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Abstract

Canada’s proposed deep geological repository is a multiple-barrier system designed to
isolate used nuclear fuel containers (UFCs) indefinitely with no release of radionuclides
for at least one million years. Placing UFCs together as densely as possible is ideal for
mitigating repository size and cost. However, due to heat generation from radioactive decay
and material limitations, a key design criterion is that the maximum temperature inside
the repository must not exceed 100 °C. To satisfy that criterion, design optimization for
the spatial arrangement of UFCs in a crystalline rock repository is performed. Spatial
arrangement pertains to: (i) the spacing between UFCs, (ii) the separation between
placement rooms underground, and (iii) the locations of variously aged UFCs that generate
heat at different rates. Most studies have considered UFCs to be identical in age during
placement into the repository. Parameter analyses have also been performed to evaluate
repository performance under probable geological conditions. In this work, the various ages
of UFCs and the uncertainties in spacing-related design variables are of focus. Techniques
for the actual placement of UFCs in the deep geological repository based on their age and
methods for repository risk analysis using yield optimization are developed.

The thermal evolution inside the deep geological repository is simulated using a finite
element model. With many components inside the massive repository planned for upwards
of 95 000 UFCs, direct optimization of the model is impractical or even infeasible due to it
being computationally expensive to evaluate. Surrogate optimization is used to overcome
that burden by reducing the number of detailed evaluations required to reach the optimal
designs. Two placement cases are studied: (i) UFCs all having been discharged from a
Canadian Deuterium Uranium reactor for 30 years, which is a worst-case scenario, and
(ii) UFCs having been discharged between 30 and 60 years. Design options that have
UFC spacing 1–2 m and placement room separation 10–40 m are explored. The placement
locations of the variously aged UFCs are specified using either sinusoidal (cosine) functions
or Kumaraswamy probability density functions.

Yield optimization under assumed design variable tolerances and distributions is per-
formed to minimize the probability of a system failure, which occurs when the maximum
temperature constraint of 100 °C is exceeded. This method allows variabilities from the
manufacturing and construction of the repository components that affect the design variables
to be taken into account, incorporating a stochastic aspect into the design optimization
that surrogate optimization would not include. Several distributions for the design variables
are surveyed, and these include uniform, normal, and skewed distributions—all of which
are approximated by Kumaraswamy distributions.
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Chapter 1

Introduction

1.1 Background and Motivation

Since the first small-scale Canadian Deuterium Uranium (CANDU) prototype reactor was
jointly committed in the 1950s by the Atomic Energy of Canada Limited, Ontario Hydro,
and Canadian General Electric [1], Canada has positioned itself as a world leader in nuclear
energy. Today, nuclear power reactors located in Ontario and New Brunswick generate
about 15% of Canada’s electricity [2]. This makes nuclear energy one of the largest sources
of non-emitting electricity in the country, second only to hydroelectric energy. As the world
combats climate change by moving toward clean energy and aiming to reduce greenhouse
gas emissions, Canada is doing its part through initiatives such as holding the Québec
City Summit on Climate Change, adopting the Paris Agreement, and implementing the
Pan-Canadian Framework on Clean Growth and Climate Change. With a target of cutting
greenhouse gas emissions to 30% below 2005 levels by 2030 [3], nuclear energy surely plays
an integral part of Canada’s low carbon future.

All of Canada’s nuclear power reactors are CANDU reactors. The acronym derives
from the reactors’ use of deuterium oxide (heavy water) as their coolant/moderator and
natural uranium (compared to enriched uranium used by most other models of nuclear
power reactor) as their fuel. A typical CANDU fuel bundle is shown in Fig. 1.1. After
irradiation in a nuclear power reactor, most of the used nuclear fuel is composed of uranium
with small amounts of transuranic elements and fission products. Although generating
power through nuclear energy is non-emitting in terms of greenhouse gases, used nuclear
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fuel is radioactive and remains in that state for a long period of time (see Fig. 1.2), so it
must be contained and isolated to prevent harm to the biosphere. To date, all the used fuel
in Canada is stored in wet and dry storage, which are considered temporary storage. There
is a need for a long-term storage solution.

Figure 1.1: CANDU nuclear fuel [4]

Figure 1.2: Radioactive decay over time in a typical used CANDU fuel [4]
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1.2 Canada’s Nuclear Waste Solution

Founded in 2002 as the outcome of the Nuclear Fuel Waste Act, the Nuclear Waste
Management Organization (NWMO) was assigned the responsibility for the safe design and
implementation of a plan to manage Canada’s used nuclear fuel [5, 6]. The plan, now known
as Adaptive Phased Management (APM), was designed as both a management system and
a technical method. In terms of a management system, APM combines phased and adaptive
decision-making with public engagement and continuous learning [7]. As a technical method,
it involves safely containing and isolating Canada’s used nuclear fuel in a central deep
geological repository (DGR) at a location with suitable geological characteristics (e.g., the
Canadian Shield) [7]. APM consists of various phases, namely [4]:

1. Site selection,
2. Site preparation and construction,
3. Operations,
4. Extended monitoring,
5. Decommissioning and closure, and
6. Post-closure monitoring.

Currently, the site selection process for the location of the DGR is underway. The process
commenced in 2010, and 22 communities were initially interested in learning about and
potentially welcoming the DGR to their neighbourhoods [5]. Through assessments for DGR
suitability, NWMO is expected to select a single preferred site by 2023.

1.3 Deep Geological Repository

The plan for Canada’s used nuclear fuel, as set out by NWMO’s APM, is the containment
and isolation of the high-level radioactive waste inside a DGR in an area with suitable rock
formation, with consent from the affected community [4]. Figure 1.3 shows an illustration
of a conceptual layout of the repository site, which will comprise surface facilities and the
DGR. The surface facilities will include all of those that help to ensure used nuclear fuel is
safely received, handled, and placed into the underground repository [4]. The DGR will
be designed as a multiple-barrier system for the long-term storage of the used fuel, and
it will be constructed at a depth of approximately 500 m underground [8]. In addition to
those, a Centre of Expertise will be established either in or near the host community. It
will support the testing of the repository site on top of other active research activities [4].
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Figure 1.3: Conceptual layout for surface facilities, underground
services area, and placement rooms [9]

1.3.1 Multiple-Barrier System

Examining Fig. 1.2, one can see that used nuclear fuel requires approximately one million
years until its radioactivity approaches that of natural uranium. Therefore, the constructed
DGR will need to contain and isolate used nuclear fuel over that period safely. This will be
achieved with the DGR designed as a multiple-barrier system that will utilize engineered
and natural barriers. The components of the multiple-barrier system are illustrated in
Fig. 1.4 and they are as follows [10]:

1. Fuel pellets,
2. Fuel elements and fuel bundles,
3. Used nuclear fuel containers (UFCs),
4. Bentonite clay, and
5. Host rock (geosphere).

The existing nature of the used nuclear fuel pellets, elements, and bundles will form the
first layers of the multiple-barrier system (recall Fig. 1.1). Fuel pellets are very durable
ceramics made from uranium dioxide that are placed into sealed tubes called fuel elements,
which are made from corrosion-resistant Zircaloy metal. The fuel elements together form
fuel bundles, and these are what presently get stored inside wet and dry temporary storage
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Figure 1.4: Multiple-barrier system containing and isolating used nuclear fuel [5]

located at nuclear power reactor sites. Wet storage is essentially pools of water that provide
cooling and shielding against radiation for when fuel bundles are first removed from nuclear
power reactors. After about ten years, the fuel bundles are transferred to dry storage,
basically large containers/silos with thick concrete walls.

The remaining layers of the multiple-barrier system will be the UFCs, bentonite clay,
and the host rock. Under the current design by NWMO, groups of 48 fuel bundles will be
placed inside copper-coated carbon steel UFCs, and these will subsequently be set inside
bentonite buffer boxes [10]. The host rock in which the DGR is ultimately built will form
the outermost layer of protection. With the DGR to be located far underground, the
host rock will naturally become a barrier against natural events, water flow, and human
intrusion [10]. Its composition will mainly be distinguished as crystalline or sedimentary
rock.
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1.3.2 UFC and Bentonite Clay

The engineered parts that will be key to the multiple-barrier system are the UFCs and the
bentonite clay that encases them. The design and choice of the materials that make up
these components have been chosen for specific purposes.

The primary role of the UFCs will be to prevent radionuclides from escaping into the
environment. The containers are designed to handle the pressure of overlying rock and
future glaciers and will also be corrosion-resistant due to their copper coating [10]. In the
past, NWMO has considered modified versions of the KBS-3 UFC design (the method for
final disposal of spent nuclear fuel by the Swedish Nuclear Fuel and Waste Management
Company) and the original NWMO IV-25 UFC design. However, in 2014, NWMO refined
their design to one that is optimized for the uniquely small size of CANDU fuel bundles
and other manufacturing considerations [10, 11]. This current Canadian reference design is
known as the NWMO Mark II and Fig. 1.5 compares it to the earlier container designs.
As mentioned, the container will house 48 CANDU used fuel bundles. This capacity
makes the Mark II much smaller in size than the IV-25, which would have contained
288 used fuel bundles, allowing easier handling and placement of Mark II UFCs into the
DGR [11, 12]. The Mark II will feature hemispherical ends that are designed to withstand
immense pressure, and it will also have a much thinner copper coating (3 mm) as compared
to previous container designs [10, 11]. Copper is the chosen corrosion-resistant material
because of its favourable thermodynamic stability under anticipated DGR conditions, and
less of it will be required for the Mark II thanks to modern coating technologies [11].

UFCs will be set inside buffer boxes made from highly compacted bentonite (HCB).
Bentonite clay resists water flow and also swells when exposed to water; thus, acting as
a sealing material will be its main role [10]. Sealing is desirable as that will limit the
transport of water and dissolved corrosive species toward the UFCs. Note that there are
three bentonite clay-based sealing materials present in Fig. 1.4, each with different bulk
densities. The buffer boxes (shown in white) are made from HCB, and they are separated by
dense backfill/spacer blocks (shown in black). Lining the room is gap-fill material (shown
in brown).
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(a)
KBS-3
UFC

(b)
NWMO
IV-25

(c)
NWMO
Mark II

Figure 1.5: Reference UFC designs [11]

1.4 Research Objective

By now, the purpose of NWMO’s plan for a DGR has been made clear—to contain and
isolate Canada’s used nuclear fuel for at least one million years, essentially indefinitely.
The DGR and its multiple-barrier system designed by NWMO will need to withstand
many processes that may cause the release of used nuclear fuel into the environment. For
example, the aforementioned copper coating on the UFCs will be 3 mm thick, and a breach
of this layer is considered a failure of the system. Hence, corrosion of the copper coating
is one mode of failure that must be mitigated by taking into account a variety of factors
such as the chemical and physical properties of groundwater, the presence of bacteria that
may participate in microbiologically influenced corrosion, and the thermal evolution at the
site [13].
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In particular, and of specific interest to this thesis, is a thermal requirement. The DGR
is to be designed such that the maximum surface temperature of the UFCs will be less
than 100 °C [8]. This requirement ensures that the properties of the surrounding bentonite
and copper will not be adversely affected. From observations in nature, bentonite can
remain chemically stable for over one million years if its temperature does not exceed
100 °C [14]. At around 125 °C, the electrochemical properties of copper change leading to
more rapid corrosion kinetics [8]. At around 140 °C, bentonite starts to convert to illite and
becomes a non-swelling clay impractical for sealing purposes [8]. For this thesis, system
failure is defined as the maximum temperature inside the DGR surpassing 100 °C.

UFC placement configurations (following reference designs developed by NWMO) in
a crystalline rock environment are studied to meet the thermal requirement. As Fig. 1.2
might suggest, the heat output of a UFC is a function of time since its discharge from a
CANDU reactor. Based on Fig. 1.3 and 1.4, individual placement rooms are separated by
host rock while UFCs are separated from one another by bentonite spacer blocks. If smaller
UFC spacings and room spacings are used and if younger containers are grouped closely
together in the placement rooms, the temperatures evolved in the DGR will be hotter. So,
three main variables of UFC placement will determine the maximum temperature that is
seen by the surfaces of the containers inside the repository: (i) UFC spacing, (ii) room
spacing, and (iii) UFC age. These design variables form a design optimization problem for
the spatial arrangement of UFCs in the DGR such that a maximum temperature constraint
(100 °C) is met.

To study the thermal profile inside the DGR, the finite element analysis software
COMSOL Multiphysics (COMSOL) is used. As the DGR is composed of various materials
and many geometries, obtaining an analytical solution to the heat transfer problem at hand
is not possible, and thus a numerical method must be used. While numerical methods
are powerful, their computational requirements become very demanding as model size
and complexity increase, consequentially increasing computational time. For the design
optimization problem described, evaluating many UFC placement configurations directly
through COMSOL would be impractical. This inefficiency can be solved by introducing
surrogate-based analysis and optimization (SBAO), which refers to the idea of speeding up
optimization processes by using surrogate functions to approximate objective and constraint
functions [15]. Surrogates are constructed using data drawn from high-fidelity models and
provide fast approximations of objectives and constraints at new design points, thereby
making intensive sensitivity and optimization studies feasible [15]. Thus, this thesis makes
use of SBAO for the design optimization of the UFC placement configuration.
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A similar study was conducted earlier by Lin and Ponnambalam [16]. However, the
objective here is not only to validate the SBAO independently but to develop techniques for
actual placement based on the age of the UFCs and to develop methods for risk analysis using
yield optimization (described as follows). As a design optimization problem, the tolerances
on the optimum specifications of the DGR are also of interest. From another perspective,
realizing the probability of a system failure occurring given specified manufacturing and
construction tolerances would be useful for a project that is meant to survive the test of
time. This essentially concerns the yield of the DGR project, with yield defined as the
probability of a design meeting specifications [17]. With surrogates available from SBAO,
this thesis takes this opportune moment to study system failure through yield optimization
as well. The system failure probabilities of optimal design points identified from SBAO are
quantified, and with given yield targets, new nominal design points are then suggested.

1.5 Thesis Organization

This thesis is divided into six chapters (see Fig. 1.6). The current chapter presented
background information concerning Canada’s nuclear waste problem and the solution
pursued by NWMO and also outlined the research objectives moving forward. Following
this introductory chapter, Chapter 2 reviews literature pertaining to the design of the
DGR as carried out by academic researchers and NWMO themselves. Literature regarding
SBAO and yield optimization are also surveyed for later use in solving and analysing
the optimization problems described. In Chapter 3, a numerical model is developed in
COMSOL for the simulation of the thermal evolution inside a DGR, and it is then validated
against previous work. Chapter 4 makes use of the developed model and applies SBAO
to determine optimal design points by approximating the function that represents the
maximum temperature inside the DGR under two cases: (i) an inventory with identical
UFC age and (ii) an inventory with assorted UFC ages. In the penultimate chapter,
Chapter 5, surrogates from Chapter 4 are put to use in yield optimization to explore
system failure probabilities under assumed manufacturing and construction tolerances.
Finally, the main findings of the thesis are recapitulated in Chapter 6, and future research
recommendations are proposed.
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Chapter 1
Introduction

Chapter 2
Literature Review

Chapter 3
Finite Element Modelling

Chapter 4
Surrogate-Based Analysis and Optimization

Chapter 5
Yield Optimization

Chapter 6
Conclusion

Figure 1.6: Thesis organization by chapter
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Chapter 2

Literature Review

The DGR design proposed by NWMO will be located about 500 m underground and
will consist of a series of placement rooms home to numerous UFCs. The capsule-shaped
UFCs (i.e., cylinders with hemispherical ends) will be encased in bentonite buffer boxes.
Based on the existing set of CANDU reactors in Canada, the total projected number of
used fuel bundles produced by their end of life ranges approximately 3.5–5.4 million used
fuel bundles, which would fill up around 73–113 thousand UFCs [18]. As the maximum
temperature inside the DGR is of concern in this thesis, a temperature profile is required.
The temperature profile of such a problem of this size and geometry is impossible to
determine algebraically; thus, a numerical method must be employed. In this chapter,
the thermal evolution inside one of NWMO’s proposed DGR as modelled by the finite
element analysis software COMSOL is examined to understand the complexity of the
maximum temperature experienced by the UFCs. With this understanding and prior to
the development of a new numerical model in Chapter 3 for the design optimization of the
spatial arrangement of UFCs (based on UFC spacing, room spacing, and UFC age), the
concepts and methods of SBAO and yield optimization are also explored.

2.1 Thermal Evolution in a Deep Geological Repository

The idea for a DGR being the solution for the final disposal of used nuclear fuel has
been studied numerous times in the past. Guo [28, 29] of NWMO stated that there
had been many studies that performed two- and three-dimensional thermal transient and
thermo-mechanical analyses, specifically those of [19–27]. Although there was interest in
studying behaviours at various repository resolutions, Guo explained that it was numerically
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impractical for near-field details to be included in a repository-sized model, hence those
analyses were separated into near and far-field modelling. It is important to note that
for near-field modelling, adiabatic thermal boundary conditions are often used to create a
smaller, infinitely repeating repository model in the horizontal dimensions. However, when
interpreting the results for a finite repository using this approach, the thermal evolution is
accurate only at early times because the adiabatic boundaries do not represent the heat
dissipation at the extents of the repository, causing overestimation in the temperature to
occur [25]. To remove the influence of these adiabatic boundary conditions and correct
thermal evolution results, Guo first proposed a method in [25] and later revised the approach
in [28, 29]. We now explore how this method was applied to NWMO’s conceptual DGR in
a hypothetical crystalline rock environment and how the maximum temperature evolved in
the DGR can be accurately obtained.

2.1.1 Description of a Conceptual Deep Geological Repository

The crystalline rock DGR studied by Guo was based on one of two conceptual DGRs
by NWMO [8]—the other being a sedimentary rock DGR. The DGR considered held
approximately 4.6 million used fuel bundles or about 96 000 UFCs, and this capacity came
from the many placement rooms inside the repository. Rooms were grouped into one of
eight distinct sections/panels, each consisting of 35 or 36 rooms (see Fig. 2.1). In each room,
there were two layers of UFCs and spacer blocks. Figure 2.2 shows the main components
inside the DGR and their geometries while Fig. 2.3 illustrates a layered and perfectly
staggered arrangement of the UFCs (in buffer boxes) and spacer blocks. For the purpose of
comparing the results from Guo’s model to the new model developed later for this thesis in
Chapter 3, the following details of Guo’s model in [28, 29] are highlighted:

UFC Spacing Centre-to-centre distance of 1.5 m.
Room Spacing Centre-to-centre distance of 20 m.
UFC Age All 30 years out of a nuclear power reactor at time of placement.∗

∗Information for the heat output of a UFC as a function of time is presented in Chapter 3.
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Figure 2.1: Underground layout of a crystalline rock DGR for
4.6 million used nuclear fuel bundles [8]
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Figure 2.2: Front view of placement room geometry [29]

Figure 2.3: Top and side views of placement room geometry [29]
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2.1.2 Near-Field and Far-Field Modelling

Guo’s method for obtaining accurate thermal evolution results began with developing near
and far-field models of the DGR in COMSOL Multiphysics 5.1. The simulation period
was one million years as that is the time it takes for irradiated uranium fuel to return to
natural radioactivity levels.

Near-Field Model

For near-field modelling, Guo constructed a rectangular model in detail to include the
small yet important repository components, e.g., UFCs, buffer boxes, spacer blocks, gap-
fill, and host rock. The near-field model was simplified into an infinite repository using
symmetries in the xz- and yz-planes, i.e., adiabatic boundary conditions were applied to
the four rectangular faces lying in those planes. The assumptions of a constant ground
surface temperature of 5 °C (representing the average Canadian Shield temperature) and a
geothermal gradient of 0.012 °C/m were used [23]. Also, to ensure that the depth of the host
rock modelled did not influence the thermal results, Guo extended the host rock depth down
to 10 000 m. In this way, the two remaining faces in the xy-plane were given isothermal
boundary conditions of 5 °C (top) and 125 °C (bottom) and the initial temperature of the
whole domain varied linearly (0.012 °C/m) between these two temperatures. Figure 2.4
shows the geometry and boundary conditions of the described near-field model. The model
in the figure represents a unit cell, and due to symmetry, the overall model size was relatively
small at 0.75 m × 10 m × 10 000 m (when compared to the far-field model to be reviewed
next).

