
Extracting and Cleaning RDF Data

by

Mina Farid

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2020

© Mina Farid 2020

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Anil K. Goel
VP & Chief Architect, HANA Data Platform,
SAP

Supervisor(s): Ihab F. Ilyas
Professor, Cheriton School of Computer Science,
University of Waterloo

Internal Member: M. Tamer Özsu
Professor, Cheriton School of Computer Science,
University of Waterloo

Internal Member: Jimmy Lin
Professor, Cheriton School of Computer Science,
University of Waterloo

Internal-External Member: George Shaker
Adjunct Assistant Professor, Electrical and Computer Engineering,
University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

The RDF data model has become a prevalent format to represent heterogeneous data
because of its versatility. The capability of dismantling information from its native formats
and representing it in triple format offers a simple yet powerful way of modelling data that
is obtained from multiple sources. In addition, the triple format and schema constraints
of the RDF model make the RDF data easy to process as labeled, directed graphs.

This graph representation of RDF data supports higher-level analytics by enabling
querying using different techniques and querying languages, e.g., SPARQL. Anlaytics that
require structured data are supported by transforming the graph data on-the-fly to popu-
late the target schema that is needed for downstream analysis. These target schemas are
defined by downstream applications according to their information need.

The flexibility of RDF data brings two main challenges. First, the extraction of RDF
data is a complex task that may involve domain expertise about the information required
to be extracted for different applications. Another significant aspect of analyzing RDF data
is its quality, which depends on multiple factors including the reliability of data sources
and the accuracy of the extraction systems. The quality of the analysis depends mainly
on the quality of the underlying data. Therefore, evaluating and improving the quality of
RDF data has a direct effect on the correctness of downstream analytics.

This work presents multiple approaches related to the extraction and quality evaluation
of RDF data. To cope with the large amounts of data that needs to be extracted, we
present DSTLR, a scalable framework to extract RDF triples from semi-structured and
unstructured data sources. For rare entities that fall on the long tail of information, there
may not be enough signals to support high-confidence extraction. Towards this problem,
we present an approach to estimate property values for long tail entities. We also present
multiple algorithms and approaches that focus on the quality of RDF data. These include
discovering quality constraints from RDF data, and utilizing machine learning techniques
to repair errors in RDF data.

iv

Acknowledgements

I cannot begin to express my thanks to Ihab Ilyas, who has been there for me all these
years. I have learnt a lot from him both professionally and personally. Thanks to his
guidance and support, I am a better researcher and a better man. I am proud to call Ihab
a supervisor, mentor, and dear friend.

I would like to express my gratitude to my advisory committee members Tamer Özsu
and Jimmy Lin for their help, support, and advice throughout my PhD journey. I would
also like to thank my internal-external examiner George Shaker, and my external examiner
Anil Goel for their invaluable comments and suggestions.

I am extremely grateful and blessed to have an amazing family. My parents Hany and
Afaf, as well as my sister Mariette, and their unconditional love and endless support have
kept me going through these years. A special thanks also goes out to my nieces, Alexandra
and Clara, for always giving me a reason to smile.

And then, there is my beloved wife, Madonna. No words can describe the amazing
support, wisdom, and motivation that she has given me. Madonna, thank you for pushing
me, catching me when I fall, and lifting me up. You made the happy moments joyous, and
gave me comfort during the hard times. I am forever indebted to you.

v

Dedication

To my father, Hany Fathy Farid, for always believing in me. You have always motivated
and inspired me to be a better person. I hope I can always make you proud.

vi

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Extraction of RDF Data . 2

1.2 Quality of RDF Data . 3

1.3 Contributions and Outline . 6

2 Extracting RDF Data using the DSTLR Framework 9

2.1 Architecture . 9

2.2 Infrastructure . 10

2.3 Design Details . 13

3 Estimating Properties of Long Tail Entities 17

3.1 Overview . 19

3.2 Anchoring Entities to Knowledge Bases . 22

3.3 Community Construction . 24

3.4 Community Membership Evaluation . 26

3.5 Estimation of Property Values from Communities 29

3.6 Experiments . 30

3.7 Related Work . 33

vii

4 Discovering SHACL Constraints from RDF 36

4.1 Preliminaries . 39

4.2 The DISH Discovery Algorithm . 41

4.2.1 DISH Overview . 41

4.2.2 Constructing the Space of SHACL Conditions 43

4.2.3 Evaluating the Conditions on the Target Nodes 45

4.2.4 From the Evidence Set to a SHACL Constraint 46

4.2.5 Ranking the Discovered Constraints 47

4.3 Experiments . 48

4.3.1 Quantitative Analysis: Scalability 49

4.3.2 Qualitative Analysis: Quality of Discovered Constraints 51

4.4 Related Work . 52

4.5 Conclusion and Future Work . 54

5 Discovering Denial Constraints from RDF 55

5.1 Problem Definition . 58

5.1.1 Denial Constraints on Relational Data 59

5.1.2 Denial Constraints on RDF . 59

5.1.3 Solution Overview . 62

5.2 View Discovery . 63

5.2.1 The View Space and Maximal Views 64

5.2.2 Schema-driven View Discovery . 65

5.2.3 Data-driven View Discovery . 68

5.3 Constraint Discovery . 70

5.3.1 DC Discovery using FastDC . 71

5.3.2 Incremental Discovery of Constraints 72

5.3.3 Incremental Building of Evidence Sets 74

5.3.4 Incremental Computation of Minimal Set Covers 75

viii

5.4 Handling Incomplete Data . 77

5.4.1 Discovering Valid Views . 77

5.4.2 Modification to DC Discovery . 79

5.5 Experiments . 79

5.6 Evaluating View Discovery . 81

5.7 Evaluating DC Discovery . 82

5.8 Related Work . 83

6 Repairing RDF Data 87

6.1 Repairing RDF Using HoloClean . 88

6.2 Limitations of Repairing RDF as Relational Data 90

6.3 Experiments . 91

7 Conclusion and Future Work 98

7.1 Conclusion . 98

7.2 Future Work . 99

References 101

APPENDICES 112

A Proofs for Theorems 1 and 2 113

ix

List of Tables

1.1 Example facts in RDF triples . 2

3.1 Precision and Recall for property estimations 32

4.1 Supported operators in shacl conditions. O compares a property value to
a constant and R compares the values of two properties. 40

5.1 Caption for table . 60

5.2 The sparse relational table T that represents the RDF dataset R in Table 5.1,
using R properties as attributes . 60

5.3 Subject schemas (left) and their signature views (right) 69

5.4 Dataset Characteristics . 80

5.5 Example DCs Discovered from different RDF datasets 85

5.6 Example RDF dataset R in Bit Array Representation 86

6.1 Example Table for Domain Generation . 89

6.2 YAGO facts dataset properties . 91

6.3 Tabular representation of a subset of view v1 93

6.4 Quality analysis of repairing view v1 . 96

6.5 Sample of original and repaired <isCitizenOf> values in YAGO Facts dataset 97

x

List of Figures

1.1 Architecture Overview of RDF Extraction and Cleaning 7

2.1 DSTLR Architecture . 10

2.2 DSTLR Containerized Architecture . 11

2.3 DSTLR Deployment Stack on Four Nodes 13

2.4 Example DSTLR Extraction Pipeline . 16

3.1 Support of facts in text and KB . 18

3.2 Workflow to estimate properties of long-tail entities 19

3.3 Links between a long tail entity eq and KB entities 23

3.4 Distribution of all entity mentions in experiments 31

3.5 Estimation precision and recall for long tail entities 32

3.6 Estimation precision and recall for head entities 33

3.7 Estimation precision and recall for random entities 33

3.8 Interactive Interface for LONLIES [47] . 34

4.1 Example shacl constraint to validate entities of type ex:Person 37

4.2 Subgraphs constructed around target nodes s1, s2, s3 and their descriptors 44

4.3 Scalability of DISH mining algorithms . 50

4.4 Quality of the top-k discovered shacl constraints 52

4.5 Example shacl constraint discovered from DBPedia-Person dataset . . 53

4.6 Example shacl constraint discovered from TLGR dataset 53

xi

4.7 Example shacl constraint discovered from ISWC13 dataset 54

5.1 Example Violating Data of Functional Dependency 56

5.2 Direct Curation of RDF Data . 57

5.3 The CDC Discovery Pipeline using RDFDC 63

5.4 View Space for P = {A, B, C, D} as a Lattice 64

5.5 Effect of varying parameters on execution time 80

5.6 Effect of support threshold θ on number of discovered views and execution
time . 83

5.7 Execution time of IncDC vs. FastDC . 84

6.1 Repairing errors in RDF data . 88

6.2 Example views discovered from YAGO Facts 92

6.3 Classification of a prediction when different than the original cell value . . 95

xii

Chapter 1

Introduction

“Data! data! data!” he cried impatiently. “I can’t make bricks without clay” [38]. The
talent of Sherlock Holmes was his ability to identify and extract relevant information from
a noisy environment, and integrate pieces of evidence together to build an analysis and
reach a conclusion. Similarly at the present day, there is more information than ever that
needs to be ingested, extracted, filtered from noise, and linked together to build higher
level analysis to assist in decision making.

With the evolution of technology and the wide accessibility of people to the Internet,
data is generated and published at a rapid rate. The format of the published data depends
on the nature of its origin. Some of it is published in textual format, such as news articles,
contracts and court case proceedings, blogs and microblogs, social media, and transcripts
of videos. Another kind of data is produced from data streams, such as Internet of things
(IoT) devices, stock market ticker data, and temperature and pressure sensors.

Oftentimes, there is a need to perform holistic analysis on data that is obtained from
multiple sources. One major challenge that obstructs direct analysis is that data is retrieved
from various sources in different formats, which limits the ability to run the same type of
analysis, e.g., using structured SQL queries, on the heterogeneous collections of data.
Towards this goal, multiple data integration approaches, tools, and frameworks have been
developed to enable a unified and comprehensive analysis of relevant collections of data.

The value of downstream analysis depends heavily on the underlying data. Both quan-
tity and quality of information matter. The more information available, the higher the
value of the analysis. But if the information is erroneous, the accuracy suffers.

1

1.1 Extraction of RDF Data

Traditional data integration frameworks often ingest data from various sources and store
it in a unified representation, usually in a relational format. The ingestion process in-
volves extracting information using custom information extraction tools, transforming the
extracted data to fit in application-specific schemas, and loading the transformed data in
a data warehouse that contains all available information. This approach is often referred
to as Extract-Transform-Load (ETL), where data is stored in relational warehouses with
schemas that are hand-crafted to fit downstream applications, a concept that is referred
to as schema-on-write [37]. A major complication of the ETL approach arises when the
information need of downstream applications change, which requires modification to the
ETL process. These modifications might include building new custom extractors, mod-
ifying the linking and transformation processes, and modifying the relational warehouse
schemas; a process that typically takes months. Hence, businesses have shifted towards
what is referred to as schema-on-read [37] paradigm, where data is ingested and stored
in its native format. At application runtime, relevant data is queried and transformed
according to the information need of the target analysis in the application.

The Resource Description Framework1 (RDF) was designed to be simple yet powerful.
Information about entities and facts is represented in a triple format that consists of a
subject, a predicate, and an object. For example, Table 1.1 denotes a set of facts about
Justin Trudeau, the Prime Minister of Canada.

subject predicate object
<Justin Trudeau> <bornIn> <Ottawa>
<Justin Trudeau> <birthDate> "December 25, 1971"
<Canada> <hasPrimeMinister> <Justin Trudeau>
<Canada> <hasCapital> <Ottawa>

Table 1.1: Example facts in RDF triples

Each fact about entities is represented by a triple. The accumulation of these triples
forms knowledge about multiple real-world entities and the relationships between them.
Moreover, the RDF model links subjects and objects, forming a directed graph with labeled
edges. For example, the information in Table 1.1 translates to a graph with the nodes
<Justin Trudeau>, <Canada>, and <Ottawa>, and edges between them representing the
predicates that connect them. The birth date in the second triple also maps to a special
Literal node that does not have outgoing edges.

1https://www.w3.org/RDF/

2

https://www.w3.org/RDF/

Representing data in RDF has supported the schema-on-read paradigm where data is
obtained from heterogeneous sources in different formats and stored in RDF triples. The
flexibility of the RDF model enables enterprises to ingest data and store it with minimal
constraints and allows schema-on-read capability at application runtime, where triples are
queried, retrieved, and joined together to populate the schema of target applications.

While the representation of RDF data is simple, the extraction of RDF triples from
unstructured data is a complex operation. Facts and events that contain multiple pieces of
information need to be dismantled in a meaningful way to be represented in triple format.
Moreover, information about a specific fact or event may be collected from different sources
and accumulated to form a more comprehensive and richer knowledge.

The accumulation of RDF linked data has led to the emergence of knowledge bases,
where information about entities is represented in a graph format expressed by RDF triples.
Popular knowledge bases such as DBpedia [4], Freebase [14], and Wikidata [99] hold infor-
mation about people, organizations, locations, earthquakes, diseases, among others. These
knowledge graphs contain a variety of information that is collected from multiple data
sources. Moreover, independent RDF graphs can be linked together through special edges
that can be utilized by RDF data processing tools to provide holistic analysis over – pre-
viously disconnected – graphs. Large enterprises, such as Google, Amazon, and Thomson
Reuters, build their own proprietary knowledge graphs that power numerous downstream
applications and analytics like question answering and entity-based search [33]. The con-
tained triples represent facts that are obtained from multiple sources including human-
crafted information, data that is extracted from semi-structured and unstructured sources,
and triples that are ingested from streams of data.

The amount and variety of the information that is captured in knowledge graphs compli-
cates the manual authoring by humans. In order to scale to large amounts of information,
automatic approaches must be developed in order to ingest them. There is a need for
automatic extraction of triples from various data sources that represent information in
different formats.

1.2 Quality of RDF Data

A richer knowledge graph allows for more powerful downstream applications, such as the
capability to answer more questions. It also allows for a more holistic and comprehensive
analysis. Therefore, the coverage of knowledge graphs about the relevant information is a
significant resource in enterprises. Enterprises are always after enriching their knowledge

3

graphs. Aiming at high coverage, many approaches have been developed to extract as many
triples as possible. However, with the automated extraction of RDF data from different
data sources comes many problems about the accuracy and quality of the extracted or
collected data. In this section, we discuss in detail some of the sources of major quality
problems.

• Errors in Extraction. In order to ingest the large amount of data, extraction
systems are developed to identify significant information in semi-structured and un-
structured data sources. The automatic extraction process is prone to errors because
the developed rules and algorithms are not perfect.

• Unreliable and Out-dated Sources. The data sources from which triples are
extracted might not be reliable and, accordingly, they may contain inaccurate infor-
mation, which results in an inconsistent knowledge base. Multiple approaches have
been designed to decrease the effect of unreliable sources when integrating data from
multiple sources [36, 34, 35].
Moreover, information in the data sources may be out of date, causing the RDF
knowledge graph to contain stale information that may contradict more recent infor-
mation that is extracted from up-to-date data sources.

• Incomplete Information. The RDF model follows an open-world assumption,
meaning that more data can be added to the graph, where new triples construct new
entities, new relationships between existing entities, and property values of entities.
As more data is ingested, the knowledge graph becomes richer. However, there are no
constraints on what information should be included in the graph. Some entities may
be missing property values. This incomplete information may result from (1) sources
that do not include a piece of information about a specific entity; (2) it might have
been missed by the extraction systems; or (3) the property might not be applicable
to that entity and, hence, it should be missing.
Another side of incompleteness is the limited amount of information that is extracted
for long-tail entities. Entities that lie on the long-tail of knowledge do not have enough
redundancy in the processed data sources to support extraction with high confidence.
Covering information about long-tail entities demonstrates the edge of one knowledge
graph over another. Therefore, multiple approaches have been developed to ingest as
much information as possible to build large knowledge graphs [33] or target extracting
long-tail information [100, 6].

• Violations to Integrity Constraints. Business rules and application logic are
usually enforced on higher level analysis and not on the triple level. Therefore, the

4

extracted triples are usually agnostic about the downstream quality rules, which
might also be different according to the application domain. Further complicating
the matter, it is not easy to differentiate between contradicting values (e.g., a person
with two SSNs), multi-valued property (e.g., a person with two telephone numbers),
and updates to properties (e.g., a person with two addresses, one old and one new).
Such rules are not enforced during extraction, which might cause the extractors to
produce violating triples.

These sources of errors have a direct negative effect on the quality of the downstream
analysis and applications. Therefore, enterprises run various curation and cleaning ac-
tivities to evaluate and improve the quality of the underlying data to ensure correct and
consistent analysis results.

Traditionally, human-assisted curation activities operate on the siloed databases guided
by a set of integrity constraints that are defined by domain experts or discovered from the
data. This approach requires schemas to be predefined and requires data to be ingested
into the application relational databases before starting any curation or analytics activities.
While widely used in practice, this approach suffers from multiple shortcomings:

• Applications might have significantly overlapping schemas that need to be populated.
This redundancy causes extractors to run many times. The extracted data, while
overlapping, takes different routes in different life cycles and causes inconsistencies
across silos.

• The lack of a single version of truth causes cleaning siloed applications independently
to be inconsistent across different applications, for example, a cleaning task may
rename an employee from “Adam S. Smith” to “Adam J. Smith” in the HR database
but as “Adam Smith” in the Finance database.

• An application database may be incomplete because it is the result of application-
specific transformations. Errors in the original data may not be possible to fix by
looking at a local view of the alone, i.e., the curation loses the full context and the
holistic view of the data. For example, the salary of “Adam J. Smith” in the Finance
database may not be consistent with the salary range of his job title that is defined
by the HR department when policies change or after promotions, which is hard to
discover when cleaning Finance data independently.

• Data provenance helps in identifying the origin of a detected error. It is not trivial [21]
to carry all provenance information of the extraction through the complex pipeline to

5

trace back errors to the original sources from which the erroneous data was extracted.
Hence, cleaning siloed application data often fails to leverage provenance information
that describes how data was collected or extracted.

Direct curation of RDF data. In contrast to cleaning data in downstream application
described earlier, the RDF data model offers unique curation opportunities:

• Directly cleaning the RDF repositories allows applications to ingest higher-quality,
consistent, and clean data at the time of analytics into their specific schemas. In
other words, application schemas are defined on-read and are populated on-demand
from the RDF store (Figure 1.1).

• Since it has not been fragmented across applications, the RDF repository has a rich
context that provides higher accuracy in profiling and cleaning across use cases.

• Tracing back the lineage of RDF triples to their original sources is straightforward
since they are the direct result of the extraction process.

A major obstacle against this approach is that the sanity checks and quality rules are
often defined on and discovered from relational data, and it is not clear how to define or
discover these integrity constraints directly on RDF stores. Due to the scale of information,
it is prohibitively expensive to perform manual curation on the RDF data and maintain
a clean knowledge graph that adheres to the defined constraints. In addition to the scale,
the data and constraints evolve over time, which make the process even more difficult.

1.3 Contributions and Outline

In this dissertation, we combine the extraction and quality of RDF data in one overall
architecture that is shown in Figure 1.1. Throughout this dissertation, we use the terms
data quality and data cleaning interchangeably. The two aspects, extraction and quality,
complement one another in and end-to-end life cycle of preparing high-quality RDF data
for downstream analytics, specifically:

I. By designing a scalable and versatile extraction infrastructure, we can ingest large
amounts of data from different sources in a timely manner, producing comprehensive
RDF data with up-to-date information and mentions of the contained entities. This
contribution fits in the extraction module, marked (1) in Figure 1.1.

6

RDF
Data

Linked Data

Unstructured
Sources

Human
Annotators

Other Data
Sources

E
X
T
R
A
C
T

Σ
integrity

constraints

Automatic
Curation

Constraint
Discovery

author

Clean
RDF Data

(1) Extraction (2) Cleaning

Figure 1.1: Architecture Overview of RDF Extraction and Cleaning

II. By automatically curating and cleaning the extracted RDF data, we produce high-
quality knowledge graphs to power downstream applications. The cleaning module,
marked (2) in the same figure, utilizes a set of integrity constraints Σ that are par-
tially provided by a domain expert and complemented by more constraints that are
discovered using data mining techniques.

Contributions in Extracting RDF Data. Research in the areas of information ex-
traction and natural language processing has recently gained momentum with the current
wave of advances in deep learning. It is beyond the scope of this dissertation to design or
enhance new information extraction tools that target tasks like named entity recognition
or relation extraction from unstructured data such as text.

1. In Chapter 2, we present DSTLR, a framework for large scale extraction that ingests
semi-structured and unstructured data to construct a knowledge graph. DSTLR
encapsulates data processing operations as reusable components to allow custom
ingestion and analysis pipelines, and support user-defined data flows.

2. In Chapter 3, we introduce an approach to estimate property values for long tail
entities. Due to the scarcity of mentions of long tail entities, this approach does

7

not rely on the direct extraction of property values, but rather utilizes association
between long tail entities and head entities to estimate possible property values.

Contributions in Cleaning RDF Data. The majority of data cleaning research targets
relational data [60]. Expressing and enforcing quality constraints on RDF data has recently
been proposed through the Shapes Constraint Language (SHACL) [65].

3. In Chapter 4, we present an approach to discover SHACL constraints from RDF
data, where the goal is to find Σ if not provided.

One restriction of SHACL is that constraints are defined on one individual entity at a
time, referred to as the focus node. SHACL constraints do not natively support comparisons
of multiple entities to each other, i.e., each entity is validated against the defined constraints
independently. This restriction limits the expressiveness of the quality rules that can be
defined. In order to support more expressive constraints that involve comparing multiple
entities, we borrow how quality rules are defined as denial constraints [60] on relational
data.

4. In Chapter 5, we introduce multiple algorithms to mine relational views over the RDF
data that are used to define constraints on. The algorithms include both schema-
driven and data-driven approaches to handle datasets with different characteristics.

5. We build on and extend a previous denial constraint discovery algorithm, FastDC [25],
to scale to large amounts of RDF data, re-using expensive computations between the
mined relational views (Chapter 5).

Given the discovered relational views, we adopt the probabilistic cleaning model that
was recently highlighted in the state-of-art cleaning framework HoloClean [91, 57]. The
model uses statistical learning and probabilistic inference to solve error detection and data
repairing. Given a dataset that may contain errors and a set of applicable constraints, a
cleaner version of the dataset is chosen to be the instance that has the highest probability
given the observed input. The probability of data points (or cells) are determined based
on the learned model.

6. In Chapter 6, we discuss how to repair RDF data by utilizing the relational views
that are mined from the data using HoloClean.

8

Chapter 2

Extracting RDF Data using the
DSTLR Framework

The field of information extraction has been growing in popularity over the past decades.
The methods for extracting structured information from unstructured data such as text
became more advanced, starting from regular expression-based techniques [17, 68], to Con-
ditional Random Field (CRF) and more syntactic rule-based approaches, all the way to
using complex deep neural network based techniques for extraction tasks [31]. Since extrac-
tion is usually an offline process that aims to transform unstructured data into structured
relations, the focus of the published work was mainly one the quality of extraction for the
proposed algorithms.

DSTLR (short for data distiller) is a framework for data extraction and integration that
does not focus on specific extraction algorithms, but rather offers a flexible and scalable in-
frastructure to execute extraction tasks. DSTLR encapsulates data processing operations
as reusable components to allow custom analysis pipelines and support user-defined data
flows. The ingested data is represented in an RDF format, hence enforcing minimal con-
straints on the stored data to capture more information and facilitate the transformation
from RDF triples to fit the application need. In this Chapter, we present the architecture
and infrastructure of DSTLR, and explain the key design decisions in the framework.

2.1 Architecture

On a high level, DSTLR contains an ingestion module that is responsible for importing
data from heterogeneous sources in its raw format into a local data lake on a Hadoop File

9

Figure 2.1: DSTLR Architecture

System (HDFS) as shown in Figure 2.1. An extraction module reads data either from the
data lake or directly from the data sources if data do not need to be stored locally. The
output of the extraction module is triples that are stored in a backend storage engine.

2.2 Infrastructure

In order for DSTLR to be flexible and scalable, we need an infrastructure that enables hori-
zontal scaling and supports various applications and systems that may be needed for future
algorithms or extraction tasks. Therefore, we designed DSTLR to adopt a micro-service,
container-based architecture, where we use Docker1 as the main container implementation.
In the remainder of this Section, we explain the infrastructure details of each component
in DSTLR.

Cluster Management. The basic task for distributed systems is managing the cluster
of nodes that the system is deployed on. We use Apache Mesos2 to manage the cluster
resources and assign resources to the requesting jobs. It is installed natively on each
machine, and clients are configured to connect to specific master nodes.

Container Orchestration. On top of Apache Mesos, we use Marathon3 as a container
orchestration platform. Marathon supports running Docker containers by specifying config-

1https://www.docker.com/
2http://mesos.apache.org/
3https://mesosphere.github.io/marathon/

10

https://www.docker.com/
http://mesos.apache.org/
https://mesosphere.github.io/marathon/

DSTLR
[core library]

DSTLR
[frontend]

DSTLR
[web services]

Figure 2.2: DSTLR Containerized Architecture

uration files that describe the container to run along with the resources it needs. Marathon
enables service discovery and health checks to restart the containers if they fail. It com-
municates with Mesos to request resources.

