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Abstract

Canada is a large country with vast networks of linear infrastructure, such as roads

and pipelines, that unavoidably intersect with water ways. Engineers must be able to

characterize geomorphologic processes and channel stability for the design of infrastructure

at water crossings. This process is not always straightforward. Water crossings frequently

occur in remote locations which makes access for collecting field data difficult and poses

an increased health and safety risk to field staff. Stream stability is closely linked to

sediment transport and both remain difficult to parameterize due to extreme sensitivities

to estimates of discharge, thresholds of motion, inter-particle dynamics, and flood history.

The uncertainty around precipitation and flows has been heightened with the onset of

climate change as events that used to be considered “extreme” are becoming more common

place.

A field program and modelling framework (Alluvial Stability Indexing Model (ASIM))

were developed to be used alongside existing spatial and hydrological modelling software to

expand the capabilities of SNC-Lavalin Inc. to provide additional information to decision

makers for the design of linear infrastructure at crossings with alluvial systems. ASIM

allows for sediment transport to be assessed in relatively remote and hence poorly param-

eterized channels over different time scales and climate scenarios. Sediment transport is

linked to channel stability and relative stability can be characterized within a river network

at the reach scale. The field program supports ASIM by incorporating less time-intensive

measurements of surficial sediment characteristics and channel geometry using advance-

ments in unmanned aerial vehicle (UAV) technology and photogrammetry software.

Chauncey Creek was used as the river catchment to test the field program and it was

confirmed that grain size distribution (GSD) and geometry data can be collected quickly in

places with limited access or elevated health and safety risks. Data from a UAV was shown

to be within an accuracy of 1 - 5% without georeferenced control markers and three passes

of survey locations were sufficient to collect high resolution photos and data 3-D models.

The comparisons between Wolman pebble counts, paint-and-pick, and photosieving showed

that photos from UAVs can be analyzed with BASEGRAIN to acquire GSDs within 8%

Ψ. The channel properties in Chauncey Creek appear to follow reasonable relationships
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relative to a stream power index and simplifications were made for modelling purposes.

ASIM was shown to perform similarly to a model developed by G. Parker (2004) and

total continuity of mass was maintained. A scenario that matched conditions measured in

the field for Chauncey Creek showed that the slope, elevation, and dominant grain size in

the steepest sections would change to the greatest degree. Different flow scenarios suggest

that the model approaches a common future, but the extent and speed of the changes

depend on the magnitude and recurrence of floods. Different geometrical scenarios show

that widening a channel could have more noticeable impacts downstream than narrowing a

channel, but this conclusion will likely depend on sediment loading and channel geometry

in neighbouring reaches.
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Chapter 1

Introduction

Canada is the second largest country in the world with vast networks of linear infrastructure

including over 1,000,000 km of roads, 75,000 km of railways, 110,000 km of large diameter

pipelines, and 840,000 km of pipelines in total (Natural Resources Canada, 2016b; Central

Intelligence Agency, 2019). With 9% of the area in Canada covered by water (Central

Intelligence Agency, 2019), infrastructure often has to cross river networks with the aid

of bridges or through burial. Despite the commonality of river crossings, Canada covers

an area with 15 distinguishable hydrological ecozones (Statistics Canada, 2018), which

means that engineers have to design for a diverse set of criteria, and sufficient data is not

always available. The Water Survey of Canada is the national hydrometric program that

curates the data collected at publicly funded hydrometric gauges and only 2,100 stations

are currently active (Environment and Climate Change Canada, 2020), most of which are

located near urbanized areas. Infrastructure design requires knowledge about the potential

for geomorphological changes to alluvial systems such as aggradation, degradation, local

scour, general scour, channel migration, and avulsion. These changes are closely tied to

channel geometry, flow regime, stream stability, sediment supply, and sediment transport

capacity. Predicting the rate of sediment transport and stream stability remains difficult to

parameterize due to extreme sensitivities to estimates of discharge, thresholds of motion,

interparticle dynamics, and flood history (Wohl, 2015; Saletti et al., 2015; Petit et al.,

2015).
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Uncertainty in the field of fluvial geomorphology is further heightened by potential

changes to climate at the global scale and land-use. Modern climate change has been

widely accepted (IPCC, 2014), but the consequences of these changes, specifically to river

morphology, are not completely understood (Spencer & Lane, 2017). Canada will be

highly susceptible to global warming and climate change because of impacts on glacier

melting rates, permafrost layers, snowmelt events, and precipitation seasonality (Bush et

al., 2019). While global temperature trends predict a gradual rise in average temperature

across the globe (Liverman, 2009; New et al., 2011; Lynas, 2008), precipitation estimates

are less consistent (IPCC, 2014). There has been a national upward trend in precipitation in

Canada since the 1950s, but local trends and seasonality of precipitation can vary regionally

(Environment and Climate Change Canada, 2017). Canada is also a country that has

experienced a gradual trend toward a higher percentage of people living in urban areas

and away from rural areas (Statistics Canada, 2015). As this trend continues, there will be

a change in land-use toward urbanization and impermeable land surfaces. These land-use

changes add another degree of uncertainty that has been shown to have a significant impact

on the channel flows and sediment loads (Hollis, 1975; Brabec et al., 2002).

Research is underway around the world to transform the way decisions are made around

rivers. With the increasing availability of digital elevation models (DEMs) with fine reso-

lutions, it is possible to quickly determine a watershed drainage area, the stream channel

network, and channel slope (Tarboton et al., 2009; Schwanghart & Kuhn, 2010; Roux et

al., 2015; Sangireddy et al., 2016). With this basic information, it is possible to esti-

mate cumulative flows using empirical relations (Wilson et al., 2007; López-Vicente et al.,

2014) or to link Geographic Information System (GIS) with hydrologic models for more

sophisticated predictions of discharge (Arnold et al., 1998; Olivera et al., 2006; Nielsen et

al., 2017). Technology is also allowing researchers to collect surficial grain size distribu-

tion (GSD) information more rapidly. What historically required manual measurements

(Wolman, 1954; Leopold, 1970; Bunte & Abt, 2001) was shown to be feasible through the

use of automated photosieving (Detert & Weitbrecht, 2012; Purinton & Bookhagen, 2019)

and low-cost unmanned aerial vehicles (UAVs) (Woodget & Austrums, 2017; Carbonneau

et al., 2018). Photogrammetry and Structure-from-Motion (SfM) algorithms allow high-

resolution DEMs to be affordably developed at the local scale (Smith et al., 2015; Clapuyt
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et al., 2016; James et al., 2017).

The goal of this research is to quantify the hazard of event-based and long-term geo-

morphological change to linear infrastructure that is in proximity to or cross alluvial water

channels, so engineers and property owners are better-informed to make decisions regard-

ing the design and maintenance of infrastructure. The research is broken down into two

separate objectives. The first objective is to develop a modelling framework that will allow

sediment transport to be characterized over different time scales and climate scenarios in

regions that are difficult to access and therefore require more resources to parameterize.

The second objective is to design a field program where sufficient information can be col-

lected to parameterize geomorphologic conditions for modelling purposed while limiting

the complexity of measurements and time required of personnel in the field. These ob-

jectives are combined to expand the environmental services that SNC Lavalin Inc. (SNC

Lavalin) are able to provide while striving to limit additional time spent in the field and

processing data. The modelling framework was designed to be used in conjunction with

software that is already being used by SNC Lavalin for existing projects, and the field

program utilizes consumer-grade UAVs or phone cameras to quickly collect photos that

can be used to determine channel geometry and bed particle sizes. The software that will

be used alongside the development of the modelling framework include the following:

• FAST is an in-house software tool currently being used and developed by SNC-

Lavalin. FAST is a vital tool in processing large amounts of data as it allows for

automated retrieval of flow and climate data from Environment Canada’s system of

climate stations and HYDAT database. FAST also provides users with the ability to

readily create hydrologic model inputs (for Raven – described below) and discretize

catchment basins. The intention is to add functionality to this tool throughout the

modelling process.

• Raven is a hydrological modelling framework developed at the University of Water-

loo. Raven provides users full customization of the hydrological processes and spatial

discretization to design a hydrological model with the simplicity or complexity ap-

propriate to each project. Many hydrologic processes are specific to cold regions,

such as Canada, and are available in Raven (Chernos et al., 2017).
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The results of this research could support engineering consultants by providing a less

labour intensive field protocol for characterizing geomorphological properties of alluvial

river channels. This would provide economic benefits by reducing field visit expenses

and limiting exposure to hazards associated with field visits such as working near moving

water and in remote locations. The numerical model could be used with a range of climate

scenarios and sediment transport equations to characterize the range of outcomes and the

degree of uncertainty. A more well-informed decision with regards to engineering and

maintenance means less risk to infrastructure and environment.
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Chapter 2

Literature Review

2.1 River Characterization

Researchers and professionals use different methods to characterize rivers, both qualita-

tively and quantitatively, in an attempt to describe physical and biological processes across

a wide range of fields of study (Downs & Gregory, 2004). For example, aquatic biologists

may be interested in water quality and sediment calibre, drinking water providers in avail-

ability and water quality, and hydraulic engineers in flow regimes and channel geometry,

to name but a few. The focus of this research was directed toward geomorphologic and

hydraulic characterization of natural river systems in regions where field access is difficult

and channels are relatively steep (> 3% slope). Most of the river systems of interest are

alluvial. Alluvial systems flow in channels comprised of alluvium, which is sediment eroded

and transported by the rivers themselves.

2.1.1 Channel Properties

A key concept for describing geomorphological processes in alluvial systems is the graded

river. First proposed by Mackin (1948), the graded river concept suggests that a river will

naturally adjust its flow path, and therefore slope, to maintain a balance between river
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flow and sediment transport. This concept was further developed by Lane (1955), who

presented the following relationship:

Qw · S ∝ Qb ·D (2.1)

where Qw is the water discharge (m3/s), S is the channel slope (m/m), Qb is the bedload

transported by the river (m3/s), and D is the diameter of the sediment particles in trans-

port (m). Additional terms, including channel depth and critical Shields number, were

added to Equation 2.1 by Eaton and Church (2011). By characterizing these variables, the

geomorphology and hydraulic geometry of a river can be described.

The discharge in a river can be described relative to hydraulic geometry following a

variety of methods. One method is to use the “bankfull discharge” which is sometimes,

but not always, synonymous to the “dominant discharge” (G. P. Williams, 1978; Hey &

Thorne, 1986; Czech et al., 2016). Bankfull discharge is the discharge that flows in a

full channel without over-topping the banks and partially flowing over the floodplain, but

specific definitions describing how to locate the banks and recurrence rate of this discharge

vary (G. P. Williams, 1978; Downs & Gregory, 2004; Gregory & Madew, 1982). The

definition used for dominant discharge can also be described as the flow “associated with

the peak of cumulative sediment transport for a given streamflow magnitude and frequency

of occurrence. It is the discharge that is generally doing the work (sediment transport)

that results in the average morphologic characteristics of alluvial channels” (Garćıa, 2008a,

p. 1093).

In highly mobile alluvial channels, another option is to follow the definition of an active

channel, which is described by Liébault and Piégay (2001, p. 171) as “the portion of the

bed regularly (once or several times a year) disturbed by flow” (Church, 1992). With this

definition, the channel width varies over time and is dependent on bedload transport as

well as river flow. In scenarios where the bed load is reduced without drastic changes to

river flow, the active channel would decrease in size as bedforms stabilize (S. A. Schumm,

1977; Liébault & Piégay, 2001). Using this definition involves locating the edge-of-bank at

the boundary of vegetation growth (Alber & Piégay, 2011; Liébault & Piégay, 2001).

Channel slope is not always explicitly defined as to how it is measured and can follow
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the energy grade line, water surface, or the surface of the bed (Lane, 1955; Hey & Thorne,

1986; Julien & Wargadalam, 1995), but the slope is typically measured at the bed level

and averaged over a set distance (Charlton, 2007). Some researchers use measurements at

the vegetation line or high-water mark elevation as the river slope (S. P. Rice & Church,

2001).

Two other river characteristics that are relevant for the characterization of bedload

sediment transport are the boundary shear stress and specific stream power. Boundary

shear stress is the force that acts on the channel bottom due to the weight of the water

moving over its surface (Garćıa, 2008a). For the case of steady, uniform flow, boundary

shear stress is described as:

τb = ρgRhS (2.2)

where ρ is the fluid density (kg/m3), g is the acceleration due to gravity (m/s2), and Rh is

the hydraulic radius (m). In channels that have a width greater than 20 times the depth,

the hydraulic radius is approximately equal to the flow width (Garćıa, 2008a). Alternative

methods are used for non-uniform flows but require more information (Charlton, 2007;

Chansen, 1999; Sturm, 2010).

Specific stream power represents the amount of work a river can exert on the channel

averaged over the channel width (Bagnold, 1966). Specific stream power is calculated with

one of the following equations:

ω = (ρgQwS)/w (2.3)

ω = τu (2.4)

where ω is the specific stream power (W/m2), w is the channel width (m), τ is the total

boundary shear stress averaged over the width of the channel (N/m2), and u is the river

velocity averaged over the cross section (m/s) (Petit et al., 2005). Going forward, specific

stream power, or stream power per unit width, will be referred to as stream power. First

proposed by Bagnold (1977) as an alternative predictor of bedload transport, stream power

has the benefit that detailed knowledge of depth and velocity is not required for its mea-

surement when using Equation 2.3 (Ferguson, 2005), and it was found to be more highly

correlated to sediment transport intensity than average shear stress and depth-averaged

velocity (C. Parker et al., 2011). Stream power can also be used to anticipate changes in
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stream processes such as incision and aggradation (DiBiase & Whipple, 2011; Ferencevic

& Ashmore, 2012; Lague, 2014).

The calibre of sediment is often described using the diameter of particles that make

up the GSD of surface sediment. Figure 2-1 depicts the surface layer which only includes

sediment that is exposed to the flowing water (Church et al., 1987; Bunte & Abt, 2001).

Surface roughness is a descriptor of the resistive force that sediment has on flowing wa-

ter and is often characterized by a dominant particle size that is multiplied by a scalar

(Kamphuis, 1974; G. Parker, 2006; Powell, 2014). The “dominant” particle size is typically

a relatively large particle within a GSD or the geometric mean.

Figure 2-1: Depiction of particles included in the surface sediment; from Bunte and Abt
(2001).

2.1.2 Channel Form

Researchers classify rivers into channel types using a combination of qualitative and quanti-

tative observations to convey what river processes can be expected to be observed (S. A. Schumm,

1985; Nanson & Croke, 1992; Downs & Gregory, 2004). Leopold and Wolman (1957) first

introduced a river type classification system that distinguishes between rivers that are

straight, meandering and braided. This classification system was then further refined to

include anabranching channels by Nanson and Knighton (1996). Figure 2-4 depicts dif-

ferent channel types and relative properties. Although channels are often described using
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Figure 2-2: Channel classification based on pattern and type of sediment load, showing
types of channels, their relative stability, and some associated variables; from S. A. Schumm
(1985).

discrete categories, it must be remembered that these represent a continuum, and there

is often overlap between the channel types (Downs & Gregory, 2004; Charlton, 2007). To

minimize the subjective nature of classification systems, researchers have developed thresh-

olds to distinguish between the channel types. Stream power was used by van den Berg

(1995) and Kleinhans and van den Berg (2011), who characterized lower thresholds for the

more mobile channel types with braided being the most mobile.
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2.1.3 Reach Segmentation

A river’s hydraulic geometry and channel type will vary along their length as the slopes

change, and additional water and sediment loads are added to the system. Rivers are com-

monly discretized into reaches that are river sections with relatively uniform characteristics

(Garćıa, 2008b). Similar to the general characterization of a river, the reach segmentation

process can be done using an array of variables depending on the field of study. Methods

for delineating reaches within the field of fluvial geomorphology include defining local con-

trols and slope transitions (Bevan et al., 2018), channel and valley width discontinuities

(Alber & Piégay, 2011), gravel bar formation (Mart́ınez-Fernández et al., 2019), or inputs

of abundant water and sediment (S. P. Rice & Church, 2001). To highlight the latter,

S. P. Rice and Church (2001) introduced the idea of “sediment links”. A sediment link

is a river segment that is delineated based on water and sediment load sources such as

alluvial fans from mountainsides, large tributaries, and non-alluvial inputs. Within each

sediment link, the channel slope and surficial GSD show well defined downstream trends

that explain some of the noise observed in downstream trends when characterizing a river

channel as a whole.

