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Abstract

This paper is concerned with the problem of stochastic synchronization for semi-Markovian jump chaotic

Lur’e systems. Firstly, packet dropouts and multiple sampling periods are both considered. By input-delay

approach and then fully considering the probability distribution characteristic of packet dropouts in the

modeling, the original system is transformed to a stochastic time-delay system. Secondly, by getting the

utmost out of the usable information on the actual sampling pattern, the probability distribution values of

stochastic delay taking values in m given intervals can be explicitly obtained. Then, a newly augmented

Lyapunov-Krasovskii functional is constructed. Based on that, some sufficient conditions in terms of linear

matrix inequalities (LMIs) are derived to ensure the stochastic stability of the error system, and thus, the

master system stochastically synchronize with the slave system. Finally, the effectiveness and potential of

the obtained results is verified by a simulation example.

Keywords: Stochastic synchronization, semi-Markovian jump, chaotic Lur’e systems, sampled-data,

packet dropouts

1. Introduction

Synchronization, as an important behavior of complex dynamical networks, has received much of the

focus [1-3]. Since the pioneering work of [4], the problem of master-slave synchronization for chaotic systems

has arisen a great attention. This stems from its potential applications in various fields, including secure

communication, image processing, biological systems, chemical reaction, and information science. It has

been noted that many nonlinear systems can be represented in the form of Lur’e systems, such as neural

networks and Chua’s circuits. Thus, the problem of master-slave synchronization of chaotic Lur’e systems

∗Corresponding author
Email addresses: liqian0210@126.com (Qian Li), jcheng6819@126.com (Jun Cheng)

Preprint submitted to Journal of the Franklin Institute June 20, 2019



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

has been widely studied, and many important results have been proposed(see, [5-8] and the references

therein).

Jump systems are a special class of stochastic dynamic systems, have attracted substantial attention

from theoretical research to industrial applications [9-23]. Especially, the parameter-switching phenomenon

is characterized by a stochastic process in the jump systems. The stochastic process generally relies on the

duration h between two consecutive transitions, which is also termed as sojourn-time. In the Markovian

jump systems, the sojourn-time h is obeying exponential distribution. In practice, however, it is difficult to

guarantee the rigorous restriction on the memoryless characteristics of the sojourn-time distribution. In this

case, the underlying continuous stochastic process with sojourn-time obeying non-exponential distribution is

often addressed as a semi-Markov process [38,40-44]. It is known that most analysis and design conditions of

Markovian jump systems are analytically tractable. Nevertheless, the sojourn-time-dependent characteristics

bring much difficulty for the analysis and synthesis of semi-Markovian jump systems, which also results in

little presence of numerically solvable synthesis criteria for semi-Markovian jump systems. Thus, it is of great

significance to further study the analysis and synthesis of semi-Markovian jump systems, which partially

motivates this research.

Nowadays, most of the practical control systems employ the digital signals to transmit the information

due to their great advantages over traditional control systems, such as low cost, reduced weight and power

requirements, simple installation and maintenance, and high reliability. In the implementation of sampled-

data control systems, only the sampled information at its sampling instants is transmitted to the controller,

which can reduce the amount of transmitted information and effectively save the communication bandwidth.

As a result, sampled-data control strategy has been employed extensively [24-28,39]. The investigation of

sampled-data control of chaotic systems is more efficient and useful in real-life applications. Many distinct

approaches exist for sample data systems such as lifting technique [29], input delay approach [30], impulsive

approach [31], and output delay approach [32], which are used to convert the sampled data output into

a continuous time-varying delayed output. The most popular approach is input delay approach, which is

based on modeling the sample-and-hold with a delayed control input.

The packet dropout is one of the important issues, which results from transmission errors or congestion

in the physical communication links or from buffer overflows [33,34]. It is concluded that packet dropouts

degrade system performance and possibly cause system instability. By an input-delay approach, papers

[35-37] studies the models with a class of input-delays subject to randomness, where the randomness only

comes from the aperiodic sampling period. It should be noticed that, when packet dropouts occur and

assuming systems with packet dropouts subject to multiple sampling periods, the input-delay approach will

bring input delay double randomness, which comes from not only the randomness of the actual successive

packet dropouts, but also the randomness of multiple sampling periods. To the best of our knowledge, there

is little information in the published literature about stochastic synchronization of semi-Markovian jump
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chaotic Lur’e systems with packet dropouts subject to multiple sampling periods, which inspires us for this

study.

Motivated by the discussions made above, this paper addresses the stochastic synchronization problem of

semi-Markovian jump chaotic Lur’e systems. Firstly, the packet dropouts are assumed to subject to multiple

sampling periods. Secondly, by getting the utmost out of the usable information on the actual sampling

pattern and by fully considering the probability distribution characteristic of packet dropouts and an input-

delay approach, the probability distribution values of stochastic delay taking values in m given intervals

can be explicitly obtained. Then, a newly augmented Lyapunov-Krasovskii functional is constructed. Some

sufficient conditions in terms of LMIs are derived to ensure the master system stochastically synchronize

with the slave system. Finally, an illustrative example is carried out to validate the effectiveness of the

developed approach.

Notations: Throughout this paper, the notations used are fairly standard. N stands for the set of

nonnegative integers. Rn denotes n-dimensional Euclidean space. For symmetric matrices X and Y , the

notation X > Y (X ≥ Y ) means that the matrix X − Y is positive definite (nonnegative). (Ω, F , P) is a

probability space, where Ω is the sample space, F is the σ-algebra of subsets of the sample space, and P
is the probability measure on F . E{·} denotes the expectation operator with respect to some probability

measure P. || · || denotes the Euclidean norm of a vector and its induced norm of a matrix. The superscripts

T and (−1) stand for matrix transposition and matrix inverse respectively. A ⊗ B denotes the Kronecker

product of the matrices A and B. As is defined as As = 1
2 (A+AT ).

2. Preliminaries

Consider the following semi-Markovian jump master system:



ẋ(t) = A(rt)x(t) +B(rt)x(t− h) +W (rt)f(Dx(t)),

γ(t) = C(rt)x(t),

(1)

where x(t) ∈ Rn is the state vector of master system, γ(t) ∈ Rl is the output of master system, h > 0 is

constant time delay. It is assumed that f(·) : Rmf → Rmf is a nonlinear function vector. A(rt), B(rt),

C(rt), W (rt) and D are known real matrices with appropriate dimensions.

Assumption 2.1. fs(·) in (1) is continuous and bounded, and there exist constants k−s and k+
s such that

k−s ≤
fs(x1)− fs(x2)

x1 − x2
≤ k+

s , s = 1, 2, . . . ,mf (2)

where x1, x2 ∈ R, and x1 6= x2.

Let {rt, t ≥ 0} be a right continuous semi-Markovian process on a complete probability space (Ω, F , P)

taking values in a finite state space L = {1, 2, . . . , s}. The evolution of the semi-Markovian process rt is
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governed by the following probability transitions:

Pr{rt+h̄ = j|rt = i} =




πij(h̄)h̄+ o(h̄), j 6= i

1 + πii(h̄)h̄+ o(h̄), j = i

(3)

where πij(h̄) is the transition rate from mode i at time t to mode j at time t+ h̄ when j 6= i and πii(h̄) =

−∑s
j=1,j 6=i πij(h̄); o(h̄) is little-o notation defined by lim

h̄→0
o(̄h)/h̄ = 0.

Remark 2.1. In practice, the transition rate πij(h̄) is general bounded by πij ≤ πij(h̄) ≤ πij, where πij,

πij are real constant scalars. In this case, πij(h̄) can always be described by πij(h̄) = πij + 4πij, where

πij = 1
2 (πij + πij) and |4πij | ≤ π̃ij with π̃ij = 1

2 (πij − πij).

Consider the following semi-Markovian jump slave system with sampled-data feedback control:





ẏ(t) = A(rt)y(t) +B(rt)y(t− h) +W (rt)f(Dy(t)) + u(t),

λ(t) = C(rt)y(t),

u(t) = K(γ(t)− λ(t)),

(4)

where y(t) ∈ Rn is the state vector of slave system, λ(t) ∈ Rl is the output of slave system, u(t) is slave

system control input, K is the sampled-data feedback control gain matrix to be designed.

