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Abstract

The zero dynamics of infinite-dimensional systems can be difficult to characterize. The zero dynamics of boundary control
systems are particularly problematic. In this paper the zero dynamics of port-Hamiltonian systems are studied. A complete
characterization of the zero dynamics for a port-Hamiltonian systems with invertible feedthrough as another port-Hamiltonian
system on the same state space is given. It is shown that the zero dynamics for any port-Hamiltonian system with commensurate
wave speeds are a well-posed system, and are also a port-Hamiltonian system. Examples include wave equations with uniform
wave speed on a network. A constructive procedure for calculation of the zero dynamics that can be used for very large system
order is provided.

Key words: Port-Hamiltonian system, distributed parameter systems, boundary control, zero dynamics, networks, coupled
wave equations.

1 Introduction

The zeros of a system are well-known to be important
to controller design; see for instance, the textbooks
[6,22,25]. For example, the poles of a system controlled
with a constant feedback gain move to the zeros of the
open-loop system as the gain increases. Furthermore,
regulation is only possible if the zeros of the system do
not coincide with the poles of the signal to be tracked.
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Another example is sensitivity reduction - arbitrary re-
duction of sensitivity is only possible if all the zeros are
in the left half-plane. Right half-plane zeros restrict the
achievable performance; see for example, [6].

There are a number of definitions of zero dynamics. The
most fundamental is that the zero dynamics are the dy-
namics of the system obtained by choosing the input u
so that the output y is identically zero. This will only
be possible for initial conditions in some subspace of the
original state space. This definition applies to nonlin-
ear and linear finite-dimensional systems [10]. For sys-
tems with linear ordinary differential equation models,
the eigenvalues of the zero dynamics correspond to the
invariant zeros, and if the realization is minimal, these
are also the zeros of the transfer function. The inverse
of the input-output map of a linear finite-dimensional
system without right-hand-plane zeros can be approxi-
mated by a stable system. Such systems are said to be
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minimum-phase, and they are typically easier to control
than non-minimum phase systems.

However, many systems are modeled by delay or par-
tial differential equations. This leads to an infinite-
dimensional state space, and also an irrational trans-
fer function. The calculation of zero dynamics for
finite-dimensional systems, both linear and non-linear,
is closely related to the construction of the Byrnes-
Isidori form [10]. However, no such extension exists
for general infinite-dimensional systems. The notion
of minimum-phase as a system with an approxi-
mately invertible input-output map can be extended to
infinite-dimensional systems. Minimum-phase infinite-
dimensional systems are those for which the transfer
function is an outer function, see [11]. A detailed study
of conditions for second-order systems to be minimum-
phase can be found in [11].

As for finite-dimensional systems, the zero dynamics are
important for a number of approaches to controller de-
sign. Results on adaptive control and on high-gain feed-
back control of infinite-dimensional systems, see e.g. [18–
21,26], require the system to be minimum-phase. More-
over, the sensitivity of an infinite-dimensional minimum-
phase system can be reduced to an arbitrarily small level
and stabilizing controllers exist that achieve arbitrarily
high gain or phase margin [8].

Since the zeros of infinite-dimensional systems are often
not accurately calculated by numerical approximations
[4,5,9,17] it is useful to obtain an understanding of their
behaviour in the original infinite-dimensional context.
For infinite-dimensional systems with bounded control
and observation, the zero dynamics have been calcu-
lated, although they are not always well-posed [23,24,34].

There are few results for zero dynamics for partial differ-
ential equations with boundary control and point obser-
vation. In [2,3] the zero dynamics are found for a class of
parabolic systems defined on an interval with collocated
boundary control and observation. This was extended to
the heat equation on an arbitrary region with collocated
control and observation in [27]. In [15] the invariant ze-
ros for a class of systems with analytic semigroup that
includes boundary control/point sensing are defined and
analysed.

The zero dynamics of an important class of boundary
control systems, port-Hamiltonian systems [13,16,32,31]
or systems of linear conservation laws [1], are established
in this paper. Such models are derived using Hamil-
ton’s Principle. Many situations of interest, in partic-
ular waves and vibrations, can be described in a port-
Hamiltonian framework. The approach used here fol-
lows [13]. Both the control u and the measurement y
are defined in terms of boundary conditions. In some
cases the (u, y) pairing does not define a passive sys-
tem, unlike traditional port-Hamiltonian systems [31]

where this pairing is always power flowing across the
boundary. A complete characterization of the zero dy-
namics for port-Hamiltonian systems with commensu-
rate wave speeds is obtained. For any port-Hamiltonian
system with invertible feedthrough, the zero dynam-
ics are another port-Hamiltonian system on the same
state space. Port-Hamiltonian systems with commensu-
rate wave speeds can be written as as a coupling of scalar
systems with the same wave speed. The zero dynamics
are shown to be well-posed for such systems, and are in
fact a new port-Hamiltonian system. This result echoes
earlier results for zero dynamics of finite-dimensional
Hamiltonian systems [25, chap. 12][29,30]. Preliminary
versions of Proposition 7 (for constant coefficients), The-
orem 12 (with an outline of the proof) and Example 3
appeared in [12].

A constructive procedure for exact calculation of the
zero dynamics of a port-Hamiltonian system based on
linear algebra is provided. This algorithm can be used
on large networks, and does not use any approximation
of the system of partial differential equations.

2 Infinite-dimensional Port-Hamiltonian Sys-
tems

Consider systems on a one-dimensional (spatial) domain
of the form

∂x

∂t
(ζ, t) = P1

∂

∂ζ
(H(ζ)x(ζ, t)), ζ ∈ (0, 1), t ≥ 0 (1)

x(ζ, 0) = x0(ζ), ζ ∈ (0, 1) (2)

0 =WB,1

[
(Hx)(1, t)

(Hx)(0, t)

]
, t ≥ 0 (3)

u(t) =WB,2

[
(Hx)(1, t)

(Hx)(0, t)

]
, t ≥ 0 (4)

y(t) =WC

[
(Hx)(1, t)

(Hx)(0, t)

]
, t ≥ 0, (5)

where P1 is an Hermitian invertible n× n-matrix, H(ζ)
is a positive n × n-matrix for a.e. ζ ∈ (0, 1) satisfy-

ing H,H−1 ∈ L∞(0, 1;Cn×n), and WB :=
[
WB,1

WB,2

]
is a

n×2n-matrix of rank n. Such systems are said to be port-
Hamiltonian, see [16,32,13], or systems of linear conser-
vation laws [1]. Here, x(·, t) is the state of the system at
time t, u(t) represents the input of the system at time t
and y(t) the output of the system at time t.

A different representation of port-Hamiltonian sys-
tems, the diagonalized form, will be used. The matrices
P1H(ζ) possess the same eigenvalues counted according
to their multiplicity as the matrix H1/2(ζ)P1H1/2(ζ),
and as H1/2(ζ)P1H1/2(ζ) is diagonalizable the matrix
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P1H(ζ) is diagonalizable as well. Moreover, by our as-
sumptions, zero is not an eigenvalue of P1H(ζ) and all
eigenvalues are real, that is, there exists an invertible
matrix S(ζ) such that

P1H(ζ)

= S−1(ζ) diag(p1(ζ), · · · , pk(ζ), n1(ζ), · · · , nl(ζ))︸ ︷︷ ︸
=:∆(ζ)

S(ζ).

