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Abstract

This paper investigates hybrid observer design of a class of unknown input switched nonlinear systems.

The distinguishing feature of the proposed method is that the stability of all subsystems of the error

switched systems is not necessarily required. First, an output derivative-based method and time-varying

coordinate transformation are considered to eliminate the unknown input. Then in order to maintain

a satisfactory estimation performance, an impulsive full-order and switched reduced-order observer are

developed with a pair of upper and lower dwell time bounds and constructing time-varying Lyapunov

functions combined with convex combination technique. In addition, the time-varying Lyapunov functions

method is also used to analyze the stability of a class of error switched nonlinear systems with stable

subsystems. Finally, two examples are presented to demonstrate the effectiveness of the proposed method.

Keywords: Impulsive full-order observer, nonlinear switched systems, reduced-order switched observer,

unknown inputs.

1. Introduction

Switched systems belong to an important class of hybrid systems, which consist of a family of subsys-

tems described by continuous or discrete-time dynamics. Such systems have gained considerable interests

in both theoretical researches and practical applications, such as power electronics, chaos generators, traf-

fic control and intercepting missiles [1]. In the last two decades, some fundamental theories of switched

systems such as controllability, stability and stabilization have been established, see [2–5] and references

therein. Meanwhile, great efforts have also been put on the state estimations or observer designs for

switched systems [6–9], since full or partial information of state is unavailable in abundant practical

applications. However, these switched systems do not contain unknown inputs. As is known, there are

many situations in practical systems where disturbances or partial inputs are inaccessible, such as fault

detection and isolation [10], chaotic secure communication [11] and the cutting forces exerted in machine

tools [12], which can all be viewed as unknown inputs. Therefore, this paper will focus on state estimation

of switched systems with unknown inputs.
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Recently, many interesting results on unknown inputs observer design for switched systems have

been reported in literature [13–16]. We note that all of the above results are based on the assumption

that the output of the system under consideration is measured continuously. However, the outputs

of many control systems are only available at discrete sampled instants because of the applications of

digital sensors. In this case, proposing an impulsive observer is needed, which can not only be updated

in an impulsive fashion, but also save the bandwidth of networks and communication cost when the

measured information from the system transport to the observer at discrete time instants in comparison

with continuous-time observers. Then, a impulsive error dynamic system is constructed, which has been

investigated extensively [17–19]. In [20], a full-order impulsive observer was designed firstly for nonlinear

continuous-time systems. Then some different impulsive observers, such as adaptive impulsive observers

and impulsive functional observers, were proposed for different systems in [21–24]. But for switched

nonlinear systems, only [25] investigated the adaptive impulsive observers, seldom did scholars consider

this issue for switched systems with unknown inputs.

In addition, on the approach of decoupling unknown inputs from the dynamics of unavailable state

component, the observer design for the unknown input switched systems are studied in [26–29]. In [26],

it should be pointed out that the convergence condition of the error dynamics was based on the existence

of a common time-invariant Lyapunov function. As we know, it is not easy to find this common time-

invariant Lyapunov function, and many switched systems can achieve asymptotic stability under some

proper switching law without possessing a common time-invariant Lyapunov function. Then how to

design an appropriate switching law became one of the most challenging problems in studying switched

systems. Further, we find that all of results in [21, 25–29] have the requirements that all or parts of error

subsystems are stable. Thus, questions naturally arise: is it possible, based on the dwell-time technique,

to achieve the observers design of switched nonlinear systems with unknown inputs without posing any

stability requirements on error subsystems of switched systems? If possible, under what conditions can

we achieve this goal and how?

To study the problems proposed above, different approaches of decoupling unknown inputs are applied

firstly to design the hybrid observer for switched nonlinear systems with all unstable error subsystems.

The main characteristics of the paper are summarized as follows.

1). Compared with the existing literature, the impulsive full-order observer is designed even if each error

subsystem is unstable. Furthermore, a novel algorithm is given to avoid the limitation of the linearization

method.

2). Different from [26–28], when there is no the assumption that the original switched subsystems are

strong detectable, the reduced-order observer can still be designed successfully.

3). By virtue of time-varying Lyapunov function that sufficiently captures the hybrid characteristic of

switched impulsive systems, sufficient conditions for ensuring the stability of the error switched systems

are constructed in the framework of the convex combination technique.

This paper is organized as follows. In section 2, system description and necessary preliminaries are

given. The main results are presented in Section 3 . An illustrative example along with numerical and

simulation results is provided in Section 4.
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2. Preliminaries

We shall introduce, in this section, some notations, definitions and lemmas, which will be used in the

later sections.

Let X ≥ 0 (or, X > 0) denote the symmetric matrix X that is semi-positive definite (or, positive

definite). I and 0 represent, respectively, the identity matrix and zero matrix with appropriate dimensions.

R and R+ stand for the real numbers set and positive real numbers set. Rn and Rm×n denote, respectively,

the n-dimensional Euclidean space, and the set of all m×n real matrices. For any matrix X, XT denotes

its transpose, X−1 means its inverse, X+ is the moore-Penrose inverse. If X has full column rank, then

X+ = (XTX)−1XT ; if X has full row rank, then X+ = XT (XXT )−1. The superscript ‘T ’ denotes the

transpose of a matrix, the symbol ∗ is the transposed elements in the symmetric position of a matrix,

He(X) represents X +XT . eig (X) represents the eigenvalues of matrix X.

Consider a class of nonlinear switched systems with unknown inputs described by



ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t) +Dσ(t)w(t) + fσ(t)(t, x(t)),

y(t) = Cσ(t)x(t),
(1)

where x(t) ∈ Rn is state, u(t) ∈ Rm is control input, w(t) ∈ Rp is unknown input vectors, and y(t) ∈ Rq

is measurement output. fσ(t)(t, x(t)) : [0,∞) × Rn → Rn are continuous functions in their arguments.