There is some inherent subjectivity in existing methods for segmenting reaches, but

some automation techniques have been applied to make the process more objective. Mart́ınez-

Fernández et al. (2019) completed a study that looked at various ways to automatically

segment rivers by using aerial photographs, DEMs, and discharge data. The results of

this study showed that primary geomorphic variables (channel gradient and active channel

width) were the most straightforward data to acquire and effective at segmenting a river

compared to stream power and sediment transport capacity when looking at river processes

such as gravel bar formation. Alber and Piégay (2011) describe another quantitative de-

lineation methods that is based on channel slope, watershed area, valley bottom width,

and active channel width discontinuities. Their method follows a two-step process. The

river is first disaggregated into evenly sized segments (10, 25, or 100 m lengths) before

characterizing the river in each segment. The segments are then aggregated into broader

reaches with homogeneous parameters.

11



2.1.4 Basin-Wide Processes

Channel properties in natural rivers are geographically variable and tend to follow specific

processes in the downstream direction. The most indisputable is a decrease in elevation,

which leads to increases in drainage area and often flow. Linking back to Mackin’s (1948)

version of a graded relationship (Equation 2.1), an increase in flow could correspond to a

decrease in slope, increase in sediment calibre or bedload transport rate, or a combination

of all three. The change in slope usually becomes more gradual downstream, and the

elevation profile in the longitudinal direction of rivers are concave-up in shape (Leopold &

Maddock Jr., 1953; Snow & Slingerland, 1987). Average bed material grain sizes typically

decrease gradually from boulders to gravel until a sharp transition to sand occurs (Mackin,

1948; Knighton, 1980; S. Rice, 1998). These processes were visualized by Church (1992)

and are shown in Figure 2-4.

Headwater regions are sometimes referred to as the production zone and are where

most of the sediment in a river originates (Charlton, 2007). Sediment ranging in size from

silt and clay to large boulders can enter stream channels from steep hillslopes (Dietrich

& Dunne, 1978; Benda & Dunne, 1997; An et al., 2017). Headwater regions often have

a supply of sediment that exceeds the capacity of a river to transport the material and

are described as “transport-limited”. The downstream areas in rivers are usually “supply-

limited” and have a transport capacity that exceeds the supply of sediment (Charlton, 2007;

Garćıa, 2008b). Although rivers typically have an increase in sediment transport capacity

in the downstream direction, specific stream power and a river’s capacity to move large

sediment decreases as a result of changes in slope and channel width. Sediment originating

in production zones supply the bed material for the entire length of a river, and changes in

the headwater could correspond to changes in stability and habitat downstream (Liébault

& Piégay, 2001; Neupane & Yager, 2013; Ferrer-Boix & Hassan, 2014).

Measuring the hydraulic geometry of an entire river system in the field can be very

time consuming, and the resolution of most readily available DEMs is too coarse to allow

estimation of channel width and depth from topography (Cazorzi et al., 2013). One way

around this is to use empirical relationships that describe hydraulic variables relative to

discharge (Leopold & Maddock Jr., 1953). Leopold and Maddock Jr. (1953) found that
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Figure 2-3: Schematic representation of the variation in channel properties through a
drainage basin. Zone 1 represents the headwaters and production zone, Zone 2 represents
the transfer zone, and Zone 3 represents the zone of deposition; from Charlton (2007);
original source Church (1992); based on a concept from S. A. Schumm (1977).

a power function with the form aQb could be fitted to describe the channel width, depth,

mean velocity, and suspended sediment. The coefficients a and b vary for each variable and

from one system to another. Other researchers found that a single power function did not

address every system evenly, so other relationships were proposed with combinations of
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flow, median grain size, and slope with varying success (Bray, 1982; Julien & Wargadalam,

1995; Julien, 2015; Gholami et al., 2017). Relating hydraulic geometry to flow is convenient

because the flow has also been correlated closely with the catchment area (Wolman &

Leopold, 1957; Leopold et al., 1964), and the power-law relationships relating channel

width to discharge hold for catchment areas in mountainous regions (Julien, 2015; Sofia et

al., 2015). These relationships would not eliminate the need to obtain field measurements

unless an empirical relationship has already been validated for the given region. However,

this simplified approach means fewer measurements along the length of a river would be

necessary if no data is available.

2.2 Bedload Sediment Transport

2.2.1 Incipient Motion and Thresholds

Researchers often use the flow condition described as incipient motion to predict when

the transport of surface sediment in alluvial channels will occur. As the flow in a river

increases, so too does the force it applies on sediment. Incipient motion occurs when the

force of water is just strong enough to move sediment (Shields, 1936; Dey, 1999; Dey &

Ali, 2019). Researchers have described a range of threshold values for hydraulic conditions

that correspond to the incipient motion of sediment particles. A threshold for incipient

motion was first proposed by Shields (1936), who described it in terms of the dimensionless

shear stress. The dimensionless shear stress (τ ∗) is commonly referred to as the Shields

stress and is calculated from:

τ ∗ =
τ

(ρs − ρ)gD
(2.5)

where ρs is the specific gravity of the sediment (kg/m3) (Shields, 1936). The critical Shields

stress (τ ∗c ) is the threshold value of Shields stress for incipient motion and was shown to

be dependent on the shear Reynolds number:

Re = u∗D/ν (2.6)
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where Re is the shear Reynolds number, u∗ is the shear velocity (m/s), and ν is the

kinematic viscosity (m2/s). The relationship between critical Shields stress and shear

Reynolds number becomes constant for large particles, but a broad range of values have

been measured in flumes and nature (Andrews, 1983; Petit et al., 2015; Dey & Ali, 2019).

Researchers have found the critical Shields stress can depend on a variety of factors, includ-

ing the relative size of other surface particles, which is often described as the “hiding factor”

(Einstein, 1950; G. Parker & Klingeman, 1982; Andrews, 1983; Ferguson, 1994), relative

roughness (flow depth/surface roughness) (Buffington & Montgomery, 1997; Shvidchenko

& Pender, 2000; Lamb et al., 2008; Prancevic & Lamb, 2015), and slope (Mizuyama, 1977;

Rickenmann, 2001; Hassan et al., 2005; Lamb et al., 2008; Prancevic & Lamb, 2015).

Figure 2-4: Shields diagram for initiation of motion; from Garćıa (2008a); original source
Vanoni (1964).

Bagnold (1977) introduced the use of specific stream power to describe the threshold of

sediment entrainment as an alternative to shear stress. This threshold equals the product

of critical shear stress (τc) and critical shear velocity (uc) and is now commonly described

as the critical specific stream power (ωc = τcuc). Bagnold (1980) derived a relationship be-

tween critical stream power, particle diameter, and flow depth that was used for predicting
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incipient motion to varying degrees of success (G. Williams, 1983; Ferguson, 2005; Petit et

al., 2005). Similar to critical Shields stress, critical stream power is dependent on hiding

effects and bed sorting (Ferguson, 2005; C. Parker et al., 2011) but was found to be inde-

pendent of slope and relative roughness (C. Parker et al., 2011; Ferguson, 2012; Prancevic

& Lamb, 2015). Ferguson (2005) presented an updated equation for critical stream power

that is more versatile as it accounts for hiding effects, relies on the slope instead of channel

depth, and distinguishes between particle sizes in transport and the bed.

2.2.2 Sediment Transport Intensity

Sediment transport intensity of the bedload can be predicted using similar hydraulic char-

acteristics to those used to describe incipient motion. The most common method applied

today uses shear stress and was first proposed by Meyer-Peter and Müller (1948):

q∗b = 8(τ ∗ − τ ∗c )3/2 (2.7)

where q∗b is the dimensionless bedload transport rate, τ ∗ is the Shields stress, τ ∗c is the

critical Shields stress (Mueller et al., 2008). A common stream power method was presented

by Bagnold (1980) and later modified by Martin and Church (2000):

qb = 0.0139(ω − ωc)3/2(D1/4/d) (2.8)

where qb is the unit bedload transport by immersed weight and ωc is the critical specific

stream power (W/m2). Whether based on shear stress or stream power, approaches that

use thresholds are very sensitive to how the threshold is selected (Martin & Ham, 2005).

The major drawback of using these methods is that downstream fining trends cannot be

modelled because individual grain sizes are not distinguished.

Equations that predict the sediment transport rate for individual particle size classes

are described as fractional sediment transport equations and are also calculated using

thresholds. G. Parker (1990) presented a fractional sediment transport equation that was

suitable for coarse sediment, but a second model had to be used if high proportions of

sand were also present (Cui & Parker, 2005). Wilcock and Crowe (2003) presented a new
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equation that could be used for a more extensive range of sediment sizes. This version has

seen wide-spread use in 1-D models that predict elevation change and sediment transport

(Lewicki et al., 2007; Viparelli et al., 2010; Müller & Hassan, 2018). To address one of

the shortcomings of Wilcock and Crowe (2003), Yager et al. (2007) and Yager et al. (2012)

presented a version that is more suitable for steep channels.

2.2.3 Basin-Wide Models

River catchments are routinely modelled using hydrologic models to predict the magnitude

of flows for a variety of climactic scenarios (Arnold et al., 1998; Chernos et al., 2017), but

sediment transport models for the purposes of characterizing stream stability at a basin

scale are less common. 2-D and 3-D sediment transport models such as HEC-RAS, iSIS,

and Mike21C work well for small reaches, but the processes are difficult to scale to a full

river basin (United States Bureau Reclamation, 2006; Wu & Wang, 2007). Morphological

models cover a range of applications to include habitat, hydrology, and morphologic pro-

cesses through mostly qualitative approaches (Rinaldi et al., 2013; Belletti et al., 2015).

Researchers have also described channel stability with qualitative approaches in the form

of channel evolution models (S. A. Schumm, 1984; Hawley et al., 2012; Cluer & Thorne,

2014).

Most 1-D numerical models that simulate aggradation and degradation can be described

as decoupled models, where flow and channel bed characteristics are updated separately

at each time step (Cui et al., 1996; Lewicki et al., 2007). Sediment transport relationships

that use shear stress (G. Parker, 1990; Wilcock & Crowe, 2003) were integrated into a 1-D

decoupled sediment transport model by Cui et al. (1996) and G. Parker (2004). Cui et al.’s

(1996) approach has been verified through flume studies (An et al., 2017) and used to study

sediment loading regimes (Müller & Hassan, 2018). This model has also been used at the

basin scale to understand the impact of urbanization on bed material transport (Lewicki

et al., 2007) and the effects of loading from tributary sources on fish habitat (Neupane &

Yager, 2013). Other 1-D sediment transport models that are decoupled include BESMo

(Müller & Hassan, 2018), BASEMENT (Radice et al., 2012; Vetsch et al., 2018), RubarBE

(El Kadi Abderrezzak et al., 2008; El Kadi Abderrezzak & Paquier, 2009; Camenen et al.,
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2018), and SETRAC (Chiari et al., 2010). Coupled models have been used, but involve

a more complex numerical solution through the inclusion of continuity and momentum

equations (Rahuel et al., 1989; Wu & Wang, 2007; Cao et al., 2004; Wickert & Schildgen,

2019; Papanicolaou et al., 2004).

A 1-D energy approach was used by C. Parker et al. (2015) who introduced the model

ST:REAM, which characterizes stability based on the relative stream power in reaches

compared to neighbouring reaches. Soar et al. (2017) proposed a River Energy Audit

Scheme which follows a similar approach to ST:REAM, but uses a measurement of annual

energy in excesses of the critical stream power as an indicator. The River Energy Audit

Scheme requires GSD information to calculate critical stream power and excess energy, so

an extensive sediment sampling program was required for the study region. The stream

power has been used for incision models by predicting rates of incision from the drainage

area and slope of a river, but this is applied to bedrock channels (Whipple & Tucker, 1999;

Lague, 2014)

2.3 Field Methods for Measuring Surficial Grain Size

Distributions

Characterizing the surficial sediment layer in alluvial channels is critical for understand-

ing geomorphological characteristics because it is a dominant variable for calculating the

sediment transport intensity and surface roughness. Methods for characterizing the sur-

ficial layer in the field vary because of the range of possible scenarios and particle size

ranges that can be encountered. The GSD in gravel-bed rivers (D ≥8 mm) have tradition-

ally been measured at discrete locations using grid sampling techniques such as Wolman

pebble counts (Wolman, 1954; Leopold, 1970) or areal sampling (e.g. paint-and-pick, pho-

tosieving) (Bunte & Abt, 2001). These methods involve a large amount of field work, so

researchers have assessed the potential for emerging technologies related to imaging and

laser scanning to develop faster methods that maintain the accuracy of traditional meth-

ods. Recent improvements to software, camera, and UAV technology has led to the advent

of automated and more rapid methods for characterizing surficial GSD. Photosieving can
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now be partially automated using software such as BASEGRAIN (Detert & Weitbrecht,

2012) or Pebblecounts (Purinton & Bookhagen, 2019). Another technique used to identify

the GSD from a photo is autocorrelation. Autocorrelation uses photos with known GSDs

to develop relationships between statistical properties in photos, such as a contrast and

pixel intensity to particle size. These relationships can, in turn, be used to approximate

particle sizes in photos with unmeasured GSDs (Rubin, 2004; Warrick et al., 2009).

Besides automated methods for looking at individual photos, photogrammetry and SfM

techniques can be used to make 3D from a series of 2D images and have also been applied

to GSD characterization. SfMs models can be used directly through the use of properties

such as the standard deviation of bed elevations (Aberle & Nikora, 2006; Detert et al.,

2017) or indirectly with photogrammetry software (Carbonneau et al., 2018). One of the

most notable improvements in GSD characterization is advent of spatially continuous GSDs

using roughness parameters from 3D models (Woodget & Austrums, 2017; Vázquez-Tarŕıo

et al., 2017; Neverman et al., 2019). These methods also make it easier for defining entire

catchments at a lower budget (Dugdale et al., 2010). Laser scanners are more accurate

than SfM, but the difference depends on camera quality (Detert et al., 2017) and are more

expensive.

2.4 Summary of Research Gaps

The field of geomorphology is developing quickly and new technologies for modelling sed-

iment transport and measuring grain size distributions in the field are becoming more

feasible. The research presented in this study highlight a gap in the literature surrounding

the link between rapid field measurements and models for sediment transport and chan-

nel evolution. This study tries to address this gap through the development of a system

that would provide engineers the ability to assess stability around stream courses in a way

that decisions around infrastructure can be made with more confidence. A new system

would also present the opportunity to test it for field cases to assess its practicality and

functionality.
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Chapter 3

River Section and Particle Size

Characterization

3.1 Field Methods

A field program was designed to provide a dataset of basin-wide river characteristics for the

calibration of the sediment transport model. The field program utilizes recent technological

improvements in measuring GSDs by using a UAV to reduce the amount of time personnel

had to spend in the field.

3.1.1 Study Area: Chauncey Creek

The Rocky Mountains are located in Canada and the US and are oriented in a north-south

direction, forming the continental divide through the southern part of BC and Alberta.

Major transportation networks pass through the Rocky Mountains, and the steep slopes

lead to a high number of river channels that need to be crossed by roads, rail networks, and

pipelines. The selected study area, Chauncey Creek, is a typical river catchment within

the Rocky Mountains and undergoes geomorphic processes that are common in mountain-

ous regions. Mountain channels often lie in narrow flood plains with steep channels and
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hillslopes (≥10%), and abundant supplies of sediment enter the channels directly from the

hillslopes.

Chauncey Creek is located near the town of Elkford in BC, and the basin lies on the

west side of the BC border with Alberta. The creek flows in a south-westerly direction

toward the Fording River and away from the mountain ridge that parallels the provin-

cial border. The surficial geology of the local ecodistrict is a thin and discontinuous till

(Agriculture and Agri-Food Canada, 2013). The downstream boundary of the selected

Chauncey Creek region is located 600 m upstream from the confluence with the Fording

River. The catchment area above the downstream boundary covers an area of 34.4 km2

and is shown in Figure 3-1. The slopes in the catchment area are quite steep with an

average channel slope of 7% and an average hillside slope of 40%.
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The Chauncey Creek basin was selected for this study because of a few desirable char-

acteristics:

1. Chauncey Creek is a headwater stream with an abundant large supply of sediment

from steep hill slopes. Aerial photos show that the creek erodes through large alluvial

fans for the initial 3 km. There is also the added benefit that there is no upstream

alluvial source of sediment except for the hill slopes that needed to be defined.

2. The profile of the main channel is shown in Figure 3-2 and has an overall concave-up

shape with two distinct sections (Natural Resources Canada, 2016a). A 1 km region

splits the two sections with large alluvial fans, which increase the sediment load to

the downstream section. Three large tributaries flow into Chauncey Creek between

4 km and 6 km from the upstream boundary and provide additional point sources of

water and sediment. The slope averages 10.1% and 3% upstream and downstream

of the confluence, respectively (Figure 3-3). The change in slope from the top of the

river to the outlet results in a measurable difference to GSD throughout the basin

which is desirable for identifying sediment links and testing sorting processes in the

modelling framework.

3. There are minimal direct anthropogenic impacts on the catchment, except an access

road and a few acres of cleared trees. The absence of infrastructure means that the

river basin would be formed by unregulated floods and natural processes.

