
Morse: Reducing the Feature Interaction Explosion
Problem Using Subject Matter Knowledge as

Abstract Requirements
Laure Millet, Nancy A. Day, and Jeffrey J. Joyce

Critical Systems Labs
Vancouver, BC, Canada

Email: {laure.millet, nancy.day, jeff.joyce}@cslabs.com

Abstract—The feature interaction problem appears in many
different kinds of complex systems, especially systems whose
elements are created or maintained by separate entities - for
example, a modern automobile that incorporates electronic sys-
tems produced by different suppliers. Cross-cutting concerns,
such as safety and security, require a comprehensive analysis
of the possible interactions. However, there is a combinatorial
explosion in the number of feature combinations to be considered.
Our work approaches the feature interaction problem from a
novel point of view: we seek to use the abstract subject matter
knowledge of domain experts to deduce why some features
will NOT interact, rather than trying to discover or resolve
the interactions. In this paper, we present a method that can
automatically reduce the required number of combinations and
situations that have to be evaluated or resolved for feature inter-
actions. Our tool, called Morse, rules out feature combinations
that cannot have interactions based on traceable deductions from
relatively simple abstract requirements that capture relevant
subject matter knowledge. Our method is useful as a means of
focusing attention on particular situations where more detailed
functional requirements may be needed to avoid unacceptable
risk arising from unintended interactions between features.

I. INTRODUCTION

The feature interaction problem [1], [2] arises when com-
ponents of a system are developed independently and then
combined on a common platform where a feature can influ-
ence the behaviour of other features. While feature-oriented
development facilitates modular development through separate
suppliers, it requires comprehensive, deep integration testing
and causes an explosion in the size of the verification task.
Cross-cutting concerns, such as safety and security, of many
complex systems make the search for solutions to this problem
of paramount importance.

Most work on the feature interaction problem has focused
on 1) how to define a feature and a feature interaction (e.g.,
[3], [4]); 2) how to analyze combinations of features to detect
interactions (e.g., [5], [6], [7]); and 3) architectures/policies
for governing/resolving feature interactions (e.g., variable-
specific [8], priority-based [9], Distributed Feature Compo-
sition (DFC) [10]) .

Our work approaches the feature interaction problem from a
novel point of view. We seek to deduce why features will not
interact from abstract requirements that domain experts often
know about features. Much as a detective eliminates suspects

before arriving at the only remaining culprit, our goal is to
use the knowledge of domain experts, expressed abstractly, to
rule out combinations of features in situations that cannot
have interactions. We present a method (and tool), called
Morse, that can automatically reduce the required number
of combinations and situations that have to be evaluated or
resolved for feature interactions, based on traceable deductions
from requirements knowledge.

We focus on feature interactions that are caused by shared
effects on features or data. Our approach considers collections
of features, not just pairwise combinations. Of key importance
in our approach is that we rule out combinations and situations
based on abstract requirements from the domain experts.
These stakeholders provide information about the relationships
between features and the conditions under which a feature
is relevant, which allow us to rule out combinations. These
requirements provide a traceable argument for why features
do not interact. We do not require a complete model of the
behaviour of the feature, as is required for many approaches
that search for interactions (e.g., model checking). By using
abstract information, the problem becomes tractable – we are
unlikely to suffer from a state space explosion problem.

The contributions of our work are:

• A modelling approach that captures abstract requirements
of features that are relevant to their interactions, including
a novel representation of the model using a feature
relationship graph.

• A formal definition for using these requirements to reduce
the problem to regions or feature combinations, which are
subsets of the entire set of features in a situation (set of
conditions), that require further investigation for feature
interactions.

• Two examples to demonstrate the reduction in the feature
interaction problem accomplished by our approach: 1) a
set of automotive active safety features; and 2) the 1993
crash of an Airbus 320.

We believe that by taking the novel point of view of ruling
out feature combinations based on abstract requirements, we
have made an important contribution to reducing the state
space explosion problem in the verification of combinations
of features. Our results focus attention on particular situations

Jordan Hale
© 2018 IEEE. L. Millet, N. A. Day and J. J. Joyce, "Morse: Reducing the Feature Interaction Explosion Problem using Subject Matter Knowledge as Abstract Requirements," 2018 IEEE 26th International Requirements Engineering Conference (RE), Banff, AB, 2018, pp. 251-261, doi: 10.1109/RE.2018.00033.

where more detailed functional requirements may be needed to
avoid unacceptable risk arising from unintended interactions.

II. OVERVIEW

In this section, we provide a small example of a set of
features and abstract requirements of subject matter knowledge
to illustrate how our method allows us to remove some com-
binations of features from consideration for further analysis.
Our example is based on the University of Waterloo Feature
Model Set (UWFMS) [11], a set of non-proprietary automotive
features modelled in Stateflow. Our example includes four
features with the informal descriptions in Table I. For our
purposes, these features are described succinctly by the ab-
stract requirements in Table II. We chose the words relevant
and influence as general words that can cover a number of
meanings depending on the subject context.

TABLE I
EXAMPLE UWFMS FEATURES

• CC: Cruise Control controls the throttle to adjust the
vehicle speed according to a target speed as set by the
driver.

• EVA: The Emergency Vehicle Avoidance feature safely
clears the road by pulling over when an emergency
vehicle is detected.

• RA: The reverse assistant brakes to mitigate or prevent
a collision when driving in reverse.

• CA: The Collision Avoidance feature mitigates or pre-
vents a collision with an obstacle by braking.

We represent these statements graphically in Figure 1.
We call this graph a feature relationship graph (FR graph).
It is similar to a typical dataflow or dependency diagram
showing features (CC, EVA, RA, CA) and parameters that
they influence (throttle, brakes, and speed), but also includes
the conditions for when a feature (or parameter) is relevant
(under the feature or parameter nodes), and the conditions for
when a node can influence another node (listed on the edges).

