
Leveraging Watermarks to Improve
Performance of Streaming Systems

by

Omar Farhat

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2020

c⃝ Omar Farhat 2020

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

I would like to acknowledge the names of my co-authors who contributed to the research
described in this thesis, these include:

• Dr. Khuzaima Daudjee

• Dr. Leonardo Querzoni

• Harsh Bindra

iii

Abstract

Modern stream processing engines (SPEs) process large volumes of events propagated at
high velocity through multiple queries. By continuously receiving watermarks, which are
marker events injected into the stream to signify that no further events are expected be-
yond a designated timestamp, SPEs can infer stream progress to correctly process window
operators. While stream progress is useful information for query execution, it is only uti-
lized to ensure input completion. We argue that to improve performance, stream progress
should be leveraged in the design of SPE subsystems. In this thesis, we demonstrate the
significant advantages of leveraging stream progress to solve two important SPE problems:
query scheduling, and query sample processing.

First, existing SPE schedulers generally aim to minimize query output latency by min-
imizing, in turn, the mean propagation delay of events in query pipelines. However, for
queries containing commonly used blocking operators such as windows, we show that a su-
perior approach would be to prioritize the queries based on stream progress. Through the
design and development of Klink, we leverage stream progress to unblock window operators
and to rapidly propagate the events to output operators. Secondly, sample query processing
limits input to only a subset of events such that the sample is statistically representative
of the input while ensuring output accuracy guarantees. However, output latency can be
significantly increased because relevant watermarks can suffer from large ingestion delay
due to long or bursty network latencies. Window computations that account for stragglers
can add significant latency while providing inconsequential accuracy improvement. We
propose Aion, an algorithm that utilizes sampling to provide approximate answers with
low latency by minimizing the effect of stragglers through leveraging control over stream
progress.

We integrate Klink and Aion into the popular open-source SPE Apache Flink. We
demonstrate that Klink delivers hefty performance gains on benchmark workloads, reducing
mean and tail query latencies by up to 60% over existing scheduling policies. Similarly,
using different benchmark workloads, we demonstrate that Aion reduces stream output
latency by up to 85% while providing 95% accuracy guarantees.

iv

Acknowledgements

I would like to thank my supervisor Dr. Khuzaima for his direct guidance in both an
academic and professional capacity. His distinct diligence, rigorous commitment, and ex-
tensive experience have improved my research, writing, and analytical skills. Thank you
to Dr. Tamer Özsu and Dr. Samer Al-Kiswany for reading my thesis and providing helpful
feedback.

I wish to express my gratitude and appreciation to my friends who supported me
through my capricious experiences. I owe many thanks to my brother, my mother, and my
father for their unconditional love and support. Finally, for those who transcended fear,
defied boundaries, and galvanized change, your resilience has echoed a Thawra miles and
hearts apart.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Runtime Query Scheduling . 2

1.2 Query Sample Processing . 6

1.3 Thesis Contributions & Outline . 10

2 Background & Related Work 11

2.1 Window Processing Semantics . 11

2.2 Watermarks . 13

2.3 Query Scheduling . 15

2.4 Query Sample Processing . 17

3 Query Scheduling 19

3.1 Klink: Design and Algorithms . 19

3.1.1 Estimating SWM Ingestion . 21

3.1.2 Estimating Slack Time . 23

3.1.3 Handling Join Operators . 26

3.1.4 Klink’s Memory Management . 27

vi

3.2 Distributed Klink Design . 29

3.3 System Implementation . 31

3.4 Performance Evaluation . 33

3.4.1 Experimental Setup . 33

3.4.2 Results . 35

4 Query Sample Processing 43

4.1 Aion: Straggler-Free Sampling . 43

4.1.1 Monitoring the Workload . 46

4.1.2 Window and Sample Size Estimators 49

4.1.3 Sampling over Sub-streams . 52

4.2 Performance Evaluation . 53

4.2.1 Experimental Setup . 53

4.2.2 Results . 55

5 Conclusion 64

References 66

vii

List of Tables

4.1 Symbols used in Chapter. 4 . 44

viii

List of Figures

1.1 Example demonstrating Klink’s superior scheduling policy over the sub-
optimal First-Come-First-Serve (FCFS) policy that does not prioritize win-
dow deadlines. 4

1.2 Average output latency vs. SPE throughput (number of events processed
per second) . 5

1.3 Example illustrating the difference between generation and ingestion time
for each event. On-time events are highlighted in blue, while stragglers are
highlighted in orange. 7

1.4 Input completion rate for window operators whereby network delay for
events is modeled by different empirically verified distributions. 8

1.5 Relative accuracy obtained of sample processing window operators with and
without stragglers. 9

2.1 Example illustrating the concept of watermarks in SPEs. Events are con-
sumed in order starting from right to left and each event holds its generation
timestamp at the source. Events that are of the same colour as a watermark
are processed with the ingestion of that watermark. 12

2.2 Example reflecting the progress property of watermarks. 13

3.1 Example illustrating a window operator joining two input streams of SWMs
into an output stream of SWMs. 26

3.2 Example showing how Klink forwards information in a distributed environ-
ment. 30

3.3 Klink architecture and API within Flink 32

3.4 Mean latency and CDF for YSB workload 36

ix

3.5 Slowdown and Throughput for YSB Workload 37

3.6 Mean latency vs. Number of queries running LRB & NYT benchmarks for
different delay distributions . 38

3.7 Latency CDF for LRB and NYT workloads at 10, 000 events/s per 60 de-
ployed queries . 39

3.8 Distributed experiments running 80 YSB queries each emitting 10, 000 events/s 40

3.9 (a) Klink’s accuracy at estimating SWM ingestion time and (b) Klink’s
overhead while running at different confidence values of f 41

4.1 Example illustrating Aion components’ interaction over a logically divided
stream. 45

4.2 Mean latency vs. different environment distributions of network delay and
inter-event generation delay running YSB benchmark 56

4.3 Recorded CDF latency running YSB benchmark for delay distribution EG
with 5, 000 and 25, 000 number of input events generated per second. . . . 57

4.4 Error plot showing statistical significance obtained by AQ-K-Slack, Aion-,
and Aion running YSB benchmark for delay distribution EG with 25, 000
input events generated per second . 58

4.5 Mean latency vs. different environment distributions of network delay and
inter-event generation delay running NYT benchmark 59

4.6 Recorded CDF latency running NYT benchmark for delay distribution EG
with 5, 000 and 25, 000 number of input events generated per second. . . . 60

4.7 Error plot showing statistical significance obtained by AQ-K-Slack, Aion-,
and Aion running NYT benchmark for delay distribution EG with 25, 000
input events generated per second . 61

4.8 (a) Mean latency vs. different distributions of network delay and inter-event
generation delay running kMeans benchmark, and (b) error plot showing
statistical significance obtained running kMeans benchmark for delay distri-
bution EG with 25, 000 input events generated per second 62

4.9 Recorded CDF latency running kMeans benchmark for delay distribution
EG with 5, 000 and 25, 000 number of input events generated per second. . 63

x

Chapter 1

Introduction

Streaming systems are a popular choice for use by applications driven by the need to pro-
cess large volumes of data at high velocity [20]. Modern applications increasingly rely
on instantaneous responses to speed up decisions and actions [99]. Examples of such
application domains include real-time analytics, anomaly detection, and real-time object
recognition [104] that leverage streaming systems to deliver on their data processing re-
quirements [99, 78, 22, 58]. For instance, to significantly improve on driver safety, Glimpse
[28] needs to process road signs and traffic lights within very low latencies not exceed-
ing 33ms. Google’s MillWheel streaming system supports ads customers who require low
latency updates to customer-visible dashboards [7]. Other applications that rely on low-
latency streaming services include news reporting from large volumes of Twitter feeds to
be analyzed within seconds to detect latest news topics and events [60, 61]. The Google
Trends service (formerly Zeitgeist) pipeline ingests a continuous input of search queries and
detects anomalous queries within seconds [7]. Existing stream processing engines (SPEs)
such as Apache’s Flink [18] and Spark [102] are designed to provide sub-second processing
latencies to respond instantaneously to demands of such applications [97, 99].

SPEs provide event processing semantics where streaming queries are defined by mul-
tiple processing units called operators deployed over one or multiple nodes [44, 92]. Appli-
cations interested in monitoring events such as in anomaly detection typically use window
operators based on the event’s timestamp generated at the source, called event-time. How-
ever, the order of events received by event-time windows does not necessarily mirror the
order of events generated at the source, as these may arrive at the window out-of-order
due to network latencies or parallel execution of prior operators. Events disorder is fun-
damentally challenging for SPEs because they make window input completeness hard to
guarantee. Window operators cannot ensure that all the relevant events were collected as

1

events can be arbitrarily delayed up to an unspecified amount of time, while not account-
ing for these events can lead to incorrect output. To resolve this problem, SPEs typically
support out-of-order processing (OOP) architecture through leveraging watermarks.

Watermarks are timestamped events denoting that no events preceding their times-
tamp should be further expected. They essentially represent a contract between the user
and the SPE to ensure input completeness and output correctness. Watermarks also hold
another significance: the progress of the stream in event-time can be interpreted from their
frequency of propagation. Specifically, by continuously receiving watermarks, window op-
erators can reason about their progress in terms of input completion. The stream progress
property provides important insights into the current state of execution that can be used
to improve the general design and performance of SPEs. In this thesis, we demonstrate the
significant advantages of leveraging stream progress to solve two important SPE problems:
query scheduling, and query sample processing.

1.1 Runtime Query Scheduling

In SPEs, the problem of stream query scheduling takes on significant importance as the
number of active operators far outstrips the number of CPU threads that are available
to run. Since SPEs typically rely on the operating system (OS) on which they run to
schedule applications’ queries, the OS scheduler is agnostic of the characteristics of these
queries and their operator pipelines over which the streaming data is processed. That is,
the OS does not attempt to leverage query or operator characteristics to optimize query
execution so that query latency is minimized. For example, OS schedulers such as the
Linux scheduler implement standard policies like “fair scheduling” that do not consider
how to take advantage of a window operator’s semantics to minimize query latency.

Operator scheduling policies such as Highest Rate [88] aim to reduce query latency by
minimizing the mean propagation delay of events in the pipeline. That is, the idle time
spent by each event in the input queues of each operator is minimized. The main intuition
behind these policies is that minimizing the propagation delay of events will yield better
performance. However, for applications demanding low processing latencies [99], these
strategies do not perform well if queries contain complex operators such as window and
join [49]. Specifically, window operators block the stream from flowing until their input
is complete. Thus, minimizing the mean propagation delay of each event in the pipeline
does not necessarily translate to minimized output latency if window operators are not
expected to complete their input in the near interim.

2

Efficient operator scheduling for queries containing window operators, which are com-
monly and routinely used in streaming query pipelines, is a challenging problem to solve.
This is because:

(i) Identifying events relevant to window operators is difficult. Events can be arbitrarily
delayed for ingestion due to, e.g., network delays or parallel and distributed execu-
tions, while windows claim events based on the generation order of events at the
source. Consequently, the performance of the SPE is prone to suffer greatly.

(ii) SPEs are unaware of the time at which windows are due to be processed. For exam-
ple, a time-window of five seconds may need to wait for additional time stretching
to as far as thirty seconds to account for any arbitrary delays (e.g. network delays,
event processing delays). Hence, it is challenging to correctly identify and prioritize
queries that are due to be processed.

Through leveraging stream progress, we show that the best strategy to minimize output
latency is to prioritize the propagation of relevant events to window operators that are due
to be processed first and then propagate their output downstream. This minimizes the
blocking of window operators, which in turn minimizes the output latency of the stream,
resulting in faster stream progress.

To illustrate using an example with multiple query operators, consider Fig. 1.1 showing
two window operators W1 and W2 each with their queued events. W1 and W2
aggregate all events generated within a time range (window) of seven seconds and
six seconds, respectively. The queue size for W1 is 5 events and 4 events for W2.
Consider two scheduling algorithms deployed on a standarda processor core: First-
Come-First-Serve (FCFS) [88, 80], and Klink, the algorithm that this thesis presents,
that implements the aforementioned rationale. FCFS, the latency optimized policy that
is shown first, is used to process ingested events across W1 and W2. FCFS initially
consumes event 1 of W1 and then event 2 of W2 since they are the two events at the
head of the queue. Then, FCFS alternates between the two windows processing events
2 of W2, 3 of W1, and 3 of W2. The subsequent 2 events of W1 are processed next.
After processing W2 ’s event 6 that represents the final event in the window, output
is emitted at time 8 seconds, incurring a two second window latency as W1 ’s output
was emitted two seconds after the window’s deadline. FCFS incurs the same window
output latency for W1 as for W2. Thus, FCFS achieves an average output latency of
two seconds. Klink, the algorithm proposed in this thesis, is primarily derived from the
observation that prioritizing the completion of the window input significantly reduces

3

output latency. Specifically, Klink prioritizes events while taking into consideration
window deadlines so that the output latency is minimized. Initially, Klink processes
the first two events 1 and 2 of W2. Next, despite W2 ’s deadline being more imminent
than W1, the small difference in their deadlines combined with the longer queue of W1
leads Klink to schedule events 2 and 3 of W1. Then, Klink processes all of W2 ’s events
within the window’s deadline achieving zero window output latency. Finally, Klink
processes all remaining events of W1, achieving a latency of 2 seconds. Therefore,
Klink achieves an average window latency reduction of 50% over FCFS.

aA commodity, off-the-shelf, processor that de facto uses time slicing for multithreading [48].

1 2 3 4 5 6 7 8
time

FCFS
average latency = 2s 1 2 2 3 3 4 5

W2 latency =
8 - 6 = 2s

6

W1 latency =
9 - 7 = 2s

W1 latency =
9 - 7 = 2s

Klink
average latency = 1s

1 2 3 4 5 6 7 8

1 32 32 46

W2 latency =
6 - 6 =0s

5

time

1 2 3 6
W2

Window
6 secs

queue
head

42 3
W1

Window
7 secs

7

ingestion
time = 3

5

9

9

7

7

Figure 1.1: Example demonstrating Klink’s superior scheduling policy over the sub-optimal
First-Come-First-Serve (FCFS) policy that does not prioritize window deadlines.

This simple example shows that to be efficient, scheduling policies aimed at reduc-
ing output latency must account for input completion progress of the window operators.

4

Furthermore, for the many types of applications that are latency-conscious or require low-
latency performance (as described earlier in this chapter), latency reduction is an important
performance goal even when SPE throughput is not a consideration. To further demon-
strate the performance impact of this scheduling problem, we measured the output latency
while varying the number of input events per second for two different query workloads and
complexities, namely the Yahoo! Streaming Benchmark (YSB) [29] and the Linear Road
Benchmark (LRB) [10].

4 8 12 16 20
Throughput (x10 events processed/second)

2

4

6

8

10

La
te

nc
y

(s
)

YSB (Klink)
LRB (Klink)
YSB (Default)
LRB (Default)

Figure 1.2: Average output latency vs. SPE throughput (number of events processed per
second)

We deployed Flink on a machine to process these two workloads, using two different
schedulers: Flink’s Default (the OS scheduler) as well as our proposed scheduler that we
call Klink. Fig. 1.2 shows that, considering a desired throughput level (on the x-axis),
significant extra output latency of 50% for both YSB and LRB is incurred by Default
over Klink. This overhead is further exacerbated for SPEs processing higher number of
events as is typical in real deployments where network delay is also variable, imposing
the aforementioned challenges (i) and (ii). These significant performance gains achieved
by Klink demonstrate that schedulers can be designed to deliver significant reductions in

5

output latencies even at comparable throughput performance.

In this thesis, we present the design and implementation of our scheduler, called Klink,
that optimizes for stream progress to reduce the output latency for queries running win-
dow operators. Klink leverage stream progress information through utilizing watermarks
thereby solving challenges (i) and (ii). We utilize watermarks in our solution to develop a
high performance scheduler aware of the progress of window operators.

As introduced earlier, we also explore leveraging the stream progress property in query
sample processing.

1.2 Query Sample Processing

The problem of query processing is of significant importance as the substantial cost of
processing high volume of events violates the real-time requirement [92]. Sample processing
is a computing paradigm proposed to enforce this requirement by efficiently processing
queries via limiting the input size to a subset of events [82, 57]. Fundamentally, it achieves
efficiency by trading-off output accuracy for lower latency. This trade-off is viable for many
streaming applications as timely generated output with accuracy guarantees is often much
more useful than latent or delayed output with exact accuracy [53, 52, 44, 6, 13]. In this
context, bounding output accuracy is an essential factor that cannot be overstated. Thus,
sample processing strives to achieve minimal latency within output accuracy requirements.

Streaming queries popularly utilize sample processing to reduce the processing cost
of events. For queries exhibiting window operators, sample processing initially selects a
subset of incoming events such that processing them would satisfy the output accuracy
requirements. At the time of window completion, that is, after all the events relevant
to the window operator have been observed by the SPE, the sample is then processed
downstream to the output operator.

In query sample processing, the output is propagated downstream only after input
completion. SPEs can experience long wait times for input completion for a window due
to network delays [76, 84]. For instance, in the example illustrated in Fig.1.3, the SPE
waits for the arrival of events e3 and e5 even after the window’s deadline. Consequently,
stragglers delay input completion thereby increasing output latency. Consider Fig. 1.4 that
illustrates the impact of stragglers on output latency for a time-window of size 1.5s where
the network delay of events varies based on distributions that are modeled from real-world
traces1 [16, 84]. For a network delay that is Gamma distributed (light-tail), stragglers

1Network delay behavior can be modeled by the Exponential and the Gamma distributions.