4. Chauncey Creek flows through an alluvial channel. Alluvial channels are unrestricted

to degrade to the depth of bedrock, and no exposed bedrock was found in the lower

5 km of main channel during the field program.

The locations for UAV surveys were chosen to cover a range of locations spread along the

channel with a focus on confluence locations. Two major side tributaries were identified,

and surveys were located upstream and downstream of both locations. A survey was

completed near the downstream boundary of Chauncey Creek before it flows under a bridge

and into Fording River. A washed-out bridge near the top of Chauncey Creek was also

surveyed. Figure 3-1 shows the locations of UAV surveys and additional ground locations
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Figure 3-2: Chauncey Creek channel elevation; elevations derived from DEM data from
Natural Resources Canada (2016a)

where qualitative notes were taken within the extents of the Chauncey Creek catchment.

The survey locations were all situated in areas with limited tree cover to allow for a safe

flight path for the UAV and to photograph broad areas of exposed sediment.

3.1.2 Test Areas: Elk River and Mamquam River

There are many different ways of measuring surficial GSDs with different approaches lead-

ing to relatively coarser or finer estimates of the distribution parameters (Bunte & Abt,

2001). The modelling described in this thesis uses the Wilcock and Crowe (2003) sediment

transport equations, which were developed using GSD measurements directly comparable

to physical sieving with square-hole sieves. Various researchers have compared photosieving

analyses to physical sieves and summarized the relationships that can be used for equiva-

lent comparisons (Strom et al., 2010; Graham, Reid, & Rice, 2005). Field measurements

were taken to confirm the relationships shown by Strom et al. (2010) and Graham, Reid,

and Rice (2005).
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Figure 3-3: Average channel slopes in Chauncey Creek; elevations derived from DEM data
from Natural Resources Canada (2016a)

Access to the Chauncey Creek was limited due to project limitations and early seasonal

snowfall, so other sites were chosen for conducting tests to compare GSD measurement

techniques. The Elk River near Elkford was selected for the Wolman pebble count com-

parisons, and a paint-and-pick comparison was performed at a site on the Mamquam River

in Squamish, BC (Figure 3-4). These test counts were only done to test sampling methods,

and the results were not used for modelling purposes.

The Wolman pebble count locations along the Elk River are in the same major wa-

tershed as Chauncey Creek, and similar geology and grain sorting were expected. The

Elk River has greater flows than Chauncey Creek, but has a shallower slope and lower

stream power so smaller particles were present. Located closer to the west coast of BC, the

Mamquam River is not in the Rocky Mountains and would be expected to have different

geology, but after inspecting the site, a similar grain sorting was found. The paint-and-pick

site was selected for its ease of accessibility while being remote enough that UAV flying

was permitted.
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Figure 3-4: Field study locations in BC
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3.1.3 Grain Size Distribution Measurements

Surface sampling was the focus of the field study. The surface layer is generally used to

describe the surface roughness of an alluvial channel and only includes the particles that

are exposed (Figure 2-1). Various measurement techniques can be used to sample the

surface sediment and each one can be categorized under one of the following descriptions

(Diplas & Sutherland, 1988):

• Grid sampling - Individual surface particles in the field are counted at grid indexes

or along a traverse and sized by measuring the b-axis or using a gravelometer. Both

“pebble counts” and “grid counts” from Bunte and Abt (2001) would fall within this

category.

• Areal sampling - Surface particles within a square are sampled by photographing the

selected region, using an adhesive to remove all the particles, or manually with the

aid of spray paint to identify surface particles. Particle sizes are measured using a

sieving or by counting individual particles.

• Line sampling - Every particle along a line is collected from the field and measured

into size classes by sieving.

Following the naming convention from Bunte and Abt (2001), each sampling method

can be categorized as a volumetric, grid, or areal sample. Within each of these sampling

methods, the GSD can be analyzed “by-weight” or “by-count”. The naming convention

for each sampling method and analysis is a combination of these details (e.g. a volumetric

sampling method that is analyzed by weight is described as volume-by-weight). Six differ-

ent methods are possible when using these names. The three methods used in this study

include:

• volume-by-weight (Also referred to as a bulk sieve analysis)

• grid-by-number (e.g. Wolman pebble counts)

• area-by-number (e.g. photosieving and paint-and-pick)
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Wolman Count

Wolman pebble counts were completed following the methods described by Wolman (1954)

and Leopold (1970) and later summarized by Bunte and Abt (2001). The traverses pro-

ceeded in grid-like patterns that covered a single geomorphological element (point bars and

mid-channel bars), and spacing between counts of particles was 2 to 3 paces depending on

the estimated maximum grain size and area of the gravel bar. Particles were selected af-

ter taking the regular number of steps and picking the one that was immediately below

the large toe of the leading foot. At the same time, the researcher’s gaze was adverted.

The Wolman pebble counts did not include wading because they were done to compare to

photosieving techniques, which were only used to measure dry, exposed sediment. With

time permitting, 100 particles are counted and classified into half Ψ classes based on the

length of the second largest dimension (b-axis) following the Wentworth scale (Table 3.1).

Samples with 100 particles are considered standard Bunte and Abt (2001), but in locations

where time was limited, a minimum of 50 particles were classified. A gravelometer (Figure

3-5) was used to measure Ψ class of particles for more consistent results and less operator

bias. This device has precut holes that match half Ψ classes that a researcher can pass

particles through to classify particles by size.

Figure 3-5: Gravelometer
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Table 3.1: Sediment size classes (Wentworth scale)

Description of Particle Size Ψ = log2 Maximum b-axis Length
(mm)

Boulder >8 >256
Large cobble 8 256

7.5 181
Small cobble 7 128

6.5 90.5
Very coarse gravel 6 64

5.5 45.3
Coarse gravel 5 32

4.5 22.6
Medium gravel 4 16

3.5 11.3
Fine gravel and finer 3 8

Paint-and-Pick

The second method for collecting surface GSD measurements was to use a manual sam-

pling technique (Bunte & Abt, 2001) with the aid of orange spray paint. This method is

sometimes referred to as a “paint-and-pick” method. Similar to a Wolman pebble count,

a paint-and-pick count involves classifying individual sediment particles by size. Instead

of walking and measuring random particles, the goal is to count every particle within a

manageable area without counting particles that were initially buried. The sample area

size was selected using an estimated D50 and the following equation from Graham, Reid,

and Rice (2005):

As = npD
2
50 (3.1)

where As is the required sample area (mm2), D50 is the median grain size (mm), and np

≥ 300 is the number of particles. All particles with paint on them were measured using a

gravelometer. Particles larger than the 8 mm hole were counted and recorded.
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Photosieving

As an alternative to standard pebble counts, photos of surface particles can be analyzed

with software to estimate the GSD. Photosieving is a technique where a photo is taken

from a standard height and pebbles are measured directly from the image using a reference

scale (Adams, 1979). BASEGRAIN is an example of computer software that can be used to

automate the process of detecting and measuring individual particles (Detert & Weitbrecht,

2012). Photos to measure GSDs were taken with a hand-held iPhone SE and from higher

elevations using a DJI Mavic 2 pro. The Mavic 2 Pro has a 20 megapixel 1” camera sensor

with a 28 mm equivalent focal range, and the maximum flight time is approximately 30

minutes on a full charge. The iPhone SE has an 8 megapixel 1/3.0” camera sensor with a

29.7 mm equivalent focal range. Hand-held photos included a known scaling device within

the frame of each image so that pixel resolution could be found directly from each photo.

Photo resolution limits photosieving, and camera specifications determine how high

above the ground a photo can be taken to cover as much area as possible while still being

able to detect small particles. Detert and Weitbrecht (2012) noted that grain areas smaller

than 20 px are hard to detect and recommend a default detection limit of 23 px, citing

results from Graham, Rice, and Reid (2005). This pixel size is a little misleading in that

Graham, Rice, and Reid (2005) refer to a minimum b-axis detection length equal to 23

px while Detert and Weitbrecht (2012) refer to particle area. This difference means that

the flight height could be set to nearly five times as high when following the advice of

Detert and Weitbrecht (2012). It was decided that a particle diameter of 4.8 px (area of

23 px) would be considered the lower detection limit following the methods of Detert and

Weitbrecht (2012) while recognizing that other studies have used particle detection lengths

of as little as 3 px (Carbonneau et al., 2018). The allowable camera height was calculated

using a ground sampling distance, the distance on the ground covered by each pixel, small

enough to detect an 8 mm particle and the following relationship from O’Connor et al.

(2017):

h =
l × f
Sdet

(3.2)
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where h is the camera height above ground (m), l is the ground sample distance (mm),

Sdet is the pixel width (µm), and f is the focal length (mm). Table 3.2 shows a comparison

of camera details and grain size detection limits at various camera heights.

Table 3.2: Camera details

Specification Units iPhone SE DJI Mavic 2 Pro

Lens focal length mm 29.7 28
(35 mm equiv.)
Pixel width µm 1.5 2.4
Height above ground m 1.5 3 7
Ground sample distance mm/px 0.42 0.46 1.12
Minimum grain size mm 2.01 2.21 7.80

Ψ 1 1.5 3

3.1.4 Photogrammetry Surveys

Photogrammetry is the process of combining 2D photographs taken from different locations

and angles of the same subject to make 3D models. Within the field of photogrammetry,

SfM is a technique which uses photos from a motion sequence. The two objectives for

completing SfM surveys were to:

1. obtain photographs of exposed sediment that could be analyzed using photosieving

software to find GSD properties; and

2. model 3D terrain of river geometry to characterize channel width, provide supporting

visuals, and identify morphological elements.

The first objective is more complicated than simply taking off with a UAV and taking

photos of the entire area because, for photosieving to work, the scale of each photo must be

known. A ruler can be placed within the frame of each shot for hand-held cameras, but it is

not practical to lay enough rulers on the ground to ensure each photo from an aerial survey

includes one. Agisoft software made it possible to satisfy the second objective of creating
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a 3D terrain model using SfM algorithms while in turn supporting the first objective

by providing camera heights for each photo using methods similar to those described as

robotic photoseiving by Carbonneau et al. (2018). The camera heights can be used with a

rearranged version of Equation 3.2 to find the GSD of each particle.

Ground control points (GCPs) were made to provide easily distinguishable points that

could be identified in nearby photos. The markers were printed to also include a 40 cm

scale and large reference number on 40 cm x 28 cm pieces of paper before being laminated

(Figure 3-6). Due to a small amount of resizing during the printing process, the scales were

measured to be 39.8 cm in length. The circular barcodes produced within Agisoft were

chosen for the GCPs as they can be detected automatically in each photo. Carbonneau

et al. (2018) showed that GCPs are not necessary for robotic photoseiving, but James et

al. (2017) showed that strongly georeferenced GCPs (10 mm horizontal accuracy and 20

mm vertical accuracy) can improve surface precision by a factor of 3 when compared to

surveys with weakly georeferenced GCPs (50 mm horizontal accuracy and 100 mm vertical

accuracy). GCPs were placed throughout the survey areas, but they were not georeferenced

at the time of the flight due to a lack of sufficiently accurate equipment.

Figure 3-6: Ground control point

SfM surveys can be taken using a range of different camera settings and flight paths

depending on the required information and quality of the camera. The surveys were flown
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in grids to take enough photos of the river such that an entire geomorphological unit was

photographed and that images have sufficient overlap with each other for software to detect

common points and edges that are present in multiple neighbouring photos. Millimetre

accuracy was required for individual photos, but the same accuracy was not required of

the 3D model. Research shows that error within a SfM model can be reduced by taking

nadir photos from multiple heights and as well as a series of pictures from oblique angles

(Clapuyt et al., 2016; James & Robson, 2014; James et al., 2017; Carbonneau et al., 2018).

Table 3.3 shows a list of flight paths flown by scientists conducting geomorphology studies

which were used for reference.

Table 3.3: Reference flight paths

Researcher Flight Height Camera Angle Camera/Resolution

Carbonneau et al. 2018 7 m nadir 2 - 3 mm
20 m nadir
60 m oblique (20◦ from nadir)

Vázquez-Tarŕıo et al. 2017 30 m nadir 5 Mpx GoPro
Neverman et al. 2019 3 m nadir 1.5 mm

3 m oblique

The flight plan chosen for Chauncey Creek included three passes over the selected survey

areas. For all three passes, the UAV was manually flown following a grid-like pattern with

a horizontal overlap of 50%. Preset flight paths would have been difficult for the survey

locations because there was a high degree of variability in survey location shape and trees

taller than 7 m presented obstacles for the UAV.

Photo quality can be reduced due to high contrast conditions, uneven colouration of

particles from precipitation (Detert & Weitbrecht, 2013), and motion blur. Photos were

taken during dry conditions and when there were no harsh shadows to minimize error.

However, there were some instances when small amounts of precipitation fell, and there

was not enough time to allow the sediment to dry completely. Motion blur was calculated

using the following equation from O’Connor et al. (2017):

bblur =
v × tss
l

(3.3)
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where bblur is the motion blur (px), v is the drone velocity (mm/s), and tss is the shutter

speed (s). The speed of the drone was limited to 2 m/s and 3 m/s at 7 m and 20 m flight

heights, respectively, with a shutter speed of 1/320 s which results in a 3.8 px blur at 7

m. Ideally, the shutter speed would have been 1/1600 s as recommended by Clapuyt et al.

(2016) or at least slow enough such that the motion blur was less than 1.5 px as supported

by O’Connor et al. (2017).

The drone camera set-up was also checked for whether or not it would be diffraction

limited. A photo that is diffraction limited could result in reduced photo sharpness and

can be identified using the following equation from O’Connor et al. (2017):

ddif
2

= 1.22λ×Nf−stop (3.4)

where ddif is the diffraction limit (µm), λ is the wavelength of light (µm), and Nf−stop is

f-stop of the aperture. This calculation suggests that the drone would be diffraction limited

with an f-stop of 2.8, so some diffraction was unavoidable. O’Connor et al. (2017) suggests

some diffraction is often acceptable; however, photos with aperture settings higher than

f/4 were avoided to limit the amount of diffraction. The three passes flown at each survey

location are summarized below:

1. The first pass was flown at a height of 7 m above the landing zone, and the camera

was pointed straight down to take nadir photos. The UAV was flown with a speed

of 2 m/s to ensure 25% forward overlap. These photos were used for both GSD

measurements and SfM model creation.

2. The second pass was flown at the height of 20 m, and again, the camera was pointed

straight down. This pass was flown at a faster speed (3 m/s) and wider spacing

because the ground scale of the photos were larger than for the first pass.

3. The third pass was flown following the same grid and speed as the second pass but

with the camera pointed 20◦ from nadir. The UAV was rotated 180◦ horizontally for

each line of the grid in this pass so that half of the photos would be orientated in an

opposing direction.
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3.2 Field Data Processing

3.2.1 Single-Sample Grain Size Distribution Analysis and Con-

versions

There are many different methods for measuring the surface GSDs of laboratory flume

studies and alluvial river beds in the field; not all of the standard techniques are directly

comparable. This section describes three properties of each method that were considered

when making comparisons, which include the:

• geometry of the sample;

• measurement size boundaries and Ψ bin size; and

• method of measuring diameter.

Sample Geometry: Voidless Cube Model

When comparing sampling methods, the geometry of the sample and the statistical like-

lihood of obtaining the same GSD from the same sediment deposit must be evaluated.

The “voidless cube model” described by Kellerhals and Bray (1971) provides a geometrical

relationship between the different sampling methods (Section 3.1.3) which led to a series

of conversion factors that can be applied for comparisons. The general conversion factor

is written as:

fci = foiD
xe
gi

/{
ns∑
i=1

foiD
xe
gi

}
(3.5)

where foi is the observed proportion of the sample in the ith size class with geometric mean

size Dgi, xe is the integer dimension required for the conversion (determined from Table

3.4), ns is the number of grain size classes, and the sum effects a renormalization of the

distribution to give the converted proportions fci (Church et al., 1987). It should be noted
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that grid-by-number is directly comparable to volume-by-weight, and no conversion factor

is needed (Church et al., 1987; Diplas & Sutherland, 1988; Bunte & Abt, 2001; Wilcock &

Crowe, 2003).

Table 3.4: Conversion factors for samples collected by various methods; from Kellerhals
and Bray (1971) and edited by Bunte and Abt (2001). Numbers in gray bars express the
conversion factor as the exponent of D.