From these influences and conditions, we can deduce that
there are only two situations where two or more features can
influence the speed (assuming the gear can only be in one of
drive or reverse):

1) When the vehicle is in drive and runs at a speed above
25kmh and below 40kmh, then both EVA and CA influ-
ence the speed.

2) When CC is enabled and the vehicle is in drive at a speed
greater than or equal to 40kmh, then CC, CA, EVA can
influence the speed.

In all other interpretations of truth values for these conditions,
only one feature can influence the speed. Thus, rather than
considering all possible feature combinations for feature inter-
action analysis, we have reduced the problem to considering
only the sets of features stated above under the situations (set
of conditions) stated. For a set of four features each with a
state space of size n, we have reduced the analysis problem

from n4 to n3 + n2. This reduction is even more significant
because the situation reduces the amount of feature behaviour
to analyze. In order to check for a feature interaction, it is
sufficient to look at the possibly interacting features in the
context of the situation only.

In the next sections, we describe our method precisely
beginning with our first contribution: how to model subject
matter knowledge as abstract requirements that we can use.

III. RELEVANCE AND INFLUENCE REQUIREMENTS

The input language of Morse is a set of English-like
sentences that specify abstract requirements of subject matter
knowledge describing the system. These requirements depict
subsystems we call features by describing their behavior in
terms of their modification of the parameters of the system.
The features are active elements and more particularly the
elements of the system the modeller is concerned about
interacting, whereas a parameter is passive element such as
an actuator, a sensor or any kind of shared data. The term
node means feature or parameter. There are two kinds of
requirements that can be provided as input to our tool:
• Relevance requirements: A relevance requirement is an

English statement about the conditions under which a
node is relevant. A relevance requirement is of the form
N1 is relevant only if C1, where N1 is a node name
and C1 the condition under which N1 is relevant. The
meaning of the term “relevant” needs to be disambiguated
in each project. However, early in system development
engineers often have a sense of when some part of the
system is relevant. For example, a feature is relevant when
it is enabled or running; a parameter is relevant when it
can be modified. There can be only one relevance require-
ment for a node (because one condition can be composed
of multiple expressions through logical operators).

• Influence requirements: An influence requirement pro-
vides information about how a node influences another
node. An influence requirement is of the form N1 in-
fluences N2 when C1, where C1 is the condition under
which this influence exists. For example, a feature influ-
ences a parameter if it modifies its value; a parameter
influences a feature if it is an input to the feature. A
parameter can influence another parameter either when
the first one is an actuator that mechanically modifies the
value of the second or if there is a physical relationship
such that the value of the second is dependent of the first
one. A feature can influence another feature if the first
one sends information to the second one. We assume that
the influence relation is transitive (i.e., if A influences B
and B influences C then A influences C). There can be
only one influence requirement for a pair of nodes.

Morse is not strictly tied to a given level of specification.
In particular, one could mix information from a high-level
specification with more specific details as needed.

We have a simple grammar for describing the conditions,
which can include propositional logic operators, numeric op-
erators, equality, and constants. The order of the requirements

TABLE II
ABSTRACT REQUIREMENTS FOR UWFMS FEATURES

• CC is relevant only if CC is enabled.
• CC influences the throttle when speed ≥ 40 and gear = drive.
• EVA influences the throttle when speed ≥ 0 and gear = drive.
• EVA influences the brakes when speed ≥ 0 and gear = drive.
• RA influences the brakes when 10 ≤ speed ≤ 25 ∧ gear = reverse.
• CA influences the brakes when speed > 25 and gear = drive.
• The throttle influences the speed.
• The brakes influence the speed.

CC
CCenabled

EVA

RA

CA

throttle

brakes

speed

speed ≥ 40 ∧ gear = drive

speed ≥ 0 ∧ gear = drive

speed ≥ 0 ∧ gear = drive

speed > 25 ∧ gear = drive

10 ≤ speed ≤ 25 ∧ gear = reverse

Fig. 1. Feature Relationship Graph for UWFMS Abstract Requirements

in the input file is not significant. We use the closed world
assumption that the only relevance and influence requirements
are those described in the input file.

From this information, we create a feature relationship
graph (FR graph). The graph nodes are features and param-
eters. The relevance requirements are the conditions on the
nodes. The influence requirements are the edges and the condi-
tions on the edges. There is a one-to-one relationship between
an FR graph and its relevance and influence requirements.

IV. RULING OUT FEATURE COMBINATIONS

The goal of the Morse method is to use the relevance and
influence requirements to separate the set of all features into
groups, which we call regions, such that all feature interactions
are contained within one of these groups. Combinations of
features that are not in one of these groups do not need to be
checked for feature interactions.

A potential feature interaction is a situation in which two
or more features can both influence a node in the graph. A
feature interaction can occur only if there is an interpretation
that satisfies all of the conditions under which each feature
in the region influences the node. If such an interpretation
does not exist, we can rule out the possibility of a feature
interaction, unless our closed world assumption is violated
(i.e., there is missing or new information about feature
relationships).

From a set of features and parameters, and a set of relevance
and influence requirements, the result of our method is a set of
regions (sub-graphs) of the FR graph, each with an attached
situation. A situation is a condition that describes a set of
interpretations (of the variables used in the conditions) that
satisfy it1. In every interpretation of the situation, there is a
potential feature interaction between the features of the region.
Our method guarantees that there is no interpretation in which
a feature interaction can occur between features that are not
together in one of the regions. However, it is possible for a
feature to appear in multiple regions.