DSTLR contains many Docker images to spin off containers using Marathon. Some of
the Docker images are off-the-shelf, while others are custom built for DSTLR, e.g., Apache
Spark, to enable it to work properly on a cluster managed by Apache Mesos. Some systems,
such as Apache Spark, need to scale horizontally by spinning off more containers, e.g., Spark
executors, and this requires communicating with Apache Mesos to assign resources for the
new containers. Figure 2.2 shows an overall deployment diagram of how this process is
modeled on a cluster.

Execution Engine. DSTLR requires a scalable data processing engine that can work
on small or large intput batches, can be deployed on Docker, and can scale to schedule
large processing tasks on Apache Mesos. Apache Spark satisfies all of these requirements
and is popular in industry and research. In addition to supporting batch data proessing
using Apache Spark, DSTLR also supports an in-memory execution engine to run smaller
data-processing tasks on a single machine, while utilizing the cluster infrastructure and
available systems.

11

Centralized Logging Framework. In order to collect logs from all services, DSTLR in-
cludes a centralized logging framework consisting of Elasticsearch4, Fluentd5, and Kibana6.
This stack is usually referred to as EFK. Fluentd acts as the centralized log collector that
stores the logging data in Elasticsearch. Kibana is used to visualize, search, and analyze
these logs that are stored in the Elasticsearch indexes.

Cron Jobs. DSTLR supports a cron job service to schedule recurrent tasks. A long
running process in DSTLR checks the data backend for task definitions that need to run
recurrently.

Storage. Storage is a key component in any data system. DSTLR uses Hadoop File Sys-
tem (HDFS) to store raw data in a distributed data lake. In addition, DSTLR uses MySQL
as a backend to store metadata and catalog information, e.g., keep track of registered data
sources and tasks for cron jobs.

The output of data processing and extraction tasks is expected to be significantly
large. The output of DSTLR can be divided into extracted RDF triples and metadata
about them, e.g., lineage of where each triple was extracted from. RDF triples are stored
into a triple store to allow for querying and downstream analytics. DSTLR uses GraphDB7

as the main RDF storage system. The lineage, however, is stored in Elasticsearch, since it
is not structured and does not need complex analysis.

Machine Learning Services. DSTLR does not make assumptions about the algorithms
used for processing and extraction. Instead, whole documents and sentences are fed into
the processing components (as described in Section 2.3). In order to support generic
machine learning algorithms that are usually written in Python, we built a dstlr-ml

docker container that includes machine learning text processing algorithms, e.g., sentiment
analysis. Providing dstlr-ml as a micro-service allows decoupling DSTLR from specific
algorithms, while enabling horizontal scalability by replicating the dstlr-ml container and
providing a load-balancing layer on top of this service8.

Figure 2.3 depicts a deployment stack of DSTLR on a cluster of four nodes; one master
node and three client nodes. The figure depicts how some services are installed natively on

4https://www.elastic.co/
5https://www.fluentd.org/
6https://www.elastic.co/kibana
7http://graphdb.ontotext.com/
8Load balancing is currently not implemented, but can easily be supported in DSTLR

12

https://www.elastic.co/
https://www.fluentd.org/
https://www.elastic.co/kibana
http://graphdb.ontotext.com/

Mesos Master

master client - 01

Mesos Slave Docker Engine

Marathon

Zoo Keeper HDFS
Datanode

HDFS
Namenode Mesos Slave Docker Engine Mesos DNS

client - 03client - 02

Mesos Slave Docker Engine

ElasticSearch Scheduler ElasticSearch Executor ElasticSearch Executor

Kafka Server

Kafka Broker - 01

Spark SchedulerSpark Driver

Spark Executor - 01 Spark Executor - 02

Fluentd KibanaMySQL Server

HBase Master HBase Region Server - 01 dstlr-mlInstalled Natively

Manually Deployed through
Marathon in a Docker

Docker Spun Off by a Scheduler Service

legend

HDFS
Datanode

Figure 2.3: DSTLR Deployment Stack on Four Nodes

the cluster machines, while others are either started through Marathon or through other
system schedulers.

2.3 Design Details

This Section discusses key design decisions in DSTLR. The main requirement of DSTLR is
to provide a framework to design and execute extensible, scalable, and customizable data
processing tasks. Towards this goal, DSTLR models the data processing tasks as a pipeline
of transformations, where each transformation is encapsulated in a building block that we
call component. It is also a design consideration to be able to reuse components across
different processing pipelines.

Pipelines. The processing pipelines can be thought of as data workflows that start at the
original data sources and end at the RDF store. Pipelines are composed of components.
A component wraps a specific functionality in a standard interface, and it can be reused
in multiple pipelines.

To adhere to flexible and reusable data processing pipelines, DSTLR enforces a table-
in/table-out interface on all components. This interface design standardizes the way com-
ponents consume and produce intermediate data. It also helps in executing the pipeline on
different execution environments. For instance, the same pipeline object can be executed
in memory or on Apache Spark because the interface of components is the same, the only
difference is how to implement the table interface on each execution engine, e.g., RDDs in
Spark and in-memory List objects when executing in memory.

Components. There are three types of components that are categorized according to
their functionality and, hence, their interface.

13

• Source Components. The functionality of this component type is to retrieve raw
data from the data sources. Data is retrieved in its original format. For example,
HTML pages are retrieved from web pages, text documents are retrieved from text
corpora, and JSON documents are retrieved from NoSQL data sources. DSTLR
implements source components that ingest data from the following data sources:

– File system

– Hadoop File System (HDFS)

– Web pages

– RSS feeds

– Elsticsearch

– Relational databases, e.g., MySQL and PostgreSQL

• Stage Components. After retrieving a set of documents from a data source, each
document goes through a series of stage components that operate on it and on the
output of previous components. Each component performs a specific transformation
on each of the the input tuples, where a tuple can be a whole document, a paragraph,
or a sentence. DSTLR includes a suite of data processing components, including:

– Sentence splitting, text processing and transformation

– MITIE extractor, for named entity extraction

– OpenCalais, named entity and relation extraction

– StanfordNLP extractor, for named entity extraction

– ReVerb extractor, open extraction of triples

– Sentiment analysis, using deep learning models for sentiment extraction

– RDF triple constructor, to convert extracted entities and relations to triples

• Sink Components. Sink components act as terminals for the processing pipelines.
The functionality of the sink components is to write the output of the processing
pipeline to disk in a proper RDF format.

DSTLR adopts a table-in/table-out interface on all components, making data flow
between components in a relational format. In other words, components receive, operate
on, and produce tuples. Therefore, every component expects and produces tuples with a
particular schema.

14

void requires(Schema inputSchema);

Schema produces();

These two methods are used to validate pipelines to make sure that the components
in a pipeline are compatible, e.g., a component that operates on documents by splitting
them into sentences, accepts a tuple with a document column and produces a tuple with a
sentence column9.

Figure 2.4 shows an example extraction pipeline that is defined in DSTLR. The pipeline
starts from the data source, an RSS feed in this case, that is retrieved by the appropriate
source component to produce the web pages published in the feed. The RSS Source Re-
triever produces a table, where each row is a web page retrieved from the RSS feed. These
web pages then go through a list of transformations that are defined by a set of staging
components. The web pages are processed to remove HTML tags and extract text from
the important tags, which then go thorough another staging component to split the text
into sentences. The sentences are then fed into two extraction components, one to extract
mentions of entities and one to extract mentions of entities, relationships, and events. The
mentions are then passed to a converter that constructs a set of RDF triples for each men-
tion according to its type. A final sink component takes all the RDF triples and stores
them in the RDF storage backend.

9DSTLR assumes that column names are unique and represent the semantic of the data in it.

15

Figure 2.4: Example DSTLR Extraction Pipeline

16

Chapter 3

Estimating Properties of Long Tail
Entities

Traditional information extraction approaches utilize textual features that appear with en-
tities to identify entity facts that are mentioned in text. This approach works well for head
entities that are frequently mentioned in the text. The redundancy of facts and high fre-
quency of mentions across different data sources provides enough context to extract many
features from the text, which allows for the extraction of many facts with high confidence.
Knowledge base construction systems utilize information extraction tools to enrich their
content of entities. Search engines query pre-constructed structured knowledge bases to
provide direct answers to queries about popular entities, e.g., capitals of countries and birth
dates of celebrities. Knowledge bases are constructed using different approaches. One ap-
proach allows users to collaboratively add entities and facts about them, e.g., Freebase [14]
and Wikidata [99], in order to produce high-quality, manually curated information. An-
other approach relies on large-scale automatic extraction of entities and relationships from
the web, e.g., Knowledge Vault [33] and DeepDive [84], or uses special extractors that run
on a particular domain, e.g., extracting DBPedia [4] from the infoboxes of Wikipedia. Once
the structured information is obtained, multiple quality constraints and sanity checks are
applied to ensure that knowledge bases contain high-quality data. Enhancing the precision
and recall of the extracted information is a challenging task.

One challenge that faces most extraction tools is the long tail of information. Entities
that lie in the long tail do not have enough mentions in the text, limiting their relevant
context. The absence of enough repetition restricts the extraction of property values with
high confidence. This limits the applicability of traditional extraction approaches as they
do not have enough textual support that is required for precise, high-quality extraction.

17

(1)
head entities
and topics

(3)
new popular

topics

(4*)
long tail

facts

text support

KB coverage

rare

rich

KB ⊢ α KB ⊬ α

(1)
head entities
and topics

(2)
manually curated

facts

Figure 3.1: Support of facts in text and KB

Moreover, the property values of some entities might not be even mentioned in the text.
The more information that is/can be extracted about rare entities, the more valuable the
knowledge repository grows. Figure 3.1 illustrates how the different levels of the coverage
of a knowledge base KB and the support of facts in the text is reflected in facts about
head and long tail entities. Quadrants (1) and (2) represent facts that exist in KB or can
be inferred from the KB using some inference algorithm i (hence KB `i α). A fact α
may be extracted multiple times from different sources (1) or manually added to the KB
by experts when it is hard to extract or when there is not enough mentions of the fact in
the text (2). Recent news and web streams may mention emerging entities and events but
facts about them may not be added yet to KB (Quadrant 3). Quadrant (4) describes long
tail facts that do not have enough mentions to support confident, high-quality extraction,
and the fact information cannot be inferred from KB (or the entity does not exist in KB).

In this Chapter, we present LONLIES [47], an approach to estimate property values
of long tail entities. Our approach does not rely on the direct extraction of property
values from the text. Instead, we simulate how humans integrate background knowledge
into drawing conclusions and extrapolating knowledge to unknown entities. For example,
an advanced user might infer that the weight of a boxing player in the middleweight
division is approximately 165 pounds, even if this information is not explicitly mentioned
in the text. In this situation, we associated the unknown player entity with a group of
known player entities, usually head entities, that we call a community. By associating the
unknown player entity to a relevant community and having background knowledge about
the weight of entities in that community, we can produce a distribution of the value of the
weight property for the unknown player entity. Our approach leverages the fewer features
available in the text to infer other features that help in estimating the target property.

18

Text
Corpus

KB
Anchoring

Community
Construction

Membership
Assessment Estimation

relevant
communities

estimate
distribution

Knowledge Base

e p

candidate
communities

anchor
KB entities

pushing constraints to refine construction process

Figure 3.2: Workflow to estimate properties of long-tail entities

3.1 Overview

LONLIES [47] integrates background knowledge from knowledge bases and utilizes mini-
mal features from the mentions of long tail entities with head entities in a text corpus to
extrapolate knowledge to unknown entities. The overall workflow of LONLIES is depicted
in Figure 3.2. By finding mentions of long-tail entities in the text corpus and co-mentions
of other head topics and entities, LONLIES evaluates the membership of a long-tail entity
to multiple communities. It then utilizes the knowledge base to extrapolate relevant knowl-
edge about the communities to the long-tail entity and produces distributions of values for
the target properties.

Problem Definition. Given a corpus of text documents D and a knowledge base KB,
e is an entity that is mentioned in D and possibly e ∈ KB. Our goal is to find a value for
a property p of the entity e, e.p, which cannot be logically inferred from KB through an
inference system, i.e., KB 0 e.p.

Proposed Approach. Traditional extraction approaches utilize machine learning algo-
rithms to train extraction models based on features that are extracted from the mentions
of entities. A trained statistical inference model, for example one that extracts property
values, is then run on features extracted about new entity mentions to produce a value for
the entity property. This can be modeled in the formula:

e.p = I(f1, f2, . . . , fn) (3.1)

where fi are features extracted for an entity e and I is an inference system that produces
a value for p of e. For example, distant supervision learning [81] relies on a conjunction of
features that are observed around mentions of e, including lexical and syntactical, along
with types of entities.

19

However, when the entity e has low textual support, many of the observed features
f1, . . . , fn may not be available for extraction. This prevents traditional extraction tech-
niques from producing a value for e.p. In addition, it is also more difficult to verify
the correctness of extracted facts about e because of the low frequency of mentions of e.
Therefore, we designed our approach to utilize the few mentions of e to construct a context
around it and use this context to produce another set of computed features.

The new set of features represent the membership of e in communities of entities C that
e might belong to. The communities C are constructed from KB. These communities are
used as a generalization that provides a broader perception about the entities within a
community. The membership of e in various communities constitutes higher level features,
which are in turn inferred from other features using another inference process I ′). We
formalize this notion in the following equation:

e.p̂ = I
(
f1, f2, . . . , fm, I ′a(a1, . . . , an), I ′b(b1, . . . , bk)

)
Where I ′ is an inference system that decides on the membership of e to a particular com-
munity. This equation changes the inference I to a compositional inference that utilizes
features inferred by other inference systems, e.g., I ′, to find an estimated value e.p̂ for
e.p. The membership of e in different communities can be used to estimate a value for
el.p. For example, if a politician is a member in a community that is constructed around
America Votes organization, and they are also a member in Hillary Clinton’s presidential
campaign, then we can use prior knowledge from KB about entities in these two commu-
nities to produce a value for the Political Party property of the target politician entity to
be Democratic Party.

The prior knowledge that is embodied in the constructed communities is useful for
learning, but the membership of e to these communities has to be learnt as well. The
ability to find correct estimates for e.p depends on:

• The confidence that e belongs to the communities used in the estimation.

• The coherence of the value of p within the community. The property coherence
reflects the estimation power of a community with respect to a property p, i.e., how
accurately we can estimate a value for p for the community entities.

These two constraints together verify that estimates are produced from relevant com-
munities that confidently produce representative p values. In order to alleviate the risk of

20

low-quality estimates for e.p, we designed the components in our approach to be conser-
vative when assessing the membership in communities (Sections 3.4) and when producing
estimates (Section 3.5). We hold back and do not produce an answer if we cannot produce
estimates with high confidence.

The insights behind this approach rely on two observations:

• Judging if an entity belongs to a particular community requires fewer features from
the text than extracting an exact value for its properties.

• The ability to find an estimation for a property value from a group of entities that
form a community depends on the property values of the entities in that community
and other statistical properties of the community (e.g., its size and the variance of
the property values) but does not depend on the long tail entity.

We next explain the overall system architecture we designed to solve the previous
equation, and later discuss the details of each component separately.

• The KB Anchoring module retrieves a set of documents that are relevant to the long
tail query entity from the text corpus. It also extracts head entities that exist in the
knowledge base that appear in the retrieved documents.

• The Community Construction module builds a set of communities that may contain
the target long tail entity e as a member if e is added to the knowledge base.

• The Membership Assessment module measures the similarity between e and a par-
ticular community in order to filter out irrelevant communities. It also filters out
communities with low confidence of estimation.

• The Estimation module aggregates estimates that are generated from the relevant
communities and produces a distribution of estimates for the target property p.

A näıve implementation of this approach would construct all possible sets of entities
that share similar values of p as communities, then evaluate the membership of e to each
community in order to find out which groups e belongs to. Then, we can use all of these
communities as input features for the main inference system to find a value for p. This brute
force approach is infeasible due to the unmanageable number of communities that may be
constructed. Moreover, most of the constructed communities will get pruned because of
the low confidence in the estimations produced by them. Therefore, we designed the
Community Construction module to utilize the constraints of the Membership Assessment
and Estimation modules in order to limit the generation of candidate communities to those
that qualify by the following modules and produce high-quality estimates.

21

3.2 Anchoring Entities to Knowledge Bases

Given a long tail entity el, the goal of the KB Anchoring module is to find head entities
that exist in the knowledge base and are related to el. Since el is a long tail entity, we
assume that it does not exist in the knowledge base. Therefore, we resort to the text to
find the head entities that el may be related to. This is independent of the property that
the user asks about in the query.

Many previous approaches focus on detecting head entities that appear in text, which
is sometimes referred to as entity linking, e.g., tagging text by Wikipedia entities [51] and
DBPedia spotlight [78] that annotates documents with DBPedia URIs. Other approaches,
such as [18, 29] target the problem of entity disambiguation, where different entities have
the same names or the same entity referred to in different names. Another line of work
uses deep natural language processing, supervised learning, and complex inference tasks
to classify the type of relationship between named entities, e.g., DeepDive [101, 84] and
Knowledge Vault [33], or to identify the types of entities [69]. In order to understand the
semantics of relationships between mentions of entities, supervised approaches use training
data to learn how to classify relation mentions in the text based on a set of features that
are designed by a domain expert.

These approaches work to find an exact type or relationship between entities, with the
goal of augmenting the newly extracted information to an existing knowledge base. This
requires deep analysis of text, and extensive manual labour to design and test the textual
features and signals that identify a relationship or a type.

However, our goal is not to identify the exact relationship between the long tail entity
and other KB entities; the goal is to find weak links that the long tail entity might be
related to if it is added to the knowledge base (Figure 3.3). This simplifies the extraction
of named entities, and limits the text analysis to detecting KB entities that are mentioned
in the text together with the long tail entity. Therefore, the first step in the KB Anchoring
module is to retrieve a set of text documents where el is mentioned. These documents can
be processed using any of the existing methods that are capable of detecting knowledge
base entities mentioned in text. In fact, we can even use a version of the text corpus that
is pre-processed offline and linked to a knowledge base, such as [52] that is a version of
ClueWeb09 [19] that is linked to Freebase [14] entities.

As expected, this linking technique produces false positives since not all KB entities
that appear with a long tail entity would indeed be linked to it. In addition, many of the
head KB entities that are actually related to the long tail entity may not be mentioned
with it in the text, i.e., the amount of false negatives depends on the coverage of the text

22

Figure 3.3: Links between a long tail entity eq and KB entities

about the long tail entity. In summary, the assumption that el is related to another entity
e if they appear together in the text suffers from three drawbacks:

1. The correctness of the link is questionable. We cannot be confident that el is indeed
related to the anchor KB entities.

2. The type of the link is unknown. Classifying the predicate that represents the link
is a complex task that we want to avoid.

3. Other links to knowledge base entities may be missing, e.g., links to entity types in
the knowledge base that are recognized by complex inference.

The output of this module is a set of anchor KB entities that are co-mentioned with el,
whether in the same document, paragraph, sentence, or relation, and exist in the knowledge
base. Even with such a noisy set of anchor KB entities, consequent stages utilize those head
entities to produce high-quality estimation, and refrain from producing estimates with low
confidence.

A related research area that is directly applicable in this module is entity disambigua-
tion. Multiple problems arise when linking an entity that appears in the text to entities
that exist in a knowledge base [39]. Those include: (1) name variation, either abbrevia-
tions (Massachusetts Institute of Technology vs. MIT), shortened forms (Barack Hussein
Obama vs. Obama), alternate spellings (Daniel vs. Danial), or aliases (William vs. Bill);
(2) entity ambiguity, where a particular name can match multiple entities in the knowledge
base; and (3) the absence of the entity from the knowledge base.

23

In our approach, entity disambiguation poses as a challenge in two stages. The first
stage is linking the extracted anchor KB entities to correct nodes in the knowledge base
graph when processing query-relevant documents. Making an error when linking an entity
that is co-mentioned with el may result in producing irrelevant communities that el is
not really a member in. While these irrelevant communities will be filtered out by the
Membership Assessment module, it limits the potential to construct relevant communities
from the anchor KB entity if the entities in the text were linked to the correct nodes in
the knowledge base.

The other stage where entity disambiguation is important is for long tail query entities
that do not exist in the knowledge base. The document search uses the query entity as
a keyword query. This means that the search engine might miss documents that mention
the entity in a different name, or it might not differentiate between documents about two
different entities if they have the same name. While the effectiveness of this problem affects
the accuracy of our approach, it is considered an orthogonal problem that is extensively
studied in the recent literature.

We handle entity disambiguation in two ways. First, when finding KB entities that
are mentioned in the text, we rely on existing extraction systems that can link to popular
knowledge bases, e.g., DBPedia Spotlight1, or use a pre-processed document corpus that
is already linked to a knowledge base, e.g., ClueWeb09 FACC [52]. In the second stage
when the long tail query entity el does not exist in the knowledge base, we utilize user
feedback to verify that the documents retrieved by the search engine are indeed relevant
to the query entity.

3.3 Community Construction

A community represents a group of entities that share some properties. The goal of this
module is to construct a set of communities C that will become a generalization of a query
entity e and can produce high-quality estimates for a query property p.

Definition 1. A community c consists of a set of entities that exist in a knowledge base.
Each entity in c must contain a value for a target property p.

Community entities may share some properties that group them together to form a
community. The more properties shared, the more specific the community is. For example,

1https://www.dbpedia-spotlight.org/

24

https://www.dbpedia-spotlight.org/

entities that are of type Football Player are more general than Brazilian Football Player
entities that share nationality=‘Brazil’ and type=‘Football Player’.

Given a set of anchor entities in the KB, the construction of communities depends on
the target property p and not the long tail query entity e. Communities are constructed
by retrieving head entities from the knowledge base. The community construction process
is guided by constraints from the Membership Assessment and Estimation modules.

Algorithm 1 Membership-Based Community Construction
Input:

E a set of anchor KB entities
p query property
θ coherence minimum threshold

Output:
C A set of communities

1: procedure ConstructCommunities(E, p)
2: C ← φ
3: for each e ∈ E do . Loop over anchor KB entities
4: Pin ← incomingProperties(e)
5: Pout ← outgoingProperties(e)
6: for pi ∈ Pin ∪ Pout do
7: Ec ← neighbours(e, pi)
8: c← construct(Ec) . Build c from entities Ec
9: if coherence(c, p) ≥ θ then

10: add c to C
11: return C

Membership-based Community Construction. Assessing the membership to a com-
munity depends on how similar the entities within this community are; the more features
entities share (property values and shared relationships to other entities), the more simi-
lar they are. We explain a community construction method that relies on navigating the
knowledge base graph according to the relationship types. The graph navigation method
is described in Algorithm 1. For each head entity e in the set of anchor KB entities, we
retrieve all properties that are linked to e. These properties represent relationships be-
tween e and other entities in the knowledge base. Then, we construct a community from
all entities that share a particular relationship to e. For example, if e represents Google,

25

a community c may include all entities that are connected to Google through the work at

relationship type.

Not all constructed communities can produce meaningful estimates, and the estimation
power of a community depends on the property p that we are estimating. For example,
a community that consists of entities born in the United States can confidently estimate
the nationality of its entities, but the same community cannot help in estimating age or
occupation. Therefore, we make filter out communities that are not coherent with respect
to the target property in Line 9. Other approaches to query the knowledge base graph
or rely on external sources to find similar entities can also be used to construct coherent
communities.

After constructing a possibly large number of communities, we calculate multiple sta-
tistical measures for each community, including the confidence of its produced estimates,
which depends on the size of the community and the homogeneity of the p values of its
members. Depending on the type of p, we compute the variance of the p values if p is a
numerical property (e.g., birthdate), or Simpson’s diversity index2 [96] of the p values for
categorical properties (e.g., nationality or alma mater). We associate a confidence score
with the produced estimates and discard communities that do not have coherent p values.
This drastically reduces the number of communities to consider in the following stage.

3.4 Community Membership Evaluation

As mentioned in Section 3.2, the co-occurrence of a long tail entity with another head entity
does not necessarily indicate the existence of a relationship between them. Communities
that are constructed from irrelevant head entities introduce noise in the estimation process.
Therefore, the goal of the Membership Assessment module is to measure the similarity
between the long tail entity and a particular community. The membership function M(el, c)
produces a score that reflects the similarity between el and entities of the community c.
The membership in each community is determined independently from the membership in
other communities. While the anchor entities exist as nodes in the knowledge base KB
and have relationships between themselves and other nodes in the KB graph, the long tail
entity is not expected or guaranteed to exist in the knowledge base KB.

As a result, we can only rely on the text corpus D to measure the similarity between
the long tail entity e and a community c. In other words, the only input available for ei

2The index reflects the probability that two entities taken at random from the community have the
same p value.

26

is a set of sentences Si that it appears in, along with the head entities Ei that appear in
these sentences. We note that the similarity between two entities is reflected in the way
they are mentioned in the text; similar entities tend to appear in similar textual contexts.
Based on this notion, we measure the similarity between two entities by the similarity
between their contexts, where a context is the sentences in the text corpus where an entity
is mentioned. The textual similarity lands itself into a textual embedding-based approach
that incorporates the semantics of text.

Embedding-based Membership. In the past decade, modern machine learning tech-
niques in natural language processing have utilized the concept of word embedding to
represent text by vectors. These vectors capture hidden information about the semantics
of words. Since then, there has been an increased development from the initial Word2Vec
model [80, 54], FastText [13] that is based on n-grams, to more complex models such as
BERT [31]. While the details of these embedding models is outside the scope of this Chap-
ter, it is relevant that these models are utilized to understand text, specifically calculating
the semantic similarity between words.

