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area related to inference on visual motion patterns?

Omid Rezaia, Lucas Stofflb, Bryan Trippa,∗

aUniversity of Waterloo
bTechnical University of Munich

Abstract

Neurons in the primate middle temporal area (MT) respond to moving stim-

uli, with strong tuning for motion speed and direction. These responses have

been characterized in detail, but the functional significance of these details (e.g.

shapes and widths of speed tuning curves) is unclear, because they cannot be

selectively manipulated. To estimate their functional significance, we used a de-

tailed model of MT population responses as input to convolutional networks that

performed sophisticated motion processing tasks (visual odometry and gesture

recognition). We manipulated the distributions of speed and direction tuning

widths, and studied the effects on task performance. We also studied perfor-

mance with random linear mixtures of the responses, and with responses that

had the same representational dissimilarity as the model populations, but were

otherwise randomized. The width of speed and direction tuning both affected

task performance, despite the networks having been optimized individually for

each tuning variation, but the specific effects were different in each task. Ran-

dom linear mixing improved performance of the odometry task, but not the

gesture recognition task. Randomizing the responses while maintaining repre-

sentation dissimilarity resulted in poor odometry performance. In summary,

despite full optimization of the deep networks in each case, each manipulation

of the representation affected performance of sophisticated visual tasks. Repre-
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sentation properties such as tuning width and representational similarity have

been studied extensively from other perspectives, but this work provides new

insight into their possible roles in sophisticated visual inference.

Keywords: middle temporal area, representation, deep networks, sensitivity

analysis, representational similarity

1. Introduction

The visual responses of neurons in different areas of the visual cortex have

been studied extensively, providing a detailed view of many relationships be-

tween visual representations and stimulus properties. Complementing these

experiments, information theory has been used to understand how tuning curve5

widths affect the encoding of stimulus information by neuron populations [1].

However, the significance of response properties with respect to the outputs

(rather than the inputs) of the visual cortex has been less studied.

In the primate middle temporal area (MT), many neurons respond strongly

to visual motion, with robust tuning for motion speed and direction. Tun-10

ing curves and other response properties have been extensively characterized.

Microstimulation studies have confirmed the role of MT cells in motion per-

ception; microstimulation biases animals’ judgements towards the direction of

motion encoded by the stimulated neurons [2, 3]. Furthermore, lesion studies

in monkeys have confirmed the role of MT in smooth pursuit eye movements15

[4]. Trial-to-trial variability in MT responses is also correlated with motion

perception decisions [5]. Furthermore, tuning properties have been linked with

perception and visually guided action. For example, preferred speeds of MT

neurons are slower for smaller stimuli, which accounts for human perception of

smaller stimuli as moving faster [6]. Other stimulus manipulations affect pur-20

suit eye movements in a way that is consistent with their effects on MT neuron

tuning [7].

However, a potential limitation of these studies is that they involve decoding

the same low-level variables that form the domain of the tuning curves, whereas
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much more complex inferences can also be made from visual motion patterns25

[e.g. 8, 9]. MT projects strongly to several other cortical areas [10], suggesting

that MT representations may have a a variety of roles in perception and visually

guided behavior. The significance of MT tuning widths, and other properties of

the representation, with respect to complex visual inferences is unclear.

In this study, we embedded models of MT activity within models that per-30

formed sophisticated inference, to estimate the potential contributions of MT

representation properties in such tasks. Specifically, we embedded an MT model

within convolutional networks that perform visual odometry (i.e. egomotion

from video) and gesture recognition. We then varied properties of the repre-

sentation to estimate the relevance of these properties to sophisticated motion35

processing. The results in Figure 6 have been presented previously [11].

One property of the representations that we varied was tuning curve widths.

A tuning curve describes a neuron’s mean spike rate as a function of some ex-

perimental variable. Although electrophysiology experiments typically measure

tuning curves in single dimensions (for practical reasons) individual neurons in40

a given area are typically sensitive to multiple stimulus dimensions [12]. Tuning

curves have been extensively measured in neurophysiology for many decades,

but new details and insights continue to emerge, e.g. related to their dynam-

ics [13], statistics [14], and modulation by attention [15]. Their significance

has also been widely studied in theoretical work, often from the perspective of45

their effect on the amount of stimulus information encoded by a population of

noisy neurons [1, 16]. However, this perspective may not completely address

the functional significance of tuning curves in the brain. Other theoretical work

deals more directly with the use of tuning curves as a basis for computation

rather than stimulus reconstruction. In particular, [17] showed that different50

sets of tuning curves support robust computation of different functions (via

multi-linear regression). This gives additional insight into the roles of tuning

curves in supporting feature transformations. However, multi-linear regression

is a simplified model of computation in a single connection from one population

to another, rather than computation in a more complex network. In this study,55
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we extend this view by studying the effects of tuning width in deeper networks

that compute relatively complex and naturalistic functions.

