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Abstract

An extension to the off-lattice Sanchez Lacombe equation of state is proposed by including
internal degrees of freedom to account for the finite flexibility of polymer molecules. The
extension allows polymer molecules to have two energy levels of flexing, a ground/unflexed
state and a degenerate excited/flexed state. The finite flexibility of polymer molecules
is characterized by two regression parameters, the energy of excited states and their de-
generacy. The flexibility parameters are regressed by using two experimental values: the
glass transition temperature of pure polymers at atmospheric pressure and the change in
isobaric heat capacity of pure polymers across the glass transition at atmospheric pressure.
A method has been outlined to regress these parameters from experimental data.

The glass transition temperature versus pressure and the isobaric heat capacity versus
temperature predictions of the off-lattice model are compared with a lattice-based model
from the literature. The lattice-based model is based on the Gibbs DiMarzio criterion
which says that, at the glass transition, the configurational entropy of polymers becomes
zero. However, the proposed off-lattice model shows that the Gibbs DiMarzio criterion is
a consequence of the artificial lattice. Thus a new criterion is introduced which says that
the glass transition occurs at a particular fraction of maximum polymer entropy that also
minimizes the degeneracy of the excited state. Experimental data of several pure polymers
are utilized to compare the predictions of both models. The proposed off-lattice model is
found to be more accurate than the lattice-based model.

The model is also employed to predict the glass transition temperature versus pressure
behaviour of binary polystyrene/CO2, polycarbonate/CO2 and poly(methyl methacrylate)
mixtures. Experimental solubility data is used to regress the binary interaction parame-
ters of the system. The model predicts that the binary polystyrene/CO2 mixture shows
depression in glass transition temperature with the increasing pressure of CO2. The predic-
tion is in agreement with the experimental observations and is superior to the lattice-based
model. However, for binary polycarbonate/CO2 and poly(methyl methacrylate)/CO2 mix-
tures that undergo retrograde vitrification, predictions for the present theory are not correct
because underlying inconsistencies in the model make regressed values of binary interac-
tion parameters less accurate. Nonetheless, using hand-picked values of binary interaction
parameters, retrograde vitrification trend can be obtained.
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Chapter 1

Introduction

1.1 Motivation

Numerous cutting-edge technologies require the use of advanced polymers for highly spe-
cialized applications. For example, smart polymers are used to produce artificial muscles,
biodegradable plastics and bioengineered products [114]. Smart polymer hydrogels dra-
matically adjust their physical and electrical properties in response to changes in the en-
vironment such as pressure, pH, humidity, electric or magnetic field [193]. Functional and
nano-cellular polymeric foams are used as super insulators and shock absorbers [10, 168].
Bioactive polymeric scaffolds are used in tissue engineering [30]. Thus, countless high-value
products are made from polymers. On the other hand, polymers are also used in conven-
tional products like plastic bags, PVC pipes, CD covers, paints, dishes, pan-coating as well
as in the automotive and aviation industry [92]. Research to understand the underlying
physics of these polymeric materials is very important because it will help to optimize their
production processes. One area of active research in polymer physics is the phenomenon
called gas retrograde vitrification that can be used to treat polymeric foams products at
milder conditions [22, 23, 99]. In retrograde vitrification, glass transition temperatures of
binary solvent-polymer mixtures decrease with the increase in pressure. The phenomenon
is found to be driven by the changing solubility of solvent fluids in polymer matrices as a
result of changing external pressure on solvents. Thus the phenomenon can be used to treat
polymers at lower glass transition temperatures. Consequently, it can also aid engineers to
control cell densities of polymeric foams [90,91]. However, to study retrograde vitrification,
it is a prerequisite to first have precise knowledge of the glass transition temperature of
pure polymer species at different pressures.
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Many theories have been presented to understand the equation of state and glass transi-
tion behaviour of pure polymers as well as phase equilibrium and retrograde vitrification
behaviour of binary polymer-solvent mixtures. Theories that can predict these behaviours
with excellent accuracy but with the least complexity are considered to be most useful for
industrial applications. Thus a robust theory should only include details that are essential
to predict the equation of state and glass transition behaviour of polymers. Additional
details, for instance, molecular features and internal degrees of freedom that do not affect
these behaviours are undesirable [159]. By discarding such unfruitful details calculations
can be greatly simplified. However, such simplicfications inevitably lead to a moderate
compromise on the accuracy of predictions from the model [186]. For polymeric foams, the
Sanchez-Lacombe equation of state (SL-EOS) [95,163–165] makes an excellent trade-off be-
tween these two competing factors. It is capable of predicting phase behaviour of polymeric
foams with moderate accuracy. On the other hand, the model does not consider irrelevant
details that can make calculations cumbersome. So, it is a very robust equation that pro-
vides excellent predictions of the thermodynamic properties of fluids. It is simple enough
to be used to optimize processing conditions in the polymer industry. It requires only a few
phenomenological parameters. However, it is very important to carefully calibrate the phe-
nomenological parameters to obtain reliable results from the model [7,196]. Unfortunately,
the model is not capable of predicting the glass transition behaviour of polymers. Other
equations of state of polymers experience a variety of limitations [49,52]. For instance, the
Simha Somcynsky equation of state (SS-EOS) [85, 200] is very complex as it accounts for
extra features that are not directly relevant to the PVT behaviour of polymers. Another
theory, called Perturbed Chain Self Associating Fluid Theory (PC-SAFT) [66,67], requires
24 parameters to make predictions.

SL-EOS was first introduced in 1974 [163, 164] to predict the thermodynamic behaviour
of pure fluids. However, the model was subsequently generalized for multicomponent fluid
mixtures [95]. The model is not limited to polymer fluids, it is equally applicable to small
molecules in a gas or liquid phase. SL-EOS is based on ab initio principles of statistical
mechanics. The theory divides molecules into small segments and allows each segment to
occupy discrete positions on an artificial lattice. To account for the thermal expansion and
compression of systems the theory allows vacant lattice sites called holes. These holes also
accommodate secondary equation of state effects that are not directly considered in the
model. Thus SL-EOS is classified as a semi-empirical lattice-fluid equation [95, 164]. The
SL-EOS is based on several assumptions that are substantiated by comparing predictions
of the equation with experimental data [186]. The assumption of vacant lattice sites to
accommodate finite compression of the system was novel. Theories preceding the SL model
do not accommodate this feature [47,82]. Other assumptions of the SL model are the mean-
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field approximation [71] and the assertion that internal and translational degrees of freedom
do not affect the Pressure-Volume-Temperature (PVT) behaviour of the system [147].

Nevertheless, the lattice-based SL-EOS is not capable of accurately predicting solubility
and swelling in binary polymer-solvent mixtures at high pressures [75,105–108,111]. Thus
several alternate theories [75, 99, 101–103, 109, 110, 136, 201, 210] have also been adopted
for situations where high pressure is necessary to manufacture polymeric foams. However,
alternate theories are complex and require powerful computers to perform calculations.
For instance, SS-EOS [85, 200] gives more accurate results but it requires more fitting
parameters. PC-SAFT [66, 67] is very complex as it requires excessive molecular details
that are not necessary for manufacturing processes.

Von Konigslow [197] argued that the poor agreement of SL-EOS with experimental sol-
ubility data is due to the poorly regressed pure-component parameters. Errors in pure-
component parameters aggravate the subsequent regression of multicomponent parame-
ters [7]. The poor regression practice includes applying the SL-EOS at conditions where
the assumptions of the model tend to become invalid. For instance, if one includes the
critical point of solvent while preforming regression then the regressed parameters will
not be accurate because the mean-field approximation breaks down at critical conditions.
SL-EOS also assumes that the solvent fluid is at low density. However, this assumption
becomes invalid at high pressures, especially at supercritical conditions [166]. Yet, these
assumptions are necessary to simplify the mathematics of the model [78,93,186] and thus
should be removed from the model. Besides, the lattice-based multicomponent SL-EOS
also contains severe inconsistencies as pointed out by Neau [124]. These inconsistencies
cause a shift in the reference zero of chemical potential. Thus phase equilibrium calcula-
tions of SL-EOS for the binary polymer-solvent mixtures [124, 197] tend to be incorrect.
Later, it has been shown that the SL-EOS is the homogeneous limit of Hong-Noolandi
Self-Consistent Field Theory (HN-SCFT) [79] of inhomogeneous systems. HN-SCFT is a
modern and more accurate theory. It is capable of predicting cell densities of polymeric
foams qualitatively [89–91,137,184]. Since the HN-SCFT was derived by using functional
integrals without using a lattice, this offered hope to derive the SL-EOS free from artificial
lattice effects [79,185].

In 2017, an off-lattice version of SL-EOS was introduced by von Konigslow et al. [195,197].
The off-lattice approach is superior to the lattice-fluid approach because, for multicom-
ponent mixtures, the lattice-fluid approach contains severe thermodynamic inconsisten-
cies that are not as severe in the off-lattice approach [198]. However, for pure mate-
rials, there is no significant advantage of the off-lattice approach over the lattice-fluid
approach [164, 197]. Moreover, von Konigslow et al. [195, 197] took additional care while
regressing pure-component and binary interaction parameters by avoiding critical point
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conditions. Thus they confirmed that their off-lattice SL-EOS accurately predicts solubil-
ity of binary polymers. However, swelling predictions remained unsatisfactory.

Apart from the above advantages, both the lattice-fluid approach and the off-lattice ap-
proach have a common limitation. Both models ignore internal degrees of freedom of
molecules especially their finite flexing energy. Thus both models are incapable of pre-
dicting properties such as glass transition temperature, retrograde vitrification, and heat
capacity of fluid polymers since these properties depend on internal degrees of freedom
of molecules. These properties are also important for designing manufacturing processes
of polymers. By using alternate models and experiments, several authors have identified
that the glass transition temperature of polymers changes with the change in pressure of
solvents depending on their solubility in polymer matrices. For instance, Wang et al. [202]
showed that a minimum in glass transition temperature can occur in solvent-polymer mix-
tures, while Assink et al. [4] showed that for binary mixtures with low solubility solvents,
pressurizing the system causes an increase in the glass transition temperature. However,
for highly soluble solvents, increasing pressure decreases the glass transition temperature
of the system.

Several theoretical attempts have been made in the past to predict the glass transition
temperature behaviour of pure polymer and binary solvent-polymer mixtures. However,
there is a significant debate in the physics community on the thermodynamic nature of
the glass transition. Several authors argue that the glass transition is purely a kinetic
phenomenon [64,77,88,183]. However, several studies also revealed that the glass transition
involves a discontinuity in heat capacity [16] of systems indicating that the glass transition
is perhaps a second-order thermodynamic transition. In 1948, Walter Kauzmann [88]
showed that extrapolation of thermodynamic properties of glass-forming materials from a
supercooled liquid state to finite low temperatures result in values that are less than the
values of crystalline solids of those materials. So, he argued that the glass transition is
not a thermodynamic transition. Thus, resolving the Kauzmann paradox [88] by using
thermodynamic arguments is the central mystery to justify the thermodynamic nature of
glass transitions.

One model that offers a resolution to the Kauzmann paradox is presented by Gibbs and Di-
Marzio [35,61,62]. As discussed, the finite flexibility of polymer molecules plays a significant
role in the glass transition. Thus, Gibbs and DiMarzio considered a lattice-based model
in which they assigned two energy levels to account for the finite flexibility of molecules.
Consequently, the model revealed that the glass transition occurs with a second-order ther-
modynamic transition where the configurational entropy of the system also becomes zero.
Their model showed that the expression of entropy has a discontinuity and thus extrapo-
lation of thermodynamic properties to low temperatures is not allowed. Consequently, the
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theory was found to be moderately successful in predicting glass transition temperatures
of polymeric systems [143].

In 1992, Condo et al. [23] developed the idea further by combining the SL model [50, 134,
135,164,165] and the Gibbs DiMarzio criterion [36,62] into a single more powerful theory.
They offered an extension of the SL model that assigns two energy levels to account for
the finite flexibility of polymer molecules. Their model also revealed that at sufficiently
low temperature the entropy of the system becomes negative. Thus, following the Gibbs-
DiMarzio criterion, they argued that the negative value indicates the onset of the glass
transition. Consequently, they identified four possible types of glass transition tempera-
ture versus pressure behaviours of binary solvent-polymer mixtures. They predicted the
phenomenon of retrograde vitrification for the first time and later experimentally verified
their predictions [21, 22].

However, the Condo model has some severe problems because it is a lattice-fluid model.
First, the model uses the Gibbs DiMarzio criterion [36, 62] to predict glass transition
temperature. However, it has been found that as the coordination number of lattice in-
creases the entropy of the system ceases to become zero. Thus the Gibss DiMarzio crite-
rion is perhaps incorrect [6, 206, 207]. Second, the expression of entropy from the Condo
model [23] depends on the coordination number of the lattice. However, entropy is a
thermodynamic property that should be independent of artificial parameters. Other au-
thors [31, 41, 72, 85, 113, 172] have also developed lattice-fluid models to predict the glass
transition temperature versus pressure behaviour of polymers so their models are not ca-
pable of solving this problem. Thus, a new lattice-free theory is required.

Fortunately, in 2017 von Konigslow et al. [197] have presented an off-lattice derivation of
SL-EOS. But their model ignores the finite flexibility of polymer molecules so it cannot
predict the onset of glass transitions in polymers. However, their model offers a hope to
formulate a lattice-free theory for the glass transition temperature predictions.

The above discussion provides a way to generalize the off-lattice SL model [197] in a fashion
similar to how Condo et al. generalized the lattice-fluid SL model [23]. So, to improve
the off-lattice SL model one can assign two internal energy states (the ground state and
the excited state) to polymer molecules following Condo et al. Consequently, the resulting
off-lattice model for polymers with finite flexibility should be successful in predicting glass
transition temperatures at different pressures.
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1.2 Objectives

The primary aim of this research is to devise a mathematical model, free from the artificial
lattice, that should be able to predict the glass transition temperature of polymers at
different pressures. To achieve this goal the off-lattice Sanchez-Lacombe model [197] is
extended similar to the extension of lattice-based SL-EOS by the Condo et al. [23].

Second, since the extended model will be lattice-free so it should be able to conclude the
long-lasting debate against the validity of Gibbs DiMarzio criterion.

Third, we aim to check the effectiveness of the model by applying it to several pure poly-
mers. For this purpose, the chosen pure polymers are poly(methyl-methacrylate) (PMMA),
polystyrene (PS), poly(vinyl acetate) (PVAc), polyvinyl methyl ether (PVME), and poly-
carbonate (PC). To judge the accuracy of the model the predictions of the model need to
be compared with the experimental data available in literature as well as with the Condo
model. The model is also aimed to predict the isobaric heat capacity versus temperature
behaviour of polymers. Moreover, while designing the model a special focus is to be made
to minimize the need for experimental data for making predictions.

Fourth, we also aim to apply the model on binary polymer-solvent mixtures. The model
should be able to predict all four types of glass transition temperature versus pressure be-
haviours identified by the Condo et al. [23], especially the retrograde vitrification. Such pre-
dictions are very important for assessing the conditions necessary to manufacture polymeric
foam products at milder temperatures. For this purpose, the binary polystyrene/CO2,
polycarbonate/CO2 and poly(methyl-methacrylate)/CO2 mixtures are chosen for the study.

As discussed, this research will provide a basis to predict retrograde vitrification phe-
nomenon in polymeric foams. Precise knowledge of the retrograde vitrification tempera-
ture versus pressure curve will allow the manufacturing of nano-cellular polymeric foams
at a reduced cost.

The purpose of the research is to predict the glass transition temperature versus pressure
behaviour of pure polymeric systems and binary polymer-solvent mixtures. This research
is not an attempt to expand the understanding of the underlying physics and nature of the
glass transition phenomenon.

1.3 Foreword

The thesis is divided into six chapters. Chapter 2 contains a detailed literature review that
is necessary to understand this research. This chapter contains eight sections. In sections
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2.1 and 2.2, an overview of thermodynamics and statistical mechanics is presented that
is relevant to this research. Sections 2.3 and 2.4 discuss different types of mixtures and
polymeric foams. Section 2.5 discusses a basic overview of equations of state of different
physical systems whereas section 2.6 discusses models of equations of state specifically
designed for polymeric systems. Sections 2.7 and 2.8 are the most important sections of
the literature review. Section 2.7 discusses the on-lattice and off-lattice Sanchez-Lacombe
equation of state whereas section 2.8 discusses models designed to predict the glass tran-
sition in polymers.

In chapter 3 the mathematical foundation of the present research is discussed. This chapter
contains eight sections. Section 3.1 is an introduction on this chapter. Sections 3.2, 3.3
and 3.4 describe specific details of the proposed model with the derivation of the partition
function of a general multicomponent system. In section 3.5 equations of thermodynamic
properties are derived for the multicomponent system. In sections 3.6 and 3.7, the equations
of general multicomponent system are re-written for single-component systems and for
binary solvent-polymer mixtures, respectively. The last section 3.8 discusses the limitations
and possible extensions of the present model.

Chapter 4 is the central chapter of this thesis. In this chapter pure polymeric systems
are discussed in five sections. This chapter starts by discussing two methods to regress
the characteristic parameters of the model. In section 4.1, the first method is discussed
which is basically an adaptation of a method from preceding literature. Later in the
section limitations of the method are discussed. In section 4.2 a new method to regress
characteristic parameters of the model is devised in a hope to overcome limitations of the
first method. In this section, detailed arguments and plots are presented that inspired the
development of this method. In section 4.3, characteristic parameters of the model are
regressed for five different pure polymeric systems based on the second method. In section
4.4 corresponding characteristic parameters of a previous model from the literature review
are regressed. Finally, in section 4.5 plots are presented to compare predictions of the
present model with the previous model.

In chapter 5 binary solvent-polymer mixtures are discussed. In section 5.1, a summary of a
method to regress characteristic parameters of binary mixtures is discussed. In section 5.2
the success of the present model is evaluated by comparing predictions of the model with
experimental data of a binary solvent-polymer system. Finally, in section 5.3, limitations
of the present model are identified.

Lastly, in chapter 6 complete research with its major findings is summarized.
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Chapter 2

Background

Reliable theoretical or experimental data are often required to design and optimize indus-
trial processes. However, only limited experimental data on polymeric systems are available
in the literature because performing experiments is not always easy. Moreover, experiments
involve time and cost constraints. So, an alternative is to develop theoretical models to be
used for process designing. Such models also help experimentalists by identifying potential
areas that require further experimental exploration.

Polymers were first synthesized in 1869 by John Wesley Hyatt. The development was
revolutionary because it enabled engineers to make new materials free from economic con-
straints that arise due to the lack of natural resources. Subsequently, in 1907, the first syn-
thetic plastic, Bakelite, was invented by Leo Baekeland. Bakelite substituted for Shellac, a
natural plastic used for electric insulation because Bakelite was durable, heat resistant and
could be produced in large amounts. Bakelite was used to meet the growing demand for
electric insulators due to the growing use of electricity. In the 1930’s demand for plastics
significantly increased to preserve natural resources. In 1935, Nylon was invented by Wal-
lace Carothers. It was used to make ropes, helmets, parachutes, etc. With the increasing
demand for polymer products, the demand to improve their manufacturing processes by
using theoretical models grew rapidly. Previous theoretical models that were designed to
describe the thermodynamics of small molecules were incapable of predicting the behaviour
of polymers [86]. More and more deviation from ideal behaviour had been observed with
the increasing molecular mass of polymer molecules [86]. Thus, the inevitable need for de-
veloping new equations of state for pure and mixed polymer solutions caught the attention
of scientists and several theoretical models were developed.

Models to predict thermodynamics of polymers can be based on simple empirical ap-
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proaches or rigorous ab initio approaches. Empirical approaches can only predict thermo-
dynamic relations of polymeric systems but do not reveal details of underlying physics.
On the other hand, models based on statistical mechanics take account of details at the
molecular level and predict average macroscopic thermodynamic behaviour of polymers
based on microscopic interactions [186]. Thus, several models were developed based on ab
initio approaches of statistical mechanics.

With the above perspective, this research is an attempt to develop a rigorous model that
can describe the behaviour of pure and mixed polymeric systems. The proposed model is
based on the principles of statistical mechanics. The model is designed to describe pressure-
volume-temperature (PVT) and the glass transition behaviour of polymers. Thus, before
going into the details of the model it is a good idea to first have a look at theoretical
models and equations of state that are present in literature. The discussion will also
provide justification for designing a new theoretical model. The present research deals with
the glass transition temperature behaviour of pure polymers and binary polymer-solvent
mixtures. Moreover, the proposed and previous models for predicting glass transition
behaviour are based on equations of state so it is also necessary to include a discussion on
equations of state of polymers. Consequently, this chapter is divided into eight sections. In
the first four sections, the context to understand literature has been developed whereas in
the last four sections a detailed review of existing literature is presented. All these sections
together establish the background necessary to understand this research.

2.1 An Overview of Thermodynamics

The word Thermodynamics is composed of two words: therm means heat and dynamics
means to flow. It is a branch of physics that describes the relationship between heat and
other forms of energy on the macroscopic scale. On the other hand, Statistical Mechanics,
a more fundamental theory, is the microscopic description of macroscopic thermodynamic
relations. Consequently, contrary to thermodynamics, statistical mechanics can describe
the underlying physics of thermodynamic systems [186]. In thermodynamics, the state of
a system is described by macroscopic properties called state variables and its direction of
evolution towards equilibrium is defined by thermodynamic potentials. Thermodynamic
potentials also determine relationships between different thermodynamic properties. Some
famous thermodynamic potentials are internal energy U , Gibbs free energy G, Helmholtz
free energy F , and Grand potential ΦG.

In thermodynamics, there are two kinds of state variables: extensive and intensive. Exten-
sive variables depend on the extent (mass) of thermodynamic systems whereas intensive
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variables do not depend on the extent of thermodynamic systems. For instance, the num-
ber of particles {nk}, entropy S, volume V are extensive variables because they depend
on the mass of the thermodynamic system. Several thermodynamic potentials are also ex-
tensive variables including Gibbs free energy G, Helmholtz free energy F , internal energy
U and grand potential ΦG. On the other hand, intensive variables include pressure P ,
temperature T , chemical potential {µk}, etc. Extensive variables divided by the mass of
the system are called specific variables. Consequently, specific variables no longer depend
on the extent of the system. A set consisting of a minimum number of state variables that
are necessary to completely define the state of a thermodynamic system is termed as ther-
modynamic coordinates. Consequently, thermodynamic potentials are defined in terms of
appropriate thermodynamic coordinates. Another famous terminology in thermodynamics
is equation of state. Equations of state are equilibrium relations between thermodynamic
coordinates [93]. Equations of state are usually derived by taking appropriate partial
derivatives of thermodynamic potentials.

For a given thermodynamic system all choices of thermodynamics potentials are equiv-
alent. But, depending on the expected evolution behaviour of a given thermodynamic
system some potentials are easier to work with [187–189]. Mathematical definitions of
some common thermodynamic potentials are given below,

Helmholtz free energy: F = U − TS = −PV +
∑
k

µknk,

Gibbs free energy: G = U + PV − TS =
∑
k

µknk,

Grand potential: ΦG = U − TS −
∑
k

µknk = −PV .

State variables are first-order partial derivatives of thermodynamic potentials. However,
there is another category of variables called response functions that are second-order partial
derivatives of thermodynamic potentials. Sometimes state variables cannot be measured
through experiments, for instance, entropy. In that case, state variables can be calculated
by using experimentally measurable response functions [87, 155]. Common response func-
tions are given below,

Isobaric heat capacity: CP = T ∂S
∂T

∣∣∣∣
P

= −T ∂2F
∂T 2

∣∣∣∣
P

,
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Isochoric heat capacity: CV = T ∂S
∂T

∣∣∣∣
V

= −T ∂2F
∂T 2

∣∣∣∣
V

,

Thermal expansivity: αV = 1
V
∂V
∂T

∣∣∣∣
P

= 1
V

∂2G
∂P∂T

,

Adiabatic compressibility: βS = − 1
V
∂V
∂P

∣∣∣∣
S

= − 1
V
∂2F
∂P 2 ,

Isothermal compressibility: βT = − 1
V
∂V
∂P

∣∣∣∣
T

= − 1
V
∂2G
∂P 2 .

Apart from the above, there exist two major types of thermodynamics phase transitions
that are classified in two different ways. The first classification of phase transitions was
presented by Ehrenfest [42]. But, the Ehrenfest classification is no longer in use and it
has been replaced by a modern more appropriate classification. A discussion on these
transitions is necessary to understand the present research.

