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Abstract 

One of the approach used for tool path generation for Bézier surfaces is the Multipoint 

machining (MPM) approach, in which the toroidal cutter touches the machined surface 

at two points of contact. Multipoint machining helps in reducing the machining time by 

providing the tool path data that machines the surface in wider strips positioning the 

tool in the close proximity to the surface. The tool path generation using MPM is 

computationally expensive and time consuming, as it involves the solving of non-linear 

transcendental equations that require numerical methods. Numerical method such as 

Newton’s method are a time consuming and iterative process, and are not always able 

to give a solution. In this work, two methods, the ‘Drop, Rotate and Drop (DRD) 

method’ and the ‘Vertical and Circular Ray Firing (VCRF) method’, are developed, 

implemented and tested on bi-cubic Bézier surfaces using a Hi-Dyn tilt-rotary 

simultaneous five axis machining center. These methods follow the Multipoint 

machining approach. The DRD method limits the use of Newton’s method for 

convergence to the solution of two unknowns or variables. Whereas, the VCRF 

eliminates the use of Newton’s method for obtaining the solution and instead uses the 

implicit equations for firing the rays vertical or circular from the surface towards the 

toroidal cutter surface. Hence, the methods developed in this work give a fast and robust 

approach for generating tool path data for the Bézier surfaces. 
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CHAPTER 1                                                Introduction 

Machining of curved surfaces in the dies and molds industries is a time consuming task. 

A number of researcher have made efforts to reduce the machining time for these curved 

surfaces and its preprocessing without losing the desired surface finish. Surface 

finishing and machining time are inversely proportional to each other. Higher finishing 

requires higher machining time. Moreover, to get better surface finish, the toolpath for 

machining is required to be fine and closely packed with a smaller side and forward 

step. One way of reducing the machining time is to remove unwanted material in wider 

strips in close proximity to the finished surface. Wider strips give the flexibility to 

increase the side step for the toolpath generation. In the dies and molds industries tensor 

product surfaces are used, which can be machined using wider strips. 

Two types of machines, 3-axis and 5-axis machines, are common in manufacturing 

industries. 5-axis machining with their additional degrees of freedom in rotation and 

tilting about the z and x axis, respectively, gives an edge in the form of flexibility in 

machine kinematics as compared to 3-axis machines which only have three degrees of 

freedom with linear motions in the x, y and z axes. This enhanced flexibility in 5-axis 

machines allows the tool to be positioned in close proximity to the desired surface, 

which leads to machining with wider strips and fewer passes[1], [2]. 

To maintain the required surface finish while machining with wider strips the tool 

geometry should resemble the surface geometry at the point of machining. For this 

match, a number of methods were developed to place the tool geometry as close as 

possible to the surface geometry. The popular methods for placing the tool to the close 

proximity of surface geometry are the Principal Axis Methods (PAM) and the Multi-

Point Machining method (MPM) [3-11]. The radiused end mill, also known as toroidal 

cutter, is used for the toolpath generation with these methods. A Toroidal cutter provides 

suitable variations in curvature that can be matched with the surface geometry, and also 

gives a generalized tool profile from which other tools can be derived. 

The principal axis method gives tool positions with single point of contact but can lead 

to gouging on the surface if not checked properly. Multipoint method gives gouge free 



 

2 

 

tool positions with two point of contact but leads to solving complex, non-linear, 

transcendental equations for tool path generation. Duvedi et al. [6,15] gave a numerical 

method for solving these higher order, non-linear, transcendental equations using 

Newton’s method.  

1.1 Objective 

Newton’s method helps to make calculations easy, but it leads to higher computational 

time, with a proneness to not converge and giving incorrect solutions at times. Hence 

the objective of this work is to reduce or eliminate the use of Newton’s method for 

finding the gouge free position of the tool over a Bézier surface. 

Newton’s method helps to solve the higher order non-linear transcendental equations 

numerically, but gouge checking is still required for making sure that the tool position 

found is not overcutting at the points of contact. This additional checking of tool 

positions for gouging adds to the computational time along with the time taken by the 

Newton’s method for converging and giving the solution. The purpose of my work is to 

develop a method that is purely based on gouge checking without using Newton’s 

method to position the tool over the Bézier surface. 

1.2 Organization 

This thesis is laid out in 6 chapters. Chapter 1 introduces the work and its objectives. 

Chapter 2 gives the background of the topic and the prior research that has been done 

so far and is related to this work, concluding with a gap in that literature. Chapter 3 

describes the working of the Drop, Rotate and Drop (DRD) method and gives its 

algorithm. Chapter 4 describes the working of Vertical and Circular Ray Firing (VCRF) 

method and gives the algorithm of the same. Chapter 5 gives the implementation of both 

the methods and discusses the results obtained from the implementation. The thesis is 

concluded in Chapter 6. 
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CHAPTER 2              Background 

2.1 Toolpath Generation 

A toolpath consists of sequential tool positions that describe the location and orientation 

of the tool over the surface, and that a tool follows to machine a gouge free desired 

surface. The motion of the tool between the two successive tool positions is linear.  

Three elements are required for generating the tool path a) definition or type of surface 

to be machined, b) geometry of the tool used and c) footprint that the tool should follow. 

2.1.1 Surface Definition 

A number of CAD data structures can be used for the definition of the surface or the 

geometry to be machined. The most common format, for toolpath generation, is the STL 

format. In STL format the surface is defined as a set of triangles. A large number of the 

triangles results in higher accuracy and finishing of the surface but the computational 

time for the toolpath generation increases.  

In the dies and mold industry, sculptured surfaces are commonly defined using 

parametric surfaces such as Bézier Surfaces, B-Spline Surfaces and Non-uniform 

rational B-spline surfaces (NURBS). In this work bi-cubic Bézier surfaces are used and 

the mathematical model for a Bézier surface is given by 

𝑆(𝑢,𝑣) =  ∑ ∑  𝑃⃗⃗(𝑖,𝑗) 𝐵(𝑖,𝑛)(𝑢) 𝐵(𝑗,𝑛)(𝑣)

𝑛

𝑗=0

𝑛

𝑖=0

 (1) 

for 0 ≤  (𝑢, 𝑣)  ≤  1; where 𝑃⃗⃗(𝑖,𝑗) are the control points of the surface, 𝑛 is the degree 

of  the surface, e.g., for cubic 𝑛 = 3 or for quadratic 𝑛 = 2, and 𝐵(𝑖,𝑛)(𝑥) are the 

Bernstein functions given by 

𝐵(𝑖,𝑛)(𝑥) = (
𝑛

𝑖
) 𝑥𝑖(1 − 𝑥)(𝑛−𝑖). (2) 
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2.1.2 Tool definition 

The most common types of tools used in the industry are a) Ball nose end mill, b) Flat 

end mill and c) Radiused end mill. In this work, the tool path is generated for the 

radiused end mill. Geometrically, the radiused end mill can be represented as a torus, as 

shown in Figure 2.1.  

The toroidal cutter is defined with the two radii, 𝑅𝑖 – radius of the minor circle and 𝑅𝑜 

– radius of the major circle. The minor circle with radius 𝑅𝑖 represents the pseudo-insert 

that corresponds to the cutting edge on the physical cutter. The pseudo-insert sweeps a 

torus around the circle with radius 𝑅𝑜 known as the major circle. 

 

 

Figure 2.1 Geometry of Toroidal Cutter used for Toolpath Generation 

Toroidal cutters can be represented as a general end mill tool. The flat end mill and ball 

nose end mill are special cases of the toroidal cutter. For a model of flat end mill, 𝑅𝑖 =

0 and for ball nose end mill, 𝑅𝑜 = 0. This is shown in Figure 2.2. 

f  
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Figure 2.2 (a) Flat end mill Cutter, (b) Ball nose end mill Cutter 

 

2.1.3 Toolpath Footprint 

The Toolpath Footprint is the sequence or pattern that the tool follows moving over raw 

stock during machining. The sequence for the tool positions in a toolpath is guided by 

the footprint laid on (the XY) plane perpendicular to the tool axis, as shown in Figure 

2.3. The concept of parallel footprint is used in this work, with the X- axis as the side 

step direction and the Y- axis as the feed forward direction. The passes in the Side step 

direction are separated by 𝑆𝑖𝑑𝑒𝑠𝑡𝑒𝑝 and the tool position in the feed forward direction 

are separated by 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑠𝑡𝑒𝑝 interval. 

 (a) (b) 
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Figure 2.3 XY Parallel Toolpath Footprint used for toolpath planning 

 

2.2 Prior work 

Positioning the tool in close proximity to the surface can be achieved by two methods. 

In the first method, the curvature of the tool is matched with the curvature of the surface. 

This method is known as the Principle Axis Method (PAM). After matching the 

curvature of tool and surface, the tool may still gouge the desired surface. Each tool 

position is checked for gouging before inclusion in the tool path[3]–[5]. The second 

method is based on the idea that an appropriately inclined tool will make tangential 

contact at least at two different points on the surface at the same time. The tool 
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positioning method based on this attribute is known as the MultiPoint Method 

(MPM)[6]–[11]. Both methods are based on cutting with the radius end mill cutter. 

The MPM method was proposed by Warkentin [11], [12], in which an iterative process 

was used to find the point of contacts algorithmically, and an algebraic library was used 

to obtain the solutions. The solution was chosen using an optimization method. The 

procedure was lacking in robustness and was slow. To increase the speed and robustness 

of the tool path planning, the machining of STL surface was proposed[6]–[8], [13]-[14]. 

Duvedi et al. [6], [7] presented the Drop and Tilt method to obtain two points of contact 

for any triangulated surface. In their method the tool was first dropped to find the first 

point of contact with the triangular mesh and then tilted until the tool touches at a second 

point of contact on the triangulated surface. The algorithm is run on all the triangles 

falling under the shadow of the tool. This method of using STL surfaces gives the exact 

solutions for both points of contact. As linear equations are used to obtain the solutions 

the method is both robust and fast method. The accuracy of the solution depends upon 

the accuracy of triangulated mesh. If the number of triangles used to approximate the 

surface are few then the accuracy will be poor and facets will be seen on the machined 

surface. Increasing the number of triangles for better surface finish and accuracy 

increases the computational time drastically. 

Duvedi et al. [15]–[17] extended the Drop and tilt method to Bézier surfaces, which 

removes the dependency of surface finishing on the triangulated mesh. The DTM 

approach was numerically implemented and tested on bi-quadratic and bi-cubic Bézier 

surfaces. The implementation involves simultaneously solving a number of higher order 

non-linear transcendental equations, which were solved using Newton’s method. After 

solving, gouge checking was done for each tool position. Hence, although the technique 

is robust and efficient for finding the two points of contact, it took more computation 

time. Although MPM has been applied to triangulated surfaces and to tensor product 

surfaces a number of deficiencies exist. Triangulated surfaces by definition are 

approximate and Newton’s method based solutions for tensor product are prone to 

identifying the incorrect solutions at times. Thus, a better method for the Multi Point 

tool positioning is still desired for tensor product surfaces.  



 

8 

 

In this work, new techniques are proposed that eliminate the use of Newton’s method 

to solve the higher order non-linear transcendental equations [16]. The proposed 

methods are implemented for bi-cubic Bézier surfaces using a console application built 

in C++. The algorithms are tested by simulating three parts having concave and convex 

regions using the ToolSim machining simulator tool and by machining successfully on 

a DMU-80P five axis machine.  
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CHAPTER 3           Drop Rotate and Drop 

In Multi-Point Machining the objective is to determining a gouge-free tool position on 

a Bézier surface such that the toroidal tool makes tangential contact with the surface at 

least at two different points. The tool orientation and location are determined in two 

steps, as proposed by Duvedi et al. [15-16]. The tool is first dropped on the surface and 

then the surface is tilted until a second point of contact is found. The key algorithm used 

in both the steps emulates the dropping of a tool along a specified tool axis. This 

algorithm is referred to as the tool drop algorithm. Algorithms varying from the direct 

solution of algebraic equations to algorithms based on bi-section and Newton’s methods 

have been presented in the literature. The algorithm proposed in this work is based on 

firing rays from the tool surface and determining the distance to the intersection with 

surface. The two step algorithm and the drop and tilt processes are detailed below. 