We utilize embedding-based similarity to measure the similarity between two entities as
the similarity between the sentences in which they are mentioned. In order to measure the
similarity between sentences, we use an implementation 3 of Sentence-BERT [90]. Given
two entities e1 and e2 mentioned in a text corpus D, we retrieve the sentences S1 and S2

that mention e1 and e2, respectively, and use Sentence-BERT to measure the semantic
similarity between all pairs of S1 and S2. The similarity between S1 and S2 is defined as
the average of the ks most similar pairs of sentences. We combine the sentence-to-sentence
similarities with another similarity score based on the number of shared head entities that
appear in all sentences S1 and S2. We aggregate the two similarity scores using a weighted
average to measure the overall similarity between the two entities e1 and e2 as follows:

sim(e1, e2) = wS × sent sim(S1, S2) + wE × sim∩(E1, E2)

Likewise, we define the similarity between an entity e and a community c as the average
of the kc most similar entities in c.

Classification-based Membership. Another possible way to measure the membership
score between an entity e and a community c is to view the problem as a binary classification
task. An entity e is labelled with “member/not member” in a community c. Classification

3https://github.com/UKPLab/sentence-transformers

27

https://github.com/UKPLab/sentence-transformers

tasks require a training dataset with both positive and negative examples and a set of
features that represents community entities and reflect the similarity between entities.
After retrieving the documents where the entity e is mentioned, we extract three types of
features:

1. Bag of keywords that appear in the documents, after stemming, lemmatization,
and removing stop words.

2. The head entities that are mentioned in the relevant sentences.

3. The types of head entities that are mentioned in the relevant sentences.

These features are selected to describe how the entities of a community reveal them-
selves in the text corpus, including the most popular keywords that appear with the com-
munity entities, the head entities, and their types that form the semantic context of these
documents. If el is surrounded by a similar context, e.g., appears with community-specific
keywords or types, then it is more likely to belong to that community. Similarly, if two enti-
ties appear with the same types of head entities, they are more likely to be of similar types.
For example, students are more likely to be mentioned with universities and politicians are
more likely to be mentioned with governmental organizations. To implement the binary
classifier, we use the Stanford Classifier [76], and we set it to use the Logistic Classifier to
perform binary classification. The classifier allows the integration of the aforementioned
features for each example entity.

While the initial implementation of LONLIES [47] used the binary classification-based
membership scores, using a classification-based technique suffers from multiple limitations:

• While it is easy to construct positive examples for the training data using entities that
belong to the target community, it is not clear how to collect negative examples that
help in accurately differentiating between community members and non-members.

• The number of positive training examples may not be enough to learn meaningful rep-
resentation for the community entities given the number of features. In other words,
there may not be enough positive training examples to learn meaningful weights for
the features.

• The classification task is usually a lengthy operation that requires feature extraction,
multi-epoch training, and inference on the training data. This complex operation
makes it impractical to build a classifier for each community c.

28

Therefore, we rely only on the embedding-based membership scoring function. The
membership module discards communities that have a membership score less than a par-
ticular threshold, and returns only the kc most similar communities that el is assumed to
belong to, and hence, el may share similar values to their common properties.

3.5 Estimation of Property Values from Communities

Estimating the value of a property from a population of other entities is an old problem
that has been studied in many fields. In the database field, the problem is referred to as the
imputation of missing values, where the goal is to fill in a missing value for an attribute in a
record based on other records in the database. Multiple approaches have been proposed to
predict the value of the missing attribute depending on the characteristics and distribution
of the underlying data [32]. The work in [71, 45] categorizes the algorithms that are
designed for missing value imputation into two types.

The first type is single imputation algorithms, where the missing value is imputed by
a single value. Examples of these algorithms include:

1. Mean imputation, where the missing value is imputed with the mean for continuous
data or mode (most frequent value) for discrete data;

2. Hot deck imputation, where the value of the missing attribute in a record is imputed
from the most similar record that contains a value for the target attribute. The
distance between two records depends on other attributes in the records.

3. Naive-Bayes classification, where the target attribute is treated as a class, and the
record is classified into one of several possible classes that are obtained from the
existing data.

The second type of missing value imputation algorithms is multiple imputation algo-
rithms, where the imputation of the missing attribute can take multiple uncertain values.
The literature includes many algorithms that rely on probabilistic Bayesian models and
different types of logistic and polytomous regression.

In our approach, the Estimation module receives a set of p values that are collected
from multiple relevant communities, together with their membership scores with respect
to the long tail entity el in the communities that produced them.

29

We follow a straightforward approach to aggregate the estimates from the property
values of all community members by counting the frequency of values across all entities of
all communities. We then normalize these frequencies, and the result is a distribution of
values for p with a final confidence score assigned for each value.

3.6 Experiments

In this Section, we evaluate the effectiveness of the proposed approach in estimating prop-
erty values.

Experimental Setup. We start by explaining the setup of the experiments.

• Dataset. In order to test the proposed approach, we need a text corpus and a
knowledge base. Entities that are mentioned in the text corpus should be linked to the
knowledge graph in order to construct the links described in Section 3.2 and construct
communities as described in Section 3.3. To focus on evaluating the effectiveness of
this approach, we perform this experiment on subset B of the ClueWeb09 [19] text
corpus. The corpus consists of 50 Million English documents that are retrieved
and crawled from the Web. We index the corpus in an ElasticSearch cluster to
facilitate the fast search and retrieval of documents. As for the knowledge base, we
use Freebase [14]. To annotate documents in ClueWeb09 with entities from Freebase,
we use Freebase Annotations of the ClueWeb Corpora, v1 (FACC1) [52]. FACC1 is
published by Google, and it contains automatic annotations of the ClueWeb09 corpus
that are linked to Freebase.

• Properties to Estimate. In order to evaluate the proposed approach, we choose
a set of properties that can be estimated through association with other entities.
For example, we estimate the nationality of entities of type Person (with URI
<http://rdf.freebase.com/ns/people.person.nationality>).

• Mentions of Entities. To demonstrate the long tail phenomena of entities, we plot
the entities with the nationality properties (approximately 57k entities) against
the frequency of mentions in the text corpus. Figure 3.4 shows that a few entities
have a very high number of mentions in the text, while the majority of entities have
much fewer mentions. Notice that this graph does not include the top-100 entities
that have a very high number of mentions (in the millions), such as Barack Obama.

30

Mentioned Entities

0

10

20

30

40
A

pp
ea

ra
nc

e
Fr

eq
ue

nc
y

(x
 1

00
0)

Figure 3.4: Distribution of all entity mentions in experiments

Estimating Properties. To evaluate the quality of the produced estimations, we select
a set of entities from the knowledge graph with known values for the nationality property.
We measure the precision and recall of the estimations produced by our approach by
varying a threshold on the estimation score. Given that some entities may have more
than one possible correct value and that we produce a distribution, we define the following
measures:

• True positive: A correct value is produced with the highest score in the estimation.

• False positive: The estimated value with the highest score does not include any
correct value.

• False negative: The top estimated value is below the defined threshold, or no esti-
mation is produced, e.g., no communities could be constructed.

We evaluate the precision and recall by varying the threshold for the estimation score
from 0.1 - 0.9. We also split the evaluation into three different kinds of entities according
to how often they appear in the text.

• A set of 1,000 long tail entities, where the number of mentions of each entities ranges
between 5-20 entities

31

Long tail entities Random entities Head entities
Threshold Precision Recall F1 Precision Recall F1 Precision Recall F1
0.1 0.74 0.72 0.73 0.85 0.77 0.8 0.83 0.88 0.85
0.2 0.74 0.65 0.69 0.84 0.75 0.79 0.83 0.81 0.82
0.3 0.75 0.6 0.67 0.84 0.72 0.78 0.83 0.76 0.79
0.4 0.75 0.57 0.65 0.86 0.7 0.77 0.83 0.73 0.78
0.5 0.82 0.47 0.6 0.86 0.64 0.73 0.89 0.66 0.76
0.6 0.82 0.44 0.57 0.87 0.61 0.71 0.89 0.64 0.74
0.7 0.89 0.33 0.49 0.94 0.49 0.64 0.93 0.49 0.64
0.8 0.89 0.32 0.47 0.94 0.48 0.63 0.93 0.49 0.64
0.9 0.92 0.22 0.36 1 0.38 0.55 0.98 0.36 0.534

Table 3.1: Precision and Recall for property estimations

Threshold

0.00

0.25

0.50

0.75

1.00

0.2 0.4 0.6 0.8

Precision Recall F1

Figure 3.5: Estimation precision and recall for long tail entities

• A set of 100 head entities with more than 1,000 mentions in the text

• A set of 100 random entities

Table 3.1 depicts the precision and recall scores for the three types of entities as we vary
the threshold of estimation score. Figure 3.5 depicts the precision, recall and F1 curves for
the long tail entities, while Figure 3.6 shows the curves for head entities, and Figure 3.7
shows the curves for the set of random entities. As expected, the precision increases as we
increase the threshold, which comes at the cost of a drop in the recall. Since the drop in
recall is more than the increase in precision, the F1 score decreases.

Presented Demo. We presented a prototype of LONLIES at SIGMOD 2016 [47], where
the conference attendees interacted with the system as shown in Figure 3.8. The interactive
system utilized feedback from the users to refine the output from each step in Figure 3.2

32

Threshold

0.00

0.25

0.50

0.75

1.00

0.2 0.4 0.6 0.8

Precision Recall F1

Figure 3.6: Estimation precision and recall for head entities

Threshold

0.00

0.25

0.50

0.75

1.00

0.2 0.4 0.6 0.8

Precision Recall F1

Figure 3.7: Estimation precision and recall for random entities

that feeds into the following steps, allowing for more relevant results. The user interface
shows the details of each process, including the anchor KB entities that are co-mentioned
with the query entity. It also shows the constructed communities, each as a graph as it
appears in the knowledge base, along with information about the total number of entities,
the confidence of accurate estimation from the community as measured by the variance of
the property values, and the score of membership of the query entity to the community.

3.7 Related Work

The CERES [73] system aims at extracting long-tail entity relationships from semistruc-
tured websites. The presented approach focuses on detail pages: pages about single entities
that are rendered from a database in a template. Each page describes relations between

33

LONLIES
Estimating Property Values for Long Tail Entities

Entity name Hans Goff
Properties

SearchNationality Political Party Alma Mater Provide feedback

Rutgers New Jersey Hillary Clinton Harvard Law School Democratic Trenton

 Anchor KB Entities

 Communities

387 Entities Con�dence: 0.92 Membership Score: 0.6

381 more entities...

223 Entities Con�dence: 0.7 Membership Score: 0.32

217 more entities...

17 Entities Con�dence:

Con�rm Irrelevant Details Con�rm Irrelevant Details Con�rm

Appears 3 times

Documents
https://www.linkedin.com/in/hans-goff-4194a44
http://www.wm.edu/as/news/2011/goff.php

Irrelevant

Figure 3.8: Interactive Interface for LONLIES [47]

a main, topic entity and other related entities that appear in it. The approach starts by
annotating entities in every page from a relevant KB by doing fuzzy matching of the text in
each of the page’s DOM elements to the KB. A first pass over all pages ranks the XPaths
of each entity to find the most common XPath, which CERES assumes to be the main
topic entity and uses it to extract a topic entity for each page. The KB relation triples are
used as positive examples to annotate XPaths in the page with relation types in a distant
supervision fashion. A multinomial logistic regression classifier is then used to learn the
correlation between DOM nodes and relationship predicates; i.e., the classifier learns to
classify a predicate that appears in the KB, or “OTHER” if the relationship predicate does
not appear in the KB. CERES targets higher precision at the expense of the recall, so
many heuristic-based filters are applied to produce fewer high-quality triples.

General knowledge base construction methods, such as DeepDive [84] and Knowledge
Vault [33], train property-specific extractors (e.g., using distant supervision) to extract
specific relationships from text. Knowledge Vault also exploits a knowledge base to com-
pute the prior of the extracted facts and predict links in the knowledge base graph. This
prior is used together with extractions from multiple extraction systems on different data
sources to validate the correctness of extracted facts. The success of these approaches relies

34

heavily on the redundancy of information in the text in order to extract accurate property
values.

Other question answering techniques [7] utilize query logs to find query-relevant web
pages and paid crowd-sourcing to manually extract text snippets and manufacture answers
from the retrieved web pages.

35

Chapter 4

Discovering SHACL Constraints
from RDF

The flexibility of the RDF data model [63] enables enterprises to integrate information that
is obtained or extracted from heterogeneous data sources. This information can be linked
together, forming graphs that combine knowledge acquired from various sources. The
graph nature of RDF enables both simple retrieval and complex graph analytic queries.
Moreover, applications query and retrieve relevant RDF data to populate analytic schemas
on-demand, a concept that is known as “schema-on-read” [37, 72]. While the flexibility
of the RDF data model allows representing diverse information, it also introduces a risk
to include erroneous, invalid, or inconsistent data in the constructed knowledge graphs,
compromising the quality of analysis.

Recently, W3C has introduced SHApes Constraint Language (shacl) as a formal defini-
tion to express constraints on RDF data and validate the data against a set of conditions.
Validating RDF graphs against shacl constraints is well studied, but these constraints
must be manually authored by domain experts and fed into the validation engines.

In this Chapter, we introduce DISH, a mining algorithm to discover shacl constraints
from RDF datasets. DISH utilizes data mining and statistical analysis techniques to find
valid and interesting shacl constraints.

In the relational data model, integrity constraints, such as foreign key or functional de-
pendency constraints, ensure the correctness of the stored data and capture some business
rules, e.g., using check domain constraints. This pattern is commonly known as “schema-
on-write” [37], whereby data that does not fit the constraints is not written. These con-
straints are authored by domain experts and provided as rules to the data validation engine.

36

ex:PersonShape a sh:NodeShape ;

sh:targetClass ex:Person ;

sh:property [sh:path ex:ssn ;

sh:maxCount 1 ;

sh:datatype xsd:string ;

sh:pattern "^\d{3}-\d{2}-\d{4}$" ;] ;

sh:property [sh:path ex:address ;

sh:or ([sh:datatype xsd:string ;]

[sh:class ex:Address ;])] .

Figure 4.1: Example shacl constraint to validate entities of type ex:Person

Enforcing and discovering integrity constraints from data has recently received significant
attention. For example, many algorithms were developed to discover functional dependen-
cies [59, 85, 86], conditional functional dependencies [12], and denial constraints [25, 11].
Enforcing and validating constraints on relational data is well defined because integrity
constraints are defined on an explicit schema.

In the RDF data model, RDFS and owl capture some constraints, such as data types of
literals and domains of properties, but they fall short in defining more expressive business
rules since they are intended for entailment and not for validation [79]. shacl [65] has
recently been accepted as a W3C recommendation for validating RDF graphs. Integrity
constraints in shacl are represented as shape graphs written in RDF. These constraint
graphs express validation rules that apply within a scope or a context in the data. The
combination of RDF and shacl occupies a unique position between the, typically mutually
exclusive, schema-on-write and schema-on-read patterns. Unlike the relational model, RDF
permits any data to be written so long as it conforms with the basic triple structure: close
to the on-read pattern. shacl permits us to define on-write like structure where the
validation is deferred to run-time.

Example 1 (shacl Constraint). The ex:PersonShape constraint1 in Fig. 4.1 is defined
on entities of type ex:Person. A person has at most one value for the ex:ssn property
and it must be a string with the specified pattern. The ex:address must be either a
xsd:string literal or an IRI of type ex:Address.

To define shacl constraints, domain experts examine the data and author constraints
that act as sanity checks and validation rules that reflect application domain and require-

1We use ex: as an example namespace for readability.

37

ments. These constraints are validated against RDF data to find violations, e.g., using the
open-source2 engine of TopQuadrant. Deeper analysis of the validation process has also
been recently studied [28]. However, the authoring of shacl constraints remains a manual
task that requires expert knowledge about the data and application domain.

In this Chapter, we introduce DISH, an algorithm to DIscover SHacl constraints from
RDF data. DISH utilizes data mining techniques to describe valid entities in the RDF graph
using sets of conditions. A few approaches have targeted discovering inclusion dependencies
from RDF [67], discovering cardinality constraints from RDF [79], defining and enforcing
denial constraints on RDF [48], or enforcing functional dependencies on graphs [44]. To
the best of our knowledge, this algorithm is the first work to target discovering expressive
integrity constraints like shacl from RDF data.

Challenges.

Discovering shacl constraints from RDF is not straightforward for the following reasons:
(1) the absence of a well-defined schema in the RDF model limits the applicability of
previous discovery approaches that were developed for relational data; moreover, (2) these
relational approaches are not equipped to handle missing, null, or multi values; hence,
they cannot directly be applied on sparse RDF data; in addition, (3) the expressiveness of
shacl causes the space of possible constraints to explode especially since constraints can
be combined with boolean operators. Mining all possible constraints becomes infeasible
and heuristics are needed to limit the discovery space to find interesting constraints.

Contributions.

We summarize our contributions as follows:

1. We present DISH, an algorithm to discover shacl constraints from RDF data. DISH
mines patterns from RDF data and generalizes and combines them to construct
sophisticated shacl constraints.

2. We introduce a scoring function to rank the discovered shacl constraints according
to their potential interestingness to domain experts.

3. We evaluate DISH using five real RDF datasets to demonstrate its effectiveness and
efficiency, and show examples of the discovered constraints.

2https://github.com/TopQuadrant/shacl

38

https://github.com/TopQuadrant/shacl

In Section 4.1, we formally defines shacl constraints. We introduce the details of our
discovery algorithm in Section 4.2 and present our experiments in Section 4.3. We briefly
discuss related work in Section 4.4.

4.1 Preliminaries

We present a brief background to shacl constraints and introduce a formal definition for
them.

SHACL Constraints

On a high level, a shacl constraint consists of three components: (1) a target; (2) property
paths; and (3) conditions. The target represents a set of nodes in the RDF graph that
the validation runs on, while paths define a method to navigate from target nodes to
other reachable nodes called property value nodes. Conditions are boolean predicates
that compare property value nodes to constants or to other property value nodes that are
reachable from the same target node. Note that shacl does not allow comparing two
target nodes, but rather describes valid, individual RDF entities. Target nodes that do
not conform to a shape graph are deemed violations, illustrating the closed world nature
of shacl vs. the open world assumption of the RDF model.

Given an RDF graph G, we formally define the components of shacl constraints
(targets, paths, and conditions) as follows.

Definition 2 (Target). A shacl target N is a set of nodes from an RDF graph G defined
by:

1. A class type t, in which case the set contains all subjects of type t, i.e.,
Nt(t) = { s | <?s rdf:type/subClassOf* t> ∈ G} .

2. Subjects or objects of a property p in the graph, i.e.,
Ns(p) = { s | <?s p ?o> ∈ G} or No(p) = { o | <?s p ?o> ∈ G}.

Definition 3 (Path). A shacl property path p is an RDF term that describes how to
navigate from one node to another.

Evaluating p on a node n ∈ G yields a set of property value nodes that are reachable
from n through p. The simplest form of paths in shacl is PredicatePath, which is an
IRI that represents a property in G.

39

Group Operator shacl Constraint Components Short Description
O > , ≥ sh:minExclusive , sh:minInclusive Minimum value (exclusive/inclusive).
O < , ≤ sh:maxExclusive , sh:maxInclusive Maximum value (exclusive/inclusive).
O | ≥ | sh:minCount Minimum count of property values.
O | ≤ | sh:maxCount Maximum count of property values.
O #min sh:minLength Minimum length of a String.
O #max sh:maxLength Maximum length of a String.
O ≈ sh:pattern Compares a String value to a regex.
O = , ∈ sh:hasValue , sh:in The node value is restricted to this domain.
O =c sh:class The class type of the property value (IRIs).
O =dt sh:datatype The data type of the property value (literals).
O =k sh:nodekind The type of the value node.
R = , 6= sh:equals, sh:disjoint Simple equality and inequality.
R < , ≤ sh:lessThan, sh:lessThanOrEquals Compares two properties.

Table 4.1: Supported operators in shacl conditions. O compares a property value to a
constant and R compares the values of two properties.

Definition 4 (Condition). We define a shacl condition c as either:
c = (p O α) or c = (p1 R p2), where p, p1, and p2 are property paths, α is a constant, and
O and R are operators that are defined between a single property path and a constant, or
between two property paths, respectively.

We limit the set of operators in O and R to correspond to the constraints defined in
the shacl-core [65] specification. Table 4.1 describes these operators and their shacl
correspondences. We define a shacl constraint as follows.

Definition 5 (Constraint). A shacl constraint φ consists of a single target N and one
or more shacl conditions C combined using logical operators in B = {∧,∨,¬}. Formally,
φ = (N,B(C)).

Example 2 (Formal shacl Constraint). The constraint in Fig. 4.1 is formally written as
two constraints on the same target as follows:
φ1 : (Nt(ex:Person), (ex:ssn |≤| 1 ∧ ex:ssn =dt xsd:string

∧ ex:ssn ≈ “ˆ\d{3} − \d{2} − \d{4}$”)).
φ2 : (Nt(ex:Person), (ex:address =dt xsd:string

∨ ex:address =c ex:Address))

Limitations of Expressiveness.

This formal definition of shacl constraints limits the discovered constraints in the following
ways. shacl allows ad-hoc SPARQL-based constraints, where constraints are expressed

40

as SPARQL SELECT queries, making it challenging to discover or explore the space of all
possible queries that can be defined on an RDF graph. Hence, we focus only on shacl-core
constraint components (Table 4.1). In addition, we do not support the logical operator
sh:xone.

4.2 The DISH Discovery Algorithm

In this section, we introduce DISH, an algorithm to mine shacl constraints from an RDF
graph G. We give an overview of DISH and then explain the details of every step in the
following subsections.

4.2.1 DISH Overview

On a high level, DISH enumerates all possible targets that exist in a dataset. For each
target, it analyzes the entities of that target to find specific features of each entity. These
features are then generalized into conditions that apply on all entities of that target. We
construct a subgraph around each target entity and collect multiple statistics that are
combined later into a set of evidence to construct valid conditions on the data. The
mining algorithm of DISH utilizes the graph nature of RDF, including handling missing
values and multi-valued properties. Algorithm 2 gives a high-level description of DISH and
refers to future sections for further details.

Target Enumeration.

The method EnumerateTargets(G) enumerates the class types in G and returns them
one by one for processing. We then retrieve all nodes of a target N . After retrieving the
target nodes, we construct a subgraph around each node. We explore the neighbouring
nodes guided by a path traversal strategy. For example, a simple path traversal strategy
materializes immediate neighbors as shown in Fig. 4.2. The figure also contains the feature
descriptors Di that we explain later in Definition 7. DISH also supports materializing 2-hop
subgraphs around target nodes as we show in Section 4.3.

Generating Conditions.

Given the set of target subgraphs, we construct a list of conditions C to check against every
subgraph (Line 4). The space of possible conditions depends on the constraint components

41

Algorithm 2 General Framework of DISH

Input: G - An RDF graph dataset.
Output: Φ - A set of shacl constraints discovered from G.

1: Φ← ∅
2: N ← EnumerateTargets(G)
3: for all N ∈ N do
4: C← GenerateConditions(G,N) . Section 4.2.2 and Algorithm 3
5: E← BuildEvidenceSet(N,C) . Section 4.2.3
6: H ← CalculateMHS(E) . Section 4.2.4
7: for all H ∈ H do
8: φ ←MhsToShacl(N,C, H) . Translate each MHS to a constraint.
9: Φ← Φ ∪ {φ}

return Φ

(which map to shacl conditions) that are defined in Table 4.1. We further discuss this
step in Section 4.2.2.

Collecting Evidences.

For every target subgraph, we evaluate all of the generated conditions C to produce a
bitmap of evidence e for every subgraph. An evidence encodes the satisfaction of each
condition on that subgraph. The output is an evidence set E that is collected from all
subgraphs.

Generalizing Conditions.

After collecting the evidence set E, the final step is to find sets of conditions that apply on
all target nodes and hence can be generalized to apply on the target (Section 4.2.4). This
process is achieved by employing minimal hitting set (MHS) algorithms to find subsets of
C that cover E and hence apply on all target entities. Finally, the sets of conditions that
cover E are directly translated to shacl constraints.

42

4.2.2 Constructing the Space of SHACL Conditions

Generating conditions is a key phase in DISH that is designed with two main notions in
mind: processing RDF data and discovering shacl constraints. When generating con-
ditions for constraints on RDF data, we need to consider multi-valued properties, the
possibility of missing values where the subgraphs do not have an identical structure, and
the large scale of subgraphs. Moreover, the generated conditions must be designed to be
translated to valid shacl constraints. We tackle the first challenge by introducing sub-
graph descriptors and the second challenge by designing a set of features of subgraphs.
The combination of descriptors and features allows scalable generation of conditions since
descriptors are independently generated for target subgraphs. The features are also generic
and apply on any dataset since they are more about the shacl constraints that are discov-
ered and not the data instance. Algorithm 3 describes the condition generation process,
which we divide into single-path-conditions with O operators and pair-path-conditions with
R operators.

Generating Feature Descriptors.

The core of the condition generation process is feature descriptors. Feature descriptors
describe different characteristics of a target subgraph in order to represent it.

Definition 6 (Feature). A feature f is an attribute of a graph node.

DISH includes a specific set of features designed to assist in discovering shacl con-
straints. The features are either ordinal (StringLength, PathCount, NumericalValue,
DateValue) or nominal (ClassType, DataType, NodeKind, StringPattern,
CategoricalValue).

Definition 7 (Descriptor). A descriptor d is a triple <p, f, v>, where p is a path as
defined in Definition 3, f is a feature, and v is the value of f when evaluated on a single
property value node in the set produced by evaluating p.