Conversion to
Volume-by- Grid-by- Grid-by- Area-by- Area-by-

Conversion from weight number weight number weight

Volume-by- 1 1 D3 1/D2 D
weight 0 0 3 -2 1

Grid-by- 1 1 D3 1/D2 D
number 0 0 3 -2 1

Grid-by- 1/D3 1/D3 1 1/D5 1/D2

weight -3 -3 0 -5 -2

Area-by- D2 D2 D5 1 D3

number 2 2 5 0 3

Area-by- 1/D 1/D D2 1/D3 1
weight -1 -1 2 -3 0

A modified version of the voidless cube model (modified cube model) was developed by

Diplas and Sutherland (1988) to account for bias not originally addressed by Kellerhals and

Bray (1971) when converting from area-by-weight to grid-by-number or volume-by-weight

methods. Bunte and Abt (2001) provide characteristics of sampling methods for whether

the voidless cube model or modified cube model is more appropriate (Table 3.5). The

sample locations for the Wolman pebble count comparisons are more closely aligned with

characteristics matching the voidless cube model, so -1 was used as the exponent in this

study. This method matches Strom et al. (2010), who also found that the exponent from

the voidless cube model provided the best relationship comparing photosieving to Wolman

pebble counts and grid samples.
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Table 3.5: Approximate value of the conversion factor exponent required for converting
the particle-size distribution of an area-by-weight sample into a volume-by-weight sample
in deposits of different characteristics, based on results of several studies; from Bunte and
Abt (2001).

Approximate value of the conversion factor exponent
-1.0 -0.5 0

Determined from voidless
cube model (Kellerhals and
Bray 1971)

Determined from void-
containing cube model
(Diplas and Sutherland
1988)

Coarse and fine matrix-
supported gravel with high
sand content

Frame-work supported
gravel, esp. coarse gravel
deposits

Fine frame-work gravels

Deposits of low porosity Deposits of high porosity

Coarse gravel deposits Deposits of fine gravel and
sand

No depth penetration of ad-
hesive e.g., adhesive tape

Deep penetration of adhe-
sive into subsurface sedi-
ment

Poorly sorted gravel de-
posits

Well-sorted gravel deposits Very-well sorted gravels

Photo-sieving

Data Truncation and Bin Sizes

Each GSD measurement has a minimum particle size that can be representatively measured

depending on the method used. For example, a volumetric sieve analysis using a minimum

square-hole size of 4 mm would only represent the 2 mm to 4 mm grain size adequately

if it is already known that no particles smaller than 2 mm are present in the sample.
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For the comparison of samples, Church et al. (1987) recommends using a common sample

range. Traditional pebble counts such as the Wolman pebble count were found to under-

represent particles smaller than 8 mm in diameter (S. Rice, 1995), and photosieving is

dependent on the camera resolution and height from which photos are taken (Graham,

Rice, & Reid, 2005; Detert & Weitbrecht, 2013). These types of measurement errors can

lead to a skewed GSD that is often most noticeable in small size classes unless there is a

significant proportion of sand (Graham et al., 2010). 8 mm was found to be a suitable lower

boundary for photosieving counts using UAV imagery from 7 m above the ground (Table

3.2). For that reason, and on recommendations for Wolman pebble counts by S. Rice

(1995), all GSD measurements were truncated below 8 mm. Equal bin sizes should also be

used (Wolman, 1954), so half Ψ classes were used for all GSD measurements.

Diameter Measurement and Square-Hole Approximation

All the previously described GSD sampling methods use one of two measurements for

classifying a particle by size. A particle’s size class is determined by either measuring

the b-axis or sieving the particle through a series of square-holes. For methods to be

adequately compared, a conversion factor must be applied (Church et al., 1987). Stähly

et al. (2017) recommends a factor 0.86 or a linear fit from 0.78 to 0.95 when comparing

physically measured particle b-axis to square-hole sieve analyses. However, the b-axis

measured from photosieving methods such as BASEGRAIN (now referred to as b’-axis) is

underestimated because of partial burial, overlapping, and the angling of particles (Graham

et al., 2010; Stähly et al., 2017). Ultimately, Stähly et al. (2017) found that a correction

factor is unnecessary when comparing the b’-axis to square-hole measurements because the

introduced errors tend to counteract each other.

3.2.2 Grain Size Distribution Comparisons

The basis for the Wilcock and Crowe (2003) model is a grid-by-number count using square-

hole sieves to measure particle sizes, so all sampling methods were adjusted to be equivalent

to grid-by-number methods before being compared. Table 3.6 shows the collected GSD
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sampling measurements and how they have been converted for comparison and to define

Chauncey Creek surface sediment characteristics. All methods have been truncated to a

minimum size class with a lower bound of 8 mm (Ψ 3.5 class).

Table 3.6: Sediment size measurement methods and conversions

Location Method Standard Name Measurement K-B Exponent

Chauncey Creek Photosieving area-by-number b’-axis 2
Elk River Wolman Count grid-by-number Square hole 0

Photosieving area-by-number b’-axis 2
Mamquam River Paint-and-Pick area-by-number Square hole 2

Photosieving area-by-number b’-axis 2

The geometric mean and grain size percentiles represent variables used for calculating

sediment transport rates and were selected for comparison of samples. The geometric

mean was calculated using an frequency distribution approach adapted from Bunte and

Abt (2001) and is equivalent to the arithmetic mean of the distribution when reported in

Ψ-units:

Dgm = 2Ψm (3.6)

Ψm =
1

100

k∑
i=1

(Ψci ·m%i) (3.7)

where Dgm is the geometric mean of a GSD in mm, Ψm is the arithmetic mean of Ψ

measurements from a GSD, Ψci is the centre of the ith size class (Ψ), and m%i is the

percentage frequency by weight for particles retained in the ith size class. Percentiles were

calculated by interpolating the logarithmic dataset (Bunte & Abt, 2001):

Ψx = (x2 − x1) ·
(
yx − y1

y2 − y1

)
+ x1 (3.8)

where Ψx is the xth percentile of a particle-size distribution (Ψ), y1 and y2 are the two

values of cumulative percent frequency immediately less than and greater than the desire

cumulative frequency yx, and x1 and x2 are the particles in Ψ-units associated with the

frequencies y1 and y2.
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3.2.3 Defining River Geometry

The longitudinal profile of the main stem in Chauncey Creek was characterized using the

elevation and slopes from the Canadian Digital Elevation Model (CDEM) and National

Hydrographic Network (NHN) (Natural Resources Canada, 2015, 2016a) using FAST. Sed-

iment links were identified by analyzing the curvature in slope trends and locating point

sources of water and sediment from aerial photos. Slope was also measured directly from

UAV derived DEMs by using the channel elevation at the upstream and downstream bound-

aries of each survey location and measuring the channel length.

Spatial data comes in a variety of resolutions depending on the method of data collection

(Vetsch et al., 2018). The CDEM has a vertical resolution of 1 m and horizontal resolution

between 20 and 25 m whereas the UAV derived DEMs have 1 cm vertical resolution and

between 2 and 3 cm horizontal resolution. Ideally, the higher resolution DEM would be

used. However, the issue with the UAV derived DEMs is that they only cover reach lengths

ranging from 30 to 70 m. Channel slope can vary over short distance due to the presence

of different morphological elements such as riffles and pools, so averaging slope over a long

distance relative to the meander spacing is recommended (Harrelson et al., 1994). Because

of this, channel slope is defined using the CDEM derived slope averaged over distances of

500 m, and slopes from UAV derived DEMs were compared.

Channel width, for the purpose of this study, was defined as the distance from bank-to-

bank where the banks are located at “the elevation at which the width/depth ratio (W/D)

of the cross-section becomes as minimum” similar to one method for calculating bank-full

conditions described by G. P. Williams (1978). River geometry is highly variable and hard

to define from DEMs in mountain channels because of insufficient resolution. It is possible

to extract channel widths from aerial photos, but this can be difficult due to vegetation

obscuring views of the banks and the banks may not be well defined.

The UAV SfM models were exported as DEMs and had a much higher resolution (<

2 cm) than regional datasets. GIS software was used to delineate a cross-section from the

DEM and measure river bathymetry. Bathymetry under the flowing water would not be

representative of the actual river bed because photos are not able to penetrate the water

surface evenly. However, the active channel width calculation is only dependent on the
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geometry of the exposed banks during low flows and, therefore, was not affected by the

bathymetry under the water. An Excel subroutine was used to find the banks that result

in the lowest width-to-depth ratio at individual cross-sections (Figure 3-7).

Figure 3-7: Example of bank identification for channel width measurements

Mountain stream widths have been found to follow a power-law relationship relative to

catchment area (Julien, 2015; Sofia et al., 2015):

wac = aAbC (3.9)

where wac is the active channel width, AC is the catchment area (km2), and a and b are

empirically derived constants. A power function was developed for Chauncey Creek using

multiple measured cross sections from each survey location to define the channel width for

the full modelled extents.

3.2.4 Defining Surficial Grain Size Distributions

Modelling a river catchment would be infeasible if GSD measurements were required in

every reach, so a relationship that could be used to describe the GSD throughout the entire

41



catchment was characterized using a series of individual measurements. Photosieving with

BASEGRAIN was used to define the surficial GSDs at each survey location. The work flow

used in BASEGRAIN is shown in Appendix C. The area-by-number distributions measured

by photosieving were converted to volume-by-weight distributions using Equation 3.5 and

an exponent xe = 2 (Table 3.4) to match measurements used by Wilcock and Crowe

(2003). Multiple aerial samples in a single survey location were considered to be part of

the same population, and particle counts were added together to produce a single GSD

for the reach. The surficial GSD varies across morphological elements within an individual

survey location, so similar morphological elements were chosen in each survey location.

Figure 3-8 shows how GSDs at a single survey location can vary depending on where in

a morphological element the measurements are taken, and Figure 3-9 shows where the

measurements were taken in relation to the active channel for the measurements in Figure

3-8.

Figure 3-8: Example of different grain size distributions measured at the same survey
location

Before a relationship for the catchment could be characterized, the shape of the mea-

sured distributions had to be determined. The GSD at each location was checked for
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Figure 3-9: Example of BASEGRAIN measurement locations at a single survey location.
Red rectangles indicate measurements that are shown in Figure 3-8 and yellow rectangles
indicate additional measurements that were made along the point bar. The creek is flowing
southwest.

normality by evaluating the goodness-of-fit to the best-fit Gaussian distribution and best-

fit Rosin distribution following the methods described by Bunte and Abt (2001) and in-

corporating the suggestions from Schleyer (1987). The best-fit Gaussian distribution was

calculated using:

GΨi =
1

σ ·
√

2π
· exp

(
−(Ψi − µ)2)

2σ2

)
(3.10)

where GΨi is the frequency of a Gaussian distribution for the ith size class, Ψi is the

particle size of the ith size class in Ψ units, µ is taken as the distribution median, and σ is

the standard deviation. σ in Equation 3.10 is substituted for a sorting coefficient (sG) as

suggested by Schleyer (1987):

sG = 0.75(Ψ75 −Ψ25) (3.11)

The best-fit Rosin distribution was calculated using:

RDi = exp−
(
Dret,i

Dmode

)SR
− exp−

(
Dpass,i

Dmode

)SR
(3.12)
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where RDi is the frequency of a Rosin distribution for the ith size class, Dpass,i is the

passing sieve size for the ith size class (mm), Dret,i is the retaining sieve size for the ith

size class (mm), and sR is a sorting coefficient:

sR =
2.15

Ψ18.4 −Ψ68.4

(3.13)

A distribution was considered normal if it had a goodness-of-fit relative to the Gaussian

distribution greater than 95% and a better fit when compared to a Rosin distribution. The

goodness-of-fit were calculated for the Gaussian and Rosin distributions using the following

equations:

%Gaussfit = 100%− 1

ns − 1

∣∣∣(∑m%i −
∑

G%i)
∣∣∣ (3.14)

%Rosinfit = 100%− 1

ns − 1

∣∣∣(∑m%i −
∑

R%i)
∣∣∣ (3.15)

where
∑
m%i is the cumulative percent frequency for the ith size class,

∑
G%i is the cumu-

lative percent frequency for the ideal Gaussian distribution, and
∑
R%i is the cumulative

percent frequency for the ideal Rosin distribution. If the GSD was found to be normal,

then the sorting (s), skewness (sk), and kurtosis (ku) were evaluated using methods by

Folk and Ward (1957) as summarized by Bunte and Abt (2001):

s =
Ψ84 −Ψ16

4
+

Ψ95 −Ψ5

6.6
(3.16)

sk =
Ψ50 −Ψ5

Ψ95 −Ψ5

− Ψ84 −Ψ50

Ψ84 −Ψ16

(3.17)

ku =
Ψ95 −Ψ5

2.44 ·Ψ75 −Ψ25

(3.18)

The results of this method for calculating the sorting and skewness coefficients can be

compared to the classification systems described by Folk and Ward (1957) to label the

distribution as “poorly sorted” or “positively skewed”.
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After finding the appropriate distribution, relationships defining the GSD for the length

of Chauncey Creek were derived from distribution properties (µ, σ) at individual locations

relative to an index of stream power. The stream power index (ω′) was calculated using

catchment area in lieu of flow because the precise relationship between bankfull flow and

catchment area was not known, but a linear relationship was assumed. The resulting

equation for stream power index does not include gravity or density terms and is as follows:

ω′ = ACS/w (3.19)

3.3 Field Results

3.3.1 Sampling Method Comparisons

The Wolman count comparison was completed at four locations along the Elk River (Table

3.7). Sites Elk 2-1, 2-2, and 2-3 were located on point bars along the same meander, and

site Elk 1 was located approximately 3 km downstream of Elk 2-1. Figure 3-10 shows an

example photo of what was used as an input to BASEGRAIN, and Figure 3-11 shows the

results of the segmentation process for the same photo. Figure 3-12 shows the graphical

comparison of measurements at all four sites, and Table 3.8 shows the percent difference

in GSD percentiles measured at each site. The GSD percentiles from Wolman count and

photosieving measurements were generally very close with differences in Ψ30 measurements

≤ 8% and differences in Ψ90 measurements ≤ 3% Ψ. Photosieving results were smaller than

Wolman count measurements for percentiles less than D60, and the difference was greater

for smaller percentiles. Visual inspection of the BASEGRAIN result photos showed that

particles were more often over-segmented than under-segmented. Over-segmentation is

the case in automatic photosieving where a single particle is defined as multiple smaller

particles, and under-segmentation is the case where multiple particles are defined as a

single large particle.

The paint-and-pick comparison was completed on a 0.7 m x 0.7 m (0.49 m2) area of

sediment on the Mamquam River (Figure 3-13). Using Equation 3.1, that area is suffi-

ciently large to count 300 particles as long as the D50 is less than 40 mm. Photos were
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Figure 3-10: Example of a photo used to measure surficial GSDs for the Wolman pebble
count comparison at Elk 1

Figure 3-11: The result of particle segmentation in BASEGRAIN for the photo in Figure
3-10
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Table 3.7: Location details for the Wolman count comparisons

Location Pebbles Counted Photos Analyzed Geomorphological Element

Elk 1 100 4 Central bar
Elk 2-1 53 3 Leeward side of point bar
Elk 2-2 50 2 Central area of point bar
Elk 2-3 101 8 Upwind side of point bar

Figure 3-12: Comparison of BASEGRAIN counts to Wolman counts on the Elk River

Table 3.8: Wolman count comparison

% Difference (Ψ)
Selected Particle Sizes (Dx) Elk 1 Elk 2-1 Elk 2-2 Elk 2-3

30% -7% -5% -3% -8%
50% -3% -3% -1% -3%
90% 0% 3% 2% 0%
Geometric Mean -5% -3% 0% -5%
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taken of the paint-and-pick region before an orange spray paint was applied to be used for

photosieving. iPhone photos were taken from roughly 1.5 m above the ground, and UAV

photos were taken from heights of 2 m and 5 m. The image taken from a lower height was

expected to be more accurate because it had a finer resolution (0.3187 mm/px and 0.7931

mm/px at 2 m and 5 m heights, respectively). However, it was found that the difference

between measurements was less than 0.5% (mm), so only one set of results is shown for

the UAV. Figure 3-14 shows the results from paint-and-pick measurements compared to

the photosieving measurements. The paint-and-pick results were between 3% and 7% (Ψ)

smaller than the photosieving measurements for all percentiles (Table 3.9).