3.1 Dropping the Tool 

In the first step of the proposed method, the cutting surface of torus is first discretized 

into an array of points. The points on the torus are given by 

𝑇𝑜𝑜𝑙⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
(𝑙,𝑘) =   𝑇1

⃗⃗ ⃗⃗ + 𝑡̂ 𝑑(𝑙,𝑘) + 𝑇𝑜𝑟⃗⃗⃗⃗⃗⃗ ⃗⃗ (𝜃𝑙 , ∅𝑘)  (3) 

where 𝑡̂ is the unit vector given as [0, 0, 1]𝑇 and 

𝑇𝑜𝑟⃗⃗⃗⃗⃗⃗⃗⃗ (𝜃𝑙 , ∅𝑘) =  { (𝑅𝑜 + 𝑅𝑖  cos 𝜃𝑙) cos ∅𝑘,  (𝑅𝑜 +   𝑅𝑖  cos 𝜃𝑙) sin ∅𝑘 , 𝑅𝑖  sin 𝜃𝑙}  (4) 

𝜃𝑙 , ∅𝑘  ∈ [0, 2𝜋], 𝑅𝑖 is the radius of the minor circle; and 𝑅𝑜 is the major radius, as 

shown in Figure 3.2. The tool axis and the minor circle are coplanar in three-

dimensional space. 

In the second step, rays parallel to the tool axis are fired towards the surface. The Bézier 

surface is represented by equation 1. 

Figure 3.1 shows a set of rays emanating from points 𝑇𝑜𝑜𝑙(𝑙,𝑘) in a direction opposite 

to 𝑡̂. These rays intersect the surface at certain points on the surface denoted by 𝑆 with 
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a subscript, such that 𝑆(𝑙,𝑘) corresponds to 𝑇𝑜𝑜𝑙(𝑙,𝑘), and hence projecting the curved 

surface of the cutter onto the  Bézier surface patch. The projected  

 

Figure 3.1 : Dropping the  tool over the Bézier surface along tool axis 𝑡̂. A patch 

formed under the shadow of the tool and drop distance set D obtained by intersection 

of fired rays from the tool surface onto Bézier surface 

patch of the toroidal cutter is shown as hatched area on the surface. The intersection 

point is the solution of  

𝑇𝑜𝑜𝑙(𝑙,𝑘) = 𝑆(𝑢,𝑣) (5) 
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The length of the ray, from the surface to the intersection of the rays with the surface, 

represents the distance the tool must be dropped to bring that specific surface point in 

contact with the tool. At each point of the surface this drop distance is different. The 

drop distance for all the points in the surface array shown in Figure 3.1 form a drop 

distance set. The drop distance set 𝐷 is 

𝐷 = {𝑑(𝑙,𝑘) ∀ (𝑙 = 1 𝑡𝑜 𝑛, 𝑘 = 1 𝑡𝑜 𝑚)} (6) 

where 𝑑(𝑙,𝑘) is a solution of obtained from equations (3) and (4) is given by 

𝑡̂ 𝑑(𝑙,𝑘) = 𝑆(𝑢,𝑣) − (𝑇1
⃗⃗ ⃗⃗ + 𝑇𝑜𝑟⃗⃗⃗⃗⃗⃗ ⃗⃗ (𝜃𝑙, ∅𝑘)) (7) 

The idea is that at the point of intersection, the surface point and the point on the tool 

surface are same. The difference of both the points gives the deviation of the points and 

form three set equations, derived from equation (5) and is a vector equation represented 

as 

[

𝑆𝑜𝑙𝑥

𝑆𝑜𝑙𝑦

𝑆𝑜𝑙𝑧

] =   [

𝑃𝑜𝑖𝑛𝑡𝑂𝑛𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑥 − 𝑇𝑜𝑜𝑙𝑥

𝑃𝑜𝑖𝑛𝑡𝑂𝑛𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑦 − 𝑇𝑜𝑜𝑙𝑦

𝑃𝑜𝑖𝑛𝑡𝑂𝑛𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑧 − 𝑇𝑜𝑜𝑙𝑧

] (8) 

that must be solved simultaneously for three unknowns [𝑢, 𝑣, 𝑑(𝑙,𝑘)], where 𝑢 𝑎𝑛𝑑 𝑣 are 

the parameters for the surface point and  𝑑(𝑙,𝑘) is the drop distance. 

The value of 𝑡̂ is [0,0,1]𝑇 and hence equation (7) can be represented as 

[

0
0

𝑑(𝑙,𝑘) 
] =   [

𝑆𝑥(𝑢,𝑣) − (𝑇1𝑥 + 𝑇𝑜𝑟𝑥(𝜃𝑙 , ∅𝑘))

𝑆𝑦(𝑢,𝑣) − (𝑇1𝑦 + 𝑇𝑜𝑟𝑦(𝜃𝑙, ∅𝑘))

𝑆𝑧(𝑢,𝑣) − (𝑇1𝑧 + 𝑇𝑜𝑟𝑧(𝜃𝑙 , ∅𝑘))

] (9) 

In equation (9), only the third equation corresponding to the 𝑧-direction is a function of 

the drop distance, 𝑑(𝑙,𝑘) . Based on this observation the solution of (9) is broken into two 

steps. In the first step, Newton’s method is used to find the values of parameters 𝑢 and 

𝑣 using the first and second equation of (9). Given a set of non-linear equation Newton’s 

method reduces to: 
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𝑥𝑖 = 𝑥𝑖−1 − [𝐽]−1𝐹(𝑥𝑖−1) (10) 

where 𝑥𝑖 =  [
𝑢𝑖

𝑣𝑖
], 𝐹𝑖 =  [

𝑆𝑜𝑙𝑥(𝑢𝑖, 𝑣𝑖)
𝑆𝑜𝑙𝑦(𝑢𝑖, 𝑣𝑖)

], and 

𝐽 =  [

𝜕𝑆𝑜𝑙𝑥

𝜕𝑢

𝜕𝑆𝑜𝑙𝑥

𝜕𝑣
𝜕𝑆𝑜𝑙𝑦

𝜕𝑢

𝜕𝑆𝑜𝑙𝑦

𝜕𝑣

] 

𝐽 is the Jacobian matrix of these equations and 𝑥𝑖 is the vector of unknowns, 𝑢, 𝑣. The 

initial value of 𝑥0 is assumed and the subsequent values of 𝑥𝑖 are calculated iteratively 

until they are within a user specified tolerance. In the second step, the values of 

parameters 𝑢 and 𝑣 are used to solve for drop distance 𝑑(𝑙,𝑘) in the 𝑧 direction. 

 

Figure 3.2  Cross-sectional view of tool touching the Bézier surface at P co-planar to 

the pseudo-insert. 
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The minimum of the drop distance set min {𝐷}, i.e.,  𝑑𝑚𝑖𝑛, gives the distance the tool 

should be dropped to just touch the surface without any gouging. Any distance greater 

than 𝑑𝑚𝑖𝑛 will result in overcutting and any distance less than the 𝑑𝑚𝑖𝑛 will result in 

undercutting. The surface point 𝑆(𝑢1,𝑣1) corresponding to the 𝑑𝑚𝑖𝑛 gives the first point 

of contact 𝑃. 

The accuracy with which this shaded area is represented depends on the discretization 

of the torus surface. Adaptive discretization has been used in this work to obtain greater 

accuracy and quick convergence.  

After dropping the tool, the first point of contact 𝑃 lies on one of the pseudo-inserts, as 

shown in Figure 3.2. This minor circle is the same size as the insert in a physical tool 

and as the tool rotates the physical insert coincides with the minor circle as it touches 

the surface. The center of the pseudo-insert 𝑂1 is given by 

𝑂1 = 𝑃 +  𝑅𝑖  𝑛̂. (11) 

𝑛̂ is the surface unit normal at the point of contact 𝑆(𝑢, 𝑣) and is given by 

𝑛̂ =
 
𝜕𝑆(𝑢,𝑣)

𝜕𝑢
 × 

𝜕𝑆(𝑢,𝑣)

𝜕𝑣
 

| 
𝜕𝑆(𝑢,𝑣)

𝜕𝑢
 × 

𝜕𝑆(𝑢,𝑣)

𝜕𝑣
 |

 . (12) 

The axis of the pseudo-insert passes through 𝑂1 and is perpendicular to the plane 

containing the pseudo-insert. A rotation of the tool about the pseudo-insert axis will 

result in tilting the tool but will ensure that the rotated tool still touches the first point 

of contact 𝑆(𝑢1,𝑣1) tangentially although at a different point on the pseudo-insert. The 

ability to tilt the tool while maintaining contact at the first point of contact is used to 

find the second point of contact. The surface is tilted algorithmically until second point 

of contact is found. 

3.2 Tilting the Surface 
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To find the second point of contact, the surface is tilted around the pseudo-insert of 

contact until the surface comes into contact with the tool. A new coordinate frame 

{𝑢̂1, 𝑣1, 𝑤̂1} is created at 𝑂1, the center of the pseudo-insert at the first point of contact, 

where 

𝑤̂1 = 𝑡̂ (13) 

𝑢̂1 =   
(𝑇𝑐 − 𝑃)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  ×  𝑤̂1

|(𝑇𝑐 − 𝑃)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  ×  𝑤̂1|
 (14) 

𝑣1 =  𝑤̂1  ×  𝑢̂1. (15) 

 

Figure 3.3 Tilting the surface with 𝛽 around O1 about axis 𝑢̂1 
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The surface is then defined in the new coordinate frame and is then rotated about 𝑢̂1 

with an angle 𝛽 to form a new rotated surface 𝑆′(𝑢,𝑣). This rotation leads to the formation 

of third rotated coordinate frame {𝑢̂2, 𝑣2, 𝑤̂2} as shown in Figure 3.3, where, 

𝑢̂2 =  𝑢̂1 (16) 

𝑣2 =  cos 𝛽  𝑣1 +  sin 𝛽  𝑤̂1 (17) 

𝑤̂2 =  − sin 𝛽  𝑣1 + cos 𝛽  𝑤̂1 (18) 

To rotate a tensor product surface, only the control points needed to be rotated. The 

surface is rotated initially with a minimum rotation angle 𝛽 and the rotation is increased 

incrementally until the second gouge free point of contact 𝑄 is found. This results in 

two points of contact 𝑃 and 𝑄, at which the surface 𝑆(𝑢,𝑣) and toroidal surface of the 

tool are tangent to each other.  
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Figure 3.4 Cross sectional view co-planar to the pseudo-insert after tilting the surface 

giving the first and second point of contact, P and Q  

As the surface is tilted in {𝑢̂2, 𝑣2, 𝑤̂2} , the pseudo-insert maintains its contact with the 

surface; however, the position of first point of contact on the pseudo-insert will change 

sliding along the pseudo-insert from 𝑃 to 𝑃’, as shown in Figure 3.4. The surface 𝑆(𝑢,𝑣) 

will stay tangent to the toroidal surface of the tool, as the rotation is about the center of 

the pseudo-insert 𝑂1.  

The bisection method is used to determine the rotation angle that gives the second point 

of contact Q. In the bisection method the surface is rotated by angle 𝛽 and the tool is 

dropped over the rotated surface S’ in the same manner as the first point of contact. If 

the point of contact of the dropping tool is the same as the first point of contact, then the 

surface is tilted further by increasing 𝛽 otherwise the rotation angle is halved to 𝛽/2 

and the process is continued until the second point of contact is found.  
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The condition for the second point of contact 𝑄 to be gouge free is checked by 

comparing the two heights of drop, i.e., 𝑑𝑚𝑖𝑛 and 𝑑′𝑚𝑖𝑛 at every stage of rotation. The 

rotation angle where both the heights are equal gives the second point of contact. 

3.3 DRD Algorithm 

The pseudo-code presented in Figure 3.5 gives the algorithm for the proposed DRD 

(Drop, Rotate and Drop) concept. It starts with generating the toolpath footprint (2.0), 

which, in this case, are parallel lines in the u-v plane. These parallel lines map to lines 

in the XY domain that extends between  𝑥𝑚𝑖𝑛 to 𝑥𝑚𝑎𝑥  and from  𝑦𝑚𝑖𝑛 to  𝑦𝑚𝑎𝑥, as shown 

in Figure 2.3. The toolpath footprint is discretized with a spacing of 𝑆𝑖𝑑𝑒𝑠𝑡𝑒𝑝 in X 

direction and 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑠𝑡𝑒𝑝 in Y direction.  

At each of the discretized points on the tool path footprint (4.0), the toroidal tool is 

positioned (4.1) with the center of the tool 𝑇⃗⃗𝑐 at a specified height above the Bézier 

surface such that the surface patch is sandwiched between the toolpath footprint plane 

and the initial tool position 𝑇⃗⃗𝑐, as shown in Figure 3.1. Tool drop algorithm is applied 

(4.2) for the tool position 𝑇⃗⃗𝑐 which gives the position parameters [𝑢1, 𝑣1] and drop 

distance 𝑑𝑚𝑖𝑛 for the first point of contact 𝑃⃗⃗. The algorithm for dropping the tool is 

explained in section 3.3.1. 