Every property value node3 in the subgraph emits a set of descriptors depending on
its characteristics (e.g., kind and type). Fig. 4.2 gives examples of what descriptors are
generated. The descriptors produced for the first graph D1 contain two descriptors for p1

and o1 but for different features fx and fy. In the second subgraph, the path p1 appears

3We process the PathCount feature on the whole set of property value nodes, which may be empty if
the path does not exist in the target subgraph.

43

s1o1

o2

o3

p1

p2

p3

s2o1

o2

o3

o4

p1

p1 p2

p3

s3o1

o2

o3

o5p1

p2

p3

p5

D1={<p1,fx,fx(o1)>,

<p1,fy ,fy(o1)>,... }

D2={<p1,fx,fx(o1)>,

<p1,fx,fx(o4)>,... }

D3={<p1,fx,fx(o1)>,

<p5,fz ,fz(o5)>,... }

Figure 4.2: Subgraphs constructed around target nodes s1, s2, s3 and their descriptors

twice so we produce two descriptors with the same feature fx for it. In D3, we have p5

that produces a different feature fz than p1. The output of this step (Line 6 in Alg. 3) is
a set of descriptors D that are generated from all target subgraphs.

Grouping Descriptors.

Every descriptor d describes a feature of one target subgraph. Since the goal of shacl is
to describe all nodes that belong to a target, we generalize these descriptors to describe all
subgraphs by grouping them by their path and feature (Line 7). This grouping produces a
list of feature values of the same path that were generated from all subgraphs. We perform
various statistical analyses on these values (e.g., finding most common values, ranges, and
outliers) according to their corresponding feature in order to decide whether or not to
produce a general condition that is capable of describing these values and, hence, can be
generalized to the whole target.

Example 3 (Condition Generation). Assume we are discovering constraints from
ex:Person entities and we have obtained the following grouped descriptors:

<age, NumericalValue>: {18, 20, 35, ..., 21, 90, 31, 22}
<firstName, StringLength>: {5, 4, 8, ..., 5, 3, 4, 4}

When DISH analyzes the feature values, it produces the following conditions:

• c1 = (age ≥ 18)

• c2 = (age ≤ 90)

• c3 = (firstName #min 3)

44

Algorithm 3 Generating The Space of shacl Conditions

Input: G - an RDF graph dataset. N - a target.
Output:. CN - Conditions on N .

1: procedure GenerateConditions(G,N)
2: D← ∅ . Descriptors generated from N
3: CN ← ∅ . Conditions to check on GN

4: for all n ∈ N do
5: g ← ConstructSubgraph(G, n) . Materialize neighbours of n.
6: D← D ∪ExtractFeatureDescriptors(g)

7: pfV als← groupDescriptors(D) . Group values by path and feature.
8: for all < p, f >, vals ∈ pfV als do
9: CN ← CN ∪ convertToConditions(p, f, vals)

10: P ← uniquePaths(D)
11: for all pi, pj ∈ P do
12: CN ← CN ∪ pairConditions(pi, pj)

return CN

• c4 = (firstName #max 8)

This corresponds to the convertToConditions function (Line 9 in Alg. 3). Section 4.2.4
discusses the effect of removing outliers from the values, e.g., to replace 90 with 35 in c2.
This example highlights the role of human verification of the discovered constraints.

Generating Pair-Path-Conditions.

Conditions between pairs of property paths are straightforward to generate by enumer-
ating all unique property paths (Line 10). We enumerate a condition between property
paths with the same data type using {=, 6=} for nominal properties and {<,≤} for ordinal
properties4.

4.2.3 Evaluating the Conditions on the Target Nodes

Given the space of conditions C and all target subgraphs, every condition c in C is checked
against every subgraph gi and it evaluates to 1 if gi satisfies c (denoted gi ` c) or 0

4We ignore {>,≥} because properties appear on both sides of the operators.

45

otherwise. Hence, every subgraph gi produces a binary vector ei of length |C|, where
ei[j] = 1 if gi ` cj. The collection of all e vectors from all subgraphs is referred to as
the evidence set E, which encodes the satisfaction of conditions on the whole target (all
subgraphs). Every evidence depends only on its entity subgraph, which allows the evidence
set to be computed in parallel.

Rationale behind evidence sets.

Since shacl may combine multiple patterns that together form a single constraint, it is
not enough to look at individual patterns (e.g., how much a condition c holds on the whole
data) and declare them as constraints. More advanced techniques are needed to combine
multiple patterns together to form a single valid constraint as we explain next. Similar
approach has been adopted in FastDC [25] and Hydra [11] to mine denial constraints from
relational data. While denial constraints are also represented as first-order logic rules,
the constraints involve comparing multiple entities to each other, which is not allowed in
shacl.

4.2.4 From the Evidence Set to a SHACL Constraint

After collecting the evidence set that represents the satisfaction of individual conditions
by the graphs of the target nodes, we employ hitting set algorithms to cover the evidence
set E by finding a set of conditions H where all target nodes satisfies at least one of the
conditions in H. Formally, H ∩ e 6= ∅,∀e ∈ E; H is minimal when there is no other hitting
set that is a subset of H. When combining the conditions in H with an OR operator, H
describes the target N since at least one of the conditions hold on all entities in N and can
therefore be considered a constraint. In DISH, we used a parallel implementation of the
minimal-to-maximal conversion search algorithm [82] that performs a depth-first search in
space of conditions with pruning.

When C contains opposite conditions (e.g., age > 30 and age ≤ 30), the MHS algorithm
will use them as a valid cover for the evidence set since all entities with age satisfy either
conditions. To tackle this, we perform a post-processing step to remove trivial hitting sets
with opposite conditions.

We construct a constraint φ from each minimal hitting set H. We initialize φ with
an RDF triple that describes the target N , then we add the conditions from H to φ. If
|H| > 1, we add the conditions in an RDFList term, combined in an sh:or statement that
is added to φ; otherwise, we add the single condition from H directly to φ. Every condition

46

contains an operator that translates to a constraint component as defined in the mapping
in Table 4.1, and we add the paths or constants as subjects or objects in the generated RDF
statements depending on the condition. If the operators used in a constraint can be negated
to find their inverses, we negate them and replace the sh:or with an sh:and, following
De Morgan’s laws for logical propositions. The inversion simplifies the explanation of the
constraint to be a set of conditions that cannot occur together for any target node, similar
to denial constraints [25]. The shacl constraints are then presented to domain experts for
further validation.

Tolerating Data Errors.

An exact MHS does not tolerate any errors in the data. If a condition c is not satisfied by
one target subgraph, the MHS H = {c} cannot be valid because it does not cover all of the
evidence set. This restriction causes the discovered constraints to overfit to the data by
adding more conditions to H, resulting in contrived constraints that are less interesting.

Therefore, it is desirable to introduce a degree of tolerance to allow a few violations of
the conditions in the MHS. We modify the discovery problem to find shacl constraints that
have at most ε percentage of violations of each discovered constraint. Utilizing approximate
MHS algorithms allows us to find hitting sets that cover most of the evidence set, allowing
a small percentage ε of violations, i.e., setting ε = 0.05 allows 5% of the data to violate the
constraint.

4.2.5 Ranking the Discovered Constraints

The number of discovered constraints can be too large and not all will be interesting to
the user; constraints may be overfitting and would not generally hold on the data domain.
Therefore, ranking the discovered constraints according to their level of interestingness
becomes an important component to prioritize the validation of more interesting constraints
by domain experts.

Ranking the discovered shacl constraints can be done in different ways. A constraint
can be evaluated independent of other constraints, where it is assigned a score based
on an objective function that examines it (and possibly the data) without looking at
other constraints, e.g., computing its data coverage. An alternative ranking method is
to relatively order constraints. The work by Geng et al. [53] presents a survey about
various types of interestingness measures for data mining. While there are many measures

47

of interestingness, including subjective and domain-specific ones, we adopt three types of
measures to calculate interestingness scores of shacl constraints as follows:

Interestingness(φ) = wv × coverage(φ) + wc × conciseness(φ) + wp × peculiarity(φ)

The coverage of a constraint reflects the amount of data that conforms to it. The MHS
algorithm produces a set of constraints that (approximately) holds on the data; however,
it might combine a condition ci that holds on most of the data with another condition cj,
just because cj covers the missing set of evidence. While the MHS H = {ci, cj} is a correct
cover, conditions that are mutually exclusive might be more interesting to show similar to
the sh:or condition on the ex:address path in Fig. 4.1. Based on that intuition, we define
the coverage(H) = |{e|∀e ∈ E, |e ∩H| = 1}|/|E|, which counts the number of evidences in
E such that only one condition in H is True. This formula finds the common conditions
between e and H and counts only the evidence vectors that share exactly one condition
with H. The score for coverage(H) ∈ [0, 1], where higher scores are more statistically
significant.

Following [10], complex discovered patterns cause overfitting. Therefore, we designed
our measure of conciseness to favor constraints with fewer conditions, conciseness(φ) =
min({len(φ)|∀φ})

len(φ)
, where len(φ) = |H|.

Peculiarity [53] ranks a constraint higher if it is far away from other discovered con-
straints, where peculiarity is measured according to statistical models. Our peculiarity
measure employs a tf-idf formula [93], where terms are extracted from a constraint φ as
the paths, condition operators, and constants in its conditions. We use the average tf-idf
score of all terms in φ as its peculiarity score, normalized by dividing the score by the
maximum score for all constraints. This formula assigns higher scores to the constraints
that have less common conditions or operators, which might be more interesting to show
first to the user.

4.3 Experiments

We divide the experimental evaluation of DISH into two sections: a quantitative analysis
to examine the efficiency and scalability of DISH, and a qualitative analysis to inspect the
semantics of the discovered constraints. All experiments ran on a single machine with Intel
Core i7 Quad-Core CPU (3.40GHz) with 16GB of RAM and running the Ubuntu 18.04
operating system. We implemented the algorithms of DISH in Java 8.

48

Datasets.

We start by listing the datasets that we used for all experiments.

1. DBPedia-Person. A dump of the DBPedia [4] person dataset. It includes infor-
mation about hundreds of thousands of people.

2. US-Diet. A U.S. Federal dataset that includes data on adult diet, physical activity,
and weight status5.

3. MD-Crime. The dataset lists crime that occurs in Montgomery County, MD. It is
updated daily, we used a snapshot downloaded6 on April 1, 2019.

4. ISWC13. Metadata about papers, presentation, and people for ISWC 2013 confer-
ence, a subset of the Semantic Web Dog Food Corpus7.

5. TLGR. Telegraphis data about countries, continents, capitals, currencies collected
from GeoNames and Wikipedia8.

4.3.1 Quantitative Analysis: Scalability

To evaluate the scalability of DISH, we study the performance of each component in iso-
lation as we change its input size to provide a detailed analysis. After that, we study the
scalability of the overall algorithm. We focus on three component algorithms: (a) gen-
erating feature descriptors; (b) constructing conditions from feature descriptors; and (c)
building the evidence set on targets.

We isolate the time taken by each algorithm as we vary the size of its relevant input.
It is important to note that the basic input to DISH is not the raw triples from an RDF
dataset, but rather the target nodes. Modifying the input size cannot be simply done by
changing the number of triples that we feed into the algorithm because this would affect
the subgraphs that are constructed around the target nodes in an unpredictable way.
Therefore, the whole dataset is loaded in experiments, but we vary the size of randomly
selected sets of the target nodes to use as input. We use the first three datasets for this

5https://chronicdata.cdc.gov/Nutrition-Physical-Activity-and-Obesity/Nutrition-Physical-Activity-
and-Obesity-Behavioral/hn4x-zwk7

6https://data.montgomerycountymd.gov/Public-Safety/Crime/icn6-v9z3
7http://data.semanticweb.org/dumps
8http://telegraphis.net/data/

49

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50

R
u
n
tim

e
 (
s
e
c
o
n
d
s
)

Number of target nodes (x1000)

DBPedia-Person
US-Diet
MD-Crime

(a) Extracting feature descriptors

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50

R
u
n
tim

e
 (
s
e
c
o
n
d
s
)

Number of target nodes (x1000)

DBPedia-Person
US-Diet
MD-Crime

(b) Constructing conditions

 0

 1

 2

 3

 4

 5

 0 200 400 600 800 1000 1200

R
u
n
tim

e
 (
s
e
c
o
n
d
s
)

Number of conditions

US-Diet

(c) Building evidence set

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200

R
u
n
tim

e
 (
s
e
c
o
n
d
s
)

Number of target nodes (x1000)

DBPedia-Person

(d) Total execution time

Figure 4.3: Scalability of DISH mining algorithms

experiment as they are large enough to evaluate scalability. We repeat every experiment
five times and report the average run time.

We vary the number of input target nodes from 1k to 50k and measure the run time for
every module, isolated from the others. As shown in Fig. 4.3, the algorithms scale linearly
as the input size increases. The condition generation is expensive as it performs various
statistical analyses on the data. For a fixed number of target nodes, some datasets are
more expensive to process because the constructed subgraphs are larger, which results in
generating more conditions. For example, the average number of nodes in the subgraphs
in US-Diet is 25.6 nodes and in MD-Crime is 26.3, while it is 7.1 in DBPedia-Person.
These numbers correlate with the graphs in Fig. 4.3b. In Fig. 4.3c, we report the time
taken to build the evidence set for a fixed target node set size of 50k as we vary the
number of conditions that we evaluate on every subgraph. We only used US-Diet since
it has a large number of properties that allows DISH to generate more than one thousand
conditions, while the number of the conditions generated for the other datasets did not

50

exceed 400. To show how the overall runtime of DISH scales with the input size, we used
DBPedia-Person as it is the only dataset that has hundreds of thousands of entities with
the same target class. Fig. 4.3d shows that the total execution time of DISH grows linearly
as we increase the input size from 10k to 200k target nodes.

4.3.2 Qualitative Analysis: Quality of Discovered Constraints

We divide the discussion about the quality of the discovered constraints into two sections.
First, we measure the precision and recall of the shacl constraints that are discovered by
DISH as we compare them to a set of gold constraints. The gold constraints have been
designed by studying three datasets and manually identifying applicable constraints that
are interesting for different target classes. We identified gold constraints with the following
total number of conditions per dataset: (a) 175 conditions for TLGR; (b) 149 conditions
for US-Diet; and (c) 539 conditions for ISWC13. Second, we measure the u-precision as
the percentage of discovered constraints that are verified by a user to be interesting and
relevant. In all experiments, we set ε = 0.05.

Precision, Recall, and Ranking.

shacl groups multiple conditions on the same property path in the same constraint (e.g.,
sh:maxCount, sh:datatype, sh:pattern are different conditions defined on ex:ssn in
Fig. 4.1). Therefore, when calculating the precision and recall, we count individual condi-
tions on each target and property path pair. We rank the discovered constraints by their
score as defined in Section 4.2.5, and limit the results to only the top-k constraints when
measuring the quality (i.e., we measure @k scores). We count only the conditions in Ta-
ble 4.1 to avoid including metadata triples such as property paths and types. In addition,
we give partial scores for sh:in for each item in the set.

Fig. 4.4 shows the precision, recall, and u-precision of the top-k constraints as we
increase k. As expected, the recall increases at the cost of precision. The u-precision
of manually inspected datasets is always greater than or equal to the precision since the
gold constraints are not comprehensive and DISH discovers other interesting and valid
constraints that are outside the gold set.

51

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

k

precision
recall

u-precision

(a) TLGR dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

k

precision
recall

u-precision

(b) US-Diet dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

k

precision
recall

u-precision

(c) ISWC13 dataset

Figure 4.4: Quality of the top-k discovered shacl constraints

Examples of Discovered Constraints.

We list a few examples of the discovered constraints and explain their semantics. Fig. 4.5
shows a constraint discovered from DBPedia-Person dataset on entities of type Person.
The givenName is an optional string with a minimum length of 1 and maximum length
of 48. Another constraint in Fig. 4.6 shows the capability of DISH to discover constraints
on sequence paths by materializing a 2-hop subgraph around entities. In the TLGR
dataset, the landArea of Country entities must have a unit that is SquareKilometre.
From the ISWC13 dataset, DISH discovers that for InProceeding entities, if the cat-
egory of an entity is a “Poster/Demo Paper”, then that entity must be part of the
poster-demo-proceedings, which is a constraint about two paths of the same entity.
All of these constraints appear in the top-15 results for their corresponding targets.

4.4 Related Work

The field of data quality has received significant attention in data management because
inaccurate analyses costs trillions of dollars [60]. While the majority of data quality ap-
proaches for error detection and repair target relational data, RDF has recently received
more attention.

The work in [79] employs machine learning techniques to discover RDF Shapes, but it
is limited to cardinality and range constraints. Moreover, the approach does not produce
exact cardinality constraints, but rather produces cardinality classes such as “one” or

52

ex:21207 a sh:PropertyShape ;

sh:targetClass foaf:Person ;

sh:path <foaf:givenName> ;

sh:nodeKind sh:Literal ;

sh:datatype rdf:langString ;

sh:minCount "0"^^xsd:int ;

sh:maxCount "1"^^xsd:int ;

sh:minLength "1"^^xsd:int ;

sh:maxLength "48"^^xsd:int .

Figure 4.5: Example shacl constraint discovered from DBPedia-Person dataset

ex:13052 a sh:PropertyShape ;

sh:targetClass geonames:Country ;

sh:path tlgr-geography:landArea/tlgr-measurement:unit ;

sh:nodeKind sh:IRI ;

sh:hasValue tlgr-metric:SquareKilometre .

Figure 4.6: Example shacl constraint discovered from TLGR dataset

“more than one” cardinalities without bounds, while DISH can produce constraints as
complex as the ones in Fig. 4.7. No runtime or scalability analysis is reported in [79] so
it is difficult to compare the performance to DISH on the two reported datasets. Another
approach, RDFind [67], mines RDF datasets to find a specific type of constraints: inclusion
dependencies. The work mainly focuses on optimizing the discovery process and pruning
the huge space of possible inclusion dependencies. On the constraint enforcement side,
the work in [44] studies the problem of enforcing functional dependencies on graphs, while
CLAMS [48] focuses on enforcing constraints on RDF data to detect violations, but it
assumes that constraints are authored by domain experts and are given as input to the
system.

Similar to shacl, Shape Expressions (ShEx) is another language that was developed
to describe profiles of data. While there are many similarities between ShEx and shacl,
the latter is already a W3C Recommendation and, therefore, we chose shacl as the focus
of this work. To the best of our knowledge, there are no algorithms that automatically
discover shacl or ShEx constraints.

On the relational data side, data quality algorithms naturally assume the availability of

53

ex:30750 a sh:NodeShape ;

sh:targetClass swrc-ontoware:InProceedings ;

sh:not [sh:and ([sh:path swrc-ontoware:category ;

sh:hasValue "Poster/Demo Paper"]

[sh:not [sh:path

swc-ont:isPartOf ;

sh:hasValue

iswc-13:poster-demo-proceedings]])] .

Figure 4.7: Example shacl constraint discovered from ISWC13 dataset

a schema and a well defined set of constraints. For example, the two algorithms FastDC [25]
and Hydra [11] utilize evidence sets and set cover algorithms to discover denial constraints.
Hydra performs sampling and validation techniques to scale to large relational datasets.

4.5 Conclusion and Future Work

In this Chapter, we presented a formal definition of shacl constraints and presented
DISH, the first algorithm to discover shacl constraints from RDF data. Our choice of
the standardized shacl language makes the constraints found by DISH compatible with
existing tooling.

While the performance of DISH grows linearly with the input size, we plan to investi-
gate sampling techniques, similar to Hydra [11], to discover shacl constraints on samples
from the data and validate them on the whole dataset. Moreover, due to the open-world
semantics of RDF, datasets dynamically grow by adding more nodes and edges in their
graphs. New triples may invalidate some of the discovered shacl constraints, rendering the
collected statistics stale. Instead of re-running the discovering algorithm, we plan to study
the problem of incrementally updating the collected evidence and discovered constraints.

As might be expected for a brand new standard, the current selection of shacl-
compatible tools is limited and we are not aware of any tools to enable non-technical
users to create or manage shacl rules. We hope that introducing this technique would
further stimulate the development of such tools.

54

Chapter 5

Discovering Denial Constraints from
RDF

The expressiveness of defining SHACL constraints on RDF data is designed to checking
conditions and violations of one entity at a time, referred to as the focus node. However,
the business rules required by some downstream applications may be more complex than
merely validating individual entities.

An example of constraints that involves multiple entities is functional dependency.
Entities that violate functional dependency constraints cannot exist independently, i.e.,
entities need to be compared together in order to detect violations. For example, a func-
tional dependency constraint birthPlace→ nationality cannot be violated unless there
exists two (or more) entities with the same birthPlace and different nationality. We
show such violation in Figure 5.1, where both s1 and s3 have the same birthPlace = New

York but different values for the nationality property.

Constraints that compare multiple entities to each other cause multiple challenges.
Referring to the data in Figure 5.1, we demonstrate the following complications:

• Violation Detection. The process of detecting violations becomes computationally
expensive when there are multiple entities involved in the constraint. For a constraint
that involves two entities, every pair of entities need to be checked to evaluate if the
pair violates the condition of the defined constraint. This results in an n2 operation
in the number of entities. To check for violations of the constraint birthPlace →
nationality in Figure 5.1, all the entity pairs < s1, s2 >, < s1, s3 >, and < s2, s3 >
need to be compared.

55

s1New York

USA

birthPlace

nationality

s2Toronto

Canada

birthPlace

nationality

s3New York

France

birthPlace

nationality

Figure 5.1: Example Violating Data of Functional Dependency

• Violation Definition. It is straightforward to define the nodes (e.g., entities) that
violate SHACL constraints because each entity is checked independently. When
multiple entities are involved, it is not clear how to define which entities do in fact
violate the checked constraint and have wrong or contradicting information. For
example, in Figure 5.1, both s1 and s3 have birthPlace = ‘New York’, but they
have different nationality values, which violates the defined functional dependency
constraint. We cannot decide whether the source of the violation is s1 or s2 without
extra information. Therefore, it is only possible to claim that the pair of entities
< s1, s2 > together construct a violation. In this context, a violation represents
a set of nodes (both entities and property values) that cannot exist together and
satisfy the defined constraints. In addition, when there are more than two entities,
each pair that is compared of the n2 possible combination of entities may result in a
violation. Violations of the same constraint are then grouped together to construct a
larger violation with more entities involved since we cannot determine which entity
or entities caused the violation to happen.

• Discovering Constraints. Discovering constraints that involve two (or more) enti-
ties become a computationally expensive operation since the data mining algorithms
have a larger space of conditions to explore. Moreover, constraints on RDF graphs
become more difficult to incorporate the graph structure of the data when mining
for constraints.

In this Chapter, we focus on discovering denial constraints from RDF data. Denial
constraints [25] (DCs) have been proven to capture a wide range of integrity constraints
and business rules in relational data, e.g., check and domain constraints, functional de-
pendencies, and conditional functional dependencies. Once discovered, violations of these
constraints can be detected, as in [49, 44], by querying the RDF data.

56

RDF ℝ

On-Demand
Population

App 1

1

App 2

2Linked Data

Unstructured
Sources

Human
Annotators

Other Data
Sources

I
N
G
E
S
T

E
X
T
R
A
C
T

Raw
Data

Storage

Σ

Discovery

On-Demand
Population

Offline curation and profiling

Schema-on-read analytics

violations

Violation Detection
and Repair

Figure 5.2: Direct Curation of RDF Data

Technical Challenges. Discovering denial constraints from RDF data is more challeng-
ing than relational data.

First, an RDF dataset might include information regarding diverse entity types, such
as people, companies, and shipments. Meaningful integrity constraints usually describe
rules about specific entity types (e.g., Employees) and may possibly be extended to related
entity types (e.g., Persons and Cities). For example, FDs and DCs are usually expressed as
first-order logic formulas in terms of attributes of entities (e.g., zip→ city, or employees
living in NYC have higher salaries). This entails that the triples that describe similar entity
types need to be grouped into coherent collections where each collection constructs a view
that contains data about a particular type. Since the traditional RDF model enforces
minimal schema constraints on the stored data, mining relational views of different entity
types from triples is one essential component of RDF constraint discovery. On one hand,
we can view the whole RDF dataset as one large relational view where each RDF property
represents an attribute (a column in a virtual table). Each RDF subject represents an
entity as a row in that table. The sparsity of that table depends on the heterogeneity of
information that is included in the RDF dataset. On the other hand, we can take subsets
of properties and use them as views over the RDF data. The space of all possible views
that need to be explored is exponential in the number of unique properties in the dataset

57

because any combination of properties can serve as a possible view to group entities.

Second, existing relational data quality algorithms are computationally expensive. The
algorithms described in [60] can only handle tens of thousands of tuples while the RDF
store may host millions of RDF triples. For example, the DBPedia infobox properties
dataset contains more than 26 million triples that represent information about more than
3 million entities of different types and more than 2,000 unique properties that construct
more than 30 million possible views. Moreover, the relational views of various entity types
usually overlap in both their schema and contained entities; views may reflect a hierarchy of
types (e.g., Person, Employee, and Athlete). This characteristic presents an opportunity
to leverage the schema and data containment between related views to share the expensive
computations of the discovery process. Furthermore, these discovery algorithms need to
scale to large RDF datasets.

