# Edge coloring multigraphs without small dense subsets

P.E. Haxell\* H.A. Kierstead<sup>†</sup>

June 9, 2015

#### Abstract

One consequence of a long-standing conjecture of Goldberg and Seymour about the chromatic index of multigraphs would be the following statement. Suppose G is a multigraph with maximum degree  $\Delta$ , such that no vertex subset S of odd size at most  $\Delta$  induces more than  $(\Delta+1)(|S|-1)/2$  edges. Then G has an edge coloring with  $\Delta+1$  colors. Here we prove a weakened version of this statement.

#### 1 Introduction

In this note we study edge colorings of (loopless) multigraphs. We use the standard notation  $\chi'(G)$  to denote the chromatic index of the multigraph G, that is, the smallest number of matchings needed to partition the edge set of G. It is clear that the maximum degree  $\Delta(G)$  is a lower bound for  $\chi'(G)$  for every graph G. The classical upper bounds for  $\chi'(G)$  are  $\chi'(G) \leq 3\Delta(G)/2$  (Shannon's Theorem [15]) and  $\chi'(G) \leq \Delta(G) + \mu(G)$  (Vizing's Theorem [18]), where  $\mu(G)$  denotes the maximum edge multiplicity of G.

For a multigraph G, a subset  $S \subseteq V(G)$ , and a subgraph  $H \subseteq G$ , we denote by G[S] the subgraph induced by S, by ||H|| the number of edges in H, and by |H| the number of vertices in H. We also set G[H] = G[V(H)] and ||S|| = ||G[S]||. Let  $\rho(S)$  be the quantity  $\frac{||S||}{||S|/2|}$ . The parameter  $\rho(G)$  is defined by

$$\rho(G) = \max\{\rho(S) : S \subseteq V(G)\}.$$

<sup>\*</sup>Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1. pehaxell@uwaterloo.ca; Partially supported by NSERC.

<sup>&</sup>lt;sup>†</sup>School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA 85287. kierstead@asu.edu. The authors gratefully acknowledge the support of the Mittag-Leffler Institute (Djursholm, Sweden), where this work was done.

Then  $\lceil \rho(G) \rceil$  is a lower bound on  $\chi'(G)$ , since for a set S on which  $\rho(G)$  is attained, each matching in G[S] has size at most  $\lfloor |S|/2 \rfloor$  and therefore at least  $\lceil \frac{\|S\|}{\lfloor |S|/2 \rfloor} \rceil$  colors are needed to color the edges of G[S]. On the other hand, when  $\rho(G) \geq \Delta(G)$  the chromatic index can also be bounded above in terms of  $\lceil \rho(G) \rceil$ . Kahn  $\lceil 7 \rceil$  gave the bound  $\chi'(G) \leq (1 + o(1)) \lceil \rho(G) \rceil$ , which was recently improved by Plantholt  $\lceil 10 \rceil$  to

$$\chi'(G) \le (1 + \frac{\log_{3/2} \lceil \rho(G) \rceil}{\lceil \rho(G) \rceil}) \lceil \rho(G) \rceil.$$

The focus of this paper is the long-standing conjecture due to Goldberg [3] (see also [4]) and independently Seymour [14] which states that the chromatic index of G should be essentially determined by either  $\rho(G)$  or  $\Delta(G)$ .

Conjecture 1 For every multigraph G

$$\chi'(G) \le \max\{\Delta(G) + 1, \lceil \rho(G) \rceil\}.$$

Goldberg [4] also proposed the following sharp version for multigraphs with  $\rho(G) \leq \Delta(G) - 1$ .

Conjecture 2 For every multigraph G, if  $\rho(G) \leq \Delta(G) - 1$  then  $\chi'(G) = \Delta(G)$ .

Conjecture 1 implies that if  $\chi'(G) > \Delta + k$ ,  $k \ge 1$ , then G must contain a set S of vertices for which  $\rho(S) > \Delta + k$ , certifying this inequality. Thus S induces a very dense subgraph in G. As  $||S|| \le \Delta(G)|S|/2$ , if |S| is even then  $\rho(S) \le \Delta(G)$ ; so |S| is odd and  $\rho(S) \le \Delta(G)|S|/(|S|-1) = \Delta(G) + \Delta(G)/(|S|-1)$ . We say S is small in the sense that its size depends only on  $\Delta$  and not on the number of vertices of G. In particular  $|S| \le \Delta(G)$ . Conjecture 2 gives a similar statement for k = 0, but the corresponding set S need not be small.

We can therefore think of Conjecture 1 as providing structural information about multigraphs for which  $\chi'(G) > \Delta + 1$ , namely, that they must contain small sets S that are very dense. Our aim in this note is to prove a result of this form. Unfortunately we cannot make such a conclusion about all G with  $\chi'(G) > \Delta + 1$ , but we show that when k is bounded below by a logarithmic function of  $\Delta$  then a structural result of this type for multigraphs G satisfying  $\chi'(G) > \Delta + k$  is possible.