Temperature profiles from Guo’s near-field model simulation at various points inside
the unit cell are given in Fig. 2.5. The results indicate that the surface temperature of the
UFCs (e.g., Point T) is the greatest in the DGR and that the maximum surface temperature
for the parameters studied was 84 °C, occurring at about 45 years after UFC placement.
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Figure 2.4: Near-field model geometry and boundary conditions [29]

Figure 2.5: Near-field model results at various locations [28]
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Far-Field Model

The repository outlined in Fig. 2.1 has 284 rooms divided into eight panels, each with
375 buffer boxes. To be conservative in terms of estimating a maximum temperature, Guo
assumed each panel would consist of 36 rooms instead of the fewer 35 rooms. For the far-field
model, the many details inside the placement rooms were omitted and were collectively
replaced with 2 m thick panels of equivalent heat-generating material. Symmetry was used
again for model simplification; thus, a far-field model that represented a quarter of the entire
repository (two of eight panels) with the same boundary and initial conditions as the near-
field model was created. The overall far-field model size was 6000 m × 6000 m × 10 000 m
and the choices of 6000 m in both the x- and y-directions were such that the thermal
responses at the host rock boundaries remained unaffected by the presence of the DGR
during the simulation period. Figure 2.6 and 2.7 outline the geometry of the described
far-field model.

Figure 2.6: Far-field model
geometry [29]

Figure 2.7: Section view of far-field model
geometry at a depth of 500 m [29]
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Fig. 2.8 shows the temperature profiles at different points of the far-field model. Guo
also plotted the temperature profiles at several depths along the vertical line that passed
through the centre of the repository in Fig. 2.9.

Figure 2.8: Far-field model results at various locations† [28]

Figure 2.9: Far-field model temperatures along the repository centre [28]

The first figure identifies that the maximum temperature from the far-field model was 71 °C,
occurring in the centre of the inner panel (Point O′ in Fig. 2.7) at about 78 years after
placement of the UFCs. The maximum temperature here as compared to the near-field
model result was lower because the far-field model determined the average temperature

†Refer to Fig. 2.7 for the locations of Point O′, P′, L′, A′, and B′.
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inside the placement rooms. The latter figure was used to determine if the modelled depth
of 10 000 m was sufficient for the thermal results to be uninfluenced by the extent of the
host rock modelled. Since there was essentially no temperature change at 5000 m, the
modelled depth of 10 000 m was deemed more than adequate.

2.1.3 Modified Near-Field Temperature

If the near and far-field results respectively in Fig. 2.5 and 2.8 are compared, it can be
seen that the temperature profile peaks twice for the near-field model but only once for
the far-field model. Guo attributed the second peak seen in the near-field results to the
influence of the adiabatic boundary conditions applied in the model. With the presence of
the adiabatic boundary conditions, the thermal evolution in the near-field model was due
to contributions from the true repository heat load (Q1 of Fig. 2.10a) and a nonexistent
heat load from the area beyond the repository (Q2 of Fig. 2.10b) as well. Thus, a modified
temperature profile that would exclude the contribution from the nonexistent heat load
was desired by Guo.

(a) True repository
heat load, Q1

(b) Heat load due to adiabatic
boundary conditions, Q2

Figure 2.10: Heat load contributions in the near-field model [29]

19



The desired modified temperature profile corresponding to the near-field model was
denoted as T0 + Φ1, comprising an initial temperature term (T0) and a temperature rise
term (Φ1). The adiabatic boundary conditions that caused the presence of the nonexistent
heat load induced an extra temperature rise represented as ∆T , meaning the actual near-
field modelling results were instead T0 + Φ1 + ∆T . Guo’s method for obtaining the modified
temperature profile involved determining ∆T first and then subtracting that from Φ1 + ∆T ,
which was explained using the following PDEs [29]:

1. The temperature rise from the true repository heat load (finite repository) would be:

∂Φ1

∂t
− α∇2Φ1 = Q1 (2.1)

Φ1(x, y, z, 0) = 0 (2.1a)

Φ1(x, y, 0, t) = 0 (2.1b)

where α is thermal diffusivity and ∇2 is the Laplace operator.

2. The temperature rise for the infinite repository would be:

∂(Φ1 + ∆T )
∂t

− α∇2(Φ1 + ∆T ) = Q1 +Q2 (2.2)

(Φ1 + ∆T )(x, y, z, 0) = 0 (2.2a)

(Φ1 + ∆T )(x, y, 0, t) = 0. (2.2b)

3. The temperature rise from the nonexistent heat load induced by the adiabatic boundary
conditions could be obtained by subtracting (2.1) from (2.2). Simplifying would give:

∂(∆T )
∂t

− α∇2∆T = Q2 (2.3)

∆T (x, y, z, 0) = 0 (2.3a)

∆T (x, y, 0, t) = 0. (2.3b)
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Instead of solving for ∆T directly using (2.3), Guo determined the temperature rise
caused by the adiabatic boundaries more simply by using ∆T = (Φ1 + ∆T ) − Φ1. To use
this equation, Guo constructed a simplified near-field model to calculate the parenthesized
terms in a manner that was comparable to the earlier far-field model, which gave the last
term of the equation. The simplified near-field model omitted the placement room details
and replaced them with a 0.75 m × 10 m × 2 m thick section of heat-generating material
having the same heat density as that used in the far-field model. This ensured similar heat
loads between the two models. Figure 2.11 gives the dimensions of the simplified near-field
model, which represents a unit cell in the centre of a panel like before.

Figure 2.11: Simplified near-field model geometry [29]

Carrying out the simulation, Guo compared the average temperature profiles at the centre
of a panel for the infinite repository (simplified near-field model) and the finite repository
(far-field model) in Fig. 2.12. The difference between these two temperature profiles was the
previously discussed and desired ∆T (at 500 m depth). Having quantified ∆T , the modified
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temperature profile at the surface of a UFC was calculated and is presented in Fig. 2.13.
Guo noted that the modified temperature profile was validated against a theoretical solution
produced using HOTROK [23]—a program that can analytically determine the thermal
evolution inside a DGR [20].

Figure 2.12: Panel centre (Point O′) temperatures from the
simplified near-field model and far-field model‡ [29]

Figure 2.13: Unmodified (T) and modified (T_m) UFC
surface temperatures [29]

‡Refer to Fig. 2.7 and 2.11 for the location of Point O′.
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The modified temperature profile (red, dashed line) in Fig. 2.13 shows that the UFC
surface temperature peaks once instead of twice as in the unmodified temperature profile (red,
solid line). Under Guo’s model specifications, the maximum of the modified temperature
profile in the figure occurred at about 45 years after UFC placement. For comparison, the
second peak of the unmodified temperature profile occurred at 1550 years. It is important
to note that the single peak of the modified temperature profile matched the first of the
two peaks seen in the unmodified temperature profile; they are essentially the same in
Fig. 2.13. As well, since the heat output of UFCs decreases over time (recall Fig. 1.2), we
can be sure that the single peak of the modified temperature profile (or the first peak of
the unmodified temperature profile) was indeed the maximum temperature evolved inside
the modelled DGR. This key observation indicates that if finding the maximum surface
temperature of the UFCs is the only interest and an unmodified temperature profile is to
be used, simulating a short portion of the DGR’s lifespan is sufficient. The simulation
period only needs to be long enough such that one peak in the temperature profile occurs,
and that will be the maximum temperature evolved. Because the two peaks occur far
apart (about 1500 years), the second peak should be not realized if an appropriately short
simulation period is chosen. Therefore, the simulation period of one million years can be
reduced by several orders of magnitude. This advantage saves computation/CPU time
when using computationally expensive software such as COMSOL and is especially valuable
for optimization studies.

2.1.4 Other Deep Geological Repositories

The earlier subsections introduced NWMO’s conceptual DGR within a crystalline rock
environment and Guo’s method for determining the thermal evolution inside the repository
by differencing the influence of adiabatic boundary conditions from the thermal response
of an infinite repository model. For completeness, we now briefly review a few other
thermal calculation methods employed by other international organizations/researchers
studying the final disposal of used nuclear fuel here. Unlike NWMO’s horizontal, two-layered
placement of capsule-shaped UFCs in bentonite buffer boxes that are then stacked into
placement rooms (recall Fig. 2.3), the following methods described have been utilized to
study repositories that place UFCs vertically into cylindrical deposition holes/boreholes
lined with bentonite along parallel tunnel floors. An example is shown in Fig. 2.14, which
is the Swedish Nuclear Fuel and Waste Management Company’s KBS-3 method. Despite
the differences in container layout, we can review their approaches as applied to finite-sized
repositories nonetheless.
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Figure 2.14: KBS-3 method for containing and isolating
used nuclear fuel in deposition holes [30]

Park et al. [24] of the Korea Atomic Energy Research Institute demonstrated the use
of a simple large model in ABAQUS to calculate the thermal evolution for a DGR with
a finite number of UFCs. The development of the simple large model first needed the
construction of a detailed basic model describing one unit cell within the placement tunnels.
This model represented the geometries of the repository components well as it contained a
large number of mesh points; its results were considered reliable. With the detailed basic
model constructed, a simple basic model that ignored geometrically insignificant components
and replaced others with rectangular elements was made next to reduce the number of mesh
points in the model. This simple basic model was optimized to produce similar temperature
results as the detailed basic model using the fewest possible mesh points. Note that both
the detailed and simple basic models would act as infinite repositories as they would be
solved using adiabatic boundary conditions. Finally, the simple large model was built from
many simple basic models to obtain a repository model containing a finite number of UFCs.
Park et al. described this method as an efficient way to portray an entire repository due to
it requiring the use of fewer mesh points than one would for a detailed large model. Since
the extent of the repository was modelled, it also allowed the consideration of boundary
effects at the repository level. However, the drawback was that the approach would not
have scaled well due to high computational requirements and also if accurate temperatures
were required, the submodel function in ABAQUS had to be carried out after the global
model was solved.
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Another method to calculate the thermal evolution inside a DGR is to use the superpo-
sition principle. An example was given by Zhou et al. [31] for the analysis of a proposed
high-level radioactive waste repository in China. They first analysed a simple model of
one UFC surrounded by a layer of bentonite set in host rock with the assumption that
heat would be conducted radially outwards from the cylindrical container only. Through
Laplace transforms, the analytical solution of the thermal evolution in the Laplace do-
main for this single-UFC model was determined. For obtaining the temperature profile in
the time domain, numerical inversion of the Laplace domain result was then performed
using the Crump method [32]. With the temperature profile for the single-UFC model
available, use of the superposition principle allowed for the inclusion of the temperature
effects from multiple containers. The temperature increment at any location of surrounding
host rock was the sum of the temperature increments induced by all the UFCs in the
studied repository. To get the surface temperature of a UFC centred in the repository,
where the maximum temperature would occur should all UFCs be identical, Zhou et al.
summed the initial host rock temperature, the temperature increase of the host rock at the
bentonite-rock interface, and the temperature change across the bentonite layer together.
Although superposition was used successfully, a possible limitation may be the loss of
accuracy due to the oversimplification of the heat transfer process beyond the first layers of
the container, bentonite, and host rock. The heat from a central UFC conducted radially
outwards should repeatedly pass through bentonite, host rock, another layer of bentonite,
and then a neighbouring container. However, a starting model of a single UFC using the
method described by Zhou et al. might ignore these details and instead have the remainder
of the modelled domain be replaced with infinite host rock in order to arrive at a more
straightforward analytical solution.

Hökmark and Fälth [33] also demonstrated the use of superposition for the analysis of the
Swedish KBS-3 repository. In their analysis, the temperature increase at the bentonite-rock
interface was calculated as the superposition of the solutions that were generated by many
point, line, and compound line heat sources. The compound line sources combined two
line sources of different powers and heights and were capable of better representing the
larger heat fluxes experienced at the ends of cylindrical UFCs than individual line sources.
Likewise, line sources would represent cylindrical containers better than point sources.
For simplification of their model, Hökmark and Fälth represented the UFC centred in
their repository being analysed (most unfavourable location) and its two neighbours using
compound line sources. The further neighbours were substituted with line sources and then
point sources. Even further away, entire tunnels were replaced with more line sources.
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2.2 Surrogate-Based Analysis and Optimization

Computer models and simulations are frequently used when studying complex physical
phenomena—including heat transfer problems like in this thesis and specifically in regard
to the temperature constraint. As engineering design problems dealing with these physical
phenomena become increasingly complex, there exists a dependence on computer-aided
design and the use of numerical simulations for evaluating such problems. Since theoretical/
analytical models are not usually available for a given design problem, simulation-driven
design and design optimization need to be employed. We can consider nonlinear optimization
problems of the general form:

min
x

f(x)

s.t. x ∈ RA

(2.4)

where f(x) is the objective function to be minimized evaluated at the design variable
vector x, and RA denotes the feasible region. Usually, in engineering problems, we have [34]:

f(x) = U(Rf (x)) (2.5)

where Rf is the system response vector and U is defined through a norm that measures
the distance between Rf and a target vector y. Concerning simulation-driven design and
design optimization, the system response vector Rf is obtained through running computer
simulations and the models used are referred to as high-fidelity or fine models [34]. For
simplification, f itself is regarded as the high-fidelity model altogether.

In terms of solving (2.4), it is impractical to directly use high-fidelity models with tradi-
tional optimization techniques for several reasons. High-fidelity models are computationally
expensive to run, and due to limited resources (most notably time), there are restrictions
on the total number of evaluations possible. As well, objective functions coming from
computer simulations are often black-boxes and analytically intractable (i.e., discontinuous,
non-differentiable, or inherently noisy) [34]. For tackling black-box optimization problems,
there are heuristics (e.g., evolutionary algorithms, simulated annealing, and tabu search)
and derivative-free methods (e.g., directional direct-search, simplicial direct-search, and
trust-region algorithms). However, some of the methods in these classes may be undesirable.
They can require a significant amount of evaluations, making them better suited for compact
domains. Moreover, they may even lack mathematical convergence guarantees and fail to
converge to global optimums should certain assumptions/conditions not be met [35–41].
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Surrogate-based methods are a group of methods that appear to be successful in
overcoming the difficulties discussed. These methods iteratively approximate objective
functions (black-box functions) globally and use them to search for optimum solutions [35].
By so doing, surrogate-based methods offer a balance between exploration and speed,
making them desirable methods for optimization problems. This section reviews the
concepts and methodologies regarding SBAO, and it also introduces a MATLAB toolbox
specifically for surrogate modelling, which will be useful in this thesis. SBAO will be used
for approximating the maximum temperature inside the DGR as a function of UFC spacing,
room spacing, and UFC age.

2.2.1 Surrogate-Based Methods

Surrogate-based methods are composed of three iterative phases—namely design, model,
and search. Vu et al. [35] outlined the optimization algorithm as follows:

Phase 1 The design is initiated (iteration k := 0) by selecting and evaluating a set of
initial points, S0, using a high-fidelity model.

Phase 2 Using the available data, {(x, f(x)) | x ∈ Sk}, a surrogate model, sk, is
constructed or refined.

Phase 3 The set of next iteration points are identified using sk and then evaluated
using the high-fidelity model.
Should prescribed stopping criteria not be met, the process is repeated from
Phase 2 (k := k + 1) after updating Sk with the new information.

In the design phase (Phase 1), the set of initial points selected and then evaluated are
spread over the domain of interest (design space) in order to try understanding the global
behaviour of the black-box function. The model phase (Phase 2) employs computationally
cheap surrogate models to approximate the black-box function (high-fidelity) given the data
available. Finally, the search phase (Phase 3) uses information from the surrogate model to
find which point(s) should be evaluated in the next iteration if stopping criteria are not
satisfied. Koziel and Leifsson [42] summarized these steps more simply using a flowchart in
Fig. 2.15. The three phases are reviewed in more detail in the following subsections.
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Figure 2.15: Surrogate-based optimization process [42]

2.2.2 Design of Experiments

Selecting an initial set of design points for evaluation is referred to as design of experiments
(DOE), and it is a strategy for allocating the points in a manner that captures the most
amount of information about the design space [34]. There are two key conditions for good
experimental design [35, 43]:

Space-Fill Design points should be evenly distributed over the design space.
Non-Collapseness If it is not known which design variables are important beforehand,

the design points should not have any common coordinate values.

The first requirement aims to explore the entirety of the design space if no prior knowledge
about the behaviour of the objective function is available. The latter avoids evaluating
similar points which would arise when there are design variables that have inconsequential
influences on the objective function. Design points that only differ in these variables should
not be used as they can be considered the same points.

28



It is beneficial to have space-filling designs as they can improve interpolation methods
(which are used for constructing surrogates) [44]. Unfortunately, designs with good space-fill
are often also collapsing; thus, there is a trade-off between these two requirements [35]. This
is seen with classic DOE techniques like factorial designs and their alternatives (e.g., full,
fractional, central composite, star, and Box-Behnken) that are certainty space-filling, yet
they fall short of being non-collapsing. They do not search over the entire design space,
are very collapsed, and even require evaluations that are exponentially proportional to the
number of design variables. Focusing on space-filling and non-collapsing designs, they can
be grouped into geometrical or statistical designs [35]. One of the most popular geometrical
designs in literature—and the one to be used in this thesis—is Latin hypercube design
(LHD) [45].

An LHD is one that is obtained through Latin hypercube sampling (LHS). This sampling
technique selects n sample points by first dividing the design space into a set of cells. For
m design variables (dimensions), each of the axes is split into n equal bins so that the
design space will contain nm cells. The design is then determined by randomly allocating
the n sample points into the nm cells such that for all one-dimensional projections of the
samples, only one is in each bin [34]. The advantage of LHS is that it ensures that each
design variable is represented in a fully stratified manner, even when the objective function
is dominated by a select few [45]. However, note that LHS does not necessarily result in
space-filling designs. An extreme example where a two-dimensional LHD is composed of
points falling along a diagonal, and thus lacking uniformity over the design space, is seen in
the left portion of Fig. 2.16.

Figure 2.16: Poor versus good space-filling in a
two-dimensional Latin hypercube design [35]
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There are many designs on top of LHDs that offer better uniform sampling distributions.
In particular, maximin distance designs have been well-studied due to their simple space-fill
measure [35]. A maximin distance design finds a set of sample points where the minimum
distances between all points are maximized. Formally, a design S∗ having cardinality n is a
maximin distance design if it solves [35]:

max
|S|=n

min
x,y∈S

d(x,y) (2.6)

where d(x,y) is a nonnegative function such that [46]:

d(x,y) = d(y,x) ∀(x,y) ∈ S (2.6a)
d(x,y) ≥ 0 with equality if and only if x = y. (2.6b)

The optimizations in this thesis will be carried out using MATLAB (interfacing COM-
SOL), and will make use of the built-in function lhsdesign (Latin hypercube sampling
design) to generate initial sample points. For securing a set of initial sample points that will
be non-collapsing as well as space-filling, the criterion for lhsdesign will be set to maximin,
which uses the formulation described in (2.6). In this way, the lhsdesign function will
iteratively try to maximize the Euclidean distance between the initial points, i.e., d(x,y)
in (2.6) will calculate the Euclidean distance between points x and y.

2.2.3 Surrogate Functions

A number of surrogate models can be used to approximate black-box functions, and they
can be constructed through parametric or nonparametric approaches. Some examples of
parametric approaches are polynomial response surface modelling, moving least-squares
regression, and Kriging; nonparametric examples include projection-pursuit regression and
radial basis function interpolation [15, 47]. There are also approaches based on machine
learning algorithms such as neural networks and support vector machines [34]. Here, we
will focus on surrogate functions based on polynomial functions and radial basis functions
(RBFs).

To fit polynomial functions and RBFs, the MATLAB Surrogate Model Toolbox (MAT-
SuMoTo) will be used [48]. Developed by Müller for computationally expensive black-box
global optimization problems, it includes functions for fitting to polynomial, RBF, and
mixed-function surrogate models [49–52]. Some of the functions offered by Müller’s toolbox
will be incorporated into the SBAO of this thesis.
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Polynomial Response Surface Modelling

Polynomial response surface models (RSMs) try to explain the relationship between de-
pendent and independent variables by fitting a polynomial regression model to given data.
Although they are able to provide good function approximations in local regions and are
very computationally cheap to evaluate, they are unsuitable as global models for approxi-
mating highly nonlinear, multimodal, and multidimensional functions [47]. Nonetheless,
polynomials are a class of well-studied functions due to their simple formulation and thus
are quite popular as surrogate models.

