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Abstract 

Superoxide dismutase 1 (SOD1) is a metalloenzyme ubiquitously expressed in all cells 

and acts as an antioxidant enzyme by catalyzing the dismutation of superoxide radicals. Several 

mutations in the gene encoding SOD1 are linked to the fatal neurodegenerative disease, 

Amyotrophic lateral sclerosis (ALS). Despite this connection, there is no clear relationship 

between any quantifiable properties of SOD1 and ALS disease characteristics. One of the key 

hallmarks of ALS is the formation of SOD1 aggregates in motor neurons. The unfolded SOD1 

goes though several post-translational modification steps in vivo, that includes metal binding, 

disulfide bond formation, and dimerization, to reach its final maturation form which is a stable 

homodimer. While the mature SOD1 is highly stable, the immature state of SOD1 (E,E SOD1SH) 

is prone to misfold and aggregate, thereby potentially play a critical role in the disease 

pathology.  

Here, we have developed a quantitative dot blot technique to characterise the aggregate 

structures of several immature SOD1 mutants using four conformation-specific antibodies. These 

antibodies can only bind to misfolded conformations of SOD1 upon exposure of their binding 

epitope regions which stays typically buried in the native structure of the protein. The aggregates 

were prepared in the form of inclusion bodies using the E. coli expression system grown in 

minimal media. Our results show that different SOD1 mutants exhibit a variable extent of 

binding to the conformation-specific antibodies, suggesting that SOD1 is displaying mutation-

dependent conformational prion-strain behaviour by aggregating into distinct conformations. 

Hence, the developed quantitative dot blot protocol has provided valuable information on the 

mechanism of SOD1 aggregation and could potentially be expanded to study aggregate 

structures of other forms of SOD1 as well as several other proteins that are linked to other 

neurodegenerative diseases. 
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1 Introduction: 

1.1 Protein folding, misfolding and aggregation 

1.1.1 Protein folding 

Proteins are large organic macromolecules that are found in all forms of life on Earth. 

They are synthesized as a linear chain composed of individual amino acids that are covalently 

linked through peptide bonds. This linear polypeptide sequence is called the primary structure of 

the protein. This linear chain may fold into a complex and specific three-dimensional native 

protein structure1. The process of protein folding from its initial unfolded chain to its native state 

is complicated and influenced by various factors2. Multiple hypotheses have been proposed to 

explain this complex and precise folding process3. While none of these theories has been able to 

explain the process entirely, they certainly provide us with a better understanding of the factors 

involved in protein folding and pave the way for more advanced models. 

One of the pioneering theories of protein folding is known as the classical model. It states 

that the protein folds along a distinct pathway, forming clearly defined intermediate structures 

before it ultimately achieves its final native fold3. This model is based on Levinthal’s paradox 

that states that there is no undirected folding process for proteins, as the time it would take a 

protein to randomly sample every potential conformation before finding its native structure is 

longer than the current age of the universe4. This theory was also supported by the parallel work 

of Anfinsen who observed during his research work on ribonuclease that protein folding was a 

quick process5. It led to the idea that the primary sequence of the protein ultimately determines 

its three-dimensional native structure and folds through predetermined intermediates, rather than 
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randomly sampling available conformations; this idea is known as Anfinsen’s dogma or the 

thermodynamic hypothesis. 

As per Anfinsen’s dogma, the formation of native protein structure requires three 

conditions to be fulfilled: 1) a unique structure at a global free energy minimum; 2) a stable 

structure that is unaffected by minute changes in the surrounding system, and 3) a structure 

obtainable through a kinetic pathway3,5. Building on this model, several new models on protein 

folding began to develop. One of the most accepted models is called the energy landscape 

model6, according to which an unfolded protein has multiple folding pathways and potential 

intermediates early in the folding process, but as the protein acquires a more native-like state, 

there are fewer intermediates available to sample (Figure 1.1 B). The initial unfolded structure 

contains a certain degree of information to start the folding process, which often involves 

hydrophobic collapse. Early specific side-chain interaction in the secondary structure, as well as 

physiological conditions can provide more sampling limitation in this folding process, essentially 

making it more defined and efficient.  
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Figure 1.1: Protein folding models. (A) The classical view of a defined folding pathway. (B) 

the new view of multiple routes through a funneled energy landscape model. Image adapted from 

Englander et al.3. 

 

1.1.2 Protein misfolding and aggregation 

 The complex and intricate process of protein folding is strongly influenced by the cellular 

environment and proceeds under the influence of other partner proteins in oligomeric assemblies 

and of molecular chaperones and folding catalysts7,8. However, error during this folding process 

leads the protein to misfold. Protein misfolding generally includes misfolded or long-lived partly 

folded states that form during conformation sampling and/or as a result of genetic mutation3,9. 

There are several structural and cellular factors known to increase the probability of a protein to 

misfold. Some of these factors include the folding intermediate stabilized through non-native 
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long-range interactions10, the partially folded regions of protein interacting with other cellular 

molecules during translation11,12, failure of protein quality control system such as the ubiquitin-

proteasome complex and molecular chaperones13,14,15. Variation in several environmental factors 

like temperature, pH, oxidative stress, abnormal presence of metal ions is also known to promote 

protein misfolding16–19. Misfolded or partially folded proteins often contain solvent-exposed 

hydrophobic residues which is in contrast with natively folded structures where these residues 

are more buried inside the protein structure20. Surface hydrophobic interaction between these 

misfolded species generally leads to higher-order non-native structures, also known as protein 

aggregates21. 

 The formation of protein aggregates can be considered as a series of sequential and 

parallel events. Usually, aggregation starts with the protein molecule adopting an alternate 

conformation as mentioned before that may allow partial exposure of aggregation-prone 

sequence(s). Such aggregation-prone monomers are highly vulnerable to non-native protein-

protein interactions at some level, leading to the initial formation of a non-native dimer or 

oligomer, subsequent aggregate growth or polymerisation, and eventually the formation of 

visible as well as subvisible particles due to limited solubility and/or sedimentation22–25. The 

non-native interactions that lead to the formation of higher-order structures could be through 

covalent bonds such as disulfide bonds between free cysteines and/or non-covalent interactions 

such as van der Waals contacts and hydrophobic interactions9,26. As the non-native protein 

conformation is considered as the initiator, the formation of aggregates is generally correlated 

with the stability and flexibility of the native protein structure27,28. Formation of oligomeric 

structures from these misfolded conformations is generally a concentration-dependent process29–

31, and the size of these oligomers range from dimers to multimers (e.g decamers)32. These 
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oligomers are thought to be the nucleation site for starting the aggregation process by recruiting 

other misfolded as well as natively folded protein molecules or interacting with other oligomers 

or a combination of both33,34. This can be modelled onto the energy landscape model, as 

illustrated in Figure 1.2. The aggregates show high variation in their stability and their structures 

vary from highly disorganized amorphous oligomers to highly organized amyloid fibrils with 

well-ordered straight fibrillar structure, composed of protofilaments6,11,35. Many studies on 

mouse models as well as patient samples have found the presence of protein aggregates in 

neurodegenerative diseases36, the ageing process37,38, and enhanced cytotoxicity39. Aggregates 

can be formed in the neuronal cells and propagate trans-cellularly40 which is associated with the 

progression of neurodegenerative disorders such as Alzheimer’s and Huntington’s diseases and 

Amyotrophic Lateral Sclerosis (ALS)41–43, the last being the disease of focus for this thesis. Due 

to the association of aggregate structures with these fatal diseases, it is imperative to have a 

detailed structural characterization of these aggregates. Such findings will not only help us 

advance our understanding of the fundamental principles that govern protein aggregation but also 

contribute to developing therapeutic strategies to prevent the associated diseases. 
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Figure 1.2: Aggregation mechanism modelled to energy landscape model. The diagram 

illustrates various pathways a misfolded protein could take to form higher order oligomeric and 

aggregate structures. These pathways are mapped onto the energy landscape model of protein 

folding. Image adapted from Jahn et al.44. 

 

1.2 Neurodegenerative disease and protein aggregation 

Neurodegenerative diseases have been a significant focus in the scientific and medical 

community, considering the growing age of the world population. These diseases are generally 

characterised by the selective and progressive loss of neurons, leading to the development of 

neurological dysfunction, which can include memory, behavioural, and movement deficits45. A 

classic hallmark of neurodegenerative diseases is the formation of aggregates of one or multiple 

proteins which are formed in the intracellular space or extracellularly, with transmission to other 

neuron cells46. Factors like mutation as well as chemical modification such as the addition of 
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poly-glutamine repeat expansion in the protein sequences are generally linked with the 

progressive formation of these aggregates47,48. However, it is widely thought that the formation 

of aggregates is the end-point result with the soluble oligomers and misfolded protein species 

being crucial cytotoxic agents in these diseases49,50. Still, the mechanism of aggregate formation 

and their role in the disease pathogenesis is not clearly understood yet. There is also growing 

evidence of these aggregates exhibiting prion-like conformation and transcellular propagation 

which is described in detail in Section 1.2.5. 

1.2.1 Amyotrophic Lateral Sclerosis 

Amyotrophic lateral sclerosis (ALS) is a fatal degenerative motor neuron disease 

typically with an adult-onset. It has been characterized by the loss of motor neurons in the 

brainstem, spinal cord and motor cortex51–53. This leads to the loss of vital muscle control, often 

resulting in death due to respiratory failure54. While typical disease duration is 3-5 years, the 

onset and disease duration is highly variable, indicating multiple factors being involved in its 

pathogenesis.  

ALS cases may be grouped into sporadic (sALS) which accounts for 90% of all cases and 

have no known cause and familial (fALS) which is known to have a genetic basis51,52. 

Approximately 15-20% of all fALS cases are linked to mutations in a protein called Cu, Zn 

superoxide dismutase 1 (SOD1)51. Currently, over 180 mutations in SOD1 are known to be 

associated with fALS (http://alsod.iop.kcl.ac.uk). These mutations are spread throughout the 

structure of the protein, and each mutation is associated with different average disease duration. 

There is nevertheless large heterogeneity in the disease duration even for a given mutation55. 

Despite very extensive investigations, a clear relationship between the biophysical properties of 

SOD1 mutants and ALS disease characteristics has not been found51. Mutation in SOD1 is 
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generally thought to promote misfolding of the protein and subsequence aggregation. Hence, 

characterization of the aggregate structures formed by these different mutants is critical to 

advance our understanding of the aggregation mechanisms and their role in disease pathogenesis.   

 

1.2.2 Cu, Zn Superoxide dismutase 1 (SOD1) 

 In order to understand the pathology of SOD1-mediated ALS, it is critical to understand 

the structure and function of the protein. SOD1 is generally located in the cytoplasm and the 

mitochondria of the cell56–58, but under stress, it is also found in the nucleus. The mature form of 

the protein forms a 32 kDa homodimer with each subunit comprised of 153 amino acids59,60 

(Figure 1.3). Each monomer is formed of eight antiparallel β-stands that create a Greek key β-

barrel containing an intra-subunit disulfide bond between Cys57 and Cys146, one Zn and one Cu 

ion. SOD1 also contains two functional loops per monomer, the electrostatic loop and the Zn 

binding loop. The electrostatic loop is responsible for guiding the superoxide to the active site 

where the catalytic copper is present and coordinated by His46, His48, His63 and His120 

residues. The zinc-binding loop contains His63, His71, His80 and Asp83 residues which are 

responsible for coordinating with the zinc ion that is known to provide structural stability61.  
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Figure 1.3: Ribbon structure of holo SOD1. Both monomers are shown in ribbon form. Zn 

(Black) and Cu (Cyan) are shown on the monomer on the left along with its coordinating 

residues. The Zinc-binding loop (blue) and electrostatic loop (red) are shown. Image is generated 

in Chimera (version 1.14) protein visualisation software using PDB ID: 1HL5. 

 

SOD1 acts as an antioxidant enzyme by scavenging the toxic superoxide (O2
-) radical that 

is formed as a natural by-product of many cellular processes51,58. SOD1 converts this free radical 

into molecular oxygen and hydrogen peroxide through a two-step ping-pong mechanism62 

(Figure 1.4). In the first step, Cu2+ is reduced by a superoxide molecule, generating dioxygen 

(O2) and Cu1+. The Cu1+ is then re-oxidised by a second equivalent of superoxide, that results in 

the regeneration of Cu2+ and formation of hydrogen peroxide.  
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Figure 1.4: Ping pong mechanism of SOD1 activity. SOD1 utilizes a ‘Ping-Pong’ type 

reaction to catalyze the conversion of one equivalent of superoxide into molecular oxygen by 

reducing Cu(II) to Cu(I) ion and the second equivalent of superoxide into hydrogen peroxide by 

oxidising Cu(I) to Cu (II) ion. Image has been adapted from Rakhit et al.63 

 

1.2.3 SOD1 and ALS 

 The role of mutation in the SOD1 gene was linked to ALS by Rosen et al. 64 in 1993. 

Since then, over 180 mutations dispersed throughout the structure of the protein were linked with 

the disease, as mentioned above. Initially, it was thought disease resulted from the loss of 

protective function in SOD1 mutants65, 66. But later it was shown that several fALS associated 

SOD1 mutants retain WT like activity but still promote disease progression67–69.  Further, SOD1 

knockout mice do not develop ALS symptoms70, but upon expression of a mutant SOD1 protein, 

mice develop disease phenotype. This suggests a gain of toxic function rather than loss of native 

activity by SOD1 mutants70,71. However, the mechanism mediating the gain of toxic function is 

not well understood yet. The mutants have shown to induce their toxicity by endoplasmic 

reticulum stress72,73, mitochondrial dysfunction74, and glutamate toxicity75.  
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Given the fact that protein aggregation has been reported to play a crucial role in the 

onset and progression of various neurodegenerative diseases, it is tempting to formulate that ALS 

follows a similar mechanism. Studies showed the presence of SOD1 aggregates in ALS patients 

and mouse models further support this idea76,77, and the formation of these intracellular 

aggregates is the prominent hypothesis for SOD1-linked fALS onset and progression78. 