After obtaining the first point of contact 𝑃⃗⃗, center 𝑂⃗⃗1 of pseudo-insert is found (4.4) and 

the Bézier surface is rotated by angle 𝛽 about an axis pointing in direction of 𝑢̂1 of  
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Figure 3.5 Pseudo-code for the Algorithm for getting gouge free tool position over the 

Bézier surface 

  

1.0 Define array of Control Points of surface: 𝑃[𝑛][𝑛] 

2.0 Generate Toolpath Footprint: 

𝐹𝑜𝑜𝑡𝑃𝑟𝑖𝑛𝑡[𝑘][2] = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡(𝑠𝑖𝑑𝑒𝑠𝑡𝑒𝑝 , 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑠𝑡𝑒𝑝 , 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) 

3.0 Set 

𝑧𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑍(𝑃[𝑛][𝑛]) + 50, 𝑂𝑟𝑖𝑔𝑖𝑛 = [0,0,0], 𝑡̂ = [0,0,1], 𝑅𝑖 = 6.0 

4.0 𝐹𝑜𝑟 𝑖 =  1;  𝑖 ≤  𝑘 

4.1 𝑇 =  [𝐹𝑜𝑜𝑡𝑃𝑟𝑖𝑛𝑡[𝑖][1], 𝐹𝑜𝑜𝑡𝑃𝑟𝑖𝑛𝑡[𝑖][2], 𝑧𝑚𝑎𝑥] 

4.2 [𝑢1, 𝑣1, 𝑑𝑚𝑖𝑛𝑖
] = 𝑇𝑜𝑜𝑙𝐷𝑟𝑜𝑝(𝑇, 𝑃[𝑛][𝑛], 𝑡̂) 

4.3 Get Normal and first surface contact point: 

[𝑃𝑖 , 𝑛̂𝑃𝑖
] = 𝑆(𝑢1, 𝑣1, 𝑃[𝑛][𝑛]) 

4.4 𝑂𝑖 =  𝑃𝑖 + 𝑅𝑖𝑛̂𝑖  

4.5 Set coordinate frame {𝑢̂1, 𝑣̂1, 𝑤̂1}: 

 𝑤̂1 =  𝑡̂, 𝑢̂1 =   
(𝑇−𝑃𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ × 𝑤̂1

|(𝑇−𝑃𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ × 𝑤̂1|
 , 𝑣̂1 =  𝑤̂1  ×  𝑢̂1 

4.6 Set 𝛽𝑚𝑖𝑛 = 0, 𝛽𝑚𝑎𝑥 =  𝜋 4⁄ , 𝛽 =  𝛽𝑚𝑎𝑥 , 𝑑′𝑚𝑖𝑛 =  𝑑𝑚𝑖𝑛 + 50, 𝑗 = 1, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 1  

4.7 𝑤ℎ𝑖𝑙𝑒 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 <  10 

4.7.1 𝛽 = (𝛽𝑚𝑎𝑥 + 𝛽𝑚𝑖𝑛) 2⁄  

4.7.2 Rotate Bézier Surface around 𝑢̂1axis at 𝑂1 with angle of rotation 𝛽 : 

𝑃′[𝑛][𝑛] =  𝑟𝑜𝑡𝑎𝑡𝑒(𝑃[𝑛][𝑛], 𝛽, 𝑢̂1, 𝑂1) 

4.7.3 [𝑢2, 𝑣2, 𝑑′𝑚𝑖𝑛𝑗
] = 𝑇𝑜𝑜𝑙𝐷𝑟𝑜𝑝(𝑇, 𝑃′[𝑛][𝑛], 𝑡̂) 

4.7.4 ∈ = 𝑑𝑚𝑖𝑛𝑖
−  𝑑′𝑚𝑖𝑛𝑗

 

4.7.5 𝐼𝑓 (∈ > 0.01) 𝑡ℎ𝑒𝑛  

𝛽𝑚𝑎𝑥 =  𝛽 

𝐸𝑙𝑠𝑒 𝐼𝑓 (∈ ≤ 0.01) 𝑡ℎ𝑒𝑛 

𝛽𝑚𝑖𝑛 =  𝛽 

4.7.6 𝑄𝑗 = 𝑆(𝑢2, 𝑣2, 𝑃[𝑛][𝑛]) 

4.7.7 𝐼𝑓 (𝑄𝑗 =  𝑄𝑗−1) 𝑡ℎ𝑒𝑛 

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1 

𝐸𝑙𝑠𝑒 

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 1 

4.7.8 𝑆𝑒𝑡 𝑗 = 𝑗 + 1 

4.8 Get Normal and second surface contact point: 

[𝑄𝑖 , 𝑛̂𝑄𝑖
] = 𝑆(𝑢2, 𝑣2, 𝑃[𝑛][𝑛]) 

4.9 Rotate tool axis around global 𝑥 axis at 𝑂𝑟𝑖𝑔𝑖𝑛 with angle of rotation 𝛽: 

𝑡̂′ = 𝑟𝑜𝑡𝑎𝑡𝑒(𝑡̂, 𝛽, 𝑥, 𝑂𝑟𝑖𝑔𝑖𝑛) 

4.10 Print Tool position data: 

𝑝𝑟𝑖𝑛𝑡(𝑃𝑖 , 𝑛̂𝑃𝑖
, 𝑄𝑖 , 𝑛̂𝑄𝑖

, 𝑡̂′) 
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newly formed coordinate frame, (4.5). Rotation of the surface about 𝑢̂1 with pseudo-

insert 𝑂⃗⃗1 as the center of rotation ensures the tangency of the toroidal cutter with the 

surface to be machined at the first point of contact, even though the first point of contact 

𝑃⃗⃗ moves along the pseudo-insert. To obtain the required value of rotation for which the 

tool touches the surface at the second point of contact without any gouging and at the 

same time maintains the condition of tangency with the first point of contact, the 

bisection method is used, (4.7). The minimum and maximum value of rotation angle 

(4.6), i.e., 𝛽𝑚𝑖𝑛 and 𝛽𝑚𝑎𝑥 is set to 0 and 𝜋 4⁄ , respectively. Rotation beyond this defined 

limit will not yield any viable solutions, as 𝛽𝑚𝑖𝑛  represents a 3-axis machine and 𝛽𝑚𝑎𝑥 

represents the physical limit of a 5-axis machine tilt table. The rotation angle 𝛽𝑚𝑖𝑛 or 

close to 𝛽𝑚𝑖𝑛 will yield the first point of contact as the contact point. Whereas, with 

𝛽𝑚𝑎𝑥 angle of rotation, the tool will touch the surface at a second point of contact but 

will require a smaller drop distance than the first point of contact. Thus the rotation 

angle giving two points of contact lies between 𝛽𝑚𝑖𝑛 and 𝛽𝑚𝑎𝑥. 

The surface is rotated with the average of minimum and maximum rotation angle 

(4.7.1). After rotating the surface, tool is dropped on the rotated surface and the drop 

distance 𝑑′𝑚𝑖𝑛 for the shortest intersected ray from the tool to the rotated surface is 

obtained, which is then compared with the previously obtained drop distance 𝑑𝑚𝑖𝑛 from 

dropping of the tool over the surface without any rotation (the first point of contact). 

The comparison of the drop distance will decide the new values of 𝛽𝑚𝑖𝑛 and 𝛽𝑚𝑎𝑥 for 

the next iteration. Now the maximum and minimum limits of rotation angle, i.e., 𝛽𝑚𝑖𝑛 

and 𝛽𝑚𝑎𝑥 are reset according to 𝜖, which is the difference of drop distance at first point 

of contact and drop distance after the rotation of surface, (4.7.4) and (4.7.5). A tolerance 

of 𝜖 =  10−2 was used to accommodate numerical errors in computation. Resetting the 

𝛽𝑚𝑖𝑛 and 𝛽𝑚𝑎𝑥 after every iteration brings the algorithm closer to the converged solution 

quickly. 

As 𝛽𝑚𝑖𝑛 and 𝛽𝑚𝑎𝑥 converge, the rotation angle obtained at every iteration will yield a 

second point of contact close to one from the previous iteration but numerically different 

from each other. The difference is small but numerically sufficient to keep the loop 

running for the bisection method. A hard limit is set to break the loop after achieving 
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the result in the zone of the required accuracy defined by the user. For this, the point of 

contact obtained in the current loop iteration after rotation 𝑄⃗⃗𝑗 is compared with the point 

of contact 𝑄⃗⃗𝑗−1 from the previous loop iteration (4.7.7); and if both points of contact 

are physically the same a counter is increased or if the points of contact differ then the 

counter is reset. The loop exits after the counter exceeds the limit defined by the user, 

which in this work was 10 (4.7). As the loop breaks, the rotation angle at that stage is 

the smallest possible rotation needed to produce the second gouge free point of contact. 

At this stage the two point of contacts 𝑃⃗⃗ and 𝑄⃗⃗ needed to define the tool position for 

Five axis machining are obtained. 

This method described above is applied to all points in the tool path footprint to create 

a 5-axis tool path for machining the desired surface. 

3.3.1 Tool Drop Algorithm 

The tool is dropped over the surface using ray firing, discussed in the previous section, 

to find the first point of contact. The algorithm for dropping the tool is given in the 

pseudocode shown in Figure 3.6. The tool drop algorithm starts with the discretization 

of the toroidal surface of the tool (1.0 and 2.0). Theoretically, the toroidal surface of the 

tool can be discretized into an infinite number of points from which rays could be fired 

toward the surface; but this will lead to higher computational time and a formation of 

large drop distance set {D}. To keep the computational time to a minimum, the range is 

user specified. In this work, a tool with a small hollow in the bottom plane, as shown in  

Figure 3.4, is used. Furthermore, the target parts for 5-axis machines are dies and molds 

that can be accessed from above, thus the range for 𝜃 is set within 3𝜋/2 to 2𝜋. There 

are no such restrictions on ∅ and it can range from 0 to 2𝜋. This defined range for 𝜃 and 

∅ is where the tool will make contact with the surface without any gouging. In the tool 

drop algorithm the range is divided in 10 equal parts for both 𝜃 and ∅. At the onset, for 

the first point of contact, these 121 distinct points over the toroidal surface are 

considered.   
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Figure 3.6 Pseudo-code for the Tool Drop (firing of rays) Algorithm 

 

  

𝑇𝑜𝑜𝑙𝐷𝑟𝑜𝑝(𝑇, 𝑃[𝑛][𝑛], 𝑡̂) 

1.0 Set 𝜃𝑚𝑎𝑥 = 2𝜋, 𝜃𝑚𝑖𝑛 = 3𝜋 2⁄ , ∆𝜃 = (𝜃𝑚𝑎𝑥 −  𝜃𝑚𝑖𝑛) 10⁄  

2.0 Set ∅𝑚𝑎𝑥 = 2𝜋, ∅𝑚𝑖𝑛 = 0, ∆∅ = (∅𝑚𝑎𝑥 − ∅𝑚𝑖𝑛) 10⁄  

3.0 Set 𝑑𝑚𝑖𝑛 larger than the 𝑍 coordinate of 𝑇 vector 

4.0 Initialize 𝑢 = 0.1, 𝑣 = 0.1, 𝑆𝑜𝑙 = [0,0,0] 

5.0 𝐹𝑜𝑟 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 1, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≤ 5 

5.1 𝐹𝑜𝑟 𝜃 = 𝜃𝑚𝑖𝑛 , 𝜃 ≤ 𝜃𝑚𝑎𝑥  

5.1.1 𝐹𝑜𝑟 ∅ = ∅𝑚𝑖𝑛 , 𝛼 ≤ ∅𝑚𝑎𝑥  

5.1.1.1 Define ‘𝑇𝑜𝑜𝑙(𝑙,𝑘)’ from equation (3) 

𝑇𝑜𝑜𝑙(𝑙,𝑘) = 𝑇 + 𝑇𝑜𝑟(𝜃, ∅) 

5.1.1.2 𝑃𝑜𝑖𝑛𝑡𝑂𝑛𝑆𝑢𝑟𝑓𝑎𝑐𝑒 = 𝑆(𝑢, 𝑣, 𝑃[𝑛][𝑛]) 

5.1.1.3 Solution for equation (5) 

𝑆𝑜𝑙 = 𝑃𝑜𝑖𝑛𝑡𝑂𝑛𝑆𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑇𝑜𝑜𝑙(𝑙,𝑘) 

5.1.1.4 𝑊ℎ𝑖𝑙𝑒 (𝑆𝑜𝑙[1] 𝑜𝑟 𝑆𝑜𝑙[2] > 0) 

Assign 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = [𝑆𝑜𝑙[1], 𝑆𝑜𝑙[2]] 

Get derivative of surface point at (𝑢, 𝑣) 

[
𝜕𝑆 𝜕𝑢⁄

𝜕𝑆 𝜕𝑣⁄
] = 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒(𝑢, 𝑣, 𝑃[𝑛][𝑛]) 

