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Abstract

Over the last few decades, renewable energy sources have been attracting great attention

due to the increased cost, limited reserves, and the adverse environmental impact of fossil

fuels. Among them, wind energy is one of the fastest-growing renewable energy sources

worldwide. Wind farms (WFs) comprise a considerable share of the installed capacity of

renewable sources in the power grids. With the large integration of WFs in the power grid,

the fault ride-through (FRT) requirement has become an essential part of the modern grid

codes to increase grid reliability and stability. WFs with FRT capability are required to

remain connected to the power grid during fault conditions for a specific period. This

will result in WFs contributing to the fault current and changing the system fault current

characteristics. Such changes in the fault current characteristics significantly affect the

operation of the protection systems.

This dissertation will mainly focus on doubly fed induction generator (DFIG)-based

WFs and will study their negative impacts on the operation of conventional protection

relays, particularly the ones that protect the transmission lines connected to DFIG-based

WFs. Considering different negative impacts of DFIG-based WFs on protection systems

due to their large slip range, the short-circuit behaviour of a DFIG is evaluated in two

different aspects: 1) close-to-zero slip operation and 2) large slip operation. During close-to-

zero slip operation of a DFIG-based WF, the short-circuit behaviour of the DFIG is similar

to that of a fixed-speed squirrel cage induction generator (SCIG); therefore, fixed-speed

SCIG-based WFs are also evaluated in this dissertation. In this situation, a conventional

distance relay located at the fixed-speed SCIG or DFIG terminal fails to operate correctly

and loses its coordination with the downstream relays for a balanced fault in its backup zone

due to the negligible magnitude of the fundamental component of the fault current after

several hundred milliseconds. Regarding DFIG-based WFs with FRT capability during

large slip operation, the fault current frequency fed by DFIG-based WFs deviates from the

nominal frequency during a fault, which affects the operation of conventional protection

relays with distance or frequency elements.

In this dissertation, two new relaying schemes based on distance elements for the pro-

tection of transmission lines connected to the fixed-speed SCIG- and DFIG-based WFs are
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presented to overcome the aforementioned challenges. To overcome the protection problem

associated with the operation of distance relays at the terminal of fixed-speed SCIG- or

DFIG-based WFs in case of a balanced fault in the backup zone, a new relaying algorithm

requiring only local measurements called modified distance element type I is presented. To

detect a fault, the modified distance element type I uses the impedance measured at the

relay location together with the fault current waveform injected by the SCIG or DFIG.

The reliable performance of the modified distance element type I under different types of

faults is verified on a 4-bus test system. The obtained results demonstrate the robustness

of the modified distance element type I against fault impedances and system disturbances

such as power swing and overload conditions.

To overcome the protection challenges associated with the operation of distance relays

at the terminal of DFIG-based WFs during large slip operation of DFIGs, a new pilot

protection scheme with minimum bandwidth requirements called modified distance element

type II is also presented. The developed algorithm relies on the frequency tracking of the

fault current injected by the DFIG-based WF. By implementing the modified distance

element type II in a 4-bus test system, it is verified that the new relaying algorithm

provides reliable protection over the entire length of the transmission line connected to

the DFIG-based WF. Moreover, the modified distance element type II accompanied by the

modified distance element type I provides proper backup protection for the adjacent lines.
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Chapter 1

Introduction

1.1 Introduction

In the past few decades, many problems associated with the energy crisis, adverse envi-

ronmental impact of fossil fuels, significant growth of electric demands, limited reserve,

and financial restrictions of wholesale markets have arisen worldwide. Under these circum-

stances, renewable energy sources have been attracting great attention as a technological

alternative with the ability to give an effective solution to such problems [1]-[3]. Technolog-

ical advancements, cost reduction, and governmental incentives have made some renewable

energy sources more competitive in the market. Among them, wind energy is one of the

fastest-growing renewable energy sources worldwide [1].

The use of wind energy for generating electricity can be traced back to the nineteenth

century, when wind energy generators with the size of a few kilowatts were used in the

electricity systems [1], [4]. Over time, the size of a wind turbine has significantly increased

from a few kilowatts to several megawatts [1], [4]. Moreover, wind turbines can be installed

at onshore and offshore locations, where more wind energy can be absorbed by the blades,

resulting in higher efficiency [1], [4].

Wind turbines (WTs) are widely installed in today’s power systems. Different designs

and combinations of generator and power converter lead to a variety of WT configura-
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tions and can be divided into three main categories [1]: 1) fixed-speed systems without

power converter interface, exclusively using squirrel cage induction generators (SCIGs), 2)

variable-speed systems with reduced-capacity converters, using doubly-fed induction gen-

erators (DFIGs) and wound rotor induction generators (WRIGs), and 3) variable-speed

systems with full-capacity converters, using SCIGs, wound rotor synchronous generators

(WRSGs), and permanent magnet synchronous generators (PMSGs). The majority of

wind farms (WFs) utilize induction generator (IG)-based WTs among which DFIG-based

WTs comprise a considerable share of the installed capacity of wind energy sources world-

wide due to their many advantages such as variable speed operation, generator-side active

power control ability, and grid-side reactive power control ability [1].

To facilitate a higher penetration of wind power in the power system, various challenges

associated with protection, operation, scheduling, and control of WFs should be addressed.

One of the critical challenges associated with the high integration of WFs is the impact

of WFs on the operation of protection relays in the power system, which may lead to the

protection system failure [5]. As some grid codes require WFs to remain connected to the

power grid during fault conditions for a specific period [2], WFs contribute to the fault

current and change the system fault current characteristics. Such changes in the fault

current characteristics considerably affect the operation of the protection system. This

dissertation will mostly focus on DFIG-based WFs and will study their negative impacts

on the operation of protection relays.

1.2 DFIG-Based WTs

Figure 1.1 depicts the schematic diagram of a DFIG-based WT. The DFIG-based WT is

mechanically coupled to the blades through a gearbox and electrically connected to the

ac grid via the stator windings. The rotor of the DFIG-based WT is also connected to

the ac grid through a back-to-back converter with bidirectional power transfer capability.

Depending on the available wind speed, the DFIG-based WT can operate either in sub-

synchronous or super-synchronous mode. The slip range of the DFIG-based WT is around

±30% of the synchronous speed [6].

2



Gear Box

DFIG

CB
AC

DC

DC

AC

AC 

Grid

GSC 

Controller

RSC 

Controller

Filter

Crowbar

RSC GSC

Back to back converter

DC link Chopper

Pitch 

Control

Figure 1.1: Schematic diagram of a DFIG-based WT.

The back-to-back converter consists of a rotor-side converter (RSC), a grid-side con-

verter (GSC), and a dc link capacitor located between the two converters. The stator of

the DFIG always injects active power to the ac grid, whereas the active power flows into

or out of the DFIG rotor depending on the operation mode of the DFIG. During super-

synchronous operation mode, the active power is injected into the ac grid through the

back-to-back converter, while the active power flows from the ac grid to the rotor during

the sub-synchronous operation mode [7].

Different control strategies are used for controlling DFIG-based WTs under normal

conditions and grid disturbances [8], [9]. In modern control systems, vector control in

the d-q synchronous reference frame is widely used to control a DFIG-based WT [10].

The control strategy used in this work is based on the stator flux-oriented reference frame

(SFRF). In this control strategy, the RSC and GSC controllers are designed in the SFRF,

which rotates at the synchronous speed (ωs).
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Figure 1.2: Block diagram of the RSC controller.

• RSC

In a DFIG, the RSC controller controls the active and reactive powers of the stator through

the d-axis and q-axis components of rotor current, respectively. Figure 1.2 illustrates the

block diagram of the RSC controller, where Idr, Iqr, Vdr, and Vqr are the dq-axis current

and voltage components. In this diagram, the ” ∗ ” is used to denote reference values. The

reference for the active power is obtained based on the maximum power point tracking

(MPPT) method. One of the MPPT methods is based on the power versus wind speed

curve provided by the wind turbine manufacturer. Such a curve defines the maximum

power that the turbine can generate at different wind speeds. In real-time, the wind speed

is measured and the active power reference (P ∗s ) is generated according to the MPPT

profile. The RSC controller controls the reactive power exchange (Qs) between the stator

and the ac grid by selecting the desired reference reactive power (Q∗s). Further information

regarding the mathematical equations, variables, and parameters can be found in [1].

• GSC

The main purpose of the GSC controller is to control the voltage of the dc link, Vdc,

regardless of the direction of the rotor power. For this purpose, the d-axis component of
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Figure 1.3: Block diagram of the GSC controller.

the grid current is used to control the dc link voltage, whereas the q-axis component of

the grid current is used to regulate the reactive power exchange between the GSC and the

ac grid. Figure 1.3 illustrates the block diagram of the GSC controller, where Idg, Iqg, Vdg,

and Vqg are the dq-axis current and voltage components on the ac side of the GSC. Vdc and

Vgcom are dc link and cross-coupling voltages. During the normal operation of the DFIG,

it operates at unity power factor; therefore, the reference reactive power Q∗s is set to zero

[1]. The equations and more details of the variables can be found in [1].

• Crowbar circuit

The crowbar circuit is activated when an overcurrent condition occurs on the rotor circuit

or an overvoltage condition occurs on the dc link. During the super-synchronous operation

of the DFIG, the rotor provides power to the ac grid. If a short-circuit fault occurs

on the ac grid close to the generator, the voltage at the generator’s terminal collapses

and consequently, power cannot be transferred to the ac grid. Therefore, the power is

transferred to the dc link, resulting in an overvoltage condition on the dc link.

During the sub-synchronous operation of the generator, power is provided to the rotor

circuit from the ac grid. This power is later provided from the rotor to the stator circuit.

If a short-circuit fault occurs on the ac grid close to the generator’s terminal, the voltage
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Figure 1.4: Crowbar circuit.

of the stator collapses and the power cannot be delivered to the stator circuit. This will

result in stator and rotor currents increasing to large magnitudes. These currents will be

only limited by leakage inductances of stator and rotor circuits.

