 1, we construct the matroid Mn ∈ M as follows. Start with N ′\p in M and
add n coloops a1, . . . , an and then freely place an+1, b1, . . . , bn, bn+1 in the rank-(n+ 2) flat
(L − {p}) ∪ {a1, . . . , an} given by union of the line L − {p} and these new coloops. Call
this new matroid Mn. Since M is closed under adding coloops and principal extensions,
we have Mn ∈M.
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Consider U = {a1, . . . , an+1, b1, . . . , bn+1} in Mn. Note each element of U was either
a coloop or freely placed in the span of the line L − {p} and these n coloops. Thus an
element of U is contained in a cyclic flat if and only if that cyclic flat contains the flat
(L − {p}) ∪ U . This means that we do not change the structure of Mn by interchanging
the label of elements in U .

Suppose that we have a certificate C ⊆ 2E(Mn) that Mn is in M given that Mn ∈ N .
We now show that {U ∩T : T ∈ C} contains all subsets of U of size n+1. This will give us
that |C| >

(
2(n+1)
(n+1)

)
> 2n+1. For some subset A of U of size n+ 1, suppose that C does not

contain any set T with T ∩ U = A. By interchanging the labels of the elements in U , we
may assume that A = {a1, . . . , an, an+1} without losing generality. We will now construct
a matroid MA ∈ N −M that agrees with Mn on the independence of sets in C.

Take N ′ ∈ N −M as previously described. As before add n coloops a1, . . . , an and
then freely place b1, . . . , bn, bn+1 in the rank-(n+ 2) flat L∪ {a1, . . . , an} given by union of
the line L and the new coloops. However, we now freely place an+1 in the rank-(n+ 1) flat
{q} ∪ {a1, . . . , an} formed by q and the new coloops. Finally, we delete q to get MA.

Since N is closed under adding coloops and principal extensions, we have MA ∈ N .
However MA is not in M. Note that (E(N ′\p), U) is a 3-separation of MA, and that
u(E(N ′\p), A) = u(Yp, A) = u(Yp, U) = 1, so (Yp, A) pins p. If MA was in M, then as
M is closed under pinned extensions into 3-separations by assumption, we could uniquely
“reinsert” p by Lemma 2.3.5. This would give us a matroid inM that contains N ∈ N−M
as a restriction, a contradiction as M is restriction closed.

Note that for Mn, the element an+1 was freely placed in the flat L ∪ {a1, . . . , an} ∪
{b1, . . . , bn, bn+1} of N ′. However for MA, the element an+1 was freely placed in {q} ∪
{a1, . . . , an}, a hyperplane of the restriction to L ∪ {a1, . . . , an} ∪ {b1, . . . , bn, bn+1}. Thus
Mn and MA only differ on the independence of sets of the form T = {an+1} ∪ S, where
S would span the new coloops a1, . . . , an but none of the elements b1, . . . , bn, bn+1. Thus
T ∩ U = {a1, . . . , an, an+1} = A, but we assumed that C contained no such set.

This contradicts the assumption that C is a certificate that Mn is in M assuming Mn

is in N . So {U ∩ T : T ∈ C} contains all subsets of U of size n+ 1, and so the certificate
C has size at least 2n. Since |E(Mn)| = |E(N)| + 2(n + 1) for positive integer n, this is
not bounded by a polynomial in |E(Mn)|.
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5.6.2 Non-real-representability is still not polynomially certifi-
able

Theorem 5.6.2 (Campbell). Non-real-representability is not polynomially certifiable even
within the class of complex-representable matroids.

We can modify the construction that we used to show that non-representability is not
polynomially certifiable (Theorem 5.5.2). Recall this construction relied on having to show
that αn /∈

∏n
i=1{α, β} to certify non-representability. However, the new construction will

rely on having to show that γ /∈
∏n

i=1{α, β} where γ3 = α3n. Note that this algebraic
constraint is impossible for the reals where the cube root is unique, but may be satisfied
for complex numbers when γ = ωαn for a complex 3rd root of unity ω. Specifically, for
m ≥ 1, the line L0 of Ω′′m will still contain [1]0, [x0 + y0]0, [1 − x0y0]0, [x0y0]0, but will
differ from Ω′m by having [x0]0, [x2

