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Abstract

Given the complexity of the deep neural network (DNN), DNN has long been criticized for
its lack of interpretability in its decision-making process. This ’black box’ nature has been
preventing the adaption of DNN in life-critical tasks. In recent years, there has been a
surge of interest around the concept of artificial intelligence explainability/interpretability
(XAI), where the goal is to produce an interpretation for a decision made by a DNN al-
gorithm. While many explainability algorithms have been proposed for peaking into the
decision-making process of DNN, there has been a limited exploration into the assessment
of the performance of explainability methods, with most evaluations centred around sub-
jective human visual perception of the produced interpretations. In this study, we explore
a more objective strategy for quantifying the performance of explainability algorithms on
DNNs. More specifically, we propose two quantitative performance metrics: i) Impact
Score and ii) Impact Coverage. Impact Score assesses the percentage of critical factors
with either strong confidence reduction impact or decision shifting impact. Impact Cov-
erage accesses the percentage overlapping of adversarially impacted factors in the input.
Furthermore, a comprehensive analysis using this approach was conducted on several ex-
plainability methods (LIME, SHAP, and Expected Gradients) on different task domains,
such as visual perception, speech recognition and natural language processing (NLP). The
empirical evidence suggests that there is significant room for improvement for all evaluated
explainability methods. At the same time, the evidence also suggests that even the latest
explainability methods can not produce steady better results across different task domains
and different test scenarios.
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Chapter 1

Introduction

1.1 State of the Art

In the quest for more accurate artificial intelligence, we have seen a progression from
handcrafted rules and heuristics, to linear models and decision trees, ensembles and deep
learning models to, most recently, meta-learning or models that create other models, as
shown in Fig. 1.1. The advancement of computational hardware coupled with increasing
dataset sizes and the availability of open-source learning frameworks have fueled a trend
towards more complex non-linear models. Particularly, the recent significant advances in
deep learning models [49] has resulted in a paradigm shift along multiple dimensions:

• Expressiveness unlocks the ability to fit a wide range of complex functions, as such
it also enables deep learning models to extract high-level abstract representation from
data.

Figure 1.1: Progression of machine learning models [13]
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• Versatility enables wide adoption across multiple data modalities (image, audio,
speech, text, tabular, time series, etc.). Recent researches in deep learning models
have led to state-of-the-art performance across various tasks such as visual percep-
tion [82, 32, 63], speech recognition [4], and natural language processing (NLP) [96,
21].

• Adaptability allows deep learning models being applied in small data regimes
through transfer learning, meta-learning and multi-task learning.

On the flip side, these more complex models have become increasingly opaque. Com-
bining with the fact that these models are still fundamentally built around correlation and
association, several concerns have raised both in academia and industries challenging the
usage of these complex models. Particularly, as the proliferation of deep learning contin-
ues, there is now a growing interest as well as concern over how deep neural networks are
making decisions, especially for life-critical applications such as autonomous driving and
clinical decision support. The major concerns are listed in the following:

• Spurious correlations can be learned from the data, often hampering the model’s
ability to generalize and leading to poor real-world results.

• Loss of debuggability and transparency leading to low trust as well as the
inability to fix or improve the models and/or outcomes. Given the sheer complexity
of deep neural networks and how information propagates through such networks to
form a decision, deep learning has been often viewed as a ‘black box’ machine learning
method and very difficult to interpret and understand the decision-making process
or the key factors involved in the decision. This lack of transparency impedes the
adoption of these models, especially in regulated industries (e.g. Banking & Finance
or Healthcare).

• Loss of control due to model practitioners’ reduced ability to locally adjust model
behaviour in problematic instances. Furthermore, this challenge makes it very dif-
ficult for machine learning engineers and scientists to understand biases and error
scenarios of the trained models to improve upon.

• Indesirable data amplification reflecting biases that don’t agree with our societal
norms and principles. The lack of interpretability often results in oversight situations
where the models are deciding based on unintended patterns in the dataset [58].

• Vulnerable to malicious attacks, even in the physical world. This is particularly
critical given the recent rise of adversarial examples [83, 3, 24, 46, 73, 19, 23, 10].
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These well-designed samples can easily fool a well-performed deep learning model
and cause deep learning models to make erroneous decisions.

As such, the ability to explain the decision-making process of deep neural networks can
be critical for enabling the development of improved, more dependable deep learning as
well as enable the use of deep learning in a more trust-worthy manner in mission-critical
scenarios.

1.1.1 Explainable AI (XAI)

Systems built around machine learning models will affect and, in many cases, redefine
autonomous transportation, financial management, medical interventions, and many other
areas of society. However, considering the challenges discussed in the previous section, the
usefulness and fairness of these systems should be gated by the ability to understand, ex-
plain and control them. The field of explainable AI (XAI) has been a resurgence since the
early days of expert systems [78] a few decades ago. In the work by Doshi et al. [16], the
authors define XAI as “the ability to explain or to present in understandable terms to a hu-
man”. Recent research progress in XAI has been rapidly advancing. Different lines of XAI
researches have been proposed trying to address the aforementioned concerns from different
prospectives. These works include, but not limited to, input attribution [64, 53, 80, 72],
concept testing/extraction [40, 90, 22], example influence/matching [93, 39, 43], distilla-
tion [29, 20]. Furthermore, new novel approaches have been proposed for building inher-
ently interpretable and controllable models like Deep Lattice Networks [95] and Bayesian
models. In addition to needing to probe the internals of increasingly complex models,
which in and of itself is a challenging computational problem, a successful XAI system
must provide explanations to people.

Input Attribution

Input attribution (aka saliency map) is the most common type of explanation faimilies [64,
53, 80, 72, 75, 17, 76, 65, 38]. It provides an explanation for an instance prediction of a
model in terms of input features using importance scores. The individual importance scores
are meant to communicate the relative contribution of each input feature to the instance
prediction. In other words, the higher the score associated with, the more impactful the
input feature is to the model’s decision. For instance, in the visual perception domain,
Zhou et al. [99] first use class activation map as a saliency map for revealing important
regions in the input image, as shown in Fig. 1.2a. Later, Lunderg et al. [53] proposed a

3



(a) Class activation map from the work by Zhou et al. [99]

(b) SHAP value saliency maps from the work by Lunderg et al. [53]

(c) Super-pixels saliency maps from the work by Ribeiro et al. [64]

Figure 1.2: Visual examples of saliency map in literatures.
4



Figure 1.3: Example of a decision change due to the absence of critical regions in the
decision-making process. (top-left) original MFCC representation of an utterance audio
signal; (bottom-left) identified a critical region in MFCC; (right): prediction confidences
for the decision made with original MFCC and with the absence of critical region.

unified framework for generating post-hoc local explanations using Shapley values, a classic
approach from cooperative game theory, to estimate the importance of each input pixels
(Fig. 1.2b). However, the raw features are not always the best choice of explanation. A
successful XAI explanation must provide interpretable meaning to people. Explaining an
image classification prediction in terms of individual input pixels can result in explanations
that are too noisy, too expensive to compute, and more importantly, difficult to interpret.
Alternatively, Ribeiro et al. [64] proposed to rely on contiguous patches of similar pixels
(aka super-pixels), a more interpretable representation of image features, in the case of
image classification prediction (Fig. 1.2c).

The concept of input attribution can also be extended to both speech recognition and
NLP domain. Before presenting the explanation system for speech recognition and NLP, it
is important to distinguish between input features and interpretable data representations.
As mentioned before, interpretable explanations need to use a representation that is un-
derstandable to humans, regardless of the actual features used by the model. As for speech
recognition systems, the input feature is the raw audio data. Relying solely on this form
of data representation is difficult to analyze any meaningful information. Inspired by the
traditional audio analysis techniques, the saliency map for speech recognition models can
be interpreted as assigning importance factor to both time-domain features and frequency

5



Figure 1.4: Saliency explaination for a binary text classifier [64]

domain features (Fig. 1.3). As for NLP models, a possible interpretable representation for
text classification is a binary vector indicating the presence or absence of a word, even
though the classifier may use more complex (and incomprehensible) features such as word
embeddings. However, this choice of interpretable representation will have an inherent
drawback. While the underlying model can be treated as a black-box, this binary feature
representations will not be powerful enough to explain certain behaviours. For example,
without the global context, a single positive or negative word can not conclude the over-
all sentiment of a sentence in the case of sarcasm. Thus, the saliency map for the NLP
domain can be interpreted as assigning importance factors to each word in an input doc-
ument. Fig. 1.4 shows a saliency explanation for a binary text classifier from the work by
Ribeiro et al. [64].