By energizing the crowbar circuit, the RSC is disconnected from the rotor and the

crowbar resistor is added in series with the rotor winding. The series-connected resistor

will provide a path for the large current to flow and for the rotor power to dissipate. When

the crowbar circuit is activated, the DFIG behaves as a squirrel cage induction generator

(SCIG). The crowbar circuit implemented in the DFIG-based WT of this thesis is shown

in Figure 1.4. The block diagram of the crowbar circuit control is provided in [11].

The value of the crowbar resistance is typically between 1 to 10 times the rotor resistance

[12]. When the value of the crowbar resistor is high, the rotor transient current will be

dampened immediately. On the other hand, a high crowbar resistor value may lead to

overvoltages on the converter. Therefore, a trade-off between these two factors should be

considered to select a proper crowbar resistor [12].

• DC link chopper

The dc link chopper consists of an insulated-gate bipolar transistor (IGBT)-controlled

resistor that is implemented to avoid an overvoltage condition on the dc link capacitor.

The schematic of the dc link chopper is illustrated in Figure 1.5. The block diagram of the
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Figure 1.5: dc link chopper.

chopper control is provided in [11].

• Low pass filter

In general, power converters generate switching harmonics. To solve this problem, four

types of harmonic filters are usually used in the converters, i.e., L, LC, RCL, and LCL [1].

The L and LC filters are normally used for the RSC to reduce the harmonic distortion of

the rotor current and voltage, resulting in reducing the harmonic losses in the magnetic

core and winding of the rotor. The RCL and LCL filters are usually implemented for the

GSC to minimize the impact of the harmonics generated by the back-to-back converter on

the ac grid [1]. An RCL filter is implemented for the DFIG-based WT of this thesis and

its structure is represented in Figure 1.6. The calculation details of the parameters of a

filter are provided in [11].

1.2.1 DFIG-Based WT Model

Figure 1.7 illustrates the control system of the DFIG-based WT that is used in this disser-

tation. The RSC controller controls the active power of the stator (Ps) through the d-axis

component of the rotor current (Idr). The MPPT block is used to generate the reference

for the stator active power (P ∗s ) based on the wind speed. The MPPT profile is provided by
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Figure 1.6: RLC filter.

the manufacturer [1]. The RSC controller also controls the reactive power (Qs) exchange

between the ac grid and the stator through q-axis component of the rotor current (Iqr) [1].

The abc/dq and dq/abc transformation blocks are implemented to transform the variables

in the abc stationary reference frame to the dq synchronous reference frame, and vice versa.

The GSC controller controls the voltage of the dc link (Vdc) regardless of the direction

of the rotor power. The d-axis component of the current is used to control the voltage of

the dc link, and the q-axis component of the current is used to control the reactive power

exchange between the ac grid and the GSC [1]. Further information about the controllers

along with their variables are provided in [1] and [11].

1.3 Description of the Problems

High penetration of wind power in existing systems requires that a WF remains connected

to the power system in case of system disturbances such as short-circuit faults to increase

the system reliability and stability [13]. Various grid codes have been developed for the

operation of power systems with high penetration of WFs. These grid codes, in particular
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Figure 1.7: DFIG-based WT and its control system [1].

in high voltage systems, require WFs to remain connected to the grid during severe voltage

dips for a specified duration. Figure 1.8 illustrates a typical fault ride-through (FRT) curve

implemented in the North American grid code. Each point on the curve represents a voltage

level and an associated time duration which connected wind power generators must ride

through.

High penetration of WFs complying with the FRT requirements can highly affect the

operation of protection relays in power systems. In a power system without renewable

energy resources, protection systems are designed considering the fact that the systems are

supported by synchronous generators. In protection studies of conventional power systems,
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Figure 1.8: Typical FRT curve implemented in the North American grid code [2].

a synchronous generator is modeled as a voltage source in series with an impedance. Such

models cannot be used for the fault study of power systems integrated with WFs as they

operate as current sources rather than voltage sources [14].

The impact of WFs on the operation of protection relays has been evaluated by many

researchers [14]-[24]. [16] provides a comprehensive literature review of the effect of the fault

current contribution of distributed generations (DGs), especially WFs, on the protection

system performance. [14] and [17] discuss the impact of wind power characteristics on the

performance of distance relays in distribution and sub-transmission systems. The authors

evaluate the response of conventional protection systems to the operation of different types

of WFs during short-circuit faults. In summary, the main protection challenges associated

with the protection relays close to a WF can be classified into the following categories:

i) the fault characteristics of WFs are different from conventional generators [14], [17],

ii) the limited fault current contribution of WFs is not always sufficient for the proper

operation of protection relays [18], [19], iii) wind speed variation and the WF source

impedance affect the operation of protection relays [20], [21], and iv) the fault current

frequency of a DFIG-based WF deviates from the nominal frequency during a fault, which

affects the operation of protection relays with distance or frequency elements [18]. This

dissertation mostly focuses on the DFIG-based WFs and their negative impacts on the
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performance of protection systems. Considering different negative impacts of DFIG-based

WFs on protection systems due to their large slip range, the short-circuit behaviour of a

DFIG is evaluated in two different aspects: 1) close-to-zero slip operation and 2) large slip

operation. During close-to-zero slip operation of the DFIG, the short-circuit behaviour of

the DFIG is similar to that of a fixed-speed SCIG; therefore, fixed-speed SCIG-based WFs

are also evaluated in this dissertation.

One of the main problems is associated with the protection of transmission lines con-

nected to fixed-speed SCIG- or DFIG-based WFs for a balanced fault in the backup zone

of the distance relay located at the WF’s terminal. When a balanced fault occurs on the

adjacent lines to fixed-speed SCIG-based WF, the fault current injected by the fixed-speed

SCIG-based WF increases significantly for a short period of time and the impedance calcu-

lated at the relay location falls within the protection zone of the distance relay. Then, the

current decreases due to a reduction in the machine’s air-gap flux [18], which is caused by

the significant voltage drop at the SCIG terminal [18]. A few hundred milliseconds after

the occurrence of the balanced fault, the fault current reaches zero due to the complete de-

magnetization of the core of the induction generator and the impedance trajectory finally

leaves the protection zone of the distance relay [18]. As a result, the distance relay does

not operate correctly for a balanced fault in its backup zone (zone 2) as it should operate

after a set time delay [22]. The protection system may face the same problem as that of

DFIG-based WFs during close-to-zero slip operation of the DFIG.

Another main problem associated with the protection of a DFIG-based WF arises when

the transmission line connected to the DFIG-based WF is protected by distance relays.

The performance of a distance relay located at the terminal of DFIG-based WFs will be

unreliable and insecure during balanced faults and severe unbalanced faults close to DFIG-

based WFs when the DFIGs are operating at a large slip value. When a balanced fault

occurs on a transmission line connected to the DFIG-based WF, the crowbar circuit is

mostly activated as this is one of the most severe faults in the system. Upon activation

of the crowbar circuit located at the rotor side of the back-to-back converter, the fault

current passing through the back-to-back converter becomes limited. In this situation,

the frequency of the fault current injected by the DFIG-based WF deviates from the syn-

chronous frequency due to slip changes of the DFIG-based WFs in the range of ±30%. On
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the other hand, the frequency of the voltage at the relay location follows the grid nomi-

nal frequency. As a distance relay operates based on the ratio of fundamental frequency

voltage and current phasors, the difference in the frequency of the voltage and current

measurements provided to the relay during a fault leads to malfunctioning of the distance

relay. The protection system may face the same problem as that of a balanced fault in

case of a severe unbalanced fault close to a DFIG-based WF [18], [23].

While the negative impacts of induction generator (IG)-based WFs on the protection

relays of power systems have been illustrated in the literature, the proposed schemes are

not yet very comprehensive. One of the main studies among several current publications on

this topic is [18], which proposes a new algorithm for proper operation of a distance relay at

the terminal of fixed-speed SCIG- and DFIG-based WFs during a balanced fault. [18] uses

the decay in the peak-to-peak amplitude of the fault current to distinguish between fault

current fed from a fixed-speed SCIG- or DFIG-based WF and a conventional generator.

In the proposed method, fault current direction at the WF substation is detected using

the shape of the fault current, while a conventional distance relay at the remote end of

the line detects the fault direction by the impedance measurement. This method does not

study the performance of distance relays at the terminal of DFIG-based WFs in case of

severe unbalanced faults, which leads to frequency deviation of the fault current from the

nominal frequency.

[20] proposes a new adaptive setting scheme for a distance relay at the terminal of

the WF to protect the transmission line connected to the WF, regardless of the type of

the WF. The adaptive setting scheme uses the ratio of local voltage and current at the

distance relay location. Using only the local information is the main advantage of the

proposed scheme. However, this scheme does not consider the fault response of different

types of WFs while designing the relay settings. Furthermore, the adaptive setting scheme

fails to protect transmission lines connected to fixed-speed SCIG- and DFIG-based WFs

in case of a balanced fault in zone 2 of the distance relay. [21] and [24] present the same

adaptive setting scheme for protecting the lines connected to the WFs, with the only

difference that they also consider the impact of flexible alternating current transmission

system (FACTS) devices such as unified power flow controller (UPFC), [24], and static volt-

amper reactive compensator (SVC), [21], on the distance relay characteristics. However,
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the aforementioned problems associated with [20] still exist in these protection schemes.

In [15], a distance differential method is proposed for the protection of lines connected

to WFs. This method assumes that current and voltage measurements from the remote end

of the transmission line are available at the relay location. Then, by calculating the active

power at both ends of the line, the fault resistance and consequently the fault location

is estimated. The main drawback of implementing this scheme is that it requires high

bandwidth communication infrastructure to protect the line connected to the WF.

1.4 Motivation

WFs’ contribution to the fault current can negatively affect the protection of power systems.

Among different types of WFs, fixed-speed SCIG- and DFIG-based WFs encompass a high

percentage of the installed capacity of wind power plants in power systems. The DFIG

typically operates about 30% below or above synchronous speed, which is sufficient for

most wind speed conditions. It also enables to control the generator-side active power and

the grid-side reactive power [1]. The fixed-speed SCIG, on the other hand, is simple and

rugged in construction, relatively inexpensive and requires minimum maintenance [1]. The

main focus of this dissertation is on the response of DFIG-based WFs to different types

of faults. However, the impact of fixed-speed SCIG-based WFs on the protection system

is also evaluated due to the same short-circuit behaviour of DFIG and fixed-speed SCIG

during the close-to-zero slip operation of the DFIG.