6

Generated
Time

Ingestion
Time

Window
deadline

e1 e2 e3 e4 e5

e1 e2 e3e4 e5

Figure 1.3: Example illustrating the difference between generation and ingestion time for
each event. On-time events are highlighted in blue, while stragglers are highlighted in
orange.

impose a significant 25% additional wait-time to guarantee input completion. As for Ex-
ponentially distributed delays (heavy tail), the imposed latency is exacerbated by more
than 99%, effectively delaying the input completion way beyond the window’s deadline.
The impact of stragglers on output latency is significantly high so as to overshadow the
acquired benefits from sample processing. To the best of our knowledge, none of the exist-
ing sample processing techniques mitigate the impact of stragglers on the output latency
[36, 41, 53].

Mitigating the problem of stragglers on sample processing while striking a balance
between accuracy and latency is a challenging problem to solve. This is because:

(i) Straggler count and delay patterns vary based on an application’s environment. To
choose a sample that satisfies the specified accuracy guarantees requires construct-
ing reliable estimations of the straggler events. However, network delays, and in
particular the case of exponential delay distributions, adds high variability to any
estimation technique.

(ii) Choosing a sample that satisfies the accuracy guarantees is not a trivial task. The
sampled events need to be statistically representative of the original input that in-
cludes the stragglers. Furthermore, the size of the sample needs to be intelligently
chosen based on the functionality of the window operator.

(iii) Determining the minimum number of stragglers to include in the sample can have
a large impact on the output latency. As illustrated in Fig. 1.4, stragglers impose
a significant delay penalty on the output latency. Hence, the number of included
stragglers needs to be minimized.

7

1 1.5 2 2.5 3 3.5
Time (in s)

70

75

80

85

90

95

100
In

pu
t C

om
pl

et
io

n
(%

)
deadline 100%

90%

100%

Gamma(k=60, =4)
Exp(=60 * 0.4)

Figure 1.4: Input completion rate for window operators whereby network delay for events
is modeled by different empirically verified distributions.

In this thesis, we demonstrate that sample processing does not need to wait for in-
put completion to process its sampled input. Specifically, existing sample processing ap-
proaches do not need to add a slack delay to account for stragglers [52]. Instead, windows
can propagate their output downstream as soon as output accuracy requirements are sat-
isfied thereby circumventing the costly slack delay, and, consequently, reducing the output
latency significantly.

To illustrate the impact of stragglers on output results, consider Fig. 1.5 that shows
output accuracy results obtained running a sample processing algorithm in two settings:
with and without stragglers. The first setting takes stragglers into account thereby
waiting for input completion while the second circumvents stragglers by processing
the window’s input as soon the deadline is due and the accuracy requirements are
satisfied. In both settings, the algorithm ran with a target output accuracy of 95%

8

YSB NYT kMeans
Deployed Benchmark

50

60

70

80

90

100
Sa

m
pl

in
g

Ou
tp

ut
 A

cc
ur

ac
y

(%
)

With Stragglers
Without Stragglers

Figure 1.5: Relative accuracy obtained of sample processing window operators with and
without stragglers.

over two popular streaming benchmarks that include windowed operators of different
functionalities. The first popular benchmark is the Yahoo! Streaming Benchmark [29]
(YSB) and the second is the New York Taxi (NYT) benchmark [77]. The figure shows
that sampling with stragglers provides an insignificant improvement of less than 1%
compared to sampling without stragglers for both YSB and NYT benchmarks. We
also ran the kMeans benchmark as an example of a query with a windowed operator of
higher complexity. The accuracy difference between the two samples was only about
1% indicating that the two samples shared identical statistical significance. These
results demonstrate that not only do stragglers impose large output latency on input
completion, they contribute insignificantly towards achieving higher output accuracy.

This observation motivates the work in which we present the design and implemen-

9

tation of our sample processing algorithm called Aion2. Aion continuously monitors and
samples important patterns in the workload such as network and inter-event generation
delays to estimate the pattern of events and stragglers. Aion then utilizes these estima-
tions, in addition to the type of the window operator, to compute the minimum sample
size that achieves the accuracy guarantees. Aion also exploits straggler patterns by intel-
ligently processing the sample before input completion such that the impact of stragglers
is mitigated. As we demonstrate in our experiments, Aion delivers significant performance
gains to reduce latency by as much as 80%.

1.3 Thesis Contributions & Outline

To summarize, the contribution of this thesis is two-folds:

• We present Klink, a scheduler optimized for running multiple queries delivering up to
60% mean and tail output latency reduction over state-of-the-art techniques. Klink
represents a breakthrough over existing scheduling policies in that it intelligently
optimizes for minimizing the delay in generating output by processing the necessary
events to progress the stream into materializing its results. Klink’s general design
is leveraged through integrating it into Apache Flink [18], a popular state-of-the-art
SPE.

• We propose Aion, an algorithm that utilizes sampling to provide approximate an-
swers with low latency by controlling stream progress and minimizing the impact of
stragglers. Aion quickly processes the window to minimize output latency while still
achieving high accuracy guarantees. Similarly, we implement Aion in Apache Flink
and show using benchmark workloads that Aion reduces stream output latency by
up to 85% while providing 95% accuracy guarantees.

The rest of this thesis is organized as follows. Chapter 2 surveys related work and pro-
vides background on scheduling and sample processing. Chapter 3 presents Klink schedul-
ing policy and provides experimental results to verify its efficiency. Chapter 4 introduces
Aion design and its algorithmic details. In addition, Chapter 4 also presents experimental
results for Aion. Finally, Chapter 5 concludes the thesis and outlines future directions for
this work.

2Aion is the ancient Greek god of ages representing unbounded time.

10

Chapter 2

Background & Related Work

In this chapter, we describe window processing semantics and watermarks. We also discuss
past work on query scheduling algorithms and sample query processing techniques.

2.1 Window Processing Semantics

To process computation on a stream of data, SPEs provide semantics for grouping events
that exhibit common properties into structures called windows. Windows provide flexibility
and can host complex grouping selections [46]. Each window is characterized by a deadline
that identifies when the windowed operation is expected to output a new result based
on the current group of events collected in the window. As an example, the deadline of
a five-second event-time tumbling window starting from timestamp zero is the sequence
of multiples of five seconds, while a deadline for a five-event count-window elapses every
5th event collected by the window. After production of each new output, the window is
emptied to receive new events until the next deadline. Windows are important as query
operators such as join, aggregation, and selection are executed on a per window basis [56].

Applications interested in monitoring events such as in anomaly detection typically
use windows based on the event’s timestamp generated at the source, called event-time.
However, the order of events received by event-time windows does not necessarily mirror
the order of events generated at the source, as these may arrive at the window out-of-order
due to network latencies or parallel execution of prior operators. Out of order events occur
in SPEs for multiple reasons such as:

11

• Packets holding events generated by multiple transmissions from a remote origin can
propagate through different paths incurring different delays. Consequently, events
can be frequently ingested out-of-order relative to their generation order at the source.

• Windows that group or join several streams running in parallel or distributed execu-
tions on multiple machines can incur varying latencies associated with communication
and coordination within, and across, machines. This would give rise to out-of-order
ingestion of events.

Stragglers are challenging for SPEs because they make window input completeness
hard to guarantee. Window operators cannot ensure that all the relevant events were
collected as events can be arbitrarily delayed up to an unspecified amount of time, while
not accounting for these events can lead to incorrect output. For example, consider a
count-window that processes groups of five events at a time. Ideally, the window should
process every five events in the same order as they were generated at the source. However,
because of stragglers, count-windows need to wait and collect every five events with the
lowest event-time and then process them to guarantee equivalent ordering. Otherwise, the
windowed operator will produce incorrect output. Furthermore, in the example of Fig. 2.1,
the first watermark (3) acts as a progress indicator, hinting that about half of the input
for the window has been seen.

6 5 5 3 4 3 Window
6 seconds

124

materialize
window [3, 6]

materialize
window [0 3]

dropped
event

ts ts watermarkevent

straggler

Figure 2.1: Example illustrating the concept of watermarks in SPEs. Events are consumed
in order starting from right to left and each event holds its generation timestamp at the
source. Events that are of the same colour as a watermark are processed with the ingestion
of that watermark.

These challenges pushed SPEs designers to adopt techniques to enforce in-order pro-
cessing semantics, which impose large performance overheads [62] as in-order processing

12

perilously delays the execution of events until they are adequately re-ordered to guarantee
correctness.

Conversely, out-of-order processing (OOP) semantics allows window operators to be
unblocked without imposing any ordering constraints on the stream [62, 52]. The OOP
semantics can be implemented in multiple ways:

• Stragglers can be dropped after a given time threshold. Once the threshold is ex-
ceeded to guarantee input completeness, windows can be safely processed. However,
this approach burdens the user with the difficult task of requiring conservative esti-
mates about anticipated lateness, as significant extra output latency will be incurred
otherwise.

• Periodically generating watermarks [62] that are special events injected in the stream
to signify that no events earlier than their timestamp are expected anymore. There-
fore, windows can be safely processed once the SPE ingests a watermark timestamp
elapsing the window’s deadline. Watermarks are commonly generated by the appli-
cation, alleviating the uncertainty concern of receiving late events from the engine.

Most modern SPEs such as Flink, Spark and Storm support out-of-order processing by
using watermarks [7, 18, 8].

2.2 Watermarks

1243657 Window
3 secs

no more
events

before 1

process
 window

[3, 6]

no more
events

before 5

process
 window

[0, 3]

Event
Timestamp

Processing
Order

Figure 2.2: Example reflecting the progress property of watermarks.

Watermarks are timestamped events denoting that no events preceding their timestamp
should be further expected. They essentially represent a contract between the user and

13

the SPE to ensure input completeness and output correctness. Watermarks also hold
another significance: the progress of the stream in event-time can be interpreted from
their frequency of propagation. More specifically, by continuously receiving watermarks,
window operators can reason about their progress in terms of input completion.

Watermarks are injected into the stream either (i) at the source, or by (ii) a specific
operator that periodically emits watermarks [18, 7]. In both cases, applications decide
on their implementation logic for generating watermarks, but typically, they are injected
periodically. For example, a periodic watermark can be generated every five seconds holding
a timestamp of the current time minus five seconds. In such cases, each watermark can be
interpreted to mean that events can be delayed up to five seconds at most. The watermark
injection frequency generally is not tied to the input data rate and does not depend on the
pipeline size or on the characteristics of its operators (e.g. their window sizes).

To illustrate this with an example, consider Fig. 2.2 where a window operator spanning
three seconds starts operating at 0. The stream sequence contains both watermarks
(green dashed boxes) and events (blue boxes). The window operator initially receives
watermark 1, indicating that no events before 1 are marked to arrive and further
indicating window [0, 3] is due for processing next. The window then receives events
2 and 4, each of which is sorted into the appropriate window. Watermark 3 is then
processed indicating that it is safe to process the first window to generate its output.
The window [3, 6] with event 6 and watermarks 5 and 7 is processed similarly.

In the example of Fig. 2.2, note that different watermarks have different meanings for
the window operator. Watermarks 1 and 5 act as a progress indicator for the window,
hinting at stream progress. While watermarks 3 and 7 act as progress indicators, they also
signal input completion by the window’s deadline consequently triggering the operator to
compute the corresponding output.

Given a window, we define the first ingested watermark that signals input completion
to push the window to produce output as a sweeping watermark (SWM). In Fig. 2.2,
watermark 3 is the SWM that signals input completion for window [0, 3]. Since 5 arrives
after watermark 3, 5 is not an SWM for window [0, 3]. Watermark 7 is also an SWM
as it is the first to signal input completion for window [3, 6]. A significant advantage of
leveraging OOP and watermarks is that an SWM is inferred based on its arrival at the
window. For example, if due to network and pipeline delays watermark 3 was ingested
after watermark 5, then 5 is inferred as the SWM for window [0, 3] as it would be the
first to signal input completion. Therefore, applications do not need to be concerned with
knowing or identifying if any of their generated watermarks are SWMs.

14

SWMs are important for SPEs since processing them pushes window operators to emit
their contents. Two key invariants hold in processing SWMs: (i) propagating an SWM to
a window operator implies that all the relevant events have already been collected by the
window operator, and (ii) propagating an SWM to the output operator guarantees that
all events produced by the relevant window were flushed as output. The first invariant
guarantees that all relevant events that precede an SWM have already been ingested and
that SPEs do not need to re-order events to deal with input incompleteness. The second
invariant is enforced by the order of execution of window operators. More specifically,
window operators emit their output events followed by SWMs, which are received by the
output operator after the window output events. Therefore, all the relevant events are
guaranteed to have been processed beforehand. The aforementioned invariants give rise to
the two following important observations:

• Minimizing the end-to-end propagation delay of SWMs implies that the output la-
tency is minimized since the SWM delay is a function of the delay of completing
the window’s input and the propagation delay of the emitted events to the output
operator.

• The propagation delay of SWMs is a factor of the number of events in the stream at
the time of ingestion. More specifically, the cost of propagating an SWM to a window
operator is a function of the number of queued events in the stream. Therefore, it is
necessary to process all the events stowed forth in the stream before the ingestion of
the SWM to achieve minimized propagation delay.

Thus, it is essential to minimize the propagation delay of SWMs to the output operator to
minimize output latency. The aforementioned observations are at the basis of our runtime
scheduler design.

2.3 Query Scheduling

Scheduling policies have been proposed in the context of stream processing. The First-
Come-First-Serve (FCFS) policy initially proposed for databases and web servers [15] op-
timizes for the maximum output latency for each request. An adaptation for streaming
engines was studied in [88, 87]. Shortest-Remaining-Processing-Time (SRPT) [75] was
initially also proposed for web servers to minimize mean output latency but was adapted
to streaming engines by estimating the processing time as the cost of processing a single

15

event times queue size of each operator. This policy laid the foundation for later stream-
ing specific scheduling policies such as the Rate-Based (RB) policy [96] which was later
generalized to Highest Rate (HR) to function across multiple queries in [88]. HR deliv-
ered better performance than Aurora’s scheduler [2] that was expected to function across
multiple queries using Round-Robin for inter-query scheduling.

All of these algorithms optimize for output latency by exploiting particular properties
of operators. However, in contrast to Klink, they are not optimized for queries employ-
ing window operators and thus are effectively agnostic of the semantics of queries and
the progress of the stream. As we will demonstrate in Chapter 3, Klink delivers better
performance than the aforementioned policies as

With recent interest in both single node (scale-up) and multi-node (scale-out) streaming
systems, the importance of effective scale-up [56, 71, 103] through prudent scheduling
cannot be overstated; being able to deliver high performance per node adds to the total
compute capacity of any system. StreamBox’s scheduler proposed in [71] is one example
in this vein. StreamBox leverages watermarks to process windows as fast as possible.
However, as we demonstrated in the experimentation section, StreamBox does not prioritize
streams efficiently since it is agnostic of the load size, is performance-sensitive to watermark
frequencies, and does not scale well when a back-pressure mechanism is implemented.

Haren [80] is a portable scheduling framework that distills an abstract API sufficiently
flexible to implement multiple scheduling policies. Haren is orthogonal to our work where
scheduling policies can be implemented into Haren. However, Haren has not been shown to
run on an industrial-strength SPE like Flink. Moreover, the design requirements of Klink,
i.e., distributed, and watermark-aware are not supported by Haren.

Real-Time scheduling policies were also studied in the context of stream processing
[86, 14]. Such schedulers rely on understanding the performance of the SPE in the con-
text of meeting execution deadlines [64, 55, 21] and then apply algorithms from real-time
scheduling theory. However, this class of algorithms suffers from the same issues as the
algorithms that are not concerned with real-time scheduling. That is, they do not consider
windowed operators and thus impose very high output latencies. Since scheduling opera-
tors in data streams requires orchestrating the use of computational resources across the
deployed operators in an SPE, one problem is how to deploy the operators across multiple
nodes running the SPE [9, 85, 67]. As this focuses on how to effectively distribute the
operators across nodes, Klink’s design is not targeted to address this orthogonal problem
though Klink can function in any deployment.

16

2.4 Query Sample Processing

Approximate Query Processing (AQP) techniques are generally applied on windowed op-
erators in streaming queries to offer a trade-off on accuracy to optimize for specific perfor-
mance goals. There exist multiple ways in which AQP achieves this balance.

AQP has been applied in multiple systems. For relational databases, AQP has been
studied extensively [63, 5, 27] with techniques based on sampling [6], sketches [42], and
aggregations [47]. These techniques try to expedite query processing latency and memory
utilization by approximating the results of the query. Such AQP techniques inherently
assume that (i) databases have their data stored on disk and can, therefore, sample offline
[25], and (ii) read-heavy databases can be exploited to build and store high-quality samples
[63]. However, these assumptions do not apply to SPEs as events are ingested continuously,
are not stored, and are then processed on the fly. As such, SPEs require different sampling
techniques than the ones designed for databases.

AQP has also been studied in the context of SPEs [53, 36]. Sketches has been applied in
the context of reducing memory footprint of stateful operators [24, 35, 89, 40]. Sketches uti-
lize various data structures to store statistically significant information about the original
input. However, sketches are designed to reduce memory utilization by running expensive
algorithms to summarize the input. As such, these techniques that are geared towards
reducing memory utilization cannot be efficiently adopted to reducing output latency at
the expense of accuracy.

Another form of AQP is sample processing (i.e. processing a sample of the input).
Earlier research work [53] introduced and formalized a framework to implement sample
processing algorithms on the Gigascope SPE. Examples of common sample processing
approaches discussed in [53] include [52, 94, 83, 93, 74] that optimize for different goals in
the system. For instance, [12] gracefully degrades performance by dropping events when
the system is overloaded. The proposed algorithm computes the minimum shedding rate
such that system resources are not over-utilized while still maintaining adequate query
accuracy. Load-Aware Shedding (LAS) presented by [83] is a proactive load shedding
mechanism that aims to limit queue latencies. LAS utilizes learning techniques thereby
advancing a model-free algorithm to assess the cost of processing events. Another approach
is presented in [52] whereby the sample size is estimated for aggregations with dynamic
slack time for window processing. However, these methods generally wait for the arrival of
watermarks before processing the sample. As previously illustrated, methods that include
stragglers for their input are prone to suffer from extremely high output latency.

