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ABSTRACT
We calculate the second Rényi entanglement entropy for systems of interacting linear rotors in their ground state as a measure of entanglement
for continuous rotational degrees of freedom. The entropy is defined in relation to the purity of a subsystem in a bipartite quantum system,
and to compute it, we compare two sampling ensembles based on the path integral ground state (PIGS) formalism. This scheme centers on the
replica trick and is aided by the ratio trick, both developed in this context by Hastings et al. [Phys. Rev. Lett. 104, 157201 (2010)]. We study a
system composed of linear quantum rotors on a lattice in one dimension, interacting via an anisotropic dipole–dipole potential. The ground
state second Rényi entropies estimated by PIGS are benchmarked against those from the density matrix renormalization group for various
interaction strengths and system sizes. We find that the entropy grows with an increase in interaction strength, and for large enough systems,
it appears to plateau near log(2). We posit that the limiting case of many strongly interacting rotors behaves akin to a lattice of two-level
particles in a cat state, in which one naturally finds an entanglement entropy of log(2).

Published under license by AIP Publishing. https://doi.org/10.1063/5.0004602., s

I. INTRODUCTION

Superposition and entanglement of quantum states are funda-
mental aspects of quantum information science and technologies
such as quantum computing and quantum cryptography. Entan-
glement is present when the state of a many-body system can-
not be factored into a product of individual one-body states (par-
ticle entanglement) or regions of space (spatial entanglement).
A common measure of entanglement is von Neumann entropy
SvN(%̂A) = −Tr(%̂A log %̂A),1 where %̂A is the reduced density matrix
of a subsystem. SvN(%̂A) is a specific case of a family of entropies
called Rényi entropies2 defined as Sn(%̂A) = 1

1−n log(Tr %̂nA).
The parameter n is a non-negative real number, and SvN(%̂A)
= limn→1 Sn(%̂A). Entanglement entropies have been extensively
studied in theoretical physics to probe various properties of many-
body quantum systems, particularly in condensed matter physics.
For instance, the scaling behavior of the entanglement entropy
allows one to distinguish phases that cannot be characterized based

on symmetry properties alone, such as topological states of matter
and spin liquids.3–5

Hastings et al. have developed a quantum Monte Carlo pro-
cedure6,7 to estimate the second Rényi entropy S2, which they have
applied to spin-1/2 Heisenberg models in one and two dimensions.
The ground state entanglement entropy is estimated by comput-
ing the expectation value of the so-called SWAP operator acting
on two replicas of the system. Humeniuk and Roscilde8 carried out
finite temperature path integral Monte Carlo calculations of S2 for
planar rotors using an extended sampling ensemble. The computa-
tion of Rényi entropies has also been used to study entanglement in
the continuum,9–12 particularly for translational motion in Cartesian
coordinates.

In the present work, we examine a one-dimensional lattice of
linear rotors with permanent dipoles interacting via an anisotropic
dipole–dipole potential. To estimate S2, we employ the “broken
path” and “extended” ensembles to compute the purity Tr %̂2

A of
a reduced quantum state %̂A using path integral ground state
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(PIGS)13,14 simulations based on the replica algorithm. Note that it is
possible to use exact diagonalization and basis truncation techniques
to compute the eigenstates of systems containing ∼10 rotors,15 but
that approach still suffers from exponential scaling when the system
size increases. For larger systems, a density matrix renormalization
group (DMRG) approach to compute the ground state of up to 100
rotors was recently developed and will be used here to benchmark
our results.16

This article is organized as follows: We present the theoreti-
cal framework and provide details of the PIGS approach for linear
rotors in Sec. II. The results are shown in Sec. III for a model Hamil-
tonian that represents a one-dimensional lattice of linear quan-
tum rotors with anisotropic dipole–dipole interactions. We provide
concluding remarks in Sec. IV.

II. THEORETICAL FRAMEWORK
Path integral Monte Carlo techniques have proven to be very

effective for the simulation of many-body quantum systems.13 To
study systems at zero temperature, the PIGS approach14 is highly
efficient and can provide unbiased estimates of ground state observ-
ables. Below, we briefly review the PIGS approach in the context of
linear rotors and show how one can compute S2.