The matrices Aσ(t), Bσ(t), Cσ(t) and Dσ(t) are constant matrices with appropriate dimensions. x(t+k ) =

limh→0+x(tk + h) and x(t−k ) = limh→0−x(tk − h). σ(t) : [t0,∞) → M = {1, 2, ...,m} is the switching

signal, where m is a positive integer. j ∈M is the active mode at time t if σ(t) = j ∈M for t ∈ [tk, tk+1)

with k = 0, 1, 2, . . ., where tk is the kth switching time instant. The time sequence {tk, k = 0, 1, 2, ...}
belongs to ∆(δ1, δ2) , {t0 < t1 < ... < tk < ..., lim

k→+∞
tk = +∞, δ1 ≤ tk+1− tk ≤ δ2}, where δ1 and δ2 are

minimum and maximum dwell times, respectively. The purpose of this paper is to develop a full-order

impulsive observer and a reduced-order switched observer for the switched nonlinear system (1) under

the following assumptions.

Assumption 1 For any i ∈M , there exist matrices Fi ∈ Rn×n such that,

‖fi(t, x1)− fi(t, x2)‖ ≤ ‖Fi(x1 − x2)‖.

Assumption 2 rank (CiDi) = rank (Di) = p, ∀i ∈M .

3. Main results

3.1. Full-order impulsive observer

In this section, for observer design of system (1), it is necessary to eliminate the unknown input

influences. Under Assumption 2, there exist matrices Ei ∈ Rn×q such that EiCiDi = Di for any i ∈M .

Then the general solution of Ei is given by

Ei = Di(CiDi)
+ +Gi(I − (CiDi)(CiDi)

+), (2)

where Gi is an arbitrary matrix with appropriate dimensions. Thus, we have

Diw(t) = EiCiDiw(t) = EiCi(ẋ(t)−Aix(t)−Biu(t)− fi(t, x(t)))

= Eiẏ(t)− EiCiAix(t)− EiCiBiu(t)− EiCifi(t, x(t)).
(3)

3
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Substituting (3) into (1) yields

ẋ(t) = NiAix(t) +NiBiu(t) +Nifi(t, x(t))) + Eiẏ(t), (4)

where Ni = I − EiCi.

Remark 3.1. In fact, for system (4), a general full-order observer is designed as

˙̂x(t) = NiAix̂(t) +NiBiu(t) +Nifi(t, x̂(t))) + Eiẏ(t) + Li(y(t)− ŷ(t)),

where x̂(t) is the estimation of x(t), ŷ(t) = Cx̂(t) is the corresponding output. Li are observer gain ma-

trices. Obviously, the derivative of y(t) is contained, which is difficult to measure in practical applications

and may cause high frequency noise in observer design. In order to avoid this problem, a coordinate trans-

formation is introduced, which may lead the estimated state jump in switched systems, thus an impulsive

observer is needed.

The impulsive observer for switched system (1) has the form:




ż(t) = NiAix̂(t) +NiBiu(t) +Nifi(t, x̂(t))), t 6= tk,

z(t+k ) = z(t−k ) + Li(y(t−k )− ŷ(t−k )), t = tk,

x̂(t) = z(t) + Eiy(t),

(5)

where z is the observer state, x̂ is the estimation of x, Li are the observer gain matrices to be designed.

In addition, it is assumed that z(tk) = z(t+k ), i.e., the solutions of the impulsive observer are right

continuous, and then x̂(tk) = x̂(t+k ).

Define e = x− x̂. From (1) and (5), the estimation error dynamic of subsystem i ∈M is




ė(t) = NiAie(t) +Ni∆fi(t, x, x̂), t 6= tk,

e(tk) = (I − LiCi)e(t−k ), t = tk,
(6)

where ∆fi(t, x, x̂) = fi(t, x(t))− fi(t, x̂(t)).

By virtue of Assumption 1, one has

‖∆fi(t, x, x̂)‖ ≤ ‖Fie‖, ∀i ∈M. (7)

Remark 3.2. In [29], a full-order impulsive reset observer is built with the premise that each error

subsystem is stable. Compared with this situation, it is more challenging and difficult that none of the

individual error subsystems is stable. Thus, our task in the next section is to identify certain classes of

switching signals satisfying (10) and in the meantime to design observer gains to ensure stability of the

switched error system (6).

Case a: all error subsystems are unstable.

Theorem 3.1. Consider switched system (1) satisfying Assumptions 1-2 and the time sequence tk ∈
∆(δ1, δ2). For given η > 0, 0 < µ < 1 and ρi > 1, if there exist Pi1 > 0, Pi2 > 0, Gi ∈ Rn×q, L̄i ∈ Rn×q,

εimn > 0, i, j ∈M, i 6= j, m,n = 1, 2, such that

Ωimn PimTi − PimGiHiCi

∗ −εimnI


 < 0, (8)

4
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
−µPj1 Pi2 − CiT L̄Ti
∗ −ρiPi2


 < 0, (9)

lnµ+ ηδ2 < 0, (10)

where

Ωimn = θiPim +He{Pim(Ti −GiHiCi)Ai}+ 1
δn

(Pi1 − Pi2)− ηPim + εimnFi
TFi with θi = ln ρi

δ1
,

Ti = I −Di(CiDi)
+Ci, Hi = I − CiDi(CiDi)

+,

then the switched observer error dynamic system (6) is asymptotically stable. The observer gains are

given by

Li = P−1i2 L̄i, i ∈M.

Proof : For ∀t ∈ [tk, tk+1), define δk = tk+1 − tk, κ(t) = t−tk
δk

, κ̃(t) = 1 − κ(t), then it follows that

κ(t) ∈ [0, 1], κ(tk) = 0, κ(t−k ) = 1.