Get Jacobian of surface point: 

 𝐽[2][2]  =  [
𝜕𝑆[1] 𝜕𝑢⁄ 𝜕𝑆[2] 𝜕𝑢⁄

𝜕𝑆[1] 𝜕𝑣⁄ 𝜕𝑆[2] 𝜕𝑣⁄
] 

Solve  

[
𝑡𝑒𝑚𝑝𝑢

𝑡𝑒𝑚𝑝𝑣
] =  ⌈

𝑢
𝑣

⌉ −  ([ 𝐽 ]−1  × [𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛]) 

Reassign 𝑢, 𝑣 as: 

 𝑢 = 𝑡𝑒𝑚𝑝𝑢 , 𝑣 = 𝑡𝑒𝑚𝑝𝑣  

Repeat Steps 5.1.1.2 and 5.1.1.3 

Store minimum Drop Distance and associated surface and tool parameters 

𝐼𝑓 (𝑑𝑚𝑖𝑛  > (−𝑆𝑜𝑙[3])) 𝑡ℎ𝑒𝑛  

𝑑𝑚𝑖𝑛 = −𝑆𝑜𝑙[3], 𝑢𝑠𝑜𝑙 = 𝑢, 𝑣𝑠𝑜𝑙 = 𝑣, 𝑡𝑒𝑚𝑝𝜃 =  𝜃, 𝑡𝑒𝑚𝑝∅ =  ∅ 

5.2 Reset 

 𝜃𝑚𝑎𝑥 = 𝑡𝑒𝑚𝑝𝜃 + ∆𝜃, 𝜃𝑚𝑖𝑛 = 𝑡𝑒𝑚𝑝𝜃 − ∆𝜃, ∆𝜃 = (𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛) 10⁄  

5.3 Reset 

 ∅𝑚𝑎𝑥 = 𝑡𝑒𝑚𝑝∅ + ∆∅, ∅𝑚𝑖𝑛 = 𝑡𝑒𝑚𝑝∅ − ∆∅, ∆∅ = (∅𝑚𝑎𝑥 − ∅𝑚𝑖𝑛) 10⁄  

Return [𝑢𝑠𝑜𝑙 , 𝑣𝑠𝑜𝑙 , 𝑑𝑚𝑖𝑛] 
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For initialization, surface parameters 𝑢 𝑎𝑛𝑑 𝑣 are set to any arbitrary value ranging for 

0 to 1; in this work, both 𝑢 𝑎𝑛𝑑 𝑣 values are set to 0.1 initially (4.0). Now for the given 

𝜃 𝑎𝑛𝑑 ∅ the point on the toroidal surface of the tool 𝑇𝑜𝑜𝑙(𝑙,𝑘) is obtained as given in 

Step (5.1.1.1). After getting the point on the toroidal surface of the tool, the point on the 

surface is also obtained from the initial seed of the surface parameters 𝑢 𝑎𝑛𝑑 𝑣 (5.1.1.2) 

and the solution of equation (5) given by equation (8) is obtained (5.1.1.3).  

Step (5.1.1.4) of the pseudo-code given in Figure 3.6 is used to find the intersection 

point on the surface and the shortest distance of the fired rays. [𝑢𝑠𝑜𝑙, 𝑣𝑠𝑜𝑙] are used to 

keep track of the parameters used to obtain the surface point for corresponding shortest 

fired ray having drop distance stored as 𝑑𝑚𝑖𝑛. 

If 𝑆𝑜𝑙𝑧(𝑖) is less than the 𝑆𝑜𝑙𝑧(𝑖 − 1) then it is stored as 𝑑𝑚𝑖𝑛, which is used to keep 

the track of minimum drop distance of set {D}. The parameters corresponding to the 

𝑑𝑚𝑖𝑛 are also stored (𝑢𝑠𝑜𝑙 and 𝑣𝑠𝑜𝑙), as they give the location of first point of contact on 

the Bézier surface. 

The drop distance is calculated at all these points and stored in the drop distance set 

{D}. The first point of contact is near the minimum member of this set. To find this 

point with accuracy, the minimum and the maximum values, i.e., [𝜃𝑚𝑖𝑛 , 𝜃𝑚𝑎𝑥] and 

[∅𝑚𝑖𝑛, ∅𝑚𝑎𝑥] are redefined and finely discretized around the minimum drop distance 

point and the iteration process is repeated. Redefining of ranges for 𝜃 and ∅  is given in 

Step (5.2) and (5.3) of the pseudocode in Figure 3.6. The range of toroidal angles is 

condensed five times or until the first gouge free point of contact is found within the 

user specified tolerance. 
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CHAPTER 4              Vertical and Circular Ray Firing  

The DRD method explained in previous chapter limits the use of Newton’s method for 

getting the solutions of two unknowns for non-linear equation instead of three unknowns 

as explained by Duvedi et al [15]. The reduced dependency on Newton’s method and 

rotation of the surface instead of the tool geometry for solving the non-linear equation 

is less prone to not giving the solution, but it is still computationally slow. Even though 

the computational effort is reduced by limiting the use of Newton’s method for two 

unknowns, the computational time is still too high as the surface control points are 

rotated again and again in the bisection method for the calculation of rotation to obtain 

the second point of contact. To overcome this, a method is developed that completely 

eliminates the use of Newton’s method and does not require any repetitive rotations of 

either the tool or the surface. The tool position giving the tool orientation and location 

is calculated in two steps. An implicit equation in Cartesian coordinates  is used for the 

toroidal cutter definition, which is radially symmetric about the 𝑧-axis. 

4.1 Motivation 

In MultiPoint machining (MPM) the toroidal cutter touches the surface at two points of 

contact. Finding the points on the surface making contact with the toroidal cutter, 

resulting in machining, is a sequential process. Figure 4.1 shows the stage wise process 

of finding the two points of contact for the vertical and circular ray firing method. The 

toroidal tool is placed over the Bézier surface at 𝑇𝑐
′ as the center of the tool and both 

the points of contact 𝑃 and 𝑄 over the Bézier surface where the tool is supposed to touch 

the surface without any gouging are shown in the Figure 4.1(A). Now for getting the 

first point of contact 𝑃 in this method, the vertical rays are fired from the surface towards 

the tool; as opposite to the DRD method, in which, the rays are fired from the toroidal 

surface towards the Bézier surface. The complete process of vertical ray firing is given 

in the next section. After getting the required drop distance 𝑑, the tool is dropped down 

vertical with the drop distance and touches the Bézier surface at point P giving the 

location and position of the pseudo-insert.  
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Figure 4.1: Different stages shown for getting the points of contact over the Bézier 

surface using the vertical and circular ray firing method in comparison with tilting the 

tool 

Now for getting the second point of contact, Duvedi et al [15] gave a method of titling 

the tool about the axis of pseudo insert till the tool touches the surface at Q, as shown 

in Figure 4.1(B) which involves the solution of complex non-linear transcendental 

  

A B 

  

C D 
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equations and in DRD method the Bézier surface is rotated about the axis of the pseudo 

insert till the surface touches the toroidal cutter at 𝑄, which is also an iterative process, 

as shown in Figure 3.4. Rotating the surface, till it the touches the toroidal cutter, also 

results in the similar second point of contact as obtained in tilting the tool. 

Now if tool is kept stationary and a circular ray is fired from the so called second point 

of contact 𝑄 on the un-rotated Bézier surface with the axis of pseudo-insert as its center, 

the ray will intersect with the torus and form an angular arc segment, as shown in Figure 

4.1(C). The angular arc segment of the circular ray fired from the surface intersecting 

with the tool gives the tilt angle. The rotation of the surface with the tilt angle obtained 

from the angular arc segment emulates the calculation of the second point of contact 𝑄, 

as shown in Figure 4.1(D).  

The process of firing the circular ray is given in section 4.3. With the circular ray firing 

method, the required tilt angle is obtained and hence gives the second point of contact 

Q. Figure 4.1(D) shows the arc formed by the circular ray and the associated tilt angle 

𝛽, and also shows the Bézier surface 𝑆′(𝑢, 𝑣) touching the toroidal tool surface at two 

points of contact 𝑃′ and 𝑄 without any gouging. As the surface is rotated with the tilt 

angle 𝛽 about the axis of the pseudo-insert, the first point of contact slides from 𝑃 to 𝑃′ 

around the pseudo-insert. 

Both the steps of vertical and circular ray firing involve the solution of implicit 

equations of toroidal cutter defined in Cartesian coordinate system and eliminates the 

use of iterative process involving complex non-linear transcendental equations. Hence 

making the method simpler, robust and fast. It is to be noted that, while the Figure 4.1 

makes it appear that 𝑂1, 𝑃, 𝑄, and the circular ray from 𝑄 lie in a common plane, that is 

not the case; instead, 𝑄 and the circular ray from 𝑄 lie in a plane parallel to the plane of 

the pseudo-insert centered at 𝑂1. 

4.2 Ray Firing in Tool Axis Direction for Drop 

The algorithm in the proposed method is based on rays fired from the tensor product 

surface towards the direction of the tool and the ray that makes the intersection with the 

tool having the least distance traveled gives the first point of contact. The surface is 
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discretized finely and rays are fired in the tool axis direction towards the toroidal 

surface. In this work a Bézier surface 𝑆(𝑢, 𝑣) is given by equation (1) is used 

The parameter u and v are used to finely discretize the surface. With the parameters 

defined 𝑆(𝑢,𝑣) will give the position of a point on the surface in the Cartesian coordinate 

system as   

𝑆(𝑢,𝑣) = [

𝑆𝑥

𝑆𝑦

𝑆𝑧

] (19) 

The toroidal surface is defined implicitly using the Cartesian coordinate system 

symmetric to 𝑧-axis and is given by the solution of 𝑇𝑜𝑟𝑢𝑠(𝑥, 𝑦, 𝑧) =  0 at any position 

above the surface, where 

𝑇𝑜𝑟𝑢𝑠(𝑥, 𝑦, 𝑧) =  (√𝑇𝑜𝑟𝑥
2 +  𝑇𝑜𝑟𝑦

2 − 𝑅𝑜)

2

+  (𝑇𝑜𝑟𝑧 + ℎ)2 −  𝑅𝑖
2 (20) 

(𝑇𝑜𝑟𝑥, 𝑇𝑜𝑟𝑦, 𝑇𝑜𝑟𝑧) are the coordinates of any point 𝑇𝑜𝑟⃗⃗⃗⃗⃗⃗ ⃗⃗  on the toroidal surface in 

(𝑥, 𝑦, 𝑧) direction, respectively. ′ℎ′ is the height at which the torus is positioned from 

origin in 𝑧-direction over the Bézier surface as shown in Figure 4.2. 
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Figure 4.2: Firing the rays from the Bézier surface along tool axis 𝑡̂. A patch formed 

under the shadow of the tool and drop distance set D obtained by intersection of fired 

rays from the Bézier surface 
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The tool could be positioned anywhere over the surface and hence firing the rays from 

some points  𝑆(𝑢,𝑣)  will not intersect with the tool surface. Rays yielding no intersection 

with the toroidal surface will give a complex solution and hence can be ignored. To limit 

the number of rays that do not intersect the tool, the surface patch under the shadow of 

the tool is found and then rays are cast from the discretized points of that particular 

patch instead of casting rays from the whole surface. Over the shadow of the tool a 

parametric grid with the limits (𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥) 𝑎𝑛𝑑 (𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥) is created which is then 

discretized with ∆𝑢 𝑎𝑛𝑑 ∆𝑣, respectively, as shown in Figure 4.2.  

The ray is cast from the Bézier surface in tool direction, 𝑡̂ = {0,0,1} at each parameter 

(𝑢𝑖, 𝑣𝑗) within the defined grid range, (𝑢𝑚𝑖𝑛  ≤ 𝑢𝑖  ≤ 𝑢𝑚𝑎𝑥) and (𝑣𝑚𝑖𝑛  ≤ 𝑣𝑗  ≤ 𝑣𝑚𝑎𝑥). 

