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Abstract

Density functional theory (DFT) and its time-dependent counterpart (TDDFT) are crucial
tools in material discovery, drug design, biochemistry, catalysis, and nanoscience. However, de-
spite its exact theoretical basis, approximations are necessary throughout, from the description
of electron exchange and correlation (xc) interactions to the representation of wavefunctions for
ever larger systems and the use of calculated quantities to explain and predict real-world phenom-
ena. To address long-standing problems related to the speed and accuracy of approximations to
the xc functional, we develop neural networks to emulate two such approximations, the local
density (LDA) and generalized gradient (PBE) approximations, within the DFT code cpaw. We
present a strategy for retraining the network and assess which training data is necessary to opti-
mize performance for total energies over a wide class of molecules and crystals. While certain
classes of materials proved difficult to describe, neural network implementations were able to
reproduce the LDA and PBE xc functionals with high accuracy and a reasonable computation
time. In an effort to develop a more efficient, robust, and accurate method for predicting the op-
tical properties of low-dimensional systems, we introduce the LCAO-TDDFT-k-w code within
Gpaw, where a linear combination of atomic orbitals (LCAO) representation of the Kohn-Sham
wavefunctions and TDDFT implementation in wavenumber k and frequency w space provides
substantial memory and time savings, and a first order derivative discontinuity correction to the
electronic gap brings the optical spectra in line with experimental measurements. Convergence
of the basis set, the use of low-dimensional response functions, and different ways to incorporate
the energy correction are explored for a series of materials across all dimensions: 0D fullerene
and chlorophyll monomers, 1D single-walled carbon nanotubes, 2D graphene and phosphorene
monolayers, and 3D anatase and rutile titanium dioxide. We develop a set of visualization tools
for resolving the energetic, spatial, and reciprocal space distributions of excitations, and find
LCAO-TDDFT-k-w yields qualitative and semi-quantitative agreement with other TDDFT meth-
ods and implementations at a fraction of the time and memory cost. Finally, we introduce a phe-
nomenological hydrodynamic model for the optical conductivity of graphene, with contributions
due to universal conductivity, Pauli blocking, and intraband transitions included in a systematic
way, is fit empirically with results from TDDFT, and manages to reproduce experimental spectra
across a wide range of energies within energy loss equations derived for 2D materials. We find
experimental parameters such as the amount of doping in graphene, the size of the collection
aperture, and the energy of incoming electrons influence the shape of the spectra in important
ways, especially in the energy region accessible to higher resolution probing techniques.
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Chapter 1

Introduction

When it comes to modeling materials, quantum phenomena, and the properties of many-body
systems, density functional theory (DFT) is in many ways the theoretical and computational
workhorse for understanding what goes on at the nanoscale. DFT provides a framework where
atomic structure optimization, band structure calculations, and intermolecular interactions can be
computed for systems as diverse as small molecules and huge crystalline systems. Although the
theory behind DFT dates back to the 1960s [ ], when it was firmly established that the electronic
density of a system is all that is required to exactly predict any ground state physical observable,
it was only with an increase in computational power, milestones like the development of pseu-
dopotential methods [2, 3], and the introduction of exchange-correlation (xc) functionals beyond
the local-density approximation (LDA) [4, 5] that DFT could be relied upon to make predictions
in line with experimental observation. Even for systems that are currently unsuitable for predic-
tion within the DFT framework, such as excited-state systems or structures with highly-localized
electrons [6, 7], DFT often acts as the starting point that other methods build on. Time-dependent
density functional theory (TDDFT) builds on the same fundamentals as DFT and allows for an
analysis of time-dependent properties including optical absorption [, 9, 10], excitation energies
of optical modes [ I, 12], and other frequency-dependent response properties.

The Venn diagram shown in Fig. 1.1 serves to illustrate the many facets of DFT, and conse-
quently many of the areas that can be improved upon to increase the speed, expand the scope, and
enhance the accuracy of its output. Implementing DFT is not as simple as throwing a crystal sys-
tem into a black box and instantly obtaining physical results, and approximations occur at every
stage, either out of computational necessity or due to unknown quantities like the exact exchange
and correlation (xc) functional. The words in bold in Fig. 1.1 highlight elements of the DFT
framework tackled in this thesis. Firstly, improved xc functionals are fundamental towards better
describing systems that depend strongly on the energy spectrum of the material [7, 13, 14]. Sec-
ondly, the choice of basis set for the Kohn-Sham wavefunctions has important consequences for
the convergence [15] and accuracy [ 16, 17] of the iterative solution. Thirdly, the optical response
functions link results from TDDFT to fundamental quantities in electromagnetic theory [ 18] but
must be tailored to the dimension of the crystal [19, 20]. Finally, measurable quantities like the
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Figure 1.1: A Venn diagram showing the main research directions contained in this work relating
to Density Functional Theory. Each circle shows topics that fall within the scope of either fun-
damentals, numerics, or applications of the DFT framework. Topics that are in bold constitute
the focus of this work.

electron energy loss spectra must utilize these response functions while properly accounting for
parameters related to the experimental setup [21, 22, 23]. A brief introduction to advances made
in each of these areas follows below.

1.1 Density Functional Theory: A Machine Learning Perspec-
tive

From a computational standpoint, two major roadblocks in the application of DFT are apparent.
The first is that, for atomistic systems with upwards of thousands of atoms, the time and memory
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Figure 1.2: Mappings within the DFT framework between the energy minimization (Euler) equa-
tion, the potential, the electron density, and the total energy. Most DFT implementations obtain
the ground state total energy by solving the Kohn-Sham equations starting from the potential
(bottom arrow), although alternative solution methods that rely on the other mappings may be
better suited for machine learning applications. Adapted from [24].

costs become too prohibitive for most researchers. Second, higher-tier xc functionals like hybrid
functionals [25, 26], that are better suited to describing strongly-correlated electron systems often
require on the order of 10 to 100 times the computational resources of conventional DFT xc
functionals [27]. It has been suggested that machine-learning techniques could be used to replace
aspects of conventional DFT calculations to overcome these barriers, as machine-learned models
are known to match the accuracy of the method they are trained on while being less demanding
to evaluate.

In deep learning, weights and biases of neurons within a network are trained with large
amounts of data to learn hierarchical features without any prior knowledge of the form the map-
ping is supposed to take. The quality of such networks depends on the quality of the training data
available along with a suitable tuning of various hyperparameters and proper pre-processing of
the input. In effect, while creating the training data and updating the network are computation-
ally expensive tasks, evaluating the mapping trained by the network is expected to yield accurate
results at a fraction of the computational cost. Artificial neural networks (ANNs) that focus on
feature engineering for the potential-energy surfaces of molecular systems [28, 29] have gained
traction in the chemical physics community, while ANNSs that directly represent energy function-
als [30, 31, 32], circumvent the usual Kohn-Sham self-consistent implementation [24, 33, 34] (as



shown in Fig. 1.2), or make predictions from densities converged with lower-tier xc functionals
about energy gaps calculated with higher-tier xc functionals [35] have all been put forward as
novel approaches for determining the electronic and atomic properties of materials more accu-
rately and in a shorter time frame.

Input Output

Layer Max Max
O Pooling Pooling
O —> >
Convolutional Layer #1 Convolutional Layer #2 Convolutional Layer #3 Fully Connected Neural Network

Figure 1.3: Example of a convolutional feed-forward neural network, where tools like convolu-
tion and max pooling, often used in series, are used to extract high-level features from the data
and pre-process it before it is sent through a fully connected network with weights and biases
that are updated with training data.

As many of the approaches set forth remain quite novel, when it comes to eventual integra-
tion of these neural network based methods into DFT-based software packages, such as Gpaw
[36, 37], considerations regarding scalability, universality, and practicality come into play. For
example, Brockherde et al. [24] focused on developing an approach which provides a more uni-
form sampling of the parameter space used for training a neural network model with relatively
few parameters, and was shown to be successful in predicting charge densities and total energies
for small molecules in 3D and for 1D random Gaussian potentials. However, their use of kernel
ridge regression prevents a larger and more diverse set of training points from being employed ef-
ficiently. Central to their approach is the training of the Hohenburg-Kohn mapping in Fig. 1.2 to
avoid issues related to the reduced parameter space when taking the functional derivative within
neural networks [31], but it also prevents an easy and direct integration of the developed network
into commonly used DFT software packages. Snyder et al. [30] working in the framework of
orbital-free DFT used fully-connected neural networks to predict the interacting kinetic energy of
diatomic molecular systems starting from the electron density while Yao et al. [38] accomplished
the same for hydrocarbons using a deep convolutional neural network, similar to that displayed
in Fig. 1.3, although both methods in their current implementation lack the capacity to predict the
full range of properties of most systems. Work by Kolb et al. [32] shows the development of the
promising PROPhet software package, which has shown that ANNs can make predictions about
energies and band gaps calculated using hybrid functionals such as HSE [35] and quasiparticle
methods such as GoW, [7] starting from electron densities calculated with simpler xc functionals,
although its applicability in a self-consistent scheme still requires proof-of-concept. One of the
more interesting approaches in this new field is given by Ryczko et al. [33, 39], where extensive
deep neural networks are applied to images of electron densities and external potentials, replac-
ing all the calculations in the conventional Kohn-Sham DFT scheme via techniques popularized
by the image pattern recognition community.



Our work on this topic is motivated by these same issues of scalability, speed and practical-
ity. The Hohenburg-Kohn theorem [ 1] as stated earlier proves that every physical quantity can
be expressed as a functional of the electron density alone. The possibility must then exist for
functionals which rely on quantities like the Kohn-Sham orbitals or the kinetic energy, defined
implicitly via the electron density, to be approximated to a high degree of accuracy by a neural
network which only takes the electron density as input. In contrast to approaches that have only
been tested on small molecular systems [24], artificial potentials [34], or two dimensional (2D)
systems [39], we are motivated to verify our approach with a class of systems used to benchmark
DFT implementations against each other [16, 40, 41]. Analysis of the kinds of networks needed
to eventually realize the aforementioned goal provides motivation to “start small” with networks
that are capable of first predicting relatively simple but commonly used xc functionals such as
the local density approximation (LDA) and the generalized gradient approximation (GGA) as
implemented by Perdew, Burke, and Ernzerhof (PBE) [5].

1.2 LCAO-TDDFT-k-w: Spectroscopy in the Optical Limit

The scalability problem of DFT brought up in the context of machine learning remains ever-
present for its time-dependent counterpart TDDFT. Large systems with thousands of atoms and
no symmetries that speed up calculations, a common situation when studying biomolecules for
example [42, 43], may only reach a convergent state after using approximations unsuitable for
studying the optical properties of these systems. For example, optical absorption processes,
electron-hole separation, and exciton gemination are of great significance for obtaining accurate
optical spectra of materials, but the xc functionals required to describe these are prohibitively
expensive for medium sized systems, let alone large macromolecules. In addition, depending on
the choice of basis set for the Kohn-Sham wavefunctions, which directly affects the size of the
Hamiltonian in the Kohn-Sham eigenvalue problem [44], these large systems may have compu-
tational memory requirements beyond the capacity of most researchers. The motivation here is
clear: there is a need for a robust and efficient method for determining the optical properties of
systems such as biomolecules while retaining the accuracy of computationally unfeasible meth-
ods. The code we have developed within the DFT-based software package cpaw [36], LCAO-
TDDFT-k-w [45], has been shown to accomplish this for systems such as chlorophyll monomers
[46] and single-walled carbon nanotubes (SWCNTSs) [9], with the greatest cost savings of our
implementation coming for low-dimensional materials.

When it comes to choosing a TDDFT approach that is most appropriate for large macro-
molecular systems, the pros and cons of each must be weighed carefully. For example, TDDFT
implemented in real space (RS) and frequency domains, TDDFT-r-w [47], scales as O(N>) where
N is the number of Kohn-Sham wavefunctions, which itself scales with the number of atoms in
the system. Likewise, RS-TDDFT-k-w [48] has high memory costs associated with the size of
the grid needed for convergent calculations. RS-TDDFT-r-t [49] alternatively works in the time
domain, but stability of this method requires time steps much smaller than needed from alter-
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Figure 1.4: The energy of a 38-atom truncated octahedral gold cluster with CO adsorbed, show-
ing the energy as a function of both the number of iterations (top) and CPU time (bottom) for
structure optimizations using real space grids (black dashed) and LCAO (green solid) in Graw.
Adapted from [15].

nate approaches [50]. A real space basis set representation is oftentimes inappropriate for the
systems of interest. Although plane wave (PW) allows for improved stability without the large
grid sizes, high memory costs again become a problem when very large unit cells are employed,
the exact type needed to model 0D materials such as macromolecules. A linear combination of
atomic orbitals (LCAO) representation [15, 51] has the lowest memory costs of the three repre-
sentations. The compactness of the basis helps with convergence, while working in reciprocal
and frequency steps avoids the pitfalls related to time steps and scaling present in methods like
TDDFT-r-w. Fig. 1.4 indicates just how big a speedup the use of the LCAO basis set has com-
pared to grid-based methods for structural optimization. The very compactness of the LCAO
basis set [ 17, 52] may, however, cause a poor description of certain physical properties. Working
with LCAO instead of PW also means that the fast Fourier transform (FFT) that generally makes
the PW representation quite efficient is unavailable, so calculations require that optical response
functions are calculated purely in the optical limit (i.e. zero wavenumber).

While LCAO-TDDFT-k-w seems to help resolve the memory and time bottleneck for low-
dimensional systems, our motivation also stems in having our robust and efficient method be
accurate. Empirical methods that essentially splice the difference between experimental or Gy W,-
BSE band gaps onto the unoccupied Kohn-Sham eigenenergies calculated within TDDFT may
prove useful as a quick fix, but lack the predictive quality that DFT is built for. The derivative
discontinuity correction to the Gritsenko, van Leeuwen, van Lenthe, Baerends solid corrected



(GLLB-SC) exchange functional [53, 54, 55] provides a first-principles method for calculating
this difference, avoiding ad hoc changes to the band gap and hence the profile of the optical
spectra. Trying to understand how exactly this correction should be introduced into the spectra
provides motivation for testing this approach over a wide class of materials. This testing is fur-
ther motivated by our need to benchmark our LCAO-TDDFT-k-w code to ensure that the issues
related to convergence of the LCAO basis set can be mitigated and that its application to mate-
rials of any dimension is justified. Doing so should demonstrate the reliability and applicability
of the LCAO-TDDFT-k-w approach integrated with the GLLB-SC correction for determining
the optical properties of the kinds of systems poorly or inefficiently described by other TDDFT
methods.
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Figure 1.5: The energy loss function — Im &}, (q, w) of doped monolayer phosphorene in direc-
tions parallel to the x- and y-axes from PW-TDDFT-k-w, showing the difficulty in calculating
the optical limit limq_,0 £(q, w). For atomically thin materials, the energy loss of a fast-moving
electron in an EELS setup should take into account the dimensionality of the system, the aperture
size, and the importance of relativistic effects. Adapted from [56].

1.3 Conductivity Models and the Electron Energy Loss of
Graphene Monolayers

For many experimentalists, DFT is only as useful as its ability to make reliable predictions and
reproduce what is measured in the lab. While the standard output of most TDDFT codes is the
3D dielectric function in terms of wavenumber q and frequency w, and methodologies exist for
plugging in this ab initio output to obtain estimates for the observed energy loss in experimental
setups, refinements are required to properly account for the different electromagnetic properties
of 2D materials, with graphene and phosphorene (see Fig. 1.5) being two well-known examples.
The dimensionality of the monolayer can be accounted for directly in the TDDFT calculation



stage [ 18, 20] using a mean-field approach [ 19], although in the case of graphene, analytic models
for the conductivity have been derived from either a tight-binding approach [57] or empirically
[22, 58] after being fit to ab initio data.

From both a theoretical and computational standpoint, interactions of monolayer materials
with externally moving charged particles have been explored thoroughly in the literature. For
example, Electron Energy Loss Spectroscopy (EELS) in a Transmission Electron Microscope
(TEM) setup has been used to study plasmon excitations in small-scale structures over a wide
frequency range [59] and to probe energy losses in the fiw > 1 eV range for monolayer graphene
[60, 61, 62], while the addition of aberration correctors [63] to the setup has provided access
to the region of mid-infrared energy excitations [64, 65]. Graphene in particular has received
a good share of attention, with ample literature regarding the measurements of terahertz (THz)
radiation [66, 67, 68], transition radiation (TR) [69], and the plasmonic inverse Doppler effect
[70] resulting from interactions of a graphene sheet with fast moving electrons. Given the breadth
of literature on the subject, we are motivated to consider how differences in experimental setups,
such as the size of the collection aperture, the velocity of incoming electrons, and the range of
energies considered, influence the spectra.

Results for the fully relativistic energy loss have been explored for fast electrons incident at an
oblique angle [71] and at a normal angle [21, 22] for a single graphene monolayer as well as for
multilayer graphene under normal incidence [72, 73, 74]. All these approaches treat the graphene
monolayer as a boundary layer in the context of the macroscopic Maxwell’s equations described
by a conductivity which is purely frequency dependent, either from TDDFT or from empirical
models as mentioned above. Such an approach allows for the derivation of analytic forms for
the electron energy loss taking only the two-dimensional conductivity and certain experimental
parameters as input [21, 22, 58]. These simplifications all allow for a thorough analysis of the
different energy loss mechanisms available to incident electrons across a wide range of frequen-
cies. We are in this way motivated to explore how well different models for both the energy loss
and in-plane conductivities fare against experimental results from the literature [12, 60, 62, 75].

1.4 QOutline of Thesis

This thesis is divided as follows: Chapter 2 provides necessary theoretical background, including
discussion and equations related to density functional theory (DFT) and its time-dependent im-
plementation (TDDFT), electron energy loss spectroscopy (EELS), and artificial neural networks
(ANNSs). Chapter 3 provides details related to the low-dimensional materials under consideration,
with special emphasis on the optical properties of the graphene monolayer. Chapter 4 presents
the results of our efforts to use a feed-forward ANN to learn the commonly used LDA and PBE xc
functionals, showing their performance in modeling physical systems and outlining major chal-
lenges any ANN approximation to these quantities is expected to face. Chapter 5 demonstrates
the performance of our LCAO-TDDFT-k-w code, a TDDFT implementation with considerable
computational efficiency optimized for modeling the optical absorption of low-dimensional and
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large macromolecular systems, providing benchmarking results for materials of every dimen-
sion and presenting visualization tools we developed unique to our implementation. Chapter 6
compares our phenomenological model for the conductivity of graphene to that computed using
TDDFT methods, and contrasts EELS derived from both experimental spectra before analyz-
ing how the experimental setup and theoretical assumptions affect the profile of the energy loss.
Chapter 7 presents a summary of results and future directions for expanding the scope of the
research outlined in this thesis.



Chapter 2

Theoretical Background

2.1 Density Functional Theory

In the context of condensed matter physics, all materials can be characterized as systems of
interacting electrons and ions. The full many-body Hamiltonian, excluding purely quantum me-
chanical terms like electron spin and angular momentum coupling, can be written as

Z]€2 Z[Z]e
H = _ 2.1
Z om 2M1 — Ir; = R| 22 |r —r,| 2 IR; — Ry D

I1+J

where ions with charge Z;e and mass M; are located at positions R; carrying momenta P; and
electrons with charge —e and mass m are located at positions r; while carrying momenta p;. We
note that atomic units are used in all the following equations.

The first two terms in the Hamiltonian correspond to the kinetic energy of the electrons and
ions, respectively. The third, fourth and fifth terms in the Hamiltonian denote the electron-
ion, electron-electron and ion-ion interactions, respectively. The ground state of the system,
corresponding to a solution of the time-independent Schrodinger’s equation HWY(R;, Py, r;, p;) =
EY(R,, P, r;, p;), can theoretically be obtained by minimizing the total energy (the expectation
value of the Hamiltonian) with respect to all possible electronic and ionic degrees of freedom.
However, when considering systems with even a few ions and electrons, solving this equation
analytically becomes intractable. This chapter presents density functional theory (DFT) as one
of the most successful methods used to determine the quantum mechanical properties of systems
that can be well described by the Hamiltonian above.

The first candidate for simplification of the problem comes about from the large difference
between electron masses m and ion masses M; of about three orders of magnitude. It is therefore
often assumed that the electrons are moving much faster than the ions do and thereby respond
to their movement close to instantaneously. Known as the Born-Oppenheimer approximation
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[76], this effectively decouples the ionic and electronic degrees of freedom, so the ionic posi-
tions R; can be considered classical and therefore fixed. Both the kinetic energy of the ions and
the last term in Eq. 2.1 can be safely neglected when determining the electronic portion of the
wavefunctions, being constant for a set configuration of ions. It is, however, needed to determine
the correct total energy of moving electrons and fixed ions. The many-body Hamiltonian of N
interacting electrons in a solid can finally be written in the form

p,-2 Z;e?
H:ZZTMM;&|2Z

The solution of this eigenvalue problem is still a daunting task - the next approach examined
towards solving the eigenvalue problem for the Hamiltonian in Eq. 2.2 for the ground state of
the electrons is known as Hartree-Fock (HF) theory [77], where the N-electron ground state
wavefunction of a non-relativistic system is represented by the Slater determinant of N one-
electron spin-orbitals,

(2.2)
i - rj|

Wo(ry -+ ry) = —— Z&mwﬂw%) (2.3)

(TES n

where the sum is over all permutations o in the symmetric group of n elements S, in order
for the resulting wavefunction product to properly take into account the correct anti-symmetry
character in the spatial coordinates (also in spin although the indices are repressed), noting that
this approach does neglect correlation of the electrons by effectively decoupling all electrons in
the system.

The variational principle states that the N-electron wavefunction describing our quantum
mechanical system is obtained by minimizing the total energy Ey = (¥o|H|¥,) with respect to the
constituent single-electron wavefunctions ¢; under the constraint that the ; form an orthonormal
set (i.e. (Yily;) = 6;;). The resulting system of non-linear integro-differential equations, known
as the canonical HF equations [77], are written as

2
;)_m + Vnuclear + Vcoulomb + Vexchange] l// 81‘/’1 (24)
mmwm—eZwmj@() S’ (2.5)
exchange‘// (l’) =—e Z l/’](l’) fw (I’ |lr// (l’ )dl’ (26)

where the Lagrange multipliers g; result from the orthonormality constraint, the nuclear potential
in Eq. 2.2 operates on the one-electron wavefunction in a trivial way, and the sums run over
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all states occupied by electrons. The so-called exchange potential shown in these equations is
a non-local integral operator, implying that the solutions i; and the corresponding eigenvalues
&; need to be determined self-consistently. All in all, the many-body ground state problem has
been simplified down to a set of single-particle equations reminiscent of the time-independent
Schrodinger equation.

Understanding that the auxillary wavefunctions and HF eigenenergies were obtained through
a variational method, it is clear that the HF ground state energy E( will always be higher than
the true ground state energy of the system, which can be attributed to the neglect of correlation
effects in the above equations, both between electrons and their spins, the Slater determinant
proving insufficient to model the complex many-body wavefunction. While methods exist for
the exact calculation of the correlation energy through configuration interaction methods utiliz-
ing a weighted sum of Slater determinants [78], the computational effort required makes this
intractable for most systems. The next section shows that density functional theory can take
correlation effects of the quantum mechanical system under study into consideration in a com-
putationally feasible way.

2.1.1 Hohenberg-Kohn Theorem and the Kohn Sham Ansatz
The many body Hamiltonian of interacting electrons written in Eq. 2.2 can be written as

I:I = T + Z f}ext(ri) + ‘A/coulomb (27)

composed of the kinetic potential, the external potential, and the electron-electron interaction,
or Coulomb potential. As mentioned before, although the electronic degrees of freedom being
decoupled makes the problem more tractable, this operator will still be acting on a wavefunction
Y(r;, p;) of the positions and momenta of all electrons in the system.

The Hohenberg-Kohn Theorem [!] states that knowledge of the external potential Vext(r) =
i Vext(1;), taking into account the atomic structure of our system, is sufficient to determine ex-
actly the ground-state electronic density n(r) of the system. More precisely, the theorem states
that there exists a functional that links the external potential to the ground state electronic density
of the system. Likewise, it can be shown that the ground state density determines the external
potential V. uniquely up to a constant, and consequently the entire full Hamiltonian in Eq. 2.1,
from which the eigenenergies and eigenfunctions of the many-electron system are derived [77].
While this electronic density n(r) is not known a priori, a variational method can be applied al-
lowing for its self-consistent calculation. Ultimately, the Hohenberg-Kohn Theorem shows that
the total energy of the system in its ground state will be determined by the external potential Vey
defined as a functional of the electronic density. In functional form,

Egs [n(), Veu(r)| = TIn(0)] + Ecouoms[n(r)] + f Vex (0n(r)dr. (2.8)

12



The first two terms depend explicitly on the ground state density of the interacting system. It can
be shown that the kinetic energy of a non-interacting electron gas in many cases is already a good
approximation for that of the fully interacting system, while the electron-electron interaction
is also well represented by the classical Coulomb interaction [79]. Eq. 2.8 can therefore be
reformatted as

Eme%wﬂ=%WM+&M®MEAMN+f%wM®M (2.9)
where
1 N,/2 )
nman:—igym@mu%@» (2.10)
and the classical long-range Hartree energy is defined as
Eyln(r)] = l ffn(r) ! n(r’)drdr’ (2.11)
2 r—r/|

The last remaining term in Eq. 2.9, called the exchange-correlation (xc) functional [80], includes
all interaction terms between the electrons of the fully interacting system and is defined as

E.[n(r)] = T[n(r)] = To[n(r)] + Ecoutoms[n(r)] — Ey[n(r)]. (2.12)

The second key component of the theoretical underpinning of DFT lies in the Kohn-Sham (KS)
ansatz [79], which posits that the electron density for the original fully interacting system can
be represented by an artificial collection of non-interacting particles, allowing for independent
equations for these artificial particles where all many-body effects are collected into the xc func-
tional of the density in Eq. 2.12. This representation can be understood as a mapping from the
interacting electron problem to one where a collection of non-interacting electrons act according
to some effective potential

Veff(r) = ‘A/ext(r) + VH(r) + ch(r)’ (213)
where OE . [n(1)]
. [n(r
Vie(r) = an(r) (2.14)

and the electron density is decomposed into a weighted sum of orthogonal one-electron wave-
functions

N
n(r) = ) i (o), (2.15)
i=1

where N represents the number of occupied states. We can apply a variational procedure on the
energy in Eq. 2.9 with respect to the wavefunctions of our non-interacting artificial system ;,
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known as the KS wavefunctions. This results in the KS equations
v o
(—7 + Veﬁ(r)) pi(r) = gifi(r), (2.16)

using that p; = iv. Altogether, the original many-electron problem has now been replaced by an
auxiliary non-interacting particle problem, and the input for the operator on these KS wavefunc-
tions now depend only on the electron density instead of the collective spatial and momentum
profiles of every electron in the system. All issues related to the complex interacting many-
electron problem, including the indistinguishability of electrons and other correlation effects, are
left to the determination of a reasonable xc potential.

2.1.2 [Exchange-Correlation Functionals

We start with the simplest and most well-known of the xc functionals, known as the local density
approximation (LDA) [4]. We first decompose the xc total energy via

XC

EPA[p] = EXPA[n] + ELPA[n] = f DA nln(x")dr’, (2.17)

where £-PA[n] represents the xc energy per particle, known as the xc energy density functional.

For the LDA, there is an explicit formula for the xc potential shown in Eq. 2.14

LDA DA
{LPA(p) = OE"In] = &PA(u(r)) + n (r)ﬁgxc (n(r))

on(r) e on(r) 2.18)

It is this function that contributes to the effective potential V.q(r) defined in Eq. 2.13 for the KS
Hamiltonian, solved to give the KS wavefunctions. This explicit formula becomes increasingly
complicated as the range of functional parameters increases, to the point of being undefined
for xc functionals with explicit dependence on quantities that depend implicitly on the electron
density n(r).

While LDA formally refers to any xc functional that only depends on the density, its most
natural implementation is motivated by physical considerations. Specifically, since the LDA
approximation assumes dependence only on the local electron density, €-P* and &-P* should
converge to analytic values for the xc energy density of the homogeneous electron gas (HEG)
[1], an artificial material where positive nuclei (and therefore the electron density) are assumed

to be evenly distributed in space. An analytic formula for e£P* can then be derived and goes as

3

eXPA[n(r)] = 23 (E) n(r)s, (2.19)
4\

LDA

while ;7" can be approximated by treating the HEG model perturbatively. Thanks to this bench-
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mark and its success in describing many different systems, LDA serves as a starting point for
more complicated functionals, many of which are defined as correction terms to this well-tested
xc functional. LDA does however have many shortcomings as an xc functional. For example,
as a function of space the LDA potential decays asymptotically as an exponential, whereas the
exact xc potential should theoretically decay in a slower Coulomb-like manner, given that it de-
scribes the correlation effects between electrons interacting via the Coulomb potential [21]. This
can cause molecular systems with physically stable solutions to dissociate in a DFT calculation
implementing LDA, as the number of bound KS orbitals is underestimated and Rydberg states
and ionization potentials are ill-described [4]. Much of the success of the LDA xc functional
lies in fortuitous error cancellation [81], as the correlation energy E. is underestimated and the
exchange energy E, is overestimated. Ultimately, LDA proves to work best when the materi-
als described most resemble the HEG, like bulk metals, but for a larger class of systems it is
worthwhile to investigate more complicated xc functionals.

Perdew, Burke, and Ernzerhof (PBE) [5] developed one of the most well-known of the gen-
eralized gradient approximation (GGA) functionals, a family of functionals defined by

ESMn, Vn] = ELPMn] + (ES9A(n, Vn] - EXPM[n]) = f £398 [n, Valn(r')dr’, (2.20)

now including the gradient of the electron density as an additional parameter in the energy density
functional. The formula for the xc potential changes accordingly to

6E?CGA [n, Vn]
on(r)
_ _GGA 9594 (n(r), Vn(r)) H£SCA (n(r, Vn(r)))

= g (n(r), Vn(r)) + n(r)—= on(r) ~ Vo) dVn(r)

Va9 (r) =

(2.21)

As with LDA, the form of the GGA xc functional is rooted in certain natural constraints that
a dependence on the gradient of the electron density introduces. For example, the functional
can be chosen such that the correction term (ESCGA [n, Vn] — ELPA [n]) goes to zero in the limit of
Vn — 0, or that it is exact for a reference system like a helium atom. Since atoms and small
molecular systems are farthest from the HEG and have strong variation in the term Vn, good
GGA implementations will fare better in describing the properties of these systems [16, 79].
Further constraints and limits can be imposed depending on the type of system we are modeling.

Next in the hierarchy of xc functionals comes the meta-GGA methods [82], so called because
they depend on the occupied KS orbitals implicitly through a kinetic energy density labelled 7(r)

1
=3 Z[M(r)] (Vo] (2.22)
These meta-GGAs can be formulated to follow theoretical constraints as in the typical LDA

implementation, or by following a more empirical approach that fits parameters in the model
based on large molecular databases. To determine the xc potential for a meta-GGA theoreti-

15



cally involves a computation of d7(r)/on(r’) and likewise oy,;(r)/on(r’). These quantities are
theoretically well-defined, as the Hohenburg-Kohn theorem guarantees that knowledge of n(r)
is sufficient to reconstruct the KS potential, which is consequently used to find the KS orbitals
Y;[n](r) and their energies through a constrained search. In practice, an iterative procedure using
the inverse KS equations (for example, the orbital-averaged one shown in Eq. 2.37) is run until a
convergent electron density and set of orbitals is generated.

The next and final approximate xc functional under consideration in the hierarchy are hyper-
GGAs. Such xc functionals, on top of taking the electron density and its gradient as input, use
the KS orbitals as input directly, in contrast to their indirect use in the kinetic energy part of the
meta-GGAs [82]. These two approaches together fall under the umbrella term of hybrid func-
tionals. One family of commonly used hyper-GGAs [%3] include HF exchange terms, entering
the xc functional as

E$n,¢] = —%Z f f dray LLDVHEWHOY ) (2.23)
ik

Ir — 1’|

As with the meta-GGA, functional derivatives in closed form are no longer possible. Approxima-
tions exist for determining the potentials V.. for these hyper-GGA methods [79, 83], including
a variation on the Slater potential method [84] for the exact xc functional, but the computational
power required to implement these hybrid functionals in addition to the regular self-consistent
DFT cycle limits the use of these costly functionals.