Our results suggest that tuning width is functionally significant, even in

deeper networks that perform complex tasks, and that the optimal tuning curves

are task-dependent. In separate simulations, we also found that representa-60

tional similarity [18] does not fully account for the functional significance of

neural responses. In each case, the networks were retrained on the modified

representations, but the representation details affected task performance.

2. Methods

2.1. Model of population activity in the Middle Temporal Area65

We used our previous empirical model of area MT population responses [11]

(see Figure 1).

Briefly, the model uses computer-vision methods to calculate various fields

from video input, including optic flow, disparity, and local contrast fields. A

number of feature maps are created from these fields, corresponding to different70

stimulus tuning. The number of feature maps varies somewhat between net-

works, as described below. For example, a specific instance of the MT model

might have 64 13×13-pixel feature maps, in which case each feature map would

model 132 MT neurons with the same feature selectivity, tiled over visual space.

To create each feature map, we combined tuning curves for speed, direction, dis-75

parity, etc. from the literature. The tuning curves were calculated as pixel-wise

functions of the flow, disparity, and contrast fields. Specifically, the neurons’

responses were r = [A
∫
x

∫
y
Kx,ygsgθgd +B]+, where []+ denotes half-wave rec-

tification, B is the background firing rate (spikes/s), A = maximum firing rate

- background firing rate, Kx,y is the spatial receptive field, gs is a speed-tuning80

function that is also a function of local contrast, gθ is a direction-tuning func-

tion, and gd is a binocular-disparity tuning function. Our original model also

included an attention component, which we omitted here. Of particular in-

terest in the present study are the speed and direction tuning functions. The
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Video
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Disparity Field

Contrast Field

Receptive 
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Figure 1: Overview of the MT model. The model uses computer-vision methods to calculate

flow, disparity, and contrast fields, and tuning curves from the primate electrophysiology

literature to estimate the MT population response from these fields. Adapted with permission

from [11].
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speed-tuning function (from [19]) is,85

gs = exp

(
− [log (q(s, c))]2

2σ2
s

)
, (1)

where,

q(s, c) =
s+ s0

sp(c) + s0
, (2)

s is motion speed, and sp is the preferred speed. The tuning curve has parame-

ters s0 (offset) and σs (width). Preferred speed is a function of contrast c [11].

The direction-tuning function is

gθ = exp

(
cos (θ − θp)− 1

σθ

)
+ an exp

(
cos (θ − θp − π)− 1

σθ

)
, (3)

where θ is motion direction, θp, σθ, and an are the preferred direction, direction90

width, and relative amplitude in null direction (i.e. 180 degrees away from

preferred direction), respectively.

Spatial receptive fields were then modelled by combining responses across

pixels, using difference-of-Gaussians kernels. For each feature map, we drew

tuning-curve parameters from distributions that were modelled on data from the95

electrophysiology literature. The model reproduces some MT response proper-

ties that have not appeared in previous models (e.g. local rather than global

pattern-motion integration within a receptive field; [20]), and generally repro-

duces MT response properties more closely than previous models. It approx-

imates dynamics of component and pattern selectivity, but this aspect of the100

model was omitted in this study. In summary, the model produces an approxi-

mation of an MT population response (in spikes/s) to video input, in the same

form as a multi-channel convolutional-network layer.

3. Perturbations of the MT model representation

Using the MT population model as a baseline representation of visual mo-105

tion, we explored several variations of this representation, described below. We

trained multiple deep networks independently, using each of these variations as

input.
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3.0.1. Changes in speed and direction tuning width

The issue of optimal neuronal tuning widths has received much attention110

in the literature [21]. Arguments have been made for both sharp [22, 1] and

broad [23, 24, 25, 26] tuning curves as a means to increase encoding accuracy.

In contrast, the present study addresses the role of tuning width in complex and

naturalistic visual inference.