0]0, . . . , [x3m
0 ]0. and [z]0, [z2]0, [z3]0 = [x3m

0 ]0, as well
as [z−1]0 instead of [x−m0 ]0. The matroid Mn is then constructed by gluing von Staudt
constructions O+, O∗, and O/ appropriately. The proof proceeds essentially the same way
as that of Theorem 5.5.2, where z only needs to be evaluated as xm0 when considering the
real representation.
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Chapter 6

Orientability

In the previous sections we have seen that characterizing real-representability from first-
principles is difficult. This indicates that we need a similarly complicated matroid property
to have a non-tautological characterization of real-representability. We saw that even with
knowledge of complex-representability, characterizations fail spectacularly. We will shortly
define a matroid property, “orientability”, that is also necessary for real-representability.
However, we will see that even with complex-representability and orientability, fundamental
characterizations of real-representability continue to fail spectacularly.

Given a real-representation of a matroid M , an orientation of M is naturally induced
by partitioning each circuit according to the signs in the linear dependency of the corre-
sponding vectors, see Theorem 6.0.3. In this way, we can think of an orientation as a record
of the “signs” in each linear dependency. This interpretation only makes sense when the
matroid is representable, and there do exist non-representable orientable matroids such as
the Vámos matroid [2]. However, a representation and an orientation together may induce
a representation over an ordered field. While there are many negative results for repre-
sentability, this would give the following promising potential characterization proposed by
Whittle (private communication, 2017).

Conjecture 6.0.1 (Whittle). A matroid is real-representable if and only if it is orientable
and representable over some field.

While the forward direction is trivial, the converse direction would be spectacular.
This conjecture had already been shown to hold for binary and ternary matroids, with a
precise characterization in each of these cases, see [2] and [23], respectively. However, this
conjecture does not hold in general.
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Theorem 6.0.2 (Campbell, Geelen). There exist a matroid that is complex-representable
and orientable but not representable over the reals.

In fact, we will see that:

[Theorem 6.2.1 (Campbell)]. For every finite field F with |F∗| = |F| − 1 composite, there
is an F-representable, complex-representable, orientable matroid that is not representable
over the reals.

We will then see that we have the orientable-matroid generalization of the main theo-
rems from Sections 3, 5, and 4. This will either be because we can apply a generalization
from that Section to a matroid given by Theorem 6.2.1, or simply because the construction
used in the proof is still valid.

6.0.1 Orienting circuits

Recall that a circuit in a matroid is a minimal dependent set. Let M = (E, C) be a matroid
as described by its set, C, of circuits. The fundamental conditions that C must satisfy and
which axiomatize circuit descriptions of matroids are as follows.

(C1) The empty set is not in C.

(C2) No proper subset of an element of C is also in C.

(C3) If C1, C2 ∈ C and there is e ∈ C1 ∩ C2, then there exists C3 ∈ C such that C3 ⊆
(C1 ∪ C2)− {e}.

The last property, (C3), is known as circuit elimination property.

Now we consider why (C3) is true for minimal linearly dependent subsets of a
set, {vp}p∈E of vectors over a field F. Suppose we have minimal linear dependencies∑

p∈C1
apvp = 0 and

∑
p∈C2

bpvp = 0 for some non-zero coefficients {ap}p∈C1 ⊆ F and
{bp}p∈C2 ⊆ F. If there is e ∈ C1 ∩ C2, then we can get the linear dependency

1

ae

(∑
p∈C1

apvp

)
− 1

be

(∑
p∈C2

bpvp

)
= 0

( ∑
p∈C1−C2

ap
ae

vp

)
+

 ∑
p∈(C1∩C2)−{e}

(
ap
ae

+
bp
−be

)
vp

+

( ∑
p∈C2−C1

bp
−be

vp

)
= 0 (6.1)
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which eliminates e. Thus, there is a minimal linear-dependent set of vectors indexed by a
subset, C3, of (C1 ∪ C2)− {e}, the non-zero coefficients in (6.1).