For functionals that can be expressed purely in terms of the electron density, we can utilize
the framework developed by Levy and Zahariev [85], where

Exc[n] - f‘/\/xc([n]a l')l’l(l')dl'

Vedlnl, v) = Vie([nl, 1) + c[n] = Vio([n], 1) + [n(or

(2.24)

where c[n] is an additive constant that depends only on the electron density. Multiplying this
equation by n(r) and integrating over space yields

E.[n] = f Ve ([n], r)n(r)dr. (2.25)

This form can also be used to reformulate the KS equations in Eq. 2.16 as

v oo N N
(—7 + Vexe () + Vicoutomn (1) + V;‘c(r)) Yi(r) = (& + c[nDyi(r) = £¢(r), (2.26)

where multiplying on the left by ¢7(r), summing over i, and integrating over space gives an
expression equivalent to Eq. 2.9, yielding

Egs = Z &', (2.27)

i
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Ultimately, this provides an alternate method to relate the xc energy and a potential used in a vari-
ant of the KS equation, one where knowledge of the potential V;c([n], r) can be used to construct
the xc energy functional rather than the original method where the functional derivative of the
xc energy function is taken to determine V..([n], r). This method also has the advantage that the
ground state energy can be directly computed from the sum of these adjusted KS eigenenergies.

From a computational standpoint, it is often convenient to express the first and second gradi-
ents of the electron density as dimensionless parameters

\v} 2
o=n*PVn  ®=n" (ﬂ - Vzn). (2.28)
n

For many implementations of GGA, including the PBE exchange potential [5], the Becke asymp-
totic exchange potential [25], and the Lee-Yang-Parr correlation potential [83], the regions where
these dimensionless parameters are near unity provide the greatest variation in the output values
for the total xc energy, so efforts to replicate these kinds of functionals will also need to capture
the extent to which changes in o and/or ¥ affect the xc energy.

2.1.3 The GLLB-SC xc functional

The xc functional hierarchy presented above involves successive corrections and additional pa-
rameters included in the computation of E,. and V,. to try to obtain a converged electron density
as close as possible to the exact one. A good approximation means that the resulting eigenener-
gies from the self-consistent solution of the KS equations will result in valence and conduction
bands resembling experimentally measured ones, but it is the case in certain schemes that the
band gap calculated with these methods is not in agreement with experiment. One reason for this
is attributed to the derivative discontinuity of the xc potential [53], where the xc potential jumps
for integer occupations of electrons. More precisely, for an N-electron system the xc potential is

described by
- OE[n]
Vi(,N) =
©N = m

which will be continuous for fractional numbers of electrons, but at integer number results in a
discontinuity in the energy levels, meaning for this kind of system the true KS-DFT quasiparticle
band gap is given by

(2.29)

b
N

E,=EX + A, = ey —en + <}$irr(§ |[Vielr, N +6) = Vo, N - 5)]> (2.30)

where gy represents the N KS eigenenergy and the chevrons emphasize the fact that the discon-
tinuity is a constant function of r. While several computational tools, including the optimized
effective potential method, can be used to compute this discontinuity [55], many turn out to be
complicated and computationally demanding and therefore unsuitable for larger systems which
require more robust methods [54].
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Figure 2.1: Theoretical versus experimental E;; transition energies in eV for 15 different chiral
semiconducting single-walled carbon nanotubes, E;; being the energy of the first bright exci-
tonic peak. Optical absorbance is calculated using the Geaw LCAO-TDDFT-k-w software pack-
age. Filled squares are for eigenenergies calculated with the GLLB-SC derivative discontinuity
correction A, and open circles for energies calculated using only PBEsol. Experimental data is
from the optical absorbance and electron energy loss measurements of Refs. 23 and 24, respec-
tively. The average errors for GLLB-SC (e ~ 0 = 70 meV) and for PBEsol (¢ * —300 + 3 meV)
transitions are shown as grey regions. The red line, provided to guide the eye, shows the extent
to which the correction A, improves the description of the band gap. Adapted from [9]

The GLLB-SC method [55] is one such robust method, requiring only a single calculation
with an already-minimized electron density (known as a single-point or Harris calculation) to
yield the derivative discontinuity A,. This is a refinement on the original GLLB method, which
would run the calculation on a system converged with a GGA xc functional best suited for smaller
atoms, by instead running with a system converged with PBEsol, a GGA xc functional suited for
solids and larger systems. The GLLB-SC works by adding to the exchange energy functional for
the system a simple orbital-weighted approximation that yields the desired discontinuity of the
potential at integer particle numbers

Ax = <\IIN+1|Ax,resp(r)|\PN+l>- (231)
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8V2 < wi(r)P
372 Z ( Veni1 — & — Vey — 81‘) W,

1

Ax(r) = (2.32)
where the reference energy ¢&; takes on the value of the highest occupied molecular orbital
(HOMO) for a given integer occupation. This corrects in an approximate way for the derivative
discontinuity problem present in the band gap difference for the material in question by allow-
ing for a rigid upshift in the KS eigenenergies for unoccupied states. As an example, Fig. 2.1
shows just how well the GLLB-SC correction works in matching theoretical and experimental
predictions for the first bright excitonic peak for a collection of 15 semiconducting nanotubes.

Some of the success of the derivative discontinuity correction towards describing the quasi-
particle band gap can be attributed to its linear correlation with the inverse dielectric constant &,
the static limit of the macroscopic dielectric function shown in Eq. A.5, as presented in Fig. 2.2
[9]. Previous studies have shown that the quasiparticle (QP) correction to the electronic band gap
E, = Efs + Agp, calculated through methods like GoW,-BSE [14, 86], is also directly correlated
with the inverse dielectric constant of the material. This relates to the static dielectric constant
describing the effective screening of electron levels which then renormalizes the band gap cor-
rection according to the adjusted eigenenergies [86], as explained in Section 2.2.7. It stands to
reason that a linear relationship may exist between the corrections calculated through the two
methods, and that they both provide reasonable estimations for the true quasiparticle band gap.

2.1.4 Inverse Kohn-Sham Equations

While the types of xc functionals that can be chosen are abundant, it is important to understand
exactly how knowledge of a set of canonical KS orbitals, orbital energies, and an external poten-
tial for the many-electron system can actually be used to determine this potential. However, care
must be taken depending on whether V,.(r) depends solely on the electron density or, as is done
for more complex schemes that are used to better describe electron correlation effects, on the KS
orbitals themselves.

One option for obtaining an expression for Vg(r) is to simply rearrange the terms in Eq. 2.16

- 1 V2yi(r)

Y= 2
While this is formally valid for each orbital ¢;(r), in practice it could used only for a nodeless
orbital, which would occur in the lowest eigenvalue state, and could be successfully employed
for studying the exact xc potential for one- or two-electron systems, but in calculations for many-
electron systems using finite basis set representations for the orbitals it leads to severe numerical

difficulties [87]. Instead, starting with Eq. 2.16, we multiply both sides on the left by ¢ (r), sum

+ & (2.33)
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Figure 2.2: Inverse dielectric constant & calculated within LCAO-TDDFT-k-w versus the
GLLB-SC derivative discontinuity correction A, for 15 achiral and 2 chiral SWCNTs. A lin-
ear fit e! ~ 0.418A, (r = 0.995) is shown as a red line with standard deviation oo ~ 0.007
depicted in the grey region. Adapted from [9]

over states i from 1 to N, and divide by the density n(r), resulting in an expression for V,g(r)
1 (1
X/ _ ok 2. . . 2
Ver(r) = () ;:1 [2% (T)VYi(r) + & [yi(r)] (2.34)

from which an expression for V,.(r) can be obtained by subtracting off the calculated external
potential and Hartree portion.

When the xc functional has explicit dependence on the orbitals rather than just the electron
density, we follow the approach of Kananenka et al. [87] by employing the orbital-dependent KS
formalism, replacing Eq. 2.16 with

OE[{y;(n)}]

0 (1) pi(r) = gifi(r) (2.35)

1 . .
-3W+m@H%ﬁH
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giving a new result for the xc potential

N
Valr) = o 2 Bwﬂrw%(r) +e, |wl-(r>|2] - Vo) = V(o). (2.36)

effectively redefining it to an orbital-averaged form given by

OE [{y; (r)}]

() Yi(r). (2.37)

A 1 <,
Ve(r) = @;wi (r)

For density functionals with explicit dependence on the electron density this expression re-
duces to the functional derivative shown in Eq. 2.14 but results in an orbital-averaged poten-
tial when using orbital-dependent functionals, thereby providing an efficient way to construct
orbital-averaged xc potentials for hybrid functionals.

2.1.5 Wavefunction Representations in DFT

Fig. 2.3 presented the self-consistent cycle that allows the solution of an electron density which
minimizes our total energy in Eq. 2.9 while satisfying the KS equations presented in Eq. 2.16.
Computationally, the third step in the cycle, solving the single-electron Schrodinger equation,
requires a choice of basis for the KS wavefunction ¢,(r). Three common representations, each
with their own pros and cons, are presented below.

The first and most obvious case is to represent the wavefunctions in real space, with all
calculations done on a finite real space grid through a finite difference method (FD). Solving the
KS equations this way has the advantage of being easily parallelizable and efficient for larger
systems. The accuracy and convergence of the method will largely be controlled by the size of
grid spacing used. However, for systems with substantial amounts of empty space in their unit
cells, as in the case of macromolecules or lower-dimensional systems, a real space representation
requires substantial memory to store the wavefunctions. For these smaller systems, a plane wave
(PW) implementation tends to converge faster, resulting in a significant time speedup [44]. In
PW, all quantities are represented by their Fourier transforms on the periodic super cell so that
Eq. 2.16 can be solved in Fourier space. For example, the periodic potential is represented by

V) = > H(G)e, (2.38)

G

where G represents a reciprocal lattice vector associated with the Brillouin Zone (BZ) of the
crystal. Higher values of G correspond to solutions with higher kinetic energies. The conver-
gence parameter E., determines the maximum number of reciprocal lattice vectors included in
the plane wave expansion of the KS wavefunctions.

In LCAO, the KS wavefunctions are expanded as a set of atomic-like orbitals ¢,;,,(r) = ¢,(r),
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which are constructed as products of radial functions and spherical harmonics which are classical
solutions to the exactly solvable hydrogen atom [15]. The expansion goes as

Un(®) = ) (D), (2.39)

7

where n represents the band index. When Eq. 2.16 is represented as an eigenvalue problem with
the total energy Hamiltonian diagonalized in the basis of these atomic orbitals for each atom in
the unit cell, the coeflicients c,, are the variational parameters.

A minimal basis set consists of one atomic orbital-like function for each valence state per
atom in the unit cell of the crystal, although expanding the span beyond this basis is necessary
to obtain well-converged and physical results. There are two common ways to accomplish this:
the first is to include extra radial functions (represented by (), corresponding to higher-order
orbital solutions of the hydrogen atom. The second way is by including spherical harmonics
corresponding to unoccupied angular momentum quantum numbers, referred to as polarization,
effectively accounting for possible hybridization of orbitals in the basis set representation [15].
For example, a double-{-polarized basis set for a carbon atom, the kind utilized in Chapter 5 to
represent the fullerene molecule, will have 2s and 2p valence states with two radial functions
each. Including an additional polarization function with d-orbital character yields a total of 5
distinct radial functions. The consequences of a proper choice of LCAO basis set are brought up
throughout Chapter 5.

For larger systems and for lower-dimensional materials that represent some of the most
promising systems for nanoscience applications, an LCAO basis set representation will have
significant speedup over both real space and plane wave schemes [15], as the degrees of free-
dom in the diagonalization scheme will be limited to the number of distinct radial functions per
atom. This does however come at the cost of precision, as the accuracy of real space and plane
wave representations can be systematically optimized by either increasing the grid spacing or the
plane wave cutoff E ., respectively [88]. Increasing the number of basis functions after a certain
point does not necessarily result in more accurate results, and including too many will result in
diminishing returns due to the significant spatial overlap of the higher-order orbital solutions to
the hydrogen atom.

2.1.6 The Self-Consistent Cycle

A computational implementation of the KS system, consisting of a variational procedure to min-
imize the energy in Eq. 2.9 while satisfying Eqs. 2.13, 2.15 and 2.16, requires a self-consistent
iterative procedure.

Fig. 2.3 outlines one way of implementing this minimization, starting with an ionic structure
which has already converged to a stable equilibrium. After (1) making an initial guess for the
electron density, the (2) effective potential is determined by taking the functional derivative of
Eq. 2.9 with respect to the electron density, as shown in Eq. 2.13. This effective potential can
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(1) Make Initial Guess for Density
no(r) — a(r)

(2) Construct an Effective Potential
) ) A . A - A
Veﬁ{ﬁ](r) = Veu(r) + f mdr' + Vi[7](r)

(3) Solve Single-Electron Schrodinger Equation

1 N
(‘§V2 + Vgl (r) - si) Yi(r) =0

(4) Calculate Electron Density
N (5) Self Consistent?
7 (1) = Z |l//i(l')|2 7'(r) = i(r) — n(r)
i

Output Ground State
Density n(r), Energy Ej, and Forces F;

Figure 2.3: Outline of the self-consistent cycle commonly used in density functional theory
codes. Adapted from [89]

be used to (3) solve the KS eigenvalue problem shown in Eq. 2.16 , after which the (4) electron
density can be computed through Eq. 2.15. This cycle is (5) repeated until the total energy
reaches a self-consistent local minimum, requiring the electron density and the square of the
residuals in the KS equations to satisfy certain convergence cycle criteria.
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2.2 Time-Dependent DFT (TDDFT)

While DFT is applicable and useful as an efficient method for determining the ground-state
properties of many-electron systems such as solids and molecules, excited state properties like
optical response and excitation spectra, coming about from time-dependent potentials, require
more than a naive application of the KS method presented above.

The time-dependent analogue, known as time-dependent density functional theory (TDDFT),
extends the time-independent DFT formalism by first invoking the Runge-Gross theorem [89],
showing that there is a one-to-one correspondence between the time-dependent density n(r, f)
and time-dependent potentials V. (r, ) given a proper initial condition in time. As with time-
independent DFT, the TDDFT framework can be understood as an extension of the time-dependent
formalism for HF theory where the one-electron orbitals follow the solution of the time depen-
dent Schrodinger equation. Formally, what the Runge-Gross theorem states is that if two ex-
ternal potentials V(r, ) and V’(r, ¢) differ by more than a purely time-dependent function, they
cannot produce the same time-dependent density n(r, #). The uniqueness and one-to-one corre-
spondence of the external potential and density means that we can take the KS non-interacting
electron density to be a valid approximation to the interacting density of the real system, yielding
time-dependent KS wavefunctions that satisfy the time-dependent Schrédinger equation

:// (r,7) = [—lVZ + Vext(r 1)+ fl d + ch(r D |yi(r, 1) (2.40)
where as before N
n(e,0) = D Wi D, 1) (2.41)

i=1
For the purposes of this thesis, the use of TDDFT is of particular interest regarding its application
towards the calculation of optical response functions, yielding information about the optical and
dielectric properties of the materials under question. The density-density response function, the
dielectric function, and the conductivity are all connected through constitutive relations and are
all examples of linear response functions that can be calculated within the TDDFT formalism, as
shown in the following section.

2.2.1 Optical Response Functions

The calculation of the non-interacting density response function is the first step towards a deriva-
tion of other more commonly used optical response functions. In real space it is written as

[90, 91]

0 (Snk) (‘9n'k+q) * N ’
X, w) = kzq Z P r— L L) (2.42)
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where g, are the eigenvalues associated with energy level n and wavevector Kk, ,x(r) are the
eigenfunctions normalized to the crystal volume €2, 17 is the electronic broadening, f is the Fermi-
Dirac occupation, and the summation is over wavevectors K, q in the BZ. The sum of occupations
fux = f(gu0) should be the total number of electrons in the crystal. For periodic systems, y° can
be expanded in plane-wave basis as

’ 1 L i r —i ")r’
X0 =5 ) D (g w)e (243)
q GG’

where q is the Bloch vector. This can be understood as a Fourier transform in space, yielding a
function y° that depends on the reciprocal lattice vectors G, G’ with coefficients given by

1 4 fEm) = f(Ewirq)
X%G'(qa w) = 5 Zk] ; d aa

W+ Ek — Epkiq T 1]

X (Wcle O Wil T W), (2.44)

noting that the dipole transition elements (¥,x|e" 9™ . 4) are evaluated over the volume of
the unit cell.

While the formula above yields the non-interacting density response function, the full in-
teracting density response function, required to properly describe the effects of local fields and
inhomogeneities in the system, is obtained by solving Dyson’s equation in reciprocal space [91],

X66/(@, ) = X3 (@ @) + D X6, (€ K 6, (@xc,e (6, ), (2.45)
GG,

where the kernel is composed of the Fourier-transformed sum of the xc and Coulomb potentials

4 1 O°E..[n]
Kg,6,(q) = —Gl|25G1G2 + = fdr a3

o 5 P g G1mGT, (2.46)
n

no(r)

The dielectric matrix is related to the interacting density response function by

_ 4r
£66(qQ. ©) = Sgor + GrYee (@ w) (2.47)

lq +
In the random phase approximation (RPA) [79], where electrons are assumed to respond only
to the total electric potential and the external perturbing potential is assumed to oscillate at a
single frequency w, a dielectric function denoted by erpa(q, w) can be expressed in terms of the
non-interacting density response function

ar
81(?@((1, w) = 6gg’ — |(1+—G|2X%G,(q, w). (2.48)
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The dependence on q within RPA stems from the assumption that the effect of the total electric
potential on the dielectric function is expected to average out over space. The macroscopic
dielectric function is defined by

en(q,w) = (2.49)

€00 (4, @)
and unless stated otherwise, references to €(q, w) in the proceeding text refer to the macroscopic
dielectric function shown here. Considering different directions of q will yield a dielectric matrix.

2.2.2 Optical Limit

In the above section the optical response function £(q, w), also known as the Lindhard longitudi-
nal dielectric function, was derived explicitly. This longitudinal response is most relevant when
determining a material’s response to light absorption or electron scattering. Of particular note is
the calculation of absorption, which is defined by the formula

4 4 1
A = L Im[lim (g, ©)] = -~ Im [lim 1—] . (2.50)
c 40 c 90 £,,(q, w)

Trying to use the approximation q = 0 in Eq. 2.48 fails because the Coulomb kernel 47/|q + G|
diverges at ¢ = G = 0. However, it can be shown that in the limit of ¢ — 0 and G = 0
the dielectric matrix can be evaluated. The dipole transition element (le & |y, k. q) With
reciprocal lattice vector G = 0 becomes [92]

<¢nk|e_i(q+G).r|wn’k+q> = <unk|un’k+q>- (251)

where u, is the periodic part of the Bloch wave in the expression i/, (r) = u,(r)e’**. First order
perturbation theory allows us to write u,.q in terms of other orbitals defined at wavevector Kk as

<Mm |‘7|un’ >
i) = lin) + ) = ), (2.52)

where the perturbation V, reflecting the change in kinetic energy of the two different periodic
Bloch waves, is obtained via k - p perturbation theory as

V=Hk+q)-HK) =—iq-(V+ik) (2.53)

Substituting V into Eq. 2.52, multiplying by (u,| on the left, and applying the orthonormality
requirement on the Bloch states (u,x|u,x) = 0, gives

SV A+ iKlu) —iq- Wk Vi)
Enk — Enk Enk — Enk .

<wnk|e_i(q+G).r|¢n’k+q>q—>O,G:0 = _lq (254)
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Using the optical form for the dipole transition element, the dielectric function in Eq. 2.48 can
be written as

BZ 2
T Wk [f(gnk) f(gn k)] |f k|

qw) =1-— k| 2.55
&4, w) Q Z Z fiw — (&yx — &) + 11 ( :
where wy is the weight of each wavevector and the oscillator strengths fn‘l,k ofthen — n’
transition at k-point K in the direction of the Bloch vector q are defined as

, iqr . ,
i <Wn k+q |e |W k> ~ i - M (2.56)
a0 Il Bk = e

nnk

It is worthwhile noting that the matrix elements (¥, x |V|¢,x) are already calculated in DFT
when obtaining the forces during structural relaxation, so calculation of the dielectric function
in Eq. 2.55 can be accomplished using previously calculated values. This allows for calculations
of the optical response functions with this approach to scale as O(NM?) or better [93], where
N is the number of KS wavefunctions and M > N is the number of basis functions used in the
LCAO calculation over all atoms [9, 46]. Within DFT software packages that employ projector-
augmented waves (PAW), this matrix element is given by [10]

WnlVI) = Zcm Cor(BAT VTG, 2.57)
where ¢, are the localized basis functions for the n™ KS wavefunction |},,) = Y, cunl$,), with
coefficients c,, as shown in Eq. 2.39, and 7" is the PAW transformation operator [2, 3, 83]

T =1+ (el - 180) (), (2.58)

where |p¢) are the smooth PAW projector functions, ¢} and ¢¢ are the pseudo and all-electron
partial waves, and the sum runs over all states i and atoms a as defined within the PAW formalism.

2.2.3 Applying the Derivative Discontinuity Correction

The application of a shift to the eigenenergies of unoccupied orbitals, like that shown in Eq. 2.31,
needs to be handled with care when considering its application to the calculation of response
functions, like the optical dielectric function shown in Eq. 2.55. Letting lﬂ,?ﬁ refer to conduction
band orbitals whose energies have been shifted to €, + A,, Eq. 2.55 can be rewritten as

a 2
8(q, (,()) -1 Z Z Wk f(gnk) f(gn k)] |f;m/k| (259)

fiw — (8n 'k — Enk T Ax) + ”7
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where the oscillator strengths in Eq. 2.56 may be adjusted according to when the discontinuity
correction is included. In the a priori scissors approach,

Ay iqr
i ) @B
i - Ewk — &k t Ax’

2.60
T (2.60)

where it is assumed that the spatial distribution of the wavefunction 1ﬁﬁfk is unchanged by A,.
The transition energies are increased by A, in Eq. 2.59, altering both the positions and intensities
of the peaks. It is important to note that the application of k - p perturbation theory in Eq. 2.53
to obtain the optical limit dielectric function assumes the electron’s velocity is the momentum
divided by the mass, v = p/m,, which is only a valid approximation for local potentials [94]. This
is the case for the GLLB-SC correction presented in Eq. 2.31, validating this a priori scissors
approach.

However, the application of a scissors approach for non-local potentials will break gauge in-
variance [94], for example in the Bethe-Salpeter equation where v = p/m, + 0X(w)/0p where
Y(w) = iGW is the quasiparticle self-energy. This gauge invariance may be addressed by first
approximating the wavefunctions corresponding to the non-local potential by the KS wavefunc-
tions generated by a local potential, and subsequently performing a perturbative expansion in q.
In this a posteriori scissors approach, the oscillator strengths f; . will be the ones in Eq. 2.56,
independent of A,, meaning that only the peak positions in the resulting expression for the di-
electric function will be shifted by A,. Both the a priori and a posteriori scissors approaches can
be construed as valid when describing the corrected dielectric function for either semiconducting
or insulating systems.

2.2.4 The Two-Point Excitonic Spectral Density

By working in the optical limit and neglecting LFEs, we can define the two-point excitonic
spectral function as [10]

ar S il L P () Pl (e P
ex\Les Lpps Aa = L , 2.61
Pelfe 8 =0 2D G (o= o A AT zob

where r, and r, represent the real space locations of the electron and hole, respectively, and
fo is the oscillator strength of the n — n’ transition from either the a priori (Eq. 2.60) or a
posteriori (Eq. 2.56) scissors approaches. Analogous to the way eigenstates are plotted for the
two-particle Hamiltonian in BSE calculations (see Section 2.2.7), Eq. 2.61 shows the density
for a non-interacting KS system via the diagonal RPA polarizability. Since electrons and holes
are treated as non-interacting in standard TDDFT, it is logical to define expressions for hole and
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electron spectral functions that average over the electron and hole coordinates, respectively, as
Ph(rh, q’ w) = fpex(re, Iy, q, (,())dl'e

Z Z . 77Wk|fnn/k| W () (2.62)

(Sn/k — &k T Ax))z + ]72 ’

pe(rw q» (U) = - fpex(re, Iy, q’ w)drh

Y il £ P (o)l
== ; ; o (2.63)

- (Sn’k — &k T Ax))z + 772 ’

the integration presuming the completeness of the KS wavefunction set. These definitions for the
excitonic spectral function and the electron and hole spectral densities all satisfy [10]

f f peclFer By @, )dTdr, = Tm[e(d, )], (2.64)

thereby allowing for the exciton, hole, and electron spectral functions to be spatially and ener-
getically resolved. Subtracting the electron and hole spectral densities yields [Y]

Ap(r, q, w) = py(r, §, ) + p(r, q, w) (2.65)

Z Z T]Wklfn k|2 |lpnk(rh)| |lpn’k(r))|2) (2 66)

(hw (8n’k — &k T Ax))z + 77

This spectral function in particular gives important information about the real-space distribution
of both electron and hole states for the system under investigation. Analyzing this function at
prominent peaks in conductivity, the dielectric function, or photoabsorption data can yield useful
insight into the nature of orbital overlap and directional dependence at energies of interest.

2.2.5 Mean-Field Response Functions in Lower-Dimensional Systems

While the expression in Eq. 2.55 shows the dielectric function in the context of how it is calcu-
lated within DFT, it is prudent to note that the other optical response functions can be calculated
through their relation to quantities like the dielectric function and the density response func-
tion. However, these relations can become muddled when the optical response functions are
calculated for lower-dimensional materials when also invoking the optical limit. Appendix A
deals with this in the context of two-dimensional materials where the unscreened Coulomb po-
tential changes depending on the dimension dealt with, but these calculations are only valid for
finite wavenumber ¢g. Coming from a computational standpoint, we opt instead to follow ap-
proaches based on mean-field theory laid out in Ref. [95] for non-interacting 1D SWCNTs and
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in Refs. [18, 19] for non-interacting 2D sheets to compute the polarizability response function
a(q, w) as a function of the 3D dielectric function presented in Eq. 2.55.

For a given dimension d, the polarizability for light polarized in directions “parallel” to the
material, ¢, and in non-periodic directions “perpendicular” to the material, q,, are expressed
according to

Q

@@, w) = 4—;’ (e(@pw) - 1), (2.67)
Q 1

a4, w) = 4—; (1 H w)), (2.68)

where Q; represents the “cross-section” of the unit cell for a given dimension d, and &(q, w) is
the 3D macroscopic dielectric function obtained from Eq. 2.55, so that the polarization is defined
per molecule or per layer rather than per unit volume. Qqp is the volume of the unit cell, Q,p is
the area of the plane in the unit cell perpendicular to the 1D material, Q,p is the length of the
unit cell perpendicular to the plane of the 2D material, and Q;p = 1. The conductivity o for any
dimension can then be expressed via

(g, w) = —iwa(q, w), (2.69)

a generalization of the definition of the optical limit conductivity o(q, w) to lower-dimensional
systems.

2.2.6 Interband and Intraband Conductivity

Utilizing the expression for the dipole transition element derived in Eq. 2.54, the definition of
conductivity in Eq. 2.69, and the non-interacting density response function in Eq. 2.42, we show
equations for the interband conductivity [96]

2

1 {5 Feaw) = fEnd @ Wl Vi)
inter A, = —iw— . 2710
@ int (q w) le ; ,;n, hw - (8n’k - Snk) + Minter Enk — Enk ( )
and the intraband conductivity [97]
i1 4
Uintra(ﬁa U-)) = _55 Z f,(gnk) |q : <wnlvlwn>|2 ’ (271)
k n

the distinction coming about depending on whether the summation is between bands or within
the same band. Equivalent expressions for the intraband conductivity are derived in Appendix C.
We can rewrite this expression to showcase its tensorial nature as

0-((’\1’ (L)) = q : (g-inter + g-intra) . q (272)
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where

f(gnk) - f(gn’k) <lr//nlvl¢’n’><¢n'|vlwn>
o-lmer(q’ w) _le Z ’#Zn h(U (8n’k - Snk) + ininter (snk - ¢‘3n’k)2 (273)
" . 1 BZ
G @) =~ s Zk] > F WV V). (2.74)

As conductivity is a linear response function satisfying causality, it will satisfy the Kramers-
Kronig relations [ 18, 98]

Re[o(w)] = —P f Imlot@)] 4, (2.75)
w —w
m[o(w)] = ——50 RZ[”_(“;)] (2.76)

with P as the Cauchy principal value. Often times it is the imaginary portion of the conductivity
which is desired, so treating this numerically is easier when the integral is treated as having a
removable singularity

w —w

mlo(w)] = _%@ f " Relo @ - Relotw)l 2.77)

which is possible since the integral over the principal value of 1/(w’ — w) vanishes. Using these
Kramers-Kronig relations with physical arguments about the behavior of the real and imaginary
parts of the response function can be used to establish a set of so-called sum rules for various op-
tical parameters [99]. Since conductivity of a material defines a relationship between an applied
electric field and the electrons it causes to move around, and the total number of electrons in the
system must remain constant under that type of excitation, the f sum rule for conductivity,

© bs e?
fo Re[o(w)ldw = Z‘ s (2.78)

comes as a consequence of this conserved quantity, where the sum is over all particles excited by
the response included in the conductivity function. Similar sum rules exist for the other optical
response functions shown above [99].

227 GoWy-BSE

The GLLB-SC method shown in Section 2.1.3 presents a robust approach for adjusting the elec-
tronic band gap by upshifting the energies of unoccupied orbitals. However, it is imperative in
many applications to obtain accurate results for the optical band gap, the localization of energy
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states, and level alignment for interfaced materials, all properties reliant on a proper description
of the addition and removal of electrons into or out of the system [ 00]. The GW approximation,
by including the screened Coulomb interaction into the eigenenergies, is one tactic for adjusting
the electronic band structure to include this screening effect [ 1 01]. G refers to the full one-particle
Green’s function, and W to the dynamic screened Coulomb potential. Gy W) is the systematic per-
turbation of this GW, where Gy is the independent-particle Green’s function calculated from the
KS wavefunctions and W) is the first-order dynamic screened Coulomb interaction, given by

e l(rs, 1), W)
Wo(ri, 1, w) = f|l(’3—l?|dr3’ (2.79)
1 — T3

where ¢ is the dielectric function and w is the energy of the quasiparticle being screened [36].
The HF equations in Eq. 2.4 can be understood as a GV approximation, the V being the bare
interaction potential. GoW,, like the GLLB-SC method [55], is applied after a converged DFT
calculation to adjust the KS eigenvalues, so these energies are approximately given by snKkS ata
given k-point and energy level n. To save calculation time, the dielectric function used in the
GoW, method can be calculated within the plasmon pole approximation [ 102, , ], mod-
elling it as a peak around some main plasmon frequency. On top of accounting for the dynamic
screening of electrons, a GoW, adjustment to the KS eigenvalues accounts for the finite lifetime
of single-particle excitations in an interacting system, a feature noticeable in experimentally
measured spectra peaks close to zero temperature in pure materials.

The GyW, correction to the KS eigenenergies provides a more accurate picture by including
the role of charged excitations, those associated with electrons entering and leaving the system.
Going one step further, neutral excitations, i.e. electron-hole interactions, are equally impor-
tant towards describing excitonic and optical properties in a way that better approximates the
many-body nature of our systems, especially for semiconducting and insulating materials [ 105].
These interactions are included through the solution of the four-point Bethe-Salpeter equation
(BSE) [14] when calculating response functions, more specifically the macroscopic dielectric
function, the electron-hole interaction included by adding so-called “vertex corrections” beyond
the random phase approximation. The term “four-point” refers to the two propagating particles
(e.g. two electron hole pairs) involved in the density-density response function, BSE defining the
kernel of the Dyson equation used to define this response function implicitly, as in Eq. 2.45.

Ultimately, the two methods described above are often used sequentially to give the GoW-
BSE method, which proves to be an excellent if computationally expensive way to include
screening and electron-hole interactions into response functions, crucial for matching results
with data like that acquired from absorption or electron energy loss spectroscopy experiments
[20, , ]. In this method, BSE includes the results of GyW, corrected eigenenergies along
with ground-state wavefunctions from a converged DFT calculation. Computationally, the GoW,
calculation scales cubically with the number of plane waves [7] while constructing the Bethe-
Salpeter matrix system scales with the k-point sampling of the BZ, resulting in time and memory
costs on the scale of hybrid functionals [!3], many implementations of which help to include
excitonic effects by including the exact exchange in the xc functional [83]. Often times, fortu-
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itous error cancellation within TDDFT comes about from the counterbalancing effect that the
GW electronic screening and the BSE excitonic binding have on the spectra [?], although this is
less the case for materials like small-gap semiconductors where excitonic effects become quite
prominent.

2.3 Electron Energy Loss Spectroscopy

2.3.1 Experimental Setup and Terminology

Electron energy-loss spectroscopy (EELS) measures the change in the energy and direction of
fast moving electrons after they have interacted with a material. Depending on the particular
setup of the experiment and the relevant energy scales of the probing electrons, EELS can be
divided into several basic techniques, although the physics behind the interaction processes are
fundamentally the same. In high-resolution EELS, the energy of electrons leaving the beam
ranges from several electron volts (eV) up to a few hundred. Electrons in this energy range
cannot penetrate bulk materials deeply and instead reflect from the surface, making this EELS
technique ideal for probing the surfaces of bulk materials at a high energy resolution [106]. At
the higher energy scales, EELS performed in a transmission electron microscope (TEM) or in a
dedicated spectrometer, also known as transmission EELS, utilizes electron beams with energies
typically between 20 keV and 300 keV [107]. For samples with thicknesses in the range of tens
of nanometres, these electrons are energetic enough to transmit through the sample, hence the
name.

