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Abstract

Today, emerging technologies are reaching astronomical proportions. For example, the Internet
of Things has numerous applications and consists of countless different devices using different
technologies with different capabilities. But the one invariant is their connectivity. Consequently,
secure communications, and cryptographic hardware as a means of providing them, are faced
with new challenges. Cryptographic algorithms intended for hardware implementations must be
designed with a good trade-off between implementation efficiency and sufficient cryptographic
strength. Finite fields are widely used in cryptography. Examples of algorithm design choices
related to finite field arithmetic are the field size, which arithmetic operations to use, how to rep-
resent the field elements, etc. As there are many parameters to be considered and analyzed, an
automation framework is needed.

This thesis proposes a framework for automated design, implementation and verification of finite
field arithmetic hardware. The underlying motif throughout this work is “math meets hardware”.
The automation framework is designed to bring the awareness of underlying mathematical struc-
tures to the hardware design flow. It is implemented in GAP, an open source computer algebra
system that can work with finite fields and has symbolic computation capabilities. The framework
is roughly divided into two phases, the architectural decisions and the automated design genera-
tion. The architectural decisions phase supports parameter search and produces a list of candidates.
The automated design generation phase is invoked for each candidate, and the generated VHDL
files are passed on to conventional synthesis tools. The candidates and their implementation results
form the design space, and the framework allows rapid design space exploration in a systematic
way. In this thesis, design space exploration is focused on finite field arithmetic.

Three distinctive features of the proposed framework are the structure of finite fields, tower field
support, and on the fly submodule generation. Each finite field used in the design is represented as
both a field and its corresponding vector space. It is easy for a designer to switch between fields
and vector spaces, but strict distinction of the two is necessary for hierarchical designs. When an
expression is defined over an extension field, the top-level module contains element signals and
submodules for arithmetic operations on those signals. The submodules are generated with corre-
sponding vector signals and the arithmetic operations are now performed on the coordinates. For
tower fields, the submodules are generated for the subfield operations, and the design is generated
in a top-down fashion. The binding of expressions to the appropriate finite fields or vector spaces
and a set of customized methods allow the on the fly generation of expressions for implementation
of arithmetic operations, and hence submodule generation.

In the light of NIST Lightweight Cryptography Project (LWC), this work focuses mainly on small
finite fields. The thesis illustrates the impact of hardware implementation results during the design
process of WAGE, a Round 2 candidate in the NIST LWC standardization competition. WAGE
is a hardware oriented authenticated encryption scheme. The parameter selection for WAGE was
aimed at balancing the security and hardware implementation area, using hardware implementation
results for many design decisions, for example field size, representation of field elements, etc. In
the proposed framework, the components of WAGE are used as an example to illustrate different
automation flows and demonstrate the design space exploration on a real-world algorithm.
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Chapter 1

Introduction and motivation

1.1 Introduction

Digital hardware is everywhere. Just over 15 years ago, “FPGAs on Mars” was the cover story of
the Xilinx Xcell Journal [1]. Less than five years ago a NASA article “Tiny Microchips Enable
Extreme Science” described a family of ASICs aboard the Juno spacecraft, currently in Jupiter’s
orbit [2]. Back on Earth emerging technologies are reaching astronomical proportions. For ex-
ample, the Internet of Things (IoT) has numerous applications and consists of countless different
devices using different technologies with different capabilities. One invariant is the connectivity
of IoT devices. Consequently, secure communications, and cryptographic hardware as a means of
providing them, are faced with new challenges.

Cryptographic algorithms start with a specific application (e.g., wireless communications, RFID,
etc.) and must consider hardware implementation requirements (e.g., constrained environment,
high throughput, etc.), functional requirements (e.g., encryption, authentication, etc.) and secu-
rity requirements (e.g., key size, resistance to known attacks, etc.). The algorithms intended for
hardware implementations must be designed with a good trade-off between implementation effi-
ciency and sufficient cryptographic strength. The implementations must follow good practices of
hardware design while considering numerous design choices. Hardware design choices between
sequential or pipelined datapath or fully exploited parallelism give great flexibility to custom hard-
ware design, and allow the circuit to be tailored to the specific target application. For applications
in constrained environments a small circuit area is prioritized.

Finite fields are widely used in cryptography. Algorithm design choices related to finite field
arithmetic (FFA) include the field size, which arithmetic operations to use, how to represent the
field elements, etc. Many of these decisions are made together. For example, using exponentiations
to the powers of two and normal bases. Such exponentiations are implemented as simple cyclic
shifts, i.e., rewiring which has negligible hardware area cost. This simple example illustrates the
connection between an FFA parameter choice and efficient hardware implementation.

The aforementioned considerations lead the design decisions that must be made early in the design
process. They will be called architectural decisions, and have a grave impact on the resulting
hardware. As there are many parameters to be considered and set, an automation framework is
needed.
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This thesis describes a framework for the automated design, implementation and verification of
finite field arithmetic hardware. The underlying motif throughout this work is “math meets hard-
ware”. The automation framework is designed to bring an awareness of underlying mathematical
structures to the hardware design flow. It is implemented in GAP [3], an open source computer
algebra system that can work with finite fields and has symbolic computation capabilities. The
framework is roughly divided into two phases, the architectural decisions and the automated de-
sign generation. The architectural decisions phase supports parameter search and produces a list
of candidates. The automated design generation phase is invoked for each candidate, and the
generated VHDL files are passed on to conventional synthesis tools. The candidates and their
implementation results form the design space, and the framework allows rapid design space explo-
ration (DSE) in a systematic way. In this thesis, design space exploration is focused on finite field
arithmetic.

In the light of the completed eSTREAM competition [4] and the ongoing NIST Lightweight Cryp-
tography Project (LWC) [5], this work focuses mainly on small finite fields. The framework is
written in GAP, which uses a very efficient internal representation for small finite fields. Some
features of the automation framework are the selection of field parameters for implementation,
support for feedback shift register (FSR) based ciphers, arbitrary expressions over finite fields,
tower field support, and on the fly submodule generation.

WAGE [6], a Round 2 candidate in the NIST LWC standardization competition, is a hardware ori-
ented authenticated encryption scheme, built on top of the initialization phase of the Welch-Gong
stream cipher [7]. The thesis illustrates the impact of hardware implementation results during the
design process of WAGE. The parameter selection for WAGE was aimed at balancing the secu-
rity and hardware implementation area, using hardware implementation results for many design
decisions, for example field size, representation of field elements, etc. The components of WAGE
are used as an example to illustrate different automation flows and demonstrate the design space
exploration on a real-world algorithm.

The Welch-Gong (WG) stream cipher [7], which generates a keystream with proven randomness
and cryptographic properties, was first proposed by Nawaz and Gong in 2005. The profile 2 (hard-
ware applications with highly restricted resources) candidate WG-29 reached the phase 2 of the
eSTREAM competition [4]. The WG stream cipher family is based on the Welch-Gong trans-
formations on an m-sequence, produced by a linear feedback shift register (LFSR). The cipher
instances are parametrized by the field size and the chosen LFSR. The automation framework in
this thesis supports feedback shift registers and WG stream ciphers. The related design space
exploration is focusing on the representation of field elements.
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1.2 The automation framework and the design flow

This thesis presents a framework for automated design space exploration and datapath synthesis
for finite field arithmetic. Figure 1.1 shows a detailed design flow with four phases:

• the algorithm design
• the architectural decisions
• the automated design generation
• the design space exploration

The algorithm design starts with a specific application (e.g., wireless communications, RFID, etc.)
and must consider hardware implementation requirements (e.g., constrained environment, high
throughput, etc.), functional requirements (e.g., encryption, authentication, etc.) and security re-
quirements (e.g., key size, resistance to known attacks, etc.). Considering the application and
functional requirements leads to a mathematical expression, which is then refined and modified
based on hardware implementation requirements and security requirements until a suitable algo-
rithm is designed. The focus of this thesis is design space exploration of finite field parameters and
the synthesis of finite field expressions into hardware datapaths. Algorithm design choices related
to finite fields are the field size, which arithmetic operations to use or avoid, how to represent the
field elements, etc.

The architectural decisions phase starts with coarse architectural decisions (e.g., fully parallel
datapath), and followed by the finite fields related design choices (e.g., representation of field el-
ements). It supports the finite fields related parameter search and field constructions, and can
generate expressions for implementation of arithmetic operations (i.e., basic building blocks for
the datapath). The search algorithms produce a list of candidates, which differ in one or more
parameter choices. From the perspective of a single candidate, the architectural decisions are final-
ized. The automated design generation is invoked for each candidate: the compilation algorithm
parses the datapath expressions and the field structure to generate a fully functional synthesizable
hardware module. The automated design generation and the architectural decisions form the main
body of the design automation framework in this thesis.

The fully functional module, shown at the end of automated deign generation in Figure 1.1, consists
of generated VHDL files, testvectors and configuration files, which are passed on to conventional
synthesis tools. The candidates and their implementation results form the design space, and the
framework allows rapid design space exploration in a systematic way. In this thesis, design space
exploration is focused on finite field arithmetic.

The algorithm design phase is usually completed before hardware implementations begin. This
thesis includes a unique opportunity showing the impact of hardware implementation on algorithm
design: the WAGE authenticated encryption scheme [6]. The small hardware area determined
the following parameters of WAGE: field size, basis, and even which nonlinear components to
use. The architectural decisions – automated design generation – design space exploration loop
can reveal interesting findings that lead to modifications of existing algorithms. For example, new
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LFSR polynomials were suggested during the implementation of the WG-16 stream cipher in [8];
it was possible to increase the number of the terms in the LFSR feedback at no cost to hardware.

The optimization phase, shown at the bottom of Figure 1.1, is outside the scope of this thesis, but
deserves a short discussion. The aforementioned WG-16 stream cipher is defined over F216 and not
considered to be lightweight. The hardware implementation of WG-16 benefits from pipelining
and a tower field construction. Pipelining is a hardware optimization, and finding an adequate
pipelining granularity can be a tedious process. Given a specific target, e.g., a clock period, the
pipelining granularity can be modified in an automated optimizations – design space exploration
loop, until the target is met. A related example of a hardware optimization is register retiming,
which has the effect of fine-tuning a pipelined datapath. Hardware optimizations and design space
exploration present an interesting future research direction.

arch.
FFA

perspective

GAP framework

hardware

pure GAP
packages

GAP to VHDL
hw. design &

alg. application
perspective

qualified people
app.requirements

gen. perspective

DSE

Figure 1.2: Simplified design flow diagram and the perspectives (shaded grey)

A simplified version of the design flow diagram, with abbreviations alg., arch., gen., and DSE for
the algorithm design, the architectural decisions, the automated design generation, and the design
space exploration, respectively, is shown on the left side of Figure 1.2. On the right side of Figure
1.2 is the automation framework, designed to address the questions arising in a particular phase.
In the middle of Figure 1.2 are the perspectives from which to tackle the problems identified with
each phase:

• application perspective for the algorithm design
• finite field arithmetic perspective for the architectural decisions and the design space explo-

ration
• hardware perspective for the automated design generation

The perspectives are natural and together they highlight the underlying motif throughout this thesis:
“math meets hardware”. For a given phase, there is always a certain amount of overlap from other
perspectives. The following detailed discussion about the challenges met in each phase will clarify
these overlaps. The perspectives are shaded grey in Figure 1.2 as they are discussed in this section.
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The architectural decisions phase – finite field arithmetic perspective

The tasks of architectural decisions are accomplished by parameter search, field constructions and
algorithms for implementing a finite field operation. More specifically: by searching for (special)
elements and (special) polynomials, generating matrices and bases, and finally, obtaining symbolic
expressions. The entire automation framework is implemented in GAP, an open source computer
algebra system that can work with finite fields and has symbolic computation capabilities. The
following discussion summarizes the nature and the extent of hardware perspective involved in
architectural decisions.

The algorithm itself affects the top-level architecture, where exploration of parallelism is very im-
portant and basic design decisions must be made, e.g., should the design be sequential to minimize
the area, or is the throughput so important that a fully pipelined architecture is preferred. Addi-
tional considerations come into play for cryptographic hardware (e.g., lightweight cryptography,
which is aiming for minimal design while avoiding both sequential and pipelined circuits). Se-
quential circuits exploit resource sharing to minimize the implementation area. Resource sharing
comes at a cost (area increase): it infers multiplexers and registers for intermediate results, and
can complicate the control circuit. While beneficial for large finite fields (e.g., for elliptic curve
cryptography), this trade-off might fail for small finite fields (e.g., for lightweight cryptography).
The algorithm designers follow well established practices, for example: LFSRs are very efficient
in hardware, small Hamming weights will reduce the area and/or delay of the circuit, finite field
inversions are expensive and should be avoided if possible, etc.

Mathematical parameters can be chosen to optimize the hardware. Well known examples for im-
plementation of finite field applications are the use of trinomials and normal polynomials yielding
optimal normal bases (ONB) as field defining polynomials. Trinomials are a good choice because
they ensure a small delay for reduction and the ONBs ensure a smaller area complexity for the
multipliers. However, neither of them exists for all finite fields, and a decision must be made
whether this should affect the choice of the finite field or not. Another example is choosing the
coefficients of the LFSR feedback polynomial that can be implemented efficiently in hardware.
The established practice dictates choosing all the coefficients, except for the constant term, from
the prime subfield, and then, given a chosen basis, the constant term is chosen to minimize either
the delay or the area of the constant multiplier.

The automated design generation phase – the hardware perspective

The automated design generation phase faces many challenges related to finite field arithmetic.
For example, a very simple mind-leap is to view a finite field as a vector space by representing
the field w.r.t. to a selected basis. However, while GAP can do both, VHDL always needs a spe-
cific representation in terms of a basis, i.e., VHDL can only use a vector or an array of elements.
This becomes especially challenging when trying to implement tower field arithmetic. Other ex-
amples are vectors of finite field elements without an interpretation basis, i.e., they do not belong
to an extension field. Examples of this are the school-book two-step classic multiplication, which
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first produces an intermediate result whose length is greater than the length of the basis, or the
Grain stream cipher, which uses elements from two distinct shift registers as an input to a filtering
function.

The next problem is the finite field arithmetic itself. The expressions contained by the algorithm
involve operations, e.g., finite field multiplication or exponentiation. In VHDL, submodules, e.g.,
a multiplier, are used to implement all occurances of a particular arithmetic operation. Given only
the algorithm, the submodules must be extracted, perhaps implemented, and then bound to the
operations via component instantiations. The phrase “perhaps implemented” is used because there
are two options: a) the submodule is already implemented and ready to use (i.e., it is available
as a part of a library), and b) the submodule will be generated on the fly. The latter requires
the ability to generate the mathematical expressions needed for its implementation (e.g., using
symbolic computation capabilities of GAP).

The design space exploration – finite field arithmetic perspective

Finite field arithmetic allows a vast design space, composed of the candidates found during the
architectural decisions phase. The design space exploration relies on selected metric(s) to choose
good design options from the set under exploration. The most commonly used metrics for hardware
implementations are combinational delay, clock period or frequency, area, throughput, and other
derived optimality metrics.

Values such as the delay and the area can be estimated theoretically by evaluating critical path
delay and area of a module in terms of two-input logic gates. Alternatively, synthesis tools can be
used to obtain more accurate, technology-dependent values. The first option will be called offline
profiling and the second online profiling.
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Chapter 2

Overview

2.1 Overview of the automation framework

The rightmost part of Figure 2.1, shaded grey, shows the automation framework, written in GAP.
The packages that constitute the automation framework are shown Figure 2.2. The portion of
the GAP framework which was designed for the needs of the architectural decisions consists of
two basic packages, shown on the top: FSR Feedback Shift Registers, and FFCSA Finite Field
Constructions, Search and Algorithms. On the left are two case-study packages, WG and WAGE,
also a part of the architectural decisions. The most crucial part is the FFCSA package, which
allows to choose optimal mathematical parameters for the implementation: the field defining poly-
nomials, bases, transition matrices, and finally algorithms that produce expressions for arithmetic
operations.

arch.
FFA

perspective

GAP framework

hardware

pure GAP
packages

GAP to VHDL
hw. design &

alg. application
perspective

qualified people
app.requirements

gen. perspective

DSE

Figure 2.1: Simplified design flow diagram and the automation framework (shaded grey)

Below FFCSA is the first package used for the automated design generation, the GAPtoVHDL
package (Figure 2.2). It provides common VHDL functionality for writing VHDL packages, con-
current VHDL statements, combinational assignments, component instantiations, registers, multi-
plexers, etc. The FSRtoVHDL package is, as its name suggests, specialized for the design gener-
ation of FSR objects, and heavily relies on packages FSR and GAPtoVHDL. Last is the package
CIRCUIT, which is very complex, but capable of writing arbitrary datapaths defined over arbitrary
finite fields. Three distinctive features of the CIRCUIT package are the structure of finite fields,
tower field support, and on the fly submodule generation.
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FSR FFCSA

FSRtoVHDL

WGcipher GAPtoVHDL

WAGE FSRtoVHDL CIRCUIT

Figure 2.2: The automation framework: packages

The user provides a set of expressions to be implemented. The user may also provide the partial
or complete field constructions to be used. The framework automatically performs design space
exploration for the mathematical parameters not provided by the user.

2.2 WAGE

WAGE [6], a Round 2 candidate in the NIST LWC standardization competition [10], is a hardware
oriented authenticated encryption scheme, built on top of the initialization phase of the WG stream
cipher. The thesis illustrates the impact of hardware implementation results during the design
process of WAGE.

Disclaimer 2.1: The WAGE authenticated encryption scheme

The WAGE authenticated encryption scheme is a joint work of the members of the ComSec
Lab: Mark Aagaard, Riham AlTawy, Guang Gong, Kalikinkar Mandal, Raghvendra Rohit,
and Nusa Zidaric (author of this thesis). The authorship above is alphabetically ordered.
For the purpose of this thesis, it is important to specify my contribution to this work. In the
WAGE sections of this thesis, there will always be a disclaimer, specifying my contributions.
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2.3 Contributions of the author

This work presents a novel framework for datapath synthesis for finite field arithmetic, which is
implemented in GAP from the ground-up. The first architectural decisions – automated design
generation flow through the automation framework is focusing on synthesis for ciphers based on
feedback shift registers (FSR). This part of the automation framework was motivated by the design
space exploration for the WG stream cipher family. Major contributions to implemented FSR
design flow are (i.) recognizing and exploiting structural similarities between the linear feedback
shift registers (LFSRs), nonlinear feedback shift registers (NLFSRs), and filtering functions from
a mathematical and a hardware perspective, and (ii.) introduction of a regular and external step
for clocking the FSR objects as self-contained or with an external input. This allows a cipher
to be modelled as a collection of basic blocks (LFSRs, NLFSRs and filtering functions). The
packages developed for the FSR-based ciphers are the first to implement both LFSRs and NLFSRs
over prime and extension fields in software (GAP package FSR in Figure 2.2). Furthermore, they
provides (limited) synthesis of FSR based ciphers using VHDL (FSR–FSRtoVHDL tandem in
Figure 2.2), which significantly reduces the human effort.

The second architectural decisions – automated design generation flow of the automation frame-
work is the synthesis of arbitrary expressions over arbitrary finite fields. The first major challenge
was the encoding of finite field structures in a way that (i.) allows switching between finite fields
and vector spaces, and (ii.) is hierarchical to support tower fields. Another challenge was the on the
fly submodule generation (for datapath operations), which was solved by (i.) the aforementioned
encoding of finite field structures, and (ii.) binding of the expressions to the appropriate finite fields
or vector spaces. Integrating the tower field support into the datapath synthesis is extremely useful
as it increases the design space which can be covered by the proposed automation framework.

The framework offers a systematic approach to DSE from FFA perspective. The delay and the
area can be estimated theoretically or using synthesis tools to obtain technology-dependent values.
The logic synthesis implementation results for a simple expression defined over a small tower-field
can be collected quickly: e.g., for F((22)2)2 with 720 constructions, the modules can be generated,
simulated and synthesized in just over 3 hours. The automation framework significantly reduces
human effort, saves time, and increases productivity. Furthermore, it enables researchers with little
knowledge of hardware, to generate synthesizable VHDL code, using only a short GAP template.

My contributions in WAGE design are the parameter search, (automated) hardware implementa-
tions during the algorithm design of WAGE, and contribution to the loading sequence and input
ports, and tag extraction sequence and output ports. The final chapter contains the hardware design
and manual implementation of the WAGE datapath.
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2.4 Roadmap
• Critical path through the thesis: everything
• Shortest viable path through this thesis: each chapter in Parts III and IV contains an

Overview box (see below). Chapters also contain Summary sections, which contain tables
with summarized key insights (Key 2.1). The summary tables contain links to the actual
Keys.

Visual aid for orientation

Figures 1.1 and 2.1 will be used as roadmaps within the chapters. When more details are needed,
a magnified section of the design flow in Figure 1.1 will be used as well.

alg.

gen.

arch.

Overview of a framework package/part of a framework package FSR FFCSA

WGcipher

WAGE

It has a frame and two icons that serve as a roadmap. The left icon is a
simplified design flow diagram from Figure 2.1 with a current stage

shaded. The right icon is a part of the automation framework consisting of GAP packages from
Figure 2.2 with the current package shaded grey. The frame contains the summary of important
concepts in this chapter

Key 2.1: This is a key insight

The main text includes key insights: summaries of very important concepts, crucial for
design of the automation framework. They look like this.

� Implementation detail: This is an implementation detail. It can be skipped. �

The main text includes many implementation details using a smaller font. It has a bold title, and
starts and end with �, and can be skipped. Some of the examples have arrows ↪−→ and ↪−→and
can be skipped. Their purpose is to keep this document self contained. Some further examples were
moved to appendix. Examples without the arrows are important for the explanation of concepts,
and should not be skipped. Each introductory chapter (grey chapters on the roadmap in Figure 2.3)
contains a table of examples, including the ones that were moved to an appendix section.

Thesis organization

As this work covers a broad topic, its is divided into many small chapters. Figure 2.3 shows the
relationship of the individual chapters to the design flow for automated DSE and datapath synthesis.
The chapters are organized into five parts as follows:
• Part II - Background and related work

This part contains the background (Chapter 3) and the related work (Chapter 4). Both cover
finite field arithmetic, hardware implementations, and ciphers defined over finite fields.
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• Part III - The architectural decisions phase
This part starts with an introductory chapter, which covers the overview and the roadmap
for Part III, and an introductory discussion on coarse architectural decisions (Chapter 5).
The remaining chapters follow the GAP packages in the automation framework: the FSR
package, (Chapter 6), the FFCSA package (Chapter 7), and the Case study for WG and
WAGE (Chapter 8).
• Part IV - The automated design generation phase

This part starts with an introductory chapter, which covers the overview and the roadmap
(Chapter 9). Next are the GAP packages GAPtoVHDL (Chapter 10) and FSRtoVHDL
(Chapter 11), followed by the CIRCUIT package. The CIRCUIT package is divided into
five chapters based on the concepts they cover: the overview and roadmap (Chapter 13),
the arbitrary finite fields (Chapter 13), the functional description of the algorithm (Chapter
14), transforming the functional description into a VHDL-ready design (Chapter 15), and
generating VHDL for the datapath (Chapter 16).
• Part V - Design space exploration

This part starts with an overview of DSE from mathematical perspective, discussion on dif-
ferent profiles, and representation of implementation results (Chapter 17). The remaining
DSE chapters are divided based on what they are profiling: DSE of basic building blocks
(18), DSE of arbitrary circuits (Chapter 19), and DSE of WG (Chapter 20)
• Part VI - WAGE

This part start with the overview chapter (Chapter 21). Next chapter covers WAGE algorithm
design (Chapter 22), which is in fact the highest DSE loop in Figure 1.1. Last chapter in
Part VI shows the manual hardware design of the WAGE datapath (Chapter 23).

Each part has its own table of contents. Parts III-VI have their own introductory chapters, shaded
grey on the roadmap in Figure 2.3. There are two architectural decisions – automated design gen-
eration flows through the automation framework:

• the first architectural decisions – automated design generation flow is focusing on synthesis
for ciphers based on feedback shift registers. In Figure 2.3 this flow is shown in the middle-
left column, consisting of roadmap chapters “ch.5 FSR” and “ch.10 FSRtoVHDL”
• the second architectural decisions – automated design generation flow is the synthesis of

arbitrary expressions over arbitrary finite fields. In Figure 2.3 this flow is shown in the
middle-right column, consisting of roadmap chapters “ch.6 FFCSA”, “ch.12 arb. fields”
(arbitrary finite fields), “ch.13 Alg. Fun.” (functional description of the algorithm), “ch.14
Alg. Design”, and “ch.15 Circuit VHDL”. These are the chapters that belong to the GAP
package CIRCUIT.
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Chapter 3

Background

3.1 Finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Selected symmetric-key cryptographic primitives . . . . . . . . . . . . . . . . . . 27

3.3 Computer hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Finite fields

This section covers basic definitions and properties of finite fields, extension fields and their defin-
ing polynomials, representations of field elements using different bases, and finally the notion of
the trace function. For brevity, some definitions, e.g., definition of a group (Definition A.1), is
presented in the Appendix A. Extensive literature on the subject exists, for example [11] or [12].
Further properties of finite fields will be presented in the main text, and some advanced concepts
and properties will be presented in Appendices A and C.3 when needed.

3.1.1 Finite field constructions

Basic definitions

Definition 3.1 [13] A nonempty set F, together with two binary operations addition “+ ”and
multiplication “·” is a field F = (F,+, ·), if

i. (F,+) is a commutative group with (additive) identity 0
ii. (F\{0}, ·) is a commutative group with (multiplicative) identity 1

iii. multiplication is distributive over addition: α · (β + γ) = α · β + α · γ ∀ α, β, γ ∈ F

For addition and multiplication, the following short notations are used for an arbitrary α ∈ F :

nα = α + α + · · · + α︸             ︷︷             ︸
n

and αn = α · α · · · · · α︸         ︷︷         ︸
n

, (3.1)

where n is a positive integer. If the underlying set F has a finite number of elements, then F is a
finite field. The number of elements in a finite field is also called the order of the field, denoted |F |.
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The generalization of Fermat’s little theorem (Lemma 2.1.16 in [11], Corollary 3.2 in [14]), states
that every non-zero element α of a finite field of order q satisfies the following identity

αq = α (3.2)

Equation (3.2) also implies that αq−1 = 1 and that multiplicative inverse can be computed as αq−2.
The smallest positive integer j, for which α j = 1, is called the order of the element α ∈ F (Defi-
nition 2.1.40 in [15]). For F of order q, the order of an arbitrary field element is always a divisor
of q − 1. Elements of order q − 1 and are called a primitive elements. The multiplicative group1

(F\{0}, ·) is cyclic, with primitive elements as its generators. For cyclic group see Definition A.2
in Appendix A.

Let F = (F,+, ·) be a field. A subset K ⊆ F together with the operations + and · forms a subfield
K = (K,+, ·) of F , ifK is itself a field with respect to the two operations. The inclusion symbol is
used to denote K is a subfield of F , namely K ⊂ F . The field F is also called an extension field
of K , denoted F /K . If K , F and K , {0}, then K is a proper subfield of F . A field that has no
proper subfields is called a prime field. When F is considered as a finite dimensional vector space
over K (see Definition A.5 in Appendix A), then the dimension of F over K is called degree of
extension, denoted [F : K] (Definition 1.3.4 in [16]). For a finite field F with q elements, notation
Fq is used. If q = pm, where p is a prime or a prime power and m is a positive integer, then Fq is an
extension field of Fp, and the degree of extension is m.

Theorem 3.1 [Subfield criterion, Theorem 2.6 in [11]] Let Fq be a finite field with q = pm ele-
ments. Then every subfield of Fq has order pn, where n is a positive divisor of m. Conversely, if n
is a positive divisor of m, then there is exactly one subfield of Fq with pn elements.

Notion of subfields of a finite field adopts a “top-down” point of view. A “bottom-up” approach
reveals the following: for a composite integer m = n1 · · · nk, where ni, i = 1, . . . , k are positive
integers (not necessarily primes), it is possible to build Fpm as a tower of extensions F(...((pn1 )n2 )... )nk

over its prime subfield Fp. Instead of constructing Fpm as a single extension of degree [Fpm : Fp] =

m over the prime field, the field is constructed in k steps, building an extension Ki/Ki−1 of degree
[Ki : Ki−1] = ni at step i, where ni is a factor in decomposition of m, starting with K0 = Fp.
Ki−1 will be called the base field for extension Ki/Ki−1 (to differentiate it from the prime field).
The base field Ki−1 is now embedded in Ki as a subfield, Ki−1 ⊂ Ki. The result of the procedure
described above is a sequence of subfields:

Fp = K0 ⊂ K1 ⊂ · · · ⊂ Kk−1 ⊂ Kk = F(...((pn1 )n2 )... )nk � Fpm (3.3)

with their corresponding orders

p ≤ pn1 ≤ pn1·n2 ≤ · · · ≤ pn1···nk = pm,where m = n1 · · · nk

1notation F ∗ is also used for (F\{0}, ∗), where ∗ is the multiplication operation
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Note at this point, the field obtained with each extension is isomorphic to a field whose order is
p to the power of partial product of extension degrees up to the current extension, for example
F(pn1 )n2 � Fpn1 ·n2 . Also, since m = n1 · · · nk, the product of extension degrees equals the degree of
extension of Fpm over Fp (see Theorem 1.84 in [11], Satz 6 in [17])

[Kk : K0] = [Kk : Kk−1] · · · [K2 : K1] · [K1 : K0] (3.4)

The sequence of fields in expression (3.3) will be referred to as a tower field or a composite field.
The notion tower field indicates that the field was obtained as a tower of extensions, and the notion
composite field is related to composition of m; we use the factors of m to build the tower of
extensions.

Irreducible polynomials and field constructions

Let K[x] be a set of polynomials in the indeterminate x with coefficients from field K :

f (x) =
∞∑

i=0
aixi , ai ∈ K .

Let m be the index of the last nonzero coefficient in f , i.e. am , 0 but a j = 0 ∀ j > m. Then am is
called the leading coefficient of f and f is a polynomial of degree m. A polynomial with am = 1
is called monic. The coefficient a0 is called the constant term, and polynomials that have a0 , 0
but a j = 0 for ∀ j > 0 are called constant polynomials and have degree 0. The degree of the zero
polynomial (i.e. a j = 0 for ∀ j) is defined to be −∞.

A polynomial f ∈ K[x] is irreducible over K , if it has a positive degree and f = g · h, for
some g, h ∈ K[x], implies that either g or h is a constant polynomial (Definition 1.57 in [11]).
An element α ∈ K is a root of a nonzero polynomial f ∈ K[x] if f (α) = 0. A polynomial of
degree m will have at most m distinct roots in K (or any of its extensions). The lowest degree
monic polynomial in K[x], having a root α is called the minimal polynomial of α (Definition 3.16
in [14]). The irreducible polynomial f can then be used to construct the finite field F /K , where
[F : K] = m. The finite field F = (F,+, ·) contains polynomials of degree at most m − 1 with
coefficients from K :

F =

m−1∑
i=0

aiα
i ; ai ∈ K


Details on the construction of F /K and on addition and multiplication of polynomials can be
found in Section A.0.1 in Appendix A.

Noting that a given polynomial, which is irreducible over K , has no roots in K , an extension
field F /K can be constructed by adjoining the root(s) of the irreducible polynomial to the base
field K .The field F is the smallest extension field containing the root(s) of the polynomial. The
polynomial whose root was used is called the defining polynomial of the extension field. As
already mentioned, a polynomial of degree m can have at most m distinct roots. The finite fields
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obtained by adjoining different distinct roots of an irreducible polynomial over K are isomorphic.
Furthermore, the larger the degree m, the larger is the number of irreducible polynomials of degree
m over K , and using different irreducible polynomials again yields isomorphic extensions. To
construct a tower field as shown in expression (3.3), an irreducible polynomial of degree ni is
required to build the extension Ki/Ki−1. An irreducible polynomial having a primitive element as
its root is called a primitive polynomial. Recall that primitive elements in F have order q − 1,
where |F | = q.

Bases, conjugates and trace function

Let [F : K] = m, then any set {α0, α1, . . . , αm−1} of m linearly independent elements αi ∈ F forms
a basis of F over K . Notation BF /K will be used for a basis of F /K . A different ordering of the
basis elements is considered as a distinct basis. For further details see [11, 12].

Let q = pn. An element α ∈ Fqm generates the polynomial basis {1, α, α2, . . . αm−1} of Fqm over
Fq if and only if α is a root of an irreducible polynomial f ∈ Fq[x] of degree m (i.e. f is the
defining polynomial of Fqm/Fq). For every finite field Fq and any positive integer m, an irreducible
polynomial in Fq[x] of degree m always exists (Corollary 2.11 in [11]). Elements of Fqm with
defining polynomial f ∈ Fq[x] of degree m, can be viewed as polynomials in Fq[x], reduced modulo
f . Each element A ∈ Fqm can be represented in polynomial basis as follows:

A =

m−1∑
i=0

aiα
i; ai ∈ Fq

The polynomial f is irreducible over Fq, but it has a root in Fqm , say α ∈ Fqm . Furthermore, it has
m distinct simple roots, given by the conjugates: α, αq, αq2

, . . . , αqm−1
(Theorem 2.14, Definition

2.17 in [11]). If the roots of the defining polynomial are linearly independent, then they generate a
normal basis {α, αq, αq2

, . . . , αqm−1
} of Fqm over Fq (Definition 2.32 in [11]). Each element A ∈ Fqm

can be represented in normal basis as:

A =

m−1∑
i=0

biα
qi

; bi ∈ Fq

The conjugates of α ∈ Fqm with respect to Fq can be obtained by applying the mappings

σi(α) = αqi
, 0 ≤ i ≤ m − 1

to α. For all i, 0 ≤ i ≤ m − 1, σi : Fqm 7→ Fqm is an automorphism. Note that the mappings
σ0, σ1, . . . , σm−1 are distinct. The automorphism σ1(α) = αq is called Frobenius automorphism
of Fqm over Fq, see [11], and for all i, 0 ≤ i ≤ m − 1, σi can be obtained as a composition of σ1,
namely σi = σi

1 (Theorem 2.1.76, Remark 2.1.77 in [15]).
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For every prime power q and every integer m ≥ 1, Fqm has a normal basis over Fq (Theorem 5.2.1
in [15]). The element α ∈ Fqm , that generates a normal basis of Fqm over Fq is called a normal
element and the defining polynomial a normal polynomial or N-polynomial. Two normal elements
are said to be different if they are not conjugated. A normal basis can be found by finding a normal
element using Theorem 3.2.

Theorem 3.2 [Theorem 5.2.11(1.) in [15]] For any α ∈ Fqm , define

Tα(x) =

m−1∑
i=0

σi(α)xi ∈ F2m[x]

α ∈ Fqm is normal over Fq if and only if gcd(Tα(x), xm − 1) = 1 in Fqm[x].

Different normal elements generate different normal bases. The particular normal basis has an
impact on complexity of the arithmetic performed with field elements in normal basis represen-
tation. Normal bases can be evaluated using complexity CT defined as the number of nonzero
elements in multiplication table T (Definition 5.3.1 in [15]). Multiplication table T is an (m × m)
matrix T = [ti j] over Fq, defined for a particular normal element α ∈ F2m , in such a way that the
coefficients ti j satisfy:

α · αqi
=

m−1∑
j=0

ti jα
q j

for 0 ≤ i ≤ m − 1. (3.5)

The complexity is bounded by 2m − 1 ≤ CT ≤ m2 −m + 1, and when CT = 2m − 1 the basis is said
to be optimal normal basis, abbreviated ONB (Definition 5.2.5 in [15]).

Another interesting function involving conjugates of an element, is the trace function (Definition
2.22 in [11]). Let F = Fqm and K = Fq, then for element α ∈ F the trace is defined as:

TrF
K

(α) =

m−1∑
i=0

αqi
= αq0

+ αq1
+ · · · + αqm−1

(3.6)

The mapping TrF
K

: F → K is called the trace of the element α ∈ F with respect to the underlying
subfield K . If K is a prime subfield, TrF

K
is called absolute trace. Note that the number of terms

in the expression above equals the degree of extension m = [F : K], i.e. it runs through all
conjugates of α. The trace is independent of the chosen basis. Below are some useful properties of
trace function (Theorem 2.23 in [11]).

Theorem 3.3 Let F = Fqm and K = Fq. Then the trace function TrF
K

satisfies the following
properties:

1. TrF
K

(α + β) = TrF
K

(α) + TrF
K

(β) for all α, β ∈ F

2. TrF
K

(cα) = cTrF
K

(α) for all c ∈ K, α ∈ F
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3. TrF
K

is a linear transformation from F onto K,
where both F and K are viewed as vector spaces over K

4. TrF
K

(a) = ma for all a ∈ K

5. TrF
K

(αq) = TrF
K

(α) for all α ∈ F

Theorem 3.4 [Theorem 2.26 in [11]] Let K be a finite field, let F be a finite extension of K
and E a finite extension of F . Then

TrE
K

(α) =
(
TrE
F
◦ TrF

K

)
(α) = TrF

K

(
TrE
F

(α)
)
, for all α ∈ E.

Last interesting notion is that of dual bases. For any given basis of F /K there exists a unique dual
basis (Theorem 1.1 in [12]). Two bases {α1, α2, . . . , αm−1} and {β1, β2, . . . , βm−1} of F /K are said
to be dual (or complementary) if for 0 ≤ i, j ≤ m − 1

TrF
K

(αiβ j) = δi j (3.7)

where δi j = 0 if i , j and δi j = 1 if i = j (page 117 in [18]).

3.1.2 Finite field arithmetic

This section gives a brief summary of finite field arithmetic, starting with operations of interest and
listing some of the most known algorithms for finite field arithmetic. In-depth descriptions will
follow in the remaining chapters when needed. The section is concluded with a brief discussion
how representation of the field elements leads to more effective algorithms.

An important notion for finite field arithmetic is the characteristic (Definition 1.43 in [11]). For
a finite field F = (F,+, ∗), the smallest positive integer p such that, using notation from equation
(3.1), p · α = 0 for every α ∈ F is called the characteristic of F , denoted char(F ) = p. If such an
integer does not exist, the characteristic is 0. If char(F ) > 0, then it is a prime number (Corollary
1.45 in [11]). The characteristic of a finite field is the order of its prime subfield. It is also the
additive order of the multiplicative identity 1. Furthermore, for arbitrary elements α, β ∈ F , where
char(F ) = p, the following holds for any k ≥ 1 (Theorem 1.46 in [11]):

(α + β)pk
= αpk

+ βpk
. (3.8)

This work only considers finite fields of characteristic p = 2, i.e., the binary fields, because of the
ease of their implementation with current technologies. Working with characteristic 2 also implies
that for any α ∈ F , α + α = (1 + 1)α = 0α = 0, i.e., the addition is performed modulo 2, which
corresponds to bit-wise XOR. In turn, this means that α is its own additive inverse, and hence there
is no subtraction as such.
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The operations of interest are addition, multiplication, and exponentiation. Two special cases of
exponentiation, with a fixed exponent, are squaring and inversion. For binary fields, the exponen-
tiations to (other) powers of two could also be singled out. A special case of multiplication is
multiplication with a constant. On a high level, this work does not contain detailed discussions
specific algorithms to perform these operations, but there is extensive literature on this topic, for
example [19, 20]. Only a few algorithms will be explained throughout the text when needed.

Except for addition, all other operations highly depend on the representation of the field elements.
Regardless which basis is used, the products of basis elements will always occur, and these prod-
ucts must again be represented w.r.t. the basis used. This step is known as reduction, and occurs in
any operation (except addition). Algorithms for finite field arithmetic sometimes take advantage
of specific representation of the field elements, and sometimes use rewriting tricks, to obtain more
efficient algorithms.

3.1.3 Multivariate polynomials

Let F be a finite field with q elements, where q is a prime or a prime power. A multivariate function
in t variables x0, x1, . . . , xt−1 is defined as follows:

f : F t → F

f (x0, x1, . . . , xt−1) =
∑

∀(i0,i1,...,it−1)∈Zt
q

ci0,i1,...,it−1 xi0
0 xi1

1 . . . xit−1
t−1 (3.9)

with coefficients ci0,i1,...,it−1 ∈ F and where i j ∈ Zq for 0 ≤ j < t. The sum in equation (3.9)
runs over all possible monomials xi0

0 xi1
1 . . . xit−1

t−1, where ∀x ∈ F : xq = x (equation (3.2)). The
expression on the r.h.s. of equation (3.9) describes an univariate polynomial when t = 1, and a
multivariate polynomial when t > 1. In this work, terminology polynomial and function will be
used interchangeably, with functions used mostly to describe feedback and filtering functions.

The degree of a monomial is defined as the sum of all its exponents (eq. (3.10)). The monomomial
with the highest degree is called leading monomial. The degree of the polynomial as the maximum
of the monomial degrees (eq. (3.11)). Hence, the degree of the polynomial is also the degree of its
leading monomial. For readability, the notation mi0,i1,...,it−1 is introduced for monomials:

mi0,i1,...,it−1 = m(x0, x1, . . . , xt−1) = xi0
0 xi1

1 . . . xit−1
t−1

deg(m(x0, x1, . . . , xt−1)) =

t−1∑
j=0

i j (3.10)

deg( f (x0, x1, . . . , xt−1)) = max
∀(i0,i1,...,it−1)∈Zt

q

{
deg(mi0,i1,...,it−1)

}
(3.11)

Based on the degree of the polynomial function, given by equation (3.11), a multivariate polyno-
mial is classified as constant for deg( f ) = 0, linear for deg( f ) = 1, and nonlinear function for
deg( f ) > 1.
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3.1.4 Computer Algebra Systems

This brief introduction to Computer Algebra Systems (CAS) was summarized from [21, 22, 23].
Computer algebra is used to manipulate symbolic operations following specific rules of algebra,
and thus providing exact solutions (where possible), again in symbolic form. The notions com-
puter algebra, symbolic computation, algebraic algorithms and algebraic manipulations etc. are
pretty much used as synonyms. Symbols are representations of mathematical objects, such as
numbers, polynomials, finite field, field elements, etc. A very important part of computer algebra
is the development of algorithms. Most of the time, several algorithms with the same functionality
are implemented, because their efficiency depends on their inputs. Also notable is the application
domain because it contributes a great deal to the development of the CAS itself.

Modern CAS consist of a (small) kernel in C and a collection of software programs, mostly written
in the system’s own programming language. In terms of functionality, CAS are classified as special
purpose (for example GAP ) and general purpose (for example Maple or Mathematica), covering
many application areas. In general, CAS can simplify or expand expressions, compute limits,
integrals, differential equations, factor polynomials, manipulate matrices, etc.

The main advantage of computer algebra is the ability to automate long sequences of algebraic
computations. The latter can be very resource intensive in terms of memory and computation time.
When used for scientific purposes, the symbolic computation is often followed by numerical, which
is again exact, unless the user specifies otherwise. Most CAS are interactive and use some form of
notebooks, where inputs, “pretty” formatted outputs, documentation, 2D and 3D plots and more
can be kept in one document.

A not so brief history of CAS is presented in [22]. Below is a brief summary of some widely used
general-purpose CAS. A systematic and more detailed overview can be found in [21]. Almost all
of them are based on C, also used for the critical part of the systems and have their own language,
used for most of the packages and user programs.

Maple: Originally developed at the University of Waterloo in the early 80’s, Maple is a commercial
general purpose CAS [24]. It consists of an algebraic engine, external libraries (to save memory)
and shared libraries with contributions from users. It provides a user interface with worksheets that
are similar to notebooks.

Mathematica: was the first system with a user friendly environment (in the form of notebooks)
combining symbolics, numerics and graphics [25]. It has nearly 5,000 built-in functions covering
all areas of technical computing and is built to provide industrial-strength capabilities. A powerful
feature is the Wolfram SystemModeler using Modelica language. It has a wide range of application
areas, from Automotive to Life Sciences. For example, the package Digital, a subset of Electrical,
offers digital electrical components, with types and models based on the VHDL standard.

MuPAD: Multiprocessing Algebra Data Tool, is a programming language that allows users to
write algorithms and to define new data types in an object-oriented way [26]. It is optimized for
operating on symbolic math expressions and provides a parallel problem solving environment.
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MATLAB: MATLAB is a library of programs and a programming language [27]. It is not con-
sidered as a CAS, however, it provides symbolic computation using MuPAD2, integrated to the
Symbolic Math Toolbox. The toolbox provides functions in common mathematical areas such as
calculus, linear algebra, algebraic and ordinary differential equations, equation simplification, and
equation manipulation. MATLAB is widely used is engineering and science and referred to as The
Language of Technical Computing [27]. MathWorks provides, among many others, two interest-
ing features: Simulink, for modelling various applications (wireless communications, internet of
things, computer vision, etc), and Stateflow modelling and simulation based on state machines
and flow charts. Both can be used standalone or integrated with MATLAB. MathWorks offers an
extensive hardware support, from ARM microprocessors, Altera and Xilinx FPGAs to PARROT
Minidrones. Tools like MATLAB Coder, Simulink Coder, Embedded Coder generate C and C++

code and HDL Coder can generate synthesizable Verilog and VHDL code.

SageMath: SageMath is a free open-source mathematics software system3 [28]. It includes special
purpose open-source packages and special purpose CAS packages, such as NumPy and SciPy,
Maxima, GAP, R, Singular, etc. It is Python-based, uses web-based notebooks and interactive
shell, has good visualization capabilities and provides interfaces to Mathematica and Magma.

A related package of interest is a SageMath package Cryptography [29], implementing LFSR-
Cryptosystem over finite field F2. The system is simple: it encrypts the message directly with the
sequence generated by the LFSR using modulo 2 sum of sequence bit and message bit. It does not
support extension fields. Another simple Mathematica package, called Symbolic Linear Feedback
Shift Registers [30] can generate bit sequences from LFSRs. It also implements the Berlekamp-
Massey algorithm.

3.1.5 GAP

GAP (Groups, Algorithms, Programming) is a specialized CAS, originally intended for group the-
ory, but evolved to include vector spaces, algebras, matrices, polynomials, etc. [3]. The core system
of GAP consists of a kernel, written in C, a library of functions written in the GAP language, a
library of group theoretical data and shared packages, i.e., GAP packages that are self-contained
extensions of the core system [31]. Basic objects encountered are rational numbers, finite field el-
ements4, words, lists, and so on. Internally, the objects are either positional or component objects.
Each object in GAP has a type, which stores its category (i.e. mathematical identity), represen-
tation, and attributes and properties (i.e. what is known about it) [32]. The type is stored as a
long bitlist (a flag list), where each bit corresponds to a filter. The type of an object can change
throughout its lifetime, as more becomes known about the object. Filters are used by method se-
lection to allow different conditions on the arguments and thus allow overloading. In addition, to
distinguish between good and optimal methods, filters are ranked, and the highest ranking method
is chosen. Besides methods, GAP is also using functions. For example, writing to a file is always

2replaced Maple
3licensed under the GPL
4will be abbreviated ffe or FFE like in GAP documentation
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implemented as a function. Attributes and properties store some values associated with the object
once they have been computed. Properties are attributes whose value can be only true of false. For
example, Size is an attribute and IsFinite is a (true) property of a finite field.

The GAP packages developed for this work will be described using objects, filters, attributes, prop-
erties, methods and functions. The functionality of packages is captured with a pair of declaration
and installation files, and both together will be referred to as a source file. The GAP examples in
this work follow the format used by GAPDoc package [33]. Some important GAP methods used
will be referenced from the GAP Reference Manual [34]. Another advantage of GAP is its inclu-
sion in SageMath, which allows all packages developed for this research to be loaded in SageMath
as well.

3.2 Selected symmetric-key cryptographic primitives

This section covers selected symmetric-key cryptographic primitives. It begins with the feedback
shift registers in Subsection 3.2.1: they are not a primitive, but are commonly used as their building
blocks. The next three subsections are related to stream ciphers: introduction and general structure
of stream ciphers in Subsection 3.2.2, followed by a short description of the eSTREAM project
in Subsection 3.2.3, and introduction to WG stream cipher family in Subsection 3.2.4. The last
four subsections are related to authenticated encryption. Introduction to authenticated encryption
is provided in Subsection 3.2.5, followed by short descriptions of the CAESAR competition in
Subsection 3.2.6 and of the ongoing NIST Lightweight Cryptography (LWC) project in Subsec-
tion 3.2.7. Subsection 3.2.8 is dedicated to the authenticated cipher WAGE, a round 2 candidate
for the NIST LWC project. Block ciphers, although a big and important part of symmetric-key
cryptography, are omitted from this discussion.

3.2.1 Feedback shift registers

This section begins with a brief overview of applications of feedback shift registers (FSRs), and
then introduces some definitions and basic terminologies related to linear and nonlinear feedback
shift registers (LFSR and NLFSR), and filtering generators [14, 36]. Further details can be found in
numerous sources such as [11, 37]. Additional notions will be introduced when needed in Chapter
6, which describes the GAP package FSR.

Applications of feedback shift registers

Feedback shift registers play an important role in cipher design5. A well known early example
of an LFSRs based stream cipher is A5/1, intended for securing GSM voice and data. A5/1 is

5stream ciphers will be introduced in section 3.2.2
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built from three LFSRs with different periods and a stop-and-go majority function controlling
their clocks. The output is computed as an XOR of outputs from all three LFSRs. A milestone
in stream cipher design is the eSTREAM project [4], launched in 2004. All 3 hardware portfolio
ciphers, Grain, MICKEY6 and Trivium (Subsection 4.1.2), as well as the software portfolio cipher
Sosemanuk. The cipher ACORN [38], included in the CAESAR portfolio [39], is based on 6
LFSRs (Subsection 3.2.6). Last but not least, both of the stream ciphers used for encryption and
integrity of communications in mobile networks, Snow3G and ZUC, use LFSRs over an extension
field. Most of the remaining round-2 candidates in the NIST LWC project [5, 10] (Subsection
3.2.7) contain LFSRs for generation of round constants, e.g., ACE, ESTATE, KNOT, Saturnin,
etc., or use a primitive, which uses LFSRs for generation of the round constants, e.g., (tweakable)
block cipher GIFT (candidates GIFT-COFB, HYENA, etc.). Some candidates use FSRs for their
internal state, for example Grain-128AEAD [40] or WAGE [6]. A detailed description of WAGE
is presented in Section 3.2.8.

LFSRs are widely used in coding theory, for example in BCH and Reed-Muller codes [18]. Further
examples are cyclic redundancy codes used in many communication and data storage devices for
error-detection, and for pattern generation in built-in self testing for electronic circuits. The LFSRs
have been used as counters in applications where the order of the sequence does not matter, for
example Xilinx proposed7 the use of LFSR counters to address the memory [41]. Less noticeable
is the use of LFSRs in algorithms for finite field arithmetic. For example, a serial circuit that re-
quires multiplication by x, followed by reduction modulo the field defining polynomial, can be
implemented as a LFSR with the field polynomial as feedback [42, 18].

What is a feedback shift register ?

An n-stage shift register over a finite field F is an array of n registers (denoted S i, i = n−1, . . . , 0),
and each stage holds a value from the underlying finite field F . The positive integer n is also
referred to as the length of the FSR. This memory array is shifted with each step S i → S i−1 for
i = n−1, . . . , 1, and the vacant register S n−1 is updated with a new value obtained from the feedback
function, hence the name feedback shift register (FSR). One of the stages is used to generate the
output and each time the FSR is clocked, that stages produces a new element si ∈F . In this way,
the FSR produces a sequence of elements:

s = {sk} = s0, s1, s2, . . . (3.12)

where sk+n = f (sk, sk+1, . . . , sk+n−1) for k = 0, 1, . . . , and f is a multivariate function in t = n
variables x0, x1, . . . , xn−1 as defined in equation (3.9) in Section 3.1.3. The variable xi corresponds
to the stage S i, i ∈ {0, 1, . . . , n − 1}. Based on the degree, given by equation (3.11), the distinction
is made between linear (LFSR) and nonlianear (NLFSR) feedback shift registers. For the linear

6Galois-style feedback
7declared obsolete
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case, the degree deg( f ) = 1, i.e., f is a linear function. However, this is not to be mistaken with
the degree of the feedback polynomial of an LFSR, which is a function in one variable: this is
an equivalent notation, defined in equation (3.13). Futhermore, when q = 2, f (x0, x1, . . . , xn−1) is
called a Boolean function in n variables.

In case of an LFSR, the feedback function (3.9) is given by f (x0, · · · , xn−1) =
∑n−1

i=0 cixi which can
be represented with an univariate polynomial

h(y) = yn +

n−1∑
j=0

c jy j (3.13)

where y j corresponds to the stage S j for j ∈ {0, 1, . . . , n − 1}, and yn to the new value computed
by the feedback. Coefficients c j, j ∈ {0, 1, . . . , n − 1}, of the polynomial in (3.13) belong to the
underlying field F .

A simple schematic of an n-stage FSR is shown in Figure 3.2, with the output sequence produced
by stage S 0.

Sn-1 0

feedback function

1S S
0 1s ,s ,...

Figure 3.1: Top level schematic of a n-stage FSR (Figure from [36])

At any given moment, the contents of the FSR hold n values from the underlying finite field, and
can be written as a vector of length n: (s0, s1, . . . , sn−1) ∈ F n. This vector is called the state of
the FSR and the state right after loading the initial state. The output sequence s is completely
determined by the feedback polynomial and the initial state. In case of q = 2, F = F2, function f
is a Boolean function and the FSR produces a binary sequence. In all other cases, the sequence is
referred to as an q-ary sequence.

Filtering generators

A typical structure of a filtering generator is shown in Figure 3.2(b): it consists of a filter, i.e. a non-
linear multivariate polynomial function, applied to an LFSR with n stages. Let (sk, sk+1, . . . , sk+n−1) ∈
F n be the kth state of the LFSR, g(x0, · · · , xt−1), a multivariate polynomial in t variables, where
t ≤ n, and (d0, · · · , dt−1), a selection of t tap positions in the state, i.e., 0 ≤ d0 < d1 < · · · < dt−1 < n.
The output sequence a = {ak} is given by

ak = g(sk+d0 , · · · , sk+dt−1), k = 0, 1, · · · .

This is referred to as a filtering generator where g is a called a filtering function, or simply filter,
and a = {ak}, a filtering sequence.
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Sn-1 0

feedback function

1S S

0 1s ,s ,...filter

Figure 3.2: Top level schematic of a n-stage FSR with a filter (Figure from [36])

3.2.2 Stream ciphers

Stream ciphers are symmetric-key primitives, used to provide confidentiality. The story of stream
ciphers began with Vernam’s shield, i.e. the one-time pad, in the early 20th century [43]. It en-
crypts the plaintext one character at a time by XORing it with a keystream character; the ciphertext
is decrypted in the same manner, by XORing a cyphertext character with the keystream character
that was used for its encryption. Note that such encryption and decryption are very fast. However,
it has one immediately obvious drawback: the one-time pad uses a keystream of the same length
as the plaintext, and this keystream is shared between the sender and the receiver, which requires
a secure transmission of the keystream itself. To address these problems, stream ciphers use a
short pre-shared key, exchanged using a public-key cryptosystem, and a pseudo-random sequence
generator (PRSG) to produce a sufficiently long keystream. The security of the stream cipher is
now reduced to the security of the PRSG. The attackers goal is to recover the secret key (seed) and
the security of the PRSG is measured by the complexity of this task.

Figure 3.3 shows the general behavioural model8 of encryption and decryption using a stream
cipher. The only difference between encryption and decryption is the “direction”: encryption takes
the plaintext as an input and outputs the ciphertext and decryption takes the ciphertext as an input
and produces the plaintext as the output. The sender and the receiver are using the same PRSG
with the same seed (a pre-shared secret key and an initialization vector9 (IV)), to obtain the same
keystream. The cipher operates in two phases: a key initialization phase (KI in Figure 3.3) and
the running phase, when the PRSG algorithm outputs the keystream (PRSG in Figure 3.3), refer to
[37] for details. The task of KI10 is to scramble the key and the IV to produce the initial state for
the PRSG. It is executed once per encryption session, it must be able to withstand known attacks
and is designed to get the keystream as random as possible to make the task of recovering the secret
key more difficult [37]. The KI itself is usually the PRSG algorithm running for a certain number
of steps with output discarded and usually some value is added to the feedback of PRSG. The first
keystream character is produced when cipher enters its running phase.

The word character is used to avoid the distinction between word-oriented and bit-oriented stream
ciphers. In a word-oriented stream cipher, the PRSG will produce a word of keystream per clock

8 based on [37]
9 IV can be public

10 sometimes also called KIA for key initialization algorithm
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PRSGKIk
IV

ki

mi ci

(a)  encryption

PRSGKIk
IV

ki

ci mi

(b)  decryption

k - the pre-shared seret key
IV - the initialization vector

m  - the plaintext charateri
k  - the keystream charateri
c  - the cphertext charateri

KI - key initialization
PRSG - pseudo-random

 sequence generator

Figure 3.3: Behavioral model of a stream cipher: (a) encryption and (b) decryption

cycle, e.g. 8 or 32 bits, and the plaintext will be encrypted word by word, whereas a bit-oriented
stream cipher produces one bit of keystream per clock cycle. Note that in the latter case, the
plaintext can be encrypted bit by bit, or the keystream bits can be accumulated into words for word
by word encryption.

3.2.3 The eSTREAM project: Grain and Trivium

The eSTREAM project started in 2004 with the objective to promote research in stream cipher
design [4]. Two specific goals were identified: stream ciphers for software applications with high
throughput (Profile 1) and stream ciphers for hardware applications with highly restricted resources
(Profile 2). The proposed ciphers went through three phases of evaluation: the first round was
flexible and allowed for changes to the ciphers to remove identified weaknesses before entering
the second phase. The design of a secure stream cipher proved to be a difficult task. In Phase 3,
three ciphers were selected and included in the eSTREAM portfolio: Grain v1, MICKEY 2.0 and
Trivium. For Profile 2, FPGA and ASIC implementation results were considered, but there were
problems in identifying the most relevant metric for comparison; some discussion on this topic
can be found in [44]. In the Phase 3, the primary criteria besides security was the area complexity
[4], another commonly used metric was the aforementioned throughput-to-area ratio. Grain and
Trivium are presented in this section, MICKEY is omitted due to its larger area complexity.

Grain

There are two versions of Grain: the original 80-bit version (using an 80-bit secret key and 64-bit
IV, called Grain, modified to Grain v1 and included in eSTREAM Portfolio) and Grain-128 (using
a 128-bit key and IV of same length). The structure of Grain can be seen in Figure 3.4: it is
composed of an 80-bit LFSR and an 80-bit NLFSR, giving a total internal state of 160 bits. The
NLFSR is updated by a nonlinear feedback polynomial that is further XORed by a bit from LFSR.
Five bits (four from the LFSR and 1 from NLFSR) are chosen from the FSRs and used as an input
to a Boolean function. The keystream bit is obtained by XORing the output of this function with
7 state bits from the NLFSR. The initialization phase takes 160 cycles, during which this bit is
XORed to update values for both FSR’s. The Grain-128 FSR’s are 128 bits long, and have different
feedbacks. The Boolean function is also changed and has a bigger number of inputs from both
FSR’s. At the end, an additional bit from the LFSR is XORed to form the keystream bit. Note that
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the number of tap positions is not only increased but also changed. The initialization phase now
lasts 256 cycles. For more details on Grain, refer to [45, 46].

Figure 3.4: The structure of Grain: run mode (Figure from[46])

Trivium

Trivium has a very simple design and can generate keystreams of length up to 264 using an 80-bit
secret key and IV of same length. It is composed of three FSR’s of lengths 93, 84 and 111 bits
respectively, which sums up to a total internal state of 288 bits. These three FSR’s can be arranged
into a circular shape, as can be seen in Figure 3.5. From the FSR point of view, the update functions
of the three FSR’s differ only in the tap positions. Each FSR has 5 tap positions used by the filtering
function in two ways: (i.) to update the FSR’s (using 4 bits from the previous FSR and one bit
from the FSR being updated) and (ii.) to compute the keystream bit (by XORing 6 state bits, two
from each FSR). For more details on Trvium, refer to [47].

Figure 3.5: The structure of Trivium (Figure from [47])
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3.2.4 The WG stream cipher

The WG stream cipher is a bit-oriented stream cipher, which generates a keystream with proven
randomness and cryptographic properties. The WG stream cipher is a synchronous stream ci-
pher based on the Welch-Gong (WG) transformations on an m-sequence. It was first proposed by
Nawaz and Gong in 2005 and the profile 2 candidate WG-29 reached the phase 2 of the eSTREAM
competition, [7]. For more information refer to [48, 49, 50]

LFSR over an extension field
FSRs were introduced in Subsection 3.2.1; this paragraph is focusing on an LFSR over an extension
field F2m . The shift register is an array of n registers, each of them holding an m-bit value (an
element from F2m); the registers are referred to as stages S i, i = n−1, . . . , 0. The feedback function
is a simple expression that involves only multiplications of field elements by constants and addition
in F2m:

`(x) = xn +

n−1∑
i=1

cixi + γ (3.14)

over F2m . Expression (3.14) is obtained from expression (3.13) by moving the constant term out of
the sum, i.e., γ = c0 ∈ F2m . It is common practice to choose all other coefficients from the prime
field F2, in order to minimize the hardware. The polynomial `(x) is a primitive polynomial, which
ensures that the LFSR generates a maximal length sequence (m-sequence) with period (2m)n − 1.
The polynomial function associated with the LFSR polynomial `(x) from equation (3.14) is a
function from Fn

2m → F2m given by

f (x0, x1, . . . , xn−1) = γx0 +

n−1∑
i=1

cixi (3.15)

where xi corresponds to the stage S i. With each step, the LFSR is updated as follows:

(S 0, S 1, . . . , S n−1)→ (S 1, S 2, . . . , S n−1, S n) ,

where S n = f (S 0, S 1, . . . , S n−1) is computed as defined by equation (3.15).

Some terminologies used in this thesis:

• a step of the FSR or clocking of the FSR: the contents of the registers are shifted to the right
and the register S n−1 is updated with the feedback value S n,
• taps or tap positions: the FSR stages entering the feedback. More precisely, the stages S i

corresponding to the indices i of `(x) from equation (3.14) for which ci , 0 for the LFSRs,
and to the indices i of f (x0, . . . , xn−1) from equation (3.9) for which ci0,i1,...,in−1 , 0 for the
NLFSRs,
• output tap: the stage used to output the sequence (usually S n−1, to shorten the key initializa-

tion phase). Multiple output taps are possible (a vector output in each step),
• initial state: the contents of the FSR after loading.
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The WG transformation

Let m be an integer that is not a multiple of 3, that is m mod 3 , 0. Then the WG transformation
from F2m to F2 is defined by

WGT-m(Xd) = Tr(q(Xd + 1) + 1), for X ∈ F2m and gcd(d, 2m − 1) = 1, (3.16)

where q(x) = x + xr1 + xr2 + xr3 + xr4 is a permutation polynomial from F2m to F2m . For a positive
integer k, such that 3k ≡ 1 mod m, the exponents are obtained as follows:

r1 = 2k + 1
r2 = 22k + 2k + 1
r3 = 22k − 2k + 1
r4 = 22k + 2k − 1. (3.17)

The decimation exponent d is chosen to improve the cryptographic properties of the keystream and
must have an efficient hardware implementation.

Equation (3.16) can be split into two parts. The first part is the WG permutation WGP-m(Xd),
shown in equation (3.18). Second is the WG transformation WGT-m(Xd), shown in equation (3.19);
it is the trace function applied to the result of the WG permutation.

WGP − m(Xd) = q(Xd + 1) + 1 (3.18)

WGT − m(Xd) = Tr(WGP(Xd)). (3.19)
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Figure 3.6: The structure of the WG keystream generator (Figure adapted from [50])
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The WG keystream generator

The general structure of the WG keystream generator is shown in Figure3.6: the LFSR of degree n
and the WGT−m(Xd), both defined over F2m . The LFSR is loaded with the key and the initialization
vector IV, then key initialization phase (KI) is run for 2n steps. During KI, the WG permutation
value WGP−m(Xd) is added to the LFSR feedback, as shown with the dashed arrow in Figure3.6.
During the running phase, the LFSR is update only by the feedback, and the keystream generator
produces 1 bit of keystream per step of the LFSR. For encryption and decryption another XOR,
not shown in Figure 3.6, is needed.

3.2.5 Authenticated encryption with associated data

Stream ciphers, introduced in Subsection 3.2.2, are used to provide confidentiality. According
to Chen and Gong [37], confidentiality is a security feature to assure that information can only
be received by eligible communication parties. Confidentiality is achieved through encryption
mechanisms, for example using a stream cipher. Two other, important and inseparable security
objectives are integrity and authenticity. Integrity is to prevent from altering the content of the
message, and authenticity is to prevent from altering the perceived origin of the message. With
symmetric-key based cryptography, integrity and authenticity can be achieved by generating a
message authentication code, a data tag calculated on the message using a shared secret key.

There are three combinations of encryption and authentication, also called modes, distinguished
by the order of the two: encrypt and authenticate, authenticate-then-encrypt, and encrypt-then-
authenticate. In all three cases, both the ciphertext and the tag are transmitted. In the first
case, encryption and authentication are independent and can be performed in parallel. In case
of authenticate-then-encrypt, the tag is computed on the plaintext, and encryption applied to a con-
catenation of plaintext and the tag. In case of encrypt-then-authenticate, the tag is computed on the
ciphertext.

These three modes are also referred to as generic composition approach, and can be extended to
include associated data [51]. For example, using encrypt-then-authenticate approach, the tag is
computed on a concatenation of the associated data and the ciphertext. Rogaway listed some con-
siderations to this approach in [51], namely: the associated data must stay in plaintext, because it
contains routing information, associated data must be authenticated, there must be a way to bind the
associated data to the message, and the packet length shall not increase. Including associated data
in authenticated encryption (AE), is called authenticated encryption with associated data (AEAD).
Literature often refers to AEAD schemes simply as AE. The term authenticated encryption refers
to algorithms that integrate authentication and encryption, as opposed to the generic composition
approach. In [52], Wu and Preneel listed three approaches to design an integrated authenticated
encryption algorithm: (i.) using a block cipher in a special mode, e.g., AES-GCM [53], and OCB
[54], (ii.) using a stream cipher, then dividing the keystream into one part used for encryption
and one part used for authentication, e.g., Grain-128a [55] and (iii.) designing dedicated AE algo-
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rithms, which use the input data to update the state of the cipher, and extract the tag from the state
after completed encryption, e.g., AEGIS [52], and WAGE [6].

3.2.6 The CAESAR competition: Ascon and ACORN

The CAESAR competition was launched in 2014 [39]. The acronym stands for “Competition
for Authenticated Encryption: Security, Applicability, and Robustness”. The call for submissions
asked for a family of authenticated ciphers that provides integrity and confidentiality for the plain-
text, and integrity for associated data. (1) offer advantages over AES-GCM [53] and (2) are suitable
for widespread adoption [56]. The final CAESAR portfolio is organized into three use cases, with
the following finalists:

1. Lightweight applications (resource constrained environments): Ascon (first choice) [57],
ACORN (second choice) [38]

2. High-performance applications: AEGIS-128 [52], OCB [54] (in alphabetical order, no pref-
erence)

3. Defense in depth: Deoxys-II (first choice) [58], COLM [59] (second choice)

Below are short descriptions of the two case 1 ciphers, namely for the lightweight applications.

Ascon

Ascon [57] is a sponge based cipher with internal state size of 320 bits. It uses a 128 bit key and
nonce. The data block size is 64 bits and the tag length is 182 bits. The core permutation p begins
with constant addition (using all together 12 different constants), followed by a substitution layer
using 64 parallel 5-bit Sboxes, and a linear diffusion layer. During initialization and finalization,
the number of rounds a = 12 is used, and during processing of associate data and of the plaintext/-
ciphertext, the number of rounds is b = 6. Figure 3.7 shows Ascon’s mode of operation, which is
based on a duplex sponge mode.

ACORN

ACORN [38] is based on a stream cipher and has a 293 bit internal state, composed of six LFSRs
of different lengths, all defined by trinomials, shown in Figure 3.8. It uses a 128 key and initializa-
tion vector (IV), and generates a 128bit tag. It uses two Boolean functions, both containing XOR
and AND gates, used in the nonlinear feedback function fi and in keystream bit function ksi. The
processing consists of four phases, the initialization, processing of associated data, encryption/de-
cryption, and finalization.
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Figure 3.7: Schematic diagram of Ascon: mode of operation (Figure from [57])

Figure 3.8: The structure of ACORN (Figure from [38])

3.2.7 The NIST Lightweight Cryptography project

In 2013, NIST (National Institute of Standards and Technology) initiated a lightweight cryptogra-
phy project, and in 2018 a request for nominations of cryptographic algorithms for the Lightweight
Cryptography Standardization Process [5, 60]. The algorithms shall implement AEAD function-
ality, and optional hash functionality. Round 1 of the LWC standardization project received 56
candidates, out of which, 32 candidates are remaining in the ongoing round 2 [10]. The authenti-
cated encryption cipher WAGE is advanced to round 2 (subsection 3.2.8). Some round 2 candidates
were mentioned in Subsection 3.2.1, demonstrating applications of LFSRs.
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3.2.8 The WAGE authenticated encryption scheme

Disclaimer 3.1: The WAGE authenticated encryption scheme

The WAGE authenticated encryption scheme is a joint work of the members of the ComSec
Lab, listed in alphabetical order: Mark Aagaard, Riham AlTawy, Guang Gong, Kalikinkar
Mandal, Raghvendra Rohit, and Nusa Zidaric (author of this thesis).
Section 3.2.8 is a background section, summarizing the specifications of the LWC candidate
WAGE [6] (joint work), as submitted to the the NIST LWC project [5].

WAGE-AE-128 is a hardware oriented authenticated encryption scheme, built on top of the initial-
ization phase of the LFSR based, Welch-Gong WG stream cipher (see Section 3.2.4). WAGE was
derived from WG and AE. WAGE-AE-128 is composed of the WAGE permutation operating in
a unified duplex sponge mode [61]. The 259 bit WAGE permutation is iterative and has a round
function built from an LFSR, a decimated Welch-Gong permutation WGP and small Sboxes SB.
Details on cryptographic properties, such as differential uniformity and nonlinearity of the WGP
and SB and final selection of the LFSR polynomial can be found in [6]. The parameter selection
for WAGE was aimed at balancing the security and hardware implementation area, using hardware
implementation results for many design decisions, e.g., field size, representation of field elements,
LFSR polynomial, etc., as will be explained in depth in Chapter 22 about the impact of hardware
implementations on the WAGE algorithm design. This section explains the WAGE permutation
and its building blocks, followed by the short description of WAGE-AE-128.

The block diagram of WAGE is shown in Figure 3.9. It depicts the LFSR and the nonlinear
components of WAGE. Both the LFSR and the WGP are defined over F27 , and the Sbox is a 7 bit
permutation. The finite field F27 is defined with the primitive polynomial f (x) = x7 + x3 + x2 + x+1,
and the field elements are represented using the polynomial basis PB = {1, ω, . . . , ω6}, where ω
is the root of f (x) (Table 3.1). The LFSR is defined by the feedback polynomial `(x) (Table 3.1),
which is primitive over F27 . The 37 stages of the LFSR also constitute the internal state of WAGE,
denoted S i = (S i

36, S
i
35, · · · , S

i
1, S

i
0); the superscript i is used to mark the i-th iteration of the

permutation.

For an element x ∈ F27 , the decimated WG permutation with decimation d = 13 is defined in
Table 3.1, i.e., WGP-16(x13) from equation (3.18). The SB is defined bit-wise, with the input
x = (x0, x1, x2, x3, x4, x5, x6), but the interpretation of the 7 bits is identical to the interpretation of
the coefficients of the finite field element represented in its polynomial basis. The 7-bit SB uses a
nonlinear transformation Q and a permutation P, which together yield one-round of the SB, namely
R = P ◦Q. Transformations Q, P and R are given in table 3.1. The SB itself iterates the function R
5 times, followed by applying Q once, and then the 0th and 2nd components are complemented, as
listed at the end of Table 3.1. Appendix B.2 shows the Sbox representation of WGP in Table B.3
and hexadecimal representation of SB in Table B.4.
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F27 f (x) = x7 + x3 + x2 + x + 1, f (ω) = 0 polynomial basis: PB = {1, ω, . . . , ω6}

a ∈ F a =
∑6

i=0 aiω
i, ai ∈ F2 vector representation: [a]PB = (a0, a1, a2, a3, a4, a5, a6)

LFSR `(y) = y37 + y31 + y30 + y26 + y24 + y19 + y13 + y12 + y8 + y6 + ω, f (ω) = 0

WGP7 WGP7(xd) = xd + (xd + 1)33 + (xd + 1)39 + (xd + 1)41 + (xd + 1)104, d = 13

SB Q Q(x0, x1, x2, x3, x4, x5, x6)→ (x0 ⊕ (x2 ∧ x3), x1, x2, x3 ⊕ (x5 ∧ x6), x4, x5 ⊕ (x2 ∧ x4), x6)

SB P P(x0, x1, x2, x3, x4, x5, x6)→ (x6, x3, x0, x4, x2, x5, x1)

SB R R(x0, x1, x2, x3, x4, x5, x6)→ (x6, x3 ⊕ (x5 ∧ x6), x0 ⊕ (x2 ∧ x3), x4, x2, x5 ⊕ (x2 ∧ x4), x1)

SB
(x0, x1, x2, x3, x4, x5, x6)← R5(x0, x1, x2, x3, x4, x5, x6)

(x0, x1, x2, x3, x4, x5, x6)← Q(x0, x1, x2, x3, x4, x5, x6)

(x0, x1, x2, x3, x4, x5, x6)← (x0, x1, x2, x3, x4, x5, x6)

Table 3.1: Specification parameters of WAGE

The WAGE permutation is iterative: it repeats the round function WAGE-StateUpdate(S i) 111
times (see Algorithm 1). In each round, 6 stages of the LFSR are updated nonlinearly, while all
the remaining stages are just shifted. A pair of 7-bit round constants (rci

0, rc
i
1) is XORed with the

pair of stages (18, 36) to destroy similarity among state updates. Round constants are produced
by an LFSR of length 7 with feedback polynomial x7 + x + 1, implemented in a 2-way parallel
configuration, see [6] for details.

Algoritem 1 WAGE permutation

1: Input : S 0 = (S 0
36, S

0
35, · · · , S

0
1, S

0
0)

2: Output : S 111 = (S 111
36 , S

111
35 , · · · , S

111
1 , S 111

0 )

3: for i = 0 to 110 do:
4: S i+1 ← WAGE-StateUpdate(S i, rci

0, rc
i
1)

5: return S 111

6: Function WAGE-StateUpdate(S i):
7: fb = S i

31 ⊕ S i
30 ⊕ S i

26 ⊕ S i
24 ⊕ S i

19⊕

S i
13 ⊕ S i

12 ⊕ S i
8 ⊕ S i

6 ⊕ (ω ⊗ S i
0)

8: S i+1
4 ← S i

5 ⊕ SB(S i
8)

9: S i+1
10 ← S i

11 ⊕ SB(S i
15)

10: S i+1
18 ← S i

19 ⊕WGP(S i
18) ⊕ rci

0
11: S i+1

23 ← S i
24 ⊕ SB(S i

27)
12: S i+1

29 ← S i
30 ⊕ SB(S i

34)
13: S i+1

36 ← fb ⊕WGP(S i
36) ⊕ rci

1
14: S i+1

j ← S i
j+1 where

j ∈ {0, · · · , 36}\{4, 10, 18, 23, 29, 36}
15: return S i+1
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Algorithm 2 presents a high-level overview of WAGE-AE-128. WAGE uses the unified sponge
duplex mode for sLiSCP [61] to provide the AEAD functionality, as shown in Figure 3.10. The
internal state S of WAGE is divided into two parts: the 64-bit rate part S r and the capacity part
S c. The rate part corresponds to the shaded LFSR stages in Figure 3.9. The 0-th bit of stage S 36,
i.e., S 36,0, and all bits of stages S 35, S 34, S 28, S 27, S 18, S 16, S 15, S 9 and S 8 constitute S r, while all
remaining bits in the state constitute S c. Two domain separator bits ds1 and ds0 are XORed to
the first two bits of S c, namely S 111

0,1 and S 111
0,0 respectively. The domain separators are used to

distinguish between four phases required for each encryption WAGE-E and decryption WAGE-D:
the initialization, processing of associated data AD, encryption of a message M or decryption of
the ciphertext C, and finalization phase.

Algoritem 2 WAGE-AE-128 algorithm
1: Authenticated encryption WAGE-E(K,N, AD,M):
2: S ← Initialization(N,K)
3: if |AD| , 0 then:
4: S ← Processing-Associated-Data(S , AD)
5: (S ,C)← Encyption(S ,M)
6: T ← Finalization(S ,K)
7: return (C,T )

8: Initialization(N,K):
9: S ← load-AE(N,K)

10: S ← WAGE(S )
11: for i = 0 to 1 do:
12: S ← (S r ⊕ Ki, S c)
13: S ← WAGE(S )
14: return S

15: Processing-Associated-Data(S , AD):
16: (AD0|| · · · ||AD`AD−1)← padr(AD)
17: for i = 0 to `AD − 1 do:
18: S ← (S r ⊕ ADi, S c ⊕ 0c−7||1||06)
19: S ← WAGE(S )
20: return S

21: Encryption(S ,M):
22: (M0|| · · · ||M`M−1)← padr(M)
23: for i = 0 to `M − 1 do:
24: Ci ← Mi ⊕ S r

25: S ← (Ci, S c ⊕ 0c−7||0||1||05)
26: S ← WAGE(S )
27: C`M−1 ← trunc-msb(C`M−1, |M| mod r)
28: C ← (C0,C1, . . . ,C`M−1)
29: return (S ,C)

30: padr(X):
31: X ← X||10r−1−(|X| mod r)

32: return X

33: trunc-lsb(X, n):
34: return (xr−n, xr−n+1, . . . , xr−1)

1: Verified decryption WAGE-D(K,N, AD,C,T ):
2: S ← Initialization(N,K)
3: if |AD| , 0 then:
4: S ← Processing-Associated-Data(S , AD)
5: (S ,M)← Decyption(S ,C)
6: T ′ ← Finalization(S ,K)
7: if T ′ , T then:
8: return ⊥
9: else:

10: return M

11: Decryption(S ,C):
12: (C0|| · · · ||C`C−1)← padr(C)
13: for i = 0 to `C − 2 do:
14: Mi ← Ci ⊕ S r

15: S ← (Ci, S c ⊕ 0c−7||0||1||05)
16: S ← WAGE(S )
17: M`C−1 ← S r ⊕C`C−1
18: C`C−1 ← trunc-msb(C`C−1, |C| mod r)||

trunc-lsb(M`C−1, r − |C| mod r))
19: M`C−1 ← trunc-msb(M`C−1, |C| mod r)
20: M ← (M0,M1, . . . ,M`C−1)
21: S ← WAGE(C`C−1, S c ⊕ 0c−7||0||1||05)
22: return (S ,M)

23: Finalization(S ,K):
24: for i = 0 to 1 do:
25: S ← WAGE(S r ⊕ Ki, S c)
26: T ← tagextract(S )
27: return T

28: trunc-msb(X, n):
29: if n = 0 then:
30: return φ
31: else:
32: return (x0, x1, . . . , xn−1)
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The rate part S r of the state is used for both absorbing and squeezing. A 64-bit input block is
padded with zeros to 70 bits, then absorbed through data inputs Dk, k = 0, . . . , 9 by XORing 7-bit
words with the contents of the corresponding stages S 111

j , j = 8, 9, 15, 16, 18, 27, 28, 34, 35, 36.
For each data input Dk there is a corresponding data output Ok, which outputs the aforementioned
sum. For example, the stage S 36 is updated by absorbing a padded message word from D9: S 0

36 ←

(S 111
36,0, S

111
36,1, . . . , S

111
36,6) ⊕ (m63, 0, . . . , 0 ). Depending on the phase, the data inputs Dk carry the

associated data AD, message M (or ciphertext C), and the K bits. Since the rate part of internal
state consists of 64 bits, AD, M or C, must be padded to a multiple of 64, using the padding
rule (10∗). The resulting padded bitstringis are then divided into 64-bit blocks for absorbing. In
Algorithm 2, `X, where X ∈ {M, AD,C}, denotes the length in blocks, i.e., number of 64-bit blocks
of X after padding. Refer to [6] for details on padding.
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Figure 3.10: Schematic diagram of the WAGE-AE-128 algorithm (Figure from [6])
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3.3 Computer hardware

This section begins with implementation technologies in Subsection 3.3.1, followed by a section
on implementation efficiency and different metrics in Subsection 3.3.2. Hardware design choices,
focusing on datapath implementations, are presented in Subsection 3.3.3; the purpose of this sub-
section is establishing common terminology for the rest of the thesis.

3.3.1 Implementation technologies: ASICs and FPGAs

In this thesis, the term ASIC refers to (Standard-Cell-Based) Application Specific Integrated Cirucit:
the logic gates are pre-designed, pre-tested and pre-characterized ([62]), and finally stored in a li-
brary as standard cells. The design flow for ASICs starts with design entry using a hardware design
language such as VHDL (Subsection 3.3.4) or Verilog. The synthesis tools (computer-aided design
(CAD) tools) use the library cells to convert the HDL design into a chip layout. The implemen-
tation results for the case studies were obtained for the 65nm CMOS technology using Synopsis
Design Compiler and Cadence SoC Encounter.

FPGA (Field Programmable Gate Arrays) devices provide a high number of gates (in millions) and
built-in high-level system functions, such as embedded processors, clock management systems,
memory modules, DSP (digital signal processing) modules, serial transmitters, etc., integrated in
a single device. Basic logic unit is always a lookup-table (LUT), which allows implementation of
an arbitrary Boolean function in n variables, where n depends on the specific FPGA device. The
greatest advantage of SRAM-based FPGAs is their flexibility; modifying the designed and even
implementing circuits is fast.

A brief comparison of ASICs and FPGAs

Compared to ASICs, FPGAs have a big advantage when time-to-market is critical due to a shorter
development cycle. Another advantage of the FPGAs is reconfigurability, which it allows modi-
fications and updates, and also makes FPGAs attractive for ASIC prototyping. Once fabricated,
ASIC cannot be altered. Nevertheless, when comparing speed, area and power consumption, an
equivalent ASIC circuit is always preferable. An ASIC solution is also extremely time consum-
ing and expensive, however, these drawbacks dissapear for large production volumes. As already
mentioned, compared to ASIC, the area is always larger when the same design is implemented on
an FPGA. Kuon and Rose [63] compared the performance of a 90-nm CMOS FPGA and 90-nm
CMOS standard-cell ASIC using implementations of carefully designed benchmarks and found
the following: the area complexity when implemented on an FPGA is in average approximately 35
times larger in comparison with the ASIC implementation, when comparing circuits that use logic
only (that is only LUTs and interconnects), and that for other circuits the gap in area complexity
can be reduced when using dedicated blocks in FPGAs (listing the use of multiply-accumulate
logic in special DSP slices available on some FPGAs).
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In general, a huge percentage of an FPGA device is used to provide the programmability. In
general, interconnect switching in FPGAs is slow, programmable routing takes up a lot of area
and these interconnects have higher capacitance hence higher power consumption. Due to [64],
some 40%-80% of overall design delay, 90% of area and up to 80% of total power dissipation are
attributed to interconnects. Another problem due to the programmable interconnects: a signal path
in an equivalent ASIC circuit could be much shorter, hence lower delay.