Three key challenges in creating our method are: 1) to
combine related regions and situations such that we do not
end up with an unmanageably large set of regions; 2) to limit
the number of computationally expensive satisfiability checks;
and 3) to avoid non-terminating analysis when there are loops
in the FR graph.

A. Primitive Feature Relationship Graphs

We begin by considering a primitive feature relationship
graph, which has no conditions (on nodes or edges). There is at
most one edge in a direction between a pair of nodes. Without
conditions, an FR graph is essentially a data flow graph and
our goal is to break it into parts such that all the feature

1One condition can be used to express a set of conditions via logical
operators.

interactions are contained within one of the parts. Figure 2
shows a set of influence requirements for features F1-F5 and
its FR graph. The remaining nodes in the graph are parameters.

I1 influences F1
I1 influences F2
F1 influences O1
F1 influences X
X influences O2
X influences O3
F2 influences X
F3 influences Y
Y influences O4
F4 influences Y
F4 influences Z
F5 infuences Z
Z influences O4
Z influences O5

F1

F2

F3

F4

F5

I1 X

Y

Z

O1

O2

O3

O4

O5

Fig. 2. Example FR Graph #1

An influence path is a chain of directed influence edges
between two nodes in the FR graph. For example, there is
an influence path from F2 to O2. We consider each node to
have an influence path to itself. Two features cannot interact
if there is no node that they both influence. An interaction
point is a node that has an influence path to it from at least
two features. F3 and F4 can both influence interaction point
Y. F3, F4, and F5 can all influence O4. Our goal is to group
features into regions based on their interaction points. We
include multiple interaction points in the same region if there
is an influence path between the interaction points, i.e., a
potential interaction at one can cause a potential interaction
at another. For example, an interaction at Z can cause an
interaction at O4. This grouping partly addresses challenge #1
stated above to avoid an explosion in the number of regions
and keep together related interactions for analysis. A maximal
interaction point of a graph of nodes is a node, n, in the
graph, and every other node in the graph has an influence
path to n. If there is a cycle in the FR graph, a set of nodes
does not necessarily have a unique maximal interaction point.

Definition 1: A region, g, of a primitive FR graph, G, is a
non-empty, full sub-graph (nodes and edges) of G such that:

1) there exists a node, n, in g that is a maximal interaction
point for the region;

2) there is no node in G \ g that has an influence path to
node n, and there is no node in G \ g, such that n has
an influence path to it;

3) g includes at least two feature nodes; and
4) g does not include a parameter node that does not have

an influence path from a feature2.
As a full sub-graph of the FR graph, a region includes

all the edges between its nodes that are in the FR graph. A

2Here, the analysis distinguishes between features (active elements) and
parameters (passive elements).

consequence of this definition is that all nodes within a region
must be connected. The second part of the definition ensures
that in the set of regions of a primitive FR graph, no region’s
set of nodes are a subset of another region’s nodes.

The regions for the FR graph of Figure 2 are:

1) F1, F2, X, O2 (for maximal interaction point O2)
2) F1, F2, X, O3 (for maximal interaction point O3)
3) F3, F4, F5, Y, Z, O4 (for maximal interaction point O4)
4) F4, F5, Z, O5 (for maximal interaction point O5)

Each region includes all the edges in the original FR graph
between the nodes present in the region.

A feature can appear in multiple regions. A region cannot
consist of only one feature so the path from F1 to O1 is not
in any region. Because of point 4 of the definition of region,
I1 does not appear in any region because no feature influences
it. Two regions can have the same set of features, but must
have different maximal interaction points (as in regions R1
and R2). A terminal node is one with no outgoing edges. In
our example, O1–O5 are all terminal nodes. Without cycles
in the graph, there is a region for every terminal node that
has two or more features that have influence paths to it. For
a primitive FR graph, our result is the same as doing a cone-
of-influence reduction [12] or slicing a data flow graph [13]
from all the interaction points and combining the sub-graphs
appropriately.

We find it useful to distinguish regions such as R1 and R2 in
order to focus on different non-interacting maximal interaction
points. However, a user may wish to reduce the regions to the
set of features only and then merge subsets, which, for this
example, would result in feature sets: { F1, F2 } and { F3,
F4, F5 }.

If there are cycles in the FR graph, which we have found
occur often, the definition of a region does not change because
a region can have multiple maximal interaction points (all of
which have influence paths between them), which addresses
challenge #1 of avoiding producing too many regions.

Problem Reduction: In this example, from the original
set of five features, we have reduced the feature interaction
problem to checking sets of features of size three and size
two. Every time we are able to remove even one feature from
the set of features that must be considered together we get an
exponential decrease in the size of the problem. For example,
if the state space of every feature is size n, then checking all
five features together has a state space of size n5, whereas
we have reduced the problem to sub-problems of size n3 and
n2. Since the state space of a single feature model is usually
exponential in its number of variables, this reduction can be
substantial.

Justification for Reduction: Without conditions on the FR
graph, a feature interaction is possible when there are two or
more influence paths from different features to the same node.
We justify our reduction with the argument that based on the
definition of a region, there cannot be two paths that start at
different features that lead to the same node that are not both
contained within a region; thus all feature interactions must

be contained within a region and we do not need to check
combinations of features that are not within a region.

Problem Decomposition and Verification Obligations: As
the development of a system progresses, the abstract require-
ments themselves can be verified on the individual components
of the system to ensure that they remain valid. In this way, our
approach promotes a decomposition of the feature interaction
problem into the following verification obligations: 1) check
the regions that result from Morse for feature interactions; 2)
ensure the abstract requirements input to Morse remain valid;
and 3) ensure that no new influences are found so that the
closed world assumption remains valid.