A. Path integral ground state
We consider systems of N non-relativistic linear quantum

rotors described by a time-independent Hamiltonian Ĥ = K̂ + V̂ ,
where

K̂ =
B
h̵2

N

∑
j=1

l̂2j (1)

is the rotational kinetic energy (with a rotational constant B) and V̂ is
the interaction potential (which is diagonal in the position represen-
tation). As only rotational degrees of freedom (DOFs) are present,
the position vector of the jth rotor is denoted by polar and azimuthal
angles, ωj = (θj, ϕj). Moreover, we denote the position vectors of all
the rotors collectively by Ω = (ω1, ω2, . . ., ωN).

Given a real-valued trial wavefunction ΨT(Ω), one can obtain
the ground state wavefunction Φ0(Ω) = ⟨Ω|Φ0⟩ for continuous
angular motions of N linear rotors in the position representation as

Φ0(Ω) ∝ lim
β→∞∫

dΩ′⟨Ω∣e−
β
2 Ĥ ∣Ω′⟩ΨT(Ω′). (2)

The imaginary time projection operator e−
β
2 Ĥ relaxes the trial wave-

function to the ground state in the β → ∞ limit. The convergence
rate of the limit in Eq. (2) is influenced by the choice of trial wave-
function, so one must choose it appropriately; in particular, there
must be a non-zero overlap between the ground state and the trial
wavefunction. For simplicity, we only use ΨT(Ω) = 1 in the calcula-
tions below, which corresponds to a set of non-interacting rotors in
their ground rotational states.

The ground state expectation value of an observable repre-
sented by the operator Ô can be written in terms of the projected
trial wavefunction as

⟨Ô⟩ = ∫
dΩ ∫ dΩ

′ΨT(Ω)⟨Ω∣e−
β
2 ĤÔe−

β
2 Ĥ ∣Ω′⟩ΨT(Ω′)

Z0(β)
, (3)

where Z0 is a normalizing pseudo-partition function of the form

Z0(β) = ∫ dΩ∫ dΩ′ΨT(Ω)⟨Ω∣e−βĤ ∣Ω′⟩ΨT(Ω′). (4)

If the operator Ô is diagonal in the position representation, the
matrix element that appears in Eq. (3) can be evaluated as

⟨Ω∣e−
β
2 ĤÔe−

β
2 Ĥ ∣Ω′⟩

= ∫ dΩ′′ ⟨Ω∣e−
β
2 Ĥ ∣Ω′′⟩O(Ω′′)⟨Ω′′∣e−

β
2 Ĥ ∣Ω′⟩. (5)

Since the operators K̂ and V̂ do not commute, the exponential
appearing in Eq. (4) is factored into P − 1 discrete imaginary time
slices. Using the Trotter factorization scheme17 and the resolution
of identity operator, one can expand the pseudo-partition function
Z0(β) in a convenient form as

Z0(β) = lim
τ→0∫

dΩ1⋯∫ dΩP ΨT(Ω1)ΨT(ΩP)
P−1

∏
i=1

× exp(−
τ
2
V(Ωi))⟨Ωi∣ exp(−τK̂)∣Ωi+1⟩

× exp(−
τ
2
V(Ωi+1)), (6)

with τ = β/(P − 1). The high-temperature rotational density matrix
(referred to as a “link”) can be expressed in terms of individual
quantum rotors,

⟨Ωi∣ exp(−τK̂)∣Ωi+1⟩ =
N

∏
j=1
⟨ωi,j∣ exp(−τK̂j)∣ωi+1,j⟩

=
N

∏
j=1

%(ωi,j,ωi+1,j; τ). (7)

These links connect adjacent “beads” with coordinates Ωi to form
the path integral paths.