2.1.1 Ehrenfest Classification:

First-Order Transition:

A first-order transition is the discontinuity in first order partial derivatives of continuous
Gibbs free energy G = G(P, T, V ) with respect to thermodynamic variables. For instance,
(∂G/∂P )T and (∂G/∂T )P . Consider the following thermodynamic relations [87],

V =
∂G

∂P

∣∣∣∣
T

, (2.1)

S = −∂G
∂T

∣∣∣∣
P

, (2.2)

H =
∂(G/T )

∂(1/T )

∣∣∣∣
P

, (2.3)

where, S is entropy and H is enthalpy of the system. This implies that during the first-
order transition volume, entropy and enthalpy show discontinuous trends. Two examples of
first-order transitions are vaporization and fusion. This definition of first-order transition
was first mentioned by Ehrenfest [42].
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Second-Order Transition:

A second-order transition is the discontinuity in second order partial derivatives of contin-
uous Gibbs free energy G = G(P, T, V ) with respect to thermodynamic variables whereas
first order partial derivatives remain continuous. For instance, (∂2G/∂P 2)T and (∂2G/∂T 2)P .
Consider the following thermodynamic relations [87],

kV = −∂V
∂P

∣∣∣∣
T

= −∂
2G

∂P 2

∣∣∣∣
T

, (2.4)

CP = T
∂S

∂T

∣∣∣∣
P

= −T ∂
2G

∂T 2

∣∣∣∣
P

, (2.5)

αV =
∂V

∂T

∣∣∣∣
P

=
∂

∂T

[
∂G

∂P

]
T

∣∣∣∣
P

, (2.6)

where, k is compressibility, α is thermal expansion coefficient, and CP is heat capacity of
the system. Thus, entropy S, enthalpy H and volume V of the system do not show dis-
continuity at second-order transition, however, compressibility k, thermal expansion α and
heat capacity CP show discontinuous trends. Few examples of second-order transitions are
onset of superconductivity, ferroelectricity, ferromagnetism, and order-disorder transtion
of metal alloys [152,154,170].

2.1.2 Modern Classification:

Ehrenfest’s classification is an incomplete scheme to classify phase transitions because
it cannot explain cases where derivatives of free energy diverge. For example, during
ferromagnetic transitions, the heat capacity of systems becomes infinity. Thus, a new
scheme to classify phase transitions have been proposed [84].

First-Order Transition:

Under the modern scheme, first-order phase transitions are classified as transitions that
involve absorption or rejection of a fixed amount of latent heat per unit volume while the
temperature of systems remains constant. For instance, boiling of water or melting of ice.
During these transitions, the system exists in a mixed-phase i.e. a portion of the system
completes the transition while the other portion of the system remains in the transition.

Second-Order Transition or Continuous Phase Transition:

The modern scheme classifies the second-order transition as a transition that involves an
infinite correlation length, divergent susceptibility and power-law decay of correlations in
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the vicinity of critical conditions. During a second-order phase transition heat capac-
ity and thermal expansion of amorphous substances changes suddenly at glass transition
temperatures [127].

2.2 An Overview of Statistical Mechanics

As discussed, thermodynamics is a macroscopic study of systems and thus cannot be used
to explore the underlying physics of microscopic particles. Fortunately, statistical mechan-
ics offers a procedure to study the macroscopic behaviour of systems by using arguments
at the microscopic level [87]. Thermodynamics only provides relations between thermody-
namic properties, however, statistical mechanics provides a procedure to calculate thermo-
dynamic properties independent from each other. Real thermodynamic systems are usually
very complicated, their behaviour depends on shape, size, and interactions of constitut-
ing particles. Thus, idealized statistical mechanical models are used to simplify analytical
and numerical calculations. However, idealized models should consider the necessary de-
tails to predict a variety of observed phenomenon at different physical conditions under
study [186]. In statistical mechanics, the state of a system is defined by using microscopic
variables i.e. positions, velocities, state of excitation, etc. of all particles constituting the
system. Observed macroscopic thermodynamic variables are considered to be the average
response from microscopic variables. Thus, the state of a system when defined by using
microscopic variables is called a microstate and the average behaviour of microstates re-
sults in a macrostate [87]. At a given thermodynamic state (macrostate) there can exist
a tremendous number of microstates since systems usually have a very high number of
particles. The probability of finding a system in a given macrostate is proportional to the
number of possible configurations (microstates) that result in the same macrostate. Sta-
tistical mechanics assumes that at equilibrium the system should be in its most probable
macrostate i.e. the macrostate having the highest number of microstates. Small probabili-
ties of not finding a system in its most probable macrostate are called thermal fluctuations.

In statistical mechanics, the first step is to count the number of allowed microstates of
a system at an arbitrary macrostate. While counting the number of allowed microstates
quantum mechanical effects cannot be ignored [87]. A quantity called the partition function
Q is evaluated by using,

Q ≡
∑
k

e−Ek/kBT , (2.7)

where Ek is the energy of the system in kth microstate, kB is Boltzmann’s constant and
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T is the temperature of the system [87]. The sum is over all possible microstates at an
arbitrary macrostate. Then, from the partition function, the Helmholtz free energy F is
calculated by using,

F = −kBT lnQ. (2.8)

All other thermodynamic properties can be evaluated by taking appropriate partial deriva-
tives of the free energy and/or partition function. Also, the average of any thermodynamic
property O can be evaluated by using,

〈O〉 =
∑
k

Oke
−Ek/kBT

Q
. (2.9)

The sum is over all possible microstates of the system.

2.2.1 Common Assumptions

Two common assumptions of statistical mechanical models that are relevant to the present
topic are highlighted below.

Mean Field Approximation:

For systems involving a large number of particles, the mean-field approximation is often
utilized to replace discrete interactions from surrounding particles with an averaged field.
This is true because in the case of a large number of particles fluctuations can be ignored
[15]. The mean-field approximation also ignores correlations between particles by assuming
them to be short-ranged [13]. However, near critical points correlations are not short-
ranged [12, 13, 15, 139] and thus the mean-field approximation cannot be applied near a
critical condition.

Under the mean-field approximation, the logarithm of the summation over microstates
is replaced by the logarithm of the largest term in the summation [87, 186, 211]. This
approximation is correct because for large numbers of particles the highest term in the
summation is found to be significantly greater than all other terms [115].

Additive Property:

In statistical mechanical models that are based on the mean-field approximation, the energy
of a system can be written as the sum of energies from different degrees of freedom because
the mean-field approximation ignores correlations between different degrees of freedom.
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Thus, the system can be decomposed into independent subsystems and the total energy
of the system becomes equal to the sum of energies of independent subsystems [147, 186].
For instance, in systems where the external configuration of molecules is independent of
the internal state of molecules, the energy of the system can be split into configurational
energy Econf. and internal energy Eint.. Consequently, the partition function Q in Eq. 2.7
becomes equal to the product of the partition function Qconf of configurational states and
the partition function Qint of internal states. Subsequently, the free energy F in Eq. 2.8
becomes equal to the sum of free energy Fconf of configurational states and free energy
Fint of internal states [87]. As a result, thermodynamic properties from internal degrees of
freedom only depend on the temperature of the systems. Since the pressure of a system is
equal to the partial derivative of free energy with respect to the volume so these internal
degrees of freedom do not contribute to PVT properties of polymers [157].

2.3 Types and Properties of Mixtures

2.3.1 Types of Mixtures:

Ideal mixtures assume no coupling/interaction between different species in multicompo-
nent mixtures. Thus, molecules of each species remain unaware of the presence of other
species [93]. Consequently, when an ideal mixture is formed by mixing pure components
the enthalpy of mixing is assumed to be zero. However, the entropy of mixing is assumed
to be greater than zero [93].

Real mixtures can be divided into three types: Regular, Athermal and General. Real
mixtures are characterized by comparing their thermodynamic behaviour with ideal mix-
tures [186]. Regular mixtures assume weak interactions between different species of mul-
ticomponent mixtures. Thus, the enthalpy of mixing is assumed to be non-zero. However,
saying that interactions are weak implies that the interactions do not contribute to the
non-zero mixing entropy. Thus, the entropy of mixing is the same as that of ideal mix-
tures [93]. On the other hand, in athermal mixtures, the entropy of mixing is different
from the mixing entropy of ideal mixtures, however, the enthalpy of mixing is assumed to
be zero. Lastly, in general mixtures both, enthalpy and entropy of mixing, are assumed to
be different from ideal mixtures.
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2.3.2 Properties of Mixtures:

For multicomponent mixtures, several new phenomena and properties can be defined. How-
ever, the two most important phenomena are mentioned below that account for the stability
of homogeneous mixtures.

Upper Critical Solution Temperature (UCST):

UCST is defined as a temperature above which all components of the mixture remain
miscible at all compositions. So, it is the upper bound of temperature interval above
which the mixture will certainly be miscible at all compositions [162].

Lower Critical Solution Temperature (LCST):

LCST is defined as a temperature below which components of the mixture remain miscible
at all compositions. So, it is the lower bound of temperature interval below which the
mixture will certainly be miscible at all compositions [162].

2.4 Polymeric Foams

Polymeric foams are used in every aspect of life. They are used in toys, packaging, heat
insulators, sports goods, etc. [3, 9, 96, 99, 161] because of their unique mechanical, thermal
and chemical properties and economical production cost. They are lightweight but strong,
durable, and chemically inert [3, 9, 96,161].

Polymeric foams are solid polymers with macroscopic voids or cells that are produced by
blowing solvent gases through liquid polymers. The size and geometry of cells play a very
important role in determining the properties of foams [99]. Substances used to create
voids in polymeric materials are called blowing agents (BAs). Blowing agents can be
classified into two categories, physical blowing agents (PBAs) and chemical blowing agents
(CBAs). Chemical blowing agents emit gas due to thermal decomposition or chemical
reaction at processing conditions. On the other hand, physical blowing agents are stable
or inert gases like carbon dioxide, nitrogen, hydrochlorofluorocarbons, propane, pentane,
and argon [3, 9, 96, 98, 99, 126, 161]. The process for the production of polymeric foams is
carried out in following steps [99,104]:

1. A polymeric material is placed in a solvent rich environment. The pressure of the sol-
vent in the environment is increased with a simultaneous increase in the temperature
of the system.
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2. Due to the increased pressure, the solvent gas diffuses inside the liquid polymer to
achieve saturation.

3. The pressure of the environment is rapidly decreased which results in the formation
of bubbles of the solvent (blowing agent). The bubbles of the blowing agent nucleate
and grow.

4. The temperature of the system is decreased to obtain a solid or glassy state and this
freezes the bubbles before they collapse.

5. The closed solvent rich environment is then removed. Consequently, the blowing
agent evacuates from the voids of the resulting polymeric foam.

Since solvent gases create voids in polymeric foams so gases with higher solubility result
in polymeric foams of lesser weight to volume ratios. Solvent gas diffuses into the polymer
until a chemical equilibrium is achieved between solvent gas in the polymer and solvent
gas in the environment. The polymer-solvent phase is called polymer-solvent mixture (or
mixed-phase) and the solvent in the environment is called the pure solvent phase. The
equilibrium between the mixed-phase and the pure solvent phase is determined by the
equation of state behaviour of the system. Note that the present research only discusses
stable polymeric systems without voids.

2.4.1 Properties of Polymeric Foams:

For multicomponent polymeric foams, two more quantities are found to be useful i.e.
solubility and swelling. These quantities are defined below.

Solubility:

Solubility is defined as the weight fraction of a solvent dissolved in a polymer matrix at
saturation. It is denoted by χs.

χs =

s∑
k

nkMk

s∑
k

nkMk +
p∑
k

nkMk

, (2.10)

where, superscript s denotes that the sum over solvent species only, superscript p denotes
that the sum over polymer species only, nk is number of moles of species k, and Mk is
molar mass of species k.
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Swelling:

Swelling is defined as the ratio of the volume of a polymer matrix in the presence of a
blowing agent to the volume of the polymer matrix in the absence of the blowing agent.
It is denoted by SW .

2.5 Equations of State

Equations of states (EOS) are equations that relate thermodynamics variables describing
the state of physical systems [43]. The thermodynamics variables may include pressure,
temperature, volume, internal energy, entropy, specific heat, thermal expansion etc. Equa-
tions of state cannot be derived by using thermodynamics principles. Thus, simplified
models are used to capture the underlying physics especially interactions in the system.
Consequently, a single equation of state cannot be used for all physical systems because
idealized models are based on assumptions that may be valid for one particular group of
systems at given physical conditions but completely absurd for another group of systems or
conditions. For instance, the ideal gas equation of state can only be used to describe real
gases at high temperatures and low pressures since intermolecular forces can be neglected.
However, at high pressures and/or low temperatures, the behaviour of real gases deviates
from the ideal gas equation of state and consequently, the ideal gas model requires modi-
fication. Since physical systems are very diverse thus a large number of equations of state
are designed for different physical systems. Consequently, equations of state for systems
composed of small molecules in gas, liquid or solid phase belong to one small group of
equations of state in a large pool of possible equations of state. There are equations of
state used to describe systems as alien as neutron stars, white dwarf, supernova, quark-
gluon plasma, Bose-Einstein condensate, and radiation fields. Given that a system is in
thermodynamic equilibrium, EOS provides a universal treatment to consider nature at
different conditions. EOS often leads to the development of various branches of physics.
For instance, the ideal gas equation of state is considered to be the major factor in the
development of thermodynamics. Thus, equations of state have fundamental importance
in physics, chemistry, material science and engineering. Equations of state are also impor-
tant in interdisciplinary fields including polymer physics, geophysics, and astrophysics. In
general, EOS can be used to relate any thermodynamic variables, however, most equations
of state relate pressure, volume and temperature of physical systems.

As discussed, simplified models (called the analytical approach) can be used to derive
equations of state, however, there are at least two other approaches, namely, the em-
pirical approach and the semi-empirical approach, that can also be used to describe the
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behaviour of thermodynamic systems. Empirical relations utilize extensive experimental
data whereas semi-empirical relations utilize both, the models and the experimental data,
to make predictions. Empirical equations of state cannot provide insight into the underly-
ing physics of systems, however, they can be used to accurately calculate thermodynamic
properties within the given range of experimental data. On the other hand, equations
of state based on analytical methods can provide significant insight into the underlying
physics of systems. However, since they rely on simplified/idealized models so their pre-
dictions of thermodynamics properties are not always satisfactory. Finally, the accuracy
of predictions from semi-empirical equations of the state lies in between the other two
approaches.

2.5.1 Tait Equation (Empirical)

The Tait equation [181] is an empirical relation that is used to represent PVT data of
polymeric systems. The Tait equation is a pressure-volume relation at given temperature
(isotherm) and is given by,

V (P, T ) = V (0, T )

[
1− C ln {1 + P/B(T )}

]
, (2.11)

where, C = 0.0894 is a universal constant [123], B(T ) is called the Tait parameter and
V (0, T ) is the isotherm at zero pressure. B(T ) is given as,

B(T ) = B0 exp (−B1T ), (2.12)

where, B0 and B1 are constants. The isotherm V (0, T ) is given as,

V (0, T ) = V0 exp (αT ), (2.13)

where α is the thermal expansion coefficient. So there are four fitting parameters (B0, B1, V0, α)
that are used to fit Tait equation on PVT data.

2.5.2 Cubic Equations of State (Semi-Empirical)

Equations that can be written as a cubic function of molar volume of a given system are
called cubic equations of state. These empirical/semi-empirical equations of state are based
on observations and experiments. So, they are not derived from first principles.
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Van der Waals Equation of State

The ideal gas EOS fails at low temperature and/or high pressure because it neglects the
finite size of molecules and attractive forces between molecules composing the system.
Consequently, it cannot predict the condensation of gases. Thus, in 1873, the van der Waals
equation of state was introduced by J. D. van der Waals. The van der Waals equation
of state is a semi-empirical equation that contains two constants, a and b, to account
for the attraction and repulsion (finite molecular volume) between molecules, respectively
[194]. The values of attraction parameter a and repulsion parameter b are determined from
experimental data. These constants were necessary because, in real gases, the presence
of attractive forces leads to a decrease in pressure of the system whereas the presence of
repulsive forces prevents condensation of gases to infinitesimal volumes. The van der Waals
EOS was the first EOS that predicted the condensation and gas-liquid phase diagrams of
real gases, however, the agreement with experimental data was not satisfactory. The van
der Waals EOS is given as,

(
P +

a

V 2

)
(V − b) = RT, (2.14)

where, a = 3PcV
2
c and b = Vc/3. Here Pc and Vc are critical pressure and critical volume,

respectively.

The Law of Corresponding States:

The van der Waals equation shows that during the vapour-liquid phase transition the differ-
ence between the vapour phase and the liquid phase disappears at critical point (Pc, Vc, Tc).
If one writes van der Waals equation of state in terms of dimensionless reduced variables
Pr = P

Pc
, Tr = T

Tc
and Vr = V

Vc
then the same equation remains valid for a broad set of

simple substances over a wide range of temperature and pressure, reasonably close to the
critical point. This is called the law of corresponding states. In other words, the law of
corresponding states asserts that for a given substance at some constant temperature the
van der Waals EOS gives a P-V relation. But, if one changes the substance the P-V rela-
tion also changes since the new substance can have different values of constants a and b.
However, if one rewrites the relation in terms of dimensionless reduced variables Pr, Tr and
Vr by dividing each state variable P, T and V with corresponding critical values Pc, Tc and
Vc the resulting relationship is considered to be universal i.e. at given reduced temperature
and reduced volume all substances have equal reduced pressures. [53, 145, 146, 178]. The
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corresponding van der Waals EOS is,(
Pr +

3

V 2
r

)
(3Vr − 1) = 8Tr. (2.15)

In the above expression, if Pr < 1 and Tr < 1 the system is at vapour-liquid phase
equilibrium. The reduced van der Waals EOS is a cubic equation so this equation has
three solutions of the reduced volume Vr. The largest value of reduced volume corresponds
to the vapour phase whereas the lowest value of reduced volume corresponds to the liquid
phase.

Besides, the law of corresponding states is not limited to the van der Waals EOS. It is a
universal principle and is followed by several equations of state [49,52,95,100,164] with the
exception that, instead of critical point values, thermodynamic state variables are reduced
by some other appropriate characteristic parameters. So, this law is not only valid for real
gases but is also applicable to liquid, fluids with non-polar molecules, polymers etc. This
law has been experimentally verified for several real gases including nitrogen, methane and
carbon dioxide [63].

Redlich-Kwong Equation of State

Redlich-Kwong EOS (RK-EOS) was proposed in 1949 to improve the van der Waals EOS.
However, RK-EOS is likewise not accurate for the liquid phase but it works well for the
gaseous phase under conditions where reduced pressure (the ratio of system pressure to
critical pressure) is less than one-half of reduced temperature (the ratio of system temper-
ature to critical temperature). In 1972, an improvement to RK-EOS has been proposed
by G. Soave [174] by allowing a substance-specific constant in RK-EOS to be a function of
temperature and acentric factor. The modified equation is called the Soave-Redlich-Kwong
EOS (SRK-EOS). SRK-EOS is especially used for hydrocarbons. However, it is still not
accurate for liquid phases because of its incapability to accurately predict the molar vol-
ume of the liquid phase. Thus, in 1982, Peneloux et al. modified SKR-EOS by introducing
a new parameter to slightly offset the molar volume and thus corrected the error in the
molar volume of the liquid phase. Thus, this modification significantly improved predic-
tions of the molar volume in the liquid phase while maintaining good predictions of the
molar volume in the gaseous phase — thanks to the fact that the pressure of liquid phase
is very sensitive to small changes in molar volume, however, pressure of gaseous phase is
not sensitive to such small changes in molar volume.
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Peng–Robinson Equation of State

Peng–Robinson equation of state (PR EOS) was introduced in 1976 [142]. It is also based
on van der Waals EOS but proved to be more accurate than SKR EOS for predicting liquid
densities. It is also accurate near the critical points of materials. For mixtures, PR EOS
considers a binary interaction parameter that is assumed to be constant. As with the van
der Waals EOS, the theory has two fitting parameters to characterize excluded volume
effects (repulsive forces) and attractive intermolecular forces [142]. Excluded volume is
assumed to be constant whereas intermolecular forces are assumed to be dependent on
the temperature of the system. In addition, if one needs to apply the model on polymeric
fluids, then instead of critical parameters some other appropriate characteristic parameters
are required to reduced thermodynamic state variables [69]. Moreover, to extend the PR
EOS to multicomponent polymeric systems appropriate mixing rules are also required to
calculate values of fitting parameters [142].

Later, Stryjek and Vera [179] introduced two pure component parameters in attraction
terms of PR EOS to get better predictions from the model. The resulting equation called
Peng–Robinson-Stryjek-Vera equations of state (PRSV-EOS) is accurate for vapour-liquid
phase equilibrium calculations. However, PRSV-EOS has a limitation that it only works
for temperatures below the critical temperature of the given material.

Advantages:

1. PR EOS is very simple to do calculations.

2. PR EOS can be used to calculate PVT behaviour of pure and multicomponent sys-
tems.

Limitations:

1. The simplicity of PR EOS implies that it is less accurate as compared to more
sophisticated EOS [69].

2. PR EOS is even less accurate for large molecules.

Elliott, Suresh, Donohue Equation of State

In 1990, Elliott, Suresh, Donohue equation of state (ESD-EOS) was introduced to improve
PR EOS by making corrections in the repulsive term of PR EOS [44]. ESD-EOS was devel-
oped by using computer simulations. It takes into account the shape, size, and hydrogen
bonds of molecules.
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2.5.3 Virial Equation of State (Analytical)

Virial equation of state is based on statistical mechanics [87] and utilizes an expansion
(perturbations) having constants called virial coefficients. With an appropriate mathe-
matical form of intermolecular forces, these virial coefficients can be evaluated. However,
the first virial coefficient is always 1 which corresponds to the fact that for a very large
volume the fluid behaves as an ideal gas. The second virial coefficient accounts for pair-
wise interactions between molecules and similarly higher virial coefficients correspond to
three-particle interactions, four-particle interactions and so on. These virial coefficients are
considered to be functions of temperature. Accuracy of the virial equation of state can be
increased indefinitely by accounting for more and more expansion terms. However, higher-
order virial coefficients are difficult to manage because of multiple integrals. Moreover, the
convergence of virial expansion deteriorates at higher densities.

2.5.4 Debye-Huckel Model for Electrolytes

In 1923, Debye and Huckel presented a theory to explain thermodynamics, especially os-
motic pressure, of electrolyte solutions in the dilute limit. In this model, it was assumed
that strong electrolytes behave as isolated ions in continuous dielectric medium i.e. sol-
vent (for instance, water). Contrary to an ideal gas, in an electrolyte solution, there are
significant Coulomb interactions between charged ions. However, the model assumes that
these interactions are small as compared to the thermal energy of charged particles kBT .
Moreover, ions are considered to be randomly distributed due to the presence of repulsive
electrostatic forces between the ions of the same charge. Ions are assumed to be spherical
in shape and the degree of ionization was assumed to be constant. Other assumptions of
the model are:

1. Strong electrolyte assumption solute dissociates completely.

2. Ions do not polarize due to neighbouring charges.

3. The solvent only acts as a uniform medium of appropriate dielectric constant with
no feature and structure.

4. The model assumes that a charge of a given polarity (positive or negative) is mainly
surrounded by charges of opposite polarity. Moreover, the surrounding charges act
as a continuous spherically symmetric cloud with some appropriate charge density.

5. Ion-solvent interactions are assumed to be negligible and thus ignored.

6. Size of ions is assumed to be negligible.
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Limitations:

1. This model gives reasonable results only for electrolyte solutions at low concentra-
tions.

2. The model does not perform satisfactorily for unsymmetrical electrolytes.

3. The assumption of ion dissociation may also become invalid at higher charge concen-
trations.

4. Polyatomic ions polarize easily so the model cannot describe the behaviour of poly-
atomic ions.

5. The solvent is considered to be uniform with no structure. However, in aqueous
solutions, water molecules can polarize.

6. At a high concentration of charges, the size of ions becomes comparable to the size
of the ion cloud. This renders the assumption of small size ions invalid.