1.2 Thesis Overview

1.2.1 Motivation

A constantly increasing number of real-world applications and systems have been powered
by deep learning. Within these applications, many deep learning empowered applications
are life crucial, raising great concerns in the field of safety and security. Due to the lack of
interpretability and transparency in DNN, there has been a considerable surge of research
interests in DNN explainability methods for shedding light into the “black box” nature
of the DNN. Many explainability algorithms manifest their interpretation in a form of
input attribution [99, 72, 75, 53, 17, 64]. These explainability methods aims to understand
what features are important helps improve deep learning models, and build trust in the
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model prediction and isolates undesirable behaviour. Furthermore, there are many open
source and commercial explainability toolkit mainly featuring input attribution algorithms
for understanding machine learning models [13, 5]. Due to the wide adoption of input
attribution algorithms, we focus primarily on input attribution explainability methods
and use explainability methods and input attribution explainability interchangeably in the
following study.

While saliency map help researchers gaining new insight about DNN’s decision-making
process, much of the evaluation for explainability methods have been largely subjective,
where the produced explanation is up to the interpretation of the user. Ironically, no
quantitative assessment is carried out to ensure neither correctness nor coherency of the
explainability methods. This is largely attributed to the fact that it is challenging to
evaluate whether an explanation of model behaviour is reliable. First, there is no ground
truth. If what was important to the model for making a decision, we would not need
to estimate feature importance in the first place. Second, it is unclear which of the nu-
merous proposed interpretability methods that estimate feature importance one should
select [99, 72, 75, 53, 17, 64]. Many feature importance estimators have interesting the-
oretical properties (e.g. preservation of relevance [6] or implementation invariance [80]).
However, even these methods need to be configured correctly [57, 80] and it has been shown
that using the wrong configuration can easily render them ineffective [42]. Furthermore,
the subjectiveness around the current evaluation approach makes it difficult to judge and
compare between different explainability methods. Last, through experiments, we found
that tested explainability methods produced inconsistent, sometimes dramatically differ-
ent, explanations for the same input and model. As such, it raises new concern that whether
the identified saliency map is reflective of what DNN is leveraging for its decisions. These
concerns and difficulty hinders the level of human trust in not just the DNNs themselves
but also in the explainability methods as well. Therefore, an objective and machine-centric
evaluation strategy is needed for both assessing the quality of the produced explanation
and comparing the performance of different explainability methods.

1.2.2 Contributions

In this study, we propose two quantitative assessment metrics for evaluating the perfor-
mance of explainability methods, namely Impact Score and Impact Coverage. Impact
Score aims to evaluate whether the produced explanation is reflective of the DNN’s decision-
making dependence in the input features. This is done via the notion of decision-making
impact analysis. More specifically, Impact Score quantifies the level of impact over a
DNN model’s decisions and confidences in the absence of the critical factors identified by
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an explainability method. We also wish to assess the performance of explainability meth-
ods with the presence of directed erroneous decisions (e.g., under adversarial distractions).
Under the directed erroneous scenarios, the critical factors are largely known, as the di-
rected distraction is the casual of the wrongful decision. As such, we introduce Impact
Coverage, which quantifies the coverage of the identified critical factors on the adversarial
impacting factors. Based on these metrics, we conduct a comprehensive analysis of the per-
formance of three different state-of-the-art explainability methods from the recent research
literature on the three tasks across different domains, namely image classification, speech
utterance classification, and sentiment classification. The explainability methods tested in
our experiments are LIME [64], SHAP [53] and Expected Gradient (EG) [17]. Through
experiments, we observe that the explanation produced by the explainability methods does
not fully reflect the critical factors deemed by the neural network during its decision-making
process. The empirical evidence also demonstrates that no single explainability methods
can produce steady better results across different task domains and different test scenarios.

The major contributions of this thesis are:

• assessing the performance of explainability methods via the notion of decision impact
analysis;

• assessing the performance of explainability methods under directed erroneous sce-
nario by leveraging adversarial attack;

• quantitatively comparing the performance of the state-of-the-art explainability meth-
ods, such as LIME [64], SHAP [53] and Expected Gradient (EG) [17], through ex-
periment.

1.2.3 Outline

The rest of the thesis proceeds as follows: Chapter 2 describes the background theory on
deep learning in particular convolutional neural network(CNN) that is the main algorithm
this work aims to gain more insight on. Furthermore, different CNN architectures and
feature pre-processing techniques are elaborated in detail for classification tasks with dif-
ferent data modalities, such as image, audio, and natural language text. It is essential to
understand the differences between task domains, as it improves the model accuracy and,
more importantly, ensures the correct configuration and usage of explainability methods
presented in this work. Chapter 3 first discusses two main strategies in current explain-
ability methods researches: proxy approach and direct approach. Later, we illustrate the

8



high-level concepts of three explainability methods tested in this work and the reason be-
hind choosing them. In the last section of Chapter 3, we compare proposed quantification
metrics with other metrics presented in the recent literature. Chap 4 puts forward in de-
tail the proposed quantification metrics, namely Impact Score and Impact Coverage.
These proposed metrics aim to shed light on the behaviours of explainability methods un-
der both general and erroneous scenarios. Experiment setting and results are presented in
Chapter 5 along with some discussion on the obtained results. Finally, we conclude with
Chapter 6 where a summary and insights of this work are presented.
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Chapter 2

Background

2.1 Deep Learning

Deep learning is part of a boarder family of machine learning methods based largely on
artificial neural networks. The artificial neural network, which was discovered first in the
late ’80s and early ’90s, is based on a set of algorithms and mathematical models that try
to learn high-level abstractions representation in data using multiple layers of non-linear
transformation.

In recent years, deep learning [49] has been widely adapted to many different problems,
such as image classification [45], speech recognition [28] and natural language process-
ing [56], and has demonstrated state-of-the-art results for these problems. Apart from the
fact that the design of deep learning architectures was initially inspired by the nervous
system of humans, most of the success in the recent surge of deep learning architectures
have also attributed to

• the advancement of computation power, such as usage of hardware accelerators(GPUs)
for training,

• large scale of public available dataset, such ImageNet [45] and LibriSpeech [59],

• the availability of open-source deep learning frameworks, such as TensorFlow [1] and
PyTorch [60].

Different deep learning models have been proposed using both, supervised and un-
supervised approaches for learning high-level abstraction from given data. To name a

10



Figure 2.1: An illustration of a deep learning neural network

few deep learning models, these include convolutional neural networks (CNN), deep be-
lief networks, autoencoders, recurrent neural networks (RNNs) and Restricted Boltzmann
Machine (RBM). Despite the difference in model architectures, these deep learning models
share the same underlying pipeline, as shown in Fig. 2.1. Recent studies [49, 27, 12] have
shown that CNNs are the best architectures to perform recognition and classification tasks.
This thesis studies the performance of explainability algorithms for CNNs.

2.1.1 Neural Networks

For conventional machine learning algorithms, it is difficult to extract well-represented
features due to limitations such as the curse of dimensionality [8], computational bottle-
neck [77], and requirement of the domain and expert knowledge. The neural network is
a type of deep learning method that is capable of learning useful patterns from raw data
without explicit programming. It solves the problem of representation by building multi-
ple simple features to represent sophisticated high-level concepts. For example, a neural
network image classifier represents an object by describing edges, fabrics, and structures
in its low-level hidden layers. A neural network is composed of a set of layers, where
each network layer is a set of perceptrons (artificial neurons), as shown in Fig. 2.1. Each
perceptron maps a set of input signals to output values with an activation function. The
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function of a neural network is formed in a chain:

f(x) = f (k)(f (k−1)(· · · f (2)(f (1)(x)))) (2.1)

2.2 Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs or ConvNets) are feed-forward neural networks that
are biologically-inspired variants of the multi-layer perceptrons (MLPs) with learnable
weights and biases. Unlike the MLP, of which the neurons between layers are densely
connected, the connection between different layers of CNNs is locally-connected to sub-
regions of the previous layer. These sub-regions, denoted as receptive fields, are titled to
cover the whole input spatial dimension. CNNs learn these sub-regions filters i.e., weights
of the filters over the input space.