The measured outputs γ(t) and λ(t) are sampled and measured only at each sampling instant tk, satisfying

0 < t1 < t2 < · · · < tk < · · · and limk→∞ tk =∞. In practical systems, especially in networked environment,

packet dropouts could inevitably occur in the sampler-controller channel. Let tl(j) , j = 0, 1, 2, . . . denote the

sampling instants that the packet transmitted successfully to the controller. Clearly, the sequence {tl(j)}∞j=0

is a subsequence of sequence {tk}∞k=0. Therefore, the controller takes the following form:

u(t) = K(γ(tl(j))− λ(tl(j))), tl(j) ≤ t < tl(j+1) , j = 0, 1, 2, . . . . (5)

By defining the error signal as e(t) = x(t)− y(t), the error system can be represented as follows:

ė(t) = A(rt)e(t) +B(rt)e(t− h) +W (rt)g(t)−KC(rt)e(tl(j)), tl(j) ≤ t < tl(j+1) , j = 0, 1, 2, . . . . (6)

where g(t) = f(De(t) + Dy(t)) − f(Dy(t)). Let D = [d1, d2, . . . , dmf
]T with ds ∈ Rn, s = 1, 2, . . . ,mf . It

can be found that the functions gs(·) satisfy the following condition:

k−s ≤
gs
dTs e

=
fs(d

T
s (e+ y))− fs(dTs y)

dTs e
≤ k+

s , s = 1, 2, . . . ,mf (7)

where dTs e 6= 0.

Assumption 2.2. At the sampling instant tl(j+1) , the number of successive packet dropouts since the last

sampling instant tl(j) is denoted as nj,j+1. The variable nj,j+1 takes values in ζ̄nj,j+1
= {0, 1, 2, . . . , N̄}

arbitrarily, where N̄ = maxj∈N{nj,j+1} .
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To design the state-feedback controller, the concept of the input-delay approach has been employed, that

is

u(t) = KC(rt)e(t− ρ(t)), tl(j) ≤ t < tl(j+1) , j = 0, 1, 2, . . . .

where ρ(t) = t − tl(j) . For any given l(j), j = 0, 1, 2, . . ., there exists k ∈ N such that tl(j) = tk. Let

tk+1 − tk = Tk+1, then, the distance between two adjacent sampling instants that the packet transmitted

successfully to the controller

tl(j+1) − tl(j) = Tk+1 + Tk+2 + · · ·+ Tk+nj,j+1+1, (8)

where Tk+nj,j+1+1(0 ≤ nj,j+1 ≤ N̄) represents the sampling period. According to the definition of ρ(t), we

obtain 0 ≤ ρ(t) < tl(j+1) − tl(j) , tl(j) ≤ t < tl(j+1) . Then, it yields

0 ≤ ρ(t) < Tk+1 + Tk+2 + · · ·+ Tk+nj,j+1+1(0 ≤ nj,j+1 ≤ N̄). (9)

Then, the control input can be written as

u(t) = KC(rt)e(t− ρ(t)), (10)

with ρ(t) ∈ [0, Tk+1 + Tk+2 + · · ·+ Tk+nj,j+1+1).

Assumption 2.3. Tk+nj,j+1+1(0 ≤ nj,j+1 ≤ N̄) takes value in ZT = {ρ1, ρ2, . . . , ρm} with ρ1 < ρ2 < . . . <

ρm. For the sake of simplicity, the probability of the occurrence of each is known, that is

Prob{Tk+nj,j+1+1 = ρi} = βi, i = 1, 2, . . . ,m,

where βi ∈ [0, 1] and
∑m

i=1 βi = 1 .

Remark 2.2. Not only the variable nj,j+1 is stochastic, but also the sampling period Tk+nj,j+1+1(0 ≤
nj,j+1 ≤ N̄) takes values in ZT randomly. That is, the upper bound of the stochastic delay ρ(t) is subject to

double randomness.

Notice that ρ(t) is an interval stochastic delay taking values in [0, (N̄ + 1)ρm), without loss of generality,

we divide [0, (N̄ + 1)ρm) into m subintervals. Compared with enlarging the upper bound T̃k+1+nj,j+1
=

Tk+1 + Tk+2 + · · · + Tk+nj,j+1+1 of ρ(t) to [0, (N̄ + 1)τm), in the following, by recurring to the celebrated

formula of total probability, we will explicitly obtain the probability distribution values of the stochastic

delay ρ(t) taking values in those m subintervals.

Assumption 2.4. The variables nj,j+1 and Tk+nj,j+1+1 are mutually independent.

5
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Consider the occurrence probabilities of m sampling periods taking value in ZT to be independent. When

nj,j+1 = 0, the conditional probability distribution of ρ(t) is calculated as:

Prob{ρi−1 ≤ ρ(t) < ρi|nj,j+1 = 0}

=

m∑

l1=1

Prob{ρi−1 ≤ ρ(t) < ρi|nj,j+1 = 0, Tk+1 = ρl1} × Prob{Tk+1 = ρl1}

=
ρi − ρi−1

ρi
βi +

ρi − ρi−1

ρi+1
βi+1 + . . .+

ρi − ρi−1

ρm
βm

=
∑

p1+p2+...+pi−1=0,pi+pi+1+...+pm=1

ρi − ρi−1

p1ρ1 + p2ρ2 + . . .+ pmρm
β1

p1β2
p2 . . . βm

pm

=β̄0i, i = 1, 2, . . . ,m,

where pi(i = 1, 2, . . . ,m) is a non-negative integer.

When nj,j+1 = v(v = 1, 2, . . . , N̄), the conditional probability distribution of ρ(t) is calculated as:

Prob{ρi−1 ≤ ρ(t) < ρi|nj,j+1 = v}

=

m∑

l1,l2,...,lv+1=1

Prob{ρi−1 ≤ ρ(t) < ρi|nj,j+1 = v, Tk+1 = ρl1 , . . . , Tk+v+1 = ρlv+1}

× Prob{Tk+1 = ρl1} × Prob{Tk+2 = ρl2} × . . .× Prob{Tk+v+1 = ρlv+1}

=
∑

p1+p2+...+pm=v+1

ρi − ρi−1

p1ρ1 + p2ρ2 + . . .+ pmρm
Cp1v+1β1

p1Cp2v+1−p1β2
p2 . . . C

pm−1
pm−1+pm

βm−1
pm−1Cpmpm βm

pm

=β̄vi, i = 1, 2, . . . ,m− 1;

Prob{ρm−1 ≤ ρ(t) < (nj,j+1 + 1)ρm|nj,j+1 = v}

=
∑

p1+p2+...+pm=v+1

(1− ρm−1

p1ρ1 + p2ρ2 + . . .+ pmρm
)Cp1v+1β1

p1Cp2v+1−p1β2
p2 . . . C

pm−1
pm−1+pm

βm−1
pm−1Cpmpm βm

pm

=β̄vm,

where ρ0 = 0 and β̄i1 + β̄i2 + · · ·+ β̄im = 1, i = 0, 1, 2, · · · , N̄ .

Suppose that the packet loss rate is θ̄, then Prob{nj,j+1 = v} = (1− θ̄)θ̄v, v = 0, 1, 2, . . . , N̄ − 1; Prob{nj,j+1 =

N̄} = θ̄N̄ . From the discussion above, the probability distribution values of ρ(t) in [0, (N̄ + 1)ρm) can be calculated

as:

Prob{ρi−1 ≤ ρ(t) < λiρi} =

N̄−1∑

v=0

β̄vi(1− θ̄)θ̄v + β̄N̄iθ̄
N̄ = θi, i = 1, 2, . . . ,m− 1;

Prob{ρm−1 ≤ ρ(t) < λmρm} =

N̄−1∑

v=0

β̄vm(1− θ̄)θ̄v + β̄N̄mθ̄
N̄ = θm

where λi = 1(i = 1, 2, · · · ,m− 1), λm = N̄ + 1 and θ1 + θ2 + · · ·+ θm = 1.