We focused on two features of MT response, the direction-tuning bandwidth115

and speed-tuning width. A large percentage of MT neurons are sensitive to both

direction and speed. In the MT model, the widths of both speed and direction-

tuning curves are drawn from Gamma distributions. These are a family of

continuous distributions over [0,∞), which include exponential distributions as

a special case (see [27] for an example of the use of Gamma distributions in120

the neuroscience literature). Previously, we found that Gamma distributions fit

both MT speed and direction-tuning width histograms from the electrophysiol-

ogy literature better than a number of other common distributions, according to

the Akaike Information Criterion [11]. Gamma distributions have two parame-

ters, the shape and the scale. We experimented with variations in tuning-curve125

widths by changing the scale parameters. Specifically, we experimented with

0.25, 0.5, 1, 2, and 4 times the original scale. Figure 2 depicts these Gamma

distributions for both direction tuning bandwidths and speed tuning widths. For

direction tuning, we truncated the distributions at 360◦. We also experimented

with eliminating each of these tuning dimensions entirely.130

3.0.2. Random linear recombinations

Several studies [e.g. 28] have used linear regression to approximate neural re-

sponses from model responses. In these studies, the quality of linear reconstruc-

tion is taken to reflect the similarity of the model and neural representation. The

rationale is that correspondences between individual model and biological neu-135

rons cannot be expected, but a given biological neuron response should resemble

some linear combination of model neuron responses, if the model responses be-

long to the same family. Random linear mixing of responses has little effect
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Figure 2: Left: Gamma distributions for drawing direction tuning bandwidths where the

parameters of the original distribution were shape=7.32 and scale=14.20. Note that the

direction tuning bandwidths were truncated at 360◦. Right: Gamma distributions for drawing

speed tuning widths where the parameters of the original distribution were shape=4.36 and

scale=0.28.

on linear reconstruction, but we wondered whether it could affect performance

of complex tasks. To test this, we passed MT population responses through140

random 1x1 kernels before input to the odometry and gesture networks. Tuning

of these random combinations was qualitatively different than tuning of MT

model neurons. For example, tuning for speed and velocity was not separable

(see Figure 3). Because we used 1x1 kernels, the responses remained spatially

localized, and were only mixed in feature space.145

3.0.3. Random responses with given representational similarity

Representational similarity analysis (RSA) [29] is widely used to characterize

and compare neural representations. It consists of calculating a representational

dissimilarity matrix (RDM), which is typically simply one minus the matrix of

correlations between population responses to different stimuli , i.e.150

RDM = 1−R, (4)

where R is the correlation matrix. If two stimuli evoke highly correlated popu-

lation responses, this suggests that the recorded population makes little distinc-

tion between them. RSA allows comparison of different representation modali-

ties, such as electrophysiology data, functional imaging data, and model data.

For example, if RDMs of a model and an electrophysiology dataset are similar,155

this suggests that the model and the recorded neuron population make similar

8Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



32

128

Sp
ee

d 
(d

eg
/s

)

[0.0,0.25]
[0.25,0.5]
[0.5,0.75]
[0.75,1.0]

32

128

Sp
ee

d 
(d

eg
/s

)

0 180 360
Direction (deg)

32

128

Sp
ee

d 
(d

eg
/s

)

0 180 360
Direction (deg)

0 180 360
Direction (deg)

Figure 3: Examples of normalized speed vs. direction-tuning curves for nine random linear

recombinations of MT model responses. In contrast with the tuning of the MT model neurons,

these mixed responses are not separable in speed and direction.

distinctions between the stimuli. RSA has been used to compare neurobiological

representations with representations in deep networks [30, 31, 32].

Visual representations can be viewed as intermediate processing steps to-

ward visual perception or visually guided action. In this context, we wondered160

how much the RDM of a representation determines how useful the representa-

tion is for certain visual tasks. To test this, we created population responses

matrices with RDMs that closely matched those of our MT model, but which

were otherwise random. We then trained odometry networks using these RDM-

matched responses as input, and compared their performance to odometry net-165

works with the actual MT model as input. This process required the RDM of a

model population, over a full dataset. To make this tractable, we used a smaller

MT population (10,816 units in total) and a subset of the odometry dataset

(18,000 training and 2048 validation sequences). The RDMs were therefore

20,048x20,048. A dataset of similar size for the gesture recognition task yielded170

poor performance (36% classification accuracy), so we did not analyse the ges-

ture task in this way. These RDMs were exact, because they were based on

the responses of the entire MT model, whereas only a sample of the relevant
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population is available in an electrophysiology study.

We experimented with two methods of generating RDM-matching popula-175

tion response matrices (10,816 by 20,048 entries). First, we began with the

original MT-model responses, and changed population response vectors for in-

dividual stimuli repeatedly by small amounts. Each change of a population

response to a given stimulus was within the null space of the gradients of the

correlations with responses to other stimuli. This approach did not work well180

however, apparently due to accumulation of numerical errors. The step di-

rections were uncorrelated (as the null space changed at each step), so they

accumulated poorly, and many steps were needed to make substantial changes.