2.2.1 Convolutional Layers

Most of the commonly used complex CNN [45, 74, 81, 27] can be constituted by stacking
convolutional, pooling and fully-connected layers together. Among these three types of
layers, the convolutional (Conv) layer is the core building block of a CNN. The Conv layer
consists of a set of learnable filters. Each filter is small spatially but extends through the
full depth of the input volume. The number of filter spatial dimensions can be an arbitrary
positive integer, but only the 1D, 2D and 3D Conv layers are commonly used. Without
loss of generality, we denote a (D+ 1)-dimension input tensor as I ∈ RS×Cin , where Cin is
the number of channels, and S ∈ R[1...D] is the general representation of spatial dimensions.
The filter of a D-dimension Conv layer is denoted as W ∈ RCin×K×Cout , where Cin is the
number of input channels, K is the kernel spatial size, and Cout is the number of filters.
Here, some spatial dimension is omitted for a clearer presentation. The (i, j) element of a
output tensor, O ∈ RS×Cin , of a Conv layer can be computed with a corresponding bias b
as follows:

Oi,j = I ∗W =

Cin∑
m

K∑
n

Ii,m ×Wm,n,j + b (2.2)

2.3 Different Data Modalities Classification

With rapid progress and significant successes in a wide spectrum of applications, deep
learning models have demonstrated its efficacy on different data modalities [49, 45, 28, 56],
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such as image, audio, text, etc. One of the key factors for such success is attributed to
the expressiveness of deep learning models. Extreme expressiveness enables fitting a wide
range of complex functions and extracting of high-level abstraction from data. Despite
the theoretically identical expressiveness of neural networks, It has been demonstrated by
empirical evidence that vanilla neural network (MLP) does not generalize well in high
dimensional settings. This is arguably attributed to the overfitting issue. By incorporating
priors about different data modalities, various neural network architectures, such as CNN,
recurrent neural networks (RNNs) and attention neural networks, have been successfully
applied on image [44, 27], audio [28, 25], and text [86, 15] data. While RNNs or attention
neural networks may achieve the state-of-the-art performance on audio and text data,
CNN-based architecture has not fallen out of favours given its simplicity and inference
speed. What’s more, recent works [84, 41, 50, 98, 88, 55, 37, 87] have shown that CNN-
based network architectures can achieve comparable performance on audio and text data.
In this work, for a concise purpose, we will focus on the performance of explainability
methods on CNN-based network architectures.

Despite the powerful expressiveness of CNNs, there is no one-fits-all model solution for
different data modalities, since different data modalities are represented in fundamentally
different formats. To be more concrete, a colour image is represented as 3-dimension vol-
ume; a PCA encoded audio is represented as a 1-dimension vector; a natural language text
is represented as a string. Given these differences, unique data processing and modelling
techniques have been proposed leveraging domain knowledge. These techniques have fur-
ther advanced the frontier of deep learning model performance. In the remainder of this
section, we will discuss different modality data processing techniques and their correspond-
ing CNN architectures from past literature.

2.3.1 Visual Image Classification

In ILSVRC 2012 [69], Krizhevsky et al. [45] demonstrated the exceptional performance
of a CNN architecure, namely AlexNet. Many different network architectures, such as
VGGNet[74], InceptionNet [81], ResNet [27], ResNeXt [92] and SENet [31] have been
proposed and continue to improve the performance of CNNs on image classification task.
Among these network architectures, ResNet [27] has gained more traction because of its
implementation simpilicity, training stability and generalization ability.
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(a) Residual building block.

(b) Overview of ResNet-34 architectures.

Figure 2.2: Residual connection and ResNet architecture [27].

CNN Architecture

The key idea from ResNet, by He et al. [27], is the concept of residual learning. Empirical
evidence suggests that additional layers in deep CNNs cannot be merely “tacked on” to
shallower networks. Specifically, He et al. proposed that it may be easier to learn the resid-
ual H(x) = F (x) + x instead of the true mapping F (x), since it is empirically easier for
propagating first-order gradients back to shallow layers of deep CNNs when Backprop [68]
optimization is applied. Recent literatures[51, 97, 26] have also shown theoretical evidence
supporting the training stability and generalization ability of residual learning. In ResNet,
residuals are expressed via connections between layers, shown in Fig. 2.2a, where an input
x to a weight layer i is added to the output of some downstream weight layer i+k, enforcing
the residual definition H(x) = F (x) +x. In this work, we leverage the ResNet-34 architec-
ture (Fig. 2.2b) from the work by He et al. [27]. For the concise reason, the explainability
methods are tested on the same ResNet-34 architecture for the image classification task.

2.3.2 Speech Utterance Classification

Limited-vocabulary speech recognition [89], also known as keyword spotting (KWS), has
recently attracted much interest as an important application of voice-activation system
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(e.g. ”ok google” or”hey siri”) for mobile, IoT, and other embedding devices. The primary
goal of KWS is to detect a relatively small set of predefined keywords in a stream of user
utterances. Such capability can enable voice interfaces with which the user can interact in
a natural, verbal manner. This fully hand-free interface is ideal as a complement for full
automatic speech recognition, which is typically performed in the cloud.

Figure 2.3: Speech utterance network architecture. (left) Audio signal; (middle) MFCC
representation; (right) res15 architecture with its residual block [52].

Feature Extraction and Input Pre-processing

Based on the past literature [28], a very effective strategy for leveraging deep neural net-
works for limited vocabulary speech recognition is to first transform the input audio signal
into Mel-Frequency Cepstrum Coefficient (MFCC) representations (see Fig. 2.3). For re-
ducing audio signal noise, a band-pass filter of 20Hz/4kHz is applied to the input audio.
Inspired by [70], the input feature is forty-dimensional MFCC frames stacked using a 30ms
window and 10ms frameshift. Substantially, the MFCC representation of the audio signal
is used as the input to the deep CNNs.

CNN Architecture

In this study, we leveraged the deep residual network architecture proposed by Tang et
al. [84], which they refer to as res15 and was shown to provide state-of-the-art accuracy
when it was first published. In particular, Tang et al. proposed to use a residual block
architecture where the first layer of the block is a bias-free convolutional layer with weights
W ∈ R(m×r)×(ni−1×ni), where m and r are the width and height of convolutional kernel,
and ni−1 and ni are the number of channels for the previous convolutional layer and the
current convolutional layer, respectively. After the convolutional layer, a ReLU activation
and batch normalization [33] is appended in the residual block. In addition, convolutional
dilation, (dw, dh), is used to increase the receptive field of the network. Increasing reception
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fields in deeper layers allow the network to consider the input entirely without the need
for very deep layers. Fig. 2.3 (right) shows the overall architecture and the detail of one of
the residual blocks.

2.3.3 Text Sentiment Classification

Text sentiment classification is the interpretation of emotions within text data using natural
language processing (NLP) techniques, allowing businesses to identify customer sentiment
in online feedback. Within NLP, much of the work with deep learning approaches have
involved learning word vector representations through neural language models [7, 94, 55,
86, 15, 62] and performing composition over the learned word vectors for classification [14].
In the recent development of NLP, self-supervised pre-trained deep learning models such
as BERT [15] and GPT [62] have demonstrated dominating performance across all NLP
tasks including sentiment classification. However, the dynamic and complex nature of these
models has been preventing their wide adaption. What’s more, explainability methods in
recent years were not proposed for these gigantic models (e.g. GPT-2, a successor to GPT,
has 1.5 billion parameters). The correctness of explainability methods on these models was
not validated. Thus, we, in this study, focus solely on the CNN-based models, specifically
the work by Kim et al. [41], excluding the aforementioned pre-trained models.

Feature Extraction: Word2Vec [55]

Word vectors, wherein words are projected from a sparse, 1-of-V one-hot encoding (where
V is the vocabulary size) onto a lower-dimensional vector space are essentially feature
extractors that encode semantic features of words in their dimensions. In such dense
representations, semantically close words are likewise close, in terms of Euclidean or cosine
distance, in the lower dimensional vector space. Specifically, Word2vec [55], inspired by the
Skip-gram model [54], uses shallow neural networks for learning distributed representation
of words in a vector space from large amounts of unstructured text data. Somewhat
surprisingly, the learned word representations display interesting properties:

• Semantic Similarity: Word2vec vectors implicitly encode semantic similarities of
discrete words. Measuring cosine similarity, semantic similar words are grouped
closely in the vector space. Table 2.1 shows the top nine words closest, in terms of
cosine distance proximity, to the word “Sweden”.
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Table 2.1: List of words associated with “Sweden” using Word2Vec [55], in order of prox-
imity. The nations of Scandinavia and several wealthy northern European, Germanic
countries are the closest nine words.