However, reports on the cytotoxic effect of soluble oligomers as well as prefibrillar structures 

have indicated their dominant role in causing the disease and suggested that aggregates might be 

the final stage of the disease progression79. It is also hypothesized that aggregates are formed as a 

protective cellular response, actively carried out by various cellular machinery80. Interestingly, 

the stability of the mutant protein or its propensity to form an aggregate is not strongly correlated 

with the disease duration55. A prime example of this is the V148I mutant, which has a short 

disease duration of ~1.7 years but is more stable than WT SOD1 with similar aggregation 

propensity81. Despite various biophysical studies on these aggregates, there has been no 

quantifiable property(s) which is directly correlated with the disease duration. Further, the 

aggregates found in ALS models are also reported to be composed of immature forms of SOD1 

which indicates that the protein has the propensity to misfold during its maturation process and 

form non-native interactions with other molecules82. Hence, a structural investigation of these 

higher-order oligomer and aggregate structures formed by various states of mutant SOD1 protein 

molecules is imperative. It would help shed more light on the role of SOD1 in the disease and 

potential development of effective therapeutic methods which are currently very limited83. 
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1.2.4 SOD1 maturation 

 SOD1 undergoes multiple post-translational maturation steps to reach its fully mature or 

holo form (Figure 1.5). The most immature state of the protein reduced apo SOD1 with empty(E) 

metal-binding sites (E, E SOD1SH) and lacking the internal disulfide linkage preferentially exists 

as a monomer. The reduced apo SOD1 is thought to bind the structure stabilizing Zn through an 

unknown mechanism and forms the intermediate Zn bound reduced apo species (E, Zn SOD1SH). 

Further modifications include the addition of catalytic Cu and the formation of the internal 

disulfide bond between Cys57 and Cys146. Previous studies have shown that the maturation of 

SOD1 is a sequential event84. However, the exact order of events and their role in SOD1 stability 

are ambiguous. One of the well-studied processes is the addition of Copper which is mediated by 

the copper chaperone protein for superoxide dismutase 1 (CCS)62,84. CCS has also been reported 

to catalyze the formation of an internal disulfide bond85 as well as promote Zn binding86. Though 

there are also studies on CCS-independent Cu addition87, the chaperone-mediated mechanism is 

thought to occur in most of the cases. The final, mature holo state of SOD1 is denoted as Cu, Zn-

SOD1SS.  
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Figure 1.5: Maturation steps of SOD1. E,E-SOD1SH, which is favored to exist as a monomer, 

obtains a stabilizing zinc ion cofactor to form E,Zn-SOD1SH. This form then interacts with CCS 

to acquire a catalytic copper ion and to oxidize the disulfide bond between Cys57 and Cys146. 

This forms the mature protein, Cu, Zn-SOD1SS.  

 

 The maturation process of SOD1 provides structural stability and confers enzymatic 

activity. DSC (Differential Scanning Calorimetry) studies have shown that the immature form of 

SOD1, E,E-SOD1SH, is only marginally stable with a melting temperature, Tm, of 47.6 °C, while 

the most mature form of the protein, Cu,ZnSOD1SS, has a much higher Tm of 92.7°C. Recent 

studies by Harmeen Deol in the Meiering group have shown the monomeric E,Zn-SOD1SH to 

have a Tm of about 57°C, indicating a more thermally stable structure than the metal-free variant, 

but less thermally stable than the mature form. The immature E,E-SOD1SH is known to be highly 

aggregation-prone most probably because of its low stability leading to a conformational change. 

In particular, loop regions in SOD1 lose their restraint and become significantly disordered upon 
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dissociation of metal ions and reduction of the disulfide bond to form fibrillar aggregates which 

is the classic hallmark of ALS disease88,89. Other studies have reported that different mutants of 

this immature state of SOD1 have different aggregation propensities and tend to form aggregates 

of varying size89. Notably, these aggregates can also act as seeds and induce aggregation of 

natively folded and other misfolded forms of SOD1. Such propagation is believed to be carried 

out in a manner that resembles prion-like conformational strain behavior of these immature 

and/or misfolded SOD1 species90. 

1.2.5 Prion like conformational strain behavior in ALS 

The classical understanding of the progression of infectious diseases mandated the 

presence of nucleic acid materials for continuous production of pathological protein molecules. 

This has since been challenged by the discovery of neurological disorders, also known as prion 

diseases, where the misfolded infectious protein molecule propagates its effect by transforming 

the natively folded proteins into the misfolded conformation and hence, does not require any 

nucleic acid to maintain its life cycle91. This model of propagation is currently implicated in 

various neurodegenerative disorders, providing a possible explanation of protein aggregation 

pathology and spatiotemporal distribution of these aggregates in the neuronal system observed in 

these diseases.  The process is understood by the initial monomeric protein misfolding leading to 

the formation of larger oligomeric structures which act as seeds to recruit other misfolded 

proteins as well as transform natively folded proteins into misfolded conformation and recruit 

them to form higher-ordered amyloid-like aggregate structures. Interestingly, various in vitro 

studies have shown that ALS-related proteins FUS92, TDP-4393 and SOD194–96 can form 

amyloid-like aggregates. It is important to note that different conformations of prion agents may 

have significant differences in their cytotoxic effect, abilities to recruit native protein, modes of 
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propagation, ability to counter cellular degradation machinery and these characteristics are used 

to define different “strains” of the prion97. Further, it has been established that the prion strains 

that are capable of dividing into a greater number of seeds are most capable of propagating98. 

Hence, the high levels of protein aggregates in the neuronal system provide evidence that motor 

neurons may be an efficient environment for ALS-associated prion-like seeds to form and 

propagate99.  

The first evidence that SOD1 may act in a prion-like manner was reported for various in 

vitro assays, where WT SOD1 and fALS-associated mutant SOD1 were used for aggregation 

studies. These studies were performed by destabilizing the native protein by chelating the metal 

content and reducing the disulfide bond94,96,100. The fact that these studies saw destabilization-

induced aggregate formation further supports the idea that the immature E,E-SOD1SH is critical 

as a primary aggregation substrate. The first cellular study to illustrate prion-like behavior of 

misfolded SOD1 species was carried out by the addition of recombinant SOD1 aggregates to 

cultured cells overexpressing SOD1 variants101. Here the aggregates entered the cells via 

micropinocytosis and induced aggregation of cytosolic SOD1. Further, it was established that the 

endogenous WT SOD1 becomes misfolded when an ALS-linked SOD1 mutant is overexpressed 

in the cultured cells102. One recent study has shown that these aggregates exit from the infected 

cells via extracellular vesicles called exosomes to propagate to other cells103. Evidence of prion-

like propagation was shortly followed by studies demonstrating different transmissible strains of 

SOD1. A 2016 study by Ayers et al.104 used a G85R mouse model which exhibits ALS 

symptoms that do not present until roughly 20 months of age and injected it with the spinal 

homogenates from paralyzed mice that carry the G93A mutation of SOD1. They saw that ALS 

symptoms were developed within 3-months post-injection supporting the idea that different 



16 
 

fALS related SOD1 mutants might possess different conformational strains which in turn results 

in different disease characteristics. Evidence of conformational strains was also shown by binary 

epitope mapping of insoluble materials from the spinal cord of transgenic mice expressing WT, 

G85R, D90A, or G93A SOD1 variants105. The study found the presence of two strains, denoted 

as strain A and strain B. WT, G85R and G93A samples were found to contain strain A 

aggregates whereas D90A samples were found to be either strain A or strain B. Additionally, 

strain B was correlated with rapid progression of the disease suggesting strain behaviour might 

be key to understand the heterogeneity in ALS pathology by various SOD1 mutants. In our 

current study, we investigated the structures of aggregates of SOD1 mutants formed in cells 

using E coli as the model system.

 

Figure 1.6: Prion like stain behaviour and strain propagation of SOD1. SOD1 can get 

misfolded at various points along its maturation process, leading to aggregation. The figure 

shows that this aggregation could propagate in a prion-like fashion. Figure adapted from 

McAlary et al.90 
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1.3 Structural characterization of fALS related SOD1 mutant aggregates 

1.3.1 Inclusion bodies 

Inclusion bodies (IBs) are large, dense aggregates located in the cytoplasm of the cell 

when a protein is overexpressed in a non-native host cell. Early on, it was considered as an 

obstacle in the heterologous expression technique when the protein of interest was accumulated 

in insoluble form leading to the formation of these inclusion bodies. However, in the last decade, 

various experiments showed functionally active or at least partially active polypeptides in 

bacterial inclusion bodies106,107 (Figure 1.7). Since then, the idea of IBs has completely changed 

and revolutionized the field108. Because of the convenience in manufacturing, storing and 

transporting IBs, they have now attracted significant focus from biotechnology industries as a 

tool for mass production of active enzymes109. A recent study has also shown artificial IBs as an 

efficient means for targeted drug delivery by utilizing IBs as slow protein-releasing 

aggregates110, making them a promising tool for biomedical applications. 

Our current understanding is that IBs can contain a variety of different states of the 

protein, including native structures, non-native structures, and aggregated structures, as shown in 

Figure 1.7. IBs have been proposed as an attractive model to study protein aggregation and 

increasingly used to predict the aggregation propensity of proteins related to various 

neurodegenerative diseases111,112. A study in 2012 by Invernnizi et al. showed the presence of 

polyglutamine repeats in their IBs, which also occur in proteins that form aggregates in 

Huntington’s Disease113. Another study reported that IBs that contain fungal prion proteins are 

dependent on the local cellular environment for aggregate propagation114. Previous work by 
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Dalia Naser and Susan Kelso in the Meiering lab has also used IBs to show different aggregation 

propensities of fALS mutant SOD1s both in the absence and presence of Zn.  Hence, IBs provide 

a robust tractable model to study the structure and mechanism of protein aggregation, which may 

also provide valuable information on aggregation associated neurodegenerative diseases. 

 

Figure 1.7: Inclusion body formation from different types of protein conformations. 

Inclusion bodies are formed as insoluble fraction due to protein misfolding. Several different 

conformations of the protein could be present in the inclusion body fraction. Image adapted from 

Groot et al.111. 
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1.3.2 Conformation-specific antibodies to investigate fALS mutant SOD1 IBs 

 The mature holoSOD1 (Cu, ZnSOD1SS) is a highly stable dimeric protein, and a lack of 

its proper maturation and/or mutation can promote the formation of a misfolded structure where 

regions that are usually buried become exposed. This phenomenon has led to the discovery of 

many conformation-specific antibodies against SOD1 misfolded structure74,115,116. As these 

antibodies are developed against epitopes in SOD1 that are generally buried in the folded native 

structure, they do not bind to the mature holoSOD1 but preferentially recognize those forms of 

SOD1 where the epitopes have increased exposure. Several monoclonal, as well as polyclonal 

antibodies, have now been developed against misfolded SOD1, and their corresponding epitopes 

span across the entire protein structure (Figure 1.8). 

 

Figure 1.8: Epitopes of anti-SOD1 antibodies. Various monoclonal (mAb) and polyclonal 

(pAb) antibodies have been developed. Their binding to the exon regions as well as secondary 

structure in SOD1 is shown. Out of all these conformation specific antibodies, four antibodies 

have been used in this study (SEDI, USOD, AMF7 and B8H10). AMF7 is a high purity antibody 

version of DSE2 and binds to the same epitope region. Figure adapted from Pickles et al.74 
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 Initially, these antibodies were developed for immunotherapy because of their specific 

interaction with misfolded SOD1 as well as their potential to become a safe drug that can cross 

the Blood-Brain Barrier and prevent neurotoxic misfolding and aggregation117–119. These studies 

showed that when misfolded SOD1s were targeted with some of these antibodies, it was 

effective in increasing mice life span as well as prevent cellular uptake of extracellular misfolded 

SOD1 species. The transgenic G93A mice were passively immunized with A5C3 and D3H5 

antibodies, and while A5C3 did not show any significant increase in the survival rate, D3H5 

extended the survival by 6-9 days118. A therapy based on adeno-associated virus-based delivery 

of D3H5 antibody also increased the life span of SOD1 G93A mice by up to 28%120. Recently, 

another group has reported the use of oligomer-specific antibody W20 that can target soluble 

misfolded G93A SOD1 and result in reduced SOD1 oligomer, increasing motor neuron 

survival121. Though these studies have shown antibody-based immunotherapy as a promising 

method, a comprehensive therapeutic is yet to be developed.  