Since the response of IG-based WFs to short-circuit faults are not similar to that of

conventional generators, the conventional protection relays close to WFs may fail to operate

properly or even lose their coordination with downstream relays in case of a fault. The

focus of this thesis is on the performance of distance relays that are located at the terminal

of WFs.

As mentioned in Section 1.3, a few papers have evaluated the negative effects of IG-

based WFs on the operation of conventional protection relays and have proposed new

schemes to tackle the protection challenges [14]-[24]. The main drawbacks of the existing

schemes for the protection of lines connected to the fixed-speed SCIG- and DFIG-based
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WFs include i) high bandwidth communication requirement for exchanging information

between the relays at two ends of the line connected to the WF [15], ii) inability to

operate reliably in case of severe unbalanced faults close to the DFIG-based WF [18], iii)

continuous information requirement of the fixed-speed SCIG- and DFIG-based WFs, i.e.

wind speed, to provide an adaptive relaying setting for the WF-side relay [20]-[21], [24],

and iv) failure to provide proper backup protection for the downstream relays in case of

a balanced fault in zone 2 of the DFIG- or SCIG-side relay [20]-[21], [24]. Hence, further

research should be conducted to overcome the aforementioned challenges.

1.5 Contributions

The contributions of this dissertation fall into two main categories: i) the comprehen-

sive explanation of the failure of relays located at the terminal of fixed-speed SCIG- and

DFIG-based WFs using the mathematical equations and the simulation results, and ii) the

development of relaying algorithms to address these protection challenges.

1.5.1 Relay Failures

The followings are the main relay failures that this dissertation discusses:

1. A conventional distance relay located at a fixed-speed SCIG or DFIG terminal fails

to operate correctly for a balanced fault in its backup zone (zone 2). Depending

on the impedance trajectory measured by the SCIG- or DFIG-side relay for a bal-

anced fault in zone 2, it will lose its coordination with the downstream relays if the

impedance trajectory enters zone 1, or it cannot provide proper backup protection for

the adjacent line if the impedance trajectory leaves the relay’s zones. This problem

happens for the distance relay located at the terminal of a DFIG during close-to-zero

slip operation of the DFIG.

2. The performance of a distance relay located at the terminal of a DFIG-based WF

will be unreliable and insecure during balanced faults due to the frequency deviation
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of the fault current from the nominal frequency. This condition will be problematic

in case of a balanced fault on the adjacent line, where it is protected by zone 2 of the

distance relay. In this situation, the impedance trajectory may enter zone 1, which

results in loss of coordination between the distance relay at the DFIG terminal and

the downstream relays.

1.5.2 Modified Distance Elements

This dissertation presents the following solutions for the aforementioned relay failures:

1. To overcome the problem associated with the unreliable operation of a distance relay

at the terminal of a fixed-speed SCIG or DFIG-based WF for a balanced fault in zone

2, a new relaying algorithm called modified distance element type I based on only

local measurements at the relay location is presented to properly detect and identify

balanced and unbalanced faults in the relay protection zones. By employing the mod-

ified distance element type I in the SCIG or DFIG-side relay, the relay can provide

instantaneous protection for faults in zone 1 as well as reliable backup protection for

any faults in zone 2 of the relay. The main advantages of the modified distance ele-

ment type I include, i) the ability to distinguish faults from system disturbances, ii)

requiring only local measurements at the relay location, and iii) robustness against

different system disturbances such as power swings and load encroachments.

2. To overcome the problem associated with the unreliable operation of a distance relay

at the terminal of a DFIG-based WF during faults, a new pilot protection scheme

called modified distance element type II is presented. The modified distance element

type II i) distinguishes faults from other system disturbances, ii) provides reliable

protection over the entire length of transmission line connected to the DFIG-based

WF, iii) requires minimum communication bandwidth, and iv) is robust against

different systems disturbances such as power swings and load encroachments.
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1.6 Outline

The rest of this dissertation is organized as follows. In Chapter 2, the performance of a

distance relay at the terminal of SCIG-based WFs for different types of faults is evaluated.

After demonstrating the negative impact of the fixed-speed SCIG-based WFs on the op-

eration of conventional distance relays, a new relaying algorithm is presented to reliably

protect the transmission line connected to a fixed-speed SCIG-based WF. Moreover, the

reliable performance of the new relaying algorithm is demonstrated by implementing it in

a 4-bus test system. The response of DFIG-based WFs to short-circuit faults is discussed

in Chapter 3. In Chapter 3, a new relaying algorithm is presented to reliably protect

the transmission line connected to a DFIG-based WF. The reliable performance of the

developed relaying algorithm is demonstrated by employing the algorithm in a 4-bus test

system. Chapter 4 provides the conclusions and directions for future work.
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Chapter 2

Fixed-Speed SCIG-Based Wind

Farms

2.1 Introduction

The main problem associated with the protection of fixed-speed SCIG-based WF arises

when the transmission line connected to the SCIG is protected by a distance relay. When

a balanced fault occurs on the adjacent lines to SCIG, the fault current injected by the

SCIG increases significantly for a short period of time and the impedance calculated at

the relay location falls within the protection zone of the distance relay. Then, the current

decreases due to a reduction in the machine’s air-gap flux [18], which is caused by the

significant voltage drop at the SCIG terminal [18]. A few hundred milliseconds after

the occurrence of the balanced fault, the fault current reaches zero due to the complete

demagnetization of the core of the induction generator and the impedance trajectory finally

leaves the protection zone of the distance relay [18]. As a result, the distance relay does

not operate correctly for a balanced fault in its backup zone (zone 2) as it should operate

after a set time delay [22]. This problem also happens for the distance relay located at the

terminal of a DFIG during close-to-zero slip operation of the DFIG. This will be addressed

in Chapter 3.
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This Chapter proposes a new relaying algorithm called modified distance element type

I based on the local measurements at the relay location to overcome the problems regard-

ing the protection of transmission lines connected to fixed-speed SCIG-based WFs in the

presence of balanced and unbalanced faults. The relay under investigation is located at the

terminal of the fixed-speed SCIG-based WF. The modified distance element type I uses

the impedance measured at the relay location together with phase fault current waveforms

injected by the SCIG to detect the faults. After the occurrence of a fault, the modified

distance element type I first distinguishes balanced faults from unbalanced faults and then

it will use the apparent impedance to differentiate between balanced faults in zone 1 and

zone 2 of the relay. Then, the damping characteristics of the fault current injected by

the SCIG will be used to provide proper coordination with the downstream relays. The

performance of the modified distance element type I is verified on a 4-bus test system.

The obtained results demonstrate the robustness of the modified distance element type

I against fault impedances and system disturbances such as power swings and overload

conditions.

2.2 Test System

Figure 2.1 shows the single-line diagram of the 4-bus test system used in the studies of

this dissertation. In this system, the fixed-speed SCIG-based WF is connected to bus

i, and two identical sources with the same characteristics are connected to bus k and l.

The fixed-speed SCIG-based WF is represented with an equivalent SCIG WT and the

equivalent impedance of all interconnecting cables [18], [25]. Transformers installed at the

SCIG terminal and the sources have the same parameters. The parameters of the system

are provided in Table 2.1.

2.3 Problem Statement

Distance relays are the most commonly used types of protection relays in transmission

systems. A distance relay operates based on the measured impedance between the relay
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Figure 2.1: Single-line diagram of the test system.

and the fault location and operates if the fault occurs within its protection zones. The

apparent impedance calculated by the distance relay can be calculated as [20]

Z = Zline + Zerror , (2.1)

where Zline is the line positive-sequence impedance between the relay and the fault

location. Zerror is the error term, which depends on several main factors such as the fault

resistance [26], the currents fed from the adjacent lines [26], and the shunt current and

series voltage injection by FACTS devices [27]. In conventional power systems, Zerror is

mostly insignificant. However, this error can be problematic for the operation of a distance

relay located at the terminal of the fixed-speed SCIG-based WF when a balanced fault

occurs on the adjacent lines [18]. The rest of this section will focus on the impact of the

location of the fault, i.e., internal balanced faults and external balanced faults, on Zerror.

2.3.1 Internal Balanced Faults (F1 and F2)

The apparent impedance calculated by the relay located at the SCIG terminal (Rij) in the

phasor domain for an internal balanced fault is given by

Z = Zif +Rf

Iφij + Iφkj + Iφlj

Iφij
= Zif + Zint

error , (2.2)
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Table 2.1: Parameters of the test system.

Component Parameter Value

Apparent power 25 MVA

Nominal voltage 480 V

Fixed-Speed Stator resistance 0.09 p.u.

SCIG Rotor resistance 0.004 p.u.

Magnetizing inductance 6.5 p.u.

Stator and rotor inductance 0.04 p.u.

Nominal voltage 480 V

Source Positive- and negative-sequence impedances 1]85◦ p.u.

Zero-sequence impedance 1.5]85◦ p.u.

Apparent power 30 MVA

Transformer Nominal voltages 480/69000 ∆Y g

Leakage inductance 0.1 p.u.

Transmission Positive- and negative-sequence impedances 0.144]86◦ Ω/km

line Zero-sequence impedance 0.437]86◦ Ω/km

where Zif is the positive-sequence impedance of the line between Rij and the fault location,

Zint
error is the impedance error, Iφij is the phase current flowing from bus i to bus j, and Rf

is the fault resistance. According to (2.2), the error term depends on the fault resistance,

the fault current fed from the SCIG (Iφij), and the currents injected by sources 1 and 2

(Iφkj and Iφlj). Regardless of the fault location (internal or external), the current injected

by the fixed-speed SCIG-based WF during a balanced fault consists of a decaying ac and

a decaying dc component [18], [28]:

is(t) =
Vmax
1− s

(
1

X ′
− 1

Xσs + 1.5Xms

)e−
t
T ′×cos((1−s)ωst+θ)+

Vmax
1− s

[
1

X ′
e−

t
Ts×cos(θ)] , (2.3)

where T ′ and Ts are the short-circuit transient and the stator time constants, respectively.