Accurate results were reliably obtained with a different method. We be-

gan with a random response matrix RR, and defined the cost function C =185

∑
i,j r(R

R
i,:, R

R
j,:) − r(RMT

i,: , RMT
j,: ), where RMT is the MT-model response ma-

trix, and r is the correlation coefficient. We then calculated the gradient of C

with respect to the elements of RR, and minimized the cost using the Adam

algorithm [33], an adaptive variant of gradient-descent. We optimized each re-

sponse matrix by optimizing 1000 random sub-matrices, each consisting of 300190

stimuli. This reliably resulted in close matches between RMT and the optimized

RR. To reiterate, once we had calculated RMT , the RDM of an MT model’s

responses, this procedure allowed us to create new, random responses with the

same RDM. This procedure produced new (random, but RDM-matched) re-

sponses for a set of 20,048 stimuli, which was large enough for training and195

validation of an odometry network with the new responses as inputs. This in

turn let us assess whether fixing the RDM determined task performance, or

whether other aspects of the responses (which were randomized by this proce-

dure) were also important.

Figure 4 illustrates some differences between linear mixing and RDM match-200

ing in a simple one-dimensional example. In general, a matching RDM does not

imply good linear reconstructions of the original responses, and good linear

reconstructions do not imply matching RDM. Experimenting with other simpli-

fied population models, consisting of Gaussian tuning on vector fields of various
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Figure 4: Illustration of differences between RDM matching of responses and linear recom-

bination of responses with a small one-dimensional population model. Tuning curves of the

original model responses are shown in the top-left panel, and the RDM is shown at the top

right. Yellow indicates high dissimilarity. The axes correspond to the same range of 1D

stimulus values as the horizontal axis in the top-left panel, in the same order. Middle row:

responses (left) that have essentially the same RDM (right) lead to poor linear reconstruction

(center). Bottom row: random linear mix of original responses (left). These lead to good

linear reconstruction of the original responses (centre), and non-matching RDM (right).

dimensions, we found that RDM could be closely matched with a wide variety205

of populations. However, linear reconstruction of held-out samples from the

RDM-matching responses was generally poor, although it tended to improve

somewhat with wider tuning and larger receptive fields.

3.1. Visual tasks and deep networks

MT model activity was used as input to convolutional networks that per-210

formed sophisticated visual tasks. We tested how the above perturbations of

the MT-model representation affected performance of two sophisticated visual

motion-processing tasks, a visual odometry task and a gesture recognition task.

In each case, the networks only received motion, disparity, and contrast infor-
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Figure 5: An example stereo video frame from the odometry dataset.

mation. However, other information is useful in these tasks as well, for example215

some gestures can be recognized from still images. Our networks were therefore

somewhat impaired in these tasks, in order to isolate the role of visual motion

representation.

The goal of the visual odometry task was to estimate self-motion velocity

from video. We used a photorealistic synthetic dataset that we had developed220

previously [11]. The dataset is well suited to provide input to the MT model,

as it has stereo video with a biologically realistic stereo baseline, and a high

frame rate. It is also large enough for supervised learning with deep networks.

The dataset was created in Unreal Engine 4, using the Modular Neighbourhood

Pack, which contains a model of a residential neighbourhood with houses, cars,225

and streets, surrounded by a natural landscape of grass and trees (see example

frame in Figure 5). The dataset has 84,000 short six-frame stereo videos in

which the camera moves along curvilinear paths. For each video, it has ground-

truth antero-posterior, medio-lateral, and rotational velocities. We used 75,000

sequences for training and held out 9,000 additional sequences for validation.230

The network structure used for the odometry task is shown in Table 1. The

MT model responses provided input to the network. As described above, these

were calculated from video. The flow, disparity, and contrast fields were aver-

aged over the six frames of each video, approximating the low-pass properties of

MT neurons [34]. Batch normalization was also used after all layers of the net-235

work (except the output layer) to reduce overfitting and speed up training. The
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Layer # Kernels Kernel Size Shape Pool Nonlinearity

Conv-1 128 9× 9 6× 6 None ReLU

Conv-2 128 9× 9 6× 6 2× 2 ReLU

Dense 1024 ReLU

Output 3 None

Table 1: CNN architecture for the visual odometry task. The structure was based very roughly

on the structure of the primate dorsal visual stream, with area MT corresponding to the input,

and the two convolutional layers corresponding respectively to the middle superior temporal

area and the ventral intraparietal area, which has been linked to coding of heading direction

[37].

CNN was implemented in Keras [35] with TensorFlow [36] back end. The mean-

square error of self-motion estimates was minimized using the Adam algorithm

[33].