While the previous section introduced a computational mechanism for determining optical
response functions like the dielectric function and the conductivity, it remains to be seen how
quantities like these can be made sense of in light of experimental data, in this case in the context
of electron energy loss measurements, and it is instructive to understand the experimental setup
such equations describe.

Shown in Figure 2.4 is an illustration of the inelastic scattering geometry of an EELS exper-
iment. Fast electrons in the form of plane waves interact with the material and lose energy and
momentum in the process, both quantities transferred to the electrons or ions in the sample. A
detector placed on the other end of the beam (in the case of transmission EELS) will only collect
electrons that have lost an amount of momentum ¢, for particles incident to the detector at an
angle 6. g, can be split into components parallel (¢, ) and perpendicular (g)) to the direction of
the electron beam.

The magnitude of q can be connected to the scattering angle 6 and the energy loss E by
applying conservation of both energy and momentum to the scattering process. As mentioned
before, since electrons with energies in the keV range are used, relativistic effects need to be
considered. By knowing the energy lost from scattering, a conservation of energy argument
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Figure 2.4: Inelastic scattering in a transmission EELS setup. An incident electron wave interacts
with a material (light blue), transferring energy £ and momentum g, in the process.

yields a relation between the scattered wavevector k; = ky + q and the incident wavevector kg

2ym,E  E?

kil = lkol = =25+

(2.80)

while conservation of momentum yields a relationship between k; and the incident wavevector
ko via the scattering angle 6

q2, = [ko* + [k [* = 2[Ko|lk, | cos(6) 2.81)

These two equations in tandem make it possible to calculate values of g for any energy loss E
and scattering angle 6, and vice versa. For most transmission EELS experiments [62, 12], the
energy of the incident beam is much larger than the energy loss E, resulting in small scattering
angles, minor differences between wavevectors Ky and k;, and having most of the momentum
transfer being perpendicular to the incident beam.

Considering the case where the collection aperture is circular and centrally positioned in the
STEM device, thereby avoiding the large-angle scattering used in momentum-resolved EELS
[12,75, , ], the range of collection can be classified according to the value g., the maxi-
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mum in-plane momentum transfer for electrons entering the collection aperture. This is possible
with modern TEM configurations that can achieve a sub-nm spatial resolution of the target ma-
terial by using convergent electron beams. This value is given by

qc = ko6, (2.82)

where ko = |ko| is the magnitude of the incident electron momentum and 6, is the maximum col-
lection angle for electrons scattered by the material. This value can vary significantly depending
on the experimental setup, with values much smaller than 1 A~ for a centrally-placed aperture
on top of a narrow slit [12, 75], while measurements with broad aperture angles can yield g, in
the 10 A~ range [60, 62]. Decreases in the maximum collection angle often accompany a poorer
spatial or energy resolution [107].

Since this report deals in part with the experimental spectra generated through EELS, it is
important to point out certain features of the spectra and some of the relevant vocabulary use-
ful when trying either to extract the dielectric function of a given material or when developing
phenomenological models for the optical response that can be verified against energy loss spec-
tra with the right equations. First it is important to distinguish the low-loss region, covering an
energy range from O up to 50 eV, while the rest of the spectrum is referred to as the core-loss
region. Second, provided the sample is of a certain thickness, the zero loss peak (ZLP) will be
the most prominent one in the spectrum [62], generated by electrons that have undergone either
no inelastic scattering or have lost insufficient energy for detection. The FWHM of this peak
defines the experimental energy resolution, a quantity dependent on the sample thickness, the
performance of the microscope, and the speed of electrons exiting the beam [107].

For spectra where losses with relatively high wavenumber are included, the low-loss region
will be dominated by plasmon peaks, which at these energy scales constitute the most likely
mechanism for inelastic scattering. Spectra associated with vanishing momentum transfers (i.e.
gl — 0) will correspond to single-electron excitations, for example those seen in both inter-
band and intraband transitions, yielding features in line with optical measurements. The EELS
spectrum will be a superposition of all these types of transition across all momenta up to the
collection angle of the spectrometer or microscope [106]. In the case of materials that exhibit a
bandgap, no intensities other than those grouped under the ZLP would then be measured in the
bandgap energy range. Beyond the low-loss region, peaks relating to excitations of inner-shell
electrons into unoccupied states will begin to appear in the spectra, but the low-loss region will
be the region of primary interest for analyzing the feasibility of materials for optoelectronic or
plasmonic applications.

2.3.2 Energy Loss for Bulk Materials

The main mechanism whereby the fast electrons shooting from the beam lose energy to the ma-
terial is via the Coulomb interaction. The electron acts as an external perturbation and polarizes
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the material, thereby inducing electric fields which in turn decelerate the external electrons, lead-
ing to energy loss. This energy loss is calculated by treating the incident electron as an external
current density J..(z, Iy, 1), and the dot product of this quantity with the electric field induced by
the perturbation yields the power dissipated per unit volume. Therefore, the total energy loss W
resulting from this interaction is [ 106]

oP
W= fdzfdl‘”fdl‘ﬁ = fdzfdl'”fdt,]ext(z,r”,t)'E,’nd(Z, I‘||,Z) (2.83)

with an in-plane Fourier transform yielding

1 (o9
V= f d f dq f _ dw)en(2.1, ) Eia(z, ~q. ~w) (2.84)

Since this quantity in real space is a real function, the real part of its Fourier transform is sym-
metric and the imaginary part is anti-symmetric, giving [72]

1 00 ) )
W= (27'(')3 dequ” f(; dw [Jexl ’ Eind + Jext : Eind] (285)

Rather than characterize the expression in terms of the loss of a material over a small thickness
dz, it is more common to work with a differential scattering probability, the probability of an
electron losing energy w and being scattered according to wavevector (. The energy loss W in
terms of this differential scattering probability looks like

W—foodwa(w)— ! fd foodcuw Fo (2.86)
0 ey J ), “aq00 |

where P(w) represents the probability of an electron losing energy w for any wavenumber g. This
yields the expression for the differential scattering cross section

0o 1
Iqow  2rYw

[JEXI : E;'knd + J:xt ' Eind] . (287)

This can be directly related to quantities measurable through the EELS setup, namely the energy
loss and the scattering angle, by using

dwdq = kol? cos(0)dQE. (2.88)

For an incident electron with current density J.(r, f) = —evo(r—vt), Eq. 2.87 can be reformulated
in terms of the 3D dielectric function [56]

2 2k 2 1
’o 8ne’lk| [ ] (2.89)

IEIQ ~ Qv | €30(Quon )

36



For this reason, Im[—1/&3p(q,r, w)] 1s called the energy loss function of the material. It can
be directly determined via EELS measurements, ultimately yielding the dielectric function with
help from the Kramers-Kronig relations shown in Egs. 2.75, 2.76.

2.3.3 Energy Loss for 2D Materials

The treatment of two-dimensional materials in the context of energy loss, and more specifically
with regards to Maxwell’s equations, needs to be done with great care, as a theoretically two-
dimensional material will enter into these equations as a boundary condition. In addition, as
presented in both Appendix A and Section 2.2.5, optical response functions in both an analytical
and computational context need to account for the restricted domain electrons can travel in and
the methods by which energy can be transmitted and reflected for a monolayer. To start, in
the zero-thickness approximation, assuming a monolayer material resting in the xy-plane and
simplifying the notation to q = q; in the 2D regime, the induced current density is restricted via

Jind(q’ <, CL)) = 6(Z)J2D(q’ (,L)), (290)

where J,p(q, w) is the Fourier transform of the in-plane induced current, which can be expressed
in terms of the 2D Ohm’s law and is related to the induced areal charge density via the continuity
equation in Eq. A.14. The external current density for an electron travelling at speed v = (v, v,)
in Fourier space goes as

Ze (w—-q-V)z
pEXt(q’ s C()) = — eXP |:—|:| . (291)
vZ VZ
corresponding to a charge density of p..(ry,z,t) = Zed(ry — vt)d(z — v;t), where Z = —1 for

incident electrons. The next step is to determine the external potential that comes as a result of
this external charge density, which can be determined by solving the inhomogeneous Helmholtz
equation for the potential with the source term proportional to the external current density, giving

(2.92)

ber(q, 2, W) = AnZev, li(w -q- V||)z] ’

(qv)* + (W = q - v))?
where ¢ = |q|. It is important to note that this equation relies on the quasistatic approximation

introduced in Eq. A.10, i.e. that the response of the material to the external charge density is
instantaneous.

Ve

The induced potential meanwhile can be expressed in terms of the polarizability shown in
Eq. A.13, which when transformed to Fourier space yields

2

2
7;6 X0(q, ) [$ina(Q, 2, ®) + Pene(q, 2, w)] €71, (2.93)

¢ind(q’ 2, (.U) = -
noting that this polarizability is associated with the monolayer and therefore has no z-dependence,
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and that the factor 27re?/q is the 2D Coulomb potential shown in Eq. A.17. Plugging in Eq. 2.92
and using Eq. A.18 yields the induced potential at z = 0

¢ind(qa 0’ w) = (1 - ) ¢exl(q’ 07 (_U), (294)

&(q, w)

exactly as shown in Eq. A.18 for systems of any dimension, where £(q, w) is the 2D dielectric
function given in Eq. A.21. With expressions for the induced potential and the external charge
density, we use the continuity equation to reformulate Eq. 2.83 in terms of these quantities

W=- de fdl‘” fdtJext(Z9 r, f)- (V¢ind(z, r, t)) (295)
= fdzfdl‘n fdt(V “Jext(Z, ), D) Pina(z, 1), 1) (2.96)

0
= — fdzfdl'” fdl‘(a—tpext(Z, ry, f))) ¢ind(Z, r, 1. (2.97)

Expressing this energy loss in terms of the energy loss probability density in Eq. 2.86 yields [58]

P(w) = e2f1 297 g L |4 2.98
D=5 ) sloawra@r] ™| saw | (258)

the imaginary component taken in line with Eq. 2.85 and noting that the time derivative of the
charge density brings down a factor i. For electrons incident directly perpendicular to the mono-
layer, P(w) can be rewritten as

42 qc 2
P(w) = ef 4

7?22. 0 [qz + (2)2]2 "

where 0(q, w) is the 2D conductivity as per Eq. A.21, and g, refers to the maximum momentum
wavenumber transfer collected by the experimental device.

1
-————|dq (2.99)
1+ ?cr(q, w)]

While the conductivity of an isotropic material like graphene generally depends on both q
and w, for a typical VEELS regime [109] where energy losses fall below ziw < 50 eV and
incident electrons travel normal to the monolayer with speeds comparable to the speed of light,
the g-dependent prefactor in Eq. 2.99 suppresses the contributions of wavenumbers exceeding
w/c < 0.015 A" to the integration. For this reason, it is expected that treating the conductivity
in the optical limit o(q, w) = o(w) should yield a good approximate profile for the energy loss.
In this limit, the integration over the wavenumber can be done analytically, giving [58]

P(w) = —% Im{ B [G(q“vz) - G(O)]} (2.100)

wv, w
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where

- _ 7 VZ
B=-i @ (2.101)
and
G = : d 2.102
(x)_f(x2+1)2(x+B) . (2.102)
_ xB+1 B(B? — 1) arctan(x) B? (B + x)?
22+ (B ) " 2(B% + 1)2 * 2B+ 1) “( 211 ) (2.103)

If the maximum in-plane momentum ¢, is large enough, the limit of integration can be extended
to g. — oo, since the prefactor to the imaginary part of the inverse dielectric function in Eq. 2.99
peaks strongly at ¢ = w/v, < q., allowing the use of the further approximation

nB(B: - 1)

G =y

(2.104)

As mentioned earlier, the above equations are only valid using the quasistatic approximation,
in this context referred to as the non-relativistic regime. To incorporate relativistic effects, we
follow the formalism outlined in Refs. [21, 22, 71, 72, 73], where the probability density of
energy loss fiw for an incident electron moving at speed v = (0, v,) in an isotropic material is
expressed via

qc
1 2
P(w)=ﬁ quF(q,w)——quqF(q,w) (2.105)

lal<qc 0

F(q,w) is called the joint probability density of the energy loss 7w and the momentum transfer
hq, analogous to the differential scattering probability for bulk materials introduced in Eq. 2.87.
In the relativistic regime, two separate mechanisms of energy transfer to the medium become
viable. Ohmic energy loss refers to the electronic excitations in the target that ultimately give
rise to Joule heating occurring within the conducting layer, while radiative energy loss refers to
the total energy radiated by far-field electromagnetic fields both above and below the conducting
layer, and occurs for frequencies w > cq. This second form of loss only comes to light in the
relativistic regime where the speed of light is considered finite.

More formally, in a way analogous to Eq. 2.85, the energy losses associated with Ohmic and
radiative loss can be written as [

Woim = fdlfdzfdl'n Jina(z, 1), 1)-E(z, 1, 1) (2.106)

= f dwwqu Fohm(qa a)) = f dw wPohm(w)’ (2107)
0 0
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recalling the in-plane J;,4 in Fourier space as defined in Eq. 2.90 for a theoretically 2D material.
The radiative energy loss, describing the energy radiated away by far field EM fields, is defined
via the flux of the Poynting vector due to the induced electric and magnetic fields through a large
surface S as

c ® R .
rad = W ﬁ dw Re {‘# ds n- [Eind(z’ r, w)XHind(Z’ ry, CL))] (2 108)
S
= f dw w qu Fri(q,w) = f dw WP, 4(w). (2.109)
0 0

As derived in [21] for the case of isotropic materials, the joint probability density can be bro-
ken into these Ohmic and radiative contributions , F (g, w) = F (g, w) + F.u(q, w), where the
directional wavevector dependence has been dropped. The Ohmic part is given by

1

— w > cq
Fo gy = 4 C (P Relol ] () 2.110)
7 BPw (% -1)+ (cq)z]2 W w<cq

while the radiative part given by

e o’ 1= (%)2 o

8
Brw [wz(ﬁ%_l)ucq)Z]z 1+ Zo 1—(ﬂ)2

w

Frua(g, w) = , w>cq, (2.111)

where c is the speed of light, 8 = v/c, and o = 0(g, w) is the in-plane conductivity of the
sheet. The total energy loss density of the incident electron can therefore be decomposed into
P(w) = Popm(w) + Pra(w). The Ohmic energy loss density has contributions from both below
(w < cq) and above (w > cq) the light cone, while the radiative contribution consists entirely
of contributions above the light cone. The w < cq frequency range for a conducting layer
corresponds to energy losses from collective modes and interband transitions of valence electrons
in the monolayer. In the limit 8 — 0, Eq. 2.105 reduces to Eq. 2.99.

2.4 Artificial Neural Networks

In theory, the human brain performs many fewer computations per second compared to a state
of the art computer. Despite this, the brain’s ability to take in new information through learning,
performing tasks rooted in prior experience and knowledge, gives it an important edge. At its
heart, the goal of artificial neural networks is to enable the same benefits that human learning
confers into a viable computational framework.
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Machine learning in this section will refer to the subcategory of supervised learning, where
a set of training data T = (x,,1,) : 1 <n < N, along with a target function g with target values
t, = g(x,), is the input into the problem. The goal is to determine an approximation of this
target function for all input values in the domain of g. As we will encounter in Chapter 4,
this target function in some cases may even be unknown. Importantly, many classification and
regression problems can be formulated as an effort to use an artificial neural network to mimic
this mapping starting with a set of training data. These neural networks are made up of a set
of connected processing units, each receiving input from either an external source or from other
units and computing an output that can then be sent to other processing units, thereby replicating
connections in the human brain [ 10]. Processing units consist of propagation rules which map
all incoming input into a single input value, while activation functions are applied onto this input
value to determine the output of the unit, the output itself also termed the activation. This is
illustrated further in Fig. 2.5, representing a neural network with a single hidden layer, referring
to a layer of neurons that only receives and forwards information between other layers of neurons.
The output function will match the dimensions determined by the number of input and output
units.

Figure 2.5: A fully connected feed-forward neural network with a single hidden layer.
X1, X2, ... Xn, represent input to the network, with xy used as a bias introduced into the activa-

tion function. y(ll), y(zl), cees y,(,il) are neurons each receiving input from the initial layer with yf)l)
acting as the bias. y(12), y(zz), e yffz) represent the final output of the network.

The neural network shown in Fig. 2.5 is feed-forward, meaning that closed cycles in the
network graph are prohibited and each layer only propagates to the one ahead, meaning that the
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relationship between input and final output can be described by an explicit function. The basic
equation for the input fed to the neuron y; from m neurons x; is given by [111]

vi=f@)=f (Z Wikxk] (2.112)
k=0
or, extending to a multilayered system
m-1)
W= =f (Z wﬁ,?y,(j‘”] 2.113)
k=0

where my;) represents the number of neurons in layer /, and WEI? are the weights for neurons of
index k fed into neuron i located in layer /.

The activation function f in Eq. 2.113 determines the output of the unit. As will be shown,
these activation functions will play a role in error backpropagation, so being nicely differentiable
is important. Monotonic functions are also desirable as they prevent different inputs from map-
ping to the same output, which may lead to additional extrema in the error surface. The three

most common choices for activation functions [ 110, ] are
1 00 (2)
sigmoi N = 1- 2.114
T sigmoid(2) T+ exp(—2) — o(z)(1 - 0(2) ( )
: exp(z;) 0o (z,1) : .

softmax\Z> 1) = S < = )0 — s 2.115

T softmax(Z, 1) S exp(0) — oz, 0(2,0)(6i; — 0°(z, J)) ( )

@) = max(0.2) — 222 _ pi) (2.116)

0z

The logistic sigmoid and softmax functions are smooth and monotonic, and in addition they al-
low a probabilistic interpretation with all output restricted between O and 1. The derivatives of
these two functions also offer a clean implementation without the sharp features of the Heaviside
function that the rectified linear unit (ReLLU) yields. For a long time, these two were the default
activation functions, but more modern implementations of neural networks, especially convolu-
tional neural networks (CNNs), favour the ReLLU, thanks to its ability to truly output a zero value
and the advantages of a linear activation function for optimization problems [ |3]. While proper
calibration is required, ReLLU will be the default choice for the networks explored in Chapter 4.
With the activation functions in place, the problem of network training boils down to the deter-
mination of the weights w; in Eq. 2.113 starting with our set of training data. Assuming that,
given enough neurons, there is some set of weights which will yield the best approximation to the
target function, it is useful to evaluate the progressive performance of the network as more data is
fed in and the weights are gradually adjusted. The distance measure between the approximation
and the target function will be given by our choice of error term.

There are two primary choices for the evaluation of the error [114]. Sum of squared errors
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go as

1
E=) E.=> Zk GrC) = 1)’ (2.117)

th

where 1, is the k™ entry of the n'” target value, and the cross-entropy error function

E=YE, =- Zk] ALEVIEM) (2.118)

For both of these error definitions, using that y;(x,) = f(z;), we have

OE, _ OE, oy
0Z.L+1 - ayiLH aZiLH

]

= (yi(x) = t) f (2.119)

The variable E in the above two equations is the error resulting from batch training, where
a set of n input values x, ... x, are run through the network and the total error is used to update
the weights in the network. This is in contrast to stochastic training, where the weights are
updated based on the individual error E£,,. As many training sets tend to have many redundancies,
batch training tends to be the preferable approach [115]. Overall, this error function E can be
considered as a surface across the space of all weights w;, for which we desire to find a global
minimum, the necessary criterion for a local minimum being VE, = 0. The following section
outlines one of the most common methods for achieving a weight optimization for any feed-
forward neural network.

2.4.1 Gradient Descent and Error Backpropagation

As an analytical solution is not usually possible for complex networks, an iterative approach is
often best for minimizing the error. In each iteration step we choose an weight update Aw, where

W[+1 = W[ + AW[ (2.120)

and 7 represents the current time step, or epoch, one epoch representing one update of the weights
after a batch error has been computed. Gradient descent is a basic first-order optimization al-
gorithm, and presents a nice balance between accuracy and computational cost compared to
second-order algorithms like the Hessian [115]. In gradient descent, the gradient VE is used
in the weight update Aw,, determined by taking a step into the direction of negative gradient at
position Aw, on the error surface, such that

OE
AWt = —’y% + /lAWt_l (2121)
t

where 7y is the learning rate and A is the momentum [ 1 16]. These hyper-parameters determine
how quickly the weights update at each iteration and how much of previous iterations are in-
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cluded in the weight update, respectively. The choice of y is especially important, as it needs to
be large enough that the network updates in a meaningful way to input data, but not so much as
to cause large oscillations which destroy the network performance. The inclusion of momentum
is one strategy towards reducing oscillations, although it is also common to start with a relatively
fast learning rate and gradually decrease it after a certain error threshold is crossed or a plateau
has been reached [117]. In the case of stochastic training the weights are updated according to
the error E, instead [115].

Error backpropagation proves to be a useful way to compute VE, for the weight updates. For
a feed-forward network with L hidden layers, L + 1 being the output layer, the derivative of an
error function E, at input value x, with respect to the weight w;; is given by

6En (9E,, aZf+l I+l L
owkl 7L+ gyl+ =6;"y; (2.122)
tj 1 ij

where 6-*! is the contribution of the i’ output unit to the error E,. Going down to a hidden layer
l € (1, L) we can follow a similar procedure

0 / o I+1
OE, OE, 0z, _ gy :(Z OE, 0z, ]yi*l T

I ] I I+1 ]
6wij 0z, 6wl.j - azk 0z

where we utilize the definition of the error at a given layer to write out a formula for &'
o= 1 Yl 2.124)
3

This final equation presents a recursive algorithm for calculating the gradient VE,, at the output
layer by propagating the error at layer / back through the network to layer / — 1 and evaluat-
ing the derivatives 0E, /ang that allow the weights to be updated via gradient descent. This
backpropagation algorithm is presented graphically in Fig. 2.6.

Error backpropagation can be a computationally costly endeavour, as it scales with the total
number of weights w;; and the number of neurons in each layer, shallower networks scaling
better than deeper ones due to the iterative nature of backpropagation [ 17]. A sufficiently large
multilayer network where every neuron in one layer is connected to every neuron in the next
layer means the cost of propagating an input value is dominated by the number of weights used.
As a result, its just as important to attempt to reduce the amount of input flowing through the
network as it is to keep the number of neurons as low as possible. This input flow can be reduced
by methods like convolution [ 1 1] and pooling [1 5], which either compact input data before it
comes into the network or group it in such a way that the connections between layers need not
be from every neuron to every other neuron in the next and preceding layers.

Theoretically, by using a sufficiently high number of hidden neurons, a neural network can
model any continuous target function to a sufficient degree of approximation [24]. After training
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Figure 2.6: Visualization of error propagation through a single hidden layer neural network.
Once the error term is computed and used to adjust the weights at the layer of interest, the error
terms from the previous layer can be used to determine error terms downstream.

and minimizing the error function with respect to the network weights, it is important that the
network is able to generalize beyond the training data set, and the easiest way to determine that
is to test its performance on test data not used for training, called the validation set. A network
is said to generalize if reduction in the error over the training data can in turn result in an overall
improvement in the network’s ability to predict the output of validation data. Regularization is
one method which tries to avoid over-fitting and provide better agreement with data beyond the
training data. Since over-fitting is symptomatic of having more hidden layer neurons than needed
for the problem, the addition of a penalty to the error function, as in the case of L,-regularization

[114]
E(w)" = E(w) + nqw'w, (2.125)

helps ensure that weights of the network w tend exponentially to zero, effectively deactivating
any neurons which do not contribute sufficiently to the overall error. Choosing the number of
hidden layers, the number of neurons to use in each layer, the activation and error functions, and
hyperparameters like y, A, and n are important considerations which often requires a substantial
amount of trial and error before a computationally efficient network that well approximates the
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desired target function is obtained.

Beyond the classical gradient descent method, one of the most often used weight update
methods, known as optimizers, is Adam [||8], the name referencing adaptive moment estima-
tion. In Adam, the learning rate y in Eq. 2.120 takes into account estimations of the first and
second moments of the gradient of the error g, = 0E/0w(t] at each time step ¢. These first and
second moments of the gradient within the Adam optimizer, m, and v, respectively, are computed
using exponentially moving averages using the gradient evaluated in the current batch,

M = ﬁlmz +(1 _ﬁl)gtﬂ Vi1 :,82Vt +( _:82)gt2+1, (2.126)

where the values for the hyperparameters 5; = 0.9 and 3, = 0.999 are the default in many soft-
ware implementations of neural networks [ 1 2], and the initial moments are set to zero. Because
of this initialization, the estimators are biased towards zero, so it is necessary to implement a bias
correction so that the expected value of the moments match with those of powers of the gradient.
This is done by

my ~ Vi

M, = = ) 2.127
m, 1 ﬁ,l Vi 1 ,3; ( )
Lastly, the weight update in Eq. 2.121 using the Adam optimizer becomes
AW; = _7ﬁ1t/ V f}[ + 6, (2.128)

where € is a small value introduced to prevent division by zero errors. We note that using the
moving average of the gradient rather than the gradient itself usurps the role played by A in
Eq. 2.120. While Adam has some pitfalls related to not generalizing well to all problems that the
classical gradient descent method is suited to handle [119], the savings in training time make it
an appropriate choice for many neural network implementations, including the ones used in this
thesis.

2.4.2 Convolutional Neural Networks and Max Pooling

Convolution [ | 1] and pooling [ 15] are two ways to pre-process input data before it is fed into
a feed-forward neural network. Convolution acts to manipulate the input to highlight important
features, while pooling selects the most relevant input or an average from a group. Working in
tandem they can help ensure that the input fed into the network is as small as possible while
retaining the features of the input. In the terminology of convolutional networks, the input in the
form of a 2D matrix I (for example) is manipulated by a smaller 2D matrix known as the kernel
K, with the output referred to as a feature map S [111]

S(i, j) = (K1), j) = Y 1(i=m, j— mK(m,n). (2.129)

mn

46



This resulting matrix S will be smaller than the original input image array /, and this type of
convolution operation can of course be applied to any dimension of data. Since convolution
also captures information about many neighbouring elements in an array, convolution allows
for the development of networks where not each element is connected to every other, allowing
for a much quicker runtime of the network. The main objective of this operation is to extract
higher-level features from the input data, for example edges in the case of pattern recognition,
and it is common for convolutional neural networks to employ many layers of convolution with
many different kernels, each kernel (often times very sparse matrices) corresponding to different
expected features in the data.

If the presence of features is more relevant than their location in the data set, invariance to
translation, meaning that translation of the input by a small amount leaves the values of the out-
puts unchanged, is a desirable property for our network to have. Pooling is one approach that
helps to make this possible by grouping together nearby data, either by giving the maximum
output in a given neighbourhood or through some sort of averaging and then mapping of output
values to a reduced output [ 1 15]. On top of ensuring invariance, pooling is essential for handling
inputs of varying size, as one might see for differently sized images run through an image clas-
sifier. Having a different neural network for each size of image is a much worse approach than
a combined convolution/pooling approach that pre-processes the input to a usable input for the
feed-forward network. Lastly, pooling serves to reduce the size of the input by feeding the neu-
ral network averaged out features, an important tool when training computationally expensive
networks [33, 39].
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Chapter 3

Graphene and Other Low-Dimensional
Materials

3.1 Graphene

Despite having initially been predicted to be experimentally unviable due to quantum fluctu-
ations, two-dimensional materials have increasingly become an active topic of research due to
their peculiar properties. Graphene is likely the most famous example, and it came onto the scene
in 2004 through the application of scotch tape to graphite, which is composed of many layers
of spaced graphene. It follows the discovery of other assemblies of carbon atoms into different
configurations, with OD fullerene, stable molecules of 60 carbon atoms arranged in a geodesic
structure, coming in 1985 [120], and carbon nanotubes, discovered sometime between 1952 and
1991, which are cylindrical lattices of rolled-up graphene with small radii and considerable ten-
sile strength. Among these peculiar properties, many of which can be traced to the influence of
unbonded sp? orbitals above and below each carbon atom, graphene exhibits a linear dispersion
relation for frequencies between the visible and THz range, incredibly high room temperature
electrical conductivity, and strong electronic tunability as a result of either doping or gating.

Graphene is a honeycomb lattice made up of sp>-hybridized carbon atoms arranged in a 2-
dimensional structure, each spaced approximately 0.142 nm from each other, presented later in
Fig. 5.10. At each carbon atom lie three evenly spaced o-bonds and one delocalized 7 bond,
which points perpendicular to the sheet. Both the unit cell and the reciprocal cell are rhombuses,
the direct lattice being composed of two overlapping triangular lattices. Labelled in the reciprocal
lattice in Figure 3.1 are four key symmetry points. In the band structure of graphene, these will
show up as either saddle points in the energy dispersion or self-crossings, and become relevant in
later chapters as we seek to explore peaks in the EELS spectrum of monolayer graphene. At the
symmetry point M, transitions occur between 7 and 7* energy bands, while interband transitions
at the I' symmetry point occur at even higher energies. A plot of the band structure can be found
in Fig. 5.8. These transitions can be modeled within different approximations, in particular
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Figure 3.1: The first BZ of graphene, the momentum space dual to the elementary Wigner-Seitz
cell. Labelled are the main symmetry points I', M, K, and K’, the last two being indistinguishable
due to the hexagonal symmetries present in the real space graphene lattice.

the low-energy spectrum, where electronic interactions are dominated by the unusual energy
dispersion near the Dirac point. The relatively high electron density of the material suggests that
classical electromagnetic theory will work well here, allowing for an electronic description of
the graphene layer in terms of optical response functions.

The Dirac points K, K’ are locations that, within a tight-binding model for nearest-neighbour
interactions, yield a meeting point between the valence and conduction bands for undoped graphene
under ideal conditions. The linear band dispersion near these points follows

exx (k) = kv (3.1)

where ¢ is the energy derived from the tight-binding Hamiltonian, and vz ~ 10°m/s is the Fermi
velocity. This kind of linear dispersion mimics the dispersion seen for photons, leading many to
research graphene for effects like Klein tunneling and the quantum Hall effect. The density of
states for energies near the Dirac point will therefore also follow a linear relationship unique to

two-dimensional systems
D(E) = 2IE] (3.2)
- r(hve)? '
which has important consequences for the absorption of graphene at lower energies.

The difference in scale between the wavelengths of probes in graphene and the characteristic
wavenumber scales of the BZ shown in Fig. 3.1 and the mean free electron path suggests a local
frequency response is often sufficient towards describing the optical properties of graphene for
low energies. An approximation for the optical conductivity (i.e. the conductivity in the optical,
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or g — 0, limit) can be derived starting from the tight-binding approximation [57]. This derived
conductivity is broken into two parts, the first being the interband contribution o; = o, + ioy,
with

—1 h(j)—zEF_l _1 hw+2EF

1
O, =0y 1+ —-tan= ——— —tan  — (33)
7 hyinter T thnter

and

1 hiw + 2Ep)* + h2y?
o = oo In* P Y (3.4)
2 (hw — 2Ep)? + h2y?

nter

where oy = e?/4# is called the universal conductivity, ¥iner is the damping rate for interband
transitions, and E is the Fermi energy, which will be non-zero for doped graphene. The term o
is known as the universal conductivity as it represents an absorbance of all frequencies below a
certain threshold in the low-energy range. The optical conductivity in the case of doped graphene
also receives a contribution from the Drude conductivity term

op = 0'04%—%/0 i o 3.5)
derived from the intraband contribution. It is important to note that the damping rate yp in the
intraband case does not necessarily need to equal y;,., as the mechanisms for dissipation for the
two types of excitations may be different. Chapter 6 goes deeper into showing computational
and phenomenological models for describing the conductivity in the low-loss region accessible
to EELS.

3.1.1 Empirical Models for the Optical Conductivity of Graphene

An empirical model for the optical in-plane conductivity of graphene over a wide energy range
needs to account for the many different ways electrons in the monolayer can be excited. For
doped graphene, the Drude intraband contribution and Pauli blocking of interband transitions
becomes relevant at low frequencies. Three types of interband transitions are relevant in the
0 — 20 eV range for monolayer graphene: the 1 — x* transitions near the BZ K points (see
Fig. 3.1), which lead to the universal value of absorption for undoped graphene, along with
n — n* and o — o high-energy transitions near the M points of the BZ (see Fig. 5.8). These
last two, as will be shown in Chapter 6, correspond to peaks in the EELS spectrum of monolayer
graphene.

Starting with free-standing, intrinsic, undoped graphene, a model for the conductivity can
be constructed by treating the electrons of the m and o transitions in a two-fluid hydrodynamic
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model [11], as shown in Appendix B. Using Eq. A.15, this conductivity is given by

na/my ng/my

opa(w) = —iw 3.6)

+ )
w72rr —w(w+ l’yﬂ-) (,()3., - w(w + l)/J)
where v = o,  are the two fluids. The two restoring frequencies w,, and w,,, empirically refer
to the location of the high-energy interband transitions near the M points, and it has been shown
that the in-plane energy loss for 2 eV < fiw < 30 eV [96, ] can be well described by letting
hw,, ~ 4 eV and fiw,, ~ 14 eV, respectively. The widths of the peaks in the EELS spectrum will
be given by the broadening constants y, and .-, which can be chosen based on either TDDFT
calculations of the optical conductivity or on experimental data [22, 58].

