
Differentially Private Learning with
Noisy Labels

by

Shubhankar Mohapatra

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2020

c© Shubhankar Mohapatra 2020

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Supervised machine learning tasks require large labelled datasets. However, obtaining such
datasets is a difficult task and often leads to noisy labels due to human errors or adversarial
perturbation. Recent studies have shown multiple methods to tackle this problem in the
non-private scenario yet this remains an unsolved problem when the dataset is private. In
this work, we aim to train a model on a sensitive dataset that contains noisy labels such that
(i) the model has high test accuracy and (ii) the training process satisfies (ε, δ)-differential
privacy. Noisy labels, as studied in our work, are generated by flipping labels in the training
set, from the true source label(s) to other target(s). Our approach, Diffindo, constructs a
differentially private stochastic gradient descent algorithm which removes suspicious points
based on their noisy gradients. We show experiments on datasets across multiple domains
with different class balance properties. Our results show that the proposed algorithm can
remove up to 100% of the points with noisy labels in the private scenario while restoring
the precision of the targeted label and testing accuracy to its no-noise counterparts.

iii

Acknowledgements

First of all, I would like to thank my supervisors for the immense support and time that
they have given me throughout my research. Thank you, Prof. Helen Chen, for believing
in me and for allowing me to be a research student with you. Thank you, Prof. Xi He,
to introduce and help me learn this fascinating field of study and correct me whenever I
went wrong. Both of your advice and support has led me to write this thesis today. I am
incredibly fortunate to have been supervised by you and am excited about all our future
endeavours. Thank you Prof. Florian Kerschbaum and Prof. Gautam Kamath for reading
my thesis and for your comments on this work.

A huge thanks goes to Dr. Om Thakkar and Prof. Gautam Kamath(again) for guiding
and collaborating towards the research for my thesis. I would also like to thank all the
amazing researchers at the Data Systems group and WHISTL group at the University of
Waterloo for all the lively and sometimes intricate discussions leading to the numerous
ideas together. I’m fortunate to have met and have the chance to work with talented and
hard-working researchers like you.

Thanks a million to all my amazing friends at UWaterloo who have spent hours with
me at board games, badminton, Friday nights together at Uptown, planning get-togethers
or have been to infinitely many coffee breaks and meanwhile always putting up with my
atrocities and supporting me through the thick and thin. I also can’t go without thanking
my friends back at home in India with whom I’ve had long video chats talking about life
and end up absolutely going nowhere. I wish with all my heart that all our dreams come
true.

Last but not least, I would like to thank my parents, Lilima Mohapatra and Santosh
Mohapatra and my brother Soumyankar for the never-ending love and support. I would
not be half the person that I am today if it wouldn’t be for you people. Your phone calls
every morning motivated me to go through all the tough times. Love you Mamma, Papa
and Chunnu!

iv

Dedication

To my best friend, Rishav.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

2 Related Work 4

2.1 Differentially Private Machine Learning . 4

2.2 Learning with Noisy Labels . 5

3 Preliminaries 9

3.1 Machine Learning . 9

3.2 Differential Privacy . 10

3.3 Differentially Private SGD . 12

3.4 Noisy Labels . 15

3.5 Sever . 16

4 Problem Setup 18

5 Our Approach 20

5.1 Overview . 20

5.2 Diffindo . 22

vi

5.3 Privacy Analysis . 24

5.4 Hyperparameter Tuning . 26

6 Evaluation 27

6.1 Experimental Setup . 27

6.2 End-to-End Evaluation . 31

6.2.1 Targeted Strong Label Flips . 31

6.2.2 Composite Label Flips . 37

6.2.3 Performance on Convolutional Neural Network 40

6.2.4 Performance on Varying Noise Levels 42

6.3 Effect of Parameters . 44

6.3.1 Clipping Thresholds . 45

6.3.2 Learning Rate . 45

6.3.3 Filter Condition . 46

6.3.4 Removal Multiplier . 48

6.3.5 Noise Multiplier . 48

7 Conclusion and Open Questions 49

References 51

APPENDICES 60

A Adversarial Attacks 61

vii

List of Tables

6.1 List of datasets . 30

6.2 Results on improvement of accuracy for Diffindo (ε = ∞) compare to
SGD on MNIST . 33

6.3 Results on improvement of accuracy for Diffindo (ε = 3.6) compared to
DPSGD (ε = 3.6) on MNIST . 33

6.4 Results on improvement of accuracy for Diffindo (ε = 4.98) compared to
DPSGD (ε = 4.98) on ENRON . 35

6.5 Results on improvement of accuracy for Diffindo (ε = 5.44) compared to
DPSGD (ε = 5.44) on APTOS . 37

6.6 Composite attack results for Diffindo (ε = 3.6) compared to DPSGD
(ε = 3.6) . 39

6.7 Results on improvement of accuracy for Diffindo (ε =∞) compare to SGD 41

6.8 Results on improvement of accuracy for Diffindo (ε = 3.3) compared to
DPSGD (ε = 3.6) . 42

6.9 Performance of Diffindo on varying noise levels 43

6.10 Parameter study values . 44

A.1 Summary of Diffindo vs baselines on adversarial attacks 62

viii

List of Figures

3.1 Example of a label flip from Class 1 to Class 7 in MNIST 15

4.1 Problem Setup . 18

6.1 Diffindo has a higher precision than the baseline algorithms (DP-IMSAT
and DPSGD). 32

6.2 Precision increase for target label (1) for Diffindo on ENRON 34

6.3 Performance of Diffindo on medical dataset APTOS 36

6.4 Precision comparison for all output classes on MNIST Tweak 38

6.5 Precision comparison for all output classes on MNIST Tstrong 39

6.6 CNN Model for Diffindo vs baseline algorithms (DP-IMSAT and DPSGD). 40

6.7 Comparison of Diffindo vs DPSGD on varying noise 43

6.8 Performance of Diffindo for MNIST for varying one parameter, and others
fixed at reference value . 46

6.9 Outlier points removal in Diffindo at ε = 3.6 and δ = 10−5 when ∆ is 30%. 47

A.1 Diffindo shows testing accuracy gains for the same privacy budget vs
DPSGD over 48 attacks for each ∆ . 63

A.2 Diffindo (ε =∞) shows testing accuracy gains vs SGD over 48 attacks for
each ∆ . 64

ix

Chapter 1

Introduction

The last decade has observed immense growth in deep learning. With the popularization
of deep learning, the need for clean datasets has become of utmost importance, as the
accuracy of the model is highly dependent on the quality of the training data [57, 23]. One
common data quality issue is noisy labels, which could arise due to several issues, including
data entry errors [6], or data poisoning attacks [73], in which attackers inject fake points
(e.g., creating fake accounts). If the model curator has direct access to the data as well
as domain expertise, these noisy labels can be manually corrected or removed. However,
cleaning these noisy labels is usually difficult, as many noisy datasets (e.g., medical data)
are sensitive and private. One may be tempted to argue that the model curator could
remove datapoints with manipulated labels from the training set by simply viewing the
training point and manually adjusting the label. This is reasonable if the training points are
interpretable, but is an impossible task if labelling requires significant domain expertise,
or if there are a large number of outliers. The labelling of the points becomes an even
harder task if the data is private and can not be directly accessed by the model curator.
Motivated by these challenges, we investigate supervised learning with noisy labels in a
private setting. There are numerous works in the literature focused on identifying and
dealing with noisy labels in the non-private setting, but to the best of our knowledge, our
paper is the first of its kind in the private setting.

Prior work in the non-private setting [60, 57, 61, 39] have tried to learn with noisy labels
using three methods. The first approach is to design models which are inherently robust
to model flips. Researchers have achieved such models by building robust loss functions,
adding extra layers in a neural network to remove noisy points or using some auxiallry
knowledge. A second approach is to relabel the points using unsupervised clustering tech-
niques. The idea is to cluster the points without using the labels (e.g., k-nearest neigh-

1

bours [61] or using validation from a separate set of trusted labels [28]), and then use the
cluster centres to relabel points which are a minority in each cluster. The third approach
instead is to identify and remove the label-flipped points from the training set [37, 13].
Diakonikolas, Kamath, Kane, Li, Steinhardt, and Stewart present a meta-algorithm called
Sever [13] which is used on top of any stochastic optimization technique to remove outlier
points based on scores calculated from the top most singular vector of variance of the gra-
dients. They show experiments on traditional machine learning algorithms like SVM and
logistic regression. However, none of these works consider private settings. In our work,
we show that Sever can be extended to neural networks and performs well on common
machine learning datasets in the private scenario.

For quantifying our privacy guarantees, we consider the standard privacy notion, dif-
ferential privacy (DP) [16]. It is the current gold standard of privacy and is being used
by the US Census Bureau [50] and by many leading software industries like Google, Uber,
Facebook and Apple [21, 80]. To make our learning model private, we use differentially
private stochastic gradient descent (DPSGD) [83, 72, 5, 1], which can be an optimizer for
any deep learning model. DPSGD is based on a stochastic optimizer which iteratively
updates the parameters in the model to optimize the objective function. At each iteration,
the empirical gradients are computed from a batch of sampled points and noise is added to
the (clipped) gradients to ensure differential privacy. Applying the meta-algorithm Sever
to remove points in DPSGD is non-trivial, as there are several new issues that arise under
the additional constraint of privacy. We address these issues and propose a new algorithm
which is both private and robust.

The main contributions of our work are as follows :

• We are the first study to show that the accuracy of a differentially private machine
learning algorithm is prone to noisy labels in the training data.

• We provide a novel differentially private algorithm for this setting of learning on noisy
labels, named Diffindo.

• Our results show that Diffindo can remove an up to a 100% of the outliers and
increase testing accuracy for upto the no-noise accuracy for baseline algorithms, in-
cluding private unsupervised learning and DPSGD.

This thesis is organized as follows. We start by first looking into some prior related
work specifically in DP machine learning and learning with noisy labels in the non-private
scenario in Chapter 2. Next in Chapter 3, we describe some preliminary notations and
fundamentals which would later help us in sketching out our algorithm and the problem

2

setup. As this problem has not been defined before in literature, we formally write down the
problem setup and statement in Chapter 4. In Chapter 5, we introduce Diffindo which
is a method to remove outliers while training on private data. We extensively evaluate
the proposed algorithm on multiple inputs across different datasets, models and label flips
in Chapter 6. Finally, in Chapter 7, we conclude this thesis while discussing some open
questions and future work in this field.

3

Chapter 2

Related Work

In this section, we look into the related work. We first start with differentially private
machine learning, then move to literature work where researchers have presented machine
learning algorithms to learn with noisy labels. Finally, we present background in health
data where differentially private learning with noisy labels can be used.

2.1 Differentially Private Machine Learning

Simply anonymizing the dataset and scrapping off demographic and personal information
does not provide privacy. This has been proven by multiple researchers in history. For
example, in 2006, Narayanan and Shmatikov [55] showed that the adversary is able to
re-identify the members of the Netflix dataset, which consisted of anonymized individuals
and their choice of movies by extrapolating rankings and timestamps in IMDB public data
repository. The same phenomenon was observed in other kinds of data like public health
records [75], social network graphs [4], search query logs [31] and many more. In 2009,
Wang et al. showed that releasing computed statistics from high-dimensional sensitive
genetic data can also face the same fate of de-anonymization [82].

Similar data leakage trends have also been observed while training a machine learning
model. There has been much previous work that has demonstrated this by showing different
attack techniques to machine learning models. One such attack is a reconstruction attack,
where the adversary tries to decode the training dataset by asking the model multiple
statistical queries and getting them answered with certain accuracies [14, 22]. Another
line of attacks is called the membership inference attack where the adversary tries to guess

4

whether a particular data point was used in the training of the machine learning model
or not [29, 70, 7, 19, 71]. These attacks can even be made worse if the adversary has
white box access to the machine learning model [56]. The third type of threat is focused
on memorization attacks, where it has been seen that a neural network has tendencies of
memorizing sensitive information from training dataset [8].

These attacks led to research that tried to bound the training data information fed into
the model by providing differential privacy guarantees. The US Census Bureau was the first
big organization to adopt differential privacy in 2008 for a product called OnTheMap [50]
and subsequently Google, Apple, Microsoft, Facebook and Uber followed [80]. Google used
differential privacy to monitor and analyze the Chrome browser properties of its user base
to detect security vulnerabilities [21]. Although some of the underlying differential privacy
mechanisms such Laplace mechanism [17] and Gaussian Mechanism [15] can be used to
compose into iterative machine learning tasks but it has been seen that they provide loose
guarantees and lower utility. In recent years, differentially private machine learning has
been a focus of many researchers and it has led to much work in this field. Differentially
private empirical risk minimization using input, output and objective perturbation was
first proposed by Choudhuri et al. in 2011 [9]. Later, a private stochastic gradient descent
algorithm was proposed by Song et al. [72] and optimal risk bounds were provided later by
Bassily et al. [5]. There have also been some works in the non-convex optimization setting
including deep learning by Abadi et al. [1]. A broad and more in-depth analysis of DP
machine learning algorithms can be found here [76]. Our problem aims to learn with the
same differential private guarantees as prior work, but the prior work only considers clean
data for training, but we use noisy (more specifically, label flipped) datasets for training.