Contributions. We summarize the contributions of this Chapter as follows:

• We introduce Contextual Denial Constraints (CDCs) for declaring DCs on RDF
data. We propose a two-step algorithm, RDFDC, for discovering CDCs. RDFDC

first discovers a set of relational-like views from RDF data, and then discovers CDCs
on these views (Section 5.1).

• We concisely represent the space of possible views and introduce a notion of maximal
views in Section 5.2.1. We present three algorithms that vary in their search strategy
to discover views from RDF data.

• We introduce the IncDC algorithm for discovering CDCs on maximal views (in Sec-
tion 5.3). IncDC leverages the schema and data overlap between views to share the
expensive computations of the discovery algorithm whenever possible. The RDFDC

algorithm also distributes the work of view and constraint discovery on a cluster of
machines to scale to large datasets.

We evaluate the efficiency and effectiveness of RDFDC over multiple datasets in Sec-
tion 5.5 and discuss other related work in Section 5.8.

5.1 Problem Definition

Throughout the rest of this Chapter, we use an example RDF dataset R from Table 5.1
that describes information about universities, students, employees, and incomes. Let P

58

be the set of all unique properties in R, the triples of R can be represented as a sparse
relational table T that has a schema P , similar to Table 5.2.

We first review DCs on relational data (Section 5.1.1). In Section 5.1.2, we discuss
the difficulty of directly applying them to the RDF data model and introduce Contextual
Denial Constraints as a definition of DCs on RDF data. We analyze the challenges of
discovering contextual denial constraints from RDF data, and propose our solution in
Section 5.1.3.

5.1.1 Denial Constraints on Relational Data

Denial constraints are a universally quantified first order logic formalism to express data
quality rules over relational data [5, 25]. We focus on DCs that involve one or two records
in the form:

ϕ : ∀rα[, rβ] ∈ T,¬(P1 ∧ . . . ∧ Pm)

where T is a relation, and Pi is a Boolean predicate of the form v1ψv2 or v1ψc with
v1, v2 ∈ rx.A, x ∈ {α, β}, A ∈ T, ψ ∈ {=, 6=, <,≤, >,≥}, and c is a constant. In semantics,
a DC states that all its predicates cannot be simultaneously true for a tuple or a pair of
tuples; otherwise, the declared constraint is violated, indicating an error in the data.

Example 4. Given the relational view T from Table 5.2, a DC can be defined as:

ϕ : ∀rα, rβ ∈ T,
¬(rα.rdf:type 6= University ∧ rβ.rdf:type 6= University

∧ rα.inState = rβ.inState ∧ rα.hasIncome < rβ.hasIncome

∧ rα.hasTaxRate > rβ.hasTaxRate)

Semantically, this DC states that there cannot exist two persons living in the same state
and one person has less income and a higher tax rate at the same time.

5.1.2 Denial Constraints on RDF

Expressing the DC from Example 4 directly on R from Table 5.1 is written as follows:

1We use the label of a subject as its URI for readability

59

Subject s Property p Object o
t1 Mark rdf:type Student
t2 Tina rdf:type Employee
t3 John rdf:type Employee
t4 Ruby rdf:type Student
t5 StandfordU rdf:type University
t6 Tina employeeOf Google
t7 John employeeOf Facebook
t8 Mark studentOf StanfordU
t9 Ruby studentOf CMU
t10 Mark inCity Stanford
t11 Tina inCity Pittsburgh
t12 John inCity Menlo Park
t13 Ruby inCity Pittsburgh
t14 StanfordU inCity Stanford
t15 Mark hasIncome 5000
t16 Tina hasIncome 60000
t17 John hasIncome 80000
t18 Ruby hasIncome 10000
t19 Mark inState CA
t20 Tina inState PA
t21 John inState CA
t22 Ruby inState PA
t23 StanfordU inState CA
t24 Mark hasTaxRate 2.1
t25 Tina hasTaxRate 8
t26 John hasTaxRate 7.5
t27 Ruby hasTaxRate 4.0

Table 5.1: A RDF dataset R for income information1

Subject s rdf:type employeeOf studentOf inCity hasIncome inState hasTaxRate
r1 Mark Student StanfordU Stanford 5000 CA 2.1
r2 Tina Employee Google Pittsburgh 60000 PA 8
r3 John Employee Facebook Menlo Park 80000 CA 7.5
r4 Ruby Student CMU Pittsburgh 10000 PA 4
r5 StanfordU University Stanford CA

Table 5.2: The sparse relational table T that represents the RDF dataset R in Table 5.1,
using R properties as attributes

60

ϕrdf : ∀t1, t2, t3, t4, t5, t6, t7, t8 ∈ R,
¬(t1.s = t2.s ∧ t2.p = inState // Build context
∧ t1.s = t3.s ∧ t3.p = hasIncome
∧ t1.s = t4.s ∧ t4.p = hasTaxRate
∧ t5.s = t6.s ∧ t6.p = inState
∧ t5.s = t7.s ∧ t7.p = hasIncome
∧ t5.s = t8.s ∧ t8.p = hasTaxRate
∧ t1.p = rdf:type ∧ t1.o 6= University
∧ t5.p = rdf:type ∧ t5.o 6= University
∧ t1.s 6= t5.s ∧ t2.o = t6.o // Define constraint
∧ t3.o < t7.o ∧ t4.o > t8.o)

The constraint is difficult to read since multiple predicates are involved to merely de-
scribe the entities Persons and construct the appropriate context to define the constraint
on. The actual constraint corresponds to the last four predicates. In addition, the con-
straint ϕrdf involves comparing 8 triples at the same time, which makes discovering it
require 8-way self-joins of the RDF triples. Moreover, discovering DCs from the sparse
table representation of R is also difficult because it is not clear how to interpret null or
missing values in the table.

To facilitate the discovery and interpretability of the discovered denial constraints on
RDF data, we split the definition of a DC on RDF data into two components: (a) a context
view on the RDF data that produces a dense relational-like output table; and (b) a denial
constraint defined on that context view.

Definition 8 (Context View). Given an RDF dataset R with properties P, a context view
v is defined as a dense relational table with a set of attributes v = {p1, . . . , pk}, where
pi ∈ P, such that each tuple in v corresponds to a subject in R that has values for all
properties in v. We use Subjects(v) to denote all the subjects in v.

A context view has a schema (intention) and tuples that represent its data (extension).
By definition, context views do not contain any null or missing values. For simplicity, in
the rest of this Chapter we refer to context views as views. Views are materialized by
querying R, e.g., using SPARQL.

Example 5. A view v about tax information is defined on R from Table 5.1 with the
following schema:

v = {hasIncome, inState, hasTaxRate}

The view v is evaluated by the following SPARQL query on R

61

SELECT *

WHERE {

?s <hasIncome> ?income .

?s <inState> ?state .

?s <hasTaxRate> ?tax_rate .

}

The query gives all subjects in RDF such that they have object values for the prop-
erties hasIncome, inState and hasTaxRate, producing the following tabular view which
corresponds to v.

Subject s hasIncome inState hasTaxRate
Mark 5000 CA 2.1
Tina 60000 PA 8
John 80000 CA 7.5
Ruby 10000 PA 4

Denial constraints can then be defined on the schema of views.

Definition 9 (Contextual Denial Constraint). Given an RDF dataset R, a Contextual
Denial Constraint (CDC) is a pair (v, ϕ), where v is a view on R and ϕ is a DC defined
on v. We say then that an RDF dataset satisfies the CDC if and only if v |= ϕ.

Example 6. Given v from Example 5, we define a CDC on R as:
CDC = (v, ϕ), where
v = {hasIncome, inState, hasTaxRate}, and
ϕ : ∀rα, rβ ∈ v,¬(rα.inState = rβ.inState

∧ rα.hasIncome < rβ.hasIncome

∧ rα.hasTaxRate > rβ.hasTaxRate)

Problem Statement. Given an RDF dataset R, the discovery problem for CDCs trans-
lates to finding all CDCs that R satisfies.

5.1.3 Solution Overview

The outline of our solution is shown in Figure 5.3. Algorithm 4 describes the two main
steps of the discovery algorithm.

62

RDF
Data

View
Discovery

Constraint
Discovery CDCs

Figure 5.3: The CDC Discovery Pipeline using RDFDC

I. View Discovery. The first component produces a set of views to discover denial con-
straints on. Discovering views from R is challenging for two reasons: (1) any combination
of properties in R can construct a schema that produces a view, hence, there is an expo-
nential number of possible views that can be defined on R; and (2) some of the views are
contained in others due to the hierarchy of entities in the data (e.g., Person and Athlete),
causing redundant computations with no gain.

II. Constraint Discovery. This module discovers denial constraints that apply on each
of the generated views. Because of the possibly large number of discovered views, the Con-
straint Discovery module utilizes multiple optimizations to share expensive computations
across related and contained views.

In the following, we first discuss our view discovery process in Section 5.2, and then we
explain how we optimize the discovery process when we have multiple views in Section 5.3.

Algorithm 4 RDFDC

Require:
An RDF dataset R

Ensure:
All CDCs Σ discovered on R

1: L ← DiscoverViews(R)
2: Σ← IncrementallyDiscoverCDCs(L)
3: return Σ

5.2 View Discovery

The first step of our proposed approach is to discover a set of views on the RDF data.
According to Definition 8, a view is constructed using a set of properties that constitutes

63

{ABCD}

{ABC} {ABD} {ACD} {BCD}

{AC}{AB} {BC} {AD} {BD} {CD}

{A} {B} {C} {D}

∅

Figure 5.4: View Space for P = {A, B, C, D} as a Lattice

its schema. Therefore, the space of all possible views that can be defined on R depends on
P . We show how to enumerate the space of all candidate views and introduce the notion
of maximal views in Section 5.2.1. We present algorithms to directly search for maximal
views without enumerating all views in Section 5.2.

5.2.1 The View Space and Maximal Views

Given the set of all properties P that appear in the RDF triples of a dataset R, the
complete view space can be modeled as a lattice structure similar to the one shown in
Figure 5.4. Each node in the lattice L represents a set of properties and, accordingly, a
different schema σ and a corresponding view v. Traversing the lattice bottom-up, the first
level contains singleton sets of properties, which correspond to views with single properties.
In subsequent higher levels, the view schemas are unioned together to form wider views
with more properties, while their subjects are intersected to obtain subjects that have the
wider schema. The top of the lattice includes a single view node with all the properties P
in R. The lattice has 2|P| nodes corresponding to the power set of P . Each node in the
lattice is candidate view for DC discovery. However, not all candidate views are necessary
to discover all CDCs. The following notion of maximal views represent all sufficient and
necessary views to discover all CDCs.

Definition 10 (Maximal View). A view v is maximal if there is no other view v′ such
that v ⊂ v′ and Subjects(v) = Subjects(v′), where v ⊂ v′ denotes the properties of v is a

64

proper subset of the properties of v′.

In other words, we cannot add more properties to the schema of a maximal view and
maintain the same set of subjects at the same time. It follows that adding more properties
to a maximal view causes a reduction in the view subjects because not all subjects have
values for the newly added properties since we do not allow null or missing values in the
views. Intuitively, running the discovery process on a non-maximal view is unnecessary
since the same constraints can be discovered from the maximal views that subsume it.

In addition, some maximal views may have a low |Subjects| support, making them
less interesting for constraint discovery. Therefore, it is desirable to maintain a support
threshold θ to produce only maximal views with enough support.

Algorithm Approaches. A straightforward approach to explore the space of all possible
views is to enumerate all possible combination of properties and check for maximal views.
The enumeration of views in the lattice can be performed bottom-up, where the search
starts from singleton properties until it reaches the union of all properties; or top-down,
where all properties are split into subsets until we reach singleton property sets. In contrast
to the schema-driven approach of enumerating all combinations of properties, a data-driven
approach uses the instances (subjects) to directly identify maximal views. Intuitively,
schema-driven approaches are more sensitive to the size of the schema, i.e., the number of
properties |P|, while data-driven approaches are more sensitive to the size of the instance,
i.e., the number of subjects.

5.2.2 Schema-driven View Discovery

In this section, we introduce a schema-driven, bottom-up algorithm SchemVD for view
discovery. The algorithm enumerates and searches the space of all possible views and find
the maximal views with support higher than θ. Algorithm 5 presents the implementation
that explores all possible views guided by a lattice structure similar to Figure 5.4. In the
first level of the lattice, the algorithm builds a set of views with schemas that contain
singleton properties (Line 2) and filters out views with low support. At subsequent levels,
the function GenerateNextLevel is called to generate the next level in the lattice.
This function enumerates every pair of views vi and vj from the current level (Line 13)
and discards pairs that have more than one different property because the views in lattice
level l have only one property more than views in level l− 1. Each view pair is merged to
construct a candidate view v′ with a schema v′ = vi ∪ vj (Line 18). The lattice generation
continues level by level, until there is no more view pairs to merge.

65

Algorithm 5 SchemVD : Schema-Enumeration View Discovery

Require:
An RDF dataset R
A support threshold θ

Ensure:
A lattice L of all discovered maximal views

1: L ← ∅, l← 1, Vl ← ∅ . Build lattice level 1
2: for all p ∈ P do
3: v = {p}
4: if |Subjects(v)| < θ then
5: continue . Ignore views with low support

6: Vl ← Vl ∪ {v}, add v to L
7: while Vl 6= ∅ do . Construct lattice level by level
8: l← l + 1
9: Vl ← GenerateNextLevel(l, Vl,L)

10: return L
11: function GenerateNextLevel(l, Vl, L)
12: Vl+1 ← ∅
13: for all vi, vj ∈ Vl, |vi ∩ vj| = l − 2 do
14: v′ ← vi ∪ vj . Construct candidate view v′

15: supv′ ← |Subjects(v′)|
16: if supv′ < θ then
17: continue . Ignore views with low support

18: Vl+1 ← Vl+1 ∪ {v′}, add v′ to L
19: for all v ∈ {vi, vj} do
20: supv ← |Subjects(v)|
21: if supv′ = supv then
22: MarkNonMaximal(L, v)

return Vl+1

Pruning. At any particular level, a view v that has a child view v′ in the next level,
where v ⊂ v′, is guaranteed to its Subjects(v′) ⊆ Subjects(v) since v′ will exclude the
subjects in v that do not have values for v′ \ v. Therefore, any view v that does not
have enough support cannot be a part of a wider view that has enough support, i.e., if
|Subjects(v)| < θ, @v′ | v ⊂ v′ ∧ |Subjects(v′)| ≥ θ. This monotonic characteristic of the
support allows pruning a branch from the lattice that has a parent view v with low support

66

without enumerating or exploring v’s children. Removing v from its level (Line 16) avoids
constructing any view that subsumes it. Calculating |Subjects(v)|, is done efficiently by
keeping a bit array for every view that acts as an index to which subjects appear in the
view. The cardinality of the bit array corresponds to the support of its view. The support
of a view v′ = vi ∪ vj is calculated by AND-ing the bit arrays of vi and vj.

Maintaining Maximality. Unlike support, the notion of maximality is not monotonic,
i.e., a view v that is not maximal may end up being a part of a wider view v′ in a
higher lattice level that is maximal. Therefore, we cannot use maximality to prune whole
lattice branches. After constructing a lattice node v′, we can only check the support of v′

compared to its parent views (Line 21), and mark any parent view v as non-maximal if
|Subjects(v′)| = |Subjects(v)| since all information in v is contained in v′ without losing
any subjects. Checking for maximality does not add any performance improvement, but
it is crucial to produce a lattice that contains only maximal views.

Measuring View Support. Calculating |Subjects(v)|, is done efficiently by keeping a
bit array for every view that acts as an index to which subjects appear in the view. The
cardinality of the bit array corresponds to the support of its view. The support of a view
v′ = vi ∪ vj is calculated by the cardinality of AND-ing the bit arrays of vi and vj.

Complexity Analysis. In the worst case, Algorithm 5 has a O(2|P|) complexity. It is
exponential in the number of properties since it needs to explore all property combinations
if the support does not prune any view (e.g., the top view has support > θ).

Top-Down Lattice Exploration. SchemVD navigates the lattice in a bottom-up man-
ner as opposed to a top-down algorithm that would start from the set of all properties and
remove one property at a time to construct lower levels. However, the support threshold θ
would not be utilized for pruning since it increases as we reach lower levels. The complexity
remains O(2|P|).

The exponential nature of the schema-driven algorithms restricts running them on
datasets with a large number of properties, even if they were homogeneous. We next
discuss a data-driven approach that is more efficient in processing such datasets.

67

5.2.3 Data-driven View Discovery

In this section, we introduce InterVD , a data-driven algorithm that is capable of processing
large amounts of data even with a large number of properties. Instead of generating max-
imal views by enumeration like SchemVD , InterVD aims at directly generating maximal
views by leveraging two important properties of maximal views, which we formalize as two
theorems as follows.

Theorem 1. For any two maximal views v1 and v2, the intersection v1 ∩ v2 is also a
maximal view, where v1 ∩ v2 denotes the view whose properties are the intersection of the
properties of v1 and v2.

Theorem 1 hints at a fixed-point algorithm, where we start from some “big” maximal
views, and recursively generate “smaller” maximal views with less properties by intersecting
any two bigger maximal views until no new maximal views can be generated. However,
there are still two questions we need to answer: (1) what are those initial “big” maximal
views to start with; and (2) can all maximal views be generated by intersection? In other
words, are there any missed maximal views?

Intuitively, the initial set of maximal views should contain as many properties as possi-
ble, as the intersection procedure will only generate new maximal views with less properties.
For a subject s, the maximal set of properties of any view containing s is bounded by the
set of properties s has, namely, s.σ. Based on this intuition, we define signature views as
follows, which form the initial set of views for our recursive algorithm.

Definition 11. A view v is a signature view if there exists a subject s ∈ S such that
s.σ = v, where s.σ is signature of s, i.e., all properties s has.

It is easy to see that all signature views are maximal views: for a signature view v,
adding any other property to v will lose s, as v already contains all the properties s has. For
example, Table 5.3 shows three subjects and their schemas, and corresponding signature
views E = {σ1, σ2}. Each σi forms a signature view that is maximal. In addition, the
intersection σ1 ∩ σ2 = {B, C} with subjects s1, s2, s3 is also maximal because adding A or D
would discard {s3} or {s1, s2}, respectively.

Interestingly, by starting from all signatures views and recursively performing intersec-
tion, we are guaranteed to not miss any maximal views. This is captured by the following
theorem.

Theorem 2. Any maximal view v is either a signature view, or an intersection of two
maximal views v1 and v2, where v ⊂ v1 and v ⊂ v2.

68

A B C D A B C D
s1.σ 1 1 1 0 σ1 1 1 1 0
s2.σ 1 1 1 0 σ2 0 1 1 1
s3.σ 0 1 1 1

Table 5.3: Subject schemas (left) and their signature views (right)

The proofs for both Theorems 1 and 2 are in Appendix A.

Taking Theorem 1 and Theorem 2 together, we are guaranteed to generate all max-
imal views by performing recursive intersections. Algorithm 6 shows the details of the
algorithm. The dataset R is pre-processed to extract all signature views (Line 1). The
method ExtractSignatures is a pre-processing step after parsing the dataset R to
group the properties that appear with each subject. Unique sets of subject properties are
then declared as signature views.

Since all signature views are by definition maximal, we add all of them to the set of
maximal views M (Line 3). We initialize I the set of views to intersect with M, and
perform self-intersection of I using the method SelfIntersect, which produces more
maximal views as per Theorem 1. We then set I to the result of the intersection, and keep
intersecting it with itself, until no more new maximal views are discovered (Line 12). The
main loop in Line 7 is guaranteed to terminate; while self-intersection may produce more
sets than its input, the size of the produced sets is smaller than the original input.

Complexity Analysis. The complexity of the InterVD algorithm is O(ResultSize), i.e.,
it is bounded by the output size. If all views in the lattice are indeed maximal views, then
InterVD will degenerate to the schema-driven enumeration algorithm. However, this is not
the case in real datasets, where |E| � 2|P|. As we show in Section 5.5, InterVD can process
more than 12.4M triples of facts in YAGO (|P| = 44, |E| = 8025) in under 30 seconds and
13.3M triples of DBPedia infoboxes dataset (|P| = 471, |E| = 17k) in 170 seconds, while
the schema-enumeration algorithm took 58 minutes on the DBPedia infoboxes dataset.

Pruning and Optimizations. Since InterVD follows a top-down strategy, the support
threshold θ cannot be used for pruning, and a post-processing filter is applied (Line 14).
We also distribute the work of SelfIntersect as per [24] that optimizes self-joins across
multiple machines.

69

Algorithm 6 InterVD : Intersection-Based View Discovery

Require:
An RDF dataset R
A support threshold θ

Ensure:
A lattice L of all discovered maximal views

1: E ← ExtractSignatures(R)
2: L ← ∅
3: M←M∪ E . Initialize maximal views with E as views.
4: I ←M . Set of views to intersect.
5: for v ∈ I do
6: add v to L
7: while True do . Loop until no new views are found.
8: before← |M|
9: I ← SelfIntersect(I,L)

10: M←M∪ I
11: after ← |M|
12: if before = after then . Found no new intersections.
13: break
14: remove views from L where |Subjects(v)| < θ
15: return L
16: function SelfIntersect(I, L)
17: M← ∅
18: for v1, v2 ∈ I do
19: v← v1 ∩ v2
20: add v to L, add edges from v to v1 and v2 in L
21: M←M∪ {v}
22: returnM

5.3 Constraint Discovery

Given a set of discovered maximal views arranged in a lattice L, we need to discover denial
constraints from each one of them. Discovering DCs from one relation (view) has already
been studied in [25] using the FastDC algorithm, which we briefly review in Section 5.3.1.
The straightforward solution of running FastDC on every discovered maximal view is very
expensive since processing one view is already a costly procedure. In Section 5.3.2, we
present our incremental algorithm (IncDC), which leverages the overlap between views to
share expensive computations whenever possible, and distributes these computations on a

70

cluster. In Sections 5.3.3 and 5.3.4, we explain in detail how to reuse the computations for
two sub-procedures in IncDC 2.

5.3.1 DC Discovery using FastDC

FastDC [25] is designed to operate on relational data. Given a relational view v, the outline
of FastDC is summarized as:

1. BuildPredicateSpace P: Define a predicate space P on v. Any subset of pred-
icates in P constitutes a candidate DC.

2. BuildEvidenceSet E : Compare every tuple pair in Subjects(v) to build an evi-
dence set. Each evidence is a set of predicates that are satisfied by a tuple pair.

3. FindMinimalSetCovers M : Find minimum subsets of predicates in P that cover
the evidence set E from Step 2.

A predicate in the space P compares attributes from one or two tuples. Nominal
attributes are compared using predicates with (=, 6=) operators, while ordinal attributes
are compared using (=, 6=, <, >, ≤, ≥).

Example 7. Consider view v from Example 5 with three attributes: hasIncome (I),
inState (S), and hasTaxRate (R); S is nominal while I and R are ordinal. The fol-
lowing predicate space is defined on v.

P1: rα.I = rβ.I P2: rα.I 6= rβ.I P3: rα.I < rβ.I
P4: rα.I ≤ rβ.I P5: rα.I > rβ.I P6: rα.I ≥ rβ.I
P7: rα.S = rβ.S P8: rα.S 6= rβ.S
P9: rα.R = rβ.R P10: rα.R 6= rβ.R P11: rα.R < rβ.R
P12: rα.R ≤ rβ.R P13: rα.R > rβ.R P14: rα.R ≥ rβ.R

The evidence set is the set of evidences that are obtained from the Cartesian product of
the tuples in v by itself, where each tuple maps to a subject in Subjects(v). An evidence of
a pair of tuples 〈ri, rj〉 ∈ Subjects(v)× Subjects(v) is the set of predicates in P that are
satisfied by the tuple pair 〈ri, rj〉. Formally, evidence(〈ri, rj〉) = {P ∈P | 〈ri, rj〉 |= P},
where 〈ri, rj〉 |= P means 〈ri, rj〉 satisfies the predicate P . The evidence set of v can then
be defined as E = {evidence(〈ri, rj〉) | ∀〈ri, rj〉 ∈ Subjects(v)× Subjects(v)}.

2The work in this section was done in collaboration with Jian Li

71

Example 8. Given v from Example 5 and its predicate space P from Example 8, the
following is the evidence set E for all tuple pairs in v.

Tuple Pair Evidences
<Mark , Tina> P3, P4,P8, P11,P12

<Mark , John> P3, P4, P7, P11,P12

<Mark , Ruby> P3, P4,P8, P11,P12

<Tina , John> P3, P4,P8, P13, P14

<Tina , Ruby> P5,P6, P7, P13, P14

<John , Ruby> P5,P6,P8, P13, P14

A denial constraint can be obtained from a set of predicates in P that covers all
evidences in E [25]. Hence, the problem translates to finding Minimal Set Covers (MSC)
that cover E .

Example 9. Consider the evidence set Ev from Example 8, the set φ = {P6, P8, P12} is a
MSC for E (no subset of φ can cover E). φ translates to a DC ϕ = ¬(P 6, P 8, P 12) equal
to ϕ from Example 4.

The algorithm that finds MSCs can be modified to find sets of predicates that almost
cover the evidence set. Relaxing this constraint allows discovering approximate denial
constraints from datasets that have some errors but are mostly accurate.

The complexity of FastDC is O(|Subjects(v)|2 · |P| + H), where H is the time for
finding minimum set cover for the evidence set of v. The quadratic component results
from comparing each pair of tuples in the relation to examine whether or not the pair
satisfies each predicate in P.