Here p1(ζ), · · · , pk(ζ) > 0 and n1(ζ), · · · , nl(ζ) < 0. In
the remainder of this article it is assumed that S and ∆
are continuously differentiable on (0, 1). Introducing the
new state vector

z(ζ, t) =

[
z+(ζ, t)

z−(ζ, t)

]
= S(ζ)x(ζ, t), ζ ∈ [0, 1],

with z+(ζ, t) ∈ Ck and z−(ζ, t) ∈ Cl, and writing

∆(ζ) =

[
Λ(ζ) 0

0 Θ(ζ)

]
,

where Λ(ζ) is a positive definite k × k-matrix and Θ(ζ)
is a negative definite l× l-matrix, the system (1)–(5) can
be equivalently written as

∂z

∂t
(ζ, t) =

∂

∂ζ
(∆(ζ)z(ζ, t))+S(ζ)

S−1(ζ)

dζ
∆(ζ)z(ζ, t) (6)

z(ζ, 0) = z0(ζ), ζ ∈ (0, 1) (7)[
0

u(t)

]
=

[
K0+ K0−

Ku+ Ku−

]
︸ ︷︷ ︸

K

[
Λ(1)z+(1, t)

Θ(0)z−(0, t)

]

+

[
L0+ L0−

Lu+ Lu−

]
︸ ︷︷ ︸

L

[
Λ(0)z+(0, t)

Θ(1)z−(1, t)

]
, (8)

y(t) =
[
Ky+ Ky−

]
︸ ︷︷ ︸

Ky

[
Λ(1)z+(1, t)

Θ(0)z−(0, t)

]

+
[
Ly+ Ly−

]
︸ ︷︷ ︸

Ly

[
Λ(0)z+(0, t)

Θ(1)z−(1, t)

]
, (9)

where t ≥ 0 and ζ ∈ (0, 1).

Defining A

Af =− (∆f)′ + S(S−1)′∆f,

D(A) =
{

∆f ∈ H1(0, 1;Cn) |[
0

0

]
= K

[
Λ(1)f+(1)

Θ(0)f−(0)

]
+ L

[
Λ(0)f+(0)

Θ(1)f−(1)

]}

the system (6)-(9) with u ≡ 0 can be written in abstract
form,

ż(t) = Az(t).

The resolvent operator of A is compact, and thus the
spectrum of A contains only eigenvalues.

Next, consider well-posedness of the control system (6)–
(9), or equivalently of system (1)–(5). Well-posedness
means that for every initial condition z0 ∈ L2(0, 1;Cn)
and every input u ∈ L2

loc(0,∞;Cp) the unique mild so-
lution z of the system (6)–(8) exists such that the state
and the output (9) lie in the spaces X := L2(0, 1;Cn)
L2

loc(0,∞;Cm), respectively. See [13] for the precise def-
inition and further results on well-posedness of port-
Hamiltonian systems. To characterize well-posedness,
define the matrices

K =

[
K0

Ku

]
=

[
K0+ K0−

Ku+ Ku−

]
, L =

[
L0

Lu

]
=

[
L0+ L0−

Lu+ Lu−

]
.

Theorem 1 [35], [13, Thm. 13.2.2 and 13.3.1]. The fol-
lowing are equivalent

(1) The system (6)–(9) is well-posed on L2(0, 1;Cn);
(2) For every initial condition z0 ∈ L2(0, 1;Cn), the

partial differential equation (6)–(8) with u = 0
possesses a unique mild solution on the state space
L2(0, 1;Cn). Furthermore, this solution depends
continuously on the initial condition;

(3) The matrix K is invertible.

Example 2 As an illustration, consider a small network
of three tubes or ducts i = 1 . . . 3 with flux density pi and
charge density qi. Alternatively, these equations model a
network of transmission lines; in this case pi is flux and
qi is current. For simplicity of exposition, set physical
parameters to 1.

∂pi
∂t = −∂qi∂ξ ,
∂qi
∂t = −∂pi∂ξ , i = 1 . . . 3.

(10)

The end of tube 1 is connected to the start of tubes 2 and
3, the end of tube 2 is connected to the start of tube 1,
and the end of tube 3 is open. With control of flow at the
start of tube 1 and observation of flow at the end of tube
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3, this yields the boundary conditions

0 = p1(0, t)− p2(1, t)

0 = p1(1, t)− p2(0, t)

0 = −p2(0, t) + p3(0, t)

0 = q1(1, t) + q2(0, t) + q3(0, t)

0 = p3(1, t),

u(t) = −q1(0, t)− q2(1, t),

y(t) = q3(1, t).

(11)

With state x =
[
p1 p2 p3 q1 q2 q3

]T
, and defining

P1 =

[
03×3 −I3
−I3 03×3

]
, H = I6,

this system of PDEs (10) with the boundary conditions
(11) is in the form (1)-(9). (If the physical constants were
not 1, the only change would be that the matrixH would
have the parameters on the diagonal.)

To obtain a diagonal form (6) of the PDE, define the new
state variables

z+i = pi − qi, z−i = pi + qi, i = 1 . . . 3

so that

[
z+

z−

]
=



1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1


︸ ︷︷ ︸

S



p1

p2

p3

q1

q2

q3


.

The PDE now has the form (6) with Λ = I3, Θ = −I3.
The boundary conditions (11) are now written

0

0

0

0

0

u(t)


=



0 −1 0 0 1 0

1 0 0 0 1 0

0 0 0 0 1 −1

−1 0 0 −1 −1 1

0 0 1 0 0 0

0 1
2 0 1

2 0 0


︸ ︷︷ ︸

K



z+1(1, t)

z+2(1, t)

z+3(1, t)

−z−1(0, t)

−z−2(0, t)

−z−3(0, t)



+



1 0 0 0 1 0

0 −1 0 −1 0 0

0 −1 1 0 0 0

0 −1 −1 −1 0 0

0 0 0 0 0 −1

1
2 0 0 0 1

2 0


︸ ︷︷ ︸

L



z+1(0, t)

z+2(0, t)

z+3(0, t)

−z−1(1, t)

−z−2(1, t)

−z−3(1, t)


.

The matrix K is invertible so the control system is well-
posed.

Example 3 Consider two coupled wave equations on
(0, 1)

∂2w1

∂t2
=
∂2w1

∂ζ2
(12)

∂2w2

∂t2
= 4

∂2w2

∂ζ2
(13)

∂w1

∂t
(1, t) = 0 (14)

∂w2

∂t
(1, t) = 0 (15)

∂w1

∂t
(0, t)− ∂w2

∂t
(0, t) = 0 (16)

a
∂w1

∂ζ
(0, t) + b

∂w2

∂ζ
(0, t) = u(t) (17)

with |a|+ |b| > 0. In order to write this system as a port-
Hamiltonian system, define

x =
[
∂w1

∂t
∂w1

∂ζ
∂w2

∂t
∂w2

∂ζ

]∗
.

Then the system can be written

∂x

∂t
(ζ, t) =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


∂

∂ζ




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 4

x(ζ, t)


with boundary conditions


1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 −1 0

0 0 0 0 0 a 0 1
4b


[

(Hx)(1, t)

(Hx)(0, t)

]
=


0

0

0

u(t)

 .
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Alternatively, diagonalize P1H and define

z+1(ζ, t) =w1t(ζ, t) + w1ζ(ζ, t)

z+2(ζ, t) =w2t(ζ, t) + 2w2ζ(ζ, t)

z−1(ζ, t) =w1t(ζ, t)− w1ζ(ζ, t)

z−2(ζ, t) =w2t(ζ, t)− 2w2ζ(ζ, t).