An often overlooked feature of the FPGAs are the “free registers”. Usually, there is at least one
register paired up with each LUT, and sometimes two registers. They can be used in different con-
figurations, with or without reset/set and with or without chip-enable control signals. Furthermore,
FPGAs, for example the Xilinx Spartan-6 devices have special shift register primitives SRL16
available on the so called SLICEM LUTs: they allow for a significant area reduction.

Another distinction comes from the nature of the LUTs: the look-up tables are nothing more
than truth tables, and the most important parameter is the number of input and outputs of a LUT.
These values are not set by the hardware designer, but are fixed for a given FPGA. For example,
Xilinx FPGAs can have 4-input/1-output or 6-input/2-output LUTs, and can implement a Boolean
function in maximum 4, respectively 6, variables. Often gate counts, i.e., number of NOT and two-
input AND, OR, XOR11 gates, are used to compare designs, as will be discussed in more detail in
Section 4.2.3 in Chapter 4. For FPGAs, the gate counts are (almost) meaningless. For ASIC, the
area can always be expressed in terms of gate counts, however, a lot depends on the specific ASIC
library used.

3.3.2 Implementation efficiency and different metrics

Performance of FPGA and ASIC implementations is described with three key metrics (dimen-
sions): area, time and power. Other derived metrics are sometimes used, because they make pre-
dictions and comparisons between different design options easier.

The primary time metrics of a design are latency, clock period (and its reciprocal clock frequency)
and total time. These terms apply in the same manner to both, FPGAs and ASICs. Latency is the
time that elapses from the moment when the input data is available to the moment the results appear
on the outputs [65]. If an algorithm can be realized with a purely combinational circuit (without
storage elements), the time complexity equals to the delay of the signal along the critical path,
where a path is a sequence of interconnects and logical elements. In sequential circuits, the time
complexity is given by two parameters, the clock period, which depends on the critical path, and
total time, which is the product of the clock period and the number of clock cycles needed.

The throughput measures the amount of data processed per time. Based on how the data and the
time are measured, there are slight variations of throughput. They are presented in incremental
fashion:

11especially in binary finite field, where XOR gate is used for the modulo 2 addition
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1. data measured in parcels, time measured in clock cycles

Tput =
#parcels

#clk.cycles

[
parcel
cycle

]
(3.20)

2. data measured in parcels, time measured in seconds

Tput =
#parcels

#clk.cycles
=

#parcels
#clk.cycles · #seconds

clockcyle

[
parcel

seconds

]
(3.21)

This form of throughput is obtained by including the clock cycle period, measured in seconds-
per-clock cycle.

3. data measured in bits, time measured in seconds

Tput =
#parcels

#clk.cycles
=

#parcels · #bits
parcel

#clk.cycles · #seconds
clockcyle

[
bits

seconds

]
(3.22)

This form of throughput is obtained by including the bit-width of the parcel.

Throughout literature, the throughput is measured as bit
cycle , i.e. bits-per-cycle or as word

cycle , i.e. words-
per-cycle; the latter corresponds with equation (3.20), using word as synonym for parcel or output.
For example, during WG stream cipher (Subsection 3.2.4), the key initialization algorithm, the
parcel is a m-bit word, yielding words-per-cycle. During the WG running phase, the parcel is 1
keystream bit, yielding bits-per-cycle. Some literature [44] defines the throughput as bits-per-cycle
multiplied by the clock frequency, yielding bits-per-second.

The area complexity in FPGAs is given in terms of resources used by the design, for example
the number of used slices (a collection of LUTs and registers, concrete configuration depends on
the specific FPGA device), LUTs, storage elements, input-output blocks (IOBs), etc. Since both
LUTs and registers are contained in slices, the number of slices will be used as the primary area
metric for FPGAs. Area complexity for ASICs is measured by the amount of silicon used and can
be given either in µm2 or in Gate Equivalents (GE). The latter is the area in µm2 divided by the area
of a two-input NAND gate. GE is preferred metric to µm2, because it is believed to allow very rough
comparisons across different fabrication technologies and gate libraries. However, as stressed by
[66], the GE metric is technology specific, and direct comparison of area expressed in GEs across
different technologies is not possible.

Power and energy are becoming more and more significant as metrics for various reasons: they
affect battery life, can enforce a limit of the clock frequency, causes higher temperatures which in
turn reduces the lifetime of the device, and increases dissipated heat of hand-held devices etc. In
general, total power consumption depends on the number of logic cells in the circuit, connections
between them, the underlying technology being used and finally on data that is being processed.
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In CMOS circuits, the total power consumption has two components: static power and dynamic
power. Dynamic power is proportional to how often the signals change their value and on clock
frequency. It is attributed to the evaluation of logic cell outputs and depends on two factors, the
load capacitance of the cell that needs to be charged and the short circuit current occurring when
the output of a cell is switched. The static power is caused by leakage currents and increases
with decreasing size of transistors. It is roughly proportional to the area ([44]). Power and energy
are closely related. According to [67], energy is becoming more important for determining the
lifetime of battery operated devices, suitable for lightweight applications. A frequently used metric
is energy-per-bit, calculated by dividing the total power consumption by the throughput, both
obtained at the same clock frequency [44].

Since it is difficult to compare two designs based on more than one metric (for example the clock
period and the area), the derived metrics are used to measure design efficiency, for example the
time-area product or with the power consumption being more and more important, the time-area-
power product. These two metrics are, just like the clock period and area, “the smaller the better”.
However, it is more natural for us to look for the opposite, the “bigger number”, which is also one
of the reasons why frequency is often preferred to clock period. Taking the reciprocal of these two
products and keeping throughput in mind, the optimality metrics are derived: the throughput per
time-area product o1=

T
tA = Tf

A and throughput per time-area-power product o2=
T

tAP = Tf
AP . The

value T in o1 and o2 is the throughput measured in parcels-per-cycle (equation (3.20)). Because
power analysis is tedious it is often approximate it with area as T·f

A2 . This ratio is also preferred
to the T

AP , because of sensitivity of power analysis to differences between the cell libraries and to
tool configurations [68]. There is yet another viewpoint to these metrics, namely the fact that high
throughput comes at the cost of area increase, for example exploiting maximum level of paral-
lelism or unrolling an iterative implementation into a pipeline [69], or by increasing the frequency,
which in turn causes increased area and power consumption. Metrics like f

A and f
A2 put a better

perspective on the actual improvement of the design by some optimization attempt; they emphasize
the tradeoffs between the throughput and area.

3.3.3 Hardware design – datapath

In general, hardware can be classified as datapath, storage and control, based on its primary task.
Finite field applications certainly fall into the datapath class. The datapath circuits can be further
distinguished based on exploitation of parallelism12 and utilized degree of resource sharing. Both
parallelism and resource sharing depend on the algorithm and data dependencies. This section
gives a brief overview with the purpose of establishing common terminology [70, 71]. Two cases
are covered, one without data dependencies and one with data dependencies. In both cases, a
function F, performed four times, will be used.

The two cases are explained with the use of data-flow diagrams (DFDs), which can capture both
the data-flow and behaviour. One instance of the function F is represented as a datapath component

12spatial parallelism, not temporal parallelism as in pipelining
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F in a square. The subscripts are used to enumerate the instances of F in the circuit. The keywords
replicate and reuse are not a part of the DFD notation and are used for clarification only. The
horizontal dashed lines represent clock cycle boundaries. Each time a signal crosses the clock
cycle boundary, registers are inferred. All registers are located at the outputs, i.e., all modules
are considered to be combinational-input/registered-outputs, abbreviated CIRO. For example, a
pipeline can be considered as a series of CIRO modules. All ports are always considered to be of the
same type, mixing, e.g., have one registered and one combinational input, is not allowed. Possible
combinations of combinational and registered inputs and outputs are shown in Figure 3.11, with
the CIRO shown second. A register at the clock cycle boundary crossing is shown for one input of
the RIRO example.

reg

CICO

combinational
circuit

CIRO

combinational
circuit

RICO

combinational
circuit

RIRO

combinational
circuit

Figure 3.11: Possible combinations of combinational and registered inputs and outputs

Figure 3.12 shows datapaths with no data dependencies for the following implementation deci-
sions: (a) fully parallel, (b) partially parallel, and (c) sequential datapath. The datapath DFDs are
shown on top, and the actual hardware is shown below each DFD. The actual hardware contains
only the hardware used, the multiplexers and the registers implied by the corresponding DFD, but
the reuse is lost. Figure 3.12(a) shows an example of a fully parallel datapath. Four instances
of F are used and all four output values computed concurrently. The simplest example of such a
datapath is the bit-wise XOR on vectors of length 4. The partially parallel version of this datapath,
computing two outputs at a time (per clock cycle), is shown in Figure 3.12(b). The outputs from
the first clock cycle must be stored and preserved, hence chip enable control signals (CE) for the
registers shown below the DFD. The last DFD is showing a sequential datapath, with only one
instance of F, reused four times. Neglecting the area multiplexers and control signals, the datapath
in Figure 3.12(a) has the highest area with four instances of F, and the datapath in Figure 3.12(c)
the lowest area with only one F. Ignoring the multiplexers, the critical path and hence the clock
period remains unchanged, but the number of clock cycles needed for the final result increases.

Figure 3.13 shows the datapaths with data dependencies that prevent parallelism. Figure 3.13(d)
shows serial computation with no resource sharing. It uses four instances of F. Figure 3.13(e) has
two instances of F, which are reused to obtain the final output over two clock cycles. This is a
partially sequential datapath. The fully sequential datapath in Figure 3.13(f) has only one instance
of F, which is reused four times, i.e., has a higher degree of recourse sharing (reuse). The area
in terms of datapath components F drops with higher reuse. The critical path and hence the clock
period is reduced with higher reuse, but the number of clock cycles increases.
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Figure 3.12: Fully parallel, group-level and serial computation in the absence of data dependencies

The DFDs also capture the tradeoffs between the different options. The examples are illustrating
the critical path delay tcp, that is, the delay through the longest viable combinational path through
the circuit. If multiplexers are used, the delay becomes tcp = tF + tmux, and the lower bound
for the clock period is tclk = tcp + treg. The delays are simplified: the delays for the registers
and the multiplexers are omitted, and it must be noted that especially the multiplexers can add a
significant delay. Throughput given in terms of parcels processed (i.e. results computed) per clock
period is lowered with every reuse. The datapaths without resource sharing, i.e., fully parallel
in Figure 3.12(a) and serial in Figure 3.13(d), have throughput 1. Both datapaths with the word
“partial” have throughput 1/2, and the two sequential datapaths (Figure 3.12(c), Figure 3.13(f))
have the lowest throughput of 1/4.

Only unpipelined datapath are considered. By changing (some) clock cycle boundaries into in-
terstage borders, partially and fully pipelined datapaths can be obtained. Pipelining is beyond the
scope of this work. This work focuses on unpipleined datapaths with no reuse, i.e., fully parallel
or serial datapaths (Figures 3.12(a) and 3.13(d)).
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Figure 3.13: Serial, partially sequentail and fully sequential computation with data dependencies

Constant array implementations

In a constant array implementation the output values (results of the implemented expression) are
precomputed for all possible inputs and stored as constants. This is a lookup table design, where
the input serves as an index to the array, selecting appropriate precomputed constant as output.
Any datapath can be implemented as a constant array, with some reasonable limitations on its size.
In ASIC, the constant arrays are not stored in hardware as actual memory arrays, but rather as a net
of AND, OR, XOR and NOT gates, derived and optimized by the synthesis tools. As a consequence,
the area needed for a constant array implementation depends on possible optimizations and differs
from the theoretical estimate computed as (number of entries)×(number of bits per entry). For
an m-bit input, the array has 2m possible entries. Number of bits per entry is the length of the
precomputed constants in bits. Implementation using an actual memory module is also possible.
Terminology constant array is preferred to lookup table to avoid the confusion with FPGA LUTs.
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3.3.4 Hardware design entry using VHDL

The intent of this short section is to explain the terminology used in this thesis. It does not provide
a language reference nor a summary there of, and will explain basic terminology in a very brief
manner, omitting more advanced concepts.

VHDL stands for VHSIC (Very High Speed Integrated Circuit) Hardware Description Language.
VHDL is a formal notation intended for use in all phases of the creation of electronic systems.
Because it is both machine readable and human readable, it supports the development, verification,
synthesis, and testing of hardware designs; the communication of hardware design data; and the
maintenance, modification, and procurement of hardware [72].

In VHDL a hardware circuit is called a design entity or a module. A module is defined by an
entity declaration together with a corresponding architeture body; the two parts will be referred
to simply as entity and architecture. The entity defines the interface between the module and the
environment by specifying the input and output ports. The architecture defines the functionality
of the module by specifying the relationships between the module inputs and outputs. It has two
parts, declarative part and statement part, separated by the keyword begin. The optional declara-
tive part contains declarations, e.g., of internal signals and constants. The statement part contains
concurrent statements that describe the dataflow: assignments, processes, component instantia-
tions etc. Assignments specify how (r.h.s. of the assignment) to drive a target signal (l.h.s. of the
assignment). Examples of the r.h.s. of an assignment are another signal, or a Boolean expression.
Conditional assignments have a when-else formatted r.h.s., and allow implementation of multi-
plexers. Processes can be either combinational or clocked, and the clocked processes are used to
specify registers. Component instantiations allow hierarchical designs: the circuit is partitioned
into (smaller and simpler) submodules (subcomponents). Each submodule has its own entity-
architecture pair, but can be used (multiple times) as a component to build other modules. The
component instantiation statement specifies the entity-architecture pair, which identifies the sub-
module, and a port-map, which specifies how this instance of the submodule is connected within
the (parent) module. Extensive literature on VHDL exists, for example [73].

3.3.5 High-Level Synthesis

There are many good survey papers on high-level synthesis, e.g., McFarland et al. [74], Gajski
et al. [75], Coussy et al. [76], followed by some recent surveys focusing on the current state of
specific HLS tools [78, 79]. which give a good overview of the tasks HLS has to perform and
some insight to its evolution. The task of HSL tools is to transform a behavioural description
into register-transfer level (RTL) design [74, 76]. Due to McFarland [74], behavioural description
specifies the way the system or its components interact with the environment, i.e., mapping from
the inputs to the outputs. The behavioral description is entered using a high-level language (HLL),
for example C, C++, or its extensions like SystemC or even MATLAB. The HLLs are unable to
capture timing concepts like cycle-to-cycle behavior, however, the tools require designer-specified
constraints (e.g. timing constraint) and optimization goal (e.q. timing-driven optimization).
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The tasks of the HLS tools [74, 75, 76] include:

• compilation and modelling
• resource allocation
• scheduling of operations to clock cycles
• binding
• generation of the RTL architecture.

Compilation starts with operation decomposition, identification of data and control dependencies
and transforms the behavioural description into dataflow graph (DFG) or control and dataflow
graph (CDFG). A DFG can capture parallelism, but does not support loops. In a DFG, nodes rep-
resent the operations and edges their inputs and outputs. In a CDFG, nodes are the basic blocks,
which contain data dependencies but do not include any branches, and edges, which can be condi-
tional, capture the control flow between them. The only parallelism in a CDFG is within the basic
blocks, but further analysis is needed to find parallelism between basic blocks. This is accom-
plished using techniques such as loop unrolling, loop pipelining, loop merging and loop tiling. To
summarize, during this process the HSL tools extract parallelism, find the common subexpressions,
perform loop unrolling, etc.

Allocation, scheduling and binding have access to a library of RTL components, i.e. available
hardware resources. The components are annotated with characteristics such as area, delay, etc.
Datapath (and control) allocation determines the type and number of components, generates the
interconnects and performs hardware minimization. Scheduling cuts the DFG or CDFG into clock
cycles, and schedules operations in such a way that the functionality is preserved. This process is
aware of the available resources and an operation can also be scheduled to more than one clock
cycle. Following is the binding: operations to components, variables to storage elements, transfers
to interconnects. Optimizations such as register reuse for variables that have nonoverlapping life-
time is possible at this stage. However, different levels of binding are possible, where less binding
delegates more tasks to logic and physical synthesis, which have more room for optimization as
they have more accurate timing estimates and and access to placement and routing. Different lev-
els of binding are captured with code annotations in the RTL design generated by the HLS tool.
Allocation, scheduling and binding can be done in different order, for example, if the optimization
goal is to minimize the total area, including interconnect length, while meeting the timing con-
straints, HSL tools start with scheduling and perform allocation during scheduling. HLS tools use
a lot of different approaches, from graph theory, game theory, genetic algorithms, integer linear
programming, etc.

Another frequently mentioned theme is the distinction (and mix) of top-down and bottom-up ap-
proaches. McFarland [77] speaks about the evolution of HLS from experience of human designers,
who rely on their knowledge of low-level characteristics of structures used in the implementation
to guide high-level decisions. This information is included as a library and used to evaluate differ-
ent RTL structures for the same behavioural description. Many authors also discuss partitioning,
clustering and even place and route information used to improve RTL designs[74, 77, 81]. An early
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attempt is the BUD program (bottom-up design), which performs global allocation and scheduling
by evaluating different design decisions based on their effect on the design, i.e., a generate-and-test
algorithm.

The aforementioned brief discussion on evaluation of different RTL structures leads to the con-
cept of design space exploration. One of the advantages of top-down approach is, thanks to [80],
the flexibility in exploration of possible designs, e.g., how much of the possible parallelism is ex-
ploited. A brief discussion on the design space exploration, viewed through two metrics, namely
area and delay, is also included in the survey paper by McFarland et al. [74]. It touches the problem
of complexity arising from the extremely large number of possibilities and the difficulty evaluating
designs in the early stages of the design flow. Numerous approaches to automated design space
exploration (DSE) have been proposed for different levels of abstraction and alyways in conjuction
with other (lower level) synthesis tools [82, 83, 84]. In its most basic forms, the design space
is considered using area and delay metrics only, while others also include power [84]. As there
are many parameters that affect the design in numerous ways, many iterations and design space
reduction approaches are used.
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Chapter 4

Related work
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4.3 Hardware design automation and synthesis tools . . . . . . . . . . . . . . . . . . . 67

4.1 Hardware implementations of selected cryptographic
schemes

With the purpose to outline lightweight cryptography and to show the applicability of FSR based
systems, this section begins with two relevant topics; namely a brief historical discussion on
lightweight cryptography and its applications (Subsection 4.1.1), and a collection of the hardware
implementation results for Grain and Trivium, two FSR-based ciphers (Subsection 4.1.2). This
subsection is followed by the hardware implementations of WG stream ciphers (Subsection 4.1.3).
The WG-stream ciphers are also FSR-based, but operate over an extension field; for larger WG
instances, tower field implementations are beneficial, hence presented in Subsection 4.1.4.

In this thesis, FSR based systems are presented in Chapter 6, the WG cipher is used as a case study
throughout many chapters, and the WG-permutation based cipher WAGE is used as a case study in
Part VI. As this thesis focuses on ASIC implementations, many FPGA results from the literature
are omitted.

4.1.1 Lighweight cryptography and its applications

In the past 20 years, the trend started to move towards lightweight cryptography. In 2004, ECRYPT
(European Network of Excellence for Cryptology) launched the eSTREAM competition (Subsec-
tion 3.2.3), which included stream ciphers for hardware applications with highly restricted re-
sources (Profile 2) [4]. Stream ciphers were introduced in Subsection 3.2.2. In the same year, The
State of the Art of Stream Ciphers, organized by ECRYPT, included a session dedicated to imple-
mentation issues [85, 86]. They suggest metrics for evaluating the implementation efficiency and
mention the trade-offs between the security and the implementation cost. The cost was identified
as the implementation area [85, 86], the power consumption [86], and the energy consumption
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[85]. Both papers consider the different sizes of particular gates, e.g., a register is more expensive
than an XOR gate. Some differences in hardware and software implementations were addressed in
[85]. More on eSTREAM competition will follow in Subsection 4.1.2.

Eisenbarth et al. presented a detailed analysis and survey of both hardware and software implemen-
tations of lightweight ciphers [87]. They focus on trade-offs between three design goals, namely
security, cost and performance. The survey covers symmetric ciphers (mainly block ciphers,
but include a few stream ciphers), with detailed analysis of the hardware-oriented block cipher
PRESENT as an example of a cipher designed to be lightweight [88, 89]. The survey also covers
asymmetric ciphers, more specifically, elliptic curve cryptography processor used in hardware-
software codesign; with the smallest area scalar multiplication reaching more than 10kGE. Hard-
ware implementation of block cipher PRESENT in [87] required 1570 GE, and was further reduced
to 1000 GE in [89]; the results are comparable to the 1294GE for Grain80 and 1857GE for Triv-
ium, two of the eSTREAM Profile 2 finalists. Another lightweight block cipher is Hummingbird
, with the area of 2225 GE [90, 91]. As a comparison, a serialized AES-128 encryption only core
in [92] reported 2400GE, and [93] a 1947GE encryption and 2090GE decryption core. Batina et
al. [94] performed a comprehensive area, power, and energy analysis of several lightweight block
ciphers and compared them to AES. Their findings report, among other, some anomalies, e.g., the
largest AES implementation, using a look-up table based S-box implementation, consumes the
least dynamic power. Then in 2013, two families of lightweight block ciphers have been proposed,
the hardware oriented SIMON and software oriented SPECK [95]. Both families are parametrized
by the block and the key size, and their implementation area ranges from 523 to 958 GE. A new
design Simeck, combining SIMON and SPECK, and parametrized in the same way, has an imple-
mentation area ranging from 505 to 924GE [96]. Another block cipher, designed to be lightweight,
is GIFT [97]. It has two versions, both using 128-bit key; the smaller cipher has a 64-bit state and
can be implemented using 1345GE, and the bigger cipher a 128-bit state, and needs 1997GE.

The CAESAR competition (Subsection 3.2.6) was launched in 2014 [39]. The final CAESAR port-
folio is organized into three use cases, with use case 1 being the lightweight applications (resource
constrained environments). In march 2018, Ascon and ACORN were chosen for the use case 1.
The FPGA implementation area results on a Xilinx Spartan-6 FPGA device show 1640 LUTs for
Ascon and 1396 LUTs for ACORN-32 (a high-speed version with 32 parallel output bits) [98].
The low-area ASIC implementation of Ascon in [99] presents 2.57GE. The trend for lightweight
continues. Yu et al. [100] developed their own architecture, which on a 65 nm ASIC has an area
of 1960 GE and is 13% smaller than architectures of Moradi [92], Hamalainen [101], and Mathew
[93], using the same cell library.

A passage from the NIST LWC call for submissions (Subsection 3.2.7) presented the lightweight
cryptography as follows [60]. Lightweight cryptography is a subfield of cryptography that aims to
provide solutions tailored for resource-constrained devices. There has been a significant amount
of work done by the academic community related to lightweight cryptography; this includes effi-
cient implementations of conventional cryptography standards, and the design and analysis of new
lightweight primitives and protocols [60]. In an earlier report [66], an example of a low-cost RFID
tag is mentioned, that allows up to 2000GE for security.
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Biryukov and Perrin conducted an extensive survey on lightweight symmetric cryptography [102].
The survey covers over 100 algorithms from academia, proprietary algorithms, and algorithms
from government agencies. They suggest that lightweight cryptography should be divided into
ultra-lightweight cryptography (highly specialized algorithms providing one function with high
performance on one platform) and ubiquitous cryptography (more versatile algorithms, both in
terms of functionality and implementation on a wide variety of platforms).

The brief (historical) discussion above provides some insight into lightweight cryptohraphy, and
establishes the target for the hardware implementation area. Unfortunately, the GE count is not a
technology independent area metric for ASIC implementations, and the results stated above range
from 22 to 350nm ASIC technologies. Furthermore, the implementations allowed different cells
(e.g., scan flip-flops), use different effort levels for the synthesis tools (compile , compile ultra,
clock gating), and last but not least, present the results of encryption cores without decryption,
etc. Gong [103] defines the area requirements for lightweight cryptography as follows: a crypto-
graphic primitive is said to be lightweight if it requires less than 2000GE, and for the cryptographic
primitive together with a mode, e.g., authenticated encryption, the requirement is loosened up to
3000GE.

Block ciphers and elliptic curve cryptography are beyond the scope of this work. However, a
discussion on tower-field constructions used in hardware implementations of the AES block cipher
is included in Section 4.1.4.

Applications

The authors of [87] briefly introduced pervasive computing and mention RFID (radio frequency
identification) in food-chains and health-monitoring applications. Similarly, Engels et al. mention
RFID tags, smart cards and wireless sensor nodes, usage in access control, supply-chain man-
agement, home automation, and healthcare [90]. In [103] Internet of Things devices are cov-
ered, including sensors, actuators, RFID tags and microcontrollers equipped with radio frequency
transceivers, with applications in industrial and building control, e-health, smart energy grid, home
automation, self driving cars, etc. The main topic of [103] is lightweight cryptography for IoT,
and a classification of IoT devices is based on how they connect to internet: (i.) simple transmit-
ter/receiver pairs (e.g., RFID tags), (ii.) single input and single output devices (e.g., BlueTooth,
ZigBee), and (iii.) multiple input and multiple output (e.g., WiFi, 4G-LTE, 5G) devices.

4.1.2 The eSTREAM project: Grain and Trivium

Both Grain and Trivium are FSR based and involve only simple binary operations (XOR, AND).
They both have a small area and allow the possibility of increasing the throughput by simply
implementing multiple filtering functions and jumping multiple FSR stages. In both cases, the
key/IV must be loaded bit-by-bit.
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An ASIC implementation of eSTREAM candidates, reported by Gürkaynak et al. in [104], is using
the term radix for the number of bits simultaneously generated by the algorithm. Without details,
they mention Grain implementations with radices up to 16 and possibile radix 32. For Trivum, they
state that implementations with radix less than 64 would be wasteful and report a 54% increase
in area, only 10% lower clock speed and a 40 times higher throughput-to-area ratio compared to
Trivium with radix 1. Only the results for radix 1 for both ciphers, and for the increased throughput
versions radix 16 for Grain and radix 64 for Trivium are listed in Table 4.1. However, only Grain-
128 was implemented with radix 32 in [44, 105].

Stream Source ASIC Area Frequency radix Throughput T
Cipher Technology [µm2] or [GE] [MHz] [Mbps]

Grain

[104] 250nm 119.821 µm2 300 16 4475

[107] 90nm 4911 µm2 565 1 565
10548 µm2 495 16 7920

[44]
130nm

1294 GE 724.6 1 724.6
3239 GE 617.3 16 9876.5

† 1857 GE 925.9 1 926
4617 GE 452.5 32 14480

Trivium

[104] 250nm 144.128 µm2 312 64 1856

[107] 90nm 7428 µm2 840 1 840
13440 µm2 800 64 51200

[44] 130nm 2580 GE 327.9 1 327.9
1921 GE 348.4 64 22299.6

Table 4.1: ASIC implementation results for Grain and Trivium found in literature
† marks implementations of Grain-128

In [107], Gaj et al. provided detailed FPGA and ASIC results for five eSTREAM candidates,
including Grain and Trivum, focusing on paralelization possibilities (aiming at increased through-
put). They identified Grain as the cipher with minimum area complexity and Trivium as the cipher
with maximum throughput-to-area ratio. ASIC implementations of Phase 3 candidates, reported
by Good and Benaissa in [44], consider many different performance metrics for comparison. The
authors also provide general guidelines for low-resource hardware stream ciphers, recommending
a nonlinear filter function that is not demanding in terms of area complexity, mentioning the impor-
tance of feedback tap selection for the shift registers (to ease the replication of filtering function(s)),
avoiding Sboxes, since they are significant consumer of area and power, among others.

Numerous FPGA implementations of Grain and Trivium can be found in [108, 106, 109, 110].
Some use special FPGA features, e.g., the Xilinx Virtex-II SRL16 primitive [106], while others
consciously refrain from use of SRL primitives, e.g., [109]. The FPGA implementation results are
omitted from Table 4.1.
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4.1.3 WG hardware implementations

The first member of WG stream cipher family to be implemented in hardware was the eSTREAM
candidate WG-29 [7]. For the F229 , a type II optimal normal basis exists, which allows efficient field
arithmetic. In [111], useful properties of the trace function were found, that allowed elimination
of two multipliers. Switching to the polynomial basis representation of field elements, the same
group later on improved their implementation results for WG-29 in [112]. The same paper also
reports efficient polynomial basis implementations of WG-16.

An implementation of a lightweight WG stream cipher WG-5, targeting passive RFIDs, was re-
ported in [68]. Selected metrics of their implementation results are shown in upper part of Table
4.2, omitting the power metric and optimality scores derived using the power results. The defining
polynomial of F25 , the characteristic polynomial for the LFSR and the decimation value were cho-
sen not only based on resulting cryptographic properties but to produce the most optimal hardware.
An interesting feature of this paper is their parameter selection, aiming to reduce the hardware cost.
Based on ASIC implementation results for the chosen frequency of 100kHz, WG-5 outperforms
the ciphers it was compared to, including Grain and Trivium.

WG Source ASIC dec Area Throughput Radix T
A2Cipher Technology [GE] [kbps]

WG-5 † [68] 130nm

1 1229 100 1 66.2
11 1235 100 1 65.6
1 1350 200 2 110
11 1360 200 2 108

WG Source ASIC Architecture Area Speed Radix T
ACipher Technology [GE] [MHz]

WG-8 ‡ [113] 65nm

CA 1786 500 1 0.28
3942 610 11 1.70

TF1 7523 229 1 0.03
42762 122 11 0.03

TF2 3162 260 1 0.08
22668 205 11 0.10

TF3 2981 GE 254 1 0.08
19882 205 11 0.11

† WG-5 with 80-bit key and IV, and LFSR of length 32
‡ WG-8 with 80-bit key and IV, decimation exponent 19, and LFSR of length 20

Table 4.2: Post-PAR CMOS implementation results for WG-5 and WG-8

Another instance of lightweight WG stream ciphers, the WG-8, was reported in [113]. Selected
metrics of their implementation results are shown in Table 4.2, omitting the power metric and op-
timality scores derived using the power results. It explores four different hardware architectures.
The first implementation is a constant array based design, denoted “CA” in Table 4.2 (with one
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array holding the WGP values and one array holding the WGT values). Then two tower construc-
tions F(24)2 were implemented, using different defining polynomials for the first extension, denoted
“TF1” and “TF2” in Table 4.2. One of them used polynomial basis for F24 and table look-up based
field arithmetic, and the other one type I optimal normal basis, yielding efficient field arithmetic.
The fourth design, denoted “TF3” in Table 4.2, used the tower construction F((22)2)2 , with normal
basis representation of elements at each level of the tower, similar to the work [8]. FPGA and
ASIC implementation results were given for 1-bit and for 11-bit output versions for all four de-
signs. Since the cipher is small enough, the best results were achieved for the table look-up based
design.

perf. modules Speed Area o1 o2
goal used [GHz] [kGE]

WG(16, 32) implementation from [115]

F(((22)2)2)2 field construction

WG(16, 32) - using `1(x)

f,o1 L1 d5 s7 c8 2.17 22.5 9.6 4.3

A,o2 L0 d1 s2 c2 0.88 10.9 8.1 7.4

WG(16, 32) - using `2(x)

f,o1 N1 d5 s7 c8 2.13 18.0 11.8 6.6

A,o2 N0 d1 s2 c2 0.93 11.5 8.1 7.0

F(24)4 field construction

WG(16, 32) - using `3(x)

f C2 d9 s13 c12 2.44 26.3 9.27 3.5

A,o1,o2 C1 d7 s11 c10 1.79 17.0 10.5 6.2

WG(16, 32) - using `4(x)

f T2 d9 s13 c12 2.38 27.0 8.8 3.3

A,o1,o2 T0 d7 s11 c10 2.08 20.8 10.0 4.8

WG(16, 32) implementation from [8]

M16 /I8 level 0.55 12.0 4.6 3.8

for `1, `2, `3, `4 see Section 20.4

Table 4.3: Post-PAR CMOS 65nm implementation results for the WG(16, 32) keystream generators

WG-16 was studied in [8, 9, 111, 112, 114] and is intended for use in confidentiality and integrity
algorithms in mobile communications, such as 4G-LTE networks [114]. As such, WG-16 has
stronger security requirements when compared to WG-5 and WG-8, and is using 128-bit key and
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IV; is not a lightweight instance. New implementation of WG-16 [115] is using two different tower
field constructions F(((22)2)2)2 and F(24)4 and three new LFSR polynomials `2, `3 and `4 in addition to
the original polynomial `1 used in [8, 111, 114, 112]. The highest frequency WG(16, 32) keystream
generator, obtained for the 65 nm ASIC library, reached the clock speed of 2.44GHz at 26.3kGE,
and the smallest area keystream generator the clock speed of 0.88GHz at 10.9kGE, shown in Table
4.3. Modules were synthesized for different performance goals: highest frequency f, smallest area
A, best optimality scores o1 =T·f

A and o2 =T·f
A2 , where T is the throughput in parcels-per-cycle. The

highest frequency FPGA implementation on Xilinx Spartan 6 reached the clock speed of 256MHz
using 631 slices for LFSR using `3 and F(24)4 tower field construction.

Authors of [112] used three different implementation strategies: a standard, pipelined, and serial-
ized design, coupled with two different multipliers. The results of [115] are compared to the [112]
implementations using Karatsuba multiplier [116], which were both smaller and faster than their
alternative, and are the only ones reported in Table 4.4. The 65nm ASIC results they present are
obtained pre-PAR, and for a fair comparison, the pre-PAR results for modules using `1(x) from
[115] are reported in Table 4.4. L1d5s7c8 shows a speedup of 1.82 at a moderate 27% increase
in area when compared to pipelined architecture from [112], and module L0d1s2c2 a significant
speedup of 5.75 at 22% area increase when compared to standard architecture from [112]. Their
smallest (serial) design takes only 51% of the area used by the smaller implementation L0d1s2c2.
However, their serialized architecture has a throughput 1

6 , and as was pointed out by [117], even a
lightweight stream cipher should have a throughput at least 1 bit

clk.cycle and WG-16 is not a lightweight
stream cipher. When compared to the ASIC pre-PAR results for the ZUC implementation reported
in [118], L1d5s7c8 can reach the same frequency at a slightly higher area, but has significantly
lower optimality scores due to the lower throughput.

An ongoing project, WG-lite Design Space Exploration [119], is exploring hardware implementa-
tions of WG ciphers defined over small finite fields F2m , where m = 5, 7, 8, 10, 11, 13, 14, 16. From
previous work on WG-5, WG-8, WG-16 and WG-29, it is known that for small instances, such as
WG-5 and WG-8, constant array implementations yield a smaller area compared to implementa-
tion using discrete components, such as multipliers and exponentiations. One of the objectives of
the WG-lite Design Space Exploration project is to find the threshold when the constant array im-
plementations become larger than the discrete component implementations. The implementation
results for the WG permutation and transformation modules using polynomial bases, implemented
using (a) discrete components and (b) constant arrays are reported in [120]. A section from the
implementation results from [120] is summarized in Table 4.5: it shows the implementation results
for the non-decimated WG permutation modules using polynomial basis over all existing primitive
polynomials for the given finite field F2m . The results are presented as minimum and maximum
area, followed by the mean and standard deviation. They show the tipping point between discrete
component and constant array implementation for the finite field F210 . Future work for the WG-lite
Design Space Exploration includes normal basis implementations.
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Basis design Speed Area o1 o2
used used [GHz] [kGE]

WG(16, 32) implementation from [115]

WG(16, 32) - using F(((22)2)2)2 and l1(x)

TFB L1 d5 s7 c8 2.50 13.5 1.9 1.4

TFB L0 d1 s2 c2 1.11 9.81 1.1 1.2

WG(16, 32) implementation from [112]

PB standard 0.19 8.06 0.2 0.3

PB pipelined 1.37 10.6 1.3 1.0

PB serialized∗ 0.71 5.03 0.2 0.5

Other ciphers

ZUC†[118] 2.50 12.5 64.0 5.12

∗ throughput T = 1
6

bit
clk.cycle

† throughput T = 32 bit
clk.cycle , TSMC 65nm ASIC

Table 4.4: Pre-PAR CMOS 65nm implementation results for WG(16, 32) keystream generators

Discrete Components Constant Array
min max mean sd min max mean sd

WG-5 426 473 446 21 46 57 53 4
WG-7 1157 1390 1316 66 247 268 257 6
WG-8 1937 2078 2035 42 508 574 542 24

WG-10 2520 3018 2928 87 2173 2257 2211 18
WG-11 3134 3674 3567 81 5104 5470 5282 79
WG-13 5642 6366 6170 99 18163 19731 18985 289
WG-14 7136 8102 7885 116 35299 38164 37338 414
WG-16 11052 12302 12036 145 127171 137624 135513 1596

Table 4.5: Pre-PAR CMOS 65nm implementation results for WGP modules with decimation 1: comparison of discrete
component and constant array implementations from [120]

4.1.4 Use of tower fields in cryptography

A paper [121] from 1974, published by Green and Taylor presents five tables listing irreducible
polynomials of small degrees over finite fields Fq of small order, specifically q = 4, 8, 9, 16. Their
preferred method is to represent the field elements as powers of the generator, and they also pro-
vide primitive polynomials of small degrees over the aforementioned base fields. The rest of [121]
is dedicated to applications of composite field arithmetic in error-correcting codes and FSR-based
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sequence generators. Also one of the oldest applications of isomorphic tower constructions is an
inversion algorithm for elements of Fqm with q = 2n, proposed in 1988 by Itoh and Tsuji [122].
Using normal bases for both extensions, they compute the inverse in Fqm using subfield inversion
(performed by cyclic shifts over F2 and multiplications in Fq), cyclic shifts over Fq and multipli-
cations in Fqm . At that time, many authors described multiplication and inversion in F2m taking
advantage of the arithmetic in the subfield F2

m
2
, for example [123, 124, 125, 126].

There is a series of papers from the 90’s published by Paar [127, 128, 129, 130], reporting gate
counts for VLSI implementations of finite field arithmetic in composite fields using polynomial
basis representation for all extensions; most of these results were also reported as a part of his PhD
thesis [131]. He provided block diagrams for parallel multipliers, based on Karatsuba-Oftman al-
gorithm, over F((2n)m) and their optimizations for special cases F((2n)2) and F((2n)4). In his work he
adapts the Itoh-Tsuji approach to inversion and relates it to the work by Morii and Kasahara in
[124]. He also provided tables of m, n and the primitive polynomial used for the second exten-
sion, resulting in the most efficient implementation for the particular F2k , for k = nm ≤ 32 with k
even. Then in 1997, Paar and Soria-Rodriguez published a paper [132] describing hybrid compo-
nents that use parallel circuits for arithmetic operations in the underlying base field F2n as building
blocks for serial circuits performing the arithmetic in the top-level F((2n)m). Further optimization
was possible by subfield decomposition F2n � F(2

n
2 )2 . This work was targeting larger finite fields of

order n ·m > 140 with coprime n and m, for use in elliptic curve cryptography. The paper provides
experimental results for elliptic curve arithmetic over F2152 � F(28)19 for a 2µm ASIC implemen-
tation. Guajardo and Paar revisited Itoh-Tsuji inversion in large fields in 2002 paper [133]: the
extension fields were constructed using either all-one polynomials (AOPs) or equally-spaced poly-
nomials (ESPs), the field elements represented in polynomial basis, and exponentiation in F((2n)m)

for coprime n and m optimized using iterates of the Frobenius map.

Harper et al. [134] discuss larger fields. In their discussion of elliptic-curve cryptosystems, one
of the chosen underlying finite fields F2104 was implemented as composite field F(28)13 . Elements
of F(28)13 were represented as polynomials over F28 and the table lookup algorithms were used for
arithmetic in the base field. The paper reports significant speed-up when compared to an imple-
mentation of elliptic curve arithmetic over F2105 using the normal basis, and concludes that the
implementation with the 8-bit base field elements is very suitable for software implementations.

A 1999 technical report on composite field arithmetic [135] by Savas and Koc reports software
implementations for certain fields of the form F((2n)m), with n = 13, 14, 15, 16 and m chosen so
that n · m < 512 and coprime n and m. The authors report comparison of total time needed for
squaring, multiplication and inversion implemented using polynomial basis to optimal normal ba-
sis type I (ONBI) or to optimal normal basis type II (ONBII) representation. Multiplication was
not conducted directly in ONBI/ONBII. Instead, the elements were converted to a different basis
representation for the multiplication, and the product back to the ONB: (a) to a shifted polynomial
basis for ONBI (for details refer to [136]), and (b) a permutation of the ONBII for ONBII (for de-
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tails refer to [137]). For both cases they used inversion based on Extended Euclidean Algorithm in
polynomial basis representation of elements, also needing basis conversion. For multiplication and
inversion the purely polynomial basis implementation outperforms both ONBs, and as expected,
squaring in PB is slower (but absolutely negligible in comparison with multiplication or inversion).
In a paper [138] from 2003, Sunar et al. provide methods for efficient conversion between the bi-
nary field F2k and the composite field F((2n)m), where k = nm for large k and n,m coprime.

The tower construction F(28)4 is used in Snow3G: the [139] specification of the cipher assumes an
implementation using table lookups for the first level of the tower.

Use of tower field constructions for AES hardware implementations
In the past decade, many implementations of AES benefited from a tower construction of F28 .
In 2001, Rijmen proposed to use the tower construction F(24)2 for the AES S-box, [140]. This
tower construction was used by Rudra et al. [141] for both hardware and software implementation
of AES. They employed tower field arithmetic for the ByteSub and MixColumn transformations.
Their hardware results (without specifying the process used) show a circuit only half the size of
other AES implementations at that time and it achieves four times higher throughput. Also in
2001, Satoh et al. [142] described a compact data path architecture for AES using the tower field
construction F((22)2)2 to perform the inversion within the S-boxes, and thus achieving a 20% smaller
S-box than [141].

Mentens et al. [143] improve the original S-box in [142] by choosing the irreducible polynomi-
als that minimize the Hamming weight of the basis conversion matrices, the matrix for constant
multiplication used in the inverter and the matrix for the affine transformation used in the S-box,
leading to a 5% area reduction. All the aforementioned tower field constructions isomorphic to F28

use polynomial bases at each level of the tower.

Canright [144] conducted an exhaustive search and tree structure analysis to find the best matri-
ces while testing both polynomial and normal bases at each level of the tower F((22)2)2 . He was
focusing solely on the area reduction and not examining the delay. His work includes common
subexpression eliminations and detailed analysis of available logic gates, e.g., including NAND and
XNOR when beneficial. In 2010 a mixed basis tower field construction for F((22)2)2 was reported by
[146]; their Itoh-Tsuji inverters accept an input in normal basis representation and output its inverse
represented in the polynomial basis. The choice of the polynomial basis representation of the in-
verse was based on a slightly more efficient matrix for the affine transformation. The authors also
emphasize the link between the Hamming weights of individual rows of transition matrices and
between the critical path delays. Moradi et al. [92] added the threshold countermeasures of [145]
to the AES implementation from [144]. A very interesting application of tower field constructions
was presented in [147]. The authors propose to use random tower construction as a countermea-
sure against side-channel attacks. They chose the F(24)2 and fixed the defining polynomial for the
lower level F24 . For the second extension they use a polynomial of the form p(x) = x2 + x + λ,
whereby the element λ ∈ F24 is chosen randomly, such that p(x) is primitive.
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Exhaustive search for best implmentations was also performed in works [93, 148, 149]. Mathew
et al. [93] performed the exhaustive search over all F(24)2 constructions, considering the Hamming
weights and the possible subexpression eliminations of the transition matrices between the tower
field construction using polynomial basis on each level and the F28 polynomial basis given by
x8 + x4 + x3 + x + 1 specified in the standard. Besides the transition matrices, the cost of arithmetic
operations in F(24)2 was considered as well. They found the lowest area hardware to use different
F(24)2 construction for encryption and decryption; the polynomials were different for both levels
of F(24)2 . Yu et al. [100] benchmarked the AES architectures of Moradi, Hamalainen [101], and
Mathew on four different ASIC cell libraries. They found that Moradi’s and Hamalainen’s archi-
tectures were measurable smaller than Mathews’. Reyhani-Masoleh et al. conducted exhaustive
search for suitable polynomials for the F((22)2)2 construction, with normal basis for the first level
and redundant normal bases for the remaining two levels of the tower field [148]. They use dif-
ferent tower field constructions for encryption and decyrption, but implement a unified datapath,
with emphasis on resource sharing between the two functionalities. Furthermore, they derived
expressions using XOR, AND, OR, NAND and NOR operations and utilized OR-AND-Invert gates
available in the ASIC library used.

4.2 Cryptographic hardware and complexities

This brief section begins with a general overview of cryptographic hardware and complexities
(Subsection 4.2.1). As finite field arithmetic is a broad area, it is important to outline different
arithmetic algorithm designs (Subsection 4.2.2). The last subsection is presenting some new di-
rections in early predictions on the complexity of the resulting hardware (Subsection 4.2.3). This
section presents the design space exploration aimed at finite fields.

A small set of well known arithmetic algorithms is introduced in Chapter 5, and then used for dat-
apath synthesis in Parts IV; design space exploration from the finite fields perspective and analysis
of produced datapaths is presented in Parts V and VI.

4.2.1 General overview

The background in Section 3.3.1 gave an overview of the implementation technologies and differ-
ent metrics used for evaluating implementation efficiency. For a long time, the cryptographic com-
munity used (only) theoretical complexities to compare different algorithms. Subsection 4.2.3, will
introduce some new directions. The following is a direct summary of Section 16.1 in [15]. First,
three ways of evaluating algorithms for hardware are identified: (i.) the algorithmic complexity
(number of arithmetic operations over the underlying field), (ii.) the amount of storage (temporary
storage and storage for pre-computed values), and (iii.) the number of memory accesses. Then
the space and time complexity are singled out as important metrics. The space complexity of an
architecture is the number of its logic gates and the amount of storage. The critical path is the
longest delay caused by the logic gates on the critical path, and the time complexity the amount
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of time needed by the architecture to complete the required arithmetic operation upon receiving
any portion of the input. The time complexity depends on the type of architecture: for a fully
bit-parallel architecture the time complexity is the critical path delay, in all other cases, the time
complexity is approximated as a product of the number of clock cycles and the critical path delay.
Gate counts are used by many authors, for example in [150, 131, 151], to name just a few.

4.2.2 Different architectures for finite field arithmetic

This section is classifying the algorithms based on their hardware architecture as serial or parallel.
Classifications can be found in most texts, e.g., [19, 20, 42, 150, 152] just to list a few. For example,
the interleaved multiplication for F2m , a finite-field variant of shift-and-add algorithm, is a bit-serial
algorithm. One factor is received serially, at each step there is a multiplication by x followed
by the reduction using the irreducible polynomial1, and the product accumulated over m clock
cycles. Because the product is accumulated, meaning that all m clock cycles are needed for the
final value of every product bit, this multiplier is also called serial-input,parallel-output multiplier
(SIPO) [42, 153]. A well known example of a bit-parallel multiplier is the Mastrovito multiplier
[152]. The Mastrovito matrix combines one factor and the irreducible polynomial, while the other
factor is used as the vector in this matrix-vector multiplier; all bits of the product are computed
concurrently. This is an example of a parallel-input/parallel-output (PIPO) arithmetic circuit.

Some architectures are closely linked to the representation of field elements. Examples of inher-
ently serial multipliers are the Massey-Omura multiplier in its original form, using normal basis
representation of elements [154]. It exploits ease of squaring in normal basis, a simple cyclic shift.
A single bit of the product is computed using a function derived from the normal basis used, then
both factors are shifted2, and the same function is used to obtain the next bit of the product. This
is an example of a parallel-input/serial-output multiplier (PISO) [42, 153, 155]. A serial multiplier
can be parallelized, as was shown by Reyhani-Masoleh and Hasan in [156].

Due to Reyhani-Masoleh and Hasan [157], the fully bit-serial and fully bit-parallel designs repre-
sent two ends of the architectural spectrum, with digit-serial architectures3 in between. When only
one word is used to describe the circuit, e.g., serial, this usually refers to the generation of the out-
put. The serial multipliers are realized with sequential circuits. A classification in [158] mentions
sequential multipliers with serial output (SMSO) and sequential multipliers with parallel output
(SMPO). In [132], Paar and Soria-Rodriguez propose a hybrid tower field multiplier with parallel
architecture for the subfield and a serial implementation for the top-level. Similar descriptions
extend to other arithmetic circuits, e.g., for the finite field inversions, see [159].

To summarize the aforementioned classifications: based on the nature of receiving inputs and
generating outputs, an arithmetic circuit can be classified as a

1 an LFSR can be used to implement this part of the algorithm
2to perform either squaring or square-root, depends on high-to-low or low-to-high generation of the product bits,

respectively
3beyond the scope of this work
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• serial-input/serial-output (SISO)
• serial-input/parallel-output (SIPO)
• parallel-input/serial-output (PISO)
• parallel-input/parallel-output (PIPO)

The architecture type is closely related to the complexities: bit-parallel circuits are estimated only
in terms of their combinational complexity, usually counting only AND and XOR gates and the
critical path delays. For sequential circuits, flip-lop counts are added to the space complexity, and
number of clock cycles to the time complexity.

4.2.3 The XOR counts

In the past few years, a lot of attention was directed towards XOR counts of matrices used for
the matrix-vector multiplications, in order to evaluate their efficiency [161]. Recent work is fo-
cusing on identifying the discrepancies between theoretical evaluations of algorithms and possible
optimizations, such as reuse and subexpression eliminations.

As explained in [160], maximum distance separable (MDS) codes are used to construct linear
layers for ciphers, and instead of implementing the MDS directly, a matrix A, such that Ak is MDS
for a small k, is implemented; entries of this matrix are constant elements. The multiplication by
a constant α ∈ F2m is implemented in hardware as a matrix-vector multiplier (MV). Beierle et al.
search for optimal implementation of multiplication by a given constant (and use exhaustive search
for optimal bases) and use them for round-based implementations of the MDS matrices [160]. The
papers distinguish between two metrics for efficiency of the matrix. First is the direct XOR count,
d-XOR-count, which is defined either as the number of XOR gates needed to implement the MV
multiplier [161, 162], or as the Hamming weight of the matrix used in the MV multiplier [163].
Second is the sequential XOR count, s-XOR-count, which takes into account that the results of
the previous steps can be reused, which reduces the number of XOR gates needed [160, 161, 164].
The s-XOR-count can be obtained using modified Gauss-Jordan elimination [161]. Equation (4.1)
below shows an example used by Kölsch [161] to illustrate the difference between direct and
sequential XOR count. The matrix on the l.h.s. in equation (4.1) shows the direct XOR count 6,
while the r.h.s. shows only 3 XORs if the results in the brackets are reused; the sequential XOR
count of the matrix is thus 3.


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 ·

a1

a2

a3

a4

 =


a1

a1 + a2

(a1 + a2) + a3

((a1 + a2) + a3) + a4

 (4.1)

The general directions in this research area are in searching for best XOR count MV matrices, char-
acterizing them in terms of irreducible polynomials and bases used, and then using them to con-
struct the MDS matrices. For the MDS matrices, different constructions, e.g., circular, Hadamard,
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cyclic, etc. [162, 165], as well as different implementations, e.g., round based, serialized, etc.
[162, 164, 165, 166], are considered. Most literature relies on local optimizations. Kranz et al.
applied global optimizations to previously locally optimized MDS matrices [163].

Jean et al. examined both linear and non-linear layers [164]. The authors propose an optimization
tool called LIGHTER, which implements graph-based search algorithms minimizing the cost sum
along a path. The authors report improved implementations of many Sboxes, further optimized
existing linear layers, and new lighter diffusion matrices. For the non-linear layers, LIGHTER out-
performs ABC, a state-of-the-art academic synthesis and verification tool [167]. Some limitations
of LIGHTER are: it does not always guarantee optimal implementation, especially for non-linear
layers, and is in general limited to F24 because of memory and computational limitations, however
the authors report LIGHTER can optimize “some” functions defined over bigger fields.

4.3 Hardware design automation and synthesis tools

To identify some already existing solutions, this section presents an overview of recent advances
in HLS (Subsection 4.3.1), followed by a section on some academic high-level synthesis tools
(Subsection4.3.2). The related work is mostly focusing on design space exploration from the hard-
ware perspective. Subsection 4.3.3 describes a high-level synthesis framework called CRYKET,
a domain-specific language Cryptol, and an open source environment ATHENa, a framework that
interacts with commercial synthesis tools. These tools differ in both their target domain and their
approach. Subsection 4.3.4 presents some challenges associated with digital signal processing.

Some of the presented case studies are using AES, which is defined over a finite field and often
implemented using tower fields. However, no specific information about the bases used was given,
and presumably the standard specification was used. In 4.3.4 the authors presented the problem
of representation of data types for datapath synthesis. A similar problem, but with a different data
type, was encountered and solved in this thesis. Unlike presented HLSs, the presented framework
does not use a library of components, but selected arithmetic algorithms to generate the required
components on the fly. Instead of a high-level language, a domain specific language or a graphical
user interface, the starting point for the framework in this thesis is an open-source computer algebra
system GAP.

The distinguishing characteristics of this thesis in the context of related work in synthesis and
design automation for cryptography are the support for tower fields, design-space exploration of
finite field parameters, early estimation of area and performance based on these parameters, and
automated synthesis of arbitrary finite field expressions over arbitrary finite fields, without relying
on a database of building blocks. In particular, this thesis is the first work to provide support for
tower fields, not limited to a specific application, such as AES.
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4.3.1 High-Level synthesis

The 2009 Introduction to High-Level Synthesis in [76], published 15 years after the first publi-
cation in the same journal [75], gives an overview of the tasks of HLS tools, briefly touches on
synthesis flows and gives a case study of two industrial HLS tools, Catapult and Cynthesizer. They
mention examples where the behavioural description is entered using for example C, C++ (Mentor
Catapult), SystemC (Cadence C-to-Silicon) or MATLAB (Xilinx AccelDSP) and Simulink (Syn-
opsis Simplify-DSP). In conclusion, the authors note that many features still need to be added and
that as the scope of HLS tools is growing from block-level to subsystem to full-system design, new
challenges and opportunities arise as the current HLS tools still need plenty of designers guidance.

The 2016 paper by Nane et al. [78] is a comprehensive survey, categorization and evaluation of
FPGA HLS tools. They include an overview of optimizations on which an individual tool is fo-
cusing and an experimental evaluation of academic HLSs bambu [168], DWARV [169] and LegUp
[170] in comparison with commercial tools with a conclusion that the quality difference between
academic and commercial tools is not drastic and that, including commercial tools, no single tool
produced the best result for all benchmarks used. However, the commercial tools support more
features. In the conclusion, they also state the following: “However, software engineers need to
take into account that optimizations that are necessary to realize high performance hardware (e.g.,
enabling loop pipelining and removing control flow) differ significantly from software-oriented
ones (e.g., data reorganization for cache locality).”

Their work starts with a classification of HLS tools based on the design input language with two
major categories, design specific languages (further classified as new languages invented for the
tool flow and extensions of generic languages) and generic languages (further classified as procedu-
ral and object-oriented). They also separate HLS tools that were adapted for a specific application
domain and thus use dedicated optimizations and solutions from the general tools with complete
support for standard high-level languages, such as C. The target applications were classified as:
all domains, imaging, streaming, stream/image, loop/pipeline, DSP, etc. Further, they categorize
the tools as in use, abandoned and N/A, if not conclusive. For example, SPARK and AccelDSP,
mentioned in the 2009 HLS introduction [76], were both classified as abandoned. They also iden-
tify the HLS tool objectives, e.g., speculation and code motion, exploiting spatial parallelism, loop
optimizations etc. In the evaluation, different benchmarks were used and two sets of experiments
performed: standard, using default settings, and performance-optimized, using compiler flagz and
code annotations. Performance metrics used to evaluate the generated circuits were number of
cycles, maximum frequency after PAR, wall-clock time and area metrics.

4.3.2 Academic High-Level synthesis

GAUT: is an HLS tool that takes C/C++ input and generates corresponding RTL hardware mod-
ules (in VHDL) [171]. It is targeting digital signal processing (DSP) applications. GAUT generates
hardware modules, composed of three units: a processing unit (PU), memory unit (MEMU), and
a communication and interface unit (COMU). The PU includes the datapath and the FSM. The
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synthesis flow includes compilation into a DFG, clustering, and three synthesis flows, one for each
unit. It selects arithmetic operators from a component library, and performs allocation, scheduling
and binding, followed by resizing and optimizations to meet the user provided constraints, such
as throughput and clock period. Some features of GAUT are bitwidth-aware design flow (to opti-
mize the hardware for area and power consumption [172]), joint scheduling algorithm (to optimize
multimode architectures designed for time-wise mutually exclusive applications [173]).

LegUp: is an open-source HLS framework that takes C input and generates a hybrid architecture
with an FPGA-based MIPS soft core and custom hardware accelerators (in Verilog) [170]. The
LegUp uses hardware profiling to decide which functions to implement on a hardware accelera-
tor and which on MIPS, and a C to assembly compiler LLVM to precharacterize each hardware
operation, which allows early speed and area predictions.

bambu: is semi-automatic framework to assist during HLS, which allows to modify the order of
HLS steps and allows to choose different algorithms to perform these steps [168]. It takes input
in C and starts by constructing a call graph from the syntax tree. It is targeting memory-intensive
applications, and contains several mechanisms to compute memory addresses and perform memory
allocation. Then a HLS is used to produce the datapath, FSM and memory modules, and bambu
assembles the modules into a netlist. It integrates commercial synthesis tools (e.g., Xilinx ISE,
Synopsys Design Compiler) and supports both FPGA and ASIC. The testbenches are generated
automatically from the initial C specifications.

4.3.3 High-Level synthesis and design automation related to cryptography

CRYKET: is a high-level synthesis framework, specific to symmetric key cryptography kernels.
It integrates RunFein for block cipher support [175], and RunStream for for stream cipher support
[176]. Both use a graphical user interface (GUI), which allows a selection and parameter turning
for a number of cryptographic kernels, e.g., block size, number of rounds, etc. Furthermore, the
tool offers different hardware design choices, e.g., specifying the architecture in terms of paral-
lelism of encryptions/decryptions, rounds, and bits. The hardware components are obtained from
a comprehensive library of known components, and steps like binding and resource allocation
must be performed. Finally, synthesizable Verilog is produced. The testbenches and a software
implementation are generated as well. The HLS tool is very domain specific; RunfFein offers a
selection of Sboxes, permutations, finite field multipliers, etc., and RunStream offers a selection
nodes, such as FSRs, MUXes, Boolean logic, etc. including finite field multipliers. These nodes
can be parametrized by size, type, clocking. Both tools generate the datapath and control. A key
challenge in the design of both tools was identifying a complete set of cryptographic kernels. The
CRYKET implementations were extensively compared to manual RTL design and achieved very
good results, e.g., rought a 5% area overheard for the RunStream implementations.

Cryptol: is a domain-specific language (DSL) for cryptoghraphy, resembling mathematical speci-
fication more closely than general purpose languages [177, 178]. It can generate a software imple-
mentation, a hardware implementation, and verification models. Its hardware design flow begins
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with translation to in intermediate representation (IR), which is then compiled to low level signal
processing intermediate representation (LLSPIR), which allows timing transformations to opti-
mize the circuit. This stage provides profiling information such as longest path, latency, size, etc.
and supports equivalence checking. LLSPIR is translated to VHDL. This is the entry point to sev-
eral flows targeting FPGA devices, grouped together under the name “FPGA”. The designer can
generate a formal model of a function which is in symbolic, LLSPIR or VHDL mode. Cryptol
can model combinational and sequential circuits are supported, and with use of two programs, par
and seq, it controls space-time tradeoffs. By default, the compiler will unroll and parallelize the
sequence as much as possible. It also offers pipelining.

ATHENa: is an open source environment for fair, comprehensive, automated, and collaborative
hardware benchamrking [179]. The acronym ATHENa stands for “Automated Tool for Hard-
ware EvaluatioN”. Gaj et al. specified the goal of the project is to develop a methodology and an
environment, that would allow for comprehensive, fair, reliable and practical software and hard-
ware performance comparison among various: algorithms (candidates in cryptographic compe-
titions, e.g.,CAESAR), implementation methods (iterative, unrolled, pipelined, precomputation,
table look-up,etc.), platforms (Xilinx vs. Altera FPGAs), and languages and tools (VHDL vs. Ver-
ilog, different versions of Xilinx Vivado) [179, 181]. Refer to [180] for more information on the
ATHENa project, e.g., the database with FPGA (and ASIC) results candidates in cryptographic
competitions, such as CAESAR, and new work, e.g., adaptations for the LWC competition.

In its initial form [179], ATHENa required a Perl interpreter, access to FPGA design environments
(e.g., Xilinx ISE), a reference implementation in C, testvectors, and HDL code. Its main features
include: (i.) running all steps of synthesis, implementation and timing analysis in batch mode, (ii.)
support for devices and tools of two major FPGA vendors: Xilinx and Altera, (iii.) Generation of
results for multiple FPGA families of a given vendor, (iv.) automated choice of a device within a
given family of FPGAs assuming that the resource utilization does not exceed a certain limit, and
(v.) automated optimization of results aimed at one of the three optimization criteria: speed, area,
and ration speed to area. In 2017 Minerva, an automated hardware optimization tool, was proposed
[182]. It finds the best target frequency and determines close to optimal settings for the tools
(Xilinx Vivado Design Suite 2015.1) to achieve optimal performance (measured in throughput or
in throughput-to-area ratio) for a large number of RTL designs. The potential use of HLS tools
for benchmarking purposes was investigated in [183]. The findings report strong, but not ideal,
correlation between RTL-based and HLS-based ranking of Round 3 CAESAR candidates in terms
of the aforementioned performance metrics, suggest that HLS methodology could be beneficial in
the early stages of the competitions, but do not advocate replacing RTL implementations with the
HLS generated code.

4.3.4 Compiling MATLAB onto FPGAs

The use of MATLAB and HDL coder is widely spread in the DSP domain (Subsection 3.1.4). This
paragraph describes MATCH, a predecessor of AccelFPGA [184]. In earlier work, the fact that
MATLAB has no notion of type of its variables. The first step in the design flow is transformation
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to an abstract syntax tree (AST), followed by a type-shape interface phase. The variables are
analyzed and if no directive is provided, their type/shape is inferred: exact data type can be an
integer, a floating point, a complex number etc., while the shape examples include dimensions of
a matrix etc.. A good overview of the compiler is provided in [?], and it highlights some DSP
specific steps, e.g., auto-quantization (floating point to fixed-point), and streaming (for data with a
regular rate of flow).
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The architectural decisions phase
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Chapter 5

The architectural decisions phase - finite
field arithmetic perspective

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 The coarse architectural decisions . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Overview

Figure 5.1 shows the current phase within the design flow from Figure 1.1, namely, the architec-
tural decisions shown in a magnifying glass on the right. This part of the thesis discusses the
pure GAP packages developed for the architectural decisions to support the finite field arithmetic
perspective (Figure 5.2(a)). The simplified design flow diagram in the leftmost column of Figure
5.2(a) and Figure 5.2(b) will be used throughout this part of the thesis for orientation, with grey
areas indicating the package under discussion. At the beginning of each chapter, a short summary
is presented in a frame.

The mathematical aspect of the automation framework consists of two core packages: the feed-
back shift registers package FSR, and the finite field construction, search and algorithms package
FFCSA. They are shown on top of Figure 5.2(b). The FSR package evolved to be standalone and
is presented first. This chapter is concluded with two case studies: WG and WAGE. Chapter 20
describes the design space exploration of WG stream cipher in more detail, and Part VI describes
WAGE in more detail, including the datapath synthesis. The arrows in Figure 5.2(b) indicate pack-
age dependencies.
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5.2 Roadmap

The structure of Part III is as follows:

• The coarse architectural decisions - this chapter, Section 5.3
• FSR package: feedback shift registers - Chapter 6

– Main functionality and structure of the FSR package (Section 6.1)
– Examples for the FSR package (Section 6.2)
– Summary of key insights (Section 6.3)

• FFCSA package: finite field construction, search and algorithms - Chapter 7

– Main functionality of the FFCSA package (Section 7.1)

– FFCSA profiling methods (Section 7.2)

– Tower field bases (Section 7.3)

– Algorithms: obtaining expressions for finite field arithmetic (Section 7.4)

– Summary of key insights (Section 7.5)

• Case study: WG and WAGE - Chapter 8

– Case study: the WGcipher package (Section 8.1)

– Case study: the WAGE package (Section 8.2)

Table 5.1 lists all examples in Part III, examples moved to appendix, and related examples in
Part IV. The table rows correspond to individual examples, grouped by the chapters. The columns
are structured as follows: the first column gives the subsection in which the example can be found,
the second column “Ex.” the example number, the third column the example title and short de-
scription if needed, the next two columns indicate whether the example includes GAP or VHDL
code, and the last column specifies related examples (Related Ex.). The related examples are the
continuation of the example in this row.
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Section Ex. Title and keywords GAP VHDL Related Ex.

FSR: feedback shift registers - Chapter 6

Section 6.2

6.2.1 Miscellaneous methods for multivariate
X

polynomials defined over a field

6.2.2 A simple LFSR over an extension field:
X

C.1.1
period, regular run and external run 11.1.1, 11.2.1

6.2.3 A simple FILFUN over the binary field:
X

11.1.1
LoadStepFSR method and regular run

6.2.4 A symbolic NLFSR over a binary field:
X

11.1.1
load with symbolic initial state

Appendix C.1 C.1.1 A simple LFSR over an extension field -
X

continued: TEX writing and drawing

FFCSA: finite field construction, search and algorithms - Chapter 7

Section 7.1

7.1.1 A small complexity normal basis: 7.2.1
interplay of different parts of the FFCSA package

7.1.2 A small complexity transition matrix: 7.2.1
interplay of different parts of the FFCSA package

7.1.3 A finite field multiplier:
interplay of different parts of the FFCSA package

Section 7.2 7.2.1 FFCSA profiling examples for F27
X

profiling
Section 7.3.1 7.3.1 F((22)2)2 tower field basis using a polynomial

X
7.4.2

TF bases basis for each level: polynomial search and basis
Section 7.4 7.4.1 Multiplication expressions for F24 :

X
Algorithms Generalized alg., two-step classic alg.

and 7.4.2 Multiplication expressions for F((22)2)2/F(22)2
X

expressions and F28 : Generalized alg., two-step classic alg.

Case study: WG cipher and WAGE - Chapter 8

Section 8.1 8.1.1 The WG7 keystream generator:
X

11.2.5
WG cipher loading, initialization, and a short keystream

Table 5.1: Part III examples
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5.3 The coarse architectural decisions

This short introductory discussion relies on the datapath classifications, presented in Subsec-
tion 3.3.3, and on the discussion about the architectures used for finite field arithmetic, presented
in Subsection 4.2.2.

Hardware designs can be roughly divided into three classes based on the algorithm they implement:
datapath, control, and memory. Finite field applications certainly fall into the datapath class. There
is usually some control needed and sometimes storage is used. The mathematical expressions are
usually implemented using discrete components and compositions of their outputs. The discrete
componenets, i.e., basic building blocks, are modules implementing the arithmetic operations using
logic gates. Their architecture depends on the algorithm and basis, e.g., the school-book two-step
classic multiplication in polynomial basis.

For small fields, constant array implementations are possible. The values of the expression are
precomputed for all possible inputs and stored as constants. The constant array is a lookup table
design: the input serves as an index to the array, selecting the appropriate precomputed constant.
There are slight variations in the hardware area of the array w.r.t. the basis used. The array can
be built for the entire expression, a part of the expression, or for certain operations only. This
can be considered as granularity, and the deciding factor is the constant array size and thus the
implementation area. In the latter two cases, the final output must still be computed.

Naturally, hardware designers try to exploit as much parallelism as possible. However, constraints
such as a desired small area can force the designer to explore other options, e.g. a sequential
design with small combinational circuitry (this is a form of component reuse or resource sharing,
see Subsection 3.3.3). There are other techniques to address other constraints, like pipelining to
increase the throughput. Sometimes hybrid options must be considered. Furthermore, both the
constant array and component based submodules can be used in any type of datapath, e.g., parallel,
sequential, or even pipelined.

Algorithms that compute the output in a serial fashion are well suited for sequential designs, and
in finite field arithmetic, certain choices of basis will yield such an algorithms, e.g., normal bases.
One such example is the Massey-Omura multiplier, which holds the two factors in shift registers
and produces one bit of product per clock cycle. This multiplier is an example of a parallel-
input/serial-output module (PISO). On other occasions, where the throughput is more important
than a small area, the designer will prefer algorithms that compute all bits of the output in paral-
lel. The school-book example of a parallel-input/parallel-output (PIPO) multiplier is the two-step
classic multiplier. An overview of different types of algorithms based on serial and parallel com-
putation was presented in Subsection 4.2.2.

The decisions described in the previous paragraphs, are called “coarse architectural decisions” to
differentiate them from the very specific decisions. An example of a specific or finalized decision
is the choice of a particular irreducible polynomial from the list of candidates, i.e., a list of all
polynomials of given degree that are irreducible over a given field. All design decisions must be
finalized before the design entry. In Figure 5.1 “coarse architectural decisions” appear at the top
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and the finalized “architectural decisions” in the oval shape at the bottom. Coarse architectural
decisions are a subject of design space exploration from the hardware perspective. Focusing on
constrained environments and lightweight cryptographic applications, the attention of this thesis
is placed on unpipelined, fully parallel designs that do not take advantage of serial computation
(Subsection 3.3.3). Such designs use only PIPO type basic building blocks (Subsection 4.2.2).
However, the automation framework can produce expressions for serial basic building blocks,
e.g., PISO type Massey-Omura multiplication. A PISO building block datapath is fully sequential
(Subsection 3.3.3). Serial computation always requires additional control logic, which increases
the hardware area beyond a reasonable tradeoff for lightweight cryptography.

Design space exploration from a mathematical perspective focuses on the hardware implementa-
tion results of modules obtained for the same functionality but with variation in one of the param-
eters. For example, using different algorithms for the underlying arithmetic operations, or using
different field parameters for deriving the expressions for a given algorithm. This part is covered
with parameter search, finite field constructions, and finite field arithmetic in Figure 5.1. It is real-
ized with the package FFCSA, shown in Figure 5.2(b). Based on a metric of choice, e.g., hardware
area, the architectural decisions are finalized.

This discussion covered two categories: hardware design and finite field arithmetic, reflecting
the “math meets hardware” motif from the perspective of coarse architectural decisions. Coarse
architectural decisions are not automated, i.e., the initial choices are left to the user, but they can
be easily revised after the results of the design space exploration.
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Chapter 6

FSR package: feedback shift registers

6.1 Main functionality and structure of the FSR package . . . . . . . . . . . . . . . . 80

6.2 Examples for the FSR package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Summary of key insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Feedback shift registers were introduced in Subsection 3.2.1. This section describes the imple-
mented FSR package, which allows creation, initialization, and running of LFSRs, NLFSRs, and
FILFUN (filtering function) objects. The FSR package also computes some of these objects’ prop-
erties, e.g., the internal state size or period for LFSRs. As such, it is one of the core packages of
the automation framework and enables the generation of test vectors for the (hardware) implemen-
tations.

alg.

gen.

arch.

Overview of the FSR package:
FSR FFCSA

WGcipher

WAGE

The FSR package allows creation, initialization, and running of
the LFSR, NLFSR, and FILFUN objects. The FSR package and
its sister package, FSRtoVHDL, constitute an automation toolkit
that significantly reduces the amount of human effort for both
software implementations using GAP and hardware design gene-

ration in VHDL. A great advantage of the FSR package is its use of a regular and an external step. A stand-
alone simple (N)LFSR object is self-contained: it is updated by the computed feedback value. This is called the
regular step and run. The external step and run allow arbitrary filters (FILFUNs) to be added to the feedback of
any FSR object. This provides the flexibility needed to represent a cipher as a collection of basic modules.
The FSR package has the ability to load and run a symbolic initial state. The creation and running
of any FSR requires only a few lines of GAP code and the outputs appear in the GAP prompt. The package also
contains some miscellaneous methods, used throughout the GAP framework, and formatting functions
for outputs to *.txt and *.tex files. To the author’s knowledge, the FSR package is the first to implement
both LFSRs and NLFSRs over prime and extension fields.
The FSR package is available at https://nzidaric.github.io/fsr/

6.1 Main functionality and structure of the FSR package

The FSR package and its sister package, FSRtoVHDL, constitute an independent part of the au-
tomation toolkit. The FSRtoVHDL package is used to generate the VHDL for an arbitrary LFSR,
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NLFSR, or FILFUN (filtering function), or a cipher specified as a collection of FSR objects. FSR-
toVHDL will be explained in detail in Chapter 11, however, the hardware implementation aspect
was, in great part, guiding the development of the FSR package itself [36]:

1. Hardware-style thinking involves a modular approach: a cipher can be implemented as a
collection of basic modules, which are identified as LFSR, NLFSR and FILFUN.

(a) For most (N)LFSRs used in practice, the feedback function can be modelled by a poly-
nomial

(b) Arbitrarily complicated NLFSRs can be implemented by connecting an (N)LFSR with
one or more FILFUNs.

(c) Complex FILFUNs can be implemented by connecting multiple simple FILFUNs

2. Recognizing and exploiting structural similarities between LFSRs, NLFSRs and FILFUNs,
from both the mathematical and the hardware perspective, reduces the number of imple-
mented objects, functions, and methods (Table 6.1).

3. Highly structural FSR package design is mandatory for automated VHDL generation: the
FSR objects must store sufficient information for the implementation.

Key 6.1: A cipher as a collection of basic modules

A cipher can be represented as a collection of basic modules, LFSRs, NLFSRs, and FIL-
FUNs, connected in various configurations.

Structural similarities from the mathematical point of view (item 2) are explained in Table 6.1.
Item 3 is related to the transition from GAP objects to VHDL code, which was one of the biggest
challenges in developing the toolkit and will be addressed in Chapter 11. It is partially addressed
by the good design of FSR objects: all the information for VHDL implementation of a particular
FSR is captured by the object as attributes. For example, the underlying finite field defines which
VHDL data type to use for the signals in the hardware module.

Structural similarities between the three FSR objects are summarized in Table 6.1. LFSR and
NLFSR GAP objects differ only in the degree of the multivariate polynomial used to define their
feedback. A FILFUN is an FSR object without feedback, shifting, or storing, and its functionality
is defined by a multivariate polynomial. The justification for such a design decision is twofold:
(i.) filtering functions are similar to NLFSR feedback functions, and (ii.) FSRs with output filters
are common, indicating that they will be used together. The differences between the NLFSRs and
FILFUNs will be discussed shortly.
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FSR multivariate FSR output
object polynomial f (x) (feedback, one or more computed
name linear nonlinear memory) state elm. value of f (x)

LFSR X X X

NLFSR X X X

FILFUN X X X

Table 6.1: Structural similarities between LFSR, NLFSR, and FILFUN objects

Key 6.2: Structural similarities between FSR objects

The LFSR and NLFSR GAP objects differ only in the degree of the multivariate polynomial
used to define their feedback. A FILFUN is an FSR object without feedback, shifting, or
storing, and its functionality is defined by a multivariate polynomial. The justification for
such a design decision is twofold: (i.) filtering functions are similar to (NLFSR) feedback
functions, and (ii.) FSRs with output filters are common, hence they will be used together.

FSR objects can be created either as LFSRs, NLFSRs or FILFUNs (Table 6.2). They are created
through a function call with various possibilities for input arguments, and will return an object
with four components, and some case-specific attributes and properties1. Only the values that can
change during the FSR’s lifetime are implemented as components:

• init - initial state of the FSR
• state - the current state of the FSR
• numsteps - number of steps since the object was created
• basis - the basis used for the representation of field elements

The components init and state are empty when the FSR is created. When the FSR is loaded,
both components are updated with the initial state. The component state is updated with each
FSR step, but init keeps the initial state until loaded anew. The integer numsteps keeps track
of the number of steps performed for the FSR. The numsteps value is set to -1 when the FSR
is created, to 0 when loaded, and then increments with each step. It is used for coding purposes
to prevent an attempt of running an empty FSR and to stop the FSR once a certain threshold is
reached, preventing it from looping indefinitely. The basis holds the current basis used for the
representation of elements and can be changed when needed. The constructors for the FSR objects
are listed in Table 6.2.

The behaviour of all three FSR objects is similar and captured with the following four methods,
also listed in Table 6.3:

• LoadFSR - load the initial state into init and state, set numsteps= 0
1racall: GAP objects store information as attributes, properties, and components
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name mandatory arguments optional arguments

LFSR Fq, h(y) from eq. (3.13) basis, (d0, . . . dt−1)
NLFSR Fq, f (x0, . . . , xn−1) from eq. (3.9), n basis, (d0, . . . dt−1)
FILFUN Fq, f (x0, . . . , xt−1) from eq. (3.9) basis
h(y) : Fq → Fq (d0, . . . dt−1) - output taps
f (x0, . . . , x j−1) : F j

q → Fq, where j = t, n n - length (number of stages)

Table 6.2: Constructors for the FSR objects

• StepFSR - shift stages S n−1,. . . , S 1 to the right, compute the feedback value and use it to
update S n−1, increment numsteps, output the new sequence element
• LoadStepFSR - call LoadFSR, followed by a single StepFSR (intended for the FILFUNs,

but works for (N)LFSR as well)
• RunFSR - perform a sequence of StepFSR calls

While LFSR and NLFSR differ only in feedback, the filters are a bit of an exception. However,
the evaluation of NLFSR feedback and FILFUN output are computed in the same manner, and the
same methods mentioned above are used for FILFUNs as well. Since a filter alone does not require
any feedback, shifting or stages, i.e. hardware registers, the component state is used to hold the
current values needed to evaluate the filtering function. The component state is not updated, but
rather loaded anew with each step: the method RunFSR takes a list of “initial” states as input as
shown in Example 6.2.3, then calls LoadStepFSR for each list entry.

The main functionality for an FSR object is summarized in Table 6.3. Table 6.3 differentiates
between “a regular” and “an external” step and run. A stand-alone simple (N)LFSR object is self-
contained: it is updated by the computed feedback value (regular step and run). Examples 6.2.2(c)
and 6.2.3 show the regular run. The external StepFSR allows arbitrary filters to be added to the
feedback of any (N)LFSR, e.g., to mask the output of the filtering function. The external step and
run (Example 6.2.2(d)) allows the FSRs to be used directly as building blocks of many ciphers.

Key 6.3: Regular and external step and run

A stand-alone simple (N)LFSR object is self-contained: it is updated by the computed feed-
back value (regular step and run). The external step and run allow arbitrary filters (FILFUNs)
to be added to the feedback of any FSR object. The external step and run allow for flexibility
when representing a cipher as a collection of basic modules.

Further details, such as the attributes stored for each FSR object, are listed in Table 6.4. The
columns correspond to the four main source files, and the rows are organized as filters and attributes
( Subsection 3.1.5). The source fsr captures the common functionality for LFSRs, NLFSRs, and
FILFUNs, including the methods listed in Table 6.3. The contents of the column fsr apply to
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FSR - the FSR object ext - finite field element extlist - list of ext
ist - initial state [ ] - optional parameters n - integer

All FSR types: LFSR, NLFSR, FILFUN
method name † options comments

LoadFSR ( FSR, ist ) NA load the initial state

StepFSR
regular step FSR self-contained: compute value x
external step adds an external elem. to the computed value: x + ext

( FSR [, ext] ) compute the feedback/function value x, use x or x + ext to:
◦ update S n−1 after shifting stages S n−1,. . . , S 1 for (N)LFSR
◦ output as the new element in case of FILFUN

LoadStepFSR
regular step FSR self-contained: compute value x
external step adds an external elem. to the computed value: x + ext

( FSR, ist [, ext] ) combines methods LoadFSR, StepFSR to load the new values
for variables before evaluating the function
this method is used by RunFSR for FILFUN objects

RunFSR ( FSR [, n] ) regular run with regular step
( FSR, ist [, n] ) external run with external step

( FSR, ist [, extlist] ) optional LoadFSR followed by sequence of StepFSR calls
† - some (but not all) example arguments are shown in the brackets

Table 6.3: Main functionality of the FSR package

source fsr lfsr nlfsr filfun

filters IsFSR IsLFSR IsNLFSR IsFILFUN

attributes FieldPoly FeedbackPoly MultivarPoly MultivarPoly

UnderlyingField PeriodOfLFSR MonomialList MonomialList

FeedbackVec IndetList IndetList

OutputTap

Length

InternalStateSize

Threshold

Table 6.4: Main functionality of the FSR package - continued

all three FSR objects, while the other three columns show object-specific attributes and properties.
The names used for filters, attributes, properties and methods are mostly self explanatory. The only
exception is the OutputTap attribute, storing the stage(s) that serve as the source for the output
sequence. If not set, the output stage is automatically set to S 0. For hardware implementations,
S 0 is not necessarily the best or only option. To save clock cycles during initialization phases of
stream ciphers (Subsection 3.2.2), the desired output stage is S n−1, where n is the length of the
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(N)LFSR. To increase the throughput, multiple stages can be used to output a vector instead of a
single element. Some of the attributes and properties from Table 6.4 are shown in Example 6.2.2.
� Implementation detail: GAP allows hierarchy of filters, which are used in the GAP method selection mechanism.
The three FSR objects have the following filters: IsLFSR, IsNLFSR, and IsFILFUN. Furthermore, they all belong
to IsFSR (Table 6.4), which allows the methods LoadFSR, StepFSR, LoadStepFSR, and RunFSR (Table 6.3) to be
implemented only once (in source file fsr). �

� Implementation detail: Some attributes listed in Table 6.4, e.g., IndetList for NLFSRs and FILFUNs, are stored
merely to speed-up the computation. IndetList stores the indeterminates, i.e., variables, that were used to define
the multivariate polynomial. The same information could easily be obtained from the MultivarPoly attribute itself.
Similarly, the FeedbackVec attribute holds the coefficients of the feedback/filtering function. In case of LFSR, the
new value is computed as a dot-product of FeedbackVec and the current state. For NLFSRs and FILFUNs, the value
is computed by evaluating the MultivarPoly with current state values used for the corresponding indeterminates
from the IndetList. The current state is kept by the component state. �

F - finite field B - basis M - matrix
f - polynomial ffe - finite field element vec - vector

misc † output

SplitCoeffsAndMonomials( F, f ) IntFFExt( B, ffe )

ReduceMonomialsOverField( F, f ) IntVecFFExt( B, vec )

DegreeOfPolynomialOverField( F, f ) IntMatFFExt( B, M )

VecToString( B, vec ) †

† - these methods are used throughout other GAP packages in this work

Table 6.5: Miscellaneous and output formatting methods in the FSR package

The FSR package also includes miscellaneous methods for multivariate polynomials defined over
a specific finite field (left column in Table 6.5). They are used by some FFCSA package methods
(Chapter 7), and also play a very important role for automated design generation (Part IV). Below
is a brief description of their functionality, also demonstrated in Example 6.2.1.