Consider when F is the reals or another “ordered” field. Then we have a notion of
the signs of the non-zero coefficients {ap}p∈C1 and {bp}p∈C2 , which induce partitions of
C1 and C2. Multiplying these coefficients by 1

ae
and − 1

be
, respectively, to get {ap

ae
}p∈C1

and {− bp
be
}p∈C2 does not change these partitions by signs but does ensures that ve has

coefficients with opposite signs in the new linear dependencies. Now by eliminating ve, we
find the linear dependency (6.1) indexed by a subset of (C1 ∪C2)− {e}. The signs of this
linear dependency must be consistent with the signs of the original linear dependencies.
As we will see below, there is a minimal linear dependency whose signs agree with (6.1).
It is in this way we may “orient” the circuits of a set {vp}p∈E of real vectors.

More generally, an orientation of the circuits C of a matroid M is a collection S =
{{C1, C2} : C ∈ C}, where {C1, C2} is a partition of C, and such that if C1 and C2

are distinct circuits with partitions {C ′1, C ′′1} and {C ′2, C ′′2} in S respectively and with
some e ∈ C ′1 ∩ C ′′2 , then there is a circuit C3 with partition {C ′3, C ′′3} in S such that
C ′3 ⊆ (C ′1 ∪C ′2)−{e} and C ′′3 ⊆ C ′′1 ∪C ′′2 −{e}. We say that a matroid (E, C) is orientable
when there exists an orientation of C. We call (E,S) an oriented matroid.

Oriented matroids were independently developed by Bland, Folkman, Las Vergnas, and
Lawrence, with each making significant contributions. Two joint papers were published in
1978 in the Journal of Combinatorial Theory, Series B, one by Bland and Las Vergnas [2]
and the other by Lawrence with Folkman [11].

Theorem 6.0.3 (Bland, Las Vergnas [2]; Folkman, Lawrence [11]). All real-representable
matroids are orientable.

Proof. Let M be a matroid with real representation {vp}p∈E. For a circuit C of M ,
let {C1, C2} be a partition of signs in a linear dependency of {vp}p∈C . Note that this
partitioning by signs is unique, as otherwise we could eliminate a vector in the linear
dependency and contradict the minimality of C.

Let C1 and C2 be distinct circuits in M . Let the signs of the linear dependencies
of {vp}p∈C1 and {vp}p∈C2 induce the partitions {C ′1, C ′′1} and {C ′2, C ′′2} in S respectively.
If e ∈ C ′1 ∩ C ′′2 , then as before consider the linear dependency (6.1) of {vp}p∈(C1∪C2)−{e}
obtained by eliminating e. Note that the partitioning of (C1 ∪ C2) − {e} induced by
the signs in this linear dependency satisfies the necessary conditions for an orientation.
However, this linear dependency may not be minimal. We now see that there is a minimal
linear dependency whose non-zero coefficients agree in sign with the signs in the linear
dependency (6.1).
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Let C3 ⊆ (C1∪C2)−{e} be the index set of a linear dependency whose sign-partitioning
agrees with the signs of (6.1) and which is minimal subject to this condition. Let C3 be
a subset of C3 that indexes a linear dependency that minimally disagrees in signs with
that of C3. If C3 ( C3, then we can eliminate an element that has different signs in
the dependencies given by C3 and C3 and contradict the minimality of C3. Thus C3 ⊆
(C1 ∪ C2) − {e} is a minimal linear dependency and whose sign-partitioning agrees with
that of C1 and C2 in the elimination of e.

For a real-representable matroid M = (E, C), consider an orientation S induced by a
real-representation {vp}p∈E of M . That is to say, a circuit C ∈ C has the unique partition
{C1, C2} ∈ S where ∑

p∈C1

apvp =
∑
q∈C2

bqvq (6.2)

with {ap}p∈C1 and {bq}p∈C2 sets of non-zero positive reals. Note that if we scale a vector
ve in {vp}p∈E by a negative number, we must reorient each circuit, C, that contains
e by changing the which part of the partition {C1, C2} contains e. By row operations
and column scaling — reorienting S appropriately, we may assume that the first entry
of each vp is one. Interpreting the remaining entries of each vp as Euclidean coordinates
of a point Pp, the relation (6.2) implies that the convex hull of {Pp}p∈C1 intersects the
convex hull of {Pq}q∈C2 . In this way we can interpret orientations as further describing
how elements of a matroid are “arranged”. In particular, consider a line L on which
we have encoded according to a real-representation f as described in Section 2.0.3. By
projective equivalence and reorienting the orientation S appropriately, we may assume
that f([0]) = e1, f([±∞]) = ±e2, and f([α]) = e1 + αe2 for α ∈ R. For distinct reals
α > β > γ, we have α−β

α−γ and β−γ
α−γ greater than zero and

f([β]) = e1 + βe2 =
β − γ
α− γ

(e1 + αe2) +
α− β
α− γ

(e1 + γe2) =
β − γ
α− γ

f([α]) +
α− β
α− γ

f([γ]).