Word: Sweden Cosine Distance
Norway 0.760124

Denmark 0.715460
Finland 0.620022

Switzerland 0.588132
Belgium 0.585835

Netherlands 0.574631
Iceland 0.562368
Estonia 0.547621
Slovenia 0.531408

• Linear Translation: Word2vec vectors explicitly encode linguistic regularities and
patterns. Many of these patterns can be represented as liner translations. For exam-
ple, the result of a vector calculation vec(“Madrid”)−vec(“Spain”)+vec(“France”)
is closer to vec(“Paris”) than any other word.

Word2Vec [55] is similar to an autoencoder, encoding each word in a vector, but rather
than training with the reconstruction objective, Word2Vec [55] trains words against words
that neighbour them in the corpus. The intuition behind is that the semantic meaning
of a word can be implicitly inferred by its surrounding context in a large corpus. This
prior can be done in one of the two ways, either using context to predict a target word,
which is known as the continuous bag of words (CBOW), or using a word to predict a
target context, which is proposed in Skip-gram model [54]. For better illustration, Fig 2.4
shows the high-level training objective of CBOW and Skip-gram [54]. Mikolov et al. [54]
demonstrate that Skip-gram can learn more efficiently and produce more accurate results.
Thus, we will use Word2Vec [55], a successor of Skip-gram, as our feature extraction for
the text sentiment classification task in this study.

The training objective of the Skip-gram model [54] is to find word representations that
are useful for predicting the surrounding words in a sentence or a document. More formally,
given a sequence of training words w1, w2, w3, ..., wT , the training objective is to maximize
the average log probability

1

T

T∑
t=1

∑
−c5j5c,j 6=0

log p(wt+j|wt) (2.3)
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Figure 2.4: Comparison between CBOW and Skip-gram [54]. CBOW (left) predicts the
current word based on the context and Skip-gram [54] (right) predicts surrounding words
given the current words.

18



Figure 2.5: The text sentiment classification network architecture from the work by Kim
et al. [41].

where c is the size of the training context. Larger c results in more training examples and
thus can potentially lead to higher performance, at the expense of the training time.

CNN Architecture

In the work by Kim et al. [41], the authors show that a simple 1D CNN on top of
Word2vec [55] word vectors obtained from an unsupervised neural language model can
achieve comparable performance on text sentiment classification task. Let Im ∈ RK be the
K-dimensional word vector corresponding to the m-th word in the sentence. A sentence of
length N (padded with zeros where necessary) is concated sequentially forming an input
matrix I1:N ∈ RN×K as following

I1:N = I1 ⊕ I2 ⊕ ...⊕ IN (2.4)

where ⊕ is the cocatenation operator.

A 1D convolution operation involving a filter W ∈ RH×K is applied to a window of
H words to produce a new feature. An output feature om is formally computed from a
window of words Im:m+h−1 as following

om = σ(W · Im:m+h−1 + b) (2.5)
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Figure 2.6: A demonstration of adversarial example applied to a deep learning model. By
adding an imperceptibly small vector, the classification result is changed [24].

where σ is a non-linear activation function and b ∈ R is a bias term. V numbers of 1D
convolutional filters are applied across the sentence length dimension to produce a feature
map, O1:N ∈ RN×V ,

O1:N = O1 ⊕O2 ⊕ ...⊕ON

where Oi = [oi,0, oi,1, ..., oi,V ]
(2.6)

After the 1D Conv layer, a max-over-time pooling operation [14] is applied over the feature
map and take the maximum value Ô = max{O}. The idea is to capture the most important
feature for each feature map. This pooling scheme naturally deals with variable sentence
lenghts. The overall CNN archcitecture is shown in Fig. 2.5.

2.4 Adversarial Attack for Neural Network

Driven by the emergence of massive data and hardware acceleration, deep learning requires
less hand-engineered features and expert knowledge. Despite great successes in numerous
applications, recent stuides [83, 24, 46, 73, 19, 23, 10] find that deep learning model is
vulnerable against well-designed input samples. In the work by Szegedy et al. [83], the
authors first generated small perturbations on the images and fooled a well-performed
deep learning model with high probability. These misclassified samples were named as
Adversarial Examples, as shown in Fig. 2.6 [24] where the deep learning model is fooled
by an adversarial example to classify a “panda” as a “gibbon”. Not isolated to the image
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classification task, the adversarial attack has been used to manipulate stop signs in a traffic
sign recognition system, or remove pedestrians segmentations in an object recognition
system. Furthermore, this line of work has also been extended to the speech recognition
(ASR) and NLP models.

2.4.1 Adversarial Example Generation

Given a trained deep learning model M , and an original input data sample x, generating
an adversarial example x′ can generally be described as a box-constrained optimization
problem:

min
x′
‖x′ − x‖

s.t. M(x′) = y′,

M(x) = y,

y′ 6= y

(2.7)

where y and y′ denote the output label of x and x′, ‖ · ‖ denotes the custom constraint
(e.g. the L2 distance) between two data sample.
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Chapter 3

Explainability Methods and
Assessments

3.1 Explainability methods

The explainability methods in current research literature can generally be divided into two
main categories [85]. In the first category of explainability methods, which we will refer
to as proxy strategies [64, 53], a deep neural network is approximated by a proxy model
and the decision-making of the deep neural network is interpreted by querying the proxy
model. In the second category, which we will refer to as direct strategies [80, 76, 72,
75, 17, 91] the decision-making process of a deep neural network is mainly interpreted by
studying the internal behaviour within a deep neural network directly and then surfacing
that information as an explanation for the decision-making process of the network. The
most well-known of the proxy method is LIME [64], which takes advantage of a linear proxy
model to approximate the behavioural of the targeted machine learning model and then
interprets the original model based on the learnt proxy. Proxy approaches are considered
as “black box” approaches where the explainability method does not have direct access to
the inner workings of the network and the proxy model approximates it given the input
and the output to the network. On the other hand, direct explainability algorithms are
usually considered as “white box” methods as they require access to the inner workings
of a deep neural network such as gradients and activations at different layers for a given
input to identify the key factors within the input that is critical to the decision-making
process. For example, by leveraging information about gradients, it is possible to quantify
how much change in the input data would turn the decision of the network to another
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output and as such measure the importance of each input in the decision-making process.
Notable gradient-based direct explainability approaches include Integrated Gradient [80],
Guided Backpropagation [76], Guided GradCAM [72], SmoothGrad [75] and Expected
Gradients [17].

3.1.1 Local Interpretable Model-agnostic Explanations (LIME)

Local Interpretable Model-agnostic Explanations (LIME) [64] is a proxy method that lever-
ages the learning of local surrogate models to explain deep neural networks. In this ap-
proach, a surrogate model is used to approximate the underlying behavioural of the deep
neural network. The deep neural network is probed and the surrogate model is trained
based on the prediction outputs of the deep learning model. Different permutation of sam-
ples is generated and a new dataset is constructed based on the generated samples and the
corresponding predictions of the deep neural network. Then, an interpretable model (i.e.,
surrogate model) is used and is trained by the generated dataset. As such, the training
process can be formulated as follows:

I(x) = argmin
g∈G

L(f, g, θ) + Γ(g) (3.1)

where I(x) encodes the explanation for instance x via the optimal function g in the possible
set of function G. f represents the deep neural network, Γ(·) identifies the complexity of
the function g to be used in the explainability process, and L is the loss function which
measures the similarity of surrogate model and the original model (i.e., here the deep neural
network). In this study, we leverage ridge regression models as the surrogate models.

3.1.2 SHapley Additive exPlanations (SHAP)

SHapley Additive exPlanations (SHAP) [53] is an explainability method that measures
the importance of each feature for a particular prediction. This algorithm belongs to the
family of additive feature attribution methods, where the explanation is expressed as a
linear function of features. To do so, SHAP replaces each feature xi in the model with a
random variable y to determine whether the feature xi is present or not:

g(y) = γ0 +
m∑
i=1

γi · yi (3.2)
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where g(y) is a local surrogate model of the original model and γi encodes how much the
presence of feature i contributes to the final output. γi is calculated based on the difference
to the output of the original model made by including the feature i for all the combinations
of features other than i.

3.1.3 Expected Gradients (EG)

Expected gradient (EG) algorithm is an extension of integrated gradient method [80] with
lower hyper-parameters. Being a method in the family of feature attribution algorithms [71,
80], this method like other approaches in this family tries to identify the difference between
a model’s current prediction given the changes in the input and the prediction based on
the baseline input. While the baseline input is application dependent in the integrated
gradient method [80] and usually is a black image where all pixels are zero, the expected
gradient approach addresses this by defining the value of a feature based on integrating
over the interested dataset. Therefore, the expected gradients can be expressed as follows:

Gi(x) = E
x′∼D,α∼U(0,1)

[
(xi − x′i)×

δf(x′ − α(x− x′))
δxi

]
(3.3)

where x′ is the sample drawn from dataset D and α is sampled from uniform distribution,
x represents the target input, E is the expectation, x′ is baseline input. By doing so, it
does not need to specify the baseline x′ since the expected value is calculated based on the
sampling trick.