The true polynomial RSM in m variables can be written as [53]:

f(x) = f̂(x) + ε, x ∈ Rm (2.7)

where f̂(x) is the rth-order polynomial approximation and the independent and identically
distributed random error ε follows a normal distribution with mean zero and variance σ2.
The polynomial RSM predictor is in the form:

f̂(x) = β0 +
m∑︂

i=1
βixi +

m∑︂
i=1

m∑︂
j≤i

βijxixj +
m∑︂

i=1

m∑︂
j≤i

m∑︂
k≤j

βijkxixjxk + · · · (2.8)

where β is a column vector of p coefficients. Since there are p =
(︂

m+r
r

)︂
coefficients,

the coefficients can be determined using a least-squares regression approach if there are
n≥p sample points available. The least-squares estimator of β would be:

β
p×1

= (XTX
p×p

)−1XT

p×n
f

n×1
(2.9)

where X is a matrix whose ij element is the ith observation of the jth independent variable,
and f is a column vector of observations. After solving for β, the polynomial RSM in (2.8)
can then be used as a surrogate model for approximating a function f with f̂ .

The number of monomials in (2.8) can be decreased if one considers a reduced polynomial
in which interaction terms are excluded from the RSM. Doing so would lessen the number
of coefficients that need to be determined, but it sacrifices the ability to account for the
interactions between variables. This may be useful when m is large since coefficients
corresponding to higher-order terms would likely be negligible and including them would
cause overfitting. In this case, the polynomial RSM predictor takes the form [48]:

f̂(x) = β0 +
m∑︂

i=1
βixi +

m∑︂
i=1

βiix
2
i +

m∑︂
i=1

βiiix
3
i + · · · . (2.10)

31



Radial Basis Function Interpolation

RBF interpolation uses a linear combination of simple functions to approximate more
complicated functions. These functions are radially symmetrical as their values at any
point depend only on the distance between that point and the origin, or any reference
point defined as the centre. First developed in 1971 by Hardy [54] for solving equations of
topography based on coordinate data, RBF interpolation can approximate functions not
only with reasonable local and global accuracy but with efficiency (using limited data) as
well.

An RBF is defined as any function ψ = ψ(∥x∥) where ∥x∥ denotes the Euclidean norm
of point x from centre c. Examples of some common RBFs are listed in Table 2.1.

Table 2.1: Examples of radial basis functions [47]

RBF Formulation
Linear ψ(x) = ∥x∥
Cubic ψ(x) = ∥x∥3

Thin-Plate Spline ψ(x) = ∥x∥2 log∥x∥
Multiquadric ψ(x) = (γ2 + ∥x∥2)1/2

Inverse Multiquadric ψ(x) = (γ2 + ∥x∥2)−1/2

Gaussian ψ(x) = e−γ∥x∥2

If n evaluated points xi (in m variables) are treated as reference centres, the RBF interpolant
of a function f(x) is [55]:

f̂(x) =
n∑︂

i=1
λiψ(∥x − xi∥), x ∈ Rm (2.11)

where λ are weights. For fixed bases such as linear, cubic, and thin-plate spline RBFs,
there is one weight per basis function. Parametric basis functions such as the multiquadric,
inverse multiquadric, and Gaussian RBFs can offer improved generalization properties of
(2.11), but it comes at the cost of a more difficult parameter estimation process [47]. To
determine the weights λ, we can consider the following linear system:

Ψ
n×n

λ
n×1

= f
n×1

(2.12)
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where Ψij = ψ(∥xi − xj∥) ∀(i, j) = 1, . . . , n. The weights can be calculated using the
inverse matrix method where (2.12) is rewritten as λ = Ψ−1f . Obtaining the weights, the
RBF interpolation in (2.11) results in a surrogate model that approximates f with f̂ at
any point x∗ as:

f̂(x∗) = ΨT
∗ Ψ−1f (2.13)

where ΨT
∗ = [ψ(∥x∗ − x1∥), . . . , ψ(∥x∗ − xn∥)].

In certain cases, Ψ may not be positive definite and can potentially be singular,
meaning the inverse matrix method cannot be applied to (2.12) [56]. RBF interpolation
can overcome this by augmenting (2.11) with a polynomial tail which represents a global
trend function [53, 57]. The augmented RBF interpolant is as follows [55]:

f̂(x) =
n∑︂

i=1
λiψ(∥x − xi∥) + p(x) (2.14)

where p(x) = c0 + c1x + · · · + ckxk is a kth-order polynomial with km + 1 coefficients.
To obtain a surrogate model using augmented RBF interpolation, the linear system to be
solved takes the form:⎡⎢⎣ Ψ

n×n
P

n×(km+1)
P T

(km+1)×n
0

(km+1)×(km+1)

⎤⎥⎦
⎡⎣ λ

n×1
c

(km+1)×1

⎤⎦ =

⎡⎢⎣ f
n×1
0

(km+1)×1

⎤⎥⎦ . (2.15)

2.2.4 Infill of Design Space

Once a surrogate model is constructed using initial data collected during DOE, the iterative
surrogate optimization process can begin. The surrogate model is used to search for new
points to be evaluated with the high-fidelity model, and the results are used to update
the surrogate model and signal a reiteration of the search process should stopping criteria
not be met. The criterion for selecting new sample points is known under different names
such as infill criterion or figure of merit [58]. There are many infill criteria available such
as those that use the predictor minimum, trust-region, probability of improvement, or
expected improvement [47]. Here, surface-minimum sample point selection is discussed,
which is one of the sampling strategies that Müller [48] presented with their MATSuMoTo
toolbox.

Surface-minimum sample point selection uses the local minimum of a surrogate model as
the next sample point for each iteration of an optimization process [48]. Compared to using
a high-fidelity model, determining the minimum of the corresponding surrogate model is
computationally cheap. If the surrogate model’s minimum is too close to already evaluated
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points, a point that maximizes the minimum distance to the evaluated points should be
selected instead. This is done to improve the fit of the surrogate model in unexplored regions
of the design space. When calculating the distances separating points, their coordinates
should first be normalized to the interval [0, 1] as per the bounds of each design variable.
Normalization ensures that the distances are calculated using design variable values that
are under a common scale. It is noted that the global minimum of a surrogate model does
not necessarily need to be determined during optimization iterations. As the surrogate
model is only an approximation, its minima do not necessarily match the minima of the
true objective function; in fact, it is desirable to evaluate them for exploration [48].

2.3 Yield Optimization

Performance specifications are present in every engineering project, and they must be
fulfilled in order to deem a project successful. These performance specifications are usually
satisfied by determining nominal values for the individual project components (design
variables) that make up the entire engineered system [59]. However, doing so does not
consider the fact that a real system is being designed and analysed since uncertainty is
not taken into account. Due to limited precision and inherent variability in all processes
(e.g., manufacturing and construction), components in an engineered system will be produced
within certain tolerances. This uncertainty signifies that the design variables are random
variables and in turn, the performance of the system is a random variable as well [59];
thus, measures of system performance are not deterministic. Their values may not be those
predicted from when the nominal values for the design variables are used. In this thesis,
the performance specification to be met is for there to be no system failure (maximum
temperature inside the DGR exceeding 100 °C).

To ensure performance specifications are met, yield optimization/maximization can be
used to increase the chances that extreme values of the design variables do not lead to
undesirable performance results. Yield is defined as the ratio of the number of outcomes
satisfying specifications to the total number of outcomes [60]. From another perspective, it
is the probability of a design meeting all of its specifications. For a vector x of m statistically
varying design variables with a joint probability density function (PDF) fx(x; µx,Σx) where
µ and Σ are the mean values and covariance matrix, respectively, the yield at a nominal
design point µx = X0 is [61]:

Y = Pr(x ∈ RA) =
∫︂

RA

fx(x; X0,Σx) dmx (2.16)
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where RA ∈ Rm is the acceptability/feasible region. For example, if the random variables
of X are independent and uniformly distributed, the yield in (2.16) reduces to [60]:

Y = V(RT ∩RA)
V(RT ) (2.17)

where V(R) is the hypervolume of region R and subscript T denotes the tolerance region.
Maximizing (2.17) would determine the worst-case design.

Yield optimization can either be done by: (i) determining what the allowed tolerances
on design variables are at a fixed nominal design point or (ii) determining a more robust
nominal design point given the tolerances on design variables. The latter will be the yield
optimization method used in this thesis. This approach to yield optimization is known as
design centring as the goal is to find a nominal design point X0 that maximizes yield for a
given distribution fx(X; X0,Σx) [61]. To be specific, tolerances on the design variables
form an m-dimensional tolerance box, and the objective is to determine the location of
this box such that the probability mass of X contained inside the feasible region is at a
maximum [62]. By doing so, the probabilistic centre can be found, and it will be a point that
has the greatest probabilistic distances from the boundaries of the feasible region, hence
yield is increased [63]. However, a difficulty that arises is that the probability distributions
of random variables may be unknown prior to an optimization process. To study the yield
of a design then requires assuming arbitrary distributions for component values (e.g., the
worst-case design in (2.17)). To do so, Seifi et al. [17, 59, 64] presented a method consisting
of three main steps for maximizing the yield of engineered systems:

1. Feasible region approximation,
2. Joint cumulative distribution approximation, and
3. Yield maximization.

These steps are reviewed in the following subsections.
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2.3.1 Feasible Region Approximation

The feasible region of an optimization problem prescribed by k design specifications and
design variable bounds is [64]:

RA = {x ∈ Rm | hi(x) ≥ 0, i = 1, 2, . . . , k} (2.18)

where hi(x) is a measure of system performance by the ith constraint. The method
described in this section assumes that RA is convex, but should it be nonconvex, the
problem can still be solved by repeating the calculations of the optimization process
using different initial points [64]. Although the feasible region in (2.18) can directly be
used for optimization, formulating a yield optimization problem having a feasible region
bounded by highly nonlinear constraints is difficult. Furthermore, a feasible region may
be bounded by constraints that have unknown analytical forms. For an uncomplicated
problem formulation later in the yield maximization step, the feasible region described by
(2.18) can be approximated using simpler boundaries.

Polyhedral Approximation

Polyhedral approximation is one method for approximating the feasible region in (2.18). This
method approximates each system performance measure using a first-order approximation
at an expansion point x∗ as follows [64]:

hi(x) ≈ hi(x∗) + gi(x∗)T(x − x∗) (2.19)

where gi(x∗) is the gradient vector of hi(x∗). The expansion point lies on the surface
of hi(x) = 0, and it will be closest to the centre of the design’s tolerance box. For each
constraint, this results in the minimization subproblem below [64]:

min
x

√︂
(x − xc)T(x − xc)

s.t. hi(x) = 0
(2.20)

where superscript c denotes the centre of the tolerance box. Seifi et al. [64] iteratively
solved (2.20) for x∗ by using the Lagrangian with a fixed-point method:

xk+1 = xc − gk
i [(gk

i )T(xc − xk) + hk
i ]

(gk
i )Tgk

i

(2.21)

where superscripts k and (k + 1) are iteration indices.
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After determining the first-order approximation of each constraint in the form of (2.19),
the polyhedral approximation of the feasible region can be formed. The approximate feasible
region is a polytope RP specified by [64]:

RP = {x | Ax ≥ c, xL ≤ x ≤ xU} (2.22)

where the vector (g∗
i )T = [ ∂hi

∂x1
, ∂hi

∂x2
, . . . , ∂hi

∂xm
]x∗

i
and scalar (g∗

i )Tx∗
i make up the ith row of

A and c, respectively. The superscripts L and U respectively denote fixed lower and upper
bounds on the design variables.

2.3.2 Distribution Approximation

The yield of a design depends directly on how its components (design variables) vary;
thus, it is important to represent the probability distributions of the random variables as
accurately as possible. For random variables with unknown distributions, studying the yield
of their design requires assigning arbitrary distributions based on available information.
If symmetrical distributions are used, the problem is similar to that described in (2.17)
where maximizing yield essentially becomes a search for where the tolerance box can be
located such that its overlap with the feasible region is at a maximum. This is the case as
the probabilistic centre is also the geometrical centre, X0 [63].

When generalizing to asymmetrical distributions, the yield must be maximized directly
instead of using the above approach. Recalling the definition of yield in (2.16), one can
imagine that evaluating the multidimensional integral would be quite challenging—or even
analytically impossible if the PDFs do not have closed-form cumulative distribution functions
(CDFs). For that reason, Seifi et al. [17, 59, 64] used the Kumaraswamy distribution for
the design variables as the distribution does have a closed-formed CDF. Specific examples
are demonstrated in those sources. The Kumaraswamy distribution is a double-bounded
distribution with PDF and CDF respectively as follows [65]:

f(x; a, b) = abxa−1(1 − xa)b−1 (2.23)
F (x; a, b) = 1 − (1 − xa)b, x ∈ (0, 1) (2.24)

where x = (z − zmin)/(zmax − zmin), zmin ≤ z ≤ zmax, and a and b are positive, nonzero
parameters. In addition to having a closed-form CDF, the Kumaraswamy distribution can
take on a variety of shapes depending on the values of its two parameters. This capability
allows the Kumaraswamy distribution to approximate other distributions such as uniform,
triangular, tail, and single modal distributions, even including the truncated Gaussian
or beta distributions [64]. Examples of the shapes the Kumaraswamy PDF can take for
various combinations of parameter values a and b are shown in Fig. 2.17.
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Figure 2.17: Examples of Kumaraswamy PDF shapes
for various parameter combinations of a and b [65]

2.3.3 Yield Maximization

With an approximated feasible region and representative design variable distributions, yield
optimization proceeds with maximizing the yield integral described in (2.16). As mentioned,
the yield must be maximized directly. This reduces the problem to finding a maximum
yield box contained inside the feasible region and using the polytope RP , the containment
requirement can be written as [17, 64]:

A+xu − A−xl ≤ c (2.25)

where A+
ij = max{0, Aij} and A−

ij = max{0,−Aij}, and superscripts l and u denote the lower
and upper bounds of the optimal maximum yield box, respectively. The maximum yield
box is contained inside the design’s tolerance box, which is of a given size with dimensions
specified by t. Locating the tolerance and maximum yield boxes in the optimization requires
using three decision variables [64]:

• Reference point xr, corresponding to the lower bounds of the tolerance box,
• Point xl, corresponding to the lower bounds of the maximum yield box, and
• Point xu, corresponding to the upper bounds of the maximum yield box.

38



Altogether, the yield maximization problem is [64]:

max
xr,xl,xu

Y (xr,xl,xu)

s.t. A+xu − A−xl ≤ c

xu ≤ xr + t

xr ≤ xl ≤ xu.

(2.26)

In the case that the design variables are assumed to be independent of each other, the
yield of the maximum yield box can be calculated as a product of individual probabilities.
If closed-form CDFs are available for each individual parameter, the calculation is straight-
forward. Recall that Seifi et al. [64] used the Kumaraswamy distribution for this very
reason. For example, if the Kumaraswamy distribution is used for all m design variables
and independence is assumed, the yield is calculated as follows [64]:

Y (xr,xl,xu) =
m∏︂

j=1
Pr(xl

j ≤ xj ≤ xu
j )

=
m∏︂

j=1

[︄
Fj

(︄
xu

j − xr
j

tj

)︄
− Fj

(︄
xl

j − xr
j

tj

)︄]︄

=
m∏︂

j=1

⎡⎣−
(︄

1 −
(︄
xu

j − xr
j

tj

)︄aj
)︄bj

+
(︄

1 −
(︄
xl

j − xr
j

tj

)︄aj
)︄bj
⎤⎦ .

(2.27)
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Chapter 3

Finite Element Modelling

Predicting the thermal evolution inside the DGR is done by running computer simulations
using the finite element analysis software COMSOL. This chapter concerns the development
and validation of a COMSOL model that represents NWMO’s conceptual DGR in a
crystalline rock environment. The model is developed similarly to that of Guo’s [29], as
reviewed in the previous chapter, for comparability. By setting the design variables (and
other parameters) to the values used by Guo (recall UFC spacing of 0.5 m, room spacing
of 20 m, and constant UFC age of 30 years) and comparing the temperature results, the
developed model is validated. This validated model is later used for SBAO in the subsequent
chapter to determine optimal design points by approximating the function that represents
the maximum temperature inside the DGR.

In brief, the model developed in this chapter differs from the one developed by Guo in
three main ways. The first difference is that this model used half of a placement room to
serve as the repeating unit of an infinite repository instead of only using a small section
of a placement room as in Guo’s model. A significant portion of a placement room was
required to be modelled as UFC age was one of the design variables considered, meaning
UFCs could be of various ages depending on their locations in the placement room. Thus,
one section of a placement room may behave differently compared to another. Half the
length of a placement room was modelled as UFC age was assumed to be symmetric from
the middle of the room. The two remaining differences are that the depth of the host rock
modelled was 5000 m as opposed to 10 000 m and that the simulation period was reduced
from one million years to about 300 years. These follow the information obtained from
reviewing Guo’s results in Chapter 2 and helped reduce the computational requirements of
the model.

40



COMSOL Multiphysics 5.3 was the finite element analysis software used for developing
and running the computer models representing the DGR. For the COMSOL simulations in
this thesis, the software ran on a machine having an Intel Core i5-3230M CPU at 2.60 GHz
using two cores in one socket with 8 GB of RAM. Via LiveLink for MATLAB, COMSOL
was interfaced with MATLAB for more convenient preprocessing, model manipulation, and
postprocessing.

3.1 Description of the Deep Geological Repository

The repository studied was the crystalline rock DGR described in the 2016 NWMO sixth
case study report [66] and its corresponding reference data report [67]. It was similar to
the one studied by Guo [29] (presented in Chapter 2) except for some small modifications,
primarily the distances separating Panel B/D and E/G. The newer underground layout of
the DGR and a longitudinal section of the placement rooms are shown in Fig. 3.1 and 3.2,
respectively. Note the directions of the coordinate system displayed in the figures for future
reference. The separations between Panel B/D and E/G would now be 252.8 m instead
of 100 m as before (cf. Fig. 3.1 and 2.1). The DGR would be located 500 m underground
in granite rock, containing components of UFCs, buffer boxes, spacer blocks, and gap-fill.
NWMO had specified that the fuel inside each UFC must have been discharged from a
nuclear power reactor for at least 30 years by the time of placement into the DGR [67]. For
clarity, the time since the fuel inside a UFC was discharged from a nuclear power reactor at
the time of DGR placement is denoted as UFC age.
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Figure 3.1: Updated underground layout of a crystalline rock DGR [66]
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Figure 3.2: Updated side view of placement room geometry [66]

3.2 Model Development

The model here is developed using the same values for the design variables as Guo [29] to
allow for comparisons in the next section. Specifically, the UFC spacing was 1.5 m, room
spacing was 20 m, and all UFCs had an age of 30 years.

3.2.1 Heat Equation and Assumptions

The COMSOL model developed solved a heat conduction problem with governing equation:

ρCp
∂T

∂t
+ ∇ · q = Q (3.1)

where ρ is density, cp is specific heat capacity at constant pressure, T is temperature, t is
time, q is a conductive heat flux vector, and Q is a heat source term. From Fourier’s law,
the conductive heat flux vector is q = −k∇T , where k is thermal conductivity. It was
assumed that the thermal properties (ρ, Cp, and k) used in the heat equation, (3.1), were
constant with temperature and that their corresponding materials were homogeneous and
isotropic.

The host rock was assumed to be granite throughout the model domain. Any component
in Fig. 3.1 and 3.2 not modelled was replaced by the host rock material. This was also
done for voids so that no empty space was present in the model. Regarding UFC age, since
there would be multiple fuel bundles inside each UFC, the age of the fuel inside each UFC
was considered the same so that the overall age was representative of the whole container.
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As the DGR would be some significant distance underground, the Earth’s geothermal
gradient was taken into account. It was assumed that the ground surface temperature of
the DGR site would be 5 °C, and the temperature underground would increase linearly
with depth at a rate of 0.012 °C/m [23].

3.2.2 Model Geometry and Boundary & Initial Conditions

Although Fig. 3.1 outlined the overall footprint of the conceptual DGR, it was disregarded
here as the spatial arrangement of the UFCs was eventually optimized. The spacing design
variables (specifically room spacing and UFC spacing) would determine the number of
placement rooms required which in turn would affect the DGR size. What was important
was the size of the placement rooms where the containers would be placed. The placement
rooms modelled took on the fixed dimensions specified in Fig. 3.2. Note that from the figure,
only a portion of the total length of the placement room was usable for UFC placement
and that UFCs should be placed into two perfectly staggered layers. As for the components
within the placement rooms, they retained the dimensions mentioned in Fig. 2.2.

Since modelling the entire DGR in Fig. 3.1 was not ideal as such a model would be very
large and computationally expensive to solve, methods for reducing the model size were
employed. They were as follows:

Panel/Placement Room Symmetry
The DGR was modelled as an infinite repository based on one horizontally repeating
unit. Instead of considering all eight panels in Fig. 3.1, one panel could be modelled if
symmetry boundary conditions were used around it in the xz- and yz-planes. Further
extending the use of symmetry, one placement room could be used to represent all
rooms in a particular panel if symmetry boundary conditions were used around that.
The symmetry boundary conditions were applied as adiabatic boundary conditions,
which took the form:

−n · q = 0 (3.2)
where n is the normal vector on the boundary.