Sample processing has also been studied in different contexts. IncApprox [57] is an

17

approximation method that studies the problem of having the deployed SPE ingest events
from multiple sources, each of which is emitting at a different rate. IncApprox presents
a solution that represents the data received from each source as strata through stratified
sampling. The weight of each stream is then computed based on the arrival rate. Reservoir
sampling is then applied to each source which is used for approximation. However, IncAp-
prox is designed for systems relying on emitting mini-batches as in Apache Spark [102].
StreamApprox [82], an evolution of IncApprox, relaxes this assumption by presenting a
system designed for both mini-batches and event-at-a-time processing paradigms. While
Aion does not discriminate between stream sources, the algorithm can be easily extended
by stratifying each stream source as described in StreamApprox and IncApprox. These
papers assume that the user is knowledgeable enough to provide a static sample size that
minimizes the error rate, raising practicality concerns. Additionally, all of these algorithms
suffer from the stragglers problem.

There exists a multitude of techniques proposed to include stragglers by imposing ex-
tra latency to ensure input completion [36, 41, 91, 76, 101, 52, 84]. Heartbeats [91] are
watermark-like events injected in the stream to signify end of sub-streams. This algorithm
assumes static maximum latency delay and consequently is prone to suffer from high la-
tency. Similar work [76] proposed a watermark generation algorithm that processes an
event only if has been idle in the stream for k seconds where k is set to the maximum
observed network delay. More recently, [84] proposed an algorithm with probability guar-
antees on slacking for stragglers by monitoring both network and inter-event generation
delays. However, these algorithms present a solution against the uncertainty of the num-
ber of stragglers by imposing slack delay. In contrast, Aion’s novelty lies in its observation
that stragglers are unproductive to sample processing, thereby circumventing them and
minimizing slack delay to deliver minimized output latency.

18

Chapter 3

Query Scheduling

Through the design and development of Klink, we leverage ingested watermarks to ro-
bustly infer stream progress based on window deadlines and network delay, and to assign
and schedule query pipeline execution that reflects stream progress. Klink aims to unblock
window operators and to rapidly propagate events to output operators while performing
judicious memory management. In this chapter, we introduce the design of Klink (Sec-
tions. 3.1 and 3.2). We also present Klink integration into the popular open source SPE
Apache Flink (Section. 3.3) and demonstrate that Klink delivers hefty performance gains
on benchmark workloads, reducing mean and tail query latencies by up to 60% over existing
scheduling policies (Section. 3.4).

3.1 Klink: Design and Algorithms

We now present the design of Klink including its algorithmic details. Fundamentally,
Klink is composed of (i) a stream analysis algorithm that computes a priority for each
stream such that SWM propagation delay is minimized (Sections 3.1.1 and 3.1.2), (ii) a
memory management algorithm that ensures Klink has sufficient memory resources to run
its scheduling policy (Section 3.1.4), and (iii) a distributed design that enables the priority
to be computed at each node and then propagated in a fully decentralized manner, enabling
scaling with the SPE infrastructure (Section 3.2).

Initially, and before receiving any events as shown in Algorithm 1, Klink examines the
semantics of the set of deployed queries (including parallelization of operators) denoted
by Q. Query-level scheduling is performed to reduce the complexity of the scheduling

19

Algorithm 1 Klink’s inter-query scheduler main loop

1: procedure KlinkLoop(Q, r)
2: while true do
3: I ← acquireRuntimeData(Q)
4: q ← klinkEvaluator(Q, I)
5: executeQuery(q)
6: sleep(r)
7: if memory utilization ≥ b then
8: runMemoryManagement(Q)
9: end if
10: end while
11: end procedure

algorithm, and to yield a schedule of subsequent operators capable of processing the flow
of events end-to-end.

Calculating the priority of each query requires the scheduler to maintain runtime char-
acteristics that include the network delay, queue size, cost, and selectivity. The window(s)
with the latest deadline in query q at time t that will unblock the stream are selected
by the algorithm to yield output events. Based on the deadline of each query q, Klink
logically divides the stream into epochs whereby each epoch is demarcated by an SWM.
Specifically, the (n + 1)th epoch starts after the ingestion of the nth SWM. For example,
Fig. 2.2 contains two epochs: The first defined between time 0 and SWM 3, and the second
between SWMs 3 and 7. Note that the second epoch overlapped with two windows, i.e.,
tumbling window [3, 6], and the next [6, 9]. Similarly for a sliding window of size 5 seconds
and slide 1 second, the first epoch is defined between time 0 and SWM 5, the second and
the third epochs between SWMs 5 and 7. Thus, with each converging deadline, Klink
progresses the query to the next epoch. Klink also groups the collected information on a
per-epoch basis to enrich future estimations with temporal context.

The collected information is continuously updated to infer the expected ingestion time
of the next SWM and the expected emission time of the window operator. For query q at
epoch n, we denote by Dq

n the set of cumulative network delays incurred by each event.
The network delay can be estimated simply by the ingestion timestamp of the event minus
its generation timestamp. In addition, Klink also maintains the total number of events
queued, and the cost of executing them end-to-end, represented by costq(t). As in [64], cost
is estimated by considering both selectivity (ratio of output events to an input event per
operator) and operator processing time (time taken to process a single event per operator).

20

As discussed in [64], the cost of processing an event can be accurately represented by using
the standard measures of per operator mean processing latency, queueing delays, and
communication latencies between operators. These factors for estimation of the processing
cost are encapsulated into the tuple I (line 3 in Algorithm 1). The priority of each query
is then computed based on the retrieved information (line 4). The query with the highest
priority is returned and is then scheduled for execution (line 5).

To keep the overhead to a minimum, Klink is inactive while the operators are executing,
and recommences only when the operators finish their planned execution. Then, Klink
re-evaluates the priorities and selects new queries to execute (lines 2-10). Every such
evaluation round, or cycle, runs for r milliseconds. In general, a small value of r is expected
to incur higher overhead while a large value implicates missing the deadlines for idle queries.
As we demonstrate in Section 3.4, Klink’s scheduling overhead is meager.

Klink’s priority evaluator (line 4) aims to minimize the propagation delay of SWMs.
This is achieved by selecting queries with lowest slack, defined by the idle time a query can
mask without processing its queued events to avoid missing deadlines. For an epoch n, we
express the slack time for query q at time t by:

slq(t) = (wq
n+1 − t)− costq(t) (3.1)

where wq
n+1 represents the ingestion time of the (n + 1)th SWM. Thus, as the stream

progresses towards ingestion time, the query’s slack value attenuates. The query with least
slack is then selected for execution.

To estimate the slack time (Eq. 3.1), it is essential to determine wq
n+1. We describe

Klink’s robust estimation technique next.

3.1.1 Estimating SWM Ingestion

Klink estimates the ingestion of SWM for query q at epoch n by two important factors: the
expected network delay denoted by the random variable dqn, and the periodicity of SWMs
pq. The estimated ingestion time for the (n+ 1)th SWM is represented by:

E[wq
n+1] = E[dqn + pq] (3.2)

To proactively compute E[dqn] before the collection of all events pertaining to the nth

epoch, Klink relies on historical data captured during the previous epochs to profile the
newest epoch. This allows Klink to estimate the arrival times of the SWM at the beginning

21

of each new epoch. The accuracy of the estimation then increases with the progression
of the stream as long as the query is continuously ingesting events and is monitoring the
network delay. Once the epoch is finalized, dqn as a random variable is then represented
by only events constituting the nth epoch. We compile this definition into the following
equation:

µq
n =

{︄
1

|Dq
n|
×

∑︁
d∈Dq

n
d if t ≥ wq

n,
1

n−1
×

∑︁n−1
i=0 µq

i otherwise.
(3.3)

We define χq
n as the square of each distribution in the following equation:

χq
n =

{︄
1

|Dq
n|
×
∑︁

d∈Dq
n
d2 if t ≥ wq

n,
1

n−1
×
∑︁n−1

i=0 χq
i otherwise.

(3.4)

For the case of t < wq
n, we observe that the random variable dqn is a function of the

expected delay over the previous epochs. Hence, by the Central Limit Theorem, dqn is
normally distributed, and in turn, wq

n+1 is also normally distributed. To better understand
this distribution, we calculate the mean (Eq. 3.5) and variance (Eq. 3.6) of wq

n+1:

E[wq
n+1] = E[dqn + pq]

=
1

n− 1

n−1∑︂
i=0

E[dqi] + E[pq] = µq
n + pq

(3.5)

V ar[wq
n+1] = E[(wq

n+1)
2]− E[wq

n+1]
2

=
1

n− 1
[χq

n +
1

n− 1

n−1∑︂
0≤i ̸=j

µq
iµ

q
j]− (µq

n)
2 (3.6)

Thus, wq
n+1 is normally distributed with mean µq

n + pq and variance denoted by Eq. 3.6.
By exploiting this distribution, we can estimate a time-interval to conclude the range of
SWM’s ingestion timestamp. This is discussed further in the next section (Sec 3.1.2).

Algorithm 2 presents an efficient algorithm to compute the mean and variance of each
epoch. The procedure ProcessEvent is triggered for each event processed. First, the delay
expressed by event e is added to Dq

n (line 2). Then, the arrays that maintain information
over epoch n are updated to include the new entry (line 3-4). Note here that µq

n and χq
n hold

temporary values as the stream is still progressing. The second procedure, NextEpoch,
is triggered at the arrival of each SWM (line 7). To reduce memory consumption, the
presented algorithm is optimized to express Dq

n over only the last m epochs (line 8). Then,

22

Algorithm 2 Klink’s scheduler epoch-control

1: procedure ProcessEvent(q, e)
2: Dq

n ← Dq
n ∪ {e}

3: µq
n = µq

n + d
4: χq

n = χq
n + d2

5: end procedure
6:

7: procedure NextEpoch(q)
8: Dq = Dq \ Dq

n−m

9: µq
n = µq

n / |Dq
n|

10: χq
n = χq

n / |Dq
n|

11: n = n + 1
12: end procedure
13:

14: procedure ProcessSWM(q, e)
15: ProcessEvent(q, e)
16: NextEpoch(q)
17: end procedure

µq
n and χq

n are computed and finalized (line 9-10). Finally, the last procedure ProcessSWM
signals the arrival of a new event with delay e (line 15), and then q is progressed to the
next epoch. Studying the distribution of wq

n+1 allows us to estimate the arrival of the
SWM with high confidence. We present in the next section an algorithm that exploits this
characteristic to compute the slack time slq for query q.

3.1.2 Estimating Slack Time

To compute the slack time of each query, Klink initially computes the likelihood of SWM
ingestion for each possible time-range that spans the execution duration. That is, a sliding
window of size r is passed through the time-range at which the SWM can be ingested.
Then, for every window spanning r milliseconds, the likelihood of SWM ingestion at that
time is computed. The slack value is then computed based on the likelihood of each range.
We discuss the details of Algorithm 3 in the rest of this section.

The algorithm starts first by sliding the window of size r over a time-range at which the
SWM is expected to be ingested. However, since this range may span a lengthy duration,
we optimize the algorithm’s performance by limiting the range to a provided confidence

23

value f . This is represented by the following equation:

P (tqn,min ≤ wq
n+1 ≤ tqn,max) = f (3.7)

where tqn,min and tqn,max encloses a time-range where the probability of wq
n falling in this

range is f . Note here that selecting a small interval would yield less accurate slack esti-
mations while selecting a large interval would lead to performance inefficiencies. Thus, an
f value needs to be selected (discussed further in Sec 3.4).

After delimiting the search space, Klink slides a window of size r over the time-range
computed by (Eq. 3.7). Then, for each window slide, the slack value is computed as:

slq(t) =

tqn,max∑︂
x=tqn,min

P (x ≤ wq
n+1 ≤ x+ r|t)

×((x+ r − t)− costq(t))

(3.8)

where x is incremented by r milliseconds.

Eq. (3.8) illustrates that the slack time for query q is calculated by computing the
likelihood of ingesting the SWM in each time-range, then calculating the slack value for
that ingestion time-range. The conditional probability (in Eq. 3.8) can be computed as:

P (x ≤ wq
n+1 ≤ x+ r|t) =

{︄
P (x≤wq

n+1≤x+r)

P (wq
n+1≥t)

if x ≤ t,

0 otherwise.
(3.9)

Since wq
n+1 is normally distributed, the probabilities can be approximated by the Guas-

sian Q-function as in Eq. 3.9:

P (x ≤ wq
n+1 ≤ x+ r)

= Q(
E[wq

n+1]− (x+ r)

V ar(wq
n+1)

)−Q(
E[wq

n+1]− x

V ar(wq
n+1)

)
(3.10)

We detail the aforementioned slack time estimation in Algorithm. 3. Initially, the
procedure KlinkEvaluator (line 19) is invoked by Algorithm. 1 (line 4) where the set of
queries and collected information are passed as parameters. The algorithm then unpacks
the collected runtime information (line 20). The set contains important information per
query q: upcoming window deadline, last watermark processed, experienced network delays
Dq, and the data collected over previous m epochs µq

n and χq
n. The set also contains

24

Algorithm 3 Klink slack computation

1: procedure ComputeConfInterval(q)
2: µq

n = 1
m

∑︁n−1
i=n−m µq

i ; χ
q
n = 1

m

∑︁n−1
i=n−m χq

i

3: E[wq
n+1] = µq

n + pq; σ[wq
n+1] =

√︁
(Eq. 3.6)

4: /* Compute ≥ 95% interval */
5: tqn,min = E[wq

n+1]− 2σ[wq
n+1]

6: tqn,max = E[wq
n+1] + 2σ[wq

n+1]
7: return tqn,min,t

q
n,max

8: end procedure
9: procedure ComputeExpectedSlack(q, t) ▷ Eq. (3.8)
10: tqn,min, t

q
n,max = ComputeConfInterval(q)

11: slq = 0; x = max(t, tqn,min)
12: for x ≤ tqn,max do

13: pr =
P (x≤wq

n+1≤x+r)

P (wq
n+1>t)

14: slq = slq + pr × [(x+ r − t)− costq(t)]
15: x = x + r
16: end for
17: return slq

18: end procedure
19: procedure KlinkEvaluator(Q, I)
20: unpack(I); min sl = 0; min q = null
21: for each query q do
22: slq = ComputeExpectedSlack(q, t)
23: if slq ≤ min sl then
24: min sl = slq; min q = q
25: end if
26: end for
27: return min q
28: end procedure

25

Join
1 second

1

2

3

14
123

time2345
time

2345

Figure 3.1: Example illustrating a window operator joining two input streams of SWMs
into an output stream of SWMs.

information per operator including: mean selectivity, mean processing cost, current queue
size, and current memory utilization. The procedure then loops over all deployed queries
to compute the slack for each (line 24). The query with the minimum slack time is then
selected and returned for execution (line 24 and line 27). To compute the estimated slack,
first the confidence value is calculated (line 1). The confidence value in this function is
calculated by estimating the mean, and the standard deviation for SWM ingestion (line
2). For high accuracy, this pseudo-code runs for a default f = 95% confidence value. After
computing tqn,min and tqn,max, the slack is then computed as in Eq. 3.8 (lines 12-16). At
first, the algorithm divides the time-range into smaller ranges whereby each small range
probability is calculated (line 13). Then, slq is updated (line 14), and the smaller-range is
then translated by r milliseconds. Finally, the slack value is returned (line 17).

3.1.3 Handling Join Operators

Klink is designed to rapidly unblock window operators by prioritizing the input streams
based on the anticipated arrival of SWMs. For join operators that perform windowed
joins over multiple input streams, the join operator is unblocked once all input streams
propagate an SWM elapsing the window deadline. This is done to ensure correctness – by
guaranteeing that the relevant elements were propagated through all input streams – and is
typically achieved by (i) maintaining the last watermark propagated by each stream, then
(ii) computing the minimum watermark timestamp, and (iii) comparing it to the window
deadline to evaluate if it unblocks the operator. In this section, we discuss a mechanism
implemented by Klink to efficiently handle join operators.

To illustrate joins, consider the Fig. 3.1 example of a 1-second window operator joining
two input streams into one output stream. At time t = 2, two SWMs of equivalent

26

timestamp of 1 were ingested effectively unblocking the operator and pushing the SWM
to the output stream. Note here that the value of the SWM in the output stream
implies that no event before 1 is further expected by the two input streams. At time
t = 3, an SWM of timestamp 2 was ingested. However, the window of ddl = 2 was not
unblocked until the ingestion of SWM 3 at the top stream. Although SWM 3 unblocked
the window of ddl = 2, it did not unblock the window of ddl = 3 since no SWMs were
propagated by the bottom stream. The window of ddl = 3 is then unblocked at the
ingestion of SWM 4 from the bottom stream.

Although watermarks propagating through each input stream can be perceived as
SWMs in the context of window deadlines, they do not necessarily unblock the window
operator. This is problematic as an input stream can be scheduled for execution yet the
deadline can be extended well beyond the anticipated time of the SWM in the other input
streams. Consequently, computations are hindered, translating to delayed SWM propaga-
tion in other queries. As such, it is important to maintain accurate prioritization of each
input stream and account for the different rates of watermarks’ propagation.

Klink solves this problem by computing multiple different slack values, one for each
input stream that has different SWM period rate and network delay. The slack of the
query is then calculated as the minimum of each stream. Thus, the procedure call in
Algorithm 3 (line 27) returns the minimum slack for query q. This design ensures that
accurate prioritization is determined and maintained.