Implementation: To calculate the regions, we traverse the
FR graph backwards from each node with no outgoing edges
and from each strongly-connected component (SCC) of the
graph that has no outgoing edges. Each of these will result in
a region. By working backwards from the SCCs and ensuring
that we do not visit a node more than once, we address
challenge #3 of avoiding non-terminating analysis. Regions
with only one feature are eliminated and nodes that do not
have an influence path from a feature are removed.

B. Feature Relationship Graphs with Conditions
Next, we consider an FR graph with conditions on the nodes

(from relevance requirements) and conditions on the edges
(from influence requirements). There is at most one edge in a
direction between any pair of nodes. A primitive FR graph
is an FR graph with all edges labelled with True and all
nodes labelled with True. Figure 3 shows a set of conditional
relevance and influence requirements and their FR graph.

F3 is relevant only if ¬b
F2 influences F3 when ¬b
F2 influences F1 when ¬a
X influences F2 when b
X influences F1 when ¬a
F1 influences X
F1 influences Y when a

F3
¬b

F2

¬b

F1

¬a

X

b

¬a

Y
a

Fig. 3. Example FR Graph #2

An interpretation is a mapping from all the variables used
in the conditions of the FR graph to values. A situation is
a condition that describes a set of interpretations that satisfy
it. Our goal is to find the parts of the graph that result under
different interpretations and combine them appropriately. An
interpretation reduces the FR graph by removing edges and
nodes in the graph.

Definition 2: A reduction is the application of an interpre-
tation, i, to an FR graph, g, that results in a primitive FR
graph, gi, by following these steps:

1) Label all edges and nodes in g whose conditions are True
in the interpretation with True (or just drop the condition
on the edge).

2) Remove all edges and nodes in g whose conditions are
False in the interpretation.

3) Remove all of the incoming and outgoing edges of nodes
in g that are removed.

Figure 4 shows the primitive FR graphs that result from
the possible reductions under the four interpretations for the
variables a and b used in the conditions of the FR graph of
Figure 3. For each of these interpretations, we determine the
regions of the primitive FR graph and then combine regions
with the same nodes into a situation.

Definition 3: A region, g, of an FR graph, G, is a non-
empty, full sub-graph of G, plus a situation, s, such that for
every interpretation i, i ∈ s, the reduction of g under i results
in a primitive FR graph, gi, such that:

1) g contains all the nodes in gi;
2) there exists a node, n, in gi such that every other node

in gi has an influence path to n;
3) there is no node in G \ gi that has an influence path to

node n in interpretation i, and there is no node in G\ gi,
such that n has an influence path to it in interpretation i;

4) gi includes at least two feature nodes; and
5) gi does not include a parameter node that does not have

an influence path from a feature.
In addition, there is no interpretation j, j 6∈ s such that the
reduction of G under j has the same set of nodes as g (i.e.,
the situation is maximal).

The regions for the FR graph of Figure 3 are:
1) F1, F2, X, situation a ∧ b ∨ ¬a ∧ b ∨ ¬a ∧ ¬b ≡ ¬a ∨ b

F2

F1

¬a

X

b

¬a

2) F2, F3, situation a ∧ ¬b ∨ ¬a ∧ ¬b ≡ ¬b
F3
¬b

F2

¬b

All nodes in a region are connected. Two regions cannot have
the same FR graph, but one region can be a sub-graph of
another region (because of different situations). Each region
includes all the edges in the original FR graph between the
nodes present in the region where the condition on the edge
can be satisfied by at least one of the interpretations of the
situation. But it excludes edges whose conditions cannot be
satisfied by one of the interpretations of the situation. For
example, even though Y is influenced by F2 and F1, there
is no region that includes Y because the conditions on the
edges F2-F1 and F1-Y cannot both be True at the same
time. Therefore, there can never be a feature interaction at
Y. Since the regions are determined from the primitive FR
graphs resulting from reductions, a cycle in the FR graph does
not change the definition of a region. The set of situations
associated with all the regions will not necessarily cover all
interpretations of the variables if there is an interpretation in
which no feature interaction can occur.

1. Interpretation: a, b
F2

F1X Y

2. Interpretation: a,¬b
F3

F2

F1X Y

3. Interpretation: ¬a, b
F2

F1X

4. Interpretation: ¬a,¬b
F3

F2

F1X

Fig. 4. Reductions of Fig 3

Problem Reduction: As for primitive FR graphs, every
time we remove a feature from a combination that needs to
be considered for feature interactions we get a substantial
reduction in the size of the problem. With conditions, we
have the additional reduction that the combination of feature
behaviours only needs to be considered under a reduced set
of interpretations.

Justification for Reduction: With conditions on the FR
graph, a feature interaction is possible when there are two or
more influence paths from different features to the same node
and all the conditions on the two paths are satisfiable together.
We justify our reduction with the argument that based on the
definition of region there is not an interpretation in which
there are two paths that start at different features that lead to
the same node that are not both contained within a region,
thus all feature interactions must be in a region and we do not
need to check combinations of features that are not within a
region.

Problem Decomposition and Verification Obligations:
With situations, our verification obligations become: 1) check
the regions that result from Morse for feature interactions only
under the interpretations included in the situation; 2) ensuring
the abstract requirements input to Morse remain valid; and 3)
ensuring that no new influences are found so that the closed
world assumption remains valid.

Implementation: We calculate the regions of an FR graph
with conditions using backwards reachability from the termi-
nal nodes and from the SCCs without outgoing edges. Each
time we encounter a condition on a node or an edge, we branch
to create regions for the positive and negative possibilities of
the condition. The result of our algorithm is a set of sub-
graphs each with a set of conditions. Once we have concluded
the backwards graph walk, we check the satisfiability of all
the conditions in the set associated with each region using the
SMT (Satisfiability Modulo Theories) solver Z3 [14]. If a set

of conditions is not satisfiable that region is removed from the
set of regions. By checking for satisfiability only at the end of
the graph walking, we limit the number of computationally
expensive satisfiability checks addressing challenge #2. If
the set of conditions is satisfiable, the conjunction of the
conditions in the set becomes the region’s situation. If there are
two regions with identical sets of nodes, we form a situation
that is the disjunction of the situations of each of the regions,
addressing challenge #1 so that we do not end up with an
unmanageably large set of regions. In our examples so far,
our implementation takes negligible time to run.