The high-temperature rotational density matrix18 for the jth
linear rotor can be written as

%(ωi,j,ωi+1,j; τ) =
∞
∑
l=0

2l + 1
4π

e−τBl(l+1)Pl(cos(γi,j)), (8)

where

cos(γi,j) = sin(θi,j) sin(θi+1,j) cos(ϕi+1,j − ϕi,j)
+ cos(θi,j) cos(θi+1,j), (9)

and Pl(x) is a Legendre polynomial.

B. Replica trick
In the present study, we wish to calculate the second Rényi

entropy,
S2(%̂A) = − log(Tr %̂2

A), (10)

where %̂A is the reduced density operator of subsystem A, defined by
the partial trace TrB%̂ over the DOFs of partition B. We consider only
symmetric splittings of one-dimensional systems into A and B, such
as those shown in Fig. 1. We will estimate S2 for continuous rota-
tional DOFs using the replica trick,6 which involves multiple copies
of the system.
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FIG. 1. Schematic representation of equal bipartitioning of 2, 4, and 6 rotors pinned
on a linear lattice.

For a normalized pure state |Φ0⟩, the density operator is
%̂ = ∣Φ0⟩⟨Φ0∣. The position representation of the density operator
is the density matrix,

%(ΩA,ΩB;Ω′A,Ω′B) = ⟨ΩAΩB∣Φ0⟩⟨Φ0∣Ω′AΩ
′
B⟩, (11)

where ΩA and ΩB collectively denote the position vectors of all the
rotors in subsystemsA and B, respectively. One may readily write the
partial trace in the position representation and calculate the reduced
density matrix %A(ΩA; Ω′A) for the subsystem A by carrying out the
integration over all DOFs of partition B,

%A(ΩA;Ω′A) = ∫ dΩB %(ΩA,ΩB;Ω′A,ΩB). (12)

Squaring this gives us

%2
A(ΩA;Ω′′A) = ∫ dΩB ∫ dΩ′B ∫ dΩ′A ⟨ΩAΩB∣Φ0⟩⟨Φ0∣Ω′AΩB⟩

× ⟨Ω′AΩ
′
B∣Φ0⟩⟨Φ0∣Ω′′AΩ

′
B⟩, (13)

in which we find a second copy (or “replica”) of the starting state and
from which the purity may be obtained by taking the trace,

Tr %̂2
A = ∫ dΩA %2

A(ΩA;ΩA). (14)

As described above, the projected state used in PIGS for a finite
value of β is

∣Φ0⟩ =
e−

β
2 Ĥ ∣ΨT⟩
√
Z0(β)

, (15)

which leads to a factor of

Z2
0(β) = ∫ dΩA ∫ dΩB ∫ dΩ′A ∫ dΩ′B

× ⟨ΩAΩB∣e−
β
2 Ĥ ∣ΨT⟩⟨ΨT∣e−

β
2 Ĥ ∣ΩAΩB⟩

× ⟨Ω′AΩ
′
B∣e
− β

2 Ĥ ∣ΨT⟩⟨ΨT∣e−
β
2 Ĥ ∣Ω′AΩ

′
B⟩ (16)

in the normalization of Tr %̂2
A. For brevity, we introduce the compact

notation Γ = (Ω1, Ω2, . . ., ΩP, Ω′1, Ω′2, . . ., Ω′P) for all the beads in

both replicas and define the discretized path distribution

Π(Γ) = ΨT(Ω1)ΨT(ΩP)
P−1

∏
i=1

exp(−
τ
2
V(Ωi))

× ⟨Ωi∣ exp(−τK̂)∣Ωi+1⟩ exp(−
τ
2
V(Ωi+1))

× ΨT(Ω′1)ΨT(Ω′P)
P−1

∏
i=1

exp(−
τ
2
V(Ω′i))

× ⟨Ω′i ∣ exp(−τK̂)∣Ω′i+1⟩ exp(−
τ
2
V(Ω′i+1)), (17)

composed of paths for both replicas. Hence, we may write Eq. (16)
simply as

Z2
0(β) = lim

τ→0∫
dΓΠ(Γ). (18)

From this point onward, we will omit the τ limit, making each
resulting expression into a finite-P approximation.