5.3.2 Incremental Discovery of Constraints

We present an adapted and extended constraint discovery algorithm, IncDC , that operates
on a set of views. The algorithm introduces the following optimizations:

• IncDC leverages the schema overlap and data containment between views to share
the expensive computations between related views, specifically to build evidence sets
and computing minimal set covers.

• Because of the possibly large number of tuples in each view, the quadratic process of
building the evidence set is distributed using a distribution strategy similar to [24].

72

Algorithm 7 IncDC : Incremental DC Discovery

Require:
An RDF dataset R
The set of maximal views L

Ensure:
All CDCs Σ discovered on R

1: Σ← ∅
2: for view v ∈ L do . Traverse the lattice L top-down
3: P ← BuildPredicateSpace(v)
4: if v is a root in L then . Use FastDC
5: E ← BuildEvidenceSet(v,P)
6: M ← FindMinimalSetCovers(∅,E ,P)
7: else
8: E ← IncrementallyBuildEvidenceSet(v,N (v),P)
9: M ← IncrementallyFindMinimalSetCovers(N (v),E ,P)

10: Σv = ∅
11: for all φ ∈M do
12: Σv = Σv ∪ {¬(φ)}
13: for all ϕ ∈ Σv do
14: Σ← Σ ∪ {(v, ϕ)}
15: return Σ

Algorithm 7 describes the overall outline of IncDC . Given an RDF datset R and all
maximal views in L, IncDC discovers all CDCs on R. IncDC traverses the lattice top-
down, i.e., from views with wider schmeas to views with narrower schemas. For each
view v, it first builds the predicate space P that is defined on v by calling the procedure
BuildPredicateSpace in FastDC (Line 3).

We say a view v is a root view if there does not exist another view v′ in L such that
v ⊂ v′; otherwise, v is a non-root view and is linked to a set of neighbor views with wider
schemas. In Figure 5.4, root views would be located towards the top of the lattice and not
connected to any views in higher levels. Since L may not always be a complete lattice,
there can be multiple root views in the lattice. A complete lattice, on the other hand, has
a single root view v = P .

When processing root views, the algorithm behaves similar to FastDC (Lines 4-6) to
build the evidence set and find minimal set covers. When processing a non-root view, In-
cDC inherits some of the computations from its neighbor views which have been previously
processed to avoid redundant expensive computations. The two kinds of computations that

73

can be reused from neighbor views are: (1) building evidence set (Section 5.3.3); and (2)
finding minimum set covers (Section 5.3.4). After computing all minimal set covers on v,
we construct a CDC from each minimal set cover by negating each predicate (Line 11) and
associate the discovered DC to the processed v (Line 14).

5.3.3 Incremental Building of Evidence Sets

The operation IncrementallyBuildEvidenceSet utilizes the lattice structure L to
reuse the evidences which have been previously computed in neighbor views. Given a view
v, the evidence set E is built by evaluating P over Subjects(v) × Subjects(v). For v’s
neighbor view v′ ∈ N (v), we have v ⊂ v′ and Subjects(v) ⊃ Subjects(v′), which implies
that P ⊂ P ′. Hence, the evidence set of the neighbor E ′ can be partially reused to
compute E . Denoting s = Subjects(v) and s′ = Subjects(v′), the tuple pairs of E can be
rewritten as:

s× s = (s′ × s′) ∪ ((s \ s′)× (s \ s′)) ∪ ((s \ s′)× s′)

In other words, E ′ covers only evidences from s′× s′ (first expression). To complement the
computations for E , we compute the self-join of all subjects which do not appear in the
neighbor view (second expression). Furthermore, we join these subjects with all subjects
of the neighbor view (third expression).

Example 10. Building on Examples 5 and 8, we construct a view
v′ = {hasIncome, inState, hasTaxRate, studentOf} that is a neighbor view of v with an
extra property studentOf.

Subject s hasIncome inState hasTaxRate studentOf
Mark 5000 CA 2.1 StanfordU
Ruby 10000 PA 4 CMU

The predicate space P ′ of v′ is the same as P from Example 7 in addition to the following
predicates on studentOf (denoted by T).

P15: rα.T = rβ.T P16: rα.T 6= rβ.T

The evidence set E ′ is based on Subjects(v′) as follows:

Tuple Pair Evidences
<Mark , Ruby> P3, P4, P8, P11, P12, P16

74

When computing E for v, we can reuse E ′ of its neighbor v′ to avoid re-computing the
evidence ¡Mark , Ruby¿ by dropping the predicate P16 as it is defined on studentOf /∈ v.

If v has multiple neighbor views, we select the neighbor with the largest set of subjects
to inherit the evidence set from. The efficiency of IncrementallyBuildEvidenceSet
can be further improved using optimized distributed computation strategies for join [3]
and self-join [24] operations.

5.3.4 Incremental Computation of Minimal Set Covers

Given a view v and its neighbor views N (v), the procedure
IncrementallyFindMinimalSetCovers finds MSCs for v by reusing MSCs fromN (v).
Before we describe the algorithm IncrementallyFindMinimalSetCovers, we present
some observations to illustrate the relationship between the minimal set covers of a view
and its neighbor views.

Lemma 1. For any two views v, v′ ∈ L and v′ ∈ N (v), if φ is minimal set cover on E ,
then φ is also a set cover (not necessarily minimal) on E ′.

Proof. If φ is a minimal set cover on E , by definition, φ is also a set cover on E . Since v′

is a neighbor view of v, we have E ′ ⊂ E which have shown above. Therefore, φ also covers
E ′, i.e. φ is a set cover on E ′.

Lemma 1 implies the following theorems on minimality and completeness.

Theorem 3 (Minimality). For any two views v, v′ ∈ L where v′ ∈ N (v), if φ′ is a minimal
set cover on E ′, there cannot exist a minimal set cover φ on E such that φ ⊂ φ′.

Proof. Assume a minimal set cover φ on E and φ ⊂ φ′, by Lemma 1, φ is a set cover of v′.
However, |φ| < |φ′|, which contradicts φ′ is a minimal set cover on E ′.

Theorem 4 (Completeness). Given any non-root view v ∈ L, if φ is a minimal set cover
on E , for any neighbor view v′ of v, there always exists a minimal set cover φ′ on E ′ such
that φ′ ⊆ φ.

Proof. φ is a minimal set cover on E , again by Lemma 1, φ is a set cover on evidence set
of any neighbor view v′. If φ is also a minimal set cover on E ′, then φ′ = φ; otherwise,
there must exist a minimal set cover φ′ on E ′ such that φ′ ⊂ φ.

75

Algorithm 8 IncrementallyFindMinimalSetCovers

Require:
The set of neighbor views N
The evidence set E
The predicate space P

Ensure:
All minimal set covers M on E

1: C ← ∅
2: for all view v in N do
3: for all minimal set cover φv ∈Mv do
4: φ← {P ∈ φv | P ∈P}
5: if φ = φv and 6 ∃φ′ ∈ C, φ ⊆ φ′ then
6: for all φ′ ∈ C do
7: if φ′ ⊂ φ then
8: C ← C \ {φ′}
9: C ← C ∪ {φ}

M ← FindMinimalSetCovers(C, E , P)
10: return M

Corollary 1. Given a non-root view v and its neighbor views N (v), for any set cover
φ ∈M that covers E , one of the following two conditions holds:

• there exists v′ ∈ N (v) such that φ ∈M ′; or

• there exists v′ ∈ N (v) and φ′ ∈M ′ such that φ′ ⊂ φ.

Corollary 1 gives the necessary and sufficient condition for finding minimal set covers
on non-root views. Given a view v ∈ L and its neighbor view v′, any minimal set cover φ
on E is either a valid MSC on E ′ or extended to cover E ′ by adding more predicates.

Algorithm 8 describes the process of inheriting MSCs for a view v from its neighbor
views. For every minimal set cover φ′ inherited from a neighbor view v′, we discard any
φ′ that contains any predicate which is not in the predicate space P of the current view
v (Lines 4-5) as the discarded MSCs are irrelevant to v. Since we can inherit minimal
set covers from all neighbor views, some inherited set covers may overlap or contain other
covers. We only keep the maximal inherited minimal set covers (Lines 5-8), and add them
into the set of all candidate minimal set covers C. As explained in Section 5.3.3, we may
have E ⊇ E ′ for some v′ ∈ N (v), which means some inherited candidate minimal set covers
may not have enough predicates to cover E . Therefore, we must verify that each inherited

76

MSC φ′ covers E or extend it by adding more predicates until it becomes a valid cover.
The validation or extension is achieved using the FindMinimalSetCovers (Algorithm 7,
Line 6) similar to [25].

Example 11. To compute the MSCs M ′ for v′ from Example 10, any single predicate
from the evidence <Mark × Ruby> can cover E ′. However, when reusing M ′ to cover E ,
the cover φ1 = {P16} is discarded as it includes a predicates that is defined on a property
that is not in v. Moreover, the covers φ2 = {P8} or φ3 = {P12} are not enough to cover
all evidences in E and need to be extended.

5.4 Handling Incomplete Data

So far, given a view v (e.g., Companies), we define Subjects(v) to include all subjects that
have values for all properties in v. However, in practice, some subjects that in fact belong
to a view v will miss one or more properties due to the incompleteness of data. This will
lead to many fragmented maximal views as subjects will be partitioned across multiple
views. For example, instead of discovering one view denoting Companies, we will discover
multiple views related to Companies, where each of these views contain a subset properties
of Companies. In this section, we modify our definitions and algorithms to accommodate
missing values.

We modify the definition of Subjects(v) to allow subjects with some missing values.

Definition 12 (Valid View). A view v is valid if the ratios of NULL values in its rows,
columns, and overall cells are less than the thresholds τr, τc, and τv, respectively.

The rationale behind having three sparsity thresholds is as follows: (1) τr ensures row
coherence where subjects with most of the v properties belong to it; (2) τc ensures schema
coherence that not all NULLs are concentrated in one property and hence the property
should be part of v; and (3) τv is to ensure the overall coherence of the view.

5.4.1 Discovering Valid Views

We introduce a top-down schema driven algorithm, RelaxVD , to discover views that con-
form to Definition 12. Algorithm 9 constructs a lattice in a top-down approach, starting
from all the properties (Line 2) and generating lower levels one at a time. The procedure
GenerateLowerLevel examines the sparsity of each view in the previous level v′ and

77

prunes its child branches if v′ is valid (Line 10 using Definition 12). Otherwise, we mark
v′ as invalid and examine its subset views in the lower level and add only those that have
enough support. A post processing step (Line 19) is needed to remove any child views that
are included in a valid view but were produced by a previously processed view in the same
level. RelaxVD can prune based on the validity because all subjects of v ⊂ v′ are already
contained in v′. In addition, pruning based on the support θ is possible since the support
always decreases as we go down the lattice.

Algorithm 9 RelaxVD : View Discovery with NULLs

Require:
An RDF dataset R
A support threshold θ
Sparsity thresholds τr, τc, τv

Ensure:
A lattice L of the discovered views

1: L ← ∅, Pcov ← ∅
2: l← 1, Vl ← {P} . View in current level.
3: while Vl 6= ∅ do . Construct lattice level by level.
4: Vl ← GenerateLowerLevel(l, Vl,L, Pcov)
5: l← l + 1

6: return L
7: function GenerateLowerLevel(l, Vl, L, Pcov)
8: Vl−1 ← ∅
9: for all v′ ∈ Vl do . Loop over parent views in level l.

10: if IsValid(v′, τr, τc, τv) then
11: Pcov ← Pcov ∪ v′
12: continue
13: MarkInvalid(L, v′)
14: for all v ⊂ v′, |v| = |v′| − 1 do . All subsets of v′ in l − 1.
15: if |Subjects(v)| < θ then
16: continue
17: add v to L with edge to v′

18: Vl−1 ← Vl−1 ∪ {v}
19: for all v ∈ Vl−1, v ∩ Pcov 6= ∅ do
20: Vl−1 ← Vl−1 \ {v}, remove v from L
21: return Vl−1

78

Soundness and Completeness. Algorithm 9 is guaranteed to generate valid views as it
verifies whether a candidate view satisfies all three thresholds. However, it is not complete
as there are valid views that may be missed. This limitation exists because for every subset
of properties, Algorithm 9 only checks whether one set of subjects belonging to that subset
of properties satisfies the three thresholds. However, this shortcut is necessary as there are
exponential number of possible sets of subjects belong to a particular subset of properties.

Complexity Analysis. In the worst case, RelaxVD has a complexity of O(2|P|) as it
may explore all subsets of P .

5.4.2 Modification to DC Discovery

When discovering constraints from sparse tables, it is not clear how to interpret NULL or
missing values when we collect evidence sets. In our work, we follow an optimistic direction
and adopt the local-closed world assumption [56] where missing values are considered
unknown and not wrong. Consequently, comparisons involving NULL values are assumed
to be True as they do not contradict existing knowledge.

5.5 Experiments

We evaluate RDFDC on various real-life datasets in order to examine the efficiency and
effectiveness of the introduced algorithms. We evaluate the two components of RDFDC:
view discovery and DC discovery in Sections 5.6 and 5.7, respectively.

Experimental Setup The algorithms of RDFDC were developed in Java 8 and dis-
tributed on Apache Spark version 2.3.1. Experiments ran on a cluster of 5 identical ma-
chines. Each machine has 12 CPU cores and 64 GB of memory, running Ubuntu server
16.04. One machine is used a Spark driver and 4 nodes hosting 3 worker instances per
node. The resources of the driver node were fully utilized, and each worker is assigned 2
CPU cores and 10 GB of memory, totalling 12 workers with 24 CPU cores and 120 GB
of memory for all workers. It is important for RDFDC to have many workers since we
distribute quadratic comparisons using the join optimization [24], which distributes the
comparisons across more workers instead of more comparisons per worker.

79

Dataset # Triples |R| # Subjects |S| # Properties |P| # Signatures |E|
INF 13.3M 4.5M 471 17k
YGO 12.4M 3.6M 44 8k
ORG 1M 581k 80 16k
LON 1.7M 100k 17 1

Table 5.4: Dataset Characteristics

7 8 9 10 11 12 13 14 15 16 17
Number of Properties

0
2
4
6
8

10
12
14
16
18
20

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

) SchemVD
InterVD

(a) |P| Number of Properties

0.0 10.0K 20.0K 30.0K 40.0K 50.0K
Number of Signature Views

0

5

10

15

20

25
Ex

ec
ut

io
n

Ti
m

e
(S

ec
on

ds
) InterVD

(b) |E| Number of Signature
Views

20.0K 40.0K 60.0K 80.0K 100.0K
Number of Subjects

0

20

40

60

80

100

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

) View Discovery
Preprocessing

(c) |S| Number of Subjects

Figure 5.5: Effect of varying parameters on execution time

Datasets. We use the following datasets in our experiments, and we summarize their
characteristics in Table 5.4

INF DBpedia infoboxes dataset with literals only (Mappingbased Literals, English, 2016-
10).

YGO represents information in the YAGO facts.

ORG commercial dataset obtained from Thomson Reuters and containing high-quality
information about organizations (we used a subset of 1M triples).

LON includes loan data from Lending Club, obtained from kaggle3 in a relational for-
mat and transformed into RDF. It acts as a synthetic dataset that we manipulate
according to experiment goals.

3https://www.kaggle.com/wendykan/lending-club-loan-data

80

https://www.kaggle.com/wendykan/lending-club-loan-data

5.6 Evaluating View Discovery

We evaluate the view discovery algorithms presented in Section 5.2 without discovering
constraints. Due to the sparsity of RDF data, it is difficult to control the characteristics of
a dataset by manipulating triples directly. Instead, we use the LON relational dataset that
we know to be complete for scalability experiments. It is also straightforward to control the
number of properties in all subject schemas by removing whole columns from the dataset
and control the number of subjects by removing rows. While removing rows or columns
decreases the number of triples in the dataset, this change does not affect our algorithms
as they are a function of the number of properties |P| and schemas |E|, as mentioned in
the complexity analysis.

Scalalability in the Size of Data. A straightfoward measure of the size of the data is
the number of triples in the dataset. However, changing the number of triples may have
different effects on various characteristic aspects of the data. For example, by adding more
triples, the dataset may: (1) include more entities if new subjects are added; (2) become
more sparse if unseen properties are added; or (3) get more dense if the new triples complete
missing information about the subjects. Our view discovery algorithms are sensitive to
these dimensions in different ways. Therefore, we tackle each dimension separately to
see how the algorithms behave as one specific parameter changes. It is inevitable to do
some synthetic work on the datasets to avoid the side effects of the undesired, inter-
parameter dependency when a controlled parameter changes. In the following, we measure
the scalability of the view discovery algorithms as we vary different parameters.

Exp-1: Scalability in the Number of Properties. As the number of properties
increases, the subject schema bit arrays gets wider. For this experiment, we vary the
number of properties in the LON dataset and set the support threshold θ = 1. Figure 5.5a
depicts the execution time of the view discovery algorithms. As expected, SchemVD is
exponential in the number of properties (the y-axis was cropped because at 17 properties,
the algorithm took 50 minutes). InterVD remains constant since it is not directly affected
by the number of properties, but rather by the number of signature views as we show in
the next experiment.

Exp-2: Scalability in the Number of Signature View. Since InterVD performs self-
intersection of the signature views E , we vary the number of signature views and examine
the execution time. To control the experiment, we fix the number of properties and generate

81

subjects with unique schemas. This constraint limits the recursive intersection to a single
loop iteration. Figure 5.5b shows the quadratic nature of the self-intersection operation as
we increase |E| from 1k to 50k.

Exp-3: Scalability in the Number of Subjects. As the number of subjects increases,
the number of subject schema bit arrays increases as well, giving the view discovery al-
gorithm more schema data to process. However, the complexity of the view discovery
algorithm depends on the number of signature views |E| and not the subjects |S|. There-
fore, adding more subjects may not necessarily introduce more data to process; it would
only affect the data pre-processing (parsing, loading, and statistics collection) time. In this
experiment, we fix the number of signature views and vary the number of subjects, mea-
suring the execution time of InterVD . Figure 5.5c shows a breakdown of the time taken to
run the view discovery, including the dataset parsing and pre-processing. We vary |S| from
20k to 100k and examine the execution time. As shown in the figure, the execution time
of InterVD (bottom) remains constant as it operates on the same set of signature views.
The pre-processing time (top) increases as more triples needs to be parsed and analyzed.

Exp-4: Effect of Support Threshold θ. Increasing the support threshold θ limits
the number of produced views since they have different levels of support. In addition,
support is used in bottom-up view discovery algorithms to prune lattice branches. In this
experiment, we vary the support threshold from 10 to 1M and examine both the number
of produced maximal views and the time taken by different algorithms.

Figure 5.6 depicts the change in execution time and the number of produced views on
the real-world datasets INF, YGO, and ORG. The algorithms produce the same number
of maximal views (dashed curves, right y-axis), which decreases as θ increase. The rate at
which the number of views decrease as support increases depends on the dataset, but they
follow a similar trend: there is small number of views with high support. The execution
time of SchemVD drops significantly as low-support views are pruned, while InterVD has
a constant execution time since support is not used for pruning. In Figure 5.6c, θ = 10
has enough pruning power to make SchemVD always faster than InterVD .

5.7 Evaluating DC Discovery

Exp-5: IncDC vs. FastDC . Figure 5.7 shows the execution times of IncDC and
FastDC on the same set of maximal views with high support w.r.t. each dataset. The

82

100.0 10.0K 1.0M
Minimum Support Threshold

0

1000

2000

3000

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

) InterVD
SchemVD
Number of Views

0.0

10.0K

20.0K

30.0K

40.0K

50.0K

N
um

be
r o

f V
ie

w
s

(a) INF

100.0 10.0K 1.0M
Minimum Support Threshold

0

10

20

30

40

50

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

) InterVD
SchemVD
Number of Views

0.0

2.0K

4.0K

6.0K

8.0K

10.0K

N
um

be
r o

f V
ie

w
s

(b) YGO

100.0 10.0K 1.0M
Minimum Support Threshold

0

5

10

15

20

25

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

InterVD
SchemVD
Number of Views

0.0

1.0K

2.0K

3.0K

4.0K

5.0K

6.0K

N
um

be
r o

f V
ie

w
s

(c) ORG

Figure 5.6: Effect of support threshold θ on number of discovered views and execution
time

speedup that IncDC provides depends heavily on the schema and data overlap of the
discovered views. In general, building evidence sets dominate the overall time, causing a
significant performance improvement when evidence sets are shared. IncDC might not do
better than FastDC when the cost to check for evidence containment is more expensive
than the gain of the reuse if not enough subjects are common between views, or when most
views are root views.

Exp-6: Quality of the DCs. The quality of FastDC was extensively evaluated in [25]
and proven to produce high-quality DCs. In this experiment, we show a sample of the
discovered DCs on RDF datasets in Table 5.5, and explain their semantics. From the
ORG dataset, InterVD discovered multiple DCs that correspond to key constraints, date
constraints, and functional dependencies.

5.8 Related Work

We briefly mention some of the related work in some areas that are related to discovering
DCs from RDF data and our solution.

Discovering Views from RDF Data. The problem of mining structure from RDF
data can be solved using a variety of techniques. For example, the problem can be seen as
a co-clustering process, where a two-dimensional matrix (Table 5.6) is clustered into sub-
matrices based on both rows and columns. One solution is to use the BiMax [87] algorithm

83

INF YAG ORG
Datasets

0

20

40

60
Ex

ec
ut

io
n

Ti
m

e
(M

in
ut

es
) FastDC

IncDC

Figure 5.7: Execution time of IncDC vs. FastDC

that generates all possible co-clusters, which are equivalent to all maximal sub-matrices
having only 1’s.

Another possible approach is to visualize R as a bipartite graph G of subjects and
properties and view Table 5.6 as edges from subject to property nodes. The problem of
discovering maximal views translates to finding maximal bi-cliques in G and solved using
algorithms like [104]. A bi-clique is a complete sub-graph in G where all subject nodes are
connected to all property nodes. While these algorithms can be used to generate a set of
views to discover constraints on, our algorithms in Section 5.2 scale better to large datasets
because of the parallelism.

Other approaches adopt pure data-driven techniques such as clustering [23, 61, 16] or
association rule mining [98] of entities to discover schema-level types for data integration.
These approaches either make strict assumptions, e.g., the availability of rdf:type for
entities, or performs heuristic-based clustering to produce general types.

Data Quality on Relational Data. Most of the previous work on data quality focuses
on relational data. The discovery of FDs on structured data has been studied for a long
time and both schema driven [59] and data driven [102] algorithms have been developed.

84

Dataset
View and description Discovered DCs

INF

v1 = { foaf:name, dbo:title,
dbo:birthYear, dbo:birthDate,
dbo:deathDate }
Describes information about people.

v2 = { foaf:name, dbo:formerName,
dbo:orbitalPeriod,
dbo:discovered, dbo:periapsis,
dbo:apoapsis }
Describes information about orbiting
bodies.

ϕ1 = ¬(rα.dbo:birthYear = rβ.dbo:birthYear
∧ rα.dbo:birthYear = rβ.dbo:deathDate)

If two people are born in the same year, one cannot die
on the same date that the other is born.

ϕ2 = ¬(rα.dbo:periapsis = rβ.dbo:apoapsis)
The point at which an orbiting object is farthest away
(apoapsis) from the center of mass of the body it is
orbiting cannot equal to the closest point (periapsis).

YGO

v = { isCitizenOf, wasBornIn,
isMarriedTo, hasChild,
isAffiliatedTo, hasGender,
graduatedFrom, hasWonPrize }

ϕ = ¬(rα.isMarriedTo = rβ.isMarriedTo)
Two people cannot be married to the same person.

LON

All table (17 properties).
v = { member id, loan amnt,
interest rate, payment, income,
. . . , zip code, addr state, . . . }

ϕ1 = ¬(rα.member id = rβ.member id)
The member id is a key
ϕ3 = ¬(rα.income = rβ.income ∧ rα.loan amnt <
rβ.loan amnt ∧ rα.payment > rβ.payment)
There cannot exist two entities who have the same
income, and one has a lower loan and a higher
payment than the other.
ϕ3 = ¬(rα.zip code = rβ.zip code

∧ rα.addr state 6= rβ.addr state)
Functional dependency zip code→ addr state.

Table 5.5: Example DCs Discovered from different RDF datasets

Both these techniques have been extended to find conditional functional dependency [42].
The work by Chu et. al. [25] introduced DCs as a more expressive constraint language. A
comprehensive survey [60] presents most of the data cleaning and data quality algorithms
that have been recently developed.

Data Quality on RDF Data. There are few previous approaches that study the quality
of RDF data. The discovery of conditional inclusion dependencies [67] is one such attempt
but limited to one specific type of constraint. The work in [44] aims at detecting violations
of functional dependencies on graph data but does not perform discovery. Similarly, graph-
based Conditional Functional Dependency [55] is an extension to enforce CFDs on RDF
data. Our previous work, CLAMS [49], focused on enforcing denial constraints on RDF
data for error detection and accumulating violations. The constraints in CLAMS are

85

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
s1 1 1 1 1 1 0 0 0 0 0
s2 1 1 1 1 1 0 0 0 0 0
. .
s100,000 1 1 1 1 1 0 0 0 0 0
s100,001 0 0 0 0 0 0 1 0 0 0
s100,002 0 1 0 0 0 0 1 0 0 0
. .
s200,000 0 1 0 0 0 0 0 0 0 1

Table 5.6: Example RDF dataset R in Bit Array Representation

manually defined by users who specify a view through a SPARQL query and define the
constraint predicates over the view schema.