• SplitCoeffsAndMonomials takes a finite field F with q elements and a multivariate poly-
nomial f , and returns two lists, a list of coefficients and a list of monomials. Recall equation
(3.9) from background Subsection 3.1.3, with modification to only non-zero coefficients
ci0,i1,...,it−1 ∈ F :

f (x0, x1, . . . , xt−1) =
∑

∀(i0,i1,...,it−1)∈Zt
q3:

ci0 ,i1 ,...,it−1,0

ci0,i1,...,it−1 xi0
0 xi1

1 . . . xit−1
t−1 (6.1)

GAP uses algebraic normal form (ANF) [185] for expressions such as the r.h.s. in equa-
tion (6.1). Furthermore, the terms in equation (6.1) are ordered by the degree of mono-
mials (recall equation (3.10)), and the variables within monomial by their number, not by
their degree (see Section 66.17 in the GAP reference manual [34] for monomial orderings).
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The ordering will be explained in more detail in Section 10.2. The two lists returned by
SplitCoeffsAndMonomials are ordered the same way. The monomial corresponding to
the constant term is 1, i.e., x0

0x0
1 · · · x

0
t−1, which assures that both lists are of the same length

and that the input polynomial can be easily reconstructed by a dot-product of the two lists.
The method also checks if all the coefficients really belong to the underlying finite field.

• ReduceMonomialsOverField takes a finite fieldF with q elements and a multivariate poly-
nomial f , as defined in equation (6.1), and returns a polynomial f1 with the same coefficients
but all exponents reduced modulo q − 1, i.e., i j mod (q − 1) for 0 ≤ j < t. This method
is needed because in general, the coefficients and the exponents in equation (6.1) can be ar-
bitrary. Restricting f to the finite field F has two effects: (i.) all coefficients must belong
to F (i.e., ci0,i1,...,it−1 ∈ F as specified), and (ii.) due to the cyclic nature of finite fields, the
exponents must be reduced accordingly.

• DegreeOfPolynomialOverField takes a finite field F with q elements and a multivariate
polynomial f , as defined in equation (6.1), calls ReduceMonomialsOverField to obtain f1,
and returns the degree of the leading monomial in f1 (recall equation (3.10)). By definition,
the degree of the leading monomial is also the degree of the polynomial f1.

Key 6.4: Methods for multivariate polynomials

These methods take finite field F with q elements and a multivariate polynomial f as an in-
put. SplitCoeffsAndMonomials splits f into a list of coefficients and a list of monomials.
ReduceMonomialsOverField returns a polynomial f1 with the same coefficients as f , but
all exponents reduced modulo q−1. Method DegreeOfPolynomialOverField returns the
degree of the polynomial f1, that was obtained with ReduceMonomialsOverField.

The FSR package contains output formatting functions (right column in Table 6.5), that produce
both human friendly outputs and outputs for testbench generation. For example, the current state
of the LFSR in Example 6.2.2, shown in the GAP code in Example 6.2.2(c,d), uses meth-
ods IntFFExt ( B, ffe ) and IntVecFFExt ( B, vec ). The remaining FSR functions are TEX
writing functions, that generate a .tex output. Examples showing TEX writing functions, such as
WriteTEXElementTableByGenerator, WriteTEXRunFSR and WriteTEXRunFSRByGenerator
can be found in Appendix C.1. The created (N)LFSR objects can be represented graphically using
automatically generated tikz code. The LFSR from Example 6.2.2 is shown in Figure C.1.
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6.2 Examples for the FSR package

Example 6.2.1 Miscellaneous methods for multivariate polynomials defined over a field ↪−→

The terms in an expression, such as the r.h.s. of equation (6.1), are ordered by the degree of monomials (recall equation
(3.10)), and the variables within monomial by their number, not by their degree. This can be seen by comparing lines
2 and 3 in Example 6.2.1. Once the exponents in monomials are reduced, the order of terms changes, as can be seen
by comparing f and f1. The actual degree of polynomial f, defined over F24 , is 8, not 18, because 18 ≡ 3 mod 15,
implying that the leading monomial is x2

0x5
1x4, and not x18

2 .

Example 6.2.1

gap> K := GF(2);; x := X(K, "x");; F := FieldExtension(K, x^4 + x^3 + 1);;
gap> f := Z(2^4)^3*x_1^5*x_0^2*x_4 + x_0*x_2*x_3 + x_2^18 +Z(2^4);
x_2^18+Z(2^4)^3*x_0^2*x_1^5*x_4+x_0*x_2*x_3+Z(2^4)
gap> cmlist := SplitCoeffsAndMonomials(F, f);
[ [ Z(2)^0, Z(2^4)^3, Z(2)^0, Z(2^4) ], [ x_2^18, x_0^2*x_1^5*x_4, x_0*x_2*x_3, Z(2)^0
] ]
gap> cmlist[1] * cmlist[2];
x_2^18+Z(2^4)^3*x_0^2*x_1^5*x_4+x_0*x_2*x_3+Z(2^4)
gap> f1 := ReduceMonomialsOverField(F, f);
Z(2^4)^3*x_0^2*x_1^5*x_4+x_0*x_2*x_3+x_2^3+Z(2^4)
gap> DegreeOfPolynomialOverField(F, f);
8
gap> SplitCoeffsAndMonomials(F, f1);
[ [ Z(2^4)^3, Z(2)^0, Z(2)^0, Z(2^4) ], [ x_0^2*x_1^5*x_4, x_0*x_2*x_3, x_2^3, Z(2)^0
] ]

↪−→

Example 6.2.2 A simple LFSR over an extension field ↪−→

An LFSR can be uniquely described with a polynomial `(y) of degree n over the field F2m , also called the LFSR
polynomial. It is well known that using a primitive LFSR polynomial guarantees a sequence of maximal length (m-
sequence). In the following example an LFSR of degree 4 over F24 is created, first using the polynomial y4 + y +α and
then y4 + y3 + y + α, where α = ω + ω2 and ω is a root of the defining polynomial f (x) = x4 + x3 + 1 of F24 . Please
note that both α and ω are generators of F24 . Table C.3 in Example C.1.1 in Appendix C.1 shows the elements in F24 ,
represented in polynomial basis and as power of the generator α.

Example 6.2.2(a) shows the setup and creation of the LFSR test, and the attributes that were set at the time of the
LFSR constructor call, followed by computation of the period and property check for maximum sequence LFSR.
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Example 6.2.2(a)

gap> K := GF(2);; x := X(K, "x");; f := x^4 + x^3 + 1;;
gap> F := FieldExtension(K, f);; y := X(F, "y");; alpha := Z(2^4);;
gap> l := y^4 + y + alpha;; test := LFSR(K, f, l);
< empty LFSR given by FeedbackPoly = y^4+y+Z(2^4)>
gap> PrintAll(test);
empty LFSR over GF(2^4) given by FeedbackPoly = y^4+y+Z(2^4)
with basis =[ Z(2)^0, Z(2^4)^7, Z(2^4)^14, Z(2^4)^6 ]
with feedback coeff =[ 0*Z(2), 0*Z(2), Z(2)^0, Z(2^4) ]
with initial state =[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ]
with current state =[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ]
after initialization
with output from stage S_0
gap> KnownAttributesOfObject(test);
[ "LENGTH", "FieldPoly", "UnderlyingField", "FeedbackVec", "OutputTap", "FeedbackPoly"
]
gap> Length(test); FieldPoly(test); FeedbackVec(test); FeedbackPoly(test);
4
x^4+x^3+Z(2)^0
[ 0*Z(2), 0*Z(2), Z(2)^0, Z(2^4) ]
y^4+y+Z(2^4)
gap> PeriodOfLFSR(test); IsMaxSeqLFSR(test);
warning: the polynomial is reducible !!!
255
false

Example 6.2.2(a) used a reducible LFSR polynomial (see the warning displayed towards the end of example),
namely `(y) = y4 + y + α = (y2 + y + α7)(y2 + y + α9). As a result, this LFSR has a very short period, namely
(24)2

− 1 = 255. Whenever a reducible or an irreducible but not primitive LFSR polynomial is used, the sequence it
produces belongs to a (short) cycle. Multiple cycles exist, and which cycle depends on the initial state. Any sequence
obtained by the LFSR with reducible LFSR polynomial `, can also be produced by a (combination of the) short LFSRs,
obtained by the factors of `. See example Example 6.2.2(b) for details. The first factor is primitive, the second
factor is irreducible.

Example 6.2.2(b)

gap> factors := Factors(PolynomialRing(F), l);
[ y^2+y+Z(2^4)^7, y^2+y+Z(2^4)^9 ]
gap> test1 := LFSR(F, factors[1]);; test2 := LFSR(F, factors[2]);;
gap> PeriodOfLFSR(test1); PeriodOfLFSR(test2);
255
warning: the polynomial is irreducible !!!
85
gap> IsMaxSeqLFSR(test1);
true
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Using a primitive LFSR polynomial of degree 4, maximum period is (24)4
− 1 = 35535 and the LFSR will produce

an m-sequence. Example 6.2.2(c) shows one such polynomial, namely `(y) = y4 + y3 + y + α. The new LFSR
will be used for the remainder of this example. The example is continued in Appendix C.1 in Example C.1.1, and the
schematic of the LFSR is shown in Figure C.1.

Example 6.2.2(c)

gap> l := y^4 + y^3 + y + alpha;; test := LFSR(K, f, l);
< empty LFSR over GF(2^4) given by FeedbackPoly = y^4+y^3+y+Z(2^4) >
gap> PeriodOfLFSR(test); IsMaxSeqLFSR(test);
65535
true

Example 6.2.2(d) shows a regular run with loading of initial state ist, without extra inputs: the internal state and
outputs are shown on each step. It is followed by a second run for 5 steps, without outputs on each step. The elements
are represented w.r.t. canonical basis B for the run with outputs, and the sequences in GAP native representation.
Finally the LFSR is re-loaded and the run repeated for 10 steps. Note that the sequence produced is has 11 elements:
the output of stage S 0 before the first step is the first element of the resulting sequence.

Example 6.2.2(e) shows an external run with additional vector of field elements elmvec. At each step, new element
from the vector (shown in column elm of the output) is added to the feedback value, as can be seen when comparing
the elements of the internal state to the ones shown in Example 6.2.2(d). Sequences seq (Example 6.2.2(d))
and seq1 (Example 6.2.2(e)) begin to differ as soon as the initial state is shifted out of the LFSR. Note that
in Example 6.2.2(d,e) the RunFSR with argument ist will call LoadFSR first. The RunFSR calls without ist
continue the run from the current state.

↪−→

Example 6.2.3 A simple FILFUN over the binary field ↪−→

The following example shows a FILFUN over F2. First, the LoadStepFSR call is shown, with
values for each of the indeterminates in multivariate polynomial f , followed by a regular run
with a sequence of inputs inputsequence. The RunFSR calls LoadStepFSR for each tuple in
inputsequence.

Example 6.2.3

gap> K := GF(2);; x := X(K, "x");; f := x_0*x_1+x_2;;
gap> test := FILFUN(K, f);
< FILFUN of length 3 over GF(2),
with the MultivarPoly = x_0*x_1+x_2>

gap> LoadStepFSR(test, [Z(2)^0, Z(2)^0, 0*Z(2)]);
Z(2)^0
gap> inputsequence := [[Z(2)^0, Z(2)^0, 0*Z(2)], [Z(2)^0, Z(2)^0, Z(2)^0], [0*Z(2),

Z(2)^0, 0*Z(2)]];;
gap> outputsequence := RunFSR(test, inputsequence);
[ Z(2)^0, 0*Z(2), 0*Z(2) ]

↪−→
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Example 6.2.4 A symbolic NLFSR over a binary field ↪−→

The NLFSR constructor needs a multivariate polynomial and the length of the NLFSR n (Table 6.2). Each stage has
a corresponding variable, but not all stages (variables) occur in the feedback, hence the need for n. Example 6.2.4

shows the NLFSR of length 6 with multivariate polynomial x0 + x1x3 as feedback. It was loaded with symbols si, and
run for 20 steps. After 16 steps, the sequence element with the maximal degree monomial is obtained: see seq[17]

with degree 5.

Example 6.2.4

gap> K := GF(2);; f := x_0 + x_1*x_3;; n := 6;; test := NLFSR(F, f, n);;
gap> ist := [s_5, s_4, s_3, s_2, s_1, s_0];; seq := RunFSR(test, ist, 20);;
gap> for i in [1 ..10] do Print(" ", seq[i] , "\n\n"); od;
s_0

s_1

s_2

s_3

s_4

s_5

s_1*s_3+s_0

s_2*s_4+s_1

s_3*s_5+s_2

s_1*s_3*s_4+s_0*s_4+s_3

gap> Print(seq[16] , " -> ", DegreeOfPolynomialOverField(K, seq[16]), "\n\n");
s_0*s_1*s_4*s_5+s_1*s_2*s_3*s_4+s_1*s_3*s_4*s_5+s_2*s_3*s_4*s_5+s_0*s_1*s_4+s_0
*s_1*s_5+s_0*s_2*s_4+s_2*s_3*s_4+s_3 -> 4

gap> Print(seq[17] , " -> ", DegreeOfPolynomialOverField(K, seq[17]), "\n\n");
s_1*s_2*s_3*s_4*s_5+s_0*s_1*s_2*s_5+s_0*s_2*s_4*s_5+s_0*s_3*s_4*s_5+s_1*s_2*s_3
*s_5+s_1*s_3*s_4*s_5+s_2*s_3*s_4*s_5+s_0*s_1*s_2+s_1*s_2*s_3+s_1*s_2*s_5+s_1*s_3
*s_5+s_3*s_4*s_5+s_4 -> 5

If ran further, the obtained sequence will eventually start to repeat, i.e., there will be a cycle and its length is called
symbolic period. For the NLFSR in this example, the symbolic period is 828. When loaded with actual initial states of
finite field elements instead of symbols, cycles of lengths 3, 4, 6, 9, 12 and 23 were found. Initial state ist=[ 1, 1,

1, 0, 0, 0 ] yields a cycle of length 23. Note that 23 is the largest prime in factorization of 828, and that divisors
of 828 are candidates for actual cycle lengths. Running the FSR objects loaded with symbolic states is very slow and
requires a lot of memory. ↪−→
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6.3 Summary of key insights

Table 6.6 summarizes the key insights highlighted in Section 6.1.

Key 6.1: A cipher as a collection of basic modules XX Section
A cipher can be represented as a collection of basic modules: LFSRs, NLFSRs, and FILFUNs, 6.1
connected in various configurations.

Key 6.2: Structural similarities between FSR objects XX Section
The LFSR and NLFSR GAP objects differ only in the degree of the multivariate polynomial used 6.1
to define their feedback. A FILFUN is an FSR object without feedback, shifting, or storing,
and its functionality is defined by a multivariate polynomial. The justification for such a design
decision is twofold: (i.) filtering functions are similar to (NLFSR) feedback functions, and (ii.)
FSRs with output filters are common, hence they will be used together.

Key 6.3: Regular and external step and run XX Section
A stand-alone simple (N)LFSR object is self-contained: it is updated by the computed feedback 6.1
value (regular step and run). The external step and run allow arbitrary filters (FILFUNs) to be
added to the feedback of any FSR object. The external step and run allow for flexibility when
representing a cipher as a collection of basic modules.

Key 6.4: Methods for multivariate polynomials XX Section
These methods take finite field F with q elements and a multivariate polynomial f as an input. 6.1
SplitCoeffsAndMonomials splits f into a list of coefficients and a list of monomials. Reduce-

MonomialsOverField returns a polynomial f1 with the same coefficients as f , but all exponents
reduced modulo q − 1. DegreeOfPolynomialOverField returns the degree of the polynomial
f1, that was obtained with ReduceMonomialsOverField.

Notes: XX - solved

Table 6.6: Summary of key insights to the FSR package

92



Chapter 7

FFCSA package: finite field construction,
search and algorithms

7.1 Main functionality of the FFCSA package . . . . . . . . . . . . . . . . . . . . . . 94

7.2 FFCSA profiling methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3 Tower field bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.4 Algorithms: obtaining expressions for finite field arithmetic . . . . . . . . . . . . . 106

7.5 Summary of key insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

alg.

gen.

arch.

Overview of the FFCSA package:
FSR FFCSA

WGcipher

WAGE

The FFCSA package is the main support, or rather, the prerequisite
package for the design space exploration. FFCSA stands for finite
field constructions, search and algorithms, and is divided into three
major parts: search, bases, and algorithms. The first part is divided
into search for field elements and for polynomials, that meet speci-

fied criteria. This criteria can be general (a normal element, an irreducible polynomial, etc.), or specialized (the
smallest area element, etc.). The second part is dedicated to the generation of different bases: polynomial bases,
normal bases, and their dual bases. When generating the tower field bases, different options are possible, using
either the same type of basis on each level, or mixed bases, e.g., polynomial basis on one level and normal basis
on the next. The third part consists of the algorithms, or rather, a collection of methods that generate the expressions
required to implement an arithmetic operation according to a specified algorithm, parametrized for the current in-
stance (defining polynomial, a basis, etc.). Many different algorithms are known in literature. The package supports
basic functionality, e.g., the generalized algorithm for multiplication. The current emphasis is on parallel datapaths.
Expressions for sequential implementations can be generated, and the modules can be implemented in conjunction
with the FSR package, but the process is not yet fully integrated. Similarly, some algorithms rely on search results,
but are implemented as stand-alone GAP scripts, e.g., a bit-parallel Reduced Redundancy Massey Omura multi-
plication. The expressions are generated for multiplications, arbitrary exponentiations, matrix-vector multipliers,
and some special cases, e.g., the expression for the trace computation. Most FFCSA methods require only the
method call and occasional initial parameter setup. The outputs appear in the GAP prompt. Future work includes
method optimizations, extending the functionality, and extending the “reach” in terms of field size.

� Implementation detail: As the FSR package was intended to be standalone, the FFCSA, counter intuitively, reuses
the helper functions from FSR, and thus the FSR package must be loaded first. �
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7.1 Main functionality of the FFCSA package

The following short examples (Examples 7.1.1-7.1.3) show the interplay of different parts of the
FFCSA package and provide an insight into its structure. They illustrate the basic functionality of
the FFCSA package: the constructions, the search and the algorithms. They are tasked with finding
(special) elements, finding (special) polynomials, generating matrices and bases, computing Ham-
ming weights, and finally, obtaining expressions for finite field arithmetic algorithms. The search
is closely linked to the design space exploration: theoretical estimates, e.g., Hamming weights,
can be used to make certain architectural decisions early in the design flow. More details on DSE
are given in Section 7.2.

Example 7.1.1 A small complexity normal basis

A small complexity normal basis is believed to yield smaller hardware w.r.t. a normal basis with
higher complexity [186]. A small complexity normal basis can be found with exhaustive search,
which requires several steps: (i.) find the normal elements, (ii.) build their multiplication tables T,
(iii.) compute the Hamming weights of tables T, and (iv.) find the minimum Hamming weight T.
This example is covered in more detail in Section 7.2.

Example 7.1.2 A small complexity transition matrix

Another more complex example is a finite field for which no optimal normal bases exist, for ex-
ample F216 , but the algorithm requires a lot of exponentiations to powers of two. Normal bases are
very convenient for the exponentiations. However, a tower field basis is more suitable for multipli-
cations and inversions: the search criterion is to minimize the Hamming weights of the transition
matrices between tower field and normal bases. A less obvious middle step is constructing the
tower field itself, requiring (a search for) an irreducible polynomial for the next level at each level
of the tower. This example is covered in more detail in Section 7.2.

Example 7.1.3 A finite field multiplier

Last but not least is the generation of expressions used for the hardware implementations, e.g., finite
field multiplication. Specifically, to implement a F24 multiplier, the following steps are performed:
(i.) a specific defining polynomial of degree 4 is obtained by the search for defining polynomials,
(ii.) the polynomial basis with the root of the defining polynomial is generated, (iii.) then matrix U
[42] is generated for this basis using a vector of variables [a0, a1, a2, a3], and (vi.) the expressions
for the 4 components of the product are obtained by multiplying the matrix U (with indeterminates
ai) with the vector of variables [b0, b1, b2, b3]. Details are given in Section 7.4.

Tables 7.2 - 7.5 list the main FFCSA methods to demonstrate the capabilities of the package. The
corresponding source files, listed on the top of each table, give insight into the structure of the
package. Additional information about the methods is captured by listing their arguments, with
the labels ffe for finite field elements, f for polynomials, etc. listed in Table 7.1. In some cases,
method overloading was used but only the general case is listed in Tables 7.2 - 7.5. There are no
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GAP attributes and properties, because this package does not construct any objects. Furthermore,
there are many different methods that only differ in the search space, but have the exactly same
arguments. This also implies that GAP’s method selection cannot be used and that the methods
must be differentiated by their names. The overlap between methods in the FFCSA package can be
characterized as follows: (i.) same functionality - different implementation, (ii.) same functionality
- reduced search space, and (iii.) similar functionality - different criterion. To reduce the size of
tables, some methods are listed together with the following notation used as placeholders:

♣ - they have the same functionality and output but different implementation
(e.g., IsNormalFFE and IsNormalFFEB in Table 7.3)
♠, •, � - they have similar functionality but work with a reduced search space:

♠ - IgnoreConjugates methods: search space is reduced by ignoring the conju-
gates and only checking the elements obtained as gc, where g is a generator of the field
and c a coset leader
(e.g., NrNormalFFE and NrNormalFFEIgnoreConjugates in Table 7.3)
• - OneGamma or FixedGamma method: the search space for the polynomials is re-
duced by allowing only one coefficient (γ) to belong to the extension field, all other
coefficients must belong to F2. For FixedGamma, the value of γ is given too.
(e.g., FindPrimitivePolyOneGamma and FindPrimitivePolyFixedGamma in Ta-
ble 7.3)
� - FixedNumber method: the search space is reduced by providing a fixed number
of desired results; the search process is terminated when the threshold is reached
(e.g., Find�Poly� and Find�� in Table 7.4)

♦, �, M, O and ◦ - they have the same functionality for a different search criterion:

� - Irreducible, Primitive and IrreducibleNotPrimitive
(e.g., Find�PolyAll in Table 7.4)
♦ - ONBI and ONBII, or L and R
(FindONB ♦Generator in Table 7.4, SLL and SRL Shift Left Logical in Table 7.5)
M - To and Downto: this distinction was adopted from VHDL signals, which are
specified by their domain, range and direction (e.g., (0 to 3) or (3 downto 0)).
O - basis type, e.g., PB for polynomial basis, NB for normal basis and MB for
mixed basis in case of tower fields with different type of basis on each level.
◦ - Area and Delay for profiling (examples in Section 7.2)

Notation ♣ used in tables always denotes the existence of both, the regular and the B (Basis) meth-
ods and ♠ the existence of both, the full and the IgnoreConjugates methods. A secondary reason
to implement both is to check their correctness by comparing the outputs directly or, in the latter
case, by expanding one output set to all conjugates before comparing. The theoretical values for
expected number of particular objects were used as a final check for every search. The Nr...
methods were implemented in the source file misc. There are several variants of the ♦ methods,
and the specific cases have the options listed below the table, for example in Table 7.2, ♦ and in
Table 7.4 for the ONBI and the ONBII, where ONB stands for optimal normal basis.
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As was mentioned above, the notion of direction, e.g., To and Downto, was adopted from VHDL.
An example of a similar phenomenon encountered in finite field arithmetic is the polynomial
basis, which can be defined either as {1, ω, . . . , ωm−1}, considered as “To” in this work, or as
{ωm−1, . . . , ω, 1}, considered as “Downto”. All normal bases are implicitly considered as “To”
due to the increasing powers of the conjugates. All other bases are considered as “To”.

p - characteristic F - finite field
q - field size ffe - finite field element

m, n - degree of polynomial or extension f, N - polynomials
M - matrix B, B1, B2 - bases

edpl - extension field defining polynomial list vec, vec1, vec2 - vectors
mbl - mixed basis instruction list i - index w.r.t. M, B or vec

EBlist - extension bases list t - threshold (integer)
edl - list of extension degrees (integers) e - exponent
[ ] - optional parameters of - output file name

Table 7.1: Labels used for arguments in Tables 7.2 - 7.5

misc Section matrix Section weight

CCLeaders( p, m )[1] C.2.1 MatrixMultByConst(B, ffe )[2] C.2.5 WeightMatrixBoth(M )[4,5]

PolyPhi( F, f )[1] C.2.2 TransitionMatrix(B1, B2 )[2] C.2.5 WeightMatrix(M )[4]

Nr�Poly(F, m ) C.2.3 ReductionMatrixM ( f )[2] C.2.5 WeightMatrixMaxRow(M )[4]

NrNormalFFE ♠(F ) C.2.4 MatrixU(B ), MatrixUi(B, i )[3] 7.4 WeightPolynomial( f )[4]

MatrixM(B ), MatrixMi(B, i )[3] C.2.5
Implementation notes:

[1] - Cyclotomic Coset Leaders and Polynomial Φ function
[2] - returns a matrix M, which is then used as a matrix-vector (MV) multiplier

for computation z = Ma where a is the input vector (vector on the right)
[3] - used for multiplication of two arbitrary elements
[4] - returns number of nonzero entries (Hamming weight)
[5] - returns both WeightMatrix (area estimate) and WeightMatrixMaxRow (delay estimate)
� - three methods listed together: the Irreducible, Primitive and IrreducibleNotPrimitive
M - direction “to” or “downto”, and IR for direction “to”, RI for direction “downto”,

where I is the identity matrix and R the reduction matrix, see Section C.2 for details

Table 7.2: Main functionality of the FFCSA package

� Implementation detail: The Basis (B) methods
Method IsNormalFFE was implemented based on Theorem 5.2.11(1.) in [15]. The Basis (B) method is actually a
trick: In GAP, a set of linearly independent elements S is not considered a basis until its tied to the finite field F,
which is achieved using Basis(F, S ) (Section 61.5-2 in the GAP reference manual [34]): this method will return
an object which had the property IsBasis, the finite field it belongs to and the list BasisVectors (Section 61.6-1
in the GAP reference manual [34]). If the set S is not linearly independent, Basis(F, S ) will return “fail”. The
IsNormalFFEB(F, ffe ) method will construct the set S consisting of conjugates of ffe and call Basis(F, S ): if
“fail” IsNormalFFEB returns “false”. All search methods use either IsNormalFFE or IsNormalFFEB, however
the B (Basis) methods perform much faster than the regular ones, and were therefore used for most of the exhaustive
searches performed. �
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nb Section ffbases ‡ Section

IsONBI( q, m ) C.2.6 GeneratePBM(F, ffe ) [1]

IsONBII( 2, m ) C.2.6 GenerateNB(F, ffe ) [2]

IsNormalFFE ♣(F, ffe ) †Thm.3.2 IsDualBasisPair(B1, B2 ) C.2.7

MultiplcationTableT(B ) †Eq.(3.5) FindInvCyc(F, N ) C.2.7

ComplexityOfT(B ) 3.1.1 & GeneratorOfDBtoNB(F, ffe ) C.2.7

18.1 GenerateDBtoNB(F, ffe ) C.2.7

GenerateDBtoPBM(F, ffe ) C.2.7

GenerateTFBfromEBlist(EBlist ) 7.3.2

GenerateTFBfromEDPLwithO( edpl [,mbl] ) 7.3.2
Implementation notes:

† - Subection 3.1.1 in Section 3.1
‡ - all bases generated are linearly independent sets of m elements, where m is the degree of extension of F

[1] - returns a basis of F, formed from f f e = α according to the direction given by M:
{1, α, . . . , αm−1} for direction “to” or {αm−1, . . . , α, 1} for direction “downto”, where m = [Fqm : Fq]

[2] - returns a basis of F, formed from f f e = α as {α, αq, . . . , αqm−1
}, where m = [Fqm : Fq]

O - four methods listed together: the MB for mixed basis, and the PB, PBDownto, NB

Table 7.3: Main functionality of the FFCSA package - continued

FindElm/FindElmSpecial † Section FindPoly/FindPolySpecial Section

FindNormalFFEs ♣♠(F ) [1,2] 18.1 Find�PolyAll( [of,] F, m [,t] ) [4]

FindONB ♦Generator♣(F ) [3] C.2.8 FindEDPLAllfromEDL( edl ) 7.3.2

ProfileNBGenerators(F ) 7.2 FindPrimitivePoly •( [of,] F, m [, ffe] ) [5]

FindSmallestTNBGenerator(F ) [3] 7.2 FindPrimitivePolyExtraTapsFixedPoly• 20.4

ProfileNBtoBTransitionMat(B ) 7.2 ( [of,] F, f, t ) [6]

ProfileGamma(F, B ) 7.2

FindSmallest ◦ Gamma(F, B ) [3] 7.2
Implementation notes:

[1] - for F ≤ F216 , see Section C.2.10 comment (1)
[2] - returns a list of integers e, such that ge is the normal element, where g is a generator of the field
[3] - returns a finite field element
[4] - when writing to output file of: write one polynomial per line
[5] - ffe is needed for FixedGamma method
[6] - f is a given primitive polynomial. t is number of extra tap positions
♦ - two methods listed together: the ONBI and the ONBII
† - all methods are IgnoreConjugates, except the FindNormalFFEs ♣♠

Table 7.4: Main functionality of the FFCSA package - continued
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algs/matrixalgs

ChooseFieldElmsM(F ) [1,2] FFA_mult_convolution( vec1, vec2 )

S♦L( vec, i ), RO♦( vec, i ) FFA_mult_2stepClassic( f, vec1, vec2, dir )

MatrixExpression(M, vec ) FFA_mult_matrixU(B, vec1, vec2 ) [1]

TransitionMatrixExpression( B1, B2, vec ) FFA_sq_matrixU(B, vec ) [1]

ReductionMatrixExpressionM( f, vec ) FFA_exp_matrixU(B, vec, e ) [1]

MatrixMultByConstExpression(B, ffe, vec ) FFA_inv_matrixU(B, vec ) [1]

MatrixUExpression(B, vec ) [1] FFA_trace(B, vec )
Implementation notes:

♦ - two methods listed together: L, R (e.g., SLL - Shift Left Logical)
[1] - Section 7.4
[2] - Section 10.2

Table 7.5: Main functionality of the FFCSA package - continued

� Implementation detail: The Find�PolyAll methods
The Find�PolyAll(F, m ) methods use the existing GAP functions IsPrimitivePolynomial(F, poly ) (Section
66.4-12 in the GAP reference manual [34]) and IsIrreducibleRingElement( PolynomialRing(F), poly ) (Sec-
tions 56.5-7 and 66.15-1 in the GAP reference manual [34]) to decide if a candidate polynomial poly meets the search
criteria. The Nr�Poly(F, m ) are used to check the number of polynomials found; if there is a discrepancy, and error
is triggered. �

Key 7.1: Search for parameters and the design space exploration

The basic functionality of the FFCSA methods covers: the constructions, the search, and the
algorithms. The methods are tasked with finding (special) elements, finding (special) poly-
nomials, generating matrices and bases, computing Hamming weights, and finally, obtaining
expressions for finite field arithmetic algorithms. The search is closely linked to the design
space exploration: theoretical estimates, e.g., Hamming weights, can be used to make cer-
tain architectural decisions early in the design flow. The algorithms are mandatory for the
automated design generation.
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7.2 FFCSA profiling methods

The FFCSA package contains a set of profiling methods that are closely linked to the search for
“special” elements and polynomials, i.e., FindElmSpecial and FindPolySpecial (Table 7.4). The
profile is always a (set of) Hamming weight(s): a theoretical estimate of area, as was already noted
for the WeightMatrix method, or delay, as was noted for the WeightMatrixMaxRow method
(Table 7.2). Another method, linked to the Hamming weight of a matrix, is ComplexityOfT
(Table 7.3). The following profiling functions are in place:

• ProfileNBGenerators(F ) finds all normal elements of the finite field F and lists the [c,
e] as their profile, where e is the current exponent and c the ComplexityOfT of the normal
basis generated by the normal element ge, where g is the generator of the finite field F.
Implementation details on ComplexityOfT will be shown in Section 18.1.
FindSmallestTNBGenerator(F ) uses the profile to find the element with the smallest
ComplexityOfT value CT . FindSmallestTNBGenerator is a solution to Example 7.1.1
in Section 7.1. A short example is shown in the GAP code in Example 7.2.1(a).

• ProfileNBtoBTransitionMat(B ) finds all normal elements of the finite field F, gen-
erates their normal bases NB, and computes both transition matrices between the current
normal basis NB and the basis B passed on as an argument, using TransitionMatrix (Ta-
ble 7.2). The profile lists [d1, A1, d2, A2, e], where e is the current exponent, d1, A1 the
delay and area of the NB→ B transition matrix, and d2, A2 the delay and area of the inverse
matrix B→ NB.
FindSmallestAreaNBtoBProfile(B ) returns the profile with the smallest A1+A2 w.r.t.
the given B. If two profiles have the same cumulative area, the delays are used as a sec-
ondary criterion, and if there is still a deuce, the profile with the smallest e is chosen.
ProfileNBtoBTransitionMat is a solution to Example 7.1.2 in Section 7.1 for an ar-
bitrary basis B. A short example is shown in the GAP code in Example 7.2.1(b).

• ProfileGamma(B ) computes the profiles for elements ge, where e is the current exponent
and g is the generator of the finite field F. The profile is [d, A, e1, e2, . . . ], where d and A
are the delay and area of the matrix for multiplication with the constants gei , i = 1, 2, . . . .
The exponents are grouped together when the delay and area of their corresponding matrices
are the same. The matrices are obtained with MatrixMultByConst (Table 7.2). Unlike the
profiling methods introduced above, the ProfileGamma returns a pre-processed profile,
ordered by ascending delays.
FindSmallest◦Gamma , where ◦ stands for Area or Delay, returns an element that fits
the given criteria. For profiles with more than one exponent, the first exponent is selected,
namely e1 giving ge1 . Short examples for normal and polynomial basis B are shown in the
GAP code in Example 7.2.1(c,d).

� Implementation detail: The exponents e for candidate elements ge

The exponents are the elements returned by CCLeaders( 2, m ) (Table 7.2), where m is the degree of extension of the
finite field used. All methods using the coset leaders as exponents are IgnoreConjugates methods. �
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Example 7.2.1 FFCSA profiling examples for F27
↪−→

Example 7.2.1(a) shows the functionality of methods ProfileNBGenerators and FindSmallestTNBGenerator.
Note that to find the normal basis with smallest complexity, only the call FindSmallestTNBGenerator( F ) is
needed, as shown by the last call Example 7.2.1(a). The setup in the first line of code, exponents that yield normal
elements, and the profile are shown to clarify the example.

Example 7.2.1(a)

gap> F := GF(2^7);; g := Z(2^7);; B := Basis(F);;
gap> FindNormalFFEsIgnoreConjugates(F);
[ 13, 19, 21, 27, 31, 43, 63 ]
gap> ProfileNBGenerators(F);
[ [ 19, 13 ], [ 27, 19 ], [ 21, 21 ], [ 27, 27 ], [ 25, 31 ], [ 21, 43 ], [ 21, 63 ] ]
gap> FindSmallestTNBGenerator(F);
Z(2^7)^13
gap> FindSmallestTNBGenerator(GF(2^11));
Z(2^11)^439

Example 7.2.1(b) shows methods ProfileNBtoBTransitionMat and FindSmallestAreaNBtoBProfile w.r.t.
the polynomial basis of F27 . The smallest cumulative area transition matrices are found for g43.

Example 7.2.1(b)
gap> ProfileNBtoBTransitionMat(B);
[ [ 7, 29, 7, 31, 13 ], [ 7, 33, 6, 25, 19 ], [ 7, 33, 6, 27, 21 ],
[ 7, 27, 6, 33, 27 ], [ 7, 31, 6, 29, 31 ], [ 7, 27, 5, 27, 43 ],
[ 7, 25, 6, 33, 63 ] ]

gap> FindSmallestAreaNBtoBProfile(B);
[ 7, 27, 5, 27, 43 ]

Example 7.2.1(c) shows methods ProfileGamma and FindSmallestAreaGamma w.r.t. the normal basis of F27

generated for g43, the element selected in Example 7.2.1(b). The smallest area multiplication matrix is found for
g43. Note that this is exactly the normal element.

Example 7.2.1(d) shows methods ProfileGamma and FindSmallestAreaGamma w.r.t. the polynomial basis of
F27 generated for the root ω of defining polynomial x7 + x3 + x2 + x + 1. The root ω is also a generator (see last line
in the GAP in code Example 7.2.1(d)), and has the value Z(2ˆ 7)ˆ 5. The smallest area multiplication matrix is
found for the root of defining polynomial ω.
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Example 7.2.1(c)
gap> NB := GenerateNB(F, g^43);; profile := ProfileGamma(NB);;
gap> for i in profile do Display(i); od;
[ 4, 20, 1, 11 ]
[ 4, 22, 3 ]
[ 5, 24, 5 ]
[ 4, 19, 7, 47 ]
[ 5, 26, 9 ]
[ 5, 27, 13 ]
[ 6, 26, 15, 23 ]
[ 6, 31, 19 ]
[ 7, 29, 21 ]
[ 6, 23, 27 ]
[ 6, 32, 29 ]
[ 5, 29, 31 ]
[ 4, 21, 43 ]
[ 6, 28, 55 ]
[ 5, 25, 63 ]
gap> FindSmallestAreaGamma(NB);
Z(2^7)^7

Example 7.2.1(d)

gap> f := x^7 + x^3 + x^2 + x+ 1;; F := FieldExtension(K, f);;
gap> w := RootOfDefiningPolynomial(F);
Z(2^7)^5
gap> PB := GeneratePB(F, w);; profile := ProfileGamma(PB);;
gap> for i in profile do Display(i); od;
[ 2, 10, 1 ]
[ 4, 16, 3 ]
[ 5, 25, 5 ]
[ 6, 32, 7 ]
[ 6, 31, 9, 29 ]
[ 6, 30, 11 ]
[ 5, 27, 13, 63 ]
[ 4, 25, 15 ]
[ 4, 22, 19, 21 ]
[ 5, 29, 23 ]
[ 6, 34, 27 ]
[ 5, 31, 31 ]
[ 6, 24, 43 ]
[ 4, 20, 47, 55 ]
gap> FindSmallestAreaGamma(PB);
Z(2^7)^5
gap> GeneratorOfField(F);
Z(2^7)^5

↪−→
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7.3 Tower field bases

7.3.1 Generating tower field bases

For a composite integer m = n1 · . . . · nk, where ni, i = 1 . . . k are positive integers (not necessarily
primes), it is possible to build Fpm as a tower of extensions F(...((pn1 )n2 )... )nk over its prime subfield Fp.
Recall from Section 3.1 the equation (3.3), which for the example F((22)2)2 takes the following form

F2 ⊂ F22 ⊂ F(22)2 ⊂ F((22)2)2 � F28

For the generalized methods for generating tower field bases to arbitrary degree of extension and
different bases, e.g., a mix of polynomial and normal bases, a distinction is made between reference
field defining polynomials (RDP) and extension field defining polynomial (EDP). This distinction
is explained with the example of F((22)2)2 shown in Figure 7.1:

• the reference field defining polynomials are labelled p1, p2, p3. They are the defining poly-
nomials of the isomorphic reference finite fields. For example, p3 is a degree 8 defining
polynomial of the finite field F28 , which is isomorphic to F((22)2)2 .
• the extension field defining polynomials are labelled f1, f2, f3, and can be seen on the outer

left side of the diagram. For example, the degree 2 polynomial f3 is irreducible over F22 , and
used to construct the level F((22)2)2 as an extension of F(22)2 .

F((22)2)2 � F28

F(22)2

f 3
-

� F24

F22

�
f2

F2

p3

6

�
p

2

�
f1 =p1

Figure 7.1: Finite field F((22)2)2 - tower construction

With each new extension Fq2/Fq, a “per-level” basis (PLB) can be found. For this example, a
polynomial basis with the root of the EDP fi is used for each level. The “per-level” polynomial
bases are shown in the third column in Table 7.6.
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F2
f1(x)
−−−→ F22

f2(x)
−−−→ F(22)2

f3(x)
−−−→ F((22)2)2

Finite field EDP “per-level” PB Comments
Fq2 fi(x) BFq2 /Fq = {1, ρ} fi(ρ) = 0

F((22)2)2 f3(x) BF((22)2)2 /F(22)2
= {1, ν} f3(ν) = 0

F(22)2 f2(x) BF(22)2 /F22 = {1, µ} f2(µ) = 0

F22 f1(x) BF22 /F2 = {1, λ} f1(λ) = 0

Table 7.6: Tower construction of F((22)2)2

An element A ∈ F((22)2)2 is represented w.r.t. the basis BF((22)2)2/F(22)2
as A = a0 + a1ν, where a0, a1 ∈

F(22)2 . Both coordinates a0, a1 are then represented w.r.t. the basis BF(22)2/F22 , as ai = ai0+ai1µ, where
ai0, ai1 ∈ F22 , and so on. The bases BF((22)2)2/F(22)2

, BF(22)2/F22 and BF22/F2 are the “per-level” bases
(see Table 7.6 for details). The PLBs lead to the construction of a tower field basis (TFB) of the
isomorphic field F28/F2, obtained as a product of basis elements along the paths (arrows), as shown
in Figure 7.2. The number of PLBs equals the number of levels in the tower field construction, but
there is only one corresponding TFB. The obtained basis has 8 elements ti, 0 ≤ i ≤ 7:

T FBF28/F2 = {t0, t1, . . . , t7} = {1, λ, µ, µλ, ν, νλ, νµ, νµλ} (7.1)

A

a0
�

1

F(22)2 a1

ν
-

a00
�

1

a01

µ -

F22 a10
�

1

a11

µ
-

a000
�

1

a001

λ -

a010
�

1

a011

λ -

F2 a100
�

1

a101

λ -

a110
�

1

a111

λ -

1
t0

λ
t1

µ
t2

µλ
t3

ν
t4

νλ
t5

νµ
t6

νµλ
t7

Figure 7.2: Decomposition of an element A ∈ F((22)2)2 w.r.t. BF((22)2)2 /F(22)2
, BF(22)2 /F22 , BF22 /F2

The basis T FBF28/F2 is different from the polynomial basis of F28/F2, obtained from the root ψ of
the reference field polynomial, i.e., p3(ψ) = 0:

PBF28/F2 = {b0, b1, . . . , b7} = {1, ψ, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7} (7.2)

This can be seen from the two polynomials that are irreducible over the ground field F2, namely
the degree 2 polynomial f1(x) and the degree 8 polynomial p3(x). There is only one irreducible
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polynomial of degree 2, f1(x) = x2 + x + 1, so even without fixing the polynomial p3(x) of degree
8, it can be shown that λ, a finite field element of order 2, can not generate the polynomial basis of
F28/F2. Assume λ = ψ. From f1(λ) = 0 it follows that λ2 = λ + 1 and λ3 = λ2 + λ = 1. Then
the elements in {1, λ, λ2, λ3, . . . , λ7} = {1, λ, λ2, 1, . . . , λ} repeat, which means this set is linearly
dependent and therefore not a basis. Thus, λ , ψ. Since t1 , b1, and bases are ordered sets, there
is no need to check other basis elements; the two bases are different.

The tower field basis as given in equation (7.1), can be generalized to an arbitrary tower field
construction, see Section C.2.9 in Appendix C.2 for more details.

7.3.2 FFCSA methods for generating TFBs

GenerateTFBfromEBlist(PLBlist ) takes a list of “per-level” bases PLBlist. For the F((22)2)2

used in this section, the input [{1, λ}, {1, µ}, {1, ν}] returns the TFB in equation (7.1).

GenerateTFBfromEDPLwithMB( edpl, mbl ) takes a list of extension defining polynomials edpl,
and a “mixed basis list” mbl. The latter is a list of instructions that are used to generate the “per-
level” bases. It is needed to select appropriate methods, e.g., ["NB", "to"] will call GenerateNB
(Table 7.3) or GenerateTFBfromEDPLwithNB. Currently supported bases for the tower field con-
struction are the polynomial basis (both directions), and the normal basis (direction “to”). First,
the extension fields are built. Then, for each extension, the PLB is generated using the root of its
EDP1 and added to the PLBlist. Finally, the TFB is generated using GenerateTFBfromEBlist.

FindEDPLAllfromEDL( edl ) is used to find the list of extension defining polynomials EDPs edpl.
The argument edl is a list of extension degrees ni, such that m = n1 · · · nk. For the F((22)2)2 used in
this section, the input edl = [2, 2, 2].

The remaining methods all use the GenerateTFBfromEDPLwithMB( edpl ,mbl ) method with the
parameter mbl fixed:

• GenerateTFBfromEDPLwithPB uses instructions ["PB","to"] for each level
• GenerateTFBfromEDPLwithPBdownto uses instructions ["PB","downto"] for each level
• GenerateTFBfromEDPLwithNB uses instructions ["NB","to"] for each level

� Implementation detail: The mixed basis list instructions
GAP has an object called Dictionary (Chapter 28 in the GAP reference manual [34]), and the mbl instructions are
used to retrieve the strings “GeneratePB”, “GeneratePBdownto” and “GenerateNB” from the dictionary. Then, these
strings are concatenated with brackets and the appropriate values for F and ffe. For example, the resulting string is
“GenerateNB(F, ffe)”. Note that this is a string, but corresponds exactly to the format of the GenerateNB method
(Table 7.3). Then, using the existing GAP function EvalString (Section 27.9-5 in the GAP reference manual [34]),
GAP executes the GenerateNB method with the given arguments. Such approach was used in several parts of the
automation framework. �

1 in case of normal bases, the EDP is expected to be a N-polynomial, and the method fails if it is not
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Example 7.3.1 F((22)2)2 tower field basis using a polynomial basis for each level ↪−→

Example 7.3.1 shows the generation of the basis T FBF28 /F2 , using the isomorphic tower field construction F((22)2)2 , with
the following EDPs:

f1(x) = x2 + x + 1, f2(x) = x2 + λx + 1, f3(x) = x2 + λx + λ2µ

The initial setup for GAP code in Example 7.3.1(a) requires the list of extension defining polynomials edpl, which is
selected from the output generated by the method FindEDPLAllfromEDL. The long outputs were manually shortened
for this example. The remaining GAP code in Example 7.3.1(a) shows the tower field basis T FBF28 /F2 is generated
using GenerateTFBfromEDPLwithPB, yielding TFB1.

Example 7.3.1(a)

gap> K := GF(2);; listall := FindEDPLAllfromEDL([2,2,2]);
[ [ x^2+x+Z(2)^0 ], [ x^2+Z(2^2)*x+Z(2)^0, x^2+Z(2^2)*x+Z(2^2), x^2+x+Z(2^2), x^2
+x+Z(2^2)^2, x^2+Z(2^2)^2*x+Z(2)^0, x^2+Z(2^2)^2*x+Z(2^2)^2 ], [ x^2+
Z(2^4)^3*x+Z(2)^0, x^2+Z(2^4)^3*x+Z(2^2), x^2+Z(2^4)^3*x+Z(2^4)^2,
... OMITTED FOR BREVITY ....
x^2+x+Z(2^4)^14, x^2+Z(2^2)*x+Z(2^4), x^2+Z(2^2)*x+Z(2^4)^2,
... OMITTED FOR BREVITY ....
x^2+Z(2^4)^13*x+Z(2^4)^14 ] ]
gap> edpl := [ listall[1][1], listall[2][1], listall[3][25] ];
[ x^2+x+Z(2)^0, x^2+Z(2^2)*x+Z(2)^0, x^2+Z(2^2)*x+Z(2^4) ]
gap> TFB1 := GenerateTFBfromEDPLwithPB(edpl);
Basis( GF(2^8), [ Z(2)^0, Z(2^2), Z(2^4)^6, Z(2^4)^11, Z(2^8)^76, Z(2^8)^161,
Z(2^8)^178, Z(2^8)^8 ] )

Same basis TFB2 is obtained manually in Example 7.3.1(b) following the equation (7.1). The manual procedure is
much longer than the three lines of GAP code in Example 7.3.1(a).

Example 7.3.1(b)

gap> f1 := edpl[1];; f2 := edpl[2];; f3 := edpl[3];;
gap> F1 := FieldExtension(K, f1);; lambda := RootOfDefiningPolynomial(F1);;
gap> F2 := FieldExtension(F1, f2);; mu := RootOfDefiningPolynomial(F2);;
gap> F3 := FieldExtension(F2, f3);; nu := RootOfDefiningPolynomial(F3);;
gap> TFBset := [ One(K), lambda, mu, mu*lambda, nu, nu*lambda, nu*mu, nu*mu*lambda ];;
gap> TFB2 := Basis(GF(2^8), TFBset); TFB1 = TFB2;
Basis( GF(2^8), [ Z(2)^0, Z(2^2), Z(2^4)^6, Z(2^4)^11, Z(2^8)^76, Z(2^8)^161,
Z(2^8)^178, Z(2^8)^8 ] )
true

In Example 7.3.1(c) an RDP p3 is chosen and its root ψ used to obtain the polynomial basis PBF28 /F2 , as shown
in equation (7.2), yielding the basis PB. The obtained PB (equation (7.2)) is indeed different from the TFB (equation
(7.1)) TFB1.
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Example 7.3.1(c)

gap> p3 := x^8+x^4+x^3+x^2+1;; F := FieldExtension(K, p3);;
gap> psi := RootOfDefiningPolynomial(F);
Z(2^8)
gap> PB := GeneratePB(F, psi);
Basis( GF(2^8), [ Z(2)^0, Z(2^8), Z(2^8)^2, Z(2^8)^3, Z(2^8)^4, Z(2^8)^5, Z(2^8)^6,
Z(2^8)^7 ] )
gap> TFB1 = PB; lambda = psi;
false
false

↪−→

7.4 Algorithms: obtaining expressions for finite field arithmetic

7.4.1 Expressions obtained using matrix U

Expressions obtained with matrix U follow the Generalized algorithm for multiplication from Slide
Set 3 in [42]. This method produces a matrix-vector multiplier where one of the factors is merged
into the matrix U and then multiplied by the other factor. The generalized algorithm for multiplica-
tion was chosen because it works for an arbitrary basis. The two-step classic algorithm is limited to
polynomial bases, and the Massey-Omura algorithm to normal bases. This section describes how
to obtain the expressions for a multiplier. Then the multiplier is used to obtain various exponents,
all the way up to the inversion.

Let A, B,C ∈F and let BF /K = {α(0), α(1), . . . , α(m−1)} be an arbitrary basis of F /K , where m =

[F : K]. The following are the representation of A w.r.t. basis BF /K , its vector form and notation
for the i-th coordinate of A, 0 ≤ i ≤ m − 1:

A =
m−1∑
i=0

aiα
(i) [A] = [a0, a1, . . . , am−1] [A](i) = ai

where ai ∈K , i = 0, 1, . . . ,m − 1. The matrix U is an m × m matrix with components ui, j,
0 ≤ i, j ≤ m−1, obtained by multiplying element A with the j-th basis element α( j) and then taking
the i-th coordinate of the product α( j) · A:

ui, j = [α( j) · A](i) (7.3)

The columns of matrix U are exactly the vectors [α( j)A]. The product C = A · B can be written in
matrix form as
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
c0

c1
...

cm−1

 =


u0,0 u0,1 . . . u0,m−1

u1,0 u1,1 . . . u1,m−1
...

...
. . .

...
um−1,0 um−1,1 . . . um−1,m−1

 ·


b0

b1
...

bm−1

 (7.4)

The expressions for the product C can then be obtained by multiplying the r.h.s of equation (7.4):

ci =

m−1∑
j=0

ui, jb j 0 ≤ i ≤ m − 1 (7.5)

The expressions obtained in this manner are used for the implementation of a multiplier circuit.

7.4.2 The matrix U methods in the FFCSA package

The FFCSA package implements several arithmetic operations (Table 7.5) using the matrix U
obtained by equation (7.3). The multiplication, squaring, and exponentiations using matrix U are
implemented as follows:

1. ChooseFieldElms(F ) prepares GAP variables ai and bi for vectors avec = [A]BF /K and
bvec = [B]BF /K , to allow symbolic computation.

2. MatrixU(B ) computes the matrix U with the elements based on u′i, j = [α(i)α( j)]; that is the
product of two basis elements represented w.r.t. basis B = BF /K .

3. MatrixUExpression(B, avec ) computes the matrix U with elements obtained based on
equation (7.3). It requires inputs B = BF /K and the vector of symbols avec = [A].

4. FFA_mult_matrixU(B, avec, bvec ) first computes the matrix U with symbols ai as Uexpr =

MatrixUExpression(B, avec ), and then returns the product of the obtained matrix and
the second vector: Uexpr * bvec.

5. FFA_sq_matrixU(B, avec ) first computes the matrix U expressions for avec, i.e., Uexpr =

MatrixUExpression(B, avec ), and then uses the same vector again to obtain Uexpr *
avec. Finally, the exponents of all m expressions are reduced modulo |K| − 1.

6. FFA_exp_matrixU(B, avec, e ) computes the expressions for exponentiation Ae using a
classic square and multiply method. Both squaring and multiplication are using matrix U,
and the exponents are reduced modulo |K| − 1 on each step.

7. FFA_inv_matrixU(B, avec ) computes the inverse expressions as exponentiation with e
set to |F | − 2 (Remark 2.1.17, page 14 in [15]): FFA_exp_matrixU(B, avec, e ).

All reductions modulo |K| − 1 use ReduceMonomialsOverField (Table 6.5).
Example 7.4.1 shows multiplication expressions obtained for F24 using a polynomial basis. Exam-
ple C.3.3 in Appendix C.3 shows the squaring expressions for the same field and basis. Example
7.4.2 shows the multiplication expressions for a tower field F((22)2)2/F(22)2 .
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Example 7.4.1 Multiplication expressions for F24

The following simple example shows how to compute the matrix U for a polynomial basis. The irreducible polynomial
used in this example is f (x) = x4 + x + 1 with root α, yielding PB = {1, α, α2, α3}. Expressions used for the reduction
are α4 = α + 1, α5 = α2 = α and α6 = α3 + α2.

A = a0 + a1α + a2α
2 + a3α

3

αA = a0α + a1α
2 + a2α

3 + a3α
4

= a3 + (a0 + a3)α + a1α
2 + a2α

3

α2A = a0α
2 + a1α

3 + a2α
4 + a3α

5

= a2 + (a2 + a3)α + (a0 + a3)α2 + a1α
3

α3A = a0α
3 + a1α

4 + a2α
5 + a3α

6

= a1 + (a1 + a2)α + (a2 + a3)α2 + (a0 + a3)α3

Obtained matrix U, with column vectors
annotated on the top:

[A] [αA] [α2A] [α3A]

U =


a0 a3 a2 a1

a1 a0 + a3 a2 + a3 a1 + a2
a2 a1 a0 + a3 a2 + a3
a3 a2 a1 a0 + a3

GAP Example 7.4.1 shows the setup and matrix U, obtained by the method MatrixUExpression. At the end of
the example, the output of FFA_mult_matrixU(B, avec, bvec ) is shown: these are the expressions used for the
hardware implementation. For example, to drive the multiplier output c0, the expression a0b0 + a1b3 + a2b2 + a3b1

must be implemented in hardware. The subexpressions seen in matrix U, e.g., (a0 + a3), are not preserved in list mult,
obtained by the FFA_mult_matrixU: they are transformed into the ANF form. The subexpression eliminations can in
part be performed by the hardware synthesis tools.

Example 7.4.1(a)

gap> K := GF(2);; x := X(K, "x");; f := x^4+x+1;; F := FieldExtension(K, f);;
gap> PB := GeneratePB(F, RootOfDefiningPolynomial(F));; ChooseFieldElms(F);

variables
[ "a_0", "a_1", "a_2", "a_3" ]
[ "b_0", "b_1", "b_2", "b_3" ]
[ "d_0", "d_1", "d_2", "d_3", "d_4", "d_5", "d_6" ]
gap> U := MatrixUExpression(PB, avec);;
gap> for i in U do Display(i); od;
[ a_0, a_3, a_2, a_1 ]
[ a_1, a_0+a_3, a_2+a_3, a_1+a_2 ]
[ a_2, a_1, a_0+a_3, a_2+a_3 ]
[ a_3, a_2, a_1, a_0+a_3 ]
gap> mult := FFA_mult_matrixU(PB, avec, bvec);;
gap> for i in mult do Display(i); od;
a_0*b_0+a_1*b_3+a_2*b_2+a_3*b_1
a_0*b_1+a_1*b_0+a_1*b_3+a_2*b_2+a_2*b_3+a_3*b_1+a_3*b_2
a_0*b_2+a_1*b_1+a_2*b_0+a_2*b_3+a_3*b_2+a_3*b_3
a_0*b_3+a_1*b_2+a_2*b_1+a_3*b_0+a_3*b_3

Exact same expressions for the multiplication can be obtained with the school-book two-step classic method, shown in
Example 7.4.1(b). FFA_mult_2stepClassic( f, avec, bvec, “to” ) calls method FFA_mult_convolution( vec1,
vec2 ), followed by and then the ReductionMatrixExpressionM( f, dexpr ). The latter two are shown in detail in
Example C.3.2 in Appendix C.3.
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Example 7.4.1(b)

gap> mult2sc := FFA_mult_2stepClassic(f, avec, bvec, "to");;
gap> for i in mult2sc do Display(i); od;
a_0*b_0+a_1*b_3+a_2*b_2+a_3*b_1
a_0*b_1+a_1*b_0+a_1*b_3+a_2*b_2+a_2*b_3+a_3*b_1+a_3*b_2
a_0*b_2+a_1*b_1+a_2*b_0+a_2*b_3+a_3*b_2+a_3*b_3
a_0*b_3+a_1*b_2+a_2*b_1+a_3*b_0+a_3*b_3
gap> mult = mult2sc;
true

↪−→

Example 7.4.2 Multiplication expressions for F((22)2)2/F(22)2 and F28
↪−→

This example is a continuation of the Example 7.3.1. The input to the FFA_mult_matrixU method is the “per-level”
polynomial basis B3, obtained for F((22)2)2/F(22)2 . It produces the expressions for the multiplication on the top level of
the tower field F((22)2)2/F(22)2 . Note that ChooseFieldElms in the GAP code Example 7.4.2(a,b) return vectors of
length 2, not 8. The multiplications in expressions for the product need a multiplier from the lower level F(22)2/F22 . Just
as in Example 7.4.1 above, the generalized algorithm (matrix U) produces the same expressions (Example 7.4.2(a))
as the two-step classic multiplication (Example 7.4.2(b)).

The matrix U methods are is independent of the type of basis used. Examples so far were showing only polynomial
bases (at different levels of the tower field). Example 7.4.2(c) shows the multiplication expressions obtained by
using the tower-field basis TFB1 from Example 7.3.1. Same expressions would be obtained by first expressing the
top level multiplier expressions (Example 7.4.2(a)), then replacing every multiplication with expressions obtained
for the lower level multiplier, and of course being careful with the variables used, as shown in decomposition in
Figure 7.2. Note that new variables for the lower levels would have to be created manually.

Example 7.4.2(a)

gap> B3 := GeneratePB(F3, nu); ChooseFieldElms(F3);
Basis( AsField( AsField( GF(2^2), GF(2^4) ), GF(2^8) ), [ Z(2)^0, Z(2^8)^76 ] )

variables
[ "a_0", "a_1" ]
[ "b_0", "b_1" ]
[ "d_0", "d_1", "d_2" ]
gap> multB3 := FFA_mult_matrixU(B3, avec, bvec);;
gap> for i in multB3 do Display(i); od;
a_0*b_0+Z(2^4)*a_1*b_1
a_0*b_1+a_1*b_0+Z(2^2)*a_1*b_1
gap> lambda^2*mu; lambda;
Z(2^4)
Z(2^2)
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Example 7.4.2(b)
gap> mult2scB3 := FFA_mult_2stepClassic(f3, avec, bvec, "to");;
gap> for i in mult2scB3 do Display(i); od;
a_0*b_0+Z(2^4)*a_1*b_1
a_0*b_1+a_1*b_0+Z(2^2)*a_1*b_1
gap> multB3 = mult2scB3;
true
gap> IR := ReductionMatrixIR(f3);;
gap> for i in IR do Display((i)); od;
[ Z(2)^0, 0*Z(2), Z(2^4) ]
[ 0*Z(2), Z(2)^0, Z(2^2) ]

Example 7.4.2(c)

gap> ChooseFieldElms(GF(2^8));

variables
[ "a_0", "a_1", "a_2", "a_3", "a_4", "a_5", "a_6", "a_7" ]
[ "b_0", "b_1", "b_2", "b_3", "b_4", "b_5", "b_6", "b_7" ]
[ "d_0", "d_1", "d_2", "d_3", "d_4", "d_5", "d_6", "d_7", "d_8", "d_9", "d_10",
"d_11", "d_12", "d_13", "d_14" ]
gap> TFB1 := GenerateTFBfromEDPLwithPB(edpl);
Basis( GF(2^8), [ Z(2)^0, Z(2^2), Z(2^4)^6, Z(2^4)^11, Z(2^8)^76, Z(2^8)^161,
Z(2^8)^178, Z(2^8)^8 ] )
gap> multTFB := FFA_mult_matrixU(TFB1, avec, bvec);;
gap> for i in multTFB do Print(i,"\n"); od;
a_0*b_0+a_1*b_1+a_2*b_2+a_3*b_3+a_4*b_6+a_4*b_7+a_5*b_6+a_6*b_4+a_6*b_5+a_6*b_6+a_7*
b_4+a_7*b_7
a_0*b_1+a_1*b_0+a_1*b_1+a_2*b_3+a_3*b_2+a_3*b_3+a_4*b_6+a_5*b_7+a_6*b_4+a_6*b_7+a_7*
b_5+a_7*b_6+a_7*b_7
a_0*b_2+a_1*b_3+a_2*b_0+a_2*b_3+a_3*b_1+a_3*b_2+a_3*b_3+a_4*b_4+a_4*b_5+a_4*b_6+a_5*
b_4+a_5*b_7+a_6*b_4+a_6*b_6+a_7*b_5+a_7*b_7
a_0*b_3+a_1*b_2+a_1*b_3+a_2*b_1+a_2*b_2+a_2*b_3+a_3*b_0+a_3*b_1+a_3*b_2+a_4*b_4+a_4*
b_7+a_5*b_5+a_5*b_6+a_5*b_7+a_6*b_5+a_6*b_7+a_7*b_4+a_7*b_5+a_7*b_6+a_7*b_7
a_0*b_4+a_1*b_5+a_2*b_6+a_3*b_7+a_4*b_0+a_4*b_5+a_5*b_1+a_5*b_4+a_5*b_5+a_6*b_2+a_6*
b_7+a_7*b_3+a_7*b_6+a_7*b_7
a_0*b_5+a_1*b_4+a_1*b_5+a_2*b_7+a_3*b_6+a_3*b_7+a_4*b_1+a_4*b_4+a_4*b_5+a_5*b_0+a_5*
b_1+a_5*b_4+a_6*b_3+a_6*b_6+a_6*b_7+a_7*b_2+a_7*b_3+a_7*b_6
a_0*b_6+a_1*b_7+a_2*b_4+a_2*b_7+a_3*b_5+a_3*b_6+a_3*b_7+a_4*b_2+a_4*b_7+a_5*b_3+a_5*
b_6+a_5*b_7+a_6*b_0+a_6*b_3+a_6*b_5+a_6*b_6+a_6*b_7+a_7*b_1+a_7*b_2+a_7*b_3+a_7*b_4+
a_7*b_5+a_7*b_6
a_0*b_7+a_1*b_6+a_1*b_7+a_2*b_5+a_2*b_6+a_2*b_7+a_3*b_4+a_3*b_5+a_3*b_6+a_4*b_3+a_4*
b_6+a_4*b_7+a_5*b_2+a_5*b_3+a_5*b_6+a_6*b_1+a_6*b_2+a_6*b_3+a_6*b_4+a_6*b_5+a_6*b_6+
a_7*b_0+a_7*b_1+a_7*b_2+a_7*b_4+a_7*b_7

↪−→
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7.5 Summary of key insights

This brief passage is a recap and extension of the Key 7.1 (the only key in Chapter 7). Since the
FFCSA package falls into a very broad research area, the status of this package will remain X, i.e.,
partially solved.

The Finite Field Constructions, Search and Algorithms package (FFCSA) deals with field defining
polynomials, bases, transition matrices, multiplication matrices, and Hamming weights (complex-
ities). It includes various primitives for exhaustive search. Examples include search for normal
elements, for optimal normal bases, and for primitive polynomials for the LFSRs with specified
degree, number of taps, and coefficients. There are a variety of well-studied algorithms for imple-
menting finite field arithmetic and it is important to make good decisions early on, as it saves a lot
of time and effort. Hence, the FFCSA package is very important in the early design stages of any
hardware implementation involving finite field arithmetic. As this is a very broad research area, the
package provides only basic functionality but will gradually be extended with more sophisticated
algorithms. In terms of subexpression elimination, this package is not intended to compete with or
replace synthesis tools.
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Chapter 8

Case study: WG and WAGE

8.1 Case study: the WGcipher package . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.2 Case study: the WAGE package . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

This chapter presents two customized GAP packages, WGcipher and WAGE. Both rely heavily on
package FSR. Chapter 20 describes the design space exploration of WG in more detail, and Part
VI describes WAGE in more detail, including the datapath synthesis.

8.1 Case study: the WGcipher package

The WG stream cipher family was introduced in Subsection 3.2.4. This chapter describes the GAP
package named WGcipher, which plays a central role for the automated design of this family of
stream ciphers. Using the FFCSA package, different representations of the finite field elements
can be explored, and suitable LFSRs polynomials can be found quickly. The package is also used
for testbenching purposes, i.e., to generate the testvectors for hardware implementations of WG.

alg.

gen.

arch.

Overview of the WGcipher package:
FSR FFCSA

WGcipher

WAGE

The basic functionality of this package is the computation of the
WG permutation and transformation and its decimated versions,
and then using them to filter the output of an LFSR. The WG and
the LFSR together form the WG keystream generator WGksGen.
The WGcipher is the first example of a cipher represented as a

collection of FSR objects. It consists of an LFSR and a FILFUN, used together in two different configurations:
the FILFUN output is used as the external input to the LFSR during the key initialization phase, but not during
the running phase. This demonstrates the benefits of the regular and external step and run for the FSR objects.
This package allows one to specify and run the WG cipher with a few lines of GAP code.

The WGcipher package allows the creation of a WG keystream generator WGksGen, which is built
from two FSR objects, namely a FILFUN for the WG permutation and an LFSR. The FILFUN is
called WGPfilter, and is encapsulated within another GAP object called WG. Both WG and LFSR
are components of the GAP object WGksGen. The rationale for this structure is as follows: once
the field size is fixed, so are all parameters of the WG, except for decimation. If the decimation is
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changed, the expression for the WG permutation changes as well. The WG key stream generator
consists of an LFSR followed by the WG transformation. Changing the LFSR while keeping the
WG fixed yields a new instance. The WG cipher as a family is characterized by three parameters:
the degree of extension m, the decimation d, and the LFSR polynomial of degree n [50]. The
WG keystream generator itself needs another XOR gate to produce the ciphertext/plaintext (recall
Figure 3.6 in background Subection 3.2.4).

The GAP object WG with a FILFUN for WG permutation

The WG GAP object is created with a function call WG, which needs at least the underlying field
F2m passed as an argument. From the degree of extension over the prime field, i.e., m = [F2m : F2],
the value k and the exponents for the WG permutation are computed. The constructor will display
an error message and return “fail” when an m that is a multiple of 3 is used. Values m, k, and the
list of exponents are stored as attributes WGm, WGk, and WGexponents. WG has the components
decimation, basis and WGPfilter. The WGPfilter component stores the WGPfilter object,
a FILFUN with the same name, also defined over F2m with the filtering function WGP-m(Xd) as
defined in equation (3.18). The decimation value d can be passed as an argument to the WG
constructor or it can be changed later with the method ChangeDecimation. If the decimation
is changed, the WGP filtering function is recomputed, a new FILFUN created and the value of
component WGPfilter updated. WGT-m(Xd) is implemented as WGP-m(Xd) followed by the
absolute trace. The methods for the WG object are listed in the first column in Table 8.1.
� Implementation detail: The WGexponents and WG permutation WGP-m(Xd)
The exponents are computed following equation (3.17), with an added exponent r0 = 1. Exponent r0 allows to compute
the permutation polynomial as q(x) = xr0 + xr1 + xr2 + xr3 + xr4 , where ri ∈ WGexponents:

WGexponents = [1, 2k + 1, 22k + 2k + 1, 22k − 2k + 1, 22k + 2k − 1]

The GAP code in Implementation detail 5.4.1 shows the computation of WGP − m(Xd) from equation (3.18), with
decimation d. The GAP function is called WGPfun: it returns the expression that is used to create the FILFUN for
component WGPfilter. The method StepWGP (see Table 8.1) does not (re)produce the expression, but evaluates this
expression for a given input finite field element.

Implementation detail 5.4.1

sz := Size(F); x_0 := X(F, "x_0");
wgp := Z(2)^0; y := x_0^d + Z(2)^0;
for j in [1..Length(exponents)] do

wgp := wgp + y^(exponents[j] mod (sz - 1));
od;
wgp := ReduceMonomialsOverField(F, wgp);

�
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F - extension field m - degree of extension n - LFSR length
K - prime field f - defining polynomial l - LFSR polynomial
B - basis d - decimation exponent p - characteristic
of - output file tap - LFSR output stage ks - key size

wg - WG object gen - WGksGen object WGexponents - WG exponents
ffe - finite field element ffelist - list of ffe ist - initial state
[] - optional arguments nr_steps - number of steps

WG WGksGen

WG(F [, B, d] ) WGksGen(wg ,l , [, tap, ks] )

WG(K, f [, B, d] ) WGksGen(wg ,n , [, tap, ks] )

WG( p, m [, d] )

ChangeDecimation(wg, d ) LoadWG( gen, ist )

ChangeBasis(wg, B ) KiaWG( gen )

WGPfun(F, WGexponents, d ) RunWG( gen, nr_steps )

StepWG♦(wg, ffe ) LoadKiaRunWG( gen, ist, nr_steps )

WG♦(wg, ffe ) † WriteKiaWG( of, gen )

RunWG♦(wg, ffelist ) WriteRunWG( of, gen, nr_steps )
Implementation notes:

♦ - two methods listed together: the WGP and the WGT
† - synonyms for StepWG♦ calls

Table 8.1: Main functionality of the WGcipher package

The keystream generator: the LFSR and the WG

The key stream generator WGksGen encapsulates two GAP objects: the WG and the LFSR. The
two mandatory arguments are the WG and either the LFSR polynomial ` or the degree of the LFSR
polynomial n. Optional parameters include the LFSR output stage tap and the keysize ks in bits.
The tap is to be used as the OutputTap attribute of the LFSR (Table 6.4 in Section 6), and is set
to the highest stage n − 1 if not given. The keysize, with default 80 bits, sets a lower limit on the
length n of the LFSR, i.e., on the degree of the LFSR polynomial `, namely:

Degree(`) ≥
⌈
2 ∗ ks

m

⌉
(8.1)

where m is the degree of extension over the prime field, i.e., m = [F2m : F2].

Recall Key 6.1, which stated that a cipher can be represented as a collection of basic modules:
LFSRs, NLFSRs and FILFUNs, connected in various configurations. The WGcipher is the first
such example: the WGksGen is composed out of two FSR objects: a WG, which includes a
FILFUN WGPfilter as a component, and an LFSR. During the running phase (RunWG), the LFSR
output is the input to the FILFUN WGPfilter, and the output of WGPfilter is used as the input to
the absolute trace to obtain one bit of the keystream. During the key initialization phase (KiaWG),
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the configuration is slightly different: the output of WGPfilter is used as external input for the
LFSR. This demonstrates the benefits of having both a regular and external step and run for the
FSR objects (Key 6.3).

The WGksGen object gen has two components1: the LFSR lfsr := gen!.LFSR and the wg :=
gen!.WG. The lfsr generates an m-sequence of F2m elements through the stage selected by the
tap, for WG cipher usually the highest stage S n−1, which will be referred to simply as the LFSR
output lfsr_seq. The LFSR output is connected to the FILFUN within the wg, i.e., it is the
primary input for the WGPfilter. The FILFUN is always used for regular step and run, i.e., there
is no external input. LoadWG calls the method LoadFSR, which simply loads the initial state ist
into the lfsr. This behaviour is no different from the LoadFSR behaviour (Table 6.3 in Section 6).
Next is the key initialization algorithm (phase) of the WG cipher KiaWG. During the initialization
phase, the WG permutation is used as a nonlinear filter added to the LFSR feedback: the wgp value
is obtained with the StepWGP on the FILFUN, and is then used as the external input for the external
step of the LFSR. Specifically, KiaWG performs lfsr_seq = StepFSR (lfsr, wgp), followed
by wgp = StepWGP (wg, lfsr_seq) called 2n times, where n is the length of the LFSR. The
first wgp value is computed on the lfsr_seq element after loading. The method RunWG is similar
to KiaWG, with the following differences: (i.) the lfsr uses regular step, i.e., StepFSR (lfsr),
(ii.) the wg uses StepWGT, and (iii.) the number of steps is specified as nr_steps, and corresponds
to the desired number of keystream bits.
� Implementation detail: Because the lfsr stores the state after each step, there is no need to pass the finite field
element fsr_seq from LoadWG to KiaWG and then to RunWG. The KiaWG and RunWG simply start with the current
lfsr_seq element before performing the first StepWGP and StepWGT respectively. �

Example 8.1.1 The WG7 key stream generator ↪−→

The inital GAP setup is shown in Example 8.1.1(a). A short example of WG7 key stream generator wg7, loaded
with an artificial initial state, is shown in Example 8.1.1(b). The wg permutation instance output displays the degree
of extension m = 7 and the decimation d = 63. The wg7 keystream generator displays m = 7, n = 23, output-tap from
the LFSR stage S 22, and d = 63. The wg7 is loaded and the key-initialization is run for 2 ∗ n = 46 steps, after which
the detailed state of the keystream generator is printed. Finally, 50 bits of keystream are generated.

Example 8.1.1(a)

gap> m := 7;; d := 63;;
gap> K := GF(2);; x := X(K,"x");; y := X(GF(2^m),"y");;
gap> f := x^7+x^6+x^5+x^3+x^2+x+Z(2)^0;;
gap> F := FieldExtension(K, f);; w := RootOfDefiningPolynomial(F);
Z(2^7)^19
gap> VecToString(B, ist);
[ "0000000", "0000001", "0000001", "0000001", "0000001", "0000001", "0000001",
"0000001", "0000001", "0000001", "0000001", "1110001", "1111110", "1111110",
"1111110", "1111110", "1111110", "1111110", "1111110", "1111110", "1111110",
"1111110", "1111110" ]

1objectname!.componentname is a way of accessing components in GAP
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Example 8.1.1(b)

gap> wg := WG(K, f, d);
< WG( 7, 63 ) >
gap> ll := y^23+y^12+y^10+y^9+y^8+y^7+y^6+y^3+y^2+y + w;;
gap> wg7 := WGksGen(wg, ll);
< WG( 7, 23, [ 22 ], 63 ) >
gap> LoadWG(wg7, ist);; KiaWG(wg7);; Print(wg7);
WG( 7, 23, [ 22 ], 63 )
with field polynomial = x^7+x^6+x^5+x^3+x^2+x+Z(2)^0
WG exponents = 1, 2^5 + 1, 2^3 + 2^5 + 1, 2^3 - 2^5 + 1, 2^3 + 2^5 - 1
and LFSR over GF(2^7) given by FeedbackPoly = y^23+y^12+y^10+y^9+y^8+y^7+y^6+y^3+y^2
+y+Z(2^7)^19
with basis =[ Z(2)^0, Z(2^7)^19, Z(2^7)^38, Z(2^7)^57, Z(2^7)^76, Z(2^7)^95, Z(2^7)^
114 ]
with current state =[ Z(2^7)^2, Z(2^7)^122, Z(2^7)^95, Z(2^7)^28, Z(2^7)^71, Z(2^7)^
75, Z(2^7)^64, Z(2^7)^109, Z(2^7)^70, Z(2^7)^41, Z(2^7)^46, Z(2^7)^56, Z(2^7)^71,
Z(2^7)^64, Z(2^7)^106, Z(2^7)^62, Z(2^7)^48, Z(2^7)^66, Z(2^7)^61, Z(2^7)^15, Z(2^7)
^93, 0*Z(2), Z(2^7)^123 ]
after 46 steps
with LFSR output from state S_([ 22 ])
gap> sequence := RunWG(wg7, 50);; VecToString(sequence);
"10100110001010100111111100010100001110011100111111"

↪−→

8.2 Case study: the WAGE package

Disclaimer 8.1: The WAGE authenticated encryption scheme

Section 8.2 summarizes the GAP package WAGE, used to generate testvectors for the test-
benching of WAGE hardware implementations. It is an independent implementation (by the
author of the thesis), and was crosschecked with the reference software implementation [6].

impl.

arch.

alg.
Overview of the WAGE package:

FSR FFCSA

WGcipher

WAGE

This GAP package is a software implementation of WAGE.
It was developed for testbenching during the hardware im-
plementation phase. As such, it contains printing functions
at various steps.

WAGE was introduced in Subsection 3.2.8. This section describes the GAP package WAGE, and
is structured as follows: first, the modelling of the internal state of WAGE is explained, followed
by the LFSR, WGP, the Sbox SB, and generation of round constants. Then the main functionality
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of the package is explained and listed in Table 8.2. The implementation details related to the FSR
package are highlighted to demonstrate the power of the external step for the FSR objects.

The WAGE LFSR by itself can not be modelled as an FSR object. The XOR gates require it to be
broken down into smaller regions. This is explained on a small region of the internal state; the
stages S 8 → S 0, shown in Figure 8.1, reveal the following
• during absorbing:

– stages S 7 → S 1 keep their values, i.e., they are not shifted
– the new input is added to stage S 8

– the domain separator is added to the stage S 0

• during WAGE permutation:

– stages S 8 → S 5 and S 3 → S 0 are shifted
– stage S 4 is updated with the sum of the previous S 5 content and the SB output (line 8

in Algorithm 1 in Section 3.2.8)

Regardless of the phase (absorbing or permutation), the internal state of WAGE is fragmented,
and cannot be modelled as a single LFSR object with feedback polynomial `(y) = y37 + y31 +

y30 + y26 + y24 + y19 + y13 + y12 + y8 + y6 + ω, f (ω) = 0 (Table 3.1). Instead, the feedback is
modelled as a FILFUN object and the WAGE state is modelled separately as a collection of short
LFSRs without a feedback and GAP variables s#, where # is replaced by the stage number. Using
F = F27 , the region in Figure 8.1 has the stages S 8 → S 5 modelled as variable s8 followed by s7_5
:= LFSR(F, yˆ 3), S 4 → S 1 as s4_1 := LFSR(F, yˆ 4), and the stage S 0 as variable s0. The
entire WAGE state is modelled as:

[s36, s35, s34, s33_30, s29, s28, s27, s26_24, s23_19, s18, s17, s16, s15, s14_11, s10, s9, s8, s7_5, s4_1, s0]

and function WAGE_State() is used to retrieve the current state as a single array of 37 elements,
i.e., the values of the variables and the current state of the individual LFSRs in correct order. The
LFSR feedback is modelled as a FILFUN:

feedback := FILFUN(F, x_0 + x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 ∗ w)

The WG permutation becomes dwgpfil := FILFUN(F, wgp), where wgp is computed as shown
in the Implementation detail 5.4.1 GAP code in Section 8.1 for decimation exponent d =

13. Finally, there is the small LFSR over K = F2 for the round constants: lfsrc := LFSR(K,
xˆ 7+x+1, [6,5,4,3,2,1,0]).

The remainder of the setup takes care of the indices, because GAP enumerates the arrays starting
from 1, i.e., the highest stage S 36 and input D9 are at index 1, stored as is36 and k9.

The Sbox SB was implemented as functions: WAGE_Rsb and WAGE_Qsb, which directly follow
the specifications in Table 3.1 and are used in function WAGE_sb to implement SB. The LFSR
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Figure 8.1: Small region of WAGE permutation (from Figure 3.9 in Subsection 3.2.8)

feedback value is computed by WAGE_Feedback() function, which retrieves the current state us-
ing WAGE_state() call to obtain the state values at is31, is30, is26, is24, is19, is13,
is12, is8, is6, is0, and then evaluates the FILFUN feedback using LoadStepFSR (Ta-
ble 6.3 in Section 6). The loading of the internal state is achieved by two functions: WAGE_LoadZe-
ro(), followed by the WAGE_Load(Dk_listlist ). While all the individual variables and LFSRs can
be loaded directly, the aim was to test the hardware implementations, hence the two loading func-
tions simulate the loading by shifting. Function WAGE_Run, implementing WAGE permutation,
performs 111 iterations of WAGE_Step( rc1, rc0 ). All functions rely on StepFSR with external
input; because the individual LFSRs are modelled as shift registers without feedback, the external
inputs are stored unmodified.
� Implementation detail: The WAGE_LoadZero() call is mandatory because of the FSR package structure: the FSR
objects must be loaded before the StepFSR method can be used. The WAGE_Load(Dk_listlist ) function first retrieves
the current state state := WAGE_State(). The small region of the state, shown in Figure 8.1, is loaded as shown in
Implementation detail 7.2.1. The input Dk_listlist contains 9 sub-lists, with 10 elements each (for 10 Dk). The
WAGE state is namely loaded over 9 clock cycles, and the value t keeps track of the current loading cycle. �

Implementation detail 7.2.1

s0 := state[is1]; # shift s1 -> s0
StepFSR(s4_1, state[is5]); # shift s5 -> s4_1
StepFSR(s7_5, state[is8]); # shift s8 -> s7_5
s8 := Dk_listlist[t][k0]; # LOAD D0 => s8

� Implementation detail: The WAGE_Step first retrieves the current state state := WAGE_State(). The small
region of the state, shown in Figure 8.1, is updated as shown in Implementation detail 7.2.2. The external
input for s4_1 is the sum of the previous stage element state[is5] and the SB output in_s4. The new value for
s8 is the previous stage element state[is9], i.e., the input D0 is not used. The feedback value is obtained using
WAGE_Feedback function, and the two WGP values using the external LoadStepFSR on the dwgpfil. Stage s36 is
updated as shown in Implementation detail 7.2.3. �

Implementation detail 7.2.2

in_s4 := WAGE_sb(Coefficients(B, state[is8] ))*BasisVectors(B);
s0 := state[is1]; # shift s1 -> s0
StepFSR(s4_1, state[is5] + in_s4); # shift s5+SB -> s4_1 SB ON
StepFSR(s7_5, state[is8]); # shift s8 -> s7_5
s8 := state[is9]; # shift s9 -> s8 INPUT OFF
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vec - 7 bit vector
rc1, rc0 - round constants for one round of WAGE permutation

Dk_listlist - initial state for loading (through Dk)
Dk_list, Ok_list - current input and output data (for Dk and Ok)

ds - domain separator
keyhex, noncehex - key and nonce in HEX

adhex, ptxthex, ctxthex - associated data, plaintext and ciphertext in HEX

WAGE_State() retrieve current internal state

WAGE_sb( vec ) get the SB output for value vec

WAGE_Feedback() compute current feedback value

WAGE_Load( Dk_listlist ) load WAGE

WAGE_Step( rc1, rc0 ) one round of WAGE permutation

WAGE_Run() WAGE permutation

WAGE_Absorb( Dk_list, ds ) return Ok_list with the sums, absorb

WAGE_Replace( Dk_list, ds ) return Ok_list with the sums, replace

WAGE_TAGextract() return the tag

WAGE_Enc( keyhex, noncehex, adhex, ptxthex ) encryption

WAGE_Dec( keyhex, noncehex, adhex, ctxthex ) decryption

Table 8.2: Main functionality of the WAGE package

Implementation detail 7.2.3

fb := WAGE_Feedback();
in_s36 := LoadStepFSR(dwgpfil, state[is36]) ;
s36 := fb + in_s36 + rc1;

WAGE_Absorb and WAGE_Replace compute the sums of the Dk_list elements and the corre-
sponding rate elements, and return them as a list Ok_list. Both functions also update the corre-
sponding rate stages: with the sums for absorbing, and with data inputs Dk unmodified for replac-
ing. This is the reason for decoupling s8 and s7_5: s8 must be updated, but s7_5 does not shift.
The FSR package design does not allow to update only a single stage: the shift always happens,
hence it is not possible to use s8_5 := LFSR(F, yˆ 4).