The partial differential equation becomes

∂

∂t

[
z+(ζ, t)

z−(ζ, t)

]
=

∂

∂ζ




1 0 0 0

0 2 0 0

0 0 −1 0

0 0 0 −2


[
z+(ζ, t)

z−(ζ, t)

] ,

with boundary conditions
0

0

0

u(t)

 =


1 0 0 0

0 1 0 0

0 0 −1 1
2

0 0 a
2

b
8




z+1(1, t)

2z+2(1, t)

−z−1(0, t)

−2z−2(0, t)



+


0 0 −1 0

0 0 0 −1

1 − 1
2 0 0

a
2

b
8 0 0




z+1(0, t)

2z+2(0, t)

−z−1(1, t)

−2z−2(1, t)

.

By Theorem 1 this is a well-posed system if and only if
2a 6= −b.

In the port-Hamiltonian formulation, the importance of
connections between subsystems and the overall bound-
ary conditions to well-posedness of the control system is
clear. Well-posedness of a port-Hamiltonian system can
be established by a simple check of the rank of the ma-
trix K in the definition of the boundary conditions.

For the remainder of this paper it is assumed that K is
invertible so that the control system is well-posed.

For port-Hamiltonian systems, well-posedness implies
that the system (6)–(9) is also regular, that is, the trans-
fer function G(s) possesses a limit over the real line, see
[35] or [13, Section 13.3]. Writing

KyK
−1 =

[
∗ D

]
(18)

with D ∈ Cm×p the feedthrough operator, this limit of
G(s) over the real axis is D, see [13, Theorem 13.3.1].

3 Zero dynamics for port-Hamiltonian systems

Now we define zero dynamics for port-Hamiltonian sys-
tems.

Definition 4 Consider the system (1)–(5) on the state
space X = L2(0, 1;Cn). The zero dynamics of (1)–(5)
are the pairs (z0, u) ∈ X × L2

loc(0,∞;Cp) for which the
mild solution of (1)–(5) satisfies y = 0. The largest out-
put nulling subspace is

V ∗ = {z0 ∈ X | there is a function u ∈ L2
loc(0,∞;Cp) :

the mild solution of (1)–(5) satisfies y = 0}.

Thus, V ∗ is the space of initial conditions for which there
exists a control u that “zeroes” the output. As system
(1)–(5) is equivalent to system (6)–(9) we can equiva-
lently study the largest nulling subspace of (6)–(9). Set-
ting y = 0 in (9) reveals that the zero dynamics are de-
scribed by

∂z

∂t
(ζ, t) =

∂

∂ζ
(∆(ζ)z(ζ, t))+S(ζ)

S−1(ζ)

dζ
∆(ζ)z(ζ, t)(19)

z(ζ, 0) = z0(ζ), ζ ∈ (0, 1) (20)

0 =

[
K0

Ky

][
Λ(1)z+(1, t)

Θ(0)z−(0, t)

]

+

[
L0

Ly

][
Λ(0)z+(0, t)

Θ(1)z−(1, t)

]
, (21)

u(t) =Ku

[
Λ(1)z+(1, t)

Θ(0)z−(0, t)

]
+ Lu

[
Λ(0)z+(0, t)

Θ(1)z−(1, t)

]
, (22)

where t ≥ 0 and ζ ∈ (0, 1). Note that system (19)–
(22) is still in the format of a port-Hamiltonian system,
but even regarding (22) as the (new) output, it needs
not to be a well-posed port-Hamiltonian system since

the new “K-matrix”,
[
K0

Ky

]
can have rank less than n.

The zero dynamics are a well-posed dynamical system if
the system (19)–(22) with state-space V ∗, no input and
output u is well-posed.

The eigenvalues of the zero dynamics of the system are
closely related to the invariant and transmission zeros of
the system. For simplicity only the single-input single-
output case is considered (p = m = 1).

Definition 5 [27,4] A complex number λ ∈ C is an in-
variant zero of the system (6)–(9) on the state space
X = L2(0, 1;Cn), if there exist z ∈ H1(0, 1;Cn) and
u ∈ C such that

λz(ζ) =
∂

∂ζ
(∆(ζ)z(ζ)) + S(ζ)

S−1(ζ)

dζ
∆(ζ)z(ζ),

0 =

[
K0

Ky

][
Λ(1)z+(1)

Θ(0)z−(0)

]
+

[
L0

Ly

][
Λ(0)z+(0)

Θ(1)z−(1)

]
,

u=Ku

[
Λ(1)z+(1)

Θ(0)z−(0, t)

]
+ Lu

[
Λ(0)z+(0, )

Θ(1)z−(1, t)

]
,
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Definition 6 A complex number s ∈ C is a transmission
zero of the system (6)–(9) if the transfer function satisfies
G(s) = 0.

If λ ∈ ρ(A), where ρ(A) denotes the resolvent set of A,
then λ is an invariant zero if and only if λ is a trans-
mission zero [13, Theorem 12.2.1]. Moreover, if the zero
dynamics is well-posed, then the spectrum of the corre-
sponding generator equals the set of invariant zeros of
the system (6)–(9).

If the feedthrough operator of the original system is in-
vertible, then the zero dynamics system is well-posed on
the entire state space, and is also a port-Hamiltonian
system.

Proposition 7 Assume that the system has the same
number of inputs as outputs. Then the zero dynamics
are well-posed on the entire state space if and only if the
feedthrough operator D of the original system is invert-
ible.

Proof: This was proven in [12] in the case of a constant
coefficient matrix H. The proof presented here is more
complete, and includes the generalization to variable co-
efficients. The feedthrough operator D of the original
system is given by [∗D] = KyK

−1 (see (18)). It will first
be shown that invertibility of D is equivalent to invert-
ibility of the “K-matrix” of equation (21):

K̃ :=

[
K0

Ky

]
.

If D is singular, then there is u 6= 0 in the kernel of D,
and

KyK
−1

[
0

u

]
= 0.

Combining this with the fact that K0K
−1 =

[
I 0
]
,

K̃K−1

[
0

u

]
=

[
K0

Ky

]
K−1

[
0

u

]
= 0.

Thus K̃ is singular. Assume next that K̃ is singular.
Thus there exists non-zero [ x1

x2
] such that[

K0

Ky

][
x1

x2

]
=

[
0

0

]
. (23)

This implies that

K

[
x1

x2

]
=

[
K0

Ku

][
x1

x2

]
=

[
0

z

]
,

where z 6= 0, since K is invertible. Thus

Dz = KyK
−1

[
0

z

]
= Ky

[
x1

x2

]
= 0

and thus D is not invertible.

Assume now that D is invertible, then by the above
equivalence with the invertibility of K̃ and Theorem 1
for every initial condition there exists a solution of (19)–
(21). Since z is now determined, u is determined by (22).
Now it is straightforward to see that the functions z and
u satisfy (6)–(8) and the corresponding output y satis-
fies y = 0.

If for every z0 ∈ L2(0, 1;Cn) there exists a solution of
(19)–(22), then the functions z and u satisfy (6)–(8).
Since K is invertible, the solution depends continuously
on the initial condition. By construction, z is the solution
of the homogeneous equation (19)–(21), and Theorem

1 implies the invertibility of K̃. �

The energy associated with a port-Hamiltonian system
is

E(t) =

∫ 1

0

x(ζ, t)TH(ζ)x(ζ, t)dζ. (24)

The following proposition shows that for passive port-
Hamiltonian systems (1)–(5) the zero dynamics are well-
posed on the entire state space.