Vmax, X
′, Xms, Xσs, ωs, s, and θ are the voltage amplitude, transient reactance, mag-

netizing reactance, stator leakage reactance, synchronous speed, machine slip, and fault

inception angle, respectively.
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For a few cycles after the fault occurrence, the SCIG can be modeled as a voltage

source in series with a transient impedance [29], based on the constant flux linkage theorem

presented in [30]. There will be a considerable increase in the fault current during this short

time period. Then, since the air-gap flux of the fixed-speed SCIG-based WF reduces due to

the voltage drop at the machine terminal, both ac and dc components of the fault current

start to decrease with a large damping factor [18]. Finally, the fault current reaches zero

after several hundred milliseconds according to (2.3). Based on (2.2), the fault current

fed by SCIG has a significant impact on the impedance error calculated by Rij. For a

balanced fault at F2 with a non-zero fault resistance, after several hundred milliseconds

from the fault instant, Zint
error measured by Rij will be substantial due to the small value

in the denominator of Zint
error. Therefore, the impedance trajectory will leave zone 2 of Rij

before it operates. As a result, Rij will not be able to protect the remote end of the line

ij, which is covered by zone 2 [28], [18].

For a solid balanced fault F2, Zint
error is zero. Also, faults in the primary protection

zone of the relay such as F1 will be detected correctly, due to the high magnitude of the

fault current during the transient period, which results in the impedance entering zone 1

immediately after the onset of the fault. For an unbalanced fault, the impedance trajectory

will not leave zone 2 as the current magnitude does not immediately decay to zero. The

reason is that the air-gap flux during an unbalanced fault scenario does not decrease as

much as a balanced fault scenario due to the higher voltage values in the healthy phases

[31].

2.3.2 External Balanced Faults (F3 and F4)

For an external fault, the impedance calculated by Rij is

Z = Zif + ZjF (
Iφij + Iφlj

Iφij
) +Rf

Iφij + Iφkj + Iφlj

Iφij
= Zif + ZjFMI + Zext

error , (2.4)

where Zext
error is the impedance error due to a balanced fault and MI is the impedance error

due to the infeed.
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According to (2.4), the impedance error measured byRij includes two current-dependent

terms, ZjFMI and Zext
error. Due to the ZjFMI term, the impedance exhibits significant vari-

ations for both solid- and non-solid faults after several hundred milliseconds from the fault

instant. Due to the substantial error in the measured impedance by Rij during solid- and

non-solid faults, Rij may not provide a reliable backup protection for a part of line jk and

line jl, which must be protected by the zone 2 element.

2.4 Modified Distance Element Type I

In this section, a new relaying algorithm called modified distance element type I is pre-

sented, which provides reliable protection against balanced and unbalanced faults for re-

lays located at the terminal of fixed-speed SCIG-based WFs. The developed relay operates

based on the combination of conventional distance element [32], for detecting unbalanced

faults, and a newly proposed technique for detecting balanced faults. The modified dis-

tance element type I is based on the impedance measured by the distance relay and the

phase fault current waveform of the SCIG. The relay located at the remote end of the line

is a conventional distance relay, which can reliably operate for all types of faults. The

modified distance element type I is shown in Figure 2.2.

2.4.1 Fault Detection

The fault detector (FD) unit distinguishes faults from the other types of disturbances

in the system. The implemented FD unit is similar to the one developed in [33], where

a one-cycle moving sum of the current samples immediately after the occurrence of the

disturbance is calculated. The symmetrical nature of the current waveforms during the

normal operation of the power system (even during power swing and overload conditions)

results in the moving sum to be around zero, while it deviates from zero during faults.
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Figure 2.2: Modified distance element type I for Rij operation.
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2.4.2 Balanced Fault Detection

In this step, a fault type classifier is applied to determine whether the fault is balanced or

unbalanced. To achieve this, the following index is defined

FDC =
NSc
PSc

, (2.5)

where NSc and PSc are the negative- and positive-sequence components of the current,

respectively.

For balanced faults, FDC value is close to zero, while it deviates from zero during un-

balanced faults. Therefore, the balanced faults and unbalanced faults can be distinguished

by determining a suitable threshold for FDC. Conventional distance relaying algorithms

such as [20] and [32] can be used in Rij to provide reliable protection against unbalanced

faults.

2.4.3 Impedance Zone Detection and Relay Coordination

In this step, the impedance measured by the relay is used to determine whether a balanced

fault has occurred in zones 1 and 2 of Rij. If the impedance trajectory enters zone 2, even

for a short period of time, it will be associated with a balanced fault in zone 1 or zone 2

of the relay.

According to (2.2) and (2.3), since the magnitude of the fault current of the SCIG is

substantial for a few cycles after the onset of the fault, the impedance trajectory will remain

in zone 2 without entering zone 1 for a time period ∆TR2. Comparison of ∆TR2 against a

threshold serves as the main criterion to distinguish between balanced faults in zone 1 and

zone 2. To achieve this, ∆TR2 is compared with a threshold K if i) ∆TR2 ≤ K and the

impedance trajectory enters zone 1, the fault is detected to be in zone 1, ii) ∆TR2 ≤ K

and the impedance trajectory leaves zones 1 and 2, the fault is identified and cleared by

a downstream relay (e.g. Rjk or Rjl), and iii) ∆TR2 ≥ K, the fault is detected to be in

zone 2.
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To ensure this criterion can identify all balanced faults in zone 2, the shortest time

period for which the impedance trajectory remains in zone 2 for an uncleared balanced fault

is determined. This critical fault scenario is associated with a high impedance balanced

fault at the end of zone 2, which is not cleared by the downstream relay (Rjk or Rjl).

∆TR2 for the critical fault scenario is used to select the relay threshold K.

2.4.4 Uncleared Zone 2 Fault Detection

If the impedance trajectory remains within zone 2 for more than K ms, it indicates that

the location of the fault is in the second zone (e.g., F2 or F3). According to (2.2) and (2.3),

although the impedance trajectory will remain within zone 2 for more than K ms, it will

leave zone 2 before the time delay settings of this zone (Tz ms) and therefore, the fault

will not be cleared by a conventional distance relay. To solve this problem, the relay will

use the fault current damping characteristic. If the current waveform continues to damp

out for Tz ms after the onset of the fault, the relay will operate after the set time delay.

However, for a fault already removed by the downstream relays, the fault current does not

damp out anymore.

2.5 Simulation Results

To evaluate the performance of the modified distance element type I, the system shown

in Figure 2.1 is simulated in the PSCAD/EMTDC environment and the waveforms are

processed in the MATLAB environment. The transposed transmission lines are simulated

using the frequency-dependent line model. The first zone of Rij is set to protect 85% of

line ij, and the second zone of Rij will cover line ij and 50% of the longest adjacent line

(line jk).

First, the algorithm used in FD unit is evaluated by studying the test system under

three scenarios including short-circuit faults (balanced and phase-A-to-ground faults at

95% of line ij at t = 4 s with Rf = 1 Ω), power swings, and overloads (adding a new load

with the size of 100 MW and 25 MVAR to bus j at t = 4 s). In order to create a power
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Figure 2.3: Fault current waveforms of phase-A before and after the occurrence of distur-

bances and faults.

Figure 2.4: Fault current waveforms for unbalanced faults at 95% of line ij with Rf = 1 Ω.

swing phenomenon in the system, a transmission line parallel with line ij is added to the

system. Then, a balanced fault in the middle of the new line is initiated at t = 3.9 s and

is removed at t = 4 s by opening the circuit breakers located at both ends of the new line.

The current waveforms fed by the SCIG for these three scenarios are shown in Figure 2.3.

The current waveforms associated with the power swing and overload conditions are almost

symmetric; however, the fault current waveform is asymmetric due to the existence of the

decaying dc in the waveform. The sum of samples taken over one cycle after the onset of

the disturbances is around zero (0.026 p.u. and 0.064 p.u.) for power swing and overload

scenarios, while it is substantial (5.393 p.u. and 4.154 p.u.) for balanced and unbalanced
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Table 2.2: ∆TR2 for balanced faults at different locations.

Fault resistance Fault location ∆TR2

(Ω) % (ms)

90% of line ij 112

100% of line ij 108

0.2 20% of line jk 82

30% of line jk 73

50% of line jk 61

90% of line ij 93

100% of line ij 84

1 20% of line jk 73

30% of line jk 59

50% of line jk 43

faults.

A threshold value of 0.2, which is larger than maximum value for the balanced faults

in the system (0.071), is selected for FDC to distinguish between balanced and unbalanced

faults. As shown in Figure 2.4, after around 150 ms from the onset of the fault, the

magnitude of the unbalanced current is larger than that of the balanced fault. This will

result in the impedance trajectory associated with the unbalanced fault remaining within

zone 2 of the distance relay and consequently being detected by a conventional distance

element. Figure 2.4 also demonstrates the high magnitude of current for various unbalanced

faults.

For the test system of Figure 2.1, the threshold K is determined by applying balanced

faults at different locations in zone 2 of Rij to identify the critical fault scenario. ∆TR2

for several unbalanced faults is provided in Table 2.2. According to Table 2.2, the critical

fault scenario with minimum ∆TR2 is associated with the fault at 50% of line jk with

Rf = 1 Ω. During the critical fault scenario, the impedance stays in zone 2 for 43 ms;

therefore, K = 40 ms is selected.

The impedance trajectories calculated by Rij for the balanced faults F1, F2, F3, and
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Figure 2.5: Impedance trajectories in the presence of balanced faults at four different

locations with Rf = 1 Ω.

Figure 2.6: Fault currents associated with F2 and F3 (balanced faults).

F4 are depicted in Figure 2.5. The faults occur at t = 4 s and they are not cleared during

the simulation. For F1, the impedance enters zone 1 immediately after the occurrence of

the fault, resulting in the proper operation of the relay. For F4, the impedance trajectory

does not enter zones 1 and 2 and Rij does not detect the fault. However, for F2 and F3,

the impedance trajectories correctly enter zone 2 and remain within zone 2 for 94 ms and

78 ms, respectively, and then leave zone 2 before the time delay setting for the backup

zone (Tz = 300 ms). Since the impedance trajectories for F2 and F3 remain in zone 2 for

more than 40 ms, the fault current waveform is examined to provide proper coordination

between Rij and downstream relays (Rjk and Rjl).
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Figure 2.7: Impedance trajectories for unbalanced faults at 95% of line ij with Rf = 1 Ω.