2.5.5 Models for Solid State

In crystalline solids, a new degree of freedom emerges i.e. oscillation of atoms in the crystal
lattice. One famous model for solids is the Debye model. In this model, the solid crystal
lattice is considered to have quasi-harmonic oscillators to account for the oscillation of
atoms. Moreover, the solid system is assumed to be isotropic and homogeneous. Thermal
excitation in the crystal is assumed to be sound waves called phonons. Moreover, in solids,
electrons also play a vital role in determining the thermodynamics of the system. To calcu-
late the effect of electrons it was assumed that electrons move in a periodic potential. With
these assumptions, the Debye model successfully predicts the thermodynamic behaviour
of crystalline solids.

2.5.6 Hard-Sphere and Soft-Sphere Models

In liquids, the main contributing forces are repulsive while attractive forces only account for
minor corrections. Thus, two types of potentials are commonly used to represent repulsive
forces: hard-sphere model and soft-sphere model. The hard-sphere model is given as,

V (r) =

{
∞, if r ≤ a

0, if r > a,

where, a is the radius of hard-sphere. This model represents highly-compressed liquids. It
is also used in integral equations.
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The soft-sphere model that is given as,

V (r) =

{
ε(a
r
)n, if r ≤ a

0, if r > a,

This model is used in the Monte-Carlo method. The soft-sphere model, when used to
modify the van der Waals equation of state, can drastically improve predictions of thermo-
dynamic properties of dense gaseous phase and liquid phase. The modified van der Waals
EOS approaches the ideal gas EOS in high temperature and low-pressure limit. Thus, the
resulting EOS can be used over a wide range of temperatures and pressures with successful
predictions of critical points and vapour-liquid transitions.

2.6 Advanced Equations of State for Polymers

Equations of state for polymer fluids are very important for designing manufacturing pro-
cesses. It is very important for an EOS to predict correct PVT behaviour over a wide range
of temperatures and pressures. Thus, several theoretical equations have been proposed for
polymers [32, 73,100,125,132,140,147,171,177] to accurately predict PVT data.

The development history of equations of state for polymer liquids can be traced back to van
der Waals’ work [178]. Initial attempts were based on extending the models of real gases
and crystalline solids. This is because the liquid state can be assumed as an equilibrium
state between the gaseous phase and the solid phase, especially near melting points the
density of liquids is found to be very close to the density of solids.

Equations of state can be divided into three categories: theoretical, empirical and semi-
empirical equations of state. However, in this section, only theoretical and semi-empirical
equations of state are discussed. These equations of state are based on the principles of
statistical mechanics thus use microscopic details to predict the macroscopic response of
the system. Theoretically, models based on quantum mechanics may give more accurate
predictions but such models require a detailed description of potentials that are often
unknown.

Most sophisticated equations of state of polymers are inspired by two preliminary theories
of polymer fluids, namely, Flory-Huggins theory and free volume theory. Thus, to under-
stand advanced equations of state of polymers it is necessary to learn Flory-Huggins theory
and free volume theory. Consequently, I have first discussed these two theories and then
other advanced equations of state of polymers.
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Flory-Huggins Theory:

Flory-Huggins (FH) theory deals with the thermodynamics of binary polymer-solvent solu-
tions. Considering that polymer molecules are very large as compared to solvent molecules
the theory divides polymers molecules into smaller segments. Then, the segments of poly-
mers and solvent molecules are only allowed to take discrete positions on an artificial lattice
of coordination number z. Since solvent molecules are small so each solvent molecule is
allowed to occupy only one lattice site. Thus, the volume of one lattice site is assumed
to be equal to the volume of one solvent molecule. Consequently, this assumption also
prescribes the size of coarse-gaining of polymer molecules [78]. Moreover, interactions are
considered to be short-ranged and polymer segments are assumed to occupy lattice sites
by following statistics of random walk [78].

The model initially assumes two separate pure systems: the pure solvent system and the
pure polymer system. Let the pure solvent system have Ns number of solvent molecules,
whereas, the pure polymer system has Np number of polymer molecules with each polymer
molecule divided into x segments. Thus, when the two systems are mixed the total number
of lattice sites should be N = Ns + xNp. By following the statics of random walk, the
change in entropy occurs due to mixing is found to be,

∆Sm = −kB
[
Ns lnφs +Np lnφp

]
, (2.16)

where, φs = Ns/N is the volume fraction of solvent, φp = xNp/N is the volume fraction
of polymer. Moreover, due to mixing, the enthalpy of the system should also change.
The mixed system has three types of interactions: solvent-solvent interaction of energy
εss, polymer-polymer interaction of energy εpp, and solvent-polymer interaction of energy
εsp. The increase in solvent-polymer interactions is accompanied by an average decrease in
solvent-solvent and polymer-polymer interactions. Thus, we can define energy increment
due to solvent-polymer interaction as,

ε = εsp −
1

2
(εss + εpp). (2.17)

Moreover, solvent-polymer interaction parameter χsp is defined as,

χsp ≡
zε

kBT
. (2.18)
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Solvent-polymer interaction parameter χsp is the only factor in the model that depends on
the nature of materials of polymer and solvent. In addition, the model ignores correlations
based on mean-field approximation discussed in section 2.2.1. Moreover, solvent molecules
and polymer segments are assumed to be randomly distributed on the lattice by allowing
each segment to move independently in a random manner. By using these assumptions,
Flory [47] and Huggins [82] obtained the following expression of the change in Gibbs free
energy as a result of the mixing of solvent in the polymer.

∆Gm = RT (ns lnφs + np lnφp + ns lnφpχsp), (2.19)

where, R is the universal gas constant, ns is the number of moles of solvent, and np is the
number of moles of the polymer. In FH theory solvent-polymer interaction parameter χsp
plays a central role in defining the nature of the mixture. For the case of mixture where
εss + εpp = 2εsp the solvent-polymer interaction parameter becomes zero and the solution
behaves as an ideal mixture discussed in section 2.3.1. If 0 < χsp < 1/2 the polymer-
solvent interactions are repulsive but weak. Thus solvent-polymer phase separation does
not occur. However, if χsp > 1/2 the phase separation occurs into polymer-rich and
solvent-rich phases [162].

Flory-Huggins theory can predict the stability of mixture, upper critical solution temper-
ature and lower critical solution temperature. However, predictions from the theory are
mostly qualitative. The model is based on an incompressible lattice so the volume and the
total number of molecules in the system are not independent parameters. Thus, the model
cannot predict the swelling of polymeric foams [99].

Free Volume Theory:

In usual mixtures, molecules are free to move under the influence of thermal vibration due
to interstitial spaces, called free volume, between molecules [59]. However, Flory-Huggins
theory, as well as other lattice theories, do not allow such motion of segments. Thus, to
account for the existence of free volume, vacant sites are allowed on lattice models. These
vacant sites are termed as holes [59].

Several models have been introduced based on a free volume assumption [56,58,199]. The
free volume assumption has proven to be very useful for calculating diffusion in liquids
[58, 59, 199]. Moreover, in polymers, free volume improves calculations of glass transition
temperatures [20, 56,192].

Equations of state for polymer fluids that are based on free volume theory and their models
can be categorized into four main groups:
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1. Cell Models

2. Lattice-Fluid Models

3. Hole Models

4. Tangent-Sphere Models

The above models, except tangent-sphere models, are based on a common assumption that
molecules of the system are acted on by an averaged field from neighbouring molecules. The
averaged field confines molecules of the system in a relatively small area thus offering hope
to treat the system as if it has a lattice. So these models work best for highly compressed
liquids where total energy of the system is significantly greater than the kinetic energies
of that system. These models have been designed to account for the finite compressibility
and thermal expansion of polymer systems. They can be used to describe the behaviour of
pure polymers fluids, polymer blends, and multicomponent polymer solutions. However,
they are only valid above the glass transition temperature of amorphous polymers and
above the melting point of crystalline polymers.

Equations of state from all models work reasonably well at low pressure. However, to
fit PVT data over a wide range of pressure some equations of state outperform others.
Moreover, all discussed equations of state require PVT data to determine characteristic
parameters P ∗, T ∗ and ρ∗ (or v∗) and can be represented in terms of reduced variables.
Thus they obey the law of corresponding states.

2.6.1 Cell Models

As discussed in these models, polymer molecules are divided into small discrete segments.
The space around each segment is considered as cells and the volume of cells is assumed to
be a variable to allow compression and expansion of the polymeric system. Each segment
is considered to have 3c degrees of freedom, where constant c is called the segmental
parameter. It is introduced to account for constraints that are present between segments.
Polymer molecules are assumed to have two distinct modes: internal and external. Internal
modes account for the motions present within molecules whereas external modes account
for interactions present between molecules. It is assumed that internal modes play no role
in defining the PVT behaviour of the system. This distinction of two modes was introduced
by Prigogine et al. [147,149].

Several cell theories have been developed based on the choice of intermolecular potential
and cell geometry. An overview of important cell models is discussed below.
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Prigogine Square-Well Equation of State

Prigogine et al. [148] developed two different cell models by using Lennard-Jones (LJ) po-
tential [100] and hexagonal close packing for the geometry of cells. The major difference
between two models is that one model is based on square-well approximation of LJ po-
tential [147] whereas the other model is based on harmonic oscillator approximation of LJ
potential. [149]. However, the square-well model is mostly used so it is discussed here. The
EOS from square-well approximation is,

P̃ ṽ

T̃
=

ṽ1/3

ṽ1/3 − 0.8909
− 2

T̃

(
1.2045

ṽ2
− 1.011

ṽ4

)
, (2.20)

where, P̃ = P/P ∗, T̃ = T/T ∗, and ṽ = v/v∗ are reduced variables and P ∗, T ∗ and v∗ are
characteristic parameters given as,

P ∗ =
ckBT

∗

v∗
, (2.21)

T ∗ =
sη

ckB
, (2.22)

v∗ = σ3, (2.23)

where, σ is the radius of hard-sphere, η is the interaction energy between segments, s
represents number of contacts per segment, c accounts for intermolecular constraints on
segments and kB is Boltzmann’s constant.

A brief outline of the model is as follows. This model is also based on a lattice in which
polymer molecules are divided into small segments (r-mers) and each segment is allowed to
occupy one lattice site. Given the position of one segment of a polymer molecule, the next
connected segment on the molecule is allowed to occupy only the adjacent neighbouring
sites. The segments are allowed to have thermal fluctuations due to the finite temperature
of the system. However, since segments are connected so segments tend to vibrate about
their equilibrium positions under the influence of forces from neighbouring sites. In short,
the segments are assumed to be confined in cells of some finite volume. The value of
constraint parameter c is assumed to be in between 1 and r. This assumption is based on
the fact that for rigid molecules there are only three degrees of freedom to allow translation
of molecule whereas for infinitely flexible molecules of r-mers (segments) there should be
3r degrees of freedom. Thus, for semi-flexible molecules, degrees of freedom must be in
between these two extremes i.e. 3c. The resulting equation of state is found to maintain
excellent PVT data fittings over a wide range of pressure [157].
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Flory, Orwoll, Vrij Equation of State

The most famous and extensively used cell model is Flory, Orwoll, and Vrij (FOV). Flory,
Orwoll, and Vrij developed a new theory [49,51,52] for polymer-solvent mixtures to accu-
rately predict the lower critical solution temperature (LCST) of polymer-solvent mixtures.
In this model the lattice sites are assumed to be occupied by either segments of poly-
mer molecules or small solvent molecules. The geometry of cell is assumed to be simple
cubic [49,52,157]. Moreover, in this model two types of potentials were considered. For re-
pulsive forces hard-sphere potential was assumed whereas for attractive forces an arbitrary
soft potential was assumed. FOV cell model results in the following EOS,

P̃ ṽ

T̃
=

ṽ1/3

ṽ1/3 − 1
− 1

T̃ ṽ
, (2.24)

where, P̃ = P/P ∗, T̃ = T/T ∗, and ṽ = v/v∗ are reduced variables and P ∗, T ∗ and v∗

are characteristic parameters having the same definitions as mentioned before in Prigogine
Square-Well EOS.

Equations of state from FOV and Prigogine square-well models have a similar first term
with the exception that in FOV-EOS the factor 0.8909 is replaced by 1. This difference is
because in the FOV model simple cubic cells are assumed whereas in the Prigogine model
hexagonal close-packed cells are assumed.

Limitations:

1. FOV EOS fails to fit PVT data over a wide range of pressure [157].

2. The model underestimates entropy of the system because it assumes artificial lattice
for fluid phase [172].

Dee and Walsh Equation of State

This model is a modification of the Prigogine square-well cell model. In this model Dee and
Walsh have decoupled potential from geometry of cell by introducing a universal constant
factor q = 1.07 [28]. EOS from this model is given as,

P̃ ṽ

T̃
=

ṽ1/3

ṽ1/3 − 0.8909q
− 2

T̃

(
1.2045

ṽ2
− 1.011

ṽ4

)
, (2.25)

where, all variables and parameters have the same definitions as mentioned before for
Prigogine square-well cell model.
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2.6.2 Lattice-Fluid Models

Lattice-fluid models are similar to cell models as these models also divide polymer molecules
into small segments and are based on the artificial lattice. However, contrary to cell models,
lattice-fluid models assume the volume of cells to be constant. Thus, to account for finite
compressibility of the system, lattice vacancies (empty sites or holes) are allowed on the
lattice. So, the volume of the system can be changed by changing the number of empty
sites on the lattice. The presence of artificial holes significantly increases the entropy of the
system. Consequently, the partition function of the system is found by using the principles
of statistical mechanics by treating holes as a species. There are several important lattice-
fluid models including the Panayiotou-Vera model [130, 131, 133, 135] and others [25–27].
However, the lattice-fluid model by Sanchez and Lacombe [95,164] is the most widely used
lattice-fluid model so it is discussed below.

Sanchez Lacombe Equation of State

The Sanchez Lacombe Equation of State (SL-EOS) is the most successful lattice-fluid
model for classical fluids (polymers or solvent). This equation was first introduced in 1976
by Sanchez and Lacombe Refs. [95,164].

As discussed in lattice-fluid models the compressibility is introduced by allowing empty
sites (holes) on the lattice. The change in volume is obtained by changing the number
of holes whereas lattice itself is assumed to be incompressible. As in other models, the
polymer molecules are divided into r-mers (or segments) and each segment occupies one
site on the lattice. The interaction energies between segments are assumed to be short-
ranged and thus independent of the volume of the lattice. Since holes are artificial so it
is assumed that holes do not interact. Moreover, holes and segments are assumed to be
randomly mixed throughout the lattice. By using this model, the SL-EOS was found to
be,

ρ̃2 + P̃ + T̃

[(
1− 1

r

)
ρ̃+ ln (1− ρ̃)

]
= 0. (2.26)

In the above equation ρ̃, P̃ and T̃ are reduced density, pressure and temperature of the
fluid system, respectively. They are given as follows,
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ρ̃ =
ρ

ρ∗
, (2.27)

P̃ =
P

P ∗
, (2.28)

T̃ =
T

T ∗
, (2.29)

where, ρ∗, P ∗ and T ∗ are called the characteristic parameters of the fluid system. These
parameters are found by fitting the Eq. 2.26 on PVT data. Finally, r is the number of
lattice sites occupied by polymer segments (or r-mers). It is given as,

r =
MP ∗

Rρ∗T ∗
, (2.30)

where R is the universal gas constant (8.314 J/mol K). In general, SL-EOS does not follow
the law of corresponding states because of the presence of r in the equation 2.26. However,
for long polymer molecules r → ∞. This means the term involving r vanishes and thus
the law of corresponding states is satisfied. Moreover, for polymers, the SL-EOS becomes
independent of the molecular weight of polymer. Physically, the characteristic temperature
T ∗ represents the interaction energy and the characteristic pressure P ∗ represents the
cohesive energy of the system.

This is a limited overview of SL-EOS. However, since it is central to the current research
additional details on the Sanchez Lacombe model are explained later in section 2.7.

2.6.3 Hole Models

Hole models were introduced to improve cell models. Hole models are a mixture of cell mod-
els and lattice-fluid models since finite compressibility of the polymeric system is achieved
by varying the cell volume as well as the number of holes (empty sites). The varying cell
volume is necessary to describe the thermodynamic behaviour of the system whereas the
varying number of holes plays a vital role in thermal expansion.

Simha-Somcynsky Equation of State

Simha-Somcynsky hole model [85,171,172,209] uses square-well approximation of Lennard-
Jones (LJ) 6-12 potential to account for interactions between segments and face-centered
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cubic for lattice geometry. Furthermore, the interactions are considered to be long-ranged
[157]. Calculations from this model are based on two equations. The first equation is the
Simha-Somcynsky equation of state (SS-EOS) whereas the second equation is obtained by
minimizing the partition function of the model with respect to the fraction of occupied sites.
These two equations are solved simultaneously to obtain PVT behaviour of the system
[85, 141, 157]. For pure fluids, this model requires four fitting parameters to characterize
the length of polymer molecules, external degrees of freedom, the attractive energy and
the repulsive potential (excluded volume) of the model. On the other hand, for mixed
polymeric systems, SS-EOS utilizes a mixing rule that is based on the average of pure
component parameters weighted as per their composition in the mixture [85].

Advantages:

1. SS-EOS maintains excellent PVT data fittings over a wide range of pressure compared
to other models [157].

Limitations:

1. SS-EOS requires cumbersome calculations. This is because interactions are assumed
to be long-ranged, it allows variable cell volume as well as artificial vacancies. So,
these factors significantly increase the required manipulation.

2.6.4 Tangent-Sphere Models

These models have been developed to present an alternative treatment of pure and mixed
polymeric systems free from the artificial lattice. These models are also based on statistical
mechanics. Since polymeric systems involve a large number of degrees of freedom thus sim-
plifications are also necessary. Thus, in these models, polymer molecules are assumed like
a chain of freely jointed hard spheres [17,19,80,176]. Consequently, this model guarantees
the presence of chain connectivity and excluded volume effects. The resulting equation is
called the hard-sphere chain equation of state (HSC-EOS). In HSC EOS properties of poly-
mer molecules are represented in terms of properties of smaller molecules i.e. hard-spheres.

HSC EOS is amenable to improvements by allowing the addition of perturbation terms.
The perturbation terms account for the attractive forces of the system. If we assume
that the attractive forces are weak and do not significantly alter the system then the
perturbation terms can be approximated to van der Waals EOS i.e. P = PHSC + Ppert.
Two famous tangent sphere models are discussed below.
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Statistical Associated Fluid Theory

The statistical associating fluid theory (SAFT) was proposed by Chapman et al. [18] based
on statistical mechanics. SAFT utilizes perturbation theory to account for interactions be-
tween molecules. SAFT models use the perturbation theory of polymerization proposed by
Wertheim [203]. Wertheim perturbation theory is based on the expansion of the Helmholtz
free energy of the system in terms of integrals of suitable potentials and distribution func-
tions of molecules. After the first proposal of SAFT in 1989, many versions of SAFT have
been introduced.

Advantages:

1. SAFT is more accurate as compared to cubic equations of state [68].

2. SAFT EOS can be used for pure polymers as well as binary polymer-solvent mixtures
[81,213].

3. Fitting parameters of SAFT are independent of the molecular mass of polymers.

Perturbed-Chain Statistical Associated Fluid Theory

One version of SAFT is called Perturbed Chain SAFT (PC-SAFT) [67]. This model
assumes polymer molecules as freely jointed spheres having a modified radial square-well
potential [67] given by,

V (r) =


∞, if r < (σ − s1)
3ε, if (σ − s1) ≤ r < σ

−ε, if σ ≤ r < λσ

0, if r ≥ λσ,

where, ε is the attractive interaction energy, σ is the diameter of segments, and s1 is
the hardcore repulsion length. The hardcore repulsion length and diameter are related
by s1/σ = 0.12. The model requires significant computational power because the model
considers accurate molecular details. The model is based on an idea that the Helmholtz
free energy of the system can be expanded in terms of inverse temperature around the
free energy of a reference system [66] that assumes polymer segments to be hard-spheres.
Higher-order corrections are based on square-well potential to account for softcore repulsive
forces of real systems. The model requires four characteristic parameters for pure fluid
systems. Moreover, to extend the theory to multicomponent systems appropriate mixing
rules are also required.
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Advantages:

1. PC SAFT offers good predictions of phase equilibrium.

2. The model can be used for pure as well as multicomponent polymeric systems.

3. It is found to be more accurate as compared to SL-EOS [69].

4. It has excellent predictive power [67, 68,190,191].

Limitations:

1. Solubility predictions in binary mixtures from PC SAFT are not widely available.

2. PC-SAFT requires extensive numerical calculations and thus more powerful comput-
ers.

3. PC-SAFT requires to simultaneously solve several nonlinear equations.

4. PC-SAFT model use 24 parameters for fitting apart from three pure component
characteristic parameters. However, once calculated from experimental data, those
24 parameters are considered to be universal.

2.7 Sanchez Lacombe Equation of State

2.7.1 On-Lattice SL-EOS

A brief discussion on SL-EOS is presented before in section 2.6.2 so specific details are
highlighted in this section. SL-EOS was introduced by Sanchez and Lacombe in 1976
[95, 164]. Sanchez and Lacombe first developed the model for pure fluids [164] then later
extended the model to multicomponent fluids [95]. Since the model is based on principles
of statistical mechanics so the key step is to calculate the number of possible configurations
of the system. The description of the model is as follows.

Consider a pure polymer fluid having n molecules that are divided into r segments. Since
SL-EOS is a lattice-fluid theory so consider a lattice of coordination number z. Assume
that each lattice site has constant volume v∗ independent of temperature and pressure
of the system. The lattice is considered to be rigid. Finite compression of the system
is achieved via empty lattice sites. The empty lattice sites are considered to be another
species that are called holes. An increase or decrease in the number of holes n0 dictates
the expansion or compression of the system. Since the lattice is rigid with a fixed site
volume v∗ so the volume of any species (holes or polymer segments) occupying a lattice
site is also v∗. This means that the volume occupied by one polymer molecule is rv∗.
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Moreover, assume that the segments of the same polymer molecule are connected. Thus,
each inner segment of molecules should have z − 2 neighbour segments of other molecules
and only two neighbour segments of the same molecule. However, segments located at
the ends of molecules should have z − 1 neighbour segments of other molecules and only
one neighbour segment of the same molecule. The number of possible configurations of
this lattice problem had already been found by Guggenheim [70, 71] before Sanchez and
Lacombe. Thus, the configuration partition function, Gibbs free energy and subsequently
other thermodynamic properties can be found by using the Guggenheim’s approach.

In the SL model, the interaction energy ε between segments of different molecules is consid-
ered to be short-ranged and constant, whereas, the interaction energy between segments of
the same chain is neglected. Finally, holes are artificial so they do not offer any interaction.
Thus the total interaction energy ε∗ per segment is found to be ε∗ = zε/2. Note that the
same energy, ε∗, is also required to create one hole in the system. Thus the model has
three characteristic parameters v∗, r, and ε∗ that completely define a pure polymeric sys-
tem. These characteristic parameters are called molecular parameters since they depend
on microscopic details of molecules. However, the same information can be presented in
terms of macroscopic (thermodynamic) parameters P ∗, T ∗, and ρ∗(or V ∗) by using the
following definitions,

P ∗ ≡ ε∗

v∗
, (2.31)

T ∗ ≡ ε∗

kB
, (2.32)

ρ∗ ≡ M

rv∗
or V ∗ ≡ rnv∗, (2.33)

where M is the molecular mass of the polymer.

Extension of the model to the multicomponent system is straightforward [95] except for
one problem. For instance, if we have two pure fluids A and B with corresponding hole
volumes v∗A and v∗B. Suppose these two pure fluids are then mixed to have a binary mixture.
Now the problem is that there is no ab initio method to determine the hole volume v∗ of
the resulting mixture. To deal with this problem Sanchez and Lacombe proposed a mixing
rule [95] to calculate mixture hole volumes from pure component hole volumes. The mixing
rule was based on the conservation of the lattice volume of each pure system and the
conservation of the number of pair interactions in each pure system. The assumption of
conserved lattice volume ensures that the number of lattice sites occupied by molecules of
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each species remains the same before and after mixing. The resulting expression of mixture
hole volume was found to be the composition-weighted-average of holes volumes of pure
systems. The weighted average also ensures that the mixture hole volume limits correctly
to corresponding hole volumes of pure fluids in the limit of vanishing composition of all
other components. There are other mixing rules mentioned in the literature, for instance,
Ref. [1, 144].