3.1.4 Klink’s Memory Management

While latency optimization is a prominent goal in stream processing applications, work-
loads can impose heavy memory constraints on SPEs from a resource utilization viewpoint.
For example, operators that store transient state while processing events require extra
memory that may not be available. Operator instances will likely contend on scarce mem-
ory resources, thereby blocking stream flow and increasing output latency. These effects
can degrade performance by increasing latency [11, 23, 38]. The common approach used
in many SPEs is to implement a backpressure mechanism that throttles the input rate
to ease memory utilization on the system. Unfortunately, this simple heuristic approach
negatively impacts output latency by slowing down the whole stream.

Klink introduces a new approach to address memory utilization stress that, differently
from existing backpressure mechanisms, prudently exploits information on how the running
application works. The fundamental idea is to prioritize the flow of events toward low

27

selectivity operators to reduce the number of events “in flight” in the application and thus
alleviate the overall memory usage. For example, a filter operator that has the likelihood
of filtering one every four observed events can reduce memory utilization by 25%. Window
operators that support partial computations (e.g. aggregations that can be computed
online, or online joins [62]) can reduce memory utilization before emitting their output,
and exhibit low selectivity when they ingest SWMs. Klink leverages these characteristics
through prioritizing the execution of queries that contain operators with large queue size,
have low selectivity, and support partial computations, i.e., the queries that provide the
largest potential reduction in memory utilization.

Initially, for each query q, Klink looks up operators having selectivity1 values lower than
1, such as filter and window operators. Then, Klink computes the number of queued events
that would be reduced by processing all events queued in ancestor operators downstream to
the kth operator. To express this mathematically, we denote by szqk the number of queued
events from the first non-source operator of q until the downstream operator k, and by Sq

i

the selectivity of the ith operator in query q. Then, the number of events processed can be
expressed by pqk = szq × (1−

∏︁k
i=1 S

q
i), where pqk refers to the number of processed events

obtained from scheduling pipeline q downstream to the kth operator.

The intuition behind this metric is to schedule the sequence of operators that would
provide the largest reduction in the number of events. However, since Klink runs queries
for r milliseconds before commencing the subsequent scheduling cycle (Alg. 1, line 6), Klink
computes the number of events that can be processed within r by factoring in the cost of
each operator. After identifying all pipelines that maximize the value pqk, Klink selects
the query with the least slack, thereby optimizing also for output latency. The selected
sequence of operators are then scheduled for execution.

Klink runs its memory management algorithm only when memory utilization reaches a
level at which Klink’s least slack policy experiences lessened effect. When a memory usage
threshold b is reached such that operators would start contending on memory (Alg. 1, lines
7-9), Klink activates its memory management algorithm. Klink guarantees that each cycle
of the algorithm runs for only a targeted period specified by a set memory availability
percentage or by a specified time interval. For example, the memory manager can run
until half of the consumed memory has been freed or after three seconds have elapsed.
We discuss sensitivity of these values in the evaluation section (Sec. 3.4). While reducing
memory utilization instead of slack may not always reduce output latency, it ensures that
Klink can continue to apply its least slack policy while attaining robust low mean and tail

1Selectivity value is retrieved from the SPE or can be computed through maintaining the ratio of output
events to an input event per operator.

28

output latencies, as demonstrated in Sec. 3.4.

3.2 Distributed Klink Design

SPEs leverage distributed computing to achieve greater scalability and meet performance
goals [79]. Distribution is typically attained at the granularity of operators where SPEs
disseminate them across the available resources. Each compute node would then have a
subset of the operators that, collectively, would execute the query exactly as they had been
deployed on a single node. Klink is designed to be decentralized by running autonomously
and limiting its scope to the deployed queries. Klink, however, maintains common priori-
tization targets shared across all nodes.

The goal of distributed deployment is to distribute query operators across nodes running
the SPE. Initially, applications deploy their logical queries to the SPE that accordingly
devises a physical plan that establishes one-to-one mappings between the operators and
the compute nodes [9]. Klink functions orthogonally to the deployment problem and is
designed to work with any physical plan.

Fundamentally, Klink’s primary goal is to minimize the propagation delay of SWMs
through minimizing the number of events queued in the stream before the arrival of SWM.
It does so by scheduling the sub-parts of the query that is localized on all nodes. However,
distribution imposes the challenge of not having all the necessary information to compute
the global priority of the query. To achieve this goal, Klink initially identifies operators
that constitute the logical query and maintains the deployment location of each operator
over all Klink instances. This is supported in the distributed design by line 9 of Algorithm
1. Klink forwards the necessary information to the corresponding nodes including the
network delay, its frequency, and the cost at each node. However, not all information is
needed by all the nodes. We illustrate this in the following example.

Consider Fig. 3.2 that shows a query partitioned over two different nodes (machines)
A and B. Node A contains the first two operators of the query while Node B contains
the last two operators. Once node B attempts to assess the priority of the localized
query subset, the results will not be optimal since the necessary information such as
network delay stats from the first two operators are unavailable. However, the two
nodes have sufficient information to assess the cost of executing the query starting
from O3 to the output operator. Hence, only the watermark related information needs
to be forwarded from node A. On the other hand, the Klink instance running on

29

Klink Framework
(Node A)

Klink Framework
(Node B)

data data data

deadline,
cost, size

network delay tuple

intra-
node

inter-
node

intra-
nodeSource

O1

data

Map
O2

Window
O3

Output
O4

Figure 3.2: Example showing how Klink forwards information in a distributed environment.

node A needs to gauge the true processing of the query by acknowledging the status of
queued events downstream. To achieve this, Klink ensures that all nodes that contain
subsequent operators (which in this case is only B) send their cost information to A
so that A can safely measure the priority value of the query.

To generalize Klink’s information forwarding, consider the following cases:

• Network delay forwarding: All nodes require estimated network delays value to es-
timate the priority of the sub-query. However, to reduce the scheduler overhead
and data transmission, we consider the following optimizations. If the application
query generates watermarks at the source, then they will be observed first by the
source operator. Hence, wq

n+1 is guaranteed to be localized on the node containing
the source operator, so information should be forwarded to all nodes that hold the
subsequent operators. If it is the case that the watermark is generated by an operator
in the pipeline, then the node that contains that operator forwards this information
to all nodes containing subsequent and previous operators. Otherwise, all watermark
timestamps are shared and the maximum value is selected.

• Cost forwarding: Nodes need to assess the cost of executing the information only
downstream. Hence, prior knowledge of earlier nodes in the query is not required.
As such, every node transmits the necessary information to the nodes containing any
of the downstream operators. The cost of the operators is then incorporated into the
cost function.

30

Information about network delay and cost forwarding is sent between nodes where any
one node receives local information from only one other node. Thus, this limits and reduces
dependencies – no node needs to rely on multiple nodes for information, avoiding both syn-
chronization with multiple nodes and global dependencies. Once information are forwarded
to nodes, each Klink instance computes its priorities and executes accordingly. The sched-
uler collects information from other Klink instances as part of line 9 in Algorithm. 1. We
discuss Klink’s implementation details in the following section.

3.3 System Implementation

Klink is implemented within the open-source SPE Apache Flink [18]. Flink relies on the OS
scheduler to resolve the operator scheduling problem. To provide support for developers
to implement custom scheduling policies, we added into Flink a framework to support the
implementation of other scheduling policies at the runtime level. This section describes
the integration of Klink into Flink and Klink’s generalization to other SPEs.

Flink is a distributed stream processing engine that is efficient, scalable, and fault-
tolerant. Klink is implemented in JAVA as a layered system where a logical separation
is exhibited between the different layers. The three main layers are named Deploy, Core
and API. The top layer, API, contains two segregated engines namely DataStream and
DataSet pertaining to stream and batch processing, respectively. At the Core layer, Flink
operates at the granularity of Tasks where each task is a standalone thread. Tasks are then
transformed to either operators or a chain of operators at the API layer. Flink provides no
infrastructural support to design or implement a runtime scheduling policy. In fact, Flink
solely relies on the OS scheduler to orchestrate the execution of Tasks. To implement the
Klink algorithm, we integrated a custom runtime scheduler into Flink.

Several SPE architectures that include runtime schedulers have been proposed [19, 80,
1]. In contrast to a thread-based execution model where each incoming event is allocated
a thread, Aurora [19] and Borealis [1] use a state-based execution model for its runtime
scheduler. Specifically, a single scheduler thread that tracks system state is deployed to
orchestrate the execution of threads. In this design, each operator instance is mapped to
a thread. The scheduler design adopted by these two systems showed that state-based
schedulers are better suited for SPEs than thread-based schedulers. Thus, we integrated a
state-based scheduler infrastructure into Flink to maximize efficiency.

Fig. 3.3 illustrates the architecture of the Klink framework. All created tasks have
to register with the RuntimeScheduler instance, which is a standalone thread initially

31

R
un
tim

e
D
at
aS

tre
am

Scheduling
Algorithm

start/pause

execution data
Stream
Operator

Runtime
Scheduler register

register

Task
Thread

Figure 3.3: Klink architecture and API within Flink

launched prior to the creation of any task. After analyzing the semantics of the deployed
queries,2 the RuntimeScheduler component invokes the Scheduling Algorithm component
that controls the execution of operators via the two methods start and pause. Stream
operators continuously provide the Scheduling Algorithm component with the necessary
execution data for prioritization purposes as described in Section 3.1.

Through implementing two additional components into Flink’s Core layer, we integrated
a state-based scheduling framework capable of running any scheduling policy. Specifically,
we implemented (i) a scheduler responsible for orchestrating operator execution and re-
trieving runtime information i.e., I (line 25, Algorithm. 3), and (ii) an independent policy
component that leverages the collected information to determine a scheduling execution
order. The first component is designed with four main API calls: register, collect, start,
and pause. Initially, each Task must invoke the register API call to inform the scheduler of
its existence. Then, the scheduler will continuously invoke the collect API call with each
operator to collect the necessary runtime information (Algorithm 1, line 9). The runtime
information then will be passed to the second implemented component, where the Klink
scheduling algorithm is deployed to determine the set of new Tasks to be executed (line
11). Finally, the runtime scheduler will pause the current Tasks running, and will start the
execution of those new Tasks (line 13).

Klink’s distributed design exchanges collected runtime information across nodes, as

2Per Section 3.1.

32

described in Section 3.2. We implement this functionality by running a remote procedure
call (RPC) service as a background thread on each node that serves to transfer data
between nodes. The RPC service is instantiated by the JobMaster (the master component
of Flink’s distributed architecture) to facilitate communication between different nodes.
The runtime scheduler provides to the JobMaster information to be sent.

Since modern SPEs share similar design architectures, the design of our runtime sched-
uler can be easily ported into those engines. For instance, Klink can be integrated into
Apache Storm [95] by implementing the four aforementioned system calls into Storm Bolts.
Specifically, after a topology has been submitted and a Storm Supervisor has been cre-
ated, a scheduler runtime instance can be instantiated that Bolts would register with. As
in Flink Metrics API, Klink could retrieve operators’ information through accessing stored
information on each Worker. Klink could also be implemented in distributed mode over
Storm through implementing the same RPC service over each Worker.

3.4 Performance Evaluation

In this section, we present the results of a series of experiments we conducted to demon-
strate the performance advantage that Klink possesses over the algorithms from prior
related work on single and multi-node environments, and then analyze its overhead.

3.4.1 Experimental Setup

Our experiments are run on a cluster of nodes each having an Intel Xeon processor with
24 cores (using hyper-threading) and 32 GB of memory. Each machine is running Java
OpenJDK implementation v1.8.0 191 on top of Ubuntu 16.04 LTS. Test are performed on
an implementation of Klink based on Apache Flink v1.8. One machine is dedicated to
workload generation. Input data is then transmitted to the SPE nodes via Kafka v2.2.1.

Benchmarks

We conduct our evaluation using three well-known streaming benchmarks: the Yahoo!
Streaming Benchmark (YSB) [29], Linear Road Benchmark (LRB) [10], and the New
York City Taxi (NYT) benchmark [51]. We implement these benchmarks on Apache Flink
and evaluate performance by running different scheduling policies in each experiment.

33

LRB simulates a highway toll system [10]. We use the streaming variation [50] of LRB
that has a complex pipeline structure that includes a mix of tumbling windows, sliding
windows, and join operators. The sliding window is of size five seconds with a slide of
three seconds. It also contains a join operator that joins three streams. The workload is
generated using the original driver data from [10]. We implement the accident detection
and toll calculation queries that utilize windows. To study performance when the pipeline
is stressed, we ran LRB with the deadline of the last window operators to be one third of
the earlier window deadlines so that the pressure on the query pipeline will be intensified
at SWM ingestion. NYT covers a large dataset of taxi trips in New York spanning six
years. The dataset is rich with information such as the number of passengers, distances,
and fares. This NYT aggregation query over real-world data is composed of a sequence of
stateless operators and a sliding window of size two seconds and a slide of one second.

Performance Metrics

We compare the algorithms using mean latency, tail latency, throughput, and slowdown.
Output latency reflects the time taken by the SPE to materialize results. To measure SPE
latency with minimal overhead, we inject into the stream events called latency markers that
are specially used to measure the propagation delay from the source to the output operators.
Latency markers are originally generated by the source operators, queued with the other
events, and are then processed by the stream operators. To reflect the actual output
latency incurred, we measure the propagation delay of SWM as indicative of the latency
at which an SPE is able to produce output events. Latency is measured by subtracting the
SWM timestamp at which it was received by the output operator from the timestamp of
its ingestion. In our experiments, we emit a latency marker from each source every 200 ms
as our tests showed that a lower frequency is an inadequate representation of the SPE’s
performance while a higher frequency imposes extra overhead without additional benefit.
We also measure throughput by the aggregate number of events processed per second by
each operator. Finally, slowdown [88] is a metric used to extract the overhead portion
from latency by dividing it by the ideal processing time. This metric is measured by the
propagation delay of SWMs divided by the aggregation of the execution cost of processing
a single event at each operator.

Scheduling Algorithms

In addition to the default Flink scheduler (Default), we compare against two other state-
of-the-art algorithms that we implemented into the runtime scheduler (Sec 3.3):

34

• Highest Rate (HR) [88] aims to minimize the average propagation delay of events
across multiple queries running in the system. HR assigns priority based on the
granularity of paths. The priority of each path is equal to the global output rate,
which is represented by the selectivity of the operator (number of output events per
a single input event) and the execution cost (duration of execution of a single input
event). This policy prioritizes paths with higher productivity.

• The StreamBox (SBox) algorithm [71] strives to minimize the output latency of
scale-up systems. The algorithm initially looks up the query with the closest window
deadline, then schedules the query for execution until a watermark is processed.
Hence, queries that are expected to emit their content are scheduled.

3.4.2 Results

To evaluate the performance of Klink, we extensively test its performance over five different
experiments. Each experiment lasts 20 minutes. Each data point on the graph is an average
over at least 10 independent runs (unless stated otherwise) with 95% confidence intervals
shown as error bars around the means. We also generate Zipf distributed network delays
with a distribution constant of 0.99 [84, 16]. Based on our empirical experimentation, we
set Klink’s size of epochs history m to 400 and the scheduling cycle duration r to 120 ms
for robust performance.

YSB Benchmark

The first experiment compares the performance of the default Flink scheduler, denoted
by Default, as well as the three scheduling algorithms (HR, SBox, Klink) on a single
node running the YSB benchmark with Uniformly distributed network delays. Each query
instance is deployed at a randomized time in the first 20 seconds of the experiment to
randomize the uniform distribution of the window deadlines. We measure the latency
cumulative distribution function (CDF) to study the tail latency differences obtained by
setting the number of events generated to 10, 000 per second per query, and the number of
deployed queries to 60. We also include results of Klink without our memory management
algorithm but with the back pressure mechanism being able to kick in, which we name
’Klink (w/o MM)’ and study its impact on tail latency in comparison to Klink (with
memory management), per (Sec 3.1.4).

35

1 20 40 60 80
Number of Queries

12
4
6
8

10
12
14

M
ea

n
La

te
nc

y
(s

) Default
HR
SBox
Klink-95
Klink-90

(a) Mean latency

40 50 60 70 80 909599
CDF (%)

4
8

12
16
20
24
28

La
te

nc
y

(s
)

Default
HR
SBox
Klink (w/o MM)
Klink

(b) Latency CDF

Figure 3.4: Mean latency and CDF for YSB workload

With increase in the number of deployed queries in Fig. 3.4a, the mean latency for Klink
is capped at 7.3s, halving the delay over Default to provide large performance improvements
of about 50% over Default and SBox, and 45% over HR. SBox and HR only marginally
increase their performance over Default by reaching an output latency of 12.8s and 13.5s
compared to Default’s 15s for 80 concurrent queries. Since none of these scheduling algo-
rithms factor in window deadlines, they do not exhibit much of a performance difference
with each other. Interestingly, Klink with 90% confidence value (Klink-90) achieves higher
performance than Klink with 95% confidence value (Klink-95). While Klink-90 and Klink-
95 achieve similar levels of estimation accuracy, the overhead of 90% is lower as discussed
later in Fig. 3.9a.

Fig. 3.4b compares the output latency CDF of Klink with the other scheduling algo-
rithms and, in particular, shows their tail latency performance. All scheduling algorithms
maintained consistent latency performance between the 40th and 90th percentiles with a
significant gap between Klink and the other algorithms. For the tail latency (90th – 99th),
Default’s performance degraded from 9s at the 90th percentile to 26 at the 99th percentile
indicating a heavy tail latency. Specifically, because Default does not prioritize queries
that have due window deadlines, it suffers from high latencies especially under high mem-
ory utilization. The two Klink algorithms presented achieved significantly better latency
performance across all percentiles. For instance, at the tail latency of 99th percentile, Klink
significantly reduced latency by 55% over Default. Interestingly, Klink equipped with the

36

1 20 40 60 80
Number of Queries

0
200
400
600
800

1000
1200

Sl
ow

do
wn

Default
HR
SBox
Klink-95
Klink-90

(a) Slowdown

1 20 40 60 80
Number of Queries

0.5

1

1.5

2

2.5

3
3.25

Th
ro

ug
hp

ut
 (x

10
 e

ve
nt

s/
s)

Default
HR
SBox
Klink (w/o MM)
Klink

(b) Throughput

Figure 3.5: Slowdown and Throughput for YSB Workload

memory management technique (Sec 3.1.4) reduced tail latency over its counterpart by
20%. This demonstrates that while it is challenging to deliver consistent performance
when SPEs are under memory stress, Klink’s memory management technique allows it to
deliver robust performance even under this challenging environment.