 Apart from the biomedical application, conformation-specific antibodies have also been 

used to investigate the structure and cellular localization of misfolded SOD1 aggregates. A 2016 

study by Pickles et al. found that misfolded SOD1 aggregates preferentially localize in the spinal 

cord mitochondria122. They showed that these aggregates exist in different conformations as 

some highly reacted with AMF7, some with B8H10 and others with both. These different 

aggregates were primarily composed of immature SOD1 and showed spatiotemporal variation in 

their spinal cord localization, supporting the idea that misfolded SOD1 operates in different 

mechanisms depending on the conformational strain. Binary epitope mapping using antibodies 

that recognize short peptides within SOD1 have shown the presence of different strains in SOD1 

mutant mice model which was different from in vitro aggregates suggesting a key role of the 
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central nervous system in shaping the aggregation process105. A recent study has also used 

conformation-specific AMF7 and B8H10 antibodies to identify the interactomes that bind 

uniquely and commonly to different forms of SOD1 aggregates123. Other studies have used 

several antibodies to illustrate the prion-like propagation of SOD1 aggregates124, nuclear export 

of misfolded SOD1125 and recently, a role for misfolded SOD1 in sporadic ALS126 providing 

further understanding of SOD1-mediated disease pathology. However, these observations also 

demand robust methods which can quantitatively assess the structures of mutant SOD1 

aggregates in order to establish the strain behavior of the protein properly. In this thesis, I have 

developed a quantitative dot blot protocol to analyze the structures of immature SOD1           

(E,E SOD1SH) aggregates using four conformation-specific antibodies.  

 Immunoblotting techniques such as Western blot and dot blot are widely used and 

invaluable methods for quick and efficient detection of antibody binding to the desired sample. 

However, most of these studies are qualitative or semi-quantitative at best. Dot blot assays are 

one of the most straightforward methods for immunodetection. Samples are directly blotted onto 

either nitrocellulose or polyvinylidene difluoride (PVDF) membrane, which has high protein 

binding capacity. This is followed by incubation with primary and secondary antibodies and 

subsequent detection using either chemiluminescence or fluorescence. Studies have shown that 

SOD1 conformation-specific antibodies could be used to investigate the structural properties of 

different SOD1 states as well as aggregate structure. Using dot blot method, Pickles et al. have 

shown that the immature reduced apo E,ESOD1SH form of WT, A4V, G93A, G85R bind more 

strongly to the conformation-specific antibodies AMF7 and B8H10 than the oxidized apo 

E,ESOD1SS form and no significant signal is obtained for the mature holoSOD1122, confirming 

that the immature forms of SOD1 exist in the misfolded state. Dot blot technique has also been 
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used to investigate the change in in vitro aggregate structure over time127. In this thesis, a 

quantitative dot blot protocol is developed to investigate the structures of inclusion bodies 

formed by 11 SOD1 mutants grown using E. coli expression system in metal-free minimal 

media. The results indicate that SOD1 IB structures could be quantitatively characterized using 

this method. This study is carried out in parallel with a high-resolution Quenched Hydrogen-

Deuterium Amide Exchange NMR experiments by others in the Meiering group which are also 

developed to investigate these IB structures. Together, these methods provide valuable 

information on different aggregate strains of SOD1 mutants and potentially help explain strain-

dependent aggregation mechanism, cytotoxicity, and disease pathology. 

 

1.4 Thesis Objectives 

 Following the extensive research on SOD1 aggregates as described in the previous 

sections, this thesis aims to expand our knowledge on various immature SOD1 mutant aggregate 

structures. Inclusion bodies of 11 SOD1 mutants were prepared in E. coli cells grown in minimal 

media. The 11 mutants studied are WT, A4V, G37R, G41D, G41S, G85R, G93A, G93D, I113T, 

V148I and V148G. These mutants were chosen to account for the effect of mutation throughout 

the structure of the protein (Figure 1.9) and different mutations on the same residue of the 

protein. 
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Figure 1.9: Ribbon diagram of SOD1 showing the sites of mutations and antibody binding 

regions. 11 mutants under investigation are highlighted in purple and shown with arrows. 

Epitope regions of the four conformation-specific antibodies are coloured in one of the 

monomers (SEDI – Orange, USOD – Red, AMF7 – Blue and B8H10 – Magenta). The image is 

made using Chimera (version 1.14) protein visualisation software with PDB ID: 1HL5. 

 

The structure of the mutant aggregates was investigated using a quantitative dot blot 

technique that I developed to characterise mutant IBs binding with four conformation-specific 

antibodies SEDI, USOD, AMF7 and B8H10 which are known to recognize C-terminal dimer 

interface (aa 145-150), β-4 strand (aa 41-48), electrostatic loop (aa 125-142) and zinc-binding 

loop (aa 57-81), respectively (Figure 1.7). Some additional initial experiments to characterize 

various properties of the SOD1 inclusion bodies such as oxidation and homogeneity were also 

performed.  
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2 Materials and methods 

2.1 Chemicals 

 TEN buffer was prepared by adding 2.42g Tris (20mM), 372mg EDTA (1mM), 5.85g 

NaCl (100mM) in 1 litre Milli-Q (MQ) and the pH was adjusted to 8. TEN-T buffer was 

prepared by adding Tween 20 to a final amount of 0.05% (v/v) to TEN buffer and mixed 

overnight. Chelexed MQ was obtained by running MQ through a chelex column. 1% (w/v) BSA 

(Heat Shock Isolation, Fraction V. Purity 98%, BioShop Inc.) was used in the blocking buffer. 

SEDI and USOD were purchased from Stressmarq Biosciences Inc. and AMF7, B8H10 were 

generously provided by our collaborators. Secondary fluorescent antibody Starbright 700 was 

purchased from BioRad Laboratories Inc and Alexa 488, 680 samples were generously provided 

by our collaborators.  

2.2 Wild type (WT) and pseudo wild type (pWT) SOD1 

Wild-type human SOD1 has four cysteine residues, Cys-6, Cys-57, Cys-111, and Cys-

146. Cys-57 and Cys-146 form a conserved disulfide bond in the native structure. However, in 

vitro experiments showed that the free Cys-6 and Cys-111 could form aberrant disulfide bonds, 

resulting in irreversible thermal unfolding and precluding quantitative thermodynamic 

analysis128. Hence, a pseudo-WT (pWT) background was engineered for experiments with 

purified SOD1 mutants. pWT SOD1 has the free cysteine residues, Cys-6 and Cys-111, replaced 

with alanine and serine, respectively129. In this study, dot blot experiments that were carried out 

with purified SOD1 used this pWT background. However, all the studies with inclusion bodies 

were carried out using SOD1 mutants in the WT background to mimic the aggregation process of 

SOD1 in ALS.    
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2.3 SOD1 growth in rich media and protein purification 

 All SOD1 variants with pWT background were expressed using pHSOD1ASlacI1130,131 in  

E. coli (QC779 strain). Plasmid containing SOD1 gene (pWT or mutant) that confers resistance 

to ampicillin was transformed into SOD-/- cells, which are resistant to chloramphenicol and 

kanamycin. The successfully transformed cells were inoculated in a small volume of LB media 

for overnight growth and the grown culture used as inoculum for 1L of 2TY media on the next 

day. Both the overnight LB media and 2TY media were supplemented with all three antibiotics. 

Cells were induced at an OD600 of 0.5-0.7 with 0.25mM final concentration of isopropyl β-D-1-

thiogalactopyranoside (IPTG). While inducing with IPTG, CuSO4 and ZnSO4 were added to the 

media with a final concentration of 0.5mM and 0.01mM, respectively. The culture was grown for 

8 hours post-induction. 

Protein purification was carried out as mentioned in previous literature. Briefly, protein 

samples were initially subjected to copper charging and heat treatment to ensure proper 

metalation. Ammonium sulfate was added to the protein solution and passed through a 

hydrophobic column after filtering the protein solution through the nitrocellulose membrane. The 

protein eluted from the column was collected and dialysed against MilliQ for 8 hours (4 times). 

Finally, the sample was concentrated using amicon ultrafiltration membrane to obtain 

holoSOD1. The concentration of the protein sample was measured using UV-vis 

spectrophotometer at 280nm. To remove metals and obtain apoSOD1SS, the sample was further 

dialysed against EDTA at pH 3.8, followed by dialysis against sodium acetate, NaCl at pH 3.8 

and finally against 1mM HEPES at pH 7.8. Post dialysis the protein sample was reduced by 

denaturing using 2M guanidine hydrochloride (GnHCl) and 20mM HEPES (pH 7.8) followed by 

addition of reducing agent tris (2- carboxyethyl) phosphine hydrochloride (TCEP-HCl). The 
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sample was then incubated for 1 hour in an anaerobic condition and exchanged with buffer 

containing 1mM TCEP and 20mM HEPES to obtain purified E, E-SOD1SH.  

2.4 Inclusion body preparation  

To obtain inclusion bodies, plasmids carrying genes of SOD1 mutants with WT 

background (no mutation at Cys-6 and Cys-111) were transformed into BL21 (DE3) E. coli 

strain. This strain of E. coli contains pLyS plasmid that confers resistance to chloramphenicol 

and a pET21 vector that confers resistance to ampicillin. The transformed cells were inoculated 

in 50mL of Luria broth (LB media) containing ampicillin (100μg/mL) and chloramphenicol 

(30μg/mL) and grown overnight at 37°C. Following overnight growth, 30mL of the culture was 

centrifuged (4,000 x g, 5 minutes, 4°C). 20mL of the supernatant is discarded, and the pellet was 

resuspended in the remaining 10mL of solution. The resuspended pellet sample was transferred 

to 1L of minimal media and grown until an optical density readings at 600nm (OD600) of 0.5- 0.7 

was reached. Composition of the minimal media is given in Table 2.1. As the culture reached 

suitable OD600, it was induced with 0.1 mM final IPTG concentration and grown for an 

additional 4 hours. The cells were then pelleted by centrifugation (4,000g, 20 minutes, 4°C), 

flash-frozen, and stored at -80°C.  

The frozen cell pellets were thawed and resuspended in 30mL of TEN buffer (20mM 

Tris, 1mM EDTA, 100mM NaCl, pH 8), then flash-frozen in liquid nitrogen, followed by 

thawing in a 40°C water bath (a freeze-thaw cycle). After this, the suspension was incubated 

with 3mg of DNase1 for 45 minutes at 4°C with occasional mixing by inverting. Post DNase I 

incubation, the sample was further subjected to three more freeze-thaw cycles, then centrifuged 

at 20,000x g for 20 minutes at 4°C to obtain insoluble inclusion body fraction. The inclusion 

bodies were resuspended in 8mL of TEN buffers thoroughly so that the entire solution becomes 
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homogeneous. The resuspended samples were further divided into smaller 15µL aliquots and 

frozen in -80C freezer. These smaller aliquots were used for dot blot and SDS-PAGE 

experiments. Initial IBs preparations were conducted on a smaller scale by me, where 1mL of the 

overnight culture was transferred into 50mL of minimal media. Samples were induced with same 

concentration of IPTG and IBs from the growth were prepared in a similar manner (freeze-thaw 

cycle along with DNase incubation). These samples were grown to optimise the quantitative dot  

blot protocol. Once optimised, the quantitative dot blot was used with large scale IB samples.  

 

 

 

 

 

 

 

Table 2.1: Composition of minimal media: SOD1 mutants were grown in the minimal media, 

and the inclusion bodies were obtained 4hrs post IPTG induction. 1X M9 salt contained a final 

concentration of 47.7mM Na2HPO4, 22mM KH2PO4, 8.3mM NaCl. 

 

 

 

Components Stock Concentration Final concentration 

M9 salts 10X 1X 

Glucose 20% 0.4% 

CaCl2 100mM 100µM 

MgSO4 1M 2mM 

NH4Cl 100mg/mL 500µg/mL 

Thiamine HCl 0.1% 0.0001% 

Ampicillin 100mg/mL 100µg/mL 

Chloramphenicol 30mg/mL 30µg/mL 
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2.5 Quantitative dot blot assay 

 Quantitative dot blot was performed on the IBs of SOD1 mutants grown in minimal 

media without the addition of any metal. The nitrocellulose (NC) membrane (pore size: 0.45µm, 

Bio Rad Inc.) was prepared by immersing the membrane in 1mM EDTA, then chelexed MQ and 

finally TEN buffer for 5 minutes each. The membrane was then placed in a Bio-Dot 

microfiltration apparatus (BioRad). The membrane was again washed with 1mM EDTA, 

chelexed MQ and TEN buffer by adding the liquids to all the wells and then applying vacuum.  

During the washing steps, one aliquot of each mutant was taken from -800C freezer and 

thawed at room temperature. The samples were mixed extensively by tapping the tube and 

drawing the solution up and down multiple times with a pipette to reduce the viscosity and 

maximize uniformity. 8µL of IB from each aliquot was taken and diluted in 112µL of TEN 

buffer (let this sample be denoted as Sample*). 8µL from Sample* was further diluted in 592µL 

of TEN buffer. 60µL from this was taken and mixed with 540µL of TEN buffer. The sample was 

then serially diluted 2-fold 4 times, each time by taking 200µL of sample and diluting in 200µL 

of TEN buffer. In this way, five serial dilutions of IB samples each with a 2-fold difference in 

protein amount were obtained, and 150µL from each was spotted onto the membrane and 

allowed to pass through without vacuum for 40-50 minutes. Once all the samples passed through 

the membrane, the membrane was washed four times with TEN-T buffer (20mM Tris, 1mM 

EDTA, 100mM NaCl, 0.05% Tween-20 pH 8). Here, 150µL of TEN-T buffer was loaded to each 

well and immediately drawn through using the vacuum. After washing, the membrane was 

removed from the apparatus. This was followed by blocking the membrane with 1% BSA 

prepared in TEN-T buffer for 1hr at room temperature. The blot was then incubated with the 

primary antibody that was diluted in blocking buffer for 2hr 30mins at room temperature (for 
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open container incubation experiments 1µL of primary antibody was diluted in 6mL of blocking 

buffer), washed with ~10ml of TEN-T (3 times for 5 minutes each) and finally incubated for 1hr 

with the secondary antibody that was also diluted with blocking buffer (generally, 2µL of 

secondary antibody was diluted in 10ml of blocking buffer). After the incubation, the blot was 

washed with ~10ml of TEN-T (5 times for 5 minutes each) and imaged in BioRad ChemiDoc 

MP imaging system. Densitometry from these blot images was calculated in BioRad Image Lab 

(Version 6.0.1) software volume tool (Figure 2.1A), and the background was subtracted using 

local background subtraction method132.  