Figure 2.6 shows the fault current associated with F2 and F3 (balanced faults). The

current waveform associated with F2 keeps damping for more than Tz = 300 ms, resulting

in the proper operation of Rij after this time delay. On the other hand, the current

waveform associated with F3 stops damping due to the fault clearance by the downstream

relay Rjk and therefore, Rij will not operate. If Rjk fails to detect F3, the current

waveform continues damping for more than 300 ms and Rij will operate correctly as

the backup for Rjk to clear the fault. Figure 2.7 shows that the impedance trajectories

associated with the unbalanced faults remain within zone 2 for more than 300 ms and

therefore, the conventional distance elements are able to detect the unbalanced faults and

operate correctly.

The impedance in the R-X plane may follow different paths after the occurrence of

a balanced fault, which depend on various factors such as the fault impedance. The

robustness of the modified distance element type I against the fault impedance is examined

in Figure 2.8. Figure 2.8 shows the impedance trajectory measured by Rij for three

different balanced faults. For the balanced fault at 95% of line ij with Rf = 0, the

impedance enters zone 2 and remains within zone 2 until it is cleared. For the balanced

fault at 95% of line ij with Rf = 1 Ω, the impedance trajectory remains within zone 2

for 94 ms and then leaves the protection zones. Also, for the balanced fault at 95% of line

ij with Rf = 0.1 Ω, the impedance trajectory remains within zone 2 for 114 ms and then

enters zone 1. The modified distance element type I works well for all these fault scenarios
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Figure 2.8: Impedance trajectories for three different fault scenarios.

as the impedance trajectory remains for more than K = 40 ms within zone 2. After K = 40

ms, Rij will operate based on the damping characteristics of the fault current waveform.

2.6 Summary

Since a distance relay located at the terminal of an fixed-speed SCIG-based WF may not

operate correctly for a balanced fault within zone 2, a new relaying algorithm is developed

based on the impedance measured by the relay and the damping characteristics of the

phase fault current injected by the SCIG. The modified distance element type I 1) dis-

tinguishes faults from other system disturbances, 2) differentiates between balanced and

unbalanced faults, and 3) reliably detects faults in the different zones of the relay. The

performance of the modified distance element type I is examined on a 4-bus test system.

The simulation results show that the modified distance element type I detects balanced and

unbalanced faults in the two protection zones of the relay and generates the correct trip

signal. Furthermore, this method does not maloperate during system disturbances such as

power swing and overload conditions. Simplicity in the design, local measurement require-

ment and robustness against fault impedance and fault location are the main advantages

of the modified distance element type I.
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Chapter 3

DFIG-Based Wind Farms

3.1 Introduction

IG-based WFs are increasingly being integrated into the power systems at different voltage

levels, and the protection of the transmission lines with the addition of these WFs is

becoming more complicated. This chapter describes one of the challenges associated with

the protection of transmission lines connected to the DFIG-based WFs during short-circuit

faults. It is shown that the performance of distance relays located at the terminal of DFIG-

based WFs will be unreliable and insecure during balanced faults and severe unbalanced

faults. The malfunctioning of the relays are due to the differences in the frequency of the

voltage and current measurements provided to the relay during a fault, and this arises from

the slip changes of the DFIGs in the range of ±30%.

In this chapter, a new relaying algorithm called modified distance element type II is

presented to address the discussed protection challenge. The modified distance element

type II is based on the time-frequency curves extracted from the fault currents measured

at the distance relays located at the two ends of a transmission line connected to a DFIG-

based WF. The modified distance element type II consists of two components: i) fault

detection and ii) fault type identification. The simulation results of this Chapter verify

the merits of the modified distance element type II in successful detection and identification

of various fault scenarios.
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3.2 Problem Statement

3.2.1 Balanced Faults

When a balanced fault occurs on an adjacent transmission line to the DFIG-based WF,

the crowbar circuit is mostly activated as this is one of the most severe faults in the

system. Upon activation of the crowbar circuit located at the rotor side of the back-

to-back converter, the fault current passing through the back-to-back converter during a

balanced fault becomes limited. When the crowbar circuit is activated, the short-circuit

behavior of the DFIG-based WF will be similar to that of a fixed-speed SCIG-based WF

as discussed in Chapter 2 [34]. However, the main differences between the fault response

of the two types of WFs are associated with the effect of the crowbar circuit and the larger

slip range of the DFIG. The balanced fault current of a DFIG-based WF is [28]

is(t) =
Vmax

(1− s)
√
X ′2 +R2

cb

[e
− t

T
′
cb × cos((1− s)ωst+ θ − π

2
)− e−

t
Ts cos(θ − π

2
)] , (3.1)

Ts =
X

′

ωsRs

, (3.2)

T
′

cb =
X

′

ωs(Rr +Rcb)
, (3.3)

where Rcb is the crowbar resistance of the DFIG-based WF. The fault current injected into

the line from the ac grid is [28]

ig(t) =
Vmax
Z

[sin(ωst− θ)− sin(θ)× e−
t
T ] , (3.4)

As the slip of an fixed-speed SCIG is near zero, the (1−s) term in (2.3) can be neglected,

resulting in a fault current with the nominal grid frequency of ωs. In contrast, as the slip

of a DFIG changes in the range of ±30%, the (1 − s) term will be considerable. As a

result, the fault current frequency injected by a DFIG-based WF changes in the range of
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Figure 3.1: Single-line diagram of the test system.

42-78 Hz for a 60 Hz system. On the other hand, during a balanced fault, the voltage

frequency captured at the relay location follows the frequency of the ac grid and remains

within a narrow margin of the nominal frequency. Therefore, the frequency of voltage and

current measured at the relay location will be different during the non-zero slip operation of

the DFIG. This difference between the frequency of voltage and current negatively affects

the performance of a distance relay. To illustrate more, the impedance measured by the

phase-A-to-ground (AG) element of a distance relay is calculated as

ZAG =
VA∠θv

IA∠θi +K0I0
, (3.5)

where VA∠θv and IA∠θi are the fundamental frequency phasors of the phase-A voltage

and current, respectively. I0 is the zero-sequence current, and K0 is the zero-sequence

compensation factor [32]. The distance relay operates based on the ratio of the voltage

and current phasors measured at the relay location. However, due to the deviation of

the fault current frequency from the nominal frequency, the impedance value calculated

by (3.5) will not be an accurate estimation of the impedance between the fault and relay

location, which will result in the maloperation of the distance relay.

The test system is shown in Figure 3.1. To form this test system, the fixed-speed

SCIG-based WF in the test system of Section 2 is replaced by a DFIG-based WF. The

DFIG-based WF is represented with an equivalent DFIG-based WT and the equivalent

impedance of all interconnecting cables [18], [25]. The studies are based on time-domain
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Figure 3.2: Phase-A current at relay Rij after a balanced fault on line jk for super-

synchronous (s = −20%) and sub-synchronous (s = 20%) operation of the DFIG.

simulations of the test system in the PSCAD/EMTDC environment and processing of the

waveforms in the MATLAB environment. The test system parameters are provided in

Table 3.1.

A balanced fault occurs at 40% of line jk at t = 2 s with Rf = 1 Ω. Figure 3.2

shows the phase-A fault currents measured at Rij during the sub-synchronous (s = 20%)

and super-synchronous (s = −20%) operation of the DFIG. After the onset of the fault,

the fault current increases immediately and then decreases gradually to a steady state

value. The damping speed depends on the rotor and crowbar resistances. Figure 3.2 also

demonstrates that the fault current frequency depends on the generator slip. Figure 3.3

shows the voltage at the relay location during sub-synchronous and super-synchronous

operation of the DFIG. Figure 3.3 shows that there is a significant drop in voltage after

the fault. The voltage will not drop to zero because of the impedance between the relay

and the fault location.

The frequency spectrum of instantaneous voltages and currents are shown in Figures 3.4

and 3.5, where the voltage and current spectrums are obtained by applying the fast fourier

transform (FFT) to the first 200 ms of the fault current waveforms. Figure 3.4 shows that

the largest peak of the current and voltage spectrums during the sub-synchronous operation

of the DFIG are at around 43 Hz and 60 Hz, respectively. During the super-synchronous

operation of the DFIG, the highest peak of the current and voltage spectrums are at around
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Figure 3.3: Phase-A voltage of the WF measured at Rij after a balanced fault on line

jk for super-synchronous (s = −20%) and sub-synchronous (s = 20%) operation of the

DFIG.

Figure 3.4: Frequency spectrum of phase-A current measured at Rij after a balanced fault

on line jk for super-synchronous (s = −20%) and sub-synchronous (s = 20%) operation

of the DFIG.

69 Hz and 60 Hz, respectively, as shown in Figure 3.5. Therefore, the frequency of the

voltage and current at the relay location are different from each other for both sub- and

super-synchronous operations of the DFIG.

To illustrate the negative effect of the off-nominal frequency of the fault current on the

performance of Rij, the impedance trajectory measured by Rij after a fault at 40% of

line jk is presented in Figure 3.6. The impedance trajectory after the balanced fault is
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Table 3.1: Parameters of the test system.

Component Parameter Value

Apparent power 5 MVA

Nominal voltage 690 V

Stator resistance 0.0054 p.u.

Rotor resistance 0.00607 p.u.

DFIG Magnetizing inductance 4.5 p.u.

Stator inductance 0.1 p.u.

Rotor inductance 0.11 p.u.

DC link rated voltage 1200 V

DC link capacitor size 2 mF

Nominal voltage 132 kV

Source Positive- and negative-sequence impedances 1]80◦ p.u.

Zero-sequence impedance 1.5]80◦ p.u.

Apparent power 5.5 MVA

Nominal voltage 690 V/900 V/33 kV

Y gY gY g

DFIG Positive-sequence leakage reactance (1-2) 0.08 p.u.

transformer Positive-sequence leakage reactance (1-3) 0.06 p.u.