Suppose σ(t) = i, t ∈ [tk, tk+1). Let e(t) be a solution of system (6) and

Vi(e) = ψ(t)eTPi(t)e, i ∈M, (11)

where ψ(t) = ρ
κ(t)−1
i , Pi(t) = κ(t)Pi1 + κ̃(t)Pi2. Define Vi(t) = Vi(e(t)), then taking derivative of Vi(t)

along the trajectory of system (6) yields

V̇i(t)− ηVi(t) = ψ̇(t)eTPi(t)e+ 2ψ(t)eTPi(t)ė+ ψ(t)eT Ṗi(t)e− ηψ(t)eTPi(t)e

= ψ(t){eT [
ln ρi
δk

Pi(t) + 2Pi(t)NiAi +
1

δk
(Pi1 − Pi2)− ηPi(t)]e

+ 2eTPi(t)Ni∆fi}

≤ ψ(t){eT [θiPi(t) + 2Pi(t)NiAi +
1

δk
(Pi1 − Pi2)− ηPi(t)]e+ 2eTPi(t)Ni∆fi}, (12)

where ∆fi = ∆fi(t, x, x̂), θi = ln ρi
δ1

.

We choose a function ν(t) = ( 1
δk
− 1

δ2
)/( 1

δ1
− 1

δ2
) ∈ [0, 1] and ν̃(t) = 1− ν(t), such that

1

δk
=

1

δ1
ν(t) +

1

δ2
ν̃(t). (13)

From (12) and (13), one has that

V̇i(t)− ηVi(t) ≤ ψ(t){eT [θi(κ(t)Pi1 + κ̃(t)Pi2) + 2(κ(t)Pi1 + κ̃(t)Pi2)NiAi − ηPi(t)

+ (
1

δ1
ν(t) +

1

δ2
ν̃(t))(Pi1 − Pi2)]e+ 2eT (κ(t)Pi1 + κ̃(t)Pi2)Ni∆fi}

= ψ(t){eT [κ(t)(θiPi1 + 2Pi1NiAi) + κ̃(t)(θiPi2 + 2Pi2NiAi)− ηPi(t)

+ (
1

δ1
ν(t) +

1

δ2
ν̃(t))(Pi1 − Pi2)]e+ 2eT (κ(t)Pi1 + κ̃(t)Pi2)Ni∆fi}

= ψ(t)eT {κ(t)[ν(t)(θiPi1 + 2Pi1NiAi +
1

δ1
(Pi1 − Pi2)− ηPi1)

+ ν̃(t)(θiPi1 + 2Pi1NiAi +
1

δ2
(Pi1 − Pi2)− ηPi1)]

+ κ̃(t)[ν(t)(θiPi2 + 2Pi2NiAi +
1

δ1
(Pi1 − Pi2)− ηPi2)

+ ν̃(t)(θiPi2 + 2Pi2NiAi +
1

δ2
(Pi1 − Pi2)− ηPi2)]}e

+ 2ψ(t)eT (κ(t)Pi1 + κ̃(t)Pi2)Ni∆fi. (14)

5
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According to (7), there exist εi(t) = κ(t)ν(t)εi11 + κ(t)ν̃(t)εi12 + κ̃(t)ν(t)εi21 + κ̃(t)ν̃(t)εi22 such that

εi(t)(e
TFi

TFie−∆fi
T∆fi) ≥ 0. (15)

Combining (14) and (15), we have

V̇i(t)− ηVi(t) ≤ ψ(t)eT {κ(t)[ν(t)(θiPi1 + 2Pi1NiAi +
1

δ1
(Pi1 − Pi2)− ηPi1)

+ ν̃(t)(θiPi1 + 2Pi1NiAi +
1

δ2
(Pi1 − Pi2)− ηPi1)]

+ κ̃(t)[ν(t)(θiPi2 + 2Pi2NiAi +
1

δ1
(Pi1 − Pi2)− ηPi2)

+ ν̃(t)(θiPi2 + 2Pi2NiAi +
1

δ2
(Pi1 − Pi2)− ηPi2)]}e

+ 2ψ(t)eT (κ(t)Pi1 + κ̃(t)Pi2)Ni∆fi + εi(t)(e
TFi

TFie−∆fi
T∆fi)

= ψ(t){κ(t)ν(t)Φ11
i + κ(t)ν̃(t)Φ12

i + κ̃(t)ν(t)Φ21
i + κ̃(t)ν̃(t)Φ22

i }, (16)

where

Φmni = eT [θiPim + PimNiAi +Ai
TNi

TPim +
1

δn
(Pi1 − Pi2)− ηPim + εimnFi

TFi]e

+ 2eTPimNi∆fi − εimn∆fi
T∆fi

=
[
eT ∆fTi

]
Φ̃mni


 e

∆fi


 ,

where Φ̃mni =


θiPim + PimNiAi +Ai

TNi
TPim + 1

δn
(Pi1 − Pi2)− ηPim + εimnFi

TFi PimNi

∗ −εimnI


.

Substituting Ni = I−EiCi = Ti−GiHiCi into Φ̃mni and in view of Schur Complement Lemma, condition

(8) is equivalent to Φ̃mni < 0. It follows from (13) that

V̇i(t) < ηVi(t), t 6= tk,

which implies

Vi(t) ≤ Vi(tk) exp(η(t− tk)), t ∈ [tk, tk+1). (17)

At the impulsive switching time point t = tk, Vi(tk) = ψ(tk)eT (tk)Pi(tk)e(tk). Denote σ(t) = j, t ∈
[tk−1, tk), from (9), it is obtained that

Vi(tk) = ψ(tk)eT (tk)Pi(tk)e(tk)

= ρ−1i eT (t−k )(I − LiCi)TPi2(I − LiCi)e(t−k )

≤ µeT (t−k )Pj1e(t
−
k )

= µψ(t−k )eT (t−k )Pj(t
−
k )e(t−k )

= µVj(t
−
k ). (18)

Combining (17) with above inequality, we have

Vi(tk) ≤ µVj(t−k ) ≤ µVj(tk−1) exp(η(tk − tk−1)) ≤ Vj(tk−1) exp(lnµ+ ηδ2), (19)

6
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From (10) and (19), it follows that Vi(tk) ≤ Vj(tk−1), which implies that Vσ(tk)(tk), k = 1, 2, ... is strictly

decreasing.