Regression:

For pure fluids, SL-EOS requires three fitting parameters P ∗, T ∗ and ρ∗ (or equivalently,
ε∗, v∗ and r) that are obtained by fitting SL-EOS 2.26 on PVT data [164]. Alternatively,
for solvents (small molecules) in the gaseous phase, molecular parameters (i.e. ε∗, v∗ and r)
can be determined by using vapour pressure data. However, for multicomponent mixtures,
binary interaction energies ε∗ij(i 6= j) are also required. These binary interactions energies
are usually determined by using solubility and/or swelling data of binary mixtures [95].

Advantages:

1. SL-EOS works reasonably well to predict the PVT behaviour of fluids.

2. SL model can make accurate predictions of thermal expansivity and isothermal com-
pressibility.

3. SL-EOS can predict binodal and spinodal curves as well as upper and lower critical
solution temperatures [165].

4. It can be used for supercritical fluids [197].

5. SL-EOS also offers reasonable predictions for ternary mixtures.

6. SL-EOS gives excellent predictions of solubility of solvent fluids in polymer liquids
[158,166]

7. SL model can also be used to predict other thermodynamic properties besides PVT
properties.

8. Only three characteristic parameters P ∗, T ∗ and ρ∗ are required to make predictions.

9. SL model can predict the phase behaviour of multicomponent fluids [163].

Limitations:

1. SL-EOS is a lattice-fluid model so it cannot be used for solid and glassy polymers.
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2. SL model avoids internal degrees of freedom of molecules especially vibrational and
rotational degrees of freedom. Thus, SL-EOS cannot predict heat capacities of fluid
because the neglected degrees of freedom absorb significant heat [129]. These degrees
of freedom only depend on the temperature of the system and thus do not affect the
PVT behaviour of the system.

3. SL model cannot predict glass transition and retrograde vitrification behaviour of
binary mixtures because the model ignores the finite flexing energy of molecules [23].

4. SL-EOS is not able to make accurate predictions near the critical point of fluids.
This is because the mean-field approximation does not remain valid near second-
order phase transitions. Thus, Sanchez and Lacombe avoided fittings on PVT data
near the critical point of fluids by about 15− 200 C [95].

5. SL-EOS is not accurate to describe PVT data over a wide range of pressure [157].

6. SL-EOS requires arbitrary mixing rules for multicomponent mixtures. Thus it has
troublesome inconsistencies stemming from the change in reference values [124].
Moreover, these thermodynamic inconsistencies cannot be fixed [197].

7. SL-EOS is not accurate to predict the behaviour of binary polymer-solvent mixtures.

Inconsistencies and Corrections:

As discussed, for multicomponent mixtures, arbitrary mixing rules are unavoidable due
to differing hole volumes of pure phases. These mixing rules are not derived from ab ini-
tio principles of statistical mechanics because significant molecular details are required to
achieve this task. On the other hand, the use of arbitrary mixing rules makes the SL model
inconsistent because of changes in reference values. In 2002, these inconsistencies were first
highlighted by Neau [124] by arguing that the reference zero of chemical potential tends to
change due to variable mixture hole volume and thus phase equilibrium calculations from
SL-EOS are not correct. She proposed that the phase equilibrium should be calculated by
using fugacities (a thermodynamic property that measures the tendency of a component
in liquid mixture to escape from the mixture) instead of chemical potentials. Her proposal
was based on the argument that the partition function of the SL model is, in fact, a config-
urational partition function that is different from the canonical partition function. Thus,
to make the model correct an additional partition function Qint(T, n0, {ni}) that depends
only on internal degrees of freedom should be multiplied with the configurational partition
function.
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In 2017, von Konigslow et al. [197] showed that the correction proposed by Neau contains
a problem that makes her correction implausible. The Neau correction was based on a
critical assumption that the number of holes n0 in the system is independent of the volume
of the system. However, due to the incompressibility of lattice, the number of holes must
depend on the volume of system i.e. n0 = n0(V ) because the number of holes dictates
expansion of the system. Consequently, the partition function proposed by Neau should
result in a different equation of state.

Assumptions:

The model proposed by Sanchez and Lacombe has two major simplifications.

1. It is based on an artificial lattice i.e. molecular segments are only allowed to take
specific positions in the system.

2. Molecules are considered to be infinitely flexible i.e. there is no energy plenty asso-
ciated with the flexing of molecular segments.

The first assumption had been addressed in 2017 when SL-EOS was re-derived by using
an off-lattice model Ref. [197]. Thus, the off-lattice SL model is discussed below.

2.7.2 Off-Lattice SL-EOS

Since the original SL-EOS is based on artificial lattice so von Konigslow et al. proposed
an off-lattice treatment to derive SL-EOS [197]. The present research is an extension of
this off-lattice SL model so the specific details of the model are outlined with the proposed
model in chapter 3. Thus here only a rudimentary outline is presented. The main features
of the off-lattice SL-EOS are the same as on-lattice SL-EOS. The off-lattice model also
divides polymer molecules into small segments having finite constant volume, segment-
segment interactions are assumed to be short-ranged and constant, artificial holes are also
included to account for finite thermal expansion of the system. The holes are assumed
to be a distinct chemical species that offer no interactions. The volume of holes is also
assumed to be constant so the volume of the system is controlled by the number of holes
in the system. Following the original SL model, this model also ignores the rotational
and vibrational degrees of freedom. Moreover, the model does not focus on structural
details of molecules and their finite flexibility. Apart from the model, there are also novel
peripheral technical arguments made by von Konigslow et al. [197]. For instance, to avoid
inconsistencies in the multicomponent mixtures von Konigslow et al. assumed mixture
hole volume to be constant at all compositions while the original SL model assumes that
the mixture hole volume is a function of the composition of constituting species.
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Advantages:

The advantages of this model are the same as that of the on-lattice model. However,
advantages particularly important for the present work are re-mentioned below,

1. The model is successful in predicting the phase behaviour of binary polymer-solvent
mixtures.

2. Holes volumes are assumed to be constant and arbitrary mixing rules are discarded.

3. The model successfully predicts solubility of binary and ternary polymer-solvent mix-
tures.

4. The off-lattice SL model fits swelling data with moderate accuracy.

5. The model is equally applicable to polymers as well as solvents in the fluid phase.

Limitations:

The limitations of this model are the same as that of the on-lattice model. However,
limitations particularly important for the present work are re-mentioned below,

1. SL model avoids internal degrees of freedom of molecules, especially vibrational and
rotational degrees of freedom of polymer segments. Thus, SL-EOS cannot predict
heat capacities of fluids because the neglected degrees of freedom absorb significant
heat [129]. These degrees of freedom only depend on the temperature of the system
and thus do not affect the PVT behaviour of the system.

2. SL model cannot predict glass transition and retrograde vitrification behaviour of
polymers because the model ignores the finite flexing energy of polymer molecules
[23].

Since the off-lattice model was not generalized to incorporate finite flexibility of polymer
molecules so the primary focus of the present research is to accomplish this generalization.
The flexibility of molecules plays a significant role in the determination of glass transition
and retrograde vitrification behaviour of polymers. Thus, the success of the proposed
model is examined by predicting the glass transition temperature versus pressure behaviour
of pure polymeric systems and the retrograde vitrification behaviour of binary solvent-
polymer mixtures. The infinitely flexible off-lattice SL model [197] is incapable of predicting
these behaviours.

The literature discussed above covers only one aspect of the present work. Since the goal
of the research is to predict the glass transition temperature versus pressure behaviour of
polymeric systems thus an overview of glass transition theories is also necessary.
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2.8 The Glass Transition

The true nature of the glassy state and the physics of glass formation are still unknown so
it is an active area of research. Researchers usually define glass transition based on two
competing perspectives. One perspective assumes that the glass transition is a thermody-
namic second-order transition while the other perspective assumes that the glass transition
is a kinetic phenomenon [64, 77, 183]. The glass transition temperature is usually denoted
by Tg.

It is observed that for polymeric systems the behaviour of V-T curves at constant pressure
departs from equilibrium line at a temperature where the characteristic time of molecu-
lar motion becomes greater than the time scale of experiments [116]. This change in the
behaviour of systems from liquid to glassy also affects the thermodynamics of systems,
especially, heat capacities of systems show a discontinuous behaviour at their glass transi-
tion temperatures [16]. The values of heat capacities suddenly drop across glass transitions
and the changes in heat capacities are not found to be a function of the time-scale of ex-
periments. Consequently, along with kinetic reasons glass transitions should also involve
thermodynamic transitions. When a glassy state is obtained by cooling a polymer liq-
uid the non-equilibrium glassy state slowly evolves towards an equilibrium volume of the
system. This also accompanies changes in the mechanical properties (for instance creep
compliance) of the system [97]. This phenomenon is called physical ageing. The kinetics
of glass transitions is beyond the scope of this study. Thus, only the thermodynamics of
glass transitions is discussed below.

2.8.1 The Kauzmann Paradox

Kauzmann paradox [88] is central to study the thermodynamics of glassy states. In 1948,
Kauzmann showed that for glass-forming substances extrapolation of thermodynamic prop-
erties of supercooled liquids to low temperatures (but above 0K) result in values less than
the corresponding values of their thermodynamically stable crystalline solids [88]. This
trend was not specific to entropy but other thermodynamic properties like volume, en-
thalpy, etc. also revealed this anomalous behaviour. Consequently, he argued that the
glass transition cannot be thermodynamic. Thus, he presented an alternative explana-
tion of the glass transition by extending the liquid model of Mott and Gurney [122]. The
model assumes liquid states as being composed of small crystallites. The orientation of
crystallites is assumed to be the driving force of the entropy of the system that in turn
drives the glass formation of the system. As a result, the model revealed that at a cer-
tain temperature the rate of crystallization of supercooled liquids decreases to an extent
at which the time required for crystallization exceeds experimental time scales i.e. glassy
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state is achieved. Thus, the temperature was termed as the pseudo-critical temperature.
The model was successful to explain the experimental observation that thermodynamic
properties of liquid state when extrapolated to low temperatures become smaller than cor-
responding crystalline state values. Despite the Kauzmann argument that glass transition
is a purely kinetic phenomenon there is still significant debate in the physics community
over the thermodynamic interpretation of glass formation.

2.8.2 Glass Transition Versus Second-Order Transition:

The behaviour of thermodynamic properties at glass transition temperatures shows a dis-
continuity in heat capacity while volume, entropy and enthalpy remain continuous [154].
Thus, glass transitions can be characterized as second-order transitions with an exception
that true second-order transition temperatures do not depend on the time scale of exper-
iments, however, glass transition temperatures decrease with the increasing time scale of
experiments.

Prigogine-Defay [29] derived a ratio to check the validity of the claim that the glass tran-
sition is a second-order thermodynamic transition. It is given as,

R =
∆k∆CP
TV (∆α)2

= 1, (2.34)

where R = 1 corresponds to the second-order transition. It is observed that if thermody-
namic data of glasses having the same glass formation histories is utilized then the ratio is
indeed equal to be 1. However, if thermodynamic data of glasses having different glass for-
mation histories is utilized then the ratio does not become equal to 1 [60,117,138]. Besides,
the glass transition temperature also depends on the path of glass formation (i.e. heat-
ing or cooling) [116]. In short, even though the glass transition is a kinetic phenomenon
there are possibilities to work on the glass transition as if it is a pure thermodynamic
second-order transition.

2.8.3 Gibbs DiMarzio Theory

Gibbs-DiMarzio theory [35, 61, 62] offers a solution to the Kauzmann paradox [88]. It is
based on the Flory-Huggins lattice theory of polymer mixtures [48, 83]. The theory takes
several factors into consideration including chain connectivity, chain stiffness and degree
of polymerization (chain length). The model considers n number of polymer chains of a
degree of polymerization x on a lattice with coordination number z. The lattice has n0
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holes (or vacant sites). The energy required to create a hole is assumed to be proportional
to the bond energy because it is assumed that the creation of holes results in broken inter-
molecular bonds. Two energy states, flexed and unflexed, are also considered to account
for the shape of molecules. The unflexed state is assumed to have energy ε1 and the flexed
state is assumed to have energy ε2. Thus, the required energy to flex a bond from its lowest
state is ∆ε = ε2 − ε1. The fraction of bonds in the flexed state is assumed to be f . The
fraction of flexed bonds f and the number of holes n0 are assumed to be functions of ener-
gies [33]. The partition function of the model was calculated by using the Flory-Huggins
method [118].

Consequently, the model revealed that [35,61,62] the configurational entropy of the system
becomes zero at a second-order thermodynamic transition temperature T2. This implies
that extrapolation of thermodynamics variables from temperatures above the glass tran-
sition to temperatures below the glass transition is not allowed because the second-order
transition at temperature T2 causes a discontinuity in the corresponding thermodynamic
variables (i.e. S−T curve). This provides a solution to Kauzmann paradox [88] because it
explains the Kauzmann observations by using thermodynamic arguments instead of kinetic
arguments.

The decrease in configurational entropy of the model with the decreasing temperature is
due to two reasons. First, as temperature decreases the volume of the system decreases.
This implies that the number of holes in the system should decrease thus entropy should
also decrease. Second, decreasing temperature results in the decreasing number of flexed
bonds thus entropy of the system should decrease.

Gibbs and DiMarzio argued that the temperature T2 corresponds to the glass transition
temperature Tg [35,61,62]. In other words, the Gibbs DiMarzio theory asserts that glassy
state is a state of matter for the case of non-crystallizing materials, just like solid, liquid or
gas state. Thus kinetically measured glass transition temperature Tg corresponds to ther-
modynamic second-order transition temperature T2 where configurational entropy of the
system becomes zero. This is called the Gibbs-DiMarzio criterion. Gibbs-DiMarzio theory
is found to be in excellent agreement with experimental data [143]. Besides, predictions
of the change in heat capacities across glass transitions from Gibbs DiMarzio theory are
also compared with experimental data by several authors Refs. [11, 76]. Moreover, since
the model does not incorporate lattice vibration so DiMarzio and Dowell [34] later added
a term to accommodate lattice vibration effects.
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2.8.4 Free Volume Theory and Simha-Somcynsky Hole Model

Free volume theory was initially proposed to explain the dependence of viscosity of liq-
uids on temperature [8, 38]. Later, the theory was then extended to discuss polymer
melts [54, 55, 57, 204]. Williams, Landel and Ferry [204] developed an empirical relation,
called the WLF equation, by allowing the free volume to have a linear dependence on
temperature. WLF equation was capable of predicting changes in viscoelastic properties
of polymers above glass transition temperatures. WLF equation predicts a steep increase
in viscosity of polymers near glass transition temperatures. This indicates that free vol-
ume influences the mobility of liquids that in return defines the glass transition behaviour
of polymers [116]. Later, WLF model has been further extended to account for pressure
dependence of glass transition [46, 119–121]. WLF equation was found to have excel-
lent predictions over a wide range of temperatures and pressures but there are still some
exceptions [94]. Therefore, the significance of free volume in glass transitions is not well-
established. The criticism on free volume theory is based on the fact that there is no
clear definition of free volume in the WLF equation and the free volume is also treated
as a fitting parameter in the equation [38–40, 116]. However, equations similar to the free
volume theory can also be derived by using the Gibbs-DiMarzio model of configurational
entropy.

Kauzmann paradox can also be resolved by using the argument that molecular mobility
depends on the free volume of the system as follows. Suppose the free volume of a system
is decreased by decreasing the temperature of the system. Since decreasing free volume
also decrease molecular mobility, thus at some point, the time for molecular rearrange-
ment should exceed the time scale of experiments. Consequently, equilibrium cannot be
achieved [116]. Moreover, since the viscosity of the system dictates the time required for
rearrangement of molecules, therefore, the free volume model correctly predicts infinite vis-
cosity at zero free volume. Thus, the free volume concept offers a solution to the Kauzmann
paradox based on the kinetic explanation.

Several ideas have been developed to quantitatively explain free volume on a molecular
basis [64, 77, 183]. For instance, Simha-Somcynsky hole model [172, 175] as already dis-
cussed in section 2.6.3 offers a quantitative definition of free volume. In that section, the
emphasis was given on the PVT behaviour of fluids. However, SS-EOS has a much broader
application as it can be used for the glassy state and describes glass transition as a kinetic
phenomenon. Unfortunately, the SS model cannot accurately predict entropy and energy
of the system. Consequently, predictions of the heat capacity of liquid and glassy polymers
from the SS model are also poor [64,116].
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2.8.5 The Condo Model

In 1992, Condo et al. [23] presented a model to predict glass transition temperature versus
pressure behaviour of pure polymers and binary mixtures. The model combines lattice-
fluid model [50,134,135,164,165] and Gibbs DiMarzio criterion [36,62] into a single theory
to predict glass transition temperatures. In the Condo model, the entropy of polymeric
systems also becomes negative at sufficiently low but finite temperatures. Thus, following
Gibbs DiMarzio, Condo et al. also argued that the negative entropy indicates the onset of
glass transitions in polymeric systems. Consequently, by using the Gibbs DiMarzio criterion
they predicted the glass transition temperature versus pressure behaviour of polymeric
systems. Moreover, several authors including Condo et al. [23] have argued that theoretical
models predict ideal glass transition temperatures that can only match with infinitely slow
cooling experiments, however, in reality, experiments are performed at finite cooling rates.
Thus, ideal/theoretical glass transition temperatures tend to be lower than experimental
glass transition temperatures [37]. To ignore this problem, Condo assumed that the relation
between entropy and theoretical glass transition temperature is the same as the relation
between entropy and experimental glass transition temperature. A broad overview of the
Condo model is discussed below.

In section 2.7 it was highlighted that the lattice-based SL model is based on two assump-
tions. The second assumption, i.e. polymer molecules are infinitely flexible, is not present
in the Condo model. However, the first assumption of artificial lattice still persists in the
Condo model. In fact, the Condo model [23] also yields SL-EOS, so it can be regarded
as an extension of lattice-fluid SL model that considers polymer molecules to be finitely
flexible. To account for finite flexibility of polymer molecules, the Condo model assigns
two energy states, a ground unflexed state of zero energy and an excited flexed state of
energy εk of molecules of species k. In the model only two species were assumed with
k = 1, 2. Designate the number of molecules of species k by nk and divide each molecule
of species k into Nk segments (or mers). The lattice coordination number is z and the
number of holes (empty sites) in the lattice are n0. By using the mean-field approximation
and assuming a large coordination number limit, Condo et al. calculated the number of
configurations and thus the Gibbs free energy G of the system. A new parameter fk was
also introduced in the model to represent the fraction of segments in the excited/flexed
state. Since molecules have rk − 2 bonds so the number of bonds in the excited state are
fk(rk − 2) and the number of bonds in the ground state are (1 − fk)(rk − 2). The model
defines reduced density (i.e. fraction of occupied states) as,
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ρ̃ =
N1n1 +N2n2

n0 +N1n1 +N2n2

≡ nN

n0 + nN
, (2.35)

where,

n = n1 + n2, (2.36)

xk =
nk
n
, (2.37)

N = x1N1 + x2N2. (2.38)

The model also defines composition fraction φk as,

φk =
Nknk
Nn

, (2.39)

1

N
=
φ1

N1

+
φ2

N2

. (2.40)

Since, the lattice has coordination number z so the flexed state can have z−2 degenerated
states of the same energy εk whereas the unflexed state is non-degenerate. In pure systems,
the energy required to generate a vacancy is assumed to be ε∗kk. For binary mixtures, binary
interaction parameters are also introduced as,

ε∗12 = ζ12(ε
∗
11ε
∗
22)

1/2, (2.41)

X12 =
ε∗11 + ε∗22 − 2ε∗12

kBT
. (2.42)

Thus, the energy required to create a vacancy in binary mixtures under the mean-field
approximation is,

ε∗ = φ1ε
∗
11 + φ2ε

∗
22 − φ1φ2kBTX12. (2.43)

At equilibrium, the fraction of excited bonds are,
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fk =
(z − 2)e−εk/kBT

1 + (z − 2)e−εk/kBT
. (2.44)

The volume of each lattice site of pure systems of species k = 1, 2 is assumed to be v∗k.
In addition, following mixing rule is also assumed to give the volume v∗ of lattice site of
binary mixture,

v∗ = φ1v
∗
1 + φ2v

∗
2. (2.45)

Thus the volume of binary mixture is,

V = (n0 +Nn)v∗. (2.46)

With these assertions the energy of binary mixture is found to be,

E = −Nnρ̃ε∗ + n1(N1 − 2)f1ε1 + n2(N2 − 2)f2ε2. (2.47)

The entropy of binary mixture is found to be,

− S

kB
= Nn

[
(ṽ − 1) ln (1− ρ̃) +

ln ρ̃

N
+

(
φ1

N1

)
ln

(
φ1

N1

)
+

(
φ2

N2

)
ln

(
φ2

N2

)
+ 1 +

ln (2/z)− 1

N

+

(
φ1

N1

)
(N1 − 2)

{
ln (1− f1)− f1

ε1
kBT

}
+

(
φ2

N2

)
(N2 − 2)

{
ln (1− f2)− f2

ε2
kBT

}]
.

(2.48)

For binary solvent-polymer mixture with solvent (small molecules) denoted as species k =
1, the chemical potential of solvent µ1 in mixed-phase is [23,165],

µ1

kBT
= lnφ1 +

(
1− N1

N2

)
φ2 +N1ρ̃X12φ

2
2 +N1

[
(−ρ̃+ P̃1ṽ)

T̃1
+ (ṽ − 1) ln (1− ρ̃) +

ln ρ̃

N1

]
,

(2.49)
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where, ṽ = 1/ρ̃, P̃1 = P/P ∗1 , and T̃1 = T/T ∗1 . To obtain the chemical potential of solvent
in the pure solvent phase set φ2 = 0,

µ0
1

kBT
= N1

[
(−ρ̃1 + P̃1ṽ1)

T̃1
+ (ṽ1 − 1) ln (1− ρ̃1) +

ln ρ̃1
N1

]
, (2.50)

where, ρ̃1 = ρ/ρ∗1, and ṽ1 = 1/ρ̃1. The condition of chemical equilibrium implies µ1 = µ0
1.

The Condo model assumes solvent molecules to be infinitely flexible i.e. ε1 = 0. Moreover,
for binary mixtures, Condo et al. argued that mixture entropy becomes zero at the glass
transition temperature by following the Gibbs DiMarzio model [36]. However, some authors
tend to assume that for binary mixtures the pure polymer entropy will be zero [24] at the
glass transition temperature.

The pure-component characteristic parameters P ∗k , T ∗k and ρ∗k can be determined by using
PVT data of pure systems. For polymer species (k = 2) the value of z and ε2 are regressed
by using two experimental values, i.e. the glass transition temperature Tg at atmospheric
pressure and the slope of Tg(P ) curve (i.e. dTg/dP ). By using these two values a straight
line can be plotted in the Tg(P ) domain. On the other hand, the theoretical Tg(P ) relation
can be obtained by setting S(Tg) = 0 in Eq. 2.48. Thus, regression for z and ε2 can be
carried out by fitting the Tg(P ) relation on the straight line in Tg(P ) domain. Finally, to
obtain ζ12 solubility data is used by Condo et al. [23]. Theoretical solubility is calculated
by simultaneously solving the condition of chemical equilibrium µ1 = µ0

1, the SL-EOS in
pure solvent phase and the SL-EOS in mixed-phase.

Thus, Condo et al. identified four fundamental Tg(P ) behaviours in binary solvent-polymer
mixtures as a function of the solubility of solvents in mixed-phase, the flexibility of polymer
molecules, and the critical temperature of solvents. They also argued that the Tg(P )
behaviours of binary mixtures mainly depend on the binary interaction energy coefficient
ζ12 and the critical temperature of solvents.

Advantages:

1. The model successfully describes thermodynamic properties and phase equilibrium
of binary solvent-polymer mixtures.

2. The model correctly predicts depression of the glass transition temperature of poly-
mers as a function of the pressure of solvents in the liquid, gas or supercritical
phase [22].
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3. Model predicts four different types of Tg(P ) behaviours of binary mixtures including
retrograde vitrification phenomenon.

4. The retrograde vitrification phenomenon has been proved through experiments on
the binary PMMA/CO2 mixture [21].

5. The Condo model correctly predicts the dependence of glass transition temperature
on the sorption of solvent in polymers.

6. To regress unknown parameters for pure polymeric systems the model requires only
two experimental values, i.e. Tg at atmospheric pressure and dTg/dP .

Limitations:

1. It is based on an artificial lattice.

2. The equation of entropy of the Condo model depends on the lattice coordination
number. Since the lattice is artificial so the model is exposed to serious criticism
from the physics community.

3. It was found that at high coordination numbers entropy ceases to become negative.
This violates the Gibbs DiMarzio criterion [6, 206,207].