Positive-sequence leakage reactance (2-3) 0.05 p.u.

Apparent power 50 MVA

Main transformer Nominal voltage 33 kV/132 kV ∆Y g

Positive-sequence leakage reactance 0.025 p.u.

Transmission Positive- and negative-sequence impedances 0.144]86◦ Ω/km

line Zero-sequence impedance 0.437]86◦ Ω/km

changing drastically.
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Figure 3.5: Frequency spectrum of phase-A voltage measured at Rij after a balanced fault

on line jk for super-synchronous (s = −20%) and sub-synchronous (s = 20%) operation

of the DFIG.

Figure 3.6: Impedance trajectory measured by the AG element of relay Rij after a balanced

fault at 40% of line jk with Rf = 1 Ω for super-synchronous (s = −20%) operation of the

DFIG.

3.2.2 Unbalanced Faults

The distance relay at the terminal of the DFIG-based WF might be facing the same problem

as that of a balanced fault when a severe unbalanced fault occurs close to the DFIG. The

approximate fault current injected by a DFIG-based WF for different types of faults is

calculated as follows [23]
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is(t) = isf (t) + isn(t) , (3.6)

isf (t) = (
V1

jωsL′s
− kr

ψrf,1
L′s

)ejωst +
V2
Z2

e−jωst , (3.7)

isn(t) =
Vpre − (V1 − V2)

jωsL′s
e−

t
Ts − kr

L′s
(de−

t
Ts + ce−

t
Tr ejωrt)(ψr,pre − (ψrf,1 + Lr2

V2
Z2

)) , (3.8)

where Vpre is the pre-fault voltage, V1 and V2 are the positive- and negative-sequence

voltages, respectively, and ωr is the rotor angular frequency. ψr,pre and ψrf,1 are the pre-

fault rotor flux and the magnitude of the positive-sequence forced component of the post-

fault rotor flux, respectively. Also, Ts and Tr are the stator and rotor time constants,

respectively. According to (3.6)-(3.8), the fault current of the DFIG-based WF consists

of a decaying dc component, a decaying ac component at the rotor frequency, and an ac

component at the synchronous frequency. The fault current is calculated by assuming

the activation of the crowbar circuit due to the large negative-sequence current passing

through the back-to-back converter for an unbalanced fault. When a severe unbalanced

fault occurs close to the terminal of the DFIG-based WF, the voltage drops significantly and

the positive- and negative-sequence components of the voltage will be small. By considering

the insignificant changes of the other coefficients of the fault current equation based on

the equations presented in [23], the magnitude of the ac component at the synchronous

frequency decreases while there will be an increase in the magnitude of the decaying dc

component and the decaying ac component at the rotor frequency. Therefore, the effect

of rotor frequency on the frequency of the fault current will be considerable. However,

by moving the fault location away from the DFIG-based WF, the voltage sag will reduce;

therefore, the ac component at the synchronous frequency will be the main component of

the fault current.

Figure 3.7 illustrates the frequency spectrum of the fault current measured by Rij

for different unbalanced faults at the beginning of line ij when the DFIG is operating

at s = −30%. The main peak of the current spectrum is at 60 Hz and another peak

with a smaller magnitude is around 78 Hz (the rotor frequency). Among different types
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Figure 3.7: Frequency spectrum of phase-A current measured at Rij for different unbal-

anced faults at the beginning of line ij for super-synchronous (s = −30%) operation of the

DFIG.

of unbalanced faults, the ABG fault has the largest peak of the current spectrum at the

rotor frequency, resulting in the most negative impact on the performance of Rij. Figure

3.8 depicts the frequency spectrum of the fault current measured by Rij for different

unbalanced faults at the beginning of line jk when the DFIG is operating at s = −30%.

Compared to Figure 3.7, the magnitude of the main peak at 60 Hz increases, while the

magnitude of another peak at around the rotor frequency has decreased.

The impedance trajectories measured by Rij for an ABG fault at two different locations

are shown in Figure 3.9. For the fault at the beginning of line ij, the impedance trajectory

correctly enters zone 1; but, there is a small fluctuation in the impedance trajectory due to

the large current components with rotor frequency in the fault current measured by Rij.

However, this fluctuation does not affect the operation of Rij as the fault has occurred

in zone 1. Even if the fluctuation in the impedance trajectory is significant, Rij still

operates properly as the fault is an internal fault. For the fault at the beginning of line

jk, the impedance trajectory correctly enters zone 2 and remains within zone 2 despite an

insignificant fluctuation in the impedance trajectory due to the small current component

with the rotor frequency. Therefore, the distance relay Rij operates properly as a backup

for line jk. Since unbalanced faults affect the frequency of the DFIG fault current, they

are also considered in the new relaying algorithm developed in the next section.
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Figure 3.8: Frequency spectrum of phase-A current measured at Rij for different unbal-

anced faults at the beginning of line jk for super-synchronous (s = −30%) operation of

the DFIG.

Figure 3.9: Impedance trajectory measured by the AG element of relay Rij after an ABG

fault at the beginning of lines ij and jk for super-synchronous (s = −30%) operation of

the DFIG.

3.3 Modified Distance Element Type II

Distance relays are not able to provide instantaneous protection for 100% of the length of

the transmission line due to overreaching and underreaching issues. In order to protect

the entire length of the transmission line, a communication link along with the distance

relays at the two ends of the transmission line is used. In many communication-based
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(pilot) protection schemes, the communication link is used to communicate signals such

as current and voltage measurements and frequency from one side to the other side of the

line [32]. The communication of large amount of information requires high communication

bandwidth.

In this section, a new pilot protection scheme with low bandwidth requirements for

protecting the line connected to a DFIG-based WF is presented to address the previously-

discussed protection challenge arising from the off-nominal frequency of the fault current.

The new relaying algorithm called modified distance element type II relies on the com-

munication of a binary signal from one side to the other side of the line in case of a fault

on the transmission line. The binary signal is associated with the frequency of the fault

current captured by the relay at the remote end of the transmission line connected to the

DFIG-based WF.

Figure 3.10 depicts the decision-making process of the relay Rij at the DFIG terminal

when the system is subjected to a short-circuit fault. The modified distance element type

II is based on the frequency tracking of the fault currents injected by the DFIG-based

WF and the ac grid to the line. The modified distance element type II has two main

components which are described in the rest of this section.

3.3.1 Fault Detection

The first step in this protection scheme is to distinguish the fault condition from the power

system disturbances such as power swings and load encroachments. In this protection

scheme, the fault detection algorithm presented in [33] is used. The fault detection algo-

rithm of [33] is based on the asymmetry of the instantaneous fault current waveform after

the onset of the fault. This phenomenon is not observed during the normal operation of

the power system (even during power swings and load encroachments). In this algorithm,

the one-cycle moving sum of the current samples is calculated. Because of the symmetric

nature of the current waveform during normal operation of the power system, the moving

sum of the samples becomes around zero. On the other hand, the moving sum of the sam-

ples deviates from zero in case of faults due to th large dc component of the fault current

waveform [33].
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3.3.2 Fault Type Identification

The slip of a DFIG can change in the range of ±30% and this affects the frequency of the

fault current measured by the relay. When the generator slip is near zero, the frequency of

the fault current is close to the nominal frequency. Therefore, the frequency of voltage and

current are almost the same and the conventional distance relay works properly. However,

during DFIG operation at a non-zero slip, the frequency of the fault current deviates from

the nominal frequency, resulting in the maloperation of conventional distance relays.

To overcome this issue, the difference between the frequency of the fault current injected

by the DFIG-based WF and the ac grid to the fault location is used to detect the fault.

Based on (3.4), during a fault, the ac grid injects a fault current with the nominal frequency

to the fault location regardless of the slip value of the DFIG. In contrast, the frequency

of the fault current injected by the DFIG-based WF depends on the machine slip and it

changes in the range of 42-78 Hz in a 60 Hz system. Therefore, by knowing the frequency

of the fault current at the relays located at two ends of the transmission line, internal faults

can be detected.

When the DFIG operates with a slip close to zero, the fault current frequency of the

DFIG-based WF is very close to the nominal frequency. Hence, both fault current and volt-

age have almost the same frequency, resulting in the correct calculation of the impedance

by Rij. However, by increasing or decreasing the slip, the fault current frequency of the

DFIG-based WF deviates more from the nominal frequency. As a result, there will be dras-

tic changes in the impedance trajectory calculated by Rij. Therefore, a suitable threshold

for the slip can be defined to determine whether the fault current frequency is within a

pre-defined bound, i.e., relatively close to the voltage frequency.

− sth ≤ s ≤ sth , (3.9)

flb ≤ f ≤ fub , (3.10)

flb = (1− sth)fs , (3.11)
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fub = (1 + sth)fs , (3.12)

where sth is the slip threshold, f is the fault current frequency, and flb and fub are the

lower and upper bounds of the frequency, respectively. The threshold value is set based on

the fault response of the test system.

Two binary variables, SRij and SRji, are defined based on the frequency of the fault

current measured at Rij and Rji. When the fault current frequency measured at Rij is

within the range defined in (3.10), SRij would be set to zero, while it will become one if the

fault current frequency is out of the range defined in (3.10). There is a similar expression

for SRji based on the fault current frequency measured at the relay at the remote end of

the line. SRij (SRji) signal is sent to the other side of the line via the communication

link to make a decision regarding the location of the fault. Figure 3.11 shows the direction

of the fault currents as well as SRij and SRji values after the occurrence of a fault at

three different locations.

After a fault, three scenarios may occur;

1. SRij = SRji = 0

In this scenario, the fault current frequency measured at Rij and Rji is within the

range defined in (3.10). This scenario will happen if

(a) A reverse fault occurs behind relay Rij regardless of the DFIG’s slip and the

fault type, or

(b) the current frequency measured at Rij and Rji is within the range defined in

(3.10), regardless of the fault location.