Corollary 8 Assume that the system (1)–(5) has the
same number of inputs as outputs and that along classical
solutions Ė(t) ≤ u(t)T y(t), then the zero dynamics are
well-posed on the entire state space and the feedthrough
operator is invertible.

Proof: Consider the system (1)–(5) in which we set
y(t) ≡ 0. Together with (3) this imposes n boundary
conditions. Furthermore, we know from the power bal-
ance,

Ė(t) ≤ u(t)T y(t) (25)

that Ė ≤ 0. From [13, Theorem 7.1.5, Lemma 7.2.1,
and Theorem 7.2.4] we conclude that this homogeneous
PDE generates a contraction semigroup on the whole
state space. Hence by Proposition 7 we find that the
feedthrough is invertible. �

Example 9 (Example 3 cont.) As output for the system
select

y(t) =
∂w1

∂t
(0, t). (26)

The boundary conditions for the zero dynamics are (14)–
(16) plus

∂w1

∂t
(0, t) = 0.
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In the diagonal representation this is
0

0

0

0

 =


1 0 0 0

0 1 0 0

0 0 −1 1
2

0 0 −1 0


︸ ︷︷ ︸

K̃


z+1(0, t)

2z+2(0, t)

−z+1(1, t)

−2z+2(1, t)



+


0 0 −1 0

0 0 0 −1

1 − 1
2 0 0

1 0 0 0




z+1(1, t)

2z+2(1, t)

−z+1(0, t)

−2z+2(0, t)

 .

The matrix K̃ has full rank and so the zero dynamics are
defined on the original state space.

The transfer function for this system can be found by
solving

s2ŵ1(ζ, s) =
∂2ŵ1

∂ζ2
(ζ, s)

s2ŵ2(ζ, s) = 4
∂2ŵ2

∂ζ2
(ζ, s)

ŵ1(1, s) = 0

ŵ2(1, s) = 0

ŵ1(0, s)− ŵ2(0, s) = 0

a
∂ŵ1

∂ζ
(0, s) + b

∂ŵ2

∂ζ
(0, s) = û(s),

with

ŷ(s) = sŵ1(0, s),

where the ˆ denotes the Laplace transforms. The solution
of the differential equation with the first two boundary
conditions is

ŵ1 = α sinh(s(ζ − 1)), ŵ2 = sinh(s/2(ζ − 1)).

Using the other boundary conditions leads to the transfer
function

G(s) =
−2 sinh(s/2) sinh(s)

b sinh(s) cosh(s/2) + 2a cosh(s) sinh(s/2)
.

Hence the feedthrough is −2
b+2a . The system is well-posed

if and only if b+ 2a 6= 0 and in this case the inverse sys-
tem is also well-posed. The zeros of G are all imaginary,
and so the system is minimum phase [11]. Alternatively,
calculation of the eigenvalues with ∂w1

∂t (0, t) = 0 leads to
the same conclusion.

The energy of this model is

E(t) =
1

2

4∑
i=1

∫ 1

0

zi(t)
2dt.

Differentiating with respect to time, substitution of the
differential equation, and integration by parts in the spa-
tial variable yields

Ė(t) =
∂w1

∂t
(ζ, t)

∂w1

∂ζ
(ζ, t)

∣∣∣∣1
ζ=0

+4
∂w2

∂t
(ζ, t)

∂w2

∂ζ
(ζ, t)

∣∣∣∣1
ζ=0

.

Applying the boundary conditions (14)–(16) and (26)
leads to

Ė(t) = y(t)

(
−∂w1

∂ζ
(0, t)− 4

∂w2

∂ζ
(0, t)

)
.

Thus, if a = −1, b = −4 in the boundary condition (17),

then the control system satisfies Ė(t) ≤ u(t)T y(t).

It is very common though for the feedthrough to be non-
invertible. This more challenging situation is considered
in the next two sections.

4 Commensurate constant wave speed

In this section, the following class of port-Hamiltonian
systems is considered:

∂

∂t
z(ζ, t) =−λ0

∂

∂ζ
z(ζ, t), (27)

z(ζ, 0) = z0(ζ), ζ ∈ (0, 1) (28)[
0

u(t)

]
=−λ0

[
K0

Ku

]
︸ ︷︷ ︸
K

z(0, t)− λ0

[
L0

Lu

]
︸ ︷︷ ︸
L

z(1, t), (29)

y(t) =−λ0Kyz(0, t)− λ0Lyz(1, t), (30)

where λ0 is a scalar. If H is constant, then (6)–(9) is
of the form (27)–(30) with −λ0 replaced by a diagonal
(constant) and invertible matrix ∆. On the diagonal of
the matrix ∆ are the possible different wave speeds of
the system. If the ratio of any pair of diagonal entries
of ∆ is rational, then the system (6)–(9) can be equiva-
lently written in form (27)–(30) by dividing the intervals
to adjust the propagation periods, that is, we divide the
intervals in a series of intervals. This is a standard pro-
cedure and is illustrated in Example 10. The following
simple reflection makes positive wave speeds into nega-
tive wave speed, while keeping the same absolute speed

z̃k(ζ, t) := zk(1− ζ, t).

It is good to remark that the system (27)–(30) will in
general have larger matrices than the original system
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(6)–(9). However, for simplicity, still denote the size by
n.

Example 10 Consider the following system with com-
mensurable wave speeds

∂z1

∂t
=−∂z1

∂ζ
,

∂z2

∂t
=−1

2

∂z2

∂ζ
,

with ζ ∈ [0, 1], t ≥ 0 and

[
0

u(t)

]
=

[
1 0

0 1

]
z(0, t) +

[
1 1

0 0

]
z(1, t)

y(t) =
[
1 0
]
z(0, t) +

[
0 0
]
z(1, t).

This system has not a uniform wave speed, but can be
written equivalently as a system with one wave speed. To
reach this goal, split the second equation in two and obtain
the following equivalent system

∂z1

∂t
=−∂z1

∂ζ
,

∂z2a

∂t
=−∂z2a

∂ζ
,

∂z2b

∂t
=−∂z2b

∂ζ
,

with ζ ∈ [0, 1], t ≥ 0, z2b(ζ, t) = z2(ζ/2, t) and
z2a(ζ, t) = z2((1 + ζ)/2, t) and

0

0

u(t)

=


1 0 0

0 1 0

0 0 1


︸ ︷︷ ︸

K

z(0, t) +


1 1 0

0 0 −1

0 0 0


︸ ︷︷ ︸

L

z(1, t)

y(t) =
[
1 0 0

]
︸ ︷︷ ︸

Ky

z(0, t) +
[
0 0 0

]
︸ ︷︷ ︸

Ly

z(1, t).

This transformation also works if H(ζ) is diagonal a.e.

ζ ∈ (0, 1) and the ratio of the numbers τi :=
∫ 1

0
1

H(ζ)ii
dζ

are pairwise rational [28].

It is now shown that the zero dynamics can be well-posed
through the input and output equations.

It is well-known that the solution of (27) is given by
z(ζ, t) = f(1 − ζ + λ0t) for t ≥ 0 and some function f .

Using this fact, we write the system (27)-(30) equiva-
lently as

f(t) = z0(1− t), t ∈ [0, 1], (31)[
0

u(t)

]
=−λ0Kf(1 + λ0t)− λ0Lf(λ0t), t ≥ 0, (32)

y(t) =−λ0Kyf(1 + λ0t)− λ0Lyf(λ0t), t ≥ 0. (33)

Since the system is well-posed, the matrixK is invertible
(Theorem 1). Thus, equivalently,

f(t) = z0(1− t), (34)

f(1 + λ0t) = −K−1Lf(λ0t)− λ−1
0 K−1

[
0

u(t)

]
, (35)

y(t) = (λ0KyK
−1L− λ0Ly)f(λ0t) +KyK

−1

[
0

u(t)

]
.