We measure the slowdown (Sec 3.4.1) incurred by each algorithm in Fig. 3.5a under
the same workload settings as for last YSB experiment. The results mirror the prior trend
in output latency and show that Klink delivers significantly better performance than the
other algorithms.

Fig. 3.5b shows throughput while varying the number of deployed YSB queries. Default,
HR, and SBox all achieve the same throughput of 2.5M events processed per second. Klink
(w/o MM) delivers 2.65M throughput increase over the other algorithms. Interestingly, the
non-Klink algorithms fail to scale their throughput performance past 40 deployed queries.
The performance of these algorithms and their scalability is capped by a lack of timely
processing of windowed queries together with inefficient memory utilization that queued
events induce. In all cases where the output latency escalates, this is because the offered
input load outstrips the SPE capacity of processing events, causing the latency to climb
more quickly (e.g., past 40 deployed queries in Fig. 3.4a). Klink with its memory manage-
ment algorithm (Section 3.1.4) demonstrates better scalability by achieving a throughput
of 3.25M events processed per second delivering a 25% throughput improvement over its
competitors. These results confirm that Klink’s sound memory management technique

37

allows it to attain scalable system performance.

LRB and NYT Benchmarks

1 20 40 60 80
Number of Queries

1
3
5
7
9

11
13
15

La
te

nc
y

(s
)

Default
HR
SBox
Klink-95
Klink-90

(a) LRB - Uniform

1 20 40 60 80
Number of Queries

3
5
7
9

11
13
15
17
19

La
te

nc
y

(s
)

Default
HR
SBox
Klink-95
Klink-90

(b) LRB - Zipf

1 20 40 60 80
Number of Queries

1
3
5
7
9

11
13
15

La
te

nc
y

(s
)

Default
HR
SBox
Klink-95
Klink-90

(c) NYT - Uniform

1 20 40 60 80
Number of Queries

1
3
5
7
9

11
13
15

La
te

nc
y

(s
)

Default
HR
SBox
Klink-95
Klink-90

(d) NYT - Zipf

Figure 3.6: Mean latency vs. Number of queries running LRB & NYT benchmarks for
different delay distributions

Our third experiment runs LRB and NYT with network delays under the Uniform and
Zipf distributions. Fig. 3.6 shows these results. For the Uniform network delay scenario,
Default Flink, HR, and SBox perform similarly whereby the latency almost reaches 15s for
all algorithms. Klink delivers large latency reductions of 45% over Default and 40% over
both LRB and NYT. As in YSB, Klink with 90% confidence value offers a 7% performance
advantage over Klink with 95% confidence value. Default and HR maintain the same per-
formance for Zipf distribution as in Uniform distribution. However, this is not the case for

38

40 50 60 70 80 90 9599
CDF (%)

4
8

12
16
20
24
28
32
36
40

La
te

nc
y

(s
)

Default
HR
SBox
Klink (w/o MM)
Klink

(a) LRB CDF

40 50 60 70 80 90 9599
CDF (%)

4

8

12

16

20

24

28

La
te

nc
y

(s
)

Default
HR
SBox
Klink (w/o MM)
Klink

(b) NYT CDF

Figure 3.7: Latency CDF for LRB and NYT workloads at 10, 000 events/s per 60 deployed
queries

SBox, which performs much worse than in the Uniform case. From our experiments, we
noticed that SBox is sensitive to the periodicity of watermarks and to network delay vari-
ation. Furthermore, SBox also suffers from a heavy penalty due to lack of a back-pressure
protection mechanism. Klink maintains similar performance advantage over Default for
both LRB and NYT. However, in contrast to the Uniform scenario, Klink with f = 95%
confidence value achieves a performance advantage of 5% over Klink with f = 90%. This
implies that running Klink with f = 90% is prone to lower accuracy rates than f = 95%
to the extent that the extra overhead imposed by f = 95% is masked. Hence, the Zipf
variability of network delay elicits higher accuracy. As in YSB (Fig. 3.4a), the latency
performance in Fig. 3.6 over all environment variables exacerbated past 40 queries due to
the SPE inability to scale its throughput.

Fig. 3.7 presents the latency CDF obtained for LRB and NYT. Default’s latency in
LRB increased by a significant 53% from 15 seconds at the 90th percentile to 32 seconds
at the 99th percentile. As for NYT, Default’s tail latency increased by 45% from 10 to 17
seconds. Similarly to YSB, these algorithms’ tail latency performance scales poorly due
to inefficient query scheduling under high memory utilization. The two Klink algorithms
achieve significantly better latency performance across all percentiles. Specifically, the tail
latency of Klink over Default for LRB and NYT experienced significant reductions of 60%
and 50%, respectively. Furthermore, Klink (w/o MM) presented a heavier tail latency
compared to its counterpart. This difference shows that tail latencies are affected when
the SPE is running under high memory pressure and that Klink is effective in mitigating

39

its impact on latency. Finally, these results demonstrate Klink’s robustness at achieving
better mean and tail latencies over other scheduling algorithms regardless of the workload.

Distributed Experiments

We evaluate the distributed performance of Klink by deploying it on up to 8 nodes (ma-
chines) and running YSB. We ran HR in standalone mode since HR’s design is not de-
centralized by default. SBox is unable to run without complete knowledge of the query
pipeline so we run it in standalone mode for single-node experiments since it cannot operate
in a distributed setting.

1 2 4 8
Number of Nodes

4

6

8

10

12

La
te

nc
y

(s
)

Default
HR
Klink (95)

Figure 3.8: Distributed experiments running 80 YSB queries each emitting 10, 000 events/s

Since streaming systems are designed at their core to take advantage of distributed data
processing, Klink embeds this design by continuously propagating relevant information
across the SPE nodes.

Fig. 3.8 shows the performance of the algorithms running 80 YSB queries (each emitting
10, 000 events/s) while varying the number of nodes (machines) from one to eight. In these
experiments, we utilize Flink’s built-in mechanism that considers the type of operators
and memory locality to minimize data mobility and parallelism levels to divide query
pipelines across the compute nodes. For latency, we see a continuous decrease for all
algorithms. Klink’s distributed design allows it to lower its latency in comparison to the
other scheduling algorithms with Klink maintaining a 40% performance improvement.

40

Uniform Zipf
Network Delay Distribution

60

70

80

90
95

100

SW
M

 In
ge

st
io

n
Es

tim
at

io
n

 A
cc

ur
ac

y
(%

)

LR
Klink-90
Klink-95

(a)

100 99 95 90 67
Confidence Value (%)

0

2

4

6

8

10

Ov
er

he
ad

 (a
s %

 o
f t

hr
ou

gh
pu

t)
(b)

Figure 3.9: (a) Klink’s accuracy at estimating SWM ingestion time and (b) Klink’s over-
head while running at different confidence values of f .

Sensitivity and Overhead

Our last experiment measures the sensitivity of the watermark ingestion estimator based
on the two widely occurring delay distributions of Uniform and Zipf. The purpose of this
test is to measure the robustness of Klink’s SWM ingestion estimation approach against
network variability. The accuracy rate is measured by the fraction of times an SWM is
ingested within Klink’s estimated time range (Sec 3.1.1). The experiment is conducted
with multiple values of f (Sec 3.1.2). We also provide a scheduler overhead analysis in
these tests.

Fig. 3.9a presents Klink’s accuracy at estimating SWM ingestion time. The figure shows
accuracy performance for two confidence values of f , 95, and 90, under the different network
delay distributionls. We also implemented gradient descent, a simple linear regression
technique (LR) to show the performance advantage Klink possesses. For both network
delays, Klink-95 provides marginally higher estimation accuracies than Klink-90, which is
significantly more accurate than LR. While Klink-95 and Klink-90 provide 98% and 95%
accuracy rates respectively, LR guarantees only 80% accuracy. The performance of LR
exacerbates under the Zipf distribution with accuracy reaching only 62%. In comparison,
Klink-95 and Klink-90 maintain higher SWM ingestion accuracy rate reaching 95% and
85%, respectively. The is expected as the Zipf distribution injects higher unpredictability

41

into the network delay.

Fig. 3.9b shows Klink’s runtime overhead incurred from (Algorithm. 1), statistics collec-
tion, SWM estimation (Algorithm. 3, memory management, and orchestration with other
operators. The overhead is measured as a percentage impact on throughput. That is, had
the SPE runtime been allocated to processing events instead of running the scheduling
algorithm, the figure presents the throughput loss that Klink would incur. While running
Klink achieves higher throughput (Fig. 3.5b), its overhead should also be minimal to better
utilize resources for processing events. Fig. 3.9b confirms Klink’s efficiency as the algorithm
incurs negligible overhead. The figure shows a marginal drop in overhead as the confidence
values decrease, but the overhead difference between the highest confidence value and the
lowest is meager. Klink’s scheduler overhead impacts throughput by a negligible 0.5%.
Since Klink’s performance is hardly affected when varying the confidence values, Klink
should be used with high confidence values.

Considering both Fig. 3.9a and Fig. 3.9b, an interesting percentile is the 90% confidence
value as it delivers a similar accuracy rate to that of 95% and 99% confidence values while
having much lower overhead. Klink’s overhead is independent of the delay distribution,
demonstrating robustness.

Klink’s memory management reduces memory utilization after reaching a particular
threshold. Our results reported that the scheduler algorithm is prone to suffer from over-
head if the threshold is high, and is likely to introduce significant latency if the threshold
is low. We empirically found that setting the threshold to 80% gave the best balance be-
tween both objectives. Similarly, to avoid extra latencies and to overcome deadlines, we
configured Klink’s memory management technique to run for the least slack time computed
across all queries.

42

Chapter 4

Query Sample Processing

In this chapter, we present Aion, an algorithm that utilizes sampling to provide approxi-
mate answers with low latency by minimizing the effect of stragglers. Aion quickly processes
the window to minimize output latency while still achieving high accuracy guarantees (Sec-
tion. 4.1). We implement Aion in Apache Flink and show using benchmark workloads that
Aion reduces stream output latency by up to 85% while providing 95% accuracy guarantees
(Section. 4.2).

4.1 Aion: Straggler-Free Sampling

We now present the design of Aion including its algorithmic details. Fundamentally, in
the context of windowed streams, Aion’s main objective is to collect a sample of minimal
size such that processing this sample produces an output that is within a specified error
threshold rthr of the exact output. We formally express the error by P (r ≤ rthr) ≥ 1− δ,
where r refers to the relative error discrepancy obtained by processing the original and
the sampled inputs, and 1 - δ represents the probability of obtaining an error less than
rthr. The sample needs to be carefully chosen such that its size is minimal so as to reduce
its processing cost. Importantly, the sample size and distribution of its values need to be
sufficiently representative of the original input to satisfy the accuracy requirements.

Traditional sample processing techniques complete sampling their input only after the
stream consumes a watermark. However, since watermarks signal input completion thereby
accounting for stragglers, a significant output latency can be imposed. For instance,
[76] presented an algorithm that mandates all events to slack for k-seconds before be-
ing processed, where k is continuously adjusted to the maximum observed network delay

43

value. Stragglers, however, contribute minimally in improving the accuracy of the sample
(Fig. 1.5).

To circumvent the effects of stragglers on output latency, Aion leverages control over
stream progress by automating the generation of watermarks. Watermarks divide a stream
into sub-streams, each of which is defined over a periodic time-range. After watermark
ingestion by the window operator, all events of prior timestamps consumed as part of sub-
streams can then be safely processed. Therefore, Aion generates watermarks frequently
to ensure incremental processing by window operators [62, 7]. Aion minimizes the im-
pact of stragglers on output latency by generating a watermark as soon as the sampling
requirements over each sub-stream are satisfied, even if all stragglers have not yet been
ingested.

Symbols Definitions
rthr User defined error margin
r True error margin
δ Probability of obtaining r below rthr
f Defined length for every sub-stream
nw Target Sample size over the windowed stream w
nw
i Number of events sampled over sub-stream i in stream w

dwi Collected network delays over the ith sub-stream in the windowed stream w
gwi Collected inter-event generation delays over the ith sub-stream in stream w
vwi Collected event values over the ith sub-stream in stream w
Dw

i Random variable defined over the distribution of dwi
Gw

i Random variable defined over the distribution of gwi
V w
i Random variable defined over the distribution of vwi
m History size considered by the random distributions Dw

i , G
w
i , and V w

i

Nw, Nw
i Number of events received in stream w, and sub-stream i in stream w, respectively

nw
i Total number of events sampled over sub-stream i in stream w

swi Sampled events over sub-stream i in stream w
Nw

i,t Number of events observed in sub-stream i in stream w at time t

θwi Sample rate defined by Aion over sub-stream i in stream w
ddlwi deadline for the ith sub-stream in stream w

Table 4.1: Symbols used in Chapter. 4

Aion’s design inherently supports incremental processing by sampling from each sub-
stream at a customized rate. This strategy ensures more accurate estimations (for network
and inter-event generation delays) since the workload data distribution has a lower like-
lihood of changing within each sub-stream. As soon as the accuracy requirements are

44

achieved, potentially before input completion, Aion generates a watermark to process the
sub-stream at the window operator, effectively circumventing the effects of stragglers. The
length of each sub-stream f (in milliseconds), also defined as the periodicity of watermarks,
is essential to the algorithm’s performance. A smaller value of f ensures higher uniformity
for the input rate of each sub-stream at the expense of higher algorithm overhead. On
the other hand, a larger value of f benefits from a lower overhead but imposes higher
likelihood of input rate fluctuation. Aion is designed to leverage the granularity of f to
proactively fine tune its input rate anticipation over the upcoming sub-streams. In our
experimentation section, we choose values of f that empirically struck the best balance.

Aion is composed of (i) an algorithm that monitors properties of the workload including
the network delay, the inter-event generation delay, and the distribution of the event values
(Section 4.1.1), (ii) a proactive algorithm that estimates the sample size such that the error
margin is bounded by rthr (Sections 4.1.2 and 4.1.3), and (iii) a sampling algorithm that
effectively samples the input based on the computed sample size (Section 4.1.3).

Statistics MonitorWindow
Sample Size Estimator

Sub-stream
Sample Size Estimator

D, G, V

nw

nw3 nw1nw2

7

SWM W2

5

W1

3 1

S2 S1S3
Window

[1; 7]

Sampling Algorithm

events

Figure 4.1: Example illustrating Aion components’ interaction over a logically divided
stream.

45

To illustrate Aion’s functionality, consider Fig. 4.1 of a window operator encompassing
all events generated between 1 and 7, with watermark frequency of f = 2. Initially, the
Statistics Monitor collects and stores information such as the network delay (D), inter-
event generation delay (G), and the event values (V). Then, the Window Sample Size
Estimator is invoked either to build an estimation on the targeted windowed sample
size or to update an existing one (Sec. 4.1.2). The sample size is estimated based on
the specified error margin rthr and the type of the windowed operator. For a window
stream w, this part of the algorithm outputs nw as the desired sample size estimate for
the entire windowed stream. Finally, nw is forwarded to the Sub-Stream Sample Size
Estimator that computes the desired sample size for each sub-stream. Aion computes
the sample size as a function of nw and the expected ingestion delay of stragglers.
Then, at each sub-stream, Aion runs its sampling algorithm to choose a sample with
the target sampling size that is fair and representative.

Each of the aforementioned components in Fig. 4.1 are described in detail in the
following sections.

4.1.1 Monitoring the Workload

Aion collects necessary information from the stream to quantify the target sampling size
that achieves the output accuracy guarantees P (r ≤ rthr) ≥ 1−δ (Fig. 4.1). In this section,
we discuss in detail the collected information, their statistical representation, and their role
in Aion.

Aion collects its information on a sub-stream basis to ascertain high output accuracy
and to leverage incremental window processing. For the ith sub-stream in the windowed
stream w, Aion collects from the stream three main pieces of information: the network delay
dwi , the inter-event generation delay gwi , and the event values distribution vwi . We denote by
dwi = {dwi,0, dwi,1, ...} the set of observed network delays by the SPE over the ith sub-stream.
For an event e, the network delay can be computed by e.rts− e.gts, where e.rts refers to
e’s ingestion time by the SPE, and e.gts to its generation time at the source. Similarly,
for every two consecutive events ek and ek+1, g

w
i = {gwi,0, gwi,1, ...} encompasses the set of all

inter-event generation delays computed by ek+1.gts − ek.gts. Finally, vwi = {vwi,0, vwi,1, ...}
contains the set of event values observed in the corresponding sub-stream i in stream w.
In Aion, this information is collected at the ingestion of every new event (Algorithm 4).
More specifically, after identifying the windowed stream and the sub-stream to which event

46

Algorithm 4 Aion: Processing Events

1: procedure processEvent(e)
2: /* Identify the stream and sub-stream event i belongs to */
3: w ← getWindowIndex(e)
4: i ← getSubStreamIndex(e)
5: /* Examples of the collected statistics */
6: dwi ← dwi ∪ (e.rts− e.gts)
7: gwi ← gwi ∪ e.gts
8: vwi ← vwi ∪ e.val
9: w.observedEvents ← w.observedEvents + 1
10: i.observedEvents ← i.observedEvents + 1
11: /* If watermark has already been emitted */
12: if i.isProcessed then
13: dropEvent(e)
14: return
15: end if
16: nw

i ← GetSampleSize(w, i)
17: swi ← getSubsample(w, i)
18: /* Choose to sample e or drop it */
19: isSampled ← runSamplingAlgorithm(swi , θ

w
i)

20: if !isSampled then
21: dropEvent(e)
22: else
23: swi ← swi ∪ e
24: end if
25: /* Check if its safe to generate a watermark */
26: if SafeToProcess(swi) then
27: genWatermark(w, i)
28: processSample(swi)
29: i.isProcessed← True
30: end if
31: end procedure
32: procedure SafeToProcess(w, i, nw

i , s
w
i)

33: minNeededSize ← getTargetSize(w, i)
34: return currT ime ≥ i.ddl && nw

i ≥ minNeededSize
35: end procedure

47

e belongs based on its generation timestamp (lines 3–4), the necessary information is then
extracted (lines 6–10).