In the case of a reverse fault, the fault currents measured by both relays are injected

by the ac grid and therefore the current frequency is 60 Hz. Furthermore, regardless

of the fault location, if the fault current frequency measured at both relays is close

to 60 Hz, SRij = SRji = 0. Therefore, in this scenario, since the fault current

frequency calculated by both relays are within the range of (3.10), the impact of
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Figure 3.11: SRij and SRji signals after the occurrence of a balanced (a) reverse fault,

(b) internal fault, and (c) external fault.

DFIG-based WF on the operation of Rij and Rji will be the same as the fixed-

speed SCIG-based WF. Thus, the modified distance element type I presented in

Section 2 can be used for protecting the line connected to the DFIG-based WF.

2. SRij = 1 & SRji = 0

In this scenario, the current frequency measured at Rij is out of the range defined

in (3.10). This scenario happens when an internal balanced fault occurs on the

transmission line and the generator slip is out of the range defined in (3.9). Also,
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Figure 3.12: Logic diagram for fault type identification implemented at Rij.

this scenario might happen when a severe unbalanced fault occurs close to the DFIG

terminal and the generator slip is not within the range defined in (3.9). In this

scenario, an internal fault has occurred and the relays located at two ends of the line

must operate instantaneously.

3. SRij = SRji = 1

In this scenario, the fault currents measured at relays are injected by the DFIG-

based WF and the generator is operating with a slip out of the range defined in

(3.9). Therefore, the fault current frequency at both relay locations is out of the

range defined in (3.10). In this scenario, an external fault has occurred and the relay

at the terminal of DFIG-based WF should only provide backup protection.

3.4 Simulation Results

To investigate the performance of the modified distance element type II, the protection

scheme is implemented in the test system shown in Figure 3.1. The test system is studied
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Figure 3.13: Phase-A current under a balanced fault, an unbalanced fault, a load encroach-

ment, and a power swing condition.

under three conditions including short-circuit faults, power swings, and load encroach-

ments. Two fault scenarios, a balanced fault and an AG fault at the end of line ij at

t = 2 s with Rf = 1 Ω, are considered. To create a power swing condition in the system,

a transmission line parallel with line ij and with similar characteristics is added to the

system. Then, a balanced fault at the middle of the new line is initiated at t = 1.9 s and is

removed at t = 2 s by opening the circuit breakers located at the two sides of the new line.

For simulating the load encroachment condition, a new load (100 MW and 25 MVAR) is

connected to bus j at t = 2 s.

The phase-A current for the four scenarios are shown in Figure 3.13. Figure 3.13 shows

that the current waveforms associated with the power swing and load encroachment are

almost symmetrical about the x-axis; however, the current waveforms associated with the

balanced and unbalanced faults are asymmetrical about the x-axis due to the existence of

the decaying dc component in the waveform. According to Figure 3.14 which illustrates the

moving sum over one cycle of the waveforms shown in Figure 3.13, the value of the moving

sum over one cycle is significant for balanced and unbalanced faults while it can be neglected

for power swing and load encroachment scenarios. The reason for the unsymmetrical

waveform of the power swing scenario before t = 2 s is the existence of a fault on the new

line for creating the power swing after t = 2 s.

To investigate the performance of the second component of the modified distance el-
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Figure 3.14: The moving sum over one cycle under a balanced fault, an unbalanced fault,

a load encroachment, and a power swing condition.

ement type II, first, the slip range of (3.9) is identified. Based on the range, the proper

relaying algorithm is selected between the modified distance elements types I and II. When

the DFIG operates at a small slip value, the fault current of the DFIG is dominated by

the ac component at the synchronous frequency [23], [35]. Therefore, the frequency of the

fault current will be very close to the nominal frequency, resulting in the reliable operation

of the modified distance element type I. The upper bound of the slip range corresponds

to the maximum slip value associated with the reliable operation of the modified distance

element type I. In other words, when the DFIG operates at any slip value lower than the

upper bound, the impedance trajectory associated with a balanced fault in zone 2 of Rij

will remain in zone 2 for sufficient time such that the modified distance element type I can

reliably detect the fault.

On the other hand, the upper bound of the slip range should be selected to be large

enough so that there is enough frequency deviation in the fault current for the reliable

operation of the modified distance element type II. In other words, when the DFIG operates

at any slip value higher than the upper bound, the proper values are assigned to SRij and

SRji such that the modified distance element type II can reliably identify the type of the

fault, i.e. reverse, internal, or external. Figure 3.15 illustrates the fault current frequency

associated with three different faults when the DFIG operates at s = −3%: a balanced

reverse fault at the DFIG terminal, a balanced internal fault at the end of line ij, and a
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Figure 3.15: Frequency of Iij for three fault scenarios (s = −3%).

balanced external fault at 50% of line jk. The selected faults occur at the end of each zone,

results in the smallest magnitude of the current component with the off-nominal frequency

compared to other faults in that zone. According to Figure 3.15, the difference between

the fault current frequency associated with these faults is about 1.3 Hz, which results

in enough frequency deviation of the fault current for reliable operation of the modified

distance element type II. Therefore, sth = 3% is selected as the upper bound, i.e. the

threshold value, of the slip range to ensure the modified distance elements types I and II

have a reliable performance during a fault (fub = 61.8 Hz and flb = 58.2 Hz).

To ensure the modified distance element type I can reliably identify all balanced faults

in zone 2, the shortest time period for which the impedance trajectory remains in zone 2

for an uncleared balanced fault is determined. As the DFIG operates in both super- and

sub-synchronous speeds, the critical scenarios for each operating mode should be selected

and among them, the shorter time period for which the impedance trajectory remains in

zone 2 is used to select the relay threshold K. Therefore, the slip range selected for the

operation of the modified distance element type I is divided into two parts, −sth ≤ s ≤ 0

and 0 ≤ s ≤ sth.

For both operating modes of the DFIG, the critical fault scenario is associated with

a balanced fault at the end of zone 2 (50% of the largest adjacent line). This scenario is

selected as the critical scenario because it is associated with the smallest fault current. As

explained in Chapter 2, a smaller fault current results in a larger Zext
error in (2.4) and conse-
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Figure 3.16: Impedance trajectories calculated by Rij for a balanced external fault at 50%

of the line jk for s = −3% and s = 0%.

quently, faster departure of the impedance trajectory from zone 2 in the R-X diagram. The

fault current is also inversely proportional to (1− s). Therefore, for the super-synchronous

mode of the generator at s = −3%, the fault current will have a smaller value and conse-

quently, the impedance trajectory will immediately leave zone 2 in the R-X diagram. Also,

for the sub-synchronous mode of the generator at s = 0%, the fault current will have a

small magnitude resulting in the fast departure of the impedance trajectory from zone 2.

Figure 3.16 illustrates the impedance trajectories associated with these two critical

fault scenarios that are measured by Rij. During the super-synchronous operation of the

generator, the impedance trajectory enters zone 2 and remains within zone 2 for ∆TR2 =

96 ms and then incorrectly enters zone 1. For the sub-synchronous operation of the

generator, on the other hand, the impedance trajectory enters zone 2 and remains within

zone 2 for ∆TR2 = 82 ms and then leaves the relay zones. Therefore, K = 82 ms is selected

for distance element type I.

To evaluate the performance of the fault type identification component, four fault

conditions are studied:
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• Balanced reverse fault

As the fault current at the two ends of line ij is injected by the ac grid, the slip value of

the DFIG does not affect the frequency of currents measured at Rij and Rji; therefore,

this scenario can be evaluated for any generator slip value. A balanced reverse fault on the

terminal of the DFIG-based WF with Rf = 1 Ω is studied when the generator is operating

at s = −20%. The phase-A fault current measured at Rij and Rji are depicted in Figure

3.17. Figure 3.17 shows that the fault current magnitudes have a significant increase after

the onset of the fault and they reach around 18 p.u. The current waveforms consist of

a dc component during the fault, but no substantial damping is observed as the currents

measured at both relays are injected by the ac grid. The fault current frequency observed

by both relays remains near 60 Hz, Figure 3.18, resulting in SRij = SRji = 0. In this fault

condition, a conventional distance element can be used for the fault detection. According

to Figure 3.18, the first frequency sample calculated right after the fault is not a good

representation of the current frequency during the fault as it is based on one-cycle of the

current measurement, where the first half-cycle corresponds to the pre-fault period and

the second half-cycle is associated with the fault duration. Therefore, SRij (SRji) signal

becomes one only if the measured frequency is out of the pre-defined range of (3.10) for

more than one sample. The impedance trajectory calculated by Rij is shown in Figure

3.19. The impedance trajectory lies in the third quadrant of the R-X diagram without

incorrectly entering zones 1 and 2 of the distance relay.

• Balanced internal fault for the generator operation at low slip values

For this fault condition, a balanced fault at the end of line ij is studied when the generator

is operating at s = −3% as this is associated with the maximum deviation of the fault

current frequency from the ac grid frequency as well as the lowest current value for | s |≤ sth

based on (2.4). In this fault condition, the fault current measured at Rij is injected by

the DFIG-based WF, while the fault current measured by Rji comes from the ac grid.

According to Figure 3.20 that depicts phase-A current measured at Rij and Rji, there is

a significant damping in the fault current of Iij. Figure 3.21 shows the frequency of the

fault currents Iij and Iji. The frequency of both Iij and Iji remains within the pre-defined
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Figure 3.17: Fault currents measured at Rij and Rji for a balanced reverse fault (s =

−20%) at the terminal of the DFIG-based WF.

Figure 3.18: Frequency of Iij and Iji for a balanced reverse fault (s = −20%) at the

terminal of the DFIG-based WF.

frequency bounds and only leaves the bounds for one sample; therefore SRij = SRji = 0.

Hence, the modified distance element type I, presented in Chapter 2 for fixed-speed SCIG-

based WF, can be used to detect the fault. The impedance trajectory calculated by Rij

is depicted in Figure 3.22. The impedance trajectory correctly enters zone 2 and remains

within zone 2 for 158 ms, and then incorrectly enters zone 1. Since the impedance trajectory

remains in zone 2 for more than k = 74 ms, the fault current waveform will be tracked

to provide the proper coordination between Rij and downstream relays (Rjk and Rjl).