2.2 Learning with Noisy Labels

Machine learning is highly dependent on the quality of data, and that is the reason why
ML practitioners spend most of their time cleaning and preprocessing the data to get
the best out of the models [23, 57]. Some studies have also shown that label noise can
even be more impactful on the training process than feature noise itself [86, 65]. Noisy
labels in the training data is a common problem in the medical field because obtaining
clean and accurate medical data is a challenging task [43, 35]. Additionally, it is even
a harder task to label this kind of data as expert domain expertise or consensus from a
group of experienced doctors is required [62]. Getting hold of medical data becomes a
herculean task when these problems are combined with stringent health and government
standards and policies. Some studies have been able to successfully gather health data

5

by employing a large number of experts to annotate the datasets, but such efforts require
massive financial and logistic resources [25]. Alternatively, a few studies have successfully
used automated mining of medical image databases such as hospital picture archiving and
communication systems (PACS) to build large training datasets [84]. However, this method
is not always applicable, as historical data may not include all the desired labels or images.
To mitigate the above issues, some studies have tried to collect data by crowd-sourcing
them to get labels from non-experts. However, even for relatively simple segmentation
tasks, computerized systems have been shown to generate significantly less accurate labels
compared with human experts and crowd-sourced non-experts [27]. Given this scenario, it
is becoming hard for deep learning practitioners to get hold noise-free datasets [10]. Hence,
algorithmic solutions to get rid of noisy labels are highly desired in the medical field. In
this section, we will discuss some prior work in learning with noisy labels with a focus on
deep learning.

Researchers have tried to tackle noisy labels in multiple ways which can be broadly
classified into the three following categories :

1. Design based methods - These methods aim at devising models that can inherently be
robust to label noise. This can be achieved by altering the model, the loss function
or the training procedure. Ghosh et al. studied the conditions for the robustness of
a loss function to label noise for training deep learning models [24]. Two ways of
improving the robustness of a loss function of deep learning models were proposed
in Patrini et al. [60]. Several studies have proposed adding a “noise layer" to the
end of deep learning models. The noise layer proposed by [74] is equivalent to mul-
tiplication with the transition matrix between noisy and true labels. The authors
developed methods for learning this matrix in parallel with the network weights us-
ing error back-propagation. A similar noise layer was proposed by [77] for training
a generative adversarial network (GAN) under label noise. Some papers have also
tried a distillation approach based on the auxiliary knowledge learnt from some clean
training data. The training starts by assigning a pseudo-label based on the con-
vex combination of auxiliary knowledge and noisy label. They suggested that as
the training proceeds, the model becomes more accurate, and its predictions can be
weighed more strongly, thereby gradually forgetting the original incorrect labels.

2. Clustering based methods - Usually, the noisy labels are dominated by the correct
labels, and there is a considerable correlation between the correct labels which out-
cast the noisy labels out. Authors have found high correlations in the latent space
generated after some layers of a network. These correlations have shown clusters of
the noisy labelled datapoints [44]. Another example is the work of [85], where the

6

authors proposed a method to leverage the multiplicity of data samples with the
same (noisy) label in each training batch. All samples with the same label were fed
into a light-weight neural network model that assigned a confidence weight to each
sample based on the probability of it having the correct label. Some authors have
tried data re-weighting techniques to down weight the datapoints, which have a high
probability of having noisy labels [66]. A clean validation set is used to determine the
weights assigned to the training data with noisy labels. The authors showed that this
weighting scheme was equivalent to assigning larger weights to training data samples
that were similar to the clean validation data in terms of both the learned features
and optimization gradient directions.

3. Filtering methods - The methods in this bracket either try removing the points with
the noisy labels or try de-noising them back to its original label. The filtering pro-
cess can be applied before the training process as a pre-processing step or whilst
training. An example of this method is [79], where authors propose supervised and
unsupervised methods to obtain the correctly labelled images from a collection of
images. CleanNet, proposed by [45], extracts a feature vector from a query image
with a noisy label and compares it with a feature vector that is representative of its
class. The representative feature vector for each class is computed from a small clean
dataset. The similarity between these feature vectors is used to decide whether the
label is correct. In [47], a teacher-student based learning is proposed in which the
student learns on a noisy dataset and the teacher who has some prior knowledge on
a clean dataset helps the student in learning. The student model was encouraged to
be consistent with the teacher model using a meta-objective in the form of the KL
divergence between prediction probabilities. A similar area of research is the robust
mean estimation problem, which is applied to more classical machine learning tasks
that go back to Tukey and his students [78]. Recently, there has been much work
in this direction for mean and co-variance estimation [12, 40, 63] leading to a meta-
algorithm called Sever which can be used on top of the gradient descent algorithm
to remove data point with noisy labels(outliers) from the training dataset [13].

Here we have stated some of the previous work in this area and more related work can
be found in [35]. Despite the numerous work in treating datasets with noisy labels for
learning, there has been no advancement for doing the same in the private setting up to
the best of our knowledge. This problem is well observed with medical data where access
to health care data is plagued by vulnerability due to patient privacy considerations, which
are protected by federal and local laws of protected health information such as the Health
Insurance Portability and Accountability Act of 1996 (HIPAA). The fear of litigation and

7

breach of privacy discourages providers from sharing patient health data, even when they
are de-identified [2]. Noisy labels and privacy issues have made medical data an important
use case for differentially private learning with noisy labels.

In this paper, we build on the Sever algorithm and use it in the private setting.
One might be tempted to privatize any of the above algorithms, but the reason why we
choose Sever as our best candidate is threefold. Firstly, it can be directly applied to
the gradients, and as DPSGD already sanitizes the gradients, Sever is a comfortable fit.
Secondly, Sever has previously shown not only to remove label flipped points but also
adversarially generated points. We study further on adversarial data poisoning for our
proposed algorithm in Appendix A. Thirdly, Sever provides theoretical guarantees for
outlier point removal in higher dimensions while minimizing the loss function in the non-
private scenario. This is beneficial while learning modern machine learning image datasets.
We leverage these perks in our proposed algorithm.

8

Chapter 3

Preliminaries

In this section, we recall the definition of basic notions in machine learning, differential
privacy, differentially private SGD, noisy labels, and the algorithm Sever, a non-private
algorithm to combat data poisoning which our private method is based on.

3.1 Machine Learning

A supervised learning task takes in a set of n training points of the form (x1, y1), .., (xn, yn),
where xi ∈ X is the feature vector of the ith point and yi ∈ Y is its label (or class). The
distribution of the random variables (X ,Y) ∈ X × {1, 2, . . . , C} is defined as D where
the feature space is X ⊆ Rd and C is the number of classes. The goal is to train a
parameterized function that takes in a feature vector x ∈ X and outputs a label y ∈ Y to
fit the training data with respect to a loss function.

A loss function on parameters θ measures the difference between the labels predicted
by θ-based function and the true labels in the training data. For example, the loss L(θ)
on θ can be the average of the loss over the training points, i.e., L(θ) = 1

n

∑
i L(θ, xi). The

learning task aims to minimize this loss function, but the loss function in complex models
is usually non-convex and thus is difficult to minimize. Some common loss functions are
the MSE (Mean Square Error) [46] which is mostly used for regression problems, Hinge
Loss (used for SVMs) [69] and Cross Entropy loss [42] which is used for binary or multi
class classification problems.

An optimizer like stochastic gradient descent (SGD) [67] is commonly used to reduce the
loss function by iteratively updating the parameters θ in the negative gradient direction. At

9

each iteration, t, a batch of points B from the training data is sampled and the gradient of
the loss function gt is estimated using these samples B. The model parameters are updated
as θt+1 = θt − η · gt, where η is the learning rate. SGD is ubiquitous in practice and seems
to be effective at minimizing loss functions even in non-convex settings.

In our experiments, we use logistic regression and two common neural network architec-
tures, a multi-layer perceptron and a convolutional neural network. Our logistic regression
model is used on binary classification task and hence we use the Binary Cross Entropy
loss and the neural networks are built for multi-label classification task and hence we use
a variation of the cross entropy loss called the negative log-likelihood loss. However, the
proposed algorithm in this thesis is not restricted to the aforementioned models and can
be extended to any other models for supervised classification tasks.

3.2 Differential Privacy

Differential privacy (DP) [16, 17] is the gold standard privacy guarantee for learning pat-
terns in the datasets to protect sensitive information of individuals. Formally, it is defined
as follows.

Definition 1 (Differential Privacy). A randomized algorithm M : D → R with domain
D and range R satisfies (ε, δ)-differential privacy (DP) if for any two adjacent inputs
D,D′ ∈ D that differ in an entry and for any subset of outputs S ⊆ R it holds that :

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ

The original implementation of Differential Privacy does not include the additive term
δ. We use the variant used in [15], which allows for the possibility that the vanilla ε-
Differential Privacy can be broken with probability δ (which is ideally set to << 1

|D|).

Differential Privacy has many advantages like post-processing and adaptive composition
which we define next.

Lemma 3.2.1 (Post-Processing [16]). If a mechanism M : D → R is (ε, δ)-differentially
private, then for any function f : R → R′, we have that f ◦M is also (ε, δ)-differentially
private.

Lemma 3.2.2 (Basic Composition [16]). For each i ∈ [k], let algorithmMi : D×
i−1∏
j=1

Rj →

10

Ri be (εi, δi)-DP in its first argument. If algorithmM[k] : D×
k∏
j=1

Rj is defined such that :

M[k] = (M1(D),M2(D,M1(D)), · · · ,Mk(D,M1(D)), · · · ,Mk−1(D))

thenM[k] is
(k∑
i=1

εi,

k∑
i=1

δi

)
-differentially private.

Lemma 3.2.3 (Advanced Composition [34, 18]). For each i ∈ [k], let algorithm Mi :

D ×
i−1∏
j=1

Rj → Ri be (εi, δi)-DP in its first argument. If algorithm M[k] : D ×
k∏
j=1

Rj is

defined such that :

M[k] = (M1(D),M2(D,M1(D)), · · · ,Mk(D,M1(D)), · · · ,Mk−1(D))

then for every δ′ > 0, algorithmM[k] is (ε′, 1− (1− δ′)
k∏
i=1

(1− δi)) - DP, where

ε′ = min

k∑
i=1

εi,
k∑
i=1

εi(e
εi − 1)

eεi + 1
+

√√√√√√√√√min

 k∑
i=1

2ε2i log

e+

√√√√ k∑
i=1

2ε2i

δ′

, k∑
i=1

2ε2i log
1

δ′

One of the classic DP algorithms is the Gaussian mechanism. To define the Gaussian
mechanism, we will first describe the global sensitivity of a function.

Definition 2 (L2-sensitivity). A function f : D → R has L2-sensitivity Sf if

max
D,D′∈D

s.t(D,D′)neighbours

||f(D)− f(D′)||2 = Sf

Lemma 3.2.4 (Gaussian Mechanism [17]). If a function f : D → R has L2-sensitivity Sf ,
and a mechanismM has on input D ∈ D outputs f(D) + b, where b ∼ N

(
0, σ2In×n), then

for c2 > 2 ln(1.25/δ), the mechanism M with parameter σ ≥ cSf/ε is (ε, δ) -differentially
private. Here, N (0, σ2In×n) denotes a vector of n i.i.d samples from the zero-mean Gaus-
sian distribution having variance σ2.

11

The analysis of this mechanism can be done post hoc or during an iterative process to
break if a certain threshold is met. Note that there are infinitely many (ε, δ) pairs satisfying
this equation and to get a certain bound one of the values need to be fixed.

3.3 Differentially Private SGD

Complex DP algorithms can be built from the basic primitives based on post-processing
and composition properties of DP. Usually, a differentially private additive noise mecha-
nism consists of the following step: approximate the whole algorithm using the sequential
composition of bounded-sensitivity functions; choosing appropriate noise parameters and
finally performing the privacy analysis by a composition theorem to report the final pri-
vacy cost. One of such algorithms is the Differentially Private Stochastic Gradient Descent
(DPSGD). It is an approach inspired by the vanilla SGD to control the influence of any
data point during the training process. The gradients of SGD are the random variables
to which the noise is added. However, as there is no apriori bound of this gradient, the
sensitivity Sf is calculated by clipping the maximum `2-norm to a user-defined parameter
called C. Algorithm 1 outlines our basic method for training a model with parameters θ
by minimizing the empirical loss function L(θ). At each step of the SGD, we compute the
gradient ∇θL(θt, xi) for a random subset of examples, clip the `2 norm of each gradient
to a maximum clipping factor of C, compute the average, add Gaussian noise with mean
0 and variance of bounded sensitivity C multiplied with the noise multiplier σ to protect
privacy, and take a step in the opposite direction of this average noisy gradient. In the end,
in addition to outputting the model, we will also need to compute the privacy loss of the
mechanism based on the information maintained by the privacy accountant also known as
the Moments Accountant.

We follow these steps while designing our algorithm in Chapter 5. We use the Moments
Accountant described in [1] for privacy accounting. The details of the Moments Accountant
is described below.