As seen in Eq. 3.3, more work is required to have this empirical model describe the con-
ductivity for frequencies ranging from zero up to the visible range, where graphene exhibits its
trademark universal absorbance character, resulting from the 7 — 7* transitions near the BZ K
points mentioned before and calculated within the Dirac-cone approximation [122]. To ensure
this levelling-off to o in the low frequency region 0 < fiw < 2 eV, a correction to Eq. 3.6,
called the Dirac correction, is included. However, as seen in Fig. 5.8, electrons from the Dirac
transition and the 7 — n* transition come from the same band, so to preserve the number density
of electrons from this band participating in interband transitions, a factor f € [0, 1] is included
multiplicatively in oq .(w), while the Dirac correction of the form oo/[1 + (w/w.)*] is added to
Re [onq(w)], where w, represents a cutoff frequency for the correction.

To codify this preservation of electron number density for all participating electrons, we
rewrite the f-sum rule in Eq. 2.78 as

71'6'2

f Re[o(w)]dw = —nyN,, (3.7)
0 2m,

where N, = N, + N, = 4 is the total number of valence electrons per carbon atom. Choosing
m;, and m, to equal the free electron masses will ensure that N, = 3 and N, = 1 when opg(w)
is evaluated, as expected based on the occupation of orbitals associated with each band. Given
that the other free parameters in the model will be chosen to give best results with experimental
or computational data, this f-sum rule ensures a relation between the cutoff frequency w, and
the reduction factor f, given by f =1 — w.m, V2 /(8ny). Eq. 3.7 can be rearranged to define the
number of valence electrons at energies up to w’ that contribute to the response function

Nolw) = —2e f " Relor(@)ld' (3.8)

e g Jo

with the expected result that increasing the frequency range allows for the inclusion of more
valence electrons to participate in the excitation.

By including the universal conductivity phenomenologically, we have derived an extended
hydrodynamic (eHD) model, which factors in all three main interband transitions of intrinsic

51



graphene. The real part is

4

w
2 2
Re [0ena(w)] = 0o——— + e°w’|f
W+ w

Yty [0}, Yoy /m,
(W2, — W) +y2? (W2, — WP +Y2w? |’

(3.9)

whereas its imaginary part is obtained via the Kramers-Kronig relations shown in Eq. 2.76 [58].

Turning now to doped graphene, the Fermi energy er will be shifted away from the Dirac K
point to some finite position inside the conduction or valence 7 bands, depending on the type of
doping. Typical doping in graphene is on the order of g < 1 eV, corresponding to an excess of
charge carriers on the order of n; < 10 cm™ according to the Dirac cone approximation [123]

EfF = hVFkF = hVF \7tn;. (310)

At absolute zero temperature, all interband electron transitions with energies iiw < 2¢g are for-
bidden according to the Pauli exclusion principle, giving a jump-like real part of the interband
conductivity, corresponding to

2ep — w)? + Y2
Re o P (w) = 09 Ofiw — 2ep)  Imor (w) = 70 1n (2¢r ) 712) , (3.11)
nter nter 27.[ (28F + hw)z + ,yP
where O is the Heaviside unit step function [122, ]. For modeling purposes, this step func-

tion can be adjusted via a phenomenological broadening yp to describe interband dissipative
processes [125] or convergence parameters in TDDFT calculations if they are employed, giving

[57, 126]
1 2ep — h 2 fi
Sw)y=1--~ [arctan (M) + arctan(ﬂ)] : (3.12)
T Yp Yp

To introduce the aforementioned Pauli blocking into the eHD model, the smoothed step function
in Eq. 3.12 is adopted, and we postulate that the real part of the optical conductivity can be

faithfully expressed by
Re [Tiper(w)] = S (w) Re [oena(w)] (3.13)

with S (w) given in Eq. 3.12 and Re [0ehg(w)] in Eq. 3.9. The imaginary part of the interband
contribution can again be evaluated using the KK relations in Eq. 2.78.

The final addition to the model for doped graphene comes from the low-energy intraband
electron transitions that occur near the Fermi level, which has been shifted into either the con-
duction or valence band. Since these transitions are low energy, we again invoke the Dirac cone
approximation for the 7 and n* bands. This contribution to the optical conductivity takes the
form .

l EF
Oina(W) = —vp

P 3.14
n hw+iyp ( )

where the phenomenological damping constant yp, for intraband transitions may be different from
the broadening yp used for smoothing or the v, used in the interband transitions. Altogether,

52



a phenomenological expression for the conductivity of doped graphene over a wide range of
frequencies can be written as 0(w) = Tinra(W) + Tiner(w), referred to hereafter as the “Drude+
eHD” model, with the caveat that the eHD has been truncated at low frequencies as a result of
the smoothing function. A simpler version of this model that is of use for applications in the THz
to MIR frequency band would be to only add together the intraband and Drude contributions
neglecting the hydrodynamic portion of the conductivity entirely, referred to as the “Drude+
step”” model for the optical conductivity.

3.2 Phosphorene

Another 2D material which has attracted significant attention is single layer black phosphorus,
known as phosphorene. As with graphene, phosphorene has a tunable direct bandgap with strong
layer dependence and a high mobility of charge carriers, reaching 1000cm?/V's at room temper-
ature [50], both desirable quantities for integration into optoelectronic devices. The band gap,
ranging from 0.3eV in the bulk to 1.7eV for monolayer phosphorene and tunable through ei-
ther strain, doping, or the application of electric fields, covers a broad frequency range which is
slightly higher than graphene. The atomic structure is shown in Fig. 3.2, showing that a single
layer of phosphorene is made up of two sublayers of phosphorus atoms each covalently con-
nected to three neighbouring atoms. In the case of multilayered black phosphorus each of these
layers would be held together by weak van der Waals interactions. As a result of both arm-
chair and zigzag directions appearing in the atomic structure, as seen in Fig. 3.2, phosphorene
reveals a unique in-plane anisotropy which exhibits itself in the electrical, optical, thermal, and
mechanical properties of this material [127].

Figure 3.2: 3D visualization of a monolayer phosphorene lattice in real space, with arrows show-
ing the x- and y- directions. The lattice is formed of two sublayers of phosphorus atoms, each
atom covalently connected to three neighbouring atoms, giving rise to both armchair and zigzag
features.

While most attention is given to the interband transitions of phosphorene, namely the band
gap, the plasmonic response from free carriers in a naturally anisotropic material such as phos-
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phorene also prove interesting. Theoretical studies of the plasmonic properties of black phos-
phorus [128] show that the band anisotropy can lead to hyperbolic plasmon polaritons, i.e. the
frequency contours of the collective excitation modes in planar wavenumber space has a hyper-
bolic shape, as a result of a coupling between interband and intraband conductivities. Such a
plasmon topology may prove promising for the directional propagation of plasmonic rays and in
planar photonics thanks to the resulting large photonic density of states resulting from these hy-
perbolic modes. Combining phosphorene with heterostructures or influencing the band structure
through gating and strain allows further tunability of these hyperbolic modes.

The appearance of hyperbolic modes requires an anisotropy present in the conductivity ten-
sor, unlike the case of graphene where o, = o,,, giving an isotropic dispersion of plasmon
modes. In anisotropic 2D materials like phosphorene, the conductivity along the two principle
axes will have different values. It has been shown theoretically [128] that for a given frequency

w,
NCER

describes the plasmon modes for low energies in phosphorene. Hyperbolic modes will appear
for Im[o . (w)] Im[oy,(w)] < O, which DFT has verified occurs for frequencies in the infrared
region for phosphorene [56, ].
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3.3 Single-Walled Carbon Nanotubes

Single-walled carbon nanotubes (SWCNTs) have drawn attention across many physical disci-
plines due to their unique physical properties, including ballistic conductance [589], tunable band
gaps[ 1 30], photoluminescence [ 0], and high optical absorbance [9], the last three coming about
because of the same unbonded sp? orbitals that lead to many of graphene’s interesting properties.
With methods available for separating manufactured SWCNTSs based on their chirality, there are
many applications, from their use as additives in organic photovoltaic devices due to their intense
absorption peak [9]s, or as electrodes due to their ballistic properties [89], or for addition into
solar cells due to their thermal stability [10].

With experimentally measured radii ranging from 0.7 to 1.0 nm [95], and a length to diameter
ratio on the order of 100, SWCNTs can be classified as 1D materials. Depending on how the
carbon nanotube is rolled up, the orientation of the six-atom carbon ring within the lattice relative
to the axis of the nanotube will change, leading to different lattice symmetries which change the
absorption and conduction properties of the SWCNT [ 1 1]. These lattice symmetries can be either
zigzag, armchair, or chiral, the former two presented in Fig. 3.3. The chiral vector Cj, in terms of
the real space unit vectors a; and a, of the hexagonal graphene lattice follows

C, =na; + ma, = (n,m) (3.16)
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Figure 3.3: Chiral (C,) and translational (7') vectors projected onto the atomic structure of a
graphene monolayer. C, points along the circumference of the tube while T points along the
nanotube axis. Zigzag (n,0) (green) and armchair (n, n) (red) lattice symmetries occur for angles
parallel to the chiral vector and 30 degrees from the chiral vector, respectively.

where n > m are integers. Armchair nanotubes correspond to the case of n = m and zigzag to
m = 0. The circumference of the nanotube is given by

C=aVNm?*+n?+nm (3.17)

where the lattice constant of graphene a = 2.49A. The indices (n,m) uniquely determine the
geometry of a given nanotube, including the radius and the number of graphene unit cells used
to construct the unit cell of the SWCNT. From a computational standpoint, armchair and zigzag
nanotubes admit many more symmetries and require far fewer atoms per unit cell, meaning
calculations with nanotubes with chirality (n,n) or (n,0) will tend to require fewer resources
[9, 89]. The effect of chirality is also seen directly in the band gap of the nanotube: n—m = 1mod3
is a sufficient condition for semiconducting nanotubes while n —m = Omod3 will yield a metallic
nanotube, although metallic features can also be seen for nanotubes with small diameters. This
modular condition comes about from the number of graphene unit cells used to construct the unit
cell, determining how different symmetry points fold into each other.

As with graphene and phosphorene, SWCNTs find many uses in optoelectronic applications,
and it is therefore worthwhile to use the DFT techniques shown in Section 2.1 to make predictions
about the axial dielectric function and axial conductivity, computational results which can be
directly compared and contrasted with photoabsorption data, where light parallel to the principal
nanotube axis is used to excite intense transitions between the valence and conduction bands.
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3.4 Fullerene

Fullerene (C60), also known as a buckyball, is a zero-dimensional carbon allotrope, made up
of sixty sp* hybridized carbon atoms, and first discovered accidentally during a study of galaxy
clusters using mass spectroscopy. It has 32 faces, including 20 hexagons and 12 pentagons, form-
ing a soccer ball pattern, with double bonds within the hexagonal rings but not in the pentagonal
ones. Notable for being the first of the discovered carbon allotropes [ 13 1], its high stability means
it can withstand high temperature and pressure since it is extremely stable, and has strong sol-
ubility and reactivity properties [132]. Additionally, doping fullerene molecules can change the
electronic profile enough to make them electrically insulating, conducting, semi-conducting or
even superconducting. It can be incorporated into optical devices, photovoltaics, and lubricants,
among others [133].

Ultimately, as a stable, spherical, molecular system with prominent excitonic peaks resulting
from 1 — n* transitions, fullerene provides an excellent test case for the application of DFT to
materials of the lowest dimension, especially in composite systems where the activation of modes
within the fullerene molecules can hybridize or couple with those of nearby materials [ 133, 134],
enabling the prediction, design, and optimization of relevant technologies. It is important to note
that care must be taken in the application of DFT to molecular systems, where the scale of
the molecule can be much smaller than the unit cell used to contain it, and relations between
the atomic polarizability and the dielectric function may become more complicated than those
derived in Eq. 2.67 [95].

3.5 Chlorophyll

All life on Earth depends on photosynthesis, the mechanism through which organisms absorb
energy from photons by converting carbon dioxide and water into organic compounds, and is the
main natural process for converting solar into chemical energy. Photosynthetic organisms such
as algae, plants, and bacteria produce the oxygen we breathe in, the coal we burn, and the food
we eat. The process starts with solar energy transfer to a reaction center, often performed by a
network of chlorophyll pigments, which then aggregates together with the pigments to form what
are known as light-harvesting complexes [ 135, ]. Since different environments with a multi-
tude of living organisms span the globe, chlorophyll molecules in complexes such as these can
show small variations in their absorption properties to help adapt to the range of available solar
spectrum and to facilitate energy transfer in the organism [50]. Acknowledging these variations,
the major light-harvesting complex in green plants is known as the light-harvesting complex 11
(LHCTII) [135].

Chlorophylls in photosensitive systems harvest incident photons at distinct wavelengths and
transfer their energy as excitons to reaction centers, porphyrin rings consisting of a magnesium
atom in the center with four nitrogen atoms surrounding it [46, ]. Diversity of chlorophylls
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Figure 3.4: Depiction of (a) full-1*, (b) cut-1*, and (c) cut chlorophyll a (Chl a) and chloro-
phyll 4 (Chl b) structures with Mg atom, chlorin ring (blue), methyl group (CHj3, green) or
aldehyde (HCO, red) groups, full (CyoHsy, grey) or cut (CsHy, grey) hydrocarbon chain, and a
tetramethylammonium charge tag (N(CH3);, red). Mg, O, C, N, and H atoms are depicted in
silver, red, grey, blue, and white, respectively. Orientation of the x and y polarization axes (blue
and red arrows) and labelling of the rings (A-E) follow TUPAC-IUB nomenclature [135, 136].
The structures in (a) full-1* are based on those provided in Bruce et al. [137].
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in nature will come about from the side chains attahced to this porphyrin ring. Chl a and Chl
b, with chemical formulas CssH7,MgN4Os[138] and CssH;0MgN4Og[137], consist of 137 and
136 atoms, respectively, the difference being the addition of either a methyl group on the side
chains of Chl a or an aldehyde group for Chl b. These two molecules form the fundamental
functional units of LHC II, so determining their photoexcitation process has provoked interest in
the organic photovoltaic cell [139], optoelectronic device [46], and food production communities
[135]. As will be shown in Chapter 5, DFT, with the proper implementation [140], can play a
role in determining the absorption characteristics of monomers like Chl a and Chl b and their
larger roles within the full light-harvesting complex.
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Chapter 4

Training Artificial Neural Networks with
xc-Functionals

The Kohn-Sham ansatz, explained in Section 2.1.1, shows that a many body system of interact-
ing electrons can be mapped to a system of non-interacting electrons that interact via an effective
potential. This turns what was previously a differential equation that depends on the positions
and momenta of all electrons in the system into a set of KS equations whose solution is compu-
tationally feasible. This effective potential, defined in Eq. 2.13, contains external, Coulomb, and
xc components. The latter of these accounts for all quantum mechanical interactions, as well as
any effects left out by the other two terms and the non-interacting kinetic energy operator. We
can consider this xc potential in the context of the Hohenberg-Kohn theorem [ 1], which states
that this effective potential uniquely defines the ground-state electron density and vice versa.
This means that there must exist an exact form for the xc functional which depends solely on
the electron density n(r). It is clear that determining an exact form for this functional is very
important, but it also turns out to be a very challenging task, and has been an open problem for
over half a century.

Section 2.1.2 showed that many higher levels of xc functionals are needed depending on the
type of material under consideration. The LDA xc functional in Eq. 2.17 often works well for
predicting the properties of metals with a reasonable accuracy but fails for systems with much
sharper variations in the electron density such as atoms. Generalized gradient approximations
(GGAs) such as PBE in Eq. 2.20 use the local gradient of the electron density as an additional
input to provide a more accurate and complete picture of the properties of molecular systems.
However, they suffer from their own problems related to overbinding of atoms and the effects of
static correlation in Hartree-Fock theory. At even higher orders, terms which only depend on the
electron density in an implicit way such as the KS wavefunctions are mixed in with semi-local
methods such as PBE to provide an even better approximation to the material properties of a
system. As explored in Section 2.1.2, these methods can be quite computationally demanding,
due to both the nested self-consistent cycle required to determine the xc potential and to the
prohibitive costs of using the full orbital information, possibly even unoccupied orbitals, in the
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functional calculation. A slightly less ambitious task than finding the exact form of the xc func-
tional for all materials may be to determine xc functionals which can consistently take in the full
electron density explicitly and return xc energies in agreement with the higher-tier functionals,
thereby circumventing the major computational roadblock of these methods.

Section 2.4 introduced the concept of artificial neural networks, which in the context of super-
vised learning provide a method to learn the mapping between inputs and outputs by providing
a set of training points. In fact, according to the universal approximation theorem [141, 1,
feed-forward neural networks with sufficient width and depth can approximate any continuous
function of finite dimensional input. The quality of this approximation of course depends on
there being a sufficient quantity of useful data for the network to train on, a careful determination
of how the data is pre-processed, and a network with hyperparameters chosen so as to best benefit
from the data available. We outline in this chapter our progress in developing neural network ap-
proximations that can emulate two commonly used xc functionals, LDA and PBE, with sufficient
accuracy to allow these learned approximations to be used interchangeably with their originals
within a fully-functional DFT code. The challenges and obstacles that come from learning these
relatively basic xc functionals offer some insight into tackling both of the tasks mentioned above.
In what follows, NNLDA and NNPBE are used to refer to neural network approximations to the
spin-paired LDA and PBE xc functionals, shortened to LDA and PBE throughout the text. The
TensorFlow framework using Keras neural network libraries [112] is utilized throughout, while
all DFT calculations in this section are done using Graw.

4.1 Assessing the Effects of Noise

Before using neural networks to approximate the exact xc functional, it is instructive to first
determine the level of accuracy required to achieve the goal of “interchangeability” and whether
this is even feasible. For the LDA and PBE approximations, with well-defined mappings between
the electron density, the xc energy density defined in Eq. 2.17 and Eq. 2.20, and the xc potential
defined in Eq. 2.18 and Eq. 2.21, one clear measure of the accuracy of our prediction is the
relative error of our learned xc functionals for every possible density input. For more complicated
xc functionals where non-local dependence on the density or the KS orbitals is introduced, the
ultimate test will be in how well the learned xc functional is able to predict material properties
relative to its benchmark standard method. While certain DFT codes are specifically designed to
excel at predicting chemically interesting properties such as atomization or ionization energies,
we focus in this work on predicting the minimized ground state energy of a system. Generally,
50 meV is the range of error expected [40] between both implementations of LDA and PBE
across different DFT software packages and DFT calculations themselves. For this reason we
have chosen it as the golden standard for our NNLDA and NNPBE implementations.

To determine what impact errors in our implementation of PBE might have on the resulting
energies, we have applied both unbiased and biased noise to the PBE xc energies and considered
the deviations in resulting total energies for a benchmark system. Table 4.1 presents the mean
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Noise Factor Function
Error Percentage sin(x) error (meV) sin?(x) error (meV)
0.5% 131.9 £ 96.1 929.4 + 644.1
0.1% 259+ 18.6 189.1 = 130.3
0.05% 13.4+9.2 96.95 + 65.6

Table 4.1: The mean standard error and standard deviation of the final total energy (meV) using
the noisy PBE for 46 molecular compounds in the gpaw G2-1 database [16], where the error
percentage defines the amplitude A of either sinusoidal (zero mean) or square sinusoidal (non-
zero mean) noise introduced to PBE.

standard error and standard deviation of the ground state energy of 46 molecular compounds
in the geaw G2-1 database for noise added to both &,. and V.. of the sinusoidal form NF, ; =
Afsin(|f + 1/f] + ¢) or the square sinusoidal form NF, , = Af sin®(|f + 1/f| + ¢), where A
is the amplitude of the noise, f refers to either the xc energy density or the xc potential, and ¢
is a randomly chosen angle. For each molecular compound in the database, an amplitude was
chosen and the total energy of the system was computed for three random values of ¢. The mean
standard error was then computed as the average absolute distance of this total energy from the
original PBE, }; |E . — E;gg@,-)l/ 3. The standard deviation reported is computed over all the
materials shown in Appendix D. These noise functions are chosen to have either zero mean in
the sinusoidal case or a non-zero mean for the square sinusoidal noise, while the argument of
each ensures high frequency oscillations across the whole range of input.

Considering the first column of Table 4.1, we see that as long as our approximation is within
0.1% of the actual PBE functional, and that this approximation is zero on average, most materials
should fall under the 50 meV threshold for the error in the total energy. As Appendix D shows,
a relative error of 0.05% is required to guarantee that all materials in the database fall under
this threshold, thereby providing our first indication of the tolerance of an NNLDA or NNPBE
approach. The second column of Table 4.1 shows the effect a biased error, which does not average
to zero, has on the total energy. The result is that even a relative error of 0.05% is insufficient
to bring the majority of molecular compounds in the database within our stated tolerance of 50
meV.

The reason for this relates to how total energies in DFT programs such as Gpaw represent
their results, which is always relative to the reference energy of the system. This quantity equals
the sum of the total energies of isolated atoms in space. So, for example, the output total energy
of an H,O calculation has implicitly subtracted reference energies associated with two hydrogen
atoms and one oxygen atom. For non-empirical codes such as Gpaw, the reference energies of
all atoms have already been evaluated. However, any modifications to an xc functional require a
re-evaluation of these reference energies that Table 4.1 shows are crucial to obtaining the desired
tolerance. Computationally, this reference energy calculation can be done by evaluating the
component elements in separate very large cells each with a very high grid point density. Since
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the output of this result will also depend on the pre-calculated xc functional reference energy,
latter calculations of the standard error between two methods will be computed via

LDA/PBE LDA/PBE NNLDA/NNPBE NNLDA/NNPBE
(Eroveme — EPE) — (E o ). @4.1)

4.2 Training the NNLDA

We begin with an evaluation of our neural network approach in the case of the LDA xc functional,
with the xc energy density &,. defined in Eq. 2.17 and the xc potential V,. defined in Eq. 2.17.
Twenty thousand uniformly distributed random values for the density n are chosen between 1072°
and 10'° from which training data using £:”[n] and V2PA[n] are determined. While this range
for n is uncharacteristically large and in many ways nonphysical, it allows us to assess from a
theoretical standpoint whether the NNLDA is valid in the limit of infinitely-weak and infinitely-
strong correlation, for which exact formulae for the correlation part of the xc functional exist
[81]. For the purposes of testing the NNLDA on physical systems, we will see that a substantially
reduced range could be utilized to achieve similar accuracy.

Feed-forward networks with three hidden layers each consisting of 50 neurons, which we re-
fer to as a 50x3 network, are trained with an input of log,, 7 and an output of either log,,(—&,.n7"/%)
or loglo(—ch). These choices for the output reflect the fact that networks perform best when the
relationship between the input and output is quasi-linear [115]. As we see in Eq. 2.19, the ex-
change part of the LDA energy density is proportional to the cube root of the electron density.
The rectified linear units defined in Eq. 2.114 are chosen for the activation functions, the error is
mean squared as defined in Eq. 2.117, and weights are updated according to the Adam optimizer
in Eq. 2.128, first for 500 epochs at a learning rate of ¥ = 10~* and then for 10000 epochs at a
learning rate of y = 107>. Five percent of the data is set aside as a validation set to ensure that
overfitting to the training data is not a problem.

Fig. 4.1 shows the relative error between g4 and gYVEPA, VLPA and VMVEPA “and 9elPA Jon
and 9YN-PA 9 for three separate implementations of NNLDA all trained according to the afore-
mentioned procedure. Fig. 4.1(a,b) both reveal certain features that we expect all neural network
implementations of xc functionals to follow. First, downward spikes mark densities for which
NNLDA predicts the energy density or potential to a very high degree of accuracy, which con-
trast with the more parabolic shapes that edge along the 1073 threshold. This is purely a property
of plotting on a logarithmic scale, with the deepest peaks also being the least broad. The oscilla-
tions in the relative error also become more dense in the 1072 < n < 10? range, which is exactly
where the LDA xc functional fluctuates the most, although it is more prominent in the energy
density than in the potential. Fig. 4.1(a,b) are plotted with three separate implementations but all
exhibit these same features in addition to consistently having a relative error below the 10~ or
0.1% threshold for all input densities 7.

Fig. 4.1(c) shows how the partial derivative of the energy density with respect to the electron
density compares using LDA and NNLDA for each of the networks trained above. Taking partial
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Figure 4.1: Relative error between (a) £-24 and YNPA (b) VEPA and VMNPA | and (c) delPA /on
and 0e¥VEPA | 9 for three separate implementations of NNLDA each using 50x 3 neural networks
trained on the same range of data.
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derivatives within a feed-forward network that does not use input pre-processing techniques such
as convolution or max pooling (see Section 2.4.2) is a relatively straightforward task since such
networks can be expressed as continuous analytic functions. Following Eq. 2.18, being able
to predict this quantity accurately means that a network would only be required to train the
xc energy density. It would also mean that the learned xc functional is properly self-consistent in
the KS framework, which is not the case when the xc energy density and xc potential are trained
separately. Interestingly, the peaks and troughs in Fig. 4.1(c) follow an almost identical pattern
to those of Fig. 4.1(a), suggesting that the gradient evaluated within the network is well-defined
as we predicted. In the 1072 < n < 10 range, where the xc energy density has the highest density
of oscillations, the partial derivative crosses over the 107 or 0.1% threshold, suggesting that the
network is either less or more responsive to changes in the electron density in this range. If the
xc potential is determined in this fashion and we consider a relative error of 0.1% is necessary, as
in Table 4.1, for the xc potential, Fig. 4.1(c) suggests that the network would need to be trained
to an even higher accuracy. Although not shown in Fig. 4.1, no noticeable difference was seen
when the activation function was changed to either softmax or sigmoid as defined in Eq. 2.114.

The xc potential generated from the functional derivative in the 107> < n < 10? is both far
more oscillatory and performs worse than directly using a neural network to train the xc poten-
tial. This suggests that an alternate approach that starts from an altered xc potential, as in the
reformulated KS framework outlined in Eq. 2.26, and from which the total xc energy is derived,
may be a more appropriate route towards obtaining a self-consistent xc functional [34, 85].

4.3 Training the NNPBE

Moving on to the evaluation of our neural network approach in the case of the PBE xc functional,
the norm of the gradient of the electron density |Vr| will now be an additional factor in the input
to our neural network trained xc functional, the NNPBE. Fifty thousand uniformly distributed
random pairs of the density and the gradient norm [n, |Vn|] are chosen such that each is allowed
to range freely between 1072° and 10'°, following the range previously used for the NNLDA.
Training data is then determined by evaluating £"%%[n, |Vn|] and V?5E[n,|Vn[]. A 50 x 3 network
is used with input of log,, n and log,, Vx| and an output of either log,,(—&.n~'/) or log,o(— V),
the renormalization of the output being done in the same manner as with LDA. Rectified linear
units are chosen for the activation functions, the error is mean squared, and the Adam optimizer is
used for 30000 epochs with a learning rate that decreases exponentially from 5x 10~ to 5x 107",
As before, 5% of the data is set aside as a validation set.

Fig. 4.2 shows contour maps of the relative error between /2% and g¥VPBE, VEBE and VNNPBE,
and 9&LPE |0n and Ae¥NPPE |on. The sharp downward spikes seen in Fig. 4.1 have their counter-
part in the dark-coloured rings appearing in the contour maps. Fig. 4.2(a,b) show a more rippled
relative error in the 107 < n < 10? range as with the NNLDA case but for all values of the
gradient, and there is an additional region with slope log,,|Vn| = 4/31og,,n where the oscil-

lations are more pronounced. As shown in Eq. 2.28, this is because the dimensionless quantity
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Figure 4.2: Contour maps of the relative error between (a) £2% and eYVP5E, (b) VEBE and VMVPBE,
and (c) AeLPE /An and 0¥NPBE [9n. A dashed line showing where o = n™%/ 3IVnI = 1is also plotted
on all three contour maps.

o = n~*3|Vn| is a major component of many GGA xc functionals, and there is a range for o that
leads to the highest fluctuations with respect to the input parameters. We plot o = n=#/3|Vn| = 1
for all three contour maps of Fig. 4.2 so as to highlight this region. The higher relative error in
the 107 < n < 10? range can be understood in light of PBE being an improvement to the LDA
functional as seen in Eq. 2.20, so that areas of difficulty for the lower-tier functional will manifest
in the neural network approximation to its higher-tier counterpart.

Fig. 4.2(c) reveals similar problems to those seen in Fig. 4.1. Specifically, errors in the
partial derivative of the xc energy density match closely with those of the xc energy density from
which it was generated, except that the error again goes beyond the 10~* or 0.1% threshold in
all regions where the xc energy density showed the most fluctuation in the relative error. These
fluctuations are not present in the xc potential, which is trained directly. This again suggests that
a self-consistent formalism that uses neural network-based xc functionals may be best served by
training the xc potential and then extracting the xc energy density from it. It is worth noting
that in the formula for VZ5% from Eq. 2.21 there is also a dependence on d&’?F/3|Vn|. However,
due to convergence issues for this quantity in gpaw over the large range of densities and density
gradients chosen, it is not shown.

4.3.1 Rough Model and Difficulty Zones

One of the reasons that the LDA and PBE xc functionals fluctuate considerably for densities
in a certain range or along a line given by the dimensionless parameter o is because these are
the regions where for physical systems most of the (n,|Vn|) pairs are going to lie. This can be
understood qualitatively for the case of o. If we consider that molecular systems in a large unit
cell can be roughly described by regions of uniform empty space punctuated by sharp increases
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in the electron density in and around the KS orbitals, it is logical that regions of low electron
density but a high density gradient or vice versa will not commonly occur in most systems.
While for the LDA or PBE cases, it is simple enough visually to ascertain these regions of
high fluctuation and limit the training range accordingly, we want to implement a method where
the most relevant region of training data is assessed automatically by the neural network if this
formalism is extended to networks that take in a larger range of input. Towards that goal we
introduce our rough model and difficulty zones.

The goal of the rough model approach is to first train a small network that provides a rough
approximation to the xc energy density and xc potential, which can then be divided out from the
exact functional to yield a target for a correction model. The idea is that the small network will
be able to extract any major features of the functional while the correction model will be better
suited to extracting the higher-level features of the functional. In formulaic form this goes as

Crougi * [10g19 1, 10g o [Vnl] = log,y (—£xn™?) 4.2)
€correction - [loglonvloglo |Vn|] - _chn_l/310_emugh - 1 (43)
gﬁ’NPBE : [10g10 n, lOglO |Vl’l|] - —I’ll/3(1 + ecorrection)loemugh- (44)
and
Viougn : [10g1 1, 10g o [Vnl] = log,o (- Vi) (4.5)
Veorrection + [loglo n, loglo |Vl’l|] - _chlo_vmugh - 1 (46)
‘A/)[C\éNPBE : [10g10 n, 1Oglo |Vl’l|] - _(1 + vcorrection)lovmugh- (47)

Our second strategy for getting better performance in the regions that are currently hardest
for the network to predict is to first run the rough and correction models, randomly generate
new test data, and choose from a random set of test points those that are within a certain radius
of the test data that lays above the threshold value in the original model, these points defining
a difficulty zone for the network. These test points can then be mixed in with the uniformly
distributed random data at different ratios to have the network focus more or less on the areas
with the highest relative error, which we have posited are the regions that are most physically
relevant. Finally, the correction neural network can be rerun with the new set of training data.
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Figure 4.3: Contour maps of the relative error between (a,b,c) 2% and £¥MPE, (d,e,f) VEPE and
VNNPBE “and (g,h,i) deBE/dn and de¥VPEE [on for neural networks with (a,d,g) one, (b,e,h) two,
and (c,f,i) three hidden layers of 50 neurons each, using the rough model and difficulty zone
approach. The colour scale for contour maps (g,h,i) has been adjusted for better visualization. A
dashed line showing where o0 = n™*/3|Vn| = 1 is also plotted on all nine contour maps.
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For the networks in Fig. 4.3 and Fig. 4.4, the rough model is trained with 1000 points in
(n,|Vn|) space in a 10 x 1 network for 100 epochs and a 0.01 learning rate. The first correction
model is trained with 50000 uniformly distributed random points and 30000 epochs as in the
approach for Fig. 4.2. Thirty-five thousand random points are then generated under the condition
that they are within a radius of 1 in (n,|Vn|) space from test points that yielded a errors much
higher than the average relative error, and this data set is mixed with 15000 uniformly distributed
random points. The second trained correction model follows the choice of other hyperparameters
given in Fig. 4.2 and uses the mixed data to train a network to predict the functional £YVPBE,

Fig. 4.3 and Fig. 4.4 both show contour maps of the relative error between 255 and £YVPBE,
VPBE and VNNPBEand 9ePBF |on and 0g¥NFPE /on, as in Fig. 4.2. Fig. 4.3 shows the effect that
increasing the depth of the network from one hidden layer to three with each layer having 50
neurons each has on this relative error, meaning these networks have 50, 100, and 150 hidden
neurons, respectively. It is clear that increasing the network’s depth yields a commensurate
decrease in the relative error for all points in (n, |[Vn|) space, while the distribution of areas of high
and low relative error also becomes more scattered with more dark-coloured rings corresponding
to contours with extremely low relative error. The overall decrease in the error is equivalent
for the xc energy density and the xc potential. Although not shown, a 50 X 4 network that also
uses the rough model and difficulty zone performs equally well as the 50 X 3 network shown in
Fig. 4.3(c,f,1). While having overly deep networks can cause issues when it comes to updating
weights nearest the input layer, using the Adam optimizer over a sufficiently high number of
epochs with the right training rate mitigates this issue [143, ]. This explains why increasing
the network’s depth beyond three layers, even with adjusted hyperparameters, does not yield a
further decrease in the relative error.