The gesture recognition task was based on the 20BN-JESTER dataset, which240

was developed by TwentyBN (Toronto, Canada). This dataset consists of about

150,000 short videos sequences in which people perform hand gestures from 25

different categories (e.g. thumbs-up, swipe left).

The network structure used for the gesture recognition task is shown in Table

2. Since the frame rate of the 20BN-JESTER dataset was already comparable245

to the temporal range of MT, unlike the higher frame rate of the odometry

dataset, we did not feed the sequence-average as input to the gesture networks.

Instead, we chose a twelve-frame window from each sequence where the average

flow was maximum compared to any other window. Therefore, the most motion-

informative part of the sequence was captured while keeping the input sequence250

small enough so a mini-batch could be fit on GPU memory during training.

Because the input was a sequence we used a long-short-term-memory (LSTM)

layer instead of a dense layer after the final convolutional layer.

When we used the simplified difference-of-Gaussians (DoGs) kernels as the

receptive fields (RFs) of the MT neurons, the gesture networks overfitted after255

3 or 4 epochs with high validation loss. Therefore, instead of using DoGs,

13Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



we added three parallel sparse convolutional layers to the beginning of these

networks. The networks received pixel-wise non-linear functions of flow and

contrast fields as input. These functions, which we refer to as tuning feature

maps, were calculated using our MT model. The sparsity of the three parallel260

layers meant that each channel of the MT layer (Table 2) almost exclusively

connected to one of the tuning feature maps through each parallel layer. In other

words, each channel of MT layer was connected to three tuning feature maps

via three kernels that corresponded, respectively, to the classical centre RF,

direction-selective surround and non-direction-selective surround [38]. These265

kernels were learned during the training phase and constrained to be either

non-negative (centre RFs) or non-positive (surrounds).

To create random linear mixing of MT responses on the gesture recognition

task, we added a convolutional layer with 1x1 kernels right after the MT layer

(Table 2). These 1x1 kernels were randomly initialized and not allowed to change270

during training.

These network models lack many physiological details, such as spiking and

lateral interactions. It is not practical to avoid this limitation, because most of

the missing physiological details have not been incorporated into functionally

sophisticated models.275

3.2. Fisher Information and Optimal Linear Estimation

Past work has considered the significance of tuning-curve width in terms of

information theory. The Fisher information is the inverse of the least possible

variance of an unbiased estimator [39]. If neurons exhibit independent Poisson

variability, the Fisher information is [39],280

If = T

N∑

i=1

(r′i(s))
2

ri(s)
, (5)

where ri(s) is the ith tuning curve, N is the number of neurons, and T is the time

window (Poisson noise is independent over time, so information accumulates

over time). We calculate the Fisher information of our MT population models to

contrast it with task performance, as it is unclear how these are related. Fisher
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Layer # Kernels Kernel Size Shape Pool Nonlinearity

RF-1 64 15× 15 12× 76× 76 None None

RF-2 64 15× 15 12× 76× 76 None None

RF-3 64 15× 15 12× 76× 76 None None

MT 12× 76× 76 None ReLU

Conv-1 64 15× 15 12× 76× 76 6× 6 ReLU

Conv-2 64 9× 9 12× 12× 12 None ReLU

Conv-3 64 9× 9 12× 12× 12 3× 3 ReLU

LSTM 256 ReLU

Output 27 Softmax

Table 2: CNN architecture for the gesture recognition task. There were three parallel sparse

convolutional layers (RF-1, RF-2, RF-3) in the network that constituted the center and sur-

round RFs of MT layer (see text). MT layer had 64 channels where the activity was computed

by adding the output of RF-1, RF-2 and RF-3, as well as 64 bias values, and passing the result

through the rectified linear units (ReLUs). Compared to the odometry network, this network

replaces the Dense layer before the output with an additional convolutional layer and a LSTM

layer, which was important for integrating information over larger numbers of frames. This

network incorporated a more realistic model of MT receptive fields, based on [38], which

improved performance in this task.
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information is related to recovering a stimulus property, and in the standard285

model we use, it is assumed that the main barrier is independent Poisson noise

in each neuron. In contrast, task performance in our network relies on inference,

and the key barrier is reliance on visual cues that may be subtle and variable.

In this context, independent neuron-level noise (such as Dropout) may mildly

degrade performance, but it can also play an important regularizing role. In our290

models, errors in the estimation of motion speed and direction are potentially

a more problematic source of noise that is correlated across all the neurons.

However, this noise of noise is injected before the tuning curves, so their shapes

do not affect sensitivity to it.