Figure 3-13: Photo of paint-and-pick sample area used for photosieving analysis
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Figure 3-14: Comparison of BASEGRAIN counts to paint-and-pick count

Table 3.9: Paint-and-pick comparison

Measured Percentiles (Ψ) % Difference (Ψ)
Selected Particle Sizes (Dx) Paint-and-Pick UAV iPhone UAV iPhone

30% 3.86 4.13 4.08 7% 6%
50% 4.28 4.55 4.55 6% 6%
90% 5.32 5.51 5.52 4% 3%
Geometric Mean 4.32 4.56 4.54 5% 5%

3.3.2 River Characteristics

Analyzing the longitudinal profile of Chauncey Creek showed that there was a large vari-

ability in slopes measured from the CDEM along the channel, but reach slopes were more

consistent downstream of the major confluence (Figure 3-15). Residuals were calculated

relative to linear slope trends separated into two sections: upstream of the major conflu-

ence, and downstream of the major confluence. The trend in residuals can help identify

locations of concavity and convexity. Reaches with slopes that are lower than the average
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channel slope can be identified by observing a positive trend in the calculated residu-

als. The peaks in residuals were areas where the slope becomes higher than the average

slope and were determined to be the tops of sediment links. The locations of sediment

link boundaries, point sources of significant sediment loading, correspond well with the

residuals. Three sediment links were identified and are shown in Figure 3-15. A moving

average showed that there were two sections with relatively steep slopes at 1 km and 3

km down from the headwater (Figure 3-16). The slopes measured from the UAV derived

DEMs ranged from 3% to 6% and showed a decreasing trend similar to that of the slopes

measured from the CDEM.

Figure 3-15: Chauncey Creek longitudinal elevations and residuals relative to average slope

The channel width was characterized by a power function relative to the catchment

area. The data set of width measurements included eight individual cross-sections. The

DEMs of the survey locations and locations of the cross-sections are shown in Appendix

A. Width measurements were not used from SL07 because of the proximity of trees and

vegetation on both banks which cause uneven bank measurements from the DEM, and SL06

was no longer flowing at average flows. Survey location SL03 included three measurements:
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Figure 3-16: Average channel slope in Chauncey Creek

one on the main stem upstream of the confluence, one on the side tributary upstream of

the confluence, and one on the main stem downstream of the confluence. Measurements

were located upstream of bends where point bars were surveyed and cross sections were

chosen to pass through areas with limited vegetation where possible. Figure 3-17 shows

the relationship of channel width relative to the catchment area and the power function

used to describe Chauncey Creek for modelling purposes.

GSDs were characterized at seven different survey locations. Between three and ten

photos were analyzed at each site, but only results from similar morphological elements

were chosen for characterizing the Chauncey Creek basin. The selected images were typi-

cally at the upstream end of point bars for survey locations at prominent meanders. Aerial

photos indicating the locations of GSDs measurements are shown in Appendix B. Some

survey locations had intricate flow patterns with woody debris and large living trees, but

areas immediately downstream vegetation were avoided where possible. For sites where

multiple photos were used, particle counts were added together with the assumption that

photos were taken of the same sample population. GSDs at each survey location for checked
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Figure 3-17: Channel width measurements in Chauncey Creek relative to catchment area

for goodness-of-fit relative to Gaussian and Rosin distributions and Gaussian distribution

statistics were calculated. Table 3.10 shows the GSD statistics for each survey location.

The GSD at each survey location was found to be well represented by a Gaussian distribu-

tion. The distributions were found to be poorly sorted (1 < s < 2) and nearly symmetrical

or positively skewed (-0.1 < sk < 0.3).

The GSD at each survey location was plotted relative to channel slope (Figure 3-18)

and an index of stream power (Figure 3-19). The correlation between the D90 and the

stream power index was the most significant trend observed and showed a positive trend.

There was a slight positive trend observed for the Dgm, and the D30 remained relatively

constant.
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Table 3.10: Chauncey Creek grain size distribution statistics

Survey % Gaussian % Rosin
Location Dgm D90 Fit Fit Sorting Skewness Kurtosis

SL01 75.0 217.9 96.1% 84.8% 1.2 0.09 1.6
SL02 73.5 167.7 95.7% 87.7% 1.0 0.17 1.7
SL03 58.7 169.6 95.5% 85.5% 1.2 -0.05 1.5
SL04 71.8 222.7 96.2% 93.3% 1.3 0.11 1.5
SL05 74.3 261.9 96.1% 91.0% 1.4 0.03 1.4
SL07 86.5 324.4 95.9% 83.3% 1.5 0.03 1.4
SL08 81.5 316.1 96.6% 85.8% 1.4 -0.03 1.5

Figure 3-18: Chauncey Creek surficial grain sizes relative to channel slope
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Figure 3-19: Chauncey Creek surficial grain sizes relative to an index of stream power
(ω′ = ACS/w)
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3.4 Field Discussion

3.4.1 Sampling Method Comparisons

Comparing the GSD measurements from photosieving and Wolman counts presented only

minor differences between the two measurement techniques, with the Wolman count mea-

surements being slightly larger. Over-segmentation in the photosieving process leads to a

finer GSD and could be one reason for the photosieving measurements being smaller than

the Wolman count measurements. BASEGRAIN did not perform as well for larger GSDs

and over-segmentation of large gravels and cobbles was common. Photo quality was less

than ideal in some locations because of damp sediment conditions and the irregular ap-

pearance of some large particles. Manual adjustments were made with a focus on the larger

particles and could explain why a smaller difference was measured for larger percentiles.

The paint-and-pick comparison showed that the photosieving measurements were con-

sistently coarser than the paint-and-pick GSD by 0.23 Ψ on average. This difference could

be accounted for with the use of an alternate conversion factor. The paint-and-pick diam-

eters were measured using square holes, which should be comparable to photosieving the

b’-axis measured with photosieving (Stähly et al., 2017). Stähly et al. (2017) applied two

conversion factors that cancel out: one to convert from square-hole measurements to b-axis

measurements and a second one to convert b-axis to b’-axis measurements. However, the

conversion factors were found to vary based on particle size and sphericity, ratio of b-axis

to the c-axis (shortest axis). Sediment that is completely spherical would have the same

measured b-axis using either a square-hole approach or ruler, while a completely flat parti-

cle could have as much as a 40% difference between the two measurement methods (Church

et al., 1987). The measurements may need to be converted for these methods to be directly

comparable at the site. If b’-axes are multiplied by 0.85, then the Ψ measurements would

change by - 0.235. This change would narrow that difference between the photosieving and

paint-and-pick measurements to less than or equal to 1% (Ψ). It is less likely that over- or

under-segmentation is the cause of the difference between photosieving and paint-and-pick

measurements because very similar GSDs were measured from 3 separate photos.
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3.4.2 River Characteristics

Sediment links (S. P. Rice & Church, 2001) are characterized by sediment inputs, including

alluvial fans, and can be identified by trends in slope. Three sediment links were identified

where the residuals peaked. The first link starts near the upstream boundary and extends

for approximately 3 km. The second sediment link is the result of large alluvial fans that

cover a roughly 1 km of the channel and continues until the confluence of the first large

tributary. The third sediment link starts from the confluence of the first major tributary

and extends to the downstream boundary. The upper two sediment links cause a more

distinct change in slope than the third sediment link (Figures 3-15 and 3-16). Sediment

links typically correspond to regions with a downstream fining trend. The measured GSDs

show that the most recognizable downstream fining is at the upstream region in the third

sediment link. The coarser D90 found near the downstream boundary could indicate that

the third sediment link should be split up into multiple links, but more measurements

would need to be taken to support the finding.

Channel width in stable, gravel-bed rivers has been described by many researchers with

an equation of the form w = aQb where a ranges from 2.85 to 5.876 and b ranges from

0.42 to 0.743 with most settling around 0.5 (Gholami et al., 2017). The channel widths

measured using UAV derived DEMs resulted in a basin-wide relationship w = 1.72A0.489
C .

The exponent of the measured relationship is within the expected range when a discharge

is assumed to be linearly related to area as has been found for small catchments in humid

regions (Vianello & D’Agostino, 2007).

Statistics for the GSD at each survey location showed that a Gaussian fit best represents

the distribution, and the skewness and kurtosis are relatively constant throughout the

catchment. The sorting coefficients were found to have a positive relationship relative to

slope and stream power. Most fluvially transported sediment in gravel-bed rivers match a

Gaussian distribution, so this result indicates that the survey locations were downstream

of hillslope sediment loads (Bunte & Abt, 2001). The skewness was found to be nearly

symmetrical or skewed toward the fine side when using the classification of skewness from

Folk and Ward (1957), which is also typical for gravel-bed rivers (Bunte & Abt, 2001).

The sorting was found to range from 1.0 to 1.5 and can be described as poorly sorted (Folk
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& Ward, 1957). The kurtosis was found to range from 1.4 to 1.7, but it is not often used

as a descriptor of sediment distributions. Kurtosis could, however, be used to compare

synthetic grain size distributions used for modelling purposes to what is found in the field.

The GSDs were compared to channel slope and stream power. Weak trends were found

for the D30 and Dgm, and a strong trend was found for the D90 relative to both channel

slope and stream power. The trend in coarse grain sizes is beneficial for modelling flow

properties as they are strongly related to roughness, which allows for a relatively accu-

rate assessment of resistance to flow, flow depth, and shear stress at different discharges.

The functions relating D90 to slope and stream power have exponents of 0.5 and 0.87,

respectively. The result for stream power matches functions relating surface particle di-

ameters to dimensionless stream power. C. Parker et al. (2011) proposed a relationship

where ω∗c ∝ 1

D
3/2
i

which equates to Di ∝ ω∗c
2/3. Therefore, downstream fining could be

considered the result of limited mobility of the coarsest sizes of sediment, which suggests

that it is important to distinguish the sediment links and identify the size distributions

at the upstream limit of each link. Downstream it appears that the decrease in the large

particle size can be strongly related to the stream power so fewer measurements would be

required.
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Chapter 4

Sediment Transport Model

4.1 Model Specifications

To meet the objectives of this thesis, a new model (Alluvial Stability Indexing Model

(ASIM)) was developed to assess the relative stability of river reaches throughout a catch-

ment and how changes to a river network, such as installing a culvert or bridge, would affect

geomorphological processes. A 1-D model was chosen to reduce the resolution requirements

for spatial data, and a decoupled, fractional sediment transport process conceptual model

was chosen to predict sorting trends of varying grain sizes. ASIM was built on the research

from important contributions to sediment transport modelling over the last 20 years. These

include the model developed by Cui et al. (1996) and G. Parker (2004), who used a dis-

cretized versions of the Wilcock and Crowe (2003) sediment transport equation to model

fractional sediment transport and Exner equation (Exner, 1925) to model elevation change.

ASIM also follows methods developed by Viparelli et al. (2010) to allow for cyclical aggra-

dation and degradation of the substrate. Novel aspects of the new formulation of these

algorithms include the allowance for side tributaries to be modelled and for the width

and length of reaches to vary, which is particularly important in mountainous catchments.

Another novelty relative to other models is that ASIM can be linked with FAST and the

Raven hydrological model. These programs allow for the results to be upscaled to the

landscape scale very quickly. Figure 4-1 shows the model workflow and the order of reach
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processes being calculated.

Figure 4-1: ASIM workflow. Citations indicate the primary resource for the methods being
applied

4.1.1 Model Inputs

ASIM requires three sets of data from external sources: river network details, flow data,

and characterization of the surficial and substrate GSDs in the river channel and sediment

flowing into the upstream boundaries.

River Network

The river network describes the geographical properties of the modelled reaches within

the river basin. ASIM processes variables that are associated with two types of elements:

reaches and nodes. The river network details are loaded into ASIM through a list of reaches.

Nodes only contain elevation information and are initiated from the reach descriptions.

Reaches in the river network are sorted by catchment area so that downstream reaches do

not precede reaches that flow into them. The reach details required in ASIM include the

following information:
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• Reach number: numerical index used to identify the reach

• Reach length: horizontal distance from the upstream node to the downstream node

• Catchment area: land area where surface runoff would flow into the upstream node

of the reach

• Start elevation: elevation of the upstream node

• End elevation: elevation of the downstream node

• Drains from: numerical index of the upstream node

• Drains to: numerical index of the downstream node

A schematic of how a typical reach is discretized is shown in Figure 4-2. The discretization

method in ASIM resembles RubarBE (El Kadi Abderrezzak et al., 2008; El Kadi Abderrez-

zak & Paquier, 2009), where the hydraulic and sediment transport equations are calculated

in cells that are offset from one another. In the case of ASIM, hydraulic equations are cal-

culated at the centre of reaches, and sediment transport loads are calculated at the nodes.

For the purposes of mass balance, control volumes are linked to nodes and include half of

the sediment volume in the reaches immediately upstream and downstream of a node.

Figure 4-2: Schematic representation of a typical reach

River Flow

River flow is defined using a time series of flow data from a single, nearby location. The

Raven hydrological model was used to generate the hydrological data for the development
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and testing of ASIM, but historical flow from a nearby gauge could also be used. The

flow time series used for testing model functionality is publically available and can be

requested through the University of Waterloo. Flow in each reach is scaled assuming a

linear relationship relative to the catchment area (Vianello & D’Agostino, 2007; Wolman

& Leopold, 1957). This assumption only holds in small catchments with humid climates,

so a different relationship would need to be charactized for larger catchments. Flows in

individual reaches are scaled with the following equation:

Qw,j = Qw,M
AC,j
AC,M

(4.1)

where Qw,j is the river flow in reach j, AC,j is the catchment area upstream of reach j,

Qw,M is the river flow at the hydrologic model location, and AC,M is the catchment area at

the hydrologic model location. The downstream boundary of the modelled river is the ideal

location to collect flow data, but this would not be feasible for many remote catchments.

The hydrologic data should be sourced from a nearby catchment with similar weather

patterns and geography for locations without any direct measurements.

Sediment Supply

ASIM handles the GSD information for three types of sediment:

• Feed distribution: the sediment flowing into the river at the upstream boundaries

• Substrate distribution: the sediment below the active layer in the river channel

• Reach active layer distribution: the sediment within the active layer for each reach

Each distribution is input as an array of percentiles for each size class following the

Wentworth scale. The substrate distribution is assumed to be the same as the active

layer distribution because no measurements were taken of the substrate. However, this

assumption can be relaxed for rivers with more information describing the substrate. Figure

4-3 shows the sediment layers for Reach 1 and the relative location of bedload transport

rates.

User Inputs
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Figure 4-3: Schematic representation of sediment layers in Reach 1

Additional variables based on catchment basin characteristics also need to be specified.

Details that must be specified include the following variables:

• Width to catchment area coefficients: These are coefficients used to calculate width

based on catchment area using Equation 3.9.

• Substrate layer thickness: Layer thickness should be specified such that a homoge-

neous GSD is present in each layer, but thinner layers require more computational

time. Each substrate layer is initiated with the same GSD.

• Total substrate thickness: This value represents the total thickness of substrate that

can be degraded. This value can be seen as the level of bed rock, and if the model

reaches this point at any node, it is recommended to adjust the parameters or extent

the substrate thickness.

• Feed rate: The sediment load defined at the upstream boundaries.

4.1.2 Model Fundamentals

The driving principles in ASIM stem from research by G. Parker (1991) and Cui et al.

(1996) who provide a version of the Exner equation that is related to fractional sediment

transport. The Exner equations summarized by Cui et al. (1996) describe the change in
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channel elevation and sediment fractions over time caused by changes in sediment flux and

active layer thickness. The continuous differential equations describe the mass balance of

sediment that occurs through a river network and are as follows:

∂η

∂t
+

1

1− λp
∂qbT
∂x

= 0 (4.2)

∂

∂t
(LaFi) +

1

1− λp

(
∂qbTpbi
∂x

− fI,i
∂qbT
∂x

)
= fI,i

∂La
∂t

, i = 1, 2, ... (4.3)

where η is the elevation of node j (masl), λp is the sediment porosity (%), t is the time

after start date (s), fl,i is the fraction of sediment exchanged between the substrate and

surface material in the ith size class (%), La is the active layer thickness (m), Fi is the

fraction of surface material in the ith size class (%), qbT is the total unit bedload transport

rate (m2/s), pbi is the bedload transport fraction for size class i (%). The discretized

representations of these equations were shown by G. Parker (2004) and are as follows:

ηj|t+∆t = ηj −
1

1− λp
∂qbT
∂x

∣∣∣∣
j

∆t (4.4)

Fi,j|t+∆t = Fi,j −
1

La,j
(Fi,j − fli,k)

∂La,j
∂t

∆t+
1

La,j(1− λp)

(
− ∂qbTpbi

∂x

∣∣∣∣
j

+ fli,j
∂qbT
∂x

∣∣∣∣
j

)
∆t

(4.5)

where the subscript j indicates the node or reach index related to each term. The control

volumes for the mass balance following these equations are connected to the nodes between

each reach and not the reaches themselves. Both of the previous equations are driven by

the sediment flux across each control volume. The sediment flux across the control volume

j is described as the change in sediment transport rates across the reaches upstream and

downstream of node j. The equations used in ASIM originate from the unit sediment flux

and fraction unit sediment flux described by G. Parker (2004) for a model with constant

nodal spacing and channel width along the entire domain:
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∂qbT
∂x

∣∣∣∣
j

= au
qbT,j − qbT,j−1

∆x
+ (1− au)

qbT,j+1 − qbT,j
∆x

(4.6)

∂qbTpi
∂x

∣∣∣∣
j

= au
qbT,jpbi,j − qbT,j−1pbi,j−1

∆x
+ (1− au)

qbT,j+1pbi,j+1 − qbT,jpbi,j
∆x

(4.7)

where ∆x is the distance between nodes (m), and au = 0.75 is the upwinding coefficient

(G. Parker, 2004). The following equations are also fundamental to the processes described

in Equations 4.4 and 4.5.

fli,j =

{
fs,i,int,j for ∂η

∂t

∣∣
j
< 0 (degradation)

αFi,j + (1− α)pbi,j for ∂η
∂t

∣∣
j
> 0 (aggradation)

(4.8)

∂La,j
∂t

∆t ∼= La,j − La,j,old (4.9)

where α = 0.5 is the coefficient of material transferred to the substrate as the river bed

aggrades (Hoey & Ferguson, 1994; Toro-Escobar et al., 1996), fs,i,int,j is the fraction of

material in the top substrate layer in the ith size class in reach j (%), and La,j,old is the

active layer thickness of the previous time step in reach j (m). Equation 4.8 describes the

sediment fractions that will be introduced to the active layer and differs for conditions of

aggradation and degradation. Equation 4.9 is a simplification to describe the change in

active layer thickness across time intervals.