UFC Age Arrangement Symmetry
If the UFC age arrangement were assumed to be symmetric from the centre of the
placement room, the model could be reduced by half along the length of the room
(x-axis). However, since the separations between Panel A/C/E/G and B/D/F/H
(51 m) and Panel B/D and E/G (252.8 m) were different, the symmetry could not

44



be used unless another assumption was made. Thus, it was also assumed that the
separations between panels at both ends of the placement rooms were 51 m. Using
the smaller separation modelled the placement rooms tighter together, which would
give a more conservative estimate on the maximum temperature evolved in the
repository. The symmetry boundary conditions were applied similarly like before
using (3.2).

UFC, Buffer Box, Spacer Block, and Gap-Fill Symmetry
The geometries of the components inside the placement room were symmetric from
the centre of the room on the xz-plane, allowing the model to be halved along the
y-axis. Again, (3.2) was used for applying the symmetry boundary conditions.

Domain Depth
To ensure that the depth of the host rock modelled did not influence the thermal
results, Guo [29] included 10 000 m depth of host rock in their model. As revealed in
Fig. 2.9, the temperature was unchanged at approximately 5000 m depth indicating
10 000 m of host rock was more than sufficient. Thus, the depth up to 5000 m was
modelled.

A summary of the relevant dimensions of various parameters inside the DGR is given in
Table 3.1.

So far, only boundary conditions in the xz- and yz-planes have been covered. Two
remaining boundary conditions in the xy-plane would need to be specified. These would be
isothermal boundary conditions applied to the top (ground surface) and bottom (modelled
depth) limits of the model, and they would take on the same values as the initial temperature
of the system. Based on the geothermal gradient of 0.012 °C/m and the assumed ground
surface temperature of 5 °C, the initial temperature inside the DGR was expressed as:

T (x, y, z, t = 0) = T0(z) = 5 + 0.012z (3.3)

where z is underground depth in [m] and initial temperature T0 is in [°C]. From that, the
isothermal boundary conditions were 5 °C and 65 °C at the ground surface and underground
depth of 5000 m, respectively.

45



Table 3.1: Key dimensions inside a crystalline rock DGR

Component Value Comment
- Dimension [m]

Host Rock
- Depth 5000 Extent of z domain modelled

Panel
- Separation 51 At both ends
- Depth 500 Ground surface to bottom of placement room

Placement Room
- Separation 20
- Length 281.5 Usable length
- Width 3.2
- Height 2.2

Gap-Fill
- Vertical Thickness 0.2 At sides of placement room
- Horizontal Thickness 0.1 At top and bottom of placement room

Spacer Block
- Length 2.8
- Width 0.5
- Height 1

Buffer Box
- Length 2.8
- Width 1
- Height 1

UFC
- Length 2.514 Cylindrical body
- Radius 0.282 Cylindrical body and hemisphere caps
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The COMSOL model that corresponds to the components, geometry, and boundary
conditions described thus far is depicted in Fig. 3.3. Because of the fixed placement
room dimensions, not every combination of room spacing and UFC spacing would fit the
placement room perfectly. Hence, it was assumed that there would always be a UFC placed
at the top layer of the perfectly staggered arrangement in the middle of a placement room
(see Fig. 3.3b). At the ends of the placement room, extra space was filled with enlarged
spacer blocks and solid HCB blocks (see Fig. 3.3c), similarly to what was described in [67].

(a) Overall repeating unit

(b) Middle of placement room

(c) End of placement room

Figure 3.3: COMSOL model components, geometry, and boundary conditions
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3.2.3 Material Properties and UFC Heat Load

The thermal properties of the DGR’s components were required to model the thermal
evolution inside the repository. The main properties required were the bulk density, thermal
conductivity, and specific heat capacity of each component. The thermal properties of
the UFCs and host rock (granite) used were taken from [29] while the thermal properties
for the remaining materials were those specified by the reference data report of NWMO’s
post-closure safety assessment on a conceptual crystalline rock repository [67]. Table 3.2
summarizes these thermal properties, and they were assumed to be constant values.

Table 3.2: Thermal properties of components inside a crystalline rock DGR [29, 67]

Component Bulk Density Thermal Conductivity Specific Heat Capacity
[kg m-3] [W m-1 K-1] [J kg-1 K-1]

UFC 7800 60.5 434
Buffer Box 1955 1.0 1280

Spacer Block 2276 2.0 1060
Gap-Fill 1439 0.4 870

Host Rock 2700 3.0 845

The heat outputs of the UFCs were also required for modelling the thermal evolution
inside the DGR. The heat output of each UFC is a function of its age, which is in reference
to the time since its discharged from a CANDU reactor. How hot and radioactive nuclear
fuel is at the time of its discharge from a nuclear power reactor is dependent on its fuel
burnup/utilization. When nuclear fuel is operated at higher fuel burnups, it becomes
hotter and more radioactive. For the repository proposed by NWMO, the nuclear fuel
at the time of placement will have been discharged from a nuclear power reactor for at
least 30 years [67]. That is, the used fuel bundles will have been in wet and dry storage
during that time leading up to their consolidation inside UFCs. Table 3.3 provides the heat
output at different times for a UFC with fuel subjected to a typical fuel burnup, beginning
at 30 years after discharge from a CANDU reactor. This data was assumed to be applicable
for all UFCs placed into the DGR.
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Table 3.3: Heat output of a UFC containing fuel (48 CANDU used
fuel bundles) having had a burnup of 220 MWh kg-1

U [68]

Time Out-of-Reactor Heat Output Time Out-of-Reactor Heat Output
[a] [W] [a] [W]
30 169.092 150 46.108
35 155.232 160 44.075
40 142.296 200 38.716
45 131.208 300 32.802
50 121.968 500 26.888
55 112.728 1000 18.665
60 105.336 2000 12.751
70 91.568 5000 9.240
75 85.932 10 000 6.644
80 80.850 20 000 3.844
90 72.257 35 000 2.097
100 65.327 50 000 1.321
110 59.783 100 000 0.380
135 49.988 1 000 000 0.137

3.2.4 Simulation Period

As identified in [29] in Chapter 2, the maximum temperature in the proposed repository
will occur relatively near the beginning of the DGR lifespan, soon after repository closure
(about 45 years). Since only the maximum temperature was of concern, the entire lifespan
of the DGR did not need to be simulated. To save computation time, the simulation
period used was 1e10 seconds, or approximately 300 years—significantly less than one
million years (about 3e13 seconds) but enough time such that the DGR temperature would
have peaked once. The time steps in seconds that were solved for followed an exponential
growth, and specifically, they were at times t = {10n/20 | n = 0, 1, 2, . . . , 200}. The choice
of exponentially growing time intervals was to match the behaviour of the heat load from
the UFCs (see Table 3.3), which is approximately an exponentially decaying function.
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3.2.5 Mesh Refinement Study

With the appropriate material properties and heat loads assigned in COMSOL, the model
constructed needed to be discretized/meshed. Given the various geometries in the DGR,
tetrahedral mesh elements were used to mesh the entire domain as they offered a better fit
and less element distortion compared to other mesh element types. Since the maximum
temperature inside the placement room was required, and it was the location of large
thermal gradients due to the heat output from UFCs, the room components used a finer
mesh while the host rock adopted a coarser one. The mesh for the host rock was finest near
the placement room and gradually increased in coarseness further away. An example of the
meshed model is illustrated in Fig. 3.4.

Figure 3.4: Tetrahedral elements around the middle of the placement room

As the maximum temperature was solved numerically, the choice of the mesh density
directly affected the accuracy of the solution. A fine mesh would yield a more accurate
result compared to a coarse mesh. To ensure that the model results were independent
of the mesh used to model the DGR, a mesh refinement study was performed. In the
study, the host rock’s maximum element size and maximum element growth rate were
respectively fixed at 50 m and 1.25 while the maximum element size for the components in
the placement room was varied from 0.45 m to 0.15 m in 5 cm decrements. Decrements
in the centimetre scale were selected to recognize the small geometries of the components
inside the placement room, especially those of the spacer blocks (see Table 3.1) whose
sizes were one of the design variables of interest. The host rock’s mesh elements near the
placement room scaled accordingly to the specified maximum element growth rate. Because
of the model size, slight decreases in the mesh element size resulted in substantial increases
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in the total number of elements and, in turn, the computational requirements as well. Due
to limited computing resources, the gap-fill around the placement room was not modelled
during the mesh refinement study to allow a broader exploration of element sizes. The
results of the mesh refinement study are summarized in Table 3.4 and Fig. 3.5.

Table 3.4: Mesh refinement study results

Maximum Room
Element Size

Number of Domain
Elements

Maximum
Temperature

Temperature
Change

CPU
Time

[m] [°C] [min]
0.45 317 263 79.307 — 19.1
0.40 414 950 79.192 −0.1% 23.0
0.35 473 963 78.363 −1.0% 25.1
0.30 615 062 78.518 +0.2% 30.4
0.25 960 831 78.728 +0.3% 45.1
0.20 1 503 934 80.659 +2.5% 67.7
0.15 3 106 981 80.703 +0.1% 870.3

Results for UFC spacing = 1.5 m, room spacing = 20 m, and UFC age = 30 years. Gap-fill component not modelled.
Maximum element size and maximum element growth rate of host rock fixed at 50 m and 1.25, respectively.
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Results for UFC spacing = 1.5 m, room spacing = 20 m, and UFC age = 30 years.

Figure 3.5: Mesh refinement study results
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From Table 3.4 and Fig. 3.5, the results for the maximum temperature inside the
DGR are seen to vary between approximately 78 and 81 °C depending on the number of
mesh elements used. Observing that the absolute percentage changes of the maximum
temperature decreased as the number of mesh elements increased and that the change
from the penultimate to the last result was reasonably small, it was chosen here that the
placement room maximum element size be 0.20 m. The maximum element size of 0.15 m
was not chosen based on the computation times seen in the last column of Table 3.4. As
the maximum element size decreased, the number of mesh elements quickly grew, and
thus COMSOL was required to solve for the temperature at many more mesh points.
This led to increased memory usage and more mathematical operations being performed
by the machine’s CPU, both of which contributed to longer solution times. Seeing that
the machine used could not reasonably handle solving the model built with a maximum
element size of 0.15 m and how the computational requirements drastically scaled from
the results obtained thus far, it was decided that placement room maximum element sizes
between 0.20 and 0.15 m would not be considered. From Fig. 3.5, it was expected that
the computation time would not be linearly proportional to the number of elements in
the model. The model using a maximum element size of 0.20 m already required over one
hour to solve. Further decreases in the maximum element size would increase the number
of elements in the model, lengthening the computation time. Furthermore, additional
refinement through a relative tolerance study in the following subsection would increase
the computation requirements even more. For the application of the model to SBAO in
the subsequent chapter where multiple evaluations would be performed, it was preferred to
keep the model at a manageable state for the machine available.

3.2.6 Relative Tolerance Study

Confidence in a numerical solution can be based on the number of significant digits in the
results. Determining the number of significant digits requires the error associated with the
numerical solution. However, if the true value of the solution is unknown, which is the
maximum temperature inside the DGR in this case, the true error cannot be calculated. For
iterative/numerical methods, approximate errors are used instead. For the simulations here,
the COMSOL solver allowed the specification of a tolerance on the relative approximate
error, ϵa, which was:

ϵa =
ŷpresent − ŷprevious

ŷpresent
(3.4)
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where ŷ is the iterative solution. This tolerance defined the maximum relative approximate
error allowed. Given a relative approximate error, the number of significant digits is:

n = ⌊− log(2 × |ϵa|)⌋ (3.5)

where ⌊·⌋ is the floor function. With this, a relative tolerance study was performed on the
model. Relative tolerance values decreasing from 1e−1 to 1e−4 were specified into the
COMSOL solver, and the results are given in Table 3.5 and visualized in Fig. 3.6.

Table 3.5: Relative tolerance refinement study results

Relative Tolerance Maximum Temperature Temperature Change CPU Time
[°C] [min]

1e−1 79.054 — 67.5
1e−2 82.388 +4.2% 85.0
1e−3 84.423 +2.5% 111.0
1e−4 84.229 −0.2% 183.6

Results for UFC spacing = 1.5 m, room spacing = 20 m, and UFC age = 30 years.
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Figure 3.6: Relative tolerance refinement study results
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From Table 3.5 and Fig. 3.6, the maximum temperature results can be seen to vary
between approximately 79 and 84 °C. There was more confidence in values corresponding to
the smaller relative tolerances as using (3.5), a solution converged from a relative tolerance
of 1e−4 has three significant digits compared a solution from a relative tolerance of 1e−1
having zero significant digits. It was chosen here that the relative tolerance specified for
the solver be 1e−3 (corresponding to two significant digits). The smaller relative tolerance
of 1e−4 was not chosen based on the increased computation times seen in the last column
of Table 3.5 and the fact that the maximum temperature inside the DGR was required to
be less than 100 °C. Thus, a solution with two significant digits would suffice and would be
computationally cheaper to find.

3.3 Model Validation

From the mesh refinement and relative tolerance studies, the COMSOL model was finalized
with maximum element size in the placement room of 0.20 m and solver relative tolerance
of 1e−3. With these specifications, the COMSOL solver should take roughly two hours
to solve a single simulation (see Table 3.5) using the machine described at the beginning
of the chapter. In this section, the behaviour of the maximum temperature in the DGR
is validated against the findings in the literature review of Chapter 2. Again, the design
variables were set to a UFC spacing of 1.5 m, room spacing of 20 m, and all UFCs had an
age of 30 years.

Guo [29] showed that the temperature profile inside a DGR peaks twice when modelling
it as an infinite repository and once when modelling it as a finite repository (see Fig. 2.12).
Moreover, the first of two peaks for an infinite repository is representative of the true
maximum temperature of its corresponding finite repository (see Fig. 2.13) [29]. The
evolution of the maximum DGR temperature for the infinite repository model developed
is presented in Fig. 3.7. In regard to the overall behaviour, the simulation period was
sufficient such that one maximum temperature peak had occurred while a second peak had
yet to manifest itself. This was important and desired as the maximum of the entire plot
was then representative of the maximum temperature that will occur inside the DGR over
its one million years lifespan.
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Figure 3.7: Maximum temperature evolution

Observing Fig. 3.7 more closely, the maximum temperature was approximately 84.4 °C,
and it occurred at about 40 years after UFC placement. For comparison, the maximum
temperature reported by Guo was 84 °C occurring at about 45 years [29]. The discrepancy
in the time of occurrence was likely due to the resolution of the chosen time steps (which
were at times of 100, 100.05, 100.10, . . . , 1010.00 seconds here). The occurrence at 40 years
corresponded to 109.10 seconds. If the maximum temperature were found to be at the next
time step of 109.15 seconds, that would correspond to 45 years and match the value found
by Guo. Nonetheless, the value of the maximum temperature determined by the model
agreed with previous work and could be used for optimization processes in the forthcoming
chapters.
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Chapter 4

Surrogate-Based Analysis and
Optimization

The COMSOL model developed in Chapter 3 was a high-fidelity model for determining the
maximum temperature inside the conceptual DGR. The model would then be optimized
to determine combinations of values for the design variables such that the maximum
temperature would be below the 100 °C constraint. In this chapter, the use of SBAO
would reduce the costly computational requirements for the optimization of the high-fidelity
COMSOL model by approximating the function that represents the maximum temperature
inside the DGR. Recall, the maximum temperature is a function of three design variables in
this thesis: (i) UFC spacing, (ii) room spacing, and (iii) UFC age. Two cases on the UFC age
inventory are considered. The first case concerns UFCs that have all been discharged from
a reactor for 30 years while the second case concerns assorted UFC ages. It is understood
that there is a trade-off between UFC spacing and room spacing as a decrease in one should
require an increase in the other if maximum temperature is to be held constant. However,
it is unclear how the arrangement of variously aged UFCs affects the results. The following
sections describe the SBAO process and present results for these two cases.
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4.1 Problem Formulation

Feasible design points are those that result in maximum DGR temperatures that are less
than 100 °C—leading to no system failure. To maximize the efficiency of the DGR, feasible
design points that lead to maximum temperatures just below the temperature constraint
were of interest. Finding these optimal points required solving the following optimization
problem:

max
x

Tmax(x)

s.t. Tmax(x) ≤ 100
xL

i ≤ xi ≤ xi
U , i = 1, 2, 3

(4.1)

where Tmax is the maximum temperature reached inside the DGR in [°C]; x = [x1, x2, x3] is
the design variable vector with indices corresponding to UFC spacing in [m], room spacing
in [m], and UFC ages in [a]; and superscripts L and U denote lower and upper bounds,
respectively.

As the maximum temperature constraint was the only constraint in the design space (ex-
cluding design variable bounds), approximating this function allowed for the determination
of the feasible region for the DGR design. With that information, the optimal design points
would simply be those that lie on or just below the constraint. This means that solving (4.1)
could instead be done by determining the boundary that separates design points resulting
in maximum temperatures over and under 100 °C. To determine this boundary, and thus
the feasible region of the design space, an optimization problem was formulated such that
deviations of the maximum temperature from the predefined 100 °C constraint would be
minimized. It was as follows:

min
x

|Tmax(x) − 100| (4.2)

s.t. xL
i ≤ xi ≤ xi

U , i = 1, 2, 3. (4.2a)

The bounds on the spacing design variables (UFC spacing and room spacing) were
chosen with consideration to the NWMO reference design for a crystalline rock DGR [67]
and adopted from a study by Lin and Ponnambalam [16]. The reference design used UFC
spacing of 1.5 m (corresponding to a spacer block width of 0.5 m) and room spacing of 20 m.
In [16], the upper bound on UFC spacing was double that of the value used in the reference
design while the room spacings explored were from half to double the reference’s values.
These were used in this work as well; thus, the discrete values considered for the spacing
design variables were x1 = {1.0, 1.1, 1.2, . . . , 2.0} and x2 = {10, 11, 12, . . . , 40}. Regarding
UFC spacing, x1 = 1.0 indicates the absence of spacer blocks and is the minimum separation
due to the buffer boxes being one metre wide.
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As for the bounds on the UFC age, they were based on the estimated repository operation
time of about 38 years [66]. When considering the case where the inventory would be of
identical UFC age, all UFCs were specified to be 30 years out of a nuclear power reactor
(i.e., x3 = 30), which is the minimum set by NWMO. This age specification could be
considered as an absolute worst-case as all the UFCs would be at its highest allowed heat
output at the time of placement into the DGR. For the case where the inventory would be
of assorted UFC ages, the ages considered were x3 = {k ∈ R | 30 ≤ k ≤ 60}. Sixty years
was chosen as the maximum UFC age instead of 68 years (due to 30 years of cooling plus
38 years of repository operation) as older UFCs output less heat, and thus more conservative
results would be obtained.

4.1.1 Parameterization of UFC Age Arrangement

Having chosen that the ages of the UFCs considered range from 30 to 60 years old, another
assumption had to be made regarding the UFC inventory. If the true UFC inventory
was considered, then the model of a single placement room would contain a fixed number
of UFCs per age as the inventory must then be distributed equally among all rooms.
Investigating the arrangement of this fixed inventory would fundamentally be considering
all the various permutations of the available UFCs. Instead, it was proposed here to consider
various arrangements of UFC age directly with the assumption that there would be enough
inventory (UFCs at each specific age) for such arrangements. This approach would allow
for a wider range of inventories and their arrangements to be studied.

To specify the various inventories of the UFCs, it would be easier to redefine x3 in (4.2a)
to be a design variable that represents the arrangement of the UFC ages in the placement
rooms. Specific functions could be used to represent the arrangement of the UFC ages in
this case. These functions would be parameterized and bounded between the lower and
upper bounds of the UFC age (30–60 years) and be defined along the modelled length of
the half placement room (0 to 281.5/2 m). By changing the value of the parameter(s) in
these functions, the arrangement of the UFC ages could then take on different arrangement
shapes. If the functions are chosen such that they contain only one parameter, the number
of design variables in (4.2) can remain the same, i.e., x3 = x3(u;α) where u is a position
from the centre to the end of the placement room, and α is a so-called shape parameter. The
design variables of focus would then be: (i) UFC spacing, (ii) room spacing, and (iii) the
shape parameter. Just as with x1 and x2, the shape parameter α would take on discrete
values (i.e., x3 would be a discrete variable).