Introduce the new indicator functions

αi(t) =





1 ρ̄i(t) = ρ(t) ∈ [ρi−1, λiρi), i = 1, 2, . . . ,m

0 otherwise

6
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Then, we have E{αi(t)} = Prob{ρ(t) ∈ [ρi−1, λiρi)} = θi, i = 1, 2, . . . ,m. Controller with m sampling intervals can

be converted into

u(t) =

m∑

i=1

αi(t)KC(rt)e(t− ρ̄i(t)), t ∈ [tl(j) , tl(j+1)), (11)

with ρi−1 ≤ ρ̄i(t) < λiρi, i = 1, 2, . . . ,m. Therefore, the error system (6) with m sampling intervals can be rewritten

as follow:

ė(t) = A(rt)e(t) +B(rt)e(t− h) +W (rt)g(t)−
m∑

l=1

αl(t)KC(rt)e(t− ρ̄l(t)) (12)

for t ∈ [tl(j) , tl(j+1)), j = 0, 1, 2, . . ., where ρl−1 ≤ ρ̄l(t) < λlρl, l = 1, 2, . . . ,m.

Lemma 2.1. ([35]) For a positive definite matrix S and any differentiable function x on [a, b] −→ Rn, the following

inequality holds:

−
∫ b

a

ẋT (s)Sẋ(s)ds ≤ 1

a− b x̄
T (s)S̄x̄(s)ds

where

x̄(a, b) =




x(b)

x(a)

1
b−a

∫ b
a
x(s)ds




T

, S̄ =




S −S 0

∗ S 0

∗ ∗ 0


 +

π2

4




S S −2S

∗ S −2S

∗ ∗ 4S


 .

Lemma 2.2. ([7]) For a given matrix M > 0, given scalars a and b satisfying a < b, the following inequality holds

for all continuously differentiable function r in [a, b] −→ Rn:

− (b− a)2

2

∫ b

a

∫ b

θ

rT (s)Mr(s)dsdθ ≤ −
∫ b

a

∫ b

θ

rT (s)dsdθM

∫ b

a

∫ b

θ

r(s)dsdθ − 2ΘTMΘ,

where Θ = −
∫ b
a

∫ b
θ
r(s)dsdθ + 3

b−a
∫ b
a

∫ b
λ

∫ b
θ
r(s)dsdθdλ.

Lemma 2.3. ([7]) For a given symmetric positive definite matrix R, arbitrary scalars 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1

(x1 + x2 = 1), and for differentiable signal r(t) in [0, x3] −→ Rn, the following inequality holds:

−
∫ t

t−h
ṙT (s)Rṙ(s)ds ≤ −




r(t)

r(t− h)
∫ t
t−h r(s)ds




T

Ω1(x1, x2, x3)⊗R




r(t)

r(t− h)
∫ t
t−h r(s)ds


 ,

where

Ω1(x1, x2, x3) =




4x2
x3

2x2
x3

−6x2
x23

2x2
x3

4−2x1
x3

−6+4x1
x23

−6x2
x23

−6+4x1
x23

12−10x1
x33


 .

Lemma 2.4. ([38]) Given any scalar ε and square matrix Q ∈ Rn×n, the following inequality

ε(Q+QT ) ≤ ε2T +QT−1QT

holds for any symmetric positive definite matrix T ∈ Rn×n.
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Definition 2.1. Master system (1) and slave system (4) are said to be stochastically synchronous if error system (12)

is stochastically stable, that is, for any initial condition e(t) = φ(t) defined on the interval [tl(0)−max{(N̄+1)ρm, h},
tl(0) ], the following condition is satisfied:

lim
T→∞

E{
∫ T

t
l(0)

||e(s)||2ds|φ(t)} <∞.

3. Main results

In this section, the sufficient conditions for the error system (12) to be stochastically stable are established. For

the sake of simplicity of matrix representation, the notations for some vectors and matrices are defined in Appendix.

Theorem 3.1. For given scalars h > 0, 0 < ᾱ < 1, δ, 0 ≤ µi1 ≤ 1 (i1 = 1, 2, 3, 4), µ1 + µ2 = 1, µ3 + µ4 =

1, the master system (1) and the slave system (4) are stochastically synchronous if there exist matrices Pq > 0,

Ri2 > 0 (i2 = 1, 2, 3, 4, 5, 6, 7), Qi3 > 0, S1i3 > 0, S2i3 > 0 (i3 = 1, 2, . . . ,m), L1 = diag{ω1, ω2, . . . , ωm} > 0,

L2 = diag{ι1, ι2, . . . , ιm} > 0, Vjl = diag{vj1l, vj2l, . . . , vjmf l} > 0 (l = 1, 2; j = 1, 2, 3), and any appropriately

dimensioned matrices W̄i4 (i4 = 1, 2, . . . ,m), H1, H2, N , U , M = [M1,M2,M3] and M̄ = [M, 0], such that the

following matrix inequalities hold for all q ∈ L:

Λq((N̄ + 1)ρm) =


Pq + 2δ((N̄ + 1)ρm)(H1)s −((N̄ + 1)ρm)H1 + ((N̄ + 1)ρm)H2

∗ 2((N̄ + 1)ρm)(−H2 + (1− δ)H1)s


 > 0, (13)


S1i W̄T

i

∗ S1i


 > 0, i = 1, 2, . . . ,m, (14)

Γ1(T̂ ) = Υ0 + Υ01 + Υ1(T̂ ) < 0, (15)

Γ̂2(T̂ ) =


Υ0 + Υ02 T̂

1
2 M̄T

∗ −R1


 < 0, T̂ = 0, (N̄ + 1)ρm, (16)

where Υ0, Υ01, Υ02 and Υ1(T̂ ) are defined in Appendix.

Moreover, the gain matrix is given by

K = N−1U.

Proof. Consider the following Lyapunov functional candidate for the error system (12) (t ∈ [tl(j) , tl(j+1))):

V (t) =
7∑

i=1

Vi(t), (17)

where

V1(t) = eT (t)P (rt)e(t) + (tl(j+1) − t)εT (t)Hε(t),

V2(t) = (tl(j+1) − t)
∫ t

t
l(j)

ėT (s)R1ė(s)ds,

V3(t) =

∫ t

t−ᾱh
eT (s)R2e(s)ds+

∫ t−ᾱh

t−h
eT (s)R3e(s)ds,

V4(t) =

∫ 0

−ᾱh

∫ t

t+θ

ėT (s)R4ė(s)dsdθ +

∫ −ᾱh

−h

∫ t

t+θ

ėT (s)R5ė(s)dsdθ,

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

V5(t) =
ᾱ2

2

∫ t

t−ᾱh

∫ t

λ

∫ t

θ

ėT (s)R6ė(s)dsdθdλ+
1

2

∫ t

t−h

∫ t

λ

∫ t

θ

ėT (s)R7ė(s)dsdθdλ,

V6(t) = 2

mf∑

s=1

ωs

∫ dsT e(t)

0

[gs(θ)− k−s θ]dθ + 2

mf∑

s=1

ιs

∫ dsT e(t)

0

[k+
s θ − gs(θ)]dθ,

V7(t) =
m∑

i=1

θi

∫ t−ρi−1

t−λiρi

eT (s)Qie(s)ds+
m∑

i=1

θiρ̄i

∫ −ρi−1

−λiρi

∫ t

t+θ

ėT (s)Ziė(s)dsdθ,

with ρ̄i = λiρi − ρi−1, Zi = S1i + S2i, i = 1, 2, . . . ,m.

According to the assumptions, we know that V2(t), V3(t), V4(t), V5(t), V6(t) and V7(t) are positive. If V1(t) is

positive definite, we can obtain that V (t) is positive definite. For ∀rt = q ∈ L, we can get

V1(t) =eT (t)Pqe(t) + (tl(j+1) − t)εT (t)Hε(t)

=


 e(t)

e(tl(j))



T

(


Pq 0

∗ 0


 + (tl(j+1) − t)H)


 e(t)

e(tl(j))




=


 e(t)

e(tl(j))



T

(
t− tl(j)

T̃k+1+nj,j+1

Λq(0) +
tl(j+1) − t
T̃k+1+nj,j+1

Λq(T̃k+1+nj,j+1))


 e(t)

e(tl(j))


 ,

and

Λq(T̃k+1+nj,j+1) =
T̃k+1+nj,j+1

(N̄ + 1)ρm
Λq((N̄ + 1)ρm) +

(N̄ + 1)ρm − T̃k+1+nj,j+1

(N̄ + 1)ρm
Λq(0).

From (13) and Pq > 0, it is clear that V (t) > V1(t). It is noted that, two (tl(j) , tl(j+1))-dependent terms

(tl(j+1)− t)εT (t)Hε(t) and V2(t) are introduced in (17), which make full use of the information available on the actual

sampling pattern. In addition, V (t) is continuous on the whole interval [0,∞] because (tl(j) , tl(j+1))-dependent terms

in V1(t) and V2(t) vanish before and after the jump tl(j) .