C. Unknown and Independent Features

We see a distinction between 1) an example where no
influences are stated meaning all features can potentially
interact and 2) an FR graph with conditional influences that
has an interpretation in which the conditional edges are all
False. In 2), there are always other interpretations in which
there may be potential interactions. If there is no interpretation
in which a condition can be True, it must be an erroneously
stated influence.

Therefore, we consider what the role of an unconnected fea-
ture could be in an FR graph. There are two possible meanings:
a) it has no influences (and would be in no region); or b) it may
influence all other features because we lack information. We
call a) an independent feature and b) an unknown feature.
A feature that is not connected to another node in the FR
graph must be labelled as unknown or independent. We have
adopted syntactic conventions to designate whether a feature is
unknown or independent. Unknown and independent features
may have relevance requirements but are not involved in any
influence requirements. We consider the notation for unknown
features a syntactic shorthand for drawing edges to every other
node, thus unknown and independent features do not require
extensions to the definition of a region. An independent feature

does not appear in any region. It is possible to use relevance
requirements to control which nodes an unknown feature can
influence. This technique is useful when a feature influences
all but a few nodes in the FR graph and we want to avoid
drawing too many edges.

V. EXAMPLES

Our technique is implemented in a tool called Morse. In this
section, we describe two examples. Information used in these
examples have been extracted from [11], and [15]. We focus
on how much reduction in the feature interaction combination
problem has been achieved using our tool.

A. Automotive Safety Features

In this section, we describe an extended version of the
example presented in Section II based on the non-proprietary
set of industrial automotive features called the “University of
Waterloo Feature Model Set” (UWFMS) [11]. These “Active
Safety” features are modelled in StateFlow [16] and use sensor
inputs to control the vehicle’s motion in order to improve the
safety of its occupants. This example is composed of the four
features of Table I (slightly extended) and the three following
additional ones:
• LG: Lane Guide warns or assists the driver when unin-

tentionally drifting from the lane.
• PA: Park Assist performs steering for a parallel park

maneuver and requests gear changes when needed.
• PSC: Parking Space Centering moves the car to the center

after a perpendicular parking maneuver.
Previously, Juarez-Dominguez [11] created and analyzed

this set of features for feature interactions using model check-
ing. She created a data flow graph (without loops) similar to
a primitive FR graph. There are five system parameters as
shown in Figure 5: brakes, throttle, and steering (which are
direct actuators of the features), and speed and position of the
vehicle (which are indirect actuators).

CC

EVA

RA

CA

LG

PA

PSC

brakes

throttle

steering

speed

position

Fig. 5. UWFMS Primitive FR Graph (similar to Fig. 7.6 on p. 151 of [11])

Based on this primitive FR graph, she reduced the problem
to three groups of features each of size four or five features
(one group for each of throttle, brakes, and steering), where
each group influenced the same parameter, ruling out feature
combinations such as CC and LG. She then model checked
all the possible pairs within these groups doing 22 model

checking runs, which uncovered four pairs of features that had
feature interactions, meaning they both influenced the same
parameter at the same time: CA-EVA for the brakes, CC-EVA
for the throttle and LG-EVA and EVA-PSC for the steering.
Juarez-Dominguez’s definition of an actual feature interaction
is that two features both influence the same parameter and
the difference between the effects on the parameters is within
a certain threshold. She did not consider possible 3-way
interactions.

We first compared our approach directly to Juarez-
Dominguez’s work, limiting ourselves to the direct actuators.
We investigated whether there is subject knowledge that can
reduce the number of model checking runs needed. After a
quick examination the StateFlow models of the features, we
extracted the brief abstract requirements found in Table III
to input to Morse, which include the conditions under which
a feature influences a parameter. Graphically, each Stateflow
model was about a page in size so our abstract requirements
are much more concise than a full behavioural model. By
using our tool, Morse, we reduced the number of combinations
to be verified for potential feature interactions to only six as
described in Table IV. Our regions cover the four actual feature
interactions found by Juarez-Dominguez, and the regions were
found at much lower cost in human effort and computing time
by using our methodology (i.e., 22-6=16 model checking runs
that were avoided). Our regions also allow for the possibility
of a three-way feature interaction. Additionally, these abstract
requirements would probably have been known by subject
matter experts prior to creating the detailed Stateflow models.

Next, we added the following requirements about the pa-
rameters speed and position to Table III:
• The throttle influences the speed.
• The brakes influence the speed.
• The throttle influences the position.
• The steering influences the position.

Based on these abstract requirements, Morse reduces the fea-
ture interaction problem to the regions found in Table V, which
we can compare to the features interactions found by Juarez-
Dominguez (CC-CA, CA-EVA, and CC-EVA for the speed,
and CC-LG for the position). Again, our regions cover the
four actual feature interactions found by Juarez-Dominguez,
and our methodology allow us to find these regions at low
cost in human effort and computing time. Further knowledge
by subject matter experts of when the throttle influences the
speed, etc. could reduce the problem even further. Moreover,
our regions also allow for the possibility of a three-way feature
interaction. In addition, Morse provides results that allow an
analyst to focus in on the situation in which an interaction
could occur reducing the number of cases that need to be
considered.