4. The model can only be used for polymers having linear Tg(P ) behaviour.

5. Significant Tg(P ) data is required to evaluate the correct value of dTg/dP .

The Condo model inspires to extend the off-lattice SL model by von Konigslow et al. [197]
in a similar fashion. In this manner, the resulting model will be free from the assumptions
of artificial lattice and infinitely flexible molecules. The proposed model should be capable
of predicting the glass transition temperature versus pressure and retrograde vitrification
behaviour of polymeric systems. Consequently, in this work, a detailed comparison has
been presented between the proposed model and the Condo model.

Moreover, since several authors [6,206,207] have argued that the Gibbs DiMarzio criterion
is a consequence of using artificial lattice because at sufficiently high lattice numbers the
entropy of the system ceases to become negative thus with the proposed model the validity
of this claim can be examined.
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Chapter 3

Theory

3.1 Introduction

To derive thermodynamic properties of polymeric systems based on principles of statistical
mechanics the first step is to hypothesize a simplified model of the real system. To accu-
rately describe real polymeric systems a huge number of parameters are usually required.
However, many features of the system tend to produce only a minor effect on thermody-
namic properties so they can be neglected. Furthermore, if one is only interested to predict
the properties within a certain range of conditions then several additional details of the
system can be approximated to further simplify the model. The knowledge of what factors
significantly influence the properties of the system and what factors do not contribute and
thus can be neglected comes from experiments, by studying prior models in the literature,
and even a result of educated guesses. Such simplifications are necessary to simplify ana-
lytical, computational manipulations, to reduce the amount of experimental data needed
to regress fitting parameters of the model, to provide straight insight on the physics of
the system, and to easily guess the response of the system. Once an appropriate model is
identified, the next step is to derive an expression of the partition function of the system by
using combinatorics. Then, from the partition function, other thermodynamic properties
can be derived by using appropriate partial derivatives of the partition function [186].

To calculate partition functions of models, the number of possible states of systems needs
to be evaluated. Even with a simplified model, more approximations are usually required
based on standard combinatorics rules. This task is especially difficult for amorphous
systems. However, if one assumes that the polymeric fluids have crystalline structures
the calculation greatly simplifies but at the cost of the accuracy of predictions from the
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model because the number of possible states in amorphous fluids is significantly higher
than the number of possible states in lattice fluids [112]. Finally, the assumptions of the
model can be verified by analyzing the accuracy of predictions from the model as well
as by critically examining that the results obey all fundamental principles of thermody-
namics. From past literature, it is obvious that lattice fluid models are indeed reasonably
accurate and powerful enough to capture the physics of some systems. However, in 2017,
von Konigslow [197] proposed an off-lattice treatment of polymer fluids. The model was
successful in re-deriving the Sanchez Lacombe equation of state by using a continuum
statistical model. Thus, the present research is inspired by the off-lattice model. For SL
models, it is a usual practice to separately discuss pure polymeric systems and multicom-
ponent systems because multicomponent systems require mixing rules that are responsible
for thermodynamic inconsistencies in multicomponent models, however, pure fluid models
are free from any inconsistency [95, 164,165,195,197]. Thus, the same practice is followed
in the present work.

In addition, the aim of the present work is to predict the glass transition temperature
versus pressure behaviour of pure polymeric systems and binary polymer-solvent mixtures
as discussed in chapter 2. Thus, the present model proposes to extend the off-lattice SL-
EOS [197] to the case of semi-flexible molecules. This extension is inspired by the lattice-
fluid model of Condo et al. [23]. In the off-lattice SL-EOS, it was assumed that molecules
can take any configuration without any constraint on their shapes. Thus, molecules had no
stiffness. However, now, in this model, it is assumed that each segment of molecules can be
in two states of stiffness, the ground state having zero energy and the excited state having
a finite value of energy. The excited state is also considered to be degenerate i.e. multiple
states with equal energies. Moreover, to take account of finite compressibility of the fluid
system it is assumed that the fluid system also contains artificial holes (or vacancies) that
offer no interactions.

3.2 Description of Model for Multicomponent Fluid

Mixtures

Consider a multicomponent system at pressure P , volume V and temperature T . Let n0 be
the number of vacancies (or holes) in the system and nk be the total number of molecules
of species k. Each molecule of species k is divided into Nk segments with each segment
having volume vk. Since holes cannot be divided so for holes N0 = 1 while v0 is the volume
of each hole. To account for the finite flexibility of molecules assign internal degrees of
freedom (called flexing states) to each segment of all molecules of the system. Let Ωs,i be
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the flexing state of the ith segment of a molecule of species k. Also, denote the set of all the
flexing states of all segments of all molecules of all species k excluding holes by {Ωs,k 6=0}.
Moreover, let rs,i be the position of the ith segment of a molecule of species k and denote
the set of all the positions of all segments of all molecules of all species k excluding holes by
{rs,k 6=0}. Consequently, the potential energy U({rs,k 6=0}, {Ωs,k 6=0}) will be a function of the
positions of all segments {rs,k 6=0} and the flexing states of all segments {Ωs,k 6=0}. Finally,
let pi,k be the momentum the center of mass of the ith molecule of species k and denote the
set of all the momentums of the centers of mass of all molecules of all species k excluding
holes by {pk 6=0}.

3.3 Hamiltonian of Multicomponent Model

The Hamiltonian H ≡ H({pk 6=0}, {rs,k 6=0}, {Ωs,k 6=0}) of the system discussed in section 3.2
will be,

H =
∑
k

nk∑
i=1

p2
i,k

2mk

+ U({rs,k 6=0}, {Ωs,k 6=0}). (3.1)

The first term in the above expression is the kinetic energy of molecules and the second
term is the potential energy of the system that arises due to interactions and stiffness of
molecules, mk is the molecular mass of kth species and pi,k is the momentum of center of
mass of the ith molecule of species k, while the sum is over all nk molecules of species k.

The instantaneous volume fraction operator φ̂k(r) of species k will depend on positions of
segments {rs} and flexing state of segments {Ωs} of molecules.

φ̂k(r,Ω) ≡ vk

Nknk∑
i=1

δ(r− rs,i)δ(Ω− Ωs,i), (3.2)

where rs,i is the position and Ωs,i is the flexing state of the ith segment of a molecule of
species k and sum is over all Nknk segments of that species. vk is the volume of one segment
of species k. Assume that holes and molecules completely fill the volume of the system,
therefore,

0∑
k

φ̂k(r,Ω) = 1, (3.3)

where the superscript 0 over the sum indicates that holes are included in the summation.
Assume that the potential U({rs,k 6=0}, {Ωs,k 6=0}) can be split into two parts, one part is the
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potential due to position of segments U1({rs,k 6=0}) while other part is the potential due to
flexing of segments U2({Ωs,k 6=0}),

U({rs,k 6=0}, {Ωs,k 6=0}) = U1({rs,k 6=0}) + U2({Ωs,k 6=0}). (3.4)

Lets expand these potentials in the following manner,

U1({rs,k 6=0}) =
1

2

∑
k′′k′

Nk′nk′∑
i=1

Nk′′nk′′∑
j=1

u1,k′′k′(|rs,i − rs,j|), (3.5)

U2({Ωs,k 6=0}) =
∑
k

fk

Nknk∑
i=1

u2,k(Ωs,i), (3.6)

In above expression of U2({Ωs,k 6=0}) we have multiplied the summation over the kth species
with the fraction of flexed segments fk of that species because only excited segments will
contribute to U2({Ωs,k 6=0}). Thus, Eq. 3.4 becomes,

U({rs,k 6=0}, {Ωs,k 6=0}) =
1

2

∑
k′′k′

Nk′nk′∑
i=1

Nk′′nk′′∑
j=1

u1,k′′k′(|rs,i − rs,j|) +
∑
k

fk

Nknk∑
i=1

u2,k(Ωs,i). (3.7)

Following von Konigslow et al., U1({rs,k 6=0}) can be written in terms of volume fraction
operators as,

U1({rs,k 6=0}) =
1

2

∑
k′′k′

1

vk′′vk′

∫
dΩdΩ′drdr′φ̂k′′(r,Ω)u1,k′′k′(|r− r′|)φ̂k′(r′,Ω′). (3.8)

In addition, expand U2({Ωs,k 6=0}) in terms of volume fraction operators as,

U2({Ωs,k 6=0}) =
∑
k

fk
vk

∫
dΩdrφ̂k(r,Ω)u2,k(Ω). (3.9)

Before moving forward, we can first verify Eqs. 3.8 and 3.9. Consider U1({rs,k 6=0}) in

equation 3.8 and substitute the expression of volume fraction operator φ̂k(r,Ω) from Eq.
3.2,

U1({rs,k 6=0}) =
1

2

∑
k′′k′

��vk′′��vk′

��vk′′��vk′

Nk′nk′∑
i=1

Nk′′nk′′∑
j=1

∫
dΩdΩ′drdr′δ(r− rs,i)δ(Ω− Ωs,i) (3.10)

× u1,k′′k′(|r− r′|)δ(r′ − rs,j)δ(Ω
′ − Ωs,j)

=
1

2

∑
k′′k′

Nk′nk′∑
i=1

Nk′′nk′′∑
j=1

u1,k′′k′(|rs,i − rs,j|), (3.11)
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which is same as Eq. 3.5. Now, consider U2({Ωs,k 6=0}) in equation 3.9 and substitute the

expression of volume fraction operator φ̂k(r,Ω) from Eq. 3.2,

U2({Ωs,k 6=0}) =
∑
k

fk��vk

��vk

Nknk∑
i=1

∫
dΩdrδ(r− rs,i)δ(Ω− Ωs,i)u2,k(Ω) (3.12)

=
∑
k

fk

Nknk∑
i=1

u2,k(Ωs,i), (3.13)

which is same as Eq. 3.6. If we assume that each segment can move independently in a
random manner i.e. random mixing then we can replace instantaneous volume fraction
operators φ̂k(r,Ω) in Eqs. 3.8 and 3.9 with random mixing mean-field volume fractions φk,

φk ≡
1

V

∫
dr〈φ̂k(r)〉, (3.14)

where 〈φ̂(r)〉 are ensemble average volume fractions and V is the volume of the multicom-
ponent system. Under this random mixing mean-field assumption Eq. 3.3 becomes,

0∑
k

φk = 1, (3.15)

where

φ0 =
n0v0
V

, (3.16)

φk =
Nknkvk
V

. (3.17)

Thus, Eq. 3.1 becomes,

H =
∑
k

nk∑
i=1

p2
i

2mk

+
1

2

∑
k′′k′

φk′′φk′

vk′′vk′

∫
dΩdΩ′drdr′u1,k′′k′(|r− r′|) (3.18)

+
∑
k

fkφk
vk

∫
dΩdru2,k(Ω). (3.19)

Following von Konigslow et al. [197] we introduce average interaction parameters ε1,kk′ as
follows,

ε1,kk′ = −vr
V

1

2vkvk′

∫
dΩdΩ′drdr′u1,kk′(|r− r′|). (3.20)
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In addition, define average flexing parameters ε2,k as follows,

ε2,k ≡
vr
V

1

vk

∫
dΩdru2,k(Ω), (3.21)

where, vr is an arbitrary reference volume. Also, assume that average interaction ener-
gies and average flexing energies are constant with respect to volume V because these
interactions are short-ranged. By using these definitions Eq. 3.19 becomes,

H =
∑
k

nk∑
i=1

p2
i

2mk

− V

vr

∑
kk′

φkφk′ε1,kk′ +
V

vr

∑
k

fkφkε2,k. (3.22)

The above expression for the Hamiltonian can be written in a more elaborate form as,

H =
∑
k

nk∑
i=1

p2
i

2mk

− V

vr

∑
kk′

φkφk′ε1,kk′︸ ︷︷ ︸
Hp

+
V

vr

∑
k

fkφkε2,k︸ ︷︷ ︸
Hex

+
V

vr

∑
k

(1− fk)φk���*
0ε3,k︸ ︷︷ ︸

Hg

+
V

vr
φ2
0��>

0
ε0︸ ︷︷ ︸

Hh

,

(3.23)

where, Hp is the energy of motion of centers of mass of molecules plus the energy of
molecular interactions, Hex is the energy of excited state segments, Hg is the energy of
ground state segments and Hh is the energy of holes in the system. Since holes are artificial
and have no interactions, ε0 is zero. In addition, flexing energies of ground state (unflexed)
segments ε3,k are assumed zero following convention. The above expression shows that
the Hamiltonian H of the complete system is the sum of Hamiltonians of the above four
independent sub-systems. This decoupling into sub-systems is the consequence of the
mean-field approximation.

3.4 Partition Function

The general expression for the partition function is,

Q =
∑
{µ}

e
− H
kBT , (3.24)

where {µ} represents the set of all possible microstates that are allowed within system
constraints, kB is Boltzmann’s constant and T is the temperature of the system. Since H
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can be written as sum Hamiltonians of sub-system, we can split the exponential and write
Eq. 3.24 as,

Q = Qp ·Qh ·Qex ·Qg. (3.25)

Lets focus on the details of these sub-systems and find their corresponding partition func-
tions.

3.4.1 Partition Function for Interactions and Motions of Molecules
Qp

The partition function of interactions and motions of molecules should be,

Qp =

∫
d{pk}d{rk}∏
k (nk!h3nk)

e
− Hp
kBT , (3.26)

where,

Hp =
∑
k

nk∑
i=1

p2
i

2mk

− V

vr

∑
kk′

φkφk′ε1,kk′ . (3.27)

Since molecules can have continuous microstates so the discrete summation is replaced by
an integral over all possible microstates i.e. the set of position vectors {rk} and the set
of momentum vectors {pk} of centers of mass of each molecule. Moreover, molecules of
same species are indistinguishable thus factors nk! are introduced to avoid over counting.
Finally, h is Planck’s constant that is introduced 3nk times for each species to keep the
partition function dimensionless.

We can now integrate Eq. 3.26 by splitting the exponential into kinetic energies and
potential energies and by noting that V

vr

∑
kk′ φkφk′ε1,kk′ is constant because of the mean-

field and random mixing approximations. Integration over position {rk} of centers of
mass of each molecule will give volume V because each molecule can explore the complete
volume of the system. Since there are nk molecules of species k so the system’s volume V
is multiplied nk times. Thus,

Qp =
∏
k

(
V nk

nk! Λ3nk
k

)
e
V
vr

∑
kk′

φkφk′ ε1,kk′
kBT , (3.28)
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where Λk are the de Broglie thermal wavelengths that come from the integration over
momentum

∫
d{pk} of all molecules of species k. It is given by,

Λk(T ) =
h√

2πmkkBT
. (3.29)

3.4.2 Partition Function for Holes Qh

Partition function for holes is,

Qh =

∫
d{p0}d{r0}
n0!h3n0

e
− Hh
kBT , (3.30)

where,

Hh =
V

vr
φ2
0��>

0
ε0 = 0. (3.31)

In the above expression,
∫
d{p0} are not integrals over the momenta of holes. Holes are

artificial and have no mass or momentum. These integrals are introduced to keep the
partition function dimensionless.

We integrate Eq. 3.30 by putting Hh = 0 and as before and notice that integration over
position {r0} of each hole should give the volume V of the system. Since there are n0 holes
so volume V is multiplied n0 times. Thus,

Qh =
V n0

n0! Λ3n0
0

, (3.32)

where Λ0 is the normalization constant that comes from integrals
∫
{p0}, keeping the

partition function dimensionless. The above partition function can abstractly be considered
as the partition function for an ideal gas of holes (although Λ0 is not a thermal wavelength)
[79].

3.4.3 Partition Function for Flexed/Excited State Segments Qex

Microstates of excited segments of the system should be discrete. So the partition function
of this sub-system will have a summation over microstates instead of integrations. Also
note that due to the mean-field approximation, the Hamiltonian of excited segments of the
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complete system Hex = V
vr

∑
k fkφkε2,k can be considered as the sum of Hamiltonians of

excited segments of individual species Hex
k .

Hex =
∑
k

Hex
k , (3.33)

where

Hex
k =

V

vr
fkφkε2,k. (3.34)

Moreover, individual molecules of species k are also independent from other molecules.
Thus Hamiltonians Hex,m

k of excited segments of individual molecules of species k are,

Hex,m
k =

V

vr

fkφkε2,k
nk

. (3.35)

The above expression has been written by dividing the energy Hex
k of excited state segments

of species k equally into nk molecules of that species. Moreover, within each molecule there
are fkNk excited segments so the energy packet Hex,s

k that is available to each excited
segment within a molecule of species k is given by,

Hex,s
k =

Hex,m
k

fkNk

(3.36)

=
V

vr

φkε2,k
Nknk

. (3.37)

Assume that each excited segment of species k has gk different configurations (degeneracy).
Thus, partition functions Qex,s

k of such excited segments within molecules are,

Qex,s
k =

∑
{µ}

e
−
H
ex,s
k
kBT = gke

−
H
ex,s
k
kBT . (3.38)

Thus, partition functions Qex,m
k of excited segments of individual molecules of species k

will be the product of partition functions of excited segments within that molecule of that
species. Therefore,

Qex,m
k =

1

(fkNk)!

fkNk∏
j=1

gke
−
H
ex,s
k
kBT (3.39)

=
1

(fkNk)!
gfkNkk e

−
∑
fkNk

H
ex,s
k

kBT (3.40)

=
1

(fkNk)!
gfkNkk e

−
H
ex,m
k
kBT , (3.41)
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where,

Hex,m
k =

V

vr

fkφkε2,k
nk

. (3.42)

The factor (fkNk)! is included to prevent over counting because the excited segments within
a given molecule are identical. Thus,

Qex,m
k =

1

(fkNk)!
gfkNkk e

− V
vr

fkφk
nk

ε2,k
kBT . (3.43)

Next, the partition function Qex
k of excited segments of species k should be the product of

partition functions of excited segments of individual molecules of that species. Therefore,

Qex
k = [Qex,m

k ]nk (3.44)

=
gfkNknkk

[(fkNk)! ]nk
e
− V
vr

fkφkε2,k
kBT . (3.45)

Finally, the partition function Qex of excited state segments of the complete system is the
product of partition functions of excited segments of individual species.

Qex =
∏
k

Qex
k (3.46)

=
∏
k

(
gfkNknkk

[(fkNk)! ]nk
e
− V
vr

fkφkε2,k
kBT

)
(3.47)

=

(∏
k

gfkNknkk

{(fkNk)! }nk

)
e
− V
vr

∑
k

fkφkε2,k
kBT . (3.48)

3.4.4 Partition Function for Unflexed/Ground State Segments
Qg

Let’s follow the similar reasoning as mentioned for the flexed/excited state segments. Since
microstates of ground state segments are discrete so the partition function will have sum-
mation over microstates instead of integration. Moreover, due to the mean-field approx-
imation, ground state segments of individual molecules of species constitute independent
subsystems having Hamiltonian Hg,m

k = 0. Moreover, within individual molecules of species
k there are (1−fk)Nk ground state segments and thus the energy packet Hg,s

k that is avail-
able to each ground state segment within individual molecules of species k is also zero. In
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addition, assume that each ground state segment has only one configuration (no degener-
acy) and thus partition functions of each ground state segment Qg,s

k within molecules of
species k are,

Qg,s
k =

∑
{µ}

e
−�
��*

0
Hg,s
k

kBT = 1. (3.49)

Thus, partition functions Qg,m
k of ground state segments of individual molecules of kth

species will be the product of partition functions of ground state segments within that
molecule.

Qg,m
k =

1

{(1− fk)Nk}!

(1−fk)Nk∏
j=1

(1) (3.50)

=
1

{(1− fk)Nk}!
, (3.51)

whereas, the factor {(1 − fk)Nk}! is included to prevent over counting because ground
segments within a molecule are identical. Finally, the partition function Qg

k of ground
state segments of species k is equal to the product of all partition functions of ground state
segments of individual molecules of that species.

Qg
k = [Qg,m

k ]nk =
1

[{(1− fk)Nk}! ]nk
. (3.52)

Finally, the partition function Qg of ground state segments of the complete system is the
product of partition functions of ground state segments of individual species.

Qg =
∏
k

Qg
k (3.53)

=
∏
k

1

[{(1− fk)Nk}! ]nk
. (3.54)

Note that the combined partition function QexQg is the partition function due to finite
stiffness of molecules.
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3.4.5 Overall Partition Function of System

Putting the partition functions of all four subsystems in Eq. 3.25,

Q =
∏
k

(
V nk

nk! Λ3nk
k

)
e
V
vr

∑
kk′

φkφk′ ε1,kk′
kBT · V n0

n0! Λ3n0
0

·
∏
k

(
gfkNknkk

{(fkNk)! }nk

)
(3.55)

×e−
V
vr

∑
k

fkφkε2,k
kBT ·

∏
k

1

[{(1− fk)Nk}! ]nk
.

Simplifying,

Q =
V n0

n0! Λ3n0
0

∏
k

[
V nk

nk! Λ3nk
k

gfkNknkk

{(fkNk)! }nk
1

[{(1− fk)Nk}! ]nk

]
e
V
vr

∑
kk′

φkφk′ ε1,kk′
kBT

− V
vr

∑
k

fkφkε2,k
kBT .

(3.56)

The above partition function can be written in more compact form if we abstractly assume
f0 = 0,

Q =
0∏
k

[
V nk

nk! Λ3nk
k

gfkNknkk

[(fkNk)! {(1− fk)Nk}! ]nk

]
· e

V
vr

(∑
kk′ φkφk′ ε1,kk′−

∑
k fkφkε2,k

kBT

)
. (3.57)

3.5 Thermodynamics of Multicomponent Fluids

Thermodynamic properties of the canonical ensemble can be derived in a straight forward
manner by using the partition function Eq. 3.56. In this section, we have derived equations
of free energy, pressure (SL-EOS), entropy, glass transition temperature, internal energy,
isochoric heat capacity, isobaric heat capacity and isobaric expansion coefficient. While
deriving these quantities von Konigslow et al. procedure has been adapted in several
instances.

3.5.1 Free Energy

Helmholtz’s free energy F can be found by using F = −kBT lnQ. After applying Stirling’s
approximation and discarding terms which only consist of constants Nk and/or are linear
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in nk, as such terms only change reference zero of free energy, we have,

F

kBT
= −V

vr

[∑
kk′

ε1,kk′

kBT
φkφk′ −

∑
k

ε2,k
kBT

fkφk

]
+

[
n0 ln

(
n0Λ

3
0

V

)
− n0

]
(3.58)

+
∑
k

[
nk ln

(
nkΛ

3
k

V

)
− nk

]
+
∑
k

Nknk

[
fk ln

{
fk

gk(1− fk)

}
+ ln (1− fk)

]
.

The following term can be added to the above equation because it is linear in nk,∑
k

nk

[
ln

(
Nkvk
Λ3
k

)
+ 1

]
.

Therefore Eq. 3.58 becomes,

F

kBT
= −V

vr

[∑
kk′

ε1,kk′

kBT
φkφk′ −

∑
k

ε2,k
kBT

fkφk

]
+

[
n0 ln

(
n0Λ

3
0

V

)
− n0

]
(3.59)

+
∑
k

[
nk ln

(
Nknkvk
V

)]
+
∑
k

Nknk

[
fk ln

{
fk

gk(1− fk)

}
+ ln (1− fk)

]
.

At equilibrium, fractions of excited segments fk of all species adjust to minimize the free
energy F of the system. Thus, we take the derivative of Eq. 3.59 of free energy F with
respect to fraction fk′ of a particular species k′ and equate to zero. After replacing k′ back
to k, we have,

fk =
gke
−V φkε2,k/NknkvrkBT

1 + gke−V φkε2,k/NknkvrkBT
. (3.60)

To verify the soundness of above expression lets consider two cases. Case(i): Take ε2,k =
0 =⇒ fk = gk

1+gk
, which is true because energy of excited states of species k is same as the

energy ground state, thus, the system tends to equally occupy all states. Since there are gk
configurations of each excited state and only 1 configuration of ground state so fraction of
excited states fk of species k should be equal to fk = Total Configurations of Excited States

Total Number of ConfigurationsofAllStates
.

Case(ii): Take ε2,k →∞ =⇒ fk = 0, which is also true because the energy of the excited
state is infinite, thus, it is very difficult for the system to occupy the excited state at finite
temperatures. Consequently, the fraction of excited states fk of species k is zero.