The encryption and decryption are performed by WAGE_Enc and WAGE_Dec respectively. Both use
the functions listed in Table 8.2 in proper order. The format of each part of encryption or decryp-
tion is always the same: action followed by WAGE_Run, whereby the action is either WAGE_Load,
WAGE_Absorb or WAGE_Replace, with an appropriate domain separator for initialization, process-
ing of associated data, encryption/decryption or finalization.

The package contains many miscellaneous functions for partitioning the key and nonce for loading,
partitioning of data, padding, etc. and functions that write various testvectors.
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Part IV

The automated design generation phase
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Chapter 9

The automated design generation phase -
the hardware perspective

The automated design generation, the current phase within the design flow from Figure 1.1, is
shown on the right side of Figure 9.1 in a magnifying glass. The simplified design flow diagram
in the leftmost column of Figure 9.2(a) and Figure 9.2(b) will be used throughout Part IV as a
roadmap with grey areas indicating the package under discussion. Note that Figure 9.2(b) still
shows shaded packages FSR and FFCSA, with the objective to stress their importance for the
automated design generation. However, the icons will use only the lower part of Figure 9.2(b),
showing packages GAPtoVHDL, FSRtoVHDL, and CIRCUIT.
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Figure 9.2: The automated design generation: (a) the simplified design flow diagram, (b) the second part of the GAP
framework (solid lines, not shaded).

While the FSR package was designed for hardware (FSRtoVHDL), this is not the case for the
FFCSA package. Adding the information needed for VHDL implementations to the FFCSA pack-
age itself would unnecessarily increase its complexity. Another reason to keep the FFCSA package
simple is its functionality: not all parts of the package are intended for VHDL implementation. In
fact, only the algorithms for the finite field arithmetic are intended for VHDL implementations. To
allow VHDL implementations, the CIRCUIT package was developed. It contains an encapsulation
for the FFCSA derived expressions that holds all the information needed for translation to VHDL
code.

GAPtoVHDL, FSRtoVHDL, and CIRCUIT all use the FSR package. While FSRtoVHDL needs
the FSR objects, GAPtoVHDL and CIRCUIT mostly use the FSR miscellaneous functions (Table
6.5). The GAPtoVHDL package contains common VHDL functionality, e.g., functions for writing
VHDL packages, combinational statements with AND and XOR gates, component instantiations, etc.
Only the CIRCUIT package has access to the FFCSA functionality.

There are two architectural decisions – automated design generation flows through the framework:

• the first flow focuses on synthesis of ciphers based on feedback shift registers [36]. It consists
of GAP packages FSR (Chapter 6) and FSRtoVHDL (Chapter 11), the latter of which relies
on package GAPtoVHDL (Chapter 10).
• the second flow enables the synthesis of arbitrary expressions over arbitrary finite fields,

realized by the GAP package CIRCUIT (Chapters 13-16). The CIRCUIT package also relies
on GAPtoVHDL (Chapter 10).

The magnifying glass shows some intersection of the automated design generation and the ar-
chitectural decisions. There is no intersection for the first architectural decisions – automated
design generation flow (FSR and FSRtoVHDL). However, there will be an intersection for the sec-
ond architectural decisions – automated design generation flow involving the CIRCUIT package.
Chapters 12-16 will explain why the transition is not as strict as shown in the design flow diagram.
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Roadmap

Part IV covers three GAP packages: GAPtoVHDL, FSRtoVHDL and CIRCUIT, shown in Fig-
ure 9.2(b). Below is the roadmap for packages GAPtoVHDL and FSRtoVHDL. The CIRCUIT
package is large and will be explained in many segments; it has its own roadmap in Chapter 12.
Table 9.1 lists the examples shown in Chapters 10 and 11, examples moved to the appendix, and
related examples. The table rows correspond to individual examples, grouped by the chapters. The
columns are structured as follows: the first column gives the subsection in which the example can
be found, the second column “Ex.” the example number, the third column the example title and
short description if needed, the next two columns indicate whether the example includes GAP or
VHDL code, and the last column specifies related examples (Related Ex.). The related examples
are the continuation of the example in this row.

The structure of the GAPtoVHDL and FSRtoVHDL half of Part IV is as follows:

• GAPtoVHDL package - common VHDL functionality - Chapter 10
– Common VHDL functionality (Section 10.1)
– Binding of GAP variables and VHDL signals (Section 10.2)
– Classification of expressions defined over finite fields (Section 10.3)
– Summary and conclusion (Section 10.4)

• FSRtoVHDL package - generating FSR based circuits - Chapter 11
– Classification of the FSR objects (Section 11.1)
– Generating VHDL for individual FSR objects (Section 11.2)
– A cipher as a collection of basic FSR modules (Section 11.3)
– Summary and conslusion (Section 11.4)
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Section Ex. Title and keywords GAP VHDL Related Ex.

GAPtoVHDL package - common VHDL functionality - Chapter 10

Section 10.1 10.1.1 VHDL type definition and constant
X

Common VHDL declaration example
functionality 10.1.2 Use of GATE_line and XOR_line methods X

Section 10.2 10.2.1 Polynomials defined over F2: bin_monomial
X

Binding and bin_polynomial: with and without binding
Section 10.3 10.3.1 Classification of arbitrary expressions

X
11.1.1

Classification defined over F2 and F28

FSRtoVHDL package - generating FSR based circuits - Chapter 11

Section 11.1 11.1.1 Classification of FSRs
X

Classification defined over F2 and F24

Section 11.2 11.2.1 A simple LFSR–VHDL packages
X

11.2.2
The packages field_pkg and fsr_pkg: Ex. 6.2.2 continued
Section 11.2 11.2.2 A simple LFSR – schematic and entity:

X
11.2.3

The entity Ex. 11.2.1 continued
Section 11.2 11.2.3 A simple LFSR – the datapath:

X
The architecture Ex. 11.2.2 continued

11.2.4 Grain NLFSR – the datapath X 11.3.1

11.2.5 The WG7 constant array implementation
X X

Ex. 8.1.1 continued
Section 11.3 11.3.1 Grain modelled as a collection of FSRs: 11.3.2
Cipher as a modelling, schematic, and 11.3.3
collection external step conditions 11.3.4
of FSRs 11.3.2 Grain setup file: user input, Ex 11.3.1 continued X 11.3.5

11.3.3 Grain – the filled-out spreadsheet template:
user input, Ex. 11.3.1 continued

11.3.4 Grain spreadsheet template - continued:
X

Manager, multiplexers, and select connector
Section 11.3 11.3.5 Grain – top-level datapath:

X
D.1.1

The datapath VHDL for the top-level module, Ex 11.3.1 cont.
Appendix D.1 D.1.1 Grain – top-level datapath: full example

X
package dp_pkg.vhd, the entity, the architecture

Table 9.1: Examples in Chapters 10 and 11
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Chapter 10

GAPtoVHDL package - common VHDL
functionality

10.1 Common VHDL functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

10.2 Binding of GAP variables and VHDL signals . . . . . . . . . . . . . . . . . . . . 130

10.3 Classification of expressions defined over finite fields . . . . . . . . . . . . . . . . 132

10.4 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

alg.

gen.

arch.

Overview of the GAPtoVHDL package:

FSRtoVHDL

GAPtoVHDL

CIRCUIT

The GAPtoVHDL package can write constant array implementations
and testvectors to verify their functional correctness. Furthermore, it
generates packages with the VHDL type definitions and declarations
of (some) constants. The data types are named ffe_Fid, with field

identifier Fid, a positive integer that enumerates the finite fields in the
design. By providing common VHDL functionality, the GAPtoVHDL package is the backbone of automated
generation. It can write assignments, component instantiations and registers. The package also allows binding
of GAP variables and VHDL signal names, which provides (more) flexibility for concurrent assignments. Con-
ceptually, the most important is classification of the ANF expressions, which is the base for datapath synthesis.

10.1 Common VHDL functionality

The functionality of the GAPtoVHDL package is captured in several source files, e.g., clerk and
packages, shown in Table 10.1, and modules and testbenches for constant array implementations,
shown in Table 10.2. Conceptually, the most important part of the GAPtoVHDL package is classi-
fication of mathematical expressions, which is the base for the automated design entry of datapaths,
explained in Section 10.3.

The methods in clerk are tasked with creating VHDL files, writing use clauses to include appro-
priate libraries and packages, and retrieving the strings used for custom VHDL data types. The
data types are written into a field_pkg.vhd file by the Write_field_pkg function (Table 10.1).
The ports and signals are always declared as a ffe_Fid type, where ffe stands for finite field
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element, and Fid is a natural number that serves as field identifier; the finite fields in the de-
sign are simply enumerated. The VHDL Example 6.1.1 shows a fraction of a generated VHDL
package containing a type definition for elements of the finite field F22 , written by the function
Write_field_ext_pkg. Note that the field identifier Fid is chosen independently of the degree
of extension m. The keyword to, already mentioned in connection to bases in the FFCSA pack-
age (Section 7), is needed to define the range of the new type, and the basis itself to define the
constants. The VHDL package writing functions are listed in Table 10.1.

Key 10.1: VHDL type definition and constant declaration

GAPtoVHDL writes a field_pkg.vhd package including the VHDL type definitions and
(some) constant declarations. The data types are named ffe_Fid, with field identifier Fid,
a positive integer that enumerates the finite fields in the design independently of their degree
of extension.

Example 10.1.1 VHDL type definition and constant declaration example

VHDL Example 6.1.1 shows a type definition for the elements of F22 with Fid 2, written by Write_field_ext_pkg.
The constants ffe_2_one and ffe_2_zero are written w.r.t. the polynomial basis of F22 .

VHDL Example 10.1.1

constant ffe_2_dim : natural := 2;
subtype ffe_2 is std_logic_vector(0 to ffe_2_dim - 1);

--- element 1 in chosen basis:
constant ffe_2_one: ffe_2 := "10";

--- element 0 in chosen basis:
constant ffe_2_zero: ffe_2 := "00";

clerk packages

Get_ffe_strings Write_field_poly

Open_VHDL_file Write_field_bin_pkg

Close_VHDL_file Write_field_ext_pkg

Write_VHDL_comments Write_vect_space_pkg

Write_VHDL_use Write_function_pkg

Write_field_pkg

Table 10.1: Main functionality of the GAPtoVHDL package
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modules testbenches

Write_arch_const_array_Permutation Write_tb_1input_Permutation

Write_arch_const_array_Functional Write_tb_1input_Functional

Table 10.2: Main functionality of the GAPtoVHDL package - continued

For writing the constant arrays modules, only two functions are needed (Table 10.2):

• Write_arch_const_array_Permutation for all expressions mapping F2m → F2m

• Write_arch_const_array_Functional for all expressions mapping F2m → F2

The only difference between the two functions is in the VHDL formatting: VHDL uses the delim-
iters " for std_logic_vector and ' for std_logic data types. Write_arch_const_array_
Permutation is used for inversion, exponentiation, or any other composed expression mapping
F2m → F2m , such as the WG permutation (Subsection 3.2.4). Write_arch_const_array_Func-
tional is used for absolute trace computations and any other functions mapping F2m → F2, such
as the WG transformation (Subsection 3.2.4). In both cases, the expression implemented by the
constant array is a function in one variable. The module produced has a single input and a single
output port. It can be extended to more than one input, and to prevent a drastic increase in the array
size and hence its hardware area, a bit-width upper limit, which triggers an error when exceeded, is
set. The basis chosen for the representation of elements plays an important role for the constant ar-
ray implementations: the arrays, i.e., lookup tables, are accessed with input bits used as a memory
address. The testbench functions are implemented in a similar way. The test-vectors created are
written into two files, one with inputs (stimulus) and one with expected outputs (specifications).
� Implementation detail: Using only two functions to generate such a wide variety of modules is only possible
because GAP has an EvalString (Section 27.9-5 in the GAP reference manual [34]). The expression to be evaluated
is simply passed to Write_arch_const_array_∗ function as a string, representing a valid GAP expression. Only
other restriction is the use of a global variable gffe for the element. To write the entire array, gffe takes the values
of all field elements. �

The source file VHDLcommon contains concurrent VHDL statements, combinational assignments,
component instantiations, registers, multiplexers, etc. The methods in the upper half of Table 10.3
produce lines, which are appropriately formatted strings that appear as the r.h.s. of VHDL assign-
ments. Actual assignments are written with the function Write_line.

To reduce the number of different functions, the assignments take a target and line, where the
target is a string for the target signal and the line the appropriately formatted r.h.s. string. The line
is obtained using one or a combination of several methods, e.g., methods that insert logic gates
between signals or methods that write multiplexers.
� Implementation detail: Most of the its functionality is implemented as GAP methods: this reduces the number
of writing functions and gives the advantage of GAP method selection, which allows method overloading. As per
GAP convention, functions are to be used for writing to files, hence the Write functionality is implemented as GAP
functions. �
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source - name of source signal (string) srclist - list of sources
line - r.h.s. of an VHDL assignment (string) linelist - list of lines

target - name of target signal (string) trgtlist - list of targets
gate - gate (string), allowed gates: and, or, xor idxlist - list of integers (indices)

sellist - names of select signals (list of strings) selvals - list of select values
delimeter - VHDL delimiters " and ' f - monomial/polynomial

bindlist - a list of bindings top - top switch (integer 0 or 1)
clabel - unique component label (string) rlabel - unique register label (string)
entlist - list: entity name, architecture name portmap - list of VHDL signals

cntllist - names of register control signals (strings) cntlvals - list of control values
resetlist - names of reset source signals or constants (strings)

[ ] - optional parameters of - output file name

VHDLcommon
method / function possible arguments

GATE_line ( source, idxlist, gate ), ( srclist, idxlist, gate ), ( linelist, gate )
XOR_line, AND_line ( source, idxlist ), ( srclist, idxlist )

MUX_line ( srclist, sellist, selvals, delimeter )[1,2]

bin_monomial
( f, [ bindlist,] top )[3,4,5]

bin_polynomial

Write_line ( of, target, line )[6]

Write_component_inst ( of, clabel, entlist, portmap )[7]

Write_registers ( of, rlabel, cntllist, cntlvals, trgtlist, srclist, resetlist )[8,9]

Implementation notes:
[1] - requirements: Length( sellist )=Length( selvals )= n, Length( srclist )= n + 1

VHDL format: srclisti when sellisti = selvalsi ... else srclistn+1, i = 1, . . . , n
[2] - VHDL uses delimiters " for std_logic_vector and ' for std_logic
[3] - polynomial f requirement: f must have a zero constant term
[4] - bindlist requirements: for each GAP variable, there must be a pair of strings in the form

[GAP_variable, VHDL_signal], see Example 10.2.1
[5] - top requirement: add the “i_” prefix if VHDL signals refer to the input ports
[6] VHDL format: target <= line ;
[7] - portmap requirement: use positional mapping
[8] - requirements: Length( cntllist )= Length( cntlvals )= 3

cntllist format: [clk_name, reset_name, chip_enable_name]
cntllist1 always interpreted as clock signal, cntllist2 as reset signal, cntllist3 as chip enable
only clock signal is mandatory, e.g., ["clk", 0, 0] - no reset, no chip enable
cntlvals1 format: if cntlvals1 = 1 VHDL format is rising_edge(clk), else falling_edge(clk)
cntlvalsi format for i = 2, 3 VHDL format: if cntllisti = cntlvalsi then

[9] - requirements: Length( trglist )=Length( srclist )=Length( resetlist )
VHDL format: trglisti <= srclisti and trglisti <= resetlisti

Table 10.3: Main functionality of the GAPtoVHDL package - continued
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Key 10.2: Common VHDL primitives

GAPtoVHDL package is the backbone of the automated design generation. It provides com-
mon VHDL functionality: it can write assignments, component instantiations, and registers.
To reduce the number of different functions, the assignments take a target and a line, where
the target is a string for the target signal and the line the appropriately formatted r.h.s. string.
The line is obtained using one or a combination of several methods, e.g., methods that insert
logic gates between signals or methods that write multiplexers.

Example 10.1.2 Use of GATE_line and XOR_line methods ↪−→

Example 10.1.2 shows the use of method GATE_line using all three sets of arguments from Table 10.3. Last
GATE_line call demonstrates the flexibility of this method. Further examples are shown in Example 10.2.1.

Example 10.1.2

gap> line1 := GATE_line(["i_a", "i_a", "i_b"], [0,1,3], "and");
" i_a(0) and i_a(1) and i_b(3) "
gap> line2 := GATE_line("i_a", [0,1,3], "xor");
" i_a(0) xor i_a(1) xor i_a(3) "
gap> line3 := XOR_line(["a", "a", "b"], [0,1,3]);
" a(0) xor a(1) xor b(3) "
gap> line4 := GATE_line([line2, line3], "and");
" ( i_a(0) xor i_a(1) xor i_a(3) ) and ( a(0) xor a(1) xor b(3) ) "

↪−→

10.2 Binding of GAP variables and VHDL signals

The FSR package automatically creates the GAP variables x_i to be used for entering multivariate
polynomials for NLFSR feedbacks or for FILFUNs. Variable creation is hidden from the user,
but at the time of the FSR package loading the following message is displayed: “You can now
use 200 variables x_0 ...x_199”. The variables s_i, intended for symbolic computation
(Example 6.2.4), are created at the same time. The FFCSA method ChooseFieldElms, listed in
Table 7.5, also creates the GAP variables a_i, b_i, and d_i.

Each GAP variable used so far was created using the GAP operation Indeterminate, or rather
its synonym X (Section 66.1 in the GAP reference manual [34]). When a GAP variable is created
using the Indeterminate call, it is assigned a nonzero integer. This integer is used for lexicographic
ordering of variables from smallest to largest. For details on monomial ordering, see Section 66.17
in the GAP reference manual [34]. The FSR package variables x_i and s_i start at 1000 and
2000, respectively. The FFCSA variables a_i, b_i, and d_i at 3000, 3500, 4000, respectively.
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These integers can be easily adjusted if needed. Consequently, if all those variables were used in
the same monomial, the x_i would be ordered before a_i.

To create GAP variables with the same name as VHDL signals is not only tedious but also un-
friendly for the user and prone to errors. With each new call of ChooseFieldElms, the previously
created variables are removed and new variables are created. This is important because they are
used for FFCSA algorithms and vectors avec and bvec must have proper length that corresponds
to the length of the basis used for representation of elements, recall Examples 7.4.1 and 7.4.2. A
variable binding is a pair of strings in the form [GAP_variable, VHDL_signal]. Use of vari-
able binding is shown in Example 10.2.1. This is the first example of binding in the automation
framework.

Example 10.2.1 Polynomials defined over F2: bin_monomial and bin_polynomial ↪−→

Methods bin_monomial and bin_polynomial (Table 10.3) that transform a given polynomial, defined over F2, into
a line of VHDL code containing AND and XOR gates. The VHDL signal name used for the bin_polynomial call is
feedback, hence three bindings are needed: a binding rule must be present for each GAP variable x_0, x_1 and x_2. In
this case, feedback is an internal signal, hence the top switch is set to 0. The bin_monomial call for line2 is used with
top switch set to 1, which appends i_ to every signal name, assuming that the signals are also the VHDL modules
input ports. Because no binding is given, the VHDL signal names correspond to the GAP variable names. Last two
calls in Example 10.2.1 show additional use of GATE_line method and the usage of MUX_line method (Table 10.3).

Example 10.2.1

gap> f1 := x_0*x_1*x_2 + x_0*x_1;;
gap> bindrule := [["x", "feedback"], ["x", "feedback"], ["x", "feedback"]];;
gap> line1 := bin_polynomial(f1, bindrule, 0);
" ( feedback(0) and feedback(1) and feedback(2) ) xor ( feedback(0) and
feedback(1) ) "
gap> f2 := a_0*b_1;;
gap> line2 := bin_monomial(f2, 1);
" i_a(0) and i_b(1) "
gap> line3 := GATE_line([line1, line2], "xor");
" ( ( feedback(0) and feedback(1) and feedback(2) ) xor ( feedback(0) and
feedback(1) ) ) xor ( i_a(0) and i_b(1) ) "
gap> line4 := MUX_line([line1, line2], ["i_sel"], ["0"], "\’");
" ( ( feedback(0) and feedback(1) and feedback(2) ) xor ( feedback(0) and
feedback(1) ) ) when i_sel = ’0’ else ( i_a(0) and i_b(1) )"

↪−→

Key 10.3: Binding of GAP variables and VHDL signal names

A variable binding is a pair of strings in the form

[GAP_variable, VHDL_signal]
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10.3 Classification of expressions defined over finite fields

An expression is a set of instructions on how to compute a result, and hence also a set of instruc-
tions on how to generate the datapath. An expression consists of variables and arithmetic opera-
tions, while a datapath consists of signals and gates or components implementing corresponding
operations. The classification of expressions is needed for systematic construction of datapaths.

All three packages (GAPtoVHDL, FSRtoVHDL, CIRCUIT) use the FSR package, especially the
FSR miscellaneous functions listed in Table 6.5: SplitCoeffsAndMonomials and DegreeOf-
PolynomialOverField are the core methods for automated design entry. All the expressions
that can currently be converted to VHDL are given in the algebraic normal form (ANF). Recall
equation (3.9), with non-zero coefficients ci0,i1,...,it−1 ∈ F � Fq, q ≥ 2:

f : F t → F

f (x0, x1, . . . , xt−1) =
∑

∀(i0,i1,...,it−1)∈Zt
q3:

ci0 ,i1 ,...,it−1,0

ci0,i1,...,it−1 xi0
0 xi1

1 . . . xit−1
t−1 (10.1)

where i j ∈ Zq for 0 ≤ j < t. The expression (10.1) is defined over F t with the variables x j,
0 ≤ j < t, defined over F . As was mentioned in Section 6, the terms in equation (10.1) are
ordered by the degree of monomials (recall equation (3.10)), and the variables within a monomial
by their number, not by their exponent. Furthermore, for every monomial, if an exponent i j = 0,
the variable x j is not present in this monomial. The generalization of Fermats little theorem,
∀x j : xq

j = x j (equation (3.2)) implies that the maximum value of an exponent for any variable in
(10.1) is q − 2. This is also the exponent for the finite field inversion, i.e., xq−2

j = x−1
j , however,

inversion is treated as exponentiation to a fixed exponent. The ANF expressions in equation (10.1)
are expected to have the exponents i j reduced modulo q − 1, i.e., ∀i j : 0 ≤ i j ≤ q − 2; if in doubt,
the FSR method ReduceMonomialsOverField1 can be used.

The FSR package miscellaneous methods SplitCoeffsAndMonomials and DegreeOfPolyno-
mialOverField (Table 6.5), and GAP method LeadingMonomial (Section 66.6-4 in the GAP
reference manual [34]) are imperative for the classification of the ANF expressions. Method
LeadingMonomial provides an easy access to the exponents i j.

The classification, shown in Table 10.4, is based on the following conditions (columns 1-5):

• the finite field Fq, q ≥ 2, over which the polynomial f is defined
• the presence of constants from the extension field, i.e., coefficients ci0,i1,...,it−1 ∈ Fq\F2 for

q > 2, excluding the constant term
• the presence of a non-zero constant term, denoted ct, i.e., ct , 0
• the degree of polynomial f , i.e., deg( f )

1 several FFCSA methods for manipulating expressions symbolically use ReduceMonomialsOverField
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• the maximum exponent i j in f , where the maximum is taken over all terms in f , denoted
max{i j}

On the right-most side of Table 10.4 is a column with arithmetic operations that (can) occur in
each class: addition ⊕ (bit-wise XOR), multiplication with a constant ×γ, multiplication M, and
exponentiation E.

conditions classification finite field
ci0,i1,...,it−1 arithmetic

Fq ∈ Fq\F2 ct , 0 deg( f ) max{i j} class examples ⊕ ×γ M E

– – X 0 0 0 any γ, element 0 × × × ×

q = 2
× – 1 1 1 x0 + x1, x0 + x1 + 1, . . . X × × ×

q > 2
X – 1 1 2 x0 + x1 + γ, x0 + γ1x1 + γ2,. . . X X × ×

q = 2 × – > 1 1 3 x0x1x2, x0x1 + x2 + 1,. . . X × X A ×

q > 2

× –

> 1
1 4 x0x1x2, x0x1 + x2 + 1, . . . X × X ×

X – 5 γ1x0x1x2, x0x1 + γ1x2 + γ2, . . . X X X ×

× –
> 1 6 x0 + x3

0, x0x2m−2
1 + x2

0x1x2, . . . X × X X

X – 7 γ1x0, x1x2 + x2
0 + γ2, . . . X X X X

– . . . dont care γ, γ2 ∈ Fq, γ1 ∈ Fq\F2, q > 2 X A . . . AND

Table 10.4: Classification of expressions in algebraic normal form given by the equation (10.1)

Classification is implemented by the method Which_class( expression, F, ca, bitwidth ). F is the
finite field F , over which expression is defined. The last two input parameters are related to the
constant array implementations: if ca=1 and the total number of input bits is smaller than the given
bitwidth, classify as [8, using const_array]. The total number of input bits is computed as
(number of variables)× (degree of extension over the prime field [F : F2]).
� Implementation detail: Method SplitCoeffsAndMonomials returns two lists of same length, a list of coeffi-
cients clist and a list of monomials mlist. LeadingMonomial returns a list lm, which is formatted as [var_ j1, i j1,
var_ j2, i j2, ...], where j1 < j2; each variable with a positive exponent has two entries, the variable number var_ j,
followed by its exponent i j. These three lists are used to extract information about the arithmetic operations:

(⊕) addition will occur when Length( clist )= Length(mlist ) > 1, i.e., #terms> 1.
(×γ) multiplication with a constant is detected by finding all coefficients in clist, that are different from 1. Special

care is needed for the last element in clist, which can be either a multiplicative or an additive constant:

• if last monomial in mlist is 1, the last element in clist is a constant term, i.e., additive constant (+γ)
• otherwise, the last element in clist is a coefficient of a monomial, i.e., multplicative constant (×γ)

(M) multiplication is needed when Length( lm )> 2, i.e., the list returned by LeadingMonomial has more than
two entries, indicating that the #variables within monomial > 1 (must be checked for every monomial).

(E) exponentiation is needed for every i j > 1 entry in lm list returned by LeadingMonomial (must be checked for
every variable within every monomial).
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As a final note: for classification, there is no need to know how many exponentiations are in the expression, nor where
they are, it is enough to find the first i j > 1. �

Key 10.4: Classification of expressions defined over finite fields

The classification of expressions is a basis for the inference of internal signals, extraction and
generation of submodules, and for the automated generation of a datapath. The classification
is based on the finite field over which the expression is defined.

Example 10.3.1 Classification of arbitrary expressions ↪−→

The Example 10.3.1 shows different classification examples over the prime field F2 and over extension field F28 ,
including the class 8 for the constant array implementations. The example expressions are taken from Table 10.4.

Example 10.3.1

gap> K := GF(2);; F := GF(2^8);;
gap> random := Z(2^8)^3;;
gap> Which_class(random, F, 0, 0);
[ 0, "constant in ext field" ]
gap> random := a_0 + b_0;;
gap> Which_class(random, K, 0, 0); Which_class(random, F, 0, 0);
[ 1, "linear over binary field" ]
[ 1, "linear over binary ext field, all coeffs from bin field" ]
gap> random := a_0 + a_1 + Z(2^8)^3;; Which_class(random, F, 0, 0);
[ 2, "linear with coeffs from binary ext field" ]
gap> random := x_0*x_1 + x_2 + 1;;
gap> Which_class(random, K, 0, 0); Which_class(random, F, 0, 0);
[ 3, "non-linear over binary field" ]
[ 4, "non-linear over binary ext field, all coeffs from bin field" ]
gap> random := Z(2^8)^3*x_0*x_1;; Which_class(random, F, 0, 0);
[ 5, "non-linear with coeffs from binary ext field" ]
gap> random := a_0*a_1*a_2+a_0^2;; Which_class(random, F, 0, 0);
[ 6, "non-linear over binary ext field, all coeffs from bin field" ]
gap> random := Z(2^8)*a_0*a_1*a_2+a_0^2+Z(2^8)^3;; Which_class(random, F, 0, 16);
[ 7, "non-linear with coeffs from binary ext field" ]
gap> random := Z(2^8)*a_0*a_1*a_2+a_0^2+Z(2^8)^3;; Which_class(random, F, 1, 16);
NOTE: cant do const_array because bitwidth > 16 fail
gap> random := Z(2^8)*a_0*a_1*a_2+a_0^2+Z(2^8)^3;; Which_class(random, F, 1, 32);
[ 8, "non-linear using const_array" ]

↪−→
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10.4 Summary and conclusion

Table 10.5 summarized the key insights highlighted Chapter 10. GAPtoVHDL is the backbone of
the automated design generation (Key 10.1). Keys 10.1 and 10.4 introduce two notions, that will
be encountered throughout Part IV: the field identifier Fid, and the classification of expressions.
The field identifier serves as abstraction that simplifies the datapath generation. Classification is
very important to synthesis and will be used for the inference of internal signals, extraction and
generation of submodules, and for the automated generation of a datapath.

Key 10.1: VHDL type definition and constant declaration XX Section
GAPtoVHDL writes a field_pkg.vhd package including the VHDL type definitions and 10.1
(some) constant declarations. The data types are named ffe_Fid, with field identifier Fid, a
positive integer that enumerates the finite fields in the design independently of their degree of
extension.

Key 10.2: Common VHDL primitives XX Section
GAPtoVHDL package is the backbone of the automated design generation. It provides 10.1
common VHDL functionality: it can write assignments, component instantiations, and registers.
To reduce the number of different functions, the assignments take a target and a line, where
the target is a string for the target signal and line the appropriately formatted r.h.s. string.
The line is obtained using one or a combination of several methods, e.g., methods that insert
logic gates between signals or methods that write multiplexers.

Key 10.3: Binding of GAP variables and VHDL signal names XX Section
A variable binding is a pair of strings in the form [GAP_variable, VHDL_signal] 10.2

Key 10.4: Classification of expressions defined over finite fields XX Section
The classification of expressions is a basis for the inference of internal signals, extraction and 10.3
generation of submodules, and for the automated generation of a datapath. The classification
is done based on the finite field over which the expression is defined.

Notes: XX - solved

Table 10.5: Summary of key insights to the GATtoVHDL package - listed chronologically
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Chapter 11

FSRtoVHDL package - generating FSR
based circuits
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alg.

gen.

arch.

Overview of the FSRtoVHDL package:

FSRtoVHDL

GAPtoVHDL

CIRCUIT

FSRtoVHDL package is specialized for writing VHDL for FSR objects:
all LFSRs and linear FILFUNs over arbitrary finite fields, NLFSRs and
arbitrary FILFUNs over the prime field F2, and constant array imple-
implementations for FILFUNs over arbitrary fields. Extension field
NLFSRs and non-linear FILFUNs are implemented partially with a

black-box component instantiation. The black-box submodule can be implemented using the CIRCUIT package.
The FSRtoVHDL package also provides mechanisms for implementing ciphers and other FSR-based systems, by
modelling the system as a collection of FSRs. This chapter shows how hardware design principles influenced the
design of the FSR package and highlights the similarities and differences between LFSRs, NLFSRs, and FILFUNs.

11.1 Classification of the FSR objects

In Section 10.3, the classification of expressions in algebraic normal form, given by the equation
(10.1), was explained and shown in Table 10.4. This classification is revisited for FSR objects and
presented in Table 11.1, with the following modifications:

• a new column for the type of FSR object: LFSRs are only possible for class 1 and 2 dat-
apaths (upper half of Table 11.1) and NLFSRs are always classified above 3 (lower half
of Table 11.1). FILFUNs can be classified into any of classes 1-7; when deg( f ) = 1, the
FILFUN is linear and classified as 1 or 2 (upper half of Table 11.1).
• class 0 is skipped: a constant function can be used for LFSR feedback, e.g., ct = 1 yields a

shift register. Class 0 is not possible for the NLFSR objects and is not used for FILFUNs; if
a constant is ever needed, it can be modelled as the external step and run input.
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• because class 0 is skipped, the constant term column ct , 0 is removed as well
• the LFSRs are represented with a univariate polynomial h(x) from equation (3.13). Their

classification w.r.t. Table 10.3 corresponds to their multivariate representation f (see equa-
tion (10.1)). As a consequence, the constant term is treated together with other coefficients,
as it will require matrix-vector multipliers for all ci0,i1,...,it−1 ∈ Fq\F2 for q > 2
• classes 4-7, which can occur for NLFSRs and FILFUNs, are merged because they require

submodules for multiplication and exponentiation. The VHDL can be generated by imple-
menting the feedback/filtering function as a “black-box”; this decision will be elaborated in
the discrete components architecture implementations discussion in Section 11.2.2.
• class 8 for constant array implementations is added to Table 11.1; it is only used for the

FILFUN objects, as will be explained in the constant array architecture implementations
discussion in Section 11.2.2.

conditions class finite field
FSR ci0,i1,...,it−1 w.r.t. arithmetic
type Fq deg( f ) ∈ Fq\F2 Table 10.4 implementation status ⊕ ×γ M E

LFSR q = 2
1

× 1 fully X × × ×
or

q > 2
FILFUN X 2 fully X X × ×

NLFSR or q = 2
>1

× 3 fully X × X A ×

FILFUN q > 2 – 4-7 partially, black-box X X X X

FILFUN – – 8 fully constant array

Table 11.1: Classification of the FSR objects

� Implementation detail: As noted above, the LFSRs are represented with an univariate polynomial h(x) from
equation (3.13), but their classification corresponds to their multivariate representation f (see equation (10.1)). Instead
of transforming h into f , polynomial h is classified directly, and classes 2, 5 and 7 w.r.t. Table 10.3 or ct ∈ Fq\F2
collapse into class 2 in Table 11.1. The constant term ct is obtained with method ConstTermOfFSR. For all other
cases, the LFSR expression is re-classified as class 1. �

� Implementation detail: The classification is performed by the method Which_class(FSR, ca, bitwidth ), which
parses the values for expression and F, then calls the Which_class( expression, F, ca, bitwidth ) method from the
GAPtoVHDL package (Section 10.3). The expression is obtained as FeedbackPoly in case of an LFSR and as
MultivarPoly in case of an NLFSR or FILFUN (see Table 6.4 in Section 6). The expression is defined (and classified)
over the finite field F obtained using UnderlyingField(FSR ). �

Example 11.1.1 Classification of FSRs ↪−→

The Example 11.1.1 shows different FSR classification examples. The output of classification has the format [kind,
class, comment], whereby the integer kind is used to distinguish the (N)LFSRs from FILFUNs:

• 1 for (N)LFSRs: they have internal state (registers)
• 0 for FILFUNs: no internal state
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Further differences between the two kinds of FSRs will be discussed in Section 11.2, when the VHDL generation is
discussed. The kind is set to 0 for FILFUNs and to 1 otherwise. It is used for methods to which do not take the entire
FSR object as one of its arguments.

The first LFSR shows an example of class 1 feedback over an extension field, which only requires XOR gates for its
implementation. Remaining two class 2 LFSRs have already been discussed in Example 6.2.2 in Section 6. Note the
first two LFSRs in Example 11.1.1 have reducible feedback polynomials. Next, three different FILFUN classifica-
tions are shown, all with kind=0. The second FILFUN was used for Example 6.2.3 in Section 6. Last example shows
the NLFSR from Example 6.2.4 in Section 6.

Example 11.1.1

gap> K := GF(2);; x := X(K, "x");; f := x^4 + x^3 + 1;;
gap> F := FieldExtension(K, f);; y := X(F, "y");; gen := Z(2^4);;
gap> l := y^4 + y + 1;; test := LFSR(F, l);;
gap> Which_class(test, 0, 0);
[ 1, 1, "lfsr over binary (ext) field" ]
gap> l := y^4 + y + gen;; test := LFSR(F, l);;
gap> Which_class(test, 0, 0);
[ 1, 2, "lfsr with coeffs from binary ext field" ]
gap> l := y^4 + y^3 + y + gen;; test := LFSR(F, l);;
gap> Which_class(test, 0, 0);
[ 1, 2, "lfsr with coeffs from binary ext field" ]
gap> l := x_0 + x_1 + x_2;; test := FILFUN(K, l);;
gap> Which_class(test, 0, 0);
[ 0, 1, "filfun linear over binary field" ]
gap> l := x_0*x_1 + x_2;; test := FILFUN(K, l);;
gap> Which_class(test, 0, 0);
[ 0, 3, "filfun non-linear over binary field" ]
gap> l := x_0*x_1 + x_2;; test := FILFUN(F, l);;
gap> Which_class(test, 0, 0);
[ 0, 4, "filfun non-linear over binary ext field, all coeffs from bin field" ]
gap> l := x_0 + x_1*x_3;; n := 6;; test := NLFSR(K, l, n);;
gap> Which_class(test, 0, 0);
[ 1, 3, "nlfsr non-linear over binary field" ]

↪−→

11.2 Generating VHDL for individual FSR objects

This section is organized as follows: first, the VHDL packages are explained (Subsec tion 11.2.1),
followed by (sub)modules (Subsection 11.2.2). The latter is further divided into three parts: the
entity, the discrete components architecture, and the constant array architecture.

All GAP functions involved in design entry are listed in Table 11.2. The FSR objects in the design
are enumerated with the FSR identifier FSRid, and the finite fields in the design with the field
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identifier Fid. The last two lines in Table 11.2 show the Write_fsr function calls, which auto-
matically perform all the steps needed to generate VHDL (sub)modules. The simple case requires
the following arguments: (FSR, FSRid, Fid, strlist ), where strlist contains two strings, the target
folder name, and the comment for the VHDL files. The second option has two additional module
instructions: the fsr_extcond condition for external step (see StepFSR with external input in Ta-
ble 6.3 and Key 6.3 in Section 6), and the fsr_ca condition for the constant array implementations
(Table 10.2 in Section 10.1).

FSR - the FSR object FSRid - FSR identifier (integer)
fsr_extcond - external step condition Fid - field identifier (integer)

fsr_ca - constant array condition strlist - [folder, comment]

packages modules

Get_fsr_strings Write_fsr_entity Write_fsr_arch_outputs

Write_fsr_instance_pkg Write_fsr_arch_declarations Write_fsr_arch_muxes

Write_fsr_pkg Write_fsr_arch_MVconstants Write_fsr_arch_stateregz

Write_dp_pkg Write_fsr_arch_bin_monomials Write_fsr_arch

Write_fsr_arch_feedback Write_fsr_arch_black_box_feedback

Write_fsr(FSR, FSRid, Fid, strlist )

Write_fsr(FSR, FSRid, Fid, fsr_extcond, fsr_ca, strlist )

Table 11.2: Main functionality of the FSRtoVHDL package

11.2.1 VHDL packages

The FSRtoVHDL package writes two packages: one with signals for the finite field(s) and an-
other with signals for the FSR(s). It uses functions from the GAPtoVHDL package to write the
finite field information. If more FSRs are present in the design, first all the FSRs are collected
and all of their UnderlyingFields into duplicate free lists. The field package is written first,
using the GAPtoVHDL writing functions listed in Table 10.1 in Section 10.1; the different fields
enumerated with the field identifier Fid, and if there is only one field in the package, the Fid
can be omitted. Similarly, the FSR objects in the design are enumerated with the FSR identifier
FSRid, which again is just an integer. The method Get_fsr_strings will use FSRid for the con-
stants and (sub)type names, e.g., constant fsr_FSRid_len for the length of the FSR. To write the
fsr_pkg.vhd, each FSR identifier FSRid is paired with the field identifier Fid that belongs to the
UnderlyingField of the particular FSR. Then Get_ffe_strings is used to obtain the needed
values, e.g., the string for the data type used for the field elements ffe_Fid.

Key 6.2 suggest exploiting structural similarities between the three FSR types. However, it is
important to distinguish the (N)LFSRs from FILFUNs. Recall from Table 6.1:
• (N)LFSRs: internal state (array), shifting, one input, possibly multiple output taps
• FILFUNs: no internal state, array input (instead of state), a single output (tap)
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For example, the data type used for the internal state of (N)LFSRs is defined as

type fsr_FSRid_state is array (fsr_FSRid_len − 1 downto 0) of ffe_Fid;

where FSRid and Fid are replaced by appropriate integers. Similarly, an external input (for exter-
nal step and run), which is possible for all three kinds of FSRs, is defined in the package as

subtype fsr_FSRid_ext is ffe_Fid;

The VHDL data types defined in the fsr_pkg.vhd are then used for the input and output ports and
internal signals of the FSR modules. All the information needed to write the package is obtained
from the FSR attributes listed in Table 6.4 in Section 6.

Key 11.1: The structure of the FSR objects

FSR objects are structured very consistently: each FSR has two data inputs, the loading
input i_fsr and the external step input i_ext, and one output called o_fsr. Their VHDL
data types are defined in fsr_pkg.vhd and easily accessible via the FSRid.

Example 11.2.1 A simple LFSR – VHDL packages field_pkg and fsr_pkg ↪−→

This example is a continuation of Example 6.2.2 with an LFSR of length 4 defined over F24 with generator α. The
LFSR is defined by `(y) = y4 + y3 + y + α (see Example 6.2.2(b)). The VHDL Example 11.2.1(a) shows
the VHDL type definition for elements with Fid=1 in field_pkg.vhd (constants are omitted for brevity). The
VHDL Example 11.2.1(b) shows all constants and type definitions for the LFSR with FSRid=1 in fsr_pkg.vhd.

VHDL Example 11.2.1(a)

constant ffe_1_dim : natural := 4;
subtype ffe_1 is std_logic_vector(0 to ffe_1_dim - 1);

VHDL Example 11.2.1(b)

constant fsr_1_len : natural := 4;
constant ot_1 : natural := 1;
subtype fsr_1_input is gf_elem_1;
type fsr_1_state is array (fsr_1_len - 1 downto 0) of ffe_1;
constant fsr_1_input_zero: fsr_1_input := ff_1_zero;
subtype fsr_1_ext is ffe_1;
constant fsr_1_ext_zero: fsr_1_ext := ffe_1_zero;
subtype fsr_1_output is ffe_1;

↪−→
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11.2.2 VHDL for the FSR (sub)modules

The entity

FSR modules are written with the functions listed in Table 11.2. The following discussion refers to
ffe_Fid as the “field element” of the UnderlyingField of the FSR with a given FSRid. For FSR
related VHDL data types recall fsr_pkg from the VHDL Example 11.2.1(b). Example 11.2.1 is
continued in Example 11.2.2, which shows the schematic of the LFSR used in the example and
ports in VHDL Example 11.2.2. The entity uses function Write_fsr_entity from Table 11.2,
which follows the following principles:

• the structured fsr_pkg removes a lot of clutter from the ports1:

– the primary input port i_fsr is always of the type fsr_FSRid_input, which is a
single field element in the case of (N)LFSRs and an array field elements of length
fsr_FSRid_len in the case of FILFUNs

– all FSRs have a single output port o_fsr of type fsr_FSRid_output. In the case
of (N)LFSRs the output port can be either a single field element or an array of field
elements of length2 ot_FSRid. In the case of FILFUNs the output port is always a
single field element.

• the (N)LFSRs have an internal state:

– they will need a clock signal clk
– the loading takes advantage of the shifting: through the i_fsr port, the highest stage

is loaded, which implies a multiplexer and input control port load to choose between
i_fsr and the feedback

– all the registers have a chip enable called fsr_en. To keep the hardware area small,
there is no reset signal, and the chip enable can be removed to further reduce the area.

• all FSRs can perform an external step and run (Key 6.3), which requires a secondary data
input i_ext of type fsr_FSRid_ext, which is always a single field element. There are
three options, passed on as the argument fsr_extcond for external step condition:

– external step and run is never used (no i_ext input port): fsr_extcond = −1
– external step and run is always used: fsr_extcond = 0
– external step and run is used sometimes, implying a multiplexer and input control port
ext to choose between i_ext and the feedback: fsr_extcond = 1

Example 11.2.2 A simple LFSR – schematic and entity ↪−→

This example is a continuation of Example 6.2.2 and 11.2.1, with an LFSR of length 4 defined over F24 with generator
α. The LFSR is defined using the primitive polynomial `(y) = y4 + y3 + y + α (see Example 6.2.2(b)). The type

1 and internal signals later on
2 length of the OutputTap attribute
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definitions with Fid=1 and FSRid=1 were shown in Example 11.2.1. Figure 11.1 is an extension of Figure C.1 (shaded
grey) from Example C.1.1 in Appendix C.1. Figure 11.1 shows all elements needed for the hardware module: both
multiplexers, control signals (dashed arrows) and data ports (solid arrows). Both the loading and the external step
multiplexer are shown in the schematic, with their control inputs load and ext respectively. The control signals for
the registers are shown only for stage S 3, but apply to all four stages. The output is annotated as o_fsr with the stage
number 0, a convention used because more output taps are possible.

VHDL Example 11.2.2

port(
i_fsr: in fsr_1_input; -- data input
i_ext: in fsr_1_ext; -- external input
clk: in std_logic; -- clock input
fsr_en: in std_logic; -- fsr enable signal
load: in std_logic; -- load control signal
ext: in std_logic; -- init control signal
o_fsr: out fsr_1_output -- data output

);

o_fsr: 0
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Figure 11.1: Schematic for the LFSR `(y) = y4 + y3 + y + α with multiplexers, control signals and data ports

↪−→

The architecture: signal declarations

The first part in architecture are the declarations of internal signals. The first paragraph below
refers to discrete component architectures and the second to constant array architectures.

For the (N)LFSRs, the internal state (state array) is declared as type fsr_FSRid_state, followed
by signals for the multiplexers and feedback (signals shown in Figure 11.1, shaded grey), of type
ffe_Fid. Then, for classes 1-3 (see Table 11.1), the term and monomial signals are declared based
on the number of extension field coefficients γi0,i1,...,it−1 ∈ Fq/F2 and the number of monomials in
the FeedbackPoly or MultivarPoly respectively. For example, for n monomials, a new type
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mon_array is defined as an array of n field elements ffe_Fid, and if only one monomial is
needed, it is declared directly as ffe_Fid. See Examples 11.2.3 and 11.2.4.

The number of signal declarations for constant array architectures is much shorter. The feedback
and multiplexers signals of type ffe_Fid are still present. Then, the type definition for the constant
array is needed, followed by the actual constant declaration. See Example 11.2.5.

The architecture: discrete components

The architecture is written by the functions listed in Table 11.2, which are called according to the
classification of the FSR objects (Table 11.1):

[class 2] - for each extension field constant γi0,i1,...,it−1 ∈ F2m/F2, call the function Write_fsr_
arch_MVconstants, which performs the following steps:

– generate the matrix for the matrix-vector (MV) multiplier using the FFCSA package3

method MatrixMultByConst (Table 7.2)
– write the MV submodule using ffe_Fid type for its input and output port. Note that
ffe_Fid represents field elements of F2m , which is constructed as a single extension.

– write the component instantiation for the MV submodule using Write_component
_inst (Table 10.3). The port map input is the appropriate stage of the state array in the
case of (N)LFSRs, or the appropriate coordinate of the i_fsr in the case of FILFUNs.
The port map output is (the appropriate coordinate4 of) the term signal.

[class 3] - call the function Write_fsr_arch_bin_monomials, which:

– for each monomial calls bin_monomial (Table 10.3). The binding is either to the ap-
propriate stage of the state array in the case of (N)LFSRs, or the appropriate coordinate
of the i_fsr in the case of FILFUNs. The obtained product is assigned to (the appro-
priate coordinate5 of) the monomial signal using function Write_line (Table 10.3).

[class 1-3] - call Write_fsr_arch_feedback to write the final sum using XOR_line and
Write_line (Table 10.3). The source signals (summands) for XOR_line depend on the
class:

[class 1] - the sources will be only stages of the state array in the case of (N)LFSRs or
the appropriate coordinate of the i_fsr in the case of FILFUNs
[class 2] - the sources will contain term outputs of the MV submodules in addition to
sources which appear in class 1 FSRs
[class 3] - the sources will contain monomial signals

[class 4-7] - call Write_fsr_arch_black_box_feedback, which simply instantiates a
black-box component called black_box_FSRid. The port map input is the state array in
the case of NLFSRs, and i_fsr in the case of FILFUNs. The port map output is always

3 the FSRtoVHDL package contains its own copy of this method, loaded only in case FFCSA is not available
4 in the case of multiple MVs, the term signal is declared as an array of field elements
5 in the case of multiple monommials, the monomial signal is declared as an array of field elements
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the signal f. The actual submodule can be implemented either using the CIRCUIT package
(Chapters 13-16) or manually.

The rest of the FSR module uses the remaining functions listed in Table 11.2 independently of
classification, but depending on the type of FSR:

• (N)LFSRs have load and ext multiplexers driving the input to the highest stage of the
state array (see the LFSR schematic in Figure 11.1 in Example 11.2.2). The FILFUNs
have no internal state or feedback and do not require a load multiplexer. The ext mul-
tiplexer is driving the output o_fsr for FILFUNs. All multiplexers are written by the
Write_fsr_arch_muxes function. To summarize:

– the (N)LFSRs always have the load multiplexer. Figure 11.1 in Example 11.2.2 shows
an LFSR with both multiplexers.

– all FSR objects can have the multiplexer switching between external and regular step
and run, controlled by the input ext (recall the fsr_extcond from the entity discus-
sion).

• (N)LFSRs have one or more stages of the state array driving (the coordinates of) the output
port o_fsr, written by the function Write_fsr_arch_outputs

• (N)LFSRs have registered state array, written by the function Write_fsr_arch_stateregz

Two examples are shown below, the datapath for a simple 4-stage LFSR in Example 11.2.3 and the
datapath for the Grain NLFSR in Example 11.2.4.

The architecture: constant arrays

The constant array implementations were discussed in the Subsection 3.3.3, and functions for their
hardware implementations in Table 10.2 in Section 10. The bit-width upper limit on the constant
array input(s) is currently set to 16 bits, to prevent the constant array to grow too large. The
experience with the synthesis results for the WG constant array implementations [113, 120, 119]
show that 16 is a generous number. In FSRtoVHDL, the constant arrays are possible for the
FILFUN objects; (N)LFSR objects would usually exceed the bit-width threshold.

For constant array implementations, the Write_fsr function call is used with the parameter fsr_ca
set. If a class 8 expression is encountered, the Write_fsr_arch will choose between the functions
Write_arch_const_array_Permutation and Write_arch_const_array_Functional (Ta-
ble 10.2) calls based on the degree of extension of the UnderlyingField over its prime subfield
m = [F2m : F2], i.e., it will choose the permutation when m > 1. Example 11.2.5 shows a constant
array implementation of the WG7 permutation, modelled as a FILFUN object.
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Example 11.2.3 A simple LFSR – the datapath ↪−→

This example is a continuation of Examples 6.2.2, 20.3.1 and 11.2.2: the LFSR with primitive polynomial `(y) =

y4 + y3 + y +α. The MV submodule notation is α = ω13, where ω is the root of the field defining polynomial f (x). The
datapath in VHDL Example 11.2.3 implements the schematic in Figure 11.1.

VHDL Example 11.2.3

signal sa : fsr_1_state;
signal a,b,w: ffe_1;
signal fsimple, fcomplex, f: ffe_1;
signal term: ffe_1;

begin
-- MVmultipliers for ext. field constants
-- MVmultiplier for constant w^13

ms1 : entity work.MVmult_ffe_1(w_1_13) port map ( sa(0), term );

-- feedback
fsimple <= sa(3) xor sa(1) ;
f <= fsimple xor term;
w <= i_ext xor f;

-- output
o_fsr <= sa(0);

--muxes at fsr input
---- feedback vs (i_ext xor feedback )

b <= ( w ) when ext = ’1’ else ( f );
---- prev. mux output vs i_fsr input

a <= ( i_fsr ) when load = ’1’ else ( b );

--stage registers and shifting
stages: for i in fsr_1_len - 1 downto 1 generate

stage_shift: process(clk) begin
if rising_edge(clk) then

if fsr_en=’1’ then
sa(i-1) <= sa(i);

... OMITTED FOR BREVITY ....
end generate stages;

stage_new: process(clk) begin
if rising_edge(clk) then

if fsr_en=’1’ then
sa(fsr_1_len - 1) <= a;

end if;
end if;

end process;

↪−→
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Example 11.2.4 Grain NLFSR – the datapath ↪−→

The VHDL Example 11.2.4 shows a fraction of the Grain NLFSR datapath, with the FSRid=2. As the only finite field
in the design is F2, no Fid is used, and the data type for the field elements is simple ffe. Because of the length of
the multivariate polynomial h(x), parts of the generated code are omitted for brevity. The example shows the type
definition for mon_array. To simplify the Write_fsr_arch_feedback function, the state array stages entering the
sum are rewired as monomial signals, e.g., stages 60 and 63. After the two coordinates of the output o_fsr have been
assigned, the rest of the code (for registers) is up to the FRSid identical to the previous Example 11.2.3 and hence
omitted.

VHDL Example 11.2.4

signal sa : fsr_2_state;
signal a,b,w: ffe;
signal fsimple, fcomplex, f: ffe;
type mon_array is array (0 to 21) of ffe;
signal monomial : mon_array;

begin
-- monomial0: x_21*x_28*x_33*x_37*x_45*x_52

monomial(0) <= sa(21) and sa(28) and sa(33) and sa(37) and sa(45) and sa(52) ;

-- monomial1: x_9*x_15*x_21*x_28*x_33
monomial(1) <= sa(9) and sa(15) and sa(21) and sa(28) and sa(33) ;

... OMITTED FOR BREVITY ....

-- monomial20: x_60
monomial(20) <= sa(60) ;

-- monomial21: x_63
monomial(21) <= sa(63) ;

-- feedback
f <= monomial(0) xor ... OMITTED FOR BREVITY .... xor monomial(21) ;
w <= i_ext xor f;

-- output
o_fsr(0) <= sa(0);
o_fsr(1) <= sa(63);

... OMITTED FOR BREVITY ....

↪−→
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Example 11.2.5 The WGP constant array implementation ↪−→

This example is a continuation of Example 8.1.1 in Section 8.1. Example 11.2.5 it shows the GAP code for the
constant array implementation of the WG permutation WGP-m(Xd) with m = 7 and d = 63. The FSR is the FILFUN
dwgpfil, obtained as the WGPfilter component of the WG object (see Section 8.1). The package writing function
calls are omitted from this example. The FSR module is written using Write_fsr(FSR, FSRid, Fid, fsr_extcond,
fsr_ca, strlist ). Assuming that the LFSR, not shown in this example, will have FS Rid = 1, the dwgpfil has
the FS Rid = 2, and that F2 will have Fid = 1, the field F27 is given Fid = 2. Hence, the first two integers after the
dwgpfil are both 2. Next is the f sr_extcond = −1, i.e., only regular step and run is used, followed by the f sr_ca = 1,
the constant array instruction. The architecture with the type definition used and the declaration for the constant array
is shown in VHDL Example 11.2.5.

Example 11.2.5

gap> wg := WG(K, f, d);;
gap> dwgpfil := wg!.WGPfilter;;
gap> folder := "phdGapExamples/FSRtoVHDL/ex3wgp";;
gap> comment := "test for Write_fsr for example3";;
gap> strlist := [folder , comment];;
gap> Write_fsr(dwgpfil, 2, 2, -1, 1, strlist);;
OutputTextFile(/home/.../phdGapExamples/FSRtoVHDL/ex3wgp/fsr_2.vhd) done!
class: 8 filfun non-linear using const_array
mv = x_0^126+x_0^125+x_0^124+x_0^110+x_0^109+x_0^108+x_0^95+x_0^91+x_0^79+x_0^75+
x_0^62+x_0^61+x_0^60+x_0^59+x_0^47+x_0^46+x_0^45+x_0^44+x_0^43
OutputTextFile(/home/.../phdGapExamples/FSRtoVHDL/ex3wgp/fsr_2-const_array.vhd) done!

VHDL Example 11.2.5

signal f, w: ffe_2;
type fsr_2_table_ty is array( 0 to 2**ffe_2_dim - 1) of ffe_2;

constant fsr_2_table: fsr_2_table_ty :=
(ffe_2’("0000000"),
ffe_2’("0101101"),

... OMITTED FOR BREVITY ....
ffe_2’("1110000")
);

begin

f <= fsr_2_table( to_integer( unsigned( std_logic_vector( i_fsr ) ) ) );

--muxes at fsr output
o_fsr <= f; --the thing just computed

↪−→
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11.3 A cipher as a collection of basic FSR modules

As was mentioned in Chapter 6, a cipher can be implemented as a collection of basic modules,
which were identified as LFSR, NLFSR and FILFUN (see Key 6.1). The generation of VHDL for
individual FSR objects was explained in Section 11.2. This section focuses on the implementation
of an entire cipher, composed of various FSRs.

The workflow in this section will be closely linked to the Grain stream cipher example. Grain was
chosen because its structure as a collection of FSRs is more complex than the WG cipher, and
thus able to explain the FSRtoVHDL top-level datapath generation in more detail. Example 11.3.1
shows how to model Grain as a collection of FSRs. Modelling a cipher as a collection of FSRs is
the task of the designer and is sometimes quite challenging.

Example 11.3.1 Grain modelled as a collection of FSRs

Grain [46] was introduced in Subsection 3.2.3. The structure of Grain is shown Figure 11.2: it includes an 80-bit
LFSR (with f (x)), an 80-bit NLFSR (with g(x)) and a filtering function h(x), which takes the input bits from both the
LFSR and the NLFSR. The result of this function is masked by a bit from the NLFSR to produce the keystream bit.

(a) Run mode (b) Initialization mode

Figure 11.2: Original schematic of Grain (Figures from [46])

The two modes of operation from Figure 11.2 are combined into a single schematic in Figure 11.3 and summarized
in Table 11.3. During the run mode, result of h(x) is masked by a bit from the NLFSR to produce the keystream bit,
see Figure 11.2(a,b). This XOR gate will be called masking. The filter h(x) is implemented as a FILFUN object called
filfun1, and the masking is used as its external input: the masking XOR gate is absorbed by filfun1, the external
step is always used ( f sr_extcond = 0) and the output of filfun1 is the masked h(x) result. During the initialization
(Figure 11.2(b)), the masked h(x) output is fed back to both the LFSR and the NLFSR. In case of the LFSR, there
are no difficulties: the LFSR will use the masked h(x) for external step during the initialization ( f sr_extcond = 0).
The NLFSR behaviour is more complex. Both schematics in Figure 11.2(a,b) show the updating of the NLFSR with
a sum of the feedback g(x) and the LFSR output stage S 0 at all times. Hence, the LFSR output stage S 0 will be used
as external input for the external step of the NLFSR ( f sr_extcond = 0). Figure 11.2(b) shows a 3-input XOR gate
during the initialization phase. This 3-input XOR is split into two 2-input XORs: first one is the always used external
step discussed above, and is absorbed by the NLFSR object. The extra XOR gate will have to be modelled as another
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FILFUN object filfun2 with multivariate polynomial x0 with masked h(x) as primary filfun2 input and the LFSR
output stage S 0 as the external filfun2. Then, a multiplexer will be added to use the LFSR output stage S 0 as the
NLFSR external input during running mode, and the sum of LFSR output stage S 0 and masked h(x) (the filfun2

output) during the initialization phase.
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Figure 11.3: Unified schematic of Grain using FSR

FSR object ext. step condition object name in

constructor polynomial fsr_extcond GAP VHDL†

LFSR f (x) 1 - initialization lfsr fsr_1

NLFSR g(x) 0 - always nlfsr fsr_2

FILFUN h(x) 0 - always filfun1 fsr_3

FILFUN x 0 - always filfun2 fsr_4

† - also in the spreadsheet template *.tsv

Table 11.3: Grain as a collection of FSRs

11.3.1 The setup file and the top-level module ports

The cipher will be implemented as a top-level module, i.e., datapath, which will contain all other
FSRs as submodules. The user creates a simple setup file for the cipher to capture the following
information in lists:
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• all the FSRs in the cipher
• a list with architecture instructions
• lists with top-level data inputs and outputs
• a list with possible FSM states

The architecture instruction is set to integer 1 for constant array and 0 for discrete components
implementation. The instructions list has the same length as the list of FSRs, and the FSRs and
instructions are matched by their list position. FSRtoVHDL has a simple GAP object called IN-
OUT, which is used to specify the top-level inputs and outputs. INOUT takes two arguments, the
underlying finite field F and length m, and represents a signal of m elements from F. The INOUT
objects are translated to VHDL data types. Using the Write_dp_pkg function (Table 11.2) a third
package, dp_pkg.vhd, is implemented. For the array types the direction is always set to “to”. Last
part of the setup is the list of possible FSM states: the FSM implementation is not a part of this
toolkit, but the states are needed to extract internal connections between the FSRs (the shaded parts
in Figure 11.3 will be extracted using the “state” keywords) and for correctness checks, as will be
explained shortly.

Example 11.3.2 Grain setup file ↪−→

The setup file (*.g extension) for the cipher is shown in Example 11.3.2. The FSR objects use the names listed in
the fourth column in Table 11.3. The FSRs are followed by the INOUTs for the top-level inputs and outputs. Then
the data is collected in lists: fsrlist and arch_instruction list for the FSR objects, the top_data_inputs with
the input for the lfsr and input for the nlfsr loading, the top_data_output for the keystream bit, and the list of
FSM states. The state keywords correspond to the states that will drive the multiplexer control inputs. The last two
rows take care of management, e.g., the target folder for the generated VHDL files and the module name mname for
the top-level entity.

Example 11.3.2

K := GF(2);; x:= X(K, "x");;
f := Z(2)^0 + x^13 + x^23 + x^38 + x^51 + x^62 + x^80;;
g := x_62 + x_60 + ... OMITTED FOR BREVITY .... + x_52*x_45*x_37*x_33*x_28*x_21;;
h := x_1+x_4+... OMITTED FOR BREVITY ....+x_1*x_2*x_4+x_2*x_3*x_4;;
lfsr := LFSR(K, f, [0,3,25,46,64]);; nlfsr := NLFSR(K, g, 80, [0,63]);;
filfun1 := FILFUN(K, h);; filfun2 := FILFUN(K, x);;
input1 := INOUT(UnderlyingField(lfsr), 1);;
input2 := INOUT(UnderlyingField(nlfsr), 1);;
output := INOUT(K, 1);;
fsrlist := [lfsr, nlfsr, filfun1, filfun2];;
arch_instruction := [0,0,0,0];;
top_data_inputs := [input1, input2];;
top_data_outputs := [output];;
fsm_states := ["load", "init", "run"];;
mfolder := "phdGapExamples/FSRtoVHDL/testGRAIN";;
mname := "Grain"; strlist := [mfolder , "test for Grain"];;

↪−→
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11.3.2 FSR-based system configuration

An interactive Manager function is invoked with the setup file as its argument. The Manager parses
the setup file and writes an empty spreadsheet template file *.tsv. At this point, the Manger halts
and waits for the user instruction. The user then fills and stores the spreadsheet, and types “yes”
into the GAP prompt. No further user interaction is required. The Manager function reads back
the spreadsheet, which now contains the configuration for the entire FSR-based system, and begins
with synthesis for the top-level datapath. All submodules are written in the process.

The spreadsheet lists all possible sources as columns and all possible targets as rows. The structure
of the FSR objects is used to write the empty spreadsheet template: each FSR can have only two
data inputs, the load data input i_fsr and the input for the external step i_ext, and a single
output o_fsr. Furthermore, since the FSR objects are simply enumerated by the FSRid (see the
last column in Table 11.3) all rows and columns can easily be extracted from the FSR list and the
list with top-level data inputs and outputs.

Key 11.2: The top-level datapath and configuration template

The top-level datapath is specified with a spreadsheet template that lists all possible sources
as columns and all possible targets as rows. The possible sources are the top-level data
inputs and the o_fsr outputs of all FSRs, and the possible targets are the top-level outputs
and both the i_fsr and the i_ext inputs of all FSRs in the cipher, see Key 11.1. The naming
convention follows fsr_FSRid_i_fsr, fsr_FSRid_i_ext, and fsr_FSRid_o_fsr.

The designer has to fill out the spreadsheet using connector rules, the user-specified FSM state
keywords, and keyword always. The state keywords are used to extract the multiplexers, and the
keyword always is interpreted as a “hard-wired” signal. All state keywords are crosschecked with
the information obtained in the setup file, and any deviation triggers an error.

The connectors are listed in the first column in Table 11.4: merge, split, select, expand and per-
mutation, also depicted graphically. The table contains very simple rules, followed by examples
showing the format of each connector.

rules
source(s) target(s) exclusive same

connector range length positions permutation (sub)field example
merge X X X X [2,1,-1],[-1,-1,0]
split X X X [0,1], [2]
select X X X [1,3]
expand X X X [0,1,1,1]
permutation X X X X [1,3,0,2]

Table 11.4: Connectors for the top-level datapath
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The format of the connectors is very intuitive: connectors are lists of indices of the source signal(s).
As such, one of the rules is that all the values (indices) fall into the range of the source signal(s).
Only the merge connector can have more than one source. The next rule is about the length of the
target signal(s): there must be a driver for each coordinate of the target, hence the length of the
list(s) must match the length of the target signal(s). Only the split connector can have more than
one target. The merge connector example shows two lists of length 3, assuming the target signal
has length 3. In the first list, the last index has a value of -1, indicating this index will come from
another source. Indeed, the second list has the values -1 twice, and than 0 for the last entry. The
positions of the -1 values must be exclusive among all the lists, and eventually, a driver must be
found for each position. The select and expand connectors are quite selfexplanatory, and the only
constraint on the permutation is that it must be an actual permutation of indices where every index
in the range appears exactly once. The last rule checked is the that the indexed values are of the
same type and can be connected with a wire. The FSRtoVHDL package works for F2 or F2m , so
this is a simple check. Basis transitions are not yet supported and must be inserted manually.

The Manager will recognize the connectors in the filled-out spreadsheet (configuration) and check
the rules listed in Table 11.4. For example, if two index lists are found in the same row of the
spreadsheet, they are interpreted as a merge connector. Similarly, an index list that is shorter than
the length of the source signal is interpreted as the select signal. Note that split can always be
regarded as multiple select connectors, which is how the Manager reads the spreadsheet.

i_data_1 i_data_2 fsr_1_o_fsr fsr_2_o_fsr fsr_3_o_fsr fsr_4_o_fsr

o_data_1 × × × × × run

fsr_1_i_fsr load × × × × ×

fsr_1_i_ext × × × × init ×

fsr_2_i_fsr × load × × × ×

fsr_2_i_ext × × [0] run × × init

fsr_3_i_fsr × × [1, 2, 3, 4,−1] [−1,−1,−1,−1, 1] × ×

fsr_3_i_ext × × × [0] × ×

fsr_4_i_fsr × × × × always ×

fsr_4_i_ext × × [0] × × ×

Table 11.5: Grain spreadsheet example

� Implementation detail: The top-level data ports are specified as INOUT objects. These objects have an underlying
finite field F, which is added to the list of all fields in the design, and the duplicate free list of finite fields is used to
write the field_pkg.vhd. Hence, the fields used for the top-level ports have a field identifier Fid, and their VHDL
data types are defined using this Fid. �

Example 11.3.3 Grain – the filled-out spreadsheet template ↪−→

Table 11.5 shows the filled out spreadsheet template (Grain configuration), built from information provided in the
template from Example 11.3.2. The first two columns are the top-level data input ports, i_data_1 and i_data_2, for
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the two INOUT objects in top_data_inputs list in Example 11.3.2. The other columns are the FSR output ports,
obtained from the fsrlist in Example 11.3.2. The first row is the top-level data output port, o_data_1, for the
INOUT in the top_data_outputs list in Example 11.3.2. All other rows are the two possible inputs to the four FSR
objects: the primary data input i_fsr and the external step input i_ext. The names of the FSR objects are as listed
in last column of Table 11.3.1. all fsr_FSRid_* signals will appear as internal signals in the generated VHDL for the
top-level datapath. The easiest way to follow Table 11.5 is to compare it with the schematic in Figure 11.3, which has
annotations for the i_fsr and i_ext inputs to each FSR.

For example, i_data_1 is connected to the i_fsr input of fsr_1 during load, and the fsr_4_o_fsr is connected
to top-level output o_data_1 during run. The fsr_2_i_ext (the nlfsr) is connected to fsr_1_o_fsr[0] dur-
ing run, as indicated by the select rule [0], and fsr_4_o_fsr during init. The fsr_3_i_fsr is connected
to merged signals from fsr_1_o_fsr[1,2,3,4], which correspond to the lfsr stages S 3, S 25, S 46 and S 64, and
fsr_2_o_fsr[1], which corresponds to the nlfsr stage S 63, see the output taps lists in the constructor calls for the
FSRs in Example 11.3.2. The keyword always means the fsr_3_o_fsr will be hardwired to the fsr_4_i_fsr.

↪−→

11.3.3 Extracting connections, multiplexers, and external step conditions

manager toplvl

Write_template Get_fsr_portmap

Parse_template Get_dp_signals

Separate_tables Get_dp_assignments

Extract_extcondition Write_dp_entity

Extract_muxcondition Write_dp_arch

Manager

Table 11.6: Main functionality of the FSRtoVHDL package - continued

The Manager will separate the configuration into three tables that will be used for the extraction
of the connections, external step conditions, and for multiplexers (inferrence):

• conditions: connections, extraction of FSR internal multiplexers use. This table is used for
the method Extract_extcondition

• connectors: connections
• multiplexer conditions: remaining connections and multiplexers. This table is used for the

method Extract_muxcondition

Connections are possible between submodules and to the top-level data inputs and outputs.

The external step condition is set based on the keywords in the conditions table. If in the filled-out
spreadsheet no keyword is given but there is a connector rule present, this cell in the conditions
table is changed to always, and the corresponding FSR gets the f sr_extcond = 0 (the external
step is always used). Only an empty i_ext row will get the f sr_extcond = −1 (the external step
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is never used). If a keyword different from always is found, and only one cell in the row is filled,
the f sr_extcond = 1 is used. The latter case occurred for FSRs fsr_1, fsr_3 and fsr_4 in the
Grain example (Table 11.5). If exactly two cells in the i_fsr row are filled, an multiplexer is
inferred and the corresponding f sr_extcond = 0: the FSR will always use an external step, but a
multiplexer outside the FSR submodule is driving the i_ext port. This is the case for the fsr_2
in in the Grain example (Table 11.5).

The second table is used for rule checking and to specify the connections that depend on the
connectors. The third table, multiplexer conditions, is a reduced version of the conditions table:
all of the “inside FSR already available multiplexers” are removed. As such, it captures the inferred
datapath multiplexers. This table is used to specify additional multiplexer control top-level inputs,
the internal multiplexer signals and for connecting the multiplexer outputs to appropriate targets.
An example of the multiplexer table is shown in Example 11.3.4.

Example 11.3.4 Grain spreadsheet template - continued ↪−→

This example shows the Manager invoked for the setup *.g file from Example 11.3.2, and
the separation of tables. The first two lines of the conditions table are shown, then the output is
omitted for brevity, followed by the multiplexer conditions table, with last four empty rows again
omitted. The latter has only two rows with cells different from “x”. These two rows capture
the two multiplexers shaded grey in Figure 11.3: the output multiplexer in the first row, and the
multiplexer for the i_ext input to fsr_2 (the nlfsr) in the fifth row. The first multiplexer has
one source connected to fsr_4_o_fsr, and the other source hardwired to constant 0, because the
o_data_1 row has only one keyword. The second multiplexer has two keywords, hence its sources
are fsr_1_o_fsr[0]6 and fsr_4_o_fsr.

Example 11.3.3

gap> Manager("phdGapExamples/FSRtoVHDL/exGRAIN.g");
OutputTextFile(/home/.../phdGapExamples/FSRtoVHDL/testGRAIN/Grain.tsv) done!
template ready? [yes/no]
separating tables
[ [ "x", "x", "x", "x", "x", "run" ],
[ "load", "x", "x", "x", "x", "x" ],
... OMITTED FOR BREVITY ....

[ [ "x", "x", "x", "x", "x", "run" ],
[ "x", "x", "x", "x", "x", "x" ],
[ "x", "x", "x", "x", "x", "x" ],
[ "x", "x", "x", "x", "x", "x" ],
[ "x", "x", "run", "x", "x", "init" ],
... OMITTED FOR BREVITY ....

↪−→

6 the value [0] is extracted from the second table, omitted from this example
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Key 11.3: The top-level datapath: connections conditions and multiplexers

The configuration (Key 11.2) is used to extract the connections (internal signals), external
step conditions, and multiplexers (inferrence). If possible, the multiplexers already available
inside FSRs are used. Sometimes, additional datapath multiplexers are inferred.

After separating the tables, the Manager proceeds as follows, using the functions and methods
from Tables 11.2 and 11.6:
• extract external step conditions using Extract_extcondition

• write three packages: the field_pkg.vhd and fsr_pkg (Subsection 11.2.1), and the new
package dp_pkg.vhd.
• for each FSR in the fsrlist:

– call Get_fsr_portmap: the only additional data needed for the port map is the ex-
ternal step condition. The positional port map is generated in the same order as the
entity ports for the FSR object in question. The strings for signal names are the same
as those listed in Key 11.2. The control signals follow similar naming convention:
fsr_FSRid_fsr_en, fsr_FSRid_fsr_load, and fsr_FSRid_c_ext.

– call Write_fsr, as was explained in Subsection 11.2.2

• extract conditions for the inferred multiplexers using Extract_muxcondition: how many
multiplexers per target signal.
• obtain all internal datapath signals and their VHDL datatypes using Get_dp_signals.

These signals will be declared in the architecture of the top-level datapath module. The list
includes all FSR source and target signals (using the naming convention in Key 11.2), and
three signals per inferred multiplexer, namely targetname_mux_#, targetname_mux_#_
src1, and targetname_mux_#_src2, where targetname is one of the target signals and
# is replaced by the consecutive number of the stacked multiplexers7. The VHDL data types
for the FSR signals are obtained using Get_fsr_strings (FSRid) and match the type def-
initions in fsr_pkg.vhd. If a multiplexer is needed for the top-level output port, its VHDL
data type matches the type definition in dp_pkg.vhd.
• finally obtain the combinational assignments (method Get_dp_assignments) using the in-

formation from all three tables8 to to determine the r.h.s. for the assignments. There is one
assignment per target signal when the condition is always or uses an FSR internal multi-
plexer, three assignments per each inferred datapath multiplexer (one for each multiplexer
source, the actual multiplexer using a when/else statement, and the assignment of the mul-
tiplexer output to the target signal), and one assignment for each target signal coordinate
when connectors are used.
• generate the VHDL of the top-level datapath module, using the functions Write_dp_entity

and Write_dp_arch

7 wider multiplexers are implemented using 2/1 multiplexers, hence enumeration is needed
8 conditions, connectors, and multiplexer conditions
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Key 11.4: The structure of the FSR objects and the port map for component instantiations

The port map is obtained from the FSR object structure (Key 11.1) and the external step con-
dition. The positional port map will be generated in the same order as the entity ports for the
FSR object in question. It will include the clock signal and the signals fsr_FSRid_fsr_en
and fsr_FSRid_fsr_load for the (N)LFSRs. The presence of fsr_FSRid_i_ext and its
control signal fsr_FSRid_c_ext depends on the given external step condition. The VHDL
data types are defined in fsr_pkg for the FSR signals, and in dp_pkg.vhd for the top-level
ports.

Example 11.3.5 Grain – the top-level datapath ↪−→

This example shows a small portion of the generated Grain datapath: signal declarations, component instantiation and
combinational assignments for the top-level output port o_data_1 and for the lfsr named fsr_1. The o_data_1
output has an inferred multiplexer. Remaining VHDL code is removed for brevity. The full datapath for the Grain
example, including the dp_pkg.vhd, the entity and entire architecture, is shown in Appendix D.1 in Example D.1.1.

VHDL Example 11.3.5

signal o_data_1_mux_1: top_out_1;
signal o_data_1_mux_1_src1: top_out_1;
signal o_data_1_mux_1_src2: top_out_1;
signal fsr_1_i_fsr: fsr_1_input;
signal fsr_1_i_ext: fsr_1_ext;
... OMITTED FOR BREVITY ....

begin

--submodules
m_fsr_1: entity work.fsr_1(main) port map (fsr_1_i_fsr, fsr_1_i_ext, clk,

fsr_1_fsr_en, fsr_1_load, fsr_1_c_ext, fsr_1_o_fsr);
... OMITTED FOR BREVITY ....

--assignments
o_data_1 <= o_data_1_mux_1;
o_data_1_mux_1 <= o_data_1_mux_1_src1 when mux_1_cntl = ’1’ else o_data_1_mux_1_src2;
o_data_1_mux_1_src1 <= fsr_4_o_fsr;
o_data_1_mux_1_src2 <= o_data_1_zero;
fsr_1_i_fsr <= i_data_1;
fsr_1_i_ext <= fsr_3_o_fsr;
... OMITTED FOR BREVITY ....

↪−→
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Key 11.5: The structure of the FSR objects and the internal signals for the top-level datapath

For each FSR, at most three signals (Key 11.1) need to be declared in the top-level datapath
module: fsr_FSRid_i_fsr, fsr_FSRid_i_ext and fsr_FSRid_o_fsr, i.e., the signals
that also appear as the sources and targets in the spreadsheet template. There are three signals
per each inferred multiplexer, namely targetname_mux_#, targetname_mux_#_src1,
and targetname_mux_#_src2, where targetname is one of the target signals and # is
replaced by the consecutive number of the stacked multiplexers.

11.4 Summary and conclusion

As was mentioned in Chapter 9, there are two architectural decisions – automated design genera-
tion flows through the automation framework. The first architectural decisions – automated design
generation flow is focusing on synthesis for ciphers based on feedback shift registers. It consists of
GAP packages FSR and FSRtoVHDL, whereby FSRtoVHDL relies on the package GAPtoVHDL.
The key insights for the synthesis of FSR based circuits are recalled in Table 11.7.

The FSRtoVHDL package adopts the field identifier Fid from the GAPtoVHDL package and uses
it in the same way (Key 10.1). In addition, an FSR identifier FSRid is used to uniquely identify
FSR objects. Both identifiers are an abstraction to simplify the datapath generation. FSRtoVHDL
generates three VHDL packages: field_pkg.vhd, fsr_pkg.vhd, and dp_pkg.vhd. They in-
clude clusters of type definitions formatted in the same manner: every field in the design has its
own data type and constants, e.g., the zero element. Every FSR in the design has data types for its
ports i_fsr, i_ext, and o_fsr (Key 11.1). Similarly, the top-level inputs and outputs are defined
as a type and the synthesis uses the port identifier for datapath generation.

The synthesis of FSR-based systems relies on their modelling as a collection of FSRs and on
structural similarities between the FSR objects (Keys 11.1 and 11.2). The FSRs can have at most
three data ports. The configuration of the FSRs is provided as a spreadsheet, which is used to infer
all internal datapath signals. The configuration must use the connectors, e.g., merge, select, etc.,
to specify how to use the individual (coordinates of) internal signals. The configuration is used to
extract the connections, external step conditions, and multiplexers (Keys 11.3-11.5).

The FSRtoVHDL package contains an interactive function called Manager. The user must under-
stand how to model the cipher as a collection of FSR objects and how to capture this information
in a setup file. Manager is invoked with the setup file as its argument; it parses the setup file and
writes an empty spreadsheet template file *.tsv. At this point, the Manger halts, and waits for the
user instruction: user stores the configuration, then types “yes” into the GAP prompt. No further
user interaction is required. The Manager function reads back the configuration and begins with
synthesis for the top-level datapath.

The setup file for the Grain examples presented in this chapter (Examples 11.2.4 and11.3.1-11.3.5)
contains only 16 lines of GAP code (Example 11.3.2). The Manager generates 14 VHDL files for
the implementation of entire Grain datapath.
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Classification of the feedback expression (Key 10.4) is used to determine how to generate the FSR
datapath. The FSRtoVHDL package has no means of generating submodules such as extension
field multipliers. This limitation is bypassed by generating black-box feedbacks for NLFSRs and
FILFUNs over extension fields. This is also the only chunk of generated code that is not synthe-
sizable.

One option to include this functionality is to build a database of basic building blocks. Another
solution is to synthesize the submodules on the fly. The latter is implemented as a part of the
CIRCUIT package (Chapters 12-16), which can write arbitrary datapaths over arbitrary fields.

Key 11.1: The structure of the FSR objects XX Section
FSR objects are structured very consistently: each FSR has two data inputs, the loading input i_fsr 11.2
and the external step input i_ext, and one output called o_fsr. Their VHDL data types are defined
in fsr_pkg.vhd and easily accessible via the the FSRid.

Key 11.2: The top-level datapath and configuration template XX Section
The top-level datapath is specified with a spreadsheet template that lists all possible sources as columns 11.3
and all possible targets as rows. The possible sources are the top-level data inputs and the o_fsr

outputs of all FSRs, and possible targets are the top-level outputs and both the i_fsr and the i_ext
inputs of all FSRs in the cipher, see Key 11.1. The naming convention follows fsr_FSRid_i_fsr,
fsr_FSRid_i_ext, and fsr_FSRid_o_fsr.