(36)

Defining

Ad =−K−1L, Bd = −λ−1
0 K−1

[
0

I

]
,

Cd =−λ0KyAd − λ0Ly, Dd = −λ0KyBd, (37)

equation (35)–(36) can be written as

f(1 + λ0t) =Adf(λ0t) +Bdu(t),

y(t) =Cdf(λ0t) +Ddu(t).

Define for j ∈ N the functions zd(j) ∈ L2(0, 1;Cn),
ud(j) ∈ L2(0, 1;Cp), and yd(j) ∈ L2(0, 1;Cm) by
zd(0)(ζ) := z0(1− ζ), zd(j)(ζ) = f(j + ζ) for j ≥ 1 and

ud(j)(ζ) = u(
j + ζ

λ0
), yd(j)(ζ) = y(

j + ζ

λ0
), j ∈ N.

Thus equations (27)–(30) can be equivalently rewritten
as

zd(j + 1)(ζ) =Adzd(j)(ζ) +Bdud(j)(ζ) (38)

(zd(0))(ζ) = z0(1− ζ) (39)

yd(j)(ζ) =Cdzd(j)(ζ) +Ddud(j)(ζ) (40)

This representation is very useful, not only for the zero
dynamic, but also for other properties like stability.

Theorem 11 [14, Corollary 3.7] The system (27)–(30)
is exponentially stable if and only if the spectral radius of
Ad satisfies r(Ad) < 1 or equivalently if σmax(Ad) < 1.

Further sufficient conditions for exponential stability
can be found in [1,7,13]. In particular, exponential sta-
bility is implied by the condition KK∗ − LL∗ > 0, [1,
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Thm. 3.2] and [13, Lemma 9.1.4]. However, the condi-
tion KK∗−LL∗ > 0 is in general not necessary, see [13,
Example 9.2.1].

It will now be shown that the zero dynamics of systems
of the form (27)–(30) are again a port-Hamiltonian sys-
tem, but with possibly a smaller state, that is, instead
of L2(0, 1;Cn) the state space will be L2(0, 1;Ck) with
0 ≤ k ≤ n. First, it is shown that the problem of de-
termining the zero dynamics for (27)–(30) can be trans-
formed into determining the zero dynamics for the finite-
dimensional discrete-time system described by the ma-
trices Ad, Bd, Cd and Dd.

Theorem 12 Let z0 ∈ L2(0, 1;Cn). Then the following
are equivalent.

(1) There exists an input u ∈ L2
loc(0,∞;Cp) such that

the output y of (27)–(30) with initial condition
z(·, 0) = z0 is identically zero;

(2) z0 ∈ L2(0, 1;V ∗d ), where V ∗d ⊆ Cn is the largest
output nulling subspace of the discrete-time system
Σ(Ad, Bd, Cd, Dd) with state space Cn given by

w(j + 1) = Adw(j) +Bdu(j), (41)

y(j) = Cdw(j) +Ddu(j).

In particular, the largest output nulling subspace V ∗ of
(27)–(30) is given by V ∗ = L2(0, 1;V ∗d ).

PROOF. The system (27)–(30) can be equivalently
written as as (38)–(40). In these equations the input,
state and output were still spatially dependent. However,
the time axis has been split as [0,∞) = ∪j∈N[j, j + 1].
Thus condition 1. is equivalent to

1′ There exists a sequence (ud(j))j∈N ⊆ L2(0, 1;Cm)
and a set Ω ⊂ (0, 1) whose complement has measure
zero such that for every ζ ∈ Ω,

zd(j + 1)(ζ) =Adzd(j)(ζ) +Bdud(j)(ζ), (42)

(zd(0))(ζ) = z0(1− ζ).

0 =Cdzd(j)(ζ) +Ddud(j)(ζ),

Clearly, condition 1′ implies that z0(ζ) ∈ V ∗d a.e.,
where V ∗d denotes the largest output nulling subspace
of the finite-dimensional system (41). Since trivially
z0 ∈ L2(0, 1;V ∗d ), condition 2 follows.

The system (Ad, Bd, Cd, Dd) is a finite-dimensional
discrete-time system. Let V ∗d ⊆ Cn indicate the largest
output nulling subspace. Then there exists a ma-
trix K such that the output-nulling control is given
by ud(j) = Kzd(j), see [33]. Referring now to (42),
if z0 ∈ L2(0, 1;V ∗d ) then the output-nulling control

(ud(j))j∈N for system (42) satisfies ud(j) ∈ L2(0, 1;Cp).
Condition 2 thus implies condition 1′.

For many partial differential equation systems, the
largest output nulling subspace is not closed and the
zero dynamics are not well-posed, [24,34]. However, for
systems of the form (27)–(30) the largest output nulling
subspace is closed, and the zero dynamics are well-posed.
The following theorem provides a characterization of
the largest output nulling subspace of Σ(Ad, Bd, Cd, Dd)
and hence of the zero dynamics for the original partial
differential equation. The proof can be found in [12].

Theorem 13 Define E = −
[
K0

Ky

]
, F =

[
L0

Ly

]
. The ini-

tial condition v0 lies in the largest output nulling sub-
space Vd of Σ(Ad, Bd, Cd, Dd) if and only if there exists
a sequence {vk}k≥1 ⊂ Cn such that

Evk+1 = Fvk, k ≥ 0. (43)

Furthermore, the largest output nulling subspace V ∗d sat-
isfies V ∗d = ∩k≥0V

k, where V 0 = Cn, V k+1 = V k ∩
F−1EV k.

Thus in addition to the well-known V ∗-algorithm for
finite-dimensional systems, see [1, p. 91], Theorem 13
provides an alternative algorithm. It remains to show
that the system restricted to the output nulling subspace
is again port-Hamiltonian.

Theorem 14 For the port-Hamiltonian system (27)–
(30) the zero dynamics is well-posed, and the dynamics
restricted to the largest output nulling subspace is a port-
Hamiltonian system without inputs.

PROOF. By Theorem 12, the largest output nulling
subspace V ∗ of (27)–(30) is given by V ∗ = L2(0, 1;V ∗d ).
If V ∗d = {0}, then there is nothing to prove, and so
assume that V ∗d is a non-trivial subspace of Cn. It is
well-known that there exists a matrix Fd such that [33]

(Ad +BdFd)V
∗
d ⊂ V ∗d .