3.1.4 Choices of Explainability methods

The field of XAI has seen a resurgence in recent years. There are many more recent and
interesting explainability methods being proposed. However, given the scope of this study,
we only experimented with three of the exiting explainability methods considering their
impactness, representativeness and accessibility of open source code. We chose LIME as
the reference baseline, because of its popularity and simplicity. There are many open-
source and commercial explainability toolkit featuring LIME as one of the algorithms for
understanding machine learning models [13, 5]. As for SHAP rather than other methods
like LRP, besides its popularity [13, 5], past literature [53] has shown that SHAP generalizes
several explainability methods including LRP, thus making it a good choice to represent
many methods that it generalizes. According to the work by Erion et al. [18], Expected-
Gradient outperforms other gradient-based explainability methods such as GradCAM and
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Integrated-Gradient. As such, we chose these explainability methods, to provide a fair
representation of the different exiting explainability methods. Lastly, it is a time-consuming
and error-probing task to implement an explainability method from literature. Thus, we
chose the aforementioned three explainability methods since their code, from their original
authors, are publicly available. As one of the directions for future work, we would like to
include more explainability methods in the future.

3.2 Explainability Assessment in Literatures

Understanding what input feature is important helps researchers gaining new insight into
the models’ decision-making process, builds trust in the model prediction and isolates
undesirable behaviours. Also, many of the explainability methods proposed in recent liter-
ature demonstrate interesting theoretical properties, such as preservation of relevance [6]
and implementation invariance [80]. Unfortunately, it is challenging to evaluate whether an
explanation of model behaviours is trustworthy. Unlike the machine learning process build-
ing process, where the “ground-truth” data is provided, which is important to a model’s
decision-making is completely unknown. Due to this reason, we see a gap between the
current explainability methods and their assessment. This gap hinders the level of human
trust in not just the deep neural networks but also in the explainability methods them-
selves. In fact, quantitative methods to assess the performance of explainability methods is
critical to not only trust in decisions made but also in the choice of method for deployment
and research development, especially since different explainability methods can produce
drastically different explanations given the same input data and same model and so it is
difficult to know if algorithmic extensions on such explainability approaches actually im-
proves interpretability. In this section, we will discuss different explainability assessments
in the literature.

3.2.1 Human Assessment

Since there is no clear way to measure “correctness”, much of the evaluation for explain-
ability methods have been largely subjective, where the produced explanation is up to the
interpretation of the user. It is most common that comparing the relative merit of differ-
ent explainability methods is based upon human studies [72, 66, 47, 48] which interrogate
whether the ranking is meaningful to a human. In the work by Selvaraju et al.[72], the au-
thors proposed to evaluate the class discrimination ability of the saliency map as the proxy
evaluation metric for explainability assessment. The class discrimination ability is based
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Figure 3.1: AMT interfaces for evaluating class discrimination ability from the work by
Selvaraju et al. [72]

Figure 3.2: Saliency maps for some common methods compared to an edge detector from
the work by Adebayo et al. [2]. An edge detector produces outputs that are strikingly
similar to the outputs of some saliency methods. In fact, edge detectors can also produce
masks that highlight features which coincide with what appears to be relevant to a model’s
class prediction.
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on a questionnaire asking human workers on Amazon Mechanical Turk (AMT): “Which
of the two object categories is depicted in the image?”, as shown in Fig. 3.1. However,
this evaluation metric can produce misleading results for inherently flawed explainability
methods. As shown by Adebayo et al. [2], a simple edge detector can produce outputs
that are strikingly similar to the outputs of some saliency methods (Fig. 3.2). In fact, edge
detectors can also produce masks that highlight features that coincide with what appears
to be relevant to a model’s class prediction.

Human visual attention has been extensively studied for decades not only in cognitive
psychology and neuroscience [11], but also in computer vision community [35, 9]. This is
because such a selective visual attention mechanism has an essential role in human percep-
tion. Inspired by the selective attention in the visual cortex, artificial attention is designed
to the most task-relevant input signal. The notion of artificial attention shares a similar
concept as the saliency map does, where both aim to highlight the critical region in the
input signal. In the work by Lai et al. [48], the authors proposed to evaluate the level
of alignment between machine saliency map and human attention. Arguably, measuring
the level of alignment only considers the interpretability of the saliency map, but neglects
the faithfulness of the saliency map. A saliency map that overlaps significantly with the
human gaze area offers is easier to interpret, as human attention concentrates more on
the task-relevant parts of a visual stimuli [34]. Yet, a good saliency explanation should be
“faithful” to the model, where faithfulness is the ability to accurately explain the function
learned by the model. Naturally, there exists a tradeoff between the interpretability and
the faithfulness of an explanation: a perfectly interpretable explanation can have no cor-
relation with the function learned by the model [2]. Using human attention reveals the
interpretability of the explainability methods, but does not reflect the faithfulness of these
methods.

Lastly, even though the human-in-the-loop evaluation offers an intuitively interpretable
solution, besides the aforementioned issues, human-centric evaluation methods suffer from
two major issues: subjectiveness and cost-inefficiency. The “correctness” of a saliency
explanation may be interpreted differently by different end-users. As such, it is less reliable
and more difficult for quantitative comparison between different explainability methods.
Furthermore, an objective and trustworthy evaluation involves assessing a massive amount
of explanation, but not a countable amount of examples. Due to the large amount required,
having a human in the evaluation loop is subject to substantial cost in terms of both time
and finance.
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3.2.2 RemOve And Retrain (ROAR)

The RemOve And Retrain (ROAR) metric introduced by Hooker and et al. [30] re-trains
the neural network with the feature-modified data for aligning the training and evalua-
tion distributions and assess explainability performance. Our approach differs significantly
from ROAR in several key ways. Network modification: while ROAR modifies the
network weights through retraining during the assessment, the proposed method does not
need to change the network parameters for the explainability purposes. We argue that by
modifying the weights, the network has fundamentally very different behaviour and thus
does not reflect the decisions made by the original network. As such, our approach serves
to better explain the original network’s behaviour. Assessment criteria based on fea-
ture removal : both ROAR and the proposed Impact Score assess the performance based
on feature removal techniques; however, ROAR assesses an explainability method based on
model accuracy degradation via re-training, whereas the proposed metric, Impact Score,
measures the performance by the level of decision impact. We argue that understand-
ing what is critical to a model’s decision-making process gives a more direct assessment
than indirectly assessing through model degradation via re-training. Directed Injection
Perturbation : unlike ROAR, the proposed method further injects directed features for
testing the explainability methods under the erroneous setting.

3.2.3 Deletion and Insertion

The deletion metric, proposed by Petsiuk et al. [61], measures the confidence changes
when the identified feature is gradually removed. While our Impact Score metric might
look similar to the deletion metric, the deletion metric only considers the change in class
confidence. This solo dependence overlooks the decision level impact. For cases where the
class confidences are close (e.g. fine-grain classification), the discriminative feature can be
small and only changes the class confidence value by a small amount, but enough to shift
the original decision. The deletion metric under-estimates the explainability methods’
ability for identifying such discriminative features. The proposed Impact Score metric
considers both the confidence level impact and the decision level impact. Besides, our
impact coverage measures the performance of explainability methods directly without the
aims of proxy metrics, such as accuracy or confidence.
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Chapter 4

Methodology

4.1 Quantifying Explainability

Much of research literature around explainability, particularly for visual perception tasks
such as image classification, has revolved around the subjective visual interpretation of the
explanations produced by the explainability method. This usually takes on the form of
visual saliency maps, where salient regions in the map produced using the explainability
method of choice are considered as critical regions influencing the decision made by a
network. However, due to the purely qualitative nature of such visual assessments, it is
very challenging to get a good sense as to how well an explainability method is performing,
how useful or meaningful the provide an explanation is relative to its influence over the
network’s decision and its associated confidence, and more importantly how well it performs
compared to other explainability methods. As such, this can limit progress in the field
of explainable artificial intelligence since there is no method of benchmarking based on
subjective visual assessment.