Others [17] have studied the effect of tuning curve width on the accuracy of295

optimal linear estimates [40] of a represented variable,

ŝOLE = (RTR)−1RT s, (6)

where R is a matrix of responses for different neurons and stimuli) and also of

optimal linear estimation of different functions of a represented variable,

f̂(s)OLE = (RTR)−1RT f(s). (7)

The latter is related to our deep network models, in that the first convolutional

layer after the MT model performs a linear mapping that extracts some unknown300

function of the represented variables. To relate our models to this past work, we

test the accuracy of optimal linear estimates of speed and direction from our MT

models. For the best-performing MT model populations in each task, we also

plot the principal components of the speed-direction tuning curves, which span

the space of functions that can be computed robustly, i.e. with low sensitivity305

to noise.

The Fisher information and optimal linear estimate analyses used a slightly

simplified model where we removed the contrast dependency from speed tun-

ing. Specifically, in this simplified version preferred speeds were drawn from

a log uniform distribution that we had modelled based on [19] (as opposed to310

calculating the preferred speeds as a function of contrast).
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4. Results

4.1. Sensitivity of task performance to speed and direction tuning width

Figure 6 shows how performance of the visual odometry task is affected by

the distributions of speed and direction tuning widths. Importantly, the net-315

works were trained independently with each set of tuning curves. The∞ symbol

refers to not having any selectivity for either speed (left panel) or direction (right

panel) in the model (i.e., bandwidth is infinite). The root-mean-square error

(RMSE) was 53% higher when speed-tuning widths were narrowed to 0.25 times

their original range, and 6% lower when they were increased to twice their orig-320

inal range. Eliminating speed tuning completely (the point on the right of the

plot) resulted in 50% higher error than the original model.

In contrast, RMSE was only 11% higher when direction-tuning widths were

narrowed to 0.25 times their normal range, and 3% lower at best (4x normal

width). However, RMSE was 289% higher when direction tuning was eliminated325

(1.48, similar to the standard deviation of the targets, which was 1.54).

We tested whether performance improvements with broader tuning were

significant, using t-tests with Bonferroni correction for multiple comparisons.

To improve power, we created and trained three additional networks with new

MT population models that had the best-performing speed and direction-tuning330

widths (same tuning distributions; different random samples from these distri-

butions). Mean absolute errors with 2x speed tuning widths were significantly

lower than all other cases (α < .05). The average RMSE of the 4x direction-

tuning width populations was lower than other cases, although the 0.5x, 1x,

and 2x means differed by less than five percent. Among the 0.25x, 0.5x, 1x, and335

2x direction-tuning variations, only the 0.25x and 0.5x had significantly higher

mean absolute errors (α < .05) than the 4x errors.

Figure 7 shows how the distributions of speed and direction tuning widths

affect performance of the gesture recognition task. The loss increased moder-

ately when tuning widths were increased to 4x their original range. The loss340

increased more substantially when either speed or direction tuning were elim-
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Figure 6: Root-mean-square error of odometry predictions on held-out validation data, as a

function of speed tuning width (left) and direction tuning width (right). The standard devia-

tion of the targets was 1.54. On the horizontal axis, 1 means the distribution is unchanged, 2

means the scale parameter of the Gamma distribution is 2x it’s original value, etc. The error

bars indicate +/- 2SD for repeated training with different random initialization.

inated. Classification accuracy dropped from 75% to 60% when speed tuning

was eliminated, and to 70% when direction tuning was eliminated. These results

(both loss and classification accuracy) are in different units than the odometry

results, but qualitative comparisons are possible. In contrast with odometry,345

broader tuning did not improve gesture recognition performance. Elimination

of direction tuning had a larger impact on odometry performance, while elimi-

nation of speed tuning had a larger impact on gesture recognition performance.

4.2. Sensitivity of Fisher Information to Tuning Width

Figure 8 plots Fisher information (assuming independent Poisson variability350

in each neuron) for the MT layers of our models. Fisher information declines

monotonically with an increase of tuning curve width in a single dimension. This

is qualitatively consistent with the monotonic increase in error with speed tuning

width that we found in the gesture recognition task. However, it is inconsistent

with the other task effects. Specifically, odometry performance is best with355

broad direction tuning, and the other relationships are non-monotonic. Taken

together, the effects of tuning width on Fisher information and task performance

have little in common.
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Figure 7: Validation loss of gesture recognition networks as a function of speed-tuning width

(left) and direction-tuning width (right). The horizontal axis is as in Figure 6. For example, 1

indicates the original speed-tuning width distribution, and 2 indicates that the scale parameter

of the distribution was increased by a factor of two. The points on the right (marked with x)

indicate infinite tuning width (i.e. no sensitivity).