With the implementation of the rough model and the difficulty zone, any vestige of the fluc-
tuating behaviour around the 107> < n < 10* range has disappeared while there remains a
thinner but still prominent increased relative error along the line where our dimensionless elec-
tron density gradient o is constant. The increased depth appears to lead the relative error along
this slope to become more localized, with the 50 X 3 network in Fig. 4.3(c,f) using the rough
model and difficulty zone to also give more localization compared to the implementation shown
in Fig. 4.2(a,b).

Fig. 4.3(g,h,i) shows the derivative of the xc energy density with respect to the electron den-
sity has a very different profile from that seen in Fig. 4.2(c). This is an unfortunate side effect of
the rough model implementation shown in Eq. 4.4, where the partial derivative of &¥""*5E com-
puted within this approach will most strongly depend on the partial derivative of e, in Eq. 4.2.
The contour maps in Fig. 4.3(g,h,1) indirectly reveal that this rough model has captured the main
features of the PBE xc functional, that is, the areas that our original network showed the most
fluctuation. The change in this partial derivative contour map with increasing depth, namely, a
decrease in the number of dark-coloured rings, is attributed to a coincidental error cancellation
for the rough model and the low-depth neural network which becomes less prominent as more
hidden layers are added. Dark features that remain at higher depths are regions where the rough
model managed to predict the PBE xc energy density to a high degree of accuracy.
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Figure 4.4: Contour maps of the relative error between (a,b,c) 2% and £¥MPE, (d,e,f) VEPE and
VNNPBE and (g,h,i) 0£EPF /on and 0gYNFPE [on for neural networks with three hidden layers of
(a,d,g) 25, (b,e,h) 50, and (c,f,i) 100 neurons each, using the rough model and difficulty zone
approach. The colour scale for contour maps (g,h,i) has been adjusted for better visualization. A
dashed line showing where o0 = n™*/3|Vn| = 1 is also plotted on all nine contour maps.
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Fig. 4.4 shows the effect that increasing the number of neurons in each hidden layer of the
network, from 25 neurons to 100 neurons in a three hidden layer network, corresponding to
networks with 75, 150, and 300 neurons each, has on the relative error of the xc energy density,
the xc potential, and the partial derivative of the xc energy density with respect to the electron
density. It is clear that other than an increased scattering between regions of low and relatively
high relative errors that results from having more neurons and hence more weights and biases
shaping the profile of the network, there is no noticeable increase in the accuracy with increasing
numbers of neurons. Although not shown, a test of a 15X 3 network begins to reveal the necessity
of having some width to our networks with a colour profile similar to the 502 network shown in
Fig. 4.3(b,e). It is worth noting the increased performance that the 253 network with 75 neurons
total has over the 50 X 2 network with 100 neurons total, revealing the ability of deep-layered
networks with the right choice of activation function to perform significantly better than their
shallow counterparts, as mentioned in Section 2.4. Having low-width networks is an important
consideration for the integration of neural network implementations of the xc functional into
DFT software packages such as gpaw, where fewer connections between neurons means faster
computations.

4.4 Testing the NNLDA and NNPBE

As mentioned in Section 4.1, only testing the relative error of our NNLDA and NNPBE approx-
imations with respect to the analytic forms of these xc functionals is insufficient to determine
how well these approximations fare when modelling molecular and crystal systems. While the
G2-1 molecular database [16] was used to estimate the effects that noise added to the PBE func-
tional would have on the final ground state energy in Section 4.1, we opt for the DeltaCodesDFT
database [40, 41] of material systems here for two reasons. First, the types of materials under
consideration in this database span both the molecular and the crystalline, ideal for testing stan-
dard xc functionals like LDA and PBE. Second, the systems all consist solely of one element,
allowing us to see the effect that changes in the element properties may have on the accuracy
of the neural network approximation. In this way, Eq. 4.1 may be used to yield the desired er-
ror in the ground state energies resulting from our neural network approach, accounting for the
reference energies.

Before delving into the results calculated within geaw, we mentioned in Section 4.2 that the
training range used for the density and later the norm of the gradient of the density stretched
into a range that is unreachable for any physical system, but may prove useful for ensuring that
the approximation converges to certain well-defined theoretical values. The discussion around
Eqgs. 4.2-4.4 also emphasized that the region where our xc functionals fluctuate the most is also
where most physical systems will reside.

Fig. 4.5(a) shows a contour map of the relative error between 5% and £¥VFBE if the correction
model for the second iteration of the network is trained entirely with points within the difficulty
zone. Somewhat contrary to expectations, this trained network reflects a difficulty zone located
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Figure 4.5: (a) Contour map of the relative error between 755 and £YM*5E for a 50 x 3 network
using the rough model and difficulty zone approach, with the correction model trained entirely
on points in the difficulty zone with a dashed line showing o = n~*/3|Vn| = 1 (dashed line) and
the region (n,|Vn|) € [10712...10°,107'2 ... 10°] (dotted lines) and (b) a scatter plot of points in
(n,|Vna]) € [10712...10° 10712 .. 10°] from converged calculations of the reference system of a
hydrogen atom (light red), the reference system of a palladium atom (light blue), and the Delta
Codes database crystals for hydrogen (dark red) and palladium (dark blue), with histograms of
bin width 0.25 on the log-log scale showing the distribution of electron densities n and the norm
of the gradient of electron densities |Vn|.

entirely on a strip around the diagonal of the contour map, although close inspection shows that
the constant o region has not fully disappeared. The white region surrounding this strip is a direct
consequence of overfitting the data to give a reduced relative error in the region of interest. While
having the network perform so poorly in this region may seem concerning, Fig. 4.5(b) shows for
two systems, hydrogen and palladium structures from the Delta Codes database along with their
reference systems, all pairs of points in (n, |Vn|) space given by these converged calculations fall
into the trained region. These two elements were chosen as the overlap between their sets of
points was among the lowest, allowing for a better visual representation, although no element
in the system diverged considerably from the pattern presently shown for these test cases. The
reason for the reference systems having values of (n,|Vn|) much lower than for the database
structures is because of the amount of empty space that needs to be evaluated, whereas the higher
density of these points reflects the fine grid used in the calculations. The range of densities and
gradients in each run of the self-consistent cycle (see Section 2.1.6) is not expected to vary
considerably, as methods such as density mixing [44] help ensure steady convergence in the
iterative scheme.
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Figure 4.6: Periodic table display of total energy errors calculated using Eq. 4.1 for 59 structures
from the Delta Codes DFT database, where each box contains the element symbol and atomic
number while the columns in order from left to right show the Harris value for NNLDA, the
self-consistent calculation for NNLDA, the Harris value for NNPBE, and the self-consistent
calculation for NNPBE, all in units of eV. The numbers above the NNLDA and NNPBE columns
are the calculation time ratios between the neural network implementations and the default LDA
and PBE methods, respectively.

For each system in the Delta Codes DFT database, which includes the crystal structure and
unit cell parameters customized for each system, a plane wave basis set with E.,, = 200 eV
was used with an autogenerated k-point density of 1.0, electronic temperature of k37T ~ 1 meV
with all energies extrapolated to 7 — 0, and a grid spacing of & ~ 0.2 A. For all reference
systems, a plane wave basis set with E.,, = 200 eV was used for a single atom placed centrally
ina 10 x 10 x 10 A3 unit cell, with a I'-point sampling of the Brillouin zone, a grid spacing of
h ~ 0.05 A, and the same electronic temperature as in the database calculations. Calculations
were done using the LDA and PBE xc functionals, as well as the NNLDA presented in Fig. 4.1
and the NNPBE presented in Fig. 4.5, using xc energy densities and xc potentials both trained
by neural networks separately. Both self-consistent calculations, where the full self-consistent
cycle is executed starting from the initial setup, and Harris (single-point) calculations, where the
neural network calculations are executed with a density fixed by the converged result of the LDA
or PBE calculations, are performed. Complete details of the results are provided in Appendix D.

Fig. 4.6 displays the result of the above mentioned calculations for 59 structures from the
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Delta Codes DFT database, showing the total energy error given in Eq. 4.1 for self-consistent and
Harris calculations of the NNLDA and NNPBE. Some elements are absent from the table because
the system had non-zero magnetic moments (e.g. oxygen and iron), because the convergence
could not be achieved using either LDA or PBE (e.g. calcium) in a reasonable amount of time, or
because gpaw does not have the setups for that particular element (e.g. technetium). Employing
the periodic table highlights how both the filling of orbitals and the atomic number play a role
in the convergence of our neural network implementations. We see that for all systems with the
exception of vanadium and niobium, which both have three d electrons, the NNLDA performs
exceptionally well, with many systems giving results for the Harris and self-consistent energies
with an accuracy within 10~° eV. This also suggests that subtraction of the reference energy is
important to the noisy LDA shown in Table 4.1 even when the noise averages to zero. Although
the reason behind these high errors for V and Nb is unclear, both the Harris and neural network
approaches give similar errors, suggesting the issue may lie with a poorly described reference
energy for this particular electron filling.

For the NNPBE implementation, elements with fully or partially empty d-orbitals, i.e., the
first four columns of the table, or nearly full p-orbitals, i.e., the last three, we see that both the
self-consistent and Harris calculations give total energies below the 50 meV threshold for the
majority of systems with few exceptions. This suggests that elements without partially filled p
or d-orbitals are described consistently well by our neural network xc functionals, reflecting the
difficulty of describing these orbitals. NNPBE encounters considerable difficulty for elements
with few p electrons, i.e., in columns 5, 6, or 7, while its performance for transition metals
beyond the aforementioned columns consistently yields energy errors in the 100 to 300 meV
range, far beyond the threshold NNLDA has almost no difficulty meeting. Results within these
transition metals are generally better for the 5d elements of row 6 than the 4d elements of row
5. This suggests elements with lower gradients of the electron density, that is, valence electrons
spread over the more delocalized orbitals of heavier atoms, are easier to describe.

With the exception of nitrogen, the Harris and self-consistent energies of the NNPBE give
nearly identical results for all elements without f electrons, i.e., in the first five rows of the ta-
ble. The difference between the two becomes gradually larger as we fill the 5d orbitals, with the
single-point calculations for all five elements with filled d bands (Z > 80) having total energy
errors over 0.4 eV, even when the self-consistent calculation gives energy errors near the thresh-
old. One explanation for this may lie in the use of the pseudo-density in the PAW formalism,
computed using Eq. 2.15 in tandem with the PAW transformation operator in Eq. 2.58, rather
than the all-electron density. However, this does not explain the observed agreement with the
NNLDA for the very same elements.

Lastly, we note that the time ratios in the periodic table figure reveal that across all elements,
our neural network implementation ranges anywhere from being ten times faster in the case of
NNPBE applied to sulfur to twice as slow in the case of NNLDA applied to tungsten, with the
networks generally taking slightly longer than their analytic counterparts. The time ratios that
fall below one are serendipitous in that the neural-network trained xc-functional managed to
converge in far fewer iterations, even if each individual iteration took slightly longer. Despite
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this, the similar time scales for each implementation suggests that more complex functionals
can be made wider or deeper without incurring substantial computational costs. The highest
time cost is in fact incurred by the reference energy calculations, where the high grid density
and large unit cell made the NNLDA and NNPBE calculations on average 5 times slower to
converge than LDA and PBE, respectively. Luckily, for a given network, these reference energy
calculations only need to be performed once for each element. This means the amount of time
this convergence takes is immaterial so long as when the network is applied to most systems it is
reasonably fast and accurate.

74



Chapter 5

LCAO-TDDFT-k-w : Spectroscopy in the
Optical Limit

Ab initio time dependent density functional theory (TDDFT) methods constitute the standard
computational approach for modelling interactions between light and matter, including optical
absorption processes, conduction, and exciton generation and recombination. Starting from a
converged ground-state calculation, many different methods are available to compute the quantity
of interest, from the quantitatively accurate but computationally inefficient GoW,-BSE approach
of Section 2.2.7 to less computationally demanding methods starting from the non-interacting
density response function of Eq. 2.42. By employing a highly efficient linear combination of
atomic orbitals (LCAO) representation of the Kohn-Sham (KS) orbitals (Section 2.1.5) within
TDDFT in the reciprocal space (k) and frequency (w) domains, as implemented within our
LCAO-TDDFT-k-w code, and applying the derivative discontinuity correction of the exchange
functional A, to the KS eigenenergies (Section 2.1.3), we are able to provide a semi-quantitative
description of the optical absorption, conductivity, and polarizability spectra for OD, 1D, 2D, and
3D systems within the optical limit (Jq] — 0%). As we will show, this approach is best suited for
modelling the optical absorbance of low dimensional macro-molecular systems, for which ro-
bust and efficient methods capable of properly describing all the relevant effects have remained
elusive.

Regarding the choice of real or reciprocal space and time, different choices provide advan-
tages and disadvantages depending on the system under consideration. For example, TDDFT
in real space (r) and frequency (w) domains, known as the Casida method or TDDFT-r-w [47],
provides a balance between accuracy and efficiency. However, its O(N°) scaling, where N is the
number of KS wavefunctions, makes it either unsuitable or unusable for calculating the properties
of macromolecules and other low-dimensional systems, no matter the wavefunction basis choice.
Given a real-space representation, TDDFT in real space (r) and time (#) domains (RS-TDDFT-r-
1) [49] requires extremely short time steps to give wavefunction stability, much shorter than the
period required for resolved frequency spectra [50], whereas TDDFT in reciprocal space k and
frequency w (RS-TDDFT-k-w) [48] often has quite high memory costs associated with the grid
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spacing required for convergence. PW is an alternative to the RS representation, and allows for
a systematic reduction in the computational cost that plagues these other RS methods while im-
proving stability. However, for systems with very large unit cells, the high memory cost can once
again make this an unfeasible choice. Using non-periodic or mixed boundary conditions, often
seen in low-dimensional systems, also means that a good deal of memory is allocated to describ-
ing empty space. As a result, we employ the LCAO representation for the KS wavefunctions,
performing TDDFT calculations in reciprocal space (k) and frequency (w) (LCAO-TDDFT-k-w),
offering an efficient and stable representation with similar accuracy to PW-TDDFT-k-w.

One caveat of this representation, as previously mentioned, is that LCAO does not allow for
systematic convergence the way decreasing the grid spacing 4 in RS or increasing the plane-wave
cutoff energy E.,, in PW does. The choice of LCAO basis set must also be sufficient to describe
occupied and unoccupied states equally well [52], and beyond including more radial functions or
polarization, p-valence and completeness-optimized basis sets have been suggested to overcome
both this and the absolute convergence issue [17, 52]. The other caveat, since an efficient Fast
Fourier Transform (FFT) is not available in LCAO to efficiently compute the transition dipole
elements in the dielectric function in Eq. 2.44, is that the LCAO-TDDFT-k-w calculations are
restricted to the head of the dielectric function (G = G’ = 0) and to the optical limit |q] — 0.

In fact, for applications relating to light absorption or for systems where spatial dispersion
may not be a well-defined quantity, the dielectric function in the optical limit is the desired quan-
tity. A TDDFT implementation which evaluates in this limit exactly avoids problems related
to the use of dense k-point meshes to approach the |q| — 0" limit. In situations where mod-
els require response functions at low-wavenumbers, as in low-energy plasmon-phonon systems
[145, ], it may also be preferable to include spatial dispersion post hoc rather than to use
these aforementioned k-point meshes with spacing on the order of the wavenumber crossing. As
mentioned in Section 2.2.4, working directly in the optical limit also allows for the calculation
of the electron and hole spectral densities at a given excitation, providing important information
about the real-space distribution of these states for the material in question.

Lastly, in order to obtain a better description of the band gap in semiconducting or insulat-
ing materials, which is crucial for obtaining quantitatively accurate absorption and energy loss
spectra, our LCAO-TDDFT-k-w code employs the GLLB-SC derivative discontinuity correction
to the eigenenergies of conduction band KS states. This approach, as described in Section 2.2.3,
is applied in either an a priori or a posteriori fashion.

As gpaw includes plane wave and real space implementations of TDDFT-k-w, we can directly
compare the performance of the LCAO-TDDFT-k-w code with well-established TDDFT imple-
mentations. For the remainder of this chapter, we compare the photoabsorption cross section,
conductivity, and dielectric function obtained from LCAO-TDDFT-k-w (using either the a priori
or a posteriori scissors correction), PW-TDDFT-k-w, GoW,-BSE calculations, and experimental
measurements where applicable, thereby providing a benchmark for the energies and intensities
of the resulting spectra.
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5.1 Computational Details

5.1.1 Calculation Parameters

All DFT calculations presented herein employ the PAW method code geaw [36, 37] within the
atomic simulation environment ASE [ 147, ]. The PBEsol functional, a type of GGA xc func-
tional tailored for solids and surfaces, was used unless stated otherwise, as it allows a self-
consistent calculation of the derivative discontinuity correction A, of Eq. 2.31. Each calculation
used a grid spacing of h ~ 0.2 A and an electronic temperature of k3T ~ 1 meV with all energies
extrapolated to T — 0. All LCAO-TDDFT-k-w computations employed a double-{-polarized
(DZP) basis set [ 149], with basis sets going up to quadruple-{-polarized (QZP) employed to test
convergence of the optical spectra, DZP being an standard default for its balance of computa-
tional cost and accuracy. All PW-TDDFT-k-w computations are converged with an energy cutoff
of £, ~ 340 eV.

For the Cg fullerene system and chlorophyll monomers, the atomic structures were relaxed
until the maximum force was below 0.03 eV/A. Gas phase structures for the full-17 Chl a and
Chl » monomers, shown in Fig. 3.4, follow models developed in the literature derived from mass
spectrometry in tandem with molecular dynamics simulations [137, ]. To see the influence
of the hydrocarbon chain and the tetramethylammonium charge tag (N(CH3),, or 1%), structures
which cut the hydrocarbon chain from C,yHj3g to CsHg, both with (cuz-1") and without (cut) the
charge tag, are also considered. The electron density n(r) and KS wavefunctions ¢, were set
to zero at the cell boundaries, which prevents long-range interactions between repeated images,
crucial for modeling charged 0D materials. Cgy used a 20 x 20 x 20 A3 unit cell, while all
chlorophyll superstructures were computed in supercells ensuring at least 6 A of vacuum in
every direction. For OD materials, only I'-point calculations (i.e. the BZ sampling only includes
the I'-point) were performed.

The (10,0) zigzag and (10,10) armchair SWCNTSs’ atomic structures were relaxed until the
maximum force was below 0.05 eV/A. Since carbon nanotubes extend along the z-axis, the unit
cell was relaxed parallel to this axis until unit cell parameters of L, ~ 4.30 and 2.46 A, re-
spectively, were obtained, including 10 A of vacuum perpendicular to the nanotube axis. BZ
samplings of 1 X 1 x 281 for the (10,0) SWCNT and 1 x 1 x 489 for the (10,10) SWCNT were
employed, and periodic boundary conditions (PBCs) were used only along the z-axis. As with
the macromolecules, the electron density and KS wavefunctions were set to zero at the cell
boundaries perpendicular to the z-axis.

All Gr calculations use a unit-cell constant of a = 4.651 ay ~ 2.46 A, with Gr layers stacked
in a periodic super-lattice along the z-axis perpendicular to each monolayer, separated by a dis-
tance of L = 5a ~ 23.255ay ~ 12.3 A. Unless stated otherwise, the first BZ is sampled with a
dense Monkhorst-Pack 301 x 301 x 1 k-point mesh [150]. As this work presents a comparison
between monolayer graphene systems computed for basis sets ranging from single zeta-polarized
(SZP) to QZP, a total of 18 bands were employed for all LCAO calculations to accommodate the
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number of basis functions that the SZP basis set can represent. This number of bands, corre-
sponding to seven unoccupied bands per atom, was previously found [121] to yield converged
optical spectra within RS-TDDFT-RPA.

All P~ calculations use the already relaxed crystal structure found in the geaw Computational
2D Materials Database [88]. As with Gr, P~ layers are stacked along the z-axis with supercells
separated by a distance of L ~ 17.1 A. Unless stated otherwise, the first BZ is sampled with a
dense Monkhorst-Pack 603 x 603 x 1 k-point mesh [150] with 32 bands, sufficient to converge
the main peaks up to 20 eV.

For A-TiO,, the first BZ is sampled with an 11 X 11 X 5 k-point mesh and approximately 9
unoccupied bands per atom [ 100], whereas for R-TiO, the first BZ is sampled witha 7 X 7 x 11
k-point mesh and about 9 unoccupied bands per atom[!05]. It is important to note that adding
more bands than is needed to converge the calculation is unnecessary unless one is seeking to
study the very high energy part of the optical spectra.

As mentioned before, when electron-hole interactions, such as excitonic binding, strongly
effect the shape and intensity of the optical spectra, GoW,-BSE is the gold standard for ob-
taining both a qualitative and quantitative picture the role these effects play. Systems where
excitonic effects are most relevant include ones where electron-hole screening is reduced, such
as in lower-dimensional systems [130]. As a result, GoW,-BSE spectra are shown for Cg [134],
(10,0) SWCNT [9], PN, A-TiO, [100], and R-TiO, [105]. GoW,-BSE calculations for the (10,0)
SWCNT and Pn have been performed as part of this work, using the PW implementation within
gpaw [101]. Reduced 1 X 1 x 64 and 33 x 47 X 1 k-point samplings of the first BZ were used
respectively. We used the Godby-Needs plasmon-pole approximation [ 102, , ] to describe
the screening W, while either 1D or 2D truncation schemes for the Coulomb kernel [151] were
employed to remove supercell interactions orthogonal to the (10,0) SWCNT or perpendicular to
monolayer phosphorene.

5.1.2 Derivative Discontinuity Correction

The GLLB-SC derivative discontinuity correction, as described in Section 2.1.3, provides an ab
initio first-order correction to the conduction band KS eigenenergies equal to A, in Eq. 2.31.
This correction can be applied as either an a priori or a posteriori scissors correction as shown
in Section 2.2.3, which determines whether this correction influences the relative intensities of
the peaks in addition to the blueshift of the spectra by A,. Table 5.1 shows that for the materials
considered herein, the correction lies between 0.5 and 0.9 eV, yielding a substantial qualitative
change in the position of the optical spectra. This correction is included for all semiconducting
materials studied in this chapter, with A, calculated within LCAO-TDDFT-k-w or PW-TDDFT-
k-w adjusting the spectra calculated from the respective TDDFT implementations.
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Table 5.1: Derivative discontinuity correction A, in eV ob-
tained from LCAO or PW representations of the KS wave
functions for fullerene (Cg), chlorophyll a and b (Chl a,b)
monomers, (10,00 SWCNT, phosphorene (PN), anatase (A-
TiO,), and rutile (R-TiO,).

A, (eV)

Material LCAO PW
Ceo 0.77 —

Chl a,b 0.70 —

(10,0) SWCNT 0.79 —
P~ 0.58 0.55
A-TiO, 0.85 0.89
R-TiO, 0.67 0.72

5.1.3 Irreducible Brillouin Zone (IBZ)

In crystal systems, any symmetries in the lattice of the crystal manifest as symmetric rela-
tions between wavefunctions at different k-points. The irreducible BZ (IBZ) is defined as the
most compact splice of the BZ such that every k-point in the full reducible BZ (RBZ) can be
mapped through these symmetry relations to points in the IBZ. For high-symmetry crystals such
as graphene, this results in substantial time and memory savings, allowing for a k-mesh spread
only over points in the IBZ. Quantities calculated that depend only on the magnitude of the KS
state wavenumber can simply be multiplied by the weight wy of each k-point in the IBZ. How-
ever, as can be seen in Eq. 2.44 and Eq. 2.55, the sum in the optical response function &(q, w)
is explicitly dependent on the vector components of the wavenumber k within the BZ. The re-
sult is that naively applying the LCAO-TDDFT-k-w method using the IBZ for a crystal system
that uses non-trivial symmetries may yield incorrect response functions. Note that 1D and 0D
systems utilize trivial k-meshes and are therefore exempt from this consideration.

Table 5.2 shows one simple measure for the in-plane anisotropy of the dielectric function, in-
tegrating between 0 eV and 20 eV the real and imaginary parts of the absolute dielectric function
difference between x- and y- components for graphene (Gr), phosphorene (Pn), anatase (A-TiO,)
and rutile (R-TiO;), for computations done over both the IBZ and RBZ. With the exception of
Pn, all these materials should yield a symmetric dielectric tensor in the xy-plane, corresponding
to planar isotropy. Floating point errors and the incompleteness of the LCAO basis set may par-
tially explain the observed non-zero differences in RBZ calculations for what should be planar
isotropic materials. The main import of Table 5.2 is that caution must be exercised when cal-
culating optical quantities with explicit vectorial matrix element dependence. It can be proven
geometrically that for rectangular and hexagonal unit cells for isotropic systems, the average of
the two directional components, & = % (8” + Syy), will yield the appropriate xy-response func-
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Table 5.2: In-plane directional dependence of the dielec-
tric function &(w) from 0 eV to 20 eV over irreducible
(IBZ) and reducible (RBZ) Brillouin zones for graphene
(Gr), phosphorene (Pn), anatase (A-TiO,) and rutile (R-

TiO,).
Re f Exx — syy| dw| Im f|sxx - syy| dw
Material | IBZ RBZ IBZ RBZ
Gr 18.505 3.037 13.817 1.824
PN 10.698 11.481 9.250 9.763
A-TiO,  13.643 0.766  12.126 0.695
R-TiO,  11.889 0.494  10.776 0.367

tion.

5.2 0D Fullerene and Chlorophyll

The first material we will consider is the isolated molecule of the 0D carbon allotrope fullerene
(Ce0). Here, in addition to calculations done using both LCAO-TDDFT-k-w and G,W;-BSE, we
have data for the experimental photoabsorption cross section for fullerene molecules in both gas
phase and in a hexane solution. To compare with these measured optical absorptions both in gas
phase and in solution, defined as the logarithm of the ratio of the input and output intensities
log,,(1o/1), we use the Chako—Linder relation [152, ]

[n*(w) + 91 In(Iy/I) _ 4n R
@) CNud — Reloon(q, w)], .1

directly relating the intensity ratio to the photoabsorption cross section, as defined in Eq. 2.50,
with op the 0D conductivity, as defined through the polarizability via Eq. 2.67. Here n(w) is
the refractive index of the solution, N, is Avogadro’s number, C is the molar concentration in
solution, d is the optical path length, and c is the speed of light, since the refractive index for
gases is approximately one. Using this equation we can directly compare both peak positions
and intensities of the photoabsorption cross sections calculated within LCAO-TDDFT-k-w and
GoWy-BSE with those extracted from experiments in gas phase and solution.

Table 5.3 shows measured and calculated energies for Cg’s third bright 7 — 7* exciton, Aw;,,
corresponding to the third peak in the photoabsorption spectra, from experiments in gas phase
and hexane solution [131], GoWy-BSE [134, ] calculations, and LCAO-TDDFT-k-w calcula-
tions neglecting and applying the GLLB-SC correction A, from Table 5.1. Neglecting the deriva-
tive discontinuity correction leads to an underestimation of the peak position by about 1 eV. This
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Table 5.3: Measured and calculated energies of
the third bright ¥ — n* exciton of fullerene (Cg)

fiww, in eV.

Method hw, (eV)

Measurement in Gas Phase 5.97*

Measurement in Hexane 5.86°

GoWy-BSE (VASP) 6.04¢

GoWy-BSE (QE) 6.50¢

LCAO-TDDFT-k-w (&, — €,) 4.79¢

LCAO-TDDFT-k-w (&, — &, + A,) 5.56°

aRef. [153] PRef.[132] ©Ref.[134] 9Ref.[133]
¢ This work.

shows how essential this correction is for reproducing the measured spectra of Cgy.

In Fig. 5.1(a) and (b) we show the electron and hole spectral densities in real space at the
energy associated with the third bright # — 7* exciton, 7w, = 5.6 eV for LCAO-TDDFT-k-w and
hw, ~ 6.0 eV with GoW,-BSE [134]. For LCAO-TDDFT-k-w, these spectral densities are cal-
culated using Egs. 2.62, 2.63, while a similar formalism yields the spatial distribution for Gy W-
BSE. In both figures, the electron spectral density p.(r, w,) rests largely on the m anti-bonding
orbitals on the exterior of the fullerene molecule, while the hole spectral density p,(r, w,) is
concentrated on the interior 7 bonding orbitals, yielding the desired semi-quantitative agreement
between the two methods.

Fig. 5.1(c) compares photoabsorption cross sections obtained from experimental photoex-
citation data [131], GoW,-BSE calculations that explicitly include excitonic effects present in
fullerene, and LCAO-TDDFT-k-w calculations using the a priori and a posteriori scissors cor-
rections. Both GyW,-BSE and the LCAO-TDDFT-k-w implementations yield single-transition
peaks that largely agree with the well-separated ones observed in both gas phase and hexane so-
lution experiments, noting that the measured photoabsorption cross sections in these experiments
have uncertain relative intensities as seen in Ref. [153]. While GoW,-BSE gives peaks that in-
crease in intensity gradually, consistent with experimental spectra, LCAO-TDDFT-k-w presents
the opposite behaviour, the two methods agreeing in intensity only for the first bright exciton.
This is perhaps a direct effect of the neglect of the excitonic effects that are described within a
GoWy-BSE framework. Fig. 5.1(c) also shows firsthand the significant reduction in the intensi-
ties of the lower energy peaks when the scissors correction is applied a priori, giving somewhat
better agreement with experiment and G, W,-BSE calculations for the first bright exciton than the
a posteriori scissors approach. This is a direct result of the factor A, included in the denominator
of the dipole transition elements f,gl,k defined in Eq. 2.60. Overall we see that LCAO-TDDFT-
k-w and GyW,-BSE both capture the peak locations and spatial distribution qualitatively and in
line with experiment, with the intensities of the peaks in disagreement at higher energies.
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Figure 5.1: Fullerene’s (Cgp) electron (blue) and hole (red) spectral densities for the third bright
m — * exciton w, from (a) LCAO-TDDFT-k-w and (b) GoW,,-BSE [134] and (c) photoabsorp-
tion cross section 47” Re[o(q.,w)] in units of ag versus energy fiw in eV from GyW,-BSE (black
thin solid line) [134], LCAO-TDDFT-k-w a priori (red) and a posteriori (magenta) scissors cal-
culations, and measurements in gas phase (black squares) [131] and hexane from Ref. [131]
(dark green diamonds) and this work (light green circles), shifted by the Chako-Linder factor in
Eq.5.1.

The second set of materials we will consider that fall into the OD category are the chlorophyll
a and chlorophyll » (Chl a and Chl ) monomers. These molecules serve as the basic building
blocks of the light harvesting complex (LHC) in green plants (LHCII), and are a prime example
of the need for computationally efficient codes such as LCAO-TDDFT-k-w to model the absorp-
tion properties of larger macromolecular systems. Although much progress has been made in
the experimental measurement of the optical spectra of individual Chl a and Chl » monomers
[137, 154, 138] and in their description at the TDDFT level [155, 156, 140, 157], the exten-
sion of these theoretical methods to the description of large chlorophyll-containing biomolecules
and the role of surrounding proteins in photosynthesis requires computational resources beyond
the capacity of most researchers [139, 158]. Since many of the previously mentioned TDDFT
methods become too computationally expensive for such large biomolecules, we are unable to
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provide GoWy-BSE as a benchmark. In addition, while we consider both LCAO-TDDFT-k-w and
PW-TDDFT-k-w for the description of the relatively small cut monomers, cut-1* and full-1* are
only considered in the LCAO-TDDFT-k-w approach, as these larger systems become intractable
without the memory savings provided by LCAQO’s reduced degrees of freedom.

(a) Wavelength (nm) (b) Wavelength (nm)
800700 600 500 400 800700 600 500 400
Ll

:
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i
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T T T
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Figure 5.2: Dependence of the LCAO-TDDFT-k-w optical absorption spectra of Chl a on the
single-¢ (SZ), double-{ (DZ), triple-{ (TZ), and quadruple-¢ (QZ) LCAO basis sets (a) without
and (b) with polarization (P) functions.