Aion utilizes the collected information over the processed sub-streams to proactively
estimate the patterns of the upcoming sub-streams. For a processed sub-stream i whose
watermark has been emitted, we capture the statistical significance of the collected infor-
mation distribution by the mean and the standard deviation. More specifically, we denote

mean network delay by µ(dwi) =
1

|dwi |
∑︁|dwi |

j=0 d
w
i,j and σ(dwi) as the standard deviation. Simi-

larly, We define µ(gwi), σ(g
w
i), and µ(vwi), σ(v

w
i), for inter-event generation delays and event

values distribution to follow the above definitions. Aion computes the mean delay and the
standard deviation on-the-fly, imposing no storage or computational overhead. Further-
more, Aion does not assume any underlying distribution over the collected information as
information patterns can vary over multiple distributions [91, 16]. As for an upcoming
sub-stream i, Aion estimates the statistical representation of the needed information i.e.,
dw, vw, gw based on the historically processed sub-streams. We denote by the random
variables Dw

i , G
w
i , and V w

i the network delay, the inter-event generation delay, and the
event values, respectively. Then, for the upcoming sub-stream i, we estimate the mean for
Dw

i by:

E[Dw
i] =

1

m

i−1∑︂
j=i−1−m

E[Dw
j] =

1

m

i−1∑︂
j=i−1−m

µ(dwj) = µ(dwi) (4.1)

Note that our estimations are limited to the last m sub-streams to reduce the storage
overhead. .

Since Dw
i is the result of a summation of means, Dw

i follows a normal distribution
through the central limit theorem. Having known distributions, specifically normal dis-
tribution, provides reliability on calculations using the aforementioned random variables.
These reliability properties are also shared by Gw

i and V w
i since we define them similarly

to Eq. 4.1.

Aion leverages these random variables for key calculations. That is, in Algorithm 5,
Aion utilizes the network delay and the inter-event generation delay to collect the sub-
stream size (line 4), and it utilizes the event values to estimate the sample size in Algo-
rithm 4 (line 16) and Algorithm 5 (line 10). We discuss the estimations further in the next
section.

48

4.1.2 Window and Sample Size Estimators

Aion intelligently selects and processes a sample which delivers a result within rthr of the
true result. Initially, Aion quantifies the projected number of events in the windowed
stream. Then, based on the estimated number of events, rthr, and the type of the window
operator, Aion estimates a target sample size. This section discusses Aion’s estimation
techniques for the window and sample sizes.

Initially, Aion quantifies the projected number of events in the windowed stream based
on the collected information (Section 4.1.1). For a windowed stream w, we denote the
size of the window by Nw representing the total number of events including stragglers of
the window. Intuitively, the size of the windowed stream is a function of the size of each
of its sub-stream constituents, that is, Nw =

∑︁k
i=1N

w
i , where k represents the number

of sub-streams in the windowed stream w, and Nw
i refers to the number of events in sub-

stream i (Algorithm 5, lines 3–6). The size for each sub-stream is then estimated based
on the inter-event generation delays observed over previously processed sub-streams. Note
that a workload with a high frequency of event generation would entail low values of gwi ,
while sparser event generation would mean higher values of gwi . The size estimation of
sub-stream i can be expressed by:

E[Nw
i] =

f

E[gwi]
=

f

µ(gwi)
(4.2)

Aion continuously adjusts its estimations of the size of the windowed stream and its sub-
stream constituents as earlier sub-streams are processed (i.e., as corresponding watermarks
are emitted). In doing so, it guarantees more accurate estimations as time progresses
towards the window’s deadline. It is important to note that regardless of the distribution
of gwi which can vary depending on the application type [84], Aion makes no assumptions
on the input’s arrival rate.

Aion computes the sample size based on the statistics monitor’s estimation ofNw. How-
ever, since estimation elicits uncertainty thereby affecting the accuracy of the sample size,
Aion seeks to overestimate Nw based on the level of uncertainty quantified by the standard
deviation. In doing so, the sample size is marginally augmented to achieve higher accuracy
guarantees while keeping it small enough to maintain low processing cost. Overestimation
of Nw is extremely helpful in the case of ingesting more events than the anticipated size.
As for underestimation, the processing cost is marginally increased, thereby hardly affect-
ing it. Hence, marginally overestimating Nw helps Aion to consistently achieve robust
performance in the face of workload fluctuation. In our experiments, we overestimate the
window length based on two degrees of the standard deviation.

49

Algorithm 5 Aion: Estimations & Sampling

1: procedure getSampleSize(w, i)
2: /* Estimate the window size for each sub-stream (Sec. 4.1.2) */
3: for j in range (0, ddl

w−ddlw−1

f
) do

4: Nw
j ← estmSubstreamSize(w, j) // (Eq. 4.2)

5: Nw ← Nw + Nw
j

6: end for
7: /* Estimate the sample size for each sub-stream (Sec. 4.1.3) */
8: nw ← estmWindowSampleSize(Nw) // (Eq. 4.4
9: for j in range (0, ddl

w−ddlw−1

f
) do

10: nw
j ← estmSubstreamSampleSize(nw, j) // (Eq. 4.8)

11: end for
12: return nw

i

13: end procedure
14: procedure runSamplingAlgorithm(nw

i , e)
15: θwi ← getSamplingRate(nw

i) // (Eq. 4.8)
16: r ← genNumber(0, 1)
17: return r ≤ θwi
18: end procedure

After estimating the windowed stream size Nw, we quantify the desired sample size
(Algorithm 5, line 8) based on rthr, and the type of the window operator. From the
related literature, there has been work on sample processing that did not account for
the functionality of the window operator and therefore limited their sample selection to
achieving similar statistical properties to that of the original input [53]. However, as
illustrated and recommended in [27], specifying an error function based on the window
functionality yields consistent higher accuracy. Aion adopts the latter approach to achieve
the highest accuracy possible. We provide two examples of error function derivations for the
two commonly used window functionalities: events-mean computation, and summation.
For each functionality, we derive a formula relating the error bound rthr, the windowed
stream size Nw, and its corresponding sample size nw.

We consider the first case of events-mean computation, where the window is computing
the average of observed events. The relative error function can be expressed as |µ(sw)−µ(vw)|

µ(vw)
,

where µ(sw) represents the mean of the sampled input, and µ(vw) denotes the mean of the
original input. To maintain the processing cost at a minimum, we are interested in finding
the minimum sample size nw that satisfies P (|µ(s

w)−µ(vw)
µ(sw)

| ≤ rthr) ≥ 1 − δ. Per [66], the

50

error rthr is tightly related to sample size nw, and the original input size Nw by:

rthr =
zδ/2

√︁
(1− nw

Nw)× σ(sw)√
nw

µ(Nw−1)
(4.3)

where zδ/2 refers to the confidence interval matching the z-value1 with the specified prob-
ability δ. Then, solving for nw, we have:

nw =
z2δ/2σ

2(sw)

r2thrµ(v
w−1)2 +

z2
δ/2

(σ(sw)2

Nw

(4.4)

By solving for the minimum sample size in Eq. 4.3, nw can be derived as in Eq. 4.4.
Thus, Aion collects at least nw events in the windowed stream w to achieve the accuracy
guarantees. The µ(vw−1) is a historical mean.

nw/Nw is the proportion of events that were sampled from the original input. Therefore,
taking the estimate for the sample total and scaling it up by Nw/nw accounts for events
that are not in the sample. Using the derived equations for events-mean computation, a
formula for estimating the input summation is given by:

Nw

nw

nw∑︂
i=1

vi = Nw

∑︁nw

i=1 vi
nw

= Nwµ(sw)

(4.5)

Eq. 4.5 expresses that an estimate for the original input can be taken by scaling µ(sw) up
by the known Nw. This method requires finding an estimate for µ(sw) and therefore, the
same sample size estimate for determining µ(sw) as seen in Eq. 4.4 can be used to get an
accurate estimate for the total input summation.

As for the summation operator, that is, computing the sum over all elements considered,
the relative error function is defined by:

r =
|
∑︁Nw

i=1 v
w
i − (Nw × µ(sw))|
|
∑︁Nw

i=1 v
w
i |

(4.6)

There exist multiple approaches to define error bounds over a window functionality.
For instance, a different error function for the summation functionality is used by AQ-K-
Slack [52]. This approach imposes an unnecessarily large sample size. The literature also

1Further information on z-values can be found in [66].

51

includes work on other types of scalar window functions like MAX, MIN, and quantiles
[34, 54]. Other event-based vector operations can be adapted for Aion by utilizing the error
functions derived as in [54, 4] for grouping. They can be incorporated into Aion following
similar derivations from Sec. 4.1.2.

After estimating the window and sample sizes, Aion utilizes these estimations in its
“Sub-stream Sample Size Estimator” component (Fig. 4.1). Aion leverages these esti-
mations over each sub-stream and then executes its sampling algorithm accordingly, as
described in the next section.

4.1.3 Sampling over Sub-streams

Aion is optimized to select a sample free of stragglers that is representative of the original
input. In this section, we describe Aion’s sampling algorithm that minimizes the impact
of stragglers.

On the arrival of each event, Aion runs its sampling algorithm (line 16 in Algorithm 4,
procedure call defined in Algorithm 5 line 14) to select its sample. Based on the computed
sample size nw (Section 4.1.1, and line 10 in Algorithm 5), an event can be added to
the sample based on the rate nw

Nw . However, this approach suffers from the stragglers’
problem as the sample is unlikely to be complete by the window’s deadline. Aion, therefore,
optimizes the sampling rate over each sub-stream i so that at the window’s deadline, the
sample would be complete or near completion. To express this formally, we denote Nw

i,t to
be the total number of events ingested by time t. By using the inter-event generation and
network delays, we can estimate Nw

i,t by:

Nw
i,t=ddlwi

=
(ddlwi − E[Dw

i])− ddlwi−1

E[Gw
i]

(4.7)

Then, the updated sampling rate at sub-stream i is computed by:

θwi =
nw

Nw
i,t=ddlwi

(4.8)

Aion then samples the incoming events according to θwi thereby mitigating the presence of
stragglers. Note that if θwi is greater than 1, Aion slacks for minimal time to include the
least number of stragglers. The algorithm is shown in Algorithm 5 (lines 14–17).

As such, Aion minimizes the numbers of stragglers in the sample by prioritizing sample
completion before the window’s deadline. Then, Aion generates a watermark as soon as the

52

window’s deadline is due and the accuracy guarantees are achieved (Algorithm 4, lines 32–
34). These conditions ensure that a watermark is generated when the accuracy guarantees
are met while minimizing the output latency

4.2 Performance Evaluation

In this section, we present the results of a series of experiments conducted on multiple
benchmark workloads to demonstrate the performance advantage that Aion possesses over
representative algorithms from prior work.

4.2.1 Experimental Setup

We describe our experimental setup and methodology, including machine configurations,
the sampling algorithms that we compare Aion against, benchmarks, and the delay dis-
tribution settings. Our experiments are run on a machine having an Intel Xeon processor
consisting of 24 cores (using hyper-threading) and 32 GB of memory. The machine is
running Java OpenJDK implementation v1.8.0 191 on top of Ubuntu 16.04 LTS. The im-
plementation of Aion is on Apache Flink v1.8. We dedicate a different machine with the
same configuration for generating the workload, which is transmitted to the SPE nodes via
Kafka v2.2.1.

Benchmarks

We conduct our evaluation using three well-known streaming benchmarks: the Yahoo!
Streaming Benchmark (YSB) [45], the New York City Taxi (NYT) [77], and the kMeans
benchmark. We implement these benchmarks on Apache Flink and evaluate performance
by running different sampling algorithms in each experiment. YSB emulates an adver-
tisement tracking system where users launch ad campaigns, each of which is composed of
multiple ads. The YSB query handles a stream of ad clicks and outputs the interest in
each ad campaign. We use the code-base provided by [45] with the addition of generating
periodic watermarks from the source. NYT covers a large dataset of taxi trips in New York,
spanning six years. The dataset is rich with information such as the number of passengers,
distances, and fares. The query measures the average distance of each trip ride in sliding
windows. KMeans query is an algorithm that partitions the dataset into k clusters. The
dataset originally at the source is filtered and processed in the pipeline before running the
kMeans algorithm in a windowed operator.

53

Algorithms

Sample processing algorithms generally need to run in conjunction with a deployed stream
progress control algorithm. Specifically, sample processing algorithms continuously up-
date their sample until the accompanying stream progress control algorithm generates
a watermark. Popularly used stream progress control algorithms include slacking tech-
niques [76, 84]. Slack algorithms compute the minimum slack delay needed to guarantee
input completion, then generating a watermark as soon as the slack delay expires. We
implemented onto our system the K-Slack [76] algorithm to automate the generation of
watermarks. K-Slack generates a watermark every k seconds, where k is set to the maxi-
mum observed network delay. Since Aion uniquely combines sampling and stream progress
control, it overrides K-Slack by running its own stream progress control algorithm proposed
in this thesis.

To demonstrate Aion’s efficacy, we compare Aion against Default, which is the baseline
approach that constitutes running Flink with no sampling. In Default, windows process
their input as soon as the deployed stream progress control algorithm emits a watermark.
We also compare against the following sample processing algorithms:

• AQ-K-Slack [52]: Similarly to Aion, this algorithm samples events as they are in-
gested by the SPE. It computes the sampling ratio needed to achieve the necessary
output accuracy guarantees. Using an error function specific to summation windowed
functionality, AQ-K-Slack ties the relative error function with the target accuracy
while accounting for stragglers in processing output.

• Aion-: denotes Aion without (minus) the stragglers’ circumvention technique em-
ployed (Sec 4.1.3). The Aion- algorithm applies Aion’s sampling technique but with-
out the stream progress control algorithm. Specifically, the sample size is estimated
as a fraction of Nw

i and not Nw
i,t=ddlwi

. We implemented Aion- to study the impact of
circumventing stragglers when sampling.

Delay Distributions

As in [84, 16], we vary two main types of delay for our experiments, namely the network
delay, and the inter-event generation delay. Similarly to [84, 16], we refer to these as follows
in our experiments;

• CC: Network and inter-event generation delays are constant at 150ms and 1ms, re-
spectively.

54

• GG: Network delay and inter-event generation delay are distributed withGamma(k =
60, θ = 4) and Gamma(k = 2, θ = 0.5) respectively.

• EC: Network delay is exponentially distributed with mean delay of 240ms while inter-
event generation delay is constant at 1ms.

• EG: Network delay is exponentially distributed with mean delay of 240ms while
inter-event generation delay is Gamma distributed with Gamma(k = 2, θ = 0.5).

We generate ten different streams for each combination. Each data point on the graph
is an average over at least 10 independent runs (unless stated otherwise). Ideally, Aion’s
watermark periodicity f should be a divisor of the window deadline so that a watermark
can be emitted at the window’s deadline effectively minimizing latency. Based on empirical
evidence collected through our experiments, we set f to 600ms for deployed windows of
size 3s and 6s. This value strikes a balance between the estimation granularity and the
overhead of the algorithm.

4.2.2 Results

YSB

Figure 4.2 shows the performance of the sampling algorithms running the YSB workload
under different delay distributions. For the first distribution of UU, Aion delivers lower
latency than the other algorithms as it reduces both the stragglers’ impact on output
latency and the processing cost of events. More specifically, while Default, AQ-K-Slack,
and Aion- algorithms impose 150ms delay to account for stragglers, Aion circumvents
the slack delay by emitting a watermark as soon as the output accuracy guarantees are
achieved. For the processing cost, since Default processes all of the events, its processing
overhead dominates the output latency. As for Aion- and Aion, both algorithms sampled
at a rate reaching 30% of the original input, while the AQ-K-Slack sampling mechanism
is more restrictive, pushing its sampling rate to exceed 60%. Aion minimizes both the
slack delay and the processing cost yielding significant latency reduction over the other
algorithms. For the GG delay distribution, the maximum observed network delay reached
350ms adding significant overhead for both Default and AQ-K-Slack. However, as in the
case of UU, the processing cost dominated the output latency for both Default and AQ-K-
Slack. Aion delivers lower output latency over Default and AQ-K-Slack by 80% and 70%,
respectively.

55

CC GG EC EG
Network and Inter-Event

 Generation Delays Distributions

0.5

1

1.5

2

2.5

La
te

nc
y

(in
 s)

Default
AQ-K-Slack
Aion-
Aion

Figure 4.2: Mean latency vs. different environment distributions of network delay and
inter-event generation delay running YSB benchmark

When network delay is exponentially distributed, the performance of Default and Aion-
worsens as the maximum observed network delay exceeds 1500ms. That is, the two algo-
rithms process windowed data long after generating a watermark that is past the window’s
deadline. Note that Aion- quickly processes its data after slacking for 1500ms while Default
processes the entire input. As for AQ-K-Slack, it delivers better performance over these
two algorithms since its slack function uses randomization to mitigate the delay. Since
AQ-K-Slack’s sampling function is costly, its processing cost dominates output latency.
Aion outperforms Default and AQ-K-Slack with latency reductions of 85% and 78%, re-
spectively. Aion significantly outperforms the two algorithms by mitigating the effect of
stragglers and significantly reducing the processing cost.