Notably, in addition to decreasing information about speed, increasing speed-

tuning width also indirectly increases information about direction, simply be-360

cause wider tuning curves increase mean spike rates. For this reason, task

performance as a function of speed-tuning width could potentially be well cor-

related with a linear combination of Fisher information about speed and direc-

tion. However, this would be coincidental, because Fisher information depends

on independent noise around the tuning curves, whereas our model responses365

have no such noise source. Many deep networks use Dropout, which is a kind

of independent noise, but this is typically turned off at inference time.

4.3. Effect of Tuning Width on Optimal Linear Estimation

Previous work has also examined the effects of tuning-curve shapes on opti-

mal linear decoding of stimulus properties in the presence of noise. Deep net-370

works are more powerful than linear estimators, but each of their layers includes

a linear map, so the effects of tuning-curve shapes on optimal linear decoding

could conceivably be related to task effects. However, decoding of both log-

speed and direction was quite accurate for all of the populations. For example,

using the Moore-Penrose pseudoinverse, with a regularization parameter equiv-375

alent to additive Gaussian noise of five spikes/s, root-mean-squared log-speed
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Figure 8: Left, Fisher information about log-speed, for MT model populations with differ-

ent speed-tuning widths. The red and blue lines correspond to the odometry and gesture

recogniton tasks, respectively. These are slightly different because the Fisher information is

calculated as a weighted average over the actual speed distributions that appeared in these

tasks. The task-specific direction distributions were ignored, because direction tuning was

statistically uniform. Right, Fisher information about direction, for MT model populations

with different direction-tuning widths.

decoding error was < .01 log-◦/s for all populations, and root-mean-squared

direction decoding error was < .001 radians for all populations.

Importantly, the linear maps in our deep networks do not explicitly decode

direction and velocity. However, they do compute new visual features that are380

functions of direction and velocity. Tuning-curve width affects the functions

that can be robustly computed from a neural population [17]. In particular, the

functions that can be computed with the least sensitivity to noise are in the space

of the large principal components of the tuning curves, corresponding to large

singular values a matrix with tuning curves as rows. Figure 9 plots singular385

values of these matrices, with different perturbations of tuning-curve width.

Wider tuning curves produce a few large principal components, corresponding to

a small space of functions that can be decoded very robustly. Figure 10 shows the

largest principal components of the best-performing populations for each task.

The best principal components for the odometry task (left) tend to be fairly390

separable in speed and direction, whereas the best principal components for

gesture recognition (right) tend to be complex functions of speed and direction.

20Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



0 20 40 60
Singular value #

10−2

100

102

104

M
ag

ni
tu

de

Speed Tuning

.25x

.5x
1x
2x
4x

0 20 40 60
Singular value #

10−1

101

103

M
ag

ni
tu

de

Direction Tuning

.25x

.5x
1x
2x
4x

Figure 9: Singular values of matrices of MT population model tuning curves. Left, Singular

values of populations with different speed-tuning widths. Right, Singular values of populations

with different direction-tuning widths.

Figure 10: Left, The first 16 principal components of the tuning curves of the best-performing

MT model population for the odometry task (beginning from the top-left). The horizontal

axes are log-speed, from -2 to 4 log-◦/s; the vertical axes are direction, from 0 to 2π radians.

Right, As on the left, but for the best-performing model population for gesture recognition.
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4.4. Sensitivity to linear recombination and RDM-maintaining perturbations

Figure 11 shows an example of random responses with a RDM that closely

matches that of an MT-model response to the odometry dataset.395

Table 3 shows the results of experiments with random linear mixing of the

MT-model responses, and with randomized RDM-matching responses (root-

mean-square difference with original RDM less than 0.0086 in each case). The

means and standard deviations are over three independently trained networks

in each case. With random linear mixing, odometry performance improved, but400

gesture performance was slightly worse. Using random responses with the same

RDM led to substantially worse performance of the odometry task.

The RDM is insensitive to the spatial organization of the representation, but

spatial organization could be an important factor in both deep networks and the

brain, because individual neurons tend to receive spatially localized input. In405

our network, the kernels of the MST layer were fairly large, but did not span the

whole MT layer. So the worse performance we found using random responses

with the same RDM could have been due to loss of spatial organization of the

representation. To test this, we performed a control experiment in which the

network was trained on a spatially shuffled version of the MT model representa-410

tion (i.e. each multi-channel pixel was moved to a new random location). This

resulted in slightly worse performance than baseline (RMSE 0.51 cm/frame as

opposed to 0.45 cm/frame), but much better performance than the full RDM-

maintaining randomization (RMSE 0.66 cm/frame). This suggests that reduced

performance in the latter case is not primarily due to a simple loss of spatial415

organization.