The distribution Π(Γ) is graphically depicted in Fig. 2, where
the two independent replicas are clearly visible. After throwing away
the extraneous pieces (namely, the beads prior to M − 1 and after
M), this graphical notation allows us to write

(19)

where we have chosen to draw only the relevant half of the interac-
tions experienced by these beads. The purity can also be represented
using the same diagrammatic notation,

(20)

The integrand in the numerator has paths that are permuted
between the two replicas at bead M. To compute this quantity,
we evaluate the associated estimators over the configurations sam-
pled by using a Monte Carlo algorithm for the two-replica sys-
tem. We investigate below two ensembles and their corresponding
estimators.

1. Broken path ensemble
We first describe the broken path distribution20

(21)
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FIG. 2. Diagrammatic notation19,20 for Π(Γ), showing the beads (points) connected by kinetic energy links (solid blue segments) and interactions (dashed red curves, each
contributing only V /2). As the middle bead M and one adjacent bead (arbitrarily chosen to be M − 1) play a crucial role in the computation of entanglement entropy, we
highlight this region of interest with a dashed box. We identify all the links and beads of a single partition of a bipartite system by A or B in the diagram. The paths for two
independent replicas of the system are represented as primed and unprimed.

along with the estimators

(22)

This distribution is identical to Π(Γ), with the exception of removed
links in partition A between beads M − 1 and M, causing a break in
the path, and removed potential interactions between partitions A
and B at bead M. That is,

Π(Γ) = ΠB(Γ)DB(Γ). (23)

It is then clear that

Tr %̂2
A =
∫ dΓΠB(Γ)NB(Γ)
∫ dΓΠB(Γ)

/
∫ dΓΠB(Γ)DB(Γ)
∫ dΓΠB(Γ)

, (24)

so we may obtain the result via the following ratio of averages:

Tr %̂2
A =
⟨NB⟩

⟨DB⟩
, (25)

where the sampled configurations should be drawn from the broken
path distribution.

2. Extended ensemble
Since the integrands of the numerator and denominator in

Eq. (20) are, respectively, distributions of swapped and unswapped
paths, we can consider these as independent configuration sectors of
a larger ensemble.8 To do this, we apply the approach of Ref. 8 to
PIGS and define

(26)

From these, we get the replicated pseudo-partition functions

ZS = ∫ dΓΠS(Γ),ZU = ∫ dΓΠU(Γ), (27)

and

ZTotal = ∫ dΓ(ΠS(Γ) + ΠU(Γ)). (28)

Thus,

Tr %̂2
A =

ZS

ZU
=

ZS

ZTotal
/

ZU

ZTotal
. (29)

In the context of a Monte Carlo simulation, these sectors are
akin to those found in a path integral worm calculation21 and
require additional updates to change the distribution being sampled.
Because the numbers of particles and beads are conserved between
the sectors, these new updates are straightforward: after a batch of
regular spatial updates,22 we propose changing to the connectivity
of the beads, while the spatial configuration Γ remains unchanged.
If the distribution currently being sampled is ΠU, the proposed dis-
tribution is ΠS, and conversely, we propose ΠU if the current distri-
bution is ΠS. We then compute the standard Metropolis acceptance
probability23

P(ΠU → ΠS) = min(1,
ΠS(Γ)
ΠU(Γ)

) (30)

[or its reciprocal analog P(ΠS→ΠU)] and accept or reject the update
accordingly.

The estimators necessary to evaluate Eq. (29) are extremely
simple. Given that

ZS

ZTotal
=
∫ dΓ (1 ⋅ΠS(Γ) + 0 ⋅ΠU(Γ))
∫ dΓ (ΠS(Γ) + ΠU(Γ))

, (31)

ZU

ZTotal
=
∫ dΓ (0 ⋅ΠS(Γ) + 1 ⋅ΠU(Γ))
∫ dΓ (ΠS(Γ) + ΠU(Γ))

, (32)

all that needs to be evaluated after a simulation is the number NS
of Monte Carlo steps that were spent in the swapped sector (and the
complementary NU). After this simple counting procedure, one only
needs to find the quotient

Tr %̂2
A =

NS

NU
. (33)
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3. Ratio trick
For a system composed of N rotors, the general form of the

purity for a symmetric bipartition is given by

Tr %̂2
A =

Z(N/2)

Z(0)
, (34)

where Z(j) is the replicated pseudo-partition function with j paths
swapped. In particular, Z(N /2) = ZS and Z(0) = ZU. Because the purity
decays exponentially with S2, this ratio becomes vanishingly small
for strongly entangled systems and therefore difficult to compute
using Monte Carlo.