In order to quantitatively measure the binding, two biological replicates were prepared by 

independently growing and preparing IB aliquots. Dot blot experiments on the samples from the 

first growth were performed in triplicate, i.e. using separate aliquots to perform three dot blots 

for each antibody (these replicates using aliquots from the same growth will be referred to as 

technical replicates). Similarly, dot blot experiments were performed in duplicate with the 

samples from the second growth (This is another set of technical replicates). The two sets of 

replicates from different growths are referred to as biological replicates. The signals from the dot 

blot experiments were normalised by quantifying the protein amount by SDS-PAGE. Briefly, for 

each dot blot experiment, 8µL from Sample* of each mutant was mixed with 22µL of loading 

buffer (0.125M Tris-Cl, pH 6.8, 4% (w/v) SDS, 20% (v/v) Glycerol, 10% (v/v) 2-

mercaptoethanol, Bromophenol blue). Samples were prepared in duplicate for each mutant and 

boiled for 10-15 minutes in a PCR tube to minimize sample evaporation. After boiling, all 

samples were briefly vortexed. 15µL from each boiled sample was loaded onto SDS-PAGE, and 

duplicate samples of each mutant were run on different gels. Each gel also contained four 

different amounts of purified apo SOD1 (apo pWT) (0.625µg, 1.25µg, 2.5µg and 5µg) as the 
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protein standard. The gels were imaged in BioRad ChemiDoc MP imager, and band intensities 

were obtained using BioRad Image Lab 6.0.1 software. Background for each band densitometry 

peak was subtracted using the rolling ball method, as shown in Figure 2.1B. The radius of the 

rolling ball was kept constant (generally at 1mm) unless the background line entered the peak in 

which case the radius had to be increased for that measurement.  

Figure 2.1: Background subtraction methods by Image Lab software. (A) The background 

signal intensities of the dot blots were subtracted using volume tool of Image lab software. Using 

this tool, a circle is drawn around the signal and the average value of all pixel intensities present 

in one-pixel region inside the circumference of the circle is considered as background. (B) 

Background signal subtractions for SDS-PAGE band intensities were carried out using rolling 

ball method. The radius of the rolling disc is chosen such that the background line touches both 

ends of the peak. 
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2.6 Washing IBs with mild detergents 

 Four mild detergents, Triton X-100, Tween 20, NP40 and n-Octylglucoside, were used to 

wash several SOD1 mutant IBs. Small aliquots of the IB samples that were in TEN buffer and 

frozen in -80 °C were thawed and centrifuged at 12000 RPM for 1 minute at room temperature. 

The supernatant was taken out and the pellet was resuspended in TEN buffer containing 1% (v/v) 

Triton X-100, 0.1% (v/v) Tween 20, 1% (v/v) n-Octylglucoside or 0.1% (v/v) NP40. After 

thoroughly resuspending the pellet, the sample was centrifuged at 12000 RPM for 1 minute. The 

supernatant was removed using 100µL pipette and kept in a separate tube, and the washed pellet 

was resuspended in TEN buffer. Both the supernatant and the washed pellet were run on a 12% 

SDS-PAGE along with the original inclusion body sample.  

2.7 Iodoacetamide (IA) labelling of IBs 

To assess the oxidation state of SOD1 in inclusion bodies, several variants were grown in 

minimal media as described in the previous section and labelled using iodoacetamide (IA), which 

reacts with free cysteine sulfhydryl groups. 1mL culture at 4-hrs growth post IPTG induction 

was centrifuged at 8000 RPM for 1 minute. The supernatant was removed using 1ml pipette and 

the cell pellet was resuspended in 30µL TEN buffer containing a final concentration of 0.5M IA. 

The resuspended pellet samples were then stored in -800C. The next part of the experiment has to 

be performed on the same day. 

The samples were taken out of the freezer and subjected to flash-freeze in liquid nitrogen, 

followed by thawing in a 40°C water bath (a freeze-thaw cycle). After this, the suspension was 

incubated with 3mg of DNase1 for 45 minutes at 4°C with occasional mixing. Post DNase 

incubation, the sample was subjected to three more freeze-thaw cycles, then centrifuged at 8000 
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RPM for 1 minute to obtain the IB pellet fraction. The supernatant was removed, and the pellet 

was finally resuspended thoroughly in of 30µL TEN buffer containing 0.5M IA. SDS-PAGE 

samples were prepared for both the supernatant and the pellet fraction without adding any 

reducing agent and run on 15% SDS-PAGE.  
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3 Results 

3.1 Optimization of the dot blot protocol 

3.1.1 Choosing the optimum dot blot detection technique 

 In order to properly quantify dot blot signals, it is crucial that a proper secondary 

antibody be chosen, which provides a good dynamic range and a linear response in signal 

intensity for different sample concentrations. There are two types of detection methods used 

widely to measure immunoblot signals. One of these methods is called chemiluminescence 

where the secondary antibody is conjugated with an enzyme (generally horseradish peroxidase 

(HRP) or alkaline phosphatase (AP)) that catalyses the reaction of a suitable substrate (e.g. 

Luminol) generating a recordable signal in the form of light. Though chemiluminescence is 

highly sensitive, it generally has a small linear dynamic range, and the signal is highly dependent 

on the state of reaction between the enzyme and substrate as the signal is only generated when 

the reaction is ongoing. Both these factors made chemiluminescence an unsuitable detection 

technique for quantitative signal measurement of the dot blot experiments. The second method to 

detect immunoblot signal is through fluorescence where the secondary antibody is conjugated 

with a fluorophore that has specific excitation and emission wavelengths. Though it is known to 

be less sensitive than chemiluminescence, fluorescence detection provides a better dynamic 

linear range of detection as well as a more consistent signal over a period of time. Also, with the 

ongoing advancement in this field, there are many commercially available fluorescent secondary 

antibodies that provide highly robust signal and improved sensitivity making these antibodies 

attractive candidates for our quantitative measurements.  I performed some initial experiments 

using chemiluminescence, but due to the advantages of stable, linear fluorescence detection, all 

the results described below were measured using fluorescence detection. 
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 A 2016 study by Pickles et al.122, used dot blot experiments with chemiluminescent 

detection to show that misfolded SOD1-specific AMF7 and B8H10 antibodies bind to apo and 

reduced apo form of various SOD1 mutants but very little to the holo form of SOD1. However, 

all three forms of SOD1 mutants showed signal when the proteins were denatured because of 

exposure of the antibody epitopes upon denaturation. The logical next step was to check whether 

denatured SOD1 samples could be used to normalize for varying SOD1 content of IB samples in 

our dot blot experiments. Ideally, this should mean that upon denaturation all SOD1 mutants 

show equal binding to conformation-specific antibodies so that any difference in antibody 

binding to various native SOD1 mutants as well as their aggregates could be quantitatively 

measured by effective normalisation with the denatured control. Hence, three secondary 

antibodies, Alexa 488, Alexa 680 and Starbright 700, were chosen to check which one(s) would 

provide the optimum signal for both native and denatured SOD1. All these antibodies have 

different excitation and emission wavelengths which are given in Table 3.1.  

 

Table 3.1: Excitation and emission wavelengths of fluorescent secondary antibodies: Three 

different secondary antibodies that were used for dot blot signal optimisation. 

 

 

Secondary antibody Excitation wavelength (nm) Emission Wavelength (nm) 

Alexa 488 488 520 

Alexa 680 680 702 

Starbright 700 470 700 
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Purified recombinant apo I113T SOD1 was prepared in native and denatured forms and 

blotted onto three nitrocellulose membranes. All blots were incubated with AMF7 (primary 

antibody), and each blot was then incubated with one of the three secondary antibodies. The 

blots were imaged in two different instruments, 1) BioRad Pharos FX imager that uses lasers of 

set wavelengths for excitation together with filters to select the range of detection and 2) BioRad 

ChemiDoc MP imager that uses built-in UV transilluminator and white LEDs for epi (reflective) 

illumination as well as five additional LEDs for detection of a larger range of fluorophores. It is 

also equipped with a deeply cooled CCD detector133. Signals for both native and denatured 

protein showed a linear trend over ~10-fold and ~100-fold range of concentration, respectively 

(Figure 3.1). Starbright 700 showed the highest absolute signal intensity and signal to noise for 

native and denatured protein when the blots were imaged in BioRad ChemiDoc MP imager. So 

this secondary antibody and imager were used for signal detection in further experiments. 
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Figure 3.1: Optimisation of dot blot signal detection technique. Three different secondary 

antibodies, Starbright 700 (Dark Blue, Orange), Alexa 400 (Grey) and Alexa 680 (Blue and 

Yellow) were used to detect the signal of increasing concentrations of purified native and SDS-

denatured apo I113T protein. Each antibody has different excitation and emission wavelengths. 

The blots were imaged in BioRad Pharos FX and/or BioRad Chemidoc MP imager. Starbright 

700 seems to provide the highest signal for both native and denatured proteins. 
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3.1.2 Optimisation of primary antibody incubation 

 To obtain reliable data from the dot blot experiments, it was crucial that the primary 

antibody, as well as the secondary antibody, be uniformly distributed across the blot so that a 

sample with a given amount of protein gives consistent signal irrespective of its location on the 

blot. Our collaborators who originally developed the dot blot protocol to study conformation-

specific antibody binding to various SOD1 mutants had suggested incubating the primary 

antibody in a sealed pouch to save on the amount of primary antibody used, which was limited. 

Incubating the blots with the primary antibody in a sealed pouch required a smaller volume of 

antibody solution (generally 1mL of blocking buffer was used with 1:1000 dilution of antibody). 

However, this method of primary antibody incubation showed high variability in signal when the 

same sample was blotted onto different regions of a blot, probably due to its inhomogeneous 

distribution of primary antibody across the blot area. To confirm this hypothesis, an experiment 

was conducted where three different amounts of A4V SOD1 IB were spotted onto the two NC 

membranes in various permutations of orientation and regions (Figure 3.2A). One of these 

membranes was incubated with the primary antibody in 1:1000 dilution in a sealed pouch. In 

contrast, the other blot was incubated with the primary antibody with 1:6000 dilution in an open 

container. Comparing the signals from both blots, the one incubated with the primary antibody in 

an open container showed less variability in signal for all three amounts of A4V IBs (Figure 

3.2B). The absolute signal intensities obtained from both methods were also quite comparable, 

indicating that incubating the primary antibody in the open container with increased dilution 

from 1:1000 to 1:6000 does not affect its binding to the samples on the blot. Hence, all further 

quantitative dot blot experiments were carried out by incubating the NC blots with primary 

antibodies in open containers. 
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Figure 3.2: Variability of dot blot signals is lower using open container rather than sealed 

pouch for primary antibody incubation. (A)Three different amounts of A4V IB samples were 

loaded with a different permutation of orientation and regions on the membrane as indicated with 

arrows. The direction of the arrow indicates increasing IB amount. The samples were loaded in 

three different amounts with a 3-fold increase. (B) Signal intensities obtained from the blots 

incubated in primary antibody in a sealed pouch and an open container are compared. Amount of 

SOD1 IB refers to the volume of the undiluted original IB sample which is appropriately diluted 

in TEN buffer to obtain the highest volume of IB used (0.066µL), and this was then serially 

diluted 3-fold to obtain rest two amounts. % deviation given above the bars are calculated as   

100 x (standard deviation of signals/average signal). 
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3.1.3 Finding the linear range of IB signal detection 

 With the protocol to obtain consistent signals across the dot blots now optimized, the next 

step was to check the linear range for IB signal detection. IBs can contain widely different 

amounts of SOD1 depending on the mutant and growth condition. Also, the quantity of inclusion 

body can vary from one growth to another for the same mutant. Some of the mutants that yield 

less amount of IB can bind strongly to conformation-specific antibodies because of high content 

of misfolded species in the aggregate while other mutants that express more IB can bind less to 

the antibodies. Hence, it was critical to find a robust range of IB amount that can be spotted onto 

the NC membrane and provide a linear signal for all SOD1 mutants.  

To address the linearity problem, four different SOD1 mutants (WT, A4V, G37R and 

V148I) were chosen; two of these mutants (WT, V148I) express relatively low amounts of IB, 

while the other two mutants (A4V, G37R) generally express high amounts of IB (Figure 3.3B). 

All four of these mutant SOD1 IBs were spotted onto four different NC membranes in five 

different concentrations with 2-fold serial dilution. Each blot was incubated with one of the four 

conformation-specific antibodies (SEDI, USOD, AMF7, B8H10) and the experiments were 

performed in triplicate. The amounts of SOD1 in the mutant IBs were quantified using SDS-

PAGE as described in the Methods (Section 2.4).  