4.1.3 Calculate Reach Variables

ASIM initiates each time step by updating reach variables that describe the conditions at

the onset of each day. These variables are dependent on results from the previous time step

but do not depend on neighbouring reaches within the current time step. These variables

describe the reach as a whole and are not specific to any single grain size. The reach

variables, the applicable equations used for their calculation, and citations are listed in

this subsection.
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Unit flow:

qw,j = Qw,j/wj (4.10)

where qw,j is the river flow per unit width in reach j (m2/s).

Slope:

Sj =
ηj − ηj−1

lj
(4.11)

D50: Refer to Equation 3.8

D90: Refer to Equation 3.8

Dgm: Refer to Equation 3.6

Roughness height:

ks,j = nkD90,j (4.12)

where ks,j is the roughness height (m) and nk = 2 is the roughness height coefficient

(Kamphuis, 1974; G. Parker, 1990).

Active thickness:

La,j = naD90,j (4.13)

where na = 2 is the active layer coefficient (G. Parker, 2004).

Fraction sand:

Fs,j is the surface sand fraction in reach j (%) and equals the fraction of sediment that is

less than or equal to 1 Ψ.

Shear velocity:

u∗,j =

(
k

1/3
s,j q

2
w

α2
r

)3/20

g7/20S
7/20
j (4.14)

where u∗,j is the shear velocity of reach j (m/s), αr = 8.1 is the Manning-Strickler resistance

coefficient, Sj is the channel slope of reach j (m/m) (G. Parker, 1990).
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Shields number:

τ ∗sg,j =

(
k

1/3
s,j q

2
w

α2
rg

)3/10
S

7/10
j

RDsg,j

(4.15)

where τ ∗sg,j is the Shields number based on the surface geometric mean size of reach j,

R is the submerged specific gravity of sediment, and Sj is the channel slope of reach k

(G. Parker, 2004).

Critical Shields number:

τ ∗ssrg,j = 0.021 + 0.015 exp(−20Fs,j) (4.16)

where τ ∗ssrg,j is the critical Shields number in reach j calculated from the surface sand

fraction (Wilcock & Crowe, 2003).

4.1.4 Calculate Sediment Load

The sediment load is calculated using the sediment transport function developed by Wilcock

and Crowe (2003) and discretized following methods by Cui et al. (1996) and G. Parker

(2004). Sediment load is calculated at each node in the current time step before sediment

flux is calculated.

Unit sediment flow for each grain size:

qbi,j = Fi,j
u3
∗,j

Rg
W ∗
i,j (4.17)

W ∗
i,j

 0.002φ7.5
i,j for φi,j < 1.35

14
(

1− 0.894
φ0.5i,j

)4.5

for φi,j ≥ 1.35
(4.18)

φi,j =
τ ∗sg,j
τ ∗ssrg,j

(
Di

Dsg,j

)−bi,j
(4.19)

66



bi,j =
0.67

1 + exp(1.5−Di/Dgm,j)
(4.20)

where qbi,j is the unit sediment transport rate for size class i at node j (m2/s), W ∗
i,j is the

dimensionless unit sediment transport rate for size class i at node j, φi,j is a regression

variable, bi,j is the hiding function for size class i in reach j, Di is the representative

diameter of size class i (mm).

Total unit sediment flow:

qbT,j =
ns∑
i=1

qbi,j (4.21)

Bedload fraction:

pbi,j =
qbi,j
qbT,j

(4.22)

Total sediment flow:

QbT,j = qbT,jwj (4.23)

where QbT,j is the total bedload transport rate at node j (m3/s).

4.1.5 Calculate Sediment Flux

Adjustments had to be made to equations 4.6 and 4.7 to account for reaches with variable

lengths and widths. Firstly, the unit sediment flow calculated at each node was converted

to total sediment flow by multiplying by the width to maintain continuity in the sediment

mass balance. Secondly, the ∆x term was adjusted to represent the horizontal area of

the river that will change in elevation due to a change in node elevation. The resulting

equation for unit sediment flux is:

∂qbT
∂x

∣∣∣∣
j

= au
2QbT,j −QbT,j−1

lj−1wj−1 + ljwj
+ (1− au)

2QbT,j+1 −QbT,j

lj−1wj−1 + ljwj
(4.24)

where lj is the length of reach j (m) and wj is the width of reach j (m).
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Simplified unit sediment flux

ASIM differs from Parker’s model not only in that the reaches have variable widths

and lengths, but side channels and confluences can also be added. Equation 4.24 was

simplified for the calculations at atypical reaches, which include upstream and downstream

boundaries as well as reaches immediately upstream and downstream of confluences. The

simplified versions of Equation 4.24 is:

∂qbT
∂x

∣∣∣∣
j

=
2

Aj
(auQup,j + (1− au)Qdown,j) (4.25)

where Aj is the river area linked to the elevation of node j (m2), Qup,j is the change in

total sediment flow in the reach immediately upstream of node j (m3/s), and Qdown,j is

the change in total sediment flow in the reach immediately downstream of node j (m3/s).

Figure 4-4 shows a schematic that includes each of the atypical sections, and Table 4.1

shows how the equations for each type of reach have been adjusted. Note that a reach

can to fall within two atypical categories (e.g. a reach at an upstream boundary could

also be immediately upstream of a confluence in which case the “upstream boundary” and

“upstream of confluence” adjustments would both be applied).

Figure 4-4: Schematic representation depicting each atypical reach type
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Table 4.1: Variable adjustments for atypical reaches

4.1.6 Calculate Stratigraphy Change

G. Parker’s (2004) model does not contain a memory of sediment fractions in the sub-

strate. It is not necessary to have a memory of the substrate for systems that only aggrade

or degrade. However, information will be lost for systems that undergo cycles of both

aggradation and degradation. Stratigraphy memory in ASIM follows the same approach

as Viparelli et al. (2010), which is based on research by Hoey and Ferguson (1994). The

substrate is recorded in layers of constant thickness, and a variable datum is set to a con-

stant depth below the initial bed elevation. Figures 4-5 and 4-6 show how the stratigraphy

is stored in the model. The number of layers is calculated at the start of the model run

and each time step using the following equation.

Mj|t=0 =

⌊(
ηj|t=0 − La,j|t=0

Ls

)⌋
+ 2 (4.26)

where Mj is elevation of the interface between the active layer and substrate at node j

(masl) and Ls is the maximum thickness of substrate layers (m).

For time steps with aggradation, the thickness of the top layer of the substrate will

increase, and the sediment fraction in that layer will adjust. There are two cases that

can happen when the substrate aggrades. The first case is that the interface between the

active layer and substrate will rise in elevation, but the thickness of the top layer will

remain less than the maximum thickness (Ls) and no new layer will be added. This case
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Figure 4-5: Schematic representation of the initial stratigraphy; from Viparelli et al. (2010).
Illustration of grid used to track stratigraphic bed structure. (-) Bed elevation, (- -) active
layer - substrate interface, (o) grain size distribution in this node is representative of layer
between point k − 1 and point k.

Figure 4-6: Stratigraphy for aggradation case; from Viparelli et al. (2010). Illustration of
how grid changes as bed aggrades. (•) Grid extension to store newly-created stratigraphy
as bed changes from time t to time t + ∆t. At node j − 1 the uppermost grid point is
displaced upward. At nodes j and j + 1, new grid points are added.
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can be described with the following equation:

ηint,j|t+∆t ≤ (Mj|t+∆t − 1)Ls = (Mj|t − 1)Ls (4.27)

where ηint is the elevation of the interface between the active layer and substrate (masl).

If no new substrate layer is added, the sediment fractions in the top layer of the substrate

are calculated with the following equations:

fi,j,M |t+∆t =
{fi,j,M [ηint,j − (Mj − 2)Ls]}|t + δjfIi,j

[ηint,j − (Mj − 2)Ls]|t + δj
(4.28)

δj = ηint,j|t+Dt − ηint,j|t = (ηj − naDs90,j)|t+∆t − (ηj − naDs90,j)|t (4.29)

where δj is the change in elevation of the interface between the active layer and substrate

at node j (m).

The second case covers instances where the substrate aggrades and the top substrate

layer exceeds the maximum thickness, so a new substrate layer is required. It is possible

that more than one layer would need to be added, so the new number of storage layers is

calculated with the following equation:

Mj|t+∆t =

⌊(
ηj − La,j

Ls

)⌋∣∣∣∣
t+∆t

+ 2 (4.30)

The new layers will have fractions of sediment equal to the exchange fraction, and the

previous, top layer of sediment will have sediment fractions calculated with the following

equation:

fi,j,(M−1)

∣∣
t+∆t

=

{
fi,j,(M−1) [ηint,j − (Mj − 2)Ls]

}∣∣
t

Ls
+

[(Mj − 1)Ls − ηint,j]|t fIi,j
Ls

(4.31)

Calculating the sediment fraction after the substrate degrades is much simpler than

when it aggrades, and the sediment fraction in the stratigraphy layers remains the same.

Still, the number of layers and top layer thickness adjusts to account for the elevation lost.
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4.2 Model Analysis

4.2.1 Model Checks

Model Continuity and Mass Balance

ASIM simulates sediment transport in a river network by iterating through a time series of

hydrologic conditions and updating sediment volume by adjusting channel elevation at each

time step. The change in sediment volume stored in the model should be accounted for in

the sediment gained and lost at the upstream and downstream boundaries, respectively.

The continuity in the model was checked with a mass balance calculation to identify if

the change in volume in the stream bed reflects the sediment flux at the upstream and

downstream boundaries. Total volume was calculated for initial conditions and after the

model was run. The cumulative sediment flux for the system was measured at each time

step using the following equations:

V =
n∑
j=1

ljwj
Tj + Tj+1

2
(4.32)

Vin =
m∑
k=1

auqbT,F,k + (1− au)qbT,1,k
1− λp

∆t (4.33)

Vout =
m∑
k=1

qbT,n,k
1− λp

∆t (4.34)

where V is the total sediment volume in the model domain (m3), Tj is the total sediment

thickness in reach j (m), m is the total number of time steps, n is the total number of

reaches, j is a counting variable describing the reach or node index, and k is a counting

variable describing the time step.
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The mass of each grain size was similarly checked using the adjusted equations:

Vi =
n∑
j=1

m∑
k=1

ljwj
Tj,kFi,j,k + Tj+1,kFi,j+1,k

2
(4.35)

Vi,in =
m∑
k=1

auqbi,F,k + (1− au)qbi,1,k
1− λp

∆t (4.36)

Vi,out =
m∑
k=1

qbi,n,k
1− λp

∆t (4.37)

Comparison to Parker

ASIM uses functionality from the model developed by G. Parker (2004) and made available

for Excel. Model functionality in ASIM was checked using the same conditions as an

example from Parker to identify if the model was performing as expected. There were

three minor changes made in ASIM that resulted in differences. The difference in elevation

simulations was compared to identify the significance of each change. The following changes

were sequentially applied in ASIM to see how each one affects the final elevation:

• Change 1: the downstream sediment transport is calculated by assuming the sedi-

ment load in the last two nodes are equal;

• Change 2: a factor of two is applied to the upstream boundary sediment load in

ASIM; and

• Change 3: channel slope is calculated in each reach instead of averaged across 3

nodes.

4.2.2 Modelled Scenarios

A series of scenarios were prepared to test the functionality of ASIM for Chauncey Creek.

River geometry, flow, and initial sediment conditions were developed for a scenario that
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all other scenarios were based on and compared. This scenario is now referred to as the

“Existing Scenario”.

The river network details were extracted from the CDEM and NHN (Natural Resources

Canada, 2015, 2016a) for the Chauncey Creek basin using FAST. A total of 45 reaches were

delineated between confluence locations where tributaries are defined in the shapefile from

the NHN. Channel width is often difficult to extract from DEMs for mountain channels

because the resolution of the DEM is too large relative to the channel width. Channel width

was therefore calculated using a power function and the catchment area (Equation 3.9).

The variables of the power function depend on the specific catchment and are shown in 3-

17 for Chauncey Creek. The existing geomorphic conditions were based on measurements

taken in the field and strive to match field conditions as closely as possible.

The hydrological flow data for this study were obtained from Raven simulations of a

nearby catchment. The nearby catchment is located to the south of Chauncey Creek and

has a catchment area of 136 km2, which is roughly four times the size of Chauncey Creek.

Although precipitation is highly variable in mountain regions, the nearby catchment was

deemed to be appropriate because of the similarities in topographic relief and land coverage.

The Raven model was calibrated using historical precipitation and flow data before being

extended to a 105-year time-frame. The selected model was developed and calibrated by

the team at SNC Lavalin for a nearby project and exemplified the ability that ASIM has

to link with other studies. The Existing Scenario uses the first half of the synthetic flow

data from the Raven model.

ASIM is a discretized model, so it would hypothetically be possible to measure the GSD

from the field for each reach, but this would be very time-consuming. There would also be

lost information when the measured particle sizes are combined into a single distribution for

each reach. There were only seven discrete locations where the surficial GSD was measured

in Chauncey Creek, so a synthetic GSD that could be interpolated at each reach based

on a stream power index was developed for the initial conditions throughout the model

domain. The function describing synthetic GSDs was calibrated to match the measured

Ψm and Ψ90 as closely as possible and allowed for the creation of GSDs in regions that

were not measured. The measured relationship only includes reaches with a stream power

index ranging from 0.08 to 0.16, but this was expanded to a range of 0.06 to 0.20 for curve
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fitting. Other statistics that were considered when developing the synthetic distributions

include sorting and skewness (Table 3.10).

All field GSD measurements (in Ψ units) were found to fit a Gaussian distribution better

than a Rosin distribution, so Gaussian distributions were the starting point for developing

a synthetic GSD that could be applied throughout the catchment. Distributions were

assumed to have a mean and standard deviation that followed a power-law relative to the

stream power index in a similar manner as the Ψ90. GSDs were calculated using Equation

3.10 and the Ψm and Ψ90 were calculated using Equations 3.6 and 3.8, respectively. The

coefficients for the power functions describing the mean and standard deviation relative

to the stream power index (µ = aµω
′bµ , σ2 = aσω

′bσ) were found using two optimization

methods where the function being optimized is described as:

f =
∑
ω′∈S

∣∣∣Ψm,syn(ω′)−Ψm,obs

∣∣∣+ 2
∣∣∣Ψ90,syn(ω′)−Ψ90,obs

∣∣∣ (4.38)

where S is a series of ω′ ranging from 0.06 to 0.20 in increments of 0.02. A higher weighting

(a factor of 2) was applied to the Ψ90 because there was a more positive correlation between

the Ψ90 and ω′ than there was for Ψm. Initial attempts to find a global minimum resulted

only in local minima, so a two step optimization approach was used. The grid search

function in R was used first to narrow in on a global minimum and provide more suit-

able starting parameters for the Nelder-Mead and Hooke-Jeeves optimization algorithms

(Kelley, 1999).

The GSDs measurements were often skewed slightly toward fine material, so synthetic

GSDs that follow a “skew-normal” distribution were checked for suitability. The density

function for the skew-normal distribution is similar to a normal distribution; it is a function

of the mean and standard deviation, but there is an additional term, alpha, which indicates

the degree of skewness that the distribution has (Azzalini, 1985, 2005). Alpha was not

included as a variable to be optimized because it was found to trend toward a negative

skew (skew toward coarse material) as opposed to a positive skew. A value of -0.2 was

assumed for alpha when optimizing the skew-normal distribution.