Key 11.3: The top-level datapath: connections conditions and multiplexers XX Section
The configuration (Key 11.2) is used to extract the connections (internal signals), external step condi- 11.3
tions, and multiplexers (inferrence). If possible, the multiplexers are already available inside FSRs
are used. Sometimes, additional datapath multiplexers are inferred.

Key 11.4: The structure of the FSR objects and the port map for component instantiations XX Section
The port map is obtained from the FSR object structure (Key 11.1) and the the external step condi- 11.3
tion. The positional port map will be generated in the same order as the entity ports for the FSR object
in question. It will include the clock signal and the signals fsr_FSRid_fsr_en and
fsr_FSRid_fsr_load for the (N)LFSRs. The presence of fsr_FSRid_i_ext and its control sig-
nal fsr_FSRid_c_ext depends on the given external step condition. The VHDL data types are defined
in fsr_pkg for the FSR signals, and in dp_pkg.vhd for the top-level ports.

Key 11.5: The structure of the FSR objects and the internal signals for the top-level datapath XX Section
For each FSR, at most three signals (Key 11.1) need to be declared in the top-level datapath module: 11.3
fsr_FSRid_i_fsr, fsr_FSRid_i_ext and fsr_FSRid_o_fsr, i.e., the signals that also appear as
the sources and targets in the spreadsheet template. There are three signals per each inferred multi-
exer, namely targetname_mux_#, targetname_mux_#_src1, targetname_mux_#_src2, where
targetname is one of the target signals and # is replaced by the consecutive number of the stacked
multiplexers.

Notes: XX - solved

Table 11.7: Summary of key insights to the FSRtoVHDL package - listed chronologically
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Chapter 12

CIRCUIT package: generating arbitrary
datapaths

12.1 Overview

alg.

gen.

arch.

Overview of the CIRCUIT package:

FSRtoVHDL

GAPtoVHDL

CIRCUIT

This package is the heart of the automated design entry and implemen-
tation. It is general enough to be able to generate arbitrary datapaths,
i.e., hardware modules for expressions defined over multiple finite
fields, including isomorphic field constructions and tower fields, even
within the same module. The field structure was captured with the GAP

objects SignalDomain, SIGNAL, and SignalPkg. They provide a way to systematically enter and build all the data
types needed in a particular design, and allow a finite field to be viewed as a vector space. The SignalPkg is, for
all practical purposes, just a list of SIGNALs, i.e., data types, sorted following a top-down modular approach
to hardware design: the submodules are expected for the subfields. The index at which a data type is
stored is used as a field identifier Fid. The first step towards design automation is the functional des-
cription of the algorithm. It allows variable binding, classification of expression(s) given by the algorithm, and
signal and submodule extraction (but not submodule generation). It provides the starting point for the automation,
but not automation itself. The functional description, together with the SignalPkg and submodule instru-
ctions, is then transformed into a VHDL-ready design, that serves as a basis for the generation of VHDL files.
The submodules are extracted and generated on the fly, using FFCSA package methods, listed as submodule instru-
ctions. The CIRCUIT package generates the entire datapath, including all submodules. For the generated modules
and all their submodules, the testbenches, testvectors and simulation scripts are generated as well.

12.2 Roadmap

The CIRCUIT package is large and will be explained in many chapters (Chapters 12-16). The
boxed “overview” sections and “summary of key insights” sections at the beginning and at the end
of each chapter help to follow different stages through the design flow diagram from Figure 12.1.
The part of the design flow in the magnifying glass will be used as orientation as well. As was
already mentioned, the magnifying glass shows some intersection with the architectural decisions.
The second architectural decisions – automated design generation flow involving the CIRCUIT
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Figure 12.1: Design flow: the automated design generation

package will explain why the transition is not as strict as shown in the design flow diagram. Tables
12.1 and 12.2 show an overview of examples in Chapters 12-16, examples moved to appendix,
and related examples (columns Related Ex.). The first column gives the subsection in which the
example can be found, the second column “Ex.” the example number, the third column the example
title and short description.

The structure of the remainder of Part IV is as follows:

• CIRCUIT package part 1: arbitrary finite fields - Chapter 13

– Motivation (Section 13.1)
– The signal domains and signals (Section 13.2)
– The signal package - keeping it all in one place (Section 13.3)
– Summary of key insights (Section 13.4)

• CIRCUIT package part 2: functional description of the algorithm - Chapter 14

– The functional description of the algorithm (Section 14.1)
– The datapath based on classification of expressions (Section 14.2)
– Summary summary of key insights (Section 14.3)

• CIRCUIT package part 3: VHDL-ready design - Chapter 15

– The initial design (Section 15.1)
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– Top-down processing (Section 15.2)
– Bottom-up processing (Section 15.3)
– Connectors for the tower field elements and vectors (Section 15.4)
– Putting it all together (Section 15.5)
– Summary of key insights (Section 15.6)

• CIRCUIT package part 4: generating VHDL for the datapath - Chapter 16
– VHDL packages (Section 16.1)
– VHDL (sub)modules (Section 16.2)
– Testbench generation (Section 16.3)
– Switching the the field structure for profiling (Section 16.4)
– Summary and conclusion (Section 16.5)

Section Ex. Title and keywords GAP VHDL Related Ex.

CIRCUIT package part 1: arbitrary finite fields - Chapter13

Section13.2
13.2.1

Using different tower field constructions: D.2.1
The signal domains why storing a construction trail across D.2.2

and signals is necessary D.2.4
Appendix D.2 D.2.1 Example 13.2.1 - continued X

Section13.2
13.2.2

SIGNAL for an expression defined over
The signal domains F28 :why both, finite field (element) and

and signals vector space (vector) SIGNALs are needed

Appendix D.2 D.2.2
SignalDomain and SIGNAL objects:

Xexample showing field elements and “just
vectors”

Appendix D.2 D.2.3 SignalPkg example for F24 X D.5.3
Section13.3

13.3.1
SignalPkg example for the tower field

X

D.2.4
The signal package construction F((22)2)2 : this SignalPkg will 13.3.2

be used for the running example (13.1) 15.2.1
Section13.3

13.3.2

SignalPkg example for the tower field
The signal package construction F((22)2)2 - continued:

graphical representation of SignalPkg
from Example 13.3.1

Appendix D.2 D.2.4
SignalPkg example for different tower

Xfield constructions of F((22)2)2 : both cons-
tructions from Example 13.2.1

CIRCUIT package part 2: functional description of the algorithm - Chapter14

Appendix D.3 D.3.1
Functional description for the running

Xexample (13.1) expression defined over
the tower field F((22)2)2

Table 12.1: Examples in Chapters 13 and 14
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Section Ex. Title and keywords GAP VHDL Related Ex.

CIRCUIT package part 3: VHDL-ready design - Chapter15

Section 15.2 15.2.1 Datapath synthesis for an expression
Top-down over F((22)2)2 15.3.1
processing – top-down processing

Section 15.3 15.3.1 Datapath synthesis for an expression
Bottom-up over F((22)2)2

processing – bottom-up processing

Appendix D.4 D.4.1 Example 15.3.1 continued:
X

the VHDL-ready design
Section 15.3

15.3.2
Declarations for additive constants

XBottom-up in F((22)2)2 : using directed
processing graph for the constant

Section 15.4 15.4.1 Connectors for the tower field elements
X

16.1.1
Connectors and vectors in F((22)2)2

Section 15.5 15.5.1 Datapath synthesis for an expression
Putting it over F((22)2)2 – revisited:

all together summary of Ex. 15.2.1 and 15.3.1

CIRCUIT package part 4: Generating VHDL for the datapath - Chapter16

Appendix D.5 D.5.1 A full field_pkg.vhd example for F((22)2)2 X

Section 16.1 16.1.1 The connectors_pkg.vhd for the type
X

16.2.1
VHDL packages conversion functions: declarations

Section 16.2 16.2.1 Example of connectors and input registers
X

VHDL (sub)modules in the architecture: type conversions
Section 16.2

16.2.2
Example of architecture body for an expre-

XVHDL (sub)modules ssion defined over F((22)2)2 : for the running
example (13.1)

Section 16.2 16.2.3 Example of registered vector output:
X

VHDL (sub)modules submodule Fid2_mult for F22 mult

Appendix D.5 D.5.2 Squaring for a polynomial basis: steps for
X

writing the datapath, partial binding (Key 14.2)

Appendix D.5 D.5.3

A F24 multiplier - full example:

X X
illustrates AlgDesignWriteTop, full binding
(Key 14.2), the difference between element
and vector ports

Table 12.2: Examples in Chapters 15 and 16
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Chapter 13

CIRCUIT package part 1: arbitrary finite
fields

13.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

13.2 The signal domains and signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

13.3 The signal package - keeping it all in one place . . . . . . . . . . . . . . . . . . . 175

13.4 Summary of key insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

alg.

gen.

arch.

Overview of the CIRCUIT package part 1:

FSRtoVHDL

GAPtoVHDL

CIRCUIT

– support for arbitrary finite fields –
Encoding of the finite fields and bases used in the design is required for
VHDL datatypes and for generation of submodules. The GAP object
SignalDomain stores information about the underlying finite field, basis
used, basis direction, length, and the construction trail across the subfields.

This amount of information is needed to capture tower field constructions and to distinguish isomorphisms.
The GAP object SIGNAL allows to view a finite field as a vector space. It holds the SignalDomain and
and the “vector (space)” parameters length, direction, and an (optional) interpretation basis. SIGNAL
allows for the distinction of (field) elements and vectors. All the VHDL data types used in the design are the
SIGNAL objects translated into VHDL. The SignalPkg object holds all SignalDomains and SIGNALs. The sorting
of SIGNALs follows the top-down modular approach to hardware design: the submodules are expected for the
subfields.

13.1 Motivation

13.1.1 The running example

The following example is used to explain some challenges related to implementing an arbitrary dat-
apath, and to show that a new package with capabilities beyond GAPtoVHDL and FSRtoVHDL is
needed. Consider the expression with indeterminates a, b, c ∈F and two arbitrary nonzero coeffi-
cients γ1, γ2 ∈F :

z = γ1a · b · c + a2 + γ2 (13.1)
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Expression (13.1) is given in ANF (equation (10.1)), and there is no restriction on γ1 and γ2 being
different. The expression (13.1) is considered over three different finite fields F � Fq, q ≥ 2:

• F2, discussed in example 13.1.1,
• F28 , discussed in example 13.1.2, and
• F((22)2)2 , discussed in example 13.1.3.

Expression (13.1) defined over F((22)2)2 (example 13.1.3) will be used as a running example through-
out the remainder of Part IV.

Example 13.1.1 Expression defined over F2

When a, b, c ∈ F2, squaring is idempotent, i.e., a2 = a (recall the generalization of Fermat’s little
theorem in equation (3.2)). Furthermore, since γ1, γ2 ∈ F2 are nonzero, the expression simplifies
to

z = a · b · c + a + 1 (13.2)

The F2 addition is implemented as an XOR gate and multiplication as an AND gate. All the ports and
signals are 1 bit wide and implemented in VHDL as std_logic. The circuit schematic is shown
in Figure 13.2(a).

Example 13.1.2 Expression defined over F28

When expression (13.1) is defined over F28 , there are no simplifications. The field elements are rep-
resented using a basis of length 8, e.g., a polynomial basis. Then all the ports and signals are 8 bits
wide and implemented in VHDL as std_logic_vector(0 to 7). This example corresponds to
the right side of the diagram in Figure 13.1.

The F28 addition is implemented as bit-wise XOR, but submodules are needed for multiplication M,
squaring SQ, and multiplication with constant ×γ1. γ1 is called multiplicative constant and γ2 an
additive constant, to differentiate between constants that infer submodules and constants that only
require bit-wise XOR gates. The circuit schematic is shown in Figure 13.2(b).

Example 13.1.3 Expression defined over F((22)2)2

When expression (13.1) is defined over F((22)2)2 , there are no simplifications.

Recall example 7.3.1 from Subsection 7.3.1. An element X ∈ F((22)2)2 is represented using a “per-
level” polynomial basis of the form BF((22)2)2/F(22)2

= {1, ρ}, where ρ is a root of the extension defining
polynomial f3(x): X = x0 + x1ρ, where x0, x1 ∈ F(22)2 . The 8-bit wide signals must now be
represented as two coordinates of four bits each. Following Example 7.3.1, it is clear that elements
in F(22)2 must be represented as two coordinates of two bits each. Each of these two coordinates can
be represented as std_logic_vector(0 to 1). On each level of the tower, the elements will
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be represented as arrays/vectors of length two, e.g., array(0 to 1), but for F(22)2 and F((22)2)2 , the
following question, shown graphically in Figure 13.1, arises: array of ???, i.e., array of what?.
It is clear that the what will be the type of the subfield, but it is not yet clear how to capture this
information in GAP.

The F((22)2)2 addition is implemented as bit-wise XOR, but submodules are needed for multiplication,
squaring, and multiplication with constants. Because the multiplier is working over a tower field
F((22)2)2 , it will need multipliers in F(22)2 , which in turn will need multiplications in F22 . Similarly,
squarers and multipliers with constants will also need submodules.

array (0 to 1) of ??? - F((22)2)2 � F28 � std_logic_vector(0 to 7)

array (0 to 1) of ??? - F(22)2

2

-

F22 �
�

2

std_logic_vector(0 to 2)

F2

8

6

�

�
2

std_logic

Figure 13.1: Construction of finite fields F((22)2)2 and F28 and VHDL signals

13.1.2 Analysis

Examples 13.1.1,13.1.2, and 13.1.3 identify the following problems:

(a) are there algebraic simplifications (example 13.1.1),
(b) how to obtain the submodules (examples 13.1.2 and 13.1.3)
(c) which data type should be used for the VHDL signals? ( example 13.1.3).

The problem (a) was addressed with miscellaneous methods from the FSR package Reduce-
MonomialsOverField1 and DegreeOfPolynomialOverField. These methods are the first ex-
ample of connecting an expression to a particular finite field.

1 CIRCUIT package expects expressions to already have all their exponents reduced, i.e., no further simplifications
like the one in example 13.1.1 are possible

165



ba c

1

z
(a) Expression (13.2) over F2
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(b) Expression (13.1) over F28

Figure 13.2: Circuit schematics (top-level modules) for expression (13.1): solid lines represent the ports and dashed
lines the internal signals, boxes show the submodules needed: SQ - squarer, M - multiplier, ×γ1 - multiplication with a
constant γ1

FSR objects operate over one field, stored as the attribute UnderlyingField: feedbacks and filter-
ing functions are defined over that field. This is binding per hardware module, not per expression,
although each FSR object has only one expression. The first step in addressing problems (b) and
(c) is to bind an expression to a finite field. This binding is achieved by introducing a new GAP
object2 that will hold both the expression and the finite field over which it is defined.

To obtain the submodules, the underlying finite field and the basis used must be known (problem
(b)). There are two options: (i.) fetch the appropriate submodule from a library, and (ii.) generate
the submodule on the fly. The current CIRCUIT package generates the submodules on the fly,
using the FFCSA package methods listed in Table 7.5 to obtain the expressions for submodule
implementation. The FFCSA methods for generating submodule expressions require the finite field
and/or basis as input, but they do not store this information. Furthermore, as shown in Example
13.1.3, submodules must be generated for different levels of the tower field, implying more than
one finite field is needed per design (problem(c)). Hence, there is no strict separation between
problems (b) and (c).

Key 13.1: How to obtain the (sub)modules - binding expressions to finite fields

The first step in addressing this problem is to bind the expressions to the finite fields over
which they are defined. The submodules are generated for the subfield operations. Knowing
the subfield, its basis and direction, the expressions for the submodules are generated on the
fly, using the FFCSA methods.

2 AlgFunctionality, Section 14.1
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13.2 The signal domains and signals

The encoding of the finite fields (and bases) used in the design is required for the implementation
of VHDL ports and signals and for the submodules, as was identified in example in Section 13.1.
In the case of FSR objects, the encoding of the finite field, i.e., which data type to use for the VHDL
signals (motivation problem (c)), was addressed by storing a single UnderlyingField attribute.
All ports and signals for the FSR objects were of elements or arrays of elements of the type given
by the UnderlyingField . That means that as soon as the FSR object is created, so is the “world” it
lives in.

The CIRCUIT package is intended to be more general and hence very powerful. Within the same
top-level module, it should be possible to implement expressions

• defined over different finite fields, e.g., F23 and F28

• defined over a tower field, e.g., F((22)2)2

• defined over several isomorphic finite fields using different bases, e.g., PBF28/F2 and NBF28/F2 ,
including different tower field constructions

The field structure was captured by creating GAP objects SignalDomain (Subsection 13.2.1), SIG-
NAL (Subsection 13.2.2) and SignalPkg (Section 13.3). These objects provide a way to systemat-
ically enter and build all the data types needed in a particular design.

13.2.1 The SignalDomain

The SignalDomain object serves as an umbrella for UnderlyingField, with additional informa-
tion about the basis and direction used. From a mathematical perspective, it seems strange to talk
about the length3 or direction of a field element, two concepts that are very natural to a hardware
designer. Similarly, from a hardware perspective, it is not common to talk about a basis; the basis
is merely the mathematical interpretation of the signals.

The basis and direction must be fixed before writing the VHDL. Furthermore, they are mandatory
for generating the submodules on the fly, which makes them the most important information. The
length is simply the number of basis elements and is stored as attribute Length for convenience.
Unless stated otherwise, this work assumes direction “to”. All attributes of SignalDomain are
summarized in Table 13.1.

The last piece of information is the tower field construction itself, which is stored as a list of
all previous SignalDomain objects. It forms the construction trail across the subfields, stored
as the SubSGDtower attribute. New notation is introduced for SignalDomain: Sr, where r is a
counter, starting from 1, i.e., S1 for a SignalDomain object with F2 as the underlying finite field.
Because multiple SignalDomain objects can have the same UnderlyingField attribute, as will
be shown in Example 13.2.1, the usual notation with field size, e.g., F((22)2)2 and S((22)2)2 , is not
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SignalDomain Sr

attribute comment

UnderlyingField the finite field Fq

UnderlyingBasis basis B used for representation of elements of Fq

BasisDirection basis direction “to” or “downto”
Length length of the basis B (degree of extension)

SubSGDtower a list of SignalDomain objects for all subfields, ordered by
increasing degree over the prime field, -1 when q = 2

Table 13.1: Main functionality of the CIRCUIT package - the SignalDomain attributes

enough to uniquely identify a particular signal domain. Example 13.2.1 illustrates why the tower
field construction information is mandatory for successful VHDL implementation.

Key 13.2: The SignalDomain: the bases and the field construction trail

Encoding of the finite fields and bases used in the design is required for VHDL data types
and for generation of submodules. The GAP object SignalDomain stores information about
the underlying finite field, basis used, basis direction, length, and the construction trail across
the subfields. This amount of information is needed to capture tower field constructions and
to distinguish isomorphisms.

Example 13.2.1 Using different tower field constructions ↪−→

The diagram in Figure 13.3 shows how different constructions of the finite field F((22)2)2 . The first and the last level of
the tower are constructed in the same manner, using the same (only) irreducible polynomial and the same basis for the
representation of the elements. The middle level, however, is constructed in two different ways, yielding two different
constructions. The construction on the left branch of the diagram in Figure 13.3 shows the extension field defining
polynomial f2,1(x) = x2 + λx + 1, and the construction on the right branch of the extension field defining polynomial
f2,2(x) = x2 + λx + λ. The two polynomials have different roots µ1 , µ2, where f2,1(µ1) = 0 and f2,2(µ2) = 0. The
distinction between the left and the right branch is very important: the submodules for computation using basis B1 will
differ from the submodules for computation using B2. For clarity, all the constants are given w.r.t. a reference field
defining polynomial RDP, listed in Table D.1.

Reference Reference field defining Root of Constants w.r.t.
finite field polynomial - RDP pi(x) RDP pi(x) root of RDP

F28 p3(x) = x8 + x4 + x3 + x2 + 1 p3(ν) = 0 ν3 = ν15

F24 p2(x) = x4 + x + 1 p2(µ) = 0 µ1 = µ6, µ2 = µ7

F22 p1(x) = x2 + x + 1 p1(λ) = 0

Table 13.2: Reference polynomials and their roots

3 length of the basis
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The UnderlyingField attribute stores the information about the degree of extension for each level, e.g., AsField(
AsField( GF(2ˆ 2), GF(2ˆ 4) ), GF(2ˆ 8) ), but not about the “per-level” bases (PLB) used. This information
is captured by SubSGDtower. The GAP Example D.2.1 in Appendix D.2 shows the two tower field constructions
from diagram in Figure 13.3 captured in GAP as SignalDomain objects.

SD︷ ︸︸ ︷
F((22)2)2 BF

((22)2)2
/F

(22)2
={1,ν3}

SE︷ ︸︸ ︷
F((22)2)2

f3(x)=x2+µ3 x+1
f3(ν3)=0

B1={1,µ1}

SB︷︸︸︷
F(22)2

f3

6

SC︷︸︸︷
F(22)2

f3

6

B2={1,µ2}

f2,1(x)=x2+λx+1
f2,1(µ1)=0

f2,2(x)=x2+λx+λ

f2,2(µ2)=0

SA︷︸︸︷
F22

f 2,2

-
�

f2,1

S︷︸︸︷
F2

f1=p1

6

Figure 13.3: Two different tower field constructions

↪−→

13.2.2 The finite field as a vector space and the SIGNAL object

SIGNAL4 is a new GAP object, that defines field elements or vectors. A vector is an array of given
length, and its coordinates belong to a field. The simple case is an arbitrary vector (“just vector”),
and a more complex case is a vector that belongs to a vector space (interpretation of a finite field).
The object SIGNAL is a wrapper for SignalDomain, and stores additional information that allows
for the distinction between elements and vectors. All VHDL data types needed for the datapath are
SIGNAL objects, translated into VHDL.

While it is easy for the designer to switch between an input as an element of the finite field Fqm and
vector space Fm

q , for successful VHDL implementation this information has to be captured in GAP.
The SignalDomain can be implicitly treated as a vector space, but it does not hold “just vectors”.

4 using the capital letters to differentiate the GAP object SIGNAL from a VHDL signal
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The design can require signals that are vectors, without the notion of a vector space, e.g., the shift
register for an FSR object or the input to function h(x) in Grain [46].

� Discussion: In the case of tower field construction, e.g., F((22)2)2 , the problem is the type
of the lower level, i.e., array of what, array(0 to 1) of ???. The problem was explained in
more detail in motivation Examples 13.1.2 and 13.1.3, and represented graphically in the diagram
in Figure 13.1. When the finite field is constructed as a single extension, e.g., F28 , the ports and
signals are defined as std_logic_vector(0 to 7), which is equivalent to array (0 to 7)
of std_logic. VHDL array (vector) types have coordinates5 that belong to some given domain.
For F2m the coordinates belong to std_logic and the array itself is of type std_logic_vector(0
to m-1). The answer to the question array of what? is the given domain. In the case of the finite
field Fqm , q = 2p and p,m > 1, the domain is Fq and the dataype for implementing the field elements
of Fqm an array (vector) type of length m. That is, the data type defines vectors of length m over Fq,
i.e., Fm

q rather than Fqm . �

Key 13.3: The SIGNAL: finite field as a vector space and “just vectors”

For the designer it is easy to switch between an input as element of the finite field Fqm

and vector space Fm
q , but for successful VHDL implementation this information has to be

captured in GAP. Furthermore, the given algorithm can require “just vectors”, that are not
elements of a given finite field, i.e., vector space, however, these vectors have coordinates
from a given finite field, i.e., a given SignalDomain. The SignalDomain was embedded
into another GAP object called SIGNAL, which holds the SignalDomain and the “vector
(space)” parameters length m, the direction, and an (optional) interpretation basis. They
allow a distinction of (field) elements and vectors. All the VHDL data types used in the
design are SIGNAL objects, translated into VHDL.

There are two categories of SIGNALs, elements and vectors. The SIGNAL object is shown in
Table 13.3, and columns mentioned below refer to this table. Let Sr be the SignalDomain for Fq,
q ≥ 2, and S1 will be used for the special case q = 2. The following distinction (and notation) of
SIGNAL objects is based on the length m:
• an element is a SIGNAL of length m = 1 with the signal domain Sr, denoted:

F (Sr, 1,−,−) ∼ Fr (13.3)

It is a SIGNAL representation, i.e., embedding, of the SignalDomain Sr, and hence an
element of the finite field Fq, represented by Sr:

– for q = 2, the F1 represents S1 and hence elements of F2 (column 1).
– for q = q′ p and q′ ≥ 2 and p > 1, Fr represents Sr and hence elements of the finite

field Fq, which is an extension the finite field Fq′ (column 2).
5 word “coordinate” is preferred to the word “component” to distinguish between vector coordinates and the

hardware components implemented as submodules
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• a vector is a SIGNAL of length m > 1 over the signal domain Sr, denoted:

V (Sr,m, d, B) (13.4)

The coordinates of V (Sr,m, d, B) belong to the finite field Fq of the signal domain Sr, but
the vector itself can be either a vector space representation of the next extension (r n for
r-next) Sr n for Fqm with direction d and basis B, or a “just vector” over Fq. If it is a vector
space representation of a finite field Fqm , the basis is set to B, otherwise this component is −.
Again, the distinction is made based on Fq of the Sr:

– for q = 2, V (S1,m, d, B) represents vectors over F2 (column 3)
– for q > 2, V (Sr,m, d, B) represents vectors over an extension field Fq (column 4)

Both element columns in Table 13.3 consider vectors of length 1 over the domain specified in the
first half of Table 13.3: there is no notion of basis or direction (hence − in rows 9 and 10). The
two vector (space) columns consider the actual vectors of length m, with coordinates from the
SignalDomain S specified in the first half of the table. The row “vector (space)” Fm

q , is implicitly
defined by the underlying finite field Fq (row 2) of its signal domain Sr (row 1) and by the length
m (row 8). This interpretation is also valid for the first two columns, with elements viewed as
vectors of length m = 1. The “just vectors”, which do not belong to a vector space, also do not
have a basis, hence the last row is the only row without the “always exists” checkmark X. When
the vectors represent finite field elements, the basis of that field is considered as an interpretation
of the vector coordinates (row 10, note [7] in Table 13.3).

VHDL has no notion of basis as such, and the interpretation basis is used by other GAP methods
to generate the expressions for implementation of submodules and for the testbenches (note [4] in
Table 13.3). The direction is only needed for the VHDL (row 9, note [3] in Table 13.3), and for
some FFCSA package methods that have adopted the notion of direction from VHDL.

Table 13.4 shows three levels of a tower field construction Fq′ → Fq → Fqm , where q = q′ p, the
corresponding signal domains are Srp → Sr → Sr n. The notation rp stands for “r previous”
and rn for “r next”. This general setting corresponds to column 4 in Table 13.3. The element Fr n

is the embedding of the signal domain Sr n into a SIGNAL. The vector Vr n is the vector space
representation of the signal domain Sr n; but its coordinates belong to the subfield, i.e., Sr. The
UnderlyingBasis (row 5 in Table 13.3) of an element SIGNAL is the interpretation basis (row
10 in Table 13.3) of the vector SIGNAL obtained when viewing the finite field as a vector space.
The following abbreviation is used for vector space notation:

V (Sr,m, d, B) ∼ Vr n (13.5)

Similarly, when direction d is fixed, parameters can be omitted from “just vector” notations:

V (Sr,m, d,−) ∼ V (Sr,m) ∼ V m
r (13.6)

The first column in Table13.3 shows elements of the ground field F2 and has the same entries in
both halves of the table. When viewing finite fields as vector spaces, there is an overlap between
an element Fr and vector Vr in columns 2, 3, and 4 in Table 13.3 for the following cases:
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finite field Fq′ → Fq → Fqm

signal domains Srp → Sr → Sr n

elements Frp F (Sr, 1,−,−) ∼ Fr F (Sr n, 1,−,−) ∼ Fr n

vectors Vrp V (Srp,m, d, B) ∼ Vr V (Sr,m, d, B) ∼ Vr n

Table 13.4: The SIGNALs for three levels of a tower field

• q = 2p for column 2 and m = p for column 3
• p = m for column 2 and q = q′ for column 4

In both cases above, the element Fr is the embedding of the signal domain Sr into a SIGNAL, and
the vector Vr is the vector representation of the signal domain Sr. For the first item above, q = 2p,
the subfield is the prime field, i.e., q′ = 2 with the corresponding Srp = S1. For the second case,
the subfield is itself an extension field, i.e., q′ > 2, and its corresponding signal domain is Srp.
Both the element Fr and the vector space Vr represent Sr for q = q′ m.

Because of this overlap, the implementation of a SIGNAL as both, a finite field (element) and a vec-
tor space (vector) seems redundant. The dual representation was chosen for automated submodule
generation and checking purposes: there is a binding between the expressions defining a datapath
and the ports of the hardware module. Recall Example 13.1.2, implementing expression (13.1):
the ports and internal signals in the top-level module in Figure 13.4(a) are elements Fr, where Sr

is the signal domain for Fm
2 , m = 8. Then, the submodules for squaring, multiplication and multi-

plication by a constant must be generated. The submodules have to implement one expression per
output coordinate; hence, the submodule ports are declared as vectors V (S1,m, d, B) ∼ Vr. Know-
ing the length of the output port allows for a correctness check: the number of expressions must
match the Length (row 8) of the SIGNAL used for modelling the output port. For the top-level
module, one expression, namely expression (13.1) is needed for an element output port of length 1.
For a submodule, e.g., SQ, m expressions to drive m coordinates must be generated for a successful
implementation. A submodule with annotations is shown in Figure 13.4(b) in Example 13.2.2.

Example 13.2.2 SIGNAL for an expression defined over F28

Example 13.1.2, implementing expression (13.1), is expanded to explain why both, a finite field (element) and a vector
space (vector) SIGNALs are needed. Figure 13.4(a) shows the same circuit schematic as figure Figure 13.2, but
annotated with element SIGNALs F 1

r , where Sr is the signal domain for Fm
2 , m = 8. A submodule, e.g., squarer SQ,

is shown in Figure 13.4(b): the submodule input and output port are vector SIGNALs Vr ∼ V m
1 , which are internally

shown as m SIGNALs V1. From the submodule’s point of view, the ports are vectors in a vector space (interpretation
of a finite field).
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(a) Top-level module with F 1
r

combinational
logic

(b) Submodule with F 1
r , V m

1 and V1

Figure 13.4: Circuit schematics annotated with SIGNAL and sub-signal showing the elements and the vectors for: (a)
top-level module for expression (13.1) and (b) a submodule with 1 input port and 1 output port

Key 13.4: How to obtain the (sub)modules - correctness check based on the output port
length

The submodules have to implement one expression per output coordinate. Hence, the num-
ber of (generated) expressions must match the Length of the SIGNAL(s) used for modelling
the output port(s) of the (sub)module.

13.2.3 Methods for SignalDomain and SIGNAL objects

There are several methods implemented for the SignalDomain and SIGNAL objects, listed in Table
13.5. SGDToSIGNAL embeds the SignalDomain Sr into the SIGNAL Fr. ExtractSIGNALType
takes a SIGNAL sig and returns a list that contains the UnderlyingSignalDomain (rows 2-6 in
Table 13.3), the Length, direction and basis (rows 8-10 in Table 13.3), i.e., the rows with X in
the column “SIGNAL type” in Table 13.3. The information captured by the SIGNAL type is used to
compare and manipulate the lists containing SIGNALs. It is also used as a short way of accessing
the vital information stored by the SIGNAL. SIGNAL objects have some components not listed
in Table 13.3, e.g., label, which are not used for the comparison. Example D.2.2 in Appendix
D.2 shows the SignalDomain and SIGNAL objects for two signal domains and three signals for
elements F1 and for the “just vector” V 5

2 .

Recall the tower field construction Fq′ → Fq → Fqm , where q = q′ p and q′ ≥ 2 and p,m > 1,
shown in the first two rows of Table 13.4. The expanded notation for elements and vectors in
the last two rows nicely shows that the Fr is the element representation of the “current” signal
domain, but vector V (Sr,m, d, B) is the vector space representation of the“next” signal domain
Sr n. The vector is sorted by its coordinates, i.e., the “current” signal domain Sr. All SIG-
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object method description notes

SignalDomain \ = comparing two SignalDomain objects

SGDToSIGNAL embed SignalDomain into SIGNAL

SIGNAL ExtractSIGNALType return the SIGNAL type [1]

SameSIGNALType comparing the types of two SIGNALs [1]

DuplicateFreeSIGNALList remove duplicates [2,5]

SortedSIGNALList first sort by Length, second by F [2,3,4,5]

Notes:
[1] see Table 13.3 column SIGNAL type [2] based on the SIGNAL type
[3] F=UnderlyingField( UnderlyingSignalDomain( sig )) [4] adds any missing signals to the list

for each SIGNAL sig [5] see Key 13.5

Table 13.5: Main functionality of the CIRCUIT package - methods for the SignalDomain and the SIGNAL

NALs with UnderlyingSignalDomain Sr are sorted together, which implies the order Fr,Vr n,
because 1 < m. Assuming the list of SIGNALs contains the element and vector SIGNALs
for all three fields (rows 3 and 4 in Table 13.4), the order produced by SortedSIGNALList is
Vrp,Frp,Vr,Fr,Vr n,Fr n.

13.3 The signal package - keeping it all in one place

To keep all the field(s) information in one place, a new object, called SignalPkg, is created. It
stores all SIGNALs used in the design as a list. The SignalPkg is parsed and used as input for the
GAPtoVHDL function Write_field_pkg listed in Table 10.1: every signal type, encountered in
the SignalPkg object, becomes a VHDL data type.

The SignalPkg has three components to hold three lists, SignalDomainList, SIGNALList, and
SIGNALTypeList, and methods for the creation and entry of signals (see Table 16.1):

• SignalPkg() is the constructor call for a signal package with signal domain S1 and the
signal F1 for elements of the finite field F2

• DefaultSignalPkg(m) adds the signal for the elements of the finite field F2m using the
polynomial basis with direction “to”, and the signal for the “just vectors”6 of length 2m − 1
and direction “to” with coordinates from F2, i.e., it returns a signal package with ordered
SIGNALs F1, Vr, V 2m−1

1 ,Fr, where Sr is the signal domain for F2m .
• AddFieldToSignalPkg( pkg, sgd, B, dir ): let Fq be an extension of degree m over Fq′ and

B the basis of Fq/Fq′ . Let sgd = Srp be the signal domain of the base field Fq′ and Sr the
signal domain of the extension Fq. AddFieldToSignalPkg adds both the vector Vr (with
interpretation basis B) and the element Fr to the signal package pkg.

6 in the case two-step classic multiplication is used
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• AddVectorToSignalPkg( pkg, sgd, m, dir ) adds the vector V m
r (without any interpretation

basis) to the signal package pkg, where sgd = Sr.
• AddTowerFieldToSignalPkg( pkg, Blist, dirlist ) adds the following:

– all the isomorphic finite fields with TFB with direction “to” (recall equation (7.1) in
Section 7.3.1) - all of them added over the signal domain S1

– all levels of the tower field construction using the “per-level” bases from Blist, starting
with the signal domain S1, and then using each added level as the new signal domain
for the next level

All of the adding methods ensure that the lists in a given signal package are duplicate free and
sorted. The signals are sorted first by their attribute Length, and then by the UnderlyingField
of their signal domains (SortedSIGNALList in Table 13.5). Sorting by the UnderlyingField
follows the top-down modular approach to hardware design: the submodules are expected for the
subfields (recall Example D.2.2). The index at which the signal is stored in SIGNALList is used
as a field identifier Fid. The field identifier serves as input to numerous methods defined for the
SignalPkg object (Table 13.6), and, more importantly, for binding, as will be explained in detail in
Section 14.1. The methods shown in the right half of Table 13.6 are used to traverse the SignalPkg
and form the framework needed for the extraction and generation of the submodules. The use of
method AddTowerFieldToSignalPkg is shown in Example 13.3.1, and the use of methods listed
in the right half of the Table 13.6 is shown in Example 13.3.2.

pkg - a SignalPkg object sgd - a SignalDomain object
B, Blist - basis, list of bases dir, dirlist - direction (string), list of directions

Fid - field identifier (integer) m - degree of extension/length

SignalPkg methods

SignalPkg() FieldIDToSubID[1]( pkg, Fid )

DefaultSignalPkg(m) VectorIDToSubID[2]( pkg, Fid )

AddFieldToSignalPkg( pkg, sgd, B, dir ) FieldIDToVectorID( pkg, Fid )

AddVectorToSignalPkg( pkg, sgd, m, dir ) VectorIDToSGDFieldID[3]( pkg, Fid )

AddTowerFieldToSignalPkg( pkg, Blist, dirlist ) TFieldIDToFieldID( pkg, Fid )

Print( pkg ), PrintDownto( pkg ) PrintAll( pkg ), PrintAllDownto( pkg )

Notes:
[1] - Sub stands for subfield [3] - for vector V m

Sr
/VSr return the signal F 1

Sr

[2] - Sub stands for subspace corresponding to the signal domain Sr

Table 13.6: Main functionality of the CIRCUIT package - methods for the SignalPkg
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Key 13.5: The signal package SignalPkg - keeping it all in one place

The SignalPkg object holds all SignalDomains and SIGNALs used in the design. The Sig-
nalsDomains are duplicate free, the SIGNALs are duplicate free and sorted. The sorting of
SIGNALs follows the top-down modular approach to hardware design: the submodules are
expected for the subfields. The index at which the signal is stored in the list is used as a field
identifier Fid, which is used for binding expressions to finite fields.

To explain how the VHDL type definitions are written, a pair of SIGNALs is used:

signal / sub − signal (13.7)

where the sub − signal corresponding to a given signal can be obtained with FieldIDToSubID
and VectorIDToSubID (Table 13.6). The actual strings used as signal and sub-signal are obtained
using the GAPtoVHDL method Get_ffe_strings in Table 10.1.

Table 13.7 contains the VHDL type definitions, assuming directions “to”. It is split into element
(upper half) and vector (lower half) SIGNALs, with further distinction based on the (sub)field size
(column 1 in Table 13.7). For the example q′ = 2, Fr/F1 gives defn. (13.9) in row 2 in Table 13.7,
which is the data type for the elements of F2p (column 2 in Table 13.3). For the vector signals,
two different notations are used in case of “just vectors” (notation (13.6)) and and vector spaces
(notation (13.5)), which are merged to V for the purpose of signal/sub-signal notation and actual
type definitions (13.11) and (13.12), but the distinction is listed in the comments. Column 4 links
Table 13.7 to Table 13.3. The VHDL keywords type and subtype are omitted from Table 13.7
for brevity but are shown in Table 13.8. As was mentioned before, when viewing finite fields as
vector spaces, there is an overlap between columns 2, 3, and 4 in Table 13.3. This overlap is clearly
reflected in the VHDL definitions (13.9-13.12) in Table 13.7, and the definitions can be merged
as shown in Table 13.8. Note that in both cases the overlap conditions are related to the subfield,
specifically to the presence of a tower field construction:
• for q′ = 2 the overlap conditions are q = 2p for column 2 and m = p for column 3 in Ta-

ble 13.3: when no tower field is present, both elements and vectors use std_logic_vector
- defn. (13.13) in first row in Table 13.8. It merges definitions (13.9) and (13.11), i.e., Fr/F1

and V /V1.
• for q′ > 2 the overlap conditions are p = m for column 2 and q = q′ m for column 4 in

Table 13.3: in the presence of a tower field, both elements and vectors use array - defn.
(13.14) in second line in Table 13.8. It merges definitions (13.10) and (13.12), i.e., Fr/Frp

and V /Vrp.

Key 13.6: The VHDL type definitions and tower field constructions

In the presence of a tower field, the SIGNALs on the higher levels of the tower are defined as
array. When no tower field is present, the SIGNALs are defined as std_logic_vector.
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The SignalPkg and especially the field identifier Fid will be used throughout the following sec-
tions. The structure of the SignalPkg is crucial for automated submodule extraction and generation
(recall Key 13.5). Examples 13.3.1 and 13.3.2 show the SignalPkg for the tower field construction
F((22)2)2 used for the running example (13.1). The diagram in Figure 13.5, shown in Example 13.3.2
explains the structure of the SignalPkg for F((22)2)2 graphically, and should not be skipped. A full
example of the F((22)2)2 VHDL package is shown in Example D.5.1 Appendix D.

Example 13.3.1 SignalPkg example for the tower field construction F((22)2)2

Example 13.3.1 uses the tower field from Example 13.2.1, shown in left branch of the diagram in Figure 13.3, to
demonstrate the use of method AddTowerFieldToSignalPkg. This tower construction will be used as the F((22)2)2

construction for the running example expression (13.1). The details of the construction are listed in Table 13.9: the
bases BA, BB, BD are “per-level” bases, with two basis elements each. Besides adding all the “per-level” bases, the
AddTowerFieldToSignalPkg also computes and adds the bases of isomorphic finite fields, obtained as was shown
in equation (7.1) in Section 7.3.1:

T FBF28 /F2 = {1, λ, µ1, µ1λ, ν3, ν3λ, ν3µ1, ν3µ1λ}

T FBF24 /F2 = {1, λ, µ1, µ1λ}

These two fields have the signal domains S4 for F28 with basis T FBF28 /F2 (sgd # 4) and S3 for F24 with basis
T FBF24 /F2 (sgd # 3), both with direction “to”. Corresponding elements added are F4 and F3 with field identifiers
Fid=10 and Fid=7, and their corresponding vectors V4 and V3 with field identifiers Fid=4 and Fid=3 respectively.
The entire output in Example 13.3.1 is returned by the method PrintDownto listed in Table 16.1, with downto
ordering of all lists, to correspond with the “top-down” modular approach to hardware design.

F2
f1(x)
−−−→ F22

f2,1(x)
−−−−→ F(22)2

f3(x)
−−−→ F((22)2)2 ⇒ K

fa
−−→ FA

fb
−−→ FB

fd
−−→ FD

Finite field Extension defining “per-level” PB Comments and GAP example labels
Fq2 polynomial - EDP fi(x) BFq2 /Fq = {1, ρ} fi(ρ) = 0 field polynomial basis

F((22)2)2 f3(x) = x2 + µ3x + 1 BF((22)2)2 /F(22)2
= {1, ν3} f3(ν3) = 0 FD fd BD

F(22)2 f2,1(x) = x2 + λx + 1 B1 = {1, µ1} f2,1(µ1) = 0 FB fb BB

F22 f1(x) = x2 + x + 1 BF22 /F2 = {1, λ} f1(λ) = 0 FA fa BA

Table 13.9: Tower construction of F((22)2)2 - left branch of diagram in Figure 13.3

ν3 = Z(2ˆ 8)ˆ 15 BD := [ Z(2)ˆ 0, Z(2ˆ 8)ˆ 15 ]

µ1 = Z(2ˆ 4)ˆ 6 BB := [ Z(2)ˆ 0, Z(2ˆ 4)ˆ 6 ]

λ = Z(2ˆ 2) BA := [ Z(2)ˆ 0, Z(2ˆ 2) ]

T FBF28 /F2 = [ Z(2)ˆ 0, Z(2ˆ 2), Z(2ˆ 4)ˆ 6, Z(2ˆ 4)ˆ 11,

Z(2ˆ 8)ˆ 15, Z(2ˆ 8)ˆ 100, Z(2ˆ 8)ˆ 117, Z(2ˆ 8)ˆ 202 ]

T FBF24 /F2 = [ Z(2)ˆ 0, Z(2ˆ 2), Z(2ˆ 4)ˆ 6, Z(2ˆ 4)ˆ 11 ]

Table 13.10: Tower construction of F((22)2)2 - roots and bases in GAP native representation
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In GAP Example D.2.4 in Appendix D.2 a signal package containing both branches of the diagram in Figure D.1 is
shown. Example D.2.4 shows the PrintAllDownto listed in Table 16.1. For clarity, values of the roots and bases are
given in GAP native form in Table 13.10.

Example 13.3.1

gap> defaultPkg := SignalPkg();; Blist := [BA, BB, BD];;
warning: SubSGDtower is -1
gap> AddTowerFieldToSignalPkg(defaultPkg, Blist, ["to", "to", "to"]);;
gap> PrintDownto(defaultPkg);

-------------------------
SignalPkg with
11: elements in AsField( AsField( GF(2^2), GF(2^4) ), GF(2^8) ) with

direction to basis [ Z(2)^0, Z(2^8)^15 ]
10: elements in GF(2^8) with direction to basis [ Z(2)^0, Z(2^2),

Z(2^4)^6, Z(2^4)^11, Z(2^8)^15, Z(2^8)^100,
Z(2^8)^117, Z(2^8)^202 ]

9: vectors over AsField( GF(2^2), GF(2^4) ) of length 2 and direction
to - interpretation basis [ Z(2)^0, Z(2^8)^15 ]

8: elements in AsField( GF(2^2), GF(2^4) ) with direction to basis
[ Z(2)^0, Z(2^4)^6 ]

7: elements in GF(2^4) with direction to basis [ Z(2)^0, Z(2^2),
Z(2^4)^6, Z(2^4)^11 ]

6: vectors over GF(2^2) of length 2 and direction to - interpretation
basis [ Z(2)^0, Z(2^4)^6 ]

5: elements in GF(2^2) with direction to basis [ Z(2)^0, Z(2^2) ]
4: vectors over GF(2) of length 8 and direction to - interpretation

basis [ Z(2)^0, Z(2^2), Z(2^4)^6, Z(2^4)^11,
Z(2^8)^15, Z(2^8)^100, Z(2^8)^117, Z(2^8)^202 ]

3: vectors over GF(2) of length 4 and direction to - interpretation
basis [ Z(2)^0, Z(2^2), Z(2^4)^6, Z(2^4)^11 ]

2: vectors over GF(2) of length 2 and direction to - interpretation
basis [ Z(2)^0, Z(2^2) ]

1: elements in GF(2)
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Example 13.3.2 SignalPkg example for the tower field construction F((22)2)2 - continued

Figure 13.5 shows an enhanced diagram of all the signal domains and signals (both element and vector signals) in
the current signal package defalutPkg from Example 13.3.1, i.e., the F((22)2)2 construction for the running example
expression (13.1). Diagram in Figure 13.5 is explained in layers, starting with the inner layer:

1. the innermost layer are the six signal domains S1, . . . ,S6, annotated in the overbraces of their finite fields:

• tower field construction with extension defining polynomials is shown on the left path:

F2
f1(x)
−−−→ F22

f2,1(x)
−−−−→ F(22)2

f3(x)
−−−→ F((22)2)2 - with signal domains S1,S2,S5 and S6 (“per-level bases”)

• their isomorphic finite fields: F2 → F28 with basis T FBF28 /F2 and F2 → F24 with basis T FBF24 /F2 - with
signal domains S4 and S3 (there are no defining polynomials)

2. the middle layer to the left and the right of the signal domains are the element signals, corresponding to the 6
signal domains. The elements are signal representations of signal domains, and are always shown in the same
line as the signal domain they represent, e.g., F6 is shown to the left of its UnderlyingSignalDomain S6
and F4 is shown to the right of its UnderlyingSignalDomain S4.

• notation (13.7) is used for elements: signal/sub − signal, e.g., Fr/Frp. For rp > 1, the VHDL type
definition (13.10) is used, and for rp = 1, i.e., sub-signal is F1, the VHDL type definition (13.9).

• the sub − signal is also identified with arrow � representing the action of FieldIDToSubID,
e.g., FieldIDToSubID(defaultPkg,11) returns 8.

3. the outermost layer are the vector representations of the elements in the middle layer, e.g., vector V6 is shown
to the left of the element signal F6.

• notation (13.7) signal/sub − signal and abbreviation (13.5) are used for vectors: Vr/Vrp. For rp > 1, the
VHDL type definition (13.12) is used, and for rp = 1, i.e., sub-signal is V1, the VHDL type definition
(13.11).

• the sub − signal is also identified with arrow �........ representing the action of VectorIDToSubID,
e.g., VectorIDToSubID(defaultPkg,9) returns 6.

The aforementioned methods FieldIDToSubID and VectorIDToSubID allow a top-down walk through the diagram,
with FieldIDToSubID descending down the middle layers ( � on the element signals), and VectorIDToSubID

descending down the outermost layers ( �........ on the vector signals).

The diagram also shows the action of the method FieldIDToVectorID with ⇐= arrows, which allows the passage
from the middle to the outermost layer by returning the field identifier of the vector representation of a given element,
e.g., FieldIDToVectorID(defaultPkg,11) returns 9.

Last method shown in this example is the FieldIDToSGDFieldID, marked with � , which for a given vector
identifies the element representative of its underlying signal domain, e.g., FieldIDToSGDFieldID(defaultPkg,
9) returns 8.

These methods together form the framework needed for the extraction and generation of the submodules.
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13.4 Summary of key insights

In previous sections some of the key insights to datapath generation were already discussed, some
solved and some of the remaining solutions partially announced. Table 13.11 shows a recap of the
key insights, with X indicating the ones with partial solutions and XX indicating the ones with
final solutions. Because CIRCUIT uses the GAPtoVHDL functionality, the two relevant keys from
Chapter 10 are repeated in Table 13.11.

The GAP objects SignalDomain, SIGNAL, and SignalPkg strongly fit the “math meets hardware”
motif. The field structure was encoded in a way that is suitable for hardware implementations. It
facilitates the synthesis of datapaths over arbitrary fields, including “just vectors” (Key 13.2 and
13.3). The SignalPkg is formatted to allow top-down modular synthesis (Key 13.5).

The next step

Recall Figure 12.1, showing that the threshold between the architectural decisions and the auto-
mated design generation is not strict. During the former, the decisions about the finite field and
bases to be used are made. SignalPkg, used for encoding of this information, is shown on the top
right within the magnifying glass in Figure 12.1. Next is the functional description of the algorithm,
the AlgFunctionality object (Section 14.1). This object allows variable binding, classification of
expression(s) given by the algorithm, and signal extraction (annotated around AlgFunctionality in
Figure 12.1). AlgFunctionality is the starting point for automation.

Figure 12.1 also shows basic building blocks (box on the top left). Key 13.1 states that by know-
ing the subfield, basis, and direction (all contained within the SIGNAL referenced by the Fid),
the expressions for the submodules can be generated on the fly, using the FFCSA package meth-
ods. Alternatively, the submodules could be fetched from a library of existing VHDL modules.
Deciding how to obtain the submodules is the last architectural decision made by the user.
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Key 10.3: Binding of GAP variables and VHDL signal names X Section
A variable binding is a pair of strings in the form [GAP_variable, VHDL_signal] 10.2

Key 10.4: Classification of expressions defined over finite fields X Section
The classification of expressions is a basis for the inference of the internal signals, the extraction and 10.3
generation of the submodules, and for the automated generation of a datapath. The classification is
based on the finite field over which the expression is defined.

Key 13.1: How to obtain the (sub)modules - binding expressions to finite fields Section
The first step in addressing this problem is to bind the expressions to the finite fields over which they 13.1
are defined. The submodules are generated for the subfield operations. Knowing the subfield, its basis
and direction, the expressions for the submodules are generated on the fly, using the FFCSA methods.

Key 13.2: The SignalDomain: the bases and the field construction trail XX Section
Encoding of the finite fields and bases used in the design is required for VHDL datatypes and for 13.2
generation of submodules. The GAP object SignalDomain stores information about the underlying
finite field, basis used, basis direction, length, and the construction trail across the subfields. This
amount of information is needed to capture tower field constructions and to distinguish isomorphisms.

Key 13.3: The SIGNAL: finite field as a vector space and “just vectors” XX Section
For the designer it is easy to switch between an input as element of the finite field Fqm and vector 13.2
space Fm

q , but for successful VHDL implementation this information has to be captured in GAP.
Furthermore, the given algorithm can require “just vectors”, that are not elements of a given finite field,
i.e., vector space, however, these vectors have coordinates from a given finite field, i.e., a given
SignalDomain. The SignalDomain was embedded into another GAP object called SIGNAL, which
holds the SignalDomain and the ‘vector (space)” parameters length m, the direction, and an (optional)
interpretation basis. They allow a distinction of (field) elements and vectors. All the VHDL data types
used in the design are GAP SIGNAL objects, translated into VHDL.

Key 13.4: How to obtain the (sub)modules - correctness check based on the output port length Section
The (sub)modules have to implement one expression per output coordinate. Hence the number of 13.2
(generated) expressions must match the Length of the SIGNAL(s) used for modelling the output Ex.
port(s) of the (sub)module. 13.2.2

Key 13.5: The signal package SignalPkg - keeping it all in one place XX Section
The SignalPkg object holds all SignalDomains and SIGNALs used in the design. The SignalsDomains 13.3
are duplicate free, the SIGNALs are duplicate free and sorted. The sorting of SIGNALs follows the
top-down modular approach to hardware design: the submodules are expected for the subfields. The
index at which the signal is stored in the list is used as a field identifier Fid, which is used for binding
of expressions to the finite fields.

Key 13.6: The VHDL type definitions and tower field constructions XX Section
In the presence of a tower field, the SIGNALs on the higher levels of the tower are defined as array. 13.3
When no tower field is present, the SIGNALs are defined as std_logic_vector.

Notes: X - partially solved XX - solved

Table 13.11: Summary of key insights to the CIRCUIT package - listed chronologically
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CIRCUIT

– functional description of the algorithm –
To capture a functional description of the algorithm in GAP, the CIRCUIT
package offers an object called AlgFunctionality. This chapter describes
the user input required to construct an AlgFunctionality object, i.e., how to
describe the (top-level) module datapath of the algorithm. The datapath

is always given with one or more ANF expressions. A SignalPkg is used to bind expressions to finite fields. The
AlgFunctionality object allows for the entering of management information: entity and port names, and whether to
use registered or combinational ports. The key automation tasks for this step include: variable binding, classifica-
tion of expression(s) given by the algorithm, and signal and submodule extraction (but not submo dule generation).
The AlgFunctionality object provides the starting point for automation.

14.1 The functional description of the algorithm

The expression alone conveys only partial information about the module. Additional information
is captured as (i.) binding, which will be explained in detail shortly, and (ii.) management, which
specifies the following information:

• basic management: entity name, architecture name, input and output port names, i.e., strings
• technical management: registered or combinational input and output ports

In the VHDL background section (Section 3.3.4), a hardware module is presented as an entity/ar-
chitecture pair, where entity describes the interface and architecture the internals. To write a VHDL
module, sufficient information must be given, some of it very simple, e.g., the string for the entity
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name, and some of it more complex, e.g., the VHDL data type to be used for an input port or the
expression to be implemented by the architecture. The object AlgFunctionality was designed to
store all the information needed to begin the automated design entry. It takes four arguments as an
input to the constructor call AlgFunctionality:
• entitylist - a list of strings, with mandatory entity name
• portlist - specifies all the input and output ports and their data types
• archlist - provides the binding and the expressions to be implemented in VHDL
• archtype - implementation instructions, e.g., use registered outputs

Overview of attributes and components

Table 14.1 summarizes the attributes and components storing the information for an AlgFunction-
ality object. The attributes and the component archtype are set by the AlgFunctionality con-
structor call and will be explained in this section. The component commentstr is set to a default
value "- -generated by GAP pkg: AlgFunctionality\n" and can be easily modified. This
comment is copied into the generated VHDL file. Example D.3.1 in Appendix D.3 shows the Al-
gFunctionality constructor call. The remaining components in Table 14.1 are initialized to -1 and
will be explained in Section 14.2.

The AlgFunctionality object

attributes components

FunctName InputPorts archtype commentstr

EntityName OutputPorts classperoutput class

ArchName ArchBind signalcollected

EntityGenerics ArchExpr submodules

Table 14.1: Main functionality of the CIRCUIT package - the AlgFunctionality object

Description of arguments and initialization of attributes and components

The constructor call returns a new AlgFunctionality object that represents the functional descrip-
tion of the top-level module for implementation of the algorithm. Below is a detailed explanation
of the constructor arguments. The argument/attribute maps (14.1-14.3) are used to explain exactly
how the attributes and components are set. The argument-attribute maps are formatted in two rows,
and the relationship between the argument and attribute from Table 14.1 is given positionally: each
argument gets stored as the attribute below it. This section also explains binding. A graphical rep-
resentation of binding is shown in Figure 14.1. Although all binding is done at the time of the
AlgFunctionality constructor call, the figure (and the description in text) are present binding as the
gradual addition of new information.
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Basic management

The entitylist is a list in the form given in argument-attribute map (14.1), whose values are used to
set the attributes listed beneath each entry:

entitylist : [ functionality, entity_name, arch_name, generic_list ] (14.1)
attributes set : FunctName EntityName ArchName EntityGenerics

The first three list entries functionality, entity_name, and arch_name are just strings (without
whitespace characters). The last entry, generic_list, is a list intended for future use; none of the
GAP generated VHDL modules currently use generic parameters. The only mandatory string is
entity_name, hence entitylist must contain at least one value, which is stored as the EntityName
value of the AlgFunctionality object. In this case, all other attributes are set to default, with
FunctName set to blackbox, ArchName to main, and EntityGenerics to an empty list [].

Binding of VHDL ports to finite fields

The portlist contains three entries:
• pkg - a SignalPkg object
• inlist - input port list
• outlist - output port list

The input and output port lists must follow a given format, which binds the ports to the finite fields
(or vectors). More precisely, it binds the VHDL ports to SIGNAL objects and hence to the VHDL
data types to be used. Port binding is shown in Figure 14.1(b): the information conveyed by port
binding is the interface (ports and their types).

Binding is again very simple, it is a pair of a string and a field identifier Fidw.r.t. the signal package
pkg, namely [VHDL_∗_port, Fid], where ∗ is a placeholder for input or output. Both lists are
subjected to a simple check that triggers an error in one of following two cases: (i.) one of the
VHDL_∗_port values is not a string or includes whitespace characters, and (ii.) the field identifier
Fid is not a positive integer or is bigger than the number of SIGNALs in the given signal package
pkg. If the check is passed, the two lists are stored as attributes InputPorts and OutputPorts,
as shown in argument-attribute map (14.2):

portlist : [ pkg, inlist, outlist ] (14.2)
attributes set : InputPorts OutputPorts

� Implementation detail: The SignalPkg is never stored as a part of AlgFunctionality object. The reason is the
following: in many cases, the design will contain more than a single AlgFunctionality, and all of them must use
the same signal package. The SignalPkg is stored only once in each design as will be discussed in more detail in
Section 15.1. �
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Key 14.1: Binding of VHDL ports to the finite fields and vector(s) (spaces)

Port binding binds ports to SIGNAL objects and hence to the VHDL data types. A port
binding is a pair of a string and a field identifier Fid in the form

[VHDL_input_port, Fid] and [VHDL_output_port, Fid]

More binding: binding between GAP variables and VHDL ports

The archlist contains two entries:

• bindlist - a list of variable binding
• exprlist - a list of expressions

The bindlist contains variable binding for GAP variables (for expressions) to the VHDL ports (for
module). The exprlist contains a list of expressions to be implemented. Both lists are subjected to
correctness checks before being stored as AlgFunctionality attributes ArchBind and ArchExpr,
as shown in the argument-attribute map (14.3):

archlist : [ bindlist, exprlist ] (14.3)
attributes set : ArchBind ArchExpr

The binding discussed here covers two cases, namely, the partial and the full GAP variable binding:

[GAP_variable∗ , VHDL_input_port]

where ∗ indicates partial or full variable:

1. partial binding: binds part of a GAP variable to the VHDL port, whereby GAP variable
indices translate to the VHDL port coordinates

2. full binding: binds the entire GAP variable to the VHDL port, i.e., the GAP variable indices
are not used as coordinates

Partial binding is very similar to variable binding in Key 10.3 (Section 10.2), but there is no need
to specify a separate binding rule for each GAP variable. The short example in Table 14.2, the
binding ["a", "i_a"] translates a0 · a1 to i_a(0)·i_a(1). This binding is used for squaring for a
polynomial basis in Example D.5.2 in Appendix D.2. A single partial binding for numerous GAP
variables is enough, because the GAP variables used in this way have a meaning: they are the avec
and bvec variables [a_0, a_1, ...,] and [b_0, b_1, ...], generated automatically by the
CIRCUIT package for a specific finite field, which prevents errors and ensures that the VHDL port
used in the binding rule corresponds to a vector SIGNAL of length m.
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partial binding full binding

["a", "i_a"] ["a_0", "i_a"], ["a_1", "i_b"]

GAP VHDL GAP VHDL

a_0 · a_1 i_a(0) · i_a(1) a_0 · a_1 i_a · i_b

Table 14.2: Short examples of partial and full binding

Binding allows a designer to use the existing GAP variables x_i, a_i, b_i and d_i (Section 10.2)
to specify arbitrary expressions in GAP. With full binding, the entire GAP variable and its subscript
is replaced by the VHDL port name. However, a binding must be given for each GAP variable. In
short example in Table 14.2, the binding ["a_0", "i_a"], ["a_1", "i_b"] translates a0 ·a1 to
i_a·i_b. This binding is also shown in Figure 14.1(c). Further examples of full binding are shown
in Example D.3.1 in Appendix D.3, demonstrating the AlgFunctionality for the running example
expression (13.1) defined over F((22)2)2 (see Example D.3.1), and in the multiplication module in
Example D.5.3 in Appendix D.3 (see Example D.5.3(a)).

An important difference w.r.t. variable binding from Key 10.3 in Section 10.2 is that the binding
for AlgFunctionality is done for the VHDL ports, not internal signals. Therefore, the bindlist must
pass the CheckPortStrings test, which ensures that the second string in an individual binding is a
valid input port name. This is a simple check, only comparing two strings: the VHDL_input_port
string in a port binding (inlist of the portlist argument to the AlgFunctionality constructor), and the
VHDL_input_port string in the variable binding (bindlist of the archlist argument), see Table 14.3.

argument portlist archlist

sub-list inlist bindlist

meaning input port binding variable binding

[VHDL_input_port, Fid] [GAP_variable∗, VHDL_input_port]

� CheckPortStrings test comparison �

Table 14.3: The CheckPortStrings test comparison

Key 14.2: Binding of GAP variables and VHDL input ports

Variable binding binds the GAP variables used in the expressions to the VHDL input ports
of the hardware module implementing the datapath. A variable binding is a pair of strings in
the form

[GAP_variable∗ , VHDL_input_port]

∗ indicates partial or full variable.
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More binding: binding of expressions

The exprlist format must match the list of the output ports outlist from the portlist argument: there
must be an expression list exprlisti for each o_porti (abbreviated for VHDL_output _porti). The
expression lists are positionally bound to the output ports by their indices within the parent lists
exprlist and outlist: exprlisti contains instructions on how to drive the (coordinate of) output port
o_porti. Figure 14.1(d) shows full positional binding.

exprlist : [ exprlist1, exprlist2, . . . exprlistn ]
outlist : [ [o_port1, Fid1], [o_port2, Fid2], . . . [o_portn, Fidn] ]

Since each output port is bound to a SIGNAL via its field identifier Fid (Key 14.1), the positional
binding of the expressions to the output ports also implicitly binds the expressions to the finite
fields over which they are defined. This provides the final step to Key 10.4, i.e., the classification
of expressions defined over finite fields, and the first step to Key 13.1, i.e., how to obtain the
submodules. For example, if the expression includes a multiplication and it is bound to Fid=1,
which corresponds to a SIGNAL representation of elements in F2, then the hardware component is
a simple AND gate and no multiplier submodule is needed. Figure 14.1(e) shows implicit binding.

Key 14.3: Positional binding of expressions and output ports

Positional binding of the expression lists to the output ports provides datapath instructions
on how to drive the output ports:

exprlisti
⇒

exprlisti

[o_porti, Fidi] o_porti

Key 14.4: Implicit binding of expressions to the finite fields and vector(s) (spaces)

Positional binding of the expression lists to the output ports also implicitly binds the expres-
sions to the finite fields via the field identifiers Fid associated with the output ports:

exprlisti
⇒

exprlisti

[o_porti, Fidi] Fidi

� Implementation detail: The implicit binding of the expression lists to the field identifiers allows a correctness
check, as described in Key 13.4 in Section 13.2: the (sub)modules have to implement one expression per output
coordinate, hence the number of (generated) expressions within each exprlisti must match the Length of the Fidi
SIGNAL used for modelling the corresponding output port of the (sub)module o_porti. If the corresponding Fidi
SIGNAL has length 1, i.e., is an element output, the exprlisti contains a single expression. If the Fidi SIGNAL has
length m > 1, i.e., is a vector output, the exprlisti is a list with m expressions (recall Figure 13.4(b)). This ensures that
the hardware will be able to drive (each coordinate of) each output port. �
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expression binding

port binding variable binding positional binding implicit binding

Key 14.1 Key 14.2 Key 14.3 Key 14.4

[i_a,j] [a_0, i_a] a_0 * a_1 a_0 * a_1

[i_b,j] [a_1, i_b] and o_z and j

[o_z,j]

black
box

black
box

black

[i_a, j] [i_b, j]

[o_z, j]

box
black
box

black

[i_a, j] [i_b, j]

[o_z, j]

a_0     a_1

box
black
box

[i_a, j] [i_b, j]

[o_z, j]

a_0     a_1

a_0  a_1* black
box

[i_a, j] [i_b, j]

[o_z, j]

a_0     a_1

a_0  a_1
* in

*

(a) “empty module” (b) ports and their type (c) what goes to inputs (d) how to drive o_z (e) operations in Fr

Figure 14.1: Binding for AlgFunctionality object and their effects on the hardware module

Figure 14.1 shows the effects of binding and the information that bindings convey to the automation
process. The example expression is a0 ·a1, defined over a finite field Fq. In the given SignalPkg, Fq

is represented by Fr. Figure 14.1(b) shows the port binding, which defines the interface (port la-
bels and Fr, which become a VHDL type). Figure 14.1(c) shows the full variable binding, which
binding the variables to the ports. As the algorithm specifies what a variable means, the vari-
able binding in turn specifies “what goes on inputs” in the sense of interaction with environment.
Figures 14.1(d,e) show the expression binding, with two effects. First, the positional binding of
expression to the output o_z gives instructions on how to drive that output. Second, the implicit
binding to the Fid=j binds the expression to Fr, which in turn implies that all the operations
are over Fr as well. Binding the AlgFunctionality to the SignalPkg brings the awareness of the
underlying field structure to the automation process, i.e., is a part of the “math meets hardware”
motif.

Key 14.5: Functional description aware of finite fields and vector(s) (speaces)

Binding the AlgFunctionality to the SignalPkg brings awareness of the underlying field
structure to the automation process. This is achieved by the port, variable, and expression
binding.
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More management: additional datapath instructions

The argument archtype provides further instructions:
• porttype - combinational or registered
• datapathtype - simple or complex

In Subsection 3.3.3 the circuits were classified based on the type of their input and output ports1.
The argument porttype provides further instructions, for combinational C or registered R ports, and
with I denoting input O output port, the following instructions are possible: CICO, RICO, CIRO
and RIRO (Figure 3.11 in Subsection 3.3.3). For writing the VHDL code for the registers, the
Write_registers function from Table 10.3 will be used, and a list of control signals and corre-
sponding control values must be provided, [cntllist, cntlvals]. Whenever a registered port is used,
the entity will be generated with additional control ports for all entries from (both) cntllist; there is
no need to include them in the portlist. The archtype list is stored as a component archtype.
� Implementation detail: When RIRO is used, two sets of control signals and control values must be provided, e.g.,:
[["i_clk", "i_rst", "i_ce"], [1,1,1]],[["i_clk", "i_rst", "i_ceout"], [1,1,1]], the instruc-
tions for rising-edge registers with active- high reset and both chip-enable signals2. �

Only the the simple datapath is used so far, the complex datapath is reserved for future use. Among
other, it will allow (some) subexpression elimination, e.g., (a0+a3) in the matrix U in Example 7.4.1
in Section 7.3.1, and synthesis of unrolled datapaths. The complex datapaths will make us of the
GAP syntax trees, are announced for the next GAP version.

14.2 The datapath based on classification of expressions

As stated in Key 10.4 in Section 10.3, the classification of expressions is a basis for the inference of
internal signals, extraction, and generation of submodules, as well as for the automated generation
of a datapath. Recall equation (10.1), with non-zero coefficients γi0,i1,...,it−1 ∈ Fq, where i j ∈ Zq for
0 ≤ j < t:

f (x0, x1, . . . , xt−1) =
∑

∀(i0,i1,...,it−1)∈Zt
q3:

γi0 ,i1 ,...,it−1,0

γi0,i1,...,it−1 xi0
0 xi1

1 . . . xit−1
t−1 (14.4)

The 8 classes of expressions in Table 10.4 are defined in an incremental fashion: the higher the
class, the more complex the expression, i.e., the more demanding its corresponding datapath w.r.t.
to finite field arithmetic. The last column in Table 10.4 contains the following finite field arithmetic
operations:

(⊕) addition: bit-wise XOR of the terms, no submodule required
1 all input ports are always of the same type and all output ports are always of the same type, “mixing” is prohibited
2 could also be the same chip-enable for inputs and outputs
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(×γ1) multiplication with a constant: term coefficient is different from 1, requires a submodule (a
matrix-vector multiplier for multiplication with a constant)

(M) multiplication: a monomial contains more than one variable, requires an AND gate when
defined over F2, and a multiplier submodule when defined over an extension field.

(E) exponentiation: a monomial contains a variable with an exponent and a submodule for ex-
ponentiation is required

Inspecting a class 7 expression, i.e., an expression containing all operations listed above, reveals
a natural order for performing the operations. The innermost operations, i.e., the exponentiation
for class 7 expressions, are performed first, followed by multiplications to obtain the monomials
and terms. Additions come last. Accordingly, the datapath can be written in steps following this
order. An expression is a set of instructions on how to drive (a coordinate of) an output port, and
is transformed into a datapath with the following steps:

1. variable binding: The starting point are variables x j, 0 ≤ j < t, which occur in the expres-
sion. Before discussing the datapath, recall the binding of GAP variable to VHDL input
ports (Key 14.2). This step will be discussed in more detail in Chapter 16.

2. exponentiation: for each variable x j with i j > 1, that is for each xi j

j , perform exponentiation.
The exponentiations can be done in parallel, i.e., the component instantiations for the sub-
modules are concurrent. Assuming the variable x j itself is (a coordinate of) an input port and
is (after binding) used as the input to the submodule, a signal for the output of the submodule
is needed.

3. multiplication: perform the multiplications to obtain all monomials, i.e., all the xi0
0 xi1

1 . . . xit−1
t−1.

To improve performance, the multiplications are always performed in a tree structure, with
two factors per multiplication. A signal is needed for each (intermediate) product. Note that
there can be many monomials, hence many multiplication trees, performed in parallel.

4. multiplication with constants: for each extension field constant γi0,i1,...,it−1 ∈ F2m/F2, with
the exception of the constant term, perform the multiplications to obtain the terms, i.e., all
the γi0,i1,...,it−1 xi0

0 xi1
1 . . . xit−1

t−1. The inputs to the (×γ) submodules are the monomials, and new
signals are needed for their outputs.

5. additive constant: if the expression has a non-zero constant term, its value will be defined as
a VHDL constant. If there are at least two terms in the expression, the constant is treated as
one of the terms. Otherwise, the constant is directly driving (a coordinate of) an output port.

6. addition of the terms: this step computes the final sum in the expression. It is performed in
a tree structure, with two-input bit-wise XOR gates at each node. A signal is needed for each
(intermediate) sum. Note that there is always only one summation per expression, and thus,
per (coordinate of an) output port.

7. drive output: connect the sum to the appropriate (coordinate of an) output port.
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The 7 steps are captured by the schematic in Figure 14.2. The horizontal dashed line at the top of
Figure 14.2 represents the variables x j, which are not a part of the hardware module. Above the
dashed line, the classification of a given expression is listed, with a class 7 expression on the right.
The steps are listed on the left and the signals, i.e., “results” of the performed steps, on the right.
Solid vertical arrows indicate that at least one of the step inputs will undergo the action of the step,
e.g., at least one of the variables in a class 7 expression will have an exponent i j > 1. The inputs
that do not undergo the action are simply passed on to the next step. When no solid line is present,
the passing on is indicated with a dashed vertical arrow. For example, all but class 0 expressions
require a binding of GAP variables x j and the input ports of the hardware module. Similarly, the
only difference between a class 6 and a class 7 expression are the multiplicative constants: the class
6 expressions have a dashed arrow for step 4. To distinguish the vertical paths for classes 3 and 4,
which look exactly the same in terms of their arrows, the solid arrows in step 3 are annotated with A
for AND gates and with M for the multiplier submodules. Similarly, there may be no multiplications
for class 6 or 7, which is annotated with M?.

variables x j

(coordinates of) 
input port(s)

STEP 1
binding

STEP 2
exponentiations

class
0

class
1

class
2

class
3

class
4

class
5
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7

exponentiation
outputs

monomials

STEP 3
multiplications

terms

STEP 4
mult. constants

STEP 5
constant term

terms + 
const. term

STEP 6
addition

sum

STEP 7
drive outputs

(coordinates of) 
output port(s)

A M M M? M?

Figure 14.2: The steps of writing a datapath
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Key 14.6: The datapath and classification of expressions

The 8 classes in the classification Table 10.4 are defined in an incremental fashion: the higher
the class, the more complex the expression and its corresponding datapath w.r.t. the finite
field arithmetic. Inspecting the highest class expression reveals a natural order for perform-
ing the operations. An expression is a set of instructions on how to drive (a coordinate of) an
output port, and it is transformed into a datapath by following this order: 1. binding of GAP
variables to VHDL input ports, 2. (E) exponentiations, 3. (M) multiplications (to obtain
monomials), 4. (×γ) multiplication with constants (to obtain the terms), 5. (+γ) including the
additive constant to the list of terms, 6. (⊕) addition of the terms, and 7. driving the output.

Towards datapath generation

Three methods are used to prepare the AlgFunctionality object for generation of the datapath, listed
in Table 14.4. First column lists the method name and the second column the component of the
AlgFunctionality object, into which the method stores its result. The third column contains a short
description of the method and the fourth column additional notes.

The AlgFunctionality object

method AF component set description

AlgFunctionalityClass †[1,2] classperoutput, class classify all expressions

AlgFunctionalityCollectSignals †[2,3] signalcollected all signals for all expressions

AlgFunctionalityCollectAllSubmodules †[4,5] submodules actual submodules, duplicate free

MakeAlgFunctionalityDesignReady † - run all three methods above in order in which they appear

Notes:
[1] based on Table 10.4 in Section 10.3 [3] for (E) outputs, (M) tree(s) nodes and edges, (×γ)
[2] for each coordinate of each output port outputs, (+γ) constants, (⊕) tree nodes and edges
[4] same operation repeated more than once [5] true submodules: (E), (×γ), (M), but not AND

means one submodule (duplicate free), but † arguments (AF, pkg), where AF is the AlgFunctiona-
instantiated multiple times lity object and pkg the corresponding SignalPkg

Table 14.4: Main functionality of the CIRCUIT package - methods for the AlgFunctionality

AlgFunctionalityClass is using the Which_class method from the GAPtoVHDL package
and returns classification based on Table 10.4 in Section 10.3: Which_class call is repeated for
each coordinate of each output, i.e., for each individual ANF expression stored in ArchExpr at-
tribute. Key 14.3 explained the implicit binding of expressions to the Fids. The expression is
defined (and classified) over the UnderlyingField of the UnderlyingSignalDomain of the
SIGNAL given by this Fid. A check is set in place to backtrack to all inputs and ensure there is no
change in this information. For the element output ports, Which_class is run only once per port,
and the result is stored in the component classperoutput. For the vector output ports of length
m, Which_class is run for each of the m output coordinates, and then the highest class is stored
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as the corresponding classperoutput component of the AlgFunctionality object. Afterwards,
the highest class among the classperoutput values is stored in the class component. Classifi-
cation plays a role for the extraction of the internal signals and submodules. The internal signals
are extracted, i.e., collected by the method AlgFunctionalityCollectSignals, again for each
expression, i.e., for each coordinate of each output port in the given AlgFunctionality object, and
stored into the signalcollected component of the AlgFunctionality object. Example D.3.1 in
Appendix D.3 shows the collected signals, printed in a human friendly fashion, using the method
PrintAlgFunctionalityCollectSignals.

operation and encoding description
(E) exponentiation EXPname=EXPout_portNum_coordNum_n† is the actual string, n is a counter,

[EXPname, e, t, j ]
e = i j is the exponent of the current xi j

j , t is the term number within the expression,
j is the variable number within the term

(M) multiplication ‡ performed in tree structure, with two factors per multiplication, only edge signals
prefix_lvl_#_node# are used for VHDL, the prefix has the format out_portNum_coordNum_mon||t†,
prefix_lvl_#_edge# t is the term number within the expression

(×γ) mult. const. MVname=MVout_portNum_coordNum_n† is the actual string, n is a counter,
[MVname, c, t ] c = γi0,i1,...,it−1 is the current constant, t is the term number within the expression
(+γ) additive const. Cname encoding depends on the Fid, special care is needed in case of tower field

[Cname, c, t ]
constants c = γi0,i1,...,it−1 is the current constant ct, and t is the term number within the
expression (always the last term)

(⊕) addition ‡ performed in a tree structure, with two-input bit-wise XOR gates at each node, only
prefix_lvl_#_node# edge signals are used for VHDL, the prefix has the format
prefix_lvl_#_edge# out_portNum_coordNum_term†

† portNum index of the output port of the module, coordNum index of coordinate (vectors only)
‡ stores a list for all trees

Table 14.5: The encoding for the inferred signals

Each (coordinate of) output is associated with an ANF expression, as given by equation (14.4).
The encoding in Table 14.5 is used for the collection of signals. For each expression, signals for
the steps 2–6 in in datapath Figure 14.2 are collected as follows:

2. exponentiation (E): for each exponentiation submodule, a signal for the output of the sub-
module is needed. The encoding in row 1 in Table 14.5 is a list that contains all the informa-
tion needed to extract and generate the exponentiation submodule, and then place it in the
datapath.

3. multiplication (M): as was mentioned before, to improve latency, the multiplications are al-
ways performed in a tree structure, with two factors per multiplication. A signal is needed for
each (intermediate) product. Note that there can be many monomials, hence many multipli-
cation trees, performed in parallel. For each multiplication tree, the signal names are created
for the nodes and for the edges: prefix_lvl_#_node# and prefix_lvl_#_edge#. Only
the edge signals are declared in VHDL; the nodes are replaced by AND gates or multipliers.
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4. multiplicative constants (×γ): for each extension field constant, with exception of the constant
term, a signal is needed for the output of the (×γ) submodule. The encoding in row 3
in Table 14.5 is a list that contains all the information needed to extract and generate the
matrix-vector multiplier (MV) submodule, and then place it in the datapath.

5. additive constant (+γ): if the expression has a non-zero constant term, its value will be
declared as a VHDL constant.

6. addition of the terms (⊕): the final sum in the expression is performed in a tree structure,
with two-input bit-wise XOR gates at each node. A signal is needed for each (intermedi-
ate) sum. Note there is always only one summation per expression, and hence per (coordi-
nate of an) output port. The signal names are created for the nodes and the for the edges:
prefix_lvl_#_node# and prefix_lvl_#_edge#. Only the edge signals are declared in
VHDL, the nodes are replaced by XOR gates or multipliers.

Key 14.7: The inference of the internal VHDL signals

The connection between the classification of expressions and the datapath (Key 14.6) plays
an important role for the inference of the internal VHDL signals and for the extraction of
submodules. The signals are collected for all exponentiations (E), multiplications (M), more
precisely for the multiplication trees to obtain the monomials, for multiplications with the
extension field constants (×γ), for the additive constants (+γ), and for the final addition (⊕)),
i.e., for the addition tree.

The collected signals are used as an input to the AlgFunctionalityCollectAllSubmodules
method. There are two key differences between collected signals and collected submodules:

• collected signals reflect the VHDL component instantiations: the number of actual submod-
ules is less or equal to the number of component instantiations
• AND, XOR and (+γ) do not require submodules (but still need signal collection)

The method AlgFunctionalityCollectAllSubmodules will traverse the signalcollected
and identify each hardware component instantiation: exponentiations (E), multiplications with
constants (×γ), and multiplications (M) in extension fields (in F2, multiplication is the AND gate and
does not require a submodule instantiation). Based on the encoding of the signals and the Fid of
the corresponding output port, it removes all duplicates. For example, two exponentiation signals
with the same exponent and for the same Fid require the same submodule. The submodule, i.e.,
the component VHDL is generated just once, but can be instantiated multiple times: this will create
multiple physical copies of the same building blocks. The submodules3 found for a particular Fid
are collected together and the Fids are stored as well. The encoding for the submodules is listed
in Table 14.6.

3 there is always only one multiplier submodule for a given Fid
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submodule encoding description

(E) exponentiation submodule [ “EXP”, e ] e is the value of the exponent

(M) multiplier “MforFid#” # is replace by the actual Fid

(×γ) matrix-vector multiplier for [ “MV”, c ] c = γ

multiplication with a constant

Table 14.6: The encoding for the submodules

Methods AlgFunctionalityClass, AlgFunctionalityCollectSignals, and AlgFunc-
tionalityCollectAllSubmodules rely on the SIGNAL and SignalDomain structure, as well
as the assumption that the entire expression is defined over the same SignalDomain. A special
check is set in place to backtrack from the output port (coordinate) to all the input ports (and their
coordinates) that are bound to the GAP variables used in the expression (using the binding between
GAP variables and VHDL input ports, see Key 14.2). This check can detect basis transitions.
When viewing the finite field as a vector space, the basis transition is given by a list of expressions,
one expression for each output coordinate, and will pass this check: the two vectors4 will have
different interpretation bases, maybe even different directions, but will be defined over the same
signal domain.

Key 14.8: The extraction of submodules

The collected signals (Key 14.7) are the basis for extracting the submodules, however the
collected signals reflect the VHDL component instantiations and the number of actual sub-
modules is less than or equal to the number of component instantiations (possible dupli-
cates). The F2 multiplications (AND gates) and the additions (XOR gates for terms and for
(+γ)) do not require submodules. Submodules are extracted for the exponentiations (E),
multiplications with constants (×γ), and multiplications (M) in extension fields. The dupli-
cates are removed based on the encoding of the signals and the Fid of the corresponding
output port.

Example D.3.1 in Appendix D.2 shows an AlgFunctionality for the implementation of running ex-
ample (13.1) defined over the tower field F((22)2)2 (Example 13.1.3 in Section 13.1). It demonstrates
the collector method AlgFunctionalityCollectSignals and method MakeAlgFunctional-
ityDesignReady.