Thus we have the orientation {{[β]}, {[α], [γ]}} in S Similarly f([β]) = e1 + βe2 =
(β − γ)f([∞]) + f([γ]) and f([β]) = e1 + βe2 = f([α]) + (α − β)f([−∞]), So we have
{{[β]}, {[∞], [γ]}} or {{[β]}, {[α], [−∞]}} in S. In this way an orientation S imposes an
ordering of encodings on lines.

6.0.2 Orienting the complements of hyperplanes

A cocircuit of a matroid M is a minimal subset G of E(M) that intersects every basis of M .
Note that a hyperplane of M is a maximal subset of E(M) that does not contain a basis.
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This implies that G ⊂ E(M) is a cocircuit if and only if E(M)−G is a hyperplane. One
can check that the set, C∗, of cocircuits of a matroid M satisfies analogous properties as
the properties (C1), (C2), and (C3) for circuits from the previous section. The cocircuits
of M are the circuits of a matroid M∗ on the same ground set that is called the dual of M .

Recall that we had an “orthogonal vector” for any hyperplane in a represented matroid:

[Remark 2.3.2]. If M is a representable matroid with representation {ve}e∈E(M), then for
any hyperplane H of M there is a vector wH such that H = {e ∈ E(M) : (wH)Tve = 0}.

For a matroid M with real-representation {ve}e∈E(M), we can partition the complement
of a hyperplane H according to the sign of each ve ·wH for e ∈ (E(M)−H), for some choice
of orthogonal vector wH of H. That is to say, the cocircuit E(M)−H has bipartition

{{e ∈ E(M)−H : ve ·wH > 0}, {e ∈ E(M)−H : ve ·wH < 0}}.

In this way, the set, C∗, of cocircuits of a matroid M has an orientation S∗ that is analogous
to the orientation of the set of circuits.

6.1 Orientability-preserving operations

Knowing that real-representable matroids are orientable (Theorem 6.0.3) gives us a way
to start with an oriented matroid. It is known that the class of orientable matroids is
closed under isomorphism, minors, direct sums, adding coloops, and principal extension,
see [1, Proposition 7.9.1]. That is to say, oriented matroids are a “natural class” as defined
in Section 4.1. This will allow us to modify orientable matroids and will be particu-
larly useful when we wish to strengthen the results from the previous sections. However,
real-representability is also a “natural class”; we still need techniques to create non-real-
representable matroids while preserving orientability.

For this we will use “circuit-hyperplane relaxations” and generalized parallel connection.

6.1.1 Circuit-hyperplane relaxation

If H is a both a hyperplane and a circuit in a matroid M , we call H a circuit-hyperplane
of M . If H is a circuit-hyperplane of a matroid M = (E,B) as described by its bases, it is
well known that (E,B∪{H}) will also describe the bases of a matroid. This new matroid,
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M ′ = (E,B ∪ {H}), is known as the circuit-hyperplane relaxation of H in M . In terms
of circuits, it can be checked that if the circuit-hyperplane relaxation of H in M = (E, C)
yields M ′ = (E, C ′), then C ′ = (C − {H}) ∪ {H ∪ {e} : e ∈ (E −H)}, see [34, Proposition
1.5.14]. If M has an orientation S, where the circuit H is oriented {H1, H2} and the
cocircuit G = E − H is oriented {G1, G2}, then we can view relaxation as “perturbing”
the points in H1 towards the G1 “side” of H and the points in H2 towards the G2 “side”.
This would give us the orientation

S ′ = (S − {{H1, H2}}) t {{H1, H2 ∪ {e}} : e ∈ G1} t {{H1 ∪ {e}, H2} : e ∈ G2}

for M ′ = (E, C ′), the relaxation of H in M .