We will see later in section 3.5.2 that in order to satisfy condition P → 0 as ρ → 0, it is
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necessary to have Λ3
0 = vke [197]. Thus, equation 3.59 becomes,

F

kBT
= −V

vr

[∑
kk′

ε1,kk′

kBT
φkφk′ −

∑
k

ε2,k
kBT

fkφk

]
+
[
n0 ln

(n0v0
V

)]
(3.61)

+
∑
k

[
nk ln

(
Nknkvk
V

)]
+
∑
k

Nknk

[
fk ln

{
fk

gk(1− fk)

}
+ ln (1− fk)

]
.

Following von Konigslow et al. Ref. [197], we define a quantity αk that is the ratio of
volume of a molecule of species k to the reference volume vr,

αk ≡
Nkvk
vr

. (3.62)

Thus, equation 3.61 becomes,

F

kBT
= −V

vr

[∑
kk′

ε1,kk′

kBT
φkφk′ −

∑
k

ε2,k
kBT

fkφk

]
+
V

v0
φ0 lnφ0 (3.63)

+
∑
k

V

vr

φk
αk

lnφk +
∑
k

V φk
vk

[
fk ln

{
fk

gk(1− fk)

}
+ ln (1− fk)

]
.

To write the above expression Eqs. 3.17 and 3.16 have been used. Moreover, Eq. 3.60
becomes,

fk =
gke
−vkε2,k/vrkBT

1 + gke−vkε2,k/vrkBT
. (3.64)

From Eq. 3.64 notice that fractions of excited segments fk are independent of volume V
of the system. From the definitions given in paper by von Konigslow et al [197] the scaled
density is,

ρ̃ ≡
∑
k

φk. (3.65)

Average interaction energy is,

ε∗1 ≡
1

ρ̃

∑
kk′

ε1,kk′φkφk′ . (3.66)

Scaled pressure is,

P̃ ≡ vrP

ε∗1
. (3.67)
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Scaled temperature is,

T̃ ≡ kBT

ε∗1
. (3.68)

Average molecular size r is,

r ≡ 1

ρ̃

∑
k

φk
αk
. (3.69)

From Sanchez and Lacombe paper Ref. [164] we know,

P̃ =
P

P ∗
, (3.70)

T̃ =
T

T ∗
, (3.71)

ρ̃ =
ρ

ρ∗
=
V ∗

V
. (3.72)

Thus, from Eq. 3.65 implies,

V ∗ =
∑
k

Nknkvk. (3.73)

Moreover, the characteristic volume V ∗ was related to the characteristic mass-density ρ∗

as,

ρ∗ =

∑
k nkMk

V ∗
, (3.74)

whereMk is the molecular mass of molecules of species k with Boltzmann constant 8.3145 J/mol.K.
The characteristic specific-volume v∗ is,

v∗ =
1

ρ∗
=

V ∗∑
k nkMk

. (3.75)

Number of moles of species k is,

nk =
mk

Mk

. (3.76)

Following von Konigslow et al. [197] characteristic temperature T ∗ and pressure P ∗ can be
written by using Eqs. 3.68 and 3.67 as,

P ∗ =
ε∗1
vr
, (3.77)

T ∗ =
ε∗1
kB
. (3.78)
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Pure-component characteristic parameters were defined as,

V ∗k = Nknkvk, (3.79)

ρ∗k =
mk

V ∗k
=
nkMk

V ∗k
=

Mk

αkvr
, (3.80)

P ∗k =
ε1,kk
vr

, (3.81)

T ∗k =
ε1,kk
kB

. (3.82)

The above expression of P ∗k has been written by assuming that the reference volume of a
pure system is the same as the reference volume of a mixed system i.e. vr,k = vr,m = vr.

Cross-component interaction energies were defined as,

ε1,kk′ ≡ ζkk′(ε1,kkε1,k′k′)
1/2, k 6= k′ (3.83)

Thus, Eq. 3.66 was expanded,

ε∗1 =
1

ρ̃

∑
kk′
k 6=k′

ε1,kk′φkφk′ +
∑
k

ε1,kkφ
2
k

 . (3.84)

By using these definitions αk from Eq. 3.62 becomes,

αk =
MkP

∗
k

kBρ∗kT
∗
k

. (3.85)

The reference volume for pure systems becomes,

vr,k =
kBT

∗
k

P ∗k
. (3.86)

Pure-component average interaction energy becomes,

ε1,kk = kBT
∗
k . (3.87)

Thus, pure systems can be characterized either by using αk, v0, ε1,kk or, equivalently, by
using P ∗k , T

∗
k , ρ

∗
k.
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Finally, in this study the hole volume v0 for mixtures is taken to be constant — indepen-
dent of volume fractions of the components. This produces inconsistency by which the hole
volume of mixed-phase does not approach to the pure component hole volume in the limit
of vanishing volume fractions of all components of the system except one, as described by
von Konigslow at el. [197].

Let’s introduce some new parameters to characterize the flexing of molecules. Flexing of
molecules is considered completely independent from all other molecules present in the
system so there are no cross interactions. Define characteristic flexing temperatures of
molecules as,

T ∗∗k ≡
ε2,k
kB

. (3.88)

Define characteristic ratios as,

Tr,k ≡
T ∗∗k
T ∗k

=
ε2,k
ε1,kk

, (3.89)

Vr,k ≡
vk
vr
, (3.90)

Nk =
αk
Vr,k

. (3.91)

Also note the following useful relations,

Nknk =
V φk
vk

=
V

vr

Nkφk
αk

. (3.92)

Alternatively,

Nknk =
P ∗kV

∗
k

kBT ∗k

1

Vr,k
=

mkP
∗
k

kBρ∗kT
∗
k

1

Vr,k
=

mkαk
MkVr,k

. (3.93)

Thus, fractions of excited segments from Eq. 3.64 become,

fk =
gke
−Tr,kVr,k/T̃k

1 + gke−Tr,kVr,k/T̃k
. (3.94)

3.5.2 Equation of State

The equation of state can be obtained by using,

P = −
(
∂F

∂V

)
{nk},T

. (3.95)
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We put the expression of free energy from Eq. 3.63 above and note that fraction of excited
segments fk is independent of volume V of the system, φk = Nknkvk/V , αk = Nkvk/vr and
n0 = n0(V ) because of incompressibility condition Eq. 3.15.

vrP

kBT
= −

∑
k

(
1

α0

− 1

αk

)
φk −

1

α0

lnφ0 −
∑
kk′

ε1,kk′

kBT
φkφk′ +

1

α0

[
1− ln

(
Λ3

0

v0

)]
. (3.96)

The above equation of state of a finitely flexible system is the same as Eq.[15] of an infinitely
flexible system in Ref. [197]. Therefore, following Ref. [197] the requirement that P̃ → 0
as ρ̃→ 0 requires Λ3

0 = v0e. Thus,

vrP

kBT
= −

∑
k

(
1

α0

− 1

αk

)
φk −

1

α0

lnφ0 −
∑
kk′

ε1,kk′

kBT
φkφk′ . (3.97)

Moreover, SL-EOS can be obtained by following the same steps mentioned in Ref. [197].
That is, using the definitions described in section 3.5.1 Eq. 3.97 becomes,

ρ̃2 + P̃ + T̃

[(
1

α0

− 1

r

)
ρ̃+

1

α0

ln (1− ρ̃)

]
= 0. (3.98)

Without loss of generality take vr = v0 so that Eq. 3.98 gives SL-EOS,

ρ̃2 + P̃ + T̃

[(
1− 1

r

)
ρ̃+ ln (1− ρ̃)

]
= 0. (3.99)

3.5.3 Entropy

To find an expression of entropy S of the system compare Eq. 3.63 with the standard
definition of free energy F = E − TS,

S

kB
= −V

v0
φ0 lnφ0 −

∑
k

V

vr

φk
αk

lnφk −
∑
k

V φk
vk

[
fk ln

{
fk

gk(1− fk)

}
+ ln (1− fk)

]
.

(3.100)

Put the value of f from equation 3.64 we get,

S

kB
= −V φ0

v0
lnφ0 −

∑
k

V φk
vr

lnφk
αk

+
∑
k

V φk
vr

fkε2,k
kBT

−
∑
k

V φk
vk

ln (1− fk). (3.101)

In the above expression, the first term is translational entropy of holes, the second term
is the translational entropy of molecules. The last two terms represent the configurational
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entropy of the system. Since φ0, φk and fk are always less than 1 so all terms in the
above expression are positive. Thus the entropy of the system is always positive at all
temperatures. However, this is contradictory to the Gibbs DiMarzio criterion for glass
transitions Refs. [36,62] discussed in section 2.8.3. This means that in the Condo model [23]
negative entropy is, in fact, a consequence of using an artificial lattice.

3.5.4 Glass Transition Temperature

As discussed in section 3.5.3, the Gibbs DiMarzio criterion for glass transitions Refs. [36,62]
is incorrect thus an alternate criterion for glass transitions is required. However, the suc-
cess of the Condo model [23] in predicting glass transition temperatures and retrograde
vitrification is very reasonable. Thus, instead of completely discarding the Gibbs DiMarzio
criterion, it can be generalized by proposing that the glass transition occurs at a temper-
ature where entropy of a system becomes a fraction x of the entropy of that system at
infinite temperature. Thus, put S(Tg) ≡ xS∞ = xS(T →∞) in Eq. 3.101 to get,

xS∞
kB

+
Vgφ0,g

v0
lnφ0,g +

∑
k

Vgφk,g
vr

lnφk,g
αk

−
∑
k

Vgφk,g
vr

fk,gε2,k
kBTg

+
∑
k

Vgφk,g
vk

ln (1− fk,g) = 0.

(3.102)

In the above expression, volume V depends on pressure and temperature of the system
through equation of state 3.97. Thus, the above expression is a Tg versus P relation for
multicomponent fluid systems.

3.5.5 Internal Energy

Again compare Eq. 3.63 with F = E − TS to get,

E

kBT
= −V

vr

[∑
kk′

ε1,kk′

kBT
φkφk′ −

∑
k

ε2,k
kBT

fkφk

]
. (3.103)

3.5.6 Isochoric Heat Capacity

Isochoric heat capacity is given by,

CV =
∂E

∂T

∣∣∣∣
{nk},V

. (3.104)
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Putting equation 3.103 in the above definition,

CV
kB

=
∑
k

V φk
vk

(
vk
vr

ε2,k
kBT

)2

fk(1− fk). (3.105)

3.5.7 Isobaric Heat Capacity

Using the definition,

CP = T
∂S

∂T

∣∣∣∣
{nk},P

. (3.106)

Putting entropy from Eq. 3.101,

CP
kB

=
V

vr

(
vrP
kBT

+
∑

kk′
ε1,kk′

kBT
φkφk′

)2[
(
∑

k φk)
(∑

k φk
α0φ0

+ 1
r

)
− 2

∑
kk′

ε1,kk′

kBT
φkφk′

] +
∑
k

V φk
vk

(
vk
vr

ε2,k
kBT

)2

fk(1− fk).

(3.107)

Note, second term in above expression is CV /kB, therefore,

CP − CV
kB

=
V

vr

(
vrP
kBT

+
∑

kk′
ε1,kk′

kBT
φkφk′

)2[
(
∑

k φk)
(∑

k φk
α0φ0

+ 1
r

)
− 2

∑
kk′

ε1,kk′

kBT
φkφk′

] . (3.108)

Moreover, in Eq. 3.107 first term is the heat capacity of a system with infinitely flexible
molecules whereas second term is due to the introduction of finite flexibility in molecules.
At sufficiently low temperatures there will be negligible segments in flexed/excited states.
So, for the low temperature limit the second term vanishes. Thus, the second term can be
regarded as the incremental change in heat capacity ∆CP due to flexing of segments,

∆CP
kB

=
∑
k

V φk
vk

(
vk
vr

ε2,k
kBT

)2

fk(1− fk). (3.109)

In this study only two energy levels have been considered to account for flexing of molecules.
However, real systems may have multiple energy levels. If a more realistic system were con-
sidered in the present study the incremental change in heat capacity ∆CP would sharply
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drops to zero below glass transition temperatures, as observed in quasi-statically cool-
ing systems [156, 173]. Thus, isobaric heat capacity below glass transition temperatures
becomes,

CP
kB

=
V

vr

(
vrP
kBT

+
∑

kk′
ε1,kk′

kBT
φkφk′

)2[
(
∑

k φk)
(∑

k φk
α0φ0

+ 1
r

)
− 2

∑
kk′

ε1,kk′

kBT
φkφk′

] . (3.110)

3.5.8 Isobaric Expansion Coefficient

The isobaric expansion coefficient αP,k is defined as,

αP,k =
1

V

∂V

∂T

∣∣∣∣
P,nk

. (3.111)

Using equation of state Eq. 3.97 to get,

αP,k =
1

T

(
vrP
kBT

+
∑

kk′
ε1,kk′

kBT
φkφk′

)
[
(
∑

k φk)
(∑

k φk
α0φ0

+ 1
r

)
− 2

∑
kk′

ε1,kk′

kBT
φkφk′

] . (3.112)

3.5.9 Chemical Potential

Chemical potential of species k is,

µk =
∂F

∂nk

∣∣∣∣
T,V,nk′ 6=k

. (3.113)

Using the Eq. 3.63 of free energy to have,

µk
αkkBT

= − 1

α0

(1 + lnφ0) +
1

αk
(1 + lnφk)− 2

∑
k′

ε1,kk′

kBT
φk′ −

1

αk

n0

v0

∂v0
∂nk

lnφ0 +
vr
vk

ln(1− fk).

(3.114)

Following von Konigslow et al. [197], the hole volume is assumed constant so the second
last term becomes zero,

µk
αkkBT

= − 1

α0

(1 + lnφ0) +
1

αk
(1 + lnφk)− 2

∑
k′

ε1,kk′

kBT
φk′ +

vr
vk

ln(1− fk). (3.115)
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3.6 Thermodynamics of Pure Fluids

For pure fluid systems, that is systems having only one species, equations of thermodynamic
properties condense as follows.

3.6.1 Free Energy

F

kBT
= −V

vr

[
φ2ε1
kBT

− φfε2
kBT

]
+
V

v0
φ0 lnφ0 +

V

vr

φ

α
lnφ+

V φ

v

[
f ln

{
f

g(1− f)

}
+ ln (1− f)

]
,

(3.116)

where, the fraction f of excited segments becomes,

f =
ge−vε2/vrkBT

1 + ge−vε2/vrkBT
. (3.117)

Putting Eq. 3.117 in Eq. 3.116,

F

kBT
= −V

vr

φ2ε1
kBT

+
V

v0
φ0 lnφ0 +

V

vr

φ

α
lnφ+

V φ

v
ln (1− f). (3.118)

Scaled density as mentioned in section 3.5.2 simplified to,

ρ̃ ≡ φ. (3.119)

Average interaction energy becomes,

ε∗ = ε1. (3.120)

Scaled pressure for pure system becomes,

P̃ ≡ vrP

ε1
. (3.121)

Scaled temperature becomes,

T̃ ≡ kBT

ε1
. (3.122)

Average molecular size r reduced to,
r ≡ α. (3.123)
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Characteristic volume becomes,
V ∗ = nNv. (3.124)

Pure-component characteristic mass-density is,

ρ∗ =
nM

V ∗
=

m

V ∗
=

M

Nv
, (3.125)

where M is the molecular mass and n is the number of moles. Characteristic specific-
volume becomes,

v∗ =
1

ρ∗
=

V ∗

nM
. (3.126)

Number of moles in the system is,

n =
m

M
. (3.127)

Pure-component characteristic temperature T ∗ and pressure P ∗ are,

P ∗ =
ε1
vr
, (3.128)

T ∗ =
ε1
kB
. (3.129)

Pure-component characteristic density is,

ρ∗ =
M

αvr
. (3.130)

Parameters α, vr, ε1 are equivalent to parameters P ∗, T ∗, ρ∗ as,

vr =
kBT

∗

P ∗
, (3.131)

ε1 = kBT
∗, (3.132)

α =
MP ∗

kBρ∗T ∗
. (3.133)

For a given system, the above characteristic parameters are fixed except α that depends
on the molecular mass of molecules in the system i.e. α = α(M). Pure component
characteristic flexing temperature becomes,

T ∗∗ =
ε2
kB
. (3.134)
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Moreover, characteristic ratios become,

Tr =
T ∗∗

T ∗
=
ε2
ε1
, (3.135)

Vr =
v

vr
. (3.136)

By using these definitions, write Eq. 3.118 of free energy as,

ρ∗F

mP ∗
= −ρ̃+

T̃

α0ρ̃
(1− ρ̃) ln (1− ρ̃) +

T̃

α
ln ρ̃+

T̃

Vr
ln (1− f). (3.137)

Also, rewrite fraction of excited segments as,

f =
ge−VrTr/T̃

1 + ge−VrTr/T̃
. (3.138)

Also note the following useful relations,

Nn =
V φ

v
=
V

vr

Nφ

α
. (3.139)

Alternatively,

Nn =
P ∗V ∗

kBT ∗
1

Vr
=

mP ∗

kBρ∗T ∗
1

Vr
=

mα

MVr
. (3.140)

3.6.2 Equation of State

The equation of state will be modified to,

vrP

kBT
= −

(
1

α0

− 1

α

)
φ− 1

α0

lnφ0 −
φ2ε1
kBT

, (3.141)

or,

ρ̃2 + P̃ + T̃

[(
1

α0

− 1

r

)
ρ̃+

1

α0

ln (1− ρ̃)

]
= 0. (3.142)

3.6.3 Entropy

Equation of entropy condensed to,

S

kB
= −V

v0
φ0 lnφ0 −

V

vr

φ

α
lnφ− V φ

v

[
f ln

{
f

g(1− f)

}
+ ln (1− f)

]
. (3.143)
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Put f from Eq. 3.117 to get,

S

kB
= −V φ0

v0
lnφ0 −

V φ

vr

lnφ

α
+
V φ

vr

fε2
kBT

− V φ

v
ln (1− f). (3.144)

Alternatively,

ρ∗T ∗

mP ∗
S = − 1

α0ρ̃
(1− ρ̃) ln (1− ρ̃)− 1

α
ln ρ̃+

fTr

T̃
− 1

Vr
ln (1− f). (3.145)

As highlighted in section 3.5.3 since ρ̃ and f are always less than 1 so all terms in the
above expression will be positive. Thus entropy of the system is always positive at all
temperatures.

3.6.4 Glass Transition Temperature

In section 3.5.3 it was shown that the Gibbs DiMarzio criterion for the glass transition is
incorrect and an alternate criterion for the glass transition temperature calculations has
been proposed. That is the glass transition occurs at a temperature where entropy of the
system becomes fraction x of entropy S∞ at T → ∞. For pure systems, entropy S∞ at
infinite temperature is also the maximum entropy Smax of the system. Moreover, for pure
systems, ρ→ 0 at T →∞. Thus, from Eq. 3.145, for long molecules we have,

ρ∗T ∗

mP ∗
S∞ =

1

α0

[
1 +

α0

Vr
ln (1 + g)

]
. (3.146)

Put S(Tg) = xS∞ in Eq. 3.145 and note that r = α to get,

x

α0

[
1 +

α0

Vr
ln (1 + g)

]
+

1

α0ρ̃g
(1− ρ̃g) ln (1− ρ̃g) +

1

α
ln ρ̃g −

fgTr

T̃g
+

1

Vr
ln (1− fg) = 0.

(3.147)
Again, in the above expression, density of the system depends on the pressure through
equation of state Eq. 3.142. Thus, the above expression is a Tg versus P relation for pure
systems.

3.6.5 Internal Energy

Internal energy is simplified to,

E

kBT
= −V

vr

(
φ2ε1
kBT

− fφε2
kBT

)
. (3.148)

Alternatively,
ρ∗E

mP ∗
= −ρ̃+ fTr. (3.149)
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3.6.6 Isochoric Heat Capacity

Isochoric heat capacity becomes,

CV
kB

=
V φ

v

(
v

vr

ε2
kBT

)2

f(1− f). (3.150)

Alternatively,

ρ∗T ∗

mP ∗
CV =

1

Vr

(
VrTr

T̃

)2

f(1− f). (3.151)

3.6.7 Isobaric Heat Capacity

Isobaric heat capacity reduced to,

CP
kB

=
V φ

vr

(
1 + vrP

φ2ε1

)2
kBT
φε1

[
kBT
φε1

(
φ

α0φ0
+ 1

r

)
− 2
] +

V φ

v

(
v

vr

ε2
kBT

)2

f(1− f). (3.152)

Again, the second term in above expression is CV /kB, therefore,

CP − CV
kB

=
V φ

vr

(
1 + vrP

φ2ε1

)2
kBT
φε1

[
kBT
φε1

(
φ

α0φ0
+ 1

r

)
− 2
] . (3.153)

Isobaric heat capacity Eq. 3.152 can also be written as,

ρ∗T ∗

mP ∗
CP =

(
1 + P̃

ρ̃2

)2
T̃
ρ̃

[
T̃
ρ̃

(
1
α0
· ρ̃
1−ρ̃ + 1

r

)
− 2
] +

1

Vr

(
VrTr

T̃

)2

f(1− f). (3.154)

As discussed in section 3.5.7, the second term in Eq. 3.152 is the incremental change in
heat capacity ∆CP due to flexing of segments. Thus,

∆CP
kB

=
V φ

v

(
v

vr

ε2
kBT

)2

f(1− f), (3.155)

whereas, isobaric heat capacity below the glass transition is,

CP
kB

=
V φ

vr

(
1 + vrP

φ2ε1

)2
kBT
φε1

[
kBT
φε1

(
φ

α0φ0
+ 1

r

)
− 2
] . (3.156)
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3.6.8 Isobaric Expansion Coefficient

Isobaric expansion coefficient is modified to,

αP =
1

T

(
1 + vrP

φ2ε1

)
[
kBT
φε1

(
φ

α0φ0
+ 1

r

)
− 2
] . (3.157)

Alternately,

T ∗αP =
1

T̃

(
1 + P̃

ρ̃2

)
[
T̃
ρ̃

(
1
α0
· ρ̃
1−ρ̃ + 1

r

)
− 2
] . (3.158)

3.6.9 Chemical Potential

Chemical potential for constant hole volume becomes,

µ

αkBT
= − 1

α0

(1 + lnφ0) +
1

α
(1 + lnφ)− 2

φε1
kBT

, (3.159)

or,

µ

αkBT ∗
= − T̃

α0

[1 + ln(1− ρ̃)] +
T̃

α
(1 + ln ρ̃)− 2ρ̃. (3.160)

3.7 Thermodynamics of Binary Fluid Mixtures

3.7.1 Free Energy

Consider a binary mixture having one polymer species, denoted by p, and one solvent
species (small molecules), denoted by s. Solvent molecules are considered to be infinitely
rigid so fs is zero at all temperatures. Thus, there will be no term involving fs in thermo-
dynamic equations. However, the fraction fp of excited segments of the polymer species
is,

fp =
gpe
−vpε2,p/vrkBT

1 + gpe−vpε2,p/vrkBT
. (3.161)
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For this system, free energy Eq. 3.63 is expanded as,

F

kBT
= −V

vr

ε1,pp
kBT

φ2
p −

V

vr

ε1,ss
kBT

φ2
s −

V

vr

2ε1,sp
kBT

φsφp +
V

vr

ε2,p
kBT

fpφp +
V

v0
φ0 lnφ0 (3.162)

+
V

vr

φp
αp

lnφp +
V

vr

φs
αs

lnφs +
V φp
vp

[
fp ln

{
fp

gp(1− fp)

}
+ ln (1− fp)

]
.

Put fp from Eq. 3.60,

F

kBT
= −V

vr

ε1,pp
kBT

φ2
p −

V

vr

ε1,ss
kBT

φ2
s −

V

vr

2ε1,sp
kBT

φsφp +
V

vr

ε2,p
kBT

fpφp +
V

v0
φ0 lnφ0 (3.163)

+
V

vr

φp
αp

lnφp +
V

vr

φs
αs

lnφs −
V φp
vp

[
fp
vp
vr

ε2,p
kBT

− ln (1− fp)
]
.