Calculating the time derivative of V (t) along the trajectory of error system (12), and taking the mathematical

expectation, we have

E{V̇1(t)} = lim
4→0

E{V1(t+4)− V1(t)

4 }

= lim
4→0

1

4E{
s∑

j=1,j 6=q
Pr{rt+4 = j|rt = q}eT (t+4)Pje(t+4)

+ Pr{rt+4 = q|rt = q}eT (t+4)Pqe(t+4)− eT (t)Pqe(t)} − εT (t)Hε(t) + 2(tl(j+1) − t)εT (t)Hε̇(t)

= lim
4→0

1

4E{
s∑

j=1,j 6=q

%qj(Gq(h̄+4)−Gq(h̄))

1−Gq(h̄)
eT (t+4)Pje(t+4)

+
1−Gq(h̄+4)

1−Gq(h̄)
eT (t+4)Pqe(t+4)− eT (t)Pqe(t)} − εT (t)Hε(t) + 2(tl(j+1) − t)εT (t)Hε̇(t),

where h̄ is the time elapsed when the system stays at mode p from the last jump; Gq(t) is the cumulative distribution

function of the sojourn time when the system remains in mode p, and %qj is the probability intensity of the system

jump from mode p to mode j. Given that 4 is small, the first order approximation of e(t+4) is

e(t+4) = e(t) + ė(t)4+o(4)

= (I +Aq4)e(t) + (Bqe(t− h) +Wqg(t)−
m∑

l=1

αl(t)KCqe(t− ρ̄l(t)))4+o(4).

9
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Then,

E{V̇1(t)} = lim
4→0

1

4{
s∑

j=1,j 6=q

%qj(Gq(h̄+4)−Gq(h̄))

1−Gq(h̄)
([(I +Aq4)e(t)]TPj [(I +Aq4)e(t)]

+ 2[(I +Aq4)e(t)]TPj [(Bqe(t− h) +Wqg(t))4]

− 2
m∑

l=1

θl[(I +Aq4)e(t)]TPj [KCqe(t− ρ̄l(t))4]

+ [(Bqe(t− h) +Wqg(t))4]TPj [(Bqe(t− h) +Wqg(t))4]

− 2
m∑

l=1

θl[(Bqe(t− h) +Wqg(t))4]TPj [KCqe(t− ρ̄l(t))4]

+

m∑

l=1

θl[KCqe(t− ρ̄l(t))4]TPj [KCqe(t− ρ̄l(t))4] + o(4))

+
1−Gq(h̄+4)

1−Gq(h̄)
([(I +Aq4)e(t)]TPq[(I +Aq4)e(t)]

+ 2[(I +Aq4)e(t)]TPq[(Bqe(t− h) +Wqg(t))4]

− 2

m∑

l=1

θl[(I +Aq4)e(t)]TPq[KCqe(t− ρ̄l(t))4]

+ [(Bqe(t− h) +Wqg(t))4]TPq[(Bqe(t− h) +Wqg(t))4]

− 2

m∑

l=1

θl[(Bqe(t− h) +Wqg(t))4]TPq[KCqe(t− ρ̄l(t))4]

+

m∑

l=1

θl[KCqe(t− ρ̄l(t))4]TPq[KCqe(t− ρ̄l(t))4]

+ o(4))− eT (t)Pqe(t)} − εT (t)Hε(t) + 2(tl(j+1) − t)εT (t)Hε̇(t).

By the same techniques used in [38], we have

lim
4→0

Gq(h̄+4)−Gq(h̄)

4(1−Gq(h̄))
= πq(h̄), lim

4→0

1−Gq(h̄+4)

1−Gq(h̄)
= 1, lim

4→0

Gq(h̄+4)−Gq(h̄)

1−Gq(h̄)
= 0.

where πq(h̄) is the transition rate of the system jumping from mode q.

Define

πqj(h̄) = %qjπq(h̄), j 6= q, πqq(h̄) = −
s∑

j=1,j 6=q
πqj(h̄).

Then,

E{V̇1(t)} = 2eT (t)Pq ė(t) +

s∑

j=1

πqj(h)eT (t)Pje(t)− εT (t)Hε(t) + 2(tl(j+1) − t)εT (t)Hε̇(t)

= ξT (t){ tl(j+1) − t
T̃k+1+nj,j+1

(2ẽ1Pq ẽ
T
2 +

s∑

j=1

πqj(h)ẽ1Pj ẽ
T
1 − [ẽ1, ẽ3]H[ẽ1, ẽ3]T + 2T̃k+1+nj,j+1 [ẽ1, ẽ3]H[ẽ2, 0]T )

+
t− tl(j)

T̃k+1+nj,j+1

(2ẽ1Pq ẽ
T
2 +

s∑

j=1

πqj(h)ẽ1Pj ẽ
T
1 − [ẽ1, ẽ3]H[ẽ1, ẽ3]T )}ξ(t),

(18)
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E{V̇2(t)} = −
∫ t

t
l(j)

ėT (s)R1ė(s)ds+ (tl(j+1) − t)ėT (t)R1ė(t). (19)

Moreover, for an appropriately dimensioned matrix M = [M1,M2,M3], we can get the following inequality:

∫ t

t
l(j)


ϕ(t)

ė(s)



T 
M

TR−1
1 M MT

∗ R1




ϕ(t)

ė(s)


 ds ≥ 0. (20)

This implies,

E{V̇2(t)} ≤ (tl(j+1) − t)ėT (t)R1ė(t) + (t− tl(j))ϕT (t)MTR−1
1 Mϕ(t) + 2ϕT (t)MT [e(t)− e(tl(j))]

= ξT (t){ tl(j+1) − t
T̃k+1+nj,j+1

(T̃k+1+nj,j+1 ẽ2R1ẽ
T
2 + 2[ẽ1, ẽ2, ẽ3]MT [ẽ1 − ẽ3]T )

+
t− tl(j)

T̃k+1+nj,j+1

(T̃k+1+nj,j+1 [ẽ1, ẽ2, ẽ3]MTR−1
1 M [ẽ1, ẽ2, ẽ3]T + 2[ẽ1, ẽ2, ẽ3]MT [ẽ1 − ẽ3]T )}ξ(t).

(21)

E{V̇3(t)} = eT (t)R2e(t) + eT (t− ᾱh)(R3 −R2)e(t− ᾱh)− eT (t− h)R3e(t− h)

= ξT (t){ tl(j+1) − t
T̃k+1+nj,j+1

(ẽ1R2ẽ
T
1 + ẽ4(R3 −R2)ẽT4 − ẽ5R3ẽ

T
5 )

+
t− tl(j)

T̃k+1+nj,j+1

(ẽ1R2ẽ
T
1 + ẽ4(R3 −R2)ẽT4 − ẽ5R3ẽ

T
5 )}ξ(t),

(22)

E{V̇4(t)} = ėT (t)(ᾱhR4 + (1− ᾱ)hR5)ė(t)−
∫ t

t−ᾱh
ėT (s)R4ė(s)ds−

∫ t−ᾱh

t−h
ėT (s)R5ė(s)ds. (23)

By Lemma 2.3, for any positive scalars µi (i = 1, 2, 3, 4) satisfying µ1 + µ2 = 1 and µ3 + µ4 = 1, we have

−
∫ t

t−ᾱh
ėT (s)R4ė(s)ds

=− µ1

∫ t

t−ᾱh
ėT (s)R4ė(s)ds− µ2

∫ t

t−ᾱh
ėT (s)R4ė(s)ds

≤−




e(t)

e(t− ᾱh)
∫ t
t−ᾱh e(s)ds




T

(Ω1(µ1, µ2, ᾱh)⊗R4)




e(t)

e(t− ᾱh)
∫ t
t−ᾱh e(s)ds


 ,

(24)

−
∫ t−ᾱh

t−h
ėT (s)R5ė(s)ds

=− µ3

∫ t−ᾱh

t−h
ėT (s)R5ė(s)ds− µ4

∫ t−ᾱh

t−h
ėT (s)R5ė(s)ds

≤−




e(t− ᾱh)

e(t− h)
∫ t−ᾱh
t−h e(s)ds




T

(Ω1(µ3, µ4, (1− ᾱ)h)⊗R5)




e(t− ᾱh)

e(t− h)
∫ t−ᾱh
t−h e(s)ds


 .