The corresponding intersection point on the toroidal surface with the ray can be obtained 

by comparing 𝑆(𝑢𝑖,𝑣𝑗)  with  𝑇𝑜𝑟⃗⃗⃗⃗⃗⃗ ⃗⃗ . As the ray fired is in the tool direction and both the 

points, the point on surface and the intersection point, are collinear in the 𝑧-direction, 

as shown in Figure 4.3, so the comparison of 𝑆(𝑢𝑖,𝑣𝑗)  and  𝑇𝑜𝑟⃗⃗⃗⃗⃗⃗ ⃗⃗  is given by 

𝑆(𝑢𝑖,𝑣𝑗) = [

𝑆𝑥1

𝑆𝑦1

𝑆𝑧1

] = [

𝑇𝑜𝑟𝑥

𝑇𝑜𝑟𝑦

𝑇𝑜𝑟𝑧 − 𝑑(𝑢𝑖,𝑣𝑗)

]. (21) 

Every point within the defined range of the grid on the surface will form a drop distance 

set {𝐷} with 𝑑(𝑢,𝑣) as drop distance, which  is given by (from equation (23)) 

𝑑(𝑢𝑖,𝑣𝑗) = 𝑇𝑜𝑟𝑧 − 𝑆𝑧1 (22) 

where 𝑇𝑜𝑟𝑧 can be obtained from equation (22) and equation (24) as 

𝑇𝑜𝑟𝑧 =  ℎ − √ 𝑅𝑖
2 − (√𝑆𝑥1

2 +  𝑆𝑦1
2 − 𝑅𝑜)

2

. (23) 
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Figure 4.3: Ray fired from Bézier surface at 𝑆(𝑢𝑖,𝑣𝑗)  and the intersection point on 

torus (𝑇𝑜𝑟𝑥, 𝑇𝑜𝑟𝑦, 𝑇𝑜𝑟𝑧) showing the collinearity in the XZ plane 

The quadratic nature of the equation (25) clearly indicates that the rays will intersect the 

toroidal surface at two different positions, one with the upper surface of the torus and 

second with the lower surface of the torus. As the torus is symmetric about the 𝑧-axis 

and the 𝑥𝑦 plane, the lower surface of the torus will make the contact with Bézier 

surface. Hence the drop distance set obtained by the intersection points of fired rays 

with the lower surface of torus are stored to form the drop distance set {𝐷}. The surface 

point corresponding to the minimum value of the drop distance 𝑑𝑚𝑖𝑛 of drop distance 
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set {𝐷} yields the first point of contact, that the toroidal cutter will make with the Bézier 

surface. 

4.3 Circular Ray Intersection for Tilt 

The first point of contact 𝑃⃗⃗ lies on one of the pseudo-insert, as shown in Figure 4.4. The 

insert in the physical tool is of the same size of the minor circle with radius 𝑅𝑖. Any 

rotation about the axis of this pseudo-insert maintains the contact between tool and 

surface at 𝑃⃗⃗. To achieve the rotation about the axis of the pseudo-insert, a coordinate 

frame {𝑢̂1, 𝑣1, 𝑤̂1} is needed to define at the center of the pseudo-insert 𝑂⃗⃗1 and 𝑇𝑐⃗⃗⃗⃗⃗ as the 

tool center, where 

𝑤̂1 = 𝑡̂ (24) 

𝑢̂1 =   
  𝑤̂1 × (𝑃 − 𝑇𝑐)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

|  𝑤̂1 × (𝑃 − 𝑇𝑐)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗|
 (25) 

𝑣1 =  𝑤̂1  ×  𝑢̂1 (26) 

The center of pseudo-insert 𝑂⃗⃗1 can be obtained by 

𝑂⃗⃗1 = 𝑇𝑐⃗⃗⃗⃗⃗ −  𝑅𝑜𝑣1 (27) 

The Bézier surface is redefined in the new coordinate frame {𝑢̂1, 𝑣1, 𝑤̂1} with the 

pseudo-insert center as its origin. 
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Figure 4.4: A new coordinate frame is generated at the center of the pseudo-insert 𝑂1 

 

To obtain the second point of the contact and tilt angle 𝛽, circular rays with the circle 

center on the axis of the pseudo-insert are fired from the surface defined in the new 

coordinate system and the intersection of each ray with the toroidal surface is found. 

The ray that intersects the torus with the least angle traveled gives the second point of 

contact and the corresponding angle of arc formed by the circular rays gives the tilt 

angle required to tilt the tool for machining the surface with tool touching the surface at 

multiple points without any gouging. 

A plane is created at a distance of 𝑆𝑢1
in 𝑢̂1 direction from the origin. Figure 4.5 depicts 

the casting of a circular ray from a point on surface from a plane parallel to the plane 

𝑣1𝑤̂1. The surface point 𝑆(𝑢,𝑣)  in {𝑢̂1, 𝑣1, 𝑤̂1} coordinate frame with its origin at 𝑂1 is 

given by 
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𝑆(𝑢,𝑣) = [

𝑆𝑢1

𝑆𝑣1

𝑆𝑤1

]. (28) 

 

Figure 4.5: Planar view of the circular ray fired and giving the required tilt angle 𝛽  

 

The torus is also redefined implicitly in the {𝑢̂1, 𝑣1, 𝑤̂1} coordinate frame with an offset 

of 𝑅𝑜 in 𝑣1 direction and is given by 

𝑇𝑜𝑟𝑢𝑠(𝑢1, 𝑣1, 𝑤1) =  (√𝑇𝑜𝑟𝑢1

2 +  (𝑇𝑜𝑟𝑣1
− 𝑅𝑜)2 − 𝑅𝑜)

2

+  𝑇𝑜𝑟𝑤1

2 −  𝑅𝑖
2 (29) 

After finding the surface point, a plane parallel to the 𝑣1𝑤̂1 plane is created at that point, 

which intersects the axis in the 𝑢̂1 direction at 𝑆𝑢1
. In that plane, as shown in Figure 4.5, 

a circular ray is created with radius 𝑅 and its center lying on the axis, i.e., (𝑆𝑢1
, 0, 0), 

which intersects with both the surface and the torus. The equation of the circle at the 

torus intersection is given by  
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𝑅2 =  𝑇𝑜𝑟𝑣1

2 +  𝑇𝑜𝑟𝑤1

2. (30) 

The  value of radius 𝑅 can be computed from the equation of the circle at the point of 

intersection with the surface 𝑆(𝑢,𝑣), i.e., 

𝑅2 =  𝑆𝑣1

2 +  𝑆𝑤1

2. (31) 

As the circular ray and both the point of intersection lie in a plane parallel to the 𝑣𝑤 

plane at 𝑆𝑢1
, the coordinate of the torus at the point of intersection in the 𝑢̂1 direction is 

same as the 𝑆𝑢1
, i.e., 

𝑇𝑜𝑟𝑢1
= 𝑆𝑢1

. (32) 

Now from Equations (29), (30) and (31), the values of unknown coordinates 

[𝑇𝑜𝑟𝑣1
, 𝑇𝑜𝑟𝑤1

] are found, which gives the intersection point on the toroidal surface with 

the circular ray. The fired circular ray forms an arc segment from intersection point on 

surface to the intersection point on the torus. The angle of the formed arc segment, as 

shown in Figure 4.5, is calculated and stored as 

𝛽 =  tan−1 (
𝑇𝑜𝑟𝑤1

𝑇𝑜𝑟𝑣1

) − tan−1 (
𝑆𝑤1

𝑆𝑣1

) . (33) 

 

Figure 4.6 shows the three dimensional view of casting of circular ray from the surface 

point (𝑆𝑢1
, 𝑆𝑣1

, 𝑆𝑤1
) that intersects the torus at (𝑇𝑜𝑟𝑢1

, 𝑇𝑜𝑟𝑣1
, 𝑇𝑜𝑟𝑤1

). The plane 𝑣1𝑤1 

parallel to the plane 𝑣1𝑤̂1 is at a distance of 𝑆𝑢1
from the center of the pseudo-insert. 
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Figure 4.6: Circular ray fired from the surface points in the 𝑣1𝑤1 plane positioned at 

𝑆𝑢1
, intersecting the torus defined in {𝑢1, 𝑣1, 𝑤1} coordinate frame 

A grid of surface points is formed beneath the shadow of the tool, similar to the grid 

formed in the previous section with the limits (𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥) 𝑎𝑛𝑑 (𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥) and 

discretized by ∆𝑢 𝑎𝑛𝑑 ∆𝑣, respectively. Firing of circular rays from all the surface 

points on the defined grid forms a set of Angular arcs {𝐵}. The minimum angle 𝛽𝑚𝑖𝑛 of 

the set {𝐵} gives the required angle for tilting the tool for the machining to be gouge 

free with multi points of contact; and the corresponding values of parameter [𝑢, 𝑣] gives 

the location of the second point of contact. It is to be noted that the associated circular 

ray fired with the minimum tilt angle 𝛽𝑚𝑖𝑛 intersects the torus perpendicularly with the 

tangent formed on the toroidal surface at the point of intersection. 
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4.4 Vertical and Circular Ray Firing (VCRF) Algorithm 

The pseudo-code presented in Figure 4.7 gives the algorithm for the proposed Vertical 

and Circular Ray Firing concept. It starts with (1.0) defining the surface from the given 

control points and generates the toolpath footprint (2.0), which, in this case, are parallel 

lines in the u-v plane. These parallel lines map to lines in the XY domain that extends 

between  𝑥𝑚𝑖𝑛 to 𝑥𝑚𝑎𝑥 and from  𝑦𝑚𝑖𝑛 to  𝑦𝑚𝑎𝑥, as shown in Figure 2.3. The toolpath 

footprint is discretized with a spacing of 𝑆𝑖𝑑𝑒𝑠𝑡𝑒𝑝 in the 𝑥 direction and 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑠𝑡𝑒𝑝 

in the 𝑦 direction.  

At each of the discretized points on the tool path footprint (4.0), the global coordinate 

system is set (4.1) and the toroidal tool is defined in that coordinate frame with the 

implicit equation given by equation (22) with the center of the tool 𝑇⃗⃗𝑐, as shown in 

Figure 4.2 at a specified height given by ℎ in the equation. In this method, the tool is 

made stationary by setting the global coordinate frame at every footprint point. 

Therefore, the Bézier surface is made to move along with the changing position of the 

global coordinate frame with every footprint point; and this is achieved by translating 

the Bézier control points with the negative footprint point on the XY plane (4.2). For 

getting the minimum drop distance and the first point of contact, the rays are cast from 

the surface by dividing the parameters (𝑢, 𝑣) used to define the surface, into the gird 

with user defined 𝜕𝑢 and 𝜕𝑣. To reduce the number of unnecessary rays yielding no 

solution, only the surface parameters (𝑢𝑠ℎ𝑎𝑑𝑜𝑤 , 𝑣𝑠ℎ𝑎𝑑𝑜𝑤) under the shadow of the tool 

are used (4.3). After getting the surface parameters under the shadow, the vertical ray 

firing algorithm is applied (4.4) for the current Footprint position, which gives the 

surface parameters [𝑢𝑑𝑟𝑜𝑝, 𝑣𝑑𝑟𝑜𝑝] and the drop distance 𝑑𝑚𝑖𝑛 for the first point of 

contact 𝑃⃗⃗, which is then calculated (4.5) using surface parameters obtained from vertical 

firing of rays. The algorithm for vertical ray firing is explained later in Section 4.3.2. 
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Figure 4.7: Pseudo-Code for the VCRF Algorithm for computing gouge free tool 

position over the Bézier surface  

After obtaining the first point of contact 𝑃⃗⃗, the tool center 𝑇𝑐 is obtained using the 

difference of height ℎ and the minimum drop distance 𝑑𝑚𝑖𝑛 (4.6) obtained from vertical 

ray firing. Positioning the toroidal cutter with its tool center at 𝑇𝑐, the tool touches the 

Bézier surface at a single point without any gouging. The new coordinate frame 

{𝑢̂1, 𝑣1, 𝑤̂1} is setup with its origin at the center 𝑂⃗⃗1 of the pseudo-insert (4.7 and 4.8). 