We also compared Aion’s latency to the other algorithms for different input loads.
Fig. 4.3 presents the cumulative distribution function (CDF) of recorded latencies for the
range of 40th to 99th percentile tail latency under two input load levels of number of events
generated: 5, 000 and 25, 000 (5x) events/s. The experiment is run with distribution EG
where the network delay is exponentially distributed and the inter-event generation delay is
gamma-distributed. For the 90th percentile, Aion achieves latency reductions over Default

56

40 50 60 70 80 90 9599
CDF (%)

1

2

3

4

5

6

7

8

La
te

nc
y

(in
 s)

Default
AQ-K-Slack
Aion-
Aion

(a) 5, 000 events/s

40 50 60 70 80 90 9599
CDF (%)

3

6

9

12

15

18

21

24

27

La
te

nc
y

(in
 s)

Default
AQ-K-Slack
Aion-
Aion

(b) 10, 000 events/s

Figure 4.3: Recorded CDF latency running YSB benchmark for delay distribution EG with
5, 000 and 25, 000 number of input events generated per second.

and AQ-K-Slack of 76% and 70% respectively for both 5, 000 and 25, 000 events generated
per second. As for tail latencies, and specifically 95th to 99th percentiles, Aion maintains
a low latency level delivering consistent latency performance as with smaller percentiles.
However, this was not the case for other algorithms as Aion reduced latency over Default
and AQ-K-Slack by 80% and 75% respectively for 5, 000 events generated per second, and
84% and 80% respectively for 25, 000 events generated per second. Interestingly, Aion-
performed similarly to Aion for 25, 000 events/s but not for 5, 000 events/s. This is due to
the output latency for 25, 000 events/s being dominated by the processing cost and not the
slack cost, while for 5, 000 events/s it was dominated by the slack delay. Aion optimizes
for both of these costs to attain the large aforementioned latency reductions.

Aion optimizes for reduced latency while still achieving the specified accuracy guaran-
tees. Figs. 4.2 and 4.3 show that Aion outperforms the other algorithms significantly in
terms of reducing output latency. Next, we show the accuracy guarantees delivered by the
sampling algorithms Aion, Aion-, and AQ-K-Slack through experiments with parameters
rthr = 5% and δ = 0.95.

Fig. 4.4 presents the distribution of error obtained while running YSB. The experiments

57

AQ-K-Slack Aion- Aion
Sampling Algorithms

1

2

3

4

5

6

Re
la

tiv
e

Er
ro

r (
in

 %
)

Figure 4.4: Error plot showing statistical significance obtained by AQ-K-Slack, Aion-,
and Aion running YSB benchmark for delay distribution EG with 25, 000 input events
generated per second

were executed for EG with 25, 000 events generated per second. For the three tested
algorithms, although the relative error margin was set to 5%, the algorithms recorded
significantly lower error margins. Specifically, the mean relative error (Sec. 4.1.2) reached
3% for all algorithms with a relatively small standard deviation. Interestingly, for all
algorithms, the maximum experienced error was less than the threshold, thereby delivering
excellent accuracy exceeding the required guarantees. As such, this figure proves that
circumventing stragglers have little to no impact on finding a sample with high accuracy
guarantees.

NYT

The NYT benchmark is a relatively expensive query compared to YSB as it includes a
longer pipeline and more processing intensive operators. As such, the processing cost in
NYT factors higher in output latency compared to the processing cost factor in YSB’s
output latency. Fig. 4.5 shows the performance of the sampling algorithms running the
NYT workload under different delay distributions. For UU, Aion achieves significantly

58

CC GG EC EG
Network and Inter-Event

 Generation Delays Distributions

0.5
1

1.5
2

2.5
3

3.5

La
te

nc
y

(in
 s)

Default
AQ-K-Slack
Aion-
Aion

Figure 4.5: Mean latency vs. different environment distributions of network delay and
inter-event generation delay running NYT benchmark

lower output latency over Default and AQ-K-Slack mainly due to Aion’s superior sampling
mechanism as it samples at a lower rate. Since the slack delay in UU is minimal and pro-
cessing cost of NYT is expensive, Aion achieves a latency reduction of 75% over Default
that processes all events, and 60& reduction over AQ-K-Slack as it suffers from higher pro-
cessing cost and a high slack delay. For other delay distributions, and specifically EU and
EG, where the experienced network delay is significantly higher, Aion’s mechanism of cir-
cumventing stragglers significantly reduced the output latency. Specifically, Aion achieved
an 80% output latency reduction over Default and 72% over AQ-K-Slack. Furthermore,
the difference between Aion and Aion- in EU and EG prove that it is essential to minimize
the straggler count in the sample to minimize the output latency, regardless of the query
complexity.

Aion’s latency CDF for NYT is shown in Fig. 4.6. As explained earlier, this experiment
delivered different results than that for YSB in Fig. 4.3 due to the higher complexity of
NYT benchmark. At the lighter workload of 5, 000 events per second, the output latency of
Aion- was dominated by slack delay while Default and AQ-K-Slack suffered from both the
slack delay and processing cost. Consequently, Aion’s tail latency, 95th to 99th percentile,

59

40 50 60 70 80 90 9599
CDF (%)

2

4

6

8

10

12

La
te

nc
y

(in
 s)

Default
AQ-K-Slack
Aion-
Aion

(a) 5, 000 events/s

40 50 60 70 80 90 9599
CDF (%)

5

10

15

20

25

30

35

La
te

nc
y

(in
 s)

Default
AQ-K-Slack
Aion-
Aion

(b) 10, 000 events/s

Figure 4.6: Recorded CDF latency running NYT benchmark for delay distribution EG
with 5, 000 and 25, 000 number of input events generated per second.

is significantly reduced over Default and AQ-K-Slack by 80% and 75%, respectively. As
for the heavier workload of 25, 000 events per second, the tail latency reduction attained
by Aion over Default and AQ-K-Slack reaches 87% and 85%, respectively. Aion- performs
similarly to Aion as output latency is dominated by the processing cost in both of these
Aion-based algorithms. Aion incurs lower processing cost because its sampling mechanism
requires a significantly smaller sample size. Therefore, Aion can attain greater scalability
than other algorithms as it avoids slack delays while reducing processing costs.

We studied the distribution of errors obtained when running the NYT benchmark in
Fig. 4.7 with parameters rthr = 5% and δ = 0.95. In this case, since the NYT window
operator is a mean estimation and the workload entails a higher standard deviation of
V , both Aion- and Aion experience error greater than 5%. However, the error crossed
the threshold only three times from one-hundred data points collected, therefore achieving
a high confidence level of 97%. Furthermore, while AQ-K-Slack delivered a significantly
higher latency, by 80%, the error for both algorithms was very similar. Finally, Aion’s
stringent accuracy requirements are a function of δ as Aion guarantees P (r ≤ rthr) ≥ δ.
But in the cases where the obtained error exceeded rthr, the max error is relatively close

60

AQ-K-Slack Aion- Aion
Sampling Algorithms

1

2

3

4

5

6

7

Re
la

tiv
e

Er
ro

r (
in

 %
)

Figure 4.7: Error plot showing statistical significance obtained by AQ-K-Slack, Aion-,
and Aion running NYT benchmark for delay distribution EG with 25, 000 input events
generated per second

to rthr indicating that Aion delivers consistent accuracy performance.s

kMeans

The benchmark kMeans is the third and most expensive query for which we compare Aion
against the other algorithms. Furthermore, the sampling rate in kMeans reached 45% for
the Aion algorithms, whereas it reached 85% for AQ-K-Slack. In this case, the processing
cost dominates the output latency for all tested configurations. This is shown in Fig. 4.8a as
the two Aion algorithms delivered significantly lower output latency results over Default
and AQ-K-Slack for all environment settings. Aion’s sampling mechanism helped it to
reduce the output latency significantly. Aion minimized both the processing cost and the
network penalty over Default and AQ-K-Slack by up to 75% and 65%, respectively.

Aion’s latency CDF for kMeans is shown in Fig. 4.9. The benchmark kMeans is even
more expensive than NYT, making processing cost to be the dominating factor in output
latency. For 5, 000 events generated per second, Aion achieves significantly lower 95th to

61

CC GG EC EG
Network and Inter-Event

 Generation Delays Distributions

2.5
5

7.5
10

12.5
15

17.5

La
te

nc
y

(in
 s)

Default
AQ-K-Slack
Aion-
Aion

(a) Mean latency

AQ-K-Slack Aion- Aion
Sampling Algorithms

1
2
3
4
5
6
7
8

Re
la

tiv
e

Er
ro

r (
in

 %
)

(b) Error plot

Figure 4.8: (a) Mean latency vs. different distributions of network delay and inter-event
generation delay running kMeans benchmark, and (b) error plot showing statistical signif-
icance obtained running kMeans benchmark for delay distribution EG with 25, 000 input
events generated per second

99th percentile tail latencies, reducing them over Default and AQ-K-Slack by about 80%
and 72%, respectively. AQ-K-Slack, which suffers from a significantly higher sampling
rate, incurs high output latency thereby displaying similar tail latency growth to that
of Default. As for the 25, 000 events generated per second input load, we observe that
Aion and Aion- achieve very similar performance, further indicating that the processing
cost dominated the output latencies in this experiment. As for Default and AQ-K-Slack,
both algorithms suffered significant performance degradation, adding 82% and 78% latency
overhead, respectively, at the tail. Aion delivers slightly better performance over Aion-
since Aion exhibits no slack delay while Aion- waited for an additional 1.5s to ensure input
completion.

Similar to previous experiments, we ran experiments with the following parameters:
rthr = 5%, δ = 0.05. Fig. 4.8b presents the distribution of error obtained while running
kMeans. In this case, since the window operator is computing the k-means algorithm that
involves more complex processing, the resulting error was higher. While all algorithms
achieved a maximum latency higher than that of the threshold, all of them achieved this
within the constraint P (r ≤ rthr) ≥ 1 − δ. Furthermore, while AQ-K-Slack delivered
significantly higher latency by 80%, the mean error for both algorithms was very similar.

62

40 50 60 70 80 90 9599
CDF (%)

3

6

9

12

15

La
te

nc
y

(in
 s)

Default
AQ-K-Slack
Aion-
Aion

(a) 5, 000 events/s

40 50 60 70 80 90 9599
CDF (%)

7

14

21

28

35

42

49

La
te

nc
y

(in
 s)

Default
AQ-K-Slack
Aion-
Aion

(b) 10, 000 events/s

Figure 4.9: Recorded CDF latency running kMeans benchmark for delay distribution EG
with 5, 000 and 25, 000 number of input events generated per second.

Empirical verification and exhaustive experimentation consistently demonstrated that Aion
error values rarely stretched over the specified error threshold.

Finally, we measured Aion’s runtime overhead incurred by statistics collection, window
and sample sizes estimation, and sampling incoming events. Aion’s overhead represents
0.15% of the obtained output latency per window. The low overhead is due to Aion’s
minimal monitoring of workload, and efficient sampling technique. Due to lack of space,
we omit the overhead graphs.

63

Chapter 5

Conclusion

We began by motivating the use of stream progress property in SPE runtime to improve
the performance of streaming engines. Through leveraging the stream progress property,
we presented and studied problems that are of significant importance for SPEs: (1) the
problem of multi-query scheduling, and (2) the problem of sample query processing. Before
presenting our algorithms, we first illustrated the advantage of utilizing stream progress in
each of the two problems. Then, in Chapter 2, we introduced the necessary background
material and covered the relevant work.

In Chapter 3, we addressed problem (1) by introducing our scheduling algorithm that
aims to unblock stateful operators and to rapidly propagate the events to output operators.
Specifically, Klink assesses the progress of each stream over multiple queries by analyzing
watermarks and appropriately assigning a priority value designed to minimize the output
latency. We presented and analyzed Klink’s technique in analyzing and estimating in-
coming watermarks. Through the integration of Klink into Apache Flink and extensive
experimentation, we demonstrated that Klink outperforms existing scheduling algorithms.
Our experiments demonstrated that Klink delivers large output latency reductions of up
to 65% over existing techniques.

In Chapter 4, we addressed problem (2) by circumventing stragglers and significantly
reducing output latency. Specifically, we introduced Aion, a query sample processing algo-
rithm that approximates answers with low latency by minimizing the effect of stragglers.
Specifically, by leveraging control over stream progress and automating the generation of
watermarks, Aion mitigates the impact of stragglers on output latency. Similarly, Aion was
integrated into Apache Flink along with other sample processing algorithms. Our results
demonstrated that Aion reduces stream output latency by up to 85% while providing 95%

64

accuracy guarantees.

There remain several interesting SPE problems where the stream progress property
could be leveraged. Specifically, similar to Klink’s approach to runtime scheduling, the
problem of elasticity can be studied in the context of minimizing the propagation delay of
SWMs. The key insight is that SPEs need not to scale horizontally, even if currently over-
loaded, if they can process the queued events by the time the SWM is ingested. Otherwise,
if the window deadline is not overdue, the SPE would be adding unnecessary resources to
process queued events without impacting output latency.

65

References

[1] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch Cher-
niack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin, Esther
Ryvkina, et al. The design of the borealis stream processing engine. In Cidr, vol-
ume 5, pages 277–289, 2005.

[2] Daniel J Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey,
Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: a new
model and architecture for data stream management. the VLDB Journal, 12(2):120–
139, 2003.

[3] Zainab Abbas, Vasiliki Kalavri, Paris Carbone, and Vladimir Vlassov. Streaming
graph partitioning: an experimental study. In PVLDB, volume 11, pages 1590–1603,
2018.

[4] Swarup Acharya et al. Congressional samples for approximate answering of group-by
queries. In SIGMOD, pages 487–498. ACM, 2000.

[5] Swarup Acharya, Phillip B Gibbons, Viswanath Poosala, and Sridhar Ramaswamy.
The aqua approximate query answering system. In SIGMOD, pages 574–576. ACM,
1999.

[6] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,
and Ion Stoica. Blinkdb: queries with bounded errors and bounded response times
on very large data. In EUROSYS, pages 29–42. ACM, 2013.

[7] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman,
Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. Mill-
wheel: fault-tolerant stream processing at internet scale. Proceedings of the VLDB
Endowment, 6(11):1033–1044, 2013.

66

[8] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric
Schmidt, et al. The dataflow model: a practical approach to balancing correctness,
latency, and cost in massive-scale, unbounded, out-of-order data processing. Pro-
ceedings of the VLDB Endowment, 8(12):1792–1803, 2015.

[9] Leonardo Aniello, Roberto Baldoni, and Leonardo Querzoni. Adaptive online
scheduling in storm. In Proceedings of the 7th ACM international conference on
Distributed event-based systems (DEBS), pages 207–218. ACM, 2013.

[10] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S Maskey,
Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. Linear road: a stream
data management benchmark. In Proceedings of the VLDB Endowment, volume 30,
pages 480–491. ACM, 2004.

[11] Brian Babcock, Shivnath Babu, Rajeev Motwani, and Mayur Datar. Chain: Oper-
ator scheduling for memory minimization in data stream systems. In Proceedings of
the 2003 ACM SIGMOD International conference on Management of Data, pages
253–264. ACM, 2003.

[12] Brian Babcock, Mayur Datar, and Rajeev Motwani. Load shedding for aggregation
queries over data streams. In ICDE, pages 350–361. IEEE, 2004.

[13] Magdalena Balazinska, YongChul Kwon, Nathan Kuchta, and Dennis Lee. Moirae:
History-enhanced monitoring. In CIDR, pages 375–386, 2007.

[14] Pablo Basanta-Val, Norberto Fernández-Garćıa, Andy J Wellings, and Neil C Auds-
ley. Improving the predictability of distributed stream processors. Future Generation
Computer Systems, 52:22–36, 2015.

[15] Michael A Bender, Soumen Chakrabarti, and Sambavi Muthukrishnan. Flow and
stretch metrics for scheduling continuous job streams. In SODA, volume 98, pages
270–279, 1998.

[16] Jean-Chrysostome Bolot. Characterizing end-to-end packet delay and loss in the
internet. In Journal of High Speed Networks (JHSN), pages 305–323, 1993.

[17] Wei Cai, Ryan Shea, Chun-Ying Huang, Kuan-Ta Chen, Jiangchuan Liu, Victor CM
Leung, and Cheng-Hsin Hsu. A survey on cloud gaming: Future of computer games.
IEEE Access, 4:7605–7620, 2016.

67

[18] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. Apache flink: Stream and batch processing in a single engine.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering,
36(4), 2015.

[19] Don Carney, Uğur Çetintemel, Alex Rasin, Stan Zdonik, Mitch Cherniack, and Mike
Stonebraker. Operator scheduling in a data stream manager. In Proceedings 2003
VLDB Conference, pages 838–849. Elsevier, 2003.

[20] Ugur Cetintemel, Jiang Du, Tim Kraska, Samuel Madden, David Maier, John Mee-
han, Andrew Pavlo, Michael Stonebraker, Erik Sutherland, Nesime Tatbul, et al.
S-store: a streaming newsql system for big velocity applications. Proceedings of the
VLDB Endowment, 7(13):1633–1636, 2014.

[21] Badrish Chandramouli, Jonathan Goldstein, Roger Barga, Mirek Riedewald, and
Ivo Santos. Accurate latency estimation in a distributed event processing system.
In 2011 IEEE 27th International Conference on Data Engineering, pages 255–266.
IEEE, 2011.

[22] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, Danyel
Fisher, John C Platt, James F Terwilliger, and John Wernsing. Trill: A high-
performance incremental query processor for diverse analytics. Proceedings of the
VLDB Endowment, 8(4):401–412, 2014.

[23] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levandoski, James
Hunter, and Mike Barnett. Faster: an embedded concurrent key-value store for state
management. Proceedings of the VLDB Endowment, 11(12):1930–1933, 2018.