Using the same deduction as above leads to

Vσ(tk)(tk) ≤ exp(k(lnµ+ ηδ2))Vσ(t0)(t0) ≤ exp(k(lnµ+ ηδ2))max{λmax(Pil)}‖e0‖2, l = 1, 2,

which implies lim
k→+∞

Vσ(tk)(tk) = 0 under the condition (10). From (17), it follows that Vσ(t) ≤
Vσ(tk) exp(ηδ2) for t ∈ [tk, tk+1), i.e., lim

t→+∞
Vσ(t)(t) = 0. From the description of Vi(t), we have

min{λ(Pil)}‖e(t)‖2 ≤ ρiVi(t) ≤ ρimax{λ(Pil)}‖e(t)‖2. Then

lim
t→+∞

‖e(t)‖2 ≤ max{ρi}
min{λ(Pil)}

Vi(t) = 0,

where i ∈M and l = 1, 2, λ(Pil) is the eigenvalue of matrix Pil. Therefore, system (6) is asymptotically

stable.

Case b: all error subsystems are stable.

Theorem 3.2. Consider switched system (1) satisfying Assumptions 1-2 and the time sequence tk ∈
∆(δ1, δ2). For given η > 0, µ > 0 and ρi > 1, if there exist Pi1 > 0, Pi2 > 0, Gi ∈ Rn×q, L̄i ∈ Rn×q,

εimn > 0, i, j ∈M, i 6= j, m,n = 1, 2, such that (9) and the following inequalities hold:


Ωimn PimTi − PimGiHiCi

∗ −εimnI


 < 0, (21)

lnµ− ηδ1 < 0, (22)

where

Ωimn = θiPim +He{Pim(Ti −GiHiCi)Ai}+ 1
δn

(Pi1 − Pi2) + ηPim + εimnFi
TFi with θi = ln ρi

δ1
,

Ti = I −Di(CiDi)
+Ci, Hi = I − CiDi(CiDi)

+,

then the switched observer error dynamic system (6) is asymptotically stable. The observer gains are

given by

Li = P−1i2 L̄i, i ∈M.

Proof : According to the proof in Theorem 3.1, we have

V̇i(t) + ηVi(t) ≤ ψ(t){eT [θiPi(t) + 2Pi(t)NiAi +
1

δk
(Pi1 − Pi2) + ηPi(t)]e+ 2eTPi(t)Ni∆fi}

≤ ψ(t)eT {κ(t)[ν(t)(θiPi1 + 2Pi1NiAi +
1

δ1
(Pi1 − Pi2) + ηPi1)

+ ν̃(t)(θiPi1 + 2Pi1NiAi +
1

δ2
(Pi1 − Pi2) + ηPi1)]

+ κ̃(t)[ν(t)(θiPi2 + 2Pi2NiAi +
1

δ1
(Pi1 − Pi2) + ηPi2)

+ ν̃(t)(θiPi2 + 2Pi2NiAi +
1

δ2
(Pi1 − Pi2) + ηPi2)]}e

+ 2ψ(t)eT (κ(t)Pi1 + κ̃(t)Pi2)Ni∆fi + εi(t)(e
TFi

TFie−∆fi
T∆fi)

= ψ(t){κ(t)ν(t)Φ̂11
i + κ(t)ν̃(t)Φ̂12

i + κ̃(t)ν(t)Φ̂21
i + κ̃(t)ν̃(t)Φ̂22

i },

7
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where

Φ̂mni = eT [θiPim + PimNiAi +Ai
TNi

TPim +
1

δn
(Pi1 − Pi2) + ηPim + εimnFi

TFi]e

+ 2eTPimNi∆fi − εimn∆fi
T∆fi

=
[
eT ∆fTi

]
Φ̌mni


 e

∆fi


 ,

where Φ̌mni =


θiPim + PimNiAi +Ai

TNi
TPim + 1

δn
(Pi1 − Pi2) + ηPim + εimnFi

TFi PimNi

∗ −εimnI


.

From condition (21), it is obtained that

V̇i(t) < −ηVi(t), t 6= tk,

which implies

Vi(t) ≤ Vi(tk) exp(−η(t− tk)), t ∈ [tk, tk+1).

At the impulsive switching time point t = tk, based on the condition (22), we have Vi(tk) ≤ µVj(t−k ).

Then it implies that

Vi(tk) ≤ µVj(tk−1) exp(−η(tk − tk−1)) ≤ Vj(tk−1) exp(lnµ− ηδ1).

Combining with (22), it follows that Vi(tk) ≤ Vj(tk−1), and then Vσ(tk)(tk), k = 1, 2, ... is strictly de-

creasing. Similar to the proof in Theorem 3.1, system (6) is asymptotically stable.

In order to solve the nonlinear matrix inequalities in Theorems 3.1 and 3.2, motivated by the linear

programming technique, a new type of algorithm is presented as follows.

Algorithm:

Step 1) Select the appropriate scalars µ and η satisfying (10)((22)), by using cvx toolbox in Matlab,

equalities (9) can be solved with Pi1, Pi2 > 0, i ∈M .

Step 2) Substituting the obtained Pi1, Pi2 into (8)((21)), then one feasible solution can be calculated as

Gi. Otherwise, go back to step 1.

Remark 3.3. In [30, 31], the linearization method is often used to deal with the term PimGi. If we also

take this method in Theorem 3.1, the corresponding result is given as follows:

Consider switched system (1) satisfying Assumptions 1-2 and the time sequence tk ∈ ∆(δ1, δ2). For

given η > 0, 0 < µ < 1, ρi > 1 and constants k1, k2 > 0, if there exist Pi > 0, Ḡi ∈ Rn×q, L̄i ∈ Rn×q,

εimn > 0, i, j ∈M, i 6= j, m,n = 1, 2, such that

Ωimn kmPiTi − kmPiGiHiCi

∗ −εimnI


 < 0,


−µk1Pj k2Pi − CiT L̄Ti

∗ −ρik2Pi


 < 0,

lnu+ ηδ2 < 0,

8
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where

Ωimn = θikmPi +He{kmPi(Ti −GiHiCi)Ai}+ k1−k2
δn

Pi − ηkmPi + εimnFi
TFi with θi = ln ρi

δ1
,

then the switched observer error dynamic system (6) is asymptotically stable. The observer gains are

given by Li = P−1i L̄i, i ∈M and the matrix Gi = P−1i Ḡi.