5. Discussion

Tuning-curve width affects how much stimulus information is encoded in the

presence of noise [1]. It also affects the functions that can be decoded from a

population with diverse tuning [17]. Using linear regression (a simple model of420

synaptic integration), lower-frequency functions can be decoded more accurately
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Figure 11: An example of a random population response to the small version of the odometry

dataset, that is optimized to closely match the RDM of an MT-model response to this dataset.

Spike-rate responses are plotted on the left, and RDMs on the right. The top row is from the

MT model and the bottom row is randomized. The root-mean-square difference between the

RDMs is 0.0085. The full matrices are very large, so only every 100th neuron and stimulus

are plotted.
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Odometry RMSE

(mean +/- SD

cm/frame)

Gesture Correct

Classification (mean

+/- SD %)

Baseline 0.45 +/- 0.00 75.82 +/- 0.25

Linear Recombination 0.42 +/- 0.01 75.00 +/- 0.19

RDM Match 0.66 +/- 0.00 -

Spatially shuffled 0.51 +/- 0.03 -

Table 3: Task performance with linear mixing of the MT-model responses, and random re-

sponses with the same RDM as the MT model. The RDM matching procedure was not

performed with the gesture task due to the large size of the required correlation matrix.

from wider tuning curves, and higher-frequency functions can be decoded more

accurately from narrower tuning curves. In the naturalistic scenarios studied

here, the networks do not explicitly decode functions that are easily expressed

in terms of their spatial frequency with respect to stimulus properties. However,425

we found that broader tuning was beneficial for visual odometry, but not for

gesture recognition, which may reflect implicit decoding of lower frequency and

higher-frequency functions at certain stages of these two networks, respectively.

The fact that tuning width had different effects on different visual tasks in this

study supports the idea that optimal tuning properties in MT may reflect a430

compromise between different functional roles [41].

Random linear mixing of the tuning curves improved performance on the

odometry task, but not the gesture task. This is consistent with the tuning

width results, as linear mixing generally increased the effective tuning curve

widths. However, additionally, the mixed tuning curves were non-separable in435

the speed and direction dimensions. It is notable that this did not substantially

impair performance in either task.

We also optimized random responses to match the representational similarity

of the MT model, to test whether representational similarity alone could account

for task performance. However, this was not the case in our experiment. The440
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RDM-matched random responses resulted in distinctly worse performance of

the odometry task than the original responses.

It is somewhat surprising that performance was affected at all by these ma-

nipulations, because the network parameters were optimized individually around

each representation. Deep networks can perform both of these tasks with video445

(rather than an MT representation) as input. We previously trained deep net-

works on the odometry task, with several frames of video as input [11]. We found

that intermediate layers of high-performance networks exhibited speed and di-

rection tuning, however the tuning statistics were quite different from those of

area MT. In general, deep networks are fairly robust to large differences in rep-450

resentation. However, we found here that details of the representation of visual

motion can affect their ability to perform complex tasks. There may be a man-

ifold of high-performing representations that allows for certain large differences

but not others.

The details of motion representation in MT have been studied extensively455

in electrophysiology experiments. However, details such as the distribution of

tuning widths are difficult to manipulate independently in experiments, so their

relationship with visual function must be studied in models. Models have pre-

viously been used to study the impact of tuning on motion velocity estimation

[6] and smooth pursuit [7]. Here we have extended this line of work, in models460

that perform two sophisticated and naturalistic motion-processing tasks with

reasonable accuracy.

A limitation of our study is that the responses of our MT model probably

differ substantially from those of real MT. Among MT models, ours addresses

a relatively thorough list of MT response phenomena. It closely reproduces465

stimulus-parameter tuning from the literature, and at the population level, it

incorporates a number of distributions of tuning properties from the literature

into the population response [11]. However, the model assumes that MT neurons

are completely insensitive to other stimulus parameters, except insofar as they

cause errors in the estimation of velocity, disparity, and contrast fields. Despite470

limitations of any particular model, the question of the functional significance of
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tuning properties can only be addressed with a model, because tuning properties

cannot be individually manipulated in animals.

Despite these limitations, our study suggests that tuning width is relevant

to sophisticated visual inference, that the optimal widths are task-dependent,475

and that they differ from those that maximize Fisher information about the

corresponding variables. They also suggest that neither linear reconstruction

quality nor representational similarity fully account for the task performance

associated with a representation.

It is unclear whether these observations can provide insights for learning480

of representations in the brain or in artificial systems. However, in light of the

task relevance of tuning width, perhaps representation learning can be somehow

decomposed into learning a tuning space, and learning parameters of the tuning

width distribution in the space. This might potentially be more data-efficient

than independently learning each feature.485
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