4 input port and output port
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14.3 Summary of key insights

This chapter presented the AlgFunctionality object, which serves as the manual entry point for the
top-level module. The datapath is given with one or more ANF expressions and SignalPkg is used
to bind expressions to finite fields (Keys 14.1 - 14.5). The information conveyed by binding defines
the ports and their types (Key 14.1), what goes to inputs (Key 14.1), how to drive the output (Key
14.2), and what kind of submodules are needed (Key 14.3), as the operations are bound to the Fid
Fr together with expressions. Binding the AlgFunctionality to the SignalPkg brings the awareness
of the underlying field structure to the automation process (Key 14.5).

Binding expressions to Fids allows for their classification and for signal inference (Key 14.7).
Finally, the submodules are extracted (Key 14.8).

Tables 14.7 and 14.8 summarize all key insights from Chapter 13 and 14. The tables contain
checkmarks indicating the status of the Key: X for previously partially solved, XX for previously
solved by GAPtoVHDL and SignalPkg, and 3for newly partially solved, 33for newly solved by
AlgFunctionality. The Keys are no longer ordered chronologically but are grouped together by
concepts they describe.

The Keys from the previous recap (Table 13.11 in Section 13.4) are listed only by their title in the
left half of Table 14.7. The previously fully solved Keys 13.2, 13.3, 13.5, and 13.6 are grouped
together and listed first. The remaining Keys in the left half obtained their new (partial) solutions
from the AlgFunctionality object and its methods (and from new Keys, which are listed under the
new checkmarks 3). Key 13.1 is only partially solved: it is missing the FFCSA package instruction
for the submodule generation. The new AlgFunctionality Keys 14.1-14.5, listed in the right half
from Table 14.7, are the foundation for the Key 14.6.

The prerequisite for the datapath generation (Key 14.6) are the inferred signals (Key 14.7) and the
submodule extraction (Key 14.8). Both are achieved by MakeAlgFunctionalityDesignReady
method (Table 14.4).

The next step

The remaining two Keys 13.1 and 14.6 will be fully solved by the GAP object AlgDesign and
its methods (Section 15.1), which will make the transition from design (on the dashed line in
Figure 14.3) to datapath (on the dotted line in Figure 14.3). Figure 14.3 shows the last part of the
architectural decisions and the automated design generation, with the Keys listed in Tables 14.7
and 14.8 annotated on the right. Afterwards, all that is left is writing the VHDL.
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gen.

arch.

Overview of the CIRCUIT package part 3:

FSRtoVHDL

GAPtoVHDL

CIRCUIT

– VHDL-ready design –
This chapter describes the AlgDesign object. It is formed from a design-
ready AlgFunctionality, SignalPkg, and submodule instructions. The sub-
module instructions are the last user input required; the architectural
decisions are now complete. AlgFunctionality is the top-level module of

AlgDesign, and in a way, AlgDesign works as a wrapper. The created AlgDesign with stored AlgFunctionality
and SignalPkg is called initial design. The CIRCUIT package implements two compilation algorithms to process
the design in a top-down/bottom-up loop. The first compilation algorithm generates all submodules, required for
implementation, in a top-down manner. The submodules are generated as AlgFunctionality objects of their own
and added to the initial AlgDesign. The same SignalPkg is used for all submodules. FFCSA package methods will
be used for the automated submodule generation; the submodule instructions have to be passed to the AlgDesign.
The second compilation algorithm transforms all AlgFunctionality objects into VHDL-ready Circuit objects in a
bottom-up manner. It adds the information needed for the component instantiations, declaration of constants,
and possible connectors between elements/vectors of isomorphic fields in the design.
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15.1 The initial design

Key 15.1: The design

A hardware designa itself consists of a top-level module and all its submodules. The top-
level is modelled as an AlgFunctionality object that together with corresponding SignalPkg
and submodule instructions forms the initial AlgDesign. All the required submodules will
be generated as AlgFunctionality objects of their own, using the same SignalPkg, and added
to the initial AlgDesign in a top-down fashion.

anot the process of designing

The initial AlgDesign object has four mandatory constructor arguments and two optional argu-
ments, listed in [] brackets:

• AF - the top-level AlgFunctionality object
• defaultPkg - the SignalPkg
• [designPkg] - an alternative SignalPkg object, used in the design if given (Section 16.4)
• sminsn - the submodule instructions
• [folder, comment] - the target folder and comment for the generated VHDL files
• writetop - a flag that indicates whether the top-level AF is to be implemented or not

The top-level AF object is stored as the component topAF. The flag writetop decides if the top-
level modules should be implemented or not and is stored as a property AlgDesignWriteTop.
Assuming only the defaultPkg is given, it is stored as the AlgDesignSignalPkg attribute. As was
stated in Key 15.1, all the submodules will use the stored SignalPkg1. The SignalPkg is crucial
to the automated design generation (Key 13.5). The sorting of SIGNALs follows the top-down
modular approach to hardware design: the submodules are expected for the subfields.

AlgDesign has three internal data structures called SMlist, AFlist and the CIRClist:

• they have the same length as the SignalPkg2

• their initial elements are (empty) lists, accessible by the Fid
• they are stored as components3 of the new AlgDesign object.

The SMlist is a list of extracted submodules. The initial extracted submodules are copied from
the AF into the SMlist. Recall that the design-ready top-level AF already contains4 extracted
submodules stored by their Fids, if they exist.

1 accessible via AlgDesignSignalPkg( design ), where design is the name of the AlgDesign object
2 as the SIGNALList of the SignalPkg to be precise
3 components of the GAP object AlgDesign
4 stored in the component submodules
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The AFlist is a list of generated submodules. The submodules are generated as AlgFunctional-
ity objects. The AFlist will hold all the AlgFunctionality objects of the design, except for the
top-level AF, stored as a component topAF. For the component topAF, there is a corresponding
component topCIRC intended to store the top-level VHDL-ready Circuit object.

The CIRClist is a list of VHDL-ready submodules, modelled as GAP objects called Circuit. For
now, it is sufficient to say that Circuit objects are generated from the AlgFunctionality objects and
hold additional information needed to translate them into VHDL modules.

The three lists are represented graphically as ladders, with Fid=1 for the F2 on the bottom (lowest
level) and the highest Fid for the F((22)2)2 on the top, as shown in Figure 15.1. The top-level
modules, i.e., the topAF and its corresponding topCIRC, are not included in the ladders. The
extracted submodules from the topAF are shown in SMlist at Fid=11

Fid=1

Fid=2

Fid=3

Fid=6

Fid=7

Fid=4

Fid=5

Fid=8

[ "EXP" , 2 ]
MforFid11
["MV",Z(    )]

SMlist AFlist CIRClist

Fid=9

Fid=10

2̂ 8
Fid=11

Figure 15.1: The initial AlgDesign lists for SignalPkg corresponding to F((22)2)2 : graphical representation of extracted
(SMlist), generated (AFlist) and VHDL-ready (CIRClist) submodules

The initial extracted submodules are the starting point for the processing of the design, which
eventually produces a datapath.

Figure 15.2(a) shows the current stage within the dataflow diagram from Figure12.1. The initial
design (object AlgDesign) takes the top-level functional description of the algorithm (AlgFunc-
tionality), the corresponding SignalPkg, and FFCSA submodule instructions (instead of existing
basic building blocks from a library). The compilation algorithms will transform the extracted sub-
modules to generated submodules and finally to VHDL-ready submodules, i.e., the VHDL-ready
datapath, shown in Figure 15.2(b).
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The internal structure of AlgDesign was shown in Figure 15.1. The middle pillar, i.e., AFlist
and topAF conceptually form design, shaded grey in Figure 15.2(a). The rightmost pillar, i.e.,
CIRClist and topCIRC conceptually form datapath, shaded grey in Figure 15.2(b).

design

submodule
instructions

algorithm - 
funct. desc.

SignalPkg

DesignReady

FFCSA

datapath

VHDL-Ready

basic
building blocks

with
estimates

(a) The initial design

design

submodule
instructions

algorithm - 
funct. desc.

SignalPkg

DesignReady

FFCSA

datapath

ProcessDesigngenerate
extract and

submodules

extract
connectors

and constants

parse submodules

VHDL-Ready

basic
building blocks

with
estimates

(b) The VHDL-ready datapath

Figure 15.2: The current stage in the design-flow diagram: (a) the initial design, and (b) the VHDL-ready datapath

Key 15.2: The design and the datapath

The AlgDesign holds three lists, the SMlist of submodules needed, the AFlists of Al-
gFunctionality objects generated for the submodules from the SMlist, and the CIRClist
of the VHDL-ready Circuit objects, corresponding to the generated AlgFunctionality ob-
jects. The structure of the SignalPkg object plays a crucial role for automation: it allows for
the top-down modular approach in which the submodules are generated for the subfields.
All three lists are accessible by the Fid’s from the stored AlgDesignSignalPkg. There
is an almost clean split of the AlgDesign object into design and datapath, with only the
AlgDesignSignalPkg as their overlap:

• design: AFlist and topAF

• datapath: CIRClist and topCIRC

The entries of the SMlist, together with the FFCSA submodule instructions, are used to generate
the AlgFunctionality objects for the submodules. The submodule instruction format example:

sminsn := [ "generate", ["matrixU"], "CICO", "simple"]

The first entry generate indicates the submodules will be generated on the fly (instead of fetching
them from a library). The next entry in sminsn is a list containing the actual “how-to”, which will
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invoke the appropriate FFCSA method and generate the expressions needed to drive the submodule
outputs. The last part of sminsn are the archtype instructions needed for the new AlgFunctionality.

All the submodules in the design will be generated using the same instructions, but the second entry
is a list that allows for variations, e.g., one FFCSA method can be used for inversions and another
for all other exponentiations. After passing a few simple checks for valid keywords, the entire
sminsn is stored as an attribute of AlgDesign, called SubmoduleInstructions. For example,
given and SMlist entry [ “EXP”, e ] at SMlist index Fid use:

1. Fid to obtain field F and corresponding basis B from the SignalPkg
2. ChooseFieldElms on F to obtain a vector of GAP variables5 avec (Table 7.5)
3. FFA_exp_matrixU(B, avec, e ) to get the expressions for the exponentiation (Section 7.4)

� Implementation detail: The encoding for the extracted submodules was given in Table 14.6 in Section 14.2:
possible sibmodules are [ “EXP”, e ], “MforFid#” and [ “MV”, c ], where e is the value of the exponent, # is
replaced by the actual Fid and c = γ is the multiplicative constant. �

The AlgDesign object

attributes/properties components

AlgDesignSignalPkg SMlist commentstr

SubmoduleInstructions topAF AFlist folder

AlgDesignWriteTop † topCIRC CIRClist filelist

CONNlist

Notes: † property

Table 15.1: Main functionality of the CIRCUIT package - the AlgDesign object

The attributes, properties, and components of the AlgDesign object are listed in Table 15.1. The
components folder and commentstr are self- explanatory. Component filelist stores all the
generated VHDL files, and is used to write scripts for the synthesis tools. The component tt
CONNlist, holding connectors (Table 15.2), will be explained at the end of this section and in
Example 15.4.1. The optional designPkg argument will be explained in Subsection 16.4.
� Implementation detail: The submodule instructions sminsn will always contain the keyword "generate", but the
keyword "fetch" is reserved for possible future use (recall the Key 13.1 and discussion in the motivation examples
in Section 13.1: the submodules can also be fetched from a database of basic building blocks). �

5 recall that the dimension of F = the length of B = the length of avec
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15.2 Top-down processing

The first compilation algorithm is called ProcessSMAFloop. As the name suggests, it will retrieve
extracted submodules from the SMlist and generate their corresponding AlgFunctionality objects.
Each new AlgFunctionality can have extracted submodules of their own, which are added to the
SMlist, and the process repeats.

Detailed description of ProcessSMAFloop

When the initial AlgDesign design is created, any extracted submodules of the top-level AlgFunc-
tionality are copied into the appropriate index of the SMlist. If the initial SMlist is empty, i.e., the
topAF is of class 0,1 or 3 (see Table 10.4 in Section 10.3), no additional processing is needed. For
all other cases, the SMlist will have entries at the element type Fids and the ProcessSMAFloop
will start. The new Fids are obtained using SignalPkg methods from Table 13.6 in Section 13.3 .

The loop maintains two lists of indices, the SMidlist for Fids where SMlist[Fid] is not
empty, and the AFidlist for Fids where AFlist[Fid] was not yet processed. One pass of
ProcessSMAFloop performs the following steps:

1. collect all Fids for which the SMlist is not empty into the SMidlist and order the list in
descending order for top-down processing. Create an empty AFidlist to store the indices
returned by the ProcessSMlistByFieldID method.

2. for each SMid in SMidlist call ProcessSMlistByFieldID, skip6 SMid=1

• obtain newAFid as FieldIDToVectorID( AlgDesignSignalPkg( design, SMid ).
By the structure of the SignalPkg, the submodules are found (extracted) for the element
SMids, and the AlgFunctionality objects are generated for vector newAFids.
• newAFid is used for the ports of the generated AlgFunctionality objects
• FunctName set to the exact encoding of the submodule in SMlist[Fid] (Table 14.6).
• remove all submodules from SMlist[SMid] and create their corresponding AlgFunc-

tionality objects, using the SubmoduleInstructions
• the generated AlgFunctionality objects are added to the AFlist[newAFid]. By the

structure of the SignalPkg, the AlgFunctionality objects are always added to the vector
indices newAFid of the AFlist.
• return newAFid, which is added to the AFidlist of the not yet processed indices.

3. when all SMids from SMidxlist are processed (the SMlist is currently also empty, because
method ProcessSMlistByFieldID removes the submodules), proceed to the AFidlist.
For each AFid from AFidlist call ProcessAFlistByFieldID:

• obtain newSMid as VectorIDToSGDFieldID( AlgDesignSignalPkg( design, AF
id). By the structure of the SignalPkg, the AFid is a vector type, and new AlgFunc-
tionality submodules are found (extracted) for element newSMids.

6 submodules are not possible for F2
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• call MakeAlgFunctionalityDesignReady for each entry of the AFlist[AFid]
• if a submodule is found7 and is not yet listed at SMlist[newSMid], then add it

4. when all AFids are processed, check the SMlist: if empty, ProcessSMAFloop is finished,
otherwise start a new pass, i.e., return to step 1.

When ProcessSMAFloop is finished, the SMlist is empty and will not be populated again. At
this point the AFlist contains the final design (Key 15.2), no more AlgFunctionality objects will
be added. The methods described above are listed in Table 15.3 at the end of this section.

Key 15.3: Top-down processing: generate all submodules

The structure of SignalPkg, inherited by the SMlist and AFlist, allows a top-down pro-
cessing of the initial AlgDesign in a ProcessSMAFloop. It transforms all the submodules
in SMlist into AlgFunctionality objects, and adds them to the AFlist. Then it extracts
submodules from the newly created AlgFunctionality objects and adds them to the SMlist.
All the populated Fids in the SMlist are element type, and all the populated Fids in the
AFlist vector type SIGNALs. When ProcessSMAFloop is finished, the SMlist is empty
and the AFlist contains the final design.

� Discussion: The ProcessSMAFloop uses two SignalPkg methods, FieldIDToVectorID
and VectorIDToSGDFieldID (Table 13.6). Different compositions of these two methods gives
FieldIDToSubID and VectorIDToSubID. For SignalPkg pkg, stored as AlgDesignSignal-
Pkg and a valid field identifier Fid:

FieldIDToSubID (pkg, Fid) = VectorIDToSGDFieldID (FieldIDToVectorID (pkg, Fid))

VectorIDToSubID (pkg, Fid) = FieldIDToVectorID (VectorIDToSGDFieldID (pkg, Fid))

See Table 13.6 in Section 13.3 and Examples 13.3.1 and 13.3.2 for SignalPkg methods. As the
SMlist is populated by the element Fids, the passes of ProcessSMAFloop follow the FieldID-
ToSubID: 11 → 8 → 5 in Example 15.2.1. Similarly, the AFlist is populated by the vector
Fids, and the passes follow the VectorIDToSubID: 9 → 6 → 2 in Example 15.2.1.

Hence, it is possible to know for which Fids the submodules and their AlgFunctionality objects
are expected. Without generating the AlgFunctionality objects, however, it is not possible to know
if and which submodules are needed. �

7 during AlgFunctionalityCollectAllSubmodules of MakeAlgFunctionalityDesignReady (Table 14.4)
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Example 15.2.1 Datapath synthesis for an expression over F((22)2)2 – top-down processing

This example shows the graphical representation of the three lists in the initial AlgDesign obtained from the AF
implementing the expression in equation (13.1) defined over the tower field F((22)2)2 (Example 13.1.3 in Section 13.1).
The extracted submodules are shown at Fid=11 in the SMlist. The passes of the ProcessSMAFloop are shown
graphically:

• pass 1 of the ProcessSMAFloop is shown in Figure 15.3:

– three submodules were removed from SMlist[11], shaded grey
– ProcessSMlistByFieldID (design, 11) creates three new AlgFunctionality objects to be added

at newAFid=9, i.e., AFlist[9]
– ProcessAFlistByFieldID (design, 9) finds 7 new submodules and adds them to newSMid=8, i.e.,

to SMlist[8]. There are 5 distinct matrix-vector multipliers MV, but the exact values of the constants
are omitted from Figure 15.3

Fid=1

Fid=2

Fid=3

Fid=6

Fid=7

Fid=4

Fid=5

Fid=8

[ "EXP" , 2 ]
MforFid11

SMlist AFlist CIRClist

Fid=9

Fid=10

["MV",Z(    )]2̂ 8
Fid=11

Fid9_exp_2
Fid9_mult

Fid9_mv_g_73

ProcessSMlistByFieldID

ProcessAFlistByFieldID

[ "EXP" , 2 ]
MforFid9

[    ]MV. [    ]MV. [    ]MV.
[    ]MV. [    ]MV.

pass 1

FieldIDToVectorID

VectorIDToSGDFieldID

Figure 15.3: Pass 1 of the ProcessSMAFloop for the AlgDesign with the expression in equation (13.1)
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• pass 2 of the ProcessSMAFloop is shown in Figure 15.4:

– 7 submodules were removed from SMlist[8], shaded grey
– ProcessSMlistByFieldID (design, 8) creates 7 new AlgFunctionality objects to be added at

newAFid= 6, i.e., AFlist[6]
– ProcessAFlistByFieldID (design, 6) finds four new submodules and adds them to newSMid=5,

i.e., to SMlist[5]. There are 2 distinct matrix-vector multipliers MV, but the exact values of the con-
stants are omitted from Figure 15.4

Fid=1

Fid=2

Fid=3

Fid=6

Fid=7

Fid=4

Fid=5

Fid=8

SMlist AFlist CIRClist

Fid=9

Fid=10

Fid=11

Fid9_exp_2
Fid9_mult

Fid9_mv_g_73

ProcessSMlistByFieldID

ProcessAFlistByFieldID

[ "EXP" , 2 ]
MforFid9

[    ]MV. [    ]MV. [    ]MV.
[    ]MV. [    ]MV.

pass 2

FieldIDToVectorID

VectorIDToSGDFieldID

Fid6_exp_2
Fid6_mult

Fid6_mv_ ...
... Fid6_mv_

[ "EXP" , 2 ]
MforFid9
[    ]MV. [    ]MV.

Figure 15.4: Pass 2 of the ProcessSMAFloop for the AlgDesign with the expression in equation (13.1)
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• pass 3 of the ProcessSMAFloop is shown in Figure 15.5:

– four submodules were removed from SMlist[5], shaded grey
– ProcessSMlistByFieldID (design, 5) creates four new AlgFunctionality objects to be added at

newAFid= 2, i.e., AFlist[2]
– ProcessAFlistByFieldID (design, 2) terminates without adding new submodules because no sub-

modules exist in F2

Fid=1

Fid=2

Fid=3

Fid=6

Fid=7

Fid=4

Fid=5

Fid=8

SMlist AFlist CIRClist

Fid=9

Fid=10

Fid=11

Fid9_exp_2
Fid9_mult

Fid9_mv_g_73

ProcessSMlistByFieldID

pass 3

FieldIDToVectorID

Fid6_exp_2
Fid6_mult

Fid6_mv_ ...
... Fid6_mv_

[ "EXP" , 2 ]
MforFid9
[    ]MV. [    ]MV.

Fid2_exp_2
Fid2_mult

Fid2_mv_ ...
Fid2_mv_ ...

Figure 15.5: Pass 3 of the ProcessSMAFloop for the AlgDesign with the expression in equation (13.1)
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15.3 Bottom-up processing

The second compilation algorithm in the CIRCUIT package is the ProcessAFCIRCloop. It tra-
verses the AFlist in a bottom-up fashion, gradually building a VHDL-ready datapath. The Al-
gFunctionality object does not contain all the information needed to write the VHDL code, i.e., it
gives the functional description of an algorithm / expression / module. The AlgDesign object has
methods to extract and generate the needed submodules but does not yet tie the submodules to the
“parent” modules. This step is accomplished by another kind of binding, in this case: the binding
of operations to the submodules. One last missing piece are the additive constants, which will be
explained at the end of this section.

Detailed description of ProcessAFCIRCloop

In the bottom-up loop ProcessAFCIRCLoop, all the AlgFunctionality objects, starting with the
lowest Fid for which the AFlist is not empty, are transformed into Circuit objects, using the
method AFtoCIRC (design, AF). In ascending Fid order, ProcessAFCIRClistByFieldID is
called for each non-empty AFlist[Fid]. ProcessAFCIRClistByFieldID which is one pass of
the ProcessAFCIRCLoop, and proceeds as follows:

• for each AlgFunctionality object AF at AFlist[Fid], call AFtoCIRC, which will
– create the empty lists parsedSMlist and constlist
– if the AF has submodules:

* for each submodule, find its corresponding Circuit object by its FunctName at a
lower Fid and parse its entitylist:

parsed submodule list : [ FunctName, EntityName, ArchName, EntityGenerics ] (15.1)

then add the parsed submodule list to parsedSMlist

* FunctName binds the arithmetic operation to its submodule. Recall that FunctName
was set to submodule encoding (Table 14.6) by ProcessSMlistByFieldID

* EntityName and ArchName parameters of the parsed entitylist will be used
directly for the VHDL component instantiation of the submodule

– if AF has additive constants:
* transform each constant into a directed graph8 and add it to constlist. More

details on digraphs will follow after Example 15.3.1
* while there can be only one additive constant, i.e., constant term, per ANF expres-

sion, (each coordinate of) each output can have its own constant term
* the directed graph is used for VHDL declaration of the corresponding constant

(see declaration (15.3) and Example 15.3.2)
– create the Circuit CIRC corresponding to the AF and add it to the CIRClist[Fid] :

CIRC = Circuit ( AF, parsedSMlist, constlist ) (15.2)
8 using the GAP package Digraphs [35]
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Key 15.4: Bottom-up processing: submodules and additive constants

The bottom-up ProcessAFCIRCLoop transforms each AlgFunctionality object in the
AFlist into a VHDL-ready Circuit object by adding the missing information about its sub-
modules, which are now available, and about any additive constants present. The Circuit
objects are added to the CIRClist at the same Fid as their corresponding AlgFunctionality
objects.

The Circuit constructor call (15.2) takes three parameters: the AlgFunctionality object AF, the list
of parsed submodules parsedSMlist, and the list of directed graphs for all additive constants
constlist. Since the Circuit is just a VHDL-ready version of the AlgFunctionality object, it
stores the same information as the latter (Table 14.1), with an extra ConstantsList and with
encoded submodules (Table 14.6 in Section 14.2) replaced by the parsed submodule lists (15.1).
The main difference between AlgFunctionality and Circuit objects is in the submodules: for Al-
gFunctionality, the submodules are black boxes (only their functionality is known), but for Cir-
cuit objects, the generated submodules and their exact information (the parsed submodule lists
(15.1)) are available. The combination of top-down extracting and generating submodules and the
bottom-up parsing of submodules also implicitly binds the arithmetic operations and submodules;
the submodules are identified by their FunctName. When the ProcessAFCIRCLoop terminates,
the AFlist is empty and the CIRClist contains the VHDL-ready Circuit objects.

Key 15.5: AlgFunctionality vs Circuit

The main difference between AlgFunctionality and Circuit objects is in the submodules:
for AlgFunctionality, the submodules are black boxes (only their functionality is known),
but for Circuit objects, the actual submodules and their exact information, i.e., the parsed
submodule lists (15.1), are available. The combination of top-down and bottom-up process-
ing of submodules also implicitly binds the arithmetic operations and submodules using the
FunctName attribute.
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Example 15.3.1 Datapath synthesis for an expression over F((22)2)2 – bottom-up processing

Fid=1

Fid=2

Fid=3

Fid=6

Fid=7

Fid=4

Fid=5

Fid=8

SMlist AFlist CIRClist

Fid=9

Fid=10

Fid=11

Fid9_exp_2
Fid9_mult

Fid9_mv_g_73 pass 3

Fid2_exp_2
Fid2_mult

Fid2_mv_ ...
Fid2_mv_ ...

ProcessAFCIRClistByFieldID

Fid6_exp_2
Fid6_mult

Fid6_mv_ ...
... Fid6_mv_

Fid9_exp_2
Fid9_mult

Fid9_mv_g_73

pass 2

ProcessAFCIRClistByFieldID

pass 2

ProcessAFCIRClistByFieldID

Figure 15.6: The ProcessAFCIRCLoop for the AlgDesign with the expression in equation (13.1)

This example continues the Example 15.2.1. The passes of the ProcessAFCIRCloop are shown graphically in Fig-
ure 15.6, the constant graphs are omitted. For brevity, all three passes are shown in the same figure. The top-down
ProcessSMAFloop shown in Example 15.2.1 took 3 passes, and the bottom-up ProcessAFCIRCloop takes 3 passes
as well:

• pass 1 of the ProcessAFCIRCloop is shown at the bottom: since there are no submodules, all four AlgFunc-
tionality objects from AFlist[2] are simply transformed into Circuit

• pass 2 takes the 7 AlgFunctionality objects from AFlist[6], parses their submodules (dashed arrow from
CIRClist[2] to AFlist[6] in Figure 15.6), and creates 7 Circuit objects for CIRClist[6]

• pass 3 takes the 3 AlgFunctionality objects from AFlist[9], parses their submodules (dashed arrow from
CIRClist[6] to AFlist[9] in Figure 15.6), and creates 3 Circuit objects for CIRClist[9]

The GAP code Example D.4.1 in Appendix D.4 shows the CIRClist contents after processing.
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Additive constants

The additive constants from a tower field need to be represented in a form that allows for them to be
specified in VHDL. Recall (sub)type definitions (13.8-13.14) in Section 13.3, especially (13.14),
repeated below:

type signal is array (0 to m − 1) of sub − signal

A type signal constant c can then be specified in VHDL as a tuple of coordinates c0, ..., cm−1,
which were already specified as type sub-signal constants:

constant c : signal := (c0 , . . . , cm−1) (15.3)

In order to obtain all the information needed, a tower field constant is represented as a directed
graph, where a node c contains the coordinates c0, ...cm−1 as children, and each node label
contains the following information: the string for the constant, the value of the constant and the
Fid to identify its type in the corresponding SignalPkg used. The leaf nodes contain simple binary
values for coordinates whose types are std_logic_vector. If the constant is not a tower field
constant but belongs to a finite field constructed as one extension, the directed graph consists of
one node with a single leaf. Example 15.3.2 is a continuation of Example D.3.1: Figure 15.7 shows
the digraph for the constant γ2 ∈ F((22)2)2 and the corresponding VHDL declarations are shown in
VHDL Example 15.3.2.

Example 15.3.2 Declarations for additive constants in F((22)2)2
↪−→

Figure 15.7 shows the directed graph for the constant γ2 = ν3, where ν is a root of the reference defining polyno-
mial p3(x) = x8 + x4 + x3 + x2 + 1 (see Table D.1 from Example 13.2.1). The exact tower field construction is
specified in Example 13.3.1 and the SignalPkg defaultPkg shown in a diagram in Figure 13.5 in Example13.3.2, in
Section 13.3. The root node in Figure 15.7 is γ2 with Fid=9. The next level are its two coordinates with Fid=6,
and lastly the coordinates with Fid=2, which are shown two layers: the coordinates (constants) itself, and their
std_logic_vector values 00, 11, 01, 10. The graph in Figure 15.7 is “top-down”, with γ2 ∈ F((22)2)2 . The
VHDL code VHDL Example 15.3.2 declares the constants “bottom-up”, with γ2, called Fid9_c_g_3 in VHDL, de-
clared last.

VHDL Example 15.3.2

constant Fid9_c_g_3_0_0: ffe_2 := "00";
constant Fid9_c_g_3_0_1: ffe_2 := "11";
constant Fid9_c_g_3_1_0: ffe_2 := "01";
constant Fid9_c_g_3_1_1: ffe_2 := "10";
constant Fid9_c_g_3_1: ffe_6 := (Fid9_c_g_3_1_0, Fid9_c_g_3_1_1);
constant Fid9_c_g_3_0: ffe_6 := (Fid9_c_g_3_0_0, Fid9_c_g_3_0_1);
constant Fid9_c_g_3: ffe_9 := (Fid9_c_g_3_0, Fid9_c_g_3_1);

↪−→
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[Fid9_c_g_3,Z(2^8)^3,9]

[Fid9_c_g_3_0,Z(2^4)^11,6] [Fid9_c_g_3_1,Z(2^4)^2,6]

[Fid9_c_g_3_0_0,0*Z(2),2] [Fid9_c_g_3_0_1,Z(2^2)^2,2] [Fid9_c_g_3_1_0,Z(2^2),2] [Fid9_c_g_3_1_1,Z(2)^0,2]

[00,-1,2] [11,-1,2] [01,-1,2] [10,-1,2]

Figure 15.7: The directed graphs for the additive constant γ2

15.4 Connectors for the tower field elements and vectors

The tower fields require some extra management. First are the aforementioned additive constants,
which are transformed into directed graphs and stored as a part of the Circuit object. Second are
the connectors, which are used for the type conversions between the tower field element and vector
SIGNALs.

Connectors are used for conversions between different types. As the connectors are only needed
for tower field constructions, they are explained on the example tower field construction used in
Examples 13.1.3-15.3.2, with the exact SignalPkg called defaultPkg shown in Examples 13.3.1
and 13.3.2. Recall the “per-level” bases and the tower field bases T FB of the isomorphic field
(equation (7.1) in Section 7.3.1):

• “per-level” bases: BF((22)2)2/F(22)2
and BF(22)2/F22 (shown on the left side in the diagram in Fig-

ure 13.5 from Example 13.3.2)

• tower field bases T FB: T FBF28/F2 and T FBF24/F2 (shown on the right side in the diagram in
Figure 13.5 from Example 13.3.2)
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For each of the bases above, two SIGNAL objects are created, namely an element Fr and a vector
Vr (with m = 2 for the tower field construction used in Examples 13.1.3-15.3.2).

The method TFieldIDToFieldID in Table 13.6 takes a Fid of an element SIGNAL with a “per-
level” basis and returns the Fid of the element SIGNAL with the corresponding tower field basis
T FB of the isomorphic field (equation (7.1) in Section 7.3.1). For example, the Fid=11 element
SIGNAL F6 with the “per-level” UnderlyingBasis BF((22)2)2/F(22)2

(see Table 13.9 for details), has its
counterpart Fid=10 element SIGNAL F4 with interpretation basis T FBF28/F2 obtained as shown
in equation (7.1), i.e., TFieldIDToFieldID(defaultPkg, 11)= 10.

For all the SIGNALs in defaultPkg, that have different VHDL (sub)type declarations, a pair of
connectors is needed between:

• element Fr (tffe) and vector Vr (tfvec) types w.r.t. the same tower field “per-level”
basis (the UnderlyingBasis of the element signal is also the interpretation basis of the
vector signal, and the two SIGNALs are matched using the method FieldIDToVectorID
from Table 13.6). There are two connectors, called element-vector connectors, namely
tffe_to_tfvec and its inverse tfvec_to_tffe, shown in the first row of Table 15.2.
• SIGNALs for the tower field “per-level” bases (tffe or tfvec) and SIGNALs for the T FB

bases of the isomorphic finite fields (ffe or fvec):
– element SIGNALS tffe and ffe that can be matched with the TFieldIDToFieldID

method as explained above. There are two connectors, called element-element connec-
tors, namely tffe_to_ffe and its inverse ffe_to_tffe, shown in the second row of
Table 15.2.

– vector SIGNALs tfvec and fvce that can be matched with a combination of meth-
ods TFieldIDToFieldID and FieldIDToVEctorID. There are two connectors, called
vector-vector connectors, namely tfvec_to_fvec and its inverse fvec_to_tfvec.
The connectors are shown in the third row of Table 15.2, and details on methods
TFieldIDToFieldID and FieldIDToVEctorID in the last row of Table 15.2.

No connectors are needed for the element Fr (ffe) and vector Vr (fvec) types for the isomorphic
finite fields, because they both have the same VHDL declaration std_logic_vector (see decla-
rations (13.9) and (13.11) for p = m case). The same rationale applies to why the connectors are
not needed if there is no tower field in the design. The three types of connectors that are required
for the VHDL implementation are shown in Table 15.2, with examples from defaultPkg in the
last column (see Examples 13.3.1 and 13.3.2 for details on defaultPkg).

The connectors themselves are kept in the CONNlist component of the AlgDesign object (see
Table 15.1), which follows the structure of the SignalPkg used (just as the SMlist, AFlist and
CIRClist components). Each connector is always stored at the Fid of its origin, thus decoupling
the connector pairs, as can be seen in Example 15.4.1. The CONNlist entries are obtained with
the ExtractConnectors method, which only depends on the SignalPkg. Chapter 16 will discuss
how the connectors are used.
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Key 15.6: Conversions between different data types

A pair of connectors is needed for conversions between different data types, when tower field
constructions are used in the design: element-vector connectors (w.r.t. the same tower field
“per-level” basis), element-element connectors and vector-vector connectors (both between
the tower field “per-level” bases and the T FB bases of the isomorphic finite fields).

Example 15.4.1 Connectors for the tower field elements and vectors in F((22)2)2
↪−→

Below are all the connectors needed for the tower field construction used in the running example in this section. The
exact tower field construction is specified in Example 13.3.1 and the SignalPkg defaultPkg shown in a diagram in
Figure 13.5 in Example13.3.2, in Section 13.3.

The output is formatted as follows: for each existing Fid_1, the element-vector connector (first row in Table 15.2), if
it exists, is specified as Fid_1 -> tffe_to_tfvec -> Fid_2 and its pair connector is listed in the row for Fid_2 as
Fid_2 -> tfvec_to_tffe -> Fid_1. Next the element-element connectors (second row in Table 15.2) are listed
in the same format, and the vector-vector connectors (third row in Table 15.2) are listed last. If a connector doesnt
exist, -1 is listed instead.

Example 15.4.1
-------------------------
AlgDesign with CONNlist

11: 11 -> tffe_to_tfvec -> 9 11 -> tffe_to_ffe -> 10 -1

10: -1 10 -> ffe_to_tffe -> 11 -1

9: 9 -> tfvec_to_tffe -> 11 -1 9 -> tfvec_to_fvec -> 4

8: 8 -> tffe_to_tfvec -> 6 8 -> tffe_to_ffe -> 7 -1

7: -1 7 -> ffe_to_tffe -> 8 -1

6: 6 -> tfvec_to_tffe -> 8 -1 6 -> tfvec_to_fvec -> 3

5: -1 -1 -1

4: -1 -1 4 -> fvec_to_tfvec -> 9

3: -1 -1 3 -> fvec_to_tfvec -> 6

2: -1 -1 -1

1: -1 -1 -1

-------------------------

↪−→
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15.5 Putting it all together

The main methods described in this section are summarized in Table 15.3. They are not called
individually, but are a part of the method called ProcessDesign, which performs the following
steps for the given AlgDesign object design:

1. ExtractConnectors(design): connectors for the tower field elements and vectors
2. ProcessSMAFloop(design): top-down processing of the design
3. ProcessAFCIRCloop(design): bottom-up processing of the design
4. finally, if AlgDesignWriteTop is true, the topAF is also transformed9 to a Circuit object

and stored as topCIRC.

design - an AlgDesign object AF - an AlgFunctionality object Fid - field identifier

top-down processing bottom-up processing

ProcessSMlistByFieldID (design, Fid) AFtoCIRC (design, AF)

ProcessAFlistByFieldID (design, Fid) ProcessAFCIRClistByFieldID (design, Fid)

ProcessSMAFloop (design) ProcessAFCIRCloop (design)

ProcessDesign (design)

Table 15.3: Main functionality of the CIRCUIT package - methods for the AlgDesign

Key 15.7: Putting it all together - ProcessDesign

The method ProcessDesign takes an initial AlgDesign, with the functional description of
the algorithm stored as topAF, and builds the entire design (AFlist and topAF) in a top-
down loop. It then transforms the design into the datapath (CIRClist and topCIRC) in a
bottom-up loop. The remaining information, needed for the VHDL implementation, is cap-
tured as the AlgDesignSignalPkg attribute and as the component CONNlist. The AlgDe-
sign object is now considered to be VHDL-ready, with the datapath captured in CIRClist
and topCIRC.

9 using the AFtoCIRC method in (15.2)
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Example 15.5.1 Datapath synthesis for an expression over F((22)2)2 – revisited ↪−→

This example is merely a summary of Examples 15.2.1 and 15.3.1. It shows the completed ProcessSMAFloop in
Figure 15.8(a) and completed ProcessAFCIRCloop in Figure 15.8(b). The SMlist, AFlist and CIRClist are
represented graphically as ladders, with Fid=1 for the F2 on the bottom (lowest level) and the highest Fid on the top.
SMlist holds extracted submodules, encoded as shown in Table 14.6, the AFlist holds the generated submodules -
the design, and the CIRClist holds the VHDL-ready submodules - the datapath.

Fid=1

Fid=2

Fid=3

Fid=6

Fid=7

Fid=4

Fid=5

Fid=8

[ "EXP" , 2 ]
MforFid11

SMlist AFlist

Fid=9

Fid=10

["MV",Z(    )]2̂ 8
Fid=11

Fid9_exp_2
Fid9_mult

Fid9_mv_g_73

ProcessSMlistByFieldID

ProcessAFlistByFieldID

[ "EXP" , 2 ]
MforFid9

[    ]MV. [    ]MV. [    ]MV.
[    ]MV. [    ]MV.

pass 1

FieldIDToVectorID

VectorIDToSGDFieldID

pass 2 Fid6_exp_2
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(a) Top-down processing: ProcessSMAFLoop

AFlist CIRClist

Fid2_exp_2
Fid2_mult

Fid2_mv_ ...
Fid2_mv_ ... pass 1
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(b) Bottom-up processing: ProcessAFCIRCLoop

Figure 15.8: The ProcessDesign for the AlgDesign with the expression in equation (13.1)

The ProcessSMAFLoop is shown in Figure 15.8(a): three passes are required to finish the loop, and each pass consists
of ProcessSMlistByFieldID, which removes the submodules from the SMlist (shaded grey), followed by the
ProcessAFlistByFieldID, which extracts new submodules, if they exist. No submodules are found in pass 3. The
bottom-up loop is shown in Figure 15.8(b). Values of the multiplicative constants are omitted for brevity: there is one
constant for Fid=11, five distinct constants for Fid=8 and two distinct constants for Fid=5.It shows three passes of
the bottom-up loop, with no submodules in pass 1. After pass 3 is completed, the AFlist is empty (shaded grey).

↪−→
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15.6 Summary of key insights

This chapter demonstrated the transformation of a functional description of the top-level module
into a VHDL-ready design, i.e., AlgFunctionality to VHDL-ready AlgDesign.

As was mentioned in Key 15.2, the AlgDesign object is almost cleanly split into the design
(AFlist and topAF) and datapath (CIRClist and topCIRC), with only AlgDesignSignalPkg
and the CONNlist as their overlap. The method ProcessDesign takes the initial design-ready
AlgDesign, with the functional description of the algorithm stored as topAF and builds the en-
tire design in a top-down loop. It then transforms the design into the datapath in a bottom-up
loop. When ProcessDesign terminates, AlgDesign is VHDL-ready, with the datapath captured
in CIRClist and topCIRC. One last step remains: writing the datapath (and all packages, test-
benches and testvectors) using VHDL as the chosen method of design entry.

Tables 15.4 and 15.5 summarize all Keys from Chapter 12 seen so far. The Keys from the previous
recap (Table 14.7 in Section 15.1) are listed only by their title in Table 15.4: the previously fully
solved Keys 13.2-14.8 are marked with XX, and the new solutions from the AlgDesign object and
its methods with 3X. The last part of the automated design generation is writing the VHDL for
the datapath. This part will be explained in the next section (Section 16), which is organized as
follows: packages, (sub)modules, and testbecnhes.

SignalPkg - design

design

architectural
decisions

fully functional 
module

architectural
decisions

generation
datapath

automated

basic VHDL
primitives

submodule
extraction

variable
binding

binding
datapath

signal
extraction

classification

SignalPkg - default

algorithm - 
funct. desc.

design
generation

automated
& generationoperations

 13.1-13.6
Keys

with
partially
solved

 13.1 & 14.6  
Keys

 15.1-15.7  
Keys
and

fully
solved

 13.1 & 14.6  
Keys

basic
building blocks

with
estimates

 14.1-14.8

Figure 15.9: The automated design generation with key insights
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Key The SignalDomain: the bases and XX Section
13.2 the field construction trail 13.2

Key The SIGNAL: finite field as XX Section
13.3 a vector space and “just vectors” 13.2

Key The signal package SignalPkg - XX Section
13.5 keeping it all in one place 13.3

Key The VHDL type definitions and XX Section
13.6 tower field constructions 13.3

Key Binding of GAP variables XX Section
10.3 and VHDL signal names 10.2

Key Binding of VHDL ports to the finite fields XX Section
14.1 and vector(s) (spaces) 14.1

Key Binding of GAP variables XX Section
14.2 and VHDL input ports 14.1

Key Positional binding of expressions XX Section
14.3 and output ports 14.1

Key Implicit binding of expressions to XX Section
14.4 the finite fields and vector(s) (speaces) 14.1

Key How to obtain the (sub)modules - binding 3X Section
13.1 expressions to the finite fields Key 15.3 13.1

Key How to obtain the (sub)modules - XX Section
13.4 correctness check based on the output port length 13.2

Key Classification of expressions defined XX Section
10.4 over finite fields 10.3

Key Functional description aware of finite XX Section
14.5 fields and vector(s) (speaces) 14.1

Key The datapath and classification of 3X Section
14.6 expressions Key 15.2, 15.3, 15.4 14.2

Key The inference XX Section
14.7 of the internal VHDL signals 14.2

Key The extraction of submodules XX Section
14.8 14.2
- previously partially solved (X) and solved (XX)

by GAPtoVHDL, SignalPkg and AlgFunctionality

- newly solved (3X) by AlgDesign

Table 15.4: Summary of key insights to the CIRCUIT package with new solutions from AlgDesign
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Chapter 16

CIRCUIT package part 4: generating
VHDL for the datapath
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alg.

gen.

arch.

Overview of the CIRCUIT package part 4:

FSRtoVHDL

GAPtoVHDL

CIRCUIT

– generating VHDL for the datapath –
The last step for a VHDL-ready AlgDesign is the VHDL code generation.
The CIRCUIT package writes all VHDL packages, (sub)modules, and
testbenches for the design. AlgDesign stores a SignalPkg, which holds all
SIGNALs used in the design; the SIGNALs are directly translated VHDL

data types and written as VHDL package field_pkg.vhd. In the presence of a tower field, connectors are needed:
in VHDL, the connectors are implemented as type conversion functions and written in a separate package connec-
tors_pkg.vhd. The CIRCUIT package reuses the GAPtoVHDL package functions to write the field package and
offers functions specialized for the connectors package. VHDL modules are generated for all Circuit objects in the
design and each individual Circuit object holds all information needed for their VHDL generation. The data-
path for each ANF expression is generated following the identified natural order, from exponentiations to addi-
tions. CIRCUIT contains a set of functions which complement the GAPtoVHDL functions. For each generated
module a testbench is generated as well. The last feature of the CIRCUIT package is its ability to switch between a
default and a design SignalPkg. This feature allows rapid design space exploration: the initial user setup is needed
just once, afterwards, the hardware for different field constructions is generated automatically by switching the
design SignalPkg objects.
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16.1 VHDL packages

There are two packages that need to be written:

• the field_pkg, which is the SignalPkg translated to VHDL and is always written
• the connectors_pkg for the connectors (if they exist) from Table 15.2

The SignalPkg, stored as AlgDesignSignalPkg, is fed to the Write_field_pkg function from
the GAPtoVHDL package (see Table 10.1). The VHDL data type definitions (13.8-13.14) are used.
The type names contain the field identifier Fid from the SignalPkg, e.g., ffe_11 for the Fid=11
SIGNAL in defaultPkg, as shown in Examples 13.3.1 and 13.3.2. For all the array types (recall
type declaration (13.14) in Section 13.3), the "xor" functions (for the finite field addition) are
added to the package. A full example of a package can be found in appendix Example D.5.1. For
each type definition, the zero element ffe_#_zero is added as a VHDL constant. For the vector
types, this is the constant with all coordinates set to zero. The constants are used as default values
in case registered inputs and/or outputs with a reset are required by the archtype.

The connectors_pkg is a package of type conversion functions. The functions have the same
name as their corresponding connectors in Table 15.2, and for every connector found (see Exam-
ple 15.4.1), a function is needed. All other modules, including testbenches, need a use clause for
the packages.

Example 16.1.1 The connectors_pkg.vhd for the type conversion functions ↪−→

This example a fraction of the connectors_pkg.vhd for the type conversion functions for the connectors listed in
Example 15.4.1.

VHDL Example 16.1.1

package connectors_pkg is

function fvec_to_tfvec ( st: ffe_3 ) return ffe_6;
function fvec_to_tfvec ( st: ffe_4 ) return ffe_9;
function tfvec_to_tffe ( st: ffe_6 ) return ffe_8;
function tfvec_to_fvec ( st: ffe_6 ) return ffe_3;
function ffe_to_tffe ( st: ffe_7 ) return ffe_8;
function tffe_to_tfvec ( st: ffe_8 ) return ffe_6;
function tffe_to_ffe ( st: ffe_8 ) return ffe_7;
function tfvec_to_tffe ( st: ffe_9 ) return ffe_11;
function tfvec_to_fvec ( st: ffe_9 ) return ffe_4;
function ffe_to_tffe ( st: ffe_10 ) return ffe_11;
function tffe_to_tfvec ( st: ffe_11 ) return ffe_9;
function tffe_to_ffe ( st: ffe_11 ) return ffe_10;

end package;

↪−→
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16.2 VHDL (sub)modules

Each Circuit object in the datapath, i.e., in CIRClist and topCIRC, becomes a VHDL mod-
ule. A set of GAP functions writes the following files: the module itself, the testbench file, the
testvectors, and simulation scripts. The Circuit attributes and components contain all informa-
tion needed: EntityName is used for the entity name of the module, the strings in InputPorts
and OutputPorts are used as port names, and the Fid’s for their data types. The control list
in archtype is used to add ports for the control signals (limited to std_logic only). The ar-
chitecture name is given by ArchName and all submodules needed are available from the parsed
submodule list. The architecture body is written following the steps in Figure 16.1.

modules functions and methods

Write_circ_arch_declarations [1] ExpressionBinding [3]†

Write_circ_input_connectors [2]† Write_circ_input_registers [2]†

Write_circ_arch_exponents [3,4] Write_circ_arch_andtree [3,5]

Write_circ_arch_all_multree [3]† Write_circ_arch_multree [3,5]

Write_circ_arch_MVs [3,5] Add_constant_digraph [3]

Write_circ_arch_sumtree [3]

Write_circ_ach_output [6]

Notes:
[1] - entire module: all signals, constants, connectors and registers
[2] - for all input ports
[3] - for each expression, i.e., each (coordinate of) each output
[4] - for each exponent in expression
[5] - for each monomial in expression
† - see Figure 16.1

Table 16.1: Main functionality of the CIRCUIT package - writing the VHDL (sub)modules

The function Write_circ_arch_declarations writes the declarations for all signals found in
signalcollected (Table 14.1) except for the prefix_lvl_#_node# (Table 14.5), which are re-
placed by components or gates, and for all constants from ConstantsList (recall Example 15.3.2,
showing the declarations needed for a tower field constant in VHDL Example 15.3.2). If connec-
tors are found in CONNlist for the current Fid, additional signals are declared by simply prepend-
ing con_ to the port names. Similarly, if archtype specified RI∗O, the signals for the input
registers are declared as input port names with the prefix reg_, e.g., reg_i_a.

The rest of the architecture is written following the steps in Figure 16.1:
• for each input port in InputPorts:

– if needed, write input connectors and input registers (step 0)

• for each ANF expression in ArchExpr perform steps 1-6
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• for each output port in OutputPorts perform step 7:

– if needed, write output connectors and output registers
– drive the outputs

variables x j

(coordinates of) 
input port(s)

STEP 1
binding

STEP 2
exponentiations

class
0

class
1

class
2

class
3

class
4

class
5

class
6

class
7

exponentiation
outputs

monomials

STEP 3
multiplications

terms

STEP 4
mult. constants

STEP 5
constant term

terms + 
const. term

STEP 6
addition

sum

STEP 7
drive outputs

(coordinates of) 
output port(s)

A M M M? M?

connectors for
input port(s)

input registers RI

connectors for
output port(s)

output registers RO

STEP 0
connectors 

and registers
for each 
input port

for each 
(coordinate of)
each output  port

for each 
output port

Figure 16.1: The (steps of writing a) datapath including the connectors and the registers

Step 0 and step 1 are separated in Figure 16.1, because connectors and registers are written for the
input ports, but binding is performed for each ANF expression separately. Steps 1-6 are always
performed for each (coordinate of) each output, i.e., one ANF expression at a time. Step 7 is
performed per output, which may contain more than one expression. In the case of a vector output
SIGNAL of length m, the individual sums (step 6) are collected in a list called outsources, and
when all m sums are available, step 7 is performed.

Step 0, shown on top of the datapath in Figure 16.1, consists of Write_circ_input_connectors
function, which writes the possible VHDL data type conversions (if any), followed by the func-
tion Write_circ_input_registers (if registered inputs RI). The signal names with the prefixes
con_ and reg_ are used. Example 16.2.1 shows the output VHDL for an RI∗O type top-level mod-
ule, implementing the running example (13.1), defined over the tower field F((22)2)2 (Example 13.1.3
in Section 13.1).
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Example 16.2.1 Example of connectors and input registers in the architecture ↪−→

The connectors are needed for the modules, which have e.g., element ports and vector submodules, like the running ex-
ample (13.1) defined over F((22)2)2 : the ports have Fid=11, but all internal signals are Fid=9. This way, the connectors
are needed only for the port signals and not for each individual submodule. The connectors are also used for the test-
benche: the testvectors are written for Fid=10 using the T FB, and a ffe_to_tffe function is needed for the top-level
module with Fid=11 ports. VHDL Example 16.2.1 is showing the input port (entity), declaration of the connector
signal and one register signal, followed by the use of the type conversion functions (see VHDL Example 16.1.1)
and input registers (architecture). The input registers have been specified with the following control list in GAP:
[["i_clk", "i_rst", "i_ce"], [1,1,1]], dictating a rising edge clock signal i_clk, a reset i_rst and a chip
enable i_ce, both active high. Note the resetting to ffe_9_zero (declared in field_pkg). Since the control list holds
for all input ports they are written in the same clocked process. The dots indicate VHDL code removed for brevity.

VHDL Example 16.2.1

port( i_a: in ffe_11; -- input
... OMITTED FOR BREVITY ....

);
end entity;

architecture main of random is
... OMITTED FOR BREVITY ....
signal con_i_a : ffe_9; -- input connector
signal reg_i_a : ffe_9; -- input reg
... OMITTED FOR BREVITY ....
begin

con_i_a <= tffe_to_tfvec(i_a);
con_i_b <= tffe_to_tfvec(i_b);
con_i_c <= tffe_to_tfvec(i_c);

--input regz
inputregs : process(i_clk) begin

if rising_edge(i_clk) then
if i_rst = ’1’ then
reg_i_a <= ffe_9_zero;
reg_i_b <= ffe_9_zero;
reg_i_c <= ffe_9_zero;

else
if i_ce = ’1’ then
reg_i_a <= con_i_a;
reg_i_b <= con_i_b;
reg_i_c <= con_i_c;

end if;
end if;

end if;
end process;

... OMITTED FOR BREVITY ....

↪−→
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After step 0, for each output port j in OutputPorts an empty list outsources for the final
sum(s) is created. In the case of a vector output, steps 1-6 are performed for each coordinate
ArchExpr[j][i], and in the case of an element output for the expression in ArchExpr[j]. After
an expression is obtained from ArchExpr, it is split into a list of monomials (without coefficients).
Each monomial is further split into a sublist containing all variables present in this monomial. The
ordering of monomials and variables is preserved from the ANF expression (see Section 10.3 for
details). The constant term is removed. This list is called exprlist and will be modified by steps
1-6 in Figure 16.1. Depending on the class of the current expression, some steps take no action and
the exprlist is passed on unmodified. For example, there are no multiplicative constants (step 4)
present in a class 6 expression.

When submodules are needed, the function Write_component_inst is called (see Table 10.3
in Section 10). All component instantiations need the following information: a label, entity and
architecture name, and a port list. Labels are created on the fly, the entity and architecture names are
chosen from the parsed submodule list, and the port map will be explained for each step separately.

1. variable binding: all GAP variables in exprlist are replaced as explained in Section 14.2
(Key 14.2). As the binding is done per expression, the function is called ExpressionBinding.
First, the GAP variables are replaced with VHDL input port names (including the coordi-
nates in the case of partial binding) . If only input connectors are present, the prefix con_ is
added, if inputs are registered (RI), the prefix reg_ is added.

2. exponentiation: using the Table 14.5 encoding [EXPname, e, t, j ] the correct submod-
ule for exponentiation to the power e is chosen from the parsed submodules. Value of t iden-
tifies the sublist in exprlist and the value j the variable in the sublist. The port map input
is the exprlist[t][j] string and the output the EXPname. The EXPname also replaces the
exprlist[t][j] entry. exprlist strings with no exponentiations remain unchanged. The
exponentiations can be done in parallel, i.e., the component instantiations for the submodules
are concurrent.

3. multiplication: the exprlist is passed on to the Write_circ_arch_all_multree func-
tion, which decides if a multiplier submodule or an AND gate is needed. For each sub-
list in exprlist, it then calls either Write_circ_arch_multree or Write_circ_arch
_andtree. For an individual multiplication tree, the inputs are parsed from the correspond-
ing sublist in exprlist for the top level. All other signals used are prefix_lvl_#_edge#
signals in signalcollected (Table 14.5), which already have the tree structure. In the
case of multiplier submodules, these signals are used for the port maps. The node signals
are replaced by submodule instantiations or AND gates. After all multiplications are written,
the sublists (monomials) in the exprlist are replaced by the signals for the final products.

4. multiplication with constants: this step is up to the encoding (Table 14.5) and submodules
identical to the exponentiations. When Write_circ_arch_MVs is finished, the exprlist
entries contain the signals that represent the whole terms.

5. additive constant: if the expression has a non-zero constant term, the method Add_constant
_ digraph finds the corresponding digraph from ConstantsList and adds the constant
name from the root node of the digraph to exprlist. This is the final missing term.
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6. addition of the terms: the function Write_circ_arch_sumtree is very similar to Write_
circ_arch_andtree, but replaces the nodes with XOR gates. After this step, the exprlist
contains a single entry, namely the final sum, which is copied to (the appropriate coordinate
of the) outsources list.

The last step is performed once per output, i.e., each output has a new outsources list. The reason
for this are the output connectors: when the output connectors are needed, the type conversion
function is applied to the entire output, not individual coordinates. The signal for the connector
or register has the same name as the output port, with the prefix con_ or reg_. If the output is
registered (RO), the register is written next and finally assigned to the output port. For registered
vector outputs, each register coordinate is driven separately, i.e., reg_o_z(0) <= ... etc. For
combinational vector outputs, each output coordinate is driven separately, i.e., o_z(0) <= ...
etc. The r.h.s. signals for these assignments are the signals in the outsources list.

Example 16.2.2 Example of architecture body for an expression defined over F((22)2)2
↪−→

The VHDL code for the architecture body of the top-level module implementing the running example (13.1) defined
over F((22)2)2 is shown in VHDL Example 16.2.2. The archtype used is CICO, hence no registers are written, but
connectors are needed (registered inputs were shown in VHDL Example 16.2.1). Line 2. in VHDL Example 16.2.2

shows the type conversions (recall Example 15.4.1 and VHDL Example 16.1.1). Next line shows the component
instantiation for the squarer in F((22)2)2 , with entity name Fid9_exp_2. Lines 4-7 compute the monomial a · b · c, and
line 8. completes the first term with the matrix vector multiplier. Lines 9-12 show the additions. Note line 9, which
illustrates how exprlist was changing: the first term was modified by steps 1, 3, and 4, the second by steps 1 and 2,
and the last term (a constant) by step 5 only. Line 13 shows the inverse output connector and line 14 drives the output.

↪−→

Example 16.2.3 Example of registered vector output ↪−→

The VHDL code VHDL Example 16.2.3 shows example of a registered outputs RO submodule, in particular for the
the F22 multiplier with FunctName MforFid6 and EntityName Fid2_mult. The submodule instruction control list
[["i_clk", "i_rst", "i_ceout"], [1,1,1]] dictates a rising edge clock signal i_clk, a reset i_rst and a
chip enable i_ceout, both active high. Note the resetting to ffe_1_zero (declared in field_pkg). On the chip
enable, the output register clocks the outputs of the sums.

By the structure of the SignalPkg object, the submodules are written for vector SIGNALs, and the output has two
coordinates. VHDL Example 16.2.3 shows the registers for two coordinates of the aforementioned vector SIGNAL.
The output port however, requires only a single assignment.

↪−→
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16.3 Testbench generation

A testbench is generated for each submodule for its functionality, not for the generated submodule
expressions, e.g., for multiplication, not for expressions generated by the FFCSA to implement
the multiplier. This ensures a check on the submodule generation method. For example, for the
MforFid6 multiplier from Example 16.2.3, the testbench is generated as ab and then both inputs
and the result are converted into the basis used by the Fid=2 SIGNAL. The module implementing
the MforFid6 multiplier implements two expressions1 for the two output coordinates: a0b0 + a1b1

and a0b1 +a1b0 +a1b1. These expressions were generated for the basis used by the Fid=2, but were
not used to generate the testvectors. Generating the testvectors from the high level expression, such
as ab provides additional confidence in the functional correctness of the automated design flow and
the on the fly generated submodule expressions.

For the running example (13.1) defined over the towerfield F((22)2)2 , the testbenches need connectors
as described in Example 15.4.1.

16.4 Switching the field structure for profiling

This section explains the last part of the CIRCUIT package, which facilitates the design space ex-
ploration. GAP was chosen for the implementation of the framework because of its symbolic com-
putation, which provides an easy way to generate the submodule expressions (see Example 13.4(c)
in Subsection 13.2.2). To generate the expressions, details about the field construction and about
representation of the field elements used must be known. For the designer, it is very interesting
to see how this information affects the synthesis results. Assuming some information is fixed to
reduce the search space, e.g., the field size or the number of extensions and their degrees, the struc-
ture of the SignalPkg will not change if an individual parameter changes. Recall the tower field
example F((22)2)2:

F2
f1(x)
−−−→ F22

f2(x)
−−−→ F(22)2

f3(x)
−−−→ F((22)2)2 .

The construction of F((22)2)2 was listed in Table 7.6: there is only one irreducible polynomial f1, but
there are 6 irreducible polynomials f2,i and 120 irreducible f3, j, yielding 720 different tower field
constructions for F((22)2)2 . The 720 constructions were stored in a file with a list of the extension
defining polynomials (EDPs) [ f1, f2,i, f3, j] in each line.

Example 7.3.1 in Section 7.3.1 followed by Examples 13.3.1 and 13.3.2 in Section 13.3 demon-
strated the FFCSA flow for tower field bases. The method FindEDPLAllfromEDL [2,2,2] was
used to find the extension defining polynomials for the tower field F((22)2)2 , resulting in 720 combi-
nations, and, subsequently, 720 candidates for profiling. A particular candidate given by a triplet
of EDPs [ f1, f2,i, f3, j]. For DSE, each candidate EDP triplet is stored into a ply file. Each iteration
retrieves a new candidate from the file, and for a given candidate [ f1, f2,i, f3, j]: construct all three

1 generated on the fly
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“per-level” bases to obtain the list Blist := [B1, B2, B3], then create an empty design SignalPkg
called designPkg, and add the tower field construction using AddTowerFieldToSignalPkg
(designPkg, Blist, dirlist).

Acknowledgement goes to Bo Yang and Mark Aagaard for help with the following scripts.
“uw tools” are developed and maintained by Mark Aagaard for teaching and research purposes.

synthesis
tools

SignalPkg - design

ply

rpt

CIRCUIT
package

UW tools

SignalPkg - default

fully functional 
module

design

submodule
instructions

algorithm - 
funct. desc.

SignalPkg

DesignReady

FFCSA

datapath

ProcessDesigngenerate
extract and

submodules

extract
connectors

and constants

parse submodules

VHDL-Ready

generation
datapath

automated

FFCSA

SignalPkg

Figure 16.2: The automated design generation and the design space exploration: profiling loop invoking synthesis
tools

Figure 16.2 shows the profiling loop. A set of scripts was used for the DSE: “uw tools”, a set
of scripts that invoke commercial tools such as ModelSim and Design Complier (shown in the
oval shape), and the profiling loop script. The profiling loop calls GAP with a prepared setup file
to build the initial algfun with defaultPkg and saves the current workspace. Henceforth, the
profiling loop invokes GAP with the stored workspace and a new candidate triplet, and runs the
datapath synthesis for the new parameter set. The results are stored for each candidate (rpt file),
but the VHDL files are overwritten.
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The DSE has two phases:

• the setup

– prepare the ply file with candidates (using FindEDPLAllfromEDL [2,2,2])
– prepare (modify) GAP templates (e.g., construction of defualtPkg for Table 7.6 con-

struction) for the an expression defined over F((22)2)2 (shown on top right in Figure 16.2:
SignalPkg - defualt and algorithm - functional description )

• the profiling loop: a script, which reads the file of candidates (ply in Figure 16.2):

– grab a new line (list of EDPs) and build the designPkg SignalPkg (SignalPkg -
design on the loop in Figure 16.2):

– create the AlgDesign with two SignalPkg inputs: defaultPkg and designPkg (Sec-
tion 15.1)

– run WriteDesignVHDL to write a new datapath (overwrite any existing VHDL files)
– run synthesis tools and store the generated report with implementation results (rpt in

Figure 16.2)

In each iteration, the designPkg will have the structure shown in Figure 13.5 in Example 13.3.2
in Section 13.3. i.e., the same structure as the defaultPkg. The design od SignalPkg object
(Section 13.3) assures that same field structure results in the same structure of the SignalPkg ob-
jects, which makes them interchangeable: the tower field constructions used have the same number
of element and vector SIGNALs ordered the same way. For example, an element of F((22)2)2 will
always have Fid=11 and its corresponding vector space will always be Fid=9, but the two SIG-
NALs will differ in at least one “per-level” basis PLB. The constructor will check if the structure
of the designPkg is the same as the defaultPkg, except for the bases used, and then use the
designPkg as AlgDesignSignalPkg. For each new designPkg, the ProcessSMAFLoop will
generate different submodules, hence a different datapath (Section 15.2). This workflow is used
for profiling and will be revisited in Part V.
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16.5 Summary and conclusion

Chapters 13-16 presented the second automation mechanism. It completes the architectural de-
cisions – automated design generation flow, which allows synthesis of arbitrary datapaths over
arbitrary fields.

Chapter 13 introduced the necessary structures for the support of tower fields: the objects Sig-
nalDomain, SIGNAL, and SignalPkg encode the field structure in a way suitable for hardware
implementations. This encoding allows to work with field elements, vectors in a vector space, or
“just vectors”. Chapter 14 presented the AlgFunctionality object used for the functional descrip-
tion of the algorithm. It serves as the manual entry point for the top-level module. The datapath
is given with one or more ANF expressions and SignalPkg is used to bind expressions to finite
fields. Binding the AlgFunctionality to the SignalPkg brings the awareness of the underlying field
structure to the synthesis.

Chapter 15 shows how two compilation algorithms gradually transform the initial design to a
VHDL-ready datapath. They work in a top-down/bottom-up fashion, facilitated by the structure of
the SignalPkg: the submodules are namely expected for the subfields. For the tower field support
extra management is required. First are the additive constants, which are transformed into directed
graphs for declarations in correct order. Second are the connectors, which are used for the type
conversions between the tower field element and vector SIGNALs. Chapter 16 explains how the
VHDL is generated for the VHDL-ready design; it covers the packages, (sub)module generation
based on a natural order of performing operations, and testbench generation. Finally the facility
that enables the design space exploration is presented: as long as the structure of the SignalPkg
remains unchanged, the same setup templates can be used for various field parameters, including
the field size.

Figure 16.3 shows the entire framework, placed into the hardware implementation design flow.
The CIRCUIT package is fragmented, and all its components are enclosed in a shaded rectangle.
All user input is shown in darker shapes. The FSR and FSRtoVHDL architectural decisions –
automated design generation flow is included in the figure.
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Figure 16.3: Design flow: datapath synthesis (automation framework)
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Chapter 17

Design space exploration - overview

17.1 DSE from a mathematical perspective . . . . . . . . . . . . . . . . . . . . . . . . 240

17.2 Different profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

17.1 DSE from a mathematical perspective

This part of the thesis is concerned with design space exploration (DSE) from the finite field
perspective. Finite field arithmetic design space is vast, it involves the choice of bases used for the
representation of the field elements and algorithms for the basic building blocks, i.e., arithmetic
modules.

Figure 17.1 shows the design with the automation framework and and DSE loop on the left. The
FFCSA package (Chapter 7), implemented as a part of the architectural decisions, facilitates DSE
with search methods for different parameters, such as field defining polynomials, bases, transition
matrices, etc.

The search algorithms can be classified as exhaustive search (e.g., find all normal bases), reduced
search space (e.g., ignore conjugates), and specialized search (e.g., find a primitive polynomial
with a specified number of nonzero coefficients). Specialized search is a form of reduced search
space, but the reduction criteria is different. The search algorithms produce a list of candidates,
i.e., a design space.

There are two architectural decisions – automated design generation flows through the framework:

• the first flow focuses on synthesis for ciphers based on feedback shift registers. It consists of
the GAP packages FSR and FSRtoVHDL (Chapters 6 and 11 respectively)
• the second flow allows for the synthesis of arbitrary expressions over arbitrary finite fields,

realized by the GAP package CIRCUIT (Chapters 12-16)

Both FSRtoVHDL and CIRCUIT package rely on the package GAPtoVHDL (Chapter 10). The
FFCSA package plays an important role for the second architectural decisions – automated design
generation flow. Exploiting symbolic computation capabilities of GAP, the FFCSA methods can
generate ANF expressions, which are used as datapath instructions for the CIRCUIT package. For
example, the user specified multiplication simply as a · b and a submodule instruction, e.g., matrix
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Figure 17.1: Design flow: detained design space exploration

U, and the CIRCUIT package will use the FFCSA method FFCSA_mult_matrixU to generate
the expressions for the multiplier submodule. There is a variety of well studied algorithms for
implementing finite field arithmetic, that can be added to the FFCSA package.

The lists of candidates and the FFA algorithms produced during the architectural decisions are the
starting point for the automated design generation: the FSRtoVHDL and CIRCUIT packages au-
tomatically produce synthesizable VHDL code for the datapath, yielding fully functional hardware
modules. A new module is generated for each candidate, then passed on to synthesis tools (shown
on the DSE loop in the magnifying glass in Figure 17.1), e.g., Design Compiler. A discussion on
the metrics used and the representation of the results follows in Section 17.2.

In the magnifying glass on the right side of Figure 17.1 is a simplified design flow diagram, show-
ing the extended design space exploration loop on the left. The loop is explained from bottom-up:

1. DSE for arithmetic modules: as the finite field arithmetic modules are the building blocks
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for all other datapaths (algorithms), this represents the lowest level DSE, the findings of
which can be used for decisions in the earlier stages of the design flow, e.g., to further
narrow down the search space.

2. DSE for existing algorithms: the aim of this DSE is to find the best field parameters
(e.g., bases and finite field arithmetic modules) for the implementation of the already spec-
ified algorithm. The term “best” depends on the application, e.g., this work is focusing on
lightweight cryptography, and therefore aims for a small area. One example is the WG ci-
pher, which is a family and can be parametrized to find new instances. An example from
literature is the AES block cipher (see the review in Subsection 4.1.4). There are numerous
implementations of the AES S-box that use one representation for the actual implementation
and then encapsulate the S-box with basis transition matrices (to ensure that the functionality
is compliant with the specifications of AES).

3. DSE for algorithm design: the hardware considerations directly affect the design of the
algorithm. One such example is the authenticated encryption scheme WAGE.

17.2 Different profiles

Design space exploration relies on selected metric(s) to choose good design options from the set
under exploration. The most commonly used metrics for hardware implementations are combi-
national delay, clock period or frequency, area, throughput and other derived optimality metrics
(Section 3.3). The throughput in terms of bits per cycle, for example, will differ for serial and
parallel modules, such as multipliers. This work focuses on parallel input - parallel output (PIPO)
modules (Subsection 4.2.2), hence the throughput is not of interest.

The delay and the area can be estimated theoretically or using synthesis tools to obtain technology-
dependent values. The first option will be called offline profiling and the second online profil-
ing. This distinction is similar to that between technology-independent synthesis and technology-
dependent synthesis described in Section 4.3. Different terminology is used to emphasize that the
proposed automation process does not plug-into the synthesis tools, but only interacts with them
and uses their results.

Offline profiling

A very common estimate is the Hamming weight of the field defining polynomial, as it affects the
algorithms for arithmetic operations. Past experience has shown that for small finite fields, this not
a good estimate of area.The FFCSA package can produce basic building blocks, i.e., finite field
arithmetic modules, such as transition or multiplication matrices. In case of a simple block, the
maximum row Hamming weight is used as the estimate for the combinational delay. Similarly,
the total Hamming weight can be used as the area estimate. An example of such a basic building
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block is a matrix for multiplication by a constant γ ∈ F2m . In this simple case, the Hamming
weight is computed as a number of XOR gates. However, the delay could be expressed as the depth
of the binary tree with HW leafs, where HW stands for maximum row Hamming weight, i.e., of
the critical path through the building block. Furthermore, possible subexpression eliminations can
reduce the actual estimated area. Much research has recently been dedicated to XOR counts, as
was summarized in Subsection 4.2.3.

More complicated examples, e.g., an F2m multiplier, will have AND gates in addition to XOR gates,
and some algorithms can even require NOT gates. In case the of tower field constructions, the area
and delay of the subfield modules must be taken into account, but is finally also expressed in terms
of AND and XOR gates. To obtain a unified metric, all gates can be expressed in terms of NAND gates.
This is the “gate equivalents” (GE) area metric for ASIC technologies.

As a final note, it is important to emphasize the differences between ASIC and FPGAs (Subsec-
tion 3.3.1). For the FPGAs, which can implement an arbitrary n-input Boolean function in an
n-input/1-output LUT, the Hamming weights are irrelevant. Important information is the number
of variables for the Boolean function realizing a single bit of output and the width of the output in
bits1.

The FFCSA package includes offline profiling methods (Table 7.4), explained in more detail in
Section 7.2. The offline profiling methods facilitate the search for special elements and polynomi-
als, and the offline profile is always a (set of) Hamming weight(s).

Online profiling

The aforementioned metrics can also be obtained from synthesis tools such as Design Compiler.
This approach is computationally much more demanding and takes much longer, but it provides
more accurate results: synthesis tools can do optimizations (e.g. common subexpression elimina-
tion), they can select different gates (e.g., using 3-input XOR gates to replace some 2-input XORs, or
use special OR-AND-Invert gates), or they can optimize for different performance goals, e.g., high
speed or small area. For example, (technology-aware) synthesis process will select larger gates if
a particularly small target clock period is given as a constraint.

In general, online profiling provides more accurate values. Furthermore, online profiling provides
different options, e.g., using the results after logic synthesis or physical synthesis, i.e., pre- and
post- place and route (PAR) results. Only pre-PAR results are reported throughout this work.
Switching to (more accurate) post-PAR results is trivial, but it increases the total time for profiling,
as synthesis tools have more work for each instance.

This thesis explored the following two online profiles for arithmetic circuits:
• min. lib.: minimal library with only NOT and two-input AND, XOR, OR gates

– min. lib. before: initial gate counts extracted from the original VHDL code (similar to
d-XOR-counts in Subsection 4.2.3)

1 because each output bit requires a LUT of its own
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– min. lib. after: gate counts after synthesis tools performed optimizations, e.g., subex-
pression eliminations (similar to s-XOR-counts in Subsection 4.2.3)

• full lib.: full library, no restrictions on gates, selection of gates left to synthesis tools

The min. lib. profile is using a library containing a minimal set of gates for which the synthesis
works: removing any of the gates triggers a library error. Especially with the presence of the OR
gate, the synthesis using the min. lib. profile is not perfect for finite field arithmetic. However,
the synthesis tools only infer a combination of NOT and OR gates to replace some of the AND gates,

since a ∧ b = a ∨ b. The purpose of using the min. lib. profile is to get a sense of optimizations
performed by the synthesis tools while not using more “exotic” gates, e.g., 3-input XOR gates, XNOR
gates, etc..

In this thesis, the reports using gate counts will contain a before and after column, where before
relates to the initial gate counts extracted from the original VHDL code, and after to the gate counts
after synthesis tools performed their optimizations. The minimal library before and after profiles
are similar to the d-XOR- and s-XOR- counts, reported by the literature (Subsection 4.2.3), where
d-XOR-count stands for direct XOR count, and s-XOR-count for sequential XOR count. The
latter is a theoretical estimate for optimizations, that are possible due to sequential computations
or subexpression eliminations.

Since finite field addition and multiplication in the prime field F2 use the XOR and AND gates,
including NOT and OR gates is a disadvantage, because it is hard to translate them back to the
expressions. However, the advantages of this approach are: (i.) optimizations are left to the
synthesis tools, and (ii.) the process is not limited to circuits with only XOR gates. The latter
is particularly interesting for the nonlinear components in cryptographic hardware. The current
research on gate counts in the literature is focusing on XOR gates only (Subsection 4.2.3).

The results of this library are reported for the example of normal basis multipliers in Section 18.1:
the number of OR gates used is very small and amounts to 0.5% - 3.8% of all gates in the design.

Unless stated otherwise, the full library profile will be used. When the minimal library profile
is used, it is assumed to be min, lib. after profile, unless stated otherwise. In many cases, only
the area results are reported, because critical path delay is of lesser importance for lightweight
applications.
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Chapter 18

DSE for arithmetic modules - basic building
blocks

18.1 Normal basis multiplication for F27 . . . . . . . . . . . . . . . . . . . . . . . . . . 245

18.2 Polynomial basis multiplication and inversion in F27 using primitive defining poly-
nomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

18.3 Polynomial basis multiplication and inversion for F214 using primitive defining
polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

This chapter shows several examples of profiling for basic building blocks, i.e., arithmetic modules.
Each example is presented as a section on its own and is linked to GAP methods that are used in
the examples.

18.1 Normal basis multiplication for F27

This example shows DSE for the normal basis multipliers for F27 . It is an online profiling equivalent
of the FFCSA offline profiling method FindSmallestTNBGenerator (Table 7.4). The method
was explained in more detail in Section 7.2. Both the offline and the online approach are the
solution to Example 7.1.1 in Section 7.1.

For F27 there is no optimal normal basis. The defining polynomial for the reference field F27 is
fre f (x) = x7 + x + 1, with root ω. All normal elements are given w.r.t. root ω, which is also
a generator of F27 . The synthesis results are represented graphically, ordered by their normal
element. The normal elements, their corresponding N-polynomials, and the complexities CT are
shown in Table 18.1, ordered by the N-polynomial. The two profiles used are the minimal set of
gates1 (min.lib.) and the full CMOS 65nm library (full lib.).
� Implementation detail: The FindNormalFFEsIgnoreConjugates method
Normal elements were found using the method FindNormalFFEsIgnoreConjugates (F), listed in Table 7.4 in
Section 7.1. The IgnoreConjugates is used to reduce the search space. The IgnoreConjugates implementation
is checking only elements of form ωc j , where c j is a cyclotomic coset leader (obtained using method CCLeaders
(Table 7.2)):

c j ∈ [0, 1, 3, 5, 7, 9, 11, 13, 15, 19, 21, 23, 27, 29, 31, 43, 47, 55, 63]

1 selected from the full library CMOS 65nm
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Elements α = ωc j are checked using method IsNormalFFE (F, α), which is implemented following Theorem 3.2
in background Section 3.1.1. It generates the polynomial

Tα(x) =

m−1∑
i=0

σi(α)xi ∈ F2m [x]

and checks gcd(Tα, xm − 1). Element α is a normal element iff the two polynomials are coprime. �

� Implementation detail: The ComplexityOfT method
The complexity of normal basis, obtained as the number of non-zero entries in the multiplication table T, is one of
the oldest offline metrics used [186]. The coefficients of the multiplication table T were listed in equation (3.5). The
complexity of T CT is defined as the number of non-zero entries in T and obtained with method WeightMatrix
(Table 7.2)). Note that for the implementation CT −m XOR gates are needed: one XOR is removed for each row of T. �

This example is listing the offline and online profiling results for the multiplication table T, matrix
U multiplier and rr_mo multiplier. The matrix U multiplication was explained in Section 7.4.
The rr_mo multiplier is the reduced redundancy multiplier [156]. The rr_mo multiplier is used to
show the benefits of using highly optimized algorithms for finite field arithmetic. The graph in
Figure 18.1 shows a much smaller area for all rr_mo multipliers w.r.t. the matrix U multipliers.

The graph in Figure 18.1 shows that the matrix U results and the rr_mo results approximately
follow the same pattern. For example, the smallest area multipliers are obtained for the normal
element ω13, which also has the smallest offline profile, i.e., the complexity CT . The only excep-
tions are the last two normal elements: ω19 rr_mo area is bigger than ω27 rr_mo area, while the ω19

matrix U area is smaller than ω27 matrix U area.

For both multipliers, the graph in Figure 18.1 nicely shows that the full library area is smaller
than the minimal library area. Observing the minimal library profile gate counts before and after
optimizations, listed in Table 18.2, shows the following:

• for the multiplication tables T, the before gate counts always match the theoretical (offline)
value CT − m, where m = 7. The after gate counts show how subexpression eliminations
lower the count, with all except the last two normal elements being at the minimum of 10
XOR gates. Note that for the matrix-vector multipliers, like the multiplication table T module,
the before counts correspond to the d-XOR-counts and the after counts to the s-XOR-counts
produced by the synthesis tools.
• for the matrix U multipliers, the before counts contain the AND and XOR gates, but the after

counts include some AND gates represented as NOT and OR gates. The biggest reduction in
the AND count is seen for ω19. On average 53% of AND gates and 71% of XOR gates remain
after optimizations.
• for the rr_mo multipliers, there are no reductions in the AND counts2, and no NOT and OR

gates are inferred. On the average 74% of XOR gates remain after optimizations.
• Furthermore, the modules for ω63, ω21 and ω43 and for ω19 and ω27, which have the same CT ,

also have the same before gate counts, but differ in the after counts for the two multipliers,
indicating differences in subexpression eliminations.

2 reduced redundancy by design
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normal element N-polynomial complexity of T

ωc j N j(x) CT

α0 = ω63 x7 + x6 + 1 21

α1 = ω21 x7 + x6 + x3 + x + 1 21

α2 = ω43 x7 + x6 + x4 + x + 1 21

α3 = ω31 x7 + x6 + x4 + x2 + 1 25

α4 = ω13 x7 + x6 + x5 + x2 + 1 19

α5 = ω19 x7 + x6 + x5 + x3 + x2 + x + 1 27

α6 = ω27 x7 + x6 + x5 + x4 + x2 + x + 1 27

Table 18.1: F27 normal elements, N-polynomials, and complexity of T CT
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Figure 18.1: Area results for the F27 normal basis multiplication
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• examining the before and after gate counts for the ω19 and ω27 explains the aforementioned
exception in the graph. The matrix U multiplier shows a bigger reduction of AND gates for
ω19, and the rr_mo multiplier a slightly bigger reduction of XOR gates.

normal Mult. table T matrix U multiplier rr_mo multiplier

element before after before after before after

ωc j CT XOR XOR AND XOR AND XOR NOT OR AND XOR AND XOR

ω63 21 14 10 147 140 74 102 5 3 49 91 49 69

ω21 21 14 10 147 140 77 104 11 2 49 91 49 70

ω43 21 14 10 147 140 83 103 6 5 49 91 49 72

ω31 25 18 10 175 168 86 114 7 7 49 105 49 75

ω13 19 12 10 133 126 78 93 6 7 49 84 49 65

ω19 27 20 12 189 182 76 118 5 1 49 112 49 80

ω27 27 20 11 189 182 81 119 8 6 49 112 49 77

Table 18.2: Area results for the F27 normal basis multiplication: Complexity CT , and the min. lib. profile results before
and after optimizations performed by the synthesis tools for the multiplication table T, the matrix U multiplier, and the
rr_mo multiplier

18.2 Polynomial basis multiplication and inversion in F27 using
primitive defining polynomials

This example shows DSE for the polynomial basis multiplication and inversion submodules for
F27 . The candidates are all primitive polynomials3 of degree m = 7. The defining polynomial
for the reference field F27 is fre f (x) = x7 + x + 1, with root ω. The primitive polynomials are
labelled p j(x) in Table 18.3. The table is organized as follows: the first column shows the root
α j of polynomial p j(x), the second column shows the polynomial p j(x) itself, and the last column
the Hamming weight of the reduction matrix R, denoted “complexity of R” and CR. The values
CR were obtained with FFCSA methods ReductionMatrix and WeightMatrix (Table 7.2). This
notation was chosen to keep the formatting similar to that of the normal basis F27 in Table 18.1.

The profiling loop was shown in Figure 16.2. The setup file for the multiplier is shown in Example
18.2(a): this is the initial design setup using the default SignalPkg defaultPkg. The loop reads
the new candidate from the ply file (the next primitive polynomial f) and executes the template
shown in Example 18.2(b). The latter constructs the field F and retrieves the root w, then obtains
the polynomial basis, and constructs the new SignalPkg designPkg using the new basis, and
finally continues to generate the design.