Moments Accountant

The moments accountant based on Rényi-DP [53] keeps track of a bound on the mo-
ments of the privacy loss random variable (In our case, gradients). It generalizes the
standard approach of tracking (ε, δ) and using the strong composition theorem. While
such an improvement was known previously for composing Gaussian mechanisms, it ap-
plies also for composing Gaussian mechanisms with random sampling and can provide a
much tighter estimate of the privacy loss iterative processes like gradient descent. It is

12

Algorithm 1: DPSGD
Data: Training set A : {x1, ...xn}, Loss function L(θ), Parameters: Learning rate

η, Lot size L, Gradient norm bound C Noise scale σ, Total number of
iterations T

Result: Model with trained parameter θ
1 Initialize model with θ0 randomly;
2 for t ∈ [1, T] do
3 Sample a random subset Lt ⊆ A, by independently including each element of A

with probability L/n ;
4 for i ∈ Ab do
5 Compute gradient gt(xi) = ∇θL(θt, xi);
6 Clip each gradient in `2 norm to C: ḡt(xi) = gt(xi)/max(1, ‖gt(xi)‖2

C
);

7 end
8 Add noise g̃t = 1

|L|(
∑

i ḡt(xi) +N (0, σ2C2I));
9 Gradient descent θt+1 = θt − ηg̃t;

10 end
11 return θT and compute the overall privacy cost (ε, δ)

difficult to use advanced composition for iterative mechanism like DPSGD as each appli-
cation of an advanced composition theorem leads to a wide selection of possibilities for
(ε, δ)-differentially private guarantees.

Privacy loss is a random variable dependent on the random noise added to algorithm 1.
That a mechanism M is (ε, δ)-differentially private is equivalent to a certain tail bound
on M’s privacy loss random variable. While the tail bound is very useful information
on a distribution, composing directly from it can result in quite loose bounds. Moments
Accountant instead computes the log moments of the privacy loss random variable, which
composes linearly. Then it uses the moments bound, together with the standard Markov
inequality, to obtain the tail bound, that is the privacy loss in the sense of differential
privacy. More specifically, for neighbouring databases D and D′, a mechanismM, auxiliary
input aux, and an outcome o ∈ R, define privacy loss as

c(o;M, aux, d, d′) , log
Pr[M(aux, d) = 0]

Pr[M(aux, d′) = 0]
(3.1)

A common design pattern, which is used extensively in the paper, is to update the state
by sequentially applying differentially private mechanisms. This is an instance of adaptive

13

composition, which we model by letting the auxiliary input of the kth mechanismMk be
the output of all the previous mechanisms.

For a given mechanism M, we define the λth moment αM(λ; aux, d, d′) as the log of
moment generating function evaluated at the value of λ:

αM(λ; aux, d, d′) , logEo∼M(aux,D)[e
λc(o;M,aux,d,d′)] (3.2)

In order to prove privacy guarantees of a mechanism, it is useful to bound all possible
αM(λ; aux, d, d′). We define

αM(λ) , max
aux,d,d′

αM(λ; aux, d, d′)

where the maximum is taken over all the possible aux and all neighbouring datasets D,D′.

We state the properties of α that we use for Moments Accountant.

Theorem 3.3.1. Let αM be defined as above. Then,

1. [Composability] Suppose that a mechanism M consists of a sequence of adaptive
mechanismsM1, · · · ,Mk whereMi :

∏i−1
j=1Rj ×D → Ri. Then, for any λ

αM(λ) ≤
k∑
i=1

αMi
(λ)

2. [Tail Bound] For any ε > 0, the mechanismM is (ε, δ)-differentially private for

δ = min
λ
eαM(λ)−λε

The proof to the theorem is given in [1]. By Theorem 3.3.1 it suffices to compute, or
bound, αM(λ) at each step and sum them to bound the moments of the mechanism overall.
We can then use the tail bound to convert the moments bound to the (ε, δ)-differential
privacy guarantee.

14

3.4 Noisy Labels

Training data collected from unreliable sources usually have noisy labels. This noise can
range from being identically split into different target labels (non-adversarial and natural
noise) to skewed label flips (adversarially perturbed noise). Deep neural networks have
been found to be naturally robust to label flips when larger networks and batch sizes are
used [68]. In their work, the dataset of size n is diluted by adding ∆n points with flipped
labels, where ∆ is the noise level. This does not change the available number of original
examples and the original distribution is preserved.

Figure 3.1: Example of a label flip from Class 1 to Class 7 in MNIST

In our work, we consider a stronger label flipping attack. Instead of adding noisy
points, we use a transition matrix to change fraction of existing data points of one class to
a target class [74]. We empirically show that this kind of attack not only degrades the test
accuracy of the model but drastically reduces the precision of the target class. In other
words, examples drawn from distribution D is unavailable and instead what we observe
are noisy training samples {(x1, ŷ1), . . . , (xn, ŷn)}, where xi ∈ X and ŷi denotes the noisy
labels. We call this new noisy distribution D̂ and it has the same feature and label space
(X , Ŷ) ∈ X × 1, 2, . . . , C .

Transition Matrix : The random variables Ŷ and Y are related through a transition
matrix also known as a corruption matrix T ∈ [0, 1]C×C . Each element of this matrix Ti,j
stores the probability of elements from source class i to target class j.

Ti,j = p(ŷ = j|y = i)

15

Such matrices can help us in modelling single-targeted as well as composite label noises.
When running our experiments, we implement this noisy flips by getting all the indices
of the source class and randomly changing the labels of these source points to the target
labels as given in the transition matrix. We also denote the total percentage of labelled
flipped as ∆. In other words, this is the total sum of all the elements in the transition
matrix.

3.5 Sever

Sever [13] is a meta-algorithm to filter outlier points based on their gradients in the
training process. Outliers, as defined by Diakonikolas et al. can be mislabelled points
defined just like the section above or adversarially added fake points to the training dataset.
In their paper, they show that even a small fraction of these outliers in the training set
can drastically affect the testing error of traditional machine learning algorithms like SVM
and logistic regression. This algorithm takes in a batch of points, projects their gradients
onto a carefully chosen direction, and removes a fraction of points with large projected
values. Sever possesses strong theoretical guarantees and it has been shown to achieve
positive results on corrupted datasets and traditional machine learning models like ridge
regression and support vector machines. Unlike many other filtering based noisy label
removal algorithms, Sever has no dependence on the underlying dimension of the training
set d and hence, have better robustness in higher dimensions. Our work is the first time
that Sever is being used for neural network models.

Now, we show one of the important theorems from Sever which is used to build the
proposed algorithm in this thesis. We start by defining γ-approximate critical point.

Definition 3 (γ-approximate critical point). Given a function f : D → R, γ-approximate
critical point of f , is a point w ∈ D so that for all the unit vectors v where w+ δv ∈ D for
arbitrarily small positive δ, we have that v · ∇f(w) ≥ −γ.

Essentially, the above definition means that the value of f cannot be decreased much
by changing the input w locally while staying within the domain. The condition enforces
that moving in any direction v either cause us to leave D or causes f to decrease at a rate
at most γ.

This definition helps us to define a γ-approximate learner.

16

Definition 4 (γ-approximate learner). A learning algorithm L is called γ-approximate if,
for any functions f1, · · · , fn : D → R each bounded below on a closed domain D, the output

w = L(f1:n) of L is a γ-approximate critical point of f(x) := 1
n

n∑
i=1

fi(x).

In other words, L always finds an approximate critical point of the empirical learning
objective. We note that most common learning algorithms (such as stochastic gradient
descent) satisfy the γ-approximate learner property. We are now ready to present Theorem
2.1 from [13] which shows that the algorithm Sever always finds a γ-critical point with
high probability.

Theorem 3.5.1. Suppose that functions f1, · · · , fn : D → R are bounded below on a closed
domain D, and suppose that they satisfy the following deterministic regularity conditions:
There exists a set Igood ⊆ [n] with |Igood| ≥ (1−∆)n and σ > 0 such that:

1. CovIgood [∇fi(w)] � σ2I, w ∈ D,

2. ||∇f̂(w)− f̄(w)||2 ≤ σ
√

∆, w ∈ D, where f̂ def
= (1/|Igood)

∑
i∈Igood fi .

Then the algorithm Sever applied to f1, · · · , fn,∆ returns a point w ∈ D that, with
probability at least 9/10 is a (γ +O(σ

√
∆))- critical point of f̂ .

Note that there is no dependence of the dimension d and hence enabling Sever to per-
form well on higher dimensional data (e.g. Image data). We built our proposed algorithm
on top of this Theorem making it suitable in the private scenario.

17

Chapter 4

Problem Setup

To the best of our knowledge, there have been no previous work in private learning with
noisy labels and therefore, in this chapter, we formally define the problem statement and
setup.

Figure 4.1: Problem Setup

Consider a set of sensitive and noisy training data D which is a set of n training points
of the form {(x1, y1), . . . , (xn, yn)}, where xi ∈ X is the feature vector of the ith point and
yi ∈ Y is its label (or class) collected from users and sitting on a server behind a privacy
firewall as shown in Figure 4.1. A model curator resides on the other side of the firewall
and has no direct access to the dataset. However, a differentially private learning algorithm
is allowed to run on the private dataset, and the learned model can be shared with the
model curator. The curator is also not aware of any corruptions made to the data, but the
curator has a set of clean testing data Dtest with correct labels which can be used to test

18

the final accuracy of the model. Also, note that the corruptions in the data (which in our
case is generated by the transition matrix) can be targeted towards a specific class or set
of classes. In such cases, we would also like to ensure high precision for the affected classes
with the overall testing accuracy on Dtest.

Problem Statement: Given a training dataset D with noisy labels, we would like to train
a neural network model on D such that (i) the training process satisfies (ε, δ)-differential
privacy, and (ii) the model predicts the labels of the points in the testing dataset Dtest

with high accuracy. In particular, if many training points are mislabeled to certain target
class(es), the learned model may misclassify many testing examples to such class(es) re-
sulting in low precision value(s). Hence, we would like to ensure high precision per class
in the testing data.

19

Chapter 5

Our Approach

5.1 Overview

In this section, we outline the non-private method upon which our approach is based,
highlight some new challenges which arise in our setting and summarize the modifications
necessary to overcome these challenges.

Our approach is based on the non-private algorithm Sever [13], which can be briefly
described as follows. Given some learning task, a model is first trained (ignoring any
corruptions present in the data) to a local optimum. For instance, this could simply involve
optimizing the parameters of the model (in order to minimize the loss function) using SGD,
but any other appropriate optimization method could also be used as a black box. Given
this optimum, the following “filtering” algorithm is run: we compute the empirical gradients
of the training set, take the covariance matrix of these gradients, find the top eigenvector
direction, and remove points whose gradient when projected onto this direction is too large.
We repeat the entire procedure on the pruned dataset until convergence. An appropriate
instantiation of this framework has strong provable guarantees, and [13] also demonstrates
that it is effective in practice for simple models, including logistic regression and support
vector machines (SVMs).

However, in the setting we are concerned with, there are a number of new considerations
that arise. Most obvious is the constraint of differential privacy, but the scale of the datasets
and models we investigate also have their own associated problems.

To elaborate on the last point, the largest dataset and model considered in [13] is the
Enron dataset [51] trained on a SVM model, and thus the problem as a whole has roughly

20

4,000 training points and 5,000 parameters. In comparison, since one of our datasets
and models is the MNIST dataset [41] on a multilayer perceptron, the problem has 60,000
training points and nearly 800,000 parameters – overall, several orders of magnitude larger!
As it would be impractical to store data of this scale in memory (e.g., the covariance matrix
alone would have 8000002 ≈ 7× 1011 entries), we are forced to turn to other options. Our
method instead performs filtering using the gradients with respect to only the input pixels
(rather than the parameters of the model), reducing the dimensionality from 800, 000 to
roughly 800.

Turning to issues that arise due to privacy: in a differentially private setting, it is
not cheap to train a model to optimality using DPSGD, as Sever would prescribe. In
particular, each privatized step of SGD will expend a fraction of our privacy budget, and
we must be judicious with our choice of how many steps to take before running the filtering
procedure.

More broadly speaking, there are many steps in the framework which must be priva-
tized. The choice of how to split up our privacy budget (as well as the associated hyperpa-
rameters) gives rise to many important design decisions. In addition to the standard noise
injection in DPSGD, we must also pay in our privatization of Sever, as we must privately
compute the covariance of the gradients (requiring another private mean computation as
well). Also, while the version of Sever used in experiments in [13] removes a percentile of
points with the highest scores, it is not clear how to do this same removal privately, and
thus we use a fixed threshold.

Finally, since our method involves removal of points from the dataset at various intervals
during the process of DPSGD, a new privacy analysis is needed to account for the total
privacy loss of the dataset. Since sensitive information of individual points is used in the
removal step, it can be tricky to obtain utility along with a strong privacy guarantee.
By carefully taking advantage of post-processing and adaptive composition, our method
achieves this while ensuring that it doesn’t worsen the privacy guarantees of the underlying
DPSGD procedure as well, even though the effective dataset size can potentially reduce
during the process. For further technical details, refer to section 5.3.