B. Airbus A320-211 Crash

In our second example, we used Morse to analyze the 1993
crash of an Airbus 320 [15]. A relevant factor in this crash was
unintended effects of interactions between the different aircraft
systems and the operation of the ground spoilers, reverse

TABLE III
ABSTRACT REQUIREMENTS FOR UWFMS

• CC is relevant only if the speed > 0.
• CC influences the throttle when speed ≥ 40, gear = drive.
• EVA is relevant only if accel < 30.
• EVA influences the throttle when speed ≥ 0, and gear = drive.
• EVA influences the brakes when speed ≥ 0, and gear = drive.
• EVA influences the steering when speed ≥ 0, and gear = drive.
• RA is relevant only if acc ≤ 0.
• RA influences the brakes when 10 ≤ speed ≤ 25 and gear = reverse.
• CA is relevant only if acc < 35.
• CA influences the brakes when speed > 25 and gear = drive.
• LG influences the steering when speed ≥ 40, and gear = drive.
• PA influences the throttle when speed = 0, and gear = reverse.
• PA influences the brakes when 0 < speed ≤ 5, and gear = reverse or gear = drive.
• PA influences the steering when 0 < speed ≤ 5, and gear = reverse.
• PSC influences the throttle when 0 < speed ≤ 5, and gear = drive.
• PSC influences the brakes when 0 < speed ≤ 5, and gear = drive.
• PSC influences the steering when 0 < speed ≤ 5, and gear = drive.

TABLE IV
UWFMS REGIONS COMPARED TO JUAREZ-DOMINGUEZ

Brakes CA - EVA (speed > 25) and (gear = drive) and (acc < 30)
PA - EVA - PSC (speed > 0) and (speed ≤ 5) and (gear = drive) and (acc ≤ 0)

Throttle CC - EVA (speed ≥ 40) and (gear = drive) and (acc < 30)
EVA - PSC (speed > 0) and (speed ≤ 5) and (gear = drive) and (acc ≤ 0)

Steering LG - EVA (acc < 30) and (speed) ≥ 40 and (gear = drive)
EVA - PSC (speed > 0) and (speed ≤ 5) and (gear = drive) and (acc ≤ 0)

TABLE V
UWFMS REGIONS WHEN INCLUDING SPEED AND POSITION PARAMETERS

Speed CC - CA not(acc < 30) and (speed ≥ 40) and (gear = drive) and (acc < 35)
CA - EVA not(speed ≥ 40) and (speed > 25) and (gear = drive) and (acc < 30)
CC - EVA- CA (gear = drive) and (speed ≥ 40) and (acc < 30)
EVA - PSC- PA (speed > 0) and (speed ≤ 5) and (gear = drive) and (acc <= 0)

Position CC - LG (speed ≥ 40) and (gear = drive) and not(acc < 30)
CC- EVA - LG (speed ≥ 40) and (gear = drive) and (acc < 30)
EVA - PSC (speed > 0) and (speed ≤ 5) and gear = 3 and (acc ≤ 0)

thrusters and brakes upon landing at Okecie International
Airport in Warsaw Poland. As reported in [15]: “Very light
touch of the runway surface with the landing gear and lack of
compression of the left landing gear leg to the extent under-
stood by the aircraft computer as the actual landing resulted
in delayed deployment of spoilers and thrust reversers.” We
constructed our example on the following aircraft features:

• Sp: Spoilers are used during flight to increase the descent
rate or to obtain more stability. They are also used during
landing to increase drag.

• Sl: Slats increase lift allowing the plane to fly at a “slow”

speed.
• RT: Reverse thrusters redirect the engine’s thrust so that

it is directed forward, rather than backward.
• Fl: Flaps, like the slats, increase lift to allow the plane

to fly at “slow” speed.
• Bk: Brakes slow down the plane.

For the purpose of our study, we added the following two
weather features: Wind and Rain. Our model has 20 abstract
requirements, shown in Table VI (input to Morse), capturing
the influences and relevancy of the features and parameters. In
addition to describing relationships between aircraft systems,

they also describe influences on parameters in the physical
world, such as Lift and Unbalanced distribution of aircraft
weight. Features and parameters are capitalized. Wheel speed
is used as both part of the parameter, “Wheel speed less than
72kt at landing gears”, and as a constant in a condition. Note
that kt is the abbreviation of the nautical mile per hour unit.

Based on these abstract requirements, Morse reduces the
feature interaction problem to the regions found in Table VII.
When a weather feature, like wind or rain is included in a
region it means that this meteorological situation is required
for there to be a potential interaction. For example, the last
region depicts a situation where the three features responsible
for decreasing the velocity were less effective during bad me-
teorological conditions that yield the plane to be hydroplaning
and unbalanced.

In addition to reducing the number of features to consider
in combinations, most notably, these regions highlight critical
situations when decreasing velocity upon landing where the
features can interact and affect the software’s understanding
of the flight state (i.e., flying vs. on-ground). A better
understanding of these situations by engineers responsible for
ensuring the airworthiness of this aircraft might have helped
avoid this catastrophe.

VI. RELATED WORK

There is a variety of definitions of a “feature” (e.g., [1], [3],
[17]). Our method does not rely on any particular definition
of a feature; we leave it to the subject matter expert to decide
what constitutes a feature. The feature interaction problem
was first studied in telephony (e.g., [1][18]), but has been
recognized in other domains, such as internet applications [19],
embedded systems [20], security [21], and the automotive
domain [22]. The most common definition of a feature in-
teraction is from Cameron and Velthuijsen [3] where a feature
interaction means that a feature behaves differently in the
presence of other features than it behaves by itself (which
could be desirable or undesirable). For such a feature interac-
tion to occur there must be a situation where two features
can influence the same parameter (or each other directly),
which is what our analysis searches for as a potential feature
interaction.