More recently, there have been explorations into human-centric strategies for quantify-
ing explainability performance in the case of visual perception, where the visual saliency
map produced using a given explainability method for a given image is compared with a
visual attention map created based on gaze information collected from human subjects [48].
While such an approach is a step towards the quantification of explanations produced by
explainability methods, one of the biggest limitations of such an approach is the underly-
ing assumption that a deep neural network makes decisions in a similar manner as human
subjects, which is often not true. As such, this human-centric approach to quantifying
explainability performance provides very little insight into the actual driving factors of
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the decision-making process of deep neural networks. Furthermore, this approach requires
considerable human gaze information to be collected, which is simply impractical for most
real-world scenarios.

To address the limitations of human-centric strategies for quantifying the performance
of explainability methods, we take a drastically different direction by instead exploring
a more machine-centric strategy where we quantify performance based on the decision-
making behaviour of the network itself. More specifically, we aim to quantify the perfor-
mance of explainability methods on deep neural networks via the notion of decision-making
impact analysis, where we instead study the quantitative impact of critical factors iden-
tified by an explainability method for a given decision made by a network based on the
changes in decisions and associated confidences in the decisions of the network itself.

In the below sections, we will first define a performance metric for quantifying the
impact of critical factors identified by an explainability method on decisions and the con-
fidence in those decisions made by a given deep neural network. Next, we introduce an
additional performance metric for directed erroneous decision scenarios based around the
concept of impact coverage.

4.1.1 Assessing Impact on Decisions

In order to facilitate for the quantitative assessment of the performance of a given ex-
plainability method, the first step is to first define and formulate a performance metric for
performing such an assessment. Motivated towards taking a machine-centric strategy to
quantitative performance assessment of a given explainability method on a particular deep
neural network, we aim to develop metrics that quantify the importance of critical factors
identified by the explainability method for a given decision made by a network based on
the impact these factors have over network decisions and the associated confidences. We
consider the critical factors c identified by an explainability method M to be important to
a decision y made by a deep neural network N for a given input x if either of the following
conditions is met:

• Decision-level impact: The decision made by the deep neural network changes in
the absence of critical factors.

• Confidence-level impact: The confidence of the deep neural network in its decision
z changes by τ% in the absence of the critical factors.
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Figure 4.1: Impact Score flow diagram. Firstly, the prediction, {y, z}, of an input sample,
x, is inferred with the target network, N . Secondly, the explanation, c, is computed with
the testing explainability method, M . Thirdly, the prediction, {y′, z′}, of critical-factor-
masked sample, x′, is inferred with the same target network, N . Lastly, Impact Score is
calculated with the original prediction, {y, z}, and the masked prediction, {y′, z′}.

The motivation behind this definition of importance for critical factors as identified by
a given explainability method is based on the idea that, if the critical factors are indeed
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crucial to the decision-making process of the deep neural network, then the absence of
these critical factors in the given input will have such an impact that the network behaves
in a way that it would either be significantly less confident in its current decision, or so
unconfident in its decision that its confidence in another decision is higher and thus leads
the network to make a different decision altogether.

In this study, we formulate the performance metric I, which we will refer to as the
Impact Score, as follows. Let the relationships between the critical factors c, explainability
method M , the input x, the decision y, confidence in the decision z, and the network N
be expressed by the following equations:

{y, z} = N(x), (4.1)

c = M(x,N), (4.2)

where c ∈ x. Based on this, we can define the input in the absence of c as identified by M
as,

x′ = x− c, (4.3)

and the decision given x′ as input into N as,

{y′, z′} = N(x′). (4.4)

Therefore, in the general scenario, based on the conditions defined above that the critical
factors c for a given input x as identified by M must meet to be deemed as important, we
can define the Impact Score I across a set of n inputs X = {x1, x2, . . . , xn} as:

I =
1

n

n∑
i=1

((y′i 6= yi) ∨ (z′i ≤ τzi)) . (4.5)

where i denotes the ith input. In this study, we set τ = 0.5 to indicate that the network
has lost half of the confidence it had on its original decision. Finally, we also introduce
a stricter variant of the above Impact Score, denoted by Istrict where we only consider
decision-level impact:

Istrict =
1

n

n∑
i=1

(y′i 6= yi) . (4.6)
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4.1.2 Assessing Erroneous Coverage

In the scenario where we wish to study the impact in directed erroneous decisions (e.g.,
decisions made under the influence of adversarial examples), we introduce an additional ap-
proach to quantitatively assessing the performance of the different explainability methods
since the critical factors that the network leverages to make a decision are largely known a
priori to the evaluation (e.g., in the case of an adversarial patch, the critical region that is
important to the decision-making process is the adversarial patch itself) More specifically,
we can further quantify the importance of the identified critical factors c based the amount
of coverage of the adversarially impacted factors in x by the critical factors c. Let us define
the Impact Coverage metric Icoverage across a set of n inputs X = {x1, x2, . . . , xn} based
on the intersection-over-union between the adversarially impacted factors and the critical
factors across the given set of inputs:

Icoverage =
1

n

n∑
i=1

(ai ∨ ci)
(ai ∪ ci)

. (4.7)

where ai is the adversarially impacted factors in input xi. As such, the Impact Coverage
metric is designed to be high when heavy overlapping between the identified critical factors
and the adversarially impacted factors to reward strong alignment between the explanation
produced by the explainability method and the actual factors impacting decision.
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Figure 4.2: Impact Coverage flow diagram. Firstly, a input sample, x, is adversarially
modified, xadv, by an attacker, A. Secondly, the prediction, {yadv, zadv}, of the modified
sample, xadv, is inferred with the target network, N . Thirdly, the explanation, c, is com-
puted with the testing explainability method, M . Lastly, Impact Coverage is computed
by overlaying the adversarially modified set and the critical set.
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Chapter 5

Experiments

5.1 Experimental Setup

The conducted experiments and the explainability methods used in this study are described
below.

5.1.1 Experiment 1: General Scenario

For the first experiment, we quantitatively evaluate the performance of several state-of-the-
art explainability methods using the two variants of Impact Score (i.e., I and Istrict). The
purpose of this first experiment is the quantitatively evaluate explainability performance
under a more general scenario where decisions are made on untampered data inputs and
decisions are made by the network on such data inputs and is representative of the general
use case.

Image Classification

For each explainability method M , a ResNet-50 deep convolutional neural network is de-
signed for the task of image classification as the reference network Nimage. A subset of
the ImageNet [69] dataset is leveraged as input X. This experiment tasks the different
explainability methods to identify critical regions within a natural image that is important
to the class prediction made by the network. In order to test whether the identified region
is truly reflective of the importance deemed by the network Nimage, the I and Istrict are
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Figure 5.1: Example of a decision change due to the absence of critical regions in the
decision-making process. (left) original image; (center) identified critical region; (right)
prediction confidences for decisions made with the original image and with the absence of
critical regions. The absence of critical regions led to a change in decision, which means
the explanation reflects the impact on the decision.

computed across 410 different images from the ImageNet dataset, all of which are correctly
classified by the network Nimage. An example of a decision change that results from the
absence of critical regions identified by an explainability method is shown in Fig. 5.1.

Utterance Classification

To evaluate the performance of each explainability methods in the speech recognition do-
main, a ResNet variant network by the work of Tang et al. [84] is leveraged for the limited
vocabulary utterance classification task. More specifically, a ResNet-15 deep convolu-
tional neural network is trained as the reference network Nutterance using Speech Command
dataset [89]. The audio signal feature is transformed into Mel-frequency cepstral coeffi-
cients (MFCC) as the input feature of the reference network Nutterance. The explainability
methods are tasked to identify the critical region within the MFCC representation of an
audio signal. Similar to the image classification task, the I and Istrict is evaluated across
820 correctly classified utterance audio samples in the absence of the identified critical
region. Unlike the image classification task, the identified critical region is removed by
setting the value to −60. An example of a decision change that results from the absence
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of the identified critical region is showed in Fig. 1.3.

Sentiment Classification

Original Critical Token Removed

majidi is an unconventional story-
teller , capable of finding beauty in
the most depressing places

majidi is an unconventional <P>
, <P> of finding <P> in the
<P> depressing places

Figure 5.2: Example of a decision change due to replacement of critical tokens in the
decision-making process. (left) prediction confidences for decision made with original sen-
tences and with the critical tokens replaced sentence; (middle) the original sentence; (right)
the critical tokens replaced sentence. For keeping the sentence structure consistent, the
identified critical tokens is replaced with the padding token ‘ <P> ’. The differences be-
tween two sentences are highlighted.