3all irreducible polynomials for this field are also primitive
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Example 18.2(a)

K := GF(2);; x := X(K, "x");;
defaultPkg := SignalPkg();
AddFieldToSignalPkg(defaultPkg , Basis(GF(2^m)), "to");

mul := a_0*b_0;;
inputports := [ ["i_a", 3], ["i_b",3]];;
outputports := [ ["o_z", 3] ];;
bindlist := [["a_0", "i_a"], ["b_0", "i_b"]];;
exprlist := [mul];;

entitylist := ["mult", "multiply", "main"];;
portlist := [defaultPkg, inputports, outputports];;
archlist := [bindlist, exprlist];;
archtype := ["CICO", "simple"];;
sminsn := ["generate", ["matrixU"], "CICO", "simple"];;

AF := AlgFunctionality(entitylist, portlist, archlist, archtype);;
MakeAlgFunctionalityDesignReady(AF, defaultPkg);;

design := AlgDesign(AF, defaultPkg, sminsn, [folder, commentstr] , 0);;

basistype := "PB"; basisdir := "to";
SaveWorkspace(Concatenation(folder,"/savedesign1"));

Example 18.2(b)

# new field params
F := FieldExtension(K, f);; w := RootOfDefiningPolynomial(F);;
# retrieve basis call
basisused := Concatenation(basistype, basisdir);
cmd := LookupDictionary(dictBases , basisused );;
cmd := Concatenation(cmd, "(", String(F), ",", String(w), ");");
B := EvalString(cmd);

# design pkg
designPkg := SignalPkg();
AddFieldToSignalPkg(designPkg , B, "to");

if CanSwitchSignalPkg(defaultPkg, designPkg) then
design := AlgDesign(algfun, designPkg, sminsn, [folder, commentstr] , 0);;
nrfiles:= WriteDesignVHDL(design);
Print(design!.filelist);
... OMITTED FOR BREVITY ....
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root of p j(x) prim. poly complexity of R †

ωc j p j(x) CR

α0 = ω1 x7 + x + 1 19

α1 = ω63 x7 + x6 + 1 34

α2 = ω11 x7 + x3 + 1 21

α3 = ω29 x7 + x4 + 1 22

α4 = ω55 x7 + x4 + x3 + x2 + 1 35

α5 = ω9 x7 + x5 + x4 + x3 + 1 26

α6 = ω47 x7 + x6 + x5 + x4 + 1 27

α7 = ω5 x7 + x3 + x2 + x + 1 34

α8 = ω21 x7 + x6 + x3 + x + 1 32

α9 = ω43 x7 + x6 + x4 + x + 1 34

α10 = ω31 x7 + x6 + x4 + x2 + 1 35

α11 = ω3 x7 + x5 + x3 + x + 1 27

α12 = ω13 x7 + x6 + x5 + x2 + 1 34

α13 = ω23 x7 + x5 + x2 + x + 1 32

α14 = ω27 x7 + x6 + x5 + x4 + x2 + x + 1 34

α15 = ω19 x7 + x6 + x5 + x3 + x2 + x + 1 30

α16 = ω15 x7 + x5 + x4 + x3 + x2 + x + 1 35

α17 = ω7 x7 + x6 + x5 + x4 + x3 + x2 + 1 28

† the number of XOR gates for implementation is CR − m

Table 18.3: F27 primitive polynomials, their roots, and complexity of R, where R is the reduction matrix
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root matrix U multiplication matrix U inversion

of p j(x) before after before after

ωc j CR AND XOR AND XOR NOT OR AND XOR AND XOR NOT OR

ω 19 70 63 59 55 3 2 1013 422 148 291 43 14

ω63 34 105 98 70 65 12 10 1008 395 172 288 34 24

ω11 21 73 66 58 53 6 4 1057 425 140 291 37 20

ω29 22 76 69 60 55 9 7 985 381 177 269 43 36

ω55 35 120 113 81 76 16 18 1081 431 169 324 33 27

ω9 26 104 97 82 13 17 71 1070 432 164 304 37 32

ω47 27 99 92 75 72 12 19 1115 440 141 300 36 23

ω5 34 118 111 78 79 9 10 1097 428 180 307 32 38

ω21 35 114 107 78 78 10 18 1097 442 158 301 37 28

ω43 34 120 113 84 78 13 17 1175 450 157 332 36 24

ω31 35 129 122 92 77 18 33 1046 425 158 303 37 20

ω3 27 102 95 76 70 7 13 1041 430 143 304 34 21

ω13 34 123 116 91 77 19 24 1072 413 163 277 46 33

ω23 32 118 111 73 82 11 13 1026 410 148 287 33 24

ω27 34 118 111 79 78 12 18 1102 431 162 308 30 27

ω19 30 114 107 87 15 24 74 1115 444 143 317 19 13

ω15 35 131 124 77 84 9 15 1083 432 157 305 41 21

ω7 28 109 102 97 71 15 31 1010 415 142 291 41 27

Table 18.4: Area results for the F27 polynomial basis multiplication and inversion: Complexity CR, and the min. lib.
profile results before and after optimizations performed by the synthesis tools for matrix U multiplication and inversion
in F27
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Figure 18.2: Area results for the F27 polynomial basis multiplication
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Figure 18.3: Area results for the F27 polynomial basis inversion
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18.3 Polynomial basis multiplication and inversion for F214 us-
ing primitive defining polynomials

This example shows DSE for the polynomial basis multiplication and inversion submodules for
F214 . The candidates are all primitive polynomials of degree m = 14. The same workflow was used
as in Section 18.2. Templates shown in Example 18.2(a) and Example 18.2(b) can be reused
for multipliers over arbitrary F2m with no need to change any other value than m. The SignalPkg
will be constructed in the same way for every field size, so the Fid does not change either. Thus,
the structure of SignalPkg enables a batch mode DSE for several m, provided that all the ply files
are available.
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Figure 18.4: Area results for the F214 polynomial basis multiplication

254



0 100 200 300 400 500 600 700 800

5000

5500

6000

6500

7000

full lib. min lib.

GF(2^14) PB Inversion

primitive polynomial

pr
e-

PA
R 

ar
ea

 [G
E]

Figure 18.5: Area results for the F214 polynomial basis inversion

255



Chapter 19

Design space exploration of an arbitrary
datapath

This chapter provides the synthesis results for the running example expression from equation
(13.1), with fixed constants and 720 different tower field constructions for F((22)2)2 . For details
on the field construction, refer to Example 13.2.1. The implementation results are shown graphi-
cally in Figure 19.1. The profiling loop was explained in Figure 16.2 in Subsection 16.4. Figure
19.1 illustrates the importance of design space exploration and the impact of the choice of param-
eters such as defining polynomials. The area results range from 791–917 GE and the delays from
1.00–1.47 ns.
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Figure 19.1: Implementation results for module implementing he expression in equation (13.1): DSE for 720 different
tower field constructions for F((22)2)2
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Chapter 20

The WG cipher design space exploration

20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

20.2 WGP and constant array implementations . . . . . . . . . . . . . . . . . . . . . . 258

20.3 WGT and the trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

20.4 The LFSR polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

20.1 Introduction

Cipher families like WG stream cipher can be parametrized to fit a vast range of applications.
The bigger instances, e.g., WG-16, are intended for high throughput applications. The smaller
instances, i.e., over small finite fields, are suitable for lightweight cryptography. A thorough dis-
cussion on lightweight cryptography was presented in Subsection 4.1.1. It is therefore desirable
to have both, the estimates of hardware implementation cost and security analysis as early in the
design cycle as possible, as will be seen in Chapter 22. Assuming the finite field is fixed, the design
space exploration for the WG cipher can be roughly divided into two categories:

• representation of the field elements and its impact on the building blocks: when constant
array is used, the building block is the constant array itself (Section 20.2)
• the LFSR polynomial: the non-zero coefficients and the constant term γ (Section 20.4)

The aforementioned constant arrays are used for the implementation of the WG permutation, dis-
cussed in Section 20.2. The WG transformation is implemented as the trace applied to the output of
the WG permutation constant array; in most cases, this is the best implementation option, because
the WG permutation value is used during the key initialization phase (recall KiaWG in Table 8.1 in
Section 8.1). Section 20.3 shows offline profiling for the trace function.

This chapter will demonstrate the cooperation of FFCSA (Chapter 7), FSR (Chapter 6), and FSR-
toVHDL (Chapter 11) packages for profiling.
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20.2 WGP and constant array implementations

WGP and constant array implementations are performed with the FFCSA package methods for the
parameter search (e.g., to obtain the field polynomials and different bases), the FSR package to
model the WGP, and the FSRtoVHDL package to obtain their corresponding hardware modules.

Previous work in [113] has shown that the best design for small WG instances is the constant array
architecture1. The WG permutation is implemented as constant arrays, indexed by the sequence
element produced by clocking the LFSR, and can easily be generated by the FSRtoVHDL pack-
age as shown in Example 11.2.5 in Subsection 11.2.1. When the WGP values are not needed at
all, the entire WG transformation can be implemented as a constant array. Such examples were
shown in [113] for parallel implementations, where one WGP was used for key initialization and
multiple WGT instances for the running phase. Online WGP profiling is shown in Example 20.2.1.
This workflow was used extensively in [119, 120] for finite fields up to F216 , and for the WAGE
design exploration (Section 22.2) for finite fields F27 and F28 . Example 20.2.1 shows the WGP
implementation results for 16 primitive polynomials for F28 .

Mathematical parameters WGP

ωi fi(x) CR A [GE] tcp [ns]

ω0 = ω1 x8 + x4 + x3 + x2 + 1 36 542 1.2

ω1 = ω13 x8 + x5 + x3 + x + 1 41 565 1.4

ω2 = ω31 x8 + x5 + x3 + x2 + 1 34 582 1.1

ω3 = ω59 x8 + x6 + x3 + x2 + 1 40 518 1.3

ω4 = ω37 x8 + x6 + x4 + x3 + x2 + x + 1 37 517 1.0

ω5 = ω23 x8 + x6 + x5 + x + 1 38 513 1.0

ω6 = ω19 x8 + x6 + x5 + x2 + 1 39 518 1.0

ω7 = ω7 x8 + x6 + x5 + x3 + 1 44 573 1.1

ω8 = ω127 x8 + x6 + x5 + x4 + 1 37 510 1.2

ω9 = ω53 x8 + x7 + x2 + x + 1 40 574 1.1

ω10 = ω29 x8 + x7 + x3 + x2 + 1 38 556 1.0

ω11 = ω47 x8 + x7 + x5 + x3 + 1 40 567 1.4

ω12 = ω43 x8 + x7 + x6 + x + 1 40 515 1.5

ω13 = ω61 x8 + x7 + x6 + x3 + x2 + x + 1 41 584 1.2

ω14 = ω11 x8 + x7 + x6 + x5 + x2 + x + 1 38 514 1.3

ω15 = ω91 x8 + x7 + x6 + x5 + x4 + x2 + 1 38 581 1.3

Table 20.1: Pre-PAR CMOS 65nm implementation results for the PB constant array WGP for F28 with decimation
exponent d = 19, using fre f (x) = x8 + x4 + x3 + x2 + 1, where fre f (ω) = 0

1 a lookup table based design
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Example 20.2.1 Online profiling of WGP constant array implementation for F28
↪−→

Table 20.1 shows the pre-PAR implementation results using the full CMOS 65nm library, for the normal basis WGP
constant array implementation. This example uses decimation exponent d = 19, based on optimal parameters in [50].

The FFCSA method FindPrimitivePolyAll was used for the parameter search (Table 7.4). The polynomials were
sorted by the power of their root ωi (column 1) w.r.t. ω, where ω is the root of the reference defining polynomial
fre f (x) = x8 + x4 + x3 + x2 + 1. Column 2 lists the primitive polynomial, which is also the minimal polynomial
fi of ωi. For additional reference, column 3 shows CR, the complexity of the reduction matrix, obtained with the
ReductionMatrix method. Last two columns show the online implementation results: the area [GE] and the critical
path delay [ns]. The hardware modules were generated with the FSRtoVHDL package.

The smallest area WGP constant array is obtained for the polynomial basis PB = {1, ω8, ω
2
8, . . . , ω

7
8} with defining

polynomial f8(x) = x8 + x6 + x5 + x4 + 1 at 510 GEs. Note that reciprocals are included in the profiling: polynomial
f0(x) = x8 + x4 + x3 + x2 + 1 has area 542 GE. Average2 area of a WGP table is 546 GE. Furthermore, the lowest area
WGP does not have the smallest theoretical CR.

↪−→

20.3 WGT and the trace

While the trace in equation (3.6) is independent of the basis used, the basis must be known for ef-
ficient implementation in hardware. Following equation (3.6) directly requires the implementation
of the modules for all conjugates and the XOR gates to sum them up, yielding a large hardware area.
Instead, the FFCSA package was used to obtain the ANF expression for the trace by representing
the output as an expression containing only the coordinates of the field element w.r.t. to the given
basis. Trace is also a perfect example of offline profiling that can be performed early on during
the architectural decisions, and is not expected to change significantly after being implemented.
Differences arise when the synthesis tools use arbitrary gates such as 3-input XORs. Offline trace
profiling is shown in Example 20.3.1. This workflow was used extensively in [119, 120] for finite
fields up to F216 .

Example 20.3.1 Offline profiling of the trace expression ↪−→

This example shows simplest use of FFCSA package for the offline profiling: the trace expressions were obtained
for 18 primitive polynomials of degree 7, using the FFA_trace method (Table 7.5), and the Hamming weights with
the WeightPolynomial method (Table 7.2). The number of 2-input XOR gates for the implementation is Hamming
weight - 1.

2 averages were computed before the area results were rounded up
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Example 20.3.1

x^7+x+Z(2)^0 -> a_0 -> hamming weight = 1
x^7+x^3+Z(2)^0 -> a_0 -> hamming weight = 1
x^7+x^3+x^2+x+Z(2)^0 -> a_0+a_5 -> hamming weight = 2
x^7+x^4+Z(2)^0 -> a_0+a_3+a_6 -> hamming weight = 3
x^7+x^4+x^3+x^2+Z(2)^0 -> a_0+a_3+a_5+a_6 -> hamming weight = 4
x^7+x^5+x^2+x+Z(2)^0 -> a_0+a_5 -> hamming weight = 2
x^7+x^5+x^3+x+Z(2)^0 -> a_0 -> hamming weight = 1
x^7+x^5+x^4+x^3+Z(2)^0 -> a_0+a_3+a_5+a_6 -> hamming weight = 4
x^7+x^5+x^4+x^3+x^2+x+Z(2)^0 -> a_0+a_3+a_6 -> hamming weight = 3
x^7+x^6+Z(2)^0 -> a_0+a_1+a_2+a_3+a_4+a_5+a_6 -> hamming weight = 7
x^7+x^6+x^3+x+Z(2)^0 -> a_0+a_1+a_2+a_3+a_4+a_6 -> hamming weight = 6
x^7+x^6+x^4+x+Z(2)^0 -> a_0+a_1+a_2+a_4 -> hamming weight = 4
x^7+x^6+x^4+x^2+Z(2)^0 -> a_0+a_1+a_2+a_4+a_5 -> hamming weight = 5
x^7+x^6+x^5+x^2+Z(2)^0 -> a_0+a_1+a_2+a_4 -> hamming weight = 4
x^7+x^6+x^5+x^3+x^2+x+Z(2)^0 -> a_0+a_1+a_2+a_4+a_5 -> hamming weight = 5
x^7+x^6+x^5+x^4+Z(2)^0 -> a_0+a_1+a_2+a_3+a_4+a_5+a_6 -> hamming weight = 7
x^7+x^6+x^5+x^4+x^2+x+Z(2)^0 -> a_0+a_1+a_2+a_3+a_4+a_6 -> hamming weight = 6
x^7+x^6+x^5+x^4+x^3+x^2+Z(2)^0 -> a_0+a_1+a_2+a_3+a_4+a_5+a_6 -> hamming weight = 7

↪−→

20.4 The LFSR polynomial

Work on WG-16 in [8] analyzed the LFSR with the feedback polynomial `1(x) = x32 + x25 + x16 +

x7 + τ, τ = ω2743 ∈ F216 , where ω is a root of the field defining polynomial x16 + x5 + x3 + x2 + 1.
As WG-16 is not a lightweight instance of the WG stream cipher family, the implementation in [8]
aimed for a high frequency design, not small area.

During the design space exploration reported in [8], the LFSR became the critical component in
the design. First, feedback pipelining (retiming) was used to fix the problem. Then, the number
of terms in the LFSR feedback was increased at no cost to hardware. Next, using the FFCSA
method (Table 7.4 in Section7.1) FindPrimitivePolyExtraTapsFixedPoly•( [of,] F, f, t )
new feedback polynomials were found, where F is F216 , and t the number of extra terms. The
number of extra terms was estimated from the maximum row Hamming weight of the matrix-
vector multiplier for the constant term τ; it was set to t=5 to balance the theoretical critical path of
the two parts of the feedback. Two methods were used, as noted by the • :

– FindPrimitivePolyExtraTapsFixedPolyFixedGamma: with argument f = `1(x), in-
cluding the constant term τ (τ will not change)

– FindPrimitivePolyExtraTapsFixedPoly: with argument f = `1(x) − τ, and allow new
constants
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The final polynomials used in [8] were:

`1(x) = x32 + x25 + x16 + x7 + ω2743

`2(x) = x32 + x25 + x23 + x22 + x16 + x15 + x12 + x10 + x7 + ω2743

`3(x) = x32 + x25 + x16 + x7 + ω24319

`4(x) = x32 + x30 + x25 + x24 + x22 + x16 + x14 + x7 + x2 + ω24319

The best post-PAR CMOS 65nm implementation results are reported in Table 4.3 in Subsection
3.2.4. Note that in [8], the LFSRs were implemented manually, not using FSRtoVHDL.
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(c) LFSR L2 with feedback retiming twice
Figure 20.1: Schematics for the LFSR with original feedback and its retimed versions

Three possible hardware implementations of the same LFSR were explored, and can be distin-
guished by feedback retiming:

– the no-retiming version with entire feedback computation separated from the shift registers
(L0 in Figure 20.1(a))

– feedback computation retimed once, by retiming applied to multiplication by the constant τ
(L1 in Figure 20.1(b))

– feedback computation retimed twice, by retiming applied to both feedback and multiplication
by the constant τ (L2 in Figure 20.1(c))
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Chapter 21

WAGE - overview

Disclaimer 21.1: The WAGE authenticated encryption scheme

The WAGE authenticated encryption scheme is a joint work of the members of the ComSec
Lab (will be reffered to as the WAGE team), listed in alphabetical order: Mark Aagaard,
Riham AlTawy, Guang Gong, Kalikinkar Mandal, Raghvendra Rohit, and Nusa Zidaric (au-
thor of this thesis). Subsection 3.2.8 is a background section, summarizing the specifications
of the LWC candidate WAGE [6], as submitted to the LWC [5] (joint work). Part VI consists
of two chapters:

• Chapter 22, which shows the impact of hardware implementations during the algo-
rithm design of WAGE. My contributions to the WAGE design are the parameter
search, (automated) hardware implementations during the algorithm design of WAGE,
and contribution to the loading sequence and input ports, and tag extraction sequence
and output ports.

• Chapter 23, which explains the hardware design of the WAGE datapath in depth. My
contribution is the hardware design (and implementation) for the WAGE datapath.
However, the hardware design slowly evolved concurrently with the algorithm design
and in constant communication with the entire WAGE team. A short summary of
the joint work of the WAGE team with no contribution of the author of this thesis is
presented in Section 23.1

The presented text also in Part VI overlaps to some degree with the text in WAGE’s sub-
mission document [6] (joint work), and in [188]. Acknowledgement goes to Marat Sattarov
for help with synthesis scripts, developed by Mark Aagaard (reuse of the design flow for the
WG cipher constant array implementations, used in Marat Sattarov’s MASc thesis [120]).
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Chapter 22

WAGE algorithm design - impact of
profiling

22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

22.2 The size of the underlying finite field . . . . . . . . . . . . . . . . . . . . . . . . . 266

22.3 The remaining nonlinear components . . . . . . . . . . . . . . . . . . . . . . . . 268

22.4 The LFSR feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

22.5 The WAGE permutation hardware area estimate . . . . . . . . . . . . . . . . . . . 270

22.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

22.1 Introduction

This section summarizes different options explored during the design of the WAGE algorithm, with
a focus on the hardware estimates. WAGE was designed for the NIST LWC competition. A thor-
ough discussion on lightweight cryptography was presented in Subsection 4.1.1. For lightweight
cryptography, area is more important than delay. The design process targeted a small implemen-
tation area for the WAGE permutation, with the threshold set to approximately 2000GE. The final
design, i.e., the permutation that met this criterion, is shown in Algorithm 1 in Section 3.2.8. The
area metrics used are a mix of estimates and synthesis results:

• estimates: pen and paper analysis using 3.75GE for a 1-bit register and 2.00GE for a 2-input
XOR gate.
• synthesis results: pre-PAR implementation results using CMOS 65nm

As the key and nonce are set to 128 bits, assuming internal state of at least 256 bits, the area for the
state is estimated at 960GE already taking up a large portion of the 2000GE threshold. The overall
structure of WAGE was fixed to an LFSR with two decimated WG permutations WGP-16(Xd) ,
WGP for short, and additional nonlinear elements for faster confusion and diffusion. From previous
work [68, 113], it is known that for small fields, the WGP implemented as a constant array, i.e. as
a look-up table, is smaller than the WGP implemented with basic arithmetic blocks implementing
multiplications and exponentiations to the powers of two. However, the WGP is not stored in
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hardware as a memory array, but rather as a net of AND, OR, and NOT gates, derived by the synthesis
tools. The WGP module is small enough to be successfully optimized by the synthesis tools. For
the DSE of the WG cipher family, see Chapter 20.

22.2 The size of the underlying finite field

Finite field F28

The first option considered for the underlying finite field was F28 , due to its efficiency in software.
The choice of the underlying finite field was based on the area of the WGP constant array imple-
mentation for polynomial bases obtained using primitive defining polynomials, which was already
discussed in Section 20. More specifically, Table 20.1 in Section 20 showed that the average area
for the WGP constant array implementations is 546GE, which raises the total area of the design
over 1000GE with only two WGP tables (without any additional nonlinear components). The im-
plementation results for the normal bases F28 WGP are similar, with 16 normal elements and an
average area of 531GE, just slightly lower.

The next candidate field was F27 . Two options were explored: normal bases and polynomial bases
for the representation of the field elements.

Normal bases for F27

Table 22.1 shows the implementation results for the normal basis WGP constant array implemen-
tations, using decimation exponent d = 13, based on optimal parameters in [50].

The FFCSA methods for search (Table 7.4) and normal bases (Table 7.3) were used. The search
was reduced to ignore the conjugates, i.e., FindNormalFFEsBIgnoreConjugates was used. The
normal elements found are listed in the first column of Table 22.1 as ni, and are given as a power of
ω, where ω is the root of the reference defining polynomial fre f (x) = x7 + x + 1. Column 2 lists the
minimal polynomial fi of ni, which is used as the defining polynomial when this normal elemen-
t/basis is selected for the implementation. The normal bases were generated with GenerateNB
and Column 4 shows CT , the complexity of the multiplication table for multiplication with the
normal element, obtained with the ComplexityOfT method. The last two columns show the im-
plementation results: the area [GE] and the critical path delay [ns]. The hardware modules were
generated with the FSRtoVHDL package.
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Mathematical parameters WGP

ni fi(x) CT A [GE] tcp [ns]

n0 = ω63 x7 + x6 + 1 21 258 0.8

n1 = ω21 x7 + x6 + x3 + x + 1 21 261 0.8

n2 = ω43 x7 + x6 + x4 + x + 1 21 251 0.7

n3 = ω31 x7 + x6 + x4 + x2 + 1 25 248 0.7

n4 = ω13 x7 + x6 + x5 + x2 + 1 19 264 0.9

n5 = ω19 x7 + x6 + x5 + x3 + x2 + x + 1 27 270 0.7

n6 = ω27 x7 + x6 + x5 + x4 + x2 + x + 1 27 256 0.8

Table 22.1: Pre-PAR CMOS 65nm implementation results for the NB constant array WGP for F27 with decimation
exponent d = 13, using fre f (x) = x7 + x + 1, where fre f (ω) = 0

Mathematical parameters WGP ωi mult.

ωi fi(x) CR A [GE] tcp [ns] A [GE]

ω0 = ω1 x7 + x + 1 19 258 0.7 2

ω1 = ω11 x7 + x3 + 1 21 247 0.6 16

ω2 = ω5 x7 + x3 + x2 + x + 1 34 245 0.7 10

ω3 = ω29 x7 + x4 + 1 22 243 0.7 23

ω4 = ω55 x7 + x4 + x3 + x2 + 1 35 255 0.7 22

ω5 = ω23 x7 + x5 + x2 + x + 1 32 258 0.7 24

ω6 = ω3 x7 + x5 + x3 + x + 1 27 261 0.7 6

ω7 = ω9 x7 + x5 + x4 + x3 + 1 26 264 0.7 116

ω8 = ω15 x7 + x5 + x4 + x3 + x2 + x + 1 35 251 0.7 19

ω9 = ω63 x7 + x6 + 1 34 270 0.9 14

ω10 = ω21 x7 + x6 + x3 + x + 1 32 248 0.7 28

ω11 = ω43 x7 + x6 + x4 + x + 1 34 261 0.7 29

ω12 = ω31 x7 + x6 + x4 + x2 + 1 35 265 0.7 27

ω13 = ω13 x7 + x6 + x5 + x2 + 1 34 257 0.8 16

ω14 = ω19 x7 + x6 + x5 + x3 + x2 + x + 1 30 257 0.7 26

ω15 = ω47 x7 + x6 + x5 + x4 + 1 27 259 0.9 31

ω16 = ω27 x7 + x6 + x5 + x4 + x2 + x + 1 34 254 0.7 20

ω17 = ω7 x7 + x6 + x5 + x4 + x3 + x2 + 1 28 255 0.8 14

Table 22.2: Pre-PAR CMOS 65nm implementation results for the PB constant array WGP for F27 with decimation
exponent d = 13, using fre f (x) = x7 + x + 1, where fre f (ω) = 0. The last column contains implementation results for
the multiplication with ωi
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Polynomial bases for F27

The pre-PAR CMOS 65nm implementation results for constant array implementations of WGP
using the decimation exponent d = 13 are listed in Table 22.2: they show 18 primitive1 polynomials
of degree 7, denoted fi(x). Each of the fi has a different root ωi and a different polynomial basis.
The profiling workflow is exactly the same as for the F28 WGP shown in Example 20.2.1. The
theoretical estimate included is the Hamming weight of the m× (2m−1) reduction matrix obtained
for fi.

The smallest area for WGP-16(Xd) was found for f3(x) = x7+x4+1. Considering the constant term
for the LFSR feedback, the smallest combined area of two WGPs and a constant term was found
for the polynomial f2(x) = x7 + x3 + x2 + x + 1. The implementation results for the matrix-vector
multiplier for multiplication with ωi are shown in the last column (area only, delay is negligible).
Note that the constant term multiplier amounts to only 2% of the combined area.

22.3 The remaining nonlinear components

Normal bases for F27

In Section 22.2, both polynomial and normal bases were considered. Normal bases are attractive
because the exponentiations to powers of 2 are cyclic shifts, and hence implemented for free. For
nonlinear components, the Gold exponents (see 9.2.59 in [15]) of the form x2i+1 were considered.
These exponents can be implemented with a cyclic shift and a multiplication. Table 22.3 lists
the implementation results for the rr_mo multipliers [156] and for a whole module x33 = x25+1,
which is a permutation. The rr_mo multipliers were already discussed in Section 18.1. The x33

modules were implemented using the CIRCUIT package with the x33 set as the expression input
(Chapter 14). Because x25

requires only a cyclic shift, which is free in hardware, the multiplier
was directly compared to the exponentiation module for x33. Area-wise, both modules were very
close, with the multipliers having the average area of 189 GE and the x33 modules 192 GE. Their
size was, on the average, 73% and 74% of the size of an average WGP, respectively. The smallest
combined area of two WGP modules and

• two multipliers is achieved for f4(x) = x7 + x6 + x5 + x2 + 1 with 882GE
• two x33 modules is achieved for f3(x) = x7 + x6 + x4 + x2 + 1 with 772GE

Two alternative implementations were tested for the x33 modules: the constant array implementa-
tion and the canonical disjunctive normal form (CDNF) implementation. The constant array was
translated to CDNF using Logic Friday [189], which is using Espresso for minimization. For ex-
ample, the f3(x) = x7 + x6 + x4 + x2 + 1 CDNF x33 module achieves an area of 267GE, almost
twice the value reported in Table 22.3, and the constant array implementation is even smaller, with

1 all irreducible polynomials for F27 are also primitive
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Mathematical parameters rr_mo multiplier x33 module

ni fi(x) CT A [GE] tcp [ns] A [GE] tcp [ns]

n0 = ω63 x7 + x6 + 1 21 185 0.4 182 0.4

n1 = ω21 x7 + x6 + x3 + x + 1 21 187 0.4 143 0.3

n2 = ω43 x7 + x6 + x4 + x + 1 21 191 0.3 195 0.6

n3 = ω31 x7 + x6 + x4 + x2 + 1 25 197 0.4 138 0.4

n4 = ω13 x7 + x6 + x5 + x2 + 1 19 177 0.3 156 0.4

n5 = ω19 x7 + x6 + x5 + x3 + x2 + x + 1 27 208 0.4 184 0.4

n6 = ω27 x7 + x6 + x5 + x4 + x2 + x + 1 27 199 0.4 164 0.4

Table 22.3: Pre-PAR CMOS 65nm implementation results for the NB multipliers and x33 modules for F27 , using the
reference defining polynomial fre f (x) = x7 + x + 1, where fre f (ω) = 0

213GE. In general, the CDNF and constant array implementation yield similar results because the
underlying process of minimization is similar. The outputs of Logic Friday are seven expressions,
one for each 7-input/1-output truth table, while the constant array implementation is a 7-input/7-
output table; the latter could also give more room for optimizations.

Polynomial bases for F27

Alternatively, 7-bit Sboxes were used to try to further reduce the implementation area. The final
candidates were implemented and based on a security-area tradeoff. An Sbox with only 58GE was
chosen for WAGE; the Sbox SB details are listed in Table 3.1 in the Subsection 3.2.8, and for more
details refer to [6]. Note that the SB is defined over F7

2 and does not depend on the basis; the same
SB can be used for both, the polynomial and the normal bases. As the SB does not contain any
operations that would benefit from the use of a normal basis, the normal bases were discarded. The
final design uses two WGPs and four Sboxes SB, and the output of each is XORed back to one of
the (7-bit) LFSR stages; these XOR gates count towards the row “other XORs” in Table 22.4.

The area of the implemented Sboxes varied from 55 to 65GE, which is much smaller than the
proposed Gold exponents. The small area advantage of the Sboxes lies in their iterative structure,
which allows an unrolled implementation with a small number of gates. For example, is the 7-bit
Sboxes were implemented using constant arrays, their implementation are would be comparable to
the area of the normal bases multipliers and x33 modules in Table 22.3.

22.4 The LFSR feedback

Exhaustive search is performed to find the best primitive polynomials for the LFSR based on the
delay and area of the matrix for multiplication with a constant. For lightweight cryptography, the
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area is more important than delay, so the primary search criterion is the total Hamming weight of
the matrix, rather than the maximum row Hamming weight. The offline profiling for the smallest
area constant term is shown in Example 7.2.1 in Section 7.2. The profiling using the FFCSA meth-
ods ProfileGamma and FindSmallestAreaGamma (Table 7.4) for WAGE parameters is shown in
Example 7.2.1(d).

The online profiling flow used the FFCSA method MatrixMultByConstExpression (Table 7.5)
to obtain expressions for the matrix-vector multiplier and the CIRCUIT package to generate its
datapath. The online profiling results for the constant term are listed in the last column in Table
22.2, labelled “ωi mult.”.

Finally, the candidates for the LFSR polynomial over F27 were found as follows. The LFSR poly-
nomial should have degree 37 and 10 tap positions. The 10 tap positions ensure that 70 state bits
enter the feedback, which is more than the rate of 64 bits. Two positions were fixed: namely,
y19 (to avoid stage S 18, which has a WGP), and the constant term ω. The remaining 8 taps were
placed evenly in the two halves of the WAGE state, with symmetry after y18. The GAP function
IsPrimitivePolynomial(F, poly) (Section 66.4-12 in the GAP reference manual [34]) was
used to decide if the candidate poly is primitive. A total of 68 primitive polynomials were found.
The candidate list was further reduced to 36 primitive polynomials by disallowing the terms y36

and y35. Stacking the taps towards the lower stages of the LFSR is beneficial for parallel implemen-
tations. For example, if y36 was present in a two-way parallel implementation, the second feedback
needs to be computed using y36 · y = y37, which requires adding the entire first feedback to the
second one, resulting in a long combinational path. The candidate list was further reduced based
on the security analysis (for details see Section 5 in [6]).

22.5 The WAGE permutation hardware area estimate

Table 22.4 shows the estimates for the area of the WAGE permutation. The area cost for the LFSR
is estimated as shown in the first 3 rows of Table 22.4, with 37 × 7 × (3.75GE) = 971GE for
the internal state, 10 × 7 × (2GE) = 140GE for the feedback XORs, and synthesized matrix-vector
multiplier for the constant term. The pen-and-paper analysis in Table 22.4 is the first estimate, not
considering the hardware needed to accommodate the mode, e.g., loading multiplexers etc., hence
using the Hamming weight is a fair estimate.

Thorough area analysis showing the impact of the mode and new implementation results of WAGE
are reported in [188].
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Component Estimate Count Estimate per
per unit [GE] component [GE]

wage_lfsr registers 3.75 37 × 7 971
wage_lfsr feedback XORs 2.00 10 × 7 140
wage_lfsr feedback ω 10† 1 10
SB 58† 4 232
WGP 245† 2 490
lfsr_c 45† 1 45
Other XORs 2.00 8 × 7 112
WAGE permutation - Total estimated area 2000

pre-PAR CMOS 65nm implementation area results
WAGE permutation (Chapter 23) 2051†

† pre-PAR CMOS 65nm implementation results

Table 22.4: WAGE permutation hardware area estimate [187]

22.6 Summary

This chapter presented DSE during the WAGE algorithm design. The threshold for WAGE permu-
tation was set to 2000GE. The parameter search was focused on two finite fields F28 and F27 . Finite
field F28 was discarded due to the large area of the WGP constant array implementations. DSE for
F27 was performed for normal and polynomial bases. Normal bases F27 options were discarded due
to the large area of the normal bases multiplier and exponentiation module. The last parameter set
was the LFSR feedback polynomial.

The candidate field parameters were generated using the FFCSA search methods (Table 7.4) and
methods for bases (Table 7.3). The normal bases rr_mo multipliers [156] were implemented using
a stand-alone GAP script, and the exponentiation modules were implemented using the CIRCUIT
package. The constant term for the LFSR polynomial was selected in two steps using offline and
online profiling. The offline profiling used the FFCSA methods (Table 7.4). The online profiling
used the FFCSA method MatrixMultByConstExpression (Table 7.5) to obtain expressions for
the MV multiplier and the CIRCUIT package to synthesize its datapath.
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Chapter 23

Hardware design of the WAGE datapath

23.1 Short summary of the joint work . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

23.2 Hardware design of the WAGE datapath . . . . . . . . . . . . . . . . . . . . . . . 273

23.3 The WAGE datapath and the FSRtoVHDL package . . . . . . . . . . . . . . . . . 277

23.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

23.1 Short summary of the joint work

My contribution is the hardware design (and implementation) for WAGE datapath. While other as-
pects of the algorithm had a direct impact on the datapath, the datapath design affected the overall
algorithm and input/output protocol. This section summarizes aspects of WAGE that the author of
this thesis was not directly involved with and that impacted the datapath. As WAGE is intended to
be lightweight, certain hardware design principles were followed: both encryption and decryption
are implemented in one module, which has a single input and a single output port, e.g., the input
port is shared by the key, nonce, associated data, and the message. Furthermore, each port is paired
with a valid bit to denote when the data is valid. This enables stalling: the hardware waits in an
idle state signalling to the environment that it is ready to receive. The environment is responsible
for possible padding and for control signals: an i_mode signal to distinguish encryption and de-
cryption, and the domain separator signal i_dom_sep to indicate which data is on the input port,
e.g., a nonce or associated data (see Figure 3.10 in Subsection 3.2.8). More details on the interac-
tion between the environment and the WAGE_cipher can be found in [6], in the Interface protocol
and Protocol timing. WAGE uses the unified sponge duplex mode for sLiSCP [61] to provide the
AEAD functionality, as shown in Figure 3.10. To support this mode, WAGE_cipher operates in
one of six phases, that were identified as: (I.) loading, (II.) permutation, (III.) absorbing during
initialization, processing associated data and finalization, (IV.) (absorbing during) encryption, (V.)
(replacing during) decryption, and (VI.) tag extraction. The six phases were used for both FSM
and datapath design. For example, during encryption, one clock cycle is spent in phase (IV.) to
encrypt and output the ciphertext and absorb the ciphertext, followed by the 111 clock cycles in
phase (II.), the permutation.
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23.2 Hardware design of the WAGE datapath

The WAGE input and output port positions, as well as the loading and tag regions, evolved together
with the WAGE datapath. The loading and tag extracting are presented in Appendix B.1.

The behaviour of the six phases is explained with help of the dataflow diagrams (DFD). The
dataflow diagram was chosen for the representation of the WAGE hardware because it captures
both the behaviour and the hardware components used. The data flow is indicated with arrows and
the grey thick horizontal lines indicate a clock cycle boundary: the time is incremented by mov-
ing downward vertically. All stages are registers, and an arrow crossing the clock cycle boundary
marks the updating of the corresponding register (stage). Stage numbers are shown on top of all
diagrams, e.g., 36 is indicating the stage S 36 register1. The stages S 32 → S 21 are omitted for
brevity. Some paths through the DFDs are shaded to provide an example of activity, e.g., loading
though D0 in Figure 23.1; paths that are not shaded are also active. Whenever there is a different
behaviour, i.e., different path driving the same stage, control circuitry is needed.

The six phases are explained out of order, to emphasize the similarities and reuse of hardware: the
rounds use the same hardware, but in different clock cycles. In general, reuse saves hardware area,
but there is a tradeoff for control circuitry (more multiplexers, more complicated FSM).

The loading and tag extraction are discussed in detail in appendix Chapter B.1; both take advantage
of the shifting nature of an LFSR. Three clock cycles of loading (phase(I.)) are shown in the DFD
in Figure 23.1. The data inputs (re)used for loading are D9,D5,D4,D3 and D0 for the state registers
S 36, S 27, S 18, S 16 and S 8, respectively. All the remaining registers simply shift as they would during
a normal LFSR operation. The DFD shows the annotated loading path through D0: the new data
is first stored into S 8 in the first cycle, then shifted to S 7 in the second cycle, and then to S 6 in
the third cycle. Old data in stages S 19, S 17, S 9 and S 0 is garbage and is overwritten; this approach
allows state registers without reset signals, hence smaller hardware area.

The DFD in Figure 23.2 shows replacing (phase (V.)), with the XOR gates for decryption, the output
path o_data, and the domain separator added to stage S 0. The path through D0 is again shaded:
note the similarity between this shaded path and the shaded loading path in the first clock cycle of
the DFD in Figure 23.1. This similarity indicates that the loading and replacing are similar enough
that the replacing multiplexer can be reused for loading. Also note that during the replacing clock
cycle (Figure 23.2), only the rate stages are updated, while all the other stages remain unchanged;
special care is needed for the chip enable control signal, as not all stages shift under the same
conditions.

Another path shaded in the DFD in Figure 23.2 is the decryption D1 → XOR → O1. This path is
also shown in the DFD in Figure 23.3, highlighting the absorbing during encryption (phase(IV.)):
the same XOR gate is used for both decrypting and encrypting. The other absorbing clock cycles
for initialization, processing associated data, and finalization (phase(III.)), are similar to the cy-
cle shown in the DFD in Figure 23.3 and not shown in a separate DFD of their own. The only
difference is that in phase (III.), the output XORs and o_data are not used.

1 all registers are 7 bits wide
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Figure 23.4 shows the DFD for one round of permutation (phase (II.)). This clock cycle will be
repeated 111×. The DFD shows the feedback, the SB, and the WGP components. The shaded path
S 5 → XOR → S 4 , compared to the path S 5 → S 4 in the loading DFD in Figure 23.1, indicates
a multiplexer is needed to turn off the SB during the loading. This is also required during the
tag extraction (phase (VI.)), not shown in a DFD. The shaded S 9 → S 8 path in the permutation
DFD and the shaded S 8 → XOR → S 8 path in the absorbing DFD in Figure 23.3 also requires a
multiplexer.

The just identified multiplexers are shown in the circuit schematic in Figure 23.5 for stages S 0, . . . ,
S 10. The grey line represents the path during WAGE permutation (phase(II.)). The additional
hardware for the entire wage_lfsr, which is required to support the permutation in the mode, is
listed below, with examples referring to Figure 23.5 and to the six phases.

• For each data input Dk, there is a corresponding 7-bit data output Ok; Figure 23.5 shows
D1,O1 and D0,O0.

• 10 XOR gates must be added to the S r stages to accommodate absorbing during initializa-
tion, processing associated data and finalization (phase (III.)), absorbing during encryption
(phase (IV.)), and replacing during decryption (phase (V.)). These XORs are shown at stages
S 9,S 8 in Figure 23.5).
• 10 multiplexers to switch between absorbing and normal operation. Figure 23.5 shows the
Amux1 at S 9 and the Amux0 at S 8. They choose whether to shift in data from the previous
stage (phases (I.), (II.), and (VI.)) or to absorb new data into the S r stages, while the remain-
ing stages hold their previous values (phases (III.) and (IV.)). Loading behaviour is shown
in DFD in Figure 23.1: the data is shifted S 10 → S 9, hence the left path through Amux1
is active. The absorbing behaviour is shown in the DFD in Figire 23.3: the XORed value is
passed along on the right path through Amux1.
• An XOR and a multiplexer are needed to add the domain separator into the internal state

(Amux at S 0 in Figure 23.5). The XOR is shown in the DFDs in Figures 23.2 and 23.3: the S 0

receives its value through the right path of Amux in Figure 23.5.
• To replace the contents of the S r stages, 10 multiplexers are added. They allow switching

between replacing (phase (V.)) and all other phases. An example of a replace multiplexer is
Rmux1 at stage S 9 in Figure 23.5. The replacing DFD in Figure 23.2 shows D1 → S 9, i.e.,
the right path through Rmux1.
• Instead of additional multiplexers for loading, the existing Rmuxk, k = 9, 5, 4, 3, 0, multiplex-

ers are now controlled by replace or load and labelled RLmuxk. An example is RLmux0
on S 8 in Figure 23.5. Clock cycle 1 in the loading DFD in Figure 23.1 and the replacing
DFD in Figure 23.2 show the same path D0 → S 8: the active right path though RLmux0
disconnects this (loading) region from S 9, as can easily be seen in the loading DFD in Fig-
ure 23.1.
• During phases (III.), (IV.) and (V.) all non-input stages must keep their previous values,

hence an enable signal lfsr_en is needed.
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• Three 7-bit AND gates to turn off the inputs D6,D3 and D1 (see AND at D1 in Figure 23.5). The
output O1 is used for both the tag extraction (phase (VII.), as well as ciphertext and plaintext
(phases (IV.) and (V.)). The AND gates allow to turn off the input for tag extraction.
• 4 multiplexers are needed to turn off the SB during loading and tag extraction (SBmux at S 4).

The non-linear inputs are used only during permutation (phase (II.)). The permutation DFD
in Figure 23.4 shows the path S 5 → XOR → S 4, which is the lower path through the SBmux
in Figure 23.5. The upper path allows normal shifting of the LFSR, i.e., S 5 → S 4, as shown
in the loading DFD in Figure 23.1. The lfsr_en ensures the behaviour shown in DFDs in
Figures 23.3 and 23.2, namely the stage will keep its value, i.e., S 4 → S 4.

Control signals for multiplexers
The extra circuitry described above (and shown in Figure 23.5) needs the following control signals,
which are set by the FSM:

• for Rmuxk, RLmuxk, and Amuxk multiplexer control: load, absorb, and replace. The
control signal is always interpreted as follows: a value of 0 denotes the left input to the mux
and a value of 1 the right input.
• for SBmux multiplexer control: sb_off. A signal value of 0 selects the bottom mux input,

and the value 1 the top mux input.
• for the AND gate: is_tag

S
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S
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S
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SB

S
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D0 O0

replace
or load 
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D1 O1

replace
 

SB_off

not is_tag

absorb

i_dom_sep

RLmux0Rmux1

Amux1 Amux0 Amux

S
B

m
u
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Figure 23.5: Small region of WAGE permutation: stages S 0, . . . , S 10 with multiplexers, XOR and AND gates for the
sponge mode

The control signals are listed in Table 23.1. A final multiplexer is needed to decide whether or not
the Ok outputs are sent to the environment. Instead of showing this multiplexer, an extra “output”
column is included in Table 23.1. The value of control signals is determined by the interface signals
i_mode and i_dom_sep, and the current phase. These interface signals are used by the FSM to
generate the datapath control signals. The - in the table means “dont care”.
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Interface signals Phase Output Datapath control

i_mode i_dom_sep

l
o
a
d

s
b
_
o
f
f

i
s
_
t
a
g

a
b
s
o
r
b

r
e
p
l
a
c
e

- - - loading I × 1 1 0 0 0
- - - permutation II × 0 0 0 0 0

absorbing during:
- 00 initialization
- 01 processing of associated data III × 0 0 0 1 0
- 00 finalization
0 10 encryption (absorbing) IV X 0 0 0 1 0
1 10 decryption (replacing) V X 0 0 0 0 1
- - - tag extraction VI X 0 1 1 0 0

Table 23.1: Control table for WAGE

23.3 The WAGE datapath and the FSRtoVHDL package

The FSRtoVHDL package was successful at implementing WG stream cipher datapaths and the
Grain datapath. The WAGE datapath revealed some drawbacks. The WGP component of WAGE
can be implemented using constant arrays, as was shown in Example 11.2.5 in Section 11.2. The
first problem encountered is the SB. Both the SB and the LFSR are too complex to be implemented
using FSRtoVHDL.

Modelling SB with FSR and FSRtoVHDL

Table 23.2 shows the SB fraction from Table 3.1. The SB looks simple, both R and Q need only
AND and NOT gates, and the last layer only NOT gates. Since AND and NOT can be represented
as multiplication and modulo 2 addition of constant 1 in F2 arithmetic, they can also easily be
represented as a monomial. For example, x3 ⊕ (x5 ∧ x6) becomes 1 + x3 + x5x6.

To model the SB as an FSR object, 19 FILFUN elements are needed: 3 FILFUNs for each layer of
R, followed by 3 FILFUNS for Q, and a final FILFUN for the second NOT gate. For example, bit 1
of R and bit 0 of Q′ can be modelled with 1 + x0 + x1x2, as shown in the Implementation detail
22.3.1. Note the modification to Q: the first NOT gate in the last layer was added to Q, hence
the notation Q′. Special care is needed when selecting the appropriate inputs, as is shown in the
comments. The indices in the comments refer to a 7-bit vector from a previous layer.

Implementation detail 22.3.1

R1 := FILFUN(GF(2), 1+x_0+x_1*x_2); # 1 + x_3 + x_5*x_6 # [3,5,6]
Q0 := FILFUN(GF(2), 1+x_0+x_1*x_2); # x_0+x_2*x_3 ADD NOT # [1,3,4]
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Not only is the process tedious, special care must be taken when using the spreadsheet template to
enter the permutation P correctly. Furthermore, as the FSRtoVHDL package simply enumerates
the FSRs in the design, the process becomes very error prone. As all the FSRs in the design must
be added at once, and there are 4 SB in WAGE, using FSR and FSRtoVHDL to implement the SB
is infeasible.

SB Q Q(x0, x1, x2, x3, x4, x5, x6)→ (x0 ⊕ (x2 ∧ x3), x1, x2, x3 ⊕ (x5 ∧ x6), x4, x5 ⊕ (x2 ∧ x4), x6)

SB P P(x0, x1, x2, x3, x4, x5, x6)→ (x6, x3, x0, x4, x2, x5, x1)

SB R R(x0, x1, x2, x3, x4, x5, x6)→ (x6, x3 ⊕ (x5 ∧ x6), x0 ⊕ (x2 ∧ x3), x4, x2, x5 ⊕ (x2 ∧ x4), x1)

SB
(x0, x1, x2, x3, x4, x5, x6)← R5(x0, x1, x2, x3, x4, x5, x6)

(x0, x1, x2, x3, x4, x5, x6)← Q(x0, x1, x2, x3, x4, x5, x6)

(x0, x1, x2, x3, x4, x5, x6)← (x0, x1, x2, x3, x4, x5, x6)

Table 23.2: Specification parameters of WAGE SB

Modelling LFSR with FSR and FSRtoVHDL

Recall from Subsection 8.2 how to model the WAGE state using the FSR package: the state is
fragmented into a collection of short LFSRs without feedback, the LFSR feedback is modelled as
a FILFUN, and some stages are left as standalone GAP variables:

[s36, s35, s34, s33_30, s29, s28, s27, s26_24, s23_19, s18, s17, s16, s15, s14_11, s10, s9, s8, s7_5, s4_1, s0]

To achieve implementation of registers for the standalone stages, they must be modelled as FSR ob-
jects as well, e.g., s8 := LFSR(F, y) and s0 := LFSR(F, y). The two LFSRs already shown
in Subsection 8.2 are s7_5 := LFSR(F, yˆ 3) and s4_1 := LFSR(F, yˆ 4). This process re-
sults in 20 LFSR objects that are added to the spreadsheet template by the FSRtoVHDL Manager
function. Followed by the 10 data inputs and outputs Di,Oi and the multiplexers to accommodate
the mode (Section 23.2), LFSR is not suitable for FSRtoVHDL implementation either.

Future work

The CIRCUIT package has a placeholder complex as a future datapath instruction. Among other,
it will allow unrolled datapaths, which will significantly simplify the implementation of Sboxes.
Another feature, currently not supported by the CIRCUIT package, is implementation of Boolean
gates beyond the AND, XOR, and NOT set. The complex datapaths will make use of the GAP syntax
trees, announced for the next GAP version. A different solution is available in the GUI based
RunFein [174]. RunFein is a framework for block ciphers with access to a library of cryptographic
kernels, which can be parameterized by the user and selected layer by layer.
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The problem of a large spreadsheet template is an interface issue. The FSRtoVHDL package can
be extended to support a clustered setup file and hierarchical Manager function, which would allow
generating datapaths independently and incrementally building new modules. This feature would
allow for the implementation of the SB, and address the problem of complexity of the spreadsheet
template.

To solve the problem of fragmentation of the WAGE LFSR, the structure of the FSR package has
to be extended with a new type of extended (N)LFSR objects. They would have a set of control
flags for each stage of the FSR to decide if the stage:

• has its own load input
• has its own chip enable
• has its own external step input
• is an output

This approach would allow the WAGE LFSR feedback to be implemented as a part of the LFSR
instead of as a separate FILFUN. Furthermore, the absorbing stages with data inputs and outputs
could be updated, i.e., clocked, independently. An external step input for each stage would enable
to plug in the nonlinear components directly. Each stage can already be used as an output stage, so
the last item is not an extension.

23.4 Summary

This chapter presented the hardware design of the WAGE datapath. The behaviour analysis using
the DFDs outlines the similarities and reuse of hardware. It explains the additional hardware
needed to support the permutation in the mode, and the reuse of multiplexers and data inputs and
outputs. The chapter concluded with an applicability analysis of the FSRtoVHDL package to the
WAGE datapath. This case study revealed some drawbacks of the automation framework and
proposed possible solutions with extensions to the FSR, FSRtoVHDL, and CIRCUIT packages.
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Part VII

Conclusion
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Chapter 24

Conclusion and future work

Summary and conclusion

This thesis presented a novel framework for the synthesis of arbitrary datapaths over arbitrary
finite fields. The framework is implemented in GAP from the ground-up. In introduction a design
flow with four phases, the algorithm design, the architectural decisions, the automated design
generation, and the design space exploration was described and shown in Figure 1.1. Figure 24.1
shows design flow with solution, i.e., the design flow with the developed automation framework.
Figure 24.1 was already presented in detail in Section 17.1.

The automation framework covers two parts of the design flow: the architectural decisions and
the automated design generation. There are two different paths through the architectural deci-
sions – automated design generation, one specialized for FSR-based ciphers and one specialized
for arbitrary circuits over arbitrary finite fields.

At the heart of the architectural decisions is the package FFCSA (Finite Field Construction, Search
and Algorithms). The purpose of the FFCSA package is twofold: (i.) it enables design space
exploration by providing various constructions and search capabilities, and (ii.) it can generate the
expressions for the synthesis of submodules.

In the light of NIST Lightweight Cryptography Project (LWC), this work focuses mainly on small
finite fields. An important part of this thesis is WAGE, a hardware oriented authenticated encryp-
tion scheme, which is currently a round 2 candidate in the ongoing NIST LWC standardization
process. The automation framework was used to aid the parameter selection during the design of
WAGE algorithm. The parameter selection for WAGE was aimed at balancing the security and
hardware implementation area, using hardware implementation results for many design decisions,
for example field size, representation of field elements, etc. The design space exploration for the
FSRtoVHDL package was demonstrated on both WAGE and WG cipher family. The latter was
also the motivation for the design of the FSR and FSRtoVHDL packages.

The synthesis for FSR-based datapaths is provided by the FSR package and its sister package FSR-
toVHDL. It relies on their modelling as a collection of FSRs and on structural similarities between
the FSR objects. The LFSR and NLFSR GAP objects differ only in the degree of the multivariate
polynomial used to define their feedback. A FILFUN (filtering function) is an FSR object without
feedback, shifting, or storing, whose functionality is defined by a multivariate polynomial. The
justification for modelling filtering functions as FSR objects is twofold: (i.) filtering functions
are similar to (NLFSR) feedback functions, and (ii.) FSRs with output filters are common, hence
they will be used together. The FSR-based system is modelled as a collection of FSR objects.
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The user input to the framework is the setup file containing FSR equations and top-level interface
signals. The framework generates a spreadsheet template, the user completes the configuration for
the connections between the FSRs, and FSRtoVHDL writes the entire datapath as VHDL-ready
for synthesis by conventional tools, such as Synopsys Design Compiler. The configuration must
use the connectors (e.g., merge, select, etc.), which allow users to specify how individual (coordi-
nates of) internal signals are connect. The configuration is used to infer internal signals, external
step conditions, and datapath multiplexers. The basic building blocks of this datapath are the FSR
submodules.

The classification of the feedback expression is used to determine how to generate the FSR sub-
module. The FSRtoVHDL package has no means of generating building blocks like extension
field multipliers. This limitation is bypassed by generating black-box feedback for NLFSRs and
FILFUNs over extension fields. A possible solution is enabling the use of CIRCUIT for the FSR-
toVHDL.
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Figure 24.1: Design flow: datapath synthesis (automation framework) and detailed design space exploration
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The FSR–FSRtoVHDL tandem was used successfully to generate the datapath for Grain stream
cipher, and for the design space exploration of the WG stream cipher family. The analysis of the
WAGE datapath revealed two drawbacks. First, while it is possible to generate the datapath of
the SB Sbox, it is very impractical, as the spreadsheet configuration file grows out of proportions
quickly. However, this drawback is an interface issue. Second, the nonlinear layer of WAGE
causes the fragmentation of the LFSR, which must be modelled as a collection of shift registers
(modelled as LFSRs without feedback) and filters (modelled as FILFUNs). This drawback can
be addressed by adding a new type of extended (N)LFSR objects to the FSR package, with the
following features: (i.) each stage can have its own external step input, and (ii.) each stage can
be clocked independently of others. This functionality would allow users to plug the nonlinear
components directly into the LFSR and provide mode support for absorbing and replacing.

The second architectural decisions – automated design generation flow, specialized for arbitrary
circuits over arbitrary finite fields, is realized with the CIRCUIT package. User input for datapath
synthesis is a mathematical description of the field parameters and the expressions in algebraic
normal form, along with submodule instructions to invoke appropriate FFCSA methods. The most
distinctive feature of the CIRCUIT package is the encoding of the underlying field structure with
the GAP objects SignalDomain, SIGNAL and SignalPkg. SIGNAL allows to view the finite fields
as vector spaces, to use “just vectors”, and provides support for tower fields. The SignalPkg,
which is an ordered collection of all SIGNALs needed for datapath synthesis, follows the top-down
modular approach: the submodules are expected for the subfields. The distinction between a field
element and a vector from the corresponding vector space enables the on the fly generation of the
submodules. The submodules are generated using the FFCSA package methods. The CIRCUIT
package contains two compilation algorithms that gradually refine the design until a VHDL-ready
datapath is produced. The last step is the generation of synthesizable VHDL code.

The first compilation algorithm extracts and generates all the submodules needed in the design in
a top-down fashion. The second compilation algorithm works bottom-up to bind all the generated
submodules to the operations they implement, i.e., to connect them into their parent modules.
It also fills in the last bits, such as the declarations of additive constants or connectors between
elements/vectors of isomorphic fields in the design.

The framework offers a systematic approach to design space exploration from the perspective of fi-
nite field arithmetic. The FFCSA search methods are used to produce a candidate set, and for each
candidate, the datapath is synthesized using the automation framework. The design space explo-
ration using the CIRCUIT package was demonstrated on examples of basic building blocks (finite
field multiplication and inversion examples), and for an arbitrary datapath over an arbitrary field
(the running example expression over F((22)2)2). The design space exploration for the FRStoVHDL
package was demonstrated on the WG cipher family.

In the light of High-Level Synthesis, the proposed framework is described as follows: (i.) the
entry point is GAP, (ii.) the framework is domain specific, and is aware of the field structure, (iii.)
submodules are generated on the fly instead of retrieved from a library, and (iv.) it synthesizes
datapaths without control. The design space exploration is focusing on different field parameters,
rather than different hardware optimizations. In particular, this thesis is the first work to provide
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general support for tower fields in design automation for finite field arithmetic.

The presented framework resides in the intersection of two areas, namely finite field arithmetic
and hardware design, with applications to cryptography. The “math meets hardware” motif is
present throughout the entire thesis. The framework allows for rapid design space exploration
under different field parameters, with simple user inputs and minimal involvement. For example,
not only a single finite field, but several fields can be processed in one go, without any further
involvement of the user.

Finally, rapid automated design space exploration and datapath synthesis for cryptography are
becoming mandatory, especially in the fast evolving fields, such as Internet of Things.

Future work

The FFCSA methods used to generate the submodules in this thesis rely on the universal algo-
rithm for multiplication. This algorithm was used as a proof of concept. The reduced redundancy
Massey-Omura multiplier was used as secondary algorithm on a small finite field, and compared
with the circuits generated by the universal algorithm for multiplication. The results show a big
room for optimizations. Future work involves adding different algorithms to the FFCSA package.
Extending the FFCSA package is an elegant way of extending the reach of the CIRCUIT package.
In turn, such extensions enable rapid design space exploration for arithmetic modules, i.e., the ba-
sic building blocks, which could yield many interesting results. Possible directions are observing
the impact of field parameters on implementation results, comparison of online profiling results to
theoretical results, the impact of optimizations performed by the synthesis tools, etc., and finally
searching for patterns that can be extended to large finite fields, for which the exhaustive approach
is infeasible. Furthermore, the automation framework is not limited to multipliers alone, but sup-
ports other arithmetic operations, such as inversions, and arbitrary datapaths. The latter opens the
possibility of design space exploration for many algorithms using finite field arithmetic, and is not
limited to cryptography alone.

The CIRCUIT package currently supports expressions given in algebraic normal form. Future
work includes adding support for Boolean operators, e.g., OR gate, and for more general expres-
sions and distributive expressions in other forms. Another item on the list is adding support for
unrolled datapaths, and full support for sequential designs including the control circuitry. The next
big step in the CIRCUIT package design is adding the capability of representing the datapath as a
directed graph, which opens many new hardware design options, such as pipelining, and hardware
optimizations, such as retiming. This addition would open a board area for future research, namely
the design space exploration for finite field arithmetic from a hardware perspective.
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Appendix A

Additional mathematical background

Definition A.1 A nonempty set G, together with a binary operation ◦ : G × G → G, constitutes a
group G = (G, ◦), if

i. for ∀ a, b ∈ G : a ◦ b ∈ G ( G is closed under ◦),

ii. for ∀ a, b, c ∈ G: (a ◦ b) ◦ c = a ◦ (b ◦ c) (associativity),

iii. there ∃ and element e ∈ G 3: ∀g ∈ G : e ◦ g = g ◦ e = g (identity),

iv. for ∀ g ∈ G there ∃ f ∈ G 3: g ◦ f = f ◦ g = e (inverse).

G is called commutative or Abelian group if its operation is commutative,
i.e. for ∀ a, b ∈ G: a ◦ b = b ◦ a.

If the underlying set G is finite, then G is a finite group, otherwise G is infinite. The order of group
G is the number of elements in G, denoted |G|. The order of element g ∈ G is the smallest positive
integer r such that g ◦ g ◦ · · · ◦ g︸          ︷︷          ︸

r

= e; it is denoted ord(g) = r. The order of an element must divide

the order of the group, i.e. for ∀g ∈ G : ord(g)
∣∣∣ |G|.

Definition A.2 A (multiplicative) group G is cyclic, if there exists an element g ∈ G such that for
any a ∈ G, there exists an integer i for which a = gi.

The element g is called generator of the cyclic group and we write G =< g >= {gi; i ∈ Z}. If G is
a finite group of order n, then < g >= {e, g, g2, . . . , gn−1} and ord(g) = n. That is gn = e.

Definition A.3 A ring R = (R,+, ∗) is a set R, together with two binary operations + (addition)
and ∗ (multiplication) on R, satisfying the following properties:

i. (R,+) is a commutative group with additive identity denoted 0

ii. operation ∗ is associative: a ∗ (b ∗ c) = (a ∗ b) ∗ c for ∀a, b, c ∈ R
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iii. multiplication is distributive over addition: a∗(b+c) = a∗b+a∗c and (b+c)∗a = b∗a+c∗a
for ∀a, b, c ∈ R

Definition A.4 [Definition 1.43 in [11]] If R is an arbitrary ring and there exists a positive integer
n such that nr = 0 for every r ∈ R, then the least such positive integer n is called characteristic of
R and R is said to have (positive) characteristic n. If no such positive integer n exists, R is said to
have characteristic 0.

Definition A.5 [Definition 2.37 in [19]] Let K be a field. A vector space V over K is a commutative
group for a first operation denoted by “+”, together with a scalar multiplication from K × V into
V, which sends (λ, x) on λx, and such that for all x, y ∈ V and λ, µ ∈ K:

• λ(x + y) = λx + λy

• (λ + µ)x = λx + µx

• (λµ)x = λµx

• 1x = x

An element x ∈ V is called a vector and λ ∈ K a scalar.

A.0.1 Polynomials

Let K[x] be a set of polynomials in the indeterminate x with coefficients from field K :

f (x) =
∞∑

i=0
aixi , ai ∈ K .

Let g, h ∈ K[x] be two polynomials of degrees n and m respectively:

g(x) =
∞∑

i=0
aixi and h(x) =

∞∑
i=0

bixi.

Their sum is defined as

g(x) + h(x) =

max{n,m}∑
i=0

(ai + bi)xi (A.1)

and their product as

g(x) · h(x) =

m+n∑
k=0

ckxi where ck =
∑
i+ j=k

aib j (A.2)
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The set of polynomials K[x] over field K , with addition and multiplication defined as above, is a
(commutative) polynomial ring (see A.3) with additive identity f0(x) = 0 and multiplicative iden-
tity f1(x) = 1 (Definition 1.48 in [11]).

In Section 3.2 in [14], the finite field F /K , where [F : K] = m is constructed as follows: let
f ∈ K[x] be a polynomial of degree m, which is irreducible over K , and let α be a root of f , i.e.,
f (α) = 0. Let the set F contain polynomials with degree at most m − 1 and coefficients from K :

F = {

m−1∑
i=0

aiα
i ; ai ∈ K}

The addition and multiplication of polynomials in F are defined as in equations (A.1) and (A.2)
respectively1, with the following modification: the product c(α) = g(α) · h(α) needs to be reduced
modulo f (α). This is achieved using the division algorithm, which produces two polynomials
q(α), r(α), such that

c(α) = q(α) · f (α) + r(α) where deg(r(α)) < m (A.3)

Since f (α) = 0, the final product is the remainder of g(α) · h(α) divided by f (α):

c(α) = r(α) (A.4)

Then the set F together with addition g(α) + h(α), as defined in equation (A.1), and multiplication
g(α) · h(α) = r(alpha), as defined in equations (A.2)-(A.4), forms a finite field F = (F,+, ·)
(Theorem 3.5 in [14]).

A.0.2 Miscellaneous

Theorem A.1 [Theorem 6 in [18]] All finite fields of order pm are isomorphic. [Two fields F ,G
are said to be isomorphic is there is a one-to-one mapping from F onto G which preserves addition
and multiplicatio.n]

1now using the root α
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Appendix B

WAGE in more detail

Disclaimer B.1: The WAGE authenticated encryption scheme

The WAGE authenticated encryption scheme is a joint work of the members of the ComSec
Lab, listed in alphabetical order: Mark Aagaard, Riham AlTawy, Guang Gong, Kalikinkar
Mandal, Raghvendra Rohit, and Nusa Zidaric (author of this thesis).
Sections B.2 and B.1 are added for the completeness of this thesis: they contain additional
text from the WAGE submission document [6] (joint work).

B.1 WAGE loading and tag extraction

Previous sections 22.2-22.4 were discussing profiling and the WAGE permutation. This section is
related to the WAGE permutation in a mode. The rate S r and the data inputs Dk and outputs Ok,
k = 0, . . . , 9, were specified in Section 3.2.8.

The 128-bit key K and 128-bit nonce N are divided into 7-bit tuples. In software we work with
bytes, and since WAGE is using 7-bit tuples, we have “left-over” bits k63 and n63; instead of shifting
all remaining key and nonce bits by 1, the bits n63 and k63 are put into the last key block K̂∗18, which
makes the loading phase and key absorption efficient for the software implementation.

Loading regions. Recall the data inputs Dk, k = 0, . . . 9, in the shift register as shown in Figure 3.9.
In order to minimize the hardware overhead, the data inputs Dk are reused for loading: instead of
XORing the Dk with previous stage content, the Dk data is fed directly into the corresponding
stage, and the stages without Dk inputs are loaded by shifting.

There are 10 Dk inputs available to load 37 stages: the LFSR is divided into loading regions. Foe
example, the loading region S 8, . . . , S 0 can be loaded through the data input D0 and has length 9,
hence will require 9 shifts for loading. There are two other loading regions of length 9, namely
region S 27, . . . , S 19 (loaded through D5) and region S 36, . . . , S 28 (loaded through D9). The remain-
ing 10 consecutive stages were split into two regions, one of length 8 and another of length 2: the
region of length 8 are the stages S 16, . . . , S 9, loaded through D3, and the region of length 2 the
stages S 18, S 17, loaded through D4.

WAGEcontains SB inputs to the LFSR, that need to be disconnected during loading. For example,
the loading region S 8, . . . , S 0 has a nonlinear input from the SB. The two WGPs are automatically
disabled by loading through D9 and D4.
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Loading sequence. The five loading regions, annotated with Dk used for loading, are listed below
in a way that reflects their respective lengths. The K̂i and N̂i tuples on the right show the contents
of the stages S j after the loading is complete. The notations on the top denote the 64-bit loading
blocks KNt. They are the formed by lumping together tuples appearing in the same column. For
example, during the first shift we load the 64-bit block KN0 = N̂0||K̂1||07||07||K̂0 and during the last
shift the block KN8 = N̂16||K̂17||K̂∗18||N̂17||K̂16.

KN8 KN7 KN6 KN5 KN4 KN3 KN2 KN1 KN0

S 36,S 35,S 34,S 33,S 32,S 31,S 30,S 29,S 28 ←D9 N̂16, N̂14, N̂12, N̂10, N̂8, N̂6, N̂4, N̂2, N̂0

S 27,S 26,S 25,S 24,S 23,S 22,S 21,S 20,S 19 ←D5 K̂17, K̂15, K̂13, K̂11, K̂9, K̂7, K̂5, K̂3, K̂1

S 18,S 17 ←D4 K̂∗18, N15

S 16,S 15,S 14,S 13,S 12,S 11,S 10,S 9 ←D3 N̂17, N̂13, N̂11, N̂9, N̂7, N̂5, N̂3, N̂1

S 8, S 7, S 6, S 5, S 4, S 3, S 2, S 1, S 0 ←D0 K̂16, K̂14, K̂12, K̂10, K̂8, K̂6, K̂4, K̂2, K̂0

The entire loading process for regions S 18, . . . , S 9 and S 8, . . . , S 0 is shown in Table B.1. The table
shows the shifting of data through the registers in 9 shifts. The first column shows which KNt is
sent to the Dk inputs during the shift t + 1. The stages are shown in the second row of Table B.1,
and the values “-” in the table denote the old, unknown values, which will be overwritten by the
specified K̂i and N̂i blocks by the time the loading is finished. The state of stages S 18, . . . S 0 after
shifting 9 times, i.e. after the loading is finished, is visible from the last row.

KNt shift D4 D3 D0

block count S 18,S 17 S 16,S 15,S 14,S 13,S 12,S 11,S 10,S 9 S 8, S 7, S 6, S 5, S 4,S 3,S 2,S 1,S 0

KN0 1 - - - - - - - - - - K̂0 - - - - - - - -

KN1 2 - - N̂1 - - - - - - - K̂2, K̂0 - - - - - - -

KN2 3 - - N̂3, N̂1 - - - - - - K̂4, K̂2, K̂0 - - - - - -

KN3 4 - - N̂5, N̂3, N̂1 - - - - - K̂6, K̂4, K̂2, K̂0 - - - - -

KN4 5 - - N̂7, N̂5, N̂3, N̂1 - - - - K̂8, K̂6, K̂4, K̂2, K̂0 - - - -

KN5 6 - - N̂9, N̂7, N̂5, N̂3, N̂1 - - - K̂10,K̂8, K̂6, K̂4, K̂2,K̂0 - - -

KN6 7 - - N̂11,N̂9, N̂7, N̂5, N̂3, N̂1 - - K̂12,K̂10,K̂8, K̂6, K̂4,K̂2,K̂0 - -

KN7 8 N̂15 - N̂13,N̂11,N̂9, N̂7, N̂5, N̂3, N̂1 - K̂14,K̂12,K̂10,K̂8, K̂6,K̂4,K̂2,K̂0 -

KN8 9 K̂18 N̂15 N̂17,N̂13,N̂11,N̂9, N̂7, N̂5, N̂3, N̂1 K̂16,K̂14,K̂12,K̂10,K̂8,K̂6,K̂4,K̂2,K̂0

Table B.1: Loading into the shift register through data inputs D4, D3 and D0

Tag extraction regions. The tag is extracted in a similar fashion, from the positions that were
loaded with nonce tuples. For example, the state region S 16, . . . , S 9, which was loaded through
D3, is extracted through the output that belongs to the D1 input. Similarly, the state region S 18, S 17
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is extracted through the output belonging to the D3 input and the region S 36, . . . , S 28 through the
output belonging to the D6 input. The longest tag extraction region is also of length 9. Similar to
KNt for the loading, the 7-bit tuples extracted during shift t + 1 are lumped into a tag-extract block
T Et .

B.2 WAGE paermutation

The finite field F is defined using the primitive polynomial f (x) = x7 + x3 + x2 + x + 1. Field
elements are represented using the polynomial basis PB = {1, ω, . . . , ω6}, f (ω) = 0. For a ∈ F
the conversion to binary and HEX is as follows:

[a]PB = (a0, a1, a2, a3, a4, a5, a6)→ [a]b = (0, a0, a1, a2, a3, a4, a5, a6)→ [a]hex = (h1, h0)

Table B.2 shows some examples of the conversion to HEX.

27 26 25 24 23 22 21 20 161 160

a ∈ F 0 a0 a1 a2 a3 a4 a5 a6 h1 h0

1 0 1 0 0 0 0 0 0 4 0
ω 0 0 1 0 0 0 0 0 2 0

1 + ω 0 1 1 0 0 0 0 0 6 0
1 + ω6 0 1 0 0 0 0 0 1 4 1

Table B.2: Examples of conversion of the field elements to HEX

An Sbox representation of WGP is given in Table B.3 in a row-major order. The 7-bit finite field
elements are represented in HEX as shown in Table B.2. The HEX representation of SB is provided
in Table B.4. The round constants are listed in Table B.5. The interpretation of the round constants
rci

j, where j = 0, 1 and i = 0, . . . , 110, in Table B.5 is as follows:

[rci
j]hex → [rci

j]b = (0, r j,0, r j,1, r j,2, r j,3, r j,4, r j,5, r j,6)→ [r j]PB = (r j,0, r j,1, r j,2, r j,3, r j,4, r j,5, r j,6)
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00 12 0a 4b 66 0c 48 73 79 3e 61 51 01 15 17 0e
7e 33 68 36 42 35 37 5e 53 4c 3f 54 58 6e 56 2a
1d 25 6d 65 5b 71 2f 20 06 18 29 3a 0d 7a 6c 1b
19 43 70 41 49 22 77 60 4f 45 55 02 63 47 75 2d
40 46 7d 5c 7c 59 26 0b 09 03 57 5d 27 78 30 2e
44 52 3b 08 67 2c 05 6b 2b 1a 21 38 07 0f 4a 11
50 6a 28 31 10 4d 5f 72 39 16 5a 13 04 3c 34 1f
76 1e 14 23 1c 32 4e 7b 24 74 7f 3d 69 64 62 6f

Table B.3: Hex representation of WGP-16(Xd)

2e 1c 6d 2b 35 07 7f 3b 28 08 0b 5f 31 11 1b 4d
6e 54 0d 09 1f 45 75 53 6a 5d 61 00 04 78 06 1e
37 6f 2f 49 64 34 7d 19 39 33 43 57 60 62 13 05
77 47 4f 4b 1d 2d 24 48 74 58 25 5e 5a 76 41 42
27 3e 6c 01 2c 3c 4e 1a 21 2a 0a 55 3a 38 18 7e
0c 63 67 56 50 7c 32 7a 68 02 6b 17 7b 59 71 0f
30 10 22 3d 40 69 52 14 36 44 46 03 16 65 66 72
12 0e 29 4a 4c 70 15 26 79 51 23 3f 73 5b 20 5c

Table B.4: Hex representation of SB

Round i Round constant (rci
1, rci

0)
0 - 9 (3f, 7f) (0f, 1f) (03, 07) (40, 01) (10, 20) (04, 08) (41, 02) (30, 60) (0c, 18) (43, 06)
10 - 19 (50, 21) (14, 28) (45, 0a) (71, 62) (3c, 78) (4f, 1e) (13, 27) (44, 09) (51, 22) (34, 68)
20 - 29 (4d, 1a) (66, 73) (5c, 39) (57, 2e) (15, 2b) (65, 4a) (79, 72) (3e, 7c) (2f, 5f) (0b, 17)
30 - 39 (42, 05) (70, 61) (1c, 38) (47, 0e) (11, 23) (24, 48) (49, 12) (32, 64) (6c, 59) (5b, 36)
40 - 49 (56, 2d) (35, 6b) (6d, 5a) (7b, 76) (5e, 3d) (37, 6f) (0d, 1b) (63, 46) (58, 31) (16, 2c)
50 - 59 (25, 4b) (69, 52) (74, 3a) (6e, 5d) (3b, 77) (4e, 1d) (33, 67) (4c, 19) (53, 26) (54, 29)
60 - 69 (55, 2a) (75, 6a) (7d, 7a) (7f, 7e) (1f, 3f) (07, 0f) (01, 03) (20, 40) (08, 10) (02, 04)
70 - 79 (60, 41) (18, 30) (06, 0c) (21, 43) (28, 50) (0a, 14) (62, 45) (78, 71) (1e, 3c) (27, 4f)
80 - 89 (09, 13) (22, 44) (68, 51) (1a, 34) (66, 4d) (39, 73) (2e, 5c) (2b, 57) (4a, 15) (72, 65)
90 - 99 (7c, 79) (5f, 3e) (17, 2f) (05, 0b) (61, 42) (38, 70) (0e, 1c) (23, 47) (48, 11) (12, 24)
100 - 109 (64, 49) (59, 32) (36, 6c) (2d, 5b) (6b, 56) (5a, 35) (76, 6d) (3d, 7b) (6f, 5e) (1b, 37)
110 (46, 0d)

Table B.5: Round constants of WAGE
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Appendix C

The architectural decisions phase

C.1 FSR package: feedback shift registers

Example C.1.1 A simple LFSR over an extension field - continued ↪−→

The TEX writing functions come in two versions: the finite field elements can be represented in a chosen basis or as
powers of generator. Recall Example 6.2.2: first run from GAP code shown in Example 6.2.2(a) can be written
using WriteTEXRunFSR (Table C.1) and WriteTEXRunFSRByGenerator (Table C.2). The two functions produce the
same information using different representation. Generated *.tex files were included directly, with only table labels
set manually. The package FSR offers a lot of other formatting functions, some of them used for captions of Tables
C.1 and C.2. Another helper function is WriteTEXElementTableByGenerator, that writes the elements of the field
as a table in a chosen basis and as power of a chosen generator, see Table C.3.
Furthermore, the created FSR objects can be represented graphically using automatically generated tikz code. The
LFSR is shown in Figure C.1.

step state sequence

num S3 S2 S1 S0 S0

0 0000 0110 1101 1000 1000

1 1011 0000 0110 1101 1101

2 1100 1011 0000 0110 0110

3 0111 1100 1011 0000 0000

4 1100 0111 1100 1011 1011

5 1010 1100 0111 1100 1100

Table C.1: LFSR with feedback y4 + y3 + y + α over F24 with basis B = [βi] = [ 1,α7,α14,α6 ] where α = ω1 +ω2 and
ω is a root of x4 + x3 + 1.

The whole sequence: 1000, 1101, 0110, 0000, 1011, 1100

311



step state sequence

num S3 S2 S1 S0 S0

0 0 α α5 1 1

1 α2 0 α α5 α5

2 α9 α2 0 α α

3 α11 α9 α2 0 0

4 α9 α11 α9 α2 α2

5 α3 α9 α11 α9 α9

Table C.2: LFSR with feedback y4 +y3 +y+α over F24 where generator where α = ω1 +ω2 and ω is a root of x4 + x3 +1.

The whole sequence: 1,α5,α, 0,α2,α9

+ +

×ω0

S3 S2 S1 S0

s0

Figure C.1: LFSR with feedback y4 + y3 + y + α over F24 where generator where α = ω1 + ω2 and ω is a root of
x4 + x3 + 1 and constant(s) ω0 =α.
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elm given basis B

order β0 β1 β2 β3 αi

- 0 0 0 0 0

1 1 0 0 0 1

3 1 1 0 1 α5

3 0 1 0 1 α10

15 0 1 1 0 α

15 1 0 1 1 α2

5 1 0 1 0 α3

15 1 1 1 0 α4

5 0 0 0 1 α6

15 0 1 0 0 α7

15 0 0 1 1 α8

5 1 1 0 0 α9

15 0 1 1 1 α11

5 1 1 1 1 α12

15 1 0 0 1 α13

15 0 0 1 0 α14

Table C.3: Element table for F24 using basis B = [βi] = [ 1,α7,α14,α6 ] with generator α where α = ω1 + ω2 and ω
is a root of x4 + x3 + 1.
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C.2 FFCSA package part 1: additional mathematical back-
ground

This section contains additional definitions and theorems, used for the implementation of FFCSA
package methods. This section is ordered in the same way as the FFCSA methods are introduced
in Tables 7.2 - 7.5.

C.2.1 Cyclotomic coset leaders

Definition C.1 [Definition 3.18 in [14]] A (cyclotomic) coset Cs modulo pm − 1 is defined to be

Cs = {s, sp, . . . , spms−1},

where ms is the smallest positive integer such that s ≡ spms( (mod p)m − 1). The subscript s is
chosen as the smallest integer in Cs, and s is called the coset leader of Cs.

Method CCLeaders returns the set Γp(m) = { all coset leaders in Zpm−1}, obtained by definition C.1.

C.2.2 Polynomial Φ function

Definition C.2 [Definition 2.1.111 in [15]] For f ∈ Fq[x], the finite field polynomial Φ function,
Φq( f ), denotes the number of polynomials over Fq, which are of smaller degree than degree of f
and which are relatively prime to f .

Method PolyPhi( F, f) is implemented using properties of Φq and the existing GAP method
Factors( PolynomialRing( F), f) (Sections 66.10-1 and Ch. 66.15-1 in [34]) to obtain factor-
ization f =

∏
i f ci

i , where fi are irreducible, deg( fi) = ni and ci is the multiplicity of fi. Properties
of Φq used (see page 9 in [12]):

1. if gcd( fi, f j) = 1 then Φq( fi f j) = Φq( fi)Φq( f j)
2. if fi is irreducible of degree ni then Φq( f ci

i ) = qnici − qni(ci−1)

C.2.3 Number of irreducible and primitive polynomials

The number of monic irreducible and primitive polynomials by methods Nr�Poly( F, f), where
F = Fq:
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• NrMonicIrreduciblePoly - the number of monic irreducible polynomials of degree m
over Fq (Theorem 3.1.2 in [15]):

Iq(m) =
1
m

∑
d|m

µ(d)q
m
d (C.1)

where µ is the Möbius function (equation (C.3))
• NrPrimitivePoly - the number of primitive polynomials1 of degree m over Fq (Theorem

4.1.3 in [15]):
1
m

Φ(qm − 1) (C.2)

where Φ denotes the Euler function2

• NrIrreducibleNotPrimitivePoly is computed as the difference of the previous two

Möbius function, Definition 2.1.22 in [15]:

µ(d) =


1 if d = 1,
(−1)k if d = d1d2 . . . dk, where di are distinct primes,
0 otherwise, i.e., ifp2 divides d for some prime p.

(C.3)

Note: using the existing GAP method MoebiusMu (see Section 15.5-3 in [34]).

Euler function, Definition 2.1.43 in [15]:
The number of positive integers e ≤ n, such that gcd(n, e) = 1, is denoted by Φ(n), and is the Euler
function.

C.2.4 Number of normal elements and bases

Methods NrNormalFFE ♠( F), where F = Fqm , are implemented as follows:

• NrNormalFFE - the number of normal elements in Fqm over Fq (Corollary 5.2.8 in [15]):

Φq(xm − 1) (C.4)

where Φ denotes the polynomial Φ function (Section C.2.2)
• NrNormalFFEIgnoreConjugates - the number of normal bases of Fqm over Fq (Corollary

4.14 in [12]):
1
m

Φq(xm − 1) (C.5)

where Φ denotes the polynomial Φ function (Section C.2.2)
1 monic by definition
2 note to be mistaken for the Φ function in Section C.2.2
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C.2.5 Matrices for the matrix-vector multipliers

Let A, B,C ∈F and let BF /K = {α(0), α(1), . . . , α(m−1)} be an arbitrary basis of F /K , where m =

[F : K]. The following are the representation of A w.r.t. basis BF /K , its vector form and notation
for the i-th coordinate of A, 0 ≤ i ≤ m − 1:

A =
m−1∑
i=0

aiα
(i) [A]B = [a0, a1, . . . , am−1] [A]B,(i) = ai

where ai ∈K , i = 0, 1, . . . ,m − 1. If there is no ambiguity, i.e., just one basis, the subscript B can
be removed.