Approaches to handling the feature interaction problem
were categorized as detection, resolution, and avoidance by
Cameron and Velthuijsen [3]. There has been considerable
work on detecting feature interactions through a variety of
static analysis (off-line) methods such as model checking (e.g.,
[5], [23]) and other formal methods (e.g., [6]). The abstract
models of Felty and Namjoshi [7] are almost as abstract as our
abstract requirements but include a temporal element so that
a model of feature behaviour is created, and they use model
checking to find actual feature interactions. Our method is
complementary to these approaches because, with little effort,
it narrows down the possible feature combinations to consider
for detection of actual feature interactions.

Resolving feature interaction at run-time can be done
using a feature interaction manager (e.g., variable-specific

resolutions [8]). Avoidance of feature interactions can be
accomplished through architectures that automatically resolve
the interaction through the organization of features in the
system (e.g., Distributed Feature Composition (DFC) [10]).
Our method could be complementary to feature interaction
managers and architectures by reducing the set of features to
monitor for feature interactions at run-time.

Without conditions, our method is similar to slicing [13]
a data dependence graph based on its terminal points (and
cycles). The two prior efforts that are most closely related
to our work (but do not use conditions) are that of Juarez-
Dominguez [11], which we compared to directly in a case
study and Metzger [20]. Juarez-Dominguez used a primitive
FR graph without loops to limit the number of pairwise feature
combinations of state machine models of features to model
check for feature interactions. The model checking produces
actual cases of feature interactions. We use conditions in the
FR graph (which may have loops) to reduce the number of
feature combinations and situations that need to be checked for
feature interactions. We work with much less detailed models
and much more lightweight analysis to gain our reduction
results. Metzger [20] used similar ideas to our primitive FR
graph (but without loops) to describe relationships among
requirements to determine locations of potential feature in-
teractions. To refine these potential interactions, he created
refined data models or usage types. We use conditions and
stay at an abstract level of requirements to reduce the feature
interaction problem. FR graphs are similar to the proposed
framework of Classen et al. [4] that extends Jackson’s problem
frames [24]. However, FR graphs are data flow diagrams
and not control flow diagrams. Our approach looks at the
situation in which interactions could occur and not how such
interactions could occur.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a method and tool to use abstract
subject matter knowledge to deduce why some features will
NOT interact and reduce the combinations of features and
situations that have to be evaluated or resolved for feature
interactions. Our novel contribution is in using conditions on
the influences and relevance of nodes expressed abstractly in
order focus on situations in which a feature interaction might
occur and rule out situations that cannot occur. We described a
simple language for writing this subject matter knowledge as
abstract requirements. We used these requirements in a graph
walking algorithm connected to an SMT solver to reduce the
feature interaction problem to sets of features each with an
attached situation that require further analysis. Our method
handles loops in the FR graph; groups related potential feature
interactions together to avoid ending up with an unmanageably
large set of regions; and limits the number of computationally
expensive satisfiability checks. Our examples show interesting
results in terms of reducing the feature interaction combinato-
rial explosion and in focusing attention to particular situations
more analysis is needed.

TABLE VI
ABSTRACT REQUIREMENTS FOR AIRBUS A320-211 CRASH

• Sp is relevant only if (false indication on landing or wheel speed ≤ 72 or in flight)
• RT is relevant only if false indication on landing
• Landing gear is relevant only if false indication on landing and not in flight
• Landing gear influences Sp
• Landing gear influences RT
• Wheel speed less than 72kt at landing gears influences Sp when wheel speed ≤ 72 and not in flight
• Wind influences Lift when in flight
• Sp influences Lift when in flight
• Sl influences Lift when in flight
• Fl influences Lift when in flight
• Wind influences Unbalanced distribution of aircraft weight when false indication on landing
• Unbalanced distribution of aircraft weight influences Landing gear when false indication on landing
• RT influences Velocity not decreasing when false indication on landing
• Sp influences Velocity not decreasing when (false indication on landing or wheel speed ≤ 72) and not in flight
• Rain influences Hydroplaning
• Hydroplaning influences Wheel speed less than 72kt at landing gears
• Hydroplaning is relevant only if wheel speed ≤ 72
• Hydroplaning influences Bk
• Bk influence insufficient primary braking when wheel speed ≤ 72
• Insufficient primary braking influences Velocity not decreasing

TABLE VII
AIRBUS A320-211 CRASH REGIONS

Lift Wind - Sp - Sl - Fl in flight

Velocity Rain - Bk - Sp not in flight and wheel speed ≤ 72 and not false indication on landing
Wind - RT - Sp not in flight and not wheel speed ≤ 72 and false indication on landing
Rain - Wind - Bk - Sp - RT not in flight and wheel speed ≤ 72 and false indication on landing

We found it remarkable that from the limited set of vague
statements we worked with, we deduce very useful information
to reduce the feature interaction problem quickly. These state-
ments are requirements of the individual features and become
a strategy for decomposing the verification problem. As long
as these requirements remain valid (with common definitions
of relevance and influence across all features) and no new
relevance or influence requirements are introduced then our
reduction of the feature interaction problem is sound. Our
method is independent of the logic used to write the conditions
since an alternative satisfiability checker can be used.

Our analysis reduces the feature interaction problem but
does not conclude that a feature interaction does occur in
the region, which depends on the behaviour of the feature.
An important element of Morse is its ability to yield useful
analysis results without providing complete models of the
feature behaviour. Our results are conservative in that they
do not take into account the temporal order of the influences.
The conditions under which one feature influences a node may
not be true at the same time that another feature influences the
node, but our analysis cannot rule out this possibility.