(25)

Considering (23)-(25), we obtain

E{V̇4(t)} ≤ ξT (t){ tl(j+1) − t
T̃k+1+nj,j+1

(ẽ2(ᾱhR4 + (1− ᾱ)hR5)ẽT2 − [ẽ1, ẽ4, ẽ9](Ω1(µ1, µ2, ᾱh)⊗R4)[ẽ1, ẽ4, ẽ9]T

− [ẽ4, ẽ5, ẽ10](Ω1(µ3, µ4, (1− ᾱ)h)⊗R5)[ẽ4, ẽ5, ẽ10]T )

+
t− tl(j)

T̃k+1+nj,j+1

(ẽ2(ᾱhR4 + (1− ᾱ)hR5)ẽT2 − [ẽ1, ẽ4, ẽ9](Ω1(µ1, µ2, ᾱh)⊗R4)[ẽ1, ẽ4, ẽ9]T

− [ẽ4, ẽ5, ẽ10](Ω1(µ3, µ4, (1− ᾱ)h)⊗R5)[ẽ4, ẽ5, ẽ10]T )}ξ(t).

(26)

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

E{V̇5(t)} = ėT (t)(
ᾱ4h2

4
R6 +

h2

4
R7)ė(t)− ᾱ2

2

∫ t

t−ᾱh

∫ t

θ

ėT (s)R6ė(s)dsdθ − 1

2

∫ t

t−h

∫ t

θ

ėT (s)R7ė(s)dsdθ. (27)

By Lemma 2.2, we have

− ᾱ2

2

∫ t

t−ᾱh

∫ t

θ

ėT (s)R6ė(s)dsdθ

≤−




e(t)
∫ t
t−ᾱh e(s)ds∫ t

t−ᾱh
∫ t
θ
e(s)dsdθ




T

(Ω2(ᾱh)⊗R6)




e(t)
∫ t
t−ᾱh e(s)ds∫ t

t−ᾱh
∫ t
θ
e(s)dsdθ


 ,

(28)

− 1

2

∫ t

t−h

∫ t

θ

ėT (s)R7ė(s)dsdθ

≤−




e(t)
∫ t
t−ᾱh e(s)ds+

∫ t−ᾱh
t−h e(s)ds

∫ t
t−h

∫ t
θ
e(s)dsdθ




T

(Ω2(h)⊗R7)




e(t)
∫ t
t−ᾱh e(s)ds+

∫ t−ᾱh
t−h e(s)ds

∫ t
t−h

∫ t
θ
e(s)dsdθ


 .

(29)

Considering (27)-(29), we obtain

E{V̇5(t)} ≤ ξT (t){ tl(j+1) − t
T̃k+1+nj,j+1

(ẽ2(
ᾱ4h2

4
R6 +

h2

4
R7)ẽT2 − [ẽ1, ẽ9, ẽ11](Ω2(ᾱh)⊗R6)[ẽ1, ẽ9, ẽ11]T

− [ẽ1, ẽ9 + ẽ10, ẽ12](Ω2(h)⊗R7)[ẽ1, ẽ9 + ẽ10, ẽ12]T )

+
t− tl(j)

T̃k+1+nj,j+1

(ẽ2(
ᾱ4h2

4
R6 +

h2

4
R7)ẽT2 − [ẽ1, ẽ9, ẽ11](Ω2(ᾱh)⊗R6)[ẽ1, ẽ9, ẽ11]T

− [ẽ1, ẽ9 + ẽ10, ẽ12](Ω2(h)⊗R7)[ẽ1, ẽ9 + ẽ10, ẽ12]T )}ξ(t).

(30)

E{V̇6(t)} = 2

mf∑

s=1

(ωs − ιs)gs(dsT e(t))dsT ė(t) + 2

mf∑

s=1

(ιsk
+
s − ωsk−s )dsT e(t)dsT ė(t)

= 2ėT (t)DT (L1 − L2)g(t) + 2eT (t)DT (K̄+L2 − K̄−L1)Dė(t)

= ξT (t){2 tl(j+1) − t
T̃k+1+nj,j+1

(ẽ2D
T (L1 − L2)ẽT6 + ẽ1D

T (K̄+L2 − K̄−L1)DẽT2 )

+ 2
t− tl(j)

T̃k+1+nj,j+1

(ẽ2D
T (L1 − L2)ẽT6 + ẽ1D

T (K̄+L2 − K̄−L1)DẽT2 )}ξ(t),

(31)

E{V̇7(t)} =

m∑

i=1

θie
T (t− ρi−1)Qie(t− ρi−1)−

m∑

i=1

θie
T (t− λiρi)Qie(t− λiρi)

+
m∑

i=1

θiρ̄
2
i ė
T (t)Ziė(t)−

m∑

i=1

θiρ̄i

∫ t−ρi−1

t−λiρi

ėT (s)Ziė(s)ds

= θ1e
T (t)Q1e(t) +

m−1∑

i=1

eT (t− ρi)(θi+1Qi+1 − θiQi)e(t− ρi)− θmeT (t− λmρm)Qme(t− λmρm)

+

m∑

i=1

θiρ̄
2
i ė
T (t)Ziė(t)−

m∑

i=1

θiρ̄i

∫ t−ρi−1

t−λiρi

ėT (s)Ziė(s)ds.

(32)

By adopting the definition of reciprocally convex combination and the lower bounds theorem in [37], which lead to

−
m∑

i=1

θiρ̄i

∫ t−ρi−1

t−λiρi

ėT (s)S1iė(s)ds ≤
m∑

i=1

θiη
T
1iS1iη1i. (33)
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By applying Lemma 2.1, we can get

−
m∑

i=1

θiρ̄i

∫ t−ρi−1

t−λiρi

ėT (s)S2iė(s)ds ≤
m∑

i=1

θiη
T
2iS2iη2i. (34)

Considering (32)-(34), we obtain

E{V̇7(t)} ≤ ξT (t){ tl(j+1) − t
T̃k+1+nj,j+1

(θ1ẽ1Q1ẽ
T
1 +

m−1∑

i=1

ẽ11+3i(θi+1Qi+1 − θiQi)ẽT11+3i − θmẽ11+3mQmẽ
T
11+3m

+
m∑

i=1

θiρ̄
2
i ẽ2Ziẽ

T
2 + θ1[ẽ1, ẽ13, ẽ14]S11[ẽ1, ẽ13, ẽ14]T

+

m∑

i=2

θi[ẽ8+3i, ẽ10+3i, ẽ11+3i]S1i[ẽ8+3i, ẽ10+3i, ẽ11+3i]
T

+ θ1[ẽ1, ẽ14, ẽ15]S21[ẽ1, ẽ14, ẽ15]T

+
m∑

i=2

θi[ẽ8+3i, ẽ11+3i, ẽ12+3i]S2i[ẽ8+3i, ẽ11+3i, ẽ12+3i]
T )

+
t− tl(j)

T̃k+1+nj,j+1

(θ1ẽ1Q1ẽ
T
1 +

m−1∑

i=1

ẽ11+3i(θi+1Qi+1 − θiQi)ẽT11+3i − θmẽ11+3mQmẽ
T
11+3m

+

m∑

i=1

θiρ̄
2
i ẽ2Ziẽ

T
2 + θ1[ẽ1, ẽ13, ẽ14]S11[ẽ1, ẽ13, ẽ14]T

+

m∑

i=2

θi[ẽ8+3i, ẽ10+3i, ẽ11+3i]S1i[ẽ8+3i, ẽ10+3i, ẽ11+3i]
T

+ θ1[ẽ1, ẽ14, ẽ15]S21[ẽ1, ẽ14, ẽ15]T

+

m∑

i=2

θi[ẽ8+3i, ẽ11+3i, ẽ12+3i]S2i[ẽ8+3i, ẽ11+3i, ẽ12+3i]
T )}ξ(t).