• MatrixMultByConst( B, f f e) returns a m × m matrix M whose columns are [γα(i)], were
f f e = γ

• TransitionMatrix( B1, B2) for B1 = {α(0), α(1), . . . , α(m−1)} and B2 = {β(0), β(1), . . . , β(m−1)},
return a m × m matrix M whose columns are [α(i)]B2, i = 0, . . . ,m − 1

• ReductionMatrixM( f), where deg( f ) = m, returns a matrix w.r.t. polynomial f with
following cases:

– direction “to”: using polynomial basis B = {1, x, . . . , xm−1},

* ReductionMatrix( f) returns m× (m−1) matrix R, whose columns are elements
[xm], [xm=1], . . . [x2m−2]

* ReductionMatrixIR( f)computes matrix R then returns a m × (2m − 1) matrix
of the form I|R - columns of identity matrix I, followed by the columns of R

– direction “downto”: using polynomial basis B = {xm−1, . . . , x, 1},

* ReductionMatrixDownto( f) returns m × (m − 1) matrix R, whose columns are
elements . . . [x2m−2], . . . , [xm=1], [xm]

* ReductionMatrixRI( f) computes matrix R then returns a m × (2m − 1) matrix
of the form R|I - columns of R, followed by the columns of identity matrix I

Matrices for Massey-Omura multiplication

MatrixM( B), MatrixMi(,B, i), where B is a normal basis of length3 m, returns m × m matrices
M and coordinate matrices Mi, i = 0, . . . ,m − 1. The discussion below follows the Slide Set 12
in [42], but can also be found in [190]. Let B = {β, β2, . . . , β2m−1

}. The matrices are computed as
follows:

3 which is also the degree of extension m = [F2m : F2]
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M =


β20+20

β20+21
. . . β20+2m−1

β21+20
β21+21

. . . β21+2m−1

...
...

. . .
...

β2m−1+20
β2m−1+21

. . . β2m−1+2m−1

 (C.6)

Method MatrixM( B) returns the matrix from equation (C.6) in the form where each matrix entry
is a vector of coefficients w.r.t. basis B, i.e., [β2 j+2k

].

Matrix M can be written in terms of smaller matrices, which are obtained for a specific coordinate,
i.e., a specific basis element:

M = M0β + M1β
2 + · · · + Mm−1β

2m−1
(C.7)

Method MatrixMi( B, i) returns the matrix from equation (C.6) in the form where each matrix
entry is the i-th coefficient w.r.t. basis B, i.e., [β2 j+2k

](i).

C.2.6 Conditions for existence of optimal normal bases type I and II

From Theorem 5.3.6 in [15] and Section 8.6 in [20], the following conditions on m and q are used
to determine if an optimal normal basis of type I or II exists for the finite field Fqm/Fq:

1. IsONBI - m + 1 is a prime and q is a primitive element4 modulo m + 1.

2. IsONBII - 2m + 1 is prime and either

• 2 is a primitive element module 2m + 1, or

• 2m + 1 ≡ 3( (mod 4)) and multiplicative order of 2 modulo 2m + 1 is m

C.2.7 Dual bases

Definition C.3 [Definition 5.1.1 in [15]] Two ordered bases of Fqm over Fq B1 = {αi}
m−1
0 and

B2 = {βi}
m−1
0 are dual if for i, j = 0, . . . ,m − 1

TrFqm

Fq
(αiβ j) = δi j =

0 ; i , j
1 ; i = j

An ordered basis is self-dual if it is dual with itself.

Method IsDualBasisPair( B1, B2) follows definition C.3.
4the multiplicative order of q modulo m + 1 is m
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Finding a dual basis to normal basis

Theorem C.1 [Theorem 4.7 in [12]] Let NB = {α, αq, αq2
, . . . , αqm−1

} be a normal basis of Fqm/Fq.
Let

ti = TrFqm

Fq
(ααqi

) and N(x) =

m−1∑
i=0

tixi. (C.8)

Furthermore, let

D(x) =

m−1∑
i=0

dixi, di ∈ Fq, (C.9)

be the unique polynomial such that

N(x)D(x) ≡ 1 mod (xm + 1). (C.10)

Then, the dual basis of N is generated by

β =

m−1∑
i=0

diα
qi
. (C.11)

Conjugates of element β generate a basis DB, which is dual w.r.t. NB and is itself a normal basis:

DB = {β, βq, βq2
, . . . , βqm−1

} (C.12)

Method FindInvCyc( F,N) takes the polynomial N(x) and finds its inverse D(x) w.r.t. cyclotomic
polynomial xm−1, see equation(C.10). For a normal basis B of Fqm/Fq, where F = Fqm , the method
GeneratorOfDBtoNB( F, f f e) performs the following steps:

1. recreate the normal basis B from the normal element f f e = α as {α, αq, . . . , αqm−1
}, where

m = [Fqm : Fq]

2. form the polynomial N(x) from basis B elements as shown in equation (C.8)

3. obtain polynomial D(x) as shown in equation (C.9) using method FindInvCyc( F,N),
where FFqm and N = N(x)

4. return β from equation (C.11), formed from coefficients of D(x)

For a normal basis B of Fqm/Fq, the method GenerateDBtoNB( F, f f e) returns the basis DB in
equation (C.12) by calling GenerateNB( F, GeneratorOfDBtoNB( F, elm)).

318



Finding a dual basis to polynomial basis

Theorem C.2 [Slide set 12 in [42], Theorem 5.1.12 in [15]] Let α be a root of a monic irre-
ducible polynomial f of degree m over Fq, and let PB = {1, α, α2, . . . αm−1} be the corresponding
polynomial basis of Fqm/Fq . The polynomial f can be rewritten as:

f (x) = (x − α)(
m−1∑
i=0

gixi) where gi ∈ Fqm for i = 0, . . . ,m − 1. (C.13)

The dual basis of PB is obtained from coefficients gi and the derivative of f (x) evaluated for α,
that is f ′(α):

DB = {
g0

f ′(α)
, . . . ,

gm−1

f ′(α)
} (C.14)

The method GenerateDBtoPB( F, f f e), where F = Fqm and f f e = α, performs the following
steps:

1. obtain f as minimal polynomial of f f e (using MinimalPolynomial, see Section .66.8-1 in
[34])

2. compute (
∑m−1

i=0 gixi) to obtain the coefficients gi

3. compute f ′(α) (using Derivative and Value, see Sections 66.6-5 and Ch. 66.7-1 in [34])

4. return the dual basis DB from equation (C.14)

GenerateDBtoPBdownto( F, f f e) method proceeds exactly the same, but uses the reverse order
of basis elements in step 4.
� Implementation detail: Arguments F, ffe
The FFCSA package does not create any new GAP objects and because of that, there is no way of checking if a basis
B, used as an argument, is a normal basis or not. Instead, the basis B is recreated for the finite field F from the normal
element f f e. The same goes for the polynomial basis, which has an extra restriction: it can use the “to” or “downto”
direction. �

C.2.8 Optimal normal bases

Method FindONB ♦Generator♣♠( F), where ♦ is listing both type I (ONBI) and type II (ONBII)
optimal normal basis, is currently implemented as exhaustive search. It is a profiling method, that
computes ComplexityOfT for the multiplication table (equation (3.5)) for each normal basis of
F = Fqm/Fq , and compares it to the theoretical minimum 2m − 1, where m is the number of basis
elements. Details on ComplexityOfT can be found in Section 18.1. As a normal basis method, it
suffers from FFCSA package limitations C.2.10(1.), namely the restriction to F ≤ F216. When this
limitation is circumvented, the proper methods based on remaining5 part of the Theorem 5.3.6 in
[15] for finding the ONB generators can be implemented.

5 not listed in SectionC.2.6
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C.2.9 Tower field bases - general case

This Section describes a general case for a tower field construction and tower field basis T FB,
derived from the “per-level” bases PLB, which were introduced in Section 7.3.1 in Chapter 7 for
example F((22)2)2 . The tower field basis as given in equation (7.1), can be generalized to an arbitrary
tower field construction. For m = n1 · · · · · nk and a construction from equation (3.3):

Fp = K0 ⊂ K1 ⊂ · · · ⊂ Kk−1 ⊂ Kk = F(...((pn1 )n2 )... )nk � Fpm

For k extensions, there are k “per-level” bases of the following form: PLB j = {u j,0, . . . , u j,n j−1}

for K j/K j−1, j = 1, . . . , k. Then the elements of the T FBFpm/Fp are m distinct products of the
“per-level” basis elements:

ti1,i2,...,ik =

k∏
j=1

u j,i j , where i j ∈ {0, . . . , n j − 1} (C.15)

Since m = n1 · · · · · nk and, by construction, each “per-level basis” has n j elements, there are n j
possible choices for u j,i j , j = 1, . . . , k, and hence exactly m distinct products ti1,i2,...,ik . It can be
shown that the T FB elements are linearly independent following the proof for Theorem 1.84 in
[11]. Following the construction in a “top-down” fashion, as was show in diagram in Figure 7.2
for the example T FBF((22)2)2/F2 , an element A ∈ Kk/K0 can be expressed in therms of “per-level”
bases PLBk, PLBk−1, . . . , PLB1:

A =

nk−1∑
ik=0

aik uk, ik , aik ∈ Kk−1

=

nk−1∑
ik=0

nk−1−1∑
ik−1=0

aik−1, ik uk−1, ik−1

 uk, ik , aik−1,ik ∈ Kk−2

. . .

=

nk−1∑
ik=0

nk−1−1∑
ik−1=0

. . .
n2−1∑

i2=0

ai2,...ik−1,ik u2, i2

 . . .
 uk−1, ik−1

 uk, ik , ai2,...ik−1,ik ∈ K1

=

nk−1∑
ik=0

nk−1−1∑
ik−1=0

. . .
n2−1∑

i2=0

n1−1∑
i1=0

ai1,i2,...ik−1,ik u1, i1

 u2, i2

 . . .
 uk−1, ik−1

 uk, ik , ai1,i2,...ik−1,ik ∈ K0 (C.16)

It is possible to show that all coefficients aik−1,ik ,...,i1 ∈ K0 must be 0 for A = 0. Since each PLB j
is a basis, it holds that its linear combination is 0 only when the corresponding coefficients are 0.
Then, following the “bottom-up” approach and starting with the innermost bracket:

0 = ai2,...ik−1,ik =

n1−1∑
i1=0

ai1,i2,...ik−1,ik u1, i1 ⇔ ∀ ai1,i2,...ik−1,ik = 0

. . .

0 = A =

nk−1∑
ik=0

aik uk, ik ⇔ ∀ aik = 0
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Removing the brackets from last line in equation (C.16) gives the linear combination of the T FB
elements, namely:

A =

nk−1∑
ik=0

nk−1−1∑
ik−1=0

· · ·

n2−1∑
i2=0

n1−1∑
i1=0

ai1,i2,...ik−1,ik u1, i1 u2, i2 . . . uk−1, ik−1 uk, ik

=

nk−1∑
ik=0

nk−1−1∑
ik−1=0

· · ·

n2−1∑
i2=0

n1−1∑
i1=0

ai1,i2,...ik−1,ik

j=k∏
j=1

u j, i j

=

nk−1∑
ik=0

nk−1−1∑
ik−1=0

· · ·

n2−1∑
i2=0

n1−1∑
i1=0

ai1,i2,...ik−1,ik ti1,i2,...ik−1,ik (C.17)

The last line in equation (C.17) is a linear combination of the T FB basis elements with coefficients
ai1,i2,...ik−1,ik ∈ K0. These are the same coefficients as in equation (C.16), and setting A = 0 again
implies ai1,i2,...ik−1,ik = 0 for all ai1,i2,...ik−1,ik , hence m elements ti1,i2,...ik−1,ik are linearly independent and
form the basis T FBFpm/Fp .

C.2.10 FFCSA package limitations

1. for finite fields F ≤ F216 , GAP is using Zech’s logarithm representation of field elements (see
IsFFE and Z Sections 59.1-1 and 59.1-2 in [34]), for larger fields polynomial representation
is used. The existing GAP method Conjugates is using IsFFE, which affects the normal
basis methods implemented in FFCSA package

2. GAP uses a set of precomputed Conway polynomials up to m = 409, however, some poly-
nomials are missing in between, e.g., m=128. Some methods in the automation frame-
work rely on these polynomials, and for the missing m a warning is displayed - these
cases were skipped in all examples. A list of precomputed polynomials is available at
http://www.math.rwth-aachen.de/~Frank.Luebeck/data/ConwayPol/CP2.html
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C.3 FFCSA package part 2: additional examples

Example C.3.1 F(24)4 tower field basis using a mixed basis ↪−→

The “mixed basis” method allows to choose a different type of basis at each level. Example C.3.1 shows a normal
basis for the first level and a polynomial basis with direction “downto” for the second level of extension. This infor-
mation was passed on to the FFCSA method with an instruction list following the edpl:

GenerateTFBfromEDPLwithMB( edpl, [[”NB”, ”to”], [”PB”, ”downto”]]).

Then both individual bases are shown, namely B1 = NBF24 /F2 and B2 = PBF(24)4 /F24 . Last, a manual check is comparing
the obtained TFB1 basis elements with the products of B1 and B2 basis elements.

Example C.3.1

gap> K := GF(2);; listall := FindEDPLAllfromEDL([4, 4]);;
gap> f1 := listall[1][2]; f2 := listall[1][14097];;
gap> F1 := FieldExtension(K, f1);; lambda := RootOfDefiningPolynomial(F1);;
gap> F2 := FieldExtension(F1, f2);; mu := RootOfDefiningPolynomial(F2);;
gap> edpl := [f1, f2];
[ x^4+x^3+x^2+x+Z(2)^0, x^4+Z(2^4)^7*x^2+Z(2^2)*x+Z(2)^0 ]
gap> TFB1 := GenerateTFBfromEDPLwithMB(edpl, [["NB", "to"], ["PB", "downto"]]);
Basis( GF(2^16), [ Z(2^16)^26922, Z(2^16)^40029, Z(2^16)^708, Z(2^16)^53136, Z(2^16)^
22317, Z(2^16)^35424, Z(2^16)^61638, Z(2^16)^48531, Z(2^16)^17712, Z(2^16)^30819,
Z(2^16)^57033, Z(2^16)^43926, Z(2^4)^3, Z(2^4)^6, Z(2^4)^12, Z(2^4)^9 ] )
gap> B1 := GenerateNB(F1, lambda);
Basis( GF(2^4), [ Z(2^4)^3, Z(2^4)^6, Z(2^4)^12, Z(2^4)^9 ] )
gap> B2 := GeneratePBdownto(F2, mu);
Basis( AsField( GF(2^4), GF(2^16) ), [ Z(2^16)^13815, Z(2^16)^9210, Z(2^16)^4605,
Z(2)^0 ] )
gap> for i in [1..4] do
> for j in [1..4] do
> Print(TFB1[4*(i-1)+j] = B2[i]*B1[j], "\t");
> od;
> od;
true true true true true true true true true true true

true true true true true

In Example C.3.1, the FindEDPLAllfromEDL method found 16320 polynomials of degree 4, that can be used as EDP
f2 for construction of F(24)4/F24 . Number of candidates for F(((22)2)2)2/F((22)2)2 is even bigger, at 32640 monic irreducible
polynomials of degree 2. Number of candidates can be found using the Nr�Poly( F,m) methods (Table 7.2). ↪−→
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Example C.3.2 Multiplication expressions for a polynomial basis - two-step classic multiplica-
tion ↪−→

This example shows in more detail how the two-step classic method was used to obtain the ANF expressions for the
coordinates of the product. It is a continuation of Example 7.4.1(b) in Section 7.4. The irreducible polynomial used
in this example is f (x) = x4 + x + 1 with root α, yielding PB = {1, α, α2, α3}. Expressions used for reduction are
α4 = α + 1, α5 = α2 = α and α6 = α3 + α2.

The two-step classic multiplication is a well known, school-book multiplication method, and can be found in numerous
sources, which is why further details are omitted. FFA_mult_2stepClassic( f , avec, bvec, “to”) calls method
FFA_mult_convolution( vec1, vec2), to obtain dexpr, followed by ReductionMatrixExpressionM( f , dexpr).
Convolution, produces a vector of length 2m − 1, which is why variables d_i are created by ChooseFieldElmsM,
listed in Table 7.5. Note also that FFA_mult_2stepClassic call needs the direction:

• direction “to”: expressions for the multiplication are obtained by [I|R] · [d0, . . . , d2m−2]T

• direction “downto”: expressions for the multiplication are obtained by [R|I] · [d2m−2, . . . , d0]T

where R is the m×(m−1) reduction matrix, and I the m×m identity matrix. The two reduction matrices are computed by
ReductionMatrixM( f) method listed in Table 7.2. Both ReductionMatrixExpression calls in Example C.3.2
use the ReductionMatrixIR call; the matrix produced this way is listed last.

Example C.3.2

gap> dexpr := FFA_mult_convolution(avec, bvec);;
gap> for i in dexpr do Display(i); od;
a_0*b_0
a_0*b_1+a_1*b_0
a_0*b_2+a_1*b_1+a_2*b_0
a_0*b_3+a_1*b_2+a_2*b_1+a_3*b_0
a_1*b_3+a_2*b_2+a_3*b_1
a_2*b_3+a_3*b_2
a_3*b_3
gap> mult3 :=ReductionMatrixExpression(f, dexpr);;
gap> for i in mult3 do Display(i); od;
a_0*b_0+a_1*b_3+a_2*b_2+a_3*b_1
a_0*b_1+a_1*b_0+a_1*b_3+a_2*b_2+a_2*b_3+a_3*b_1+a_3*b_2
a_0*b_2+a_1*b_1+a_2*b_0+a_2*b_3+a_3*b_2+a_3*b_3
a_0*b_3+a_1*b_2+a_2*b_1+a_3*b_0+a_3*b_3
gap> mult3 = mult2sc;
true
gap> R := ReductionMatrixExpression(f, dvec);;
gap> for i in R do Display(i); od;
d_0+d_4
d_1+d_4+d_5
d_2+d_5+d_6
d_3+d_6
gap> IR := ReductionMatrixIR(f);;
gap> for i in IR do Display(VecToString(i)); od;
1000100
0100110
0010011
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0001001
gap> mult2sc := FFA_mult_2stepClassic(f, avec, bvec, "to");;
gap> for i in mult2sc do Display(i); od;
a_0*b_0+a_1*b_3+a_2*b_2+a_3*b_1
a_0*b_1+a_1*b_0+a_1*b_3+a_2*b_2+a_2*b_3+a_3*b_1+a_3*b_2
a_0*b_2+a_1*b_1+a_2*b_0+a_2*b_3+a_3*b_2+a_3*b_3
a_0*b_3+a_1*b_2+a_2*b_1+a_3*b_0+a_3*b_3
gap> mult = mult2sc;
true

↪−→

Example C.3.3 Squaring expressions for a polynomial basis - matrix U method ↪−→

The following simple example shows how to compute the squaring expressions for a polynomial basis. The irreducible
polynomial used in this example is f (x) = x4 + x + 1 with root α, yielding PB = {1, α, α2, α3}. The expressions for the
squaring are obtained using the squaring method FFA_sq_matrixU (see Table 7.5 in Section 7 and Section 7.4).

Example C.3.3

gap> K := GF(2);; x := X(K, "x");; f := x^4+x+1;;
gap> F := FieldExtension(K, f);;
gap> PB := GeneratePB(F, RootOfDefiningPolynomial(F));;
gap> ChooseFieldElms(F);

variables
[ "a_0", "a_1", "a_2", "a_3" ]
[ "b_0", "b_1", "b_2", "b_3" ]
[ "d_0", "d_1", "d_2", "d_3", "d_4", "d_5", "d_6" ]
gap> sq := FFA_sq_matrixU(PB, avec);;
gap> for i in sq do Display(i); od;
a_0+a_2
a_2
a_1+a_3
a_3

↪−→
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Appendix D

The automated design entry and
implementation phase

D.1 The FSRtoVHDL package

Example D.1.1 Grain – top-level datapath: full example ↪−→

This example shows the package dp_pkg.vhd in VHDL Example D.1.1(a) with type definitions for the top-level data
inputs and outputs. Next are the top-level module entity Grain_dp.vhd in VHDL Example D.1.1(b) and architecture
Grain_dp_arch.vhd in VHDL Example D.1.1(c) .

VHDL Example D.1.1(a)
------------------------------------------
--- generated by GAPtoVHDL package
--- using FSRtoVHDL package
--- dp_pkg
--- test for Grain
------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;
use work.field_pkg.all;
use work.fsr_pkg.all;

package dp_pkg is

-- top inputs
subtype top_in_1 is ffe;
constant i_data_1_zero : ffe := ffe_zero;
subtype top_in_2 is ffe;
constant i_data_2_zero : ffe := ffe_zero;

-- top outputs
subtype top_out_1 is ffe;
constant o_data_1_zero : ffe := ffe_zero;

end package;
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VHDL Example D.1.1(b)
library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;
use work.field_pkg.all;
use work.fsr_pkg.all;
use work.dp_pkg.all;

entity Grain_dp is

port(
-- external data inputs
i_data_1: in top_in_1;
i_data_2: in top_in_2;
-- control signals
clk: in std_logic; -- clock input
fsr_1_fsr_en: in std_logic; -- fsr enable signal
fsr_1_load: in std_logic; -- load control signal
fsr_1_c_ext: in std_logic; -- init control signal
fsr_2_fsr_en: in std_logic; -- fsr enable signal
fsr_2_load: in std_logic; -- load control signal
fsr_2_c_ext: in std_logic; -- init control signal
-- 2/1 HW mux control signals
mux_1_cntl: in std_logic;
mux_2_cntl: in std_logic;
-- external data outputs
o_data_1: out top_out_1

);end entity;

VHDL Example D.1.1(c)

--- Grain_dp_arch architecture
--- test for Grain
------------------------------------------

library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;
use work.field_pkg.all;
use work.fsr_pkg.all;
use work.dp_pkg.all;

architecture main of Grain_dp is
signal o_data_1_mux_1: top_out_1;
signal o_data_1_mux_1_src1: top_out_1;
signal o_data_1_mux_1_src2: top_out_1;
signal fsr_1_i_fsr: fsr_1_input;
signal fsr_1_i_ext: fsr_1_ext;
signal fsr_2_i_fsr: fsr_2_input;
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signal fsr_2_i_ext_mux_1: fsr_2_ext;
signal fsr_2_i_ext_mux_1_src1: fsr_2_ext;
signal fsr_2_i_ext_mux_1_src2: fsr_2_ext;
signal fsr_2_i_ext: fsr_2_ext;
signal fsr_3_i_fsr: fsr_3_input;
signal fsr_3_i_ext: fsr_3_ext;
signal fsr_4_i_fsr: fsr_4_input;
signal fsr_4_i_ext: fsr_4_ext;
signal fsr_1_o_fsr: fsr_1_output;
signal fsr_2_o_fsr: fsr_2_output;
signal fsr_3_o_fsr: fsr_3_output;
signal fsr_4_o_fsr: fsr_4_output;

begin

--submodules
m_fsr_1: entity work.fsr_1(main) port map (fsr_1_i_fsr, fsr_1_i_ext, clk,

fsr_1_fsr_en, fsr_1_load, fsr_1_c_ext, fsr_1_o_fsr);
m_fsr_2: entity work.fsr_2(main) port map (fsr_2_i_fsr, fsr_2_i_ext, clk,

fsr_2_fsr_en, fsr_2_load, fsr_2_c_ext, fsr_2_o_fsr);
m_fsr_3: entity work.fsr_3(main) port map (fsr_3_i_fsr, fsr_3_i_ext, fsr_3_o_fsr);
m_fsr_4: entity work.fsr_4(main) port map (fsr_4_i_fsr, fsr_4_i_ext, fsr_4_o_fsr);

--assignments
o_data_1 <= o_data_1_mux_1;
o_data_1_mux_1 <= o_data_1_mux_1_src1 when mux_1_cntl = ’1’ else o_data_1_mux_1_src2;
o_data_1_mux_1_src1 <= fsr_4_o_fsr;
o_data_1_mux_1_src2 <= o_data_1_zero;
fsr_1_i_fsr <= i_data_1;
fsr_1_i_ext <= fsr_3_o_fsr;
fsr_2_i_fsr <= i_data_2;
fsr_2_i_ext <= fsr_2_i_ext_mux_1;
fsr_2_i_ext_mux_1 <= fsr_2_i_ext_mux_1_src1 when mux_2_cntl = ’1’ else

fsr_2_i_ext_mux_1_src2;
fsr_2_i_ext_mux_1_src1 <= fsr_1_o_fsr(0);
fsr_2_i_ext_mux_1_src2 <= fsr_2_ext_zero;
fsr_3_i_fsr(0) <= fsr_1_o_fsr(1);
fsr_3_i_fsr(1) <= fsr_1_o_fsr(2);
fsr_3_i_fsr(2) <= fsr_1_o_fsr(3);
fsr_3_i_fsr(3) <= fsr_1_o_fsr(4);
fsr_3_i_fsr(4) <= fsr_2_o_fsr(1);
fsr_3_i_ext <= fsr_2_o_fsr(0);
fsr_4_i_fsr <= fsr_4_o_fsr;
fsr_4_i_ext <= fsr_1_o_fsr(0);

end architecture;

↪−→
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D.2 The CIRCUIT package part 1

Example D.2.1 Using different tower field constructions - continued ↪−→

The diagram in Figure 13.3 shows how different constructions of the finite field F((22)2)2 . The first and the last level of
the tower are constructed in the same manner, using the same (only) irreducible polynomial and the same basis for the
representation of the elements. The middle level, however, is constructed in two different ways, yielding two different
constructions. The construction on the left branch of the diagram in Figure 13.3 is using the extension field defining
polynomial f2,1(x) = x2 + λx + 1, and the construction on the right branch of the extension field defining polynomial
f2,2(x) = x2 + λx + λ. The two polynomials have different roots µ1 , µ2, where f2,1(µ1) = 0 and f2,2(µ2) = 0. For
clarity, all the constants are given w.r.t. a reference field defining polynomial RDP, listed in Table D.1.

Reference Reference field defining Root of Constants w.r.t.
finite field polynomial - RDP pi(x) RDP pi(x) root of RDP

F28 p3(x) = x8 + x4 + x3 + x2 + 1 p3(ν) = 0 ν3 = ν15

F24 p2(x) = x4 + x + 1 p2(µ) = 0 µ1 = µ6, µ2 = µ7

F22 p1(x) = x2 + x + 1 p1(λ) = 0

Table D.1: Reference polynomials and their roots

The distinction between the left and the right branch is very important: the submodules for computation using basis
B1 will differ from the submodules for computation using B2. The UnderlyingField attribute stores the information
about the degree of extension for each level, e.g., AsField( AsField( GF(2ˆ 2), GF(2ˆ 4) ), GF(2ˆ 8) ), but
not about the “per-level” bases used. This information is captured by SubSGDtower.

The GAP Example D.2.1 shows the two tower field constructions from diagram in Figure 13.3. As the counter r
for the signal domains used in this example will change significantly when this example will be used in the future,
to avoid confusion, the subscripts r are labelled with letters, rather than numbers, e.g., S1 → S , S2 → SA,
. . . Hence the fields, EDPs and bases are distinguished with an alphabet letter: A,B,C,D,E. Same letters are used for
the corresponding bases and SignalDomain objects sgd:

The left branch: F2
f1(x)
−−−→ F22

f2,1(x)
−−−−→ F(22)2

f3(x)
−−−→ F((22)2)2 ⇒ K

fa
−−→ FA

fb
−−→ FB

fd
−−→ FD

The right branch: F2
f1(x)
−−−→ F22

f2,2(x)
−−−−→ F(22)2

f3(x)
−−−→ F((22)2)2 ⇒ K

fa
−−→ FA

fc
−−→ FC

fe
−−→ FE

The top-level signal domains sgdD and sgdE are compared at the end of the example: they only differ in the third
entry of their SubSGDtower attributes, all other attributes, including the UnderlyingField attribute, are the same.
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SD︷ ︸︸ ︷
F((22)2)2 BF

((22)2)2
/F

(22)2
={1,ν3}

SE︷ ︸︸ ︷
F((22)2)2

f3(x)=x2+µ3 x+1
f3(ν3)=0

B1={1,µ1}

SB︷︸︸︷
F(22)2

f3

6

SC︷︸︸︷
F(22)2

f3

6

B2={1,µ2}

f2,1(x)=x2+λx+1
f2,1(µ1)=0

f2,2(x)=x2+λx+λ

f2,2(µ2)=0

SA︷︸︸︷
F22

f 2,2

-
�

f2,1

S︷︸︸︷
F2

f1=p1

6

Figure D.1: Two different tower field constructions
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Example D.2.1

gap> K := GF(2);; x := X(K, "x");;
gap> sgd := SignalDomain(K);;
warning: SubSGDtower is -1
gap> fa := x^2+x+Z(2)^0;; FA := FieldExtension(K, fa);;
gap> BA := GeneratePB(FA, RootOfDefiningPolynomial(FA));;
gap> sgdA := SignalDomain(sgd, BA, "to");;
gap> fb := x^2+Z(2^2)*x+Z(2)^0;; FB := FieldExtension(FA, fb);;
gap> BB := GeneratePB(FB, RootOfDefiningPolynomial(FB));;
gap> sgdB := SignalDomain(sgdA, BB, "to");;
gap> fc := x^2+Z(2^2)*x+Z(2^2);; FC := FieldExtension(FA, fc);;
gap> BC := GeneratePB(FC, RootOfDefiningPolynomial(FC));;
gap> sgdC := SignalDomain(sgdA, BC, "to");;
gap> fd := x^2+Z(2^4)^3*x+Z(2)^0;; FD := FieldExtension(FB, fd);;
gap> BD := GeneratePB(FD, RootOfDefiningPolynomial(FD));;
gap> sgdD := SignalDomain(sgdB, BD, "to");;
gap> fe := x^2+Z(2^4)^3*x+Z(2)^0;; FE := FieldExtension(FC, fe);;
gap> BE := GeneratePB(FE, RootOfDefiningPolynomial(FE));;
gap> sgdE := SignalDomain(sgdC, BE, "to");;
gap> sgdD;
< signal domain AsField( AsField( GF(2^2), GF(2^4) ), GF(2^8) ) with basis [ Z(2)^0,
Z(2^8)^15 ] and direction to of length 2 >
gap> sgdE;
< signal domain AsField( AsField( GF(2^2), GF(2^4) ), GF(2^8) ) with basis [ Z(2)^0,
Z(2^8)^15 ] and direction to of length 2 >
gap> for i in SubSGDtower(sgdD) do Print(i, "\n"); od;
signal domain GF(2) of length 1
signal domain GF(2^2) with basis [ Z(2)^0, Z(2^2) ] and direction to of length 2
signal domain AsField( GF(2^2), GF(2^4) ) with basis [ Z(2)^0, Z(2^4)^6 ] and
direction to of length 2
gap> for i in SubSGDtower(sgdE) do Print(i, "\n"); od;
signal domain GF(2) of length 1
signal domain GF(2^2) with basis [ Z(2)^0, Z(2^2) ] and direction to of length 2
signal domain AsField( GF(2^2), GF(2^4) ) with basis [ Z(2)^0, Z(2^4)^7 ] and
direction to of length 2
gap> sgdD = sgdE;
false
gap> UnderlyingField(sgdD) = UnderlyingField(sgdE);
true
gap> UnderlyingBasis(sgdD) = UnderlyingBasis(sgdE);
true
gap> Length(sgdD) = Length(sgdE); BasisDirection(sgdD) = BasisDirection(sgdE);
true
true

↪−→
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Example D.2.2 SignalDomain and SIGNAL objects ↪−→

This example specifies two signal domains and and three signals:

• signal domain S1 sgd1 for F2, for F1 elements sig1 and sig3

• signal domain S2 sgd2 for F24 , for “just vector” V 5
2 labelled sig2

The signal domain sgd1 belongs to the prime field F2, hence has -1 for SubSGDtower (see warning). The signal
domain sgd2 stores only sgd1 as its SubSGDtower, unlike sgdB, sgdC, sgdD and sgdE shown in Example 13.2.1.
sig2 represents a vector of length 5 with coordinates from S2. It has no interpretation basis (“NA”) but it needs a
direction (for VHDL). For manipulation in GAP the signal domain sgd2 is sufficient. For the actual implementation,
a signal V2, for the representation of S2 as a vector space, would be added by the “list” methods from Table 13.5 (see
note [4]). Rest of Example D.2.2 shows the SIGNAL types and their comparisons. All three signals also have labels.

Example D.2.2

gap> K := GF(2);; x := X(K,"x");; f := x^4 + x^3 + 1;; F := FieldExtension(K, f);;
gap> w := RootOfDefiningPolynomial(F);; NB := GenerateNB(F, w);;
gap> sgd1 := SignalDomain(K);; sig1 := SIGNAL(sgd1, "sig1");
warning: SubSGDtower is -1
< SIGNAL with label "sig1" of length 1 over GF(2) >
gap> sgd2 := SignalDomain(sgd1, NB, "to");;
gap> SubSGDtower(sgd1); SubSGDtower(sgd2);
-1
[ < signal domain GF(2) of length 1 > ]
gap> sig2 := SIGNAL(sgd2, "sig2", 5);
< SIGNAL with label "sig2" of length 5 over GF(2^4) with direction to >
gap> UnderlyingField(UnderlyingSignalDomain(sig2));
GF(2^4)
gap> UnderlyingSignalDomain(sig2);
< signal domain GF(2^4) with basis [ Z(2^4)^7, Z(2^4)^14, Z(2^4)^13, Z(2^4)^11 ]
and direction to of length 4 >
gap> WhichBasis(sig2); WhichBasisDir(sig2); Length(sig2);
"NA"
"to"
5
gap> SameSIGNALType(sig1, sig2);
false
gap> sig3 := SGDToSIGNAL(sgd1); SameSIGNALType(sig1, sig3);
< SIGNAL with label "" of length 1 over GF(2) >
true
gap> ExtractSIGNALType(sig1);
[ < signal domain GF(2) of length 1 >, "NA", "NA", 1 ]
gap> ExtractSIGNALType(sig2);
[ < signal domain GF(2^4) with basis [ Z(2^4)^7, Z(2^4)^14, Z(2^4)^13, Z(2^4)^11 ]
and direction to of length 4 >, "NA", "to", 5 ]
gap> ExtractSIGNALType(sig3);
[ < signal domain GF(2) of length 1 >, "NA", "NA", 1 ]

↪−→
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Example D.2.3 SignalPkg example for F24
↪−→

This is the first example of signal package objects, showing simple entry methods and a detailed print method called
PrintAllDownto. It demonstrates the DefaultSignalPkg(m) call, which builds the finite field F2m using the (GAP
pre-stored) irreducible polynomial f (x) = x4 + x + 1 and polynomial basis {1, ω, ω2, ω3}, where ω is the root the
defining polynomial, i.e., f (ω) = 0. In the GAP code Example D.2.3, ω is Z(2ˆ 4). Default direction used for
all array types is “to”. The highest field identifier Fid=4 signal F 1

2 /F 1
1 represents the elements of the finite field

F24 . Its vector equivalent is signal V 4
1 /V1 with Fid=2, see FieldIDToVectorID. Note that for the four signals in the

defaultPkg, there are only two signal domains, corresponding to the two finite fields, F2 and F24 .

Example D.2.3

gap> m := 4;; defaultPkg := DefaultSignalPkg(m);;
warning: SubSGDtower is -1
warning: SubSGDtower is -1
gap> PrintDownto(defaultPkg);

-------------------------
SignalPkg with
4: elements in GF(2^4) with direction to basis [ Z(2)^0, Z(2^4), Z(2^4)^2,

Z(2^4)^3 ]
3: vectors over GF(2) of length 7 and direction to
2: vectors over GF(2) of length 4 and direction to - interpretation basis

[ Z(2)^0, Z(2^4), Z(2^4)^2, Z(2^4)^3 ]
1: elements in GF(2)
-------------------------
gap> FieldIDToVectorID(defaultPkg, 4); FieldIDToSubID(defaultPkg, 4);
2
1
gap> for i in SignalDomainList(defaultPkg) do Print(i,"\n"); od;
signal domain GF(2) of length 1
signal domain GF(2^4) with basis [ Z(2)^0, Z(2^4), Z(2^4)^2, Z(2^4)^3 ] and
direction to of length 4

↪−→
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Example D.2.4 SignalPkg example for different tower field constructions of F((22)2)2
↪−→

This example shows a signal package containing both branches of the diagram in Figure D.1; it is a continuation of
example Example 13.3.1. For clarity, values of the roots and bases are given in GAP native form in Table 13.10.

F2
f1(x)
−−−→ F22

f2,1(x)
−−−−→ F(22)2

f3(x)
−−−→ F((22)2)2 ⇒ K

fa
−−→ FA

fb
−−→ FB

fd
−−→ FD

Finite field EDP Polynomial basis Comments and GAP example labels
Fq2 fi(x) BFq2 /Fq = {1, ρ} fi(ρ) = 0 field polynomial basis

F((22)2)2 f3(x) BF((22)2)2 /F(22)2
= {1, ν3} f3(ν3) = 0 FD fd BD

F(22)2 f2,1(x) B1 = {1, µ1} f2,1(µ1) = 0 FB fb BB

F22 f1(x) BF22 /F2 = {1, λ} f1(λ) = 0 FA fa BA

Table D.2: Tower construction of F((22)2)2 - left branch of diagram in Figure D.1 (see Example 13.3.1)

F2
f1(x)
−−−→ F22

f2,2(x)
−−−−→ F(22)2

f3(x)
−−−→ F((22)2)2 ⇒ K

fa
−−→ FA

fc
−−→ FC

fe
−−→ FE

Finite field EDP Polynomial basis Comments and GAP example labels
Fq2 fi(x) BFq2 /Fq = {1, ρ} fi(ρ) = 0 field polynomial basis

F((22)2)2 f3(x) BF((22)2)2 /F(22)2
= {1, ν3} f3(ν3) = 0 FE fe BE

F(22)2 f2,2(x) B2 = {1, µ2} f2,2(µ2) = 0 FC fc BC

F22 f1(x) BF22 /F2 = {1, λ} f1(λ) = 0 FA fa BA

Table D.3: Tower construction of F((22)2)2 - right branch of diagram in Figure D.1

ν3 = Z(2ˆ 8)ˆ 15 BD := [ Z(2)ˆ 0, Z(2ˆ 8)ˆ 15 ]

µ1 = Z(2ˆ 4)ˆ 6 BB := [ Z(2)ˆ 0, Z(2ˆ 4)ˆ 6 ]

λ = Z(2ˆ 2) BA := [ Z(2)ˆ 0, Z(2ˆ 2) ]

T FB1, F28 /F2 = [ Z(2)ˆ 0, Z(2ˆ 2), Z(2ˆ 4)ˆ 6, Z(2ˆ 4)ˆ 11,

Z(2ˆ 8)ˆ 15, Z(2ˆ 8)ˆ 100, Z(2ˆ 8)ˆ 117, Z(2ˆ 8)ˆ 202 ]

T FB1, F24 /F2 = [ Z(2)ˆ 0, Z(2ˆ 2), Z(2ˆ 4)ˆ 6, Z(2ˆ 4)ˆ 11 ]

Table D.4: Tower construction of F((22)2)2 - roots and bases in GAP native representation for the left branch of diagram
in Figure D.1 (see Example 13.3.1)

ν3 = Z(2ˆ 8)ˆ 15 BE := [ Z(2)ˆ 0, Z(2ˆ 8)ˆ 15 ]

µ2 = Z(2ˆ 4)ˆ 7 BC := [ Z(2)ˆ 0, Z(2ˆ 4)ˆ 7 ]

λ = Z(2ˆ 2) BA := [ Z(2)ˆ 0, Z(2ˆ 2) ]

T FB2, F28 /F2 = [ Z(2)ˆ 0, Z(2ˆ 2), Z(2ˆ 4)ˆ 7, Z(2ˆ 4)ˆ 12,

Z(2ˆ 8)ˆ 15, Z(2ˆ 8)ˆ 100, Z(2ˆ 8)ˆ 134, Z(2ˆ 8)ˆ 219 ]

T FB2, F24 /F2 = [ Z(2)ˆ 0, Z(2ˆ 2), Z(2ˆ 4)ˆ 7, Z(2ˆ 4)ˆ 12 ]

Table D.5: Tower construction of F((22)2)2 - roots and bases in GAP native representation for the right branch of diagram
in Figure D.1
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Example 13.3.2

gap> Blist := [BA, BC, BE];;
gap> AddTowerFieldToSignalPkg(defaultPkg, Blist, ["to", "to", "to"]);;
gap> PrintAllDownto(defaultPkg);

-------------------------
SignalPkg with
19: elements in AsField( AsField( GF(2^2), GF(2^4) ), GF(2^8) ) with direction

to basis [ Z(2)^0, Z(2^8)^15 ]
18: elements in GF(2^8) with direction to basis [ Z(2)^0, Z(2^2), Z(2^4)^7,

Z(2^4)^12, Z(2^8)^15, Z(2^8)^100, Z(2^8)^134,
Z(2^8)^219 ]

17: elements in AsField( AsField( GF(2^2), GF(2^4) ), GF(2^8) ) with direction
to basis [ Z(2)^0, Z(2^8)^15 ]

16: elements in GF(2^8) with direction to basis [ Z(2)^0, Z(2^2), Z(2^4)^6,
Z(2^4)^11, Z(2^8)^15, Z(2^8)^100, Z(2^8)^117,
Z(2^8)^202 ]

15: vectors over AsField( GF(2^2), GF(2^4) ) of length 2 and direction to -
interpretation basis [ Z(2)^0, Z(2^8)^15 ]

14: elements in AsField( GF(2^2), GF(2^4) ) with direction to basis
[ Z(2)^0, Z(2^4)^7 ]

13: vectors over AsField( GF(2^2), GF(2^4) ) of length 2 and direction to -
interpretation basis [ Z(2)^0, Z(2^8)^15 ]

12: elements in GF(2^4) with direction to basis [ Z(2)^0, Z(2^2), Z(2^4)^7,
Z(2^4)^12 ]

11: elements in AsField( GF(2^2), GF(2^4) ) with direction to basis
[ Z(2)^0, Z(2^4)^6 ]

10: elements in GF(2^4) with direction to basis [ Z(2)^0, Z(2^2), Z(2^4)^6,
Z(2^4)^11 ]

9: vectors over GF(2^2) of length 2 and direction to - interpretation basis
[ Z(2)^0, Z(2^4)^7 ]

8: vectors over GF(2^2) of length 2 and direction to - interpretation basis
[ Z(2)^0, Z(2^4)^6 ]

7: elements in GF(2^2) with direction to basis [ Z(2)^0, Z(2^2) ]
6: vectors over GF(2) of length 8 and direction to - interpretation basis

[ Z(2)^0, Z(2^2), Z(2^4)^7, Z(2^4)^12, Z(2^8)^15,
Z(2^8)^100, Z(2^8)^134, Z(2^8)^219 ]

5: vectors over GF(2) of length 8 and direction to - interpretation basis
[ Z(2)^0, Z(2^2), Z(2^4)^6, Z(2^4)^11, Z(2^8)^15,
Z(2^8)^100, Z(2^8)^117, Z(2^8)^202 ]

4: vectors over GF(2) of length 4 and direction to - interpretation basis
[ Z(2)^0, Z(2^2), Z(2^4)^7, Z(2^4)^12 ]

3: vectors over GF(2) of length 4 and direction to - interpretation basis
[ Z(2)^0, Z(2^2), Z(2^4)^6, Z(2^4)^11 ]

2: vectors over GF(2) of length 2 and direction to - interpretation basis
[ Z(2)^0, Z(2^2) ]

1: elements in GF(2)
-------------------------
DETAILS
signal domains:
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10: signal domain AsField( AsField( GF(2^2), GF(2^4) ), GF(2^8) ) with basis
[ Z(2)^0, Z(2^8)^15 ] and direction to of length 2

9: signal domain AsField( GF(2^2), GF(2^4) ) with basis [ Z(2)^0, Z(2^4)^7 ] and
direction to of length 2

8: signal domain GF(2^8) with basis [ Z(2)^0, Z(2^2), Z(2^4)^7, Z(2^4)^12, Z(2^8)^15,
Z(2^8)^100, Z(2^8)^134, Z(2^8)^219 ] and direction to of length 8

7: signal domain GF(2^4) with basis [ Z(2)^0, Z(2^2), Z(2^4)^7, Z(2^4)^12 ] and
direction to of length 4

6: signal domain AsField( AsField( GF(2^2), GF(2^4) ), GF(2^8) ) with basis [ Z(2)^0,
Z(2^8)^15 ] and direction to of length 2

5: signal domain AsField( GF(2^2), GF(2^4) ) with basis [ Z(2)^0, Z(2^4)^6 ] and
direction to of length 2

4: signal domain GF(2^8) with basis [ Z(2)^0, Z(2^2), Z(2^4)^6, Z(2^4)^11, Z(2^8)^15,
Z(2^8)^100, Z(2^8)^117, Z(2^8)^202 ] and direction to of length 8

3: signal domain GF(2^4) with basis [ Z(2)^0, Z(2^2), Z(2^4)^6, Z(2^4)^11 ] and
direction to of length 4

2: signal domain GF(2^2) with basis [ Z(2)^0, Z(2^2) ] and direction to of length 2
1: signal domain GF(2) of length 1

signals:
19: SIGNAL with label "" of length 1 over AsField( AsField( GF(2^2), GF(2^4) ),

GF(2^8) )
18: SIGNAL with label "" of length 1 over GF(2^8)
17: SIGNAL with label "" of length 1 over AsField( AsField( GF(2^2), GF(2^4) ),

GF(2^8) )
16: SIGNAL with label "" of length 1 over GF(2^8)
15: SIGNAL with label "" of length 2 over AsField( GF(2^2), GF(2^4) ) with direction

to with interpretation basis [ Z(2)^0, Z(2^8)^15 ]
14: SIGNAL with label "" of length 1 over AsField( GF(2^2), GF(2^4) )
13: SIGNAL with label "" of length 2 over AsField( GF(2^2), GF(2^4) ) with direction

to with interpretation basis [ Z(2)^0, Z(2^8)^15 ]
12: SIGNAL with label "" of length 1 over GF(2^4)
11: SIGNAL with label "" of length 1 over AsField( GF(2^2), GF(2^4) )
10: SIGNAL with label "" of length 1 over GF(2^4)
9: SIGNAL with label "" of length 2 over GF(2^2) with direction to with interpretation

basis [ Z(2)^0, Z(2^4)^7 ]
8: SIGNAL with label "" of length 2 over GF(2^2) with direction to with interpretation

basis [ Z(2)^0, Z(2^4)^6 ]
7: SIGNAL with label "" of length 1 over GF(2^2)
6: SIGNAL with label "" of length 8 over GF(2) with direction to with interpretation

basis [ Z(2)^0, Z(2^2), Z(2^4)^7, Z(2^4)^12, Z(2^8)^15, Z(2^8)^100, Z(2^8)^134,
Z(2^8)^219 ]

5: SIGNAL with label "" of length 8 over GF(2) with direction to with interpretation
basis [ Z(2)^0, Z(2^2), Z(2^4)^6, Z(2^4)^11, Z(2^8)^15, Z(2^8)^100, Z(2^8)^117,
Z(2^8)^202 ]

4: SIGNAL with label "" of length 4 over GF(2) with direction to with interpretation
basis [ Z(2)^0, Z(2^2), Z(2^4)^7, Z(2^4)^12 ]

3: SIGNAL with label "" of length 4 over GF(2) with direction to with interpretation
basis [ Z(2)^0, Z(2^2), Z(2^4)^6, Z(2^4)^11 ]

2: SIGNAL with label "" of length 2 over GF(2) with direction to with interpretation
basis [ Z(2)^0, Z(2^2) ]
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1: SIGNAL with label "" of length 1 over GF(2)

signal types (sgd w.r.t. SignalPkg) + sub-signal:
19: [ sgd # 10, NA, NA, 1] sub = 14
18: [ sgd # 8, NA, NA, 1] sub = 1
17: [ sgd # 6, NA, NA, 1] sub = 11
16: [ sgd # 4, NA, NA, 1] sub = 1
15: [ sgd # 9, Basis( AsField( AsField( GF(2^2), GF(2^4) ), GF(2^8) ), [ Z(2)^0,

Z(2^8)^15 ] ), to, 2] sub = 9
14: [ sgd # 9, NA, NA, 1] sub = 7
13: [ sgd # 5, Basis( AsField( AsField( GF(2^2), GF(2^4) ), GF(2^8) ), [ Z(2)^0,

Z(2^8)^15 ] ), to, 2] sub = 8
12: [ sgd # 7, NA, NA, 1] sub = 1
11: [ sgd # 5, NA, NA, 1] sub = 7
10: [ sgd # 3, NA, NA, 1] sub = 1
9: [ sgd # 2, Basis( AsField( GF(2^2), GF(2^4) ), [ Z(2)^0, Z(2^4)^7 ] ), to, 2]

sub = 2
8: [ sgd # 2, Basis( AsField( GF(2^2), GF(2^4) ), [ Z(2)^0, Z(2^4)^6 ] ), to, 2]

sub = 2
7: [ sgd # 2, NA, NA, 1] sub = 1
6: [ sgd # 1, Basis( GF(2^8), [ Z(2)^0, Z(2^2), Z(2^4)^7, Z(2^4)^12, Z(2^8)^15,

Z(2^8)^100, Z(2^8)^134, Z(2^8)^219 ] ), to, 8] sub = 1
5: [ sgd # 1, Basis( GF(2^8), [ Z(2)^0, Z(2^2), Z(2^4)^6, Z(2^4)^11, Z(2^8)^15,

Z(2^8)^100, Z(2^8)^117, Z(2^8)^202 ] ), to, 8] sub = 1
4: [ sgd # 1, Basis( GF(2^4), [ Z(2)^0, Z(2^2), Z(2^4)^7, Z(2^4)^12 ] ), to, 4]

sub = 1
3: [ sgd # 1, Basis( GF(2^4), [ Z(2)^0, Z(2^2), Z(2^4)^6, Z(2^4)^11 ] ), to, 4]

sub = 1
2: [ sgd # 1, Basis( GF(2^2), [ Z(2)^0, Z(2^2) ] ), to, 2] sub = 1
1: [ sgd # 1, NA, NA, 1] sub = -1

-------------------------

↪−→
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D.3 The CIRCUIT package part 2
Example D.3.1 Functional description for the running example (13.1) expression defined over the
tower field F((22)2)2

↪−→

The Example D.3.1 shows the AlgFunctionality object AF, for the implementation of running example (13.1) defined
over the tower field F((22)2)2 (Example 13.1.3 in Section 13.1):

z = γ1a · b · c + a2 + γ2

where γ1 = ν and γ2 = ν3 and ν is a root of the reference defining polynomial p3(x) = x8 + x4 + x3 + x2 + 1 (see
Table D.1 from Example 13.2.1). The exact tower field construction is specified in Example 13.3.1 and the SignalPkg
defaultPkg shown in a diagram in Figure 13.5 in Example13.3.2, in Section 13.3.

For the created AlgFunctionality object AF, the collector method AlgFunctionalityCollectSignals is called,
followed by the method PrintAlgFunctionalityCollectSignals, which shows the collected signals, printed in
a human friendly fashion. For each edge, the start and end node are printed as well.

At the end of the example, the method MakeAlgFunctionalityDesignReady is called, and the contents of the
submodules component shown. The Fid of the output port is stored together with submodules from this field.

Example D.3.1

gap> random := Z(2^8)*a_0*a_1*a_2+a_0^2+Z(2^8)^3;;
gap> entitylist := ["random"];; ct := ["CICO", "simple" ];;
gap> inputports := [ ["i_a", 11], ["i_b", 11], ["i_c", 11]];;
gap> outputports := [ ["o_z",11] ];;
gap> portlist := [defaultPkg, inputports, outputports];;
gap> bindlist := [["a_0", "i_a"], ["a_1", "i_b"], ["a_2", "i_c"]];;
gap> exprlist := [random];;
gap> archlist := [bindlist, exprlist];;
gap> AF := AlgFunctionality(entitylist, portlist, archlist, ct);;
gap> AlgFunctionalityCollectSignals(AF, defaultPkg);;
gap> PrintAlgFunctionalityCollectSignals(AF);

DETAILS for algfun:
<
AlgFunctionality of type [ "CICO", "simple", -1, -1, -1 ] :
- FunctName: blackbox
- EntityName: random
- ArchName: main
- InputPorts: [ "i_a", 11 ], [ "i_b", 11 ], [ "i_c", 11 ],
- OutputPorts: [ "o_z", 11 ],
inputport binding: [ [ "a_0", "i_a" ], [ "a_1", "i_b" ], [ "a_2", "i_c" ] ]
implementing: [ [ Z(2^8)*a_0*a_1*a_2+a_0^2+Z(2^8)^3 ] ]
>

------ output =1, coordinate =1 siglist ------
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expcount= 1, IsEmpty(explist)? false
explist= [ [ "EXPout_0_0", 2, 1, 0 ] ]
IsEmpty(multree)? false
depth = 3

printing for lvl 3

[ "out_0_0_mon0_lvl3_node0", "out_0_0_mon0_lvl3_node1", "out_0_0_mon0_lvl3_node2" ]
edge: out_0_0_mon0_lvl3_edge0

<out_0_0_mon0_lvl3_node0 , out_0_0_mon0_lvl2_node0>
edge: out_0_0_mon0_lvl3_edge1

<out_0_0_mon0_lvl3_node1 , out_0_0_mon0_lvl2_node0>
edge: out_0_0_mon0_lvl3_edge2

<out_0_0_mon0_lvl3_node2 , out_0_0_mon0_lvl2_node1>

printing for lvl 2

[ "out_0_0_mon0_lvl2_node0", "out_0_0_mon0_lvl2_node1" ]
edge: out_0_0_mon0_lvl2_edge0

<out_0_0_mon0_lvl2_node0 , out_0_0_mon0_lvl1_node0>
edge: out_0_0_mon0_lvl2_edge1

<out_0_0_mon0_lvl2_node1 , out_0_0_mon0_lvl1_node0>

printing for lvl 1

[ "out_0_0_mon0_lvl1_node0" ]
edge: out_0_0_mon0_lvl1_edge0

<out_0_0_mon0_lvl1_node0 , 0>
depth = 1
MVount= 1, IsEmpty(MVlist)? false
MVlist= [ [ "MVout_0_0", Z(2^8), 0 ] ]
ccount= 1, IsEmpty(constlist)? false
constlist= [ [ "out_0_0_c_g_219", Z(2^8)^3, 2 ] ]
number of sumlvls=3
IsEmpty(sumtree)? false
depth = 3

printing for lvl 3

[ "out_0_0_term_lvl3_node0", "out_0_0_term_lvl3_node1", "out_0_0_term_lvl3_node2" ]
edge: out_0_0_term_lvl3_edge0

<out_0_0_term_lvl3_node0 , out_0_0_term_lvl2_node0>
edge: out_0_0_term_lvl3_edge1

<out_0_0_term_lvl3_node1 , out_0_0_term_lvl2_node0>
edge: out_0_0_term_lvl3_edge2

<out_0_0_term_lvl3_node2 , out_0_0_term_lvl2_node1>
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printing for lvl 2

[ "out_0_0_term_lvl2_node0", "out_0_0_term_lvl2_node1" ]
edge: out_0_0_term_lvl2_edge0

<out_0_0_term_lvl2_node0 , out_0_0_term_lvl1_node0>
edge: out_0_0_term_lvl2_edge1

<out_0_0_term_lvl2_node1 , out_0_0_term_lvl1_node0>

printing for lvl 1

[ "out_0_0_term_lvl1_node0" ]
edge: out_0_0_term_lvl1_edge0

<out_0_0_term_lvl1_node0 , 0>

end of DETAILS
gap> MakeAlgFunctionalityDesignReady(AF, defaultPkg);;
gap> AFṡubmodules;
[ [ 11 ], [ [ [ "EXP", 2 ], "MforFid11", [ "MV", Z(2^8) ] ] ] ]

↪−→
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D.4 The CIRCUIT package part 3
Example D.4.1 Datapath synthesis for an expression over F((22)2)2 – bottom-up processing contin-
ued ↪−→

This example continues the Example 15.3.1, the bottom-up processing of the design, which resulted in a VHDL-ready
design. The GAP code Example D.4.1 shows the CIRClist contents (listed by their class, archtype, and the first
two entries of the parsed submodule list (15.1), namely FunctName and EntityName) after processing, followed by
the AFlist and SMlist. The PrintCIRClist method only displays the class and archtype of each Circuit object,
and their FunctName and EntityName, which are also the first two entries of each parsed submodule list (15.1) and
will appear as such in Circuits at higher Fids.

Example D.4.1

gap> PrintCIRClist(design);

-------------------------
AlgDesign with CIRClist

11:
10:
9:
class = 7 [ "CICO", "simple", -1, -1, -1 ] [[ "EXP", 2 ], Fid9_exp_2]
class = 5 [ "CICO", "simple", -1, -1, -1 ] [MforFid11, Fid9_mult]
class = 2 [ "CICO", "simple", -1, -1, -1 ] [[ "MV", Z(2^8) ], Fid9_mv_g_73]
8:
7:
6:
class = 7 [ "CICO", "simple", -1, -1, -1 ] [[ "EXP", 2 ], Fid6_exp_2]
class = 5 [ "CICO", "simple", -1, -1, -1 ] [MforFid9, Fid6_mult]
class = 2 [ "CICO", "simple", -1, -1, -1 ] [[ "MV", Z(2^4)^7 ], Fid6_mv_g_7]
class = 2 [ "CICO", "simple", -1, -1, -1 ] [[ "MV", Z(2^2) ], Fid6_mv_g_5]
class = 2 [ "CICO", "simple", -1, -1, -1 ] [[ "MV", Z(2^4)^9 ], Fid6_mv_g_9]
class = 2 [ "CICO", "simple", -1, -1, -1 ] [[ "MV", Z(2^4)^2 ], Fid6_mv_g_2]
class = 2 [ "CICO", "simple", -1, -1, -1 ] [[ "MV", Z(2^4) ], Fid6_mv_g_1]
5:
4:
3:
2:
class = 1 [ "CICO", "simple", -1, -1, -1 ] [[ "EXP", 2 ], Fid2_exp_2]
class = 3 [ "CICO", "simple", -1, -1, -1 ] [MforFid6, Fid2_mult]
class = 1 [ "CICO", "simple", -1, -1, -1 ] [[ "MV", Z(2^2) ], Fid2_mv_g_1]
class = 1 [ "CICO", "simple", -1, -1, -1 ] [[ "MV", Z(2^2)^2 ], Fid2_mv_g_2]
1:
-------------------------
gap> PrintAFlist(design); PrintSMlist(design);

-------------------------
AlgDesign with empty AFlist

-------------------------
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-------------------------
AlgDesign with empty SMlist

-------------------------

↪−→
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D.5 The CIRCUIT package part 4
Example D.5.1 A full field_pkg.vhd example for F((22)2)2

↪−→

This the example of the field_pkg.vhd for the signal package defaultPkg used in Examples 13.3.1 and 13.3.2.

VHDL Example D.5.1

------------------------------------------
--- generated by GAPtoVHDL package
--- field_pkg
--- exampleTF8.g
------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;

package field_pkg is

------------------------------------------
--- field_pkg params for a binary field
--- with field identifier Fid = 1

subtype ffe_1 is std_logic;

--- element 1 in chosen basis:
constant ffe_1_one: ffe_1 := ’1’;

--- element 0 in chosen basis:
constant ffe_1_zero: ffe_1 := ’0’;

------------------------------------------
----===================================----
--- field_pkg params for vector
--- with identifier Fid = 2
--- of length 2
--- and direction "to"
--- with interpretation basis
--- [ Z(2)^0, Z(2^2) ])
--- over sub-id = 1

constant ffe_2_dim : natural := 2;
subtype ffe_2 is std_logic_vector(0 to ffe_2_dim - 1);

--- element 1 in chosen basis:
constant ffe_2_one: ffe_2 := "10";

--- element 0 in chosen basis:
constant ffe_2_zero: ffe_2 := "00";

------------------------------------------

----===================================----
--- field_pkg params for vector
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--- with identifier Fid = 3
--- of length 4
--- and direction "to"
--- with interpretation basis
--- [ Z(2)^0, Z(2^2), Z(2^4), Z(2^4)^6 ])
--- over sub-id = 1

constant ffe_3_dim : natural := 4;
subtype ffe_3 is std_logic_vector(0 to ffe_3_dim - 1);

--- element 1 in chosen basis:
constant ffe_3_one: ffe_3 := "1000";

--- element 0 in chosen basis:
constant ffe_3_zero: ffe_3 := "0000";

------------------------------------------

----===================================----
--- field_pkg params for vector
--- with identifier Fid = 4
--- of length 8
--- and direction "to"
--- with interpretation basis
--- [ Z(2)^0, Z(2^2), Z(2^4), Z(2^4)^6, Z(2^8)^7, Z(2^8)^92, Z(2^8)^24, Z(2^8)^109 ])
--- over sub-id = 1

constant ffe_4_dim : natural := 8;
subtype ffe_4 is std_logic_vector(0 to ffe_4_dim - 1);

--- element 1 in chosen basis:
constant ffe_4_one: ffe_4 := "10000000";

--- element 0 in chosen basis:
constant ffe_4_zero: ffe_4 := "00000000";

------------------------------------------

----===================================----
--- field_pkg params for elements of field
--- with identifier Fid = 5
--- for defining polynomial
--- x^2+x+Z(2)^0
--- and direction "to" basis
--- [ Z(2)^0, Z(2^2) ]
--- over sub-id = 1

constant ffe_5_dim : natural := 2;
subtype ffe_5 is std_logic_vector(0 to ffe_5_dim - 1);

--- element 1 in chosen basis:
constant ffe_5_one: ffe_5 := "10";

--- element 0 in chosen basis:
constant ffe_5_zero: ffe_5 := "00";

------------------------------------------
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----===================================----
--- field_pkg params for vector
--- with identifier Fid = 6
--- of length 2
--- and direction "to"
--- with interpretation basis
--- [ Z(2)^0, Z(2^4) ])
--- over sub-id = 2

constant ffe_6_dim : natural := 2;
type ffe_6 is array(0 to ffe_6_dim - 1) of ffe_2;

--- element 0:
constant ffe_6_zero: ffe_6 := ( others => ffe_2_zero );

function "xor" ( a, b : ffe_6 ) return ffe_6;
------------------------------------------

----===================================----
--- field_pkg params for elements of field
--- with identifier Fid = 7
--- for defining polynomial
--- x^4+x+Z(2)^0
--- and direction "to" basis
--- [ Z(2)^0, Z(2^2), Z(2^4), Z(2^4)^6 ]
--- over sub-id = 1

constant ffe_7_dim : natural := 4;
subtype ffe_7 is std_logic_vector(0 to ffe_7_dim - 1);

--- element 1 in chosen basis:
constant ffe_7_one: ffe_7 := "1000";

--- element 0 in chosen basis:
constant ffe_7_zero: ffe_7 := "0000";

------------------------------------------

----===================================----
--- field_pkg params for elements of field
--- with identifier Fid = 8
--- for defining polynomial
--- x^2+x+Z(2^2)
--- and direction "to" basis
--- [ Z(2)^0, Z(2^4) ]
--- over sub-id = 5

constant ffe_8_dim : natural := 2;
type ffe_8 is array(0 to ffe_8_dim - 1) of ffe_5;

--- element 0:
constant ffe_8_zero: ffe_8 := ( others => ffe_5_zero );
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function "xor" ( a, b : ffe_8 ) return ffe_8;
------------------------------------------

----===================================----
--- field_pkg params for vector
--- with identifier Fid = 9
--- of length 2
--- and direction "to"
--- with interpretation basis
--- [ Z(2)^0, Z(2^8)^7 ])
--- over sub-id = 6

constant ffe_9_dim : natural := 2;
type ffe_9 is array(0 to ffe_9_dim - 1) of ffe_6;

--- element 0:
constant ffe_9_zero: ffe_9 := ( others => ffe_6_zero );

function "xor" ( a, b : ffe_9 ) return ffe_9;
------------------------------------------

----===================================----
--- field_pkg params for elements of field
--- with identifier Fid = 10
--- for defining polynomial
--- x^8+x^4+x^3+x^2+Z(2)^0
--- and direction "to" basis
--- [ Z(2)^0, Z(2^2), Z(2^4), Z(2^4)^6, Z(2^8)^7, Z(2^8)^92, Z(2^8)^24, Z(2^8)^109 ]
--- over sub-id = 1

constant ffe_10_dim : natural := 8;
subtype ffe_10 is std_logic_vector(0 to ffe_10_dim - 1);

--- element 1 in chosen basis:
constant ffe_10_one: ffe_10 := "10000000";

--- element 0 in chosen basis:
constant ffe_10_zero: ffe_10 := "00000000";

------------------------------------------

----===================================----
--- field_pkg params for elements of field
--- with identifier Fid = 11
--- for defining polynomial
--- x^2+x+Z(2^4)^7
--- and direction "to" basis
--- [ Z(2)^0, Z(2^8)^7 ]
--- over sub-id = 8

constant ffe_11_dim : natural := 2;
type ffe_11 is array(0 to ffe_11_dim - 1) of ffe_8;
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--- element 0:
constant ffe_11_zero: ffe_11 := ( others => ffe_8_zero );

function "xor" ( a, b : ffe_11 ) return ffe_11;
------------------------------------------

end package;

package body field_pkg is
function "xor" ( a, b : ffe_6 ) return ffe_6 is

variable z : ffe_6;

begin
for i in ffe_6’range loop

z(i) := a(i) xor b(i);
end loop;
return z;

end function;

function "xor" ( a, b : ffe_8 ) return ffe_8 is
variable z : ffe_8;

begin
for i in ffe_8’range loop

z(i) := a(i) xor b(i);
end loop;
return z;

end function;

function "xor" ( a, b : ffe_9 ) return ffe_9 is
variable z : ffe_9;

begin
for i in ffe_9’range loop

z(i) := a(i) xor b(i);
end loop;
return z;

end function;

function "xor" ( a, b : ffe_11 ) return ffe_11 is
variable z : ffe_11;

begin
for i in ffe_11’range loop

z(i) := a(i) xor b(i);
end loop;
return z;

end function;

end package body;
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↪−→

Example D.5.2 Squaring for a polynomial basis ↪−→

The following example is a continuation of Example C.3.3 and shows the implementation of the squaring module. The
CIRCUIT package contains debug switches; one of them was used to show the steps of writing a datapath. Also note
the use of partial binding between GAP variables and VHDL input ports (recall Key 14.2).

Example D.5.2

gap> K := GF(2);; x := X(K, "x");; m := 4;; f := x^4+x+1;;
gap> defaultPkg := DefaultSignalPkg(m);; PrintDownto(defaultPkg);

-------------------------
SignalPkg with
4: elements in GF(2^4) with direction to basis

[ Z(2)^0, Z(2^4), Z(2^4)^2, Z(2^4)^3 ]
3: vectors over GF(2) of length 7 and direction to
2: vectors over GF(2) of length 4 and direction to - interpretation basis

[ Z(2)^0, Z(2^4), Z(2^4)^2, Z(2^4)^3 ]
1: elements in GF(2)
-------------------------
gap> sq := FFA_sq_matrixU(f, "PB", "to");;

variables
[ "a_0", "a_1", "a_2", "a_3" ]
[ "b_0", "b_1", "b_2", "b_3" ]
[ "d_0", "d_1", "d_2", "d_3", "d_4", "d_5", "d_6" ]

gap> entitylist := ["square"];; ct := ["CICO", "simple"];;
gap> inputports := [["i_a", 2]];; outputports := [["o_z",2]];;
gap> portlist := [defaultPkg, inputports, outputports];;
gap> bindlist := [["a", "i_a"]];; exprlist := sq;;
gap> archlist := [bindlist, exprlist];;
gap> AF := AlgFunctionality(entitylist, portlist, archlist, ct);;
gap> MakeAlgFunctionalityDesignReady(AF, defaultPkg);;
gap> folder := "phdGapExamples/circuits/exampleSQ";; commentstr := "exampleSQ.g";;
gap> sminsn := ["generate", ["matrixU"], "CICO", "simple"];;
gap> design := AlgDesign(AF, defaultPkg, sminsn, [folder, commentstr] , 1);;
gap> nrfiles:= WriteDesignVHDL(design);;
no submodules exist, write circuits
OutputTextFile(/home/sonce/phdGapExamples/circuits/exampleSQ/field_pkg.vhd) done
available submodules: [ [ 2 ], [ [ ] ] ]##

### now writing coordinate=0 of output=0 with expr= a_0+a_2 ###
#### STEP 1 - binding using rules: [ [ "a", "i_a" ] ]
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*expr list after binding: [ [ "i_a(0)" ], [ "i_a(2)" ] ]

*expr list after EXP: [ [ "i_a(0)" ], [ "i_a(2)" ] ]

*expr list after multrees: [ [ "i_a(0)" ], [ "i_a(2)" ] ]

*expr list after MVs: [ [ "i_a(0)" ], [ "i_a(2)" ] ]

*expr list after constants: [ "i_a(0)", "i_a(2)" ]

#### STEP 6 - found sumtree
*expr list after sum: out_0_0_term_lvl1_edge0

### now writing coordinate=1 of output=0 with expr= a_2 ###
#### STEP 1 - binding using rules: [ [ "a", "i_a" ] ]

*expr list after binding: [ [ "i_a(2)" ] ]

... OMITTED FOR BREVITY ....

#### STEP 7 - writing outputs
*for output=1 with outsources: [ "out_0_0_term_lvl1_edge0", "i_a(2)",
"out_0_2_term_lvl1_edge0", "i_a(3)" ]

OutputTextFile(/home/sonce/phdGapExamples/circuits/exampleSQ/square.vhd) done
OutputTextFile(/home/sonce/phdGapExamples/circuits/exampleSQ/square_tb.vhd) done

variables
[ "a_0", "a_1", "a_2", "a_3" ]
[ "b_0", "b_1", "b_2", "b_3" ]
[ "d_0", "d_1", "d_2", "d_3", "d_4", "d_5", "d_6" ]
OutputTextFile(/home/sonce/phdGapExamples/circuits/exampleSQ/square_stim.tv) done
OutputTextFile(/home/sonce/phdGapExamples/circuits/exampleSQ/square_spec.tv) done
OutputTextFile(/home/sonce/phdGapExamples/circuits/exampleSQ/square_tb.sim) done
OutputTextFile(/home/sonce/phdGapExamples/circuits/exampleSQ/square.uwp) done

↪−→
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Example D.5.3 A F24 multiplier - full example ↪−→

This is a full example of a basic building block, F24 multiplier, from SignalPkg setup to generating the VHDL files.
The signal package always contains two entries for any given finite field: the field itself and the field as a vector space.
This example is using the SignalPkg shown in Example D.2.3 in Section D.2. The SIGNAL corresponding to the
finite field F24 with the defining polynomial f (x) = x4 + x + 1 and polynomial basis has Fid=4, and the SIGNAL
corresponding to its vector space has the Fid=2. Example D.5.3 demonstrates several CIRCUIT package concepts:

• the effect of AlgDesignWriteTop (the last argument to the AlgDesign constructor)
• full binding between GAP variables and VHDL input ports (recall Key 14.2)
• the difference between element (Fid=4) and vector (Fid=2) ports (the vector ports are used only in last exam-

ple, i.e., Example D.5.3(f))

The code in Example D.5.3(a) is using element ports, that is all input and output ports have Fid=4. The expression
is simply set to a_0*b_0, using full binding [["a_0", "i_a"], ["b_0", "i_b"]]. The topswitch is set to 1,
setting the AlgDesignWriteTop property to true. The datapath produced by the ProcessDesign method is printed
with the PrintCIRClistAll method, which shows the actual multiplier sobmodule at Fid=2:

• functionality is “multiplier for Fid=4”, FunctName: MforFid4

• the entity name reflect the Fid=2: EntityName: Fid2_mult

• submodule ports are set to Fid=2

• the four expressions for the output vector of length 4 were obtained using the FFA_mult_matrixU method
from the FFCSA package (see Example 7.4.1(a))

In Example D.5.3(b) the AlgDesign is “reinitialized” and the WriteDesignVHDL function is called. The design
files are printed at the end of the example. The example also shows the generated testbench files and scripts (for the
purpose of this text, the long paths in the OutputTextFile lines were shorten manually with ...).

� Implementation detail: The reason why the constructor has to be called again is the top-down ProcessSMAFloop
(see Section 15.1). The loop needs a starting point, the initial entries in the SMlist, and when the loop terminates, the
SMlist is empty. Calling ProcessDesign but not writing the VHDL files in never used, hence no actual reinitializa-
tion method needed. �

The VHDL Example D.5.3(c) is showing the VHDL module multiply.vhd with ports of type ffe_4, internal sig-
nals of type ffe_2 and multiplier Fid2_mult. The multiply module is basically just a wrapper for the Fid2_mult
module. The component instantiation uses the Write_component_inst function from the GAPtoVHDL package
(Table 10.3), and the comment above the component instantiation clearly shows the portmap exactly as it was used
for the function call.

Then, the example is rerun for the topswitch 0, see Example D.5.3(d). The only difference is the number of
VHDL files generated: the top-level AlgFunctionality is not translated to VHDL, but all of its submodules are (in
this case, there is a single submodule Fid2_mult). Multiplier Fid2_mult has all ports of type ffe_2, and all internal
signals of type ffe_1; just as the submodule Fid2_mult generated in Example D.5.3(b).

VHDL Example D.5.3(e) shows a small fraction of the architecture that drives the output for coordinate 0 of the
product, using the expression - -expr=a_0*b_0+a_1*b_3+ a_2*b_2+a_3*b_1. The computation is done monomial
by monomial, with lines like - -[ "i_a(0)", "i_b(0)" ] showing the result of the partial binding set for the
multiplier automatically by the ProcessSMAFLoop. This class 3 expression underwent steps 1 - binding, 3 - and
gates, 5 - no additive constant was found, 6 - final sum and 7- drive the outputs. Note that the produced VHDL code
is systematic, but not really human-friendly.
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As was just mentioned, partial binding was used for the submodule Fid2_mult VHDL Example D.5.3(e). For the
top-level module, the bindlist in VHDL Example D.5.3(a) uses full binding, which is also reflected in the com-
mented line - -[ "i_a", "i_b" ] in VHDL Example D.5.3(c).

The Examples D.5.3(a)-D.5.3(d) used the following submodule instructions: "generate" and ["matrixU"],
see sminsn. This tells ProcessSMAFLoop to generate submodules using the “matrixU” methods, in this case the
FFA_mult_matrixU (see Section 7.4 Example 7.4.1 and GAP Example 7.4.1(a)). In Example D.5.3(f), the
vector ports Fid=2 are used. The length of the outpot port is 4 and the FFA_mult_matrixU method generates 4
expressions, hence the correctness check is again passed (see Key 13.4 Section 13.2 and its solution Key 14.3 ,
Section 14.1). The only difference between the VHDL modules generated in Example D.5.3(d) and this example
are the two entity names, their architectures are exactly the same.

Example D.5.3(a)

gap> m:=4;; x := X(GF(2), "x");;
gap> defaultPkg := DefaultSignalPkg(m);
< SignalPkg with
1: elements in GF(2)
2: vectors over GF(2) of length 4 and direction to - interpretation basis

Basis( GF(2^4), [ Z(2)^0, Z(2^4), Z(2^4)^2, Z(2^4)^3 ] )
3: vectors over GF(2) of length 7 and direction to
4: elements in GF(2^4)>

gap> # parapemets that will change
gap> mul := a_0*b_0;;
gap> inputports := [ ["i_a", 4], ["i_b",4]];;
gap> outputports := [ ["o_z", 4] ];;
gap> bindlist := [["a_0", "i_a"], ["b_0", "i_b"]];;
gap> exprlist := [mul];;
gap> # parapemets that will NOT change
gap> entitylist := ["mult", "multiply", "main"];;
gap> portlist := [defaultPkg, inputports, outputports];;
gap> archlist := [bindlist, exprlist];;
gap> archtype := ["CICO", "simple"];;
gap> AF := AlgFunctionality(entitylist, portlist, archlist, archtype);;
gap> MakeAlgFunctionalityDesignReady(AF, defaultPkg);;
gap> folder := "phdGapExamples/circuits/exampleM1a";; commentstr := "ex6.2.MUL1a.g";;
gap> sminsn := ["generate", ["matrixU"], "CICO", "simple"];;
gap>
gap> # topswitch = 1
gap> design := AlgDesign(AF, defaultPkg, sminsn, [folder, commentstr] , 1);;
gap> ProcessDesign(design);;

variables
[ "a_0", "a_1", "a_2", "a_3" ]
[ "b_0", "b_1", "b_2", "b_3" ]
[ "d_0", "d_1", "d_2", "d_3", "d_4", "d_5", "d_6" ]
gap> AlgDesignWriteTop(design); AlgDesignArchExprTop(design);
true
< AlgDesign for top implementing:
[ [ a_0*b_0 ] ]
>
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gap> PrintCIRClistAll(design);

-------------------------
AlgDesign with CIRClist

4:
3:
2:
class = 3 < Circuit of type [ "CICO", "simple", -1, -1, -1 ] :
- FunctName: MforFid4
- EntityName: Fid2_mult
- ArchName: main
- InputPorts: [ "i_a", 2 ], [ "i_b", 2 ],
- OutputPorts: [ "o_z", 2 ],
inputport binding: [ [ "a", "i_a" ], [ "b", "i_b" ] ]
implementing: [ [ a_0*b_0+a_1*b_3+a_2*b_2+a_3*b_1,
a_0*b_1+a_1*b_0+a_1*b_3+a_2*b_2+a_2*b_3+a_3*b_1+a_3*b_2,
a_0*b_2+a_1*b_1+a_2*b_0+a_2*b_3+a_3*b_2+a_3*b_3,
a_0*b_3+a_1*b_2+a_2*b_1+a_3*b_0+a_3*b_3 ] ]
>

constants: [ ]

1:
-------------------------
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Example D.5.3(b)

gap> # reinitialize and write VHDL
gap> design := AlgDesign(AF, defaultPkg, sminsn, [folder, commentstr] , 1);;
gap> WriteDesignVHDL(design);;

variables
[ "a_0", "a_1", "a_2", "a_3" ]
[ "b_0", "b_1", "b_2", "b_3" ]
[ "d_0", "d_1", "d_2", "d_3", "d_4", "d_5", "d_6" ]
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1a/field_pkg.vhd) done!
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1a/Fid2_mult.vhd) done!
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1a/Fid2_mult_tb.vhd) done!
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1a/Fid2_mult_stim.tv) done!
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1a/Fid2_mult_spec.tv) done!
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1a/Fid2_mult_tb.sim) done !
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1a/Fid2_mult.uwp) done!
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1a/multiply.vhd) done!
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1a/multiply_tb.vhd) done!
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1a/multiply_stim.tv) done!
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1a/multiply_spec.tv) done!
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1a/multiply_tb.sim) done!
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1a/multiply.uwp) done!
gap> Print(design!.filelist);
[ "field_pkg.vhd", "Fid2_mult.vhd", "multiply.vhd" ]
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Example D.5.3(d)

gap> # reinitialize with top switch = 0 and write VHDL
gap> folder := "phdGapExamples/circuits/exampleM1d";;
gap> design := AlgDesign(AF, defaultPkg, sminsn, [folder, commentstr] , 0);;
gap> WriteDesignVHDL(design);;

variables
[ "a_0", "a_1", "a_2", "a_3" ]
[ "b_0", "b_1", "b_2", "b_3" ]
[ "d_0", "d_1", "d_2", "d_3", "d_4", "d_5", "d_6" ]
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1d/field_pkg.vhd) done!
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1d/Fid2_mult.vhd) done!
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1d/Fid2_mult_tb.vhd) done!
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1d/Fid2_mult_stim.tv) done!
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1d/Fid2_mult_spec.tv) done!
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1d/Fid2_mult_tb.sim) done !
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1d/Fid2_mult.uwp) done!
gap> Print(design!.filelist);
[ "field_pkg.vhd", "Fid2_mult.vhd" ]
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Example D.5.3(f)

gap> # new parapemets
gap> ChooseFieldElms(GF(2^4));; B := Basis(GF(2^4));;

variables
[ "a_0", "a_1", "a_2", "a_3" ]
[ "b_0", "b_1", "b_2", "b_3" ]
[ "d_0", "d_1", "d_2", "d_3", "d_4", "d_5", "d_6" ]
gap> mul := FFA_mult_matrixU(B, avec, bvec);;
gap> inputports := [ ["i_a", 2], ["i_b",2]];;
gap> outputports := [ ["o_z",2] ];;
gap> bindlist := [["a", "i_a"], ["b", "i_b"]];;
gap> exprlist := mul;;
gap> # parapemets that did NOT change
gap> entitylist := ["mult", "multiply", "main"];;
gap> portlist := [defaultPkg, inputports, outputports];;
gap> archlist := [bindlist, exprlist];;
gap> archtype := ["CICO", "simple"];;
gap> AF := AlgFunctionality(entitylist, portlist, archlist, archtype);;
gap> MakeAlgFunctionalityDesignReady(AF, defaultPkg);;
gap> folder := "phdGapExamples/circuits/exampleM1f";;
gap> sminsn := ["generate", ["matrixU"], "CICO", "simple"];;
gap> design := AlgDesign(AF, defaultPkg, sminsn, [folder, commentstr] , 1);;
gap> AlgDesignWriteTop(design); AlgDesignArchExprTop(design);
true
< AlgDesign for top implementing:
[ [ a_0*b_0+a_1*b_3+a_2*b_2+a_3*b_1,
a_0*b_1+a_1*b_0+a_1*b_3+a_2*b_2+a_2*b_3+a_3*b_1+a_3*b_2,
a_0*b_2+a_1*b_1+a_2*b_0+a_2*b_3+a_3*b_2+a_3*b_3,
a_0*b_3+a_1*b_2+a_2*b_1+a_3*b_0+a_3*b_3 ] ]
>
gap> WriteDesignVHDL(design);;
no submodules exist, write circuits!
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1f/field_pkg.vhd) done!
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1f/multiply.vhd) done!
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1f/multiply_tb.vhd) done!
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1f/multiply_stim.tv) done!
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1f/multiply_spec.tv) done!
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1f/multiply_tb.sim) done !
OutputTextFile(/home/ ... /phdGapExamples/circuits/exampleM1f/multiply.uwp) done!
gap> Print(design!.filelist);
[ "field_pkg.vhd", "multiply.vhd" ]

↪−→
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