Therefore, above result is a special case of Theorem 3.1, then Theorem 3.1 with the algorithm in

Remark 3.3 is less conservatism.

3.2. Reduced-order switched observer

Under Assumption 2, for any i ∈M , we introduce the time-varying state transformation [16]:

Ki =


 D⊥i

(CiDi)
+Ci


 ,


D
⊥
i

Ǩi


 , Ui =


(CiDi)

⊥

(CiDi)
+


 . (23)

Note that Ki is nonsingular and its inverse matrix is

K−1i =
[
(I −Di(CiDi)

+Ci)(D
⊥
i )+ Di

]
,
[
K̂i Di

]
. (24)

By using the state and output transformation

x̄ =
[
x̄T1 x̄T2

]T
= Kσ(t)x, ȳ =

[
ȳT1 ȳT2

]T
= Uσ(t)y, (25)

then the switched system (1) becomes in the new coordinates

˙̄x1 = Aσ(t),1x̄1 +Aσ(t),2x̄2 +Bσ(t),1u+ fσ(t),1(t, x),

˙̄x2 = Aσ(t),3x̄1 +Aσ(t),4x̄2 +Bσ(t),2u+ w + fσ(t),2(t, x),

ȳ1 = C̄σ(t)x̄1, ȳ2 = x̄2,

(26)

where

Kσ(t)Aσ(t)K
−1
σ(t) =


Aσ(t),1 Aσ(t),2

Aσ(t),3 Aσ(t),4


, Kσ(t)Bσ(t) =


Bσ(t),1
Bσ(t),2


, x̄1 = D⊥σ(t)x, x̄2 = (Cσ(t)Dσ(t))

+Cσ(t)x,

ȳ1 = (Cσ(t)Dσ(t))
⊥y, ȳ2 = (Cσ(t)Dσ(t))

+y, fσ(t),1(t, x) = D⊥σ(t)fσ(t)(t, x), fσ(t),2(t, x) = Ǩσ(t)fσ(t)(t, x),

C̄σ(t) = (Cσ(t)Dσ(t))
⊥Cσ(t)(D⊥i )+. At switching instants tk, from [16], the state of system (26) is governed

by

x̄(tk) = Kσ(tk)x(t−k ) = Kσ(tk)K
−1
σ(tk−1)

x̄(t−k ), k = 1, 2, ... (27)

According to (26), we only need to design observers for x̄1, because x̄2 can be directly obtained by ȳ2.

Furthermore, the dynamics (26) of x̄1 do not contain the unknown input w.

Consider the following subsystem relevant to x̄1 in (26)

˙̄x1 = Aσ(t),1x̄1 +Aσ(t),2x̄2 +Bσ(t),1u+ fσ(t),1(t, x),

ȳ1 = C̄σ(t)x̄1,

x̄1(tk) = D⊥σ(tk)x(t−k ), k = 1, 2, ...

(28)

the proposed observer for system (28) has the form

˙̄̂x1 = Aσ(t),1 ˆ̄x1 +Aσ(t),2ȳ2 +Bσ(t),1u+Hσ(t)(ȳ1 − C̄σ(t) ˆ̄x1) + fσ(t),1(t, x̂),

ˆ̄x1(tk) = D⊥σ(tk)x̂(t−k ) = D⊥σ(tk)K̂σ(tk−1)


ˆ̄x1(t−k )

ȳ2(t−k )


 k = 1, 2, ...

(29)

9
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where Hσ(t) are the observer gains to be designed.

Define e1 = x̄1 − ˆ̄x1, we can obtain the following error system



ė1 = (Aσ(t),1 −Hσ(t)C̄σ(t))e1 + ∆fσ(t),1(t, x, x̂),

e1(tk) = D⊥σ(tk)e(t
−
k ) = D⊥σ(tk)K̂σ(tk−1)e1(t−k ), k = 1, 2, ...

(30)

where ∆fσ(t),1(t, x, x̂) = fσ(t),1(t, x)− fσ(t),1(t, x̂). From Assumption 1, one has

‖∆fσ(t),1(t, x, x̂)‖ ≤ ‖D⊥σ(t)‖‖Fσ(t)K̂σ(t)e1‖. (31)

In this section, similar to the full-order observer design, two classes of switched systems are considered.

One is that all error subsystems are unstable, which implies that there is no restriction of the strong

detectability condition for system (1) compared with [26, 27]; another case is that all error subsystems

are stable.

Case c: all error subsystems are unstable.

Theorem 3.3. Consider switched system (1) satisfying Assumptions 1-2 and the time sequence tk ∈
∆(δ1, δ2). For given η1 > 0, 0 < µ1 < 1, αi > 0 and ρi > 1, if there exist Pi1 > 0, Pi2 > 0, Xi > 0, Yi,

εimn > 0, i, j ∈M, i 6= j, m,n = 1, 2, such that



Ξimn Pim −Xi − αiC̄Ti Y Ti Pim

∗ −αi(Xi +XT
i ) 0

0 0 −εimnI


 < 0, (32)


−µ1Pj1 (D⊥i K̂j)

TPi2

∗ −ρiPi2


 < 0, (33)

lnµ1 + η1δ2 < 0, (34)

where

Ξimn = θiPim + PimAi,1 + ATi,1Pim − YiC̄i − C̄Ti Y Ti + 1
δn

(Pi1 − Pi2) − η1Pim + εimn(FiK̂i)
TFiK̂i with

θi = ln ρi
δ1

, then the switched observer error dynamic system (30) is asymptotically stable. The observer

gains are given by

Hi = X−1i Yi, i ∈M.