(35)

In addition, notice that E{αl(t)} = θl(l = 1, 2, . . . ,m), then, for any scalars y1, y2 and y3, and arbitrary matrix N

with appropriate dimension, the following equality holds:

0 =E{2[ėT (t)y1 + eT (t)y2 + eT (tl(j))y3]N [−ė(t) +Aqe(t) +Bqe(t− h)

+Wqg(t)−
m∑

l=1

αl(t)KCqe(t− ρ̄l(t))]}

=ξT (t){2 tl(j+1) − t
T̃k+1+nj,j+1

[y1ẽ2 + y2ẽ1 + y3ẽ3]N [−ẽT2 +Aq ẽ
T
1 +Bq ẽ

T
5 +Wq ẽ

T
6 −

m∑

l=1

θlKCq ẽ
T
10+3l]

+
t− tl(j)

T̃k+1+nj,j+1

[y1ẽ2 + y2ẽ1 + y3ẽ3]N [−ẽT2 +Aq ẽ
T
1 +Bq ẽ

T
5 +Wq ẽ

T
6 −

m∑

l=1

θlKCq ẽ
T
10+3l]}ξ(t),

=ξT (t){2 tl(j+1) − t
T̃k+1+nj,j+1

[y1ẽ2 + y2ẽ1 + y3ẽ3][−NẽT2 +NAq ẽ
T
1 +NBq ẽ

T
5 +NWq ẽ

T
6 −

m∑

l=1

θlUCq ẽ
T
10+3l]

+
t− tl(j)

T̃k+1+nj,j+1

[y1ẽ2 + y2ẽ1 + y3ẽ3][−NẽT2 +NAq ẽ
T
1 +NBq ẽ

T
5 +NWq ẽ

T
6 −

m∑

l=1

θlUCq ẽ
T
10+3l]}ξ(t).

(36)

According to (7), for any positive diagonal matrices V1i = diag{v11i, v12i, . . . , v1mf i}, V2i = diag{v21i, v22i, . . . , v2mf i},
and V3i = diag{v31i, v32i, . . . , v3mf i} (i = 1, 2), we can get the following inequalities

−2

mf∑

s=1

[gs(t)− k+
s d

T
s e(t)]v1si[gs(t)− k−s dTs e(t)] ≥ 0, (37)
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−2

mf∑

s=1

[gs(t− ᾱh)− k+
s d

T
s e(t− ᾱh)]v2si[gs(t− ᾱh)− k−s dTs e(t− ᾱh)] ≥ 0, (38)

−2

mf∑

s=1

[gs(t− h)− k+
s d

T
s e(t− h)]v3si[gs(t− h)− k−s dTs e(t− h)] ≥ 0, (39)

From (37)-(39), we have

Φ1(i, t) = −2gT (t)V1ig(t) + 2eT (t)DT [K̄+ + K̄−]V1ig(t)− 2eT (t)DT K̄+V1iK̄
−De(t) ≥ 0,

Φ2(i, t) =− 2gT (t− ᾱh)V2ig(t− ᾱh) + 2eT (t− ᾱh)DT [K̄+ + K̄−]V2ig(t− ᾱh)

− 2eT (t− ᾱh)DT K̄+V2iK̄
−De(t− ᾱh) ≥ 0,

Φ3(i, t) =− 2gT (t− h)V3ig(t− h) + 2eT (t− h)DT [K̄+ + K̄−]V3ig(t− h)

− 2eT (t− h)DT K̄+V3iK̄
−De(t− h) ≥ 0.

Then,

tl(j+1) − t
T̃k+1+nj,j+1

Φ1(1, t) +
t− tl(j)

T̃k+1+nj,j+1

Φ1(2, t)

=ξT (t){ tl(j+1) − t
T̃k+1+nj,j+1

(−2ẽ6V11ẽ
T
6 + 2ẽ1D

T [K̄+ + K̄−]V11ẽ
T
6 − 2ẽ1D

T K̄+V11K̄
−DẽT1 )+

t− tl(j)
T̃k+1+nj,j+1

(−2ẽ6V12ẽ
T
6 + 2ẽ1D

T [K̄+ + K̄−]V12ẽ
T
6 − 2ẽ1D

T K̄+V12K̄
−DẽT1 )}ξ(t) ≥ 0,

(40)

tl(j+1) − t
T̃k+1+nj,j+1

Φ2(1, t) +
t− tl(j)

T̃k+1+nj,j+1

Φ2(2, t)

=ξT (t){ tl(j+1) − t
T̃k+1+nj,j+1

(−2ẽ7V21ẽ
T
7 + 2ẽ4D

T [K̄+ + K̄−]V21ẽ
T
7 − 2ẽ4D

T K̄+V21K̄
−DẽT4 )+

t− tl(j)
T̃k+1+nj,j+1

(−2ẽ7V22ẽ
T
7 + 2ẽ4D

T [K̄+ + K̄−]V22ẽ
T
7 − 2ẽ4D

T K̄+V22K̄
−DẽT4 )}ξ(t) ≥ 0,

(41)

tl(j+1) − t
T̃k+1+nj,j+1

Φ3(1, t) +
t− tl(j)

T̃k+1+nj,j+1

Φ3(2, t)

=ξT (t){ tl(j+1) − t
T̃k+1+nj,j+1

(−2ẽ8V31ẽ
T
8 + 2ẽ5D

T [K̄+ + K̄−]V31ẽ
T
8 − 2ẽ5D

T K̄+V31K̄
−DẽT5 )+

t− tl(j)
T̃k+1+nj,j+1

(−2ẽ8V32ẽ
T
8 + 2ẽ5D

T [K̄+ + K̄−]V32ẽ
T
8 − 2ẽ5D

T K̄+V32K̄
−DẽT5 )}ξ(t) ≥ 0.

(42)

Considering (18), (21), (22), (26), (30), (31), (35), (36) and (40)-(42), we obtain

E{V̇ (t)} ≤ ξT (t){ tl(j+1) − t
T̃k+1+nj,j+1

Γ1(T̃k+1+nj,j+1) +
t− tl(j)

T̃k+1+nj,j+1

Γ2(T̃k+1+nj,j+1)}ξ(t). (43)

It noted that

Γ1(T̃k+1+nj,j+1) =
T̃k+1+nj,j+1

(N̄ + 1)ρm
Γ1((N̄ + 1)ρm) +

(N̄ + 1)ρm − T̃k+1+nj,j+1

(N̄ + 1)ρm
Γ1(0), (44)

and

Γ2(T̃k+1+nj,j+1) =
T̃k+1+nj,j+1

(N̄ + 1)ρm
Γ2((N̄ + 1)ρm) +

(N̄ + 1)ρm − T̃k+1+nj,j+1

(N̄ + 1)ρm
Γ2(0). (45)

From (15) and (16), we obtain that

Γ1(T̃k+1+nj,j+1) < 0, Γ2(0) < 0. (46)
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Based on Schur complement, we have from (16)

Γ2((N̄ + 1)ρm) < 0. (47)

From (46) and (47), it can be seen that

Γ2(T̃k+1+nj,j+1) < 0. (48)

Then, we can obtain from (43), (46) and (48) that

E{V̇ (t)} ≤ −ε||e(t)||2, t ∈ [tl(j) , tl(j+1)) (49)

for some ε > 0. Now, using Dynkin’s formula, we have that

E{V (tl(j+1))} − E{V (tl(j))} = E{V (t−
l(j+1))} − E{V (tl(j))} ≤ −εE{

∫ t−
l(j+1)

t
l(j)

||e(s)||2ds}. (50)

Thus, we can get from (50) that

∞∑

j=0

E{
∫ t

l(j+1)

t
l(j)

||e(s)||2ds} ≤ ε−1E{V (tl(0))}. (51)

Therefore, according to Definition 2.1, we have that the synchronization error system (12) is stochastically stable,

that is, master system (1) and slave system (4) are stochastically synchronous. This completes the proof.

Remark 3.1. Due to the time-varying term πqj(h̄), it is difficult to solve inequalities (15) and (16), because they

contain infinite number of inequalities, which limits the use of Theorem 3.1 in practice. To overcome this shortcoming,

we present our next result which reduces infinite number of inequalities in Theorem 3.1 to finitely many ones, which

will be simple to solve.