21

5.2 Diffindo

Algorithm 2: Diffindo
Data: Training set {x1, ...xn}, Loss function L(θ), Parameters: Learning rate η,

Lot size L, Gradient norm bound C, Average gradient norm bound C2,
Noise scale σ, Removal multiplier p, Total number of SGD iterations T ,
Total number of removal iterations Tf

Result: Model with trained parameter θ
1 Initialize model with θ0;
2 Initialize all datapoints as active indices in an array of length n as A = [1, 2, ...n];
3 for t ∈ [1, T] do
4 Sample a random set Ab ⊆ A, by independently including each element of A

with probability L/n ;
5 for i ∈ Ab do
6 Compute gradient gt(xi) = ∇θL(θt, xi);
7 Clip each gradient in `2 norm to C: ḡt(xi) = gt(xi)/max(1, ‖gt(xi)‖2

C
);

8 end
9 Add noise g̃t = 1

|L|(
∑

i ḡt(xi) +N (0, σ2C2I));
10 Gradient descent θt+1 = θt − ηg̃t;
11 if t mod d(T/Tf)e = 0 then
12 Compute gradient G by passing whole active dataset with indices ∈ A:

G = ∇xL(θt, xi∈A);
13 for i ∈ A do
14 Clip each gradient in `2 norm to C2: Ḡi = Gi/max(1, ‖Gi‖2

C2
);

15 end
16 Add noise: G̃avg = 1

n
(
∑

i Ḡi +N (0, σ2C2
2I));

17 Â = FILTER(G,G̃avg,A,p,C2,σ,p);
18 update active indices A = A \ Â;
19 end
20 return θT and compute the overall privacy cost (ε, δ)

In this section, we describe our proposed algorithm called Diffindo1 [54]. Given a su-
pervised learning task, Diffindo trains on a sensitive dataset D = {(x1, y1), . . . , (xn, yn)}
privately. This algorithm considers noisy labels in the dataset and hence applies a filter

1The name is inspired from the severing charm incantation in the famous fantasy novel series Harry
Potter by J. K. Rowling.

22

function during the training process to remove points that are likely mislabeled.

Diffindo is described in Algorithm 2. A privatized version of the core filtration step
of Sever is described in Algorithm 3, and is a key primitive in Diffindo. In the sequel,
we describe the steps of Diffindo, highlighting some important design decisions along the
way. Lines 3 through 10 of Algorithm 2 are almost identical to DPSGD: we subsample the

Algorithm 3: FILTER(G,Gavg,A,p,C2,σ,p)
Data: Gradients G, Average batch gradients Gavg, indices A, Gradient norm

bound C2, Noise scale σ, Removal multiplier p
Result: Bad indices Â

1 Initialize S ← {1, . . . , |G|};
2 Ĝ = [G− G̃avg] be the |G| x d matrix of centered gradients;
3 Clip each gradient in `2 norm to C2 Ĝ = Ĝ/max(1, ‖Ĝ‖2

C2
)∀i ∈ S;

4 Let E ∈ RS∗S be a symmetric matrix where the upper triangle (including the
diagonal) is i.i.d. samples from N (0, σ2C4

2I), and each lower triangle entry is
copied from its upper triangle counterpart;

5 Covariance matrix Σ̃ = ĜT Ĝ+ E;
6 Let ṽ be the top eigenvector of Σ̃;
7 Compute the vector of outlier scores τi∈S = ((Ĝi − G̃avg) · ṽ)2 ;
8 Compute threshold score τthresh = p · (G̃avg · ṽ)2;
9 Â = Indices with scores more than τthresh ;

10 Return Â ;

dataset, compute and clip the gradients, and add noise. The main difference is that, instead
of subsampling from the entire dataset, we have a set A of “active indices” from which we
subsample. This set is initialized to be the entire set of points but will be pruned as points
are removed by the filtering procedure. An important point to note is the scaling factor
in Line 9, which is 1/L. Ideally, we would scale this sum by the number of summands,
|Ab|. Since using this value exactly as the normalization factor would lose some of the
privacy gained due to subsampling, we could instead rescale by its expected value, L|A|/n.
However, since exactly revealing the size of |A| would also lose privacy, we simply divide
by the fixed value L, which is accurate at the initial step, but can potentially be too large
at later steps, acting as a decay in the learning rate. Decaying the learning over time
has been demonstrated to increase accuracy in certain situations, though one could also
consider gradually increasing the learning rate to counteract this effect.

23

Since there are T total iterations of this procedure, and we have Tf total removal it-
erations, we satisfy the condition of the if statement on Line 11 every T/Tf steps. This
initiates the filtering algorithm, which is a privatized analog of [13]. The gradients of the
entire (active) dataset are taken. It is important that we perform a “mega-batch” com-
putation involving all the data (rather than just a mini-batch Ab) since this will result
in the best possible concentration for the covariance matrix of the gradients (Line 5 in
Algorithm 3), crucially with respect to the input rather than the model parameters (for
memory reasons, as discussed above). We clip and (privately) compute the average gra-
dient. Once again, in Line 16, note that we average by n rather than |A| to save privacy
budget. In Line 17, the privatized filtering algorithm (Algorithm 3) is actually invoked.
We centre and clip the gradients as before, and then form a noised and private version of
their covariance matrix [20]. We calculate scores for each point based on the magnitude of
their projection onto the top eigenvector of the (privatized) covariance (Line 7). Finally,
any point with a score greater than some prescribed threshold is marked for removal from
the set of active indices A.

This process is repeated until a pre-set number of epochs by the moment accountant [1]
or until the privacy budget is spent.

In Diffindo, we carefully choose where to apply Sever filters. Sever is usually run
after the learning algorithm has already made one pass on the entire training set. If we
apply Sever on every batch of DPSGD, we may remove too many good points as some
batches only have a few outliers. The same points also may appear multiple times in the
same batch due to sampling with replacement in DPSGD. Hence, we keep the list of active
points in our algorithm and run Sever on a mega-batch of points. In the evaluation
section, we also study the optimal fraction of points to be removed when applying Sever.

5.3 Privacy Analysis

Theorem 5.3.1. There exist constants c1 and c2 so that given the sampling probability
q = L/n, the number of SGD steps T , and the number of removal steps Tf , for any
ε < c1(q

2T + Tf), Diffindo (Algorithm 2) is (ε, δ)-differentially private for any δ > 0 if
we choose

σ ≥ c2

√
(q2T + Tf) log(1/δ)

ε
.

Proof. We view Algorithm 2 as a sequence of adaptive mechanismsM1,M2, . . . ,Mk, where
Mi :

∏i−1
j=1Rj × D → Ri. There are three types of mechanisms involved: (i) computing

24

noisy gradients (g̃t) with respect to model weights for a batch in Line 16 of Algorithm 2, (ii)
computing noisy gradients with respect to input features (G̃avg) in Line 9 of Algorithm 2
, (iii) computing the top eigenvector of noisy covariance (Σ̃) in Algorithm 3. We denote
these three types of mechanisms by M g, MG, M c. In Algorithm 2, M g runs T times, and
both MG and M c run Tf times each.

We will analyze the privacy loss of this sequence of adaptive mechanisms similarly
as the privacy analysis of DPSGD using the moments accountant [1]. First, for a given
mechanism M , the λth log moment of M is defined as the maximum log of the moment
generating function evaluated at λ for all possible adjacent database pairs D,D′ and for
all possible auxiliary input aux, i.e.,

αM(λ) , max
aux,D,D′

logEo∼M(aux,D)[e
λ log

M(aux,D)=o

M(aux,D′)=o]

= max
aux,D,D′

logEo∼M(aux,D)[(
M(aux,D)=o
M(aux,D′)=o

)λ].

The log moments of the three types of mechanisms are shown next. The first type of
mechanism has a log moment of αMg(λ) ≤ q2λ2

σ2 for any positive integer λ ≤ σ2 ln(1
qσ

), if
we select q < 1

16σ
(Lemma 3 in DPSGD [1]). Note that Algorithm 2 samples from a set of

active points instead of from the full dataset like DPSGD. For the privacy proof, we can
consider an alternate algorithm that sets the gradients of the inactive points’ gradients as
zero and then samples them with the same fixed probability q as the active points. This
results in the same sum as the current algorithm. The other two types of mechanisms MG

and M c are simply a single round of Gaussian mechanism and hence each of them has a
log moment of λ(λ−1)

2σ2 [53].

By the composition of moments [1]), the log moment of the entire sequence of adaptive
mechanisms can be bounded as follows:

αM1,...,Mk
(λ) ≤ T · q

2λ2

σ2
+ Tf ·

λ(λ− 1)

2σ2
· 2

≤ λ2

σ2
· (Tq2 + Tf).

By the tail bound [1], to guarantee Algorithm 2 to be (ε, δ)-differentially, we just need

ε < c1(q
2T + Tf) and σ ≥ c2

√
(q2T+Tf) log(1/δ)

ε
, by the similar argument of Theorem 1 in

DPSGD [1].

25

5.4 Hyperparameter Tuning

Hyperparameter tuning for differentially private machine learning tasks is a cumbersome
task and the parameters for the non-private version of the task do not apply directly to the
private version [58]. To begin with, deep learning tasks have multiple parameters to tune
(For e.g., network size, learning rate, no. of layers, activation function and type of opti-
mizer) and to make the task even harder, differential privacy brings with itself parameters
such as clipping threshold C and noise multiplier σ. To find a good set of hyperparameters
using grid-search is not only computationally expensive but also time-consuming. From an
end-to-end differential privacy stand view, even running grid-search multiple times would
add up to the privacy cost every time we run a different set of parameters. This over-
head cost can be reduced if a public set of points is available and the tuning can be done
on that data instead. However, to handle this tuning issue privately, previous work has
suggested multiple tuning techniques [48, 26, 9]. Chaudhuri et al. in Algorithm 4 of [9]
present a technique similar to k-fold validation where the dataset is divided into n parts
and the tuning for different parameters is done on each part separately by dividing the
cost. In [48, 26], the authors provide techniques from theory which can reduce the search
space to get the best parameters as we are interested only in the parameters which will
result in maximum accuracy.

In Diffindo, we add two more parameters to tune, clipping threshold C2 for G (Gra-
dients with respect to input) and the removal multiplier p. C2 can be tuned the exact same
way as C and is inherently different for each dataset. Parameter p can be harder to tune
as it controls the total number of points discarded at each removal iteration. A low value
can diminish the removal rate and a high value can, in turn, remove a lot of good points.
If the number of outlier points is known beforehand, then we observe that the best removal
strategy is to remove 2.5 - 3x the total outliers. Ideally, the value of p should be set so that
it removes at each iteration, 2.5x outliers over the total number of removal iterations. For
our experiments, we assume that the model curator knows the total outlier points from
prior and tune p by repeating our training procedure so that it removes approximately 2.5x
the total outliers. Another good strategy to tune hyperparameters is to start by relaxing
all privacy conditions (i.e; make σ = 0, C = ∞, C2 = ∞) and slowly start tuning one
parameter at a time. First, tune C for DPSGD so that none of the higher gradient norms is
discarded due to clipping. Second, start tuning σ to get reasonable privacy guarantees and
then finally, tune C2 and removal multiplier for Diffindo to remove the desired number
of points. We admit that this tuning method is not private and in Chapter 7, we discuss
for future work how we plan wish to make the entire hyperparameter tuning procedure
automatic by using a clean validation set.

26

Chapter 6

Evaluation

In this chapter, we present extensive experiments on how our algorithm Diffindo per-
forms on real-life datasets with label flipped in the training set. We start by showing the
experimental setup and then list down all the experiments that we perform and then show
the hyperparameters that we use for each experiment.

6.1 Experimental Setup

Datasets

Our experiments are done on three real-world datasets from different domains of machine
learning research and computer-aided medical diagnosis.

MNIST The MNIST handwritten numbers dataset [41], which consists of 60000 train-
ing and 10000 testing examples. All images are 768 pixels (28x28) labelled from 0 to 9,
representing the number in its handwritten form. The training set has equal support for
all classes. We create noisy label flipped versions of this dataset by targeted strong label
flip and composite flips and train using two neural network models, MLP and CNN. The
strongest label flips are generated by changing the labels of 1’s to 7’s in the training set.
We choose 1 and 7 as they look very similar, and this kind of noise can affect the testing
accuracy of the model. This choice has also been previously considered by prior work on
data poisoning attacks [73, 49]. We vary the value of this element from 0 to 50% in our
experiments with an increment of 5%. We also try a different form of label flip where
multiple source classes are flipped, also called composite label flips. These types of flips are

27

common in day to day practice. To show composite label flip attacks, we first show a weak
composite flip attack where 10 − 20% of multiple source classes are changed to different
target classes (one-to-one mapping) and second, we show a strong composite flip attack
25−30% where some of the label flips have been changed from different classes to the same
output class (many-to-one mapping for, e.g. classes 0,4 and 9 have been flipped to class
1).

1. Weak composite flips: The weak composite attack has multiple 10 − 20% label
flips from a single source class to a single target class. The transition matrix for the
attack looks as follows:

Tweak =

Source ↓
Target −→ 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0.15 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0.15
4 0 0 0 0 0 0 0 0.2 0 0
5 0 0 0 0.1 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0.15 0
7 0.1 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0.1 0 0 0
9 0 0.15 0 0 0 0 0 0 0 0

2. Strong composite flips: The strong composite attack has multiple 25− 30% label

flips from a multiple source classes to a multiple target classes. The transition matrix
for the attack looks as follows:

Tstrong =

Source ↓
Target −→ 0 1 2 3 4 5 6 7 8 9

0 0 0.1 0.05 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0.1 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0.25
4 0 0.1 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0.1 0 0 0 0 0 0 0
7 0.25 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0.3 0 0 0
9 0 0.05 0 0 0.15 0 0 0 0 0

28

ENRON The ENRON email dataset [51] is a spam email dataset with 4137 training
points and 1035 testing points. All data points have 5116 dimensions and are labelled as
1 if it’s spam and 0 otherwise. Furthermore, this dataset has class imbalance with 70%
ham emails and 30% spam emails. We simulate label flip attacks as well as adversarially
additive attacks for this dataset. For our experiment, we flip labels from Class 0 to Class
1 by varying ∆ from 0 − 30% with an increment of 5%. We train on this dataset using a
logistic regression model. As an extension of our study, we study some adversarial attacks
on this dataset. We move the experiment to Appendix A as adversarial attacks are slightly
out of context for this thesis.