The translated Bézier surface and the toroidal tool surface are redefined in the new 

1.0 Define array of Control Points of surface: 𝑃[𝑛][𝑛] 
2.0 Generate Toolpath Footprint: 

𝐹𝑜𝑜𝑡𝑃𝑟𝑖𝑛𝑡[𝑘][2] = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡(𝑠𝑖𝑑𝑒𝑠𝑡𝑒𝑝 , 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑠𝑡𝑒𝑝 , 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) 

3.0 Set 

𝑂𝑟𝑖𝑔𝑖𝑛 = [0,0,0], 𝑡̂ = [0,0,1], 𝑅𝑖 = 6.0, 𝑅𝑜 = 6.7, 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 16 
4.0 𝐹𝑜𝑟 𝑖 =  1;  𝑖 ≤  𝑘; 𝑖 + + 

4.1 𝑇 =  [𝐹𝑜𝑜𝑡𝑃𝑟𝑖𝑛𝑡[𝑖][1], 𝐹𝑜𝑜𝑡𝑃𝑟𝑖𝑛𝑡[𝑖][2], 0] 

4.2 Translate Bézier Surface with 𝑇 to bring the Origin at Footprint point : 

𝑃′[𝑛][𝑛] =  𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒(𝑃[𝑛][𝑛], −𝑇) 

4.3 Get any surface point under the shadow of the tool 
[𝑢𝑠ℎ𝑎𝑑𝑜𝑤 , 𝑣𝑠ℎ𝑎𝑑𝑜𝑤] =  𝐺𝑒𝑡𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑃𝑜𝑖𝑛𝑡𝑈𝑛𝑑𝑒𝑟𝑇𝑜𝑜𝑙𝑆ℎ𝑎𝑑𝑜𝑤(𝑃′[𝑛][𝑛], 𝑅𝑜, 𝑅𝑖) 

4.4 Get the minimum drop distance and associated surface parameters 

[𝑑𝑚𝑖𝑛 , 𝑢𝑑𝑟𝑜𝑝, 𝑣𝑑𝑟𝑜𝑝] = 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑅𝑎𝑦𝐹𝑖𝑟𝑖𝑛𝑔(𝑇𝑜𝑟𝑢𝑠(𝑥, 𝑦, 𝑧), 𝑃′[𝑛][𝑛], 𝑢𝑠ℎ𝑎𝑑𝑜𝑤 , 𝑣𝑠ℎ𝑎𝑑𝑜𝑤 , 𝑅𝑜, 𝑅𝑖) 

4.5 Get the First point of contact and its normal on surface 

[𝑃𝑖 , 𝑛̂𝑃𝑖
] = 𝑆(𝑢𝑑𝑟𝑜𝑝, 𝑣𝑑𝑟𝑜𝑝 , 𝑃[𝑛][𝑛]) 

4.6 Get the Tool Centre: 𝑇𝑐 = 𝑇 + (ℎ − 𝑑𝑚𝑖𝑛) ∗ 𝑡̂ 

4.7 Set coordinate frame {𝑢̂1, 𝑣̂1, 𝑤̂1}: 

 𝑤̂1 =  𝑡̂, 𝑢̂1 =   
 𝑤̂1×(𝑃𝑖−𝑇𝑐)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 

|𝑤̂1×(𝑃𝑖−𝑇𝑐)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗|
 , 𝑣̂1 =  𝑤̂1  ×  𝑢̂1 

4.8 Get center of pseudo-insert 
𝑂1 = (−𝑅𝑜 ∗ 𝑣̂1) + (𝑇𝑐[2] ∗ 𝑤̂1) 

4.9 Redefine Surface in{𝑢̂1, 𝑣̂1, 𝑤̂1} setup at 𝑂1 

𝑃"[𝑛][𝑛]  =  𝑅𝑒𝑑𝑒𝑓𝑖𝑛𝑒𝑆𝑢𝑟𝑓𝑎𝑐𝑒({𝑢̂1, 𝑣̂1, 𝑤̂1}, 𝑂1, 𝑃′[𝑛][𝑛]) 
4.10 Get the minimum angle of arc and associated surface parameters 

[𝛽𝑚𝑖𝑛 , 𝑢𝑡𝑖𝑙𝑡 , 𝑣𝑡𝑖𝑙𝑡] = 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑅𝑎𝑦𝐹𝑖𝑟𝑖𝑛𝑔(𝑇𝑜𝑟𝑢𝑠(𝑢1, 𝑣1, 𝑤1), 𝑃"[𝑛][𝑛], 𝑢𝑑𝑟𝑜𝑝, 𝑣𝑑𝑟𝑜𝑝 , 𝑅𝑜, 𝑅𝑖) 

4.11 Get the Second point of contact and its normal on surface 

[𝑄𝑖 , 𝑛̂𝑄𝑖
] = 𝑆(𝑢𝑡𝑖𝑙𝑡 , 𝑣𝑡𝑖𝑙𝑡 , 𝑃[𝑛][𝑛]) 

4.12 Rotate tool axis around global 𝑥 axis at 𝑂𝑟𝑖𝑔𝑖𝑛 with angle of rotation 𝛽𝑚𝑖𝑛: 

𝑡̂′ = 𝑟𝑜𝑡𝑎𝑡𝑒(𝑡̂, 𝛽𝑚𝑖𝑛 , 𝑥, 𝑂𝑟𝑖𝑔𝑖𝑛) 

4.13 Print Tool position data: 

𝑝𝑟𝑖𝑛𝑡(𝑃𝑖 , 𝑛̂𝑃𝑖
, 𝑄𝑖 , 𝑛̂𝑄𝑖

, 𝑡̂′) 
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coordinate frame (4.9). The definition of the torus in the new coordinate frame is given 

by equation (30), in which the torus is offset in 𝑣1with a distance of outer radius 𝑅𝑜 of 

the torus. After redefining the surface and torus in the {𝑢̂1, 𝑣1, 𝑤̂1} coordinate frame, the 

circular ray firing algorithm is applied (4.10) for the current footprint position with the 

seed of surface parameters obtained in vertical ray firing [𝑢𝑑𝑟𝑜𝑝, 𝑣𝑑𝑟𝑜𝑝] for initialization 

of the parametric grid. The circular ray firing module computes the surface parameters 

[𝑢𝑡𝑖𝑙𝑖𝑡, 𝑣𝑡𝑖𝑙𝑡] and minimum tilt angle 𝛽𝑚𝑖𝑛 for the second point of contact 𝑄⃗⃗, which is 

then calculated (4.11) using surface parameters obtained from circular firing of rays. 

The algorithm for circular ray firing is explained later in section 4.3.3. At this stage the 

two point of contacts 𝑃⃗⃗ and 𝑄⃗⃗ needed to define the tool position for five axis machining 

are obtained. 

4.4.1 Surface Parameters under Tool Shadow 

The pseudo-code presented in Figure 4.8 gives the algorithm for finding the tool 

shadow. For getting the surface parameters (𝑢𝑠ℎ𝑎𝑑𝑜𝑤, 𝑣𝑠ℎ𝑎𝑑𝑜𝑤) under the shadow of the 

tool for initialization, the surface is scanned by firing the rays from the surface to obtain 

any intersection with the toroidal surface. For firing the rays from the surface without 

leaving any patch on the surface un-scanned, a grid of 𝑢𝑣 parameters is formed with 

minimum and maximum values for both parameters as 0 and 1, respectively; and the 

grid is divided into a parametric mesh with difference 𝜕𝑢 𝑎𝑛𝑑 𝜕𝑣, defined by the user 

(1.0).  

The surface point for every parametric node is calculated and the magnitude of the point 

on surface, which ranges from 0 𝑡𝑜 ∞, in the 𝑋𝑌 plane is obtained. As the global 

coordinate system is set at the tool position in the 𝑋𝑌 plane and the tool is made 

stationary, only the value of magnitude of the 𝑥 𝑎𝑛𝑑 𝑦 coordinates of the surface points 

decides whether or not the surface point lies under the shadow of the tool. If the 

minimum value of magnitude is less than ((𝑅𝑜 + 𝑅𝑖) ∗ 0.5) then that point lies under the 

shadow of the tool (2.1.2) and corresponding parametric values (𝑢, 𝑣) are stored as well 

otherwise the number of divisions are doubled which reduces the size of intervals 
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𝜕𝑢 𝑎𝑛𝑑 𝜕𝑣 and makes the mesh denser; the surface is rescanned with the new grid size 

values until the surface point lying under the shadow of the tool is obtained. 

 

Figure 4.8: Pseudo-code for the getting the surface parameters under the shadow of 

the tool Algorithm 

4.4.2 Vertical Ray Firing Algorithm 

The pseudo-code presented in Figure 4.9 gives the vertical ray firing algorithm for 

finding minimum drop distance 𝑑𝑚𝑖𝑛 and associated surface parameters giving the first 

point of contact. After computing the surface parameters under the shadow of the tool, 

another parametric grid is formed around the shadow of the tool, which is slightly bigger 

than the shadow of the tool (1.0). Now the surface point for every 𝑢, 𝑣 node of that grid 

is calculated. From equation (23) it is known that the 𝑥 and 𝑦 direction coordinates in 

the XY plane for both the surface point and intersection point on torus are the same. 

𝐺𝑒𝑡𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑃𝑜𝑖𝑛𝑡𝑈𝑛𝑑𝑒𝑟𝑇𝑜𝑜𝑙𝑆ℎ𝑎𝑑𝑜𝑤(𝑃′[𝑛][𝑛], 𝑅𝑜, 𝑅𝑖) 

1.0 Set Parameter limits: 

𝑢𝑚𝑖𝑛 = 0, 𝑢𝑚𝑎𝑥 = 1, 𝜕𝑢 = (𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)/𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 

𝑣𝑚𝑖𝑛 = 0, 𝑣𝑚𝑎𝑥 = 1, 𝜕𝑣 = (𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛)/𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 

2.0 𝑤ℎ𝑖𝑙𝑒(! 𝑅𝑎𝑦𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑊𝑖𝑡ℎ𝑇𝑜𝑟𝑢𝑠) 

Initialize min_𝑚𝑎𝑔𝑥𝑦  = 1e24 

2.1 𝐹𝑜𝑟 𝑢 = 𝑢𝑚𝑖𝑛 , 𝑢 ≤ 𝑢𝑚𝑎𝑥 , 𝑢+= 𝜕𝑢 

2.1.1 𝐹𝑜𝑟 𝑣 = 𝑣𝑚𝑖𝑛 , 𝑣 ≤ 𝑣𝑚𝑎𝑥 , 𝑣+=  𝜕𝑣 

Get surface point at [𝑢, 𝑣]: 

[𝑆𝑥, 𝑆𝑦, 𝑆𝑧] = 𝑆(𝑢, 𝑣, 𝑃′[𝑛][𝑛]) 

Get the Magnitude of surface point in XY plane 

𝑚𝑎𝑔𝑥𝑦 = 𝑆𝑥2 + 𝑆𝑦2 

Store the [𝑢, 𝑣] parameters and 𝑚𝑎𝑔𝑥𝑦 of surface point closest to origin in XY 

plane 

𝑖𝑓 (𝑚𝑎𝑔𝑥𝑦 < min_𝑚𝑎𝑔𝑥𝑦) 𝑡ℎ𝑒𝑛 

[min_𝑚𝑎𝑔𝑥𝑦 , 𝑢𝑠ℎ𝑎𝑑𝑜𝑤 , 𝑣𝑠ℎ𝑎𝑑𝑜𝑤] = {𝑚𝑎𝑔𝑥𝑦 , 𝑢, 𝑣} 

2.1.2 𝑖𝑓 (min_𝑚𝑎𝑔𝑥𝑦 < ((𝑅𝑜 + 𝑅𝑖) ∗ 0.5))  𝑡ℎ𝑒𝑛 

𝑅𝑎𝑦𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑊𝑖𝑡ℎ𝑇𝑜𝑟𝑢𝑠 

𝐸𝑙𝑠𝑒 
𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 ∗= 2,   
𝑅𝑒𝑠𝑒𝑡(𝜕𝑢, 𝜕𝑣) 

3.0 Return [𝑢𝑠ℎ𝑎𝑑𝑜𝑤 , 𝑣𝑠ℎ𝑎𝑑𝑜𝑤] 
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Hence the 𝑧 coordinate for the intersecting point on the torus can be obtained using 

equation (22) and is stored as 𝑇𝑜𝑟𝑧. Then the drop distance is given by the difference of 

the 𝑧 coordinates of a surface point and the associated intersecting point on the toroidal 

surface, for each 𝑢𝑣 node. The minimum drop distance 𝑑𝑚𝑖𝑛 is stored and the 

corresponding surface parameters are also stored. Then the grid parameters are again 

reset according to the newly obtained 𝑢, 𝑣 parameters corresponding to the minimum 

drop distance, in such a way that the newly formed grid creates a minuscule patch 

around the current iteration 𝑢 and 𝑣 parameters with a tolerance of ±𝜖 in both parametric 

directions. This process is repeated four times for the better accuracy of the results and 

minuscule patch formation around the 𝑢, 𝑣 parameters in every iteration helps the 

algorithm to converge fast. 