Proof : Suppose σ(t) = i, t ∈ [tk, tk+1). Let e1(t) be a solution of system (30) and consider the Lyapunov

function V1i(e1) = ψ(t)eT1 Pi(t)e1, i ∈ M , denote V1i(t) = V1i(e1(t)). By pre- and post multiplying both

sides of (32) with


I −(HiC̄i)

T 0

0 0 I


 and


I −(HiC̄i)

T 0

0 0 I



T

, one has

Ψimn =


Λimn − η1Pim Pim

∗ −εimnI


 < 0, (35)

where Λimn = θiPim +He{Pim(Ai,1 −HiC̄i}+ 1
δn

(Pi1 −Pi2) + εimnF
T
i K̂i

T
FiK̂i. Similar to the proof of

Theorem 3.1, we obtain that

V̇1i(t)− η1V1i(t) ≤ ψ(t){κ(t)ν(t)Π11
i + κ(t)ν̃(t)Π12

i + κ̃(t)ν(t)Π21
i + κ̃(t)ν̃(t)Π22

i }, (36)
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where Πmn
i =

[
eT1 ∆fTi,1

]
Ψimn


 e1

∆fi,1


 . Combining (35) with (36), it follows that

V1i(t) ≤ V1i(tk) exp(η1(t− tk)), t ∈ [tk, tk+1). (37)

From (33), then

V1i(tk) = ψ(tk)eT1 (tk)Pi(tk)e1(tk)

= ρ−1i eT1 (t−k )(D⊥i K̂j)
TPi2(D⊥i K̂j)

≤ µ1e
T (t−k )Pj1e(t

−
k )

= µ1V1j(t
−
k ).

According to the condition (34), using the similar method in Theorem 3.1, we have e1(t) → 0 when

t→ +∞. The proof is completed.

Case d: all error subsystems are stable.

Theorem 3.4. Consider the switched system (1) satisfying Assumptions 1-2 and the time sequence

tk ∈ ∆(δ1, δ2). For given η1 > 0, µ1 > 0, αi > 0 and ρi > 1, if there exist Pi1 > 0, Pi2 > 0, Xi > 0, Yi,

εimn > 0, i, j, l ∈M, i 6= j, m,n = 1, 2, such that (33) and the following inequalities hold:



Ξimn Pim −Xi − αiC̄Ti Y Ti Pim

∗ −αi(Xi +XT
i ) 0

∗ 0 −εimnI


 < 0, (38)

lnu1 − η1δ1 < 0, (39)

where

Ξimn = θiPim + PimAi,1 + ATi,1Pim − YiC̄i − C̄Ti Y Ti + 1
δn

(Pi1 − Pi2) + η1Pim + εimnF
T
i K̂i

T
FiK̂i with

θi = ln ρi
δ1

, then the switched observer error dynamic system (30) is asymptotically stable. The observer

gains are given by

Hi = X−1i Yi, i ∈M.

Proof : The proof can be easily derived by the methodology given earlier. So we omit it here.

Remark 3.4. From (25), we have x̂(t) = K−1σ(t) ˆ̄x = K−1σ(t)


ˆ̄x1

ȳ2


. Define e = x − x̂, then e(t) =

K−1σ(t)


e1

0


. According to Theorems 3.3 and 3.4, e1(t) asymptotically converges to zero, it follows that

e(t) asymptotically converges to zero, which means the system states in (1) can be estimated effectively

by the proposed reduced-order observers.

Remark 3.5. In [26–28], the observer design is based on the assumption that the matrix triplets

(Ai, Ci, Di) have negative real part. However, in the reduced order design of our paper, this assumption is

removed, which means that the observer can also be designed when none of the matrix pairs (Ai,1, C̄i) is

required to be detectable, i.e., all error subsystems are unstable. This can be verified in following Example.
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Remark 3.6. When not all error subsystems are stable, the key point for designing full-order and

reduced-order observers is how to ensure the stability of the whole error dynamic systems. In this case,

according to the above four theorems, for σ(t) = i, t ∈ [tk, tk+1), σ(t) = j, t ∈ [tk−1, tk), we have V̇i(t) <

ηiVi(t) and Vi(tk) ≤ µVj(t
−
k ), where ηi can be positive or negative. Choose ησ(tk) ≤ η, k = 0, 1, 2, ..., for

t ∈ [tk, tk+1), then

Vσ(t)(t) ≤ µNδ(t,t0)Vσ(t0)(t0) exp[ησ(t1)(t1 − t0) + ησ(t2)(t− t1) + · · ·+ ησ(tk+1)(t− tk)]

≤ Vσ(t0)(t0) exp[Nδ(t, t0) lnµ+ η(t− t0)],

where Nδ(T, t) denotes the number of impulsive times of the impulsive sequence δ on the interval (t, T ).

Moreover, the average impulsive interval of the impulsive sequence δ = {t1, t2, ...} is equal to Ta if there

exist positive integer N0 and positive number Ta, such that

T − t
Ta

−N0 ≤ Nδ(T, t) ≤
T − t
Ta

+N0, ∀T ≥ t ≥ 0.

Based on this definition, if µ ≥ 1, then

(
t− t0
Ta

−N0) lnµ ≤ Nδ(t, t0) lnµ ≤ (
t− t0
Ta

+N0) lnµ, ∀t ≥ t0,

which implies

Vσ(t)(t) ≤ Vσ(t0)(t0) exp[(
t− t0
Ta

+N0) lnµ+ η(t− t0)] = µN0Vσ(t0)(t0) exp[(
lnµ

Ta
+ η)(t− t0)].

If 0 < µ < 1, then we have

Vσ(t)(t) ≤ Vσ(t0)(t0) exp[(
t− t0
Ta

−N0) lnµ+ η(t− t0)] = µ−N0Vσ(t0)(t0) exp[(
lnµ

Ta
+ η)(t− t0)].