Two functions were used to represent the arrangement of the UFC ages in this thesis,
namely the cosine function and the Kumaraswamy PDF. They are described as follows.
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Sinusoidal UFC Age Arrangement

A sinusoidal UFC age arrangement would place UFCs in a pattern where the age oscillates
between a minimum of 30 years and a maximum of 60 years. Depending on the frequency of
the oscillations denoted by a parameter, the amount of relatively young or old UFCs grouped
closely together would change. The cosine function was the sinusoidal function considered
as it is symmetric about the y-axis—which was treated as the lengthwise centre of the
placement room. The function that specified the UFC age A1(u) between 30 and 60 years
at a position between the centre (u = 0) and the end (u = 281.5/2) of the placement room
in metres was:

A1(u;ω) = 15 cos
(︃
ω

2u
281.5

)︃
+ 45, u ∈

[︃
0, 281.5

2

]︃
(4.3)

where ω is the number of oscillations along half of the placement room.
When the sinusoidal function was used in (4.2), the UFC age design variable was

then a function of the shape parameter ω, i.e., x3 = x3(u;ω). The values of the shape
parameter considered were limited to ω = {0.5, 1.0, 1.5, . . . , 10.0} during SBAO, and Fig. 4.1
exemplifies the UFC age arrangements based on (4.3) at several values of ω. Note that while
the arrangements are drawn as continuous functions in the figure, the actual arrangement
of the UFC ages would be discrete as there would be a finite number of UFCs spread over
the length of the room.
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Colours imply younger UFCs generate more heat compared to older UFCs.

Figure 4.1: Examples of UFC ages arranged sinusoidally (cosine) with
parameter w ∈ {0.5, 1.0, 5.0, 10.0}
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Figure 4.1: (Continued)

Kumaraswamy PDF-Like UFC Age Arrangement

The Kumaraswamy distribution was introduced in Chapter 2 and is a family of continuous
probability distributions originally proposed for double-bounded random processes [65].
Recall that the Kumaraswamy PDF is defined as:

f(x; a, b) = abxa−1(1 − xa)b−1, x ∈ (0, 1). (2.23)

A UFC age arrangement following the shape of the Kumaraswamy PDF would be able to
place UFCs in a variety of patterns. Depending on the value of its two shape parameters,
a > 0 and b > 0, the Kumaraswamy PDF could take on different shapes, including those
similar to uniform, Gaussian, and exponential distributions, among others. Adapting (2.23)
to the problem at hand, the function shaped like a Kumaraswamy PDF that specified the
UFC age A2(u) between 30 and 60 years at a position between the lengthwise centre (u = 0)
and the end (u = 281.5/2) of the placement room in metres was:

Â2(u; a, b) = 30ab
max Â′

2(u; a, b)

(︃ 2u
281.5

)︃a−1(︃
1 −

(︃ 2u
281.5

)︃a)︃b−1
+ 30, u ∈

[︃
0, 281.5

2

]︃
(4.4)

where Â′
2(u; a, b) = ab (2u/281.5)a−1 (1 − (2u/281.5)a)b−1.

For keeping the scope of the optimization small, parameter b was kept at a constant value.
With that, when the Kumaraswamy PDF was used in (4.2), the UFC age design variable
was then a function of the varying shape parameter a, i.e., x3 = x3(u; a). The constant
parameter was given the value b = 1.5 and the values of the varying shape parameter
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considered was limited to a = {0.25, 0.50, 0.75, . . . , 4.00} during SBAO. However, a problem
that arose when using (4.4) for values 0 < a < 1 and b = 1.5 was that the function tended
toward infinity as u → 0 (or x → 0 in (2.23)). The asymptotic behaviour was avoided by
mapping the interval x ∈ [0.01, 1] to u such that (4.4) became:

A2(u; a, b) = 30ab
maxA′

2(u; a, b)

(︄
2(0.99)u

281.5 + 0.01
)︄a−1

×
(︄

1 −
(︄

2(0.99)u
281.5 + 0.01

)︄a)︄b−1

+ 30, u ∈
[︃
0, 281.5

2

]︃
(4.5)

where A′
2(u; a, b) = ab (2(0.99)u/281.5 + 0.01)a−1 (1 − (2(0.99)u/281.5 + 0.01)a)b−1. Exam-

ples of UFC age arrangements based on (4.5) for various values of a are presented in
Fig. 4.2.
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Figure 4.2: Examples of UFC ages arranged similar to a Kumaraswamy PDF with
parameters a ∈ {0.25, 0.75, 1.00, 1.50, 2.00, 4.00} and b = 1.5
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Figure 4.2: (Continued)

4.2 Algorithm

The SBAO algorithm for solving (4.2) followed the methods and steps described in Chapter 2
and by Fig. 2.15. Initial design points were first chosen through DOE. They were evaluated
using the high-fidelity COMSOL model, and then a surrogate function was fit to the
data. Next, using a sampling technique, a new design point was chosen from the surrogate
and evaluated using the high-fidelity model. The result from the high-fidelity model was
compared with the estimate from the surrogate, and if it met a convergence criterion, the
optimization process was complete. The details of each step are given below:

Initial Design Points
Initial design points were selected through an LHS with a criterion that maximized
the minimum distance between points, i.e., a maximin distance design (recall (2.6)).
It was chosen to start with ten initial points, and the MATLAB function lhsdesign
was used to generate the space-filling and non-collapsing design. The maximum
temperature corresponding to each initial design point was then determined through
evaluating the high-fidelity model.
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Surrogate Approximation
A surrogate function was fitted to available data in order to approximate the
maximum temperature inside the DGR within the design space. Several surrogate
functions were used for approximating the objective function in (4.2) to compare
their performances, including polynomials (quadratic, reduced quadratic, cubic, and
reduced cubic) and RBFs (cubic and thin-plate spline). The MATSuMoTo toolbox
provided the MATLAB functions for fitting these surrogates.

Sample Point Selection
The sampling technique used to infill the design space for the problem described
in (4.2) was surface-minimum sample point selection. As the identification of the
feasible region was desired, design points near and on the boundary representing
the 100 °C constraint should be evaluated. Surface-minimum sample point selection
achieved this by selecting the local minimum of the surrogate model as the next
sample point in each iteration.

Because the design variables were discrete, the next sample point chosen via
surface-minimum sample point selection was based on searching within a tolerance
around the minimum of the objective function. The minimum of the objective
function in (4.2) is zero. At each iteration, design points that were predicted to
result in maximum temperatures in the range ±0.5 °C were considered as candidates.
If no candidate points were found, the tolerance was relaxed until at least one
point was found. In the case that multiple candidate points were found, the point
with maximin distance to all evaluated points was used to promote space-filling.
Furthermore, if multiple maximin distance points existed, one was randomly selected.

Convergence Criterion
The iterative process of the optimization continued until a convergence criterion was
met. The convergence criterion used was that at each iteration, the mean absolute
error (MAE) on the maximum temperature inside the DGR must be less than 0.5 °C.
MAE was calculated as:

MAE = 1
n

n∑︂
i=1

|ei| = 1
n

n∑︂
i=1

|yi − ŷi| (4.6)

where n is the number of points evaluated during the particular iteration, e is the
error, y is the true maximum temperature from the high-fidelity model, and ŷ is
the predicted maximum temperature from the surrogate model. As the sampling
technique was specified to choose only one point at each iteration, (4.6) calculated
the absolute error.
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4.3 UFC Inventory of Identical Age

For the case of identical UFC age, all UFCs were assumed to have been discharged from a
nuclear power reactor for 30 years at the time of placement into the DGR. Referring to
(4.2a), the value of the UFC age design variable would be constant at x3 = 30 in this case.
The two remaining design variables were then UFC spacing (x1) and room spacing (x2).
The ten initial design points chosen for x1 and x2 using LHS are identified in Fig. 4.3.
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Figure 4.3: Initial design points chosen via an
LHD for the identical UFC age case

The surrogate optimization process and its results using a cubic polynomial surrogate
are illustrated in Fig. 4.4. Figure 4.4a shows the initial surrogate approximation based
on the first ten evaluated points while the final model after the last iteration is given in
Fig. 4.4b. Six iterations were required totalling 16 evaluations, and the convergence is
shown in Fig. 4.4c. Feasible points closest to the maximum temperature constraint without
exceeding it are the most efficient design points as they would place the most UFCs per a
given amount of space. These points—UFC spacing and room spacing combinations—are
identified in Fig. 4.4d. Note that the surrogate model displayed does not correspond
to the objective function stated in (4.2) as it was unaesthetic to plot the surface of a
two-dimensional absolute value function. For better illustration, the surfaces in Fig. 4.4
plot Tmax = Tmax(x1, x2) with the 100 °C temperature constraint featured as bold contours.
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(b) Final surrogate approximation
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(c) Convergence plot
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(d) Optimal UFC spacing and room
spacing combinations

Figure 4.4: Surrogate optimization process using a cubic polynomial
surrogate for the identical UFC age case

From first glance, the surrogate model reveals that the function for the maximum
temperature inside the DGR is a decreasing function within the bounds studied in terms
of both UFC spacing and room spacing. As expected, larger UFC spacings and room
spacings lead to lower maximum temperatures since fewer heat-generating UFCs are packed
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into a given area. The points in Fig. 4.4d are the optimal design points if the maximum
temperature constraint is the only requirement considered. These points, (x∗

1, x
∗
2), border

the feasible region and any design point (x1, x2) is in the feasible region if the truth
function (x1 ≥ x∗

1) ∧ (x2 ≥ x∗
2) is true.

The predicted maximum temperatures from the surrogate model for the optimal points
in Fig. 4.4d are organized in Table 4.1 and compared with their true maximum temperatures
found by evaluating the high-fidelity model. Using a cubic polynomial function as the
surrogate, predicting the maximum temperatures of the optimal points had an MAE
of 1.072 °C. Considering that the feasible region was identified after 16 evaluations of
the high-fidelity model, which is a small subset of the design space containing a total
of 341 discrete (x1, x2) points, the error is arguably reasonable given the reduction in
computationally expensive model evaluations. The 16 evaluations in the SBAO amounted
to about 32 hours of simulation time. If all 341 discrete design points were evaluated, that
would require roughly 700 hours of simulation time. This contrast shows the advantage of
incorporating SBAO into the design process.

Table 4.1: Optimal design points using a cubic polynomial
surrogate for the identical UFC age case

UFC
Spacing

Room
Spacing

Predicted Maximum
Temperature

Actual Maximum
Temperature

Error

[m] [m] [°C] [°C] [°C]
1.0 27 99.268 100.274 −1.006
1.1 24 98.326 98.072 +0.254
1.2 21 99.462 98.813 +0.648
1.3 19 99.466 98.280 +1.186
1.4 18 96.984 95.615 +1.369
1.5 16 99.268 97.660 +1.608
1.6 15 98.302 96.728 +1.573
1.7 14 97.958 96.451 +1.506
1.8 13 98.223 97.018 +1.205
1.9 12 99.085 98.371 +0.713
2.0 12 94.886 94.164 +0.721

Mean Absolute Error 1.072
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4.3.1 Comparison of Surrogate Functions for Approximation

The choice of the surrogate function used in a surrogate model is important as it should
be able to fit adequately to the true underlying model being approximated. A function
that is not suited for such purposes will not yield accurate results and may also require
more iterations in the optimization process before convergence. Figure 4.4 presented results
that were based on using a cubic polynomial as the surrogate function for approximating
the behaviour of the maximum temperature inside the DGR. In Fig. 4.5, the results and
performance of SBAO using several surrogate functions (starting from the same initial
points) are compared using contour plots. The comparison included reduced quadratic,
cubic, and reduced cubic polynomial functions, as well as cubic and thin-plate spline RBFs.
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(a) Reduced quadratic polynomial
Total evaluations: 17
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(b) Quadratic polynomial
Total evaluations: 22

Figure 4.5: Comparison of polynomial and RBF surrogates for the
identical UFC age case starting from the same initial points
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(c) Reduced cubic polynomial
Total evaluations: 20
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(d) Cubic polynomial
Total evaluations: 16
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(e) Cubic RBF
Total evaluations: 19
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(f) Thin-plate spline RBF
Total evaluations: 28

Figure 4.5: (Continued)

From observing the plots, it is apparent that the contours resulting from polynomial
surrogates (Fig. 4.5a to 4.5d) are much smoother compared to those from RBF surrogates
(Fig. 4.5e and 4.5f). The reason for such behaviour is due to their different model fitting
approaches. A polynomial surrogate is derived using regression where a surface that
minimizes the least-squares to evaluated points is found. For an RBF surrogate, a linear
combination of radially symmetric functions is used to interpolate between evaluated points.
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Thus, RBF surrogate models will not be smooth if an insufficient amount of points is
supplied or if the points are not space-filling. Although their contours are seen not to be very
smooth, RBF surrogate models should perform better than polynomial surrogate models in
terms of capturing nonlinearity as they are not limited to a fixed set of monomials as their
basis functions. It can be seen that the general shapes of the contour lines in the plots
corresponding to the RBF surrogates are similar to those of the polynomial surrogates. If
more points were evaluated in the unexplored regions of the design space, the contour lines
for the RBF surrogate models should tend toward those seen in the polynomial surrogate
models—where all the maximum temperature contours were similar. Nonetheless, all the
surrogate functions used modelled the overall behaviour around the maximum temperature
constraint quite similarly and resulted in nearly identical feasible regions.

Comparing the total number of evaluations for each surrogate in Fig. 4.5, it is arguable
that all surrogate functions performed similarly except for the thin-plate spline RBF
(Fig. 4.5f), which required the most iterations until convergence. The cubic and reduced
quadratic polynomial surrogate functions converged the quickest at six and seven iterations,
respectively, and were followed by the cubic RBF surrogate function at nine iterations.
As the maximum temperature inside the DGR is viewed as a black-box function, cubic
RBF surrogates may be the better choice in later optimizations if they do not converge
significantly slower than their polynomial counterparts and if they can achieve comparable
overall results.

4.3.2 Initial Points Selection on Convergence

In addition to the choice of the surrogate function used in a surrogate model, the initial
design points chosen through DOE (here being LHDs) are also important as they may
affect the overall effectiveness of SBAO. As with all numerical methods, an inappropriate
choice of initial points leads to poor convergence—or even lack thereof. Figure 4.6 shows
the results and convergences of three SBAO trials starting from different initial points using
cubic RBF surrogates. The first of the three results is what was previously from Fig. 4.5e.
New initial points generated within the same bounds were used to obtain Fig. 4.6b while
new initial points generated under tighter bounds (smaller room spacing) based on the then
known maximum temperature contour were used to produce Fig. 4.6c.
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(a) Total evaluations: 19
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(b) Total evaluations: 26

Figure 4.6: Convergence based on different initial points using cubic
RBF surrogates for the identical UFC age case
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(c) Total evaluations: 25

Figure 4.6: (Continued)

The surrogate models at convergence for the three trials in Fig. 4.6 had similar overall
results but the total number of iterations until convergence varied considerably between
the trials. The similarity in the overall results of the three trials indicates that the choice
of initial points does not affect the final surrogate model significantly, but as expected, it
does affect the overall speed of convergence of the SBAO process. For instance, when new
initial points were used in the second trial (Fig. 4.6b), 16 iterations were required until
convergence compared to only nine originally (Fig. 4.6a). Even when new initial points
were generated under tighter bounds such that more points were initially evaluated near
the maximum temperature contour in the third trial (Fig. 4.6c), 15 iterations were still
required. These observations show that if fast convergence is desired, careful selection of
initial points through DOE is crucial.

Although fast convergence is ideal for reducing the number of iterations, and thus
computation time, comparing the contour plot in Fig. 4.6a against those in Fig. 4.6b
and 4.6c offers an example of when slower convergence may be worthwhile. In the first
contour plot, all the iteration points are near the maximum temperature contour. In
the second and third contour plots, some iteration points are scattered around the top
left corner in addition to the iteration points near the maximum temperature contours.
Looking at their respective convergence plots, the prominent peaks in the absolute error
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corresponded to these points (see annotations). These points were chosen based on their
maximin distances to all evaluated points during their respective iterations. At the cost
of more evaluations, the surrogate model benefited from increased accuracy over a larger
portion of the studied domain due to increased exploration.

4.4 UFC Inventory of Assorted Ages

In the case of assorted UFC ages, UFCs were assumed to be variously aged between
30 to 60 years out of a nuclear power reactor at the time of placement into the DGR.
Referring to (4.2a), the value of the UFC age design variable at a particular position in the
placement room would depend on the shape parameter that governs the prescribed UFC
age arrangement. Here, the UFC age arrangements explored follow the shapes of sinusoidal
(cosine) functions and Kumaraswamy PDFs:

x3(u,α) =

⎧⎨⎩A(u;ω) if sinusoidal arrangement—see (4.3),
A(u; a, b) if Kumaraswamy PDF-like arrangement—see (4.5).

As it was difficult to depict results with three design variables, multiple SBAO processes
were performed while one of the two remaining design variables was held constant. The
two remaining design variables are UFC spacing (x1) and room spacing (x2), and it was
chosen that room spacing would be held constant in between the optimization processes.
Thus, the two design variables were UFC spacing and UFC age in each optimization. Four
optimizations were carried out with room spacings of x2 = {10, 15, 20, 25}, which were
values near and including the NWMO reference design (20 m). As before, ten initial design
points (now for x1 and x3—but more specifically, α) were chosen using LHS at the start of
each optimization.

The SBAOs here use cubic RBF surrogates rather than polynomial functions. Although
all polynomial and RBF surrogates resulted in very similar results in the previous section
(see Fig. 4.5), new relationships are modelled in this section. The surrogates in the previous
section concerned the relationship between UFC spacing and room spacing. However, this
section focuses on the relationship between UFC spacing and UFC age arrangement (shape
parameter). As it is unclear how these design variables relate to one another, RBFs are
chosen to better capture nonlinear behaviours should there be any.
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4.4.1 Sinusoidal UFC Age Arrangement

The results for when the UFC age was arranged in the way of a cosine function determined
using cubic RBF surrogates with room spacings of x2 = {10, 15, 20, 25} are organized in
Fig. 4.7. The figures present the final surrogate models and the optimal UFC spacing for
each value of the shape parameter (ω = {0.5, 1.0, 1.5, . . . , 10.0}). The optimal points border
the feasible region, which is located to the right of the points. Table A.1 of Appendix A.1
compares the true maximum temperatures of the optimal points to their predicted values
in Fig. 4.7. Overall, 80 optimal points were identified with an MAE of 1.302 °C. Three of
those points were found to be above the maximum temperature constraint of 100 °C, but
only slightly (< 1 °C).
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Figure 4.7: Surrogate optimization results using cubic RBF surrogates
for a sinusoidal (cosine) UFC age arrangement
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(d) Room Spacing = 25 m

Figure 4.7: (Continued)

Two main features in the contour plots are quite evident even without examining Fig. 4.7
closely. First, the maximum temperature inside the DGR was not very sensitive to the
various arrangements of the UFC age when they were arranged following a family of cosine
functions, within the range of the shape parameter studied. Although the maximum
temperature contours are rather noisy, they can essentially be interpreted as vertical lines
(note the location of the optimal points) due to the discrete domain considered. For each
room spacing, the UFC spacing required at each value of the shape parameter ω in the
interval [0.5, 10] is essentially the same. The second obvious feature in Fig. 4.7 is that the
maximum temperature contours shifted toward smaller UFC spacings as room spacing
increased. This was expected, and it aligns with what was seen in Fig. 4.4 of the previous
section—the identical UFC age case. Larger room spacings spread out the placement rooms,
allowing the heat-generating UFCs to be placed closer together.

Observing the results from a design-focused perspective, Fig. 4.7 helps to identify the
approximate minimum UFC spacing required at each room spacing for the DGR. If the
30 to 60-year-old UFCs are arranged sinusoidally (cosine) with a room spacing of 10 m, the
minimum UFC spacing required would be 1.9 m. For room spacings of 15 and 20 m, the
minimum UFC spacings required are about 1.4 and 1.1 m, respectively. At larger room
spacings such as above 25 m, the UFC spacing can be at its lower bound of 1.0 m. This
last detail indicates that spacer blocks are not necessary if the room spacing is increased
past 25 m.
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4.4.2 Kumaraswamy PDF-Like UFC Age Arrangement

The final surrogate models and the optimal UFC spacing for each value of the shape
parameter (a = {0.25, 0.50, 0.75, . . . , 4.00}) when the UFC age is arranged in the way of
a Kumaraswamy PDF are provided in Fig. 4.8. Again, the results here were determined
using cubic RBF surrogates with room spacings of x2 = {10, 15, 20, 25}. The feasible region
is located to the right of the plotted optimal points. The true maximum temperatures of
the optimal points compared to their predicted values in Fig. 4.8 are listed in Table A.3 of
Appendix A.2. Overall, 56 optimal points were identified with an MAE of 1.308 °C. Four
of these points exceeded the maximum temperature constraint of 100 °C, which could be
mitigated should a tighter convergence criterion be applied.
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Kumaraswamy shape parameters a varying and b = 1.5.