The results illustrated that the dot blot signals showed good linearity with the amount of 

protein for the three lowest concentration data points but started to plateau the two highest 

concentrations (Figure 3.3A). For all four confirmation-specific antibodies, highly linear fits 

were obtained when fitting the measured average signal for the blank wells together with the 3 

lowest amounts of IB (corresponding to a 4-fold range in the amount of protein). These linear fits 
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were further used to assess the affinity of these antibodies towards all 11 SOD1 mutants under 

study. 
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Figure 3.3: Linear range of dot blot signal for IBs of 4 SOD1 mutants with all four 

conformation-specific antibodies. (A) IB samples were blotted in 5 different concentrations 

with 2-fold serial dilutions of samples. Average signals for each concentration point was 

calculated from the triplicate experiments and plotted against the amount of IBs. Similarly, the 

error bars calculated for each point from the triplicate represent the variation in dot blot signal at 

each concentration of IB. Good linearity was observed for fits of the average of the 3 blank well 

signals (0 volume point) with the lowest 3 sample volumes. (B) Amount of SOD1 for each 

mutant as measured by SDS-PAGE. The concentration of SOD1 IB shown in the table refers to 

the concentration of undiluted original IB sample which is appropriately diluted in TEN buffer to 

obtain the highest volume of IB used (0.05µL), and this was then serially diluted 2-fold to obtain 

rest four amounts. % deviation given above the bars are calculated as   100 x (standard deviation 

of signals/average signal). 

 

 

 

 

SOD1 mutants WT A4V G37R V148I 

Average protein amount (mg/ml) 0.401 1.344 1.169 0.577 

% deviation 5.36 2.21 3.90 5.80 
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The replicate experiments were carried out with different aliquots of the IB samples from 

the same growth to investigate the variability in antibody binding. Interestingly, it was observed 

that the same mutant IB could provide a consistent signal with one antibody while the variable 

signal with another antibody. An illustration provided in Figure 3.4A shows WT IB binding 

consistently to SEDI but showing a higher degree of variation for AMF7 (Figure 3.4B). 

Similarly, the same antibody could provide a consistent signal for one mutant IB whereas 

variable signal for another mutant IB (data not shown). This indicates that variability in signal 

for each mutant IB with all four antibodies is important to consider and replicates are necessary 

to account for this variability. However, linear fits were obtained for all individual replicate 

experiments of both SEDI and AMF7 with WT IB (Figure 3.4 – right plots) further supporting 

the idea that signal in this concentration range is consistently linear and slopes of these linear fits 

could be used to characterise the antibody binding for each mutant. 
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Figure 3.4: Variability in replicate dot blot signal. Different extent of variation in replicate 

signals could be observed depending on the mutant and the antibody. A) WT IB shows consistent 

signal with SEDI in its replicate experiments and the slopes from the linear fit are close to each 

other. B) WT IB shows more variation in signal with AMF7 and the slopes of the linear fit have 

more variation. 
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3.2 Optimisation of dot blot signal normalisation 

3.2.1 Denatured control for signal normalisation 

 The normalisation of the signals from the immunoblotting experiment has been widely 

explored134,135 as it is crucial for quantitative measurements and comparisons between different 

samples. Often, Western blot signals for a protein of interest are normalised using housekeeping 

proteins and/or actin which are known to be ubiquitously expressed in the cell. There are also 

recent advances like stain-free imaging technique, where the bands on SDS-PAGE are imaged 

before they are transferred onto a blotting membrane, and the signals from the blots are 

normalised accordingly. However, with the current dot blot approach, such techniques could not 

be used for normalisation as various commercially available anti-SOD1 antibodies have some 

degree of preferential binding to certain conformations of SOD1. Also, quantifying protein on 

the blot with low resolution staining dyes like ponceau stain is not ideal for normalising dot blot 

signal quantitatively. Hence, the remaining options were to normalise the dot blot signal with a 

form of SOD1 sample that can bind uniformly to all conformation-specific antibodies 

irrespective of the mutant and its maturation state or by quantifying the amount of SOD1 spotted 

onto the membranes. 

 As described in Section 3.1.1, the denatured form of SOD1 was a potential candidate for 

normalisation if it could potentially expose the antibody binding epitope regions of SOD1 to an 

equal extent upon denaturation and thereby, bind uniformly to all conformation-specific 

antibodies. Hence, an experiment was carried out where purified apoI113T was denatured using 

three different agents (SDS, Urea and guanidine hydrochloride (GnHCl)). Five different amounts 

of denatured samples with 3-fold serial dilutions were spotted onto NC membrane along with 

native apo I113T, as shown in Figure 3.5A. SDS and urea denatured samples provided a better 
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signal than GnHCl denatured samples. However, the native form of the purified protein has more 

signal than any of the denatured samples, and this pattern was consistent for several other dot 

blot experiments with native and denatured purified SOD1 proteins (data not shown). To check 

whether this was also the case with IBs, 9 different SOD1 mutant IBs were spotted onto NC 

membrane in native, and SDS denatured form. Like purified SOD1, IB samples also showed less 

signal for denatured samples (Figure 3.5B). Possible explanations for such reduced signal could 

be due to inefficient binding of primary antibodies to denatured samples and/or lower retention 

capacity of the NC membrane for denatured samples leading to its leakage after being loaded. 

 

Figure 3.5: Comparison of dot blot signals for native and denatured purified protein and 

IBs. (A) Purified apoI113T was denatured using different agents, and all the denatured samples 

were blotted along with native apoI113T. (B) 9 SOD1 mutant IBs were blotted in native, and 

SDS denatured form, and this experiment was performed in triplicate.  Error bars represent the 

standard deviations for the triplicate signals. The plots show the denatured samples all give lower 

signal than their native counterparts. 
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3.2.2 Double membrane experiment to check retention capacity of blotting membranes 

 There could be two possibilities for the reduced signal observed with denatured samples. 

One possible explanation could be less efficient binding of the primary antibodies to the 

denatured samples compared to the native samples. The second possible explanation could be 

that the denatured samples were leaking through the NC membrane and hence, giving a lower 

signal. In such a case, it could have potentially been used as the normalisation control if all 

denatured samples were leaking to an equal extent. Hence, to verify this, a double membrane 

experiment was carried out. In this experiment, two blotting membranes were used instead of one 

in the dot blot apparatus with one membrane kept on the top of the other. The upper membrane 

had a pore size of 0.45 µm, whereas the lower membrane had a pore size of 0.2µm. Three 

different amounts of IB samples of WT and V148I serially diluted 5-fold 2 times and loaded onto 

the membrane in both native and denatured form. The results showed that the blotting membrane 

could retain most of the native inclusion body sample but denatured IBs were passing through 

the upper membrane (Figure 3.6A). Also, the proportion of denatured sample passing though for 

the three different amounts of IB loaded was also different, indicating that SDS-denatured IB 

samples could not be used for our quantitative purpose. The double membrane experiment was 

repeated with NC membranes with a lower pore size (0.1µm) to see if this could yield better 

retention, but the denatured samples still passed through unevenly (Figure 3.6B). This suggested 

that normalisation using SDS denatured samples could not be pursued successfully.  
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Figure 3.6: Double membrane experiment to measure dot blot sample leakage. (A) The dot 

blot was performed using upper 0.45 and lower 0.2 µm membranes and (B) upper 0.1 and lower 

0.1 µm membranes. Blue and orange indicate the proportion of total signal on the upper and 

lower membranes, respectively.  The results show NC membrane retains native IB samples, but 

denatured samples leak through irrespective of membrane pore size. 
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3.2.3 Optimisation of gel densitometry for protein quantification 

 Since the denatured controls could not be used for signal normalisation, we next 

examined quantifying the amount of SOD1 in the IBs loaded onto the membrane. Methods like 

Bradford assay or protein absorbance at 280 nm can not be used in this case as IBs are not pure 

samples and contain a variety of other cellular proteins. However, one option to quantify SOD1 

from the IB samples is using SDS-PAGE densitometry. This technique comes with several 

challenges, including variability in the amount of the sample loaded and band intensity 

quantitation. Hence, it was crucial that all the samples for SDS-PAGE were prepared carefully; 

accordingly, we developed a consistent protocol for sample preparation, loading, gel staining and 

destaining as well as proper imaging. 

 In order to properly quantify band intensities from SDS-PAGE, it was crucial that we 

find a range in which band densitometry signals vary linearly with the amount of SOD1 protein 

and load all our IBs with an amount so that the SOD1 band intensity falls within that linear 

range. In order to find this linear range, purified apo pWT was loaded in a varying amount from 

0.05 µg to 10 µg. Densitometry of each band was performed as described in the Methods 

(Section 2.4), with the background-subtracted using the rolling ball technique. With this method, 

the band intensities stayed linear over 0.625 µg to 5 µg range. Larger amounts of protein showed 

signal saturation, and lower amounts gave bands too faint for reliable densitometry. However, 

this 8-fold range was suitable for IB quantification.  

Further, to assess the variability in protein quantification, an experiment was carried out 

where 3 SDS-PAGE gels were run with 7 SOD1 mutants (A4V, G37R, G41D, G41S, G85R, 

G93A and G93D). Each mutant was loaded once in one gel, and the other two gels were loaded 

with twice the amount of IB that was loaded in the first gel. Each gel also contained four 
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different amounts of purified apo pWT (0.625µg, 1.25µg, 2.5µg and 5µg) as the protein standard 

(Figure 3.7A). After SDS-PAGE was finished, all gels were stained overnight and destained on 

the next day. Post destaining, the gels were imaged in the ChemiDoc MP imager, and the SOD1 

band intensities were calculated using BioRad Image Lab software. SOD1 amounts were 

quantified for each mutant IBs using the standard plots from purified apo pWT obtained from 

each gel (Figure 3.7B). The experiment was repeated four times (corresponding to each 

conformation-specific antibody blot) using different aliquots of the mutant IBs prepared from 

one growth to account for the variability in quantification.  

 

Figure 3.7: Quantitation of SOD1 in IBs by SDS-PAGE.  A) 7 different SOD1 mutant IBs 

were loaded (in 1x and 2x amount) onto 3 SDS-PAGE with purified apo pWT SOD1 as the 

protein standard. IB samples were loaded with appropriate dilutions so that the SOD1 band 

intensities stay within the linear range of the protein standard. B) For each SDS-PAGE, band 

intensities of apo pWT standard were plotted against their respective protein amounts. This was 

used to quantify the SOD1 bands only of that SDS-PAGE. The plot represents the average band 

intensities of protein standard obtained from 4 sets of gels (12 SDS-PAGE in total). This is 

shown here only for illustration purpose of the linearity in the signal. Error bars in the plot 

represent the error associated with band intensities of different amounts of apo pWT standard.   
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The results indicated that SOD1 bands could be reliably quantified using this method. 

Table 3.1 gives the average SOD1 concentrations of the 7 mutants. The values represent 

concentrations of SOD1 in undiluted IB samples obtained through the protein amount calculated 

from SDS-PAGE. The variation in the quantified protein amount is represented by % error which 

is calculated as 100*(standard deviation of protein amounts/average protein amount). SOD1 

amounts quantified for most of the mutants showed less than 10% variability except for A4V and 

G93D, which have a lesser amount of SOD1 in their IBs. However, for these mutants, the % 

error stayed under 20%. This indicated that higher variability in the densitometry could be 

expected for mutants expressing less IBs. Quantification using SDS-PAGE thus was the most 

robust and reliable method. Hence, it was used further in normalising the signals for the 

quantitative dot blot experiment of 11 SOD1 IBs with four conformation-specific antibodies, as 

further described next. 

 

Table 3.2: SOD1 amount quantified using SDS-PAGE. Average values of SOD1 

concentrations in 7 mutant IBs calculated using 4 sets of SDS-PAGE (3 gels in each set) are 

mentioned with their % error to show the extent of variability in protein quantification. 

 

 

 

 

 

 

SOD1 mutants  A4V G37R G41D G41S G85R G93A G93D 

Average protein amount (mg/ml) 0.658 1.056 0.711 0.845 0.831 0.836 0.587 

% error 14.7 6.6 4.8 2.9 9.6 9.2 20.7 



51 
 

3.3 Quantitative dot blot for WT and 10 mutant SOD1 IBs with four conformation-specific  

antibodies 

 After both the dot blot protocol and the normalisation methods were optimised, the 

quantitative dot blot analysis was performed with 11 SOD1 mutant inclusion bodies and four 

conformation-specific antibodies. Briefly, all 11 mutant SOD1 IBs were spotted onto NC 

membrane for five different concentrations prepared by 2-fold serial dilution. The highest 

concentration of IB samples was also denatured with SDS and spotted onto the membrane. This 

control was to assess whether the antibodies bind comparably to the same (denatured) 

conformation for all the mutants. Three spots on the membrane were loaded with only TEN 

buffer, and signals from these spots were used as blank (0 points, Figure 3.3). SDS-PAGE 

samples were prepared using the same IB aliquots as were used for the dot blots. All 11 mutants 

were run in duplicate using a total of three gels, with each of the duplicates loaded on a different 

gel. All gels also contained the four different amounts of apo pWT as standard, and the amount 

of SOD1 in the IB sample bands on each gel were quantified using their respective protein 

standard curve. A higher amount of SOD1 IB samples were loaded for mutants that expressed 

considerably less IB (such as I113T). Figure 3.8 provides an illustration of the complete 

experimental setup. Four experiments were performed in this manner, each with a different 

conformation-specific antibody (SEDI, USOD, AMF7 and B8H10). 
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Figure 3.8: The experimental set up for quantitative dot blot. SOD1 aliquots for WT and 10 

mutants are spotted on the NC membrane for 5 2-fold serial dilutions of the IB samples and 

incubated with AMF7 primary antibody. The samples are loaded on SDS-PAGE with apo pWT 

standard to quantify SOD1 amount in inclusion bodies and normalise dot blot signal.   