Scaled density expands as,
ρ̃ = φp + φs. (3.164)

Average interaction energy becomes,

ε∗1 =
1

ρ̃

[
ε1,ppφ

2
p + ε1,ssφ

2
s + ε1,spφsφp

]
. (3.165)

where, cross-component interaction energy becomes,

ε1,sp = ζsp(ε1,ppε1,ss)
1/2. (3.166)

Scaled pressure is the same,

P̃ ≡ vrP

ε∗1
. (3.167)

Scaled temperature is the same,

T̃ ≡ kBT

ε∗1
. (3.168)

Average molecular size r expands to,

r ≡ 1

ρ̃

[
φp
αp

+
φs
αs

]
. (3.169)

Number of moles is,

np =
mp

Mp

, ns =
ms

Ms

. (3.170)
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Other binary characteristic parameters shall be expanded in similar fashion as,

V ∗ = Npnpvp +Nsnsvs, (3.171)

ρ∗ =
npMp + nsMs

V ∗
=
mtotal

V ∗
, (3.172)

v∗ =
1

ρ∗
=

V ∗

mtotal

. (3.173)

Characteristic temperature T ∗ and pressure P ∗ are the same,

P ∗ =
ε∗1
vr

, T ∗ =
ε∗1
kB
. (3.174)

Similarly, pure-component characteristic parameters become,

V ∗p = Npnpvp , V ∗s = Nsnsvs, (3.175)

ρ∗p =
mp

V ∗p
=
npMp

V ∗p
=

Mp

αpvr
, (3.176)

ρ∗s =
ms

V ∗s
=
nsMs

V ∗s
=

Ms

αsvr
, (3.177)

P ∗p =
ε1,pp
vr

, P ∗s =
ε1,ss
vr

, (3.178)

T ∗p =
ε1,pp
kB

, T ∗s =
ε1,ss
kB

. (3.179)

By using above definitions αk become,

αp =
MpP

∗
p

kBρ∗pT
∗
p

, αs =
MsP

∗
s

kBρ∗sT
∗
s

. (3.180)

Reference volume for individual pure systems are,

vr,p =
kBT

∗
p

P ∗p
or vr,s =

kBT
∗
s

P ∗s
. (3.181)

whereas, reference volume of the mixed system should be,

vr =
kBT

∗

P ∗
. (3.182)
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However, in this work it is assumed that reference volumes of pure and mixed systems are
close to each other and thus they are assumed equal i.e. vr = vr,p = vr,s. However, in
general, not all reference volumes need to be equal. This is a discrepancy in the SL-EOS
that need to be reconciled [197]. Binary-component average interaction energies are,

ε1,pp = kBT
∗
p , ε1,ss = kBT

∗
s . (3.183)

Since solvent molecules are small and rigid so there will be no flexing parameters for solvent
molecules. However, for polymer molecules flexing parameters become,

T ∗∗p ≡
ε2,p
kB

. (3.184)

Characteristic ratios are,

Tr,p ≡
T ∗∗p
T ∗p

=
ε2,p
ε1,pp

, (3.185)

Vr,p ≡
vp
vr
, (3.186)

Np =
αp
Vr,p

. (3.187)

Also, note following useful relations,

Npnp =
V φp
vp

=
V

vr

Npφp
αp

. (3.188)

Alternatively,

Npnp =
P ∗p V

∗
p

kBT ∗p

1

Vr,p
=

mpP
∗
p

kBρ∗pT
∗
p

1

Vr,p
=

mpαp
MpVr,p

. (3.189)

So, fraction fp becomes,

fp =
gpe
−Tr,pVr,p/T̃p

1 + gpe−Tr,pVr,p/T̃p
. (3.190)

Rewrite free energy as,

ρ∗pF

mpP ∗p
= −φp −

T ∗s
T ∗p

φ2
s

φp
− 2

T ∗sp
T ∗p

φs +
T̃p
α0φp

(1− ρ̃) ln (1− ρ̃) +
T̃p
αp

lnφp (3.191)

+T̃p
φs lnφs
αsφp

+
T̃p
Vr

ln (1− fp).
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3.7.2 Equation of State

Expansion of equation of state Eq. 3.97 is,

vrP

kBT
= −

(
1

α0

− 1

αp

)
φp −

(
1

α0

− 1

αs

)
φs −

1

α0

lnφ0 −
ε1,pp
kBT

φ2
p −

ε1,ss
kBT

φ2
s −

ε1,sp
kBT

φsφp

(3.192)

or,

P

P ∗p
+

(
1

α0

− 1

αp

)
T̃pφp +

(
1

α0

− 1

αs

)
T̃pφs +

T̃p ln (1− ρ̃)

α0

+ φ2
p +

T ∗s
T ∗p
φ2
s +

T ∗sp
T ∗p

φsφp = 0.

(3.193)

3.7.3 Entropy

Entropy of binary system expands as,

S

kB
= −V φ0

v0
lnφ0 −

V φp
vr

lnφp
αp
− V φs

vr

lnφs
αs

+
V φp
vr

fpε2,p
kBT

− V φp
vp

ln (1− fp). (3.194)

Alternatively,

ρ∗pT
∗
p

mpP ∗p
S = −(1− ρ̃) ln (1− ρ̃)

α0φp
− lnφp

αp
− φs lnφs

αsφp
+
fpTr,p

T̃p
− ln (1− fp)

Vr,p
. (3.195)

Since ρ̃, φs, φp and fp are always less than 1 so all terms in the above expression will
be positive at all temperatures. Thus entropy of the binary system is always positive.
Moreover, for v = v0 = vr, Eq. 3.194 is near-equivalent of equation 2.48 of the Condo
model Ref. [23] except terms that are constants or linear in n. Additional terms in equation
2.48 are causing the Condo entropy to be negative at low temperatures. Besides, the last
term of Eq. 3.194 is proportional to N whereas in Eq. 2.48 the corresponding term is
proportional to N − 2. This difference is because of the use of the artificial lattice in the
Condo model. Moreover, because of the artificial lattice fs 6= 0 for the Condo model so
terms involving fs are also present in Eq. 2.48.

3.7.4 Glass Transition Temperature

As discussed in section 3.5.3 that the Gibbs DiMarzio criterion for the glass transition is
incorrect. According to the alternate criterion for the glass transition, put S(Tg) = xS∞
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in Eq. 3.195 to get,

ρ∗pT
∗
p

mpP ∗p
xS∞ +

(1− ρ̃g) ln (1− ρ̃g)
α0φp,g

+
lnφp,g
αp

+
φs,g lnφs,g
αsφp,g

− fp,gTr,p

T̃p,g
+

ln (1− fp,g)
Vr,p

= 0.

(3.196)

3.7.5 Internal Energy

Internal energy expands as,

E

kBT
= −V

vr

[
ε1,pp
kBT

φ2
p +

ε1,ss
kBT

φ2
s +

ε1,sp
kBT

φpφs −
ε2,p
kBT

fpφp

]
. (3.197)

Alternatively,
ρ∗pE

mpP ∗p
= −

[
φp +

T ∗s
T ∗p

φ2
s

φp
+
T ∗sp
T ∗P

φs − fpTr,p
]
. (3.198)

Eq. 3.197 is near-equivalent to Eq. (6) of the Condo et al. Ref. [23] if we assume v = v0 =
vr.

3.7.6 Isochoric Heat Capacity

Isochoric heat capacity becomes,

CV
kB

=
V φp
vp

(
vp
vr

ε2,p
kBT

)2

fp(1− fp). (3.199)

Alternatively,

ρ∗pT
∗
p

mpP ∗
CV =

1

Vr,p

(
Vr,pTr,p

T̃p

)2

fp(1− fp). (3.200)

3.7.7 Isobaric Heat Capacity

Isobaric heat capacity expands as,

CP
kB

=
V

vr

(
vrP
kBT

+ ε1,pp
kBT

φ2
p + ε1,ss

kBT
φ2
s + ε1,sp

kBT
φpφs

)2[
(φp + φs)

(
φp+φs
α0φ0

+ 1
r

)
− 2

(
ε1,pp
kBT

φ2
p + ε1,ss

kBT
φ2
s + ε1,sp

kBT
φpφs

)] (3.201)

+
V φp
vp

(
vp
vr

ε2,p
kBT

)2

fp(1− fp),
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or,

CP − CV
kB

=
V

vr

(
vrP
kBT

+ ε1,pp
kBT

φ2
p + ε1,ss

kBT
φ2
s + ε1,sp

kBT
φpφs

)2[
(φp + φs)

(
φp+φs
α0φ0

+ 1
r

)
− 2

(
ε1,pp
kBT

φ2
p + ε1,ss

kBT
φ2
s + ε1,sp

kBT
φpφs

)] . (3.202)

Alternatively,

ρ∗pT
∗
p

mpP ∗p
CP =

ρ̃

φp
·

(
1 + P̃

ρ̃2

)2
T̃
ρ̃

[
T̃
ρ̃

(
1
α0
· ρ̃
1−ρ̃ + 1

r

)
− 2
] +

1

Vr,p

(
Vr,pTr,p

T̃p

)2

fp(1− fp), (3.203)

where,

T̃ =
ρ̃2

φ2p
T̃p

+ φ2s
T̃s

+ φpφs
T̃sp

. (3.204)

Incremental change in heat capacity ∆CP due to flexing of segments is,

∆CP
kB

=
V φp
vp

(
vp
vr

ε2,p
kBT

)2

fp(1− fp), (3.205)

whereas, isobaric heat capacity below the glass transition is,

CP
kB

=
V

vr

(
vrP
kBT

+ ε1,pp
kBT

φ2
p + ε1,ss

kBT
φ2
s + ε1,sp

kBT
φpφs

)2[
(φp + φs)

(
φp+φs
α0φ0

+ 1
r

)
− 2

(
ε1,pp
kBT

φ2
p + ε1,ss

kBT
φ2
s + ε1,sp

kBT
φpφs

)] . (3.206)

3.7.8 Isobaric Expansion Coefficient

Isobaric expansion coefficient becomes,

αP,k =
1

T

(
vrP
kBT

+ ε1,pp
kBT

φ2
p + ε1,ss

kBT
φ2
s + ε1,sp

kBT
φpφs

)
[
(φp + φs)

(
φp+φs
α0φ0

+ 1
r

)
− 2

(
ε1,pp
kBT

φ2
p + ε1,ss

kBT
φ2
s + ε1,sp

kBT
φpφs

)] . (3.207)

Alternately,

T ∗pαP =
1

T̃p

(
1 + P̃

ρ̃2

)
[
T̃
ρ̃

(
1
α0
· ρ̃
1−ρ̃ + 1

r

)
− 2
] , (3.208)
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where,

T̃ =
ρ̃2

φ2p
T̃p

+ φ2s
T̃s

+ φpφs
T̃sp

. (3.209)

3.7.9 Chemical Potential

Chemical potential of solvent ‘s’ for constant hole volume is,

µs
αskBT

= − 1

α0

(1 + lnφ0) +
1

αs
(1 + lnφs)− 2

(
ε1,ss
kBT

φs +
ε1,sp
kBT

φp

)
, (3.210)

or,

µ

αskBT ∗s
= − T̃s

α0

[1 + ln(1− ρ̃)] +
T̃s
αs

(1 + lnφs)− 2

(
φs +

T ∗sp
T ∗s

φp

)
. (3.211)

3.8 Unaccounted Degrees of Freedom

3.8.1 Rotational and Vibrational Degrees of Freedom

To fit isobaric heat capacity equation 3.154 on experimental data of pure polymeric sys-
tems it is necessary to consider rotational and vibrational degrees of freedom that are
ignored in the model since significant heat energy stores in these degrees of freedom. Lin-
ear vibration includes kinetic energy and potential energy of vibrating molecular bonds
whereas rotational vibration includes the kinetic energy of flexing segments. The potential
energy of flexing segments is already considered in the model through flexing energy ε2.
Fortunately, the free energy from these degrees of freedom only depends on temperature of
the system. Thus, SL-EOS is insensitive to these degrees of freedom because of equation
3.95. However, for heat capacity equations, the effect of these degrees of freedom should
be taken into account by adding the first two terms of Taylor’s expansion in heat capacity
equations, i.e.,

Crot.,vib.(T ) = A+BT. (3.212)

Thus, the final expression that should be fitted on heat capacity data above glass transition
region is,

CP
m

=
P ∗

ρ∗T ∗

[ (
1 + P̃

ρ̃2

)2
T̃
ρ̃

[
T̃
ρ̃

(
1
α0
· ρ̃
1−ρ̃ + 1

r

)
− 2
] +

1

Vr

(
VrTr

T̃

)2

f(1− f)

]
+ A+BT. (3.213)

83



3.8.2 Higher Energy Levels for Bending

In this model, only one flexed state has been assumed to account for the finite flexibility
of molecules. However, the model can be improved by considering several excited states
of different energies. For instance, for a system having two flexed states, the free energy
equation will be modified to,

F

kBT
= −V

v0

[
φ2ε1 − f1φε2 − f2φε3

kBT

]
+
V

v0
φ0 lnφ0 +

V

v0

φ

α
lnφ+

V φ

v

[
f1 ln

(
f1

1− f1 − f2

)
+ f2 ln

(
f2

1− f1 − f2

)
+ ln (1− f1 − f2)− f1 ln (g1)− f2 ln (g2)

]
.

(3.214)

While writing the above expression it is assumed vr = v0. At equilibrium, the fraction of
excited segments in each flexed state becomes,

f1 =
g1e
− vε2
v0kBT

1 + g1e
− vε2
v0kBT + g2e

− vε3
v0kBT

, (3.215)

f2 =
g2e
− vε3
v0kBT

1 + g1e
− vε2
v0kBT + g2e

− vε3
v0kBT

. (3.216)

Internal energy and entropy become,

E = −V
v0

[
φ2ε1 − f1φε2 − f2φε3

]
. (3.217)

(3.218)

S

kB
= −V

v0
φ0 lnφ0 −

V

v0

φ

α
lnφ− V φ

v

[
f1 ln

(
f1

1− f1 − f2

)
+ f2 ln

(
f2

1− f1 − f2

)
+ ln (1− f1 − f2)− f1 ln (g1)− f2 ln (g2)

]
.

Isochoric heat capacity becomes,

CV
NnkB

=
c21g1e

− c1
T + c22g2e

− c2
T + (c1 − c2)2g1g2e−

c1+c2
T

T 2(1 + g1e
− c1
T + g2e

− c2
T )2

, (3.219)
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where,

c1 ≡
V φε2

Nnv0kB
=

vε2
v0kB

, (3.220)

c2 ≡
V φε3

Nnv0kB
=

vε2
v0kB

. (3.221)

(3.222)

Isobaric heat capacity becomes,

CP
kB

=
V φ

v0

(
1 + v0P

φ2ε1

)2
kBT
φε1

[
kBT
φε1

(
φ
φ0

+ 1
r

)
− 2
] +

V φ

v

[
c21g1e

− c1
T + c22g2e

− c2
T + (c1 − c2)2g1g2e−

c1+c2
T

T 2(1 + g1e
− c1
T + g2e

− c2
T )2

]
.

(3.223)

However, such extensions make the model very complex involving many fitting parameters.
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Chapter 4

Regression, Analysis and Comparison

The model requires experimental data to regress characteristic parameters. These charac-
teristic parameters can be divided into three sets. First set of characteristic parameters
includes pure-component parameters P ∗k , T

∗
k and ρ∗k. These parameters can be obtained, in

a conventional way, by fitting SL-EOS Eq. 3.142 on PVT data of pure systems [95, 164].
Second set of parameters includes binary interaction parameters ζkk′ and mixture hole vol-
ume v0. These parameters can be obtained from experimental data of solubility and/or
swelling [197]. Third set consists of flexing parameters of pure systems: gk, ε2,k and xk.
These parameters can be obtained by using glass transition temperature versus pressure
data [23] and/or by using isobaric heat capacity data. In this research, we are only dealing
with pure fluids and binary solvent-polymer mixtures. Thus, mentioning explicitly, the re-
quired pure-component characteristic parameters are P ∗p , T

∗
p and ρ∗p for pure polymers and

P ∗s , T
∗
s and ρ∗s for pure solvents. Whereas, for binary mixtures, the required parameters are

ζsp and v0. Since solvent molecules are too small to flex thus gs = 0 and consequently all
terms involving ε2,s vanish in all equations. Moreover, solvent molecules do not undergo
glass transition thus we cannot define parameter xs for solvent. Thus, the required flexing
parameters for pure polymers as well as for binary mixtures are gp and ε2,p. However,
note that xp is not an independent parameter, specific reasons are discussed later in the
thesis. Apart from that, following von Konigslow et al. [197] we have chosen vr = v0 for
all systems without losing generality.

Since the extension proposed in this model is similar to the extension proposed by Condo
et al. [23] thus flexing parameters of the proposed model have a direct correspondence with
flexing parameters of Condo model. Flexing parameters of the Condo model are lattice
number z (instead of gp and gs), energy of flexed segments of polymer ε2,p and energy
of flexed segments of solvent ε2,s that is zero. Contrary to the present model, in Condo
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model terms involving fs do not vanish because Condo model assumes the same lattice
number z 6= 0 for polymer and solvent in a binary mixture however in the present model
the corresponding parameter gs = 0. In addition, the Condo model is based on the Gibbs
DiMarzio criterion [36,62] that asserts entropy S(Tg) = 0 so we can say that for the Condo
model xp = 0. In short, xp is the only additional parameter in the present model that is
not present in the Condo model. Once we have a procedure for finding xp we may follow
Condo’s method to regress gp and ε2,p. Moreover, in the present model, we have assumed
that v = v0 (or Vr = 1) without loss of generality. The same is true for the lattice-based
Condo model because the artificial lattice imposes the requirement that v = v0.

4.1 Method # 1

As discussed in the previous section, the Condo method could be used to regress flexing
parameters gp and ε2,p by assuming an arbitrary value of xp. The Condo method requires
two experimental values, the glass transition temperature Tg of the pure polymeric system
at atmospheric pressure and the slope dTg/dP of glass transition temperature versus pres-
sure curve. By using these two experimental values one can plot a straight line in Tg − P
plane and regress gp and ε2,p by fitting Eq. 3.147 on that straight line against an assumed
value of xp with a constraint that the regressed curve must pass through Tg. Finally, the
same procedure can be repeated for different values of xp to get multiple sets (xp, gp, ε2,p).

Figure 4.1 shows the Tg(P ) plots obtained by fitting Eq. 3.147 on the straight line against
x = 0.3, 0.6 and 0.8 for pure poly(methyl-methacrylate) (PMMA). It can be noticed that
all resulting Tg(P ) curves are close to the experimental data [128] because the values of
(gp, ε2,p) adjusts accordingly as the value of xp changes (see table 4.1). This means that the
choice of xp does not have significant effect on Tg(P ) curves. Thus there is a redundancy
in this method. However, corresponding CP (T ) theoretical curves 1 shifts due to changing
x values as shown in figure 4.2. This redundancy gives an opportunity to simultaneously
fit Eq. 3.152 on isobaric heat capacity data. In other words, both Tg(P ) and CP (T )
experimental data are required to lock all unknown parameters.

Since fitting Eq. 3.147 on Tg(P ) experimental data alone cannot lock the model parameters
this enabled the Condo model to work for Gibbs DiMarzio criterion (xp = 0). To further
substantiate this argument we have plotted Eq. 2.48 of the Condo model in figure 4.3
by regressing z and ε2,p against several arbitrary non-zero values of entropy S(Tg) 6= 0
and found that all curves obey the experimental data. The values of flexing parameters

1Isobaric heat capacity equation for the Condo model is found to be exactly the same as Eq. 3.152 of
the present model for long polymer chains.
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Flexing Parameters by Condo Method
xp gp ε2,p (J/mol)
0.3 2.16 9182
0.6 5.73 5859
0.8 63.68 8063

Table 4.1: Values of flexing parameters for pure PMMA regressed by using Condo et al.
method against different values of xp. Experimental data is taken from [128].

Figure 4.1: Glass transition temperature versus pressure curves for pure PMMA obtained
by following Condo et al. method for different values of xp. Experimental data [128] are
shown by black points.

regressed by using arbitrary values of S(Tg) are shown in the table 4.2. This proves that
the Gibbs DiMarzio criterion worked because of a redundancy that can be removed by
simultaneously fitting Tg(P ) and CP (T ) equations on experimental data.

4.1.1 Limitations

This method has the following limitations:

1. The slope of Tg(P ) curve is assumed to be constant so this method can only be used
for the polymeric systems that have linear Tg(P ) behaviour over a given pressure
range.
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Figure 4.2: Isobaric heat capacity Cp versus temperature T curves from pure PMMA
obtained for Condo et al. method against different values of x. Experimental data [45] are
shown by black points.

2. Extensive experimental Tg(P ) data is required to find the reliable value of slope
dTg/dP . This limits the predictive power of this method.

3. With the finding that Gibbs DiMarzio criterion is incorrect, now isobaric specific
heat capacity data is also required to regress flexing parameters.

4.2 Method # 2

To overcome the limitations of the previous method and thus to increase the predictive
power of the model it is inevitable to have an alternate method. The root-cause of the
limitations is the use of experimental value dTg/dP . To find an equation of dTg/dP one
needs to take the derivative of Eq. 3.147 of Tg with respect to pressure. However, Eq. 3.147
follows from Eq. 3.145 of entropy. Thus, one should be able to use dS/dT instead dTg/dP
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Flexing Parameters of Condo Model
S@Tg (J/g.K) z ε2,p (J/mol)

-0.2 4.0 8807
0.0 5.0 7428
0.2 6.0 6388

Table 4.2: Values of flexing parameters for pure PMMA regressed for Condo et al. model
against different values of S(Tg). Experimental data is taken from [128].

Figure 4.3: Glass transition temperature versus pressure curves for pure PMMA obtained
for Condo et al. model against different values of S(Tg). Experimental data [128] are
shown by black points.

to regress flexing parameters. In addition, Eq. 3.106 implies that isobaric heat capacity
corresponds to dS/dT . This provides an inspiration to replace dTg/dP experimental value
with some appropriate value of isobaric heat capacity. Since many authors have mentioned
∆CP (Tg) across Tg in their research papers so it is best to choose ∆CP (Tg) value as a
replacement of dTg/dP . In a nutshell, we can simultaneously solve Eq. 3.155 and Eq.
3.147 at T = Tg and P = Patm to find the values of gp and ε2,p against a series of assumed
values of xp. Finally, a value of xp that gives the best Cp data fit should be the correct
value. So, for pure PMMA, figures 4.4 and 4.5 of predicted Tg(P ) and Cp(T ) curves have
been plotted by using this technique. Experimental data of Tg is taken from Ref. [128]
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whereas ∆Cp(Tg) is calculated by using Cp data from Ref. [45]. It is clear from the figures
that increasing values of xp shifts heat capacity curve downward while opposite is true for
the glass transition temperature curve. Thus, a trade-off should be hypothesized to get
simultaneous fits on heat capacity and glass transition temperature data.

Figure 4.4: Glass transition temperature versus pressure curves for pure PMMA against
different values of xp. Experimental data [128] are shown by black points.

Figure 4.6 shows a plot of gp versus xp for pure PMMA obtained by solving Eqs. 3.147 and
3.155 simultaneously at T = Tg and P = Patm. The plot has a minimum gp(x) = 1.66 at
xp = 0.32 and corresponding ε2,p = 8094 J/mol. From figures 4.4 and 4.5 it can be noticed
that at this minimum (xp = 0.323) both Tg(P ) and Cp(T ) predictions are reasonable. This
offers a hope to hypothesize that:

“The value of xp at gmin is the correct value that simultaneously describes the Tg(P ) and
CP (T ) behaviour of pure polymeric systems”.

In this work we have used this method for calculating values of flexibility parameters.
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Figure 4.5: Isobaric heat capacity Cp versus temperature T curves of pure PMMA against
different values of xp. Experimental data [45] are shown by black points.

4.2.1 Justification of Hypothesis

In the present model, it is assumed that pure polymeric systems consist of two energy levels,
unflexed and flexed, to account for the finite flexibility of polymer molecules. However,
this assumption is very crude and real systems can have many intermediate flexed states
having energies between the energies of unflexed and flexed states. Consequently, these
intermediate states manifest their presence by changing the values of multiplicity gp of the
flexed state in the model. In other words, by assuming two energy levels for flexing we are
assigning equal energy ε2,p to all intermediate states and the highest flexed state. Thus to
make predictions of the model accurate above glass transition temperature it is necessary
to purge these intermediate states out from the highest flexed state by minimizing the
multiplicity gp.
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Figure 4.6: Plot of degeneracy gp versus xp for pure PMMA obtained by solving Eq. 3.147
and Eq. 3.155 simultaneously. To obtain the above plot the Tg data is used from [128]
whereas Cp data is used from [45].

4.3 Calculated Flexibility Parameters for Present Model

by using Method #2

In this section comparisons of Tg(P ) and CP (T ) predictions from the present model and the
Condo model [23] have been presented. SL-EOS characteristic parameters and references
of experimental data used in this study are mentioned in tables 4.3 and 4.4, respectively.