86

Chapter 6

Repairing RDF Data

A major challenge in the data cleaning field is repairing erroneous data values. Given
the variety of sources that may cause errors in the data, modifying the data to fix the
detected errors is an important process to guarantee the consistency of the data instance.
While Chapters 4 and 5 focused on discovering integrity constraints (SHACL and denial
constraints) from RDF data, this Chapter focuses on how to repair the errors that are de-
tected in the RDF data when enforcing the automatically discovered and manually defined
integrity constraints.

In the area of relational data, multiple approaches have been developed for data re-
pairing, e.g., utilizing integrity constraints [9, 26], incorporating external knowledge from
dictionaries and knowledge bases [27, 43], or using statistical analysis techniques [77, 103]
(see [60] for a survey).

Recently, HoloClean [91] has been presented as a data cleaning system that unifies
integrity constraints, external data, and quantitative statistics to repair errors in struc-
tured, relational data. The main feature of HoloClean is the ability to combine multiple
signals of different kinds to suggest repairs for erroneous data, instead of considering each
signal by itself. HoloClean utilizes probability theory to combine these different signals.
It models each cell in the relational data as a random variable and produces a probability
distribution over a set of possible values that the cell can take. The generated distribution
comes from a statistical learning process and probabilistic inference over the generated
model. HoloClean has been evaluated to be the state-of-art solution in repairing errors in
structured data.

87

RDF

View Discovery

...

Constraints
Discovery Constraints

Co-OccurrencesStatistics
Collection

Domain
Generation

Feature
Extraction

Learning &
Inference

Features
Tensor

Repaired
Data

Figure 6.1: Repairing errors in RDF data

6.1 Repairing RDF Using HoloClean

While HoloClean works mainly on structured, relational data, it does not make any as-
sumptions about the origin of the data, its distribution, or how it is generated. Therefore,
it is possible to run HoloClean on any data, as long as it is in a relational format. In this
Section, we demonstrate how we use HoloClean to repair RDF data, utilizing the view
discovery algorithms that we explained in Section 5.2.

The view discovery algorithms explained in Section 5.2 produce a set of relational
views over the RDF data. Each view consists of a set of RDF properties, and there exists a
number of entities (unique subjects) that have values for these properties. The semantics
of the discovered views do not necessarily reflect general entity types, but entities that
belong to the same view share some structural similarity because they share the same
outgoing edges (the properties that construct the view). This shared structure provides
enough context to perform cleaning tasks due to the redundancy among the entities in the
view. In other words, the views form a cluster of similar entities that share a subset of
properties, and the involved entities are used to learn repair models to fix errors that exist
in the entities in each view.

We show an overview of the repairing process in Figure 6.1. The view discovery module
operates on the RDF data triples to produce a set of relational views. Denial constraints
are then discovered on these views using the algorithms explained in 5.3. Each view and

88

the denial constraints that are defined on it is then fed into the HoloClean system to run
repairing on. We next present a brief description of the pipeline of HoloClean.

Pipeline of the HoloClean System. HoloClean [91] consists of multiple modules that
run a series of transformations on the input data until it produces a features tensor that
is used for learning. We summarize these modules and their functionalities as follows:

• Ingestion and Statistics Collection. Relational data is ingested into HoloClean
and normalized. The data is queried to collect co-occurrence statistics in order to
calculate the frequency of values that appear together in each pair of attributes.

• Domain Generation. Each cell in the table is then processed by the domain
generation module to produce a set of possible values that this cell can take. The
domain generation uses other values that appear with a cell in its row as a context,
and utilizes the previously calculated co-occurrence statistics to find co-occurring
values and uses them as possible values. For example, in Table 6.1, generating a
domain for the cell t1.B produces the set of possible values {b1, b2, b3, b6}. The
context of t1.B is A = a1 and C = c1, and a1 appears with b1, b2, and b3, while c1
appears with b6.

tuple id A B C
t1 a1 b1 c1
t2 a1 b2 c2
t3 a1 b3 c2
t4 a2 b4 c2
t5 a2 b5 c2
t6 a3 b6 c1

Table 6.1: Example Table for Domain Generation

• Feature Extraction. After generating a set of possible values for each cell, Holo-
Clean extracts features for each possible value given its context. The goal of this
module is to produce a vector of numbers that is a representation of a possible do-
main value for cell given its row context. We use two types of features in HoloClean.

– Co-occurrence and Frequency. While the co-occurrence statistics are used in
domain generation to find co-occurring values and use as possible values, they
are used as features to denote the likelihood that a possible value appears with

89

the context (other attributes in the tuple). The vector for this feature consists
of the normalized counts of the co-occurrence between the possible value and
every other attribute in the tuple. The more the values appear together, the
more likely the selected possible value is a good fit for this cell given the tuple
context.
A similar feature that is used is the normalized frequency of the possible value
in its column, which indicates how popular this value is in general with respect
to other values in the same column.

– Constraint Violations. The second type of feature that is used is the number of
violations that the possible value causes if it is assigned to its cell. Given that it
is desirable that the data do not violate the defined constraints, possible values
that violate the defined constraints should be avoided.

The output is a large 3D tensor with the following dimensions: (1) cells in the table or
random variables; (2) possible values for each cell; and (3) features for each possible
value.

• Learning and Inference. Given a tensor of features for each possible value, the
learning process takes as input the features and a label for each cell. Label are chosen
as the original values for the cells that are clean. Cells are marked as errors if they are
involved in a constraint violation or marked as errors by the user. HoloClean then
learns the weight of each feature in order to make predictions about the possible
values. Each possible value receives a score during an inference phase. The scores
of the possible values for each cell are then normalized to produce a probability
distribution over the possible values, which act as the final predictions for that cell.

6.2 Limitations of Repairing RDF as Relational Data

The approach described in Figure 6.1 is one possible solution to repair RDF data, but it
suffers from multiple limitations.

First, given the possibly large number of discovered views, these views intersect both
on the schema level (they share properties) and on the data level (the same entities may
belong to multiple views). However, HoloClean repairs each view is independently without
considering other views. Accordingly, there are no guarantees that the repairs of the same
data are consistent across views. In other words, a cell in a view that represents a property
value for an entity may be assigned different final values in different repaired views.

90

Second, representing RDF data as relational views restricts the cleaning context to only
the other property values mentioned in the same tuple. This transformation disregards the
graph nature of the RDF data and restricts the context to only the direct property values
of entities. The graph structure can provide a richer, more representative context for
cleaning, instead of the limited tuple context.

Third, the RDF data model allows an entity to have multiple values for the same prop-
erties, i.e., properties are by default multi-valued. To represent properties with multiple
values in a relational format, SPARQL duplicates the entity tuple once for every value of
the property. This duplication causes the following problems:

• For entities that have many multi-valued properties, the duplication may cause an
explosion in the number of produced rows.

• The collected statistics (value frequencies and co-occurrence counts) become inaccu-
rate because the same entity is repeated multiple times.

• Repairing multi-valued attributes is more difficult since there may be more than
one correct value, while HoloClean normalizes the scores of the possible values as
probabilities. It is still possible to take the top-k values from the produced probability
distributions to represent the most likely values, although this is not intrinsic to the
produced distribution that assumes that values are mutually exclusive.

6.3 Experiments

In this Section, we measure the effectiveness of repairing errors in RDF data by discovering
structured views as explained in Section 5.2 and running HoloClean on the produced views.

Dataset. YAGO [97] is an RDF dataset that contains general knowledge about entities
and facts about them. We use a subset of YAGO (yagoFacts) that contains all facts of
YAGO that hold between instances. We describe the dataset in the following table.

Dataset # Triples # Subjects |S| # Properties |P| # Unique Schemas |E|
YAGO Facts 12 M 3.6 M 37 8 K

Table 6.2: YAGO facts dataset properties

91

v3 = {
 <created>
 <graduatedFrom>
 <hasAcademicAdvisor>
 <hasChild>
 <hasGender>
 <hasWonPrize>
 <influences>
 <isCitizenOf>
 <isMarriedTo>
 <livesIn>
 <wasBornIn>
 <worksAt>
}

v2 = {
 <hasWebsite>
 <isLocatedIn>
 <owns>
}

v1 = {
 <created>
 <hasChild>
 <hasGender>
 <hasWebsite>
 <hasWonPrize>
 <isCitizenOf>
 <isLeaderOf>
 <isMarriedTo>
 <livesIn>
 <wasBornIn>
}

Figure 6.2: Example views discovered from YAGO Facts

Discovering Views. Multiple view discovery algorithms are applicable to this dataset.
However, we focus on data-driven view discovery algorithms because the number of unique
schemas is manageable. Figure 6.2 shows a few of the discovered views from the YAGO
Facts dataset. Both views v1 and v3 describe information about people entities. Based
on the properties, view v1 includes information about politicians, such as party leaders
and mayors, since it contains properties such as <isLeaderOf>, while v3 describes aca-
demic entities, such as scientists and professors, because it contains properties such as
<hasAcademicAdvisor and <graduatedFrom>. The view v2 contains organizations.

Cleaning view v1. Data cleaning using HoloClean requires a rich context to enable
the training process to capture statistically significant correlations between the attributes.
These correlations are incorporated as features in the generated model and used later in
the inference process. The view v1 contains 10 attributes. Table 6.3 shows a tabular
representation of the data in v1. We omit many of the attributes in the view because of
space limitation. The total number of rows in this view is 48K rows similar to what is
shown in Table 6.3. Empty (null) cells correspond to the absence of the corresponding
property for the entity subject in the same row.

92

subject wasBornIn isLeaderOf livesIn isCitizenOf
<Elizabeth II> <Mayfair> <Malta> <Barbados>
<Richard Stallman> <New York City> <Free Software Foundation> <United States>
<Andranik> <Şebinkarahisar> <Armenian fedayi> <Armenia>
<Ramasamy Palanisamy> <Sitiawan> <Perai> <Penang> <Malaysia>
<Amjad Bashir> <Jhelum> <Khushab District> <Pakistan>
<Tushar Amarsinh Chaudhary> <Gujarat> <Mota, Gujarat> <Surat> <India>
<Margrethe II of Denmark> <Amalienborg> <Faroe Islands> <Romania>
<Shamsuzzaman Khan> <Manikganj District> <Bangla Academy> <Bangladesh>
<Linda Miller (politician)> <Creston, Iowa> <Bettendorf, Iowa> <United States>
<Morton Blackwell> <La Jara, Colorado> <Leadership Institute> <Arlington County, Virginia> <United States>
<Spencer Chandra Herbert> <Vancouver> <Greater Vancouver> <British Columbia> <United Kingdom>
<Alexander Papagos> <Athens> <Greek Rally> <Turkey>
<Ben Lear> <Hamilton, Ontario> <Central Defense Command> <United States>
<Frank Dermody> <Scranton, Pennsylvania> <Pennsylvania Democratic Party> <Oakmont, Pennsylvania> <United States>
<Nathan Deal> <Millen, Georgia> <Georgia State Defense Force> <United States>
<Pratyusha Rajeshwari Singh> <Kandhamal district> <Odisha> <India>
<Miguel Cabrera> <Maracay> <Carey, Ohio> <United States>
<Kimberly A. Lightford> <Chicago> <Illinois Legislative Black Caucus> <Maywood, Illinois> <United States>

Table 6.3: Tabular representation of a subset of view v1

Repairing a target attribute requires the relation to have enough context for the tar-
get attribute to be predicted with high confidence. In v1, the attributes <wasBornIn>,
<isLeaderOf>, and <livesIn> can be seen to be correlated with <isCitizenOf>. There-
fore, we set <isCitizenOf> to be the target attribute and run HoloClean to train a model
that predicts it.

Training Examples. We ran the relational view v1 through HoloClean machine learning
pipeline with the target attribute <isCitizenOf>. HoloClean splits the training examples
into train and test data. Both the train and test data come from the cells in the target
attribute with known values, i.e., nulls are not included in the train data. The view v1
contains <isCitizenOf> values for 48K rows. The train data is then used as examples to
train the model, while the test data is used to evaluate the accuracy of the model since
its correct value is known to be the original cell values. The accuracy consists of multiple
components that we explain later. In this experiment, we set the train data to be of size
30%, approximately 14K examples. This leaves 70%, or 34K examples to be used for
testing.

Learning Features. We use the Co-occurrence feature in HoloClean. Given the correla-
tion between <isCitizenOf> and other attributes in view v1, the statistical co-occurrence
of attribute values acts as a good indicator of which values are more likely to be correct,
given the row context.

Results of Repairing Test Data. HoloClean runs the inference on the test data using
the trained model. The output of the inference process is a probability distribution over

93

the possible domain values in each cell in the test data. Given the probability distribution,
we take the domain value with the highest probability to be the predicted value for each
cell. The produced probability denotes the confidence of the prediction. We divide the
predictions on the test data into two categories:

1. Predictions that match the original value in the view

2. Predictions that are different from the original value in the view

The first category represents the values that are correctly predicted by the trained
repair model This calculation assumes that the initial values of the cells are correct and
treats them as ground truth.

The second category represents the predicted values that are different from the original
data in the view. These can be further divided into the following categories:

i. Wrong prediction, where the original value is correct and the repair model predicts a
wrong value

ii. Correct repair, where the original value is indeed erroneous and the repair model
predicts a correct value

iii. Both the original value and the predicted value are correct, e.g., in the case of multi-
valued attributes

iv. Both the initial value and the predicted value are wrong

These categories are summarized in Figure 6.3 and we refer to them when we report the
experiment results.

Evaluation of Prediction Results. Table 6.4 shows the quality measures (precision,
recall, and f1 score) with varying a threshold for the prediction probability. The table also
assigns each column that corresponds to a quadrant in Figure 6.3 to a category that is
used to calculate the precision and recall. The first column represents the predictions that
are generated with a probability less than the defined threshold and, hence, the model
cannot produce repairs for them with high confidence. The second column is the number
of correct predictions that match the original cell values. The third column contains the
counts of the predictions that do not match the original cell values.

94

Predicted Value

Original Value

correct wrong

correct

wrong

correct
prediction

wrong
prediction

correct
repair

wrong
repair

Figure 6.3: Classification of a prediction when different than the original cell value

The wrong predictions category is further divided into two categories: correct repairs
and wrong repairs. The wrong predictions are manually evaluated by inspecting a sample
of size 30 from the predictions and deciding whether or no the predicted value is correct.
The decision is based on performing a web search for the target entity, and checking
the biography, e.g., on Wikipedia. A prediction is considered a correct repair if it matches
conditions (ii) or (iii) mentioned above. The true positives are then adjusted by multiplying
the percentage of the correct repairs by the number of the wrong predictions. Table 6.5
shows examples of wrong predictions with highest prediction probabilities (all above 0.98).
We show the original and predicted values of <isCitizenOf>.

As expected, the precision increases as the prediction probability threshold increases
because HoloClean becomes more confident in the produced repairs due to the availability
of stronger signals. This increase in the precision comes at the cost of a decrease in the
recall. Since the decrease in the recall is more than the increase in precision, the overall
F1 score decreases.

Errors in training data. In the case of correct repairs, the assumption that the original
data is treated as ground truth becomes invalid. However, we assume that errors are
statistically tractable and that the data is mostly correct. This assumption enables the
learning process to be robust to low levels of label noise in the training data since the goal

95

minimum
prediction
probability

below confidence
threshold

(False Negative)

correct predictions
(True Positive)

wrong predictions
precision recall f1

correct repairs
(True Positive)

wrong repairs
(False Positive)

≥ 0.2 712 26,887 5033 1259 0.962 0.978 0.97
≥ 0.5 2430 26196 4765 530 0.983 0.927 0.954
≥ 0.9 11133 20771 1868 208 0.99 0.67 0.799

Table 6.4: Quality analysis of repairing view v1

is only to learn feature weights. The small number of errors also does not significantly
affect the collected statistics, e.g., co-occurrence counts, which are utilized both in the
domain generation and as feature values.

96

subject wasBornIn livesIn
isCitizenOf
(original)

isCitizenOf
(predicted)

<Mahesh Bhupathi> <Chennai> <Bangalore> <Australia> <India>
<Bobby Rush> <Albany, Georgia> <Chicago> <Ghana> <United States>
<Anil Kumar> <Chennai> <New Delhi> <United States> <India>
<Imelda Marcos> <Philippine Islands> <Makati> <Spain> <Philippines>
<Raghavendra Gadagkar> <Kanpur> <India> <United States> <India>
<Michelle Pfeiffer> <Santa Ana, California> <Woodside, California> <France> <United States>
<Charles Hibbert Tupper> <Amherst, Nova Scotia> <Halifax, Nova Scotia> <England> <Canada>
<Tito Sotto> <Philippines> <Quezon City> <China> <Philippines>
<M. S. Swaminathan> <Kumbakonam> <Chennai> <Bangladesh> <India>
<Robert Englund> <Glendale, California> <Laguna Beach, California> <Sweden> <United States>
<Judy Sheindlin> <New York> <Greenwich, Connecticut> <Russia> <United States>
<Leander Paes> <Kolkata> <Maharashtra> <Australia> <United States>
<Dwight Morrow> <Huntington, West Virginia> <North Haven, Maine> <Jersey> <India>
<Samson H. Chowdhury> <Pabna> <Dhaka> <Scotland> <Bangladesh>
<Solange Knowles> <Houston> <Louisiana> <France> <United States>
<Sania Mirza> <India> <Hyderabad> <Australia> <India>
<Hamza Yusuf> <Walla Walla, Washington> <Northern California> <Greece> <United States>
<Cory Bernardi> <Adelaide> <Adelaide> <Italy> <Australia>
<Jayant Narlikar> <Kolhapur> <Pune> <France> <India>
<Vikram Sarabhai> <Ahmedabad> <India> <United States> <India>
<Lalit Surajmal Kanodia> <Kolkata> <Mumbai> <United Kingdom> <India>
<Jeev Milkha Singh> <Chandigarh> <Chandigarh> <Japan> <India>
<Chris Pirillo> <Des Moines, Iowa> <Washington (state)> <Italy> <United States>
<Francis Pangilinan> <Philippines> <Quezon City> <Greece> <Philippines>
<Isha Sharvani> <Gujarat> <Thiruvananthapuram> <Australia> <India>
<Joe Haldeman> <Oklahoma City> <Vietnam> <United States>
<Rajeev Sethi> <Delhi> <New Delhi> <Germany> <India>
<Bebe Buell> <Portsmouth, Virginia> <Tennessee> <Germany> <United States>
<Tony Knowles (politician)> <Tulsa, Oklahoma> <Anchorage, Alaska> <Vietnam> <United States>
<Viswanathan Kumaran> <Tamil Nadu> <Karnataka> <United States> <India>

Table 6.5: Sample of original and repaired <isCitizenOf> values in YAGO Facts dataset

97

Chapter 7

Conclusion and Future Work

Extracting and cleaning RDF data includes a wide range of problems that span data
mining, deep learning, natural language processing, systems design, distributed data pro-
cessing, among other areas of research. Designing an end-to-end system for extraction and
cleaning is a challenging and ambitious task that involves designing multiple complex com-
ponents that communicate together. In this Chapter, we write some conclusion remarks
and present ideas for future work.

7.1 Conclusion

This dissertation presents multiple approaches towards the vision of having a fully auto-
mated RDF extraction and cleaning pipeline.

In the area of extracting RDF data, we presented two contributions. We explained
the design of the DSTLR framework in Chapter 2. We showed how the design decision
enable two main concepts: (1) horizontal scalability; and (2) customizable data processing
pipelines. The scalablility comes from the data processing engine, Apache Spark, that is
installed on a horizontally scalable infrastructure that is managed by Apache Mesos and
Marathon. The containerization of the system components allows seamless deployment
to increase the processing capacity of the framework. Supporting custom extraction and
processing pipelines is crucial to provide users with a framework that fits their information
need. We achieve this by providing extensible pipeline components with standardized
input/output interface, and a universal communication between components in a table-
in/table-out format.

98

We also introduced an approach, LONLIES in Chapter 3, to estimate property values
of long tail entities. We explained how the association of rare entities to head entities
and popular topics may assist in generalizing information about them to the rare entities,
similar to how humans learn and generalize knowledge and apply it in unknown situations.

In the area of cleaning RDF data, we presented multiple approaches to discover con-
straints from the RDF data and to repair errors. In Chapter 4, we introduced an algorithm
to discover SHACL constraints from RDF data. The algorithm utilizes data mining tech-
niques to construct a predicate space based on the formal definition of the SHACL language,
and collects evidence about the applicability of such predicates on the dataset. Because the
expressiveness of SHACL constraints are limited to one entity at a time, we introduced an
algorithm to discover denial constraints on RDF data. The denial constraints are defined
on relational views over the RDF data that are discovered using multiple algorithms.

In Chapter 6, we introduced an approach to repair errors in RDF data by using Holo-
Clean to repair relational views over the RDF data. The views are discovered using the
view discovery algorithms that were previously used in mining denial constraints. In gen-
eral, repairing errors in RDF data is not a straight-forward task because of the graph
nature of the RDF and the open-world semantics. We also discussed the limitations of
the presented approach in Section 6.2. In the following section, we discuss some ideas to
improve the repairing process.

7.2 Future Work

Quality-Aware Extraction of Long Tail Entities. Knowledge about long tail infor-
mation is considered an important asset for organizations that provide data services. The
ability to capture and serve rare information that is hard to extract and is not frequently
mentioned distinguishes one service from another. The approach we introduced in Chap-
ter 3 is based on heuristics that may not hold in general, and therefore it cannot capture
the large amount of long tail information.

We plan to investigate a new approach where we incorporate domain knowledge, ex-
ternal expert rules, and constraints in the extraction process. Integrating these elements
in the extraction and learning process induces higher effective redundancy for the long tail
entities. For example, when quality constraints are defined on output of the extraction
process, violations of these quality constraints can be fed back into the extraction process
to act as additional training data or learning constraints to improve the accuracy of extrac-
tion. This idea would provide feedback for training extractors to extract structured data

99

that do not violate the integrity constraints that are defined in downstream applications
– a feedback that is missing since the extraction is usually decoupled from the quality of
the high-level analysis. The newly designed approach may capture more high-quality fact
coverage of the long tail entities in the underlying text corpus.

RDF-Specific Cleaning. Repairing RDF data is more complex than relational data
due to the structure of the RDF graph. In relational data, a table contains information
about entities of the same type that share all the attributes of the table. The open-world
semantics of RDF data model invalidates this assumption because entities are allowed to
not have values for properties. We plan to investigate the following ideas that are specific
to repairing RDF data. The first idea is to start the repairing process by repairing the
structure of the graph. The goal is to decide whether or not entities should have values for
the target properties. The next stage is to use the structure of the graph as a feature in
the learning because the context of entities in the RDF model is richer than just the direct
properties that are related to them.

100

References

[1] Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Ihab F Ilyas,
Mourad Ouzzani, Paolo Papotti, Michael Stonebraker, and Nan Tang. Detecting
data errors: Where are we and what needs to be done? Proceedings of the VLDB
Endowment, 9(12):993–1004, 2016.

[2] Ziawasch Abedjan, Toni Grütze, Anja Jentzsch, and Felix Naumann. Profiling and
mining rdf data with prolod++. In Data Engineering (ICDE), 2014 IEEE 30th
International Conference on, pages 1198–1201. IEEE, 2014.

[3] Foto N. Afrati and Jeffrey D. Ullman. Optimizing joins in a map-reduce environ-
ment. In Proceedings of the 13th International Conference on Extending Database
Technology, EDBT ’10, pages 99–110, New York, NY, USA, 2010. ACM.

[4] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. Dbpedia: A nucleus for a web of open data. In The semantic web,
pages 722–735. Springer, 2007.

[5] Marianne Baudinet, Jan Chomicki, and Pierre Wolper. Constraint-generating de-
pendencies. Journal of Computer and System Sciences, 59(1):94–115, 1999.

[6] Michael S Bernstein, Jaime Teevan, Susan Dumais, Daniel Liebling, and Eric Horvitz.
Direct answers for search queries in the long tail. In Proceedings of the SIGCHI
conference on human factors in computing systems, pages 237–246. ACM, 2012.

[7] Michael S. Bernstein, Jaime Teevan, Susan Dumais, Daniel Liebling, and Eric
Horvitz. Direct Answers for Search Queries in the Long Tail. In SIGCHI, 2012.

[8] Leopoldo Bertossi. Database repairing and consistent query answering. Synthesis
Lectures on Data Management, 3(5):1–121, 2011.

101

[9] George Beskales, Ihab F Ilyas, Lukasz Golab, and Artur Galiullin. On the rela-
tive trust between inconsistent data and inaccurate constraints. In 2013 IEEE 29th
International Conference on Data Engineering (ICDE), pages 541–552. IEEE, 2013.

[10] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[11] Tobias Bleifuß, Sebastian Kruse, and Felix Naumann. Efficient denial constraint
discovery with hydra. Proceedings of the VLDB Endowment, 11(3):311–323, 2017.

[12] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsiet-
sidis. Conditional functional dependencies for data cleaning. In IEEE 23rd Interna-
tional Conference on Data Engineering, 2007. IEEE, 2007.

[13] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching
word vectors with subword information. arXiv preprint arXiv:1607.04606, 2016.

[14] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Free-
base: a collaboratively created graph database for structuring human knowledge. In
SIGMOD, 2008.

[15] Angela Bonifati, Radu Ciucanu, and Slawomir Staworko. Interactive inference of
join queries. In Gestion de Données-Principes, Technologies et Applications (BDA),
2014.