Theorem 3.2. For given scalars h > 0, 0 < ᾱ < 1, δ, 0 ≤ µi1 ≤ 1 (i1 = 1, 2, 3, 4), µ1 + µ2 = 1, µ3 + µ4 =

1, the master system (1) and the slave system (4) are stochastically synchronous if there exist matrices Pq > 0,

Ri2 > 0 (i2 = 1, 2, 3, 4, 5, 6, 7), Qi3 > 0, S1i3 > 0, S2i3 > 0 (i3 = 1, 2, . . . ,m), L1 = diag{ω1, ω2, . . . , ωm} > 0,

L2 = diag{ι1, ι2, . . . , ιm} > 0, Vjl = diag{vj1l, vj2l, . . . , vjmf l} > 0 (l = 1, 2; j = 1, 2, 3), and any appropriately

dimensioned matrices W̄i4 (i4 = 1, 2, . . . ,m), H1, H2, N , U , M = [M1,M2,M3], M̄ = [M, 0] and Tqj (j 6= q, j ∈ L),

such that (13), (14) and the following matrix inequalities hold for all q ∈ L:

Γ∗1(T̂ ) =


Υ∗0 + Υ01 + Υ1(T̂ ) Pq

∗ −Tq


 < 0, (52)

Γ̂∗2(T̂ ) =




Υ∗0 + Υ02 T̂
1
2 M̄T Pq

∗ −R1 0

∗ ∗ −Tq


 < 0, T̂ = 0, (N̄ + 1)ρm. (53)

where Υ∗0, Υ01, Υ02 and Υ1(T̂ ) are defined in Appendix.

Moreover, the gain matrix is given by

K = N−1U.
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Proof. According to Theorem 3.1, we have

Υ0 = Υ̌0 +

s∑

j=1

πqj(h)ẽ1Pj ẽ
T
1

= Υ̌0 + ẽ1{
s∑

j=1

πqjPj +
s∑

j=1,j 6=q
[
1

2
4πqj(Pj − Pq) +

1

2
4πqj(Pj − Pq)]}ẽT1 .

By Lemma 2.4, if there exist matrices Tqj for all |4πqj | ≤ π̃qj, such that

Υ̃∗0 + Υ01 + Υ1(T̂ ) < 0, (54)

and

Υ̃∗0 + Υ02 T̂

1
2 M̄T

∗ −R1


 < 0, T̂ = 0, (N̄ + 1)ρm. (55)

In view of Schur complement, it can be seen that (54) and (55) is equivalent to the inequalities (52) and (53). Then,

by this fact together with Theorem 3.1, we can conclude that the synchronization error system (12) is stochastically

stable. This completes the proof.

Remark 3.2. Note that Theorem 3.2 gives the stochastically synchronous conditions for master system (1) and slave

system (4). The results are expressed within the framework of LMIs, which can be easily verified by the MATLAB

LMI Toolbox. Moreover, if (13), (14), (52) and (53) are feasible, the desired sampled-data feedback control gain K

can be readily obtained.

Remark 3.3. In switched systems, we often call each subsystem a mode, and say that control problems are to design

a set of mode-dependent controllers or a mode-independent controller for the unforced system and find admissible

switching signals such that the resulting system is stable and satisfies certain performance criteria. With an adaptation

sense, mode-dependent controller design is less conservative. However, a very common assumption in the ’mode-

dependent’ context is that the controllers are switched synchronously with the switching of system modes, which is

quite unpractical. Due to the fact that it inevitably takes some time to identify the system modes and apply the

controller, there exists asynchronous switching in actual operation, i.e. the switching instants of the controllers

exceed or lag behind those of the systems. Thus, it is necessary to consider asynchronous switching for efficient

control design. So, it is noteworthy that the proposed method can be extended to the stochastic asynchronous problem

of semi-Markovian jump chaotic Lur’e systems subject to multiple sampling periods. Meanwhile, the conservatism of

the obtained results will be reduced. This will be the topic of our future study.

Remark 3.4. In this paper, LMIs approach is employed to derive the results, which can be easily solved by MATLAB

LMI Tool box. In Theorem 3.2, the complexity of variables are (1.5m+ s2− s+ 11)n2 + (1.5m+ l+ 4)n+ 2m+ 6mf .

However, when the size of inequalities and the number of decision variables gets bigger, the calculation time gets

longer. In future work, we will both consider conservativeness and calculation complexity.

Remark 3.5. Nowadays, most of the practical control systems employ the digital signals to transmit the information

in order to minimize the total cost. However, traditional researches paid more attention to the sampled-data control
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systems based on the assumption that the considered system is sampled with a constant sampling interval [7,8]. Due

to the unpredictable network-induced phenomena, such as fluctuated network loads and sampling errors, the sampling

period may often jitter inevitably. Packet dropout is one of the important issues, which results from transmission

errors or congestion in the physical communication links or from buffer overflows, which can degrade system per-

formance and possibly cause system instability. So we consider packet dropout and multiple sampling periods in this

paper. Compared with the results in [7] where master-slave synchronization problem is investigated for chaotic delayed

Lur’e systems, and the synchronization problem for chaotic Lur’e systems with time delays by using sampled-data

control in [8], more practical factors such as packet dropout, multiple sampling periods and semi-Markov process are

considered in the model of this paper. It is noted that, two (tl(j) , tl(j+1))-dependent terms (tl(j+1) − t)εT (t)Hε(t) and

V2(t) are introduced in (17), which make full use of the information available on the actual sampling pattern. So,

we can obtain less conservative results than those in [7,8]. To the best of our knowledge, there is little informa-

tion in the published literature about stochastic synchronization of semi-Markovian jump chaotic Lur’e systems with

packet dropouts subject to multiple sampling periods. In this viewpoint, the system model investigated in the paper is

comprehensive.

4. Illustrative example

In this section, we will demonstrate the advantages and effectiveness of the proposed methods in this paper via

an example.

Example 4.1. Consider the following time-delay Chua’s circuit with two modes (i.e. rt ∈ L = {1, 2}) as the master

system:




ẋ1(t) = a(rt)(x2(t)−m1(rt)x1(t) + f̃(x1(t)))− c(rt)x1(t− h)

ẋ2(t) = x1(t)− x2(t) + x3(t)− c(rt)x1(t− h)

ẋ3(t) = −b(rt)x2(t) + c(rt)(2x1(t− h)− x3(t− h))

(56)

with the nonlinear characteristics

f̃(x1(t)) = 0.5(m1(rt)−m0(rt))(|x1(t) + 1| − |x1(t)− 1|).

It can be found that Chua’s circuit can be represented in the time-delay Lur’e form with

A(rt) =




−a(rt)m1(rt) a(rt) 0

1 −1 1

0 −b(rt) 0


 , B(rt) =




−c(rt) 0 0

−c(rt) 0 0

2c(rt) 0 −c(rt)


 ,

W (rt) =




−a(rt)(m0(rt)−m1(rt))

0

0


 , D =




1

0

0




T

and f(x1(t)) = 0.5(|x1(t)+1|− |x1(t)−1|) belonging to sector [0, 1]. We choose parameters m0(1) = − 1
7
, m1(1) = 2

7
,

a(1) = 7, b(1) = 12.26, c(1) = 0.1, m0(2) = − 2
7
, m1(2) = 1

7
, a(2) = 9, b(2) = 14.28, c(2) = 0.1 and the constant
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Figure 1: State trajectories of master system.

time delay h = 0.1. In this example, the transition rates in the model are π11(h̄) ∈ (−2.2,−1.8), π12(h̄) ∈ (1.8, 2.2),

π21(h̄) ∈ (2.6, 3.4), π22(h̄) ∈ (−3.4,−2.6), so we can always set π11 = −2, π12 = 2, π21 = 3, π22 = −3 and π̃1j = 0.2,

π̃2j = 0.4 (j = 1, 2) for the stochastic stability analysis. And, we choose C1 = C2 = [1 0 0], N̄ = 2, ρ1 = 0.1,

ρ2 = 0.2, β1 = 0.9, β2 = 0.1, θ̄ = 0.1, ᾱ = 0.7948, µ1 = 0.5085, µ2 = 0.4915, µ3 = 0.5108, µ4 = 0.4892, y1 = 0.2886,

y2 = −0.2428, y3 = 0.6232. In the case of N̄ = 2, we can obtain θ1 = 0.9002, θ2 = 0.0998.

The initial conditions of the master and slave systems are chosen as x(t) = [0.2, 0.3, 0.2]T , y(t) = [−0.3,−0.1, 0.4]T ,

t ∈ [−0.2, 0]. Figure 1 and Figure 2 show the master system states x(t) and the slave system states y(t) with u(t) = 0,

respectively. Using the MATLAB LMI Toolbox to solve the LMIs (13), (14), (52) and (53), we can get the following

gain matrix in (4):

K =
[

0.2831 0.2184 −0.7137
]T
.

That is, there exists a sampled-data controller such that the master and slave systems are stochastic synchronization.