Therefore, using Theorem 12 and (38)–(40), it is easy
to see that for the choice ud(j)(ζ) := Fdzd(j)(ζ) the
output yd(j)(ζ) is zero provided the initial condition z0

lies in L2(0, 1;V ∗d ). Using the definition of the Ad, Bd,
Cd, Dd, ud and zd, it follows that for z0 ∈ L2(0, 1;V ∗d )
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there exists a function f satisfying

f(t) = z0(1− t), t ∈ [0, 1], (44)

f(1 + λ0t) =−K−1Lf(λ0t)

−λ−1
0 K−1

[
0

Fdf(λ0t)

]
, t ≥ 0, (45)

0 = (λ0KyK
−1L− λ0Ly)f(λ0t)

+KyK
−1

[
0

Fdf(λ0t)

]
, t ≥ 0. (46)

Equations (45)-(46) can be equivalent written as

0 = −λ0Kextf(1 + λ0t)− λ0Lextf(λ0t), (47)

with

Kext =

[
K

Ky

]
(48)

and some matrix Lext. Since z0 ∈ L2(0, 1;V ∗d ), for all
t and almost all ζ ∈ [0, 1], f(ζ + λ0t) ∈ V ∗d . Thus,
Kext and Lext can be restricted to V ∗d and equation (47)
can equivalently be written with matrices Kext|V ∗

d
and

Lext|V ∗
d

. Since K is part of the the matrix Kext, the ma-

trix Kext|V ∗
d

has rank equal to the dimension of V ∗d . Let

P be the projection onto the range ofKext|V ∗
d

. This leads
to

0 = −λ0PKext|V ∗
d
f(1+λ0t)−λ0PLext|V ∗

d
f(λ0t). (49)

Define KV ∗
d

:= PKext|V ∗
d

and LV ∗
d

:= PLext|V ∗
d
. The

above equation is the solution of the partial differential
equation

∂

∂t
z(ζ, t) =−λ0

∂

∂ζ
z(ζ, t), (50)

0 =−λ0KV ∗
d
z(0, t)− λ0LV ∗

d
z(1, t) (51)

on the state space L2(0, 1;V ∗d ). Since KV ∗
d

is invertible,
Theorem 1 implies that this system is a well-posed port-
Hamiltonian system.

In the following section a second method to obtain the
zero dynamics for systems with one dimensional input
and output spaces is developed. The advantage of this
method is that a transformation to a discrete system is
not needed and non-constant wave speed is possible.

5 Zero dynamics of port-Hamiltonian systems
with commensurate wave speed

In this section the zero dynamics of systems of the form
(27)-(30) with one dimensional input and output spaces

and (possibly) non-constant wave speed are defined. The
class of systems considered has the form

∂

∂t
z(ζ, t) = − ∂

∂ζ
(λ0(ζ)z(ζ, t)) (52)

0 = K0(λ0(0)z(0, t)) + L0(λ0(1)z(1, t)) (53)

u(t) = Ku(λ0(0)z(0, t)) + Lu(λ0(1)z(1, t)) (54)

y(t) = Kyz(0, t) + Lyz(1, t). (55)

Here K0, L0 ∈ C(n−1)×n, Ku,Ky, Lu, Ly ∈ C1×n and
λ0 ∈ L∞(0, 1) satisfying 0 < m ≤ λ0(ζ) ≤ M for al-
most every ζ ∈ (0, 1) and constants m,M > 0. If P1H is
a diagonal matrix, then (6)–(9) is of the form (52)–(55)
with −λ0(ζ) replaced by a diagonal and invertible ma-
trix ∆. On the diagonal of the matrix ∆ are the possible
different wave speeds of the system. If the ratio of any
pair of diagonal entries of ∆ is rational, then the system
(6)–(9) can be equivalently written in form (52)–(55)
by dividing the intervals to adjust the propagation peri-
ods. It will be assumed throughout this section that the
port-Hamiltonian system (52)–(55) is a well posed lin-
ear system with state space L2(0, 1;Cn) or equivalently

that the matrix
[
K0

Ku

]
is an invertible n× n-matrix, see

Theorem 1. The corresponding generator A of the C0-
semigroup of the homogeneous system is given by [13]

Af = −(λ0f)′,

D(A) =
{
λ0f ∈ H1(0, 1;Cn) |[

0

0

]
=

[
K0

Ku

]
(λ0f)(0) +

[
L0

Lu

]
(λ0f)(1)

}
.

Denote by G(s) the transfer function of the port-
Hamiltonian system (52)–(55). Since the port-Hamiltonian
system is assumed to be well-posed, there exists a right
half plane

Cα := {s ∈ C | Re s > α}
such that G : Cα → C is an analytic and bounded func-
tion. Define

p :=

∫ 1

0

λ−1
0 (s)ds.

Moreover, using [13, Theorem 12.2.1] for s ∈ ρ(A), where
ρ(A) denotes the resolvent set of A, and u ∈ C the num-
ber G(s)u is (uniquely) determined by

0 = (K0 + L0e
−sp)v, (56)

u = (Ku + Lue
−sp)v, (57)

G(s)u = (Ky + Lye
−sp)v (58)

for some v ∈ Cn.

Lemma 15 There exists µ ∈ R such that, for s ∈ Cµ,

G(s) = 0 if and only if the matrix
[
K0+L0e

−sp

Ky+Lye
−sp

]
is not

invertible.
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PROOF. Since the matrix
[
K0

Ku

]
is invertible and A

generates a C0-semigroup there is a µ ∈ R such that
ρ(A) ⊆ Cµ and

[
K0 + L0e

−sp

Ku + Lue
−sp

]
=

[
K0

Ku

]
+

[
L0

Lu

]
e−sp

is invertible for s ∈ Cµ.

Assume now G(s) = 0 for some s ∈ Cµ. Then (56)–(58)
imply that there exists v ∈ Cn such that

0 = (K0 + L0e
−sp)v,

1 = (Ku + Lue
−sp)v,

0 = (Ky + Lye
−sp)v .

Because
[
K0+L0e

−sp

Ku+Lue
−sp

]
is invertible, it yields v 6= 0. Thus[

K0+L0e
−sp

Ky+Lye
−sp

]
is not invertible.

Conversely, assume that for some s ∈ Cµ,
[
K0+L0e

−sp

Ky+Lye
−sp

]
is not invertible. Then there exists a non-zero vector
v ∈ Cn\{0} such that

[
0

0

]
=

[
K0 + L0e

−sp

Ky + Lye
−sp

]
v.

Set u := (Ku + Lue
−sp)v. Since

[
K0+L0e

−sp

Ku+Lue
−sp

]
is invert-

ible, it follows that u 6= 0. However, G(s)u = 0 by (56)–
(58), which implies G(s) = 0.

Theorem 16 Suppose that G(s) 6≡ 0. Then the zero
dynamics of the port-Hamiltonian system (52)–(55) are
again a well-posed port-Hamiltonian system with wave
speed −λ0 and possibly a smaller state space. More pre-
cisely, there exists k ∈ {0, · · · , n} such that the zero dy-
namics is described by the port-Hamiltonian system

∂

∂t
w(ζ, t) = − ∂

∂ζ
(λ0(ζ)w(ζ, t))

0 = Kw(λ0(0)w(0, t)) + Lw(λ0(1)w(1, t)).

with state space L2(0, 1;Ck) and the k× k-matrix Kw is
invertible.

PROOF. The zero dynamics are defined by the equa-

tions

∂

∂t
z(ζ, t) = − ∂

∂ζ
(λ0(ζ)z(ζ, t)) (59)[

0

0

]
=

[
K0

Ky

]
(λ0(0)z(0, t)) +

[
L0

Ly

]
(λ0(1)z(1, t)) .

(60)

Since there is one input and one output, and rank[
K0

Ku

]
= n, the rank of the matrix

[
K0

Ky

]
equals n−1 or n.

If rank
[
K0

Ky

]
= n, that is, this matrix is invertible,

then the zero dynamics is well-posed on the whole state
space L2(0, 1;Cn), see Proposition 7. Theorem 1 implies
that the zero dynamics are well-posed on the state space
L2(0, 1;Cn). Thus k = n and the theorem is proved.