As stated in Section 2.1.5, a disadvantage of the LCAO method is that the addition of more
radial functions or polarization does not necessarily yield a converged spectra. This is because
increasing the number of radial functions or adding polarization does not provide a complete
basis, e.g., for describing Rydberg or vacuum states. For this reason, it may be necessary to
test smaller sample systems for convergence using a wide set of LCAO basis functions. In
addition, comparing the result of this basis set convergence test with well-converged PW results
can provide an additional check on the LCAO-TDDFT-k-w method for smaller systems, cut Chl a
and Chl » monomers in this case. In Fig. 5.2 we present the optical absorption spectrum of the cut
Chl @ monomer using basis sets with { ranging from single to quadruple, and with polarization
turned off (SZ, DZ, TZ, and QZ) and on (SZP, DZP, TZP, and QZP). SZ is the smallest basis and
therefore takes the least memory of the eight basis sets, while QZP represents the case where
each atom’s valence states are represented by four radial functions each along with a polarization
function with higher-order character.

Fig. 5.2 (a) shows that this most reduced SZ basis gives a red-shifted spectrum compared
to DZ, TZ, and QZ, the latter two yielding nearly identical spectra. DZ gives the same peak
intensities as these latter two methods but with the higher-{ counterparts giving more separation
between the two peaks, excitations corresponding to the Q and Soret bands, respectively. Fig. 5.2
(b) shows that including polarization tends to increase the overall intensity of the spectra, and
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that the effect of increasing the number of radial functions matches the unpolarized basis set
choice, with red-shifted spectra for the SZP and a slight splitting of the two peaks relative to
TZP and QZP. While Fig. 5.2 suggests that convergence in the radial functions is achieved with
a DZP basis set, it is unclear whether the inclusion of other basis functions, e.g., Gaussians,
would provide spectra in better agreement with experiment. For this reason a comparison with
a fully-converged PW-TDDFT-k-w calculation is essential to determine whether a DZP basis set
is in fact sufficient within LCAO-TDDFT-k-w.

Wavelength (nm)
800 700 600 500 400
Lovlennn 1y AR A

(a) Chl a

Figure 5.3: Optical absorption of cut Chl a and » monomers from LCAO-TDDFT-k-w (solid
lines) and PW-TDDFT-k-w (dashed lines).

Fig. 5.3 shows the optical absorption spectra for cut Chl a and b monomers using DZP for
LCAO-TDDFT-k-w and a sufficient energy cutoff for convergence of the PW-TDDFT-k-w cal-
culations. The locations of the peaks obtained within the two methods agree to within 0.1 eV,
with the higher energy part of the LCAO spectra blue-shifted by this amount. Additionally, the
intensity of the spectra is significantly lower with LCAO-TDDFT-k-w for cut Chl a whereas it is
in semi-quantitative agreement for cut Chl B. As Fig. 5.2 showed that polarization for this system
increases the intensity, DZP is the logical choice to obtain better agreement with the converged
PW calculation. However, as we will show, the choice of LCAO or PW basis set does not always
yield higher or lower intensity spectra in general.

Fig. 5.4 shows spectra obtained from LCAO-TDDFT-k-w including the a posteriori scissors
correction A, applied to Chl a and Chl » monomers shown in Fig. 3.4, along with experimental
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Figure 5.4: Optical absorbance spectra Im &(w) calculated in LCAO-TDDFT-k-w for (a) Chl a
and (b) Chl » monomers for cut, cut-1*, and full-1* structures, with spectra broken along the x
(blue) and y (red) polarization directions shown in Fig. 3.4. These spectra are compared with
experimentally measured spectra for monomers with monocationic tetramethylammonium 1*
[137] and acetylcholine 3* [154] charge tags, written as exp-1* and exp-3* respectively.

spectra for these monomers with either monocationic tetramethylammonium 1* [137] or acetyl-
choline 3" [154] charge tags. For both monomers the shape of the spectra shows the same
qualitative behaviour between the full-1* and cut-1* structures, suggesting that the influence of
the carbon chain on the optical absorption spectra is minimal. The effect of the charge tag is more
apparent, as it causes a widening of the gap between the Q and Soret band peaks, blue-shifting
the former and red-shifting the latter.

For Chl q, the locations of the maxima of the Q band peaks in the experimental spectra and the
first excitation energy from LCAO-TDDFT-k-w calculations for the full-1* structure differ by less
than 0.2 eV, while the locations of the maxima of the Soret band peaks and the fourth excitation
energy from LCAO-TDDFT-k-w differ by less than 0.1 eV. Chl b full-1* exhibits similar but
poorer agreement, with the Q band blue-shifted by 0.23 eV and the Soret band red-shifted by
0.26 eV relative to experiment.
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The experimental data also suggests that the relative intensity of the Q band should be less
than that of the Soret band, whereas the opposite behaviour is seen with LCAO-TDDFT-k-w.
This disparity in the computed and measured intensities may lie in the neglect of charge transfer
excitations within the LCAO-TDDFT-k-w methodology, an effect also seen in Fig. 5.1 for the
higher-energy excitations of Cgy. Since these types of excitonic effects have been put forward in
the literature [137] as a possible absorption mode, the inability of LCAO-TDDFT-k-w to capture
the intensity near the Soret band peak lends further credence to this possibility. In addition, this
underestimation of the higher energy intensities further justifies the use of the a priori scissors
correction over its a posteriori counterpart, the former having a diminishing effect on spectral
intensity, bringing the Q band to Soret band intensity ratio into better agreement with the exper-
imentally observed one.

5.3 1D Single-Walled Carbon Nanotubes

We continue our evaluation of the LCAO-TDDFT-k-w code by considering single-walled carbon
nanotubes (SWCNTs), which are periodic along a single axis. For a set of fifteen semiconduct-
ing and four metallic SWCNT chiralities, the LCAO-TDDFT-k-w implementation, including the
derivative discontinuity correction A,, has previously been shown [Y] to semi-quantitatively re-
produce experimental spectra over a wide range of energies. We will consider herein the optical
conductivity o ;p(, w) for q; along the SWCNT’s axis, as shown in Eq. 2.69, for two prototyp-
ical SWCNTs, namely, the metallic armchair (10,10) SWCNT and the semiconducting zigzag
(10,0) SWCNT. As discussed in Section 3.3, nanotubes can be either armchair, zigzag, or chiral,
with metallic or semiconducting properties, depending on the choice of chiral and translational
vectors.

Fig. 5.5(a,b) shows the real and imaginary parts of the axial conductivity of the semiconduct-
ing (10,0) armchair SWCNT using PW-TDDFT-k-w, GoW,-BSE, LCAO-TDDFT-k-w with the a
priori scissors correction for basis sets ranging from SZP to QZP , and LCAO-TDDFT-k-w with
the a posteriori scissors correction for the DZP basis set. There is semi-quantitative agreement
between the a posteriori LCAO-TDDFT-k-w and PW-TDDFT-k-w for both intensities and peak
positions, with LCAO slightly underestimating the intensities relative to PW. As with chloro-
phyll, the DZP basis set choice is shown to yield converged spectra. The G W,-BSE calculations
show how excitonic effects influence the axial conductivity, expected to be stronger for 1D sys-
tems, such as SWCNTs, due to the reduced screening between charge carriers. We see that both
PW-TDDFT-k-w and LCAO-TDDFT-k-w overestimate the energy for the first transition E;; by
approximately 0.2 eV relative to GoW,-BSE. The explanation for this close agreement has been
previously explored [9] in the discussion for Fig. 2.2. Regarding the intensity of the spectra,
GoWy-BSE and LCAO-TDDFT-k-w a posteriori scissors are in semi-qualitative agreement, with
GoWy-BSE giving a relatively lower value for the E;; transition and a relatively higher one for
the E,, transition.

The difference between calculating the spectra with LCAO-TDDFT-k-w using a priori or
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Figure 5.5: Semiconducting (10,0) SWCNT (a) real and (b) imaginary parts of the axial optical
conductivity o (q, w) in units of #/m, versus energy %iw in eV for q along the nanotube axis,
with GoW,-BSE (black), PW-TDDFT-k-w (blue), and LCAO-TDDFT-k-w a priori (red) with
single (SZP), double (DZP), triple (TZP), and quadruple (QZP) {-polarized basis sets (in order of
increasing thickness) and a posteriori (magenta) calculations with DZP and (c) positive (red) and
negative (blue) isosurfaces for the electron-hole spectral density difference at the fiw, ~ 4.1 eV &
plasmon, with axes shown as insets. These same curves are shown for metallic (10,10) SWCNT
(d) real and (e) imaginary parts of the axial optical conductivity along with (f) positive (red)
and negative (blue) isosurfaces for the density difference, neglecting GoW,-BSE and scissors-
corrected calculations for this zero-gap material.

a posteriori scissors is seen in the substantial change in both absolute and relative intensities.
The derivative discontinuity correction, A,, for the zigzag SWCNT is approximately 0.788 eV,
half the energy of the E;; transition at iw =~ 1.55 eV. This means that for this first transition
the a priori intensity is lower by a factor of %A" ~ 2 . In contrast to fullerene, a posteriori
scissors LCAO-TDDFT-k-w provides a better description of the optical spectra for ID SWCNTs,
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reproducing the G,W,-BSE spectra, relative to a priori scissors.

Fig. 5.5(c) shows the electron-hole spectral density difference for the 7 —* transition located
at hiw, ~ 4.1 eV, calculated using Eq. 2.66. We see that the hole spectral density is more promi-
nent on x orbitals of the carbon-carbon bonds within the nanotube while the spectral density
of the excited electron lies predominantly outside the (10,0) SWCNT above the carbon-carbon
bonds. The hole spectral density also reveals itself in rings around the circumference of the
nanotube in contrast to the more localized electron spectral density.

Fig. 5.5(d,e) shows the real and imaginary parts of the axial conductivity of the metallic
(10,10) zigzag SWCNT using PW-TDDFT-k-w and LCAO-TDDFT-k-w for basis sets ranging
from the SZP to the QZP representation, noting that GoW,-BSE is not required for metallic sys-
tems and that the a priori and a posteriori scissors approaches are equivalent when A, = 0.
As with the (10,0), there is semi-quantitative agreement between the LCAO-TDDFT-k-w and
PW-TDDFT-k-w methods for both intensities and peak positions, with LCAO slightly underesti-
mating the intensities relative to PW across all choices of basis set. The real part of the (10,10)
SWCNT’s conductivity Re[o(q;, w)] is made up of intense peaks located at 1.5, 2.7, 3.4, and
3.9 eV, with intensities on the order of ~ 100 %/m, matching with those of the (10,0) SWCNT
and with the intensity of the ballistic conductance expected for a metallic armchair SWCNT.

Figure 5.5(f) shows the electron-hole spectral density difference for the m — n* transition
located at fiw, = 4.1 eV, with the distribution of the electron and hole spectral densities matching
with what is seen in the (10,0) SWCNT. The main difference is in the arrangement of the electron
spectral density in stripes running alongside the exterior of the nanotube parallel to the axis, with
a relatively more localized hole spectral density. The locations of the electron and hole densities
predominantly outside and within the nanotube matches with what is seen in Fig. 5.1(c) for
fullerene, suggesting this may be a more general property of carbon allotropes.

5.4 2D Graphene and Phosphorene Monolayers

We move on to the evaluation of our LCAO-TDDFT-k-w method for isolated surface layers that
are only non-periodic in a single direction, starting with graphene, which in the case of zero
doping shows no band gap and therefore no A, scissors correction.

5.4.1 Optical Conductivity

Fig. 5.6 shows Gr’s in-plane 2D conductivity from PW-TDDFT-k-w using two different software
packages, Quantum Espresso (Qe) and Gpaw, along with LCAO-TDDFT-k-w calculations in Gpaw
using the SZP, DZP, TZP, and QZP basis sets. Results between PW-TDDFT-k-w and LCAO-
TDDFT-k-w show excellent agreement for the m1 — #* transition near 4.2 eV for all basis sets,
although the LCAO mode shows a longer-tailed peak leading away from this transition. The
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Figure 5.6: Graphene (GRr) in-plane (a) real and (b) imaginary parts of the conductivity o (q, w)
in units of e?/# versus energy #w in units of eV evaluated with PW-TDDFT-k-w (blue lines) in
both gpaw (solid) and Qe (dash-dotted) and LCAO-TDDFT-k-w (red solid lines) for SZP, DZP,
TZP, and QZP basis sets shown in increasing order of thickness.

o — o transition near 13.5 eV for LCAO-TDDFT-k-w using the DZP, TZP, or QZP basis sets
agree closely with PW-TDDFT-k-w, noting that the peak location error between the LCAO and
PW implementations is approximately equal to the error between two separate PW-TDDFT-k-
w calculations. Gr’s conductivity shows additional peaks beyond this transition, a small one
appearing near 16 eV in all approaches and a secondary peak near 18 eV for calculations done
with LCAO-TDDFT-k-w for DZP, TZP, or QZP basis sets. Whether this latter peak has a physical
origin or is an artifact or the basis set choice will be explored when we analyze the spatial
distribution of the associated exciton through the spectral density. Once again, DZP is found to
be sufficient to describe the location and intensities of the peaks to sufficient accuracy.

Fig. 5.7 presents the in-plane conductivity for PN using PW-TDDFT-k-w, GyW,-BSE, and
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Figure 5.7: Phosphorene (PN) in-plane (a,b) real and (c,d) imaginary parts of the conductivity
o({, w) in units of e*/#A versus energy #w in units of eV from PW-TDDFT-k-w (blue), GoW,-
BSE (black), and LCAO-TDDFT-k-w a priori (red) calculations for SZP, DZP, TZP, and QZP
basis sets shown in increasing order of thickness and LCAO-TDDFT-k-w a posteriori (magenta)
calculations for light polarized along (a,c) q, and (b,d) q,.

LCAO-TDDFT-k-w, showing the a priori calculation for SZP, DZP, TZP, and QZP basis sets and
the a posteriori calculation for DZP, along the two orthogonal in-plane polarization directions
to verify PN’s well-known planar anisotropy. All these approaches capture the anisotropic peak
near 1.8 eV in the x-direction, GoW,-BSE yielding the greatest conductivity with PW-TDDFT-
k-w and LCAO-TDDFT-k-w a posteriori scissors calculations in semi-quantitative agreement,
and the LCAO-TDDFT-k-w a priori scissors, as for the (10,0) SWCNT in Fig. 5.5, yielding
a much lower intensity than the GoW;-BSE conductivity. In addition, all methods capture the
higher intensity peak situated near 5 eV in the y-direction. LCAO-TDDFT-k-w with both scissors
approaches yields a longer-tailed spectra along with a peak near 9 eV in the x-direction and
11 eV in the y-direction, similar to the peak uniquely seen at 18 eV in Fig. 5.6. The difference in
intensities between PW-TDDFT-k-w and LCAO-TDDFT-k-w using the two scissors approaches
again suggests that there is no way ahead of time to predict which approach will yield intensities
most consistent with more accurate TDDFT methods or experiment.
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Figure 5.8: BZ profiles of the Gr (a) m — n* transition #iw, =~ 4.1 eV, (b) o — o transition
hw, ~ 14.1 eV, and (c) 1—o™ transition fiw,.. = 16.3 eV, (d) real (blue) and imaginary (red) parts
of the conductivity o(§y, w) in units of e*/# versus energy #w in units of eV from LCAO-TDDFT-
k-w, and (e) band structure with arrows showing the three transitions under consideration.
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Figure 5.9: BZ profiles of the P~ (a) x-polarized transition Aw, = 1.8 eV, (b) y and x-polarized
transition fiw,, ~ 5.1 eV, and (c) second x-polarized transition w,, = 9.5 eV, (d) real (blue) and
imaginary (red) parts of the conductivity o(, ) in units of e?/#% versus energy fiw in units of
eV from LCAO-TDDFT-k-w for {, (solid lines) and §, (dashed lines) polarized light, and (e)
band structure including the A, scissors correction.
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5.4.2 Brillouin Zone Transition Profiles

As discussed above, calculations using the LCAO-TDDFT-k-w method require that all calcula-
tions of optical response functions are done using only the head, i.e. G = G’ = 0. One effect of
this is that every transition computed within the LCAO-TDDFT-k-w framework is a direct transi-
tion between states of the same wavenumber, so at each wavenumber in the BZ of a material the
LCAO-TDDFT-k-w code yields the bands involved in a transition at a given excitation energy,
allowing a visualization of the exciton’s distribution in reciprocal k-space by creating a contour
map over the first BZ at a given energy. In Figs. 5.8(a,b,c) and 5.9(a,b,c) we show for a given
k-point and energy %w the sum of oscillator strengths rgf,k defined in Eq. 2.56 for transitions
n — n’ within a 7Aw = +0.2 eV range of fiw weighted by a Lorentzian broadening of 0.1 eV in
order to smooth out the reciprocal space spectra. Choosing oscillator strengths for excitations po-
larized in-plane allows for a visualization of Gr’s and PN’s most relevant spectral contributions,
although such diagrams can be tailored for any polarization direction, or to include only certain
bands. These contour maps give more information at a given energy than the band structure
alone, as intense peaks that go beyond the linear cross-sections lying between high-symmetry
points are included, and the connections between said points are also highlighted.

Fig. 5.8(a), (b), and (c) show Gr’s transitions in the hexagonal BZ for the 7 — n*, o — 0, and
m—o* excitations seen previously as the three main peaks in the in-plane conductivity in Fig. 5.6.
The transitions shown via the sum of the oscillator strengths, which follow the symmetry of the
reciprocal lattice, must reflect the same symmetric properties, which in the case of Gr yield
a six-fold symmetry. The 4.1 eV and 14.1 eV reciprocal space spectra are largely made up
of transitions centred around the high symmetry M-point, with the 7 — n* transition directly
connecting along the M—M’ direction and the o — o* transition following a more star-shaped
pattern. The peak at 16.3 eV shown in Fig. 5.8(c) is seen to occur largely at the I" point, which
given its energy and symmetry point, we attribute to a 7 — o as seen in the band structure in
Fig. 5.8(e). A small annulus surrounds the I" point at this peak, possibly a result of the choice of
energy range surrounding the peak. These contour maps are expected to become more noisy and
spread out as the number of bands available for transitions at each k-point increase in number.

Fig. 5.9(a), (b), and (c) shows three prominent transitions in PN’s orthorhombic BZ. Symme-
try over this BZ means that transitions should exhibit a four-fold symmetry, as we clearly see
in Fig. 5.9(a—c). Fig. 5.9(a) shows that the oscillator strengths associated with the anisotropic
excitation near 1.9 eV also reveal anisotropic behaviour in the form of an elliptical annulus in the
k. and k, wavenumbers, with the energy range in Fig. 5.9(d) chosen slightly off the peak center
to better show this effect. This transition being centred around the I" point matches with what
is expected from the band structure in Fig. 5.9(e) where the conduction and valence bands are
separated by approximately 1.8 eV after accounting for the derivative discontinuity correction.

Fig. 5.9(b) and (c) show BZ profiles for higher energy transitions: the w,, ~ 5.1 eV prominent
for y-polarized light and the w,, = 9.5 eV transition uniquely found in our LCAO-TDDFT-k-w
code. Ellipse-like shapes appear as before, indicating that there is some structure to these excita-
tions, but the scattered nature of the k-points relevant for these transitions suggests no particular
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high-symmetry point is associated with these peaks in the in-plane conductivity spectra.

5.4.3 Exciton Density Projection Contours

The oscillator strengths presented in Eq. 2.56, used above in showing the reciprocal space profile
of the excitation energies for Gr and Pn, are used again in Eq. 2.61 to define a two-point excitonic
spectral function, from which electron and hole spectral densities are defined in Egs. 2.63, 2.62.
This allows us to visualize these spectral densities in real space for a given energy. Since these
densities are defined as intensities in three spatial dimensions and at a given energy, we have
previously presented the position space data as isosurfaces at a given energy in Fig. 5.1 and
Fig. 5.5. However, to infer how the spatial profile of our excitations changes with energy requires
projections in real space. In Fig. 5.10 and Fig. 5.11 we present one possible projection method,
namely, summing the electron or hole spectral densities over planes normal to an axis of choice
in the material. In this way the resulting contour map shows the change in this quantity along the
axis over arange of energies. An alternate method of presenting this data is shown in Appendix E,
where summation is only done along one direction and snapshots at different voxels give a more
comprehensive view of the 2D spatial profile of excitations.

Fig. 5.10 shows four contour maps in real space for both the electron and hole density, pro-
jected onto either the z-axis, i.e., summing the spectral density over the xy-plane, or projected
onto the C—C bond, i.e., summing over points in the plane normal to this bond. Fig. 5.10(a) and
(b) shows the fiw, ~ 4.1 eV transition in real space, with nodal planes visible between areas of
brighter intensity, consistent with 7* and 7 orbitals. fiw, ~ 14.1 eV instead shows that the exci-
tations are much more localized on the monolayer, consistent with o and o orbitals. The peak
at 16.3 eV, which we inferred in Fig. 5.8 to be of m — o™ character, is not as clear as the other two
transitions, but with no nodal plane these real space contours suggest the associated excitation
will involve o orbitals. Lastly, the peak near 18 eV seen in Fig. 5.6 for the LCAO-TDDFT-k-w
spectra extends significantly into the vacuum beyond the GrR monolayer. While this may suggest
a Rydberg-like state [159], the mechanism by which these states come about is not visible in
the spectra from standard TDDFT implementations. Given that Fig. 5.6 showed that this peak
is absent in all other TDDFT methods suggests strongly that the 18 eV peak is an artifact of an
incomplete basis set.

Fig. 5.10(c) and (d) shows contour maps integrated along planes normal to the carbon bonds
in graphene. 7" and m orbital features are again present close to the peak at 4.1 eV, with the
electron spectral density from (c) shared between the orbitals and the hole spectral density in (d)
avoiding the space between them. The opposite is seen for the o orbital peak with a reversal in
the areas where the electron and hole spectral densities are most intense. This peak is also seen
to be more diffuse in-plane, consistent with the fact that other carbon atoms in neighbouring cells
also share bonds with the carbon atoms shown in the contour plot.

The upper inset of Fig. 5.10 uses isosurfaces to show the spectral density difference for the
m— " exciton labelled along the contour maps. It is important to note that the directional depen-
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Figure 5.10: (a,c) electron and (b,d) hole spectral densities p, and p; for Gr calculated with
LCAO-TDDFT-k-w and C atoms (blue dashed lines) projected onto the (a,b) z or (c,d) bond axis
versus energy 7w in units of eV for light polarized in-plane, and positive (red) and negative (blue)
isosurfaces m — * exciton spectral density difference at ficw, = 4.1 eV (white dashed line) with
axes shown as an inset.

dence visible in the isosurface is an expected effect of the choice of polarization direction ¢, and
calculating the same isosurface for a difference choice of ¢ must necessarily lead to an isomor-
phic density profile. This is unlike the contour maps which preserve the in-plane and out-of-plane
symmetries of the Gr crystal structure. This inset reveals isosurfaces with striped electron spec-
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Figure 5.11: (a,c,e,g,i,k) electron (¢7) and (b,d,f,h,j,1) hole (A*) spectral densities p, and pj, for
Pn calculated with LCAO-TDDFT-k-w a priori scissors correction, projected onto the (a,b,g,h)
x, (c,d,i,)) y, or (e,fk,]) z axis versus energy 7w in units of eV for (a—f) x and (g-1) y polarized
light, the directions depicted in the above inset, and (m,n) positive (red) and negative (blue)
isosurfaces of the spectral density difference for the x-polarized exciton located at ziw, = 1.8 eV
(white dashed line) with axes shown as separate insets.

tral density similar to those seen in Fig. 5.5 for the (10,0) semiconducting SWCNT, more so than
the localized pockets of electron spectral density seen for the (10,10) metallic SWCNT.

Due to the anisotropy of the phosphorene crystal structure, Fig. 5.11 shows projections onto
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the x, y, and z axes for light polarizaed along both the x and y directions, as shown in the lower
insets. Both the electron and hole spectral densities spread out over the entire unit cell, a result
of the higher atomic number of phosphorene atoms. The x-axis projection for x-polarized light
shows nodes in the electron spectral density and anti-nodes for the hole, reminiscent of the 7 —7*
transition in Gr. This suggests these may also be the orbitals participating in the anisotropic
peak. Beyond this, the two polarization directions match closely, as expected from the spectra
shown in Fig. 5.7. The projections along the z-axis show that the electron and hole spectral
densities do not extend far beyond the P~ crystal structure, while the nodal behaviour suggests a
low carrier density between the two layers of phosphorene atoms.

Fig. 5.11(m) and (n) shows top and side vies of isosurfaces of the electron hole spectral
density difference at ziw, = 1.8 eV for x-polarized light. We neglect y-polarized light due to the
low density of excitations at that energy. The isosurface reveals that the electron spectral density
has stripes along the y-direction while the hole is localized along out-of-plane bonds. Dipoles,
which point between areas of opposite charge densities, would therefore point in the x-direction.
This gives us a real-space explanation for the anisotropic conductivity peak at this point.

5.4.4 Spectral Convergence with k-Point Spacing

While convergence with respect to the basis set choice has been emphasized throughout our
evaluation of the LCAO-TDDFT-k-w code as one of the most important factors to consider when
using this method to determine the optical properties of materials, it is pertinent to also show
that LCAO-TDDFT-k-w converges with respect to another important parameter, the k-point grid
spacing. Gr and Px have the highest band dispersion of all the materials under consideration, so
they provide the best test cases.

Fig. 5.12 provides contour plots starting at Ak, = Ak, ~ 0.05 nm™' spacing, which for Gr

corresponds to a Monkhorst-Pack 541 %541 X 1 k-point mesh. For Gr, the two main peaks, along
with the likely artificial 18 eV peak, are all already converged for relatively coarse grid spacings
on the order of Ak < 0.5 nm™!, whereas the 16.3 eV peak, which corresponds to transitions at
the I point, is seen to require a very fine grid spacing on the order of Ak < 0.1 nm~'. This can
be attributed to the high symmetry nature of this I" point, which makes it more sensitive to tiny
changes in the spacing of the k-point mesh. For even coarse grid spacings, the spectra for Pn
is seen to converge with no substantial changes for denser k-point meshes for any region of the
energy spectrum.

5.4.5 Implementing Low-Dimensional Response Functions
Beyond the computational point of view, another factor to consider when applying LCAO-
TDDFT-k-w to lower dimensional materials is the accuracy of the mean field response functions

as outlined in Section 2.2.5 for describing experimental spectra, where materials do not precisely
fall into the theoretical categories of 2D or 1D materials. Such issues can already be seen in the
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Figure 5.12: Convergence of the spectra of the real in-plane conductivity Re[o(q;, w)] in units
of eV with k-point spacing Ak in units of nm™' for both (a) graphene (Gr) and (b) phosphorene
(PN)

difference in approaches for energy loss spectra for 3D (Section 2.3.2) and 2D (Section 2.3.3)
materials. Essentially, this amounts to whether a monolayer in a phenomenological model should
be treated as a thin 3D layer or as a 2D boundary condition that utilizes the 2D in-plane conduc-
tivity.

Fig. 5.13 shows experimental reflection spectra for x and y polarized light AR/R for P~ laid
on a sapphire (Al,O3) substrate with insulating hexagonal boron nitride (hBN) flakes of width
15 nm laid on top [127]. These are compared to two separate phenomenological models both
using the dielectric function as in Eq. 2.59. The first treats monolayer phosphorene as part of a
3D thin layer air-hBN-P~x-Al,O; system with &;p(w) included as input. The second model uses
the 2D in-plane conductivity calculated using Eq. 2.69 in 2D as input into a system of Fresnel’s
equations that use the transfer matrix formalism [160] to account for the multilayer that light
needs to traverse and reflect off.

The two-dimensional approach gives a more “peak-like” profile compared to the 3D model
for x-polarized light, which better resembles the experimental spectra. However, the 3D model
better predicts the reflection ratio for energies beyond the 1.8 eV peak. The overall trend for the
reflection ratio is correct for y-polarized light in both models but highly underestimated relative
to experiment. While it is clear that neither model provides an accurate enough description of
the reflection of monolayer phosphorene, the 3D model requires as input the thickness of the
phosphorene layer, to which the reflection ratio is directly proportional. We use 0.5 nm for
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Figure 5.13: Real part of the conductivity o-(w) calculated in LCAO-TDDFT-k-w in units of e? /%
(blue thick lines) for 2D (red lines) and 3D (green thin lines) models alongside measurements
(symbols) [127] for light polarized in the x (solid, squares) and y (dashed, diamonds) directions.

the thickness based on the spacing between layers in multilayer phosphorene [127]. This is
in contrast to the 2D approach, which makes no empirical assumptions about the thickness of
the monolayer. This means the phenomenological model manages to describe the experimental
spectra with fewer free parameters. This suggests that the use of mean-field optical response
functions for lower-dimensional materials may be more suitable, at least for phenomenological
purposes.

5.5 3D Anatase and Rutile TiO,

Although we have mentioned that many of the memory and time savings involved in using the
LCAO-TDDFT-k-w method make it most suitable for lower-dimensional materials, especially
large macromolecular systems, it remains important to ensure that the code manages to describe
systems which are periodic in every direction. As test cases we consider two photocatalytic
materials: anatase (A-TiO,) and rutile (R-TiO,) titania. These materials are ideal candidates
considering their technological relevance in photovoltaic applications [161] and the challenges
both computationally and theoretically in modeling their optical spectra. This includes the role
that excitonic effects are expected to play and the effect of unoccupied d levels on the band gap
and absorbance [ 105, ].

Figs. 5.14 and 5.15 show the dielectric function components parallel (¢;(w)) and perpendic-
ular (£, (w)) to the tetragonal c-axis for A-TiO, and R-TiO,, respectively. Both these figures
compare experimental reflectometry [162, ] or ellipsometry [ 166] measurements with Gy Wj-
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Figure 5.14: Anatase (A-TiO,) (a,c) imaginary and (b,d) real parts of the dielectric function (a,b)
perpendicular (L) and (c,d) parallel (]|) to the tetragonal c-axis versus energy fiw in units of eV
derived from reflectometry (black square) [162], GoW,-BSE (thin solid filled [100] and dashed
[163] black lines), PW-TDDFT-k-w (dash-dotted [ 164] and solid blue lines), LCAO-TDDFT-k-w
a priori (red solid lines), and a posteriori (magenta solid lines) calculations and positive (red) and
negative (blue) isosurfaces of the electron-hole spectral density difference for the bright exciton
at fiw,, = 4.8 eV (red vertical line in (c)) with O and Ti atoms colored red and grey, respectively.

BSE, PW-TDDFT-k-w, and LCAO-TDDFT-k-w with both a priori and a posteriori scissors cal-
culations for the dielectric function. The former two TDDFT implementations are included as
excitonic and crystal local field effects are expected to be important for determining an accurate
picture for A-TiO, and R-TiO,’s optoelectronic response functions, noting that LCAO-TDDFT-
k-w does not include either of these effects in its implementation. However, we expect [ 164] that
DFT should be sufficient to describe the ground state properties of the system, including TiO,’s
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Figure 5.15: Rutile (R-TiO,) (a,c) imaginary and (b,d) real parts of the dielectric function &(w)
(a,b) perpendicular (L) and (c,d) parallel (||) to the tetragonal c-axis versus energy 7w in units of
eV from reflectometry (black squares) [165], ellipsometry (green diamonds) [166], GoW,-BSE
(thin solid filled lines) [105], PW-TDDFT-k-w (dash-dotted [164] and solid blue lines), LCAO-
TDDFT-k-w a priori (red solid lines), and a posteriori (magenta solid lines) and positive (red)
and negative (blue) isosurfaces of the electron-hole spectral density difference for fiw,, ~ 4.4 eV
(red vertical line in (c)) with O and Ti atoms colored red and grey, respectively.

atomic structure.

The PW-TDDFT-k-w and LCAO-TDDFT-k-w curves in both Fig. 5.14 and Fig. 5.15 show
a strong step-like behaviour at the band gap resulting from the strong overlap between valence
and conduction band wavefunctions for these titania crystals. This effect is visible as well at the
GoWy-BSE level, where excitonic binding is relatively weak (~ 0.1 eV) in both A-TiO, [100]

100



Table 5.4: Energy of the first bright exciton
fiw,, in eV for anatase (A-TiO,) and rutile

(R-TiOy).
hw,, (eV)
Method A-TiO, R-TiO,
Reflectometry 4318 4.09°
Ellipsometry — 4.22¢
GoWy-BSE 4.634 4.01°
GoWy-BSE 4.61° 4.12f
PW-TDDFT-k-w 4.93¢ 4.55¢
PW-TDDFT-k-w 4,90 4.56"
LCAO-TDDFT-k-w | 4.81" 3.48"

aRef. [162] PRef. [165] ¢ Ref. [1606]
dRef. [100] ©°Ref.[105] fRef. [163]
gRef. [164] P This work.

and R-TiO, [105], yielding relatively consistent peak energies with the less computationally in-
tensive LCAO-TDDFT-k-w and PW-TDDFT-k-w approaches, as shown in Table 5.4. These two
methods qualitatively match the peak and trough behaviour of the experimental data from both
ellipsometry and reflectometry, but ultimately calculations at the GoW,-BSE level are needed to
capture the more pronounced peaks visible in experimental measurements [ 162, , ]. For
both A-TiO, and R-TiO, the dielectric function calculated in the LCAO-TDDFT-k-w a posteriori
scissors approach is generally more intense than both PW-TDDFT-k-w and LCAO-TDDFT-k-w
a priori scissors methods, the former two methods yielding the best results for both A-TiO, and
R-TiO, relative to experiment and G W,-BSE.