In this way, we can prove that

Theorem 6.1.1 (Edmonds, Mandel [10]). The class of orientable matroids is closed under
circuit-hyperplane relaxation.

6.1.2 Amalgams of orientable matroids

Lemma 6.1.2 (Hochstättler, Nickel [16]). Let M1 and M2 be orientable matroids on ground
sets E1 and E2, respectively. Let L = E1 ∩ E2 be a common modular line of M1 and M2

and R = M1|L = M2|L. Let M1 and M2 have orientations S1 and S2, respectively, such
that S1|L = S2|L. Then the general parallel connection PR(M1,M2) has an orientation S
such that S|E1 = S1 and S|E2 = S2.

We can use this to show the following.

Lemma 6.1.3. Let M1 and M2 have orientations S1 and S2 and modular lines L1 and
L2, respectively. Let L = L1 ∩ L2 = E(M1) ∩ E(M2) and have common restriction R =
M1|L = M2|L of rank 2. If S1|L = S2|L, then there is an orientation S of M1 ⊕R M2 for
which S|E(Mi) = Si for i ∈ {1, 2}.

As how Theorem 2.3.3 was used to prove Lemma 2.3.4, we can use Lemma 6.1.2 to
prove Lemma 6.1.3 by first appropriately placing the elements of L2−L1 on L1 in M1 and
elements of L1 − L2 on L2 in M2.
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6.2 Representable orientable matroids that are not

real-representable

Theorem 6.2.1. For every finite field F with |F∗| = |F| − 1 composite, there is an F-
representable, orientable matroid that is not real-representable.

In other words, for each prime power q ≥ 5, if q is not 2n for some integer n where 2n−1
is a (Marsenne) prime, then there is a GF(q)-representable matroid that is orientable and
complex-representable but not real-representable.

By Moore’s classification of finite fields, we may assume that F is GF(q), where q is a
prime power [30]. As xt − 1 can have at most t roots in GF(q) for any integer t ≥ 1, and
we can multiply elements of relatively prime orders to get an element with a larger order,
we have that GF(q) has a generator and hence GF(q)∗ ∼= Zq−1.

We will prove Theorem 6.2.1 by construction. However the type of construction will
depend on whether q is odd or even. If q ≥ 4 is odd, say q − 1 = 2k with k ≥ 2, we
will construct a swirl that encodes that ord(α) = 2k for some value α, and while this is
possible over GF(q) and the complex numbers, it is not possible over the reals. This swirl
will be orientable as it can be obtained from a real-representable matroid with a sequence of
circuit-hyperplane relaxations. If instead q ≥ 4 is even with q−1 composite, say q−1 = st
for odd integers s > 1 and t > 1 with s minimal. As in Section 3.4.2, we will construct
the amalgam of two real-representable swirls that encodes αs = βs with α 6= β. This is
not possible over the reals as s is odd, but in GF(q) or C we can take α as a (q − 1)-th
primitive root of unity and β = αt+1.

As it involves a more elegant construction, we will first consider the case when q is odd:

Theorem 6.2.2. For every odd prime power q > 3, there is a GF(q)-representable, ori-
entable matroid that is not real-representable.

Proof. Suppose q ≥ 4 is odd. So q − 1 = 2k for some k ≥ 2.
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Consider the Q(x)-matrix

Aq(x) =



[1]1 [x]1 [1]2 [x]2 . . . [1]q−1 [x]q−1 [1]q [x]q
1 1 0 0 . . . 0 0 −1 −x
−1 −x 1 1 . . . 0 0 0 0
0 0 −1 −x . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 0 0 0 0
0 0 0 0 . . . 1 1 0 0
0 0 0 0 . . . −1 −x 1 1


.

Let Wq be the swirl-like matroid with these same elements, with [1]i, [x]i on the i-th line
Li for i ∈ {1, . . . , q} and with the dependent traversals I = {[1]1, . . . , [1]q} and, for each
i ∈ {1, . . . , q}, Ti = ({[x]1, . . . , [x]q}−{[x]i})∪{[1]i}. Note each Ti has q−1 = 2k elements
of the form [x]j for some j ∈ {1, . . . , q}.