APTOS The APTOS blindness dataset is a large set of 13000 retina images taken using
fundus photography under a variety of imaging conditions [32]. These retina images are
used to detect diabetic symptoms in a patient using diabetic retinopathy (DR). Each retina
image is of different dimensions and belongs to one of 5 classes - 0 - No DR, 1 - Mild, 2
- Moderate. 3 - Severe, 4 - Proliferative DR. For our experiment purpose, we only take
a curated subset of this dataset with 3600 points of 224x224 dimensions [33]. We also
re-scale each image down to 50% of its original size to 112x112 for ease of computation.
Due to high class imbalance in the dataset, we further combine classes 1, 2, 3 and 4 into
one class, making it a binary classification task. Similar to ENRON, we create a noisy
version of this dataset by flipping class 0 to class 1 by varying ∆ from 0 − 30% with an
increment of 5% and train using a logistic regression model.

In Table 6.1, we provide a detailed description of all the different input datasets.

Metrics

Two metrics are used to measure the defence against label flips. First, we report the
precision of the target class or how well the model is able to learn the target class. The
second metric measures the accuracy of the model on the full testing set — the fraction of
the testing examples that are reported correctly. We run each algorithm three times and
report the average precision score or testing accuracy. Mathematically, testing accuracy
(TA) and Precision (Pa) for class a can be written as follows:

TA =
CorrectlyPredicted

TotalPoints
Pa =

TruePositivesa
TruePositivesa + FalsePositivesa

In the above equation, TruePositivesa and FalsePositivesa is defined as the outcomes
where the model correctly predicts class a and model incorrectly predicts some other class
instead of a respectively.

29

Implementation

All experiments are done on a computer with specifications of 8GB Geforce GTX 1080
GPU, core i7 3.4 GHz processor and 62GB RAM. The source code for our experiments
is written in Python using PyTorch, and implementation of DPSGD is used from the
Pyvacy [81] library. We carry out experiments using 3 different models. The experiments on
APTOS and ENRON are done on a simple logistic regression model. MNIST experiments
are done using a 1 hidden layer fully connected Multilayer Perceptron (MLP) with Rectified
Linear Unit (ReLU) activation and a CNN model with 2 convolutional layers and a fully
connected layer at the end using cross entropy loss. We repeat all the experiments for 3
iterations and report the average.

Dataset Noise Dataset
Size

Classes Model Support in
Training Set

MNIST i) Targeted
Flip from 1 to
7; ii) Weak
composite
Tweak; iii)
Strong

composite
Tstrong

60000,
10000

10 i) MLP ii)
CNN

Class 0 - 5923
Class 1 - 6742
Class 2 - 5958
Class 3 - 6131
Class 4 - 5842
Class 5 - 5421
Class 6 - 5918
Class 7 - 6265
Class 8 - 5851
Class 9 - 5949

ENRON Targeted Flip
from 0 to 1

4137, 1035 2 Logistic
Regression

Class 0 - 2928
Class 1 - 1209

APTOS Targeted Flip
from 0 to 1

1857,1805 5 Logistic
Regression

Class 0 - 1372
Class 1 - 1374

Table 6.1: List of datasets

Baseline

For our experiments, we compare Diffindo against three baselines. Our first baseline is
DPSGD [72, 5, 1]. We run DPSGD on the training data with noisy labels for the same
privacy budget. If Diffindo does not plan to remove any points (Lines 1-10 of Algorithm 2
or when Tf = 0), then it is equivalent to DPSGD. The privacy cost for removal in Diffindo

30

is compensated by running DPSGD for more number of epochs. One may choose to use the
extra privacy budget to decrease the value of σ, but that might not be sufficient enough for
significant improvement compared with extra epochs of training or running Diffindo. Our
second baseline is a private unsupervised clustering algorithm, IMSAT [30]. According to a
recent survey [52, 3], IMSAT is the state of the art unsupervised deep clustering technique.
It uses clustering entropy loss and self augmentation to achieve an accuracy of 98.4% on
MNIST. We choose this as our DP baseline because one may wish to ignore the labels
and learn the dataset using an unsupervised clustering task. We experiment on IMSAT
by applying a differentially private counterpart of the optimizer used in IMSAT called
Adam [36]. And our final baseline is the non-private vanilla SGD. We run a non-private
version of Diffindo (ε = ∞) and compare it against SGD when trained on the same
data with noisy labels. For the non-private scenario for Diffindo, instead of using a filter
condition and threshold for removal, we remove a pre-computed top percentile of points.
The percentile is calculated approximately by dividing the 2 times the total number of
outliers over total removal iterations (Tf). We do this because our experiments for filter
condition show that Diffindo performs best when we remove points in every epoch. This
is a smart choice for the non-private scenario now that we can use the FILTER function
for free.

6.2 End-to-End Evaluation

In the end-to-end evaluation, we compare Diffindo with the aforementioned baselines
across multiple inputs.

6.2.1 Targeted Strong Label Flips

We show the performance of Diffindo on targeted label flip attacks for three different
datasets – MNIST, ENRON and APTOS. These datasets are inherently unique. MNIST
is a balanced image dataset whereas ENRON is a numerical data and suffers from class
imbalance. APTOS is a medical image dataset and is also affected by class imbalanced but
has been synthetically balanced by combining multiple output classes. Our experiments
show that Diffindo can improve the testing accuracy and the precision of the targeted
label when compared to baseline DPSGD for the same privacy budget for each of the
datasets.

31

MNIST

In our experiments for MNIST, we run Diffindo with the following default setting. We
set lot size (L) as 250 and run 50 epochs, where each epoch consists of n/L lots. The
default values for σ, C and C2 are 1.1, 1 and 0.002 respectively. The removal condition in
Algorithm 2 is set such that the FILTER function (Algorithm 3) is called after the 10th

epoch in an interval of 3 epochs each. As the removal is done only after 12 epochs of
training, we pay for the equivalent cost of an extra 24 epochs in the moments accountant
analysis. The privacy cost of Diffindo with this configuration gives ε as 3.6 with δ as
10−5. The filter multiplier p is set adaptively in every epoch from 1.6 to 2.2 times the score
of the noisy average gradient by Diffindo.

Figure 6.1: Diffindo has a higher precision than the baseline algorithms (DP-IMSAT and
DPSGD).

We run DPSGD on the training data with noisy labels. Given the same privacy budget

32

and σ, DPSGD can run for a total of 74 epochs, as no privacy budget is required for
removing points.

Poison % (∆) Precision for
target label

Testing
accuracy

Outliers
removed

Removal %

30 90 → 97 97 → 97.5 2022 100 %
35 87 → 97 96.8 → 97.6 2353 99.74 %
40 76 → 86 95.6 → 97.6 2507 92.98%
45 70 → 86 94.8 → 97.7 1822 60%

Table 6.2: Results on improvement of accuracy for Diffindo (ε = ∞) compare to SGD
on MNIST

Poison % (∆) Precision for
target label

Testing
accuracy

Outliers
removed

Removal %

30 66.6 → 88.55 87.7 → 92 4220 86.59 %
35 63.7 → 80.2 86.5 → 90.4 4484 86 %
40 57.8 → 75.7 89 → 89.74 4647 71.58%
45 57.4 → 77 86.5 → 89.7 4805 59%

Table 6.3: Results on improvement of accuracy for Diffindo (ε = 3.6) compared to
DPSGD (ε = 3.6) on MNIST

First, we show that our proposed algorithm Diffindo improves the precision of the
target class with respect to the baseline algorithms, DPSGD and DP-IMSAT. As shown
in Figure 6.1, given the same privacy budget ε = 3.6, δ = 10−5, Diffindo (the green dot-
dashed line) has a 5% to 20% higher precision than DPSGD algorithm (the red dot-dashed
line), when the fraction of 1s flipped to 7s, ∆ (T17 element of the noise transition matrix),
is between 10% and 40%. When ∆ = 0, there are no noisy labels; both algorithms can
achieve similar accuracy given a sufficient amount of iterations. However, when ∆ = 50%,
both algorithms have relatively poor precision for class 7, as the images for class 1 are no
longer outliers to class 7 in the training data. However, Diffindo and DPSGD have much
better precision compared to DP-IMSAT, a private unsupervised learning algorithm. This
baseline is delicate to noise and has poor accuracy at any reasonable value of ε (e.g. ε = 4.0
in Figure 6.1). The plot for DP-IMSAT is horizontal as it is independent of the labels.

We detail the comparison results between non-private Diffindo and SGD in Table 6.2
for the range of poison fraction values {30, 35, 40, 45}%. We see that both the precision for

33

target class and the test accuracy for the full testing data are improved by Diffindo with
respect to SGD. The total number and percentage of correct outliers are also reported in
the last two columns. The precision for the targeted class increases by 7-16%, and the test
accuracy is restored to 97-98% by removing points.

Similarly, we show the accuracy improvement of Diffindo with respect to DPSGD at
ε = 3.6 and δ = 10−5 in Table 6.3. We show that Diffindo improves the precision of the
target class of DPSGD by 10-16% and restores the test accuracy to 89-92%.

ENRON

Figure 6.2: Precision increase for target label (1) for Diffindo on ENRON

In our experiments for ENRON, we run Diffindo with the following default setting.
We set lot size (L) as 250 and run 50 epochs, where each epoch consists of n/L lots. The
default values for σ, C and C2 are 2, 1 and 0.002 respectively. The removal condition
in Algorithm 2 is set such that the FILTER function (Algorithm 3) is called after the
15th epoch in an interval of 5 epochs each. As the removal is done only after 7 epochs of
training, we pay for the equivalent cost of an extra 14 epochs in the moments accountant
analysis. The privacy cost of Diffindo with this configuration gives ε as 4.98 with δ as
2 ∗ 10−4. The filter multiplier p is set adaptively in every epoch from 1.05 to 1.14 times
the score of the noisy average gradient by Diffindo.

34

We run DPSGD on the noisy labelled dataset for 64 epochs as a baseline for this
experiment.

Poison %
(∆)

Precision for
target label

Testing
Accuracy

Outliers
removed

Removal
%

Wrong
points

removed

5 74 → 89 86.93 → 89 266 91.15 % 132
10 77 → 87 87.06 → 90.59 414 92.12 % 145
15 65 → 92 83.68 → 86.24 1089 99.08 % 654
20 57 → 81 83.59 → 87.46 650 85.29 % 151
25 56 → 90 82.59 → 83.53 1575 99.72 % 845
30 49 → 94 80.62 → 81.06 1915 99.54 % 1041

Table 6.4: Results on improvement of accuracy for Diffindo (ε = 4.98) compared to
DPSGD (ε = 4.98) on ENRON

In Figure 6.2, we show that given the same privacy budget ε = 4.98, δ = 2 ∗ 10−4,
the precisions of classes 0 and 1 as well as the testing accuracies for both DPSGD and
Diffindo. Note that, the second y-axis for accuracy on the right has limits from 50 to
100 for better scaling. First, we show that there is a considerable increase in the precision
of the target label (Blue bar vs Yellow bar) and testing accuracy (Black line vs Orange
line). However, this increase comes at the cost of the precision for the base class 0 (Lilac
bar vs Green bar). This decrease is seen due to the class imbalance in the training set and
wrong removal of representative points.

We detail the results of the experiment in Table 6.4. Diffindo has target label precision
increase of 10− 45% when 10− 30% of 0s have been flipped to 1s and successfully removes
85-90% of the outlier points. The removal of outlier points not only increases the precision
but also results in up to 3% increase in the testing accuracy. However, we notice that out
of all the points removed, Diffindo removes approx. 50% wrong points which result in
the decrease of the base class precision.

APTOS

We also run Diffindo on a diabetic retinopathy classification task on the APTOS dataset
with similar settings as that for ENRON. The experiment uses the same default values for
σ, C and C2 as 2, 1 and 0.002 respectively. The removal condition in Algorithm 2 is set

35

Figure 6.3: Performance of Diffindo on medical dataset APTOS

such that the FILTER function (Algorithm 3) is called after the 15th epoch in an interval
of 5 epochs each. As the removal is done only after 7 epochs of training, we pay for the
equivalent cost of an extra 14 epochs in the moments accountant analysis. The privacy
cost of Diffindo with this configuration gives ε as 5.44 with δ as 3 ∗ 10−4. As multiple
classes have been combined to make the positive class for this dataset, many points lie
very close to each other. This affects the removal fraction p to be highly sensitive and
even 0.1 change in the value results in heavy removal of points thus, p is set adaptively in
every epoch from 1 to 1.015 times the score of the noisy average gradient by Diffindo to
remove a reasonable number of points.