The electron hole spectral density difference is shown in the upper inset for both Figs. 5.14
and 5.15 at the bright excitonic peak marked by red dashed lines in the plots of Im[e(qy, w)]. As
with graphene, the symmetries of the crystal manifest as an isomorphism between Ap(r, q,, W)
and Ap(r, q,, w..), the spectral density difference in two separate polarization directions. Both
figures show that the electron spectral density is localized to the d-orbitals of the titanium atoms,
all pointing in the same direction in the case of A-TiO, but pointing in separate directions de-
pending on the atom site for R-TiO,. The hole spectral density is centred on the oxygen atoms,
with a mixture of s and p-orbital character for A-TiO, and 2p-character for R-TiO,. These iso-
surface plots are consistent with Gy W, results [ 1 00] regarding the makeup of orbitals involved in
the bright exciton transition.
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Chapter 6

Understanding the Energy Loss Profile of
Monolayer Graphene

Getting a better understanding of the electrical and optical properties of graphene has been the
focus of many theoreticians and experimentalists over the last decade, and many strategies have
been put forward towards gaining further insight into this material. While most of the focus has
been on the THz regime, EELS (Section 2.3) has proven to be one effective method for targeting
samples of single- and multi-layer graphene [167, ] beyond that energy range. The tuning
of the collection aperture for scattered electrons allows for a resolution in the features of the
optical spectra, with the 7 — n* and o — o* interband transitions seen in Fig. 5.8 appearing as
massive peaks in the spectra at any resolution, while features like the universal conductivity or
Drude contributions will only be visible with finely tuned STEM devices that utilize aberration
correctors and monochromators to probe graphene [ 169, , , 65]. Given the interest in the
material, the ways it can be tuned, the different energy regimes under consideration, and effects
of experimental setup, it is important to consider from a phenomenological point of view the
interplay between these parameters and their effect on the experimental EELS spectra.

Section 3.1.1 in conjunction with Appendix B has presented phenomenological models at
different levels of approximation for both neutral and doped graphene, while ab initio TDDFT
packages like LCAO-TDDFT-k-w and PW-TDDFT-k-w are able to give computationally accurate
models for our 3D dielectric function from which we can extract the in-plane conductivity via
Eq. 2.69. Section 2.3.3 shows that the conductivity of the monolayer can be used directly as
input to determine the EELS spectra, with both non-relativistic and relativistic models available.
Changes in the doping of graphene, the size of the collection aperture, the incoming velocity of
incident electrons, and broadening effects are all controllable parameters within our model, and
we present below a thorough analysis of the influence these have on the EELS spectra and as a
result what the spectra can tell us about systems that incorporate graphene monolayers.

To this effect, it helps to first investigate neutral graphene over the broad energy range ac-
cessible with EELS, checking the performance of the phenomenological model against ab initio
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calculations and comparing the theoretical energy loss output to experimental spectra subject to
the above mentioned parameter changes. Afterwards, the inclusion of doping into the graphene
monolayer is explored; as the features of a doped monolayer like Pauli blocking and intraband
transitions will only be apparent in the THz and infrared energy ranges, these are the regions
where the changes in experimental setup parameters are explored most thoroughly.

6.1 Neutral Single Layer Graphene

Section 3.1.1 explored phenomenological conductivity models for both neutral and doped graphene,
the former in Eq. 3.9 accounting for the universal conductivity of graphene from the Dirac cone
approximation and two spectral peaks with hydrodynamic features. The figures and discussion
that follow explore how this model compares against results computed within TDDFT, the fea-
tures in the output energy loss spectra, and how changing values like the collection angle of the
EELS setup yield significant changes in the location and intensity of energy loss spectral peaks.

Fig. 6.1(a,b) show the real and imaginary parts of the optical conductivity versus the energy
loss fiw, obtained via PW-TDDFT-k-w from the QuanTuM ESPRESsO simulation package with the
PBE xc functional, a 600 eV energy cutoff, and a 601 x 601 x 1 Monkhorst-Pack k-point mesh,
and using the eHD model presented in Eq. 3.9, which accounts for the two interband transition
peaks as well as the universal conductivity of graphene at energy values below a certain cutoff.
The phenomenological parameters in this equation are chosen to yield the best overall fit with
the ab initio spectra, giving n) ~ 115nm™ and n? ~ 38nm™2, w,, = 14.15 eV, w, = 4.19
eV, y» = 2.18 eV, y, = 2.04 eV, and w. = 3.54 eV (corresponding to f =~ 0.785). With
these parameters chosen, we see very good agreement between the computational and theoretical
approaches for the conductivity, with both giving Re o(w — 0) = e?/4#, negligible conductivity
in the region above fiw ~ 30 eV, and quantitatively similar peak heights and widths for the
real conductivity spectra at two major interband transitions. The imaginary conductivity shows
substantial jumps from negative to positive values at both peaks before decreasing towards zero
beyond 7w ~ 20 eV.

In addition, Fig. 6.1(c) plots N,.(w), derived in Eq. 3.8, versus the energy loss, showing in
both approaches a linear increase in the number of electrons participating in the conductivity,
as expected from the Dirac cone approximation, followed by substantial jumps up to N, = 1
beyond the 7 — 7" interband transition and a jump up to approximately N, = 4 beyond the peak
associated with the o — 0" transition, as expected from the number of valence electrons in each
of these types of orbitals. Working without any broadening parameters in the model would yield
step-like curves in Fig. 6.1(c).

Fig. 6.2 presents energy loss spectra from three different experimental setups, with incident
electron energies normal to the free-standing graphene monolayer of 40, 60, and 100 keV and
aperture sizes of g, = 0.1A™',4.3A7", and 3.2A", respectively. These experimental spectra
can be predicted through the use of the non-relativistic probability density from Eq. 2.99 using
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Figure 6.1: (a) Real and (b) imaginary parts of the optical conductivity in atomic units and (c)
the number of valence electrons N,(w) participating in excitations up to w versus the energy loss
hw in units of eV, calculated within PW-TDDFT-k-w (blue) and using the eHD model (red).

oyp(w) calculated using either PW-TDDFT-k-w or with the eHD model as shown in Fig. 6.1,
noting that the output of these models change based on the parameters v, and ¢., which are
different in each experimental setup. The use of a purely optical conductivity has previously
been justified in Section 2.3.3.

Fig. 6.2(a) shows that the m — 7" peak is shifted to the left by 1 eV in the experimental
spectra relative to the eHD and ab initio models while the location for the o- — o™ peak matches
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closely. The ratio between the two peaks using PW-TDDFT-k-w is much larger than the ratio
found from the eHD model and in the experimental spectra, the latter two in close agreement.
We note that experimental data is not shown in Fig. 6.2(a) for energies below 1.5 eV due to

T T T T T T T T~ T T~ T T~ T T T T T
(a) — Experiment (Wachsmuth er al.)

— ab initio ]
1.5 — eHD

(b) — Experiment (Nelson et al.)
— ab initio

1.5H — eHD 7]

O—+—t+—+—F—+———————t————Tt——rr
(c) —— Experiment (Eberlein ez al.)
—— ab initio
1.5 — eHD .

0 "5 10 15 20 25 30 35 40 45 50

Energy 7w (eV)
Figure 6.2: Experimental EEL spectra in the ¢ — 0 limit for (a) a 40 keV incident electron
with g, = 0.1A"! [12], (b) a 60 keV incident electron with g. = 43A! [62], and (c) a 100 keV
incident electron with g, = 3.2A°1 [60] alongside probability densities P(w) in units of 1/keV
versus the energy loss 7w using the planar conductivity o,p(w) calculated using PW-TDDFT-k-w
(blue) and with the eHD model (red) as input.
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the removal of the large zero-loss peak (see Section 2.3) for low energies and low momentum
transfers. The subtraction of the ZLP may justify some of the disagreement between the eHD
model and experimental spectra for energies in the 5 < fiw < 12 eV range, although this region
is also better predicted by the probability density using the LCAO-TDDFT-k-w approach. The
quick drop-off in the theoretical spectra versus the longer tail seen in experiment may be related
to the small collection aperture or to the excitation of out-of-plane modes not considered in the
planar 2D conductivity model.

Fig. 6.2(b) shows an experimental setup with much larger collection aperture and similar elec-
tron velocity, with the 7—n* and o — o™ peaks now shifted to the right by 1 eV in the experimental
spectra relative to the eHD and ab initio models. These small differences can be attributed to the
exclusion of excitonic effects and screening in our application of the PW-TDDFT-k-w method,
although using higher-order xc functionals (see Section 2.1.2) provides one way to include these
effects. The behaviour of the peak ratio follows Fig. 6.2(a), although the agreement between the
eHD model and experimental spectra for energies beyond ziw ~ 20 eV is far better. The sharp-
ness of the peaks using the ab initio conductivity may be the result of performing calculations
at very low temperature or not including sufficient broadening in the density-density response
function elements, as seen in Eq. 2.42. Notable in the experimental spectra in this figure is the
cubic interpolation of the subtracted ZLP tail, ensuring that the energy loss goes to zero at zero
frequency, although this subtraction as previously mentioned has important consequences for the
intensities and therefore the ratio between the two interband transition peaks.

The patterns seen in Fig. 6.2(c) closely follow those of Fig. 6.2(b), although the ZLP sub-
traction is extended to all energies below 3.5 eV, substantially diminishing the size of the 7 — z*
peak, emphasizing further the importance of properly removing from the spectra the effect of
these non-interacting electrons. As in Fig. 6.2(a) the experimental spectra for energies in the
5 < hiw < 12 eV range match with ab initio results better than the eHD model but the ratio from
PW-TDDFT-k-w is again too high relative to experiment. Once ZLP subtraction is accounted
for, it is clear that the eHD model for neutral graphene provides an excellent description of the
intensities and peaks of EELS spectra over a wide range of energy loss values.

Fig. 6.3 shows both how the change in the aperture collection and the use of either the non-
relativistic energy loss in Eq. 2.99 or the relativistic energy loss in Eq. 2.105 affect the shape and
intensity of the probability density of energy loss P(w) using the eHD model o(w) as input. No
matter the value of the collection wavenumber, the relativistic energy loss consistently exceeds
that given by the non-relativistic model by around 10% for all energies, consistent with previous
evaluations of the relativistic model [2 1], along with a slight red-shift in the peak positions. A
gradual rightward shift in the peak energies accompanies an increase in g., with a nearly 1 eV
shift between spectra collected for g. between 0.006 A~ and 0.096 A~!. Increased q. also tends
to gives broader peaks, resulting in relatively longer tails. Most notably, the ratio of the heights
of the 1 — n* and o — o™ peaks shrinks with increasing aperture size as transfers resulting from
higher wavenumbers begin to have an influence on the intensity distribution, an effect which is
also seen experimentally [ 172, 75]. The spectra shown in Fig. 6.2 all pertain to experiments with
very large collection apertures, the lowest on the order of the largest wavenumber cutoff used
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Figure 6.3: Probability density of energy loss P(w) from the eHD model using relativistic (solid
lines) and non-relativistic energy loss (dashed lines)expressions for g, ranging from 0.006 A~! to
0.096 A~!, where g, is the maximum in-plane scattering momentum.

in Fig. 6.3, so the three effects mentioned here are not expected to have a significant influence
on the probability densities plotted in that figure and would instead be most relevant for higher
resolution EELS experimental setups, as shown in Fig. 6.4.

Fig. 6.4(a,b) shows experimental EELS data [75] for monolayer graphene with an incident
electron energy of 120 keV while using an EEL setup with a k-resolution of ~ 0.001 A~'. As
the spectra are claimed to have been integrated over the 0 — 0.012 A~! energy range, we can
contrast the spectra with the probability energy loss density as in Fig. 6.2, this time considering
both eHD and ab initio models using both the non-relativistic and relativistic energy loss im-
plementations. This data also has the advantage of not using the ZLP subtraction method, so
our phenomenological models can directly compare against raw data, especially important since
the ZLP shape changes substantially with the relatively low energy resolution afforded by the
experiment, a direct consequence of the high wavenumber resolution [107]. As the experimental
data is given in arbitrary units, it is resized along the vertical direction to provide the best fit
with our models. Plots are given for aperture sizes of both g. = 0.012 A" and g, = 0.024A"!
as the aperture collection angle for this particular EELS experimental setup may be larger than
quoted, depending on the positioning of the probe and the alignment of the graphene BZ relative
to the aperture. Given the energy resolution, Figure 6.4(c,d) shows the same curves as in Fig-
ure 6.4(a,b) but with an applied Gaussian smoothing with a standard deviation of 7iAw = 0.6 eV
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Figure 6.4: Experimental EEL spectra [75] plotted alongside the probability density P(w) calcu-
lated using the non-relativistic energy loss model with eHD (cyan, dot-dashed) and PW-TDDFT-
k-w (purple, dot-dashed) in-plane conductivities as well as the relativistic energy loss model with
eHD (orange, dot-dashed) and PW-TDDFT-k-w (red, dashed) in-plane conductivities for collec-
tion apertures of either (a,c) g. = 0.012 A-1or (b,d) g. = 0.024A1, plotted with either (a,b) no
Gaussian smoothing or (c,d) a Gaussian smoothing with standard deviation equal to the EELS
energy resolution [75] of AAw = 0.6 eV.

equal to the experimental energy broadening.

While the overall shape of the theoretical and experimental curves follow the same general
pattern, with peaks near 4 and 15 eV and tail-like behaviour for Ziw > 20, the experimental
data differs in three important ways. The o — o™ peak has an experimentally much longer tail
that would correspond to interband transitions unaccounted for by PW-TDDFT-k-w. Peak values
are also shifted rightward by approximately 1 eV relative to theory, and the ratio between the
m—n* and o — 0" peaks is significantly lower than what is expected theoretically from such
a small aperture, no matter the type of energy loss equation used or the input for the in-plane
conductivity into those models. The experimental data fits best with the model curves shown in
Fig. 6.4(d), where the maximum wavenumber collected by the aperture is double what is quoted
and the Gaussian smoothing is applied to imitate the effects of the low energy resolution of the
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experimental setup, again seeing that the four models provide roughly equivalent approximations
to the spectra. This matches with expectations based on Fig. 6.3, where higher values of ¢,
directly effect the long-tail behaviour of the observed EEL spectra.

6.2 Doped Single Layer Graphene

While in Section 6.1 we discussed modeling of four independent sets of experimental data for
EELS at high energies, in this section we focus on making theoretical predictions for the low-
energy region of those spectra for doped graphene, which should be accessible with tools like
the modern monochromated Transmission Electron Microscope.

6.2.1 Modeling the Optical Conductivity

Calculations for doped graphene at ep = 0.1 eV and &g = 0.5 eV are done using both LCAO-
TDDFT-k-w with a converged DZP basis set and PW-TDDFT-k-w with a converged energy cutoff
of E.,, = 340 eV, the doping accomplished by adding excess charges to the unit cells of mono-
layer graphene. A dense Monkhorst-Pack 301 X 301 X 1 k-point mesh is used, and the electronic
temperature is set to kg7 =~ 1 meV to ensure integer occupations for all electronic levels.

As we are considering a doped system, the interband conductivity from Eq. 2.70 is calcu-
lated for both the LCAO and PW TDDFT implementations, while the intraband conductivity in
Eq. 2.71 is calculated solely using LCAO-TDDFT-k-w, noting that for graphene the intraband
conductivity for relatively low doping is expected to follow the equation

. = — 1
O-ZD, 1ntra(w) 7T((1)+ l,yD) (6 )

where D is defined as the Drude weight [173], which should theoretically tend to e’sg/A> within
the RPA approximation. As the matrix elements in Eq. 2.71 are already calculated within the
LCAO-TDDFT-k-w, what remains is the computation of af”“. If the code is run in the zero
temperature limit, this quantity approaches —d(eg — £,x), Wthh is far too sensitive to the size and
resolution of the employed k-grid. Instead, a fictitious electronic temperature of 1 meV =~ 11.6
K is used to smear out the Fermi surface to increase the number of k-points that contribute
to the summation in Eq. 2.71. After this temperature is introduced, approximately 10000 k-
points are chosen randomly with the condition that |g,x — eg| < 0.1 eV, which for graphene
at relatively low doping corresponds to an annulus around the K high-symmetry point, and a
fixed density calculation is rerun in the LCAO-TDDFT-k-w regime to give the dipole elements
for the randomized k-mesh. A similar technique has previously been shown to give intraband
conductivities for metals in agreement with theoretical expectations [ 174, ]. Ultimately the
value computed acts as a verification that the Drude weight D in Eq. 6.1 gives an intraband
conductivity in accordance with ab initio results. Calculations of the intraband conductivity
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yield Drude weights D in accordance with values of &g = 0.51 eV and g = 0.104 eV for
electron concentrations of 1.84 x 10'* cm=2 and 7.34 x 10'! cm™2 in each graphene unit cell,
electron densities theoretically corresponding to e = 0.5 eV and g = 0.1 eV, respectively.
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Figure 6.5: (a) Real and (b) imaginary parts of the optical in-plane conductivity o(w) in units
of €2 /h versus energy fiw in units of eV for monolayer doped graphene with a Fermi energy of
er = 0.5 eV calculated using LCAO-TDDFT-k-w (black) and PW-TDDFT-k-w (purple) ab initio
methods and the Drude only (red), Drude+step (green), and Drude+eHD (blue) conductivity
models, with the components of the planar conductivity in the Aiw < 2 eV energy range shown as
nsets.

Fig. 6.5 shows the real and imaginary parts of the conductivities obtained from LCAO-
TDDFT-k-w and PW-TDDFT-k-w calculations and for three different empirical models of the
optical conductivity, “Drude only” defined in Eq. 3.5 and the “Drude+step” and “Drude+eHD”
models defined in Section 3.1.1, each valid approximations to the optical conductivity at dif-
ferent levels of application. Both the LCAO-TDDFT-k-w and PW-TDDFT-k-w results for the
conductivity, previously shown in Fig. 5.6 and calculated within cpaw, yield spectra in quantita-
tive agreement with those from QuanTuM EsPrRESsO used in Fig. 6.1 [58], although in order to give
a Drude+eHD model which matches with the LCAO-TDDFT-k-w method we use to calculate
the intraband conductivity, the parameters in the model in Eq. 3.9 are adjusted to n%. ~ 118 nm2,
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n? ~35nm2, w,, = 13.95 eV, Wy, = 4.12 eV, y, = 2.18 eV, v, = 1.80 eV. w, = 3.54 €V, corre-
sponding to f ~ 0.785, is again chosen to be the cut-off frequency since neither the total number
of participating valence electrons nor the relative weights of interband transitions should change
substantially with doping according to Eq. 3.8. A value of yp = 0.004 eV in Eq. 2.71 is chosen
as the broadening value for this intraband contribution, which is on the order of the Fermi surface
temperature smearing used in the LCAO-TDDFT-k-w intraband conductivity calculation. Lastly,
the smoothing parameter for the Pauli blocking in Eq. 3.12 is chosen to be yp = n = 0.05 eV,
equivalent to the value 7;,,, used in Eq. 2.70.

Overall, the Drude+eHD model shows good agreement between both TDDFT calculations
for the optical conductivity. Unique to doped graphene, the slightly broadened step located at
2ep = 1 eV is properly captured by the Drude+eHD and Drude+step and TDDFT models. These
four models also find close agreement in the IR region of frequencies for the real part of the
conductivity, accessible with more modern STEM devices, an area hollowed out by the Pauli
blocking step at 2er with the conductivity only spiking at very low energies thanks to the intra-
band conductivity given in Eq. 6.1. The location of the step and the intensity of the intraband
conductivity are both controlled by the level of doping in the graphene monolayer. The dif-
ference between the two TDDFT and three empirical approaches is more apparent in the inset
to the imaginary part of the conductivity, where the Drude+step provides worse agreement with
TDDFT results than the Drude+eHD. This can be explained through the KK relations in Eq. 2.76
which evaluate the real conductivity over the full energy range to determine the imaginary con-
ductivity component, even for energies within the Pauli blocking gap.

6.2.2 Modeling Energy Loss Densities

Fig. 6.6 shows how the three empirical models along with the LCAO-TDDFT-k-w method from
Fig. 6.5 yield different energy loss densities for the Ohmic part, given by Eq. 2.106, and the ra-
diative part, given by Eq. 2.108. As mentioned earlier, the three empirical models are each valid
approximations to the optical graphene conductivity in different energy regimes, which can be di-
rectly visualized in Fig. 6.6. The Drude only model is applicable for ziw < /2, the Drude+step
model providing good agreement for energy losses below 2 eV where the 7—n* transition starts to
appear, and finally the Drude+eHD model giving a phenomenological treatment for all relevant
excitations in the ziw < 20 eV range. The choice to use the relativistic energy loss equations for
doped graphene is motivated by the expected role that the radiative losses will play for very low
energies when intraband transitions are active, more so than the simple intensity shift seen for
neutral graphene in Fig. 6.3. The energy loss densities are also plotted on the log-log scale to bet-
ter visualize the region of energy losses below ~2 eV where the comparison between Ohmic and
radiative losses are most prominent, and to visualize the relative magnitude of the main spectral
features. All energy loss densities are evaluated assuming a maximal collection aperture g, — oo
with an incident electron energy of Ey = 100 keV for either g = 0.5 eV or 0.1 eV.

Fig. 6.6 shows that for energy losses beyond 2 eV there is no perceptible change between
doping levels of 0.1 and 0.5 eV. Since this is the range traditionally blotted out by traditional
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Figure 6.6: Ohmic (solid lines) and radiative (dashed lines) probability energy loss densities in
units of 1/keV versus energy #fiw in units of eV using conductivity inputs from LCAO-TDDFT-
k-w (black), Drude only (red), Drude+step (green), Drude+eHD (blue), and the universal con-
ductivity (magenta) for an incident electron energy of Ey = 100 keV and e equal to (a) 0.5 eV
and (b) 0.1 eV. The non-relativistic Ohmic energy loss density using the LCAO-TDDFT-k-w
conductivity as input (orange) is also shown.

valence-EELS with large ZLP, as seen in Fig. 6.2, any changes due to doping are not expected
to be visible to methods that cannot probe below this range. For both doping scenarios a dip ap-
pears between &g and 2&g, matching with the optical gap due to Pauli blocking seen in Fig. 6.5.
Below &g/2 the Ohmic and radiative energy loss densities broadly match the dominant intraband
transitions, a feature expected based on the Dirac plasmon polariton being located in this range
[21]. In addition to the three empirical models, Fig. 6.6 also shows the energy loss spectra as-
suming that only the universal conductivity o-(w) = e*/4# leads to electron energy losses at all
frequencies, extending the Dirac cone approximation to the full energy range under considera-
tion. These lines reveal the shape of the energy loss spectra for energies below 2 eV for undoped
graphene, confirming the P(w) o« 1/(Aw) behaviour of the spectra observed experimentally for
low energy losses [12, 62]. In addition, the location of the crossing between this universal con-
ductivity energy loss density and the one from the Drude only model is seen to directly indicate
the location of the Pauli blocking dip for both doping cases, the intersection occurring when the
energy loss is close to eg. The vertical separation of the lines in this universal conductivity case
1s about four orders of magnitude, providing an estimate of the degree to which radiative losses
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Figure 6.7: Ohmic (top curves) and radiative (bottom curves) energy loss densities in units of
1/keV versus energy fiw in units of eV with the ab initio LCAO-TDDFT-k-w (dashed lines) and
the Drude+eHD model (solid lines) conductivities used as input for incident electron energies of
Ey = 50 (blue), 100 (black), and 200 (red) keV at Fermi energies of (a) 0.5 eV and (b) 0.1 eV,
assuming g. — oo.

are suppressed relative to the Ohmic loss for undoped graphene [21, 71, 22]. Lastly, the promi-
nence of the radiative loss is especially visible for the higher doping case and for extremely low
frequencies, with the radiative energy loss within one order of magnitude of the Ohmic.

Fig. 6.6 also shows the Ohmic energy loss obtained from Eq. 2.99 in the non-relativistic
regime for both doping cases with the LCAO-TDDFT-k-w in-plane conductivity, noting that the
only differences come about for energy losses < /20, which is expected given the importance
of relativistic effects in the THz to MIR frequency range [21]. Two arrows in Fig. 6.6 are located
at energy losses of 9 meV and 250 meV, corresponding to FWHM values of the zero-loss peak
[169] for monochromated and non-monochromated electron beams, respectively, as described
in Section 2.3. These arrows highlight the edges of the intervals accessible to each of these
two types of EELS setup, showing the energy range that may be accessible to more advanced
STEM devices. The location of the monochromated arrow for eg = 0.5 eV covers an area where
the relativistic and non-relativistic regimes diverge, showing that high resolution EELS setups
should in theory be able to probe the region where relativistic formulations become important.

To see the effects that changes in the incident electron energy E, have on the Ohmic and
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radiative energy losses, Fig. 6.7 shows that for both doping cases the effect of increasing electron
velocity is to increase the intensity of the radiative spectra while decreasing that of the Ohmic
spectra, with the exception being for er = 0.5 eV below the monochromated arrow, although
even for e = 0.1 eV the intensity increase is far less prominent. This effect relates to the role
that the damping parameter yp in Eq. 6.1 plays in describing the relativistic effects of intraband
electron transitions [21]. As this last effect is slightly beyond the range of a monochromated
EELS beam there is no certainty that it can be observed experimentally.

To explore in further detail how the choice of yp in Eq. 6.1 influences the relative ratios of
the Ohmic and radiative energy loss contributions and the difference between non-relativistic
and relativistic models for the energy loss, Fig. 6.8(a,b) shows the total, Ohmic, radiative, and
non-relativistic energy loss densities normalized by P, = 4/ (ref), against the normalized energy
loss w = w/w, with fiw,. = aer, where « is the fine structure constant. This normalization factor
is chosen to be on the order of 1 THz for typical graphene doping densities. The Drude only
model is used for the input conductivity, as we showed in Fig. 6.6 that for frequencies below
er/2, corresponding to w =~ 60, the intraband transitions described by this model were by far the
dominant effect. Fig. 6.8(a,b) shows that the Ohmic and radiative energy loss densities actually
cross at low enough frequencies when using such low values of yp, the radiative component
becoming the dominant factor in describing the relativistic energy loss, an effect not seen in
Fig. 6.6 and Fig. 6.7 where yp = 0.004 eV for both £z = 0.5 eV and & = 0.1 eV scenarios.
These figures also show how at these very low energy losses the non-relativistic model fails to
properly match with the energy loss density given in the relativistic model, an effect seen to a
lesser extent in Fig. 6.6.

The energy loss where the Ohmic and radiative energy loss densities cross, which we refer to
as ', represents an important transition point that shows when the non-relativistic model is no
longer applicable. Fig. 6.8(c) shows how this crossing point changes relative to the normalized
incoming velocity of the electron S = v/c for different normalized intraband dampingsy = yp/w.
equal to 0, 0.01, 0.1, and 0.5. For high damping, the crossing only occurs for very fast electrons
and at very low frequencies, but as the damping parameter falls the velocity threshold to induce
the crossing drops as well. The highest possible energy loss where the crossing can occur for low
energy incident electrons happens near w" = 0.3 for the case of zero damping, where the strong
dependence of the crossing on the value S is no longer seen.

6.2.3 Effects of Small Collection Angle

As a parallel to Fig. 6.3, it is worthwhile to explore the effect that smaller collection apertures,
described according to the maximum collection momentum g, through Eq. 2.82, have on the
peak intensities and locations of the monolayer energy loss spectra. Reducing the size of the
aperture has been explored previously [176] in the context of eliminating the effects that hy-
bridization of plasmon and optical modes along with relativistic effects have on the EEL spectra
of monochromated electron beams. For graphene a similar argument can be made that a smaller
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Figure 6.8: Normalized energy loss densities P = P/P, with P. = 4/ (r&r) versus normalized
energy loss w = w/w. with hiw, = aeg for normal incident electron energy E, = 100 keV
showing the external (total) (green dashed), Ohmic (blue solid), radiative (blue dashed), and
non-relativistic (red dash-dotted) energy loss densities for damping constants yp equal to (a)
0.1 w. and (b) 0 using the Drude only model for the input conductivity, and (c) the normalized
electron speed B = v/c versus the frequency w” where P, (@) = P, g(w”) fory = yp/w, equal
to 0 (black), 0.01 (blue), 0.1 (red) and 0.5 (purple).

collection aperture will reduce the overlap that the EEL spectra may have with the zero-loss
peak, while hybridization with the Dirac plasmon [177, ] with its o 4/g dispersion may also
become important for relatively large momentum transfers in the material. Previous investi-
gations [98, , 63] of the role that the band gap plays in the profile of the EEL spectra for
semiconductors have parallels with the optical gap resulting from Pauli blocking in graphene,
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further motivating the exploration of the effects that different aperture sizes have.

Fig.6.9 shows the Ohmic energy loss density using both the Drude+eHD and the LCAO-
TDDFT-k-w conductivities as input, for Fermi levels of eg = 0.5 and 0.1 eV and an incident
electron energy of Ey = 100 keV with g, values ranging across a broad spectrum, noting as in
Fig. 6.3 the necessity of using the proper limits of integration in Eq. 2.105 rather than the large
collection angle limit. As in neutral graphene, the effects of the reduced collection angle appear
most strongly as a reduction in the intensity of the interband peaks and the surrounding spectra,
although the shape remains intact. Interestingly at smaller g, values the onset of the effect of
the maximum collection momentum reduction occurs at an energy loss value #iw. located in the
optical gap caused by Pauli blocking for doped graphene, gradually moving into the region of
intraband electron transitions for decreasing maximal momentum transfer. The occurrence of this
sudden drop is well within the range that a monochromated electron beam can access, suggesting
that high energy resolution techniques can probe this region to assess the accuracy of this model
towards describing graphene’s optical response.

Given the wide difference between the spectra collected with different ¢, there exists the

Monochromated = Unmonochromated Monochromated = Unmonochromated
4
10 : T IIIIIII| T IIIIIII| T IIIIIII| T IIIIIII| T 25 T IIIIIII| T IIIIIII| T IIIIIII| T IIIIIII| I§
10°F (a) e = 0.5eV L (b) e = 0.1eV
10%F + =

— —
o

o O_A
e

—

o,
N
A

Drude+eHD, q, = 0.001A™

Drude+eHD, q = 0.01A"

—_
o
I

Drude+eHD, q, = 0.1A"

—_
o, }

w
LU AL B

Drude+eHD, q, = 1A

4 :_ ——  Drude+eHD, q_= 10A"
I C

E | ——- abinitio, q =0.001A"

Energy Loss Density (1/keV)

- abinitio, g, = 0.01A"

—_
=
[}
T
I
I

a ab initio, g, = 0.1A™
10 E ab initio, g, = 1A™
10'7 | ——- abinio, q, = 10A"
10'8: 11 IIIIII| 11 IIIIII| 11 IIIIII| 11 IIIIII| \:: 11 IIIIII| 11 IIIIII| 11 IIIIII| 11 IIIIII|
10°  10° 10" 10’ 10' 10°  10® 10 10° 10’

Energy 7o (eV) Energy 7w (eV)

Figure 6.9: Ohmic energy loss density in units of 1/keV using the Drude+eHD (solid lines) or
the LCAO-TDDFT-k-w (dashed lines) conductivities as input versus energy fiw in units of eV
with an incident electron energy of Ey = 100 keV for maximum in-plane collected momenta g,
equal to 0.001 (black), 0.01 (red), 0.1 (green), 1 (cyan), and 10 (blue) A-! at Fermi levels ER
equal to (a) 0.5 and (b) 0.1 eV.
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possibility of recovering the optical conductivity of graphene given enough experimental EELS
data collected at different collection angles [98, , ], noting that the formulae given in
Eq. 2.100 for the non-relativistic energy loss are analytic and only require the incident electron
energy, the maximum collection angle, the energy loss frequency, and the real and imaginary
components of the optical conductivity at a given energy as input, noting that in our discussion
for Fig. 6.6 and Fig. 6.8 we have emphasized that the non-relativistic limit is sufficient to describe
energy losses for frequencies above the intraband dominated regime. It is therefore theoretically
possible to numerically determine the full complex optical conductivity using optical spectra
collected using two sufficiently different aperture sizes, noting in Fig.6.9 that spectra collected
for g, < 0.1A"! begin to show the most substantial intensity change.