 

3.3.1 Comparison of dot blot signal between biological replicates 

 In order to reliably compare differences in antibody binding for the 11 SOD1 mutants 

IBs, it was crucial that the experiments were performed in both technical and biological 

replicates. Technical replicates here refer to replicate experiments performed on aliquots of IBs 

from the same growth, and biological replicates refer to experiments performed on IBs obtained 

from two different growths. Both technical and biological replicate dot blot experiments were 

carried out for all four conformation-specific antibodies. Briefly, dot blot experiments for each 
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antibody were repeated in triplicate with different aliquots from the same growth (3 technical 

replicates) of the 11 SOD1 mutants. Data for biological replicates were obtained by growing 

these mutants again, and the dot blots were performed twice with the aliquots from this growth. 

Both these sets of replicates are denoted as biological replicates. The quantitative comparison 

was carried out by calculating the slopes from each dot blot experiment (shown in Figure3.3A). 

The slopes represent signal per µL of protein and were normalised by dividing with the SOD1 

amounts quantified from the gel which is denoted as normalised slopes. Hence, the normalised 

slopes are calculated as the slope of linear fit/SOD1 concentration calculated from SDS-PAGE 

and represent antibody binding signal per µg of each SOD1 mutant. 

 In addition, for normalizing the comparison between different growths, A4V and V148I 

samples from the first growth were used as controls along with samples from the second growth. 

Normalised slopes of the these A4V and V148I samples from the first set of blots and the second 

set of blots were averaged for each set, and the ratio between the 2 averages was used to 

normalise the slopes obtained from the second set of replicate dot blot experiments. This allows 

variations in overall intensity of the blots to be taken into account. Thus, the slopes of the 2nd 

replicate sets were normalised first with their protein amounts and secondly with A4V and V148I 

normalised slope ratios. Accordingly, these slopes are denoted as double normalised slopes in 

further sections. A comprehensive flow chart explaining the experimental details and comparison 

of slopes from both sets of replicates is shown in Figure 3.9. 
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Figure 3.9: Flow chart illustrating signal comparison procedure between biological 

replicates. The samples used for each set of replicates is described in the second row. Signal was 

normalised with the protein amount and double normalised for 2nd set of replicates and compared 

together. 

The normalised slopes from the first set of replicates and double normalised slopes from 

the second set of replicates for all four conformation-specific antibodies are compared and 

shown in Figure 3.10A. The plot shows there is good agreement between the two sets of 

replicates, i.e. the absolute values are close to each other, or their experimental uncertainties are 
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overlapping with each other for each antibody. This confirms that the quantitative dot blot 

protocol has worked for the selected 11 SOD1 mutants in terms of investigating their binding 

affinity with all four antibodies. Comparison for I113T mutant is not included as the normalised 

slope values for I113T were much higher than any of the other mutants. Comparison plots for 

I113T are later in the discussion section. Note that SEDI and USOD showed markedly reduced 

binding to V148G/I and G41S/D, respectively, for the denatured IB as well as native IB samples.  

This is reasonable because SEDI and USOD were raised against peptides that included V148 and 

G41, respectively. Consequently, V148G/I mutants binding to SEDI and G41S/D binding to 

USOD can not be compared with other mutants. In order to make the most reliable comparisons 

of antibody binding between mutants, the results from the biological replicates were averaged 

(Figure 3.10B). 
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Figure 3.10: Comparison of binding of conformation specific antibodies to mutant SOD1 

IBs. (A) Comparison of normalised antibody binding slopes for 2 independent mutant SOD1 IBs 

growths (biological replicates).  Each of the 4 antibody results is shown in a different colour.  

Error bars represent standard deviations for multiple aliquots from a given grown (technical 

replicates), 3 for the first growth and 2 for the second growth for four antibodies. (B) Average 

normalised slope for the 2 biological replicates. Bars for G41S/D in case of USOD and V148G 

in case of SEDI are coloured white as the mutations occur in the known binding epitope for the 

antibody, resulting in markedly decreased binding evident in denatured IB controls (Figure 3.13). 
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3.3.2 Binding pattern of SOD1 mutants with respect to WT SOD1 IB 

 Many previous studies have shown that immature forms of SOD1 have significant 

propensity to misfold and aggregate in a variety of ways. The conformation-specific analysis 

conducted here is consistent with that observation and adds valuable information for comparison 

with these previous studies. To visualise how all SOD1 mutants bind to these antibodies in 

comparison to WT IBs, normalised slopes of each mutant were divided with the normalised 

slope of WT IBs, and the results for the biological replicates were then averaged (Figure 3.11). 

The error bar on each plot represents the variability in the ratios obtained from both sets of 

replicates. Values that are close to 1 indicate that those mutants bind to the antibody to a very 

similar extent as WT IB. The figure shows there are some significant and some minor differences 

in antibody binding pattern for different SOD1 mutant IBs when compared with WT IB. A 

detailed interpretation of these results is presented in the discussion 4.2. 
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Figure 3.11: Comparison of IB antibody binding for SOD1 mutants relative to WT. 

Normalised slopes of each mutant was divided with the normalised slope of WT for replicate set 

1 and set 2. Both ratios were averaged and plotted here to obtain their relative binding for all four 

antibodies. Error bar for all mutants except WT represent the variation in both ratios calculated 

where as error bar in WT represents average value of standard deviations of normalised slopes 

obtained from both sets of replicates normalised again to WT slope values.  

 

3.3.3 Conformation-specific antibodies binding to I113T 

 One mutant that has not been shown so far in comparative analysis is I113T. It is an 

interesting mutant which has been reported to exhibit variable ALS disease duration136. During 

the growth and quantitative analysis, it was seen that I113T expressed much lower amounts of 

IB. Hence, 10x of the quantity of IB sample had to be loaded on the SDS-PAGE to quantify the 

I113T-SOD1 band (Figure 3.12A) accurately. Interestingly, the I113T samples showed the 

highest binding by far for all the conformation-specific antibodies. When the normalised slopes 

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1.40E+00

1.60E+00

WT A4V G37R G41D G41S G85R G93A G93D V148I V148GSl
o

p
e

 v
al

u
e

s 
n

o
rm

al
is

e
d

 t
o

 W
T 

sl
o

p
e

 v
al

u
e

SOD1 mutant IBs

All slopes normalised to WT

WT normalised SEDI WT normalised USOD WT normalised AMF7 WT normalised B8H10



59 
 

of I113T were compared with that of WT, it showed ~ 3-7 times more signal for SEDI, USOD 

and B8H10 (Figure 3.12B). For AMF7, this ratio was >10, probably higher at least in part due to 

the characteristics of the AMF7 antibody, which generally shows more signal than other 

antibodies. This observation of much higher binding to I113T was, however, not expected as 

there is nothing specific about I113T that could explain such high binding. It could be argued 

that the unusually low expression level for I113T in both the supernatant and pellet fractions is 

not explained by I113T thermodynamic stability, which is comparable to that of other mutants137. 

However, it may be indicative of increased proteolytic degradation of the protein.  Inclusion 

bodies are known to contain different forms of a given protein, including proteolytic 

fragments138. This could lead to its digestion through proteases which would result in smaller 

fragments of SOD1 and become more susceptible to bind to antibodies. However, during the 

analysis, no protease cleavage site was found in I113T sequence. Hence, a high-resolution mass 

spectrometry analysis would be of interest to understand this result better. 
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Figure 3.12: Low protein expression and high antibody binding by I113T. (A) SDS-PAGE 

showing SOD1 level in I113T IBs where 10x amount of I113T IB is loaded with 1x amount of 

other SOD1 mutant IBs along with purified protein standard. 

3.3.4 Mutations in the epitope regions affect antibody binding to variable extents 

 Out of 11 selected set of mutants, G41D and G41S are mutations in the USOD epitope 

region whereas V148I and V148G are mutations in SEDI epitope. With the dot blot experiment, 

it was seen that the antibodies bind less or not at all to the aggregates if there is a mutation in 

their epitope region. This is based on the observation that these antibodies did not produce any 

signal for these antibodies both in their native aggregate form as well as SDS-denatured form 

(Figure 3.13). This indicates that the antibodies are not able to bind to the denatured form of the 

protein as well. Interestingly, V148I does show some signal for SEDI when denatured, whereas 

V148G does not; this is consistent with V to I being a much more conservative mutation than V 

to G. Thus, nature of the mutations in the epitope regions is crucial for these conformation-

specific antibodies to bind to the denatured form of the protein. However, we also see the low 
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binding of SEDI to native IB structure of V148I, and it can not be conclusively determined 

whether it is representing true features of the mutant IB structure or the mutation is hindering the 

binding of SEDI in native its aggregate.  

 

Figure 3.13: Comparison of antibody binding to native and denatured IBs. A) Native and 

heat and chemically denatured IBs of V148I and V148G binding with SEDI. B) Native and 

denatured IBs of G41S and G41D binding with USOD. A4V is included as a mutation outside 

the antibody epitopes. Native IBs were loaded in 5 different concentrations with 2-fold 

increment, and one denatured sample was loaded to check if there is any signal with the 

antibody. A4V native and denatured IBs are shown as a control for comparative purposes. 

 

3.4 Investigation of inclusion body properties 

3.4.1 Checking homogeneity of SOD1 inclusion bodies 

 SOD1 IBs contain high amounts of SOD1 but also contain other cellular proteins. One of 

the most prominent cellular proteins is OmpF which is an outer membrane protein in E. coli that 

allows proteins to be exported to the outer membrane space139. Previous studies by John Almey, 

a former MSc student in the Meiering lab, had shown that when SOD1 IBs are grown in rich 

media and washed with mild detergent like Triton-X 100, the OmpF was not removed from the 
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SOD1. This result may be accounted for by SOD1 co-aggregating with OmpF, or the two 

proteins may separately be sedimented into the IB-containing cell pellet. This suggests the 

possible formation of heterogeneous aggregates of SOD1 where other proteins like OmpF might 

also be involved. Also, several studies have reported the potential interaction of chaperone 

proteins with SOD1 inclusion bodies140. Note that in general, specificity in protein aggregation 

has been noted141. Hence, it is of interest to investigate whether SOD1 aggregates in the 

inclusion bodies prepared in minimal media for the current study contain any other proteins 

making specific interactions with SOD1.  

To investigate this, inclusion bodies were washed with four different detergents (Triton-X 

100, Tween 20, NP 40 and n-Octylglucoside) as per the protocol described in Method (Section 

2.6). The experiment was carried out with A4V IB samples, and it was found that n-

Octylglucoside (n-OG) detergent was effective in removing OmpF as well as some other 

contaminant proteins from A4V IB sample (Figure 3.14A). This detergent was further used to 

wash five other mutant IBs (WT, G41D, G41S, V148I and V148G) and in all cases, n-

Octylglucoside was successful in removing the prominent OmpF band (Figure 3.14B). This 

suggests that the contaminant proteins in SOD1 IB preparations are likely not making strong or 

specific interactions with SOD1.  Since the major protein component of the IBs is SOD1, the 

binding pattern demonstrated by various conformation-specific antibodies is likely reporting on 

the variation in the aggregate structure, which are composed mainly of SOD1 proteins. 
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Figure 3.14: Effects of detergent washes on SOD1 IB impurities. (A) A4V IB was washed 

with four different mild detergents. N-Octylglucoside successfully removed OmpF and other 

protein bands from the IB sample. S and P represent the Supernatant and Pellet fractions 

respectively. (B) Other mutant IBs also showed a similar pattern where protein bands, including 

OmpF, are washed to the supernatant fraction once washed with n-OG. UW and W represent the 

IBs not washed with detergent and washed with detergent respectively. 