The values of glass transition temperatures at atmospheric pressure are mentioned explic-
itly in the references of Tg data. However, values of ∆CP (Tg) have been found by fitting
two straight lines on experimental CP (T ) data. One straight line [CP (T ) = A + BT ] is
fitted on the data below Tg while the other straight line [C ′P (T ) = A′+B′T ] is fitted on the
data above Tg. Then, ∆CP (Tg) is determined by subtracting both straight line equations
at T = Tg i.e. ∆CP (Tg) = C ′P (Tg) − CP (Tg). The calculated values of ∆Cp(Tg) are given
in table 4.5.
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Polymer Type
SL-EOS Parameters

Ref. P∗ (MPa) T∗ (K) ρ∗ (g/cm3)
PMMA [128] 503.0 696 1.269
PS [151] 357.0 735 1.105
PVAc [157] 504.2 592 1.282
PVME [157] 463.0 567 1.120
PC [157] 574.4 728 1.293

Table 4.3: SL-EOS parameters of polymers.

Experimental Data References
Polymer Name Abbreviation Tg(P )-Data CP (T )-Data

Polymethyl-methacrylate PMMA(a) [65] [45]
Polymethyl-methacrylate PMMA(b) [128] [2]
Polystyrene PS [151] [156]
Polyvinyl-acetate PVAc [160] [169]
Polyvinyl-methylether PVME [14] [150]
Polycarbonate PC [214] [208]

Table 4.4: References of experimental data of polymers used in this study.
.

Polymers
Isobaric Specific Heat Capacity (J/g.K)

Ref. A B A′ B′ ∆CP(Tg)
PMMA (1981) [45] 0.000 0.0039 0.349 0.0037 0.266
PMMA (1997) [2] 0.000 0.0055 1.214 0.0033 0.376
PS [156] 0.000 0.0037 0.515 0.0031 0.291
PVAc [169] 0.000 0.0035 1.096 0.0016 0.488
PVME [150] 0.358 0.0028 1.134 0.0018 0.520
PC [208] 0.114 0.0031 0.902 0.0017 0.231

Table 4.5: Values of A and B are regressed by fitting equation CP = CP∞ + A + BT on
experimental heat capacity data below glass transition temperature. Values of A′ and B′

are similarly regressed by fitting equation C ′P = CP∞ + A′ + B′T on heat capacity data
above glass transition temperature. ∆CP (Tg) is estimated by ∆CP (Tg) = C ′P (Tg)−CP (Tg).
Note, CP∞ is the heat capacity of infinitely flexible molecules i.e. Eq. 3.156.
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Polymer Type
Glass Transition Data

Ref. Tg (K) dTg/dP (K/MPa) Linear Pr. Range (MPa)
PMMA (2011) [65] 352.00 0.300 150.00
PMMA (1975) [128] 378.00 0.236 180.00
PS [151] 374.00 0.316 160.00
PVAc [160] 311.00 0.216 150.00
PVME [14] 247.60 0.149 177.70
PC [214] 423.40 0.530 59.30

Table 4.6: Experimental data of glass transition temperatures at atmospheric pressure of
different polymers with corresponding references. For PVAc and PVME dTg/dP values
have been self-regressed in this study by performing linear fits on the experimental glass
transition temperature data over the mentioned linear pressure range.

Moreover, table 4.7 shows calculated values of flexibility parameters found by simultane-
ously solving Eq. 3.147 and Eq. 3.155 against different values of x for the point Tg and
then choosing the values that have given gmin.

4.4 Calculated Flexibility Parameters for the Condo

Model by using Method #1

To plot Tg(P ) and CP (T ) graphs from the Condo theory [23] we need to calculate flexibility
parameters by using the Condo procedure and Gibbs DiMarzio criterion (Method # 1).
In general, Tg(P ) behaviour of polymers is not linear so to calculate dTg/dP we have only
considered Tg(P ) experimental data within a pressure range over which Tg(P ) behaviour
of polymers is reasonably linear. Then, dTg/dP values have been regressed by fitting
straight lines over the linear part of Tg(P ) data. Regressions have been carried out with a
constraint that straight lines must pass through point Tg(Patm). For most polymers that are
used in this study, dTg/dP values are explicitly mentioned in the corresponding references
(see table 4.6). However, for PVAc and PVME, dTg/dP values have been self-regressed.
Regressed values of dTg/dP and the corresponding pressure range used for the regression
are mentioned in table 4.6.

Thus, by using dTg/dP and Tg straight lines have been plotted over the linear pressure
range for each polymeric system and the Condo flexibility parameters, z and ε2,p, have been
regressed by fitting Eq. 2.48 of the Condo paper [23] on corresponding Tg(P ) straight lines
within the mentioned linear pressure range. Regressed values of these flexibility parameters

95



Polymer Type
Present Theory Parameters Condo Theory Parameters
g ε2 (J/mol) x z ε2 (J/mol)

PMMA (a) 1.08 7094 0.293 4 4714
PMMA (b) 1.66 8094 0.323 5 7428
PS 1.67 8013 0.311 5 7160
PVAc 1.91 6815 0.321 5 6029
PVME 1.83 5387 0.288 5 4480
PC 0.84 8273 0.317 4 6247

Table 4.7: Estimated values of flexing parameters of the present model and the Condo
model [23].

are mentioned in table 4.7.

4.5 Comparison of Predictions from Present Theory

and Condo Theory

In sections 4.3 and 4.4 characteristic parameters of the present model and the Condo
model have been evaluated and mentioned in table 4.7. Thus, the final step is to compare
corresponding Tg(P ) and Cp(T ) plots of both models.

It is clear from figure 4.7 that Tg(P ) predictions from the present theory are better than
the corresponding predictions from the Condo theory for all polymers. Besides, the present
theory made predictions by using only two experimental values, namely, the glass transi-
tion temperature at atmospheric pressure and the change in isobaric heat capacity across
glass transition. On the other hand, the Condo model requires extensive Tg(P ) data for
regression of flexibility parameters. Thus, the present model is more powerful as well as
more accurate as compared to the Condo model in predicting Tg(P ) behaviour of polymers.

Figure 4.8 shows predicted Cp(T ) behaviour of polymers at atmospheric pressure and
above glass transition temperatures of corresponding polymers. Flexibility parameters are
mentioned in table 4.7. Again, for all pure polymers, predictions from the present model
are superior compared to the Condo model. As discussed in section 3.8, these isobaric
heat capacity plots have been obtained by using Eq. 3.213 to account for the degrees of
freedom that are ignored in both models. Values of A and B are taken from table 4.5
against corresponding polymers.
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Figure 4.7: Glass transition temperature as a function of pressure for pure polymers. (a)
PMMA (2011), (b) PMMA (1975), (c) PS, (d) PVAc, (e) PVME, and (f) PC. Experimental
data are shown by black squares taken from references [14,65,128,151,160,214], respectively.
Solid curves show theoretical predictions from the present theory and dashed curves show
predictions from the Condo theory.
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Figure 4.8: Isobaric heat capacity as a function of temperature for pure polymers above
glass transition temperatures of corresponding polymers. (a) PMMA (1981), (b) PMMA
(1997), (c) PS, (d) PVAc, (e) PVME, and (f) PC. Experimental data are shown by black
squares taken from references [2, 45, 150, 156, 169, 208], respectively. Solid curves show
theoretical predictions from the present theory and dashed curves show predictions from
the Condo theory.

98



Chapter 5

Binary Solvent-Polymer Mixtures

In chapter 4 a detailed method has been outlined to evaluate flexibility parameters of the
present model for pure polymeric systems. Later in the chapter, a comparison of glass
transition temperature versus pressure predictions from the present model and the Condo
model has been presented. Thus, we are now in a position to move ahead and discuss bi-
nary solvent-polymer mixtures. As discussed at the beginning of chapter 4 that for binary
mixtures there are two more characteristic parameters, namely, the binary interaction pa-
rameter ζsp and the mixture hole volume v0, however, there are no binary flexing parameters
as each segment is assumed to be independent of neighbouring segments. It is fortuitous
that SL-EOS of mixtures (Eq. 3.192) and Eq. 3.210 of the chemical potential of solvent
in mixed-phase do not contain any term involving flexing parameters. Consequently, we
can use the method highlighted by von Konigslow et al. [197] without any adaption to
regress ζsp and v0. Thus, after regression, Eq. 3.196 can be used to predict glass transition
temperature versus pressure behaviour of binary mixtures. However, before indulging into
details, first, a summary of von Konigslow et al. [197] method for regression of ζsp and v0
is highlighted in next section.

5.1 Summary of Regression Method

The von Konigslow et al. method is based on a constant mixture hole volume to keep
a consistent zero of chemical potential, however, because of this assumption the mixture
hole volume does not limit correctly to pure-component hole volumes [197]. Consider a
binary mixture consisting of a solvent s and a polymer p. Steps to regress ζsp and v0 for
this solvent-polymer mixture are enumerated below,
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1. Independently regress pure-component characteristic parameters of solvent s and
polymer p by using PVT data of corresponding pure systems and EOS 3.142. For
this regression, assume that the reference volume of an individual species is equal to
hole volume of that species i.e. vr,s = v0,s for pure solvent and vr,p = v0,p for pure
polymeric system.

2. Take experimental solubility χs data and/or swelling Sw data at different tempera-
tures and pressures, preferably, above critical point of solvent s.

3. Assume a value of ζsp and v0. Then, for temperatures and pressures over which
experimental solubility and/or swelling data is given, calculate the chemical potential
of solvent in pure solvent phase by using Eq. 3.160 and EOS 3.142. Notice that EOS
3.142 is used to calculate volume fraction φpures of solvent in the pure solvent phase.

4. Thus, the chemical potential of solvent in mixed-phase is now known because of the
condition of chemical equilibrium i.e. the chemical potential of solvent in the pure
solvent phase should be equal to the chemical potential of solvent in the mixed-phase.

5. Simultaneously solve Eq. 3.210 of the chemical potential of solvent in mixed-phase
and EOS of mixed-phase Eq. 3.192 to get volume fraction of solvent φs and polymer
φp in mixed-phase at all temperatures and pressure over which solubility and/or
swelling data is given.

6. Once φpures , φs and φp is known, theoretical values of solubility χs and/or swelling Sw
can be evaluated at given temperatures and pressures by using,

χs =
Msφs/αs

Msφs/αs +Mpφp/αp
, (5.1)

Sw =
φpures

φs
. (5.2)

7. Predicted solubility and/or swelling data can be compared with the corresponding
experimental data and thus iteration for ζsp and v0 can be performed to the minimize
residual mean square error.

Note that αk of mixed-phase is different from αk of pure phases. αk of pure phases can
be evaluated by using Eq. 3.85. However, to evaluate αk for mixed-phase the following
transformation has to be used,

αk = αpurek

v0,k
v0
, (5.3)
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where, v0,k is the hole volume of pure system of species k and v0 is the hole volume
of mixture. In addition, von Konigslow et al. [197] also assumed that the mixture hole
volume is close to the solvent hole volume. Based on this assumption, αs in denominators
on the left hand side of Eqs. 3.159 and 3.210 are assumed to be equal. Moreover, ′1′

present inside the bracket of second term on the right hand side of both equations has
been canceled while equating both equations for chemical equilibrium.

5.2 Prediction of Glass Transition Temperatures of

Binary Mixture

To evaluate the success of the model let’s focus on polystyrene - carbon dioxide (PS/CO2)
binary mixture. By using the method highlighted in section 5.1 iteration has been per-
formed to get ζsp and v0 using the experimental solubility data from Ref. [74]. Pure-
component characteristic parameters and flexing parameters are used from tables 4.3 and
4.7, respectively. Thus, regressed values are ζsp = 1.088, v0 = 4.355 cm3/mol and the cor-
responding solubility plot is shown in figure 5.1. Finally, Tg(P ) prediction from Eq. 3.196
is shown in figure 5.2. It is clear that Tg(P ) prediction from the present model is in good
agreement with the experimental data taken from [22]. Increasing pressure results in the
depression of glass transition temperature. This prediction is superior to the prediction of
the Condo model [22].

Recall that to determine volume fractions φs and φp, the mixture hole volume is assumed
to be close to the pure solvent hole volume. However, figure 5.2 has been obtained by
assuming that the mixture hole volume is equal to the pure polymer hole volume v0 = v0,p
because this assumption ensures that at low pressures Tg(P ) predictions limit properly to
pure PS Tg(P ) values. So, this assumption tends to minimize errors arising due to different
hole volumes. In short, to calculate φs and φp it is assumed that v0 ≈ v0,s, however, to
calculate Tg(P ) behaviour it is assumed that v0 ≈ v0,p.

5.3 Limitations

Although the theory is successful in predicting glass transition behaviour of PS/CO2 mix-
tures, however, when the theory is applied on PC/CO2 and PMMA/CO2 binary mixtures
that undergo retrograde vitrification the predictions from the present theory do not turn
out to be correct.

Figures 5.3 and 5.4 show solubility and Tg(P ) plot of PC/CO2 mixture from the present
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Figure 5.1: Solubility data with theoretical fits for binary PS/CO2 mixture at ζsp = 1.088
and v0 = 4.355 cm3/mol. Theoretical fits from the von Konigslow model [197] are shown
by solid curves while the experimental data [74] is shown by solid points.
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Figure 5.2: Glass transition temperature versus pressure plot of binary PS/CO2 mixture for
ζsp = 1.088 and v0 = 4.355 cm3/mol. The black cross points are from the present theory
while blue circles show experimental data taken from reference [22]. The dotted-black
curve is a guide to the eye.
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theory against regressed values of ζsp = 1.0667 and v0 = 4.470 cm3/mol. The experimental
data of solubility is taken from [180, 182] whereas experimental data of glass transition
temperature is taken from [5, 167, 212]. It is clear that the PC/CO2 undergoes retrograde
vitrification, however, the present theory does not show a retrograde vitrification trend.

A similar contradiction between the present theory and experiment has been observed in
PMMA/CO2 mixture. Figures 5.5 and 5.6 show solubility and Tg(P ) plot of PMMA/CO2

mixture from the present theory against regressed values of ζsp = 1.1188 and v0 =
3.427 cm3/mol. The experimental data of solubility is taken from [153,205] whereas exper-
imental data of glass transition temperature is taken from [21]. Again, the present theory
does not show the retrograde vitrification trend. On the other hand, the Condo model
reasonably predicts the retrograde vitrification behaviour in PMMA/CO2 system [21,22].

Figure 5.3: Solubility data with theoretical fits for binary PC/CO2 mixture at ζsp = 1.0667
and v0 = 4.470 cm3/mol. Theoretical fits from the von Konigslow model [197] are shown
by curves while the experimental data [180,182] is shown by solid points.

However, it should be noted that the present theory in itself is capable of predicting
retrograde vitrification if one hand-picked a value of ζsp. For instance, figures 5.7 and
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Figure 5.4: Glass transition temperature versus pressure plot of binary PC/CO2 mixture
for ζsp = 1.0667 and v0 = 4.470 cm3/mol. The black cross points are from the present
theory while blue circles show experimental data taken from reference [5, 167, 212]. The
dotted-black curve is a guide to the eye.

5.8 show two more Tg(P ) curves of PS/CO2 mixture from the present theory against
ζsp = 1.100 and 1.124, respectively. Similar, Tg(P ) behaviours were identified by the
Condo model [22]. Especially, figure 5.8 shows retrograde vitrification behaviour at the
hand-picked values: ζsp = 1.124 and v0 = 4.355 cm3/mol. It is clear from the figures that
Tg(P ) behaviour of binary mixtures is very sensitive to the value of ζsp. This means that
it is essential to have accurate solubility data. Moreover, the model should be free from
inconsistencies and crude assumptions. However, as discussed earlier, the present model
involves inevitable inconsistencies. It should be noted discrepancies in the regressed values
of ζsp and thus Tg(P ) predictions of the Condo model and the present model are arising
due to two reasons. First, contrary to the present model, the Condo model assumes that
the mixture hole volume is not constant (see Eq. 2.45). Second, the Condo model assumes
that αmixk = αpurek , again contrary to the present model (see Eq. 5.3). These two differences
are changing the regressed values of ζsp. Thus Tg(P ) prediction from the present model is
different from the Condo model.

Attempts to Resolve Issues:

There are two basic issues in the model. First, the model assumes different reference
volumes for pure solvent, pure polymer and binary mixture. Because of different reference
volumes the values of T ∗s , T ∗p , αs and αp should be different in pure and mixed systems.
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Figure 5.5: Solubility data with theoretical fits for binary PMMA/CO2 mixture at ζsp =
1.1188 and v0 = 3.427 cm3/mol. Theoretical fits from the von Konigslow model [197] are
shown by curves while the experimental data [153,205] is shown by solid points.
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Figure 5.6: Glass transition temperature versus pressure plot of binary PMMA/CO2 mix-
ture for ζsp = 1.1188 and v0 = 3.427 cm3/mol. The black cross points are from the
present theory while blue circles show experimental data taken from references [21]. The
dotted-black curve is a guide to the eye.
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Figure 5.7: Glass transition temperature versus pressure plot of binary PS/CO2 mixture for
ζsp = 1.100 and v0 = 4.355 cm3/mol. The black cross points are from the present theory
while blue circles show experimental data taken from reference [22]. The dotted-black
curve is a guide to the eye.
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Figure 5.8: Glass transition temperature versus pressure plot of binary PS/CO2 mixture for
ζsp = 1.124 and v0 = 4.355 cm3/mol. The black cross points are from the present theory
while blue circles show experimental data taken from reference [22]. The dotted-black
curve is a guide to the eye.
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This introduces an arbitrariness in the formula of solubility 5.1 that involves αs and αp.
For instance, the Condo method assumes same values of αs and αp in pure and binary
systems, whereas, the von Konigslow method re-scales αs and αp but does not re-scale T ∗s
and T ∗p . Thus, both methods are not accurate.

The second issue is that the von Konigslow method assumes a constant hole volume while
the Condo method assumes an arbitrary mixing rule (Eq. 2.45) to calculate hole volumes
of mixed systems. Both of these approaches are arbitrary.

The first issue can be resolved easily by re-scaling pure component parameter T ∗s and
T ∗p with respect to a fixed reference volume i.e. keep a same reference volume in the
pure solvent, pure polymer and binary system (for instance, take reference volume equal
to hole volume of pure polymer in the pure solvent, pure polymer and binary system).
This automatically re-scales αk’s in the solubility formula because of Eq. 3.85. After
doing this the model has only the second inaccuracy i.e. the approach towards mixture
hole volume. To study the effect of this arbitrariness we had regressed values of ζsp of
the present model for PS/CO2, PC/CO2 and PMMA/CO2 by using both constant mixture
hole volume approach (with and without von Konigslow’s approximation) and the arbitrary
mixing rule (Eq. 2.45) approach (without von Konigslow’s approximation). We found that
for these three binary mixtures the constant hole volume approach is underestimating the
values of ζsp is not predicting retrograde vitrification. Whereas, the arbitrary mixing rule
approach is overestimating the values of ζsp and is always predicting retrograde vitrification
(even in PS/CO2 mixture that does not undergo retrograde vitrification).
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Chapter 6

Conclusions

In this work, the off-lattice SL-EOS model [197] is generalized to the case of finite flexible
molecules by allowing molecules to have two energy levels of flexing. The flexing states are
treated as internal degrees of freedom thus they depend only on the temperature of the
system. The proposed extension is inspired by the lattice-based Condo et al. model [23].
Thus the off-lattice model and Condo model have been compared in detail for several pure
polymeric materials and binary polymer-solvent mixtures.

For pure polymeric systems, the glass transition versus pressure and the isobaric heat ca-
pacity versus temperature predictions were utilized to make the comparison of the present
model and Condo model. The present model predicted the experimental data more accu-
rately than the Condo model. Furthermore, the present model is superior to the Condo
model in some other aspects. In the Condo model, two experimental values, Tg at atmo-
spheric pressure and dTg/dP , are required to regress model parameters εp and z. However,
since dTg/dP is a constant thus the model can only be used for polymers having a fairly
linear Tg(P ) behaviour. Moreover, to obtain an accurate value of dTg/dP significant Tg(P )
data is usually required that ruins the purpose of the model i.e. to make Tg(P ) predictions.
On the other hand, the present model is free from these two limitations. Instead of dTg/dP
value, the present model uses the value ∆CP (Tg) at atmospheric pressure. Thus the present
model can be applied to polymers having non-linear Tg(P ) behaviour. Moreover, since this
approach requires CP (T ) data to calculate the value of ∆CP (Tg) thus the approach does
not compromise the purpose of the model i.e. Tg(P ) predictions.

The worse performance of the Condo model is due to the fact that the Condo model is
a lattice-fluid model that only allows coordination number z to be an integer. However,
in the present model, the hypothetical parameter z is replaced by the degeneracy g which
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is a real parameter that can take non-integer values. Indeed, when the Condo model
is allowed to take non-integer coordination numbers performance of the model improves.
However, this was expected because the Condo model requires significant Tg(P ) data. So,
it is essentially a verification of the experimental inputs.

Equations of the present model and the Condo model are very similar. Comparing equa-
tions 3.64 and 2.44 of the fraction of excited segments from the present model and Condo
model, respectively, one can notice that the factor z− 2 of Condo model is replaced by the
degeneracy g in the present model. In addition, equations of entropy 3.194 and 2.48 from
the present model and Condo model are also very similar.

The present model also revealed that the entropy of polymers cannot become negative
thus the Gibbs DiMarzio criterion is incorrect. This prediction is in agreement with other
authors [6,206,207] who argued that the criterion is a lattice-based effect and, in reality, the
entropy of polymers should not become negative. However, several authors [41] including
Condo et al. decided to further explore the thermodynamics of glass transition based on
the Gibbs DiMarzio criterion.

The present model is also applied to binary polystyrene/CO2 mixture and found to be
successful in predicting the depression of the glass transition temperature of polystyrene
with increasing CO2 pressure. The predictions are in excellent agreement with experimental
data. However, predictions of the model for polycarbonate/CO2 and PMMA/CO2 are not
correct because of inconsistencies in the theory that are making regressed values of ζsp
less accurate. But, the model in itself can show retrograde vitrification behaviour against
hand-picked values of ζsp.

In a nutshell, the present model is more powerful than the lattice-based Condo model and
the off-lattice SL model [197]. It generalizes the off-lattice SL model which is not capable of
predicting glass transition in polymers. It is free from the criticism of artificial lattice and
Gibbs DiMarzio criterion. It requires significantly less experimental data to regress model
parameters than the Condo model. The model has replaced integer coordination number
z with non-integer degeneracy g. It is capable of predicting the depression of the glass
transition temperature due to increasing gas pressure in binary polymer-solvent mixtures.
The model is based on the ab initio approach of statistical mechanics and can be used to
optimize industrial processes related to the manufacturing of polymers.
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Glossary

acentric factor a number that tells how much a molecule is non-spherical.

blowing agent a fluid that is used to create macroscopic voids in polymeric foams.

chemical blowing agent a blowing agent that uses chemical processes to create macro-
scopic voids in polymeric foams.

configurational partition function a partition function that only contains configura-
tional information of the system with no kinetic portion.

critical point a point at which the distinction between gaseous phase and liquids phase
ceases to exist.

equations of state equations that relate thermodynamic state variables of systems in
thermodynamic equilibrium.

glass transition A process in which a polymer melt changes from polymer liquid to poly-
mer glass on cooling and vise versa.

macrostate the thermodynamic state of system is called macrostate.

microstate a state of the system defined by using microscopic coordinates of constituting
particles, for instance, position, velocities, internal state etc.

molar volume Molar volume is the volume occupied by one mole of a substance at given
temperature and pressure.

physical blowing agent a blowing agent that produces thermodynamic instabilities to
create macroscopic voids in polymeric foams.
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polymer macromolecules that consists of large number of repeating units.

polymeric foam a polymeric material with macroscopic voids.

retrograde vitrification A phenomenon in which polymer liquid to polymer glass tran-
sition occurs on heating and vise versa.

solvent a substance consisting of small molecules in fluid state that is usually mixed with
polymer.

statistical mechanics branch of physics that uses microscopic argument to describe the
average thermodynamic response of the system.

thermal fluctuations spontaneous deviations of thermodynamic systems from their equi-
librium conditions.

thermodynamic state variables or coordinates properties that define the state of
system in thermodynamic equilibrium.

thermodynamics branch of physics that deals with the conversion of one form or energy
into another form of energy.
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