The logistic regression model used for this experiment can get to about 92% accuracy
in the non-private scenario however the private version gets about 88% accuracy. As
a private baseline for this experiment, we run DPSGD on the training data with noisy
labels for 64 epochs. In Figure 6.3, we show the precisions of classes 0 and 1 as well
as the testing accuracies for both DPSGD and Diffindo given the same privacy budget
ε = 5.44, δ = 2 ∗ 10−4. The right y-axis denotes the accuracy % and is limited from 50-100
for better visibility. First, we show that label flipped noise drastically affects this dataset
as the testing accuracy is lowered to 75% when ∆ is 30% and the precision of target label
is decreased to 59% (almost equal to random guessing). Secondly, we show that Diffindo
can increase the precision of the target label (Blue bar vs yellow bar) by an average of

36

10% while also increasing the testing accuracy (Black line vs Orange line) considerably.
Despite the sensitive nature of the APTOS dataset, we notice that each point in the 0 class
is highly representative and shows more stable behaviour than the ENRON dataset. This
is proven by the fact that removing points does not affect the base class precision (Lilac
bar vs Green bar).

Poison % (∆) Precision for
target label

Testing
Accuracy

Correct/
Outliers
removed

Removal %

5 77 → 82 85.03 → 87 53/288 77.94 %
10 71.66 → 83 82.22 → 88 74/122 54.01 %
15 70.33 → 77 81.35 → 82 140/487 68.29 %
20 70.33 → 83 81.35 → 88 200/328 72.99 %
25 66.66 → 74 79.11 → 80 165/521 48.10 %
30 58.66 → 77 74.89 → 83 160/405 38.92 %

Table 6.5: Results on improvement of accuracy for Diffindo (ε = 5.44) compared to
DPSGD (ε = 5.44) on APTOS

We detail the results of the experiment in Table 6.4. Diffindo shows an increase of
5 - 19% precision of the target label when ∆ is changed from 5-30%. Despite the high
removal of wrong points (for e.g., 365 wrong vs 165 correct when ∆ = 25%), Diffindo
shows an increase of 2-9% in testing accuracy. This behaviour shows the stable nature of
the APTOS dataset and in such cases, Diffindo can be allowed some leverage to remove
more points.

In this section, we showed how Diffindo increases the metrics– testing accuracy and
precision of the target label for models which train on targeted label flipped datasets.
Furthermore, we show that imbalanced datasets show a decrease in base class precision
after using Diffindo however balanced and synthetically balanced datasets do not show
this behaviour.

6.2.2 Composite Label Flips

Composite label flips are attacks where multiple output classes are affected. In real life
datasets, it is more common to see composite label flips than targeted flips as this closely
resembles minor human labelling errors. In this experiment, we run Diffindo on two

37

curated composite flip attacks – weak composite and strong composite attack. The weak
composite has label flips ranging from ∆ = 10−20% with a one-to-one mapping of source to
target and the strong composite attack ranges from ∆ = 15− 30% with multiple instances
of many-to-one mapping of source to target. The transition matrices for both these attacks
are described in Section 6.1. The values for the transition matrices are chosen at random
to demonstrate various label flip instances. We run Diffindo on the same default setting
as targeted strong label flips on MNIST for both types of composite attacks. The results
are compared to a baseline of DPSGD on the same input.

Figure 6.4: Precision comparison for all output classes on MNIST Tweak

We plot the change in precision for all the class in Figure 6.4 and Figure 6.5. The plots
show the precision for each label in the dataset for Diffindo and baseline DPSGD along
with a brief description of the attack in the legend to its right. The weak attack has a
total of 7400 label flipped points and Diffindo is successful in removing 60% of the points
by removing a total of 10540 points. There is an overall increase in testing accuracy from
80.6% to 84.3% but as can be seen from the Figure 6.4. The strong attack has a total
of 9161 label flipped points and Diffindo is successful in removing 44% of the points by
removing a total of 7213 points and an increase of 4% in testing accuracy from 76% to
80%.

38

Figure 6.5: Precision comparison for all output classes on MNIST Tstrong

Weak Attack Precisions (%) Strong Attack Precisions (%)

Class DPSGD Diffindo DPSGD Diffindo

0 82 92 72 79
1 87 86 78 84
2 87 89 75 84
3 79 85 91 87
4 74 85 64 86
5 87 87 89 84
6 84 77 67 72
7 78 71 92 92
8 72 85 85 86
9 78 75 64 68

Table 6.6: Composite attack results for Diffindo (ε = 3.6) compared to DPSGD (ε = 3.6)

The details of the experimental results can be found in Table 6.6. A decrease in precision
is observed for the non-affected or weakly affected classes. Classes 6,7 and 9 in the weak
composite attack and classes 5 and 3 in the strong composite show this dip in precision.
This behaviour can be observed abundantly when a higher percentage of points have been

39

flipped, and the algorithm tries to remove points from multiple classes to counter the
attack.

In this section, we showed the performance of Diffindo on composite label flipped
attacks. Our experiments on MNIST for a weak and strong composite attack showed that
Diffindo increases the final testing accuracy. However, the precision for weakly affected
classes decreases due to removal of superflous points.

6.2.3 Performance on Convolutional Neural Network

Figure 6.6: CNN Model for Diffindo vs baseline algorithms (DP-IMSAT and DPSGD).

We show another experiment using the same attack but on a convolutional neural
network (CNN) to show that Diffindo is not specific to a Neural Network(NN) model
but can also be used on more complex networks. The non-private accuracy on MNIST
with SGD optimizer for this CNN model is about 99%, and CNNs are generally also
more favourable for image datasets. For this experiment, we repeat the same settings and

40

baselines of the targeted strong label flip experiment. We show that even for a CNN,
Diffindo can perform better than the DPSGD baseline for the same privacy budget
(ε = 3.3, δ = 1e− 5) and can also sometimes perform better than the non-private baseline.

We keep all similar settings but change the parameters C = 0.5 and C2 = 0.003 to
correctly clip gradients for this new network. The comparison of Diffindo with the
baselines is given in Figure 6.6. The plot compares the precision of the targeted label for
each algorithm. First, we show that DP-IMSAT is the weakest baseline and is the least
favourite for learning with label flips. Second, we show that label flips strongly affect the
precision of the target label (7) in both cases of the orange line of SGD and the red line
DPSGD (ε = 3.3). Thirdly, we show that non-private Diffindo (Blue) and Diffindo
(ε = 3.3) (Green) perform better than their respective counterparts and considerably
increase the precision. Fourth and most interestingly, we show that private Diffindo
(ε = 3.3) shows higher precision compared to SGD when ∆ ≥ 10%.

Poison % (∆) Precision for
target label

Testing
accuracy

Outliers
removed

Removal %

5 98 → 99.15 98.67 → 99.06 714 97.03 %
10 91.5 → 98.45 97.9 → 98.9 1411 97.77 %
15 94 → 98.54 98 → 98.99 2098 99.80 %
20 94 → 98.13 98 → 98.99 2778 99.70 %
25 95 → 97.94 97 → 98.94 3452 99.28 %
30 93 → 97.53 98 → 98.72 4116 99.30 %
35 82 → 89.9 91.9 → 97.97 4773 96.48 %
40 78.9 → 86.81 95 → 97.42 5424 87.16 %

Table 6.7: Results on improvement of accuracy for Diffindo (ε =∞) compare to SGD

In Table 6.7, we detail the comparison between the SGD and Diffindo (ε = ∞) for
∆ from 5 - 40%. Diffindo is successful in removing approx. 99% of the outlier points
and restore the precision of the target label and the testing accuracy perfectly to 98% and
99% respectively when ∆ ≤ 30%. For ∆ > 30%, the removal is weaker, yet the precision
is increased by up to 8%, and the testing accuracy is restored to approx. 98%.

Similarly, in Table 6.8, we describe the comparison results of DPSGD vs Diffindo for
the same privacy budget. In this experiment setting, Diffindo requires a privacy cost of
ε = 3.3 and thus DPSGD is allowed to run for 24 extra epochs to compensate for the extra
removal privacy cost (3.3− 2.6 = 0.7) of Diffindo. In the ∆ = 0 setting i.e no label flip
setting, DPSGD gets about 96% accuracy. We see in our experiments that for ∆ ≤ 30%,

41

Poison % (∆) Precision for
target label

Testing
accuracy

Outliers
removed

Removal %

5 92 → 96.95 91 → 96.24 5007 99.10 %
10 87.5→ 96.34 90.3 → 96.6 5370 99.85 %
15 87 → 95.65 90.1 → 96.4 5652 99.60 %
20 83 → 95.75 89 → 96.46 5791 99.77 %
25 77 → 95.28 89.22→ 96.32 6399 99.22 %
30 85 → 94.84 89 → 96.14 6768 97.87 %
35 69 → 93.07 87.1 → 95.9 6919 95.71 %
40 73 → 81 88 → 93.89 6206 46.95 %

Table 6.8: Results on improvement of accuracy for Diffindo (ε = 3.3) compared to
DPSGD (ε = 3.6)

Diffindo correctly removes 99% of the points restoring the precision of the target label
and testing accuracy to 95% and 96% respectively. For ∆ > 30%, Diffindo removed
a lower number of points but increases the precision for up to 14% and accuracy up to
7%. Stronger label flips than 40% cause poor precision for both private and non-private
optimizers as class 1 elements are no more outliers.

Our experiments in this section show the performance of Diffindo on targeted label
flipped MNIST when trained on a more complex neural network, CNN. Diffindo removed
almost 100% of the outlier points in both private and non-private settings when the ∆ ≤
35%.

6.2.4 Performance on Varying Noise Levels

The noise multiplier σ affects the testing accuracy and the privacy cost of the models. For
the previous experiments, we choose only one value of noise multiplier for a reasonable
value of ε and vary the other parameters. However, for this experiment, we keep all values
constant except σ to test the performance of Diffindo on varying noise. We experiment
on the MNIST dataset with the MLP model and a targeted strong attack of ∆ = 30%.
We compare the precision of the targeted label with a baseline of DPSGD with the same
privacy budget.

42

Figure 6.7: Comparison of Diffindo vs DPSGD on varying noise

Noise Mult
% (σ)

Privacy
parameter ε

Precision for
target label

Testing
accuracy

Removal %

0.6 11.8 83 → 93 90 → 90.5 80.76%
0.8 5.11 63 → 74 88 → 90.1 75%
1 3.18 67 → 84 88 → 91.2 87%
1.2 2.36 75 → 82 89 → 90.5 72%
1.4 1.8 66 → 84 87 → 90.45 89.16%
1.6 1.5 71 → 77 88 → 89 70.17%
1.8 1.37 72 → 76 87 → 88.13 70.32%
2 1.2 66 → 69.31 86 → 87 61%

Table 6.9: Performance of Diffindo on varying noise levels

We choose the same task of flipping points with labels from 1 to 7 and keep the ∆
value as 30% by varying the value of σ from 0.6 to 2 in increments of 0.2. We also change
the value of p from 0.8 when σ is 0.6 and 2.4 when σ is 2 to adapt to the noise added
to the gradients. We compare the performance of DPSGD with Diffindo using different

43

noise multipliers in Table 6.9 and plot in Figure 6.7, the precision of the targeted class
on the y-axis and the corresponding noise multiplier on the x-axis. We notice a gradual
decrease in the removal % and testing accuracy when the value σ is increased. This effect
is expected because the noise added prevents the model from learning and impacts the
noise to signal ratio.

In this section, we showed that Diffindo shows better precision of the targeted label
when compared to DPSGD on varying noise levels and privacy parameter ε while also
increasing the final testing accuracy.

6.3 Effect of Parameters

Now, we study the effect of each tunable parameter for Diffindo. The performance
of Diffindo is determined by multiple parameters that must be carefully tuned for the
optimal testing accuracy and removal of outliers. These parameters include the noise
multiplier (σ), Clipping thresholds (C1, C2), removal multiplier p, filter condition (FC)
and learning rate (η). Some of the parameters are specific to the learning of the model
(learning rate), some are related privacy (σ,C1) and the others influence the removal of
outliers (C2, p, FC). We carry out these experiments on the MNIST dataset trained using
the MLP model, and the strong label flips from base class 1 to target class 7 with ∆ = 30%
(2022 outliers).

Parameters Values
Clipping Threshold 1(C1) 0.5, 1, 1.5, 2, 3, 4, 5
Clipping Threshold 2(C2) 0.001, 0.002, 0.003, 0.004, 0.005
Filter Interval 1, 2, 3, 4, 5
Learning Rate (η) 0.0001, 0.001, 0.01, 0.1, 1
Removal parameter (p) 1, 1.2, 1.4, 1.6, 1.8, 2

Table 6.10: Parameter study values

To demonstrate the effect of these parameters, we change these parameters by keeping
the rest constant. The reference values we set for the model are as follows: lot size (L)
as 250, gradient clipping threshold C1 as 1, C2 as 0.002, σ as 1, learning rate (η) as 0.1
and initializing the removal multiplier p as 1.6 and adaptively set it in every epoch to a
final value of 2.2 times the score of the noisy average gradient. We run the algorithm 50
epochs and set the filter condition such that the FILTER function (Algorithm 3) is called

44

after the 12th epoch and in an interval of 3 epochs each. The results of this study are
shown in Figure 6.8. Each graph shows the two metrics – testing accuracy and precision
of the target label as well as the total number of correct and wrong points removed for
each variable parameter. The blue bar denotes the correct number of points removed, and
orange denotes the wrong points removed. Also, note that the second y-axis has is limited
from 50 - 100% for better interpretation.