In NLP domain, we use Stanford Sentiment Treebank dataset for sentence sentiment
classification task. Following the work by Kim et al. [41], a convolutional neural network is
leveraged as the reference network Nsentiment for evaluating the performance of the explain-
ability methods. Each token in the sentence is converted into its word2vec embedding [55]
representation and later used as the network’s input feature for better classification ac-
curacy. Each explainability method is tasked to identify the critical factors (the critical
tokens) that is important for the decision-making process of the network Nsentiment within
the input sentence. Similar to previous two task domains, the identified critical factor is
removed for the impact analysis metric I and Istrict. For removing the effect of the tokens
but keeping the sentence structure unaffected, the identified tokens is replaced with spe-
cial padding token ‘ <P> ’, which corresponding to the zero value vector in the word2vec
embedding space. An example of a decision change that results from the replacement of
the identified critical tokens is shown in Fig. 5.2.

5.1.2 Experiment 2: Adversarial Distraction

For the second experiment, we quantitatively evaluate the performance of several state-of-
the-art explainability methods using the two variants of Impact Score (i.e., I and Istrict),
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Figure 5.3: Example of a directed erroneous decision due to the adversarially impacted
area. (left) original untampered image, (center) tampered image with an adversarial patch,
(right) prediction confidences of decisions made with an untampered image and adversar-
ially tampered image. The adversarial patch leads to a change in decision.

as well as Icoverage for each explainability method M in the presence of ’distractions’ in
the form of adversarial patches to better study the impact in directed erroneous decisions.
With the adversarial patches being the control variable, the critical region that is important
to the decision-making process is largely known a prior to be the adversarial patch itself,
and as such Icoverage provides an additional quantitative indicator for the ability of the
explainability method to identify such adversarially impacted areas within the images that
has a direct impact in the decisions made by the deep neural network.

Image Classification

To study the performance of explainability methods in an erroneous scenario, we introduce
a visual ‘distraction’ for fooling the reference network Nimage. More specifically, we lever-
age the adversarial patches from the work of Brown et al. [10] as such ‘distraction‘. For
generating the adversarial patch, we fix the reference network Nimage aforementioned in
Experiment 1 image classification task and apply adversarial training for the same subset
of the ImageNet [69] dataset as Experiment 1 image classification task. Later, we ran-
domly (e.g. random translation and random rotation of the patch) overlay the resulting
adversarial patches on the same subset of images with different patch scales ranging from
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Figure 5.4: Example of a decision change due to adversarially impacted area. (top-left)
original MFCC representation of an utterance audio signal; (bottom-left) adversarially
tampered MFCC; (right): prediction confidences for the decision made with original MFCC
and with the adversarially tampered of the critical region. The adversarial patch leads to
a change in decision.

0.3 to 0.7. An example of a directed erroneous decision due to the adversarially impacted
area is known in Fig. 5.3. We compute I, Istrict, and Icoverage for each patch scale over the
test images, of which the prediction classes change to the adversarially targeted classes.

Utterance Classification

For creating the same directed erroneous scenario in the speech recognition domain, we
again apply the same adversarial training technique from the work of Brown et al. [10].
The same aforementioned MFCC feature extraction and network Nutterance is used for eval-
uating the performance of the explainability methods. Due to the gradient descent training
instability of MFCC transformation, we are not able to train and apply the adversarial
patch directly on the input audio signal. However, this does not affect the usage of the
Icoverage metric, as the directed erroneous distraction can be presented in the MFCC fea-
ture space. As such, we fix the reference network Nutterance and apply the adversarial patch
training in the MFCC feature space. The trained adversarial patch is later randomly over-
laid (random translation) on the MFCC feature of an audio input signal. An example
of a directed erroneous decision due to adversarially modified MFCC feature is shown in
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Original Adversarially Tempered

kudos to the most enchanting film
of the year

kudos to the most incoherent lens-
ing of the year

Figure 5.5: Example of a decision change due to the adversarially tempered tokens. (left)
prediction confidences for the decision made with original sentences and with the adversar-
ially tempered sentence. The adversarial tokens lead to a change in the decision; (middle)
the original sentence; (right) the adversarially tempered sentence. The differences between
the two sentences are highlighted.

Fig. 5.4, where the highlighted and adversarially overlaid area fools the reference network
Nutterance.

Sentiment Classification

It is much more difficult to create an erroneous scenario for the sentiment classification task
because the aforementioned adversarial patch technique can not be applied in the natural
language setting without impacting the structure and semantic of an input sentence. In
order to solve this issue, we instead create a learn-able adversarial network Nadversarial

sentiment that
acts as a ’man-in-middle’ attacking network between the input feature and the reference
network Nsentiment. Due to the discrete nature of the input token and the un-differentiable
nature of the word2vec transformation, the adversarial modification is not directly applied
to the input sentence but the continuous word2vec embedding space. With the reference
network, Nsentiment The attacking network Nadversarial

sentiment is trained to predict both which
tokens to attack and the modification offset in the embedding space, of which targets
to change the prediction of the reference network Nsentiment. To better understand the
adversarially attacked word2vec embedding, we reconstruct the embedding back to its
natural language token representation by greedy nearest cosine distance matching. An
example of the adversarially modified sentence that leads to wrongful prediction is shown
in Fig. 5.5.

40



5.1.3 Explainability Methods Under Study

In this study, the proposed Impact Score and Impact Coverage is leveraged to perform a
comprehensive analysis of several state-of-the-art explainability methods in the research
literature. More specifically, the methods under study are: i) LIME [64], ii) SHAP [53],
and iii) Expected Gradients [17]. These methods were selected as they represent a good
coverage of both popular and state-of-the-art methods from both the proxy and direct
categories of explainability methods.

5.2 Experimental Results

The experimental results for the two experiments conducted in this study are presented
below.

5.2.1 Experiment 1: General Scenario

Table 5.1: Performance of tested explainability methods based on impact on network
decisions.

Method
Image Sentiment Utterance

IStrict I IStrict I IStrict I
LIME 35.12% 38.05% 50.32% 50.96% 42.83% 43.06%
SHAP 68.54% 73.90% 24.95% 25.16% 62.52% 62.59%

EG 72.93% 77.80% 56.43% 56.85% 63.87% 64.10%

The quantitative performance of the three tested explainability methods as determined
by the proposed Impact Scores in the first experiment is shown in Table 1. Many interesting
observations can be made. In term of the image classification task, it can be observed that
LIME achieved the lowest I and Istrict scores, thus indicating that the critical regions
identified by LIME had the lowest impact on the actual decision-making process of the
network in identifying the class for a given image when compared to the other tested
methods. It can also be observed that there is a progressive increase in decision-making
impact from SHAP to EG, with a significant absolute increase in I and IStrict by over 3.9%
and over 4.4%, respectively. The same trend is also observed in the utterance classification
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Table 5.2: Image Classification: Performance of tested explainability methods at different
adversarial scales

Scale
LIME [64] SHAP [53] EG [17]

Icoverage I Istrict Icoverage I Istrict Icoverage I Istrict
0.3 0.64% 9.70% 9.80% 3.53% 40.41% 41.32% 2.57% 36.00% 36.80%
0.4 1.53% 9.90% 10.00% 3.33% 36.73% 37.54% 2.31% 35.00% 35.40%
0.5 0.67% 8.70% 8.80% 3.08% 36.28% 36.62% 2.09% 39.20% 39.40%
0.6 0.37% 10.50% 10.60% 3.04% 38.20% 38.78% 1.88% 39.00% 39.40%
0.7 0.41% 10.80% 10.80% 2.87% 43.16% 43.61% 1.80% 42.80% 43.20%

Table 5.3: Utterance Classification: Performance of tested explainability methods at dif-
ferent area of adversarial patch

Area
LIME [64] SHAP [53] EG [17]

Icoverage I Istrict Icoverage I Istrict Icoverage I Istrict
0.10 3.59% 33.79% 33.79% 0.66% 10.30% 10.30% 0.47% 4.44% 4.44%
0.40 13.98% 15.59% 15.65% 2.33% 8.09% 8.09% 1.64% 4.67% 4.67%
0.70 22.99% 13.72% 13.78% 3.68% 6.75% 6.75% 2.45% 4.38% 4.48%
1.00 29.72% 13.89% 13.95% 4.74% 5.70% 5.70% 3.01% 3.52% 3.52%

task. However, LIME achieves significantly higher Istrict and I scores over the SHAP for
the sentiment classification task. And the EG still achieves the highest score among all
tested methods. In order to gain a more intuitive understanding of the performance, an
example image, the critical regions identified by tested explainability methods, and the
prediction confidences with and in absence of the identified critical regions are shown in
Fig. 5.6.