6.2.2.1. Wq is orientable.

Proof. Consider the real-representable swirl-like matroid Nq with representation Aq(−1).
By Theorem 6.0.3, we have an orientation of Nq. i Note the dependent transversals of
Nq are those that contain an even number of elements of the form [−1]j for some j ∈
{1, . . . , q}. In particular, we have the dependent transversals I = {[1]1, . . . , [1]q} and, for
each i ∈ {1, . . . , q}, Ti = ({[−1]1, . . . , [−1]q}− {[−1]i})∪{[1]i}. As dependent transversals
of a swirl-like matroid are circuit-hyperplanes, we can relax all the other circuit-hyperplanes
of Nq to get Wq. As Nq was orientable, so is Wq by Theorem 6.1.1.

6.2.2.2. Wq is GF(q)-representable and complex-representable.

Proof. Let α be a generator of GF(q) Thus α(q−1) = 1 and αj 6= 1 for j ∈ {1, . . . , q −
2}. Consider the swirl-like matroid represented by the GF(q)-matrix Aq(α). Note the
labelling is an encoding with respect to this matrix. By choice of α, the only dependent
transversal of this swirl-like matroid are I = {[1]1, . . . , [1]q} and, for each i ∈ {1, . . . , q},
Ti = ({[α]1, . . . , [α]q} − {[α]i}) ∪ {[1]i}. Thus the swirl-like matroid that Aq(α) represents
is Wq.

Similarly, if we take α to be a (q − 1)-th primitive root of unity in C, we have that
Aq(α) is a complex-representation for Wq.

6.2.2.3. Wq is not real-representable.
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Proof. Suppose Wq has a real-representation. By row operations and column scaling,
there is an encoding with respect to the dependent transversal I = {[1]1, . . . , [1]q}, that
is, each of [1]1,. . . ,[1]q is correctly labelled. We first see that the labelling [x]1, . . . , [x]q
is with respect to this encoding for some evaluation of x. The dependent transversals
Ti = ({[x]1, . . . , [x]q} − {[x]i}) ∪ {[1]i} and Tj = ({[x]1, . . . , [x]q} − {[x]j}) ∪ {[1]j} only
differ on the lines Li and Lj. As all the terms in the one-products corresponding to Ti
and Tj otherwise agree, this ensures that [x]j and [x]i encode the same value for every pair
i, j ∈ {1, . . . , q}. Thus there is some real α that all [x]i encode, for the evaluation x to α.
As I, T1, . . . , Tq are the only dependent transversals, αj 6= 1 for j ∈ {1, . . . , q − 2} and
α(q−1) = 1. However, as absolute value distributes over multiplication, the only real roots
of unity are 1 and −1, so this is a contradiction.

Theorem 6.2.3. For every positive integer k with 2k − 1 composite, there is a GF(2k)-
representable, orientable matroid that is not real-representable.

Proof. Say 2k − 1 = st for odd integers s, t > 1 with s minimal. So s is prime. As in
Section 3.4.2, let Ms be the rank-(s+ 1) swirl-like matroid given by the Q(x)-matrix

As(x) =



b0 [1]0 [x−1]0 . . . [x−s]0 b1 [1]1 [x]1 [1]2 [x]2 . . . [1]s [x]s
1 1 1 . . . 1 0 0 0 0 0 . . . −1 −x
0 −1 −x−1 . . . −x−s 1 1 1 0 0 . . . 0 0
0 0 0 . . . 0 0 −1 −x 1 1 . . . 0 0
0 0 0 . . . 0 0 0 0 −1 −x . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

0 0 0 . . . 0 0 0 0 0 0 . . . 0 0
0 0 0 . . . 0 0 0 0 0 0 . . . 0 0
0 0 0 . . . 0 0 0 0 0 0 . . . 1 1


Note that the labellings are encoded with respect to the transversal {[1]0, . . . , [1]s}.

The dependent transversals of Ms are those whose labels multiply to 1, as in Sec-
tion 2.2.2. This enforces representations that encode this labelling.