The feed distribution was based on a Rosin distribution (Equation 3.12) to more closely

match sediment load coming from hillslopes. A sorting coefficient (sR) of -1.1 was selected
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to match similar sorting coefficients measured in the survey locations SL04, SL05, SL07

and SL08. The mode was selected as 64 mm (6 Ψ) to match survey location SL08 and

to provide a distribution that would fit more cleanly within the truncation limits of the

GSDs. The synthetic distributions were truncated so that the entire GSD would span from

passing sieve sizes 4 Ψ to 9 Ψ.

Varied Hydrologic Scenarios

A set of simulations with various hydrologic time frames were completed to analyze how

the model results would change for different hydrologic conditions and the same initial

geomorphological conditions. This analysis was done to evaluate the sensitivity to hydro-

logical forcing data and to identify the speed at which changes occur. Scenarios that exceed

105 years of duration experience a repeat of the same hydrologic data. Four additional

hydrologic scenarios were simulated, and Table 4.3 shows the numerical details for each

flow scenario.

• Alternate Scenario: A simulation that used the second half of the hydrologic time

series.

• Increased Scenario: A simulation that used the first half of the hydrologic time

series where each of the daily flows was increased by 10%.

• Extended Scenario: A simulation that used the entire hydrologic time series.

• Looped Scenario: A simulation that used the entire hydrologic time series six

consecutive times.

Varied Geomorphic Scenarios

Two scenarios with different geomorphic conditions were simulated to evaluate how chang-

ing the river width in a reach would affect sediment transport upstream and downstream

from the constriction or expansion. A narrow channel could be the result of installing a
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Table 4.2: Flows scenarios

Statistic Units Existing Alternate Increased Extended Looped

Total days modelled years 53 53 53 106 636
Average flow m3/s 0.40 0.47 0.44 0.44 0.44
Days exceeding 2 m3/s days 523 762 681 1285 6425
Max flow m3/s 6.68 9.11 7.35 9.11 9.11
2-year flood m3/s 3.45 3.61 3.79 3.61 3.61
5-year flood m3/s 4.89 5.02 5.38 4.89 4.89
20-year flood m3/s 6.39 6.70 7.03 6.62 6.62
50-year flood m3/s 6.68 9.11 7.35 8.15 8.15

Note: All flows are applicable at the downstream boundary of Chauncey Creek and are
based on a catchment area of 34.8 km2

bridge with structural supports that encroach on the bankfull width of the river, and an

expansion could be a construct of river rehabilitation projects. The geomorphic scenarios

are describe as the following:

• Narrow Scenario: A reach with slope 3.5% and 28 m length was adjusted to be

4.5 m instead of 9.2 m.

• Wide Scenario: A reach with slope 2.1% and 327 m length was adjusted to be 30

m instead of 9.2 m.

All scenarios that were used for comparing geomorphic conditions use the same flow series

and GSDs as the Existing Scenario.

4.2.3 Geomorphological Indices

The ultimate goal of ASIM is to describe risk to infrastructure by characterizing the chan-

nel stability. S. A. Schumm’s (1963) definition for a stable channel is “one that shows

no progressive change in gradient, dimensions, or shape”. It is generally assumed in flu-

vial geomorphology that rivers will trend toward a condition of quasi-equilibrium (Mackin,

1948; S. A. Schumm, 1985). Whether they are in a state of quasi-equilibrium or not,
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alluvial rivers will experience fluctuations in elevation, slope, sediment transported, and

sediment calibre as seasonal and annual variations in water and sediment loading occur

(S. A. Schumm, 1963; Charlton, 2007; Garćıa, 2008b). The model output was designed

to highlight geomorphologic changes that would be critical for the design of linear infras-

tructure and rate those changes at the reach scale to represent the relative stability within

the modelled domain. Four geomorphic indices were characterized to indicate the relative

stability of each reach. The stability indices represent the change in a variable over the

duration of the model simulation and include:

• Elevation: Long term changes in elevation are important for the design of both

bridges and pipelines. Bridge designs need to make sure there is enough area below

the bridge deck for water to flow under, but channel degradation and scour below

the structural elements could also cause failure. Buried pipelines are less susceptible

to rises in channel elevation, but exposure is possible in the case that the channel

elevation decreases.

• Slope: Changes in slope could result in stronger small scale hydraulic forces to

structural elements or erosion protection.

• Surficial D90: Changes to surficial GSDs could affect local scour calculations.

• Overall stability: This is an overall indicator that represents a summary of the

other indicators. This is currently the normalized sum of the absolute values of the

previous three indices. However, individual indicators could be scaled depending on

the application. For instance, if elevation is deemed to be unimportant, it could be

given half or no weighting in the final calculation.

Each index was normalized by the absolute value of the reach with the greatest change.

The elevation, slope, and surficial D90 indices include positive and negative changes, so

those indices range from -1 to 1. The hydrologic and geomorphic scenario comparisons will

evaluate how the relative stability of each reach varies for the conditions selected.
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4.3 Modelling Results

4.3.1 Model Continuity

A mass balance check was completed for each run, and the results for the Existing Scenario

are shown in Figure 4-7. The reach widths and lengths remain constant throughout the

model, so all changes in volume are the result of changes in sediment layer thicknesses.

Change in volume of individual particle size classes are also the result of changes to the

GSD in each layer. The change in total mass throughout the model domain was balanced

and could be explained by the mass entering the upstream boundary and mass discharged

at the downstream boundary. The volume of sediment in the active layer increased rapidly

at the start of the time series and continued to increase throughout the remaining time

steps gradually. The active layer thickness is calculated from the D90, so an increase

in active layer volume reflects a coarsening trend and a more significant portion of fine

sediment being discharged. The total sediment discharged from the downstream boundary

was relatively constant but appeared to increase near the end of the modelling period.

Figure 4-7: Changes in sediment volume for the Existing Scenario

The mass balance of individual particle sizes revealed that there was an imbalance. The
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volume for coarse gravel in the Existing Scenario is shown as an example in Figure 4-8.

This figure shows that the total volume of coarse gravel consistently decreases, but volume

in the substrate initially increases. The total volume and volume of coarse gravel decreases

after the active layer thickness becomes stable. The imbalance of individual particle size

classes indicates that 71 m3 of coarse gravel disappears, which equates to 2.3% of the initial

volume of coarse gravel in the active layer. Equations 4.5, 4.8, and 4.9 are used to calculate

new sediment fractions and are the likely source of the mass imbalance. Another potential

source of the imbalance is the calculation of sediment transfered between the active layer

and substrate, but this also uses the exchange fraction calculated from Equation 4.8.

Figure 4-8: Changes in coarse gravel volume for the Existing Scenario

4.3.2 Comparison to Parker

The results from ASIM closely matched that of G. Parker’s (2004) model, and only minor

differences in the results were observed for changes to model functionality. The change at

the downstream boundary (Change 1) had the smallest effect on results and the elevation

differed from the results of Parker’s model by a maximum of 0.01 m for total elevation

changes of as large as 14 m. The change at the upstream boundary (Change 2) resulted in
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the most significant difference in results, but without this change, the total mass balance

was not satisfied. Calculating the slope in every reach instead of across three nodes (Change

3) did not result in a significant difference, but the final elevation became less smooth and

appeared to have peaks and troughs with a spacing of two nodes. ASIM was run with the

slope calculated across three nodes for the Existing Scenario in Chauncey Creek, and the

simulation showed an occurrence of reaches with positive slopes that allowed sediment to

be transported through a high point. Figure 4-9 shows the compounding differences that

each change made. There is a change between ASIM and Parkers model, but the difference

is minor, and the overall functionality remains the same.

Figure 4-9: Differences between simulations from Parker’s model and ASIM. The solid
grey line depicts the simulated elevation from Parker’s model, and the dashed lines depict
the differences from various changes. Difference A corresponds to the results that include
Change 1, Difference B corresponds to Changes 1 and 2, and ASIM Prediction corresponds
to Changes 1, 2, and 3.
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4.3.3 Synthetic Grain Size Distributions

Power function coefficients for calculating the mean and standard deviation from the stream

power index were optimized to data collected in the field. The optimized coefficients are

shown in Table 4.3. The Gaussian distribution optimization resulted in a smaller value for

the goal function, but a similar optimization was found for the skew-normal distribution

with an alpha value of -0.2. The probability distribution is shifted toward the coarse

particle sizes when using passing sieve sizes instead of retaining sieve sizes, and this shift

is more pronounced if full Ψ classes are used. The distribution was first fitted to half Ψ

classes before being combined into full Ψ classes for use in ASIM. Bunte and Abt (2001)

show the significance of using either the centre of a grain class of the retaining sieve size

and how consistency must be maintained. Retaining sieve size was always used. Figures

4-10 and 4-11 show the synthetic GSD for a reaches with a stream power index equal to

0.06 and 0.2, respectively.

Table 4.3: Optimized synthetic distribution parameters

Variable Gaussian Distribution Skew-Normal Distribution

aµ 7.19 8.25
bµ 0.067 0.104
aσ 9.71 6.54
bσ 0.857 0.732
optimization f 1.93 2.24
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Figure 4-10: Synthetic grain size distributions for reaches with a stream power index of
0.06

Figure 4-11: Synthetic grain size distribution for reaches with a stream power index of 0.2
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4.3.4 Existing Scenario

The Existing Scenario was modelled to identify how ASIM would function for Chauncey

Creek and to act as a basis to compare other scenarios. Figure 4-12 shows the elevation

change that occurred in the first half of the simulation and after the entire flow time series

was complete. The predicted elevation change was greater for the first half of the simulation

(26 years), and the largest changes were simulated for reaches in the upper 4 km of the

creek. Reaches in areas with a convex slope typically decreased in elevation, and reaches

that were in concave areas were predicted to increase in elevation.

Figure 4-12: Elevation change for the Existing Scenario

The changes to slope after the simulation depict a similar trend as the elevations. Figure

4-13 shows the slope throughout the model domain before, halfway through, and after the

simulation. Reaches that are relatively steep compared to nearby reaches were predicted to

decrease in slope, and reaches that had relatively shallow slopes were predicted to increase

in slope. The slope trends toward a smoother change throughout the catchment, and

the absolute slope trend appears to correlate with the overall catchment area. Smaller

catchment areas remained steeper than regions with a larger catchment area, but this

could just be a reflection of trends in the initial conditions.
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Figure 4-13: Slope change for the Existing Scenario

Figures 4-14 and 4-15 show the sediment distribution in the active layer at t = 0 and t

= 19338, respectively. The results show that the majority of gravel is transported through

the system and the distribution becomes more coarse as a result. There are variations

between 5% and 20% for individual grain sizes from reach to reach, but these differences

appear to become more pronounced. The two steepest reaches (roughly 1.5 km and 3

km downstream from the upstream boundary) had the strongest stream power for the

initial conditions which corresponds to a larger proportion of boulders. These reaches

become even coarser by the end of the model simulation and nearly 50% of the actively

was characterized as boulders.

The stability indices are shown in Figures 4-16 to 4-19 and depict the relative stability

of each reach. The elevation stability indices indicate that the reaches from 1 km to 4 km

are the least stable. Slope is directly linked to elevation, but the slope stability indices

indicate that the shorter reaches are less stable. The stability indices related to GSD is

fairly consistent and most of the reaches were predicted to have a significant increase in

D90. However, there were six reaches spread throughout the catchment that were predicted

to have a reduction in D90. The overall stability indices suggesting that Chauncey Creek
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is the most stable near the model boundaries and least stable one-third of the way down

the creek. This region corresponds to the top of a sediment link, and in the absence of

sediment loads from tributaries, the model appears to be smoothing out irregularities.

Figure 4-14: Initial surficial grain size distribution
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Figure 4-15: Final grain size distribution in the active layer for the Existing Scenario

Figure 4-16: Elevation change index for the Existing Scenario
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Figure 4-17: Slope change index for the Existing Scenario

Figure 4-18: Sediment size change index for the Existing Scenario
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Figure 4-19: Overall stability index for the Existing Scenario
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4.3.5 Hydrologic Forcing Scenarios

Alternate Flow Scenario

Floods for the Alternate Scenario with yearly return periods from 2 years to 20 years were

approximately 5% greater than the Existing Scenario, but the peak flow was 36% greater,

and there were 50% more days that exceeded a flow of 2 m3/s at the outlet of the nearby

catchment. This averages to approximately 20% increase in flow compared to the Existing

Scenario. The result of the increase was most noticeable in the change to elevation in

the upstream half of Chauncey Creek. The steep reaches that were simulated to decrease

in elevation experienced the most significant change to elevation. The trend in changes

to slope was maintained for both simulations, but slope for the alternate scenario had

progressed further in becoming more smooth. The coarsening trend continued, and more

fine material was transported out of the system. The change to stability indices showed

that most reaches had a decrease in relative stability.

Figure 4-20: Elevation changes for the Alternate Scenario compared to the Existing Sce-
nario
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Figure 4-21: Slope change for the Alternate Scenario compared to the Existing Scenario

Figure 4-22: Final grain size distribution in the active layer for the Alternate Scenario
compared to the Existing Scenario
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Figure 4-23: Overall stability index for the Alternate Scenario compared to the Existing
Scenario
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Increased Flow Scenario

The Increased Scenario was similar to the Alternate Scenario in that the flows were greater

than the Existing Scenario. The 2-, 5-, and 20-year floods were higher than both the

Existing and Alternate Scenarios, but the average flow and 50-year flood was less than

the Alternate Scenario. The relative change compared to the Existing Scenario is very

similar as the Alternate Scenario, but the extent of the change is between the Existing and

Alternate Scenarios.

Figure 4-24: Elevation changes for the Increased Scenario compared to the Existing Sce-
nario
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Figure 4-25: Slope change for the Increased Scenario compared to the Existing Scenario

Figure 4-26: Final grain size distribution in the active layer for the Increased Scenario
compared to the Existing Scenario

94



Figure 4-27: Overall stability index for the Increased Scenario compared to the Existing
Scenario
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Extended Flow Scenario

The Extended Scenario includes flows from both the Existing Scenario and Alternate Sce-

nario. Despite the time series being twice the length, changes in elevation do not increase

by such an extent. The change in elevation ranges from 0% to 50% greater, but and one

reach that was predicted to increase in elevation for the Existing Scenario was predicted

decrease in elevation for the Extended Scenario. The smoothing and coarsening trends

predicted for changes to slope and GSD continued, but there were a couple reaches that

were predicted to have an increase in proportion of cobbles or large cobbles relative to the

boulders. The relative changes in stability between the Existing and Alternate Scenarios

were more pronounced for the Extended Scenario.

Figure 4-28: Elevation changes for the Extended Scenario compared to the Existing Sce-
nario
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Figure 4-29: Slope change for the Extended Scenario compared to the Existing Scenario

Figure 4-30: Final grain size distribution in the active layer for the Extended Scenario
compared to the Existing Scenario
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Figure 4-31: Overall stability index for the Extended Scenario compared to the Existing
Scenario
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Looped Flow Scenario

The Looped Scenario simulates a time period greater than 600 years of flows and some

reaches that were relatively stable and were not predicted to change in elevation for any

of the previous hydrologic scenarios were predicted to decrease in elevation. The two

reaches that are just downstream of convex profiles and near the upstream boundaries of

sediment links were predicted to experience the greatest change in elevation. The reaches in

the downstream 5 km were predicted to maintain similar elevations despite the longer time

series. The trend in slope continued in a smooth direction and the steepest reach decreased

from 19% to 13%. The coarsening trend continued and the proportion of medium and

coarse gravel ranged from 4% to 10% except for in the reach at the downstream boundary.

There were two reaches that were simulated to have an increase in the proportion of cobbles

and there were two reaches that were predicted to no longer contain boulders in the active

layer. Changes to stability indices varied and the reach downstream of the convex slope

3 km from the upstream boundary of was predicted to be the least stable reach. Again,

this corresponds to the top of a sediment link where high volumes of sediment would be

expected to enter Chauncey Creek.
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Figure 4-32: Elevation changes for the Looped Scenario compared to the Existing Scenario

Figure 4-33: Slope change for the Looped Scenario compared to the the Existing Scenario
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Figure 4-34: Final grain size distribution in the active layer for the Looped Scenario
compared to the Existing Scenario
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Figure 4-35: Overall stability index for the Looped Scenario compared to the Existing
Scenario
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4.3.6 Channel Geomorphology Scenarios

Narrow Scenario

The Narrow Scenario was very similar to the Existing Scenario and the width in one 28

m reach was adjusted. Subtle changes to were simulated in elevation, slope, and GSD at

the adjusted reach, but the change was not observable in results for reaches that were not

immediately adjacent to it. The reach immediately downstream of the adjusted reach was

predicted to increase in elevation and be less stable as a result of the narrow condition.