 

3.4.2 Investigating the oxidation status of SOD1 in IBs and soluble cell fractions 

 The most immature form of SOD1 has Cys57 and Cys 146 in their reduced state, which 

then becomes oxidised during the process of maturation. Several studies have found that the 

aggregates in ALS models primarily contain the most immature form of SOD1 where the free 

cysteine residues are in reduced form. Thus, it was intriguing to check the oxidation status of 

SOD1 in the inclusion bodies prepared in minimal media. To do so, cell pellets harvested after 4-

hour growth post-induction and the IB samples obtained after the freeze-thaw cycle were 
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labelled using 0.5M iodoacetamide as described in the Method (Section 2.7). The cells were 

grown at 370C or at 250C to examine the effect of temperature on oxidation state. The inclusion 

body samples obtained as the pellet fraction, as well as the soluble cell fraction, were run on non-

reducing gels and images of those gels are shown in Figure 3.15. Iodoacetamide binds 

irreversibly with the thiol group of cysteine preventing it from forming a disulfide or other 

covalent linkage. Thus, the IA labelling of the free cysteines allows us to check the oxidation 

state when the cell pellets are harvested. Cysteine residues in SOD1 that are already oxidised, for 

example in intramolecular or intermolecular disulfide bonds, will not react with IA. Thus, 

different forms of SOD1 can be distinguished by their different apparent molecular weights in 

SDS-PAGE where the reduced monomers migrate slower than oxidized monomers, and 

intermolecular linkages can give rise to bands for dimeric and higher-order SOD1 species. As a 

standard sample, a reduced IB sample was run along with all IA samples so that the distance of 

migration for reduced SOD1 could be assessed. All IB samples showed a significant band only 

for reduced monomer, indicating that SOD1 aggregates present in the inclusion body samples 

could primarily be in the reduced state. Only V148I supernatant fraction has a prominent 

oxidised band both at 37 and 250C. V148I SOD1 is the most stable variant studied, being slightly 

more stable than WT142; this relatively high stability may promote the formation of the 

intramolecular disulfide bond by increasing the population of the folded monomer. However, 

WT soluble fraction has also been shown to contain oxidised SOD1 species based on the 

observation from previous students in our lab. Here, it appears only to contain reduced band 

potentially because the sample is run along with reduced WT IB standard which contains β-me 

(reducing agent) and β-me is known to leak to its neighbouring lanes and thereby, reduce the 

oxidised species One of the former master’s students, Hilary Simon, labelled WT IB and 
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supernatant fractions from different time points of the growth post IPTG induction (2hrs, 4hrs, 

6hrs and 24hrs) with IA to check time-dependent variation in oxidation state. The results showed 

that the oxidised SOD1 band became dominant over time (especially in the supernatant fraction) 

(Figure 3.15C). It is noteworthy that A4V, G41D/S grown at 37°C contain little SOD1 in their 

supernatant fractions. However, this experiment was conducted only once, and hence replicate, 

and further experiments should be performed to obtain more conclusive information about the 

oxidation states of inclusion bodies under different growth condition.   
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Figure 3.15: IA labelling to check the oxidation status of SOD1. IB and supernatant fractions 

of 4 SOD1 mutants labelled with IA and analyzed by non-reducing 12.5% SDS-PAGE. A) IA 

labelled SOD1 samples grown at 370C. B) IA labelled SOD1 samples grown at 250C. IB samples 

obtained from both growth conditions are predominantly reduced. Only the V148I supernatant 

fraction showed prominent oxidised SOD1 band. S and P represent the Supernatant and Pellet 

fractions, respectively. C) IA labelled SOD1 samples from the different time point of growth at 

370C. Supernatant fractions show a marked increase in oxidised SOD1 population over time. Sol 

represents soluble fraction whereas IB represents pellet fraction. 
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4 Discussion 

4.1 Optimisation of the quantitative dot blot 

 Our results show that developing a quantitative approach to characterise conformation-

specific antibodies to SOD1 IBs requires several steps of optimisation. Previous studies have 

used chemiluminescence for signal detection in their dot blot experiments to characterise the 

binding of various anti-SOD1 antibodies to SOD1 samples127, 105. Here, we reported that 

secondary fluorescence antibodies work better for developing a quantitative immunoblotting 

assay because of its consistent signal intensity over time as well as better reproducibility. 

However, it was crucial to choose a secondary antibody that could give a fairly high and 

consistent linear signal over a wide range of protein amounts and low signal to noise ratio. 

Starbright 700 secondary antibody was able to satisfy these properties when imaged in a 

Chemidoc MP imager. This could probably be due to its unique wavelengths of excitation and 

emission (Table 3.1). The antibody has its excitation in visible spectrum area while emission 

near IR region, which is known to provide the best signal to noise ratio143. Importantly, it was 

also noted that incubating the blots with the primary antibody in an open container yielded more 

consistent results and reduced background signal suggesting that uniform distribution of 

antibody is crucial for reliable signal detection. 

Once, the protocol was optimised, two key aspects of developing quantitative dot blot 

were explored: 1) finding the linear range of detection for SOD1 IBs, 2) normalisation of dot blot 

signal through protein quantification. Several concentration-dependent dot blot assays were 

carried out to address the first issue (Figure 3.3), and we saw a linear trend for the lowest 3 

concentration points while the signal generally saturates for the last two highest concentration 

points. This could be due to an excessive amount of proteins present in the higher concentration 
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points, which might lead to inefficient binding with the NC membrane and subsequent 

dissociation during the washing steps. The second explanation could be that the structure of the 

aggregates might only allow a certain number of primary and secondary antibodies to bind, and 

this might vary among mutants. For each dot blot, it was also important to keep several blank 

wells (3 in our case), the average intensity of which was used as the 0-concentration point. 

However, there could still be some degree of variation in dot blot signal among replicates as 

shown in Figure 3.4 suggesting that technical as well as biological replicates are necessary to 

account for this variation and the interpretation of the data should be made accordingly. The 

results also showed that SDS-denatured samples could not be used for signal normalisation as 

they leak through the NC membrane unevenly. Quantification using SDS-PAGE proved to be a 

robust technique for signal normalisation. It is important to note that the band intensities to be 

quantified should always stay within the linear range. Protein standard should always be used 

with each SDS-PAGE and SOD1 bands should be quantified only from that standard as 

background signal/band intensities on SDS-PAGE are highly dependent on the extent of staining 

and destaining. Finally, double normalisation proved to be an effective technique to compare 

results from biological replicates. IBs from different growth of the same mutant may contain a 

variable amount of SOD1 (we saw this for WT, A4V replicate growths). Even with such 

variability, we see a comparable extent of binding of all mutant IBs to all four conformation-

specific antibodies. Hence, these data could be reliably used for quantitatively characterising the 

binding profile of different SOD1 aggregates to antibodies. 
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4.2 Various properties of the 11 SOD1 mutants chosen for the dot blot assay 

 11 SOD1 mutant inclusion bodies were grown in minimal media without the addition of 

any metal to investigate aggregates formed by immature SOD1 conformations. One of the key 

unresolved mysteries in SOD1-mediated ALS pathology is the wide variation in disease duration 

for different SOD1 mutants. For example, A4V mutation in the dimer interface of SOD1 shows 

an average disease duration of about one year, whereas G37R mutation in the loop III region has 

an average disease duration of over ten years144 (Table 4.1). There have been many studies to 

identify quantifiable biophysical properties of SOD1 such as protein stability, aggregation 

propensity142, folding kinetics145 etc. that could explain these differences. Still, no clear 

correlation has been found yet. Previous studies by Johnathan Almey and Dalia Naser in the 

Meiering lab have shown that different SOD1 mutants have different aggregation propensities in 

rich and minimal media146. However, predicting these aggregation propensities using several 

aggregation predictor software has been met with limited success146,144. This is probably 

influenced by the effects of mutations in SOD1 propagating throughout the structure147. Hence, 

mutation-induced misfolding in SOD1 could disrupt the structures of regions away from the site 

of mutation unpredictably and, thereby, lead to the formation of a variety of higher-order 

oligomers and aggregates with different conformations. The growing evidence on prion-like 

conformational strains of various SOD1 misfolded species further argues for the possibility of 

different aggregate structures forming due to different “strains” of SOD1 mutants90.  

The 11 mutants chosen for the current study are dispersed throughout the structure of the 

protein, as shown in Figure 1.3. These mutants are also known to span in their range of average 

disease durations in ALS, making them attractive candidates for studying aggregate structures. 

Information on the regions of these mutations, their disease durations, melting temperatures and 
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aggregation propensities in different growth conditions are summarized in Table 4.1. Some of 

these mutations are in the β-strands (A4V, G41S/D, G85R, V148I/G), whereas others are in 

various loop regions (G37R, G93A/D, I113T). Some are in the dimer interface regions as well 

(A4V, I113T, V148I/G). Thus, investigating the inclusion body structures of these mutants has 

the potential to provide valuable information on the roles of loop vs strand, dimer interface vs 

non-dimer interface mutations on aggregate structures. Most of the mutants under study show 

high aggregation propensity when they are overexpressed for 4hrs at 370C in the minimal media. 

However, it is interesting to note that different mutations in the same residue can lead to different 

aggregation propensities, such as V148I aggregating much less than V148G (Table 4.1). 

Aggregation propensities were calculated by running the soluble fractions and insoluble IB 

fractions together on 12% SDS-PAGE. Densitometry of SOD1 bands was obtained with proper 

background subtraction (using rolling ball background subtraction method). % insoluble was 

calculated using the equation shown below. 

 

 

 

 

 

 

 

 

% insoluble = 
SOD1 band intensity in IB  

SOD1 band intensity in IB + SOD1 band intensity in soluble fraction  
*100 
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SOD1 

mutant 

Region of 

mutation 

Avg. 

disease 

duration 

(years) 

Holo 

Tm (0C) 

Apo 

oxidised 

Tm (0C) 

Reduced 

apo Tm 

(0C) 

% insoluble (4hr post-

induction) 

  
   

 370C, no Zn 25 0C no Zn 

WT not applicable  92.7 59.1 47.6 27 22 

A4V 
β-1 (dimer 

interface) 

1.2 86.7 50.7 
36.3 98 86 

G37R Loop III 17  50.1 33.5 98 71 

G41D β-4 14.1 86 45.2  96 81 

G41S β-4 1 84.4   97 78 

G85R β-5 6 77.5 54.7 40.7 98 64 

G93A Loop V 3.1 87.7 47.9  97 73 

G93D Loop V 8.8 85.1 45.6  96 80 

I113T 
Loop VI (Dimer 

Interface) 

4.3 88.2 47.1 
 43 45 

V148I 
β-8 (dimer 

interface) 

1.7 92.7 60.5 
51 73 31 

V148G 
β-8 (dimer 

interface) 

2.1 86.9 49.3 
34 96 83 

Table 4.1: Properties of SOD1 mutants. Location of 11 mutations in SOD1 structure, their 

disease duration, melting temperatures of holo, oxidised apo and reduced apo form as well as % 

insolubility after 4 hours post-induction without in 37 or 250C in minimal media.  

 



72 
 

4.3 Structural characterization of SOD1 IBs using conformation-specific antibodies 

To investigate the structures of SOD1 mutant IBs, four different conformation-specific 

antibodies were used that are known to recognise epitopes dispersed through the structure of the 

protein. These four antibodies are called SEDI, USOD, AMF7 and B8H10, which are known to 

bind to exposed dimer interface, β-4 strand, electrostatic loop and exon-3 encoded Zn-binding 

loop, respectively. The binding profile of the inclusion bodies to each of these conformation-

specific antibodies was quantified using the dot blot protocol. The degree of binding was 

represented in terms of normalised slopes. In order to compare the binding profile of each mutant 

to WT, their normalised slopes were divided with that of WT, as shown in Figure 3.11. For 

illustrative purpose, these normalised slope ratios were mapped onto the SOD1 structure, as 

shown in Figure 4.1. For visualisation, the colours are shown in one of the subunits of SOD1 

dimer. The intensity of each of these colours represents the degree of antibody binding compared 

to WT. Hence, darker shades of the colours would mean high degree exposure of epitopes 

whereas lighter shaded would imply that the epitopes are more buried. The intensities of the 

colours are also proportional to the absolute values of normalised slope ratios to make the colour 

scheme quantitatively accurate.  
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Figure 4.1: Relative binding affinity of 10 SOD1 mutants to four conformation-specific 

antibodies mapped onto SOD1 monomer structure.  The four epitopes corresponding to the 

binding regions of each antibody is colored in blue in WT structure. Relative binding of each 

antibody is mapped onto its respective epitope for all 11 mutants. The intensity of the colour is 

proportional to their binding profile with respect to WT IB, as shown in the top panel of the 

figure. 
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4.3.1 SOD1 mutant IBs binding to SEDI and USOD 

The normalised ratios indicate that while some of the mutants show equal or more 

exposure of antibody epitopes compared to WT, some of them significantly show protected 

patterns indicating that the epitopes are buried in the aggregate structure. SEDI antibody that was 

raised against the C-terminal dimer interface epitope binds similarly to all SOD1 mutant IBs, 

with somewhat decreased binding for A4V and G37R. While A4V is a dimer interface mutant, 

G37R does not reside near the dimer interface but nevertheless, rather surprisingly, shows 

similar increased protection (Figure 4.1). Similar to A4V, V148I, another mutation in the dimer 

interface,  may also show increased protection compared to WT; since the V148I mutation is in 

the antibody epitope region, though, conclusions on its aggregate structure due to low binding 

should be viewed with caution. Interestingly, G41S, G41D and G93A mutants show similar or 

higher binding to SEDI, indicating that aggregates of these mutants have the comparable degree 

of dimer interface exposure and misfolding as WT. SEDI antibody was designed by Rakhit et al. 

148 against amino acid residues 145-151)  that lie in the C-terminal dimer interface region. It is a 

patch of hydrophobic residues that generally stays buried in the native dimeric structure. Hence, 

the binding with this antibody occurs only when native dimer is disrupted or misfolded, thereby 

exposing those hydrophobic residues. Using this antibody, Rakhit et al. were able to show the 

presence of such monomeric misfolded species in the aggregates found in spinal cord motor 

neurons of G37R, G85R, G93A transgenic mice as well as A4V ALS patient samples.  

A further study used both SEDI and USOD antibodies to investigate soluble and 

insoluble fractions of spinal cord samples from ALS patients149 and found misfolded SOD1 

species in both fractions. USOD antibody was raised against amino acid residues 41-48 (residues 

GLHGFHVH), which form the β-4 strand (residues 41-48). These residues are generally buried 
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in in mature holo SOD1, under the active site loops, and include two histidine residues that are 

involved in coordinating with active site copper ion. Hence, binding by this antibody indicates at 

least disruption of the active site region and was suggested by Kerman et al. to report on full 

unfolding of the monomer, which results in maximal exposure of this epitope. 

Our results show some interesting binding pattern of inclusion bodies to USOD. V148I 

IBs show the least binding to USOD, suggesting the active site and β-barrel structure are not 

disrupted for this mutant, consistent with its relatively high monomer stability (Table 4.1). G85R 

and G93D show ~60% of binding whereas A4V and G37R show ~80% of binding to USOD 

compared to WT. This indicates that A4V and G37R exhibit a similar extent of protection for 

SEDI and USOD epitopes, whereas G85R and G93D have their dimer interface more exposed 

than β-4 strand compared to WT aggregates. This is clear evidence of different conformations of 

SOD1 aggregates and illustrates varying degrees of disruptions in different regions of the 

structure by these mutants. Two other mutants G93A and V148G show the similar extent of 

binding to USOD as that of WT. This provides another interesting aspect of the difference in 

aggregate structures due to different mutations on the same residue of SOD1. 