 

 

Figure 4.9: Pseudo-code for vertical firing of rays in global coordinate frame 

algorithm 

 

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑅𝑎𝑦𝐹𝑖𝑟𝑖𝑛𝑔(𝑇𝑜𝑟𝑢𝑠(𝑥, 𝑦, 𝑧), 𝑃′[𝑛][𝑛], 𝑢𝑠ℎ𝑎𝑑𝑜𝑤, 𝑣𝑠ℎ𝑎𝑑𝑜𝑤, 𝑅𝑜, 𝑅𝑖) 

1.0 Set the Grid parameters over the shadow of tool i.e. [𝑢𝑠ℎ𝑎𝑑𝑜𝑤 , 𝑣𝑠ℎ𝑎𝑑𝑜𝑤] 
𝑆𝑒𝑡𝑢𝑝𝐺𝑟𝑖𝑑𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝑢𝑚𝑖𝑛 , 𝑢𝑚𝑎𝑥 , 𝜕𝑢, 𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥 , 𝜕𝑣), 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 32 

2.0 Initialize minimum drop distance: 𝑑𝑚𝑖𝑛 = 1𝑒24 
3.0 𝐹𝑜𝑟 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 0, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 4, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + + 

3.1 𝐹𝑜𝑟 𝑢 = 𝑢𝑚𝑖𝑛 , 𝑢 ≤ 𝑢𝑚𝑎𝑥 , 𝑢+= 𝜕𝑢 

3.1.1 𝐹𝑜𝑟 𝑣 = 𝑣𝑚𝑖𝑛 , 𝑣 ≤ 𝑣𝑚𝑎𝑥 , 𝑣+=  𝜕𝑣 

Get surface point at [𝑢, 𝑣]: 

[𝑆𝑥, 𝑆𝑦, 𝑆𝑧] = 𝑆(𝑢, 𝑣, 𝑃′[𝑛][𝑛]) 

Get the 𝑇𝑜𝑟𝑧 for corresponding surface point in XY plane 

𝑇𝑜𝑟𝑧 = 𝑔𝑒𝑡𝑇𝑜𝑟𝑢𝑠𝑍(𝑆𝑥, 𝑆𝑦)  

Calculate drop distance 𝑑𝑢,𝑣 corresponding surface point in XY plane 

𝑑𝑢,𝑣 = 𝑇𝑜𝑟𝑧 − 𝑆𝑧 

𝑖𝑓 (𝑑𝑢,𝑣 < 𝑑𝑚𝑖𝑛) 𝑡ℎ𝑒𝑛 

[𝑑𝑚𝑖𝑛 , 𝑢𝑑𝑟𝑜𝑝, 𝑣𝑑𝑟𝑜𝑝] = {𝑑𝑢,𝑣 , 𝑢, 𝑣} 

3.1.2 𝑅𝑒𝑠𝑒𝑡(𝑢𝑚𝑖𝑛 , 𝑢𝑚𝑎𝑥 , 𝜕𝑢, 𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥 , 𝜕𝑣, 𝜖) 

4.0 Return [𝑑𝑚𝑖𝑛 , 𝑢𝑑𝑟𝑜𝑝, 𝑣𝑑𝑟𝑜𝑝] 
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4.4.3 Circular Ray Firing Algorithm 

The pseudo-code presented in Figure 4.10 gives the circular ray firing algorithm for 

finding the minimum tilt angle 𝛽𝑚𝑖𝑛 and associated surface parameters giving the 

second point of contact. The surface parameters of the first point of contact 𝑃⃗⃗  which 

lies under the shadow of the tool, are fed to this algorithm as the seed to initialize and 

setting up the grid parameters (1.0). For each 𝑢, 𝑣 node the corresponding surface point, 

defined in the {𝑢̂1, 𝑣1, 𝑤̂1} coordinate frame, is obtained. As the circular ray is fired in 

the plane parallel to the 𝑣1𝑤̂1 plane created at a distance of 𝑆𝑢1
 with its center on the 

axis passing through the pseudo-insert in the 𝑢̂1 direction, so the 𝑢̂1 coordinate of the 

torus defined in the same frame, i.e.,  𝑇𝑜𝑟𝑢1
 is similar to 𝑆𝑢1

 and the radius of the circle 

𝑅 only depends upon the coordinates in the 𝑣1, 𝑤̂1 directions and is given by equations 

(32 and 33). Now 𝑇𝑜𝑟𝑣1
 𝑎𝑛𝑑  𝑇𝑜𝑟𝑤1

 are calculated by solving equations (30, 32 and 33) 

to get the position of the point at which the circular ray intersects with the toroidal 

surface starting from (𝑆𝑣1
, 𝑆𝑤1

) at a plane at 𝑆𝑢1
. After getting both points, the surface 

point and the intersection point on torus, the difference of angles made in the Euclidean 

plane between the 𝑣1 axis and the points (𝑇𝑜𝑟𝑣1
, 𝑇𝑜𝑟𝑤1

) and (𝑆𝑣1
, 𝑆𝑤1

), as shown in 

Figure 4.6, and named as 𝛽. The surface point parameters giving the minimum angle is 

stored as [𝑢𝑡𝑖𝑙𝑡, 𝑣𝑡𝑖𝑙𝑡𝑖] and the associated angle is stored as 𝛽𝑚𝑖𝑛, which gives the 

minimum possible rotation required to tilt the tool around the pseudo-insert axis 

touching the surface at second point of contact 𝑄⃗⃗ along with 𝑃⃗⃗ without gouging the 

surface. 
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Figure 4.10: Pseudo-code for Circular Firing of rays in {𝑢̂1, 𝑣1, 𝑤̂1} coordinate frame 

Algorithm 

 

4.4.4 Setting Up the Grid Parameters 

The purpose of setting the grid parameters is to reduce unnecessary computation by 

firing rays from a small patch over the surface that encloses the shadow of the tool 

instead of firing the rays from the whole surface, as shown in Figure 4.2. The minimum 

and maximum values of both the parameters need to be set according to the surface 

parameters obtained under the shadow of the tool and the tool parameters such as 𝑅𝑜 , 𝑅𝑖. 

To ensure the grid encloses the whole tool, a square grid of three times the size of radius 

of the outside circle of the torus is used. The parameters of the grid are given by 

 

𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑅𝑎𝑦𝐹𝑖𝑟𝑖𝑛𝑔(𝑇𝑜𝑟𝑢𝑠(𝑢1, 𝑣1, 𝑤1), 𝑃"[𝑛][𝑛], 𝑢𝑑𝑟𝑜𝑝, 𝑣𝑑𝑟𝑜𝑝, 𝑅𝑜, 𝑅𝑖) 

1.0 Set the Grid parameters with the seed from drop i.e. [𝑢𝑑𝑟𝑜𝑝, 𝑣𝑑𝑟𝑜𝑝] 

𝑆𝑒𝑡𝑢𝑝𝐺𝑟𝑖𝑑𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝑢𝑚𝑖𝑛 , 𝑢𝑚𝑎𝑥 , 𝜕𝑢, 𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥 , 𝜕𝑣), 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 32 
2.0 Initialize angle of arc: 𝛽𝑚𝑖𝑛 = 1𝑒24 
3.0 𝐹𝑜𝑟 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 0, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 4, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + + 

3.1 𝐹𝑜𝑟 𝑢 = 𝑢𝑚𝑖𝑛 , 𝑢 ≤ 𝑢𝑚𝑎𝑥 , 𝑢+= 𝜕𝑢 

3.1.1 𝐹𝑜𝑟 𝑣 = 𝑣𝑚𝑖𝑛 , 𝑣 ≤ 𝑣𝑚𝑎𝑥 , 𝑣+=  𝜕𝑣 

Get surface point at [𝑢, 𝑣]: 

[𝑆𝑢1
, 𝑆𝑣1

, 𝑆𝑤1
] = 𝑆(𝑢, 𝑣, 𝑃"[𝑛][𝑛]) 

Calculate radius of circular arc in 𝑣̂1𝑤̂1 plane 

𝑅 = 𝑆𝑣1

2 + 𝑆𝑤1

2 

Get the unknowns i.e. [𝑇𝑜𝑟𝑤1
, 𝑇𝑜𝑟𝑣1

] for corresponding surface point in 𝑣̂1𝑤̂1 

plane 

[𝑇𝑜𝑟𝑤1
, 𝑇𝑜𝑟𝑣1

]  = 𝑠𝑜𝑙𝑣𝑒(𝑇𝑜𝑟𝑢𝑠(𝑢1, 𝑣1, 𝑤1), 𝑅)  

Calculate angle of arc 𝛽 corresponding surface point in 𝑣̂1𝑤̂1 plane 

𝛽 = 𝑎𝑡𝑎𝑛2(𝑇𝑜𝑟𝑤1
, 𝑇𝑜𝑟𝑣1

) − 𝑎𝑡𝑎𝑛2(𝑆𝑤1
, 𝑆𝑣1

) 

𝑖𝑓 (𝛽 < 𝛽𝑚𝑖𝑛) 𝑡ℎ𝑒𝑛 

[𝛽𝑚𝑖𝑛 , 𝑢𝑡𝑖𝑙𝑡 , 𝑣𝑡𝑖𝑙𝑡] = {𝛽, 𝑢, 𝑣} 

3.2 𝑅𝑒𝑠𝑒𝑡(𝑢𝑚𝑖𝑛 , 𝑢𝑚𝑎𝑥 , 𝜕𝑢, 𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥 , 𝜕𝑣) 

4.0 Return [𝛽𝑚𝑖𝑛 , 𝑢𝑡𝑖𝑙𝑡 , 𝑣𝑡𝑖𝑙𝑡] 
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For the parameter in the 𝑢 direction 

𝑢𝑚𝑖𝑛 = 𝑢𝑠ℎ𝑎𝑑𝑜𝑤 −  𝑇𝑜𝑜𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝐹𝑎𝑐𝑡𝑜𝑟 

𝑢𝑚𝑎𝑥 = 𝑢𝑠ℎ𝑎𝑑𝑜𝑤 +  𝑇𝑜𝑜𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝐹𝑎𝑐𝑡𝑜𝑟 

𝜕𝑢 =
𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠
 

For the parameter in the 𝑣 direction 

𝑣𝑚𝑖𝑛 = 𝑣𝑠ℎ𝑎𝑑𝑜𝑤 −  𝑇𝑜𝑜𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝐹𝑎𝑐𝑡𝑜𝑟 

𝑣𝑚𝑎𝑥 = 𝑣𝑠ℎ𝑎𝑑𝑜𝑤 +  𝑇𝑜𝑜𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝐹𝑎𝑐𝑡𝑜𝑟 

𝜕𝑣 =
𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠
 

where, 𝑢𝑠ℎ𝑎𝑑𝑜𝑤 , 𝑣𝑠ℎ𝑎𝑑𝑜𝑤 are the surface parameter of any point obtained under the 

shadow of the tool and ′𝑇𝑜𝑜𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝐹𝑎𝑐𝑡𝑜𝑟′ is given by 

𝑇𝑜𝑜𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝐹𝑎𝑐𝑡𝑜𝑟 =  (
𝑅𝑜 + 𝑅𝑖

𝑀𝑎𝑥(𝑋 𝑜𝑟 𝑌)
) × 1.5 

where 𝑅𝑜 𝑎𝑛𝑑 𝑅𝑖 are the major and minor radii of the toroidal cutter and 𝑀𝑎𝑥(𝑋 𝑜𝑟 𝑌) 

is the maximum value of the control points defining the surface either in the 𝑥 direction 

– if 𝑢 direction parameters are set or in the 𝑦 direction – if 𝑣 direction parameters are 

set. ′𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠′ is user defined and can be set according to the accuracy 

required by the user. Increasing the 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 makes the grid size finer 

and increases the number of 𝑢𝑣 nodes in the grid, hence leads to higher computation 

time. 

4.4.5 Resetting the Grid through Iterations 

Going through the iterations in the vertical ray firing and the circular ray firing 

algorithms, the grid parameters are reset at the end of every iteration according to the 

surface parameters 𝑢, 𝑣 associated with the minimum drop distance or tilt angle for the 

current iteration. In this, instead of covering the whole shadow of the tool, a small grid 

is formed around the surface parameters 𝑢, 𝑣 with a factor of 𝜖, which is user defined. 

The parameters of grid are given by 



 

43 

 

For the parameter in the 𝑢 direction 

𝑢𝑚𝑖𝑛 = 𝑢 −  𝜖 

𝑢𝑚𝑎𝑥 = 𝑢 + 𝜖 

𝜕𝑢 =
𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠
 

For the parameter in the 𝑣 direction 

𝑣𝑚𝑖𝑛 = 𝑣 −  𝜖 

𝑣𝑚𝑎𝑥 = 𝑣 +  𝜖 

𝜕𝑣 =
𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠
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CHAPTER 5          Results and Discussion 

5.1 Implementation 

The given algorithms were implemented using C++. The methods developed in this 

work uses the surface points for the calculation of tool position and are not dependent 

on the type of the surface. So, the Bézier surfaces are used for testing the algorithms. 

Moreover, B-Spline surfaces are considered as generalization of Bézier surfaces and 

share a lot of similarities, as each piecewise polynomials of B-Spline surfaces, defined 

by the knot vectors, can be considered as a Bézier surface. Hence, the methods 

developed in this work can be further implemented onto B-Spline surfaces giving the 

desired results.  