This drawback can be circumvented by introducing the well-
known ratio trick6,7,9,24 where one expresses the purity as the product

Tr %̂2
A =

N/2
∏
j=1

Z(j)

Z(j−1) . (35)

Although the number of ratios Z(j)

Z(j−1) to be computed increases lin-
early with the system size, each ratio should be more amenable to
Monte Carlo sampling.

Since, in the present work, we are only interested in ground
states on a one-dimensional lattice, we do not expect the entan-
glement entropy to become very large. However, in higher dimen-
sions, where the area law scaling of entanglement results in growth
of entanglement entropy with the system size, the ratio trick may
become necessary. Additionally, because each ratio in Eq. (35) may
be computed independently, it enables us to run several instances of
Monte Carlo sampling in parallel.

III. NUMERICAL RESULTS
We use the same Hamiltonian as the one previously used in

PIGS studies of a linear chain of O(3) dipolar rotors,25,26

Ĥ =
B
h̵2

N

∑
i=1

l̂2i +
μ2

4πϵ0r3 ∑
i<j

x̂ix̂j + ŷiŷj − 2ẑiẑj
∣i − j∣3

, (36)

where l̂2i is the squared angular momentum operator of the ith
rotor with the rotational constant B. The second term is the pair-
wise dipole–dipole interaction potential operator V̂ for rotors placed
along the spaced-fixed z axis. The operators x̂i, ŷi, and ẑi are the
three unit vector components of the ith rotor in the space-fixed x,
y, and z directions, and μ is its dipole moment. The lattice spac-
ing is r, and ϵ0 is the permittivity of vacuum. In our calculations,
B = 20.561 cm−1 and r = 10.05 Å. This choice of parameters is meant
to mimic a linear chain of HF at C60 endofullerenes as studied in
Ref. 15 and motivated by recent experimental27 and theoretical28

advances. As in Ref. 25, we define the interaction strength to be the
dimensionless quantity

g =
μ2

4πϵ0r3B
. (37)

We first determine the convergence properties of S2 with
respect to the projection time β and the imaginary time step τ
for various system sizes N and interaction strengths g. In the

β→∞ limit, the trial wavefunction should relax to the exact ground
state, while the systematic Trotter error can be eliminated by tak-
ing the τ → 0 limit. We express both β and τ in reciprocal tem-
perature units. We have implemented the sampling ensembles and
estimators in our in-house software, MoRiBS-PIMC, a program to
simulate molecular rotors in bosonic solvents using path-integral
Monte Carlo.29 We refer the reader to Refs. 29 and 30 for further
details regarding the simulation of molecular rotors in quantum
environments.

Figure 3 shows S2 as a function of β estimated at a fixed value
of τ = 0.005 K−1 using the extended ensemble and the ratio trick.
As expected, S2 increases with an increase in β and then reaches a
plateau. This is because at β = 0, the system is described by the trial
wavefunction, which is a product state. As β increases, more entan-
glement is built into the wavefunction until convergence is reached.
Based on these results, we have chosen β = 0.2 K−1 as sufficient for
convergence.

FIG. 3. Convergence of S2 with an increase in β for N = 2 and N = 16. When they
are smaller than the symbols, statistical error bars are not visible.
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In order to remove the systematic error due to the Trotter
factorization, we perform a series of simulations for varying τ val-
ues while maintaining β fixed at 0.2 K−1. As demonstrated in the
Appendix, we can then extrapolate the results to τ = 0 by fitting the
estimated data to S2(τ) = Sτ=0

2 + aτ2, where a is a fitting parameter.
Calculated S2 values for a series of τ points are shown in Figs. 4 and
5. The extrapolated values agree with the DMRG results obtained
using the approach of Ref. 16.