4.3.2 SOD1 mutant IBs binding to AMF7 and B8H10 

In contrast to SEDI and USOD, AMF7 and B8H10 were raised against loop regions of 

SOD1 structure. B8H10 recognises an epitope within the metal-binding loop (loop IV, amino 

acid 57–80), the exposure of which is associated with a deficiency in metal co-factor 

binding120,118,150. The rabbit monoclonal AMF7-63 is a higher affinity version of the mouse 

monoclonal DSE2 and was raised against residues in the electrostatic loop (loop VII, amino acid 

125–142), the exposure of which is associated with increased conformational flexibility in this 

region122,127. Both loops have been reported to be highly dynamic components of SOD1 
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structure151. AMF7 and B8H10 antibodies were used in a study by Sarah et al. (2016)122 to show 

the presence of different conformations of SOD1 aggregates in transgenic mice mouse models. 

These conformations were seen to localise in different regions of spinal cord mitochondria and 

later found to interact with several common as well as distinct intracellular proteins123. Our 

results show that most of the mutants bind strongly to AMF7, indicating that a similar extent of 

destabilisation of the electrostatic loop might be a common pathway for aggregation. The three 

exceptions that show a protected pattern for AMF7 are G37R, G93A and G85R. While G37R 

and G93A inclusion bodies show ~70% binding compared to WT, G85R shows ~50% binding. 

This observation may be consistent with previous studies from Sekhar et al. 152 who found that 

one of the excited conformations of reduced apo WT-SOD1 in which a short helix formed in the 

electrostatic loop was completely absent in G85R. Moreover, mutagenesis analysis using UCSF 

Chimera software indicates that the longer side chain of Arginine residue might protrude into the 

space of Zn-binding and electrostatic loop potentially making both these epitopes inaccessible 

for antibody binding (Figure 4.2A). This idea is supported by the observation that the native 

G85R IB binds poorly to AMF7 and B8H10 whereas the denatured form of the aggregate bind to 

these antibodies to a similar extent as that of high binding mutants (G41S.G41D). The 

comparison of normalised binding signal for native and denatured G85R IBs with that of 

G41S/D is shown in Figure 4.2 C.  

Unlike AMF7, B8H10 shows wide variation in its extent of binding to various SOD1 

aggregates. Apart from G85R, V148I binds poorly to B8H10, which is surprising as the mutation 

does not lie anywhere near the epitope region. However, mutagenesis analysis shows that the 

addition of a methyl group due to Isoleucine residue at 148th position might sterically hinder and 

disrupt the loop region that precedes the B8H10 epitope as shown in Figure 4.2B. Two of the 
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other mutants G37R, G93D show ~60-65% binding compared to WT while the rest of the 

mutants show more than 75% binding to B8H10. It is to be noted that while most of the SOD1 

mutants exhibit a relatively high exposure of AMF7 epitope in their aggregate structures, B8H10 

epitope is more variably exposed by these mutants suggesting that the electrostatic loop and the 

zinc-binding loop might have different propensities to get disrupted during aggregate formation.   

 

 

A 

B 
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Figure 4.2: Loop disorder by G85R and V148I. A) Potential clashes of G85R mutation with 

electrostatic loop/ AMF7 epitope (Blue) and Zn binding loop/B8H10 epitope (red). B) Potential 

clashes of V148I mutation with the loop region preceding B8H10 epitope. The mutated residue 

is shown in green colour. However, it is to be noted that the image is showing one of the 

rotamers of the mutation out of all possible orientations for visualisation purpose. C) Plot 

representing denatured signals from 4 SOD1 mutants (G41D, G41S, G85R and V148I) with 

AMF7 (blue) and B8H10 (orange). G41S/D are high binding mutants for AMF7 and B8H10, 

whereas G85R is low binding for both and V148I is low binding for B8H10 in native IB 

structure. All images have been generated using Chimera (version 1.14) with PDB ID: 1HL5. 
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4.3.3 Comparison of aggregate structures formed by different mutations of the same 

residue 

In our current analysis, there are three pairs of mutants (G41S/D, G93A/D, V148I/G) 

with different mutations in the same position of SOD1. These mutant pairs are of possible 

interest as they as associated with different disease duration (Table 4.1). For example, G41D 

shows less severity with disease duration of more than 10 years, while G41S shows extreme 

disease severity with average disease duration of ~1 year. However, antibody binding pattern for 

G41S and G41D were remarkably similar to each other with a slight difference in B8H10 

binding. G41S shows a higher binding for B8H10, suggesting that the Zn-binding loop in this 

mutant might be more destabilised than G41D. Hence, additional experiments on Zn bound 

species of these mutant aggregates might be required to assess the difference. However, an 

overall comparable binding pattern between G41S/D might suggest the involvement of other 

factors in variable disease duration. Unlike these two mutants, G93D showed an overall less 

binding towards SEDI, USOD and B8H10 compared to G93A and AMF7 bound more to G93D. 

This suggests charge-dependent packing of SOD1 in aggregate structures. Interestingly, V148I 

showed overall less binding to all antibodies compared to V148G, which could potentially be 

explained with its higher stability in reduced apo state. Also, mutation of valine to isoleucine 

should not significantly affect the conformation of the dimer interface region (where the 

mutation is present) as compared to the mutation to a glycine residue. Together these data 

indicate that various other factors that are dependent as well as independent of the aggregate 

structure might play a crucial role in these mutant mediated disease pathologies. 
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4.4 Properties of SOD1 aggregates in inclusion bodies 

 In order to validate the binding profile seen with quantitative dot blot technique, it is also 

important to obtain complementary information about the composition of IBs formed by SOD1 

mutants. A recent study by Semmler et al.123 found that different conformations of SOD1 

aggregates interact with several cellular proteins. The presence of various other proteins was also 

seen in the IB samples used in this study through SDS-PAGE analysis. Apart from SOD1, one of 

the other prominent proteins present in these samples is OmpF. Previous work by John Almey146 

in the Meiering lab reported that this OmpF band could not be removed from the IB samples 

when washed with Triton X-100 detergent. Hence, it was suspected that other proteins might be 

involved in the aggregate structures of SOD1, which is not ideal for the quantitative analysis. 

However, that work was carried out with IB grown in rich media, whereas the current study is 

carried out with IB samples grown in minimal media. Hence, the detergent study was performed 

again with these IB samples. Four different non-ionic detergents were chosen for washing 

inclusion bodies, as shown in Figure 4.5A. Out of these four detergents, n-Octylglucoside was 

able to remove OmpF as well as several other proteins from IB sample through washing. This 

was probably due to the high CMC value of this detergent compared to the other three (Figure 

4.5B). CMC value represents the concentration beyond which the detergents form micelles 

spontaneously in the solution. n-OG has a high CMC value and hence, works as an effective 

solubilisation agent153. Such unique property of n-OG might be ideal for optimum interaction and 

solubilization of various proteins (like OmpF) from the pellet fraction upon washing. The other 

three detergents might be predominantly forming micelles due to their low CMC values leading 

to their poor ability to solubilize proteins from the pellet fractions to the supernatant fractions 

after washing (Figure 3.14A). However, a systematic concentration-dependent experiment is 



81 
 

required to verify if there are different concentration ranges where each detergent could remove 

other proteins from the inclusion body sample. However, it is to be noted that washing the IB 

samples using these mild detergents might potentially affect its structure. Some of the 

preliminary experiments have shown that conformation-specific anti-SOD1 antibodies bind 

differently to detergent washed samples compared to native IBs (data not shown). However, 

whether the change in binding is resulting from presence of detergent or actual change in SOD1 

conformation in IBs upon washing is required to be further investigated. 

 

 

Figure 4.3: Structural and chemical properties of non-ionic detergents. A) Structures of 4 

non-ionic detergents used for inclusion body washing. B) Critical micelle concentration of each 

detergent. 

 Another experiment was performed to check the oxidation status of SOD1 in these 

inclusion bodies by labelling the samples with iodoacetamide (IA). Labelling was carried out 

after cell harvesting as well as IB preparation process to ensure minimising the oxidation of 

cysteines during the sample preparation steps. Running these sample on a non-denaturing SDS-

PAGE revealed that SOD1 in IBs might predominantly exist in the reduced state when grown in 

minimal media for 4hrs post IPTG induction both at 370C and 250C. However, IA labelling 

 
Detergents CMC in mM 

@ 250C 

Triton X-100 0.2-0.9 

NP-40 0.05-0.3 

Tween 20 0.06 

n-Octylglucoside 14.5 
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should be performed in triplicate experiments with samples from multiple growths to verify and 

establish this observation. It would also be interesting to implement this technique on IBs grown 

under different conditions such as temperature, presence of Zn and/or Cu to account for the roles 

of these factors in SOD1 oxidation. 

4.5 Mechanism of protein aggregation in IB formation 

With over 30% of the biopharmaceuticals produced by industries using the E. coli 

recombinant protein expression systems154, the formation of IBs which contain the majority of 

the overexpressed protein is often considered a prime obstacle in the field of biotechnology154. 

Although as IBs are a relatively pure form of the recombinant protein, this can also facilitate 

purification if the protein can be easily refolded108. In addition, there have been growing reports 

about the potential use of IBs in various areas such as bioprocess engineering, material science 

and medical applications155,156. Indeed, the ease of isolation, resistance to proteolytic 

degradation, mechanical stability, presence of high amounts of overexpressed proteins as well as 

biological activity112,155,157 have made IBs an increasingly attractive system to explore both for 

research and industrial purposes. Despite such high value, the use of IBs is still limited in part 

due to minimal understanding of the molecular mechanisms of protein aggregation during IB 

formation. 

Our results indicate that IBs vary markedly in terms of their expression level and structure, 

depending on mutation as well as growth conditions. Table 4.1 shows that when SOD1 variants 

are grown in minimal media for 4 hours at 370C, most of the mutants show high aggregation 

levels (above 90%), except for WT and V148I which aggregate less. Interestingly, both of these 

variants are more stable than the others, yet they still vary in their antibody binding pattern. Also, 

the aggregation level of each SOD1 variants reduce when they are grown at 250C as opposed to 
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370C for 4hrs post induction. A previous study by Trainor et al.158 has shown that changes in 

local stability due to different mutations could result in variable aggregation propensities. 

Together, these observations indicate that the extent of protein aggregation is highly dependent 

on the stability of the protein as well as various environmental factors such as growth condition, 

expression system. 

Inclusion bodies could be composed of various conformations of the overexpressed protein 

as well as other cellular components such as membrane protein, phospholipids, and nucleic 

acids159. Current knowledge of protein conformation in IBs is predominantly at low structural 

resolution. While some reports argue for the presence of various conformations ranging from 

unfolded to partially or natively folded to higher-order aggregates111, other reports claim that IBs 

could primarily be composed of native-like conformations which convert into amyloid structures 

over time due to accumulation of unfolded or misfolded structures160. The quantitative analysis 

here using the new dot blot protocol has shown that different SOD1 mutants form different IB 

structures. It would be of much interest in future to apply this technique further to investigate the 

change in aggregate structure over time. Also, it can be expanded to study the effect of 

environmental conditions by growing IBs in different growth media, temperature, presence or 

absence of cofactors for a variety of protein with different structures. 

Along with the structural aspect, it is of interest to investigate the composition of inclusion 

bodies. A study by Gardner et al.161 has shown that cysteine residues in proinsulin IBs stay 

reduced. A similar observation was made for SOD1 IBs in IA labelling experiment where IBs of 

most SOD1 variants showed the presence of predominantly reduced species (Figure 3.15 A, B). 

This could be attributed to the reduced cytoplasmic environment of E coli. Hence, a 

comprehensive analysis of the factors that regulate IB structures, and composition as well as the 
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presence of post-translational modifications would significantly enhance our understanding of 

these intriguing protein aggregates and potentially open up ways to use IBs for a wide range of 

functions.  
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5 Conclusions and Future work 

The quantitative dot blot assay indicates that SOD1 may exhibit different mutation dependent 

mechanisms of aggregation, which may be consistent with prion-like strain behaviour. The 

experiments provide a sense of the extent of misfolding and exposure of four epitope regions of 

SOD1 in various mutant aggregates. Data from these experiments nicely complement high-

resolution quenched amide exchange NMR experiment that are currently being conducted in the 

Meiering lab to obtain residue-specific information. Together, both these experiments will 

provide an unprecedented detailed view of differences in aggregate structures of SOD1 mutants.  

In future various other techniques of IB preparation should be explored. For example, 

inclusion bodies should also be extracted from E coli using other methods such as emulsification, 

sonication to check the effect of sample processing on aggregate structure. Western blots on the 

IB samples should also be carried out to check if there are other proteins that antibodies could 

potentially bind. This might also reveal any degradation product of SOD1 in IB samples. 

Additionally, mass spectrometry could be carried out with I113T IB to check for any degradation 

which might explain its high degree of binding to conformation-specific antibodies. Finally, the 

developed quantitative dot blot assay could be further applied to characterise aggregate structures 

of other forms of SOD1 aggregates. The compatibility of this assay with inclusion bodies 

suggests its potential application in biotechnology industries which are increasingly exploring 

properties of IB for wide-ranging applications in industry and medicine. 
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