Suppose next that rank
[
K0

Ky

]
= n − 1. Then Ky is a

linear combination of the rows of K0 and there is an
invertible transformation, a row reduction, so that (60)
is equivalent to

[
0

0

]
=

[
K11 K12

0 0

]
(λ0(0)z(0, t))+

[
L11 L12

L21 L22

]
(λ0(1)z(1, t)).

(61)
Here K11, L11 ∈ C(n−1)×(n−1) and L22 ∈ C. Since
rank[K11 K12] = n − 1, column transformations lead
to a representation where the matrix K11 is invertible.
Assume now that this has been done.

Since K11 is invertible, and G is not equivalently zero,
Lemma 15, implies that there exists s0 ∈ C such that
both T1 := K11 + L11e

−s0p and

T :=

[
T1 T2

T3 T4

]
:=

[
K11 + L11e

−s0p K12 + L12e
−s0p

L21e
−s0p L22e

−s0p

]
(62)

are invertible. Defining the Schur complement of T with
respect to T1,

S = T4 − T3T
−1
1 T2,

[
T1 T2

T3 T4

]
=

[
I 0

T3T
−1
1 I

][
T1 0

0 S

][
I T−1

1 T2

0 I

]
.

Since T1 and T are invertible, S is invertible and

T−1 :=

[
T−1

1 + T−1
1 T2S

−1T3T
−1
1 −T−1

1 T2S
−1

−S−1T3T
−1
1 S−1

]
.

11



We define the matrices

Kw := K11(T−1
1 + T−1

1 T2S
−1T3T

−1
1 )−K12S

−1T3T
−1
1

Lw := L11(T−1
1 + T−1

1 T2S
−1T3T

−1
1 )− L12S

−1T3T
−1
1

Kw12 := K12S
−1 −K11T

−1
1 T2S

−1.

Thus it yields[
K11 K12

0 0

]
T−1 =

[
Kw Kw12

0 0

]
.

Here Kw12 is a (n − 1) × 1-matrix and rankKw ≥ n −
2. Now applying the state transformation z̃ = Tz, the
equations (61) are equivalent to[

0

0

]
=

[
K11 K12

0 0

]
T−1(λ0(0)z̃(0, t))

+

[
L11 L12

L21 L22

]
T−1(λ0(1)z̃(1, t))

=

[
Kw Kw12

0 0

]
(λ0(0)z̃(0, t))

+

[
Lw L12S

−1 − L11T
−1
1 T2S

−1

0 es0p

]
(λ0(1)z̃(1, t)).

Also the system of partial differential equations (59) are
equivalent to

∂

∂t
z̃(ζ, t) = − ∂

∂ζ
(λ0(ζ)z̃(ζ, t)). (63)

Thus, the transformed partial differential equation is
identical to the original. The general solution

z̃n(ζ, t) =
c

λ0(ζ)
e

∫ ζ
0
λ−1
0 (s)ds−t

and the boundary condition z̃n(1, t) = 0 imply that z̃n ≡
0. Define

w :=

[
z̃1
...

z̃n−1

]
. (64)

The zero dynamics is described by the reduced port-
Hamiltonian system

∂w

∂t
= − ∂

∂ζ
(λ0w),

0 = Kw(λ0(0)w(0, t)) + Lw(λ0(1)w(1, t)).

The reduced system is well-posed on L2(0, 1;Cn−1) if
and only Kw is invertible; that is, Kw has rank n− 1. If
Kw is invertible, then the theorem is proved.

Now suppose that rank Kw = n−2. As in the first part,
elementary row and column transformations can be used
to put the boundary conditions for the reduced system
into the form, again indicating the state variables by w,[

0

0

]
=

[
K̃11 K̃12

0 0

]
(λ0(0)w(0, t))

+

[
L̃11 L̃12

L̃21 L̃22

]
(λ0(1)w(1, t)).

where K̃11 is invertible. Define

T̃ (s) = Kw + Lwe
−sp.

In order to repeat the above procedure, a complex num-
ber s such that T̃ and K̃11 + L̃11e

−sp are both invertible
is needed. Set s = s0. Define

X = T−1
1 + T−1

1 T2S
−1T3T

−1
1 .

Recalling that T1 = K11 + e−s0pL11, T2 = K12 +
e−s0pL12,

Kw + Lwe
−s0p =K11X −K12S

−1T3T
−1
1

+e−s0pL11X − e−s0pL12S
−1T3T

−1
1

= T1X − T2S
−1T3T

−1
1

= I + T2S
−1T3T

−1
1 − T2S

−1T3T
−1
1

= I.

Thus, with s = s0, T̃ (s) is invertible. Define

fw : Cα → C, fw(s) = det[T̃ (s)].

and so fw(s0) = 1. Since fw is analytic, there is a se-
quence sn, Resn → ∞ with f(sn) 6= 0. Choose then sw
so that K̃11 + L̃11e

−sp is invertible. Repeating the previ-
ous procedure leads to a port-Hamiltonian system with
state-space L2(0, 1;Cn−2). Since each iteration leads to
a state-space with fewer number of state variables, this
procedure is guaranteed to converge within n steps.

Since the zero dynamics are a well-posed dynamical sys-
tem, the following result is immediate.

Corollary 17 The invariant zeroes are contained in a
left-hand-plane.

One consequence of calculating the zero dynamics using
the original port-Hamiltonian form is that it is easy to
obtain the input u that zeroes the output. Suppose only
one state space reduction in Theorem 16 is needed. The
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state space of the zero dynamics is L2(0, 1;Cn−1). From
(54) and (62)

u(t) =Kuλ0(0)z(0, t) + Luλ0(1)z(1, t)

=Kuλ0(0)T−1z̃(0, t) + Luλ0(1)T−1z̃(1, t).

In the zero dynamics, z̃n ≡ 0. Defining K̃u to be the first
n−1 columns of Kuλ0(0)T−1 and defining L̃u similarly,
the zeroing input is

u(t) = K̃uw(0, t) + L̃uw(1, t)

where w is defined in (64). For the situation where more
than one state space reduction is needed, the calcula-
tion is similar, except that a transformation matrix T is
needed for each reduction.

6 Computation

Theorem 4.2 leads to a characterization of the zero dy-
namics as a port-Hamiltonian system of smaller dimen-
sion. Moreover, the proof is constructive and can be used
in an algorithm to calculate the zero dynamics using
standard linear algebra algorithms, see the box on the
following page. Zero dynamics can be calculated exactly
for large system order; that is those with a large num-
ber of nodes. Furthermore, Theorem 11 can be used to
check stability. Several examples are now presented to
illustrate the calculation of zero dynamics.

Example 18 Consider the system from Example 10,
written in the equal wave speed form. For zero dynamics,

0

0

0

 =


1 0 0

0 1 0

1 0 0


︸ ︷︷ ︸

K

z(0, t) +


1 1 0

0 0 −1

0 0 0


︸ ︷︷ ︸

L

z(1, t). (65)

The rank of K = 2 and so the zero dynamics are defined
on a smaller state space than the original. Applying one
iteration of the algorithm yields (with s0 = 0)

TP =


2 0 1

0 1 −1

1 1 0

 , Kw =

[
1 0

−1 0

]
, Lw =

[
0 0

1 1

]
.

The last row of the transformation matrix TP indicates
that for zero dynamics

z1 + z2a ≡ 0 (66)

and the first two rows define the remaining state vari-
ables:

z̃1 = 2z1 + z2b, z̃2 = z2a − z2b.

Algorithm: Calculation of Zero Dynamics

The data are: wave speed p =
∫ 1

0
1

λ0(ξ)dξ, boundary con-

dition matrices K0, L0, and output matrices Ky, Ly. The
dimension of the system is n, the number of columns in
K0. Define

K =
[
K0

Ky

]
.