[24] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in
data streams. In International Colloquium on Automata, Languages, and Program-
ming, pages 693–703. Springer, 2002.

[25] Surajit Chaudhuri, Gautam Das, and Vivek Narasayya. Optimized stratified sam-
pling for approximate query processing. In TODS, volume 32, pages 9–es. ACM,
2007.

[26] Surajit Chaudhuri, Gautam Das, and Vivek Narasayya. Optimized stratified sam-
pling for approximate query processing. ACM Transactions on Database Systems
(TODS), 32(2):9–es, 2007.

68

[27] Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula. Approximate query process-
ing: No silver bullet. In SIGMOD, pages 511–519. ACM, 2017.

[28] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and Hari
Balakrishnan. Glimpse: Continuous, real-time object recognition on mobile devices.
In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems,
pages 155–168, 2015.

[29] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas Graves, Mark
Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil, Boyang Jerry Peng,
et al. Benchmarking streaming computation engines: Storm, flink and spark stream-
ing. In 2016 IEEE international parallel and distributed processing symposium work-
shops (IPDPSW), pages 1789–1792. IEEE, 2016.

[30] Sharon Choy, Bernard Wong, Gwendal Simon, and Catherine Rosenberg. The brew-
ing storm in cloud gaming: A measurement study on cloud to end-user latency.
In 11th Annual Workshop on Network and Systems Support for Games, NetGames
2012, Venice, Italy, November 22-23, 2012, pages 1–6. IEEE, 2012.

[31] Mark Claypool and David Finkel. The effects of latency on player performance in
cloud-based games. In 2014 13th Annual Workshop on Network and Systems Support
for Games, pages 1–6. IEEE, 2014.

[32] Graham Cormode. Sketch techniques for approximate query processing.

[33] Graham Cormode, Minos Garofalakis, Peter J Haas, Chris Jermaine, et al. Synopses
for massive data: Samples, histograms, wavelets, sketches. Now Publishers, Inc.,
2011.

[34] Graham Cormode, Flip Korn, Shanmugavelayutham Muthukrishnan, and Divesh
Srivastava. Space-and time-efficient deterministic algorithms for biased quantiles
over data streams. In PODS, pages 263–272. ACM, 2006.

[35] Graham Cormode and Shan Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. In Journal of Algorithms, pages 58–75.
Elsevier, 2005.

[36] Miyuru Dayarathna and Srinath Perera. Recent advancements in event processing.
pages 1–36. ACM, 2018.

69

[37] Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and Walker
White. Towards expressive publish/subscribe systems. In EDBT, pages 627–644.
Springer, 2006.

[38] Sergio Esteves, Gianmarco De Francisci Morales, Rodrigo Rodrigues, Marco Serafini,
and Lúıs Veiga. Aion: Better late than never in event-time streams. arXiv preprint
arXiv:2003.03604, 2020.

[39] Xinwei Fu, Talha Ghaffar, James C Davis, and Dongyoon Lee. Edgewise: a bet-
ter stream processing engine for the edge. In 2019 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 19), pages 929–946, 2019.

[40] Edward Gan, Jialin Ding, Kai Sheng Tai, Vatsal Sharan, and Peter Bailis. Moment-
based quantile sketches for efficient high cardinality aggregation queries. In PVLDB,
volume 11, page 1647–1660. ACM, 2018.

[41] Nikos Giatrakos, Elias Alevizos, Alexander Artikis, Antonios Deligiannakis, and Mi-
nos Garofalakis. Complex event recognition in the big data era: a survey. In VLDBJ,
pages 313–352. Springer, 2020.

[42] Phillip B. Gibbons and Yossi Matias. New sampling-based summary statistics for
improving approximate query answers. In SIGMOD, page 331–342. ACM, 1998.

[43] Inigo Goiri, Ricardo Bianchini, Santosh Nagarakatte, and Thu D Nguyen. Approx-
hadoop: Bringing approximations to mapreduce frameworks. In 20th International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), pages 383–397. ACM, 2015.

[44] Lukasz Golab and M Tamer Özsu. Issues in data stream management. SIGMOD
Record, 32(2):5–14, 2003.

[45] Jamie Grier. Extending the yahoo! streaming benchmark. URL
hhttps://www.ververica.com/blog/extending-the-yahoo-streaming-benchmark, 2016.

[46] Michael Grossniklaus, David Maier, James Miller, Sharmadha Moorthy, and Kristin
Tufte. Frames: data-driven windows. In Proceedings of the 10th ACM International
Conference on Distributed and Event-based Systems (DEBS), pages 13–24. ACM,
2016.

[47] Joseph M Hellerstein, Peter J Haas, and Helen J Wang. Online aggregation. In
SIGMOD, pages 171–182. ACM, 1997.

70

[48] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition:
A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 5th edition, 2011.

[49] Gabriela Jacques-Silva, Ran Lei, Luwei Cheng, Guoqiang Jerry Chen, Kuen Ching,
Tanji Hu, Yuan Mei, Kevin Wilfong, Rithin Shetty, Serhat Yilmaz, et al. Providing
streaming joins as a service at facebook. Proceedings of the VLDB Endowment,
11(12):1809–1821, 2018.

[50] Navendu Jain, Lisa Amini, Henrique Andrade, Richard King, Yoonho Park, Philippe
Selo, and Chitra Venkatramani. Design, implementation, and evaluation of the lin-
ear road benchmark on the stream processing core. In Proceedings of the VLDB
Endowment, pages 431–442. ACM, 2006.

[51] Zbigniew Jerzak and Holger Ziekow. The debs 2015 grand challenge. In Proceedings of
the 9th ACM International Conference on Distributed Event-Based Systems (DEBS),
page 266–268. ACM, 2015.

[52] Yuanzhen Ji, Hongjin Zhou, Zbigniew Jerzak, Anisoara Nica, Gregor Hackenbroich,
and Christof Fetzer. Quality-driven continuous query execution over out-of-order
data streams. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, pages 889–894. ACM, 2015.

[53] Theodore Johnson, Shanmugavelayutham Muthukrishnan, and Irina Rozenbaum.
Sampling algorithms in a stream operator. In SIGMOD, pages 1–12. ACM, 2005.

[54] Nikos R Katsipoulakis et al. Spear: Expediting stream processing with accuracy
guarantees. In ICDE. IEEE, 2020.

[55] Nikos R Katsipoulakis, Alexandros Labrinidis, and Panos K Chrysanthis. A holistic
view of stream partitioning costs. Proceedings of the VLDB Endowment, 10(11):1286–
1297, 2017.

[56] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L Wolf,
Paolo Costa, and Peter Pietzuch. Saber: Window-based hybrid stream processing for
heterogeneous architectures. In Proceedings of the 2016 ACM SIGMOD International
Conference on Management of Data, pages 555–569. ACM, 2016.

[57] Dhanya R Krishnan, Do Le Quoc, Pramod Bhatotia, Christof Fetzer, and Rodrigo
Rodrigues. Incapprox: A data analytics system for incremental approximate com-
puting. In WWW, pages 1133–1144, 2016.

71

[58] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kel-
logg, Sailesh Mittal, Jignesh M Patel, Karthik Ramasamy, and Siddarth Taneja.
Twitter heron: Stream processing at scale. In Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data, pages 239–250. ACM, 2015.

[59] Santoshkumar Kulkarni and Joarder Kamal. Amazon aws, Sep 2018.

[60] Wang Lam, Lu Liu, Sts Prasad, Anand Rajaraman, Zoheb Vacheri, and AnHai Doan.
Muppet: Mapreduce-style processing of fast data. arXiv preprint arXiv:1208.4175,
2012.

[61] Boduo Li, Yanlei Diao, and Prashant Shenoy. Supporting scalable analytics with
latency constraints. Proceedings of the VLDB Endowment, 8(11):1166–1177, 2015.

[62] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos, Theodore Johnson,
and David Maier. Out-of-order processing: a new architecture for high-performance
stream systems. Proceedings of the VLDB Endowment, 1(1):274–288, 2008.

[63] Kaiyu Li and Guoliang Li. Approximate query processing: What is new and where
to go? In Data Science and Engineering, pages 379–397. Springer, 2018.

[64] Teng Li, Jian Tang, and Jielong Xu. Performance modeling and predictive scheduling
for distributed stream data processing. IEEE Transactions on Big Data, 2(4):353–
364, 2016.

[65] Ling Liu, Calton Pu, Roger Barga, and Tong Zhou. Differential evaluation of con-
tinual queries. In ICDCS, pages 458–465. IEEE, 1996.

[66] S.L. Lohr. Sampling: Design and Analysis. Brooks/Cole, 2010.

[67] Federico Lombardi, Leonardo Aniello, Silvia Bonomi, and Leonardo Querzoni. Elastic
symbiotic scaling of operators and resources in stream processing systems. IEEE
Transactions on Parallel and Distributed Systems, 29(3):572–585, 2017.

[68] R. Lu, G. Wu, B. Xie, and J. Hu. Stream bench: Towards benchmarking modern
distributed stream computing frameworks. In UCC, pages 69–78. IEEE/ACM, 2015.

[69] Gurmeet Singh Manku et al. Approximate medians and other quantiles in one pass
and with limited memory. SIGMOD, 27(2):426–435, 1998.

[70] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. In International Con-
ference on Database Theory (ICDT), pages 398–412, 2005.

72

[71] Hongyu Miao, Heejin Park, Myeongjae Jeon, Gennady Pekhimenko, Kathryn S
McKinley, and Felix Xiaozhu Lin. Streambox: Modern stream processing on a multi-
core machine. In 2017 {USENIX} Annual Technical Conference ({USENIX}{ATC}
17), pages 617–629, 2017.

[72] Lory Al Moakar, Thao N Pham, Panayiotis Neophytou, Panos K Chrysanthis,
Alexandros Labrinidis, and Mohamed Sharaf. Class-based continuous query schedul-
ing for data streams. In Proceedings of the Sixth International Workshop on Data
Management for Sensor Networks, page 9. ACM, 2009.

[73] Aloysius Ka-Lau Mok. Fundamental design problems of distributed systems for the
hard-real-time environment. PhD thesis, Massachusetts Institute of Technology, 1983.

[74] Barzan Mozafari and Carlo Zaniolo. Optimal load shedding with aggregates and
mining queries. In ICDE, pages 76–88. IEEE, 2010.

[75] Shanmugavelayutham Muthukrishnan, Rajmohan Rajaraman, Anthony Shaheen,
and Johannes E Gehrke. Online scheduling to minimize average stretch. In 40th
Symp. Foundations of Computer Science Science (FOCS), pages 433–443. IEEE,
1999.

[76] C. Mutschler and M. Philippsen. Distributed low-latency out-of-order event process-
ing for high data rate sensor streams. In IPDPS, pages 1133–1144. IEEE, 2013.

[77] Christopher Mutschler, Holger Ziekow, and Zbigniew Jerzak. The debs 2013 grand
challenge. In DEBS, page 289–294. ACM, 2013.

[78] Snehal Nagmote and Pallavi Phadnis. Massive scale data processing at netflix using
flink. Flink Forward Conference, 2019.

[79] Muhammad Anis Uddin Nasir, Gianmarco De Francisci Morales, Nicolas Kourtellis,
and Marco Serafini. When two choices are not enough: Balancing at scale in dis-
tributed stream processing. In 2016 IEEE 32nd International Conference on Data
Engineering (ICDE), pages 589–600. IEEE, 2016.

[80] Dimitris Palyvos-Giannas, Vincenzo Gulisano, and Marina Papatriantafilou. Haren:
A framework for ad-hoc thread scheduling policies for data streaming applications.
In Proceedings of the 13th ACM International Conference on Distributed and Event-
based Systems (DEBS), pages 19–30. ACM, 2019.

73

[81] Thao N Pham, Panos K Chrysanthis, and Alexandros Labrinidis. Avoiding class war-
fare: managing continuous queries with differentiated classes of service. Proceedings
of the VLDB Endowment, 25(2):197–221, 2016.

[82] Do Le Quoc, Ruichuan Chen, Pramod Bhatotia, Christof Fetzer, Volker Hilt, and
Thorsten Strufe. Streamapprox: approximate computing for stream analytics. In
Middleware, pages 185–197. USENIX, 2017.

[83] Nicoló Rivetti, Yann Busnel, and Leonardo Querzoni. Load-aware shedding in stream
processing systems. In DEBS, page 61–68. ACM, 2016.

[84] Nicolo Rivetti, Nikos Zacheilas, Avigdor Gal, and Vana Kalogeraki. Probabilistic
management of late arrival of events. In Proceedings of the 12th ACM International
Conference on Distributed and Event-based Systems (DEBS), pages 52–63. ACM,
2018.

[85] Gabriele Russo Russo, Valeria Cardellini, and Francesco Lo Presti. Reinforcement
learning based policies for elastic stream processing on heterogeneous resources. In
Proceedings of the 13th ACM International Conference on Distributed and Event-
based Systems (DEBS), pages 31–42. ACM, 2019.

[86] Sven Schmidt, Thomas Legler, Daniel Schaller, and Wolfgang Lehner. Real-time
scheduling for data stream management systems. In 17th Euromicro Conference on
Real-Time Systems (ECRTS’05), pages 167–176. IEEE, 2005.

[87] Mohamed A Sharaf, Panos K Chrysanthis, Alexandros Labrinidis, and Kirk Pruhs.
Efficient scheduling of heterogeneous continuous queries. In Proceedings of the VLDB
Endowment, volume 32, pages 511–522. ACM, 2006.

[88] Mohamed A Sharaf, Panos K Chrysanthis, Alexandros Labrinidis, and Kirk Pruhs.
Algorithms and metrics for processing multiple heterogeneous continuous queries.
ACM Transactions on Database Systems (TODS), 33(1):5, 2008.

[89] Anshumali Shrivastava, Arnd Christian Konig, and Mikhail Bilenko. Time adaptive
sketches (ada-sketches) for summarizing data streams. In SIGMOD, pages 1417–1432.
ACM, 2016.

[90] Ethan Siegel. Forbes, Sep 2017.

[91] Utkarsh Srivastava and Jennifer Widom. Flexible time management in data stream
systems. In PODS, page 263–274. ACM, 2004.

74

[92] Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. The 8 requirements of
real-time stream processing. SIGMOD Record, 34(4):42–47, 2005.

[93] Nesime Tatbul, Uğur Çetintemel, Stan Zdonik, Mitch Cherniack, and Michael Stone-
braker. Load shedding in a data stream manager. In PVLDB, pages 309–320. ACM,
2003.

[94] Nesime Tatbul, Uǧur Çetintemel, and Stan Zdonik. Staying fit: Efficient load shed-
ding techniques for distributed stream processing. In PVLDB, pages 159–170. ACM,
2007.

[95] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,
et al. Storm@twitter. In Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, pages 147–156. ACM, 2014.

[96] Tolga Urhan and Michael J Franklin. Dynamic pipeline scheduling for improving
interactive query performance. In Proceedings of the VLDB Endowment, volume 1,
pages 501–510. ACM, 2001.

[97] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Armbrust, Ali
Ghodsi, Michael J Franklin, Benjamin Recht, and Ion Stoica. Drizzle: Fast and
adaptable stream processing at scale. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 374–389. ACM, 2017.

[98] Jeffrey S Vitter. Random sampling with a reservoir. In TOMS, volume 11, pages
37–57. ACM, 1985.

[99] Vanish Talwar Michael Y. Levin Gabriela Jacques da Silva Nikhil Simha Anir-
ban Banerjee Brian Smith Tim Williamson Serhat Yilmaz Weitao Chen Guoqiang
Jerry Chen Yuan Mei, Luwei Cheng. Turbine: Facebook’s service management plat-
form for stream processing. In 2016 IEEE 36th International Conference on Data
Engineering (ICDE), pages 589–600. IEEE, 2020.

[100] N. Zacheilas, V. Kalogeraki, N. Zygouras, N. Panagiotou, and D. Gunopulos. Elastic
complex event processing exploiting prediction. In BigData, pages 213–222. IEEE,
2015.

[101] Nikos Zacheilas, Vana Kalogeraki, Yiannis Nikolakopoulos, Vincenzo Gulisano, Ma-
rina Papatriantafilou, and Philippas Tsigas. Maximizing determinism in stream pro-
cessing under latency constraints. In DEBS, pages 112–123. ACM, 2017.

75

[102] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Arm-
brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J
Franklin, et al. Apache spark: a unified engine for big data processing. Communi-
cations of the ACM, 59(11):56–65, 2016.

[103] Steffen Zeuch, Bonaventura Del Monte, Jeyhun Karimov, Clemens Lutz, Manuel
Renz, Jonas Traub, Sebastian Breß, Tilmann Rabl, and Volker Markl. Analyzing ef-
ficient stream processing on modern hardware. Proceedings of the VLDB Endowment,
12(5):516–530, 2019.

[104] Tan Zhang, Aakanksha Chowdhery, Paramvir Bahl, Kyle Jamieson, and Suman
Banerjee. The design and implementation of a wireless video surveillance system. In
Proceedings of the 21st Annual International Conference on Mobile Computing and
Networking, pages 426–438, 2015.

76

	List of Tables
	List of Figures
	Introduction
	Runtime Query Scheduling
	Query Sample Processing
	Thesis Contributions & Outline

	Background & Related Work
	Window Processing Semantics
	Watermarks
	Query Scheduling
	Query Sample Processing

	Query Scheduling
	Klink: Design and Algorithms
	Estimating SWM Ingestion
	Estimating Slack Time
	Handling Join Operators
	Klink's Memory Management

	Distributed Klink Design
	System Implementation
	Performance Evaluation
	Experimental Setup
	Results

	Query Sample Processing
	Aion: Straggler-Free Sampling
	Monitoring the Workload
	Window and Sample Size Estimators
	Sampling over Sub-streams

	Performance Evaluation
	Experimental Setup
	Results

	Conclusion
	References