Figure 4.8: Surrogate optimization results using cubic RBF surrogates
for a Kumaraswamy PDF-like UFC age arrangement
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Kumaraswamy shape parameters a varying and b = 1.5.

Figure 4.8: (Continued)

Similar to previous observations, the maximum temperature contours in Fig. 4.8 are
seen to shift toward smaller UFC spacings as the room spacing increased. However, unlike
what was seen in the sinusoidal UFC age arrangement case, the maximum temperature
inside the DGR was indeed affected by the various arrangements of the UFC age when
they were arranged following a family of Kumaraswamy PDFs, within the range of the
shape parameter studied. For a given room spacing, the maximum DGR temperatures were
the hottest near the bounds of the shape parameter (a → 0.25 or a → 4.00). In reference
to Fig. 4.2, this makes sense as these values of the shape parameters bring more young
UFCs closer together compared to shape parameter values in between the bounds. The
shape parameter values of a → 0.25 and a → 4.00 assume that the UFC inventory mainly
comprises young and high heat-generating containers whereas the values of 0.25 < a < 4.00
assume that the UFC inventory has more of a balance between the UFC ages.

Based on Fig. 4.8, at a room spacing of 10 m and UFC spacing up to 2.0 m, only shape
parameter values of 0.75 ≤ a ≤ 2.50 can result in maximum temperatures below 100 °C.
Spacer blocks are not necessary (i.e., UFC spacing of 1.0 m) at a room spacing of 20 m if
the shape parameter a is in the interval [0.75, 1.50], and are also not necessary at a room
spacing of 25 m if the shape parameter is in the interval [0.50, 2.50]. Generally speaking,
to ensure that a UFC inventory of assorted UFC ages (within the shape parameter range
explored) is placed such that the maximum temperature inside the DGR does not exceed
100 °C, the approximate maximum UFC spacings required at room spacings of 15, 20,
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and 25 m are 1.6, 1.3, and 1.1 m, respectively. These values of UFC spacing represent
an upper limit because if the placement of the variously aged UFCs does not respect the
arrangement specified by the shape parameter, the expected maximum temperature would
only be lower than predicted by the surrogates of Fig. 4.8. This is because the maximum
UFC spacings required mentioned above correspond to the shape parameter values of
either a = 0.25 or a = 4.00, which put the most number of young, high heat-generating
UFCs together. Deviating from the arrangement specified by the shape parameter values
of a = 0.25 or a = 4.00 would only spread the young, hot containers among other older and
cooler containers, lowering the peak temperature achieved.

4.4.3 Review of Surrogate Function Choice

Thus far, the SBAOs in this section used cubic RBF surrogates to model the relationship
between UFC spacing and UFC age arrangement (shape parameter) at various values of
room spacing. The choice of using RBFs over polynomial functions as the surrogates were
mentioned previously, with the main reason being that RBFs would model nonlinearity
better than polynomial functions should there be any. For comparison, the optimizations
leading to Fig. 4.7 and 4.8 were repeated using cubic polynomial surrogate functions,
and some results are shown in Fig. 4.9 and 4.10. The remaining plots can be found in
Appendix A (Fig. A.1 and A.2). Tables comparing the true maximum temperatures of
the optimal points to their predicted values are also located in the appendix (Table A.2
and A.4).
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Figure 4.9: Surrogate optimization results using cubic polynomial
surrogates for a sinusoidal (cosine) UFC age arrangement
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Kumaraswamy shape parameters a varying and b = 1.5.

Figure 4.10: Surrogate optimization results using cubic polynomial
surrogates for a Kumaraswamy PDF-like UFC age arrangement
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When comparing Fig. 4.9 to Fig. 4.7, the results for a sinusoidal UFC age arrangement are
identical. The cubic polynomial surrogate functions seem to fit the maximum temperatures
inside the DGR easily and do so with very smooth contour lines. Because the contour
lines are almost linear, using polynomial functions would have been sufficient in this case
for modelling the relationship between UFC spacing and UFC age arrangement. They
may perhaps even be better than RBFs here as the contour lines are not as noisy. This
observation is supported by the MAE being smaller when using polynomial functions
(0.543 °C) than when using RBFs (1.302 °C).

However, when comparing Fig. 4.10 to Fig. 4.8, there are major differences in the results
for a Kumaraswamy PDF-like UFC age arrangement. The cubic polynomial surrogates
seem to fit the maximum temperatures inadequately. As explained earlier, it was expected
that for small and large values of the shape parameter (a → 0.25 or a → 4.00), the DGR
would be at its hottest, and thus would require the largest UFC spacing. This is not the
case in Fig. 4.10b where it is predicted that shape parameters values a = {3.25, 3.50, 3.75}
would require larger UFC spacings than when a = 4.00. As well, due to the curve shape of
the cubic polynomial surrogates and how they interpolate between data points, they did
not estimate when the absence of spacer blocks (UFC spacing of 1.0 m) is allowed very
well. These poor predictions are reflected by a larger MAE of 2.102 °C when polynomial
functions were used compared to 1.308 °C for RBFs. These observations support the use of
RBFs as the surrogate functions in this section rather than polynomial functions.
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4.5 Summary

In this chapter, the maximum temperature inside a crystalline DGR for when UFCs are
identical and assorted in age were investigated using SBAO. The use of SBAO proved
advantageous in reducing the number of high-fidelity model evaluations required to reach
convergent results, providing the benefit of saving computation time and resources. Only a
small subset of the entire design space had to be evaluated using the high-fidelity model of
the DGR when SBAO was employed. While it was shown that although the choice of initial
points supplied to the SBAO did not affect the overall converged results, the choice of the
surrogate function did play a role in obtaining accurate conclusions. Cubic polynomial
surrogate functions were used for the identical UFC age case while cubic RBF surrogates
were used for the assorted UFC ages case.

For an inventory of identical UFC age where all the UFCs were assumed to be discharged
from a nuclear power reactor for 30 years, the feasible region in two design variables (UFC
spacing and room spacing) was identified. For an inventory of assorted UFC ages where
UFCs were assumed to be 30–60 years out of a nuclear power reactor, feasible regions in
the two design variables of UFC spacing and shape parameter at fixed values of a third
design variable, room spacing, were identified for two UFC age arrangements—sinusoidal
(cosine) and Kumaraswamy PDF-like. Should a DGR with a comparable UFC inventory be
constructed such that the design point is within the identified feasible regions, the DGR
should safely contain the UFCs without system failure. Since the inventory of used nuclear
fuel can change leading up to and during DGR operation and because the design of the
DGR has not been finalized to date, the visualization of the feasible regions in this chapter
offers insight into how future additions to Canada’s existing UFC inventory can be stored
while still satisfying the studied maximum temperature constraint.
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Chapter 5

Yield Optimization

The results from SBAO in Chapter 4 offered insight into how various arrangements of UFCs
could affect the maximum temperature evolved inside the studied DGR. The conclusions
regarding the required UFC spacings and room spacings were deterministic as they assumed
that at each value of the shape parameter considered (whether it be ω for the sinusoidal
arrangement or a for the Kumaraswamy PDF-like arrangement), the spacer blocks separating
the UFCs and the separations between the placement rooms could be manufactured or
constructed exactly to measure. Thus, those deterministic solutions are only reliable if
that assumption is true. In practice, however, it would be difficult to precisely obtain a
specific DGR design due to manufacturing and construction limitations. This means that
the maximum temperature inside the repository could deviate from a deterministic value
and possibly lead to system failure.

Since variability (uncertainty) in the design could lead to unexpected occurrences of
system failure, it was an important aspect to consider. Yield optimization is a method
to mitigate failure by taking into account the expected tolerances of the design variables
and the shapes of their random distributions. Again, yield is the probability of a design
meeting specifications, and in this thesis, the maximum temperature inside the DGR must
not exceed 100 °C. Depending on the problem formulation, yield optimization can reduce a
design’s failure probability by either: (i) determining what the allowed tolerances on design
variables are at a fixed nominal design point or (ii) determining a more robust nominal
design point given the tolerances on design variables. The latter would be the method used
here.
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This chapter first examines the yield of selected deterministically identified optimal
points found in the previous chapter through SBAO for the assorted UFC ages case under
assumed tolerances and distributions for two of the three design variables—UFC spacing
and room spacing. Then, yield optimization is performed to determine new nominal design
points that would minimize the probability of system failure at specific shape parameter
values. The yield optimization would determine both nominal points that lead to no failure
(100% yield) and points that allow some small probabilities of failure (95, 97, and 99% yields).

5.1 Tolerance and Distribution Assumptions

The design variables treated as random variables were the UFC spacing (x1) and room
spacing (x2). Additional variables could be considered if known, e.g., the density of the
bentonite materials as they swell in the presence of groundwater after DGR closure. UFC
spacing was expected to vary due to variabilities originating from the spacer blocks that
separate the buffer boxes containing the UFCs. The spacer blocks might be manufactured
or placed into the DGR imperfectly, leading to deficient or excess UFC spacings. Room
spacing was expected to vary due to unpredictable variations in the host rock of the DGR
and construction complications underground. Excavation methods such as blasting might
result in overbreaks in the host rock, and construction oversight might lead to placement
rooms not being spaced according to design. In consideration of all these uncertainties, the
tolerances for the design variables used in this chapter are 0.2 m for UFC spacing and 3 m
for room spacing. In other words, with reference to a nominal design point, the ranges
considered would be x1 ± 0.1 and x2 ± 1.5. These are believed to be reasonably anticipated
variations; however, the methodology could consider any other ranges if known.

In terms of the distributions of the UFC spacing and room spacing values, the Ku-
maraswamy distribution was used for both random variables. As introduced in Chapter 2,
depending on the values of its two parameters, a and b, the Kumaraswamy distribution
can take on different shapes and mimic common distributions. With that available, several
combinations of PDFs were considered. The two design variables were assumed to be
independent since the manufacturing of the spacer blocks and the excavation of the host
rock should be unrelated events. The combinations of distributions considered for UFC
spacing and room spacing are presented in Table 5.1, and examples of the joint PDFs are
illustrated in Fig. 5.1.
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Table 5.1: Various distributions for UFC spacing and room spacing

Case Parameters Distributions
a b x1 x2

1 [1,1] [1,1] Uniform Uniform
2 [2.5,2.5] [4,4] Gaussian-like Gaussian-like
3 [8,8] [8,8] Kurtotic, tending large Kurtotic, tending large
4 [1,2] [2,1] Triangular, tending small Triangular, tending large
5 [5,1] [1,5] Tail, tending large Tail, tending small
6 [2.5,2] [4,1] Gaussian-like Triangular, tending large

(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6
Distribution parameters for each case are from Table 5.1. Assuming independence.
Using nominal point (x1, x2) = (1.5, 20) with tolerances of x1 ± 0.1 and x2 ± 1.5.

Figure 5.1: Joint PDFs for various distributions of UFC spacing and room spacing

If the true distribution of each design variable were known, much value could be obtained
from yield optimization. However, without that information, the distributions listed in
Table 5.1 could be used to explore different manufacturing and construction cases for the
time being. Designing for Case 1 leads to a worst-case design as both UFC spacing and
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room spacing would be assigned uniform distributions. This would be useful if absolutely
no information about the distributions of design variables were available. Case 2 represents
when the design variables are approximately normally distributed. The remaining cases in
the table assume that the manufacturing and construction of the DGR and its components
are such that the distributions of the design variables are asymmetric (Case 3–6), i.e., there
are tendencies for under- or overshooting nominal values. Note that the realized values
of the random variables would be applied to the entire DGR, with all components (UFC
spacing and room spacing) being identical.

5.2 Yield of Optimal Points from SBAO

The deterministically identified optimal points from the previous chapter chosen for further
investigation to determine their yields under assumed tolerances and distributions were
from Fig. 4.8b. The figure corresponds to UFC inventories of assorted ages placed inside
the DGR following Kumaraswamy PDF-like arrangements with shape parameters a varying
and b = 1.5 at a room spacing of 15 m. For clarity, the design variables being random
variables having Kumaraswamy distributions (Table 5.1) is different from the arrangement
of the variously aged UFCs following Kumaraswamy PDFs. Three design points (with
variables of UFC spacing, room spacing, and shape parameter) were of interest:

Point A x1 = 1.6, x2 = 15, and a = 0.25,
Point B x1 = 1.3, x2 = 15, and a = 1.25, and
Point C x1 = 1.5, x2 = 15, and a = 4.00.

5.2.1 Feasible Regions via SBAO

To investigate how variabilities in the UFC spacing (x1) and room spacing (x2) affected the
yield of the DGR, the feasible regions defined by these two design variables were required.
Point A is in the design space corresponding to a shape parameter of a = 1.25, while Point B
and C are in the design spaces corresponding to a = 0.25 and a = 4.00, respectively. It was
found previously in Fig. 4.5 that the maximum temperature contour in the two-dimensional
design space of UFC spacing and room spacing was similarly approximated when using
polynomial and RBF surrogates. Thus, for consistency and algebraic simplicity, cubic
polynomial surrogates were used again to identify the feasible regions needed in this chapter.
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Using available data and the same design variable bounds from Chapter 4, SBAO
was performed again to determine the feasible regions required. The resulting feasible
regions for Kumaraswamy shape parameter values of a = {0.25, 1.25, 4.00} are distinguished
as shaded regions in Fig. 5.2. For increased accuracy when determining the maximum
temperature contours, the convergence criterion used in the SBAO processes here were
tightened to 0.25 °C instead of 0.5 °C as used before.
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(c) RA, a = 4.00
Boundary constraints in blue. Maximum temperature constraint in red.

Kumaraswamy shape parameter b = 1.5.

Figure 5.2: Feasible regions (UFC spacing and room spacing) for various
Kumaraswamy PDF-like UFC age arrangements
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5.2.2 Monte Carlo Simulations

The yield of the three selected deterministically identified optimal points under assumed
tolerances and distributions were determined using Monte Carlo simulations. For each
nominal point (Point A, B, and C), randomly selected points from the appropriate Ku-
maraswamy distribution were observed to either fall within or beyond their feasible region.
From the yield equation in (2.16), yield can be calculated as the number of realized points
that are within their feasible region over the total number of realizations. The results
from Monte Carlo simulations for the three points of interest with the design variables
following the six distributions cases in Table 5.1 are shown in Table 5.2. The reason for
the yields at Point C being significantly lower than those at Point A and B was because
Point C lied very close to the boundary of its feasible region. The points’ distances from
the boundaries differed due to the optimal design points being chosen from discrete sets of
values (x1 = {1.0, 1.1, 1.2, . . . , 2.0} and x2 = {10, 11, 12, . . . , 40}). For visualization, Case 1
and 4 corresponding to uniform and triangular distributions, respectively, are shown in
Fig. 5.3. Plots for the remaining cases are given in Appendix B.1.

Table 5.2: Yield of various optimal points from SBAO

Case Parameters Monte Carlo Yield
a b Point A Point B Point C

1 [1,1] [1,1] 84.4% 75.3% 48.6%
2 [2.5,2.5] [4,4] 93.0% 84.9% 42.0%
3 [8,8] [8,8] 100% 100% 99.4%
4 [1,2] [2,1] 91.5% 85.0% 53.6%
5 [5,1] [1,5] 96.8% 88.9% 27.3%
6 [2.5,2] [4,1] 96.8% 92.6% 70.1%

Using tolerances of x1 ± 0.1 and x2 ± 1.5.
Total of 1000 Monte Carlo simulations performed.
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(a) Point A, Case 1
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(b) Point A, Case 4
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(c) Point B, Case 1
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(d) Point B, Case 4
Distribution parameters for each case are from Table 5.1. 500 Monte Carlo simulations shown.

Figure 5.3: Monte Carlo simulations for various optimal points
from SBAO and design variable distributions
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(e) Point C, Case 1
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(f) Point C, Case 4
Distribution parameters for each case are from Table 5.1. 500 Monte Carlo simulations shown.

Figure 5.3: (Continued)

While the deterministically identified optimal points found in the previous chapter might
have seemed to be efficient because the smallest feasible combinations of UFC spacing
and room spacing were chosen, which would reduce DGR cost and size, Table 5.2 shows
otherwise. The table reveals that depending on the actual design variables’ distributions,
the points might not be the best choices when uncertainty is taken into account. Most
of the yields listed in the table are not at or even close to an ideal 100%. By having the
nominal points very close to the boundaries of their feasible region, there was a higher
probability that their realized points would lie outside their feasible region. It is here that
we see the need to perform yield optimization to determine more robust design points.

Examining Fig. 5.3, it can be seen that if both the distributions of UFC spacing and
room spacing skew toward larger values, the yield of the DGR increases. This is due to the
maximum temperature constraint sloping downwards and the feasible region lying above it.
This indicates that if tight tolerances in the manufacturing and construction of the DGR
and its components cannot be achieved and if the maximum temperature constraint is the
only consideration, then as can be expected, choosing processes that would more likely lead
to larger UFC spacings and room spacings should be preferred—but these can be costly
solutions.
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5.3 Yield Optimization for Nominal Design Points

The analysis of the deterministically identified optimal points found in Chapter 4 in
the section above made clear the need for yield optimization. Table 5.2 and Fig. 5.3
demonstrated that the optimal points might not result in a DGR with perfect yield should
there be variabilities in the design variables. Depending on the sizes of the design variables’
tolerances and the distributions of their values, the probability of the designed DGR meeting
performance specifications would change. For ensuring the highest chance of avoiding system
failure, yield optimization could be applied to determine new nominal design points in
which the aforementioned uncertainties would be incorporated.

As mentioned before, the yield optimization method used in this thesis determines more
robust nominal design points given tolerances on design variables. In this section, yield
optimization is performed for the three feasible regions corresponding to Point A, B, and C
(i.e., the two-dimensional design spaces for UFC spacing and room spacing at specific shape
parameter values). The feasible regions required are the same as those determined via
SBAO earlier (illustrated in Fig. 5.2).

5.3.1 Worst-Case Design

Due to the bounds selected for SBAO in the previous chapter, the feasible regions were
very large in comparison to any reasonably sized tolerance box (see Fig. 5.2 and 5.3),
and so, 100% yield was always achievable. Thus, any distribution case assumed for the
design variables (e.g., those in Table 5.1) would always lead to the same optimal nominal
design point—essentially the worst-case design. In this subsection, the three nominal design
points that yield 100% for the feasible regions of interest, regardless of the design variables’
distributions, are determined.

Problem Formulation

If one were to perform yield optimization (recall (2.26)) using very large feasible regions,
the nominal design points found would be centred in their respective feasible regions as
they would be the furthest from all their constraints. However, these results would not be
desirable for the DGR design problem at hand because more efficient design points should
exist. Design points that use smaller UFC spacings and room spacings (toward the bottom
left regions of Fig. 5.2) are better design points as they would lead to UFCs being placed
more densely together, reducing repository size and cost.
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To have yield optimization lead to nominal design points which take into consideration
the preference for smaller values of UFC spacing and room spacing, the objective function
in the yield maximization problem described in (2.26) was modified to include two small
penalty terms that would be proportional to the values of the design variables. Since a
preference between repository size and cost had not been specified by NWMO yet, arbitrary
weights for the penalty terms were assigned. This led to the following problem formulation:

max
xr,xl,xu

Y (xr,xl,xu) − 1
100

(︄
θ(X0, 1 − xL

1 )
xU

1 − xL
1

+ (1 − θ)(X0, 2 − xL
2 )

xU
2 − xL

2

)︄
s.t. A+xu − A−xl ≤ c

xu ≤ xr + t

xr ≤ xl ≤ xu

(5.1)

where θ is an arbitrary weighting parameter, and X0 = xr + 0.5t is the design centre
with indices 1 and 2 corresponding to UFC spacing and room spacing, respectively. The
constant 1/100 scales the penalty terms down so that maximizing yield is of higher priority.
Note that the lowercase superscripts l and u denote the bounds of the optimal maximum
yield box while the uppercase superscripts L and U denote the bounds of the design
variables.