Based on Figure 3.20, the current waveform of Rij keeps damping for more than 300 ms
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Figure 3.19: Impedance trajectory calculated by Rij for a balanced reverse fault (s =

−20%) at the terminal of the DFIG-based WF.

Figure 3.20: Fault currents measured at Rij and Rji for a balanced fault at the end of

line ij (s = −3%).

(the time delay setting for the backup zone), resulting in the proper operation of Rij after

this time delay.

• Balanced internal fault for the generator operation at high slip values

In this fault condition, an internal fault at the end of line ij is studied when the generator

is operating at s = −30%. This fault condition is the one which results in the maximum

fault current frequency deviation as well as the lowest fault current value. Figure 3.23
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Figure 3.21: Frequency of Iij and Iji for a fault at the end of the line ij (s = −3%).

Figure 3.22: Impedance trajectory calculated by Rij for a balanced fault at the end of the

line ij (s = −3%).

illustrates the inability of the conventional distance relay to measure the correct impedance

from the relay location to the fault location due to the off-nominal frequency of the fault

current injected by the DFIG-based WF. Figure 3.24 depicts the frequency of fault current

waveforms at the two ends of line ij. According to Figure 3.24, the frequency of the fault

current measured at Rij deviates significantly from the nominal frequency and is out of

the frequency bounds (flb ≤ fij ≤ fub) for more than one sample, while the fault current

frequency at Rji remains within the frequency bounds. Therefore, SRij = 1 and SRji = 0,

which results in correct identification of the internal fault by Rij and Rji.
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Figure 3.23: Impedance trajectory calculated by Rij for a balanced internal fault at the

end of line ij (s = −30%).

Figure 3.24: Frequency of Iij and Iji for a balanced internal fault at the end of line ij

(s = −30%).

• Balanced external fault in zone 2 of Rij

In this fault condition, a balanced fault at 50% of line jk is studied when the generator

operates at s = −30% in which the fault current measured by Rij has the maximum

frequency deviation and the lowest value for an external fault in zone 2 of Rij. The

impedance trajectory is shown in Figure 3.25. Although this is an external fault in zone 2

of Rij, the impedance trajectory enters zone 1 and therefore, a conventional distance relay

fails to identify the fault in the second zone correctly and loses the coordination with relay
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Figure 3.25: Impedance trajectory calculated by Rij for a balanced external fault at 50%

of line jk (s = −30%).

Rjk. In this fault condition, the frequency of the fault current waveforms, shown in Figure

3.26, deviates from the nominal frequency and is out of the frequency bounds. Therefore,

SRij = SRji = 1, and the fault is correctly identified as an external fault.

• Unbalanced external fault

In this fault condition, an ABG fault at the beginning of line ij is studied when the

generator operates at s = −30%. The frequency of the fault currents Iij and Iji are

depicted in Figure 3.27. The frequency of both Iij and Iji remains within the pre-defined

frequency bounds and only leaves the bounds for one sample after the fault; therefore

SRij = SRji = 0. Hence, the modified distance element type I is used to detect the fault.

The impedance trajectory measured by Rij for this fault condition is already illustrated

in Figure 3.9. The impedance trajectory correctly enters zone 2 and remains within zone

2. Therefore, the relay at the terminal of the DFIG can be correctly operated as a backup

for the downstream relays.
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Figure 3.26: Frequency of Iij and Iji for a balanced external fault at 50% of line jk

(s = −30%).

Figure 3.27: Frequency of Iij and Iji for an ABG fault at the beginning of line jk (s =

−30%).

3.5 Summary

Because of the ability of the DFIG to operate during sub- and super-synchronous con-

ditions, the slip of the generator changes in the range of ±30%. The change in the slip

of the DFIG affects the frequency of the fault current and it deviates from the nominal

frequency during the occurrence of a fault. On the other hand, the frequency of the voltage

remains near the nominal frequency. Hence, the off-nominal frequency of the fault current

captured by the relay at the DFIG-based WF substation leads to significant changes in the
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impedance trajectory calculated by the relay, resulting in the loss of coordination between

the adjacent relays.

The modified distance element type II provides reliable protection over the entire length

of the transmission line connected to the DFIG-based WF with the minimum bandwidth re-

quirement. Furthermore, the modified distance element type II can provide proper backup

protection for the adjacent lines with the help of the modified distance element type I

which was developed in Chapter 2.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

The development of WFs is experiencing considerable growth worldwide. The large inte-

gration of WFs into the power systems will result in various challenges in the protection

systems. In this dissertation, the impacts of DFIG-based WFs on the protective relaying

systems have been investigated. The studies also covered fixed-speed SCIG-based WFs due

to the same expression of the fault current injected by a DFIG and a fixed-speed SCIG.

The studies were based on time-domain simulations of the fixed-speed SCIG- and DFIG-

based WFs in the PSCAD/EMTDC environment and processing of the waveforms in the

MATLAB environment. This study focused on i) demonstrating the negative impacts of

IG-based WFs on the performance of conventional distance relays and ii) developing two

modified relaying algorithms to overcome the identified protection challenges associated

with conventional distance elements.

According to the constant flux linkage theorem, an fixed-speed SCIG can be modeled

as a voltage source in series with an impedance immediately after a balanced fault. After

the onset of a balanced fault, the fault current injected by the fixed-speed SCIG-based WF

rises significantly. For a few cycles after the fault inception, due to the voltage drop at

the terminal of the SCIG, the machine air-gap flux decreases gradually, which results in
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the fast damping of dc and ac components of the fault current. Finally, the fault current

reaches zero after several hundred milliseconds due to the complete demagnetization of the

core of the SCIG. Reduction in the fault current leads to an increase in the impedance

error calculated by the impedance relay at the SCIG-side terminal as the impedance error

is inversely proportional to the fault current magnitude. The fault current reduction will

be problematic when the location of the balanced fault is in zone 2 of the distance relay.

In this situation, due to a large impedance error, the impedance trajectory leaves zone 2

of the distance relay before the time delay that is for the operation of the zone 2 element.

The impedance trajectory may either enter zone 1 or leave the protection zones depending

on the active and reactive power exchange between the SCIG and the ac grid. Assuming

the impedance trajectory enters zone 1, the coordination between the distance relay at the

SCIG terminal and the downstream relays will be lost, resulting in an incorrect operation

of the impedance relay. Furthermore, the impedance relay at the SCIG terminal cannot

provide proper backup protection for the adjacent line if the impedance trajectory leaves

the relay’s zones. For an unbalanced fault, the impedance trajectory will not leave zone 2

as the current magnitude does not immediately decay to zero, which will result in proper

backup protection for the adjacent line. The reason is that the air-gap flux during the

unbalanced fault scenario does not decrease as much as the balanced fault scenario due to

the higher voltage values in the healthy phases. It should be noted that the aforementioned

problem occurs for distance relays at the terminal of DFIG-based WFs when the DFIG is

operating at close-to-zero slip.

The expression of the fault current injected by a DFIG-based WF is similar to that of

a fixed-speed SCIG-based WF in case of the crowbar circuit activation during a balanced

fault. However, the frequency of the ac component of the fault current depends on the

machine slip. Since the slip of a DFIG changes in the range of ±30%, the frequency of

the fault current changes in the range of 42-78 Hz for a 60 Hz system. On the other hand,

the frequency of the voltage at the relay location during a balanced fault is dictated by

the ac grid and remains within a narrow margin of the nominal frequency. As a distance

relay operates based on the fundamental frequency components of voltage and current,

the unequal value of the voltage and current frequencies prevents the distance relay to

calculate a meaningful impedance. Hence, the impedance trajectory calculated by the

60



distance relay will be chaotic and unreliable. This condition will be problematic when a

balanced fault occurs on the adjacent line, where it is protected by zone 2 of the distance

relay. In this situation, the impedance trajectory may enter zone 1, which results in loss of

coordination between the distance relay at the DFIG terminal and the downstream relays.

A distance relay at the terminal of a DFIG-based WF may experience the same situation

as that of a balanced fault when an unbalanced fault occurs close to the DFIG (in zone 1).

After the onset of an unbalanced fault, the magnitude of the decaying ac component of the

fault current at the rotor frequency will be considerable. In this situation, the decaying

ac component at the rotor frequency will affect the fault current frequency; therefore, the

impedance trajectory calculated by the distance relay at the DFIG terminal may experience

an unreliable behavior. However, this will not have a drastic effect on the performance

of distance relays as the impedance trajectory enters zone 1 of the relay and leads to the

instantaneous operation of the relay. Unbalanced faults in zone 2 of the relay do not

result in large current components with the rotor frequency and therefore, do not affect

the operation of conventional distance relays.

To overcome the protection challenge associated with the operation of distance relays

at the terminals of fixed-speed SCIG or DFIG-based WFs in case of a balanced fault in

zone 2, a new relaying algorithm requiring only local measurements called modified distance

element type I was presented in Chapter 2. To detect a fault, the modified distance element

type I uses the impedance measured at the relay location together with the phase fault

current waveform injected by the SCIG or DFIG. After the onset of a balanced fault, the

apparent impedance measured by the relay is used to differentiate between balanced faults

in zones 1 and 2 of the relay. Then, the damping characteristics of the fault current injected

by the fixed-speed SCIG- or DFIG-based WF are used to provide reliable coordination

between the distance relay at the SCIG or DFIG terminal and the downstream relays.

To protect the transmission lines connected to a DFIG-based WF, a new relaying

algorithm, with minimum bandwidth requirements, called modified distance element type

II was presented in Chapter 3. The modified distance element type II uses the time-

frequency curves, extracted from the fault currents measured at the distance relays at

the two ends of the transmission line connected to a DFIG-based WF, to distinguish

between internal and external faults. The developed algorithm provides reliable operation
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for different types of short-circuit faults.

4.2 Future Work

In this dissertation, a number of protection challenges associated with the integration of IG-

based WFs into the power system are investigated. The remaining protection challenges in

systems with integrated WFs should be explored in future researches. The future research

directions may include

• The effects of converter-interfaced synchronous generator (CISG)-based WFs on dis-

tance relays,

• Evaluating the impacts of WFs on the protection relays in distribution systems and

microgrids,

• Performance evaluation of wide-area protection systems in the presence of WFs.
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