It is also important to recognize that the omission of certain
kinds of information could adversely affect the accuracy of our

analysis results. We must include all potential influences of a
feature on other features and parameters, and the conditions
must be accurate for our results to be valid. However, some
kinds of information about the system can be omitted without
an adverse effect on the accuracy of our analysis results. The
absence of an explicit condition on an influence or node means
it is applicable in all situations. Omission or weakening of a
condition on an influence or node might yield less precise
results, but will not yield inaccurate results.

We plan to continue our work in the following directions:

• Automatically extracting our abstract requirements from
Stateflow or other types of feature models to reduce the
search for feature interactions in these models;

• Study the applicability of the method under the closed
world assumption in an industrial context;

• Presenting the argument regarding why a feature inter-
action cannot occur in certain situations as a logical
argument that can be checked by a proof checker and
used as verification obligations; and

• Exploring the decomposition providing by our method as
downstream development verification obligations.

REFERENCES

[1] T. F. Bowen, F. S. Dworack, C. H. Chow, N. Griffeth, G. E. Herman,
and Y. J. Lin, “The feature interaction problem in telecommunications
systems,” in Seventh International Conference on Software Engineering
for Telecommunication Switching Systems, pp. 59–62, Jul 1989.

[2] S. Apel, J. M. Atlee, L. Baresi, and P. Zave, “Feature Interactions: The
Next Generation (Dagstuhl Seminar 14281),” Dagstuhl Reports, vol. 4,
no. 7, pp. 1–24, 2014.

[3] E. J. Cameron and H. Velthuijsen, “Feature interactions in telecommuni-
cations systems,” IEEE Communications Magazine, vol. 31, pp. 18–23,
Aug 1993.

[4] A. Classen, P. Heymans, and P.-Y. Schobbens, “Whats in a feature: A
requirements engineering perspective,” in International Conference on
Fundamental Approaches to Software Engineering, pp. 16–30, Springer,
2008.

[5] P. K. Au and J. M. Atlee, “Evaluation of a State-Based Model of Feature
Interactions,” Feature Interactions in Telecommunications Networks IV,
pp. 153–167, 1997.

[6] M. Frappier, A. Mili, and J. Desharnais, “Defining and detecting feature
interactions,” in Algorithmic Languages and Calculi: IFIP TC2 WG2.1
International Workshop on Algorithmic Languages and Calculi, pp. 212–
239, Springer US, 1997.

[7] A. P. Namjoshi, Felty and K. S. Namjoshi, “Feature Specification
and Automated Conflict Detection,” ACM Transactions on Software
Engineering and Methodoloy, vol. 12, no. 1, pp. 3–27, 2003.

[8] C. Bocovich and J. M. Atlee, “Variable-specific Resolutions for Feature
Interactions,” Foundations of Software Engineering, pp. 553–563, 2014.

[9] K. C. Wong, J. G. Thistle, and R. P. Malhame, “Conflict resolution
with flexible priority in modular control,” in Canadian Conference on
Electrical and Computer Engineering, vol. 2, pp. 797–800, Sep 1995.

[10] M. Jackson and P. Zave, “Distributed feature composition: a virtual
architecture for telecommunications services,” IEEE Transactions on
Software Engineering, vol. 24, pp. 831–847, Oct 1998.

[11] A. L. Juarez Dominguez, Detection of Feature Interactions in Automo-
tive Active Safety Feature. PhD thesis, University of Waterloo, David
R. Cheriton School of Computer Science, 2012.

[12] R. P. Kurshan, Computer-Aided Verification of Coordinating Processes:
The Automata- Theoretic Approach. Princeton University Press, 1995.

[13] M. Weiser, “Program slicing,” IEEE Transactions on Software Engineer-
ing, vol. SE-10, pp. 352–357, July 1984.

[14] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, vol. 4963
of Lecture Notes in Computer Science, pp. 337–340, 2008.

[15] Main Commission Aircraft Accident Investiga-
tion Warsaw, “Report on the Accident to Airbus
A320-211 Aircraft in Warsaw.” http://www.rvs.uni-
bielefeld.de/publications/Incidents/DOCS/ComAndRep/Warsaw/warsaw-
report.html. transcripted by Peter Ladkin, 6 March 1996.

[16] “MathWorks Stateflow.” http://www.mathworks.com/help/stateflow/.
[17] C. R. Turner, A. Fuggetta, L. Lavazza, and A. L. Wolf, “A conceptual

basis for feature engineering,” Journal of Systems and Software, vol. 49,
no. 1, pp. 3 – 15, 1999.

[18] D. Amyot, T. Gray, R. Liscano, L. Logrippo, and J. Sincennes, “Interac-
tive conflict detection and resolution for personalized features,” Journal
of Communications and Networks, vol. 7, no. 3, pp. 353–365, 2005.

[19] R. G. Crespo, M. Carvalho, and L. Logrippo, “Distributed resolution
of feature interactions for internet applications,” Computer Networks,
vol. 51, no. 2, pp. 382–397, 2007.

[20] A. Metzger, “Feature interactions in embedded control systems,” Com-
puter Networks, vol. 45, no. 5, pp. 625–644, 2004.

[21] A. Nhlabatsi, R. Laney, and B. Nuseibeh, “Feature interaction: The
security threat from within software systems,” Progress in Informatics,
no. 5, pp. 75–90, 2008.

[22] A. L. Juarez Dominguez, N. A. Day, and J. J. Joyce, “Modelling feature
interactions in the automotive domain,” in International Workshop on
Modeling in Software Engineering, pp. 45–50, ACM, 2008.

[23] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay, “Symbolic
model checking of software product lines,” International Conference on
Software Engineering, pp. 321–330, 2011.

[24] M. Jackson, Problem Frames: Analyzing and Structuring Software
Development Problems. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2001.