Let µ̄ = max{µ−N0 , µN0}, it is obtained that

Vσ(t)(t) ≤ µ̄Vσ(t0)(t0) exp[(
lnµ

Ta
+ η)(t− t0)].

Thus, from min{λ(Pil)}‖e(t)‖2 ≤ ρiVi(t) ≤ ρimax{λ(Pil)}‖e(t)‖2, it follows that

‖e(t)‖2 ≤ max{ρi}µ̄
min{λ(Pil)}

Vσ(t0)(t0) exp[(
lnµ

Ta
+ η)(t− t0)],

where i ∈M and l = 1, 2, λ(Pil) is the eigenvalue of matrix Pil. If lnµ
Ta

+η < 0, the error dynamic system

is asymptotically stable. Therefore, when some error subsystems are stable and some are unstable, the

full-order and reduced-order observer can also be constructed by designing the suitable impulsive switching

rule that satisfies lnµ
Ta

+ η < 0.

4. Examples

In this section, two examples are studied to show the effective of the proposed hybrid observers for

switched nonlinear systems with unknown inputs.
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Example 1 Consider the following two subsystems:

A1 =




−1 0 −1 1 1

1 −1 1 −2 −1

1 1 −1 −1 −0.1

1 −1 0 −1 1

1 1 3 1 −1




, A2 =




−1 0 0 1 1

1 −1 1 2 1

1 1 −1 1 1

1 0 −1 −1 0

1 −1 0 −1 −1




, D1 =




1 1

1 1

0 1

0 −1

0 1




, D2 =




0 0

0 1

1 1

0 0

0 1




,

C1 =




−1 0 0 1 0

0 0 1 1 0

0 1 0 0 −1


 , C2 =




0 0 0 1 0

0 1 1 0 0

−1 0 1 1 0


 , B1 = B2 = 0,

f1(t, x) = (tanh(x1), tanh(x2), tanh(x3), tanh(x4), tanh(x5))T , f2(t, x) = (sin(x1), sin(x2), sin(x3), sin(x4),

sin(x5))T . It can be verified that rank(CiDi) = rank(Di) = 2, i = 1, 2, which satisfies Assumption 2.

Let δ1 = 0.02, δ2 = 0.04. The switching and impulsive signal are shown in Figure 1.

Case a: When all error subsystems are not stable, an impulsive full-order observer is designed. Accord-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

Figure 1: (a) Impulse signal (b) Switching signal.

ing to Algorithm for Theorem 3.1, choose ρ1 = ρ2 = 1.01, η = 1, µ = 0.39, we have

L1 =




−0.6662 0.3329 −0.0005

0.2955 −0.2955 0.2045

−0.3329 0.6662 −0.0005

0.3333 0.3333 −0.0000

0.2946 −0.2946 −0.7946




, L2 =




0.5680 0.1361 −0.5680

0.4311 0.8621 −0.4311

−0.4320 0.1361 0.4320

1.0000 −0.0000 −0.0000

0.2950 0.59000 −0.2950




,
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Figure 2: Trajectories of the error state e of subsystems. (a) error subsystem 1. (b) error subsystem 2

N1 =




0.5000 −0.5000 0.1265 0.6265 0.5000

−0.5000 0.5000 −1.3332 −0.8332 0.5000

−0.5000 0.5000 −0.2159 −0.7159 −0.5000

0.5000 −0.5000 −0.6898 −0.1898 0.5000

−0.5000 0.5000 −1.1064 −0.6064 0.5000




, N2 =




1 0 0 0.9114 0

−1 0 0 −0.4091 0

1 0 0 −0.0867 0

0 0 0 −0.7861 0

−1 −1 0 −1.2242 1




.

It should be noted that each subsystem of switched error system is unstable, since

eig(N1A1) = {1.2702 + 0.0000i,−0.4588± 1.6358i,−0.0000± 0.0000i},
eig(N2A2) = {0,−3.0000, 1.7842,−1.0000,−0.0000},
which means that the methods in [21, 24, 25, 27] can not be used to design the observer for the studied

switched system.

Case b: When all error subsystems are stable. Choose η = 4, µ = 1.01, solving inequalities in Theo-

rem 3.2, the impulsive gain matrices are given by

L1 =




−0.3906 0.1321 0.0379

0.2255 −0.2386 0.1261

−0.2107 0.4688 −0.0367

0.2101 0.1313 0.03755

0.2252 −0.2382 −0.4735




, L2 =




0.3140 0.0291 −0.4127

0.2877 0.5721 −0.1878

−0.2869 0.0282 0.1876

0.6012 0.0009 −0.0002

0.0600 0.3876 −0.0946




.

Next, the reduced-order switched observer is designed for above presented switched system. Following

the time varying state transformation [16], we have
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A1,1 =




−2.3199 −0.6217 2.1880

1.3607 0.5309 −1.1972

1.2311 2.3774 0.2890


 , A2,1 =




−2 −2 −1.4142

−0.0000 −0.0000 −0.0000

−0.7071 −2.8284 −2


 ,

C̄1 =
[
1 1 0

]
, C̄2 =

[
0 −1 0

]
.

Case c: when all the error systems are unstable. Let α1 = 5.15, α2 = 5.05, η1 = 5, µ1 = 0.2, ρ1 = ρ2 =

1.39. Solving LMIs in Theorem 3.3, we obtain observer gains for each subsystem:

H1 =
[
0.3730 0.0921 0.4289

]T
, H2 =

[
−0.0003 0.0000 0.0008

]T
.

It is verified that each subsystem of switched error system is unstable, since

eig
(
A11 −H1C̄1

)
= {−2.1112 + 0.0000i, 0.0731± 0.5565i}

and

eig
(
A21 −H2C̄2

)
= {−3.0000,−1.0000, 0.0001}.