To determine the importance of the ratio trick for this system,
we have performed PIGS calculations to compute S2 for N = 4, 8, 16
using the extended ensemble. The total number of Monte Carlo sam-
ples in both cases (with or without the ratio trick) is the same. The
results are compared to our benchmark DMRG data and are shown
in Fig. 6. For the systems in question, we find no savings in total
central processing unit (CPU) time when using the ratio trick, but
there is a practical benefit in the wall time when using N/2 shorter
calculations as they are trivially parallelizable.

FIG. 4. Convergence of S2 with a decrease in τ at β = 0.2 K−1 for N = 2 and N = 4.
The red solid line represents a quadratic fit to the PIGS data, and the extrapolated
S2 value at τ→ 0 is shown as a square marker.

FIG. 5. Convergence of S2 with a decrease in τ at β = 0.2 K−1 for N = 16. The
red solid line represents a quadratic fit to the PIGS data, and the extrapolated S2
value at τ→ 0 is shown as a square marker.

We also compare the broken path and extended ensembles
in Fig. 7 for N = 2, 4, 8. Neither performs noticeably better than
the other, so we have chosen to use the extended ensemble solely
on the grounds that the estimators are substantially simpler. While
we do not find a computational advantage in using the ratio trick
or extended ensemble in this one-dimensional system, in higher
dimensional systems where there is a more significant growth of
entanglement with the sub-system size, these methods may provide
a distinct computational advantage.

Having compared the possible methods and performed the nec-
essary convergence studies, we finally examine the behavior of S2
over a range of N and g values. To do this, we use the extended
ensemble along with the ratio trick to compute the subsystem purity.
The results are shown in Fig. 8, where we observe good agree-
ment between the PIGS estimates of S2 and the DMRG benchmark
results.
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FIG. 6. Comparison of S2 values estimated by PIGS using the extended ensemble
with and without the ratio trick.

The anisotropic part of the dipole–dipole interaction in Eq. (36)
breaks the O(3) symmetry of the rotors, causing a “head-to-tail”
alignment along the space-fixed z axis. In the large g and N limits, we
expect the ground state to have the form (∣← ⋯ ←⟩+ ∣→ ⋯ →⟩)/

√
2,

FIG. 7. Comparison of S2 values estimated by PIGS using the broken path
ensemble (without the ratio trick) and the extended ensemble (with the ratio trick).

which is known as a “cat state” due to the presence of entanglement
across a macroscopically large system. In such a state, the entangle-
ment entropy for any bipartitioning of the system is exactly log(2).
Even though we have not yet simulated very large systems, we can
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FIG. 8. S2 values computed using PIGS simulations with the extended ensemble
and ratio trick. log(2) is shown as a green dashed–dotted line.

already see the tendency of S2 to approach a value close to log(2)
when g is increased.

We can gain a better understanding of the rotor alignment by
observing the instantaneous values of cos(θ) at the middle beads of
all rotors in a PIGS simulation, as summarized by the histograms
in Fig. 9. As the interaction strength g increases, the rotors become
more aligned to the z axis in the space-fixed coordinates (|cos θ|→ 1)
for both N = 2 and 8. Although the distribution functions for N = 2
are highly symmetric, even at very large values of g, an asymmetry
starts to develop for N = 8 at g = 2. For much larger systems, where
a flip of the entire rotor chain becomes extremely improbable, it is
very likely that this asymmetry will give rise to non-ergodicity of
the Monte Carlo sampling, which could potentially be remedied by
more sophisticated spatial updates.

In this study, the most computationally expensive calculation
is the estimation of S2 for N = 16 with an imaginary time step of
τ = 0.0033 K−1 and P = 61 beads. Using the ratio trick algorithm
expressed in Eq. (35), we run eight separate simulations for the
aforementioned system, and each simulation takes ∼280 h (for 61

FIG. 9. Orientational probability distribution functions p(cos(θ)) for different inter-
action strengths g at (a) N = 2 and (b) N = 8. θ is the angle between the
dipole moment vector of a rotor and the z axis in the space-fixed coordinates.
The histograms are generated from extended ensemble PIGS simulations with an
imaginary time step τ = 0.0033 K−1.