[16] Redouane Bouhamoum, Kenza Kellou-Menouer, Stéphane Lopes, and Zoubida
Kedad. Scaling up schema discovery for RDF datasets. In 34th IEEE International
Conference on Data Engineering Workshops, ICDE Workshops 2018, Paris, France,
April 16-20, 2018, pages 84–89, 2018.

[17] Sergey Brin. Extracting patterns and relations from the world wide web. In Interna-
tional Workshop on The World Wide Web and Databases, pages 172–183. Springer,
1998.

[18] Razvan C Bunescu and Marius Pasca. Using encyclopedic knowledge for named
entity disambiguation. In EACL, volume 6, pages 9–16, 2006.

[19] Jamie Callan, Mark Hoy, Changkuk Yoo, and Le Zhao. Clueweb09 data set, 2009.

[20] Diego Valerio Camarda, Silvia Mazzini, and Alessandro Antonuccio. Lodlive, explor-
ing the web of data. In Proceedings of the 8th International Conference on Semantic
Systems, pages 197–200. ACM, 2012.

102

[21] Anup Chalamalla, Ihab F. Ilyas, Mourad Ouzzani, and Paolo Papotti. Descriptive
and prescriptive data cleaning. In Proceedings of the 2014 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’14, pages 445–456. ACM,
2014.

[22] Eugene Inseok Chong, Souripriya Das, George Eadon, and Jagannathan Srinivasan.
An efficient sql-based rdf querying scheme. In Proceedings of the 31st International
Conference on Very Large Data Bases, VLDB ’05, pages 1216–1227. VLDB Endow-
ment, 2005.

[23] Klitos Christodoulou, Norman W Paton, and Alvaro AA Fernandes. Structure infer-
ence for linked data sources using clustering. In Transactions on Large-Scale Data-
and Knowledge-Centered Systems XIX, pages 1–25. Springer, 2015.

[24] Xu Chu, Ihab F Ilyas, and Paraschos Koutris. Distributed data deduplication. Pro-
ceedings of the VLDB Endowment, 9(11):864–875, 2016.

[25] Xu Chu, Ihab F Ilyas, and Paolo Papotti. Discovering denial constraints. Proceedings
of the VLDB Endowment, 6(13):1498–1509, 2013.

[26] Xu Chu, Ihab F Ilyas, and Paolo Papotti. Holistic data cleaning: Putting violations
into context. In Data Engineering (ICDE), 2013 IEEE 29th International Conference
on, pages 458–469. IEEE, 2013.

[27] Xu Chu, John Morcos, Ihab F Ilyas, Mourad Ouzzani, Paolo Papotti, Nan Tang,
and Yin Ye. Katara: A data cleaning system powered by knowledge bases and
crowdsourcing. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, pages 1247–1261, 2015.

[28] Julien Corman, Juan L. Reutter, and Ognjen Savković. Semantics and validation
of recursive shacl. In The Semantic Web – ISWC 2018, pages 318–336. Springer
International Publishing, 2018.

[29] Silviu Cucerzan. Large-scale named entity disambiguation based on wikipedia data.
In EMNLP-CoNLL, volume 7, pages 708–716, 2007.

[30] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang, Michael Stone-
braker, Ahmed K Elmagarmid, Ihab F Ilyas, Samuel Madden, Mourad Ouzzani, and
Nan Tang. The data civilizer system. In CIDR, 2017.

103

[31] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[32] A. Rogier T. Donders, Geert J.M.G. van der Heijden, Theo Stijnen, and Karel G.M.
Moons. Review: A gentle introduction to imputation of missing values. Journal of
Clinical Epidemiology, 59(10):1087 – 1091, 2006.

[33] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy,
Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: A web-scale
approach to probabilistic knowledge fusion. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 601–610.
ACM, 2014.

[34] Xin Luna Dong, Laure Berti-Equille, and Divesh Srivastava. Truth discovery and
copying detection in a dynamic world. Proceedings of the VLDB Endowment,
2(1):562–573, 2009.

[35] Xin Luna Dong, Evgeniy Gabrilovich, Kevin Murphy, Van Dang, Wilko Horn,
Camillo Lugaresi, Shaohua Sun, and Wei Zhang. Knowledge-based trust: Estimating
the trustworthiness of web sources. arXiv preprint arXiv:1502.03519, 2015.

[36] Xin Luna Dong and Felix Naumann. Data fusion: resolving data conflicts for inte-
gration. Proceedings of the VLDB Endowment, 2(2):1654–1655, 2009.

[37] Xin Luna Dong and Divesh Srivastava. Big data integration. In Data Engineering
(ICDE), 2013 IEEE 29th International Conference on. IEEE, 2013.

[38] Arthur Conan Doyle and P James Macaluso. The adventure of the copper beeches,
volume 12. Andrews UK Limited, 2016.

[39] Mark Dredze, Paul McNamee, Delip Rao, Adam Gerber, and Tim Finin. Entity
disambiguation for knowledge base population. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics, pages 277–285. Association for
Computational Linguistics, 2010.

[40] Ahmed K Elmagarmid, Panagiotis G Ipeirotis, and Vassilios S Verykios. Duplicate
record detection: A survey. IEEE Transactions on knowledge and data engineering,
19(1):1–16, 2007.

104

[41] Wenfei Fan and Floris Geerts. Foundations of data quality management. Synthesis
Lectures on Data Management, 4(5):1–217, 2012.

[42] Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. Discovering conditional
functional dependencies. IEEE Transactions on Knowledge and Data Engineering,
23(5):683–698, 2011.

[43] Wenfei Fan, Xibei Jia, Jianzhong Li, and Shuai Ma. Reasoning about record matching
rules. Proceedings of the VLDB Endowment, 2(1):407–418, 2009.

[44] Wenfei Fan, Yinghui Wu, and Jingbo Xu. Functional dependencies for graphs. In
Proceedings of the 2016 International Conference on Management of Data, pages
1843–1857, New York, NY, USA, 2016. ACM.

[45] A. Farhangfar, L. A. Kurgan, and W. Pedrycz. A novel framework for imputation of
missing values in databases. Trans. Sys. Man Cyber. Part A, 37(5):692–709, Septem-
ber 2007.

[46] Alireza Farhangfar, Lukasz Kurgan, and Jennifer Dy. Impact of imputation of missing
values on classification error for discrete data. Pattern Recognition, 41(12):3692–3705,
2008.

[47] Mina H. Farid, Ihab F. Ilyas, Steven Euijong Whang, and Cong Yu. LONLIES: esti-
mating property values for long tail entities. In Proceedings of the 39th International
ACM SIGIR conference on Research and Development in Information Retrieval, SI-
GIR 2016, Pisa, Italy, July 17-21, 2016, pages 1125–1128, 2016.

[48] Mina H. Farid, Alexandra Roatis, Ihab F. Ilyas, Hella-Franziska Hoffmann, and
Xu Chu. CLAMS: bringing quality to data lakes. In Proceedings of the 2016 In-
ternational Conference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, pages 2089–2092, 2016.

[49] Mina H. Farid, Alexandra Roatis, Ihab F. Ilyas, Hella-Franziska Hoffmann, and
Xu Chu. CLAMS: bringing quality to data lakes. In Proceedings of the 2016 In-
ternational Conference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, pages 2089–2092. ACM, 2016.

[50] Raul Castro Fernandez, E Mansour, A Qahtan, A Elmagarmid, I Ilyas, S Madden,
M Ouzzani, M Stonebraker, and N Tang. Seeping semantics: Linking datasets using
word embeddings for data discovery. In 34th IEEE International Conference on Data
Engineering, ICDE, Paris, France, 2018.

105

[51] Paolo Ferragina and Ugo Scaiella. Tagme: on-the-fly annotation of short text frag-
ments (by wikipedia entities). In Proceedings of the 19th ACM international confer-
ence on Information and knowledge management, pages 1625–1628. ACM, 2010.

[52] Evgeniy Gabrilovich, Michael Ringgaard, and Amarnag Subramanya. FACC1: Free-
base annotation of ClueWeb corpora, Version 1 (Release date 2013-06-26, Format
version 1, Correction level 0). June 2013.

[53] Liqiang Geng and Howard J Hamilton. Interestingness Measures for Data Mining:
A Survey. ACM Computing Surveys (CSUR), 38(3):9, 2006.

[54] Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov et al.’s
negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722, 2014.

[55] Binbin He, Lei Zou, and Dongyan Zhao. Using conditional functional dependency to
discover abnormal data in rdf graphs. In Proceedings of Semantic Web Information
Management on Semantic Web Information Management, pages 1–7. ACM, 2014.

[56] Jeff Heflin and Hector Muñoz-Avila. LCW-Based Agent Planning for the Semantic
Web. Technical report, 2002.

[57] Alireza Heidari, Joshua McGrath, Ihab F Ilyas, and Theodoros Rekatsinas. Holode-
tect: Few-shot learning for error detection. SIGMOD, 2019.

[58] Sebastian Hellmann, Jens Lehmann, and Sören Auer. Learning of owl class descrip-
tions on very large knowledge bases. International Journal on Semantic Web and
Information Systems (IJSWIS), 5(2):25–48, 2009.

[59] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. Tane: An effi-
cient algorithm for discovering functional and approximate dependencies. The com-
puter journal, 42(2):100–111, 1999.

[60] Ihab F Ilyas, Xu Chu, et al. Trends in cleaning relational data: Consistency and
deduplication. Foundations and Trends in Databases, 5(4):281–393, 2015.

[61] Kenza Kellou-Menouer and Zoubida Kedad. Schema discovery in rdf data sources.
In International Conference on Conceptual Modeling, pages 481–495. Springer, 2015.

[62] Evgeny Kharlamov, Sebastian Brandt, Ernesto Jimenez-Ruiz, Yannis Kotidis, Steffen
Lamparter, Theofilos Mailis, Christian Neuenstadt, Özgür Özçep, Christoph Pinkel,

106

Christoforos Svingos, et al. Ontology-based integration of streaming and static re-
lational data with optique. In Proceedings of the 2016 International Conference on
Management of Data, pages 2109–2112. ACM, 2016.

[63] Graham Klyne and Jeremy J Carroll. Resource description framework (RDF): Con-
cepts and abstract syntax. 2006.

[64] Holger Knublauch, Dean Allemang, and Simon Steyskal. SHACL Advanced Features.
W3C Working Group Note, W3C, June 2017. https://www.w3.org/TR/shacl-af/.

[65] Holger Knublauch and Dimitris Kontokostas. Shapes Constraint Language (SHACL).
W3C Recommendation, W3C, July 2017. https://www.w3.org/TR/shacl/.

[66] Mathias Konrath, Thomas Gottron, Steffen Staab, and Ansgar Scherp. Schemex -
efficient construction of a data catalogue by stream-based indexing of linked data.
Web Semant., 16:52–58, November 2012.

[67] Sebastian Kruse, Anja Jentzsch, Thorsten Papenbrock, Zoi Kaoudi, Jorge-Arnulfo
Quiané-Ruiz, and Felix Naumann. Rdfind: scalable conditional inclusion dependency
discovery in rdf datasets. In Proceedings of the 2016 International Conference on
Management of Data, pages 953–967. ACM, 2016.

[68] Yunyao Li, Rajasekar Krishnamurthy, Sriram Raghavan, Shivakumar Vaithyanathan,
and HV Jagadish. Regular expression learning for information extraction. In Proceed-
ings of the 2008 Conference on Empirical Methods in Natural Language Processing,
pages 21–30, 2008.

[69] Thomas Lin, Oren Etzioni, et al. No noun phrase left behind: detecting and typing
unlinkable entities. In EMNLP, 2012.

[70] Christian Lindig. Fast concept analysis. Working with Conceptual Structures-
Contributions to ICCS, 2000:152–161, 2000.

[71] Roderick JA Little and Donald B Rubin. Statistical analysis with missing data. John
Wiley & Sons, 1987.

[72] Zhen Hua Liu and Dieter Gawlick. Management of Flexible Schema Data in
RDBMSs-Opportunities and Limitations for NoSQL-. In CIDR, 2015.

[73] Colin Lockard, Xin Luna Dong, Prashant Shiralkar, and Arash Einolghozati. CERES:
distantly supervised relation extraction from the semi-structured web. PVLDB,
11(10):1084–1096, 2018.

107

https://www.w3.org/TR/shacl-af/
https://www.w3.org/TR/shacl/

[74] Johannes Lorey, Ziawasch Abedjan, Felix Naumann, and Christoph Böhm. Rdf
ontology (re-)engineering through large-scale data mining. 09 2018.

[75] Alexander Maedche and Steffen Staab. Ontology learning for the semantic web. IEEE
Intelligent systems, 16(2):72–79, 2001.

[76] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. The Stanford CoreNLP natural language processing
toolkit. In Proceedings of 52nd Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, 2014.

[77] Chris Mayfield, Jennifer Neville, and Sunil Prabhakar. Eracer: a database approach
for statistical inference and data cleaning. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pages 75–86, 2010.

[78] Pablo N Mendes, Max Jakob, Andrés Garćıa-Silva, and Christian Bizer. Dbpedia
spotlight: shedding light on the web of documents. In Proceedings of the 7th Inter-
national Conference on Semantic Systems, pages 1–8. ACM, 2011.

[79] Nandana Mihindukulasooriya, Mohammad Rashid, Giuseppe Rizzo, Raúl
Garćıa Castro, Oscar Corcho, and Marco Torchiano. Rdf shape induction using
knowledge base profiling. pages 1952–1959, 04 2018.

[80] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111–3119, 2013.

[81] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision for
relation extraction without labeled data. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Volume 2-Volume 2, pages 1003–1011.
Association for Computational Linguistics, 2009.

[82] Keisuke Murakami and Takeaki Uno. Efficient algorithms for dualizing large-scale
hypergraphs. Discrete Applied Mathematics, 170:83–94, 2014.

[83] Svetlozar Nestorov, Serge Abiteboul, and Rajeev Motwani. Extracting schema from
semistructured data. In Proceedings of the 1998 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’98, pages 295–306, New York, NY, USA,
1998. ACM.

108

[84] Feng Niu, Ce Zhang, Christopher Ré, and Jude W Shavlik. Deepdive: Web-scale
knowledge-base construction using statistical learning and inference. VLDS, 12:25–
28, 2012.

[85] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer
Rudolph, Martin Schönberg, Jakob Zwiener, and Felix Naumann. Functional de-
pendency discovery: An experimental evaluation of seven algorithms. Proceedings of
the VLDB Endowment, 8(10):1082–1093, 2015.

[86] Thorsten Papenbrock and Felix Naumann. A hybrid approach to functional depen-
dency discovery. In Proceedings of the 2016 International Conference on Management
of Data, pages 821–833. ACM, 2016.

[87] Amela Prelić, Stefan Bleuler, Philip Zimmermann, Anja Wille, Peter Bühlmann,
Wilhelm Gruissem, Lars Hennig, Lothar Thiele, and Eckart Zitzler. A systematic
comparison and evaluation of biclustering methods for gene expression data. Bioin-
formatics, 22(9):1122–1129, 2006.

[88] Eric Prud’hommeaux, Jose Emilio Labra Gayo, and Harold Solbrig. Shape expres-
sions: an rdf validation and transformation language. In Proceedings of the 10th
International Conference on Semantic Systems, pages 32–40. ACM, 2014.

[89] Karima Rafes, Serge Abiteboul, Sarah Cohen-Boulakia, and Bastien Rance. Design-
ing scientific sparql queries using autocompletion by snippets. In 2018 IEEE 14th
International Conference on e-Science (e-Science), 2017.

[90] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese
bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing. Association for Computational Linguistics, 11 2019.

[91] Theodoros Rekatsinas, Xu Chu, Ihab F Ilyas, and Christopher Ré. Holoclean: Holis-
tic data repairs with probabilistic inference. Proceedings of the VLDB Endowment,
10(11):1190–1201, 2017.

[92] Petar Ristoski and Heiko Paulheim. Rdf2vec: Rdf graph embeddings for data mining.
In International Semantic Web Conference, pages 498–514. Springer, 2016.

[93] Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic
text retrieval. Information processing & management, 24(5):513–523, 1988.

109

[94] Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. Discovery-driven Explo-
ration of OLAP Data Cubes. In International Conference on Extending Database
Technology, pages 168–182. Springer, 1998.

[95] Yanyan Shen, Kaushik Chakrabarti, Surajit Chaudhuri, Bolin Ding, and Lev Novik.
Discovering queries based on example tuples. In Proceedings of the 2014 ACM SIG-
MOD international conference on Management of data, pages 493–504. ACM, 2014.

[96] Edward H Simpson. Measurement of diversity. Nature, 1949.

[97] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic
knowledge. In Proceedings of the 16th international conference on World Wide Web,
pages 697–706, 2007.

[98] Johanna Völker and Mathias Niepert. Statistical schema induction. In Extended
Semantic Web Conference, pages 124–138. Springer, 2011.

[99] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledge-
base. Communications of the ACM, 57(10):78–85, 2014.

[100] Fei Wu, Raphael Hoffmann, and Daniel S Weld. Information extraction from
wikipedia: Moving down the long tail. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 731–739.
ACM, 2008.

[101] Sen Wu, Ce Zhang, Feiran Wang, and Christopher Ré. Incremental knowledge base
construction using deepdive. CoRR, abs/1502.00731, 2015.

[102] Catharine Wyss, Chris Giannella, and Edward Robertson. Fastfds: A heuristic-
driven, depth-first algorithm for mining functional dependencies from relation in-
stances extended abstract. In International Conference on Data Warehousing and
Knowledge Discovery, pages 101–110. Springer, 2001.

[103] Mohamed Yakout, Laure Berti-Équille, and Ahmed K Elmagarmid. Don’t be scared:
use scalable automatic repairing with maximal likelihood and bounded changes. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data, pages 553–564, 2013.

[104] Yun Zhang, Elissa J Chesler, and Michael A Langston. On finding bicliques in
bipartite graphs: a novel algorithm with application to the integration of diverse
biological data types. In BMC Bioinformatics, page 473. IEEE, 2008.

110

[105] Slavko Žitnik, Marko Bajec, and Dejan Lavbič. Logmap+: Relational data enrich-
ment and linked data resources matching. In Research Challenges in Information
Science (RCIS), 2017 11th International Conference on, pages 267–275. IEEE, 2017.

[106] Nansu Zong, Dong-Hyuk Im, Sungkwon Yang, Hyun Namgoon, and Hong-Gee Kim.
Dynamic generation of concepts hierarchies for knowledge discovering in bio-medical
linked data sets. In Proceedings of the 6th International Conference on Ubiquitous
Information Management and Communication, ICUIMC ’12, pages 12:1–12:5, New
York, NY, USA, 2012. ACM.

[107] Lei Zou, Ruizhe Huang, Haixun Wang, Jeffrey Xu Yu, Wenqiang He, and Dongyan
Zhao. Natural language question answering over rdf: A graph data driven approach.
In Proceedings of the 2014 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’14, New York, NY, USA, 2014. ACM.

111

APPENDICES

112

Appendix A

Proofs for Theorems 1 and 2

Theorem 1. For any two maximal views v1 and v2, the intersection v1 ∩ v2 is also a
maximal view.

Proof. We complete the proof by the following three cases:

Case 1: If v1 ⊆ v2, then v1 ∩ v2 = v1, which is maximal.

Case 2: If v2 ⊆ v1, then v1 ∩ v2 = v2, which is maximal.

Case 3: Otherwise, we have v1 ∩ v2 ⊂ v1 and v1 ∩ v2 ⊂ v2. Therefore v1 \ v1 ∩ v2 6= ∅
and v2 \ v1 ∩ v2 6= ∅. We prove Case 3 by contradiction as follows: Suppose v1 ∩ v2 is not
maximal. By definition of maximal views, there exists at least another property A /∈ v1∩v2
such that Subjects(A) ⊇ Subjects(v1 ∩ v2). Consider the only two possible cases for A:
A ∈ v1 \ v1 ∩ v2 or A /∈ v1 \ v1 ∩ v2.

Case 3.1: If A ∈ v1 \ v1 ∩ v2, we have for sure A /∈ v2. Since v1 ∩ v2 ⊂ v2, we have
Subjects(v1 ∩ v2) ⊇ Subjects(v2). Combining this with Subjects(A) ⊇ Subjects(v1 ∩ v2),
we have Subjects(A) ⊇ Subjects(v2). This directly contradicts the fact that v2 is maximal,
since I can extend v2 by another attribute A /∈ v2 and not losing any subjects.

Case 3.2: If A /∈ v1 \ v1 ∩ v2. We also have A /∈ v1 ∩ v2. Therefore, we have A /∈ v1.
Since v1 ∩ v2 ⊂ v1, we have Subjects(v1 ∩ v2) ⊇ Subjects(v1). Combining this with
Subjects(A) ⊇ Subjects(v1 ∩ v2), we have Subjects(A) ⊇ Subjects(v1). This directly
contradicts the fact that v1 is maximal, since I can extend v1 by another attribute A /∈ v1
and not losing any subjects.

113

Theorem 2. Any maximal view v is either a signature view, or an intersection of two
maximal views v1 and v2, where v ⊂ v1 and v ⊂ v2

Proof. Given a maximal view v, if it is a signature view, then the theorem holds trivially.
Therefore, we only need to prove that if v is a not a signature view, then it must be an
intersection of two maximal views v1 and v2.

This proof contains two steps. In Step 1, we prove that ∃A,B /∈ v, such that 6 ∃C /∈ v

that satisfies Subjects(v∪C) ⊇ Subjects(v∪A) and Subjects(v∪C) ⊇ Subjects(v∪B).
In Step 2, we use such A,B to construct two maximal views v1 and v2 such that v = v1∩v2

Step 1. We prove this by contradiction. Suppose ∀A,B /∈ v, such that ∃C /∈ v that
satisfies Subjects(v ∪ C) ⊇ Subjects(v ∪ A) and Subjects(v ∪ C) ⊇ Subjects(v ∪B).

In addition to properties in v, without loss of generality, suppose there are k addi-
tional properties {A1, A2, . . . , Ak} in the RDF dataset. Recursively applying the above
assumption, we know that there must exists a property A∗ ∈ {A1, A2, . . . Ak} such that
Subjects(v∪A∗) ⊇ Subjects(v∪A1), Subjects(v∪A∗) ⊇ Subjects(v∪A2), . . . , Subjects(v∪
A∗) ⊇ Subjects(v ∪ Ak). Therefore, we have

Subjects(v ∪ A∗) ⊇ ∪ki=1Subjects(v ∪ Ai)

In addition, let us prove that

Subjects(v) = ∪ki=1Subjects(v ∪ Ai)

To see this, for any subject in s ∈ Subjects(v∪Ai), by definition s ∈ Subjects(v). There-
fore, for any subject s in ∪ki=1Subjects(v ∪ Ai), it must be in Subjects(v). To prove the
other direction, for any subject s ∈ Subjects(v), as v is not a signature view, there must
exist another property Ai such that Ai ∈ s.σ, i.e., s ∈ Subjects(v ∪ Ai).

Combining the above two observations, we have that, there exists a property A∗ /∈ v,
such that

Subjects(v ∪ A∗) ⊇ Subjects(v)

This contradicts the assumption that v is a maximal view.

Step 2. Given two properties A,B /∈ v, such that 6 ∃C /∈ v that satisfies Subjects(v ∪
C) ⊇ Subjects(v∪A) and Subjects(v∪C) ⊇ Subjects(v∪B), we construct two maximal

114

views v1 and v2 as follows:

Let v1 = {v∪A∪X} be the maximal view containing v∪A. Let v2 = {v∪B ∪ Y } be
the maximal view containing v ∪ B. We can see that X ∩ Y = ∅; otherwise, there exists
C ∈ X ∩Y that contradicts the assumption of Step 2. Given these two maximal views, we
have v1 ∩ v2 = v

115

	List of Tables
	List of Figures
	Introduction
	Extraction of RDF Data
	Quality of RDF Data
	Contributions and Outline

	Extracting RDF Data using the DSTLR Framework
	Architecture
	Infrastructure
	Design Details

	Estimating Properties of Long Tail Entities
	Overview
	Anchoring Entities to Knowledge Bases
	Community Construction
	Community Membership Evaluation
	Estimation of Property Values from Communities
	Experiments
	Related Work

	Discovering SHACL Constraints from RDF
	Preliminaries
	The DISH Discovery Algorithm
	DISH Overview
	Constructing the Space of SHACL Conditions
	Evaluating the Conditions on the Target Nodes
	From the Evidence Set to a SHACL Constraint
	Ranking the Discovered Constraints

	Experiments
	Quantitative Analysis: Scalability
	Qualitative Analysis: Quality of Discovered Constraints

	Related Work
	Conclusion and Future Work

	Discovering Denial Constraints from RDF
	Problem Definition
	Denial Constraints on Relational Data
	Denial Constraints on RDF
	Solution Overview

	View Discovery
	The View Space and Maximal Views
	Schema-driven View Discovery
	Data-driven View Discovery

	Constraint Discovery
	DC Discovery using FastDC
	Incremental Discovery of Constraints
	Incremental Building of Evidence Sets
	Incremental Computation of Minimal Set Covers

	Handling Incomplete Data
	Discovering Valid Views
	Modification to DC Discovery

	Experiments
	Evaluating View Discovery
	Evaluating DC Discovery
	Related Work

	Repairing RDF Data
	Repairing RDF Using HoloClean
	Limitations of Repairing RDF as Relational Data
	Experiments

	Conclusion and Future Work
	Conclusion
	Future Work

	References
	APPENDICES
	Proofs for Theorems 1 and 2