One caveat of this approach is that below a certain frequency #iw.(q.;), where g.; is the
smaller of the two maximal collection momenta, the two energy loss spectra converge to the
same value, limiting the ability of our extraction procedure to deduce the complex conductivity
below this value. However, if it is assumed that the Drude only model describes this region
sufficiently well, the only parameters needed to calculate the conductivity in this region are those
in Eq. 3.5, but since &f is determined from the location of the dip due to Pauli blocking, this
means that yp, even if it contains some energy dependence, can be directly inferred from any
spectral calculation done with high enough energy resolution. Once o, i1s determined this
way, the extraction procedure can be done as before to determine o,,,, including all relevant
peaks and Pauli blocking. We can directly estimate the g. necessary to ensure that frequencies
below the value fiw.(q.;) are well described by the intraband model by inputting the Drude+step
conductivity into the second line of Eq. 2.110 and assuming that the real component of the
conductivity is vanishingly small. This factor will cause a Delta-function spike when

- 7 o) (ﬂ)2 _1=o0. 6.2)
C w

Given that fiw, represents where the intraband transition becomes dominant, using Im o(w) from
the Drude only model in Eq. 3.5 in this dispersive relation yields a Dirac plasmon-like dispersion
hw, = +/2¢*q.er [21]. This kind of square root dependence can be seen directly in Fig. 6.9(a),
where reducing ¢g. from 0.01A7! to O.OOIA‘I, a factor of 10, moves the location of Aw, from
0.33 eV to 0.11 eV, a factor of approximately V10. The applicability of this dispersion relation
no longer works for higher wavenumber as the conductivity is dominated by the Pauli blocking
optical gap, to the point where 7w, saturates near fiw. ~ 5eg/3 in the limit of a broad collection
angle g. — oo [71].
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Chapter 7

Conclusions and Future Work

7.1 Summary

This research focused on density functional theory and its applications from three separate but
connected perspectives. Recognizing the opportunity that novel deep learning tools have towards
gaining a better understanding of the exchange-correlation energy in the Kohn-Sham equations,
we explored the application of feed-forward networks to predicting certain universal function-
als and their accuracy for real-world material structures, finally positing how extending these
methods can provide either more accurate or less computationally expensive DFT calculations.
We next explored a formulation of TDDFT which leverages an LCAO basis set representation
of the Kohn-Sham equations in wavenumber and frequency space, providing accurate results for
lower-dimensional materials and high computational savings for large macromolecular systems,
thereby expanding the range of materials that can be assessed using TDDFT. We finally built up
a phenomenological model for the energy loss of graphene, analyzing the effect that theoreti-
cal and experimental setup parameters had on the expected energy loss spectra, thereby linking
quantities that can be computed using TDDFT to actual experimentally measureable values.

In Chapter 4, noise of different amplitudes is added to the PBE functional to assess the re-
quired accuracy of a neural network which trains the LDA and PBE xc functionals. The per-
formance of the NNLDA where the xc energy density and xc potential are trained separately is
contrasted with the case of an xc potential derived from a functional derivative passed through a
trained network. The NNPBE is trained likewise and runs into similar problems as the NNLDA,
but across a separate range of input parameters. The so-called “rough model” and “difficulty
zone” are factored into a retrained NNPBE approach with training guided towards areas of poor
performance, and changes in the width and depth on the network performance are evaluated. The
range of training data for real-world systems along with reference energies for calculations done
in gpaw is determined, and the network performance is evaluated over a wide range of molecular
and crystal systems. Overall the NNLDA is shown to be able to reach a high degree of accuracy
for nearly all systems while certain facets of the DFT code need to be explored before NNPBE
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can be deemed successful.

A series of benchmarking calculations and visualization tools are presented in Chapter 5 for
our LCAO-TDDFT-k-w code. The pros and cons of using the LCAO-TDDFT-k-w methodol-
ogy are explored in depth and the kinds of materials used to benchmark the code are chosen
accordingly. The effect of the derivative discontinuity correction, the convergence with respect
to the choice of LCAO basis set, and the use of low-dimensional response functions are all ex-
plored in depth. Fullerene and chlorophyll a and b are shown to give optical spectra in line
with approaches like GoW,-BSE and experimental spectra, while studying SWCNTs reveal that
LCAO-TDDFT-k-w gives a similar performance to PW-TDDFT-k-w and G, W,-BSE at a fraction
of the computational cost. Graphene and phosphorene monolayers are analyzed the same way
along with additional visualization tools for the distribution of points in reciprocal space and
the spatial distribution of electrons and hole excitations, yielding insight into the spatial nature
of graphene’s conductivity peaks and the driving mechanism behind phosphorene’s anisotropic
response functions. Analysis of graphene’s optical spectra is left to the next chapter but the phos-
phorene spectra are tested against experimental reflection data to verify the use of mean-field
approximations to quantities like the polarizability. Anatase and rutile titanium dioxide, two sys-
tems well-known to be tricky from a DFT perspective, are analyzed to show the applicability of
the LCAO-TDDFT-k-w code to systems of any dimension.

To relate quantities like the dielectric function computed via TDDFT to experimental mea-
sureables like electron energy loss spectra, Chapter 6 highlights the applicability of a phe-
nomenological hydrodynamic model for the optical conductivity of monolayer graphene, fac-
toring in the universal conductivity, Pauli blocking, and intraband transitions in a systematic
way. This model is fit empirically to results calculated using TDDFT and is shown to reproduce
experimental optical spectra over a wide energy range. Experimental parameters like the size
of the aperture, the energy of incoming electrons, and the tuning of the monolayer are shown
to all play a role influencing the shape of the spectra, especially in a region of energies only re-
cently available for probing with refined spectroscopy techniques. Theoretical assumptions about
the importance of relativistic effects, empirically determined damping rates, and the validity of
simpler models for lower energy regimes are tested against results from conductivities computed
empirically within our model and using the LCAO-TDDFT-k-w approach from Chapter 5. Lastly,
a procedure based on high-resolution EELS measurements taken at different collection angles is
developed that allows for a reconstruction of the optical conductivity of graphene over a broad
range of frequencies.

7.2 Future Work

The results of Chapter 4 reveal that our neural network trained PBE xc functional requires certain
refinements before it can be considered a valid approximation to the original PBE. Future work in
this respect includes limiting the training range to only electron densities and gradients relevant
to the materials under consideration, exploring the importance of better converged reference
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energies on the perceived quality of the network approximation, and analyzing factors that lead
single-point and self-consistent calculations to diverge from each other for materials containing
elements of high atomic number. The possibility of shifting the framework so that the xc potential
is the only quantity trained may also provide better converged results [85, 34]. Afterwards, future
work would move on towards predicting the total energies of systems utilizing meta-GGA or
hybrid functionals with networks that take in the electron density as input non-locally, thereby
leveraging the full predictive capabilities of deep learning methods.

While many of the results presented in Chapter 5 constitute benchmarking of the LCAO-
TDDFT-k-w implementation against other well-established TDDFT approaches using materials
already thoroughly researched in the literature, determining the optical properties of chlorophyll
monomers both alone and within the larger protein matrix remains an important problem, and fu-
ture work can utilize the computational efficiency of the LCAO-TDDFT-k-w to model the optical
spectra of the full light harvesting complex to learn the full mechanism whereby light is absorbed
and the energy transported to living organisms. Regarding improving the code itself, future work
may explore how refinements on the LCAO basis sets, using either diffuse Gaussians[52] or ad-
justing the role of polarization in describing unoccupied orbitals[17], affects the convergence
of our implementation. Future work may also explore how the spatially resolved electron and
hole densities derived from the LCAO-TDDFT-k-w code can be used to describe results from
atomically resolved EELS for low-dimensional nanostructures[ 1 79].

Much of the formalism developed and used in Chapter 6 can be readily applied to other
atomically thin materials. Future work on an empirical model for doped phosphorene for the
0 < fiw < 3 eV energy range that can then by plugged into our 2D energy loss formalism
and analyzed much in the same way as the graphene monolayer. Recent experimental EELS
results [129] suggest that the out-of-plane response function, which is almost entirely quashed
in graphene due to local field effects[8], may prove relevant for monolayer phosphorene, and
future work can formulate the way in which the response normal to the surface affects the energy
loss equations [71]. An investigation on whether the model developed for the energy loss works
for alternative EELS setups, low-energy electron microscopy for example, also warrants further
investigation.
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Appendix A

Electromagnetic Theory and Material
Response Functions

When dealing with materials with a high density of free charge carriers, resulting in an almost
continuous spectrum of electron energy levels [ 180], we are justified in using the classical elec-
tromagnetic framework. Maxwell’s equations in Gaussian units are below, with boldface repre-
senting vector quantities in 3D space and time-dependence.

V- D = 47Tpext (Al)
16B

VXE = ——— A2

x c Ot (A2)

V-B=0 (A.3)
1 D

VxH= (47er N ‘9_) (A4)
c ot

where, for isotropic materials, D = €E and B = uH, & and u are the relative permittivities that
describe the response of a given material to electric and magnetic fields respectively, p.,, is the
external charge density, J.,; is the external current density, D is the electric displacement vector,
H is the magnetizing field, B is the magnetic field, and E is the electric field. Throughout this
work we assume non-magnetic (u = 1) materials. External contributions (e.g. from incident
light) refer to excitations that cause a change in the system, while anything labelled as induced
respond to these stimuli.

In addition to Maxwell’s equations, these quantities are related by constitutive relations, re-
lating the different functions that describe the movement of free and bound charge carriers and
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external excitations
Jina(r, 1) = f dr'dio(r — v, 1~ {)E, 1) (A.5)
1
D(r, 1) = o fdr’dt’a(r -1, t-1)E, 1), (A.6)
T

where the dielectric function &(r, 7) relates the electric field induced by free charges to the total
electric field, and o(r, ) describes the linear conductivity, relating the current density to the
electric field. These response functions are presumed valid for linear media with little temporal
or spatial dispersion [99]. Applying the Fourier transform f dtdre="@T=¢1(...) gives the fields in
terms of their plane-wave components

Jind(q9 (,()) = 0'((1, w)E(q’ w) (A7)

1
D(q. w) = ;—-&(q. w)E(q, w). (A.8)

These electric and magnetic fields can be reformulated in terms of a vector potential A and
scalar potential ¢

E:—V¢—1%, B=VxA, (A.9)
c Ot
where

o= [ £ UL (A.10)

Ir—1|

1 /
A=+ (30D p (A.11)

c r —r’|

The electric field can be reformulated in Fourier space as
E = —iq¢ + iwA. (A.12)

The vector potential A is gauge invariant, so we are able to choose V- A = 0 within what is called
the Coulomb gauge, and in this gauge the vector potential disappears from the divergence of the
electric field. It is important to note that any equations derived this way will only be valid within
this gauge, or if we invoke an electrostatic approximation where dA /dt = 0 always.

A third response function, the polarizability y, relates the internal charge density to the total
electric potential, and in wavenumber-frequency space goes as

Pina = X(q, w)¢ (A.13)

with (q, w) included in all other variables implicitly. This is also often called the density-density
response function.
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The response functions o, y, € are all intertwined, but as the dimensionality of the material in
question changes, so does the dimensionality of o and y, while ¢ relates different electric fields
and therefore remains dimensionless. To derive a general relation between o(q, w) and y(q, w),
we start with the continuity equation in Fourier space

WPina = q* Jina = 0q - E, (A.14)

which combined with Egs. A.12,A.13 yields

o(q, w) = ;—‘Zx(q, ), (A.15)

where g = |q|, noting that these wavenumbers have units in accordance with the dimensionality
of the problem. The above relation between the conductivity o~ and the polarizability y is valid
in both 2D and 3D. Another relation between the polarizability y and the dielectric function &
valid in any dimension goes as

&(q, w) = 1 = v(g)x(q, w) (A.16)

where v(q) i1s the unscreened Coulomb potential, which changes to reflect the restricted motion
of electrons in lower-dimensional systems

dr 2
== P@=T (A17)

This relation can be determined from separating out the potential due to external and internal
contributions

¢ext _ ¢€)CI

¢ = ¢ext + ¢ind = ¢ext + V(Q)X(q, (L))¢ - ¢ = - . (Alg)
1 —v(gx(q,w)  €e(q,w)
Rearranging the above equation yields the useful relation
Pina = (1 — &(q, )¢ = v(@)x(q, W)¢ = V(§)Pina- (A.19)

The relation in the Coulomb gauge between & and o in three dimensions therefore goes as

47 47 ( g* 4riosp(q, w)
(@) = 1 = —xp(@w) = 1 - = (.q—)0'31)(q, w) = 1+ 208 (A.20)
q g \iw w

while the two dimensional Coulomb potential goes as

2l
em(qw) =1+ Tqaw(q, ) (A21)
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Appendix B

Hydrodynamic Approach for the
Conductivity of Graphene

To derive an empirical model for the response of the charge carriers in graphene requires an
understanding of how small perturbations, on(r, ¢) for the electron density n(r, ) and dJ(r, t)
for the current density J(r, ), respond to external sources. We first assume ¢ < kp = +/mny,
the characteristic Fermi wavenumber of graphene, where n, corresponds to the average areal
electron density of graphene, which increases with doping. This limit ensures that the response
of electrons is macroscopic in the model.

In the elementary Euler-flow hydrodynamic equation for ordinary neutral liquids, oscillations
in the particle density are caused by a pressure gradient, leading to a restoring force

oJ(r, 1)
o

= —VP(r,1), (B.1)

where P(r,?) is the pressure and m is the mass of a particle in the fluid. In addition to the
macroscopic response condition, this equation will work best with slow oscillations so that the
system is always in a state of near equilibrium. If this pressure is induced by the density, as is
the case for ordinary gases and fluids, a linear approximation for the pressure gradient goes as

VP(r,t) = Z—PV(Sn(r, 7). (B.2)
n

Taking the divergence of the equation and invoking the continuity equation V- J = —dn/dt gives

&on(r,t) 1 0P
% - E%Vzén(r, n=0, (B.3)

1op
m on

vealing firsthand that similar models based on the hydrodynamic approach will yield similar

which a transformation to Fourier space shows that w = g is a resonance condition, re-
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resonances, even in the optical ¢ — 0 limit.

To utilize the hydrodynamic framework for charged liquids, the main driving force will be the
long-wave electromagnetic repulsion rather than a weakly varying pressure gradient. Assuming
in equilibrium all non-perturbed charges have equal and opposing forces, this repulsion will
come in the form of an integration over all the charges under the Coulomb potential influence,
giving a combined electric force

06),(r,t 2
mv& = —nSVr f dr’ ¢ on,(r', 1) (B.4)
ot r—1r’|

where m, is the effective mass and n? is the equilibrium charge density of charge carrier type v.
The influence of screening can be included in this equation by adjusting to the screened Coulomb
potential. To include an electric external force into this equation, a term that depends on V2¢,,,
according to Eq. A.12 can be included in the combined electric force. Switching to Fourier space
and again using the continuity equation shown in Eq. A.14 results in

nq* 2me? nq’
)6nv(q, w=-"Ty  B5
q m,

0,2
(aﬂ - ”;f vZD(q)) on,(q,w) = (w2 -

v v

where v,p(q) is the 2D Coulomb potential. As with the original Euler flow equation, a resonant
frequency of w = /27nl%2q/(m,) appears in the case of no external electric field, corresponding
to square root dependence on wavenumber in the plasmon frequency, as expected for charged
fluids in 2D. For low-energy excitations in graphene, the effective electron/hole mass is given by
the so-called plasmon mass, m, = hkg/vg, where vi =~ ¢/300 is the Fermi speed from the Dirac
cone approximation of the r electron bands near the K points of the Brillouin zone.

To compute the high-energy conductivity response for graphene, Eq. B.5 can be adjusted
by treating the electrons within a harmonic approximation for fluids, introducing a restoring
frequency w,, that can be included as a force acting on the charge density perturbation. Eq. B.5
then becomes

) mg _ 2 g’
w — V2D(Q) 6nv(q9 w) - wyrénv(q’ (U) - _¢ext9 (B6)
m,, m,
which using Eq. A.19 can be rearranged to yield
nq’/m,
on,(q, w) = ¢ = x(q, w)p, (B.7)

a)%r - w(w+ U/v)

where the dampening factor v, is introduced to account for dissipative effects for fluid v. In total,
in constructing an empirical model for graphene, the factors n, y,, m,, and w,, are free parame-
ters, along with the freedom to choose the number of different charge carriers, although all these
choices should ideally be physically motivated. Considering that y,(q, w) is a linear response
function, multiple types of charge carriers can be included by simply adding the individual po-
larizabilities of each charge carrier.
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Appendix C

Derivation of Intraband Conductivity for
ab initio Calculations

While alternative expressions exist for the optical intraband conductivity, it is not immediately
clear that they are equivalent to the expression derived in Eq. 2.71. Petersen [97] states that 07,4
can be written as

1 =2ie?
w + iy 4mh?

O-intra(w) =

D, f FE(K)(VKE, - §)’dk. (C.1)
. JBZ

Despoja [145] also derives an expression for the intraband conductivity,

1 2w
oS kZ F/(E,(K))

x 2
Jaa(G =0, (C.2)

Tintra ((1)) =
w

where the current vertices are given by

Fromea(© = o [ dre 0 [y @) (Bmica®) — (0,5 0)) i)
Q

2im
and the ¢ = X direction has already been chosen. Simplifying by letting m = n, G = 0, and q = 0,
and generalizing d, — V gives
) he . .
Juk(G =0) = i dr [ D)V (r) = Vi, (0] - (C.3)
Q

Integration by parts (since the wavefunctions disappear in the r — oo limit) leaves us with

f h
(G = 0) = ¢ f drw (OV(®) = 20, V1), 4
im Jo im
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The relation between this expression and Vi E, (k) can be found starting with Schrodinger’s equa-
tion,

hz
—Z—V%wac, r) = (E(k) - V) y(k, ), (C.5)
m

working in one dimension for simplicity. Using the fact that the solution is given by a Bloch
wave, Y = e*"u(k, r) and [V,, V] = 0, we apply V; to the left side of the above equation,

2
—f—me(z‘rl//(k, r) + %" Viu(k, r)) =
(E(k) — V) (irg(k, r) + e*"Viu(k, r)) + (ViE(k)) gk, 7). (C.6)

Since V2(ry) = rV2y + 2V,4, we can collect terms to obtain
2o, 72 ,
—5=(rViy(k,r) — —V. = (E(k) = V) (iry(k, r))+
2m m
2
(E(k) —~ (—2h—me + V)) e*Vulk, r) + (ViE(K)) . (C.7)

The terms containing ir disappear due to being equivalent up to a factor to Eq. C.5. Multiplying
by ¢ on the left and integrating over all space will make the second term on the right disappear
(since Y(k, r) is an eigenstate), so we are left with

.hz
—IZ f dr (Y*V) = ViE(k) f dry”(k, r)y(k, r) = Vi E(k), (C.8)
equivalently written as

ih?
ViE(k) = =——WIVIY). (C.9)

Rewriting Eq.C.2 using Eq.C.4 and re-introducing the g-vector direction dependence gives

T = —— 25 5,000 |- 50| (.10)
mntra - w+i'y Q k’n n l-mq n n .
1 e o, ) ,
e WA OIR S 1)

144



Rewriting Eq. C.1 using Eq. C.9 and recalling that fBZ ~ % 2k 1n 2D yields

1 —2ie4n® (-in?\' <« , , 2
T @) = 4##3( - ) kZJl:f(En(k)) 13+ Wl Vi) (C.12)
1 ikl o, ) )
Ry %:f(En(k)nq-wnwwnn : (C.13)

showing that both expressions for the intraband conductivity in the optical limit are equivalent to
the expression shown in Eq. 2.71.

145



Appendix D

Performance of Neural Networks on
Material Datasets
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Name NF 0.005 | NF 0.001 | NF 0.0005 Name NF 0.005 | NF 0.001 | NF 0.0005
LiH 41.2 7.9 39 CO 153.2 29.4 14.6
BeH 32.7 7.1 5.6 HCO 155.3 30.1 15.7
CN 89.4 14.4 6.2 H,CO 149.0 29.3 15.0

Be 32.7 6.8 5.0 CH;0H 145.3 29.1 15.1
CH; 253 7.3 5.7 N, 120.1 19.1 9.0
CH,4 27.2 6.8 4.5 N,Hy 77.2 14.3 9.1
NH, 44.6 7.1 4.7 H,0, 235.5 46.1 23.1
NH; 35.9 6.7 4.8 F, 313.6 61.5 30.3
H,O 119.2 23.6 12.2 CO, 274.9 53.2 26.8

HF 159.2 31.3 15.7 Na, 415.9 82.5 41.0
HCN 84.0 14.2 6.5 P, 143.5 27.2 12.9

Na 210.5 41.6 20.6 Cl, 200.3 34.5 14.3
SiH; 184.2 36.8 18.2 NaCl 323.8 63.1 30.9
SiH4 122.5 24.0 11.7 SiO0 285.6 55.9 27.3
PH, 82.6 15.8 7.7 CS 64.5 10.3 4.0
PH; 73.1 14.4 7.2 CIF 223.1 41.9 20.0
SH, 58.0 11.3 5.5 SiHe 263.8 52 25.6
HCl 118.6 20.6 8.9 CH;Cl 134.8 24.1 10.9
Li, 95.3 36.3 31 CH;SH 66.4 11.5 5.1
LiF 200.5 394 19.5 HOCl 199.1 35.7 16.8

CH, 42.0 8.7 5.5 SO, 307.6 59.7 29.0
C,Hy 44.9 10.9 7.4 H 0.5 0.1 0.1
C,He 51.8 11.3 6.6 Li 41.2 9.2 5.3

Table D.1: The standard error of the final total energy (shown in meV) using the noisy PBE

approach shown for 46 chemical compounds in the geaw G2-1 molecular database[

], assuming

a noise factor (NF) of the form NF, ; = Af sin(|f + 1/f] + ¢) with magnitude A equal to either
0.005, 0.001, or 0.0005, and f corresponding to either E,.[n, Vn] or v,.[n, Vn], is added to both
functions f. ¢ is an angle randomly chosen at each run of the geaw script, and the standard error
is computed over three runs with different ¢. Numbers in dark blue surpass the 50meV total
energy tolerance, while numbers in white succeed in being within 10meV of the original PBE

result.
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Name NF 0.005 | NF 0.001 | NF 0.0005 Name NF 0.005 | NF 0.001 | NF 0.0005
LiH 106.9 227 12.2 CcO 668.7 139.3 73.2
BeH 155.2 35.9 21.0 HCO 688.7 145.0 77.1
CN 587.1 123.0 64.9 H,CO 707.7 147.0 76.9

Be 136.1 31.5 18.4 CH;0H 745.1 153.7 79.8
CH; 3124 66.3 35.5 N, 663.8 141.8 76.5
CH,4 332.0 68.7 35.8 N,Hy 740.3 155.9 82.9
NH, 366.5 78.3 42.3 H,0, 859.3 178.6 93.6
NH; 388.3 82.2 43.9 F, 997.1 204.9 105.9
H,O 450 94.2 49.8 CO, 1087.8 227.5 120

HF 521.3 108.1 56.4 Na, 1379.6 276.7 138.9
HCN 606.1 126.1 66.1 P, 2227.9 448.5 226

Na 689.5 138.3 69.5 Cl, 2715.1 549.4 278.6
SiH; 1052.6 2122 107.2 NaCl 2057.7 419 214.2
SiH4 1072.0 215.6 108.5 SiO0 1413.1 286.6 145.8
PH, 1148.1 231.7 117.2 CS 1487.4 300.8 152.5
PH; 1167.6 235.3 118.7 CIF 1858.9 378.5 193.5
SH, 1265.8 253.5 127.0 SiHe 2109.7 423.6 212.8
HCl 1377.1 280 142.9 CH;Cl 1672.4 339.4 172.8

Li, 147.4 7.7 9.8 CH;SH 1564.3 315.7 159.7
LiF 597.2 123.2 64.0 HOCl 1790.2 366.9 189.0

CH, 552.4 114.3 59.6 SO, 2054.8 415.2 210.3
C,Hy 591.6 122.6 64.0 H 12.1 24 1.2
C,He 627.9 128.4 66.0 Li 83.6 14.8 6.2

Table D.2: The standard error of the final total energy (shown in meV) using the noisy PBE

approach shown for 46 chemical compounds in the geaw G2-1 molecular database[

], assuming

a noise factor (NF) of the form NF, = Af sin2(| f + 1/f] + ¢) with magnitude A equal to either
0.005, 0.001, or 0.0005, and f corresponding to either E,.[n, Vr] or v,.[n, Vn], is added to both
functions f. ¢ is an angle randomly chosen at each run of the Geaw script, and the standard error
is computed over three runs with different ¢. Numbers in dark blue surpass the 50meV total
energy tolerance, while numbers in white succeed in being within 10meV of the original PBE

result.
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Name LDA —SP | LDA -SC | LDA —t | PBE —SP | PBE — SC | PBE -t
H4 2.0 2.0 1.2 -0.7 —-0.7 0.9
He2 -0.1 -0.1 1.0 0.2 0.2 0.9
Li3 -4.9 -4.9 1.0 20.2 20.2 1.5
Be2 -9.7 -9.7 1.1 2.7 2.7 1.0
B12 22.8 22.8 1.2 160 160 1.4
C4 -20.3 -20.3 1.0 60.6 60.6 0.9
N8 31.3 31.3 1.0 72 149.6 1.5
F8 0.8 0.8 1.1 -0.7 -0.7 1.1
Ne4 0.0 -0.1 1.3 -0.4 -0.4 0.9
Na3 -59 -59 1.2 22.5 22.5 1.5
Mg2 14.2 14.2 1.1 0.0 0.0 1.5
Al4 19.7 19.8 1.3 57.2 57.2 1.1
Si8 -21.3 -21.3 1.1 164.4 164.4 1.0
P8 0.9 0.9 1.4 168.2 168.2 1.5
S1 0.0 0.0 0.8 17.3 17.3 0.1
CI8 0.2 0.2 1.4 104.2 104.2 1.0
Ar4 -0.7 -0.6 1.4 -0.9 -1.0 1.2
K2 -2.6 -2.6 1.2 -0.4 -0.4 1.1
Sc2 23.3 23.3 1.2 23.4 23.4 0.9
Ti2 10.8 10.8 0.8 -8.0 -8.0 0.9
V2 -279.6 -279.6 1.1 -78.8 —-78.8 1.0
Cu4 3.9 3.8 1.2 -6.4 —-6.4 1.2
Zn2 6.0 6 1.3 22.8 22.8 1.7
Ga8 10.7 10.7 1.1 104.7 104.8 1.5
Ge8 -13 -13 1.3 108.9 109.2 1.5
As2 0.7 0.7 1.1 -1.1 -1.0 1.3
Se3 -0.4 -0.4 1.4 =7.7 -7.3 1.6
Br8 2.0 2.0 1.1 -23.8 -224 1.7
Kr4 0.0 -0.2 1.3 -14 -0.4 0.9
Rb2 -1.9 -1.8 1.9 1.6 2.0 1.1

Table D.3: The total energy error calculated using the signed version of Eq. 4.1 for 30 of the
59 systems in the Delta Codes DFT database[40),
of atoms of that element in the unit cell (Name), the error for the NNLDA single-point (LDA-
SP) and self-consistent (LDA-SC) approaches along with the computation time ratio (LDA-t)
between the NNLDA and LDA methods, along with the error for the NNPBE single-point (PBE-
SP) and self-consistent (PBE-SC) approaches along with the computation time ratio (PBE-t)

], showing the element name and number

between the NNPBE and PBE methods. The other 29 systems are shown in Table D.4.
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Name LDA —SP | LDA -SC | LDA —t | PBE - SP | PBE — SC | PBE -t
Y2 20.6 20.6 1.1 36.1 36.8 1.5
Zr2 18.0 18.0 1.1 37.2 38.0 1.7
Nb2 -462.1 -462 1.2 85.9 86.7 1.5

Mo?2 -17.2 -17.2 1.1 56.9 57.7 1.0
Ru2 -18.4 -18.5 1.1 -104.3 -103.7 1.5
Rh4 34.1 34.1 1.2 -281.7 —281.6 1.3
Pd4 -8.5 -8.5 1.2 -275.8 -275.8 1.2
Agd 16.9 16.9 1.2 -34.1 -34.0 1.5
Cd2 10.7 10.8 1.2 86.6 86.2 1.4
In2 12.5 12.4 1.1 45.3 44.6 1.1
Sn8 2.0 1.9 1.1 253.5 248.1 1.9
Sb2 3.0 3.0 0.8 6.9 5.0 1.3
Te3 2.9 2.9 1.9 =222 -26.0 1.6

I8 0.2 0.5 1.4 -24.2 -39.9 1.7
Xed 0.2 -0.2 2.1 8.1 -1.0 1.3
Cs2 -1.2 -1.0 1.6 9.3 1.5 1.6
Hf2 12.4 12.4 1.1 100.8 -19.6 1.6
Ta2 -12.5 -12.3 0.7 123.6 -254 1.4
W2 -23.6 -23.7 2.1 125.2 -56.5 1
Re2 -21.1 -21.1 1.3 342 -31.8 1.6
Os2 8.8 8.8 1.3 67.9 -13.8 1.6
Ir4 -33.0 -33.2 1.0 -59.0 -258.8 1.8
Pt4 -25.7 -25.9 1.3 310.2 44.3 1.5
Au4d 1.8 1.8 1.6 142.4 -225.9 1.3
Hg2 3.8 4.1 L.5 470.3 =55.7 1.9
TI2 59 6.0 1.1 537.4 -22.9 1.6
Pb4 20.7 21 1.2 1501.7 -50.4 1.9
Bi2 3.0 3.0 0.8 978.9 -23.8 1.0
Rn4 0.6 0.4 1.4 4015.7 0.0 1.2

Table D.4: The total energy error calculated using the signed version of Eq. 4.1 for 29 of the
59 systems in the Delta Codes DFT database[40, 4 1], showing the element name and number
of atoms of that element in the unit cell (Name), the error for the NNLDA single-point (LDA-
SP) and self-consistent (LDA-SC) approaches along with the computation time ratio (LDA-t)
between the NNLDA and LDA methods, along with the error for the NNPBE single-point (PBE-
SP) and self-consistent (PBE-SC) approaches along with the computation time ratio (PBE-t)
between the NNPBE and PBE methods. The other 30 systems are shown in Table D.3.
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Appendix E

Slices of Phosphorene Exciton Density

As mentioned in Section 5.4.3, there are a variety of ways to present the electron and hole spectral
densities as defined in Eqgs. 2.62, 2.63, as these functions yield the oscillator strength intensity
for all points in 3D space and at a given excitation energy. We have already explored two ways
of presenting this data, both using isosurfaces that give a 3D picture of the electron and hole
densities at a single energy (see Fig. 5.1) and by summing over planes normal to an axis of choice
in the material, giving contour maps along one spatial direction and for a range of excitation
energies. We present below for the case of phosphorene an alternate method of presenting this
data, where summation is only done along one direction and snapshots at different voxels are
used to give a more comprehensive view of the 2D spatial profile of excitations. This plotting
method is not limited to two-dimensional materials, and can in fact be used for any system that
utilizes our LCAO-TDDFT-k-w code [45].

Shown in the figures below are the electron densities projected onto either the x-axis (Figs. E.1,
E.2) or the y-axis (Figs. E.3, E.4) of the phosphorene unit cell for light polarized along either the
x-axis (Figs. E.1, E.3) or the y-axis (Figs. E.2, E.4), expecting based on the results of Fig. 5.11
that the hole densities will look relatively similar. The voxels mentioned in these plots run from
one edge of an axis to another, so these plots can be imagined to be lined up panel to panel to
give a quasi-2D contour map along the energy axis where only one axis is projected, in this case
the z-axis. More voxels are shown for projections along the y-axis due to the asymmetry of the
phosphorene crystal. While the projection contour shown in Fig. 5.11 in Section 5.4.3 shows
comprehensively that the electron density is concentrated at certain locations in the xz-plane or
the yz-plane, the quasi-2D contours shown in Figs. E.1-E.4 show exactly where in the xy-plane
these localized pockets of carrier density occur. These figures also reveal the symmetries present
in the unit cell, where drawing these contours along the x or —x directions or along the y or —y
directions yield mirror-reversed contour maps. Ultimately this provides a third way to represent
the spatial profile of excitations within LCAO-TDDFT-k-w.
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Figure E.1: Phosphorene (PN) LCAO-TDDFT-k-w calculated electron (e™) densities p, projected
onto the x axis for 12 voxels chosen along the y-axis versus energy %w in eV for light polarized
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Figure E.2: Phosphorene (PN) LCAO-TDDFT-k-w calculated electron (e~) densities p, projected
onto the x axis for 12 voxels chosen along the y-axis versus energy 7w in eV for light polarized
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Figure E.3: Phosphorene (Pn) LCAO-TDDFT-k-w calculated electron (e™) densities p, projected
onto the y axis for 16 voxels chosen along the x-axis versus energy 7iw in eV for light polarized
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Figure E.4: Phosphorene (PN) LCAO-TDDFT-k-w calculated electron (e~) densities p, projected
onto the y axis for 16 voxels chosen along the x-axis versus energy 7w in eV for light polarized
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