Let z = xs, so we can also label the element [x−s]0 as [z−1]0. Now let R be the line
restriction on the set {b0, [1]0, [z

−1]0, b1}. So that we may consider an amalgam across R,
let M ′

s be a copy of Ms where all the elements not in R have been renamed and where the
indeterminant x has been replaced with y in labellings. Let L be the line with elements
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b1 = [−∞]0, b0 = [0]0, [1]0, [x−1]0, . . . , [x
−(s−1)]0, [y−1]0, . . . , [y

−(s−1)]0, and [z−1]0 in that
order. Note that for α with 0 < α < 1, the representation As(α) gives an orientation
for Ms that is consistent with this ordering. Recalling that the indeterminant x has been
replaced with y, the representation As(α) also gives a consistent orientation for M ′

s. So by
Remark 6.1.3, the proper amalgam Ms ⊕RM ′

s is orientable.

6.2.3.1. Ms ⊕RM ′
s is GF(2k)-representable and complex-representable.

Proof. Let α be a generator of GF(2k)∗ ∼= Zst. Let β = α(t+1) and γ = αs = βs. Consider
the homomorphism from Q(z, x, y) to GF(2k) by evaluating z, x, y as γ, α, β, respectively.

Let Ls and L′s be the closures of L in Ms and M ′
s respectively. As s is the minimal

prime factor of 2k−1 = st, if i = j(t+1) in Zst then s divides i− j . So as α is a generator
of GF(2k)∗ ∼= Zst, this implies that Ls and L′s have no coincident values besides those in
L. Thus by Lemma 2.3.4, the proper amalgam Ms ⊕RM ′

s is GF(2k)-representable.

Similarly, we can take α to be a (q − 1)-th primitive root of unity in C, to get a
complex-representation.

6.2.3.2. Ms ⊕RM ′
s is not real-representable.

Proof. Suppose that Ms⊕RM ′
s has a real-representation. Say z is evaluated as γ on R. This

representation induces encodings on the swirl-like matroid restrictions Ms and M ′
s. Say x, y

are evaluated as α, β in Ms and M ′
s respectively. The labels encoded for elements of R in

the restriction Ms enforces that α is the sth root of γ. However, the restriction M ′
s enforces

that the sth root of γ is β. However, as p is odd, γ only has one real sth root by distribution
of the absolute value over products. Thus Ms ⊕RM ′

s is not real-representable.

Thus for a positive integer k where 2k − 1 is not prime and has minimal prime factor
s, the matroid Ms ⊕R Ms is orientable and is representable over GF(2k) and the complex
numbers, but not representable over the real numbers.

6.3 Which constructions still work?

As previously discussed, orientable matroids form a natural class [1, Proposition 7.9.1].
Thus, we can apply Theorems 4.1.1 and 5.6.1 to a complex-representable orientable matroid
given by Theorem 6.2.1 to get the following theorems, respectively.
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Theorem 6.3.1 (Strengthening of Theorem 4.0.2). Each real-representable matroid is
a minor of an excluded minor for real-representability that is complex-representable and
orientable.

Theorem 6.3.2 (Strengthening of Theorem 5.0.1). Real-representability is not polynomi-
ally certifiable even within the class of complex-representability orientable matroids.

The constructions used to prove Theorems 3.4.2 and 5.6.2 are non-real-representable
matroids that amalgamations of real-representable matroids. The real-representable con-
stituents of these constructions are orientable by Theorem 6.0.3. However, to use Re-
mark 6.1.3 to prove that the amalgam is orientable as well, we need to verify that each
lines across which amalgams occur have a consistent orientation. With the same evalu-
ations of indeterminants in encodings to real transcendentals, we get an ordering of the
common indeterminants and expressions of these indeterminants, and we can use a lexico-
graphical ordering for other values. As described in Section 6.0.1, this will give a consistent
orientation, as required. See Lemma 6.2.3 as an example. Once this is done, we have the
following.

Theorem 6.3.3 (Strengthening of Theorem 3.4.2). There is no sentence in the
monadic second-order language MS0 that characterizes real-representability for complex-
representable orientable matroids.

Theorem 6.3.4 (Strengthening of Theorem 5.6.2). Non-real-representability is not poly-
nomially certifiable even within the class of complex-representability orientable matroids.

We have just made good use of how orientations of a line relate to orderings of values
encoded on that line. It then seems presumptuous to imagine that we might be able to
construct orientable matroids that are only representable over a given non-zero character-
istic.

Conjecture 6.3.5 (Revision of Whittle’s conjecture). If an orientable matroid is repre-
sentable over some field, then it is complex-representable.
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