6.3.1 Clipping Thresholds

Diffindo clips the gradient norm bounds at two places. The first gradient norm bound C1

clips the gradients at each iteration, setting the sensitivity for the Gaussian noise (since we
add noise based on σC) and removing the unbiasedness of the gradient estimate. It should
also be noted that one might decide to have multiple bounds that can be used for different
layers of the neural network. The second gradient norm similarly clips the gradients with
respect to input (G). Setting this threshold is crucial as higher bounds might add more
noise, and lower bounds may destroy the gradients with high variance. In practice, these
thresholds differ across models and datasets and as suggested by [1], it is a good idea to
set the clipping norm to the median of gradients.

Our experiments also show that lower values for C1 are better as it adds lesser noise
which results in higher testing accuracy and lower wrong points removal. However, con-
versely, lower values of C2 remove a higher number of unnecessary points, which hampers
the testing accuracy, and high values result in not being able to remove the outliers. There-
fore, moderate values result in optimum performance.

6.3.2 Learning Rate

We experiment on values of learning rate (η) in [0.0001, 0.001, 0.01, 0.1, 1] and notice
that if the learning rate is moderately high, the testing accuracy remains the same. Our
experiments suggest that with lower values of η, the gradients become smaller and lower
clipping threshold C2 is required and with higher values of η, the clipping threshold C2

becomes too small and more number of points are removed. Hence, these two values are
correlated with each other, and the proper tuning of both should reach the same level of
accuracy.

45

Figure 6.8: Performance of Diffindo for MNIST for varying one parameter, and others
fixed at reference value

6.3.3 Filter Condition

The filter condition (FC) refers to line 11 in Algorithm 2 and is a crucial element to the
algorithm. It decides the number of times that the FILTER function is called. It is im-

46

portant to set the filter condition appropriately as each execution of the FILTER function
requires a privacy cost of 2 epochs worth and increases the computation time of the algo-
rithm due to the top eigenvector calculation. We have noticed that the algorithm doesn’t
remove a noticeable number of outliers during the initial epochs of training. Additionally,
the removal of wrong points is costly for the algorithm as the utility of the average gradient
in line 16 is lost (due to the constant division by n).

Figure 6.9: Outlier points removal in Diffindo at ε = 3.6 and δ = 10−5 when ∆ is 30%.

We show in Figure 6.9 the number of points removed by Diffindo in one run for the
MNIST dataset at the default setting. The counts of real outliers are highlighted in blue,
and the counts for points that are incorrectly removed are highlighted in orange. We can
see in this figure that Diffindo started to remove a large number of outlier points from
the 19th epoch of training where it removes approximately 1000 points.

In Figure 6.8, we set the initial epochs of training as 12 and vary only the filter interval
from 1 to 5. We notice that with interval 1, Diffindo removes 100% of the outlier points
and achieves high precision value. However, with interval 1, the filter function is called at
every epoch resulting in additional privacy cost of 76 epochs ((50− 12) ∗ 2). Thus, privacy

47

vs removal trade-off forces us to choose higher intervals, and an interval of 3 is the right
balance between the utility and privacy.

6.3.4 Removal Multiplier

Removal multiplier p refers to the multiplier to the average gradient G in Algorithm 3,
which sets the threshold for the filter function to remove outliers. We note that a smaller
p removes many unnecessary points, and as we discussed in the previous paragraph, we
observe that this removal can sometimes be a gradual process, and a reasonable estimate
of the average gradient is required to prevent removal of wrong points. We can help
the FILTER algorithm by slowly increasing the removal multiplier p. This is because as
Diffindo signs of progress and points are removed; more gradients start becoming 0.
A higher removal multiplier compensates for this decay and provides a higher threshold,
which is required for influential removal.

6.3.5 Noise Multiplier

Noise Multiplier (σ) majorly controls the privacy of the algorithm. For studying the noise
parameter, we notice that Diffindo removes all the points if the removal multiplier p is
too low. For this reason, while changing σ, we also change p by increasing it to the same
extent. Our experiments show that Diffindo removes approx. the same amount of outlier
points in the presence of varying noise. However, with higher noise, the number of wrong
points removed increases.

48

Chapter 7

Conclusion and Open Questions

In this thesis, we propose a novel method called Diffindo which can be used to remove
points with noisy labels while preserving differential privacy. To the best of our knowledge,
learning with noisy labels hasn’t been studied in the private scenario before and Diffindo
is the first algorithm to provide a significant increase in the testing accuracy and precision
of the affected classes on labelled flipped data under strict privacy conditions. Diffindo
is built on top of stochastic gradient descent which allows it to be used on most traditional
machine learning and deep learning applications. We demonstrate that Diffindo can
revive the testing accuracy of neural networks and logistic regression models trained on
targeted and composite label flipped datasets from different domains when compared to
DPSGD on the same privacy budget. Now, we would like to discuss some future work and
questions that can be considered to make this algorithm stronger.

Tuning using validation set

As we have discussed in Chapter 5, the tuning of differentially private machine learning
algorithms is a hard task. However, a public validation set can be used to not only tune
the numerous hyperparameters for differential privacy but also can be used to automate
Diffindo to find a good removal multiplier p. Although one might be tempted to argue
that having a public validation set is a hard requirement for in a privacy setting, an
unlabelled validation set like PATE [59] might be used or similar public dataset of the
same domain may be used.

Federated Learning

Federated learning [38] is an area of research where the dataset is assumed to be di-
vided and distributed into different shards scattered in different locations (might also be

49

geographically distinct). The main idea behind federated learning is to train a machine
learning model by the co-ordinating central server which can receive gradients from the
different shards and average the gradients to take a step. The presence of distributed data
is common in health research which also happens to have a lot of private sensitive data.
Thus, algorithms like Diffindo will be highly useful in the federated learning scenario. A
stronger notion of user differential privacy can be applied to Diffindo for learning in the
multiple user federated domain.

Adaptive Optimizers

Diffindo has only been implemented for SGD. However, deep learning applications
especially in the natural language processing field use adaptive optimizers like Adam [36]
or RMSProp. These optimizers have the innate ability to work with out-of-the-box hyper-
parameters and often do not need further tuning making it a useful tool for differentially
private learning algorithms like Diffindo.

Data Cleaning

Data cleaning is an important and crucial step in statistical analysis. Most machine
learning practitioners in the industry, as well as academia, spent about 60 - 80% of their
time on data collection and cleaning [64]. Data cleaning constitutes of many qualitative and
quantitative errors and outlier noisy label error and detection happens to be only a fraction
of the research. Previous work has proposed many machine learning-based methods for
data cleaning which can help in statistical analysis but unfortunately, this happens to be a
hard task even in the non-private scenario [11]. As we have already discussed in this thesis,
privately cleaning a training dataset can be used in many different fields of research and
there are many opportunities for differential privacy to make some of the state-of-the-art
data cleaning tasks private.

Relabeling labels

Another extension of this work may include relabeling the datapoints outcasted by
the filter algorithm instead of removing them completely from the training process. The
relabeling process can be done by the semi-ready model currently in the training process
or by a separate model which has been trained on a clean training set. The relabeling
technique will not only increase the support of the affected class datapoints by reinstalling
them back but also help in tackling the decrease in base class precision issue observed in
imbalanced and non-representative datasets like ENRON and APTOS.

50

References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal
Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pages
308–318. ACM, 2016.

[2] Mohammad Adibuzzaman, Poching DeLaurentis, Jennifer Hill, and Brian D Ben-
neyworth. Big data in healthcare–the promises, challenges and opportunities from a
research perspective: a case study with a model database. In AMIA Annual Sympo-
sium Proceedings, volume 2017, page 384. American Medical Informatics Association,
2017.

[3] Elie Aljalbout, Vladimir Golkov, Yawar Siddiqui, Maximilian Strobel, and Daniel
Cremers. Clustering with deep learning: Taxonomy and new methods. arXiv preprint
arXiv:1801.07648, 2018.

[4] Lars Backstrom, Cynthia Dwork, and Jon Kleinberg. Wherefore art thou r3579x?
anonymized social networks, hidden patterns, and structural steganography. In Pro-
ceedings of the 16th international conference on World Wide Web, pages 181–190,
2007.

[5] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk mini-
mization: Efficient algorithms and tight error bounds. In Proc. of the 2014 IEEE 55th
Annual Symp. on Foundations of Computer Science (FOCS), pages 464–473, 2014.

[6] Carla E Brodley and Mark A Friedl. Identifying mislabeled training data. Journal of
artificial intelligence research, 11:131–167, 1999.

[7] Mark Bun, Jonathan Ullman, and Salil Vadhan. Fingerprinting codes and the price
of approximate differential privacy. SIAM Journal on Computing, 47(5):1888–1938,
2018.

51

[8] Nicholas Carlini, Chang Liu, Jernej Kos, Úlfar Erlingsson, and Dawn Song. The se-
cret sharer: Measuring unintended neural network memorization & extracting secrets.
arXiv preprint arXiv:1802.08232, 2018.

[9] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private
empirical risk minimization. Journal of Machine Learning Research, 12(Mar):1069–
1109, 2011.

[10] Travers Ching, Daniel S Himmelstein, Brett K Beaulieu-Jones, Alexandr A Kalinin,
Brian T Do, Gregory P Way, Enrico Ferrero, Paul-Michael Agapow, Michael Zietz,
Michael M Hoffman, et al. Opportunities and obstacles for deep learning in biology
and medicine. Journal of The Royal Society Interface, 15(141):20170387, 2018.

[11] Xu Chu, Ihab F Ilyas, Sanjay Krishnan, and Jiannan Wang. Data cleaning: Overview
and emerging challenges. In Proceedings of the 2016 International Conference on
Management of Data, pages 2201–2206, 2016.

[12] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur Moitra, and Al-
istair Stewart. Robust estimators in high-dimensions without the computational in-
tractability. SIAM Journal on Computing, 48(2):742–864, 2019.

[13] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Jacob Steinhardt, and
Alistair Stewart. Sever: A robust meta-algorithm for stochastic optimization. arXiv
preprint arXiv:1803.02815, 2018.

[14] Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In
Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 202–210, 2003.

[15] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni
Naor. Our data, ourselves: Privacy via distributed noise generation. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
pages 486–503. Springer, 2006.

[16] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In Proceedings of the 3rd Conference on Theory
of Cryptography, TCC ’06, pages 265–284, Berlin, Heidelberg, 2006. Springer.

[17] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Foundations and Trends R© in Machine Learning, 9(3–4):211–407, 2014.

52

[18] Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and differential privacy.
In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages
51–60. IEEE, 2010.

[19] Cynthia Dwork, Adam Smith, Thomas Steinke, Jonathan Ullman, and Salil Vadhan.
Robust traceability from trace amounts. In 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science, pages 650–669. IEEE, 2015.

[20] Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Analyze gauss:
optimal bounds for privacy-preserving principal component analysis. In Proceedings of
the forty-sixth annual ACM symposium on Theory of computing, pages 11–20. ACM,
2014.

[21] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Randomized aggre-
gatable privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC
conference on computer and communications security, pages 1054–1067, 2014.

[22] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that
exploit confidence information and basic countermeasures. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, pages 1322–
1333, 2015.

[23] Benoît Frénay and Michel Verleysen. Classification in the presence of label noise: a
survey. IEEE transactions on neural networks and learning systems, 25(5):845–869,
2013.

[24] Aritra Ghosh, Himanshu Kumar, and PS Sastry. Robust loss functions under la-
bel noise for deep neural networks. In Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

[25] Varun Gulshan, Lily Peng, Marc Coram, Martin C Stumpe, Derek Wu, Arunacha-
lam Narayanaswamy, Subhashini Venugopalan, Kasumi Widner, Tom Madams, Jorge
Cuadros, et al. Development and validation of a deep learning algorithm for detec-
tion of diabetic retinopathy in retinal fundus photographs. Jama, 316(22):2402–2410,
2016.

[26] Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal Talwar.
Differentially private combinatorial optimization. In Proceedings of the twenty-first
annual ACM-SIAM symposium on Discrete Algorithms, pages 1106–1125. SIAM, 2010.

53

[27] Danna Gurari, Diane Theriault, Mehrnoosh Sameki, Brett Isenberg, Tuan A Pham,
Alberto Purwada, Patricia Solski, Matthew Walker, Chentian Zhang, Joyce Y Wong,
et al. How to collect segmentations for biomedical images? a benchmark evaluating
the performance of experts, crowdsourced non-experts, and algorithms. In 2015 IEEE
winter conference on applications of computer vision, pages 1169–1176. IEEE, 2015.

[28] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to
common corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

[29] Nils Homer, Szabolcs Szelinger, Margot Redman, David Duggan, Waibhav Tembe,
Jill Muehling, John V Pearson, Dietrich A Stephan, Stanley F Nelson, and David W
Craig. Resolving individuals contributing trace amounts of dna to highly complex
mixtures using high-density snp genotyping microarrays. PLoS genetics, 4(8), 2008.