× 106 Monte Carlo steps) on a single core of an Intel Xeon E5-2683
v4 Broadwell processor, which has a base frequency of 2.1 GHz.

IV. CONCLUDING REMARKS
We have compared the broken path ensemble and the extended

ensemble (with and without the ratio trick) for PIGS based on the
replica algorithm for the computation of the second Rényi entropy
of a bipartite system with continuous rotational degrees of free-
dom. We have shown that such simulations are feasible by studying
systems containing dipolar linear rotors pinned to a regular linear
chain. We observe that the rotational second Rényi entropy of a
symmetrically bipartite system of coupled dipoles increases with an
increase in interaction strength g until it reaches a constant value
near log(2). We believe that this is due to the interaction potential
function being minimized when the dipoles are aligned head-to-tail,
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and it reveals the role of the anisotropy of the dipole–dipole inter-
action in inducing orientational order. To our knowledge, this is the
first PIGS estimation of entanglement entropy in a one-dimensional
dipolar quantum rotor model.

The methodology that we have used can be further extended
to include translational motion. This will allow the exploration of
the effect of interaction strength on the second Rényi entropy of a
bipartite system with translational and rotational degrees of free-
dom on an equal footing. This method can then be applied to dipoles
with more realistic interaction potentials that accurately model the
short range interaction and include higher order multipole contribu-
tions. Future work will focus on PIGS calculations of more complex
molecular rotors such as asymmetric tops.31,32

It is also straightforward to extend the PIGS simulations to two-
and three-dimensional lattices, something that would be challenging
for the DMRG approach used as a benchmark here. Interesting PIGS
results of quantum dipolar rotors have recently been obtained,33 and
it will be interesting to study the scaling of S2 in higher dimensions
for molecular rotors. We note that the higher order actions and spe-
cialized trial functions used in Ref. 33 are of great interest and will
be the subject of future work.

In this work, we have focused on a one-dimensional system that
we expect to display an area-law scaling of entanglement, and conse-
quently, the entanglement entropy should saturate to a constant with
an increase in the subsystem size. In higher dimensions, the entan-
glement entropy of area-law systems will grow (linearly or faster)
with the subsystem size, and thus, the statistical error of the entropy
estimator will diverge exponentially with the size of the subsystem.
Hence, although we did not find a clear computational advantage
of the ratio trick and extended ensemble in this work, we expect
that these methods will provide an algorithmic advantage in higher
dimensional systems.

While the immediate aim of our work is to present our devel-
opment of a PIGS approach for the estimation of the second Rényi
entropy of interacting rotors, we believe that this methodological
advance will enable the characterization of quantum phase transi-
tions in rotor systems. As a longer-term objective, we hope that this
knowledge will open the door to the characterization and imple-
mentation of quantum information devices based on trapped polar
molecules34 and their rotational degrees of freedom.35–38
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APPENDIX: JUSTIFICATION OF QUADRATIC τ FIT
FOR S 2

For sufficiently small systems, it is possible to compute the sec-
ond Rényi entropy S2 with the inclusion of Trotter factorization
error due to finite τ without performing Monte Carlo sampling. We

FIG. 10. Least squares fits of S2(τ) values obtained from numerical matrix multi-
plication (NMM) for N = 4 and g = 1 (the specific values of β and τ are arbitrary in
this example). The exact value Sτ=0

2 is specified directly, while the coefficients a,
b, and c are determined by fitting.

do this for N = 4 and g = 1 using numerical matrix multiplication
(NMM), where the path is computed from a product of explicitly
constructed matrices.

The data are shown in Fig. 10, along with several least squares
fits. It is clear from this example that the leading contribution to the
Trotter factorization error in S2 is quadratic in τ, so a fitting model
of the form

S2(τ) = Sτ=0
2 + aτ2 (A1)

is appropriate.
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