Feasible Regions

The feasible regions corresponding to Point A, B, and C required for yield optimization
were those determined via SBAO and illustrated in Fig. 5.2. Reiterating, the feasible
regions were for shape parameter values of a = {0.25, 1.25, 4.00}, and they were determined
using cubic polynomial surrogate functions with a 0.25 °C convergence criterion. To more
accurately specify the feasible regions, they were described in the form of (2.18) as follows:

a) RA, a = 0.25 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
x ∈ R2

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

x1 − 1 ≥ 0,
2 − x1 ≥ 0,
x2 − 10 ≥ 0,
40 − x2 ≥ 0,
−329.82 + 173.25x1 + 18.13x2 − 40.25x2

1
−1.32x1x2 − 0.50x2

2 + 3.76x3
1 + 0.01x3

2 ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
,
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b) RA, a = 1.25 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
x ∈ R2

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

x1 − 1 ≥ 0,
2 − x1 ≥ 0,
x2 − 10 ≥ 0,
40 − x2 ≥ 0,
−379.69 + 370.32x1 + 16.21x2 − 189.31x2

1
−1.58x1x2 − 0.41x2

2 + 39.96x3
1 + 0.004x3

2 ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
, and

c) RA, a = 4.00 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
x ∈ R2

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

x1 − 1 ≥ 0,
2 − x1 ≥ 0,
x2 − 10 ≥ 0,
40 − x2 ≥ 0,
−344.34 + 175.39x1 + 19.22x2 − 38.18x2

1
−1.30x1x2 − 0.54x2

2 + 2.84x3
1 + 0.01x3

2 ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Note that the boundary constraint x2 − 10 ≥ 0 is redundant in the first and third sets
above (see Fig. 5.2).

Having the constraints h(x) defining the bounded feasible regions identified algebraically,
the yield optimization step in which a feasible region is approximated using a polyhedron
was made simple. This was because having the algebraic forms of the constraints meant
that their derivatives required for polyhedral approximation were also immediately available.
The required polyhedral approximations could be determined using (2.19) through (2.22).

Algorithm

The yield optimization algorithm for solving (5.1) followed the methods and steps described
in Chapter 2, and it was a modification of the MATLAB code developed by Seifi et al.
for their various applications in [17, 59, 64]. The algorithm was iterative (for nonconvex
problems) and started with a hypothesized design centre (nominal design point). At the
end of each iteration, the solution was used as the new nominal design point for the next
iteration. An iterative process allowed the polyhedral approximation step in the yield
optimization algorithm to be based on a previously converged nominal design point rather
than an initial guess. The details of the algorithm are described as follows.

For each feasible region in Fig. 5.2, the algorithm began by finding a polyhedral
approximation of the region by determining the appropriate expansion point for each
constraint based on a hypothesized design centre. Point A, B, and C from SBAO were used
as the initial design centres. The expansion points were used to linearize the constraints
and were solved iteratively using a fixed-point method. With a polytope approximating the
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feasible region obtained and under specified design variable tolerances, yield maximization
occurred using MATLAB’s fmincon function to solve the constrained optimization problem.
The tolerances for UFC spacing and room spacing were assumed to be 0.2 and 3 m,
respectively. Since their distributions did not affect the results, an arbitrary Kumaraswamy
distribution was used as that allowed for a closed-form CDF to be used when calculating
the yield. The algorithm sought a location for the tolerance box such that maximum yield
was achieved (100% in this problem) and that the design centre was at smaller values of
UFC spacing and room spacing (low penalty). In doing so, an optimal nominal design point
was determined, and a maximum yield box was also identified. This entire process was
then repeated for a specified number of iterations using the recently determined nominal
point in the polyhedral approximation step.

Results

The value of θ in (5.1) that was used during yield optimization here was 0.8, which put a
higher weighting on UFC spacing over room spacing. This was chosen because reducing
the cost of the repository was considered to be important here, and UFC spacing has a
greater influence on the overall cost of the DGR. Larger UFC spacing would lead to more
placement rooms; therefore, more land space and excavation of the host rock would be
required. Since the excavation cost for placement rooms would greatly exceed the cost of
acquiring more land for sparser rooms (cf. [69] and [70]) and because larger room spacing
would only require more land space (ignoring excavation for support tunnels), reducing
UFC spacing was of greater interest.

The yield optimization results for the three feasible regions of interest are visualized
in Fig. 5.4 and their corresponding nominal design points are summarized in Table 5.3.
Note that since 100% yield was achievable, the maximum yield box was the same as the
tolerance box.
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(a) RA, a = 0.25
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(b) RA, a = 1.25
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(c) RA, a = 4.00

Figure 5.4: Worst-case design yield optimization results for various feasible regions

Table 5.3: Worst-case design nominal points for various feasible regions

Feasible Region Nominal Design Point
(x1, x2)

RA, a = 0.25 (1.10,27.4)
RA, a = 1.25 (1.10,20.3)
RA, a = 4.00 (1.10,28.0)

Using tolerances of x1 ± 0.1 and x2 ± 1.5.
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With a higher weighting for smaller values of UFC spacing, the worst-case designs specified
that the nominal design points should be toward the intersections of the maximum temper-
ature constraint and the UFC spacing lower bound. By incorporating the uncertainties of
the design variables into the design, the new nominal points found are more robust than the
deterministically identified optimal points mentioned in the previous section. Should the
true tolerances on UFC spacing and room spacing be 0.2 and 3 m, respectively, the nominal
design points listed in Table 5.3 will lead to no system failure of the DGR regardless of the
distributions of the design variables.

5.3.2 Design with Failure Allowance

The nominal design points found through the worst-case design in the previous subsection
led to 100% yields based on the assumptions made on the design variable tolerances. Though
no system failure is undoubtedly desirable, sacrificing yield to allow for some chance of
system failure may be advantageous for certain aspects in an engineering project. One clear
advantage would be a reduction in cost. For the problem discussed, suppose that some
failure probability is allowed. The nominal design points in Fig. 5.4 would then shift closer
toward the bottom left of the feasible regions, further reducing the repository size and
cost. In this subsection, designs with failure allowance are considered, and nominal design
points for the feasible regions of interest that approximately lead to failure probabilities
of 1, 3, and 5% are determined. Since non-failure was not the target, the distributions of
the design variables would influence the results. Thus, the distribution cases in Table 5.1
were considered.

Problem Formulation

For the yield optimization process to allow a specified system failure probability, the
objective was to maximize yield to a certain degree such that some portion of the tolerance
box was outside its feasible region. This was done by modifying the yield maximization
problem in (5.1) to include an upper bound on the predicted yield (determined by the
maximum yield box). This new constraint was:

Y (xr,xl,xu) ≤ 1 − F T

where F T is the target failure probability. While this modification was simple, it is cautioned
that since the maximum yield box is rectangular, the predicted yield would only approximate
the actual portion of the tolerance box that would be inside the feasible region (or inversely,
the actual portion of the tolerance that would be beyond the feasible region). However, for
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small failure probabilities, the approximation should be acceptable. The full formulation
for designing with failure allowance was then:

max
xr,xl,xu

Y (xr,xl,xu) − 1
100

(︄
θ(X0, 1 − xL

1 )
xU

1 − xL
1

+ (1 − θ)(X0, 2 − xL
2 )

xU
2 − xL

2

)︄
s.t. Y (xr,xl,xu) ≤ 1 − F T

A+xu − A−xl ≤ c

xu ≤ xr + t

xr ≤ xl ≤ xu

(5.2)

and the value of θ considered was 0.8 again for comparability. The failure probabilities, F T ,
of 1, 3, and 5% were considered.

Algorithm

Solving the design with failure allowance problem of (5.2) required the same steps used
to solve the yield maximization problem of (5.1). For each feasible region in Fig. 5.2, its
polyhedral approximation based on a hypothesized design centre was first obtained. The
nominal design points determined for the yield maximization problems in Table 5.3 of
the previous subsection were used as the initial design centres here. Under tolerances of
0.2 and 3 m for UFC spacing and room spacing, respectively, and for specified Kumaraswamy
distributions for the design variables from Table 5.1, the constrained maximization problem
was solved using MATLAB’s fmincon function to reach one of the target failure probabilities.
The yield was calculated using closed-form Kumaraswamy CDFs. The algorithm placed
the tolerance box such that an approximate portion corresponding to the target failure
probability was beyond the maximum temperature constraint. The resulting design centre
was then the optimal nominal design point. The process was repeated from the polyhedral
approximation step using the newly found nominal point for a specified number of iterations.
In the end, to evaluate the actual yield of a solution, Monte Carlo simulation was performed
about the final nominal design point.

Results

Table 5.4 lists the yield optimization results for designs with failure allowances of 1, 3, and 5%.
By observing each row of the table, it can be seen that as the failure allowance increased,
the nominal design points shifted toward smaller values of UFC spacing and room spacing
(bottom left of the feasible regions in Fig. 5.2) as expected. As a nominal design point
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shifted closer to the bottom left of its feasible region, it was more likely that a realized
design point would be beyond its feasible boundaries. Considering that a nominal design
point with small values for UFC spacing and room spacing gives a smaller and cheaper
repository, the yield optimization performed here provided an understanding of the trade-off
between yield and cost. Thus, the practicality and significance of yield optimization as part
of the design process for the DGR was demonstrated.

Table 5.4: Design with failure allowance results for various feasible
regions and design variable distributions

Fe
as

ib
le

R
eg

io
n

C
as

e 1% Failure Design 3% Failure Design 5% Failure Design
Nominal Point MC Yield Nominal Point MC Yield Nominal Point MC Yield

(x1, x2) (x1, x2) (x1, x2)
1 (1.10,27.42) 99.4% (1.09,27.42) 96.3% (1.09,27.38) 94.6%
2 (1.08,27.35) 99.3% (1.07,27.31) 96.7% (1.07,27.28) 94.6%
3 (1.01,26.46) 99.3% (1.00,26.33) 97.0% (1.00,26.21) 94.8%
4 (1.10,27.31) 99.6% (1.10,27.06) 99.2% (1.10,27.00) 95.6%
5 (1.02,27.35) 99.3% (1.00,27.35) 96.3% (0.99,27.38) 94.5%R

A
,a

=
0.

25

6 (1.08,27.36) 99.3% (1.07,27.31) 96.9% (1.07,27.27) 94.6%
1 (1.10,20.34) 99.3% (1.09,20.34) 97.4% (1.09,20.34) 94.6%
2 (1.08,20.27) 99.3% (1.07,20.23) 96.7% (1.07,20.22) 94.5%
3 (1.01,19.38) 99.3% (1.00,19.25) 96.9% (1.00,19.17) 94.7%
4 (1.10,20.22) 99.5% (1.10,20.05) 98.5% (1.10,19.99) 96.2%
5 (1.02,20.32) 99.3% (1.00,20.31) 96.3% (1.00,20.35) 94.5%R

A
,a

=
1.

25

6 (1.08,20.28) 99.3% (1.07,20.23) 96.9% (1.07,20.20) 94.6%
1 (1.10,28.00) 99.3% (1.09,28.00) 96.3% (1.09,28.00) 94.4%
2 (1.08,27.93) 99.3% (1.07,27.89) 96.9% (1.07,27.86) 94.6%
3 (1.01,27.04) 99.3% (1.00,26.88) 96.8% (1.00,26.82) 94.8%
4 (1.10,27.84) 99.7% (1.10,27.62) 99.3% (1.10,27.60) 95.9%
5 (1.02,28.00) 99.3% (1.00,27.95) 96.3% (1.00,27.77) 95.1%R

A
,a

=
4.

00

6 (1.08,27.95) 99.3% (1.07,27.90) 96.5% (1.07,27.85) 94.6%
Distribution parameters for each case are from Table 5.1. Using tolerances of x1 ± 0.1 and x2 ± 1.5.
Total of 1000 Monte Carlo simulations performed.

To emphasize the importance of assuming appropriate distributions for the design
variables, some yield optimization results (Case 1, 3, and 5) for feasible region RA, a = 0.25
from Table 5.4 are visualized in Fig. 5.5. Plots for the remaining cases (Case 2, 4, and 6) of
feasible region RA, a = 0.25 can be found in Appendix B.2.
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(a) 1% Design Failure, Case 1
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(b) 3% Design Failure, Case 1
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(c) 5% Design Failure, Case 1
Distribution parameters for each case are from Table 5.1. 500 Monte Carlo simulations shown.

Magenta arrows in (d)–(i) show the changes in design centre locations relative to those of Case 1 (uniform distribution).

Figure 5.5: Design with failure allowance results for feasible region RA, a = 0.25
under various design variable distributions
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(d) 1% Design Failure, Case 3
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(e) 3% Design Failure, Case 3
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(f) 5% Design Failure, Case 3
Distribution parameters for each case are from Table 5.1. 500 Monte Carlo simulations shown.

Magenta arrows in (d)–(i) show the changes in design centre locations relative to those of Case 1 (uniform distribution).

Figure 5.5: (Continued)
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(g) 1% Design Failure, Case 5
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(h) 3% Design Failure, Case 5
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(i) 5% Design Failure, Case 5
Distribution parameters for each case are from Table 5.1. 500 Monte Carlo simulations shown.

Magenta arrows in (d)–(i) show the changes in design centre locations relative to those of Case 1 (uniform distribution).

Figure 5.5: (Continued)
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Depending on the assumed distributions for UFC spacing and room spacing, the location
of the resulting optimal nominal design point changes. In the first three subfigures of
Fig. 5.5 (Case 1), the design variables were assumed to be uniformly distributed. There
was an equal probability for a realized point to be in the bottom-left corner of the tolerance
box versus anywhere else. In this case, the spread of the design variables’ values led to the
design centres being far away from the boundaries of the feasible region to ensure adequate
yields. For distributions with high kurtosis, the distributions of the design variables’ values
are concentrated in the design space; thus, realized values are likely to fall within a certain
area of the tolerance box. Yield optimization takes advantage of this by potentially choosing
a design centre closer to the boundaries of the feasible region. This is seen in the remaining
subfigures of Fig. 5.5. In Fig. 5.5d–5.5f (Case 3), the distributions of the design variables
were highly kurtotic for large values meaning realized points were likely to be in the top-
right portion of the tolerance box. This allowed the design centres to move closer to the
bottom-left of the feasible region as it was less likely that extreme small values for the
design variables would occur. In Fig. 5.5g–5.5i (Case 5), the distributions of the design
variables were highly skewed as they follow tail distributions. Realized points were likely to
lie at the bottom-right corner of the tolerance box for this case, which led to the design
centres shifting left. The relative movements of the design centres from Case 1 over to
Case 3 and 5 are revealed in Fig. 5.5d–5.5i using magenta arrows. In some designs with
more liberal failure allowances, their design centres might even lie outside their feasible
regions but still have high probabilities for realized points to be within them. This is
exemplified in Fig. 5.5f and 5.5i.
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5.4 Summary

This chapter began with an analysis of the yields of the optimal design points determined via
SBAO in the chapter prior. These points were attractive design options as they suggested
the smallest possible combinations of UFC spacing and room spacing, meaning the DGR
would be smaller and cheaper to manufacture and construct. However, the yield analysis
revealed that should the manufacturing and construction of the DGR be with design
variables that inherently have variabilities, the deterministically identified optimal design
points would not be as desirable as once thought. Thus, the stochastic nature of the design
variables needed to be considered, and this was done through the use of yield optimization.

New nominal design points were identified under arbitrary assumptions of design
variable tolerances and distributions. As only one main constraint (maximum temperature
constraint) was of concern, the feasible regions were bounded through specifying upper
and lower bounds on the design variables. This led to large feasible regions resulting in
yield optimization finding the same nominal design points regardless of the design variables’
distributions, all with 100% yields (i.e., no system failure). When some probability of failure
was allowed in the design (between 1 and 5% failure probability), the distributions of the
design variables were ultimately significant in the yield optimization process, and different
nominal design points were found for the various distribution cases considered. Overall, the
yield optimization in this chapter demonstrated that the variabilities in design variables
should be considered in the repository design process and that appropriate tolerances and
distributions need to be used to represent them.
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Chapter 6

Conclusion

The objective of this thesis was to determine optimal designs for the spatial arrangement
of UFCs in a conceptual Canadian DGR such that a maximum temperature criterion was
satisfied over the lifetime of the repository (one million years) to prevent system failure.
The criterion was that no part of the DGR beyond the surfaces of the placed UFCs could
exceed a temperature of 100 °C as radioactive decay occurred inside the containers. In
terms of spatial arrangement, the spacing between UFCs (UFC spacing), the separation
between placement rooms underground (room spacing), and the locations of variously aged
UFCs that generate heat at different rates (shape parameter) were the three design variables
of concern for the design optimization.

Due to high computational requirements for solving a large finite element model and
even more intense requirements when optimizing it, a compact model was first created
in Chapter 3. This model ignored insignificant components of the DGR, made use of
symmetries within the DGR, and reduced the required simulation time far down from one
million years by noticing that the maximum temperature within the DGR occurred at
around 40–45 years after placement of the UFCs. The final model required approximately
two hours to solve on the machine used (Intel Core i5-3230M CPU).

In Chapter 4, two cases were studied through surrogate optimization: (i) UFCs all
having been 30 years since discharged from a nuclear power reactor and (ii) UFCs being
between 30 and 60 years since discharged. For the first case, a trade-off curve bordering the
feasible region was identified, allowing the determination of optimal combinations of UFC
spacing and room spacing that result in maximum temperatures just below 100 °C. A cubic
polynomial surrogate function was used and 16 evaluations (requiring about 32 hours) were
performed in total to reach convergence (within 0.5 °C), significantly less than if the entire
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design space was explored without SBAO (341 discrete points requiring roughly 700 hours).
For the second case, sinusoidal (ii.a) and Kumaraswamy PDF-like (ii.b) arrangements of
the variously aged UFCs were explored by parameterizing the UFC age at each location
in a placement room using a shape parameter. Cubic RBF surrogate functions were used,
and it was determined that within the bounds studied: (ii.a) the alternating frequency for
sinusoidally placing UFCs by age did not affect the maximum temperature significantly
and (ii.b) the minimum UFC spacings required at room spacings of 15, 20, and 25 m when
placing UFCs by age in a Kumaraswamy PDF-like arrangement were 1.6, 1.3, and 1.1 m,
respectively.

When the design variables of UFC spacing and room spacing were considered as random
variables having assumed tolerances of 0.2 and 3 m, respectively, the deterministic designs
determined through surrogate optimization had appreciable probabilities of system failure
since the identified design points were very close to the boundaries of their feasible regions.
Yield optimization was performed in Chapter 5 to incorporate a stochastic aspect into the
analysis and to determine more robust design points. New nominal design points were
suggested based on several levels of allowed failure probabilities under various assumed
distributions for the design variables, shifting the design centres more into the feasible
regions as higher yields were explored.

The work presented in this thesis serves as methods that can be considered for the
currently ongoing design process for Canada’s DGR. As the DGR site selection process by
NWMO continues and as design criteria are eventually finalized, more detailed information
and constraints for the conceptual repository will become available. These pave the way for
future work, and the following are recommended:

• Extend the design space to higher dimensions to include design variables that reflect
other modes of system failure such as corrosion and deformation.

• Analyse the effects of varying the UFCs’ internal fuel bundle distributions on the
maximum temperature evolved.

• Couple the effects of multiple physical processes.
• Explore other surrogate functions beyond polynomial functions and RBFs, e.g., artifi-

cial neural networks for higher-dimensional problems.
• Investigate yield for correlated random variables.
• Study the effects of the model parameters on yield.
• Consider the temperature effects on the material properties in the model.
• Use multi-objective optimization to minimize multiple objectives such as repository

size, cost, and yield.
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Appendix A

Surrogate-Based Analysis and
Optimization

A.1 Sinusoidal UFC Age Arrangement

The following tables and figure show the results from SBAO for when an inventory of
assorted UFC ages was arranged sinusoidally in the way of a cosine function.