[30] Weihua Hu, Takeru Miyato, Seiya Tokui, Eiichi Matsumoto, and Masashi Sugiyama.
Learning discrete representations via information maximizing self-augmented training.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 1558–1567. JMLR. org, 2017.

[31] Rosie Jones, Ravi Kumar, Bo Pang, and Andrew Tomkins. " i know what you did last
summer" query logs and user privacy. In Proceedings of the sixteenth ACM conference
on Conference on information and knowledge management, pages 909–914, 2007.

[32] kaggle. Aptos 2019 blindness detection. https://bit.ly/2RO3qb1.

[33] kaggle. Diabetic retinopathy 224x224 gaussian filtered. https://bit.ly/34LGmPc.

[34] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for dif-
ferential privacy. IEEE Transactions on Information Theory, 63(6):4037–4049, 2017.

[35] Davood Karimi, Haoran Dou, Simon K Warfield, and Ali Gholipour. Deep learning
with noisy labels: exploring techniques and remedies in medical image analysis. arXiv
preprint arXiv:1912.02911, 2019.

[36] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[37] Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger data poisoning attacks
break data sanitization defenses. arXiv preprint arXiv:1811.00741, 2018.

54

https://bit.ly/2RO3qb1
https://bit.ly/34LGmPc

[38] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha
Suresh, and Dave Bacon. Federated learning: Strategies for improving communication
efficiency. arXiv preprint arXiv:1610.05492, 2016.

[39] Jan Kremer, Fei Sha, and Christian Igel. Robust active label correction. In Interna-
tional Conference on Artificial Intelligence and Statistics, pages 308–316, 2018.

[40] Kevin A Lai, Anup B Rao, and Santosh Vempala. Agnostic estimation of mean
and covariance. In 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS), pages 665–674. IEEE, 2016.

[41] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998.

[42] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[43] Choong Ho Lee and Hyung-Jin Yoon. Medical big data: promise and challenges.
Kidney research and clinical practice, 36(1):3, 2017.

[44] Kimin Lee, Sukmin Yun, Kibok Lee, Honglak Lee, Bo Li, and Jinwoo Shin. Ro-
bust inference via generative classifiers for handling noisy labels. arXiv preprint
arXiv:1901.11300, 2019.

[45] Kuang-Huei Lee, Xiaodong He, Lei Zhang, and Linjun Yang. Cleannet: Transfer
learning for scalable image classifier training with label noise. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 5447–5456,
2018.

[46] Erich L Lehmann and George Casella. Theory of point estimation. Springer Science
& Business Media, 2006.

[47] Junnan Li, Yongkang Wong, Qi Zhao, and Mohan S Kankanhalli. Learning to learn
from noisy labeled data. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5051–5059, 2019.

[48] Jingcheng Liu and Kunal Talwar. Private selection from private candidates, 2018.

[49] Xuanqing Liu, Si Si, Xiaojin Zhu, Yang Li, and Cho-Jui Hsieh. A unified framework
for data poisoning attack to graph-based semi-supervised learning. arXiv preprint
arXiv:1910.14147, 2019.

55

[50] Ashwin Machanavajjhala, Daniel Kifer, John Abowd, Johannes Gehrke, and Lars Vil-
huber. Privacy: Theory meets practice on the map. In 2008 IEEE 24th international
conference on data engineering, pages 277–286. IEEE, 2008.

[51] Vangelis Metsis, Ion Androutsopoulos, and Georgios Paliouras. Spam filtering with
naive bayes-which naive bayes? In CEAS, volume 17, pages 28–69. Mountain View,
CA, 2006.

[52] Erxue Min, Xifeng Guo, Qiang Liu, Gen Zhang, Jianjing Cui, and Jun Long. A survey
of clustering with deep learning: From the perspective of network architecture. IEEE
Access, 6:39501–39514, 2018.

[53] Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th Computer Security Foun-
dations Symposium (CSF), pages 263–275. IEEE, 2017.

[54] Shubhankar Mohapatra, Xi He, Gautam Kamath, and Om Thakkar. Diffindo! differ-
entially private learning with noisy labels. PPAI Workshop, AAAI, 2019.

[55] Arvind Narayanan and Vitaly Shmatikov. How to break anonymity of the netflix prize
dataset. CoRR, abs/cs/0610105, 2006.

[56] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of
deep learning: Stand-alone and federated learning under passive and active white-box
inference attacks. arXiv preprint arXiv:1812.00910, 2018.

[57] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari.
Learning with noisy labels. In Advances in neural information processing systems,
pages 1196–1204, 2013.

[58] Nicolas Papernot, Steve Chien, Shuang Song, Abhradeep Thakurta, and Ulfar Er-
lingsson. Making the shoe fit: Architectures, initializations, and tuning for learning
with privacy, 2020.

[59] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Tal-
war, and Úlfar Erlingsson. Scalable private learning with pate. arXiv preprint
arXiv:1802.08908, 2018.

[60] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen
Qu. Making deep neural networks robust to label noise: A loss correction approach.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1944–1952, 2017.

56

[61] Andrea Paudice, Luis Muñoz-González, and Emil C Lupu. Label sanitization against
label flipping poisoning attacks. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 5–15. Springer, 2018.

[62] Kees H Polderman, Lambert G Thijs, and Armand RJ Girbes. Interobserver variability
in the use of apache ii scores. The Lancet, 353(9150):380, 1999.

[63] Adarsh Prasad, Arun Sai Suggala, Sivaraman Balakrishnan, and Pradeep Ravikumar.
Robust estimation via robust gradient estimation. arXiv preprint arXiv:1802.06485,
2018.

[64] Gil Press. Cleaning big data: Most time-consuming, least enjoyable data science task,
survey says. https://bit.ly/2V78OIi.

[65] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[66] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight
examples for robust deep learning. arXiv preprint arXiv:1803.09050, 2018.

[67] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals
of mathematical statistics, pages 400–407, 1951.

[68] David Rolnick, Andreas Veit, Serge Belongie, and Nir Shavit. Deep learning is robust
to massive label noise. arXiv preprint arXiv:1705.10694, 2017.

[69] Lorenzo Rosasco, Ernesto De Vito, Andrea Caponnetto, Michele Piana, and Alessan-
dro Verri. Are loss functions all the same? Neural Computation, 16(5):1063–1076,
2004.

[70] Sriram Sankararaman, Guillaume Obozinski, Michael I Jordan, and Eran Halperin.
Genomic privacy and limits of individual detection in a pool. Nature genetics,
41(9):965, 2009.

[71] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership
inference attacks against machine learning models. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 3–18. IEEE, 2017.

[72] Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. Stochastic gradient de-
scent with differentially private updates. In 2013 IEEE Global Conference on Signal
and Information Processing, pages 245–248. IEEE, 2013.

57

https://bit.ly/2V78OIi

[73] Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified defenses for data
poisoning attacks. In Advances in neural information processing systems, pages 3517–
3529, 2017.

[74] Sainbayar Sukhbaatar, Joan Bruna Estrach, Manohar Paluri, Lubomir Bourdev, and
Robert Fergus. Training convolutional networks with noisy labels. In 3rd International
Conference on Learning Representations, ICLR 2015, 2015.

[75] Latanya Sweeney. Only you, your doctor, and many others may know. Technology
Science, 2015092903(9):29, 2015.

[76] Om Dipakbhai Thakkar. Advances in Privacy-Preserving Machine Learning. PhD
thesis, School of Arts and Sciences Dissertation Advances in Privacy-Preserving, 2019.

[77] Kiran K Thekumparampil, Ashish Khetan, Zinan Lin, and Sewoong Oh. Robustness
of conditional gans to noisy labels. In Advances in neural information processing
systems, pages 10271–10282, 2018.

[78] John W Tukey. Mathematics and the picturing of data. In Proceedings of the In-
ternational Congress of Mathematicians, Vancouver, 1975, volume 2, pages 523–531,
1975.

[79] Andreas Veit, Neil Alldrin, Gal Chechik, Ivan Krasin, Abhinav Gupta, and Serge
Belongie. Learning from noisy large-scale datasets with minimal supervision. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 839–847, 2017.

[80] Sameer Wagh, Xi He, Ashwin Machanavajjhala, and Prateek Mittal. Dp - cryptogra-
phy: Marrying differential privacy and cryptography in emerging applications, 2020.

[81] Christopher Waites. Pyvacy: Towards practical differential privacy for deep learning.
https://github.com/ChrisWaites/pyvacy, 2019.

[82] Jinliang Wang and Anna W Santure. Parentage and sibship inference from multilocus
genotype data under polygamy. Genetics, 181(4):1579–1594, 2009.

[83] Oliver Williams and Frank Mcsherry. Probabilistic inference and differential privacy.
In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta,
editors, Advances in Neural Information Processing Systems 23, pages 2451–2459.
Curran Associates, Inc., 2010.

58

[84] Ke Yan, Xiaosong Wang, Le Lu, and Ronald M Summers. Deeplesion: automated min-
ing of large-scale lesion annotations and universal lesion detection with deep learning.
Journal of medical imaging, 5(3):036501, 2018.

[85] Weihe Zhang, Yali Wang, and Yu Qiao. Metacleaner: Learning to hallucinate clean
representations for noisy-labeled visual recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 7373–7382, 2019.

[86] Xingquan Zhu and Xindong Wu. Class noise vs. attribute noise: A quantitative study.
Artificial intelligence review, 22(3):177–210, 2004.

59

APPENDICES

60

Appendix A

Adversarial Additive Attacks on
ENRON

In practice, especially for medical and security settings, the outliers in the training set
might not be highly correlated and have more complex internal structures that might be
difficult to model. This leads us to ask a conceptual question of whether Diffindo would
be capable of removing outliers that have been specially curated by an adversary?

Inspired from [13], we model an attack on the ENRON dataset. Instead of flipping
existing points in the dataset, we add some extra adversarially generated data points to the
training set. These attacks are generated by influence functions and solving optimization
problems to find appropriate points to fool the model [37]. The attacks are simulated
by adding 0.5, 1, 1.5, 2, 3% generated points. In the non-private scenario, these attacks
have shown a test error increase from 3% to 24% by just adding 3% attack points. Here
we show the experimental results of running adversarial additive attacks on the ENRON
dataset privately. These attacks have shown a significant decrease in the testing accuracy
by adding a modest 0.5% - 3% (∆) adversarial points to the training set. At ∆ = 0.5, the
worst performance of our method against all attacks was 8%, and at ∆ = 3, the error is
relatively large at 17%. To investigate, we run 48 different files for varying ∆ from 0.5 - 3
and run Diffindo to remove these points while measuring the testing accuracy for each
run. The parameters used for this experiment are the same as the label flipping experiment
for ENRON.

In Figure A.1 and Figure A.2, we show histograms for accuracy increase vs total number
of attacks each value of ∆ for Diffindo (ε = 4.7, 50 epochs) vs DPSGD (ε = 4.7, 64
epochs) and Diffindo (ε = ∞, 50 epochs) vs SGD respectivelty. Diffindo is tuned to

61

remove 2-2.x the outlier points in every run.

For each value of ∆ in [0.5, 1, 1.5, 2, 3], we calculate the change in testing accuracy for
using Diffindo over the baselines. The x-axis shows the accuracy increase or decrease,
and the y-axis shows the total no. of attacks in that range. We see that the PDF for each
histogram is shifted to the positive side, which shows that majority of the attacks had
accuracy gains when Diffindo was used over baselines.

DPSGD vs Diffindo
(Accuracy Increase %)

SGD vs Diffindo (ε =∞)
(Accuracy Increase %)

∆ (Outliers) Max Avg Min Max Avg Min

0.5 (21) 8.37 1.89 -3.15 8 2.31 -1
1 (41) 9.93 1.56 -3.15 6 2.45 -1
1.5 (62) 7.62 0.96 -3.87 8 1.85 -1
2 (83) 7.62 0.40 -5.53 12 0.9 -5
3 (122) 9.21 0.28 -4.43 12 0.7 -7

Table A.1: Summary of Diffindo vs baselines on adversarial attacks

We detail the max, average and min accuracy increases over all 48 runs for each value
of ∆ for both the comparisons in Table A.1. The maximum accuracy is observed when
Diffindo can remove most outlier points while the minimum accuracy is observed when
none of the points was removed. However in the average case, Diffindo shows a positive
trend for all values of ∆.

62

Figure A.1: Diffindo shows testing accuracy gains for the same privacy budget vs DPSGD
over 48 attacks for each ∆

63

Figure A.2: Diffindo (ε = ∞) shows testing accuracy gains vs SGD over 48 attacks for
each ∆

64

	List of Tables
	List of Figures
	Introduction
	Related Work
	Differentially Private Machine Learning
	Learning with Noisy Labels

	Preliminaries
	Machine Learning
	Differential Privacy
	Differentially Private SGD
	Noisy Labels
	Sever

	Problem Setup
	Our Approach
	Overview
	Diffindo
	Privacy Analysis
	Hyperparameter Tuning

	Evaluation
	Experimental Setup
	End-to-End Evaluation
	Targeted Strong Label Flips
	Composite Label Flips
	Performance on Convolutional Neural Network
	Performance on Varying Noise Levels

	Effect of Parameters
	Clipping Thresholds
	Learning Rate
	Filter Condition
	Removal Multiplier
	Noise Multiplier

	Conclusion and Open Questions
	References
	APPENDICES
	Adversarial Attacks