The algorithms were tested on three Bi-cubic Bézier surfaces that included a convex 

surface, a concave surface and a saddle surface having both concave and convex 

regions. All three surfaces have a span of 150 × 150 𝑚𝑚 in the XY plane. The 𝑥 and 

𝑦 coordinates of the control points are uniformly distributed with a span interval of 50 

starting from the origin. The 𝑧 coordinates for the three bi-cubic Bézier surfaces are 

given in Table 1. The three test surfaces are shown in Figure 5.1. The surfaces were 

machined using an XY parallel toolpath as shown in Figure 2.3 having 10 passes in total 

with the first 9 passes separated by 𝑆𝑖𝑑𝑒𝑠𝑡𝑒𝑝 = 18.0 𝑚𝑚 and 10th pass at 𝑥 = 150 𝑚𝑚. 

Each pass contains 78 tool positions separated by 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑠𝑡𝑒𝑝 = 2.0 𝑚𝑚, out of 

which the first and last tool position of the pass is used to lift the tool to avoid gouging 

on the surface as the tool shifts from one pass to the next. The algorithm runs for 760 

effective tool positions that physically making contact with the surface to be machined. 

The toroidal cutter used for machining had a major radius 𝑅𝑜 = 6.7 𝑚𝑚 and minor 

radius 𝑅𝑖 = 6.0 𝑚𝑚. 
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Table 1: Z Coordinates (in mm) for the three Bi-cubic Bézier Surfaces used for testing 

the Algorithms 

Surfaces P00 P01 P02 P03 P10 P11 P12 P13 P20 P21 P22 P23 P30 P31 P32 P33 

Convex 80 90 90 80 90 105 105 90 90 105 105 90 80 90 90 80 

Concave 80 70 70 80 70 55 55 70 70 55 55 70 80 70 70 80 

Saddle 80 65 90 85 80 85 90 95 100 105 95 100 90 100 100 85 

 

The convex and concave surfaces from Figure 5.1 were used to check the accuracy of 

both algorithms and the saddle surface (that includes both the convex and concave 

regions) was used to check the behavior of the algorithms as the tool transits from 

concave to convex and vice versa, and also gives the robustness of the algorithms. 

Toolpath data for all three surfaces were generated using both the algorithms purposed 

in this work for every tool position of all the passes of the toolpath footprint. The 

generated toolpath data was verified by first simulating the toolpath data using ToolSim, 

and then physically machining the three surface on aluminum stock using the same tool 

path with a DMU-80P Hi-Dyn tilt-rotary simultaneous five axis machining center.  
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Figure 5.1: Cubic Surface used to test the Algorithms 

5.2 DRD Method Results 

The results of physical machining and simulator emulates the anticipated part surfaces 

as shown in Figure 5.2, which gives the side-by-side representations of the simulated 

part surface and machined part surface. The scallops on  

  

a. Convex b. Concave 

 

c. Saddle 
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Figure 5.2: Three surfaces tested and verified by simulator under the section 

simulated surface; and by machining with DMU-80P Hi-Dyn tilt-rotary simultaneous 

five axis machining center under the section machined surfaces for DRD algorithm 

Simulated Machined 

  

a. Convex Surface 

  

b. Concave Surface 

  

c. Saddle Surface 
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both the machined and simulated surfaces can be seen as the effect of larger side step 

taken for the machining. 

After machining, the three surfaces were geometrically measured using a coordinate 

measuring machine (CMM) at a cross section taken in the side-step direction at Y = 

27.00 mm in the XY plane with a probe of diameter 4 mm. Another set of geometrical 

data points was taken from the machined stock produced in ToolSim. ToolSim has an 

option to save the machine stock as an OBJ file, which stores the triangulated mesh of 

the stock surface [18] generated after the simulation of the toolpath in the form of 

vertices, their normal and connectivity information. The vertices for the cross section at 

Y= 27.00 mm in the XY plane were found and stored separately for the comparison. 

The obtained geometrical data from the machined geometry and the simulated surface 

were compared with the cross section taken from the modeled surface. Figure 5.3 shows 

the graphical comparison of all the three surfaces, convex, concave and saddle, for the 

three sets of geometrical data obtained from simulated surface, machined surface and 

modeled surface. 

It can be seen from the graphical representation of the surfaces in Figure 5.3 that the 

surface data obtained from machined and simulated geometries for the three parts is 

similar and overlaps with each other, whereas deviation of the machined and simulated 

surfaces from the modeled surface in the form of scallops can be seen. The larger value 

of side-step taken is the reason behind the formation of these scallops, and that can be 

controlled by reducing the side-step value as per required surface finish.  

  

 

 



 

49 

 

 

Figure 5.3: Graph Showing the comparison of machined and simulated data with the 

modeled Surface at a cross-section taken in XY plane at Y=27.0 mm for (A) convex 

surface, (B) concave surface and (C) saddle surface for toolpath generated using DRD 

algorithm 
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Table 2: Minimum and maximum deviation (in mm) of the machined and simulated 

geometries from the modeled geometry for DRD algorithm 

Surface Machined Simulated 

Min Max Min Max 

Convex 8.8E-05 0.57 2.9E-05 0.54 

Concave 1.8E-02 1.00 1.4E-03 0.92 

Saddle 7.6E-05 0.86 2.4E-05 0.79 

     

Table 2 gives the minimum and maximum values of deviation on the machined and 

simulated geometries from the modeled geometry for all the three test surfaces. 

Maximum deviation gives the value of maximum scallop height which is higher in case 

of the concave surface as compared to the convex and saddle surfaces. Whereas, there 

is not any significant difference that can be found on comparison of the machined 

surface with the simulated surface, depicting the accuracy of the simulator in predicting 

the machining surface.  This can also be verified from the graphical representation in 

Figure 5.3, as the machined and simulated surface shown overlaps. 

5.3 VCRF Method Results 

The physical and simulated results of machining emulates the anticipated part surfaces 

as shown in Figure 5.4, given by side-by-side representation of the simulated part 

surface and machined part surface. The scallops can also be seen on both the machined 

and simulated surfaces due to the effect of the larger side step. 
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Figure 5.4: Three surfaces tested and verified by simulator under the section 

simulated surface; and by machining with DMU-80P Hi-Dyn tilt-rotary simultaneous 

five axis machining center under the section machined surfaces for VCRF algorithm 

Simulated Machined 

  

a. Convex Surface 

  

b. Concave Surface 

  

c. Saddle Surface 
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After machining, the three surfaces were also compared graphically in the similar 

manner as done in the previous section of the Results of testing of DRD Algorithm. The 

data obtained from CMM at a cross section taken in the side-step direction at Y = 27.00 

mm in XY plane and the data obtained from OBJ file produced by the ToolSim is 

compared and shown in Figure 5.5. 

It can be seen from the graphical representation of the surfaces in Figure 5.5 that the 

results obtained from the testing for VCRF Algorithm are similar to the results obtained 

from the testing of DRD Algorithm. Surface data obtained from machined and simulated 

geometries for the three parts is similar and overlaps with each other, whereas deviation 

of the machined and simulated surfaces from the modeled surface in the form of scallops 

can be seen.  
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Figure 5.5: Graph Showing the comparison of machined and simulated data with the 

modeled surface at a cross-section taken in XY plane at Y=27.0 mm for (A) convex 

surface, (B) concave surface and (C) saddle surface for toolpath generated using 

VCRF algorithm 

 

(A) 

 

(B) 

 

(C) 

82

84

86

88

90

92

94

96

0 20 40 60 80 100 120 140

Z-
A

xi
s 

(i
n

 m
m

)

X-Axis (in mm)

Simulated Surface Machined Surface Modeled Surface

64

66

68

70

72

74

76

0 20 40 60 80 100 120 140

Z-
A

xi
s 

(i
n

 m
m

)

X-Axis (in mm)

Simulated Surface Machined Surface Modeled Surface

80

82

84

86

88

90

92

0 20 40 60 80 100 120 140

Z-
A

xi
s 

(i
n

 m
m

)

X-Axis (in mm)

Simulated Surface Machined Surface Modeled Surface



 

54 

 

 

Table 3: Minimum and Maximum deviation (in mm) of the machined and simulated 

geometries from the modeled geometry for VCRF algorithm 

Surface Machined Simulated 

Min Max Min Max 

Convex 3.4E-04 0.51 1.1E-06 0.53 

Concave 1.7E-02 0.70 1.3E-06 0.60 

Saddle 6.2E-03 0.72 9.0E-07 0.62 

     

Table 3 gives the minimum and maximum values of deviation on the machined and 

simulated geometries from the modeled geometry for all the three test surfaces. 

Maximum deviation gives the value of maximum scallop height which is higher in case 

of the Saddle and Concave surfaces as compared to the Convex surface.  

5.4 Time Comparison 

The algorithms were run on a computer with an Intel(R) Core(TM) i7-770HQ processor 

with running frequency 2.80GHz and using 16.0 GB RAM running 64-bit Windows 10 

operating system. Since both the algorithms, the DRD Algorithm and the VCRF 

Algorithm, are implemented using C++ on the same platform; hence a time comparison 

is done for both the algorithms, which is shown in Figure 5.6. The comparison gives 

the time taken in seconds by both the algorithms for computing the tool path data for all 

the three surfaces, Convex, Concave and Saddle.  

It can be seen from the graph that the DRD algorithm took more time to compute the 

tool path data as compared to the VCRF algorithm. In the DRD method, even though 

the equation model is simpler but the DRD method depends upon the use of Newton’s 

method for convergence. Moreover, the bisection method is used for tilting the surface 

to obtain the second point of contact and tilt angle. The bisection method is also an 

iterative method and takes number of iterations to converge and give a solution.   
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Figure 5.6: Comparison of time taken by algorithms (in seconds) for computing the 

tool path data for all the three surfaces  

Whereas, the VCRF method eliminates the dependency on the Newton’s method for 

obtaining the solution. No iterative process is used in the VCRF method. The solution 

from the implicit equations is quick. Hence, the time taken for the VCRF algorithm to 

compute the tool path data is less as compared to the time taken by the DRD algorithm. 

It can also be seen from Figure 5.6, that the time taken by DRD algorithm to compute 

the tool path data is also dependent upon the shape of surface. For computing the tool 

path data for the concave surface, the DRD algorithm took more time as compared to 

the time taken to compute tool path data for saddle and convex surfaces. Whereas, the 

VCRF algorithm took a similar amount of time to compute the tool path data for all the 

three surfaces. 
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CHAPTER 6     Conclusion and Future Scope 

In this work two methods, ‘Drop Rotate and Drop (DRD) method’ and ‘Vertical and 

Circular Ray Firing (VCRF) method’, for tool path generation were developed, 

implemented and tested. Three bi-cubic Bézier surfaces, consisting of concave, convex 

and saddle regions, are used for the toolpath generation and machined on DMU-80P Hi-

Dyn tilt-rotary simultaneous five axis machining center using toroidal cutter. Multipoint 

machining approach was used for the tool path generation, in which the toroidal cutter 

touches the surface at two points of contact without any gouging. 

The DRD method fires rays from the tool towards the surface and the first ray that 

intersects the surface travelling the shortest distance gives the first point of contact. 

After obtaining the first point of contact the surface is tilted iteratively around the axis 

of the pseudo-insert until the surface touches the tool at the second point of contact 

maintaining the tangency at the first point of contact without any gouging. This method 

reduces the dependency on the Newton’s method for convergence of the solution. Even 

with the reduced dependency on the Newton’s method the tool path generation is time 

consuming as an iterative process is used for getting the second point of contact. 

The VCRF method eliminates the use of Newton’s method for the convergence of the 

solution. The VCRF method uses the implicit equations of the toroidal surface defined 

in the Cartesian coordinate frame. In this method, vertical rays are fired from the surface 

towards the toroidal cutter and the ray intersecting the toroidal surface of the tool 

travelling the shortest distance gives the location of the first point of contact. After 

getting the first point of contact, then the circular rays are fired from the surface. The 

circular ray that intersects with the torus travelling the shortest angle gives the required 

tilt angle and the associated second point of contact. 

Tool paths were generated by implementing both algorithms in C++, generating tool 

paths for three surfaces, and both simulating and machining parts from these tool paths. 

The machined surfaces, using both the methods emulates the simulated and anticipated 

part surfaces, giving the accuracy of machining using tool path generation with both the 
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methods without any gouging. However, the VCRF method is an order of magnitude 

faster than the DRD method.  

6.1 Future Scope 

Even though both the methods were successfully implemented and tested, there is still 

scope for the future work to be done. Both the methods were successfully tested for the 

uniform bi-cubic Bézier surfaces, but the testing of methods for the Bézier surface 

defined non-uniformly is still need to be done. 

Moreover, the methods work fine for the singular patch of the Bézier surface but both 

methods need to be tested on higher order Bézier surfaces, as well as piecewise 

polynomials surfaces such as B-spline surfaces.  
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