5.2.2 Experiment 2: Adversarial Distraction

The quantitative performance of the three tested explainability methods as determined by
the proposed Impact Score and Impact Coverage in the second experiment is shown in Table
5.2, Table 5.3, and Table 5.4. A number of interesting observations can be made. For
the image classification task, it can be observed that LIME achieved the lowest I, Istrict,
and Icoverage scores across all adversarial patch scales, thus indicating that the critical
regions identified by LIME have the lowest impact as well as coverage of the adversarially
impacted areas in the test images amongst the tested methods. Unlike Experiment 1,
SHAP performs better than EG for I, Istrict, and Icoverage. Meanwhile, the interesting
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Figure 5.6: Example images, the corresponding critical regions identified by tested explain-
ability methods, and prediction confidences with and in absence of the identified critical
regions.

LIME [64] SHAP [53] EG [17]
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Table 5.4: Sentiment Classification: Performance of tested explainability methods at dif-
ferent number of adversarial tokens

#Adversarial
LIME [64] SHAP [53] EG [17]

Icoverage I Istrict Icoverage I Istrict Icoverage I Istrict
1 12.32% 15.01% 15.25% 13.38% 5.15% 8.96% 18.89% 27.36% 28.33%
2 22.19% 16.51% 16.99% 22.05% 11.24% 12.68% 32.45% 29.90% 30.62%
3 26.77% 13.64% 14.35% 28.71% 10.53% 11.72% 40.30% 23.68% 25.12%
4 33.82% 15.14% 15.38% 30.91% 11.30% 12.02% 44.02% 28.85% 29.33%

observation is that the Icoverage decreases as the patch scale increases for all three tested
methods. We argue this potentially indicates that different regions within the adversarial
patches play different importance for the network’s decision-making process. For visual
inspecting the quality of the three tested explainability methods in the directed erroneous
scenario, samples with adversarial patches at different scales are displayed in Fig. 5.8. As
for the utterance classification task, it is surprising to observe that LIME outperforms both
SHAP and EG by a significant margin across all three metrics. What’s more, it is counter-
intuitive to observe that both the I and Istrict decreases as the Icoverage increases. To further
interpret this observation, more experiments are needed for gaining more insights. In terms
of the sentiment classification task, we observe that the performance difference between
the three methods is less dramatic than the previous two classification tasks. Similar to
the trend in experiment 1, EG’s performance comes before two other methods, LIME and
SHAP, by a clear margin.
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Figure 5.7: Example sentences, the corresponding critical tokens identified by tested ex-
plainability methods, and prediction confidences with and in absence of the identified
critical tokens.

Original
a gob of drivel so sickly sweet , even the eager consumers of moore ’s pasteurized
ditties will retch it up like rancid crème brûlée

LIME
a gob of <P> so sickly sweet , even <P> eager <P> of moore ’s pasteurized
ditties will retch it up like <P> cr me br l e

SHAP
a gob of <P> so sickly sweet , even the eager consumers of moore ’s pasteurized
ditties will retch it up like <P> cr <P> br l e

EG
a gob of <P> so <P> sweet , even the eager consumers of moore ’s pasteurized
ditties will retch it up like <P> cr me br l e

Original
a dreary , incoherent , self-indulgent mess of a movie in which a bunch of pompous
windbags drone on inanely for two hours ... a cacophony of pretentious , mean-
ingless prattle

LIME
<P> dreary , incoherent , self <P> mess of <P> movie in which <P>

bunch of pompous windbags drone on inanely for two hours <P> cacophony of
pretentious , meaningless prattle

SHAP
a <P> , <P> , self indulgent mess of a movie in which a bunch of pompous
windbags drone on inanely for two hours a cacophony of pretentious , <P>
prattle

EG
a <P> , <P> , self indulgent mess of a movie in which a bunch of pompous
windbags drone on inanely for two hours a cacophony of pretentious , <P>
prattle

Original an intelligent fiction about learning through cultural clash

LIME <P> intelligent fiction about learning through <P> <P>

SHAP an intelligent <P> about <P> through cultural <P>

EG an <P> <P> about learning through cultural <P>
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Figure 5.8: Example adversarially modified erroneous images via adversarial patches at
different scales, and the corresponding critical regions identified by tested explainability
methods as being important to the decision made by the network.

Scale / GT / Adv LIME [64] SHAP [53] EG [17]

0.30 / TV / Monitor

0.40 / Suit / Cup

0.50 / Necklace / Cup

0.60 / Sweatshirt / Monitor

0.70 / Cup / Necklace
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Chapter 6

Conclusion

6.1 Summary

In this study, we explored a more machine-centric strategy for quantifying the performance
of explainability methods on deep convolutional neural networks by quantifying the impor-
tance of critical factors identified by an explainability method. For a given decision made
by a network, we study the impact on both the decision and the confidence in the deci-
sion, and additional coverage of adversarially impacted factors in the directed erroneous
decision scenario. A comprehensive analysis using this approach showed that, in the case
of visual perception tasks, speech recognition tasks and natural language processing tasks,
some of the most popular and widely-used methods such as LIME, SHAP and EG may
produce explanations that may not be as reflective as expected of what the deep neural
network is leveraging to make decisions. The results in three different task domains also
indicate an unclear conclusion. In the general testing scenario, EG outperforms both LIME
and SHAP by a clear margin across all three task domains. However, EG’s performance
is less convincing in the erroneous testing scenario. Under the adversarial attack, SHAP
performs better than EG and LIME in the image classification task; LIME comes first by
a significant margin over SHAP and LIME in the utterance classification; EG leads the
all three performance metrics in the sentiment classification. With these being said, we
observe that no explainability method can steadily outperform others in all test scenarios
and all test task domains. What’s more, there is significant room for improvement for
all explainability methods. While by no means perfect, the hope is that the proposed
machine-centric strategy helps push the conversation forward towards better metrics for
evaluating explainability methods in a manner that gives insights to guide network error
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mitigation as well as improve trust in deep neural networks.

6.2 Future Works

In future, we would like to explore our explainability assessment framework in the following
different directions:

• further extend the explainability experiment on to more different explainability meth-
ods;

• apply our assessment framework to more complicated models and tasks;

• incorporating new metrics that can reflect the level of “interpretability” of a given
explanation.

Expand Coverage on Explainability Algorithms

In this thesis, we carried out experiments for quantitatively assessing the performance of
three state-of-the-art explainability methods, LIME [64], SHAP [53] and Expected Gra-
dient (EG) [17]. Despite these explainability methods are the most popular and repre-
sentative ones in their categories, there are more different variants of these explainability
methods targeting to overcome certain drawbacks of the aforementioned methods. For
comprehensive analysis, we want to experiment with more explainability methods, such as
Integrated Gradient [80], Guided Backpropagation [76], Guided GradCAM [72], Smooth-
Grad [75] and Expected Gradients [17].

Explore Possibility with Complicated Models and Tasks

Due to the different limitations discussed previously, we were only able to experiment
with simpler and less dynamic models in the NLP and audio understanding domains. A
recent trend suggests more complicated models, such as recurrent neural network [67, 36]
and transformer [86, 15], are attracting more and more attention. To accommodate this
irreversible trend, we would like to study how explainability methods behave with more
complicated and dynamic models. In addition, we only studied the explainability methods
for classification tasks in this thesis. This is mainly because those many explainability
methods were proposed and demonstrated solely for the classification task. What and how
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to interpret for DNN in other tasks, such as semantic segmentation in computer vision,
machine translation in NLP, and speech diarization in speech understanding, remain as
open questions and ongoing active research. As one of the future directions, we want to
study how to apply the principle of our assessment framework on different tasks.

Consideration for Human Interpretability

As discussed in Chapter 3, explainability methods need to balance between the faithful-
ness and interpretability. The proposed evaluation metrics, namely Impact Score and
Impact Coverage, focus primarily on the faithfulness of the explainability methods. To
one extreme, an explainability method can theoretically achieve high Impact Score and
Impact Coverage by providing one-pixel explanations for image classification since it has
been shown that altering a single pixel in an image can change the decision of a DNN [79].
In this extreme case, the one-pixel explanation can provide little insight for the human
to understand the decision-making process of a DNN. Due to this reason, we want to
study additional metrics that can evaluate the level of interpretability of explainability
methods. Accommodating with the proposed two metrics, we hope that this machine-
centric evaluation framework can provide a comprehensive perspective on the performance
of explainability methods.
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