For the above gain matrix, the response curves of the master system (1), the slave system (4), the error system (12)

and rt are given in Figure 3, Figure 4 , Figure 5 and Figure 6, respectively. Figure 5 shows that the synchronization

error is tending to zero. Thus we can synchronize successfully the master and slave systems by the proposed sampled-

data controller.

5. Conclusion

In this paper, the problem of stochastic synchronization has been discussed for semi-Markovian jump chaotic

Lur’e systems. By input-delay approach and getting the utmost out of the usable information on the actual sampling

pattern, some sufficient conditions in terms of LMIs are derived to ensure the stochastic stability of the error system.
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Figure 2: State trajectories of slave system without u(t).
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Figure 3: State trajectories of master system.
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Figure 4: State trajectories of slave system.
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Figure 5: State trajectories of error system.
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Figure 6: Response of rt.

The desired controller are designed simultaneously. Finally, the effectiveness of the proposed sampled-data controller

has been demonstrated by an illustrative example. It is noteworthy that the proposed method can be extended to

the stochastic asynchronous and sliding model control [44,45] of semi-Markovian jump chaotic Lur’e systems subject

to multiple sampling periods. This will be the topic of our future study.
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Appendix

ξ(t) =[eT (t), ėT (t), eT (tl(j)), e
T (t− ᾱh), eT (t− h), gT (t), gT (t− ᾱh), gT (t− h),

∫ t

t−ᾱh
eT (s)ds,

∫ t−ᾱh

t−h
eT (s)ds,

∫ t

t−ᾱh

∫ t

θ

eT (s)dsdθ,

∫ t

t−h

∫ t

θ

eT (s)dsdθ, ζT1 (t), ζT2 (t), . . . , ζTm(t)]T ,

ζi(t) = [eT (t− ρ̄i(t)), eT (t− λiρi), 1

ρ̄i

∫ t−ρi−1

t−λiρi

eT (s)ds]T ,

ẽTi = [0, . . . , I, . . . , 0] (i = 1, 2, . . . , 12 + 3m),
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Υ̌0 =2ẽ1Pq ẽ
T
2 − [ẽ1, ẽ3]H[ẽ1, ẽ3]T + 2[ẽ1, ẽ2, ẽ3]MT [ẽ1 − ẽ3]T + ẽ1R2ẽ

T
1 + ẽ4(R3 −R2)ẽT4

− ẽ5R3ẽ
T
5 + ẽ2(ᾱhR4 + (1− ᾱ)hR5)ẽT2 − [ẽ1, ẽ4, ẽ9](Ω1(µ1, µ2, ᾱh)⊗R4)[ẽ1, ẽ4, ẽ9]T

− [ẽ4, ẽ5, ẽ10](Ω1(µ3, µ4, (1− ᾱ)h)⊗R5)[ẽ4, ẽ5, ẽ10]T + ẽ2(
ᾱ4h2

4
R6 +

h2

4
R7)ẽT2

− [ẽ1, ẽ9, ẽ11](Ω2(ᾱh)⊗R6)[ẽ1, ẽ9, ẽ11]T − [ẽ1, ẽ9 + ẽ10, ẽ12](Ω2(h)⊗R7)[ẽ1, ẽ9 + ẽ10, ẽ12]T

+ 2ẽ2D
T (L1 − L2)ẽT6 + 2ẽ1D

T (K̄+L2 − K̄−L1)DẽT2 + θ1ẽ1Q1ẽ
T
1 +

m−1∑

i=1

ẽ11+3i(θi+1Qi+1 − θiQi)ẽT11+3i

− θmẽ11+3mQmẽ
T
11+3m +

m∑

i=1

θiρ̄
2
i ẽ2Ziẽ

T
2 + θ1[ẽ1, ẽ13, ẽ14]S11[ẽ1, ẽ13, ẽ14]T

+
m∑

i=2

θi[ẽ8+3i, ẽ10+3i, ẽ11+3i]S1i[ẽ8+3i, ẽ10+3i, ẽ11+3i]
T + θ1[ẽ1, ẽ14, ẽ15]S21[ẽ1, ẽ14, ẽ15]T

+

m∑

i=2

θi[ẽ8+3i, ẽ11+3i, ẽ12+3i]S2i[ẽ8+3i, ẽ11+3i, ẽ12+3i]
T

+ 2[y1ẽ2 + y2ẽ1 + y3ẽ3][−NẽT2 +NAq ẽ
T
1 +NBq ẽ

T
5 +NWq ẽ

T
6 −

m∑

l=1

θlUCq ẽ
T
10+3l],

Υ0 = Υ̌0 +

s∑

j=1

πqj(h)ẽ1Pj ẽ
T
1 ,

Υ01 =− 2ẽ6V11ẽ
T
6 + 2ẽ1D

T [K̄+ + K̄−]V11ẽ
T
6 − 2ẽ1D

T K̄+V11K̄
−DẽT1 − 2ẽ7V21ẽ

T
7 + 2ẽ4D

T [K̄+ + K̄−]V21ẽ
T
7

− 2ẽ4D
T K̄+V21K̄

−DẽT4 − 2ẽ8V31ẽ
T
8 + 2ẽ5D

T [K̄+ + K̄−]V31ẽ
T
8 − 2ẽ5D

T K̄+V31K̄
−DẽT5 ,

Υ02 =− 2ẽ6V12ẽ
T
6 + 2ẽ1D

T [K̄+ + K̄−]V12ẽ
T
6 − 2ẽ1D

T K̄+V12K̄
−DẽT1 − 2ẽ7V22ẽ

T
7 + 2ẽ4D

T [K̄+ + K̄−]V22ẽ
T
7

− 2ẽ4D
T K̄+V22K̄

−DẽT4 − 2ẽ8V32ẽ
T
8 + 2ẽ5D

T [K̄+ + K̄−]V32ẽ
T
8 − 2ẽ5D

T K̄+V32K̄
−DẽT5 ,

Υ1(T̂ ) = 2T̂ [ẽ1, ẽ3]H[ẽ2, 0]T + T̂ ẽ2R1ẽ
T
2 (T̂ = 0, (N̄ + 1)ρm),

εT (t) = [eT (t), eT (tl(j))],

H =


2δ(H1)s −H1 +H2

∗ 2(−H2 + (1− δ)H1)s


 ,

L1 = diag{ω1, ω2, . . . , ωmf },

L2 = diag{ι1, ι2, . . . , ιmf },

K̄+ = diag{k+
1 , k

+
2 , . . . , k

+
mf
},

K̄− = diag{k−1 , k−2 , . . . , k−mf
},

ϕT (t) = [eT (t), ėT (t), eT (tl(j))],

Ω2(x4) =




3
2

0 −3
x24

0 3
x24

−6
x34

−3
x24

−6
x34

18
x44


 ,
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ηT1i = [eT (t− ρi−1), eT (t− ρ̄i(t)), eT (t− λiρi)],

ηT2i = [eT (t− ρi−1), eT (t− λiρi), 1

ρ̄i

∫ t−ρi−1

t−λiρi

eT (s)ds],

S1i =




−S1i S1i − W̄i W̄i

∗ −2S1i + W̄i + W̄T
i S1i − W̄i

∗ ∗ −S1i


 ,

S2i =




−(1 + π2

4
)S2i −(−1 + π2

4
)S2i

π2

2
S2i

∗ −(1 + π2

4
)S2i

π2

2
S2i

∗ ∗ −π2S2i


 ,

Γ2(T̃k+1+nj,j+1)} = Υ0 + Υ02 + T̃k+1+nj,j+1 [ẽ1, ẽ2, ẽ3]MTR−1
1 M [ẽ1, ẽ2, ẽ3]T ,

Pq = [P1 − Pq, . . . , Pq−1 − Pq, Pq+1 − Pq, . . . , Ps − Pq],

Tq = diag{Tq,1, . . . , Tq,q−1, Tq,q+1, . . . , Tq,s},

Υ∗0 = Υ̌0 + ẽ1{
s∑

j=1

πqjPj +

s∑

j=1,j 6=q
[
π̃2
qj

4
Tqj}ẽT1 ,

Υ̃∗0 = Υ̌0 + ẽ1{
s∑

j=1

πqjPj +

s∑

j=1,j 6=q
[
π̃2
qj

4
Tqj + (Pj − Pq)T−1

qj (Pj − Pq)]}ẽT1 .
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