From [32], we can find the strong detectability of above two subsystems is not satisfied, which means the

methods in [21, 25–29] can not be used to design observers for the studied switched system. Because in

our paper, each error subsystem does not need to satisfy the strong detectability condition in the case of

observer design.

Case d: when all the error systems are stable. Set α1 = α2 = 0.05, η1 = 10.5, µ1 = 1.001, solving

LMIs in Theorem 3.4, the switched observer gains are given by

H1 =
[
14.9009 5.0992 15.1352

]T
, H2 =

[
20.0638 −20 0.5292

]T
.

0 0.2 0.4 0.6 0.8 1
-0.6

-0.4

-0.2

0

0.2

0.4

Figure 3: Trajectories of the switched error system with full-order impulsive observer.

Let e(t0) = (0.3, 0.2,−0.5, 0.2, 0.1)T . From Figure 2, both subsystems of the switched error system

are unstable in the case of full-order impulsive observer design. For the reduced-order switched observer

design, two subsystem state responses perform similarly as it is shown in Figure 2 with state divergence.
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Figure 4: Trajectories of the switched error system with reduced-order switched observer.

Under the signal rule in Figure 2, the state trajectories of the whole dynamic of the observation error are

presented in Figures 3 and 4. It can be clearly observed that the asymptotical stability of the switched

error systems (6) and (30) have been achieved. Thus, the simulation results well show the effectiveness

of the proposed full-order and reduced-order observers.

Figure 5: The electronic circuit.

Example 2 Consider a practical electronic circuit in Figure 5, where Ci(i = 1, 2) are capacitors, Vi are

the corresponding voltages that can be regarded as the measurement outputs. Ri(i = 1, 2, 3) are resistors,

L is an inductor, w(t) is unknown value of the voltage resource. The Chua’s diode is a nonlinear resistor

[29] that satisfies the following condition

I = f(u) =





− 1.143U − 0.429, U ≤ 1

− 0.714U, −1 < U ≤ 1

− 1.143U + 0.429, U > 1,

where U, I stand for the voltage and the current of the Chua’s diode, respectively. Then the circuit
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system is written by




i̇L(t) =
1

L
V1(t)− 1

L
V2(t),

V̇1(t) = − 1

C1
iL(t)− 1

C1
f(V1)− 1

C1R2
V1(t) +

1

C1R1
w(t),

V̇2(t) =
1

C2
iL(t)− s(t)

C2R3
V2(t),

where s(t) =





1, switch on

0, switch off
is used to describe the switching between the two modes of the electronic

circuit. Let x = [x1 x2 x3]T = [iL(t) V1(t) V2(t)]T , then we have the system



ẋ(t) = Aix(t) +Diw(t) + fi(t, x(t)),

y(t) = Cix(t), i = 1, 2,

where

A1 =




0 1
L − 1

L

− 1
C1

− 1
C1R2

0

1
C2

0 − 1
C2R3


 , A2 =




0 1
L − 1

L

− 1
C1

− 1
C1R2

0

1
C2

0 0


 , B1 = B2 = 0,

C1 = C2 =


0 1 0

0 0 1


 , D1 = D2 =




0

1
C1R1

0


 , f1(t, x) = f2(t, x) =




0

− 1
C1
f(x2)

0


 .

Choose L = 1, C1 = 2, C2 = 1, R1 = 1, R2 = 0.5, R3 = 1, and w(t) = 2 sin(5t). Assumption 2 is

satisfied, and then denote δ1 = 0.5, δ2 = 1.5. Based on Algorithm for the full-order observer design,

0 1 2 3 4 5 6 7 8 9 10

t

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

t

0

0.5

1

Figure 6: (a) Impulse signal (b) Switching signal.

η = 1.3, µ = 0.001, ρ1 = ρ2 = 0.01, then the condition lnµ+ ηδ2 = −4.9578 < 0, we have

L1 =




−0.0184 0.0184

3.3010 0.0000

−0.000 3.3010


 , L2 =




0.0007 35.1172

3.3010 −0.0000

0.0000 3.3010


 , G1 =




0 0.8454

0 −0.8887

0 1.1980


 , G2 =




0 −1.7976

0 1.2928e− 04

0 0.9999


 .

For the reduced order observer design, according to the time varying state transformation,

A1,1 =


 0 1

−1 −1


 , A2,1 =


 0 1

−1 0


 , C̄1 = C̄2 =

[
0 1

]
.
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Choose α1 = 5, α2 = 16, η1 = 4, µ1 = 0.002, ρ1 = ρ2 = 1, the equality lnµ1 + η1δ2 = −0.2146 < 0 is

satisfied, and then solving LMIs in Theorem 3.3, the observer gain matrices are given by

H1 =


−0.0163

0.2000


 , H2 =


−0.0000

−0.0019


 .

In this example, the corresponding switched impulsive signal is presented in Figure 6. Under the initial

condition e(t0) = (−0.2, 0.5,−0.4)T , Figures 7 and 8 show that the switched error dynamic systems (6)

and (30) are asymptotically stable under the designed full-order and reduced-order observer respectively,

which implies that both the full-order and reduced-order observers have good estimation performances.

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 7: Trajectories of the switched error system with full-order impulsive observer.

0 1 2 3 4 5 6 7 8 9 10

t

-1

-0.5

0

0.5

1

Figure 8: Trajectories of the switched error system with reduced-order switched observer.

5. Conclusion

This paper has investigated a full-order impulsive and reduced-order switched observer via dwell-time

switchings without requiring the stability of each error subsystem of the switched systems. In spite of the

instability of individual subsystems, the stability of the error switched system is achieved by confining the

dwell time within an upper bounds. In addition, the multiple time-varying Lyapunov functions method

is also used to analyze the stability analysis of a class of switched error systems with stable subsystems.
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Based on the estimated state information produced by the designed observer in this paper, a future

research will focus on some practical control problems [33, 34]. Finally, the simulation results have shown

the effectiveness of the proposed criteria.
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