If K is invertible the zero dynamics are well-posed with n
state variables. Otherwise do the following calculations.
(1) Perform LU-decomposition of K: P`uK = M`Mu

whereM` is lower triangular,Mu is upper triangular
and P`u is a permutation matrix.

(2) If necessary, permute last column of Mu with earlier
column, so that rank of top left n− 1 block is n− 1;
call the permutation matrix P. Partition MuP and
M−1
` P`uLP similarly as

Mu =

[
K11 K12

[ 0...0 ] 0

]
, M−1

` P`uL =

[
L11 L12

L21 L22

]
.

(3) Define the matrices T1 = K11 + L11e
−ps0 and

T =

[
T1 K12 + L12e

−ps0

L21e
−ps0 L22e

−ps0

]
for s0 so that both

matrices are invertible. (The existence of such an
s0 is guaranteed if the transfer function is not iden-
tically zero. A simple way find a suitable s0 is to
start with s0 = 0 and then increase by an arbitrary
amount until both matrices are invertible. )

(4) Decompose T−1 using the same decomposition as for
Ku and construct the inverse of T using the Schur
complement. Letting X be the solution of T3 = XT1,
define

S = (T4 −XT2)−1.

(Note S is a scalar.) Only the 2 left blocks of T−1

are needed:

(T−1)11 = T−1
1 (I + T2SX), (T−1)21 = −SX.

(5) The boundary matrices for the reduced system are
Kw = K11(T−1)11 +K12(T−1)21

Lw = L11(T−1)11 + L12(T−1)21.
(6) The new variables are z̃1 . . . z̃n−1 where z̃ = TPz,

the differential equation is

∂

∂t
z̃(ζ, t) = − ∂

∂ζ
(λ0(ξ)z̃(ζ, t))

and the boundary conditions are

Kwλ0(0)z̃(0, t) + Lwλ0(1)z̃(1, t).

If rank Kw = n − 1, the algorithm is complete. If
not, return to the first step with K = Kw, L = Lw
and repeat the process.
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Since rank Kw = 1 another iteration of the algorithm is
needed. This leads to

(TP )2 =

[
1 0

1 1

]
, Kw2 = 1, Lw2 = 0.

Thus,
z̃1 + z̃2 ≡ 0,

which, along with (66), implies that

z1 ≡ 0, z2a ≡ 0.

This leads to

∂

∂t
z2b(ζ, t) = − ∂

∂ζ
z̃2b(ζ, t)), z2b(1, t) = 0.

The only solution to this equation is the zero function
and so the zero dynamics are empty. There is no control
u that zeros the output. This reflects the fact that the
system has, regarding the network as pipes, pipe 1 closed
with both inlet and outlet connected to the end of pipe 2.
The control is applied at the start of pipe 2. Not only is
the system unstable, but there is no control that can zero
the measurement z1(0, t).

Example 19

∂xi
∂t

= −∂xi
∂ζ

, i = 1, 2, 3.

with
0

0

u(t)

=


0 0 −1

0 −1 0

0 −1 0


︸ ︷︷ ︸

K

x(0, t) +


1 0 0

0 1 0

0 0 1

x(1, t) (67)

y(t) =
[
0 0 0

]
x(0, t) +

[
1 0 0

]
x(1, t).

The rank of K in (67) is 3 and so the system is well-
posed. The transfer function is not identically zero.

Zero dynamics require
0

0

0

=


0 0 −1

−1 0 0

0 0 0

x(0, t) +


1 0 0

0 1 0

1 0 0

x(1, t). (68)

Applying the algorithm yields (with s0 = 0)

TP =


−1 1 0

1 0 −1

1 0 0

 , Kw =

[
0 0

0 1

]
, Lw =

[
1 0

0 0

]
.

The third row of TP implies that z1 ≡ 0. The reduced
states are

z̃2 = −z1 + z2 = z2, z̃3 = z1 − z3 = −z3.

Since Kw does not have full rank. the algorithm needs to
be repeated; but with Kw, Lw as the boundary matrices.
This yields

(TP )2 =

[
0 1

1 0

]
, (Kw)2 =

[
1
]
, (Lw)2 =

[
0
]
.

Thus z̃2 = z2 ≡ 0 and z̃3(0) = −z3(0) = 0.

This example is simple enough to do by hand. The original
equations (68) are already row-reduced, and imply x1 ≡
0. The reduced system must have x2 ≡ 0.

Either calculation leads to one non-zero equation, for x3

with the boundary condition

x3(0, t) = 0.

The system equations (67) imply that in order to achieve
this, u(t) = x3(1, t).

Example 20 Consider a larger system with n = 10.

Suppose the wave speed λ0 is such that −
∫ 1

0
λ0(ξ)dξ =

−1. The entries in the boundary matrices are zero, except
that

K0(1, 2) = 1, K0(1, 9) = −3, K0(2, 3) = 1,

K0(2, 2) = −1, K0(3, 6) = 1, K0(3, 10) = 2,

K0(4, 1) = −5, K0(4, 6) = 2, K0(5, 10) = 6,

K0(5, 9) = −4, K0(6, 8) = 4, K0(6, 1) = −2,

K0(7, 6) = 1, K0(7, 7) = 3, K0(8, 3) = −2,

K0(8, 8) = 1, K0(8, 5) = −5, K0(9, 1) = 1,

K0(9, 6) = 5, K0(9, 9) = −1

Ku(1, 4) = 1;

Ly(1, 2) = 1, Ly(1, 4) = −2.

Since

rank

[
K0

Ku

]
= 10

this system is well-posed. Also, the transfer function G
is not identically 0; in particular G(0) 6= 0. Applying the
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algorithm with s0 = 0 yields

TP =



−5 0 0 0 0 2 0 0 0 0

0 −1 1 0 0 0 0 0 0 0

0 0 −2 0 −5 0 0 1 0 0

0 0 0 0 −2.5 0 0 0.5 −3 0

0 0 0 0 0 0 0 0 −4 6

0 0 0 0 0 5.4 0 0 −1 0

0 0 0 0 0 0 3 0 0.1852 0

0 0 0 0 0 0 0 4 −0.1481 0

0 0 0 0 0 0 0 0 0.1852 0

0 1 0 −2 0 0 0 0 0 0


Kw = I9, Lw = 09×9.

For zero dynamics, z2− 2z4 ≡ 0 and the zeroing input is

u(t) = KuTPz(0, t) = −2.5z5(0, t)+0.5z8(0, t)−3z9(0, t).

7 Conclusions

In this paper, zero dynamics were formally defined for
port-Hamiltonian systems. If the feedthrough opera-
tor is invertible, then the zero dynamics are again a
port-Hamiltonian system of the same order. In gen-
eral, however, the feedthrough operator is not invert-
ible. For many infinite-dimensional systems, where the
feedthrough is not invertible, the zero dynamics are
not well-posed. It has been shown in this paper that
provided the system can be rewritten as a network of
waves with the same speed, the zero dynamics are al-
ways well-posed, and are a port-Hamiltonian system.
Furthermore, a numerical method to construct the zero
dynamics using the original partial differential equation
has been described. Finite-dimensional approximations,
which can be inaccurate in calculation of zeros, are not
needed. The approach applies to systems with com-
mensurate but non-equal wave speeds, and this gener-
alization will be explored in future work. The extension
to multi-input multi-output systems also needs to be
established.
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