Figure 4-36: Elevation changes for the Narrow Scenario compared to the Existing Scenario
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Figure 4-37: Slope change for the Narrow Scenario compared to the Existing Scenario

Figure 4-38: Final grain size distribution in the active layer for the Narrow Scenario
compared to the Existing Scenario
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Figure 4-39: Overall stability index for the Narrow Scenario compared to the Existing
Scenario
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Wide Scenario

The Wide Scenario included one reach that was adjusted, but the change resulted in

different results further downstream than for the Narrow Scenario. The change was applied

to a reach 6.5 km down from the upstream boundary and was noticeable in every reach

downstream of it. The reach that was widened was predicted to have a greater increase

to elevation implying that less sediment is being transported out of the reach. Reaches

immediately upstream were predicted to not decrease in GSD to as great of an extent

as in the Existing Scenario, and the reaches downstream were predicted to have smaller

proportions of gravel. The stability was similar to the Existing Scenario and only minor

changes were observed in the downstream section of the creek.

Figure 4-40: Elevation changes for the Wide Scenario compared to the Existing Scenario
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Figure 4-41: Slope change for the Wide Scenario compared to the Existing Scenario

Figure 4-42: Final grain size distribution in the active layer for the Wide Scenario compared
to the Existing Scenario
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Figure 4-43: Overall stability index for the Wide Scenario compared to the Existing Sce-
nario
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4.4 Modelling Discussion

4.4.1 ASIM Performance

A modelling framework that uses 1-D sediment transport principals relating shear stress

to bedload transport rates was developed and called ASIM. The objective was to utilize

channel properties that can be quickly acquired in the field with the use of UAVs and readily

available spatial data to characterize channel stability. ASIM was linked to outputs from

software such as FAST and Raven so that it can be directly linked with other deliverables

for environmental consulting projects. The continuity of mass in ASIM was confirmed

for total sediment, but there was an imbalance within each size class. The functionality

of ASIM was compared to a model made available by G. Parker (2004) and was shown

to perform similarly for a regular channel with a constant slope, flow, and width. The

differences that were identified are from known changes to the boundary conditions and

slope calculations and were the result of adjustments made to improve model stability

in ASIM. The discretization method in ASIM more closely resembles RubarBE (El Kadi

Abderrezzak et al., 2008; El Kadi Abderrezzak & Paquier, 2009) where the hydraulic and

sediment transport equations are calculated in cells that are offset from one another.

The results from the Existing Scenario were used to assess the functionality of ASIM

for a mountain catchment. In general, the simulation for Chauncey Creek performed as ex-

pected, and geomorphological processes follow relationships shown in long-profile evolution

models (Wickert & Schildgen, 2019). Reaches located in regions with a concave-up longi-

tudinal profile are predicted to decrease in elevation, and the opposite occurs in convex-up

reaches. These elevation changes result in a smoother longitudinal slope profile, which is

similar to other 1D model predictions for river networks (Lewicki et al., 2007), for knick-

point propagation (S. Schumm & Harvey, 2008), and dam surface erosion (Wu & Wang,

2008). The trend toward a more coarse GSD was also expected because of what is known

from graded relationships (Equation 2.1) (Lane, 1955). The sediment loading simulated

for Chauncey Creek did not include the majority of sources that would be expected in the

field, and a graded river could respond to a reduction in sediment load through a decrease

in slope or sediment calibre. An increase in sediment calibre has been shown through flume
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studies and field investigations (Lisle et al., 1993; Papanicolaou et al., 2004).

The stability results indicate that the steep reaches would be the least stable and

have the most substantial change in elevation, slope, and D90. This result initially makes

sense because the shear stress and shear velocity increase with slope and are the primary

variables used to calculate sediment transport rates. However, these results might be

misleading. Bathurst et al. (1987) and Yager et al. (2007) have shown that conventional

resistance equations used by Wilcock and Crowe (2003) lead to an over prediction of

sediment transport in steep reaches. One correction used for steep channels is to reduce

the slope before calculating the shear stress, whereby the slope reduction would account

for energy lost due to form roughness (Chiari & Rickenmann, 2011; Nitsche et al., 2011;

Schneider et al., 2016). An alternative approach is to calculate critical Shields stress with

an equation that accounts for slope and shallow flow such as one suggested by Lamb et

al. (2008) or Recking (2009). However, Prancevic and Lamb (2015) indicated that there

is no universal trend that relates channel slope, to critical Shields stress, so more research

would be required before applying this approach.

There was no suitable data set to calibrate and validate ASIM for Chauncey Creek

adequately, so there were some processes that would be expected to occur in the field

but were not predicted. The smaller particles were expected to be transported through

the system quickly, but this would generally be balanced with a similar supply of small

particles entering the river. The lack of sediment entering Chauncey Creek from hill

slopes and tributaries in ASIM resulted in there being an insufficient supply of gravel

to balance the system. The resulting GSDs no longer resembled a Gaussian distribution

after the simulation, and in some situations, half of the sediment was classified as boulders.

Without sufficient sediment supply, no equilibrium could be established unless the active

layer became so coarse to where sediment transport no longer occurs.

The hydrologic comparisons indicate that there is a common long-term trend. More

hydrologic scenarios should be simulated, but from what the Existing, Alternate, and

Increased Scenarios show is that peak flow, and average flow are more reliable indicators

of high sediment transport rates compared to more common floods.The Looped Scenario

shows that the processes occur over a very long term. The slope continues to smooth

out, and there is still a significant decrease in elevation change predicted in the long term.
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However, it does not appear that an equilibrium condition would be achieved unless the

Looped Scenario is extended further into the future.

The geometric comparisons indicate that increasing the width of a reach has a broader

effect to changes in elevation and GSDs downstream than making a channel more narrow.

This could be because a narrow reach will transfer more sediment downstream, but it will

often build up in the next reach because mountain channels are generally transport-limited.

The sediment transport thresholds should also be considered when evaluating whether or

not narrowing or widening a reach will cause significant changes. Sediment transport is not

a linear function, so a change to the channel width could lead to different results depending

on the relative values of average shear stress and critical shear that exist before the change.

4.4.2 Model Assumptions and Future Improvements

There were many assumptions made in ASIM. Some assumptions were made out of ne-

cessity to simplify the river network and some of the processes with the goal of limiting

computational and high-resolution data requirements. Other assumptions were made be-

cause of time constraints and should be adjusted before ASIM is fully applied. Assumptions

in ASIM that are expected to be maintained through future updates include the following:

• River channels do not bifurcate. The processes in ASIM would not be suitable for

rivers that split into multiple channels for extended lengths.

• Seepages and surface water accretion are assumed to be zero along each reach. Chan-

nel flow increases at nodes which correspond to confluences with tributaries.

• Channel width is calculated from the catchment area using a power function that

was calibrated from field measurements. This assumption was made to reduce the

number of field measurements that would be required to run ASIM.

• Abrasion and breakage of particles is not considered.

• Channel width does not vary over time. Erosion of river banks is highly variable due

to varied stability from soil cohesion and vegetation and the process is beyond the

scope of ASIM.
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• The channel does not migrate. Rivers naturally meander, but this process would be

difficult to parameterize and is also beyond the scope of ASIM.

• Uplift and hillslope process are not considered. ASIM was designed to assess relative

risk and does not prediction future conditions, so these processes were included.

Assumptions in ASIM that should be reviewed and possibly adjusted include the fol-

lowing:

• Flow is linearly related to catchment area. This assumption has been shown to

be applicable in the field for annual peak flows (Wohl et al., 2004) but this is an

extremely simplified approach. A power function relating flow to catchment area

would be more widely applicable, and if time allows, a Raven model that breaks

the catchment down into subcatchments could provide more information about the

spatial variability in flows.

• Channels are assumed to be rectangular and wide (w/d > 20). These assumptions

simplify the hydraulic and sediment transport equations, but channels in mountain

regions are rarely wide and rectangular. Removing these assumptions would require

an assumption to be made about the spatial variability for width-to-depth ratios and

channel shape so that the hydraulic radius could be calculated.

• There is no bedrock layer. The depth of bedrock is unknown in Chauncey Creek, but

it would be expected to be reached for the depths of degradation that the Looped

Scenario is predicting. The existence of bedrock would prevent the channel from

degrading after all of the substrate is transported out of a reach, but this was not

simulated. ASIM does have a lower boundary of sediment and will not continue if

this boundary is reached, but it could be possible to include a process for allowing

sediment to be transported across a reach with exposed bedrock.

• Wilcock and Crowe’s (2003) has been applied to all channel gradients despite it

being most applicable to shallower slopes (<3%). This assumption can be relaxed

by calculating an adjusted slope following the approach of Schneider et al. (2016) as

long as the hydraulic radius is calculated.
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Other improvements that could be made, but that are not linked to existing assumptions

include the following:

• Continuity of individual grain sizes should be investigated further to identify the

source of discontinuity.

• Additional sediment loading should be included. ASIM is set up to allow for side

tributaries to be included which would provide a source for sediment to flow into the

main channel. Point sources at locations with steep hillslopes and alluvial fans could

be added. More research into sediment generation from debris flows and erosional

processes would be required and visual representation for side channels should be

developed alongside ASIM.

• The selection of different sediment transport equations could be incorporated within

ASIM. It would be possible to add other sediment transport equations that use shear

stress (G. Parker, 1990) or stream power (C. Parker et al., 2011). No model is perfect,

so this addition would allow for a range of equations to be used and compared.

• The model should be calibrated and validated. A longer set of field data would be

required for this step, but it is a crucial process before ASIM can be trusted and

applied in industry.

• More simulations should be run to evaluate the significance of each input. Simulations

with a variety of initial GSDs should also be included to understand how sensitive

the model is to surface conditions.
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Chapter 5

Conclusions

This thesis describes the work that was completed to develop a field program and modelling

framework that can be used in series to better understand sediment transport and channel

stability in remote, mountainous regions. The results of this thesis could be used to better

characterize risk to infrastructure that intersects river networks that would otherwise be

unidentified.

The field program confirmed that GSD and geometry data can be collected quickly in

places with limited access or elevated health and safety risks Data from a UAV was used

to and shown to be within an accuracy of 1 - 5% without georeferenced control markers

and three passes of survey locations were sufficient to collect high resolution photos and

data 3-D models. The comparisons between Wolman pebble counts, paint-and-pick, and

photosieving showed that photos from UAVs can be analyzed with BASEGRAIN to acquire

GSDs within 8% Ψ. Chauncey Creek was used as the river catchment to test the field

program and a least three sediment links were identified from visual inspection of loading

sources, channel slope, and grain size. The channel properties in Chauncey Creek appear

to follow reasonable relationships relative to a stream power index. The surface particle

distributions were found to match Gaussian distributions

The model framework (ASIM) was shown to perform similarly to a model developed

by G. Parker (2004) and total continuity of mass was maintained. A discontinuity in the

calculations for individual grain sizes was found that should be investigated further. The
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Existing Scenario for Chauncey Creek showed that the slope, elevation, and dominant

grain size in the steepest sections would change to the greatest degree. Different flow

scenarios suggest that the model approaches a common future, but the extent and speed

of the changes depend on the magnitude and recurrence of floods. Different geometrical

scenarios show that widening a channel could have more noticeable impacts downstream

than narrowing a channel, but this conclusion likely will depend on sediment loading and

channel geometry in neighbouring reaches.
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Appendix A

Chauncey Creek River Geometry
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Figure A-1: SL01 and SL02 digital elevation models and cross section locations
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Figure A-2: SL03 and SL04 digital elevation models and cross section locations
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Figure A-3: SL05 and SL06 digital elevation models and cross section locations
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Figure A-4: SL07 and SL08 digital elevation models and cross section locations
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Appendix B

Chauncey Creek Photoseiving

Locations

Areas that were measured in BASEGRAIN are displayed with a rectangle. Red rectangles

indicate measurements that were combined and used to represent the surficial GSD at each

survey location.
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Figure B-1: Photosieving locations at SL01
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Figure B-2: Photosieving locations at SL02
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Figure B-3: Photosieving locations at SL03
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Figure B-4: Photosieving locations at SL04
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Figure B-5: Photosieving locations at SL05
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Figure B-6: Photosieving locations at SL07

Figure B-7: Photosieving locations at SL08
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Appendix C

Software Work Flows

C.1 Photogrammetry work flow: Agisoft

1. Rename photos to include site number, height above landing pad, camera orientation,

and a sequential number. A Windows batch script was written to automate this

process.

2. Import all photos from a single survey location into Agisoft.

3. Disable all unnecessary photos such as duplicates and photos that do not include

exposed sediment.

4. Estimate Image Quality of all photos.

5. Disable photos with low quality. A lower quality limit, such as 0.8, could be set.

However, it was found that photo quality was generally consistent for an entire survey

location and in some cases the lower limit should be adjusted to prevent large sets

of photos from being removed.

6. Autodetect Markers with a tolerance of 100 to locate as many markers as can be

detected.
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7. Check marker detection and manually add missing markers to all photos that contain

markers that were not detected.

8. Apply a mask to photos that contain people or objects that move between photos.

9. Align Photos with high quality accuracy and reference preselection.

10. Build Dense Cloud with high quality.

11. Build DEM using a local projected coordinate system. NAD83(CSRS) / UTM

Zone 11N (ESPG::2955) was used for Chauncey Creek.

12. Get camera distances relative to points directly below the camera locations. This

was automated using a Python script.

13. Geometry can be measured directly in Agisoft, or in ArcGIS with an export of the

DEM.

14. Optional: Build Mesh, Build Texture, and Build Orthomosaic to produce

additional visuals and graphics

C.2 Photosieving work flow: BASEGRAIN

1. Select the photo that will be analyzed. If the photo does not include a known

measurement, input the calculated pixel resolution for the photo.

2. Scale the photo with a known measurement with the scale function.

3. Select a particle detection zone to the desired sediment patch using Crop Section.

The area should primarly be exposed sediment with minimal distruptions such as

woody debris or water surfaces. When possible, the particle detection zone should

cover and area between 200 and 400 times the size of the largest particle (Graham

et al., 2010).
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4. Select a test region that includes typical particles within the particle detection zone

using Test Crop Section.

5. Visually check the performance of the particle detection. If performance is poor,

adjust the following parameters and check new performance:

• facgraythr1 (increase if under-segmented)

• medfiltsiz10 (decrease if under-segmented)

• AreaCutWW (increase if under-segmented)

6. Make manual adjustedments with a focus on the largest clasts

7. Adjust the results analysis so btrunc matches the minimum detectable grain size.

8. Export results as CSV for post processing.
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Glossary

active channel The portion of the bed regularly disturbed by flow. 7

autocorrelation A method of measuring surficial grain size distributions using statistical

properties in photos such as contrast and pixel intensity. 19

b’-axis The second-longest axis of a particle when measured using a photosieving method.

38, 55

b-axis The second-longest axis of a particle. This dimension is also referred to as the

intermediate axis or grain diameter. 27, 28, 38

bankfull discharge The discharge that flows in a channel without overtopping the banks

and partially flowing over the floodplain. 7

decoupled A term to describe a model that has two or more variables that are updated

separately for each iteration of the model. 17, 58

dominant discharge The flow associated with the peak of cumulative sediment transport

for a given streamflow magnitude and frequency of occurrence. It is the discharge

that is generally doing the work (sediment transport) that results in the average

morphologic characteristics of alluvial channels. 7

gravelometer A metal template with square holes cut in it to match half Ψ class mea-

surements. 27, 29
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ground sampling distance The distance on the ground between pixel centres in a photo.

30

incipient motion The flow condition when the force of water is just strong enough to

move sediment of a particular size. 14, 16

modified cube model A modified version of the voidless cube model which accounts for

bias when comparing area-by-weight to grid-by-number or volume-by-weight meth-

ods. 36

nadir The direction a camera is pointing when it is pointed straight down toward the

ground. 33, 34

over-segmentation A result in automatic photosieving where a single particle is defined

as multiple smaller particles. 45, 55

photosieving A method of calculating grain size distribution properties using close-range

photographs. 3, 30, 38

robotic photoseiving A method of automating photoseiving algorithms using structure-

from-motion software to scale photos. 32

sediment link A river segment that is delineated based on water and sediment load

sources such as alluvial fans, large tributaries, and non-alluvial inputs. 11, 23, 114

stream power index An index of unit stream power that is calculated from catchment

area, channel slope, and channel width. xii, 45, 74, 75, 82, 83

supply-limited A descriptor of alluvial channels that have a capacity to transport sedi-

ment that exceeds the supply of sediment. 12

transport-limited A descriptor of alluvial channels that have a sediment supply that

exceeds the capacity to transport sediment. 12, 111
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under-segmentation A result in automatic photosieving where multiple particles are

defined as a single large particle. 45, 55

voidless cube model Geometric relationships that can be used for comparing sediment

sampling method. 35, 36

Wolman pebble count A field method for determining the size of coarse material on

the bed of a stream whereby a researcher walks in a preset path and records the size

of a pebble below their large toe. iv, xi, 18, 25, 27–29, 36, 38, 46, 114
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