Table A.1: Optimal design points using cubic RBF surrogates
for a sinusoidal (cosine) age arrangement

UFC
Spacing

Room
Spacing

Shape
Parameter

Predicted Maximum
Temperature

Actual Maximum
Temperature

Error

[m] [m] [°C] [°C] [°C]
1.9 0.50 97.171 98.530 −1.359
1.9 1.00 99.943 99.943 0∗

1.9 1.50 99.288 99.288 0∗

1.9 2.00 99.166 99.166 0∗

1.9 2.50 99.010 99.010 0∗

1.9 3.00 97.059 98.957 −1.898
1.9 3.50 97.844 98.855 −1.011
1.9 4.00 97.623 98.840 −1.217
1.9 4.50 97.089 98.905 −1.816
1.9 5.00 97.360 98.884 −1.524
1.9 5.50 97.349 98.926 −1.577
1.9 6.00 96.847 98.900 −2.053
1.9 6.50 97.818 98.937 −1.119
1.9 7.00 97.911 98.911 −1.000
1.9 7.50 98.377 98.943 −0.566
1.9 8.00 98.993 98.993 0∗

1.9 8.50 99.028 99.028 0∗

1.9

10

9.00 99.000 99.000 0∗
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Table A.1: (Continued)

UFC
Spacing

Room
Spacing

Shape
Parameter

Predicted Maximum
Temperature

Actual Maximum
Temperature

Error

[m] [m] [°C] [°C] [°C]
1.9 9.50 98.063 99.032 −0.969
1.9 10 10.00 98.933 98.933 0∗

1.3 0.50 98.515 98.515 0∗

1.4 1.00 97.783 97.467 +0.316
1.4 1.50 96.958 96.165 +0.793
1.4 2.00 96.004 95.721 +0.283
1.4 2.50 95.925 95.386 +0.539
1.4 3.00 95.715 95.250 +0.465
1.4 3.50 95.368 95.047 +0.321
1.4 4.00 96.802 94.994 +1.808
1.4 4.50 97.604 94.895 +2.709
1.4 5.00 95.917 94.828 +1.089
1.4 5.50 94.674 94.747 −0.073
1.4 6.00 96.751 94.687 +2.064
1.4 6.50 97.806 94.647 +3.159
1.4 7.00 95.578 94.582 +0.996
1.4 7.50 94.880 94.545 +0.335
1.3 8.00 99.727 100.664 −0.937
1.3 8.50 99.822 100.605 −0.783
1.4 9.00 94.476 94.402 +0.074
1.4 9.50 93.877 94.338 −0.461
1.4

15

10.00 94.306 94.306 0∗

1.1 0.50 93.993 93.993 0∗

1.1 1.00 97.525 100.565 −3.040
1.1 1.50 99.013 99.013 0∗

1.1 2.00 98.307 98.307 0∗

1.1 2.50 97.771 97.771 0∗

1.1 3.00 97.427 97.427 0∗

1.1 3.50 97.223 97.133 +0.090
1.1 4.00 96.641 96.926 −0.285
1.1 4.50 95.977 96.739 −0.762
1.1 5.00 96.618 96.618 0∗

1.1 5.50 98.220 96.486 +1.734
1.1 6.00 96.380 96.380 0∗

1.1 6.50 97.125 96.282 +0.843
1.1 7.00 96.990 96.176 +0.814
1.1 7.50 96.105 96.105 0∗

1.1 8.00 97.507 96.012 +1.495
1.1 8.50 97.611 95.953 +1.658
1.1 9.00 97.563 95.872 +1.691
1.1 9.50 95.831 95.831 0∗

1.1

20

10.00 98.188 95.725 +2.463
1.0 0.50 91.454 91.454 0∗

1.0 1.00 97.540 97.540 0∗

1.0 1.50 95.843 95.843 0∗

1.0 2.00 94.960 94.960 0∗

1.0 2.50 94.606 94.422 +0.184
1.0 3.00 94.011 94.011 0∗

1.0 3.50 93.144 93.716 −0.572
1.0 4.00 91.954 93.464 −1.510
1.0 4.50 90.475 93.231 −2.756
1.0

25

5.00 89.007 93.019 −4.012
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Table A.1: (Continued)

UFC
Spacing

Room
Spacing

Shape
Parameter

Predicted Maximum
Temperature

Actual Maximum
Temperature

Error

[m] [m] [°C] [°C] [°C]
1.0 5.50 88.049 92.856 −4.807
1.0 6.00 87.440 92.709 −5.269
1.0 6.50 86.952 92.541 −5.589
1.0 7.00 86.668 92.390 −5.722
1.0 7.50 86.656 92.267 −5.611
1.0 8.00 86.923 92.168 −5.245
1.0 8.50 87.408 92.055 −4.647
1.0 9.00 87.963 91.950 −3.987
1.0 9.50 88.501 91.849 −3.348
1.0

25

10.00 89.082 91.757 −2.675
Mean Absolute Error 1.302

* Zero error entries due to evaluated points being used in the RBF interpolation during SBAO.
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Figure A.1: Surrogate optimization results using cubic polynomial surrogates for
a sinusoidal (cosine) UFC age arrangement (continued from Fig. 4.9)
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Table A.2: Optimal design points using cubic polynomial
surrogates for a sinusoidal (cosine) age arrangement

UFC
Spacing

Room
Spacing

Shape
Parameter

Predicted Maximum
Temperature

Actual Maximum
Temperature

Error

[m] [m] [°C] [°C] [°C]
1.9 0.50 98.835 98.530 +0.305
1.9 1.00 98.896 99.943 −1.047
1.9 1.50 98.928 99.288 −0.360
1.9 2.00 98.935 99.166 −0.231
1.9 2.50 98.921 99.010 −0.089
1.9 3.00 98.891 98.957 −0.066
1.9 3.50 98.849 98.855 −0.006
1.9 4.00 98.798 98.840 −0.042
1.9 4.50 98.742 98.905 −0.163
1.9 5.00 98.686 98.884 −0.198
1.9 5.50 98.634 98.926 −0.292
1.9 6.00 98.590 98.900 −0.310
1.9 6.50 98.558 98.937 −0.379
1.9 7.00 98.541 98.911 −0.370
1.9 7.50 98.545 98.943 −0.398
1.9 8.00 98.573 98.993 −0.420
1.9 8.50 98.629 99.028 −0.399
1.9 9.00 98.718 99.000 −0.282
1.9 9.50 98.843 99.032 −0.189
1.9

10

10.00 99.008 98.933 +0.075
1.4 0.50 97.166 92.135 +5.031
1.4 1.00 96.565 97.467 −0.902
1.4 1.50 96.072 96.165 −0.093
1.4 2.00 95.676 95.721 −0.045
1.4 2.50 95.367 95.386 −0.019
1.4 3.00 95.133 95.250 −0.117
1.4 3.50 94.964 95.047 −0.083
1.4 4.00 94.848 94.994 −0.146
1.4 4.50 94.777 94.895 −0.118
1.4 5.00 94.737 94.828 −0.091
1.4 5.50 94.720 94.747 −0.027
1.4 6.00 94.714 94.687 +0.027
1.4 6.50 94.708 94.647 +0.061
1.4 7.00 94.692 94.582 +0.110
1.4 7.50 94.655 94.545 +0.110
1.4 8.00 94.586 94.470 +0.116
1.4 8.50 94.475 94.432 +0.043
1.4 9.00 94.310 94.402 −0.092
1.4 9.50 94.082 94.338 −0.256
1.4

15

10.00 93.778 94.306 −0.528
1.1 0.50 94.513 93.993 +0.520
1.1 1.00 95.603 100.565 −4.962
1.1 1.50 96.418 99.013 −2.595
1.1 2.00 96.987 98.307 −1.320
1.1 2.50 97.339 97.771 −0.432
1.1 3.00 97.504 97.427 +0.077
1.1 3.50 97.511 97.133 +0.378
1.1 4.00 97.389 96.926 +0.463
1.1 4.50 97.169 96.739 +0.430
1.1

20

5.00 96.879 96.618 +0.261
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Table A.2: (Continued)

UFC
Spacing

Room
Spacing

Shape
Parameter

Predicted Maximum
Temperature

Actual Maximum
Temperature

Error

[m] [m] [°C] [°C] [°C]
1.1 5.50 96.549 96.486 +0.063
1.1 6.00 96.208 96.380 −0.172
1.1 6.50 95.885 96.282 −0.397
1.1 7.00 95.610 96.176 −0.566
1.1 7.50 95.413 96.105 −0.692
1.1 8.00 95.323 96.012 −0.689
1.1 8.50 95.368 95.953 −0.585
1.1 9.00 95.580 95.872 −0.292
1.1 9.50 95.986 95.831 +0.155
1.1

20

10.00 96.616 95.725 +0.891
1.0 0.50 94.078 91.454 +2.624
1.0 1.00 94.397 97.540 −3.143
1.0 1.50 94.567 95.843 −1.276
1.0 2.00 94.607 94.960 −0.353
1.0 2.50 94.533 94.422 +0.111
1.0 3.00 94.364 94.011 +0.353
1.0 3.50 94.118 93.716 +0.402
1.0 4.00 93.813 93.464 +0.349
1.0 4.50 93.466 93.231 +0.235
1.0 5.00 93.095 93.019 +0.076
1.0 5.50 92.719 92.856 −0.137
1.0 6.00 92.354 92.709 −0.355
1.0 6.50 92.020 92.541 −0.521
1.0 7.00 91.733 92.390 −0.657
1.0 7.50 91.511 92.267 −0.756
1.0 8.00 91.373 92.168 −0.795
1.0 8.50 91.336 92.055 −0.719
1.0 9.00 91.418 91.950 −0.532
1.0 9.50 91.637 91.849 −0.212
1.0

25

10.00 92.011 91.757 +0.254
Mean Absolute Error 0.543
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A.2 Kumaraswamy PDF-Like UFC Age Arrangement

The following tables and figure show the results from SBAO for when an inventory of
assorted UFC ages was arranged in the way of a Kumaraswamy PDF.

Table A.3: Optimal design points using cubic RBF surrogates for a
Kumaraswamy PDF-like UFC age arrangement

UFC
Spacing

Room
Spacing

Shape
Parameter

Predicted Maximum
Temperature

Actual Maximum
Temperature

Error

[m] [m] [°C] [°C] [°C]
2.0 0.75 96.098 96.505 −0.407
1.9 1.00 96.595 96.595 0∗

1.8 1.25 99.598 99.598 0∗

1.9 1.50 94.715 95.916 −1.201
1.9 1.75 96.738 96.823 −0.085
1.9 2.00 99.302 100.137 −0.835
2.0 2.25 96.710 98.257 −1.547
2.0

10

2.50 99.203 100.080 −0.877
1.6 0.25 98.038 93.545 +4.493
1.5 0.50 96.317 96.092 +0.225
1.4 0.75 95.928 95.928 0∗

1.3 1.00 98.673 96.656 +2.017
1.3 1.25 97.245 94.983 +2.262
1.3 1.50 97.739 96.070 +1.669
1.3 1.75 99.653 99.653 0∗

1.4 2.00 95.971 96.929 −0.958
1.4 2.25 98.624 99.427 −0.803
1.5 2.50 95.695 95.480 +0.215
1.5 2.75 97.882 96.714 +1.168
1.5 3.00 99.051 97.636 +1.415
1.5 3.25 99.144 98.337 +0.807
1.5 3.50 98.878 98.878 0∗

1.5 3.75 99.302 99.302 0∗

1.5

15

4.00 99.639 99.639 0∗

1.3 0.25 96.979 92.402 +4.577
1.1 0.50 99.346 103.988 −4.642
1.0 0.75 98.489 106.250 −7.761
1.0 1.00 94.548 96.506 −1.958
1.0 1.25 94.422 95.339 −0.917
1.0 1.50 98.808 98.657 +0.151
1.1 1.75 97.316 96.013 +1.303
1.2 2.00 93.752 92.515 +1.237
1.2 2.25 95.507 94.759 +0.748
1.2 2.50 96.599 96.336 +0.263
1.2 2.75 97.471 97.471 0∗

1.2 3.00 98.448 98.306 +0.142
1.2 3.25 98.934 98.934 0∗

1.2 3.50 99.416 99.416 0∗

1.2 3.75 99.791 99.791 0∗

1.3

20

4.00 94.142 93.453 +0.689
1.1 0.25 94.585 93.988 +0.597
1.0 0.50 99.734 99.734 0∗

1.0
25

0.75 94.029 94.029 0∗
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Table A.3: (Continued)

UFC
Spacing

Room
Spacing

Shape
Parameter

Predicted Maximum
Temperature

Actual Maximum
Temperature

Error

[m] [m] [°C] [°C] [°C]
1.0 1.00 90.026 81.551 +8.475
1.0 1.25 88.515 81.073 +7.442
1.0 1.50 89.053 87.569 +1.484
1.0 1.75 91.128 92.864 −1.736
1.0 2.00 94.061 96.232 −2.171
1.0 2.25 97.242 98.416 −1.174
1.0 2.50 99.903 99.903 0∗

1.1 2.75 93.580 92.900 +0.680
1.1 3.00 94.297 93.601 +0.696
1.1 3.25 94.717 94.122 +0.595
1.1 3.50 94.956 94.518 +0.438
1.1 3.75 95.733 94.823 +0.910
1.1

25

4.00 96.522 95.063 +1.459
Mean Absolute Error 1.308

Kumaraswamy shape parameters a varying and b = 1.5.
* Zero error entries due to evaluated points being used in the RBF interpolation during SBAO.
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Kumaraswamy shape parameters a varying and b = 1.5.

Figure A.2: Surrogate optimization results using cubic polynomial surrogates for
a Kumaraswamy PDF-like UFC age arrangement (continued from Fig. 4.10)
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Table A.4: Optimal design points using cubic polynomial surrogates
for a Kumaraswamy PDF-like UFC age arrangement

UFC
Spacing

Room
Spacing

Shape
Parameter

Predicted Maximum
Temperature

Actual Maximum
Temperature

Error

[m] [m] [°C] [°C] [°C]
2.0 0.75 97.147 96.505 +0.642
1.9 1.00 98.278 96.595 +1.683
1.9 1.25 96.813 95.306 +1.507
1.9 1.50 96.648 95.916 +0.732
1.9 1.75 97.522 96.823 +0.699
1.9 2.00 99.175 100.137 −0.962
2.0 2.25 96.543 98.257 −1.714
2.0

10

2.50 98.865 100.080 −1.215
1.5 0.25 99.688 98.838 +0.850
1.4 0.50 99.183 101.887 −2.704
1.4 0.75 94.724 95.928 −1.204
1.3 1.00 98.929 96.656 +2.273
1.3 1.25 97.845 94.983 +2.862
1.3 1.50 98.043 96.070 +1.973
1.3 1.75 99.250 99.653 −0.403
1.4 2.00 94.413 96.929 −2.516
1.4 2.25 96.827 99.427 −2.600
1.4 2.50 99.426 101.230 −1.804
1.5 2.75 96.015 96.714 −0.699
1.5 3.00 98.175 97.636 +0.539
1.5 3.25 99.698 98.337 +1.361
1.6 3.50 95.180 93.613 +1.567
1.5 3.75 99.732 99.302 +0.430
1.5

15

4.00 97.694 99.639 −1.945
1.2 0.25 99.685 98.984 +0.701
1.2 0.50 93.573 96.482 −2.909
1.1 0.75 97.502 97.695 −0.193
1.1 1.00 95.183 88.578 +6.605
1.1 1.25 94.328 88.048 +6.280
1.1 1.50 94.678 90.784 +3.894
1.1 1.75 95.975 96.013 −0.038
1.1 2.00 97.960 99.645 −1.685
1.2 2.25 91.796 94.759 −2.963
1.2 2.50 94.294 96.336 −2.042
1.2 2.75 96.703 97.471 −0.768
1.2 3.00 98.765 98.306 +0.459
1.3 3.25 93.229 92.374 +0.855
1.3 3.50 93.733 92.821 +0.912
1.3 3.75 93.113 93.170 −0.057
1.2

20

4.00 98.363 100.088 −1.725
1.1 0.25 94.946 93.988 +0.958
1.0 0.50 99.606 99.734 −0.128
1.0 0.75 97.384 94.029 +3.355
1.0 1.00 96.084 81.551 +14.533
1.0 1.25 95.567 81.073 +14.494
1.0 1.50 95.689 87.569 +8.120
1.0 1.75 96.310 92.864 +3.446
1.0 2.00 97.289 96.232 +1.057
1.0 2.25 98.483 98.416 +0.067
1.0

25

2.50 99.752 99.903 −0.151
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Table A.4: (Continued)

UFC
Spacing

Room
Spacing

Shape
Parameter

Predicted Maximum
Temperature

Actual Maximum
Temperature

Error

[m] [m] [°C] [°C] [°C]
1.1 2.75 93.357 92.900 +0.457
1.1 3.00 94.385 93.601 +0.784
1.1 3.25 95.063 94.122 +0.941
1.1 3.50 95.250 94.518 +0.732
1.1 3.75 94.804 94.823 −0.019
1.1

25

4.00 93.583 95.063 −1.480
Mean Absolute Error 2.102

Kumaraswamy shape parameters a varying and b = 1.5.
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Appendix B

Yield Optimization

B.1 Yield of Optimal Points from SBAO

The following figure shows the remaining results (Case 2, 3, 5, and 6) from Monte Carlo
simulations in Subsection 5.2.2. The values of variables (UFC spacing, room spacing, and
shape parameter) corresponding to each of the three points in the figure are:

Point A x1 = 1.6, x2 = 15, and a = 0.25,
Point B x1 = 1.3, x2 = 15, and a = 1.25, and
Point C x1 = 1.5, x2 = 15, and a = 4.00.
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(a) Point A, Case 2
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(b) Point A, Case 3
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(c) Point A, Case 5
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(d) Point A, Case 6
Distribution parameters for each case are from Table 5.1. 500 Monte Carlo simulations shown.

Figure B.1: Monte Carlo simulations for various optimal points from SBAO
and design variable distributions (continued from Fig. 5.3)
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(e) Point B, Case 2
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(f) Point B, Case 3
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(g) Point B, Case 5
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(h) Point B, Case 6
Distribution parameters for each case are from Table 5.1. 500 Monte Carlo simulations shown.

Figure B.1: (Continued)
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(i) Point C, Case 2
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(j) Point C, Case 3
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(k) Point C, Case 5
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(l) Point C, Case 6
Distribution parameters for each case are from Table 5.1. 500 Monte Carlo simulations shown.

Figure B.1: (Continued)
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B.2 Yield Optimization for Nominal Design Points

The following figure shows the remaining results (Case 2, 4, and 6) from yield optimization
under design with failure allowance in Subsection 5.3.2, for feasible region RA, a = 0.25.
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(a) 1% Design Failure, Case 2
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(b) 3% Design Failure, Case 2

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

16

18

20

22

24

26

28

30

32

Design Centre: (1.07, 27.28)

UFC Spacing [m]

R
oo

m
Sp

ac
in

g
[m

]

Temp Constraint Bounds Polytopes
Tolerance Box Max Yield Box Monte Carlo

(c) 5% Design Failure, Case 2
Distribution parameters for each case are from Table 5.1. 500 Monte Carlo simulations shown.

Magenta arrows show the changes in design centre locations relative to those of Case 1 (uniform distributions).

Figure B.2: Design with failure allowance results for feasible region RA, a = 0.25
under various design variable distributions (continued from Fig. 5.5)
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(d) 1% Design Failure, Case 4
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(e) 3% Design Failure, Case 4
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(f) 5% Design Failure, Case 4
Distribution parameters for each case are from Table 5.1. 500 Monte Carlo simulations shown.

Magenta arrows show the changes in design centre locations relative to those of Case 1 (uniform distributions).

Figure B.2: (Continued)
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(g) 1% Design Failure, Case 6
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(h) 3% Design Failure, Case 6
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(i) 5% Design Failure, Case 6
Distribution parameters for each case are from Table 5.1. 500 Monte Carlo simulations shown.

Magenta arrows show the changes in design centre locations relative to those of Case 1 (uniform distributions).

Figure B.2: (Continued)
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Glossary

Buffer Box
Pre-compacted box made of highly compacted bentonite that is placed around a used
fuel container, see also: dense backfill, gap-fill.

Dense Backfill (also spacer block)

Bentonite block that fills the space between two buffer boxes, see also: buffer box,
gap-fill.

Fuel Burnup
Measure of how much energy is extracted from nuclear fuel, typically in units of
energy released per mass of initial fuel.

Gap-Fill
Bentonite pellets that fill the space between buffer boxes/dense backfill blocks and
the excavation, see also: buffer box, dense backfill.

IV-25
Original reference used fuel container design by the Nuclear Waste Management
Organization.

KBS-3
Methodology for final disposal of spent nuclear fuel by the Swedish Nuclear Fuel and
Waste Management Company.

Mark II
Current reference used fuel container design by the Nuclear Waste Management
Organization.
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Maximin
Maximum of a series of minima.

Non-Collapsing
Describes design points that do not share the same value in any dimension.

Room Spacing
Distance between one placement room and another, from centre to centre, in the deep
geological repository.

Space-Filling
Describes design points that uniformly spread over the entire design space, maximizing
the distance between any pair of points.

Spacer Block
See: dense backfill.

System Failure
Defined as when the maximum temperature inside the deep geological repository
exceeds 100 °C.

UFC Age
Time since used nuclear fuel contained inside a used fuel container was discharged from
a nuclear power reactor at the time of placement into the deep geological repository.

UFC Spacing
Distance between one used fuel container and another, from centre to centre, in the
deep geological repository.

Yield
Probability of a design meeting specifications.
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