Conjecture 1 has inspired a significant body of work, with contributions from many researchers, see for example [16] or [6] for an overview. Here we mention just the results that directly relate to this note. The best known approximate version is as follows, due to Scheide [11] (independently proved by Chen, Yu and Zang [1], see also [12] and [2]), who proved that the conjecture is true when  $\lceil \rho(G) \rceil \geq \Delta + \sqrt{\frac{\Delta-1}{2}}$ .

**Theorem 3** For every multigraph G

$$\chi'(G) \le \max\{\Delta(G) + \sqrt{\frac{\Delta(G) - 1}{2}}, \lceil \rho(G) \rceil\}.$$

Since  $\lceil \rho(S) \rceil > \Delta + \sqrt{\frac{\Delta-1}{2}}$  implies  $|S| < \sqrt{\frac{2\Delta^2}{\Delta-1}} + 1$ , the following corollary about multigraphs without small dense subsets is implied by Theorem 3.

Corollary 4 Let G be a multigraph with maximum degree  $\Delta$ . If  $\lceil \rho(S) \rceil \leq \Delta + \sqrt{\frac{\Delta-1}{2}}$  for every  $S \subseteq V(G)$  with  $|S| < \sqrt{\frac{2\Delta^2}{\Delta-1}} + 1$  then  $\chi'(G) \leq \Delta + \sqrt{\frac{\Delta-1}{2}}$ .

The main theorem of this note states that if the density of small vertex subsets S is restricted somewhat further then a substantially better upper bound can be given for  $\chi'(G)$ , in which the quantity  $\sqrt{\frac{\Delta-1}{2}}$  in the conclusion of Corollary 4 is replaced by a logarithmic function of  $\Delta$ . It can also be viewed as a weakened version of the statement of Conjecture 2.

**Theorem 5** Let G be a multigraph with maximum degree  $\Delta$ , and let  $\varepsilon$  be given where  $0 < \varepsilon < 1$ . Let  $k = \lfloor \log_{1+\varepsilon} \Delta \rfloor$ . If  $\rho(S) \leq (1-\varepsilon)(\Delta+k)$  for every  $S \subseteq V(G)$  with  $|S| < \Delta/k + 1$  then  $\chi'(G) \leq \Delta + k$ .

For example, this implies that  $\chi'(G) < \Delta + 101 \log \Delta$  unless G contains a set S of vertices with  $|S| < \frac{\Delta}{100 \log \Delta}$  with density parameter  $\rho(S) > 0.99(\Delta + 100 \log \Delta)$ .

Our proof uses the technique of Tashkinov trees, developed by Tashkinov in [17]. In the next section we give a brief introduction to this technique together with the main tools we use, including our main technical lemma, Lemma 8. The proof of Theorem 5 appears in Section 3.

### 2 Tools

The method of Tashkinov trees, due to Tashkinov [17], is a sophisticated generalization of the method of alternating paths. It is based on an earlier approach from [8]. See [16] for a comprehensive account of this technique.

Let G be a multigraph with  $\chi'(G) \geq \Delta + 2$ , and let  $\phi$  be a partial edge coloring of G that uses at most  $\chi' - 1$  colors. We say  $\phi$  is a t-coloring if the the codomain of  $\phi$  is  $\{1, \ldots, t\}$ . We normally assume  $\phi$  is maximal, that is, the maximum possible number of edges of G are colored by  $\phi$ . For a vertex v of G, color  $\alpha$  is said to be missing at v if no edge incident to v is colored  $\alpha$  by  $\phi$ . Let  $T = (p_0, e_0, p_1, \ldots, e_n - 1, p_n)$  be a

sequence of distinct vertices  $p_i$  and edges  $e_i$  of G, such that the vertices of each  $e_i$  are  $p_{i+1}$  and  $p_r$  for some  $r \in \{0, \ldots, i\}$ . Observe that the vertices and edges of T form a tree. We say that T is a Tashkinov tree with respect to  $\phi$  if  $e_0$  is uncolored, and for all i > 0, the color  $\phi(e_i)$  is missing at  $p_j$  for some j < i. Thus T is a Tashkinov tree if its first edge is uncolored, and each subsequent edge is colored with a color that is missing at some previous vertex. The key property of Tashkinov trees is captured in the following theorem, due to Tashkinov [17].

**Theorem 6** Let  $\phi$  be a maximal partial edge coloring of G with at most  $\chi'(G) - 1$  colors, and let T be a Tashkinov tree with respect to  $\phi$ . Then no two vertices of T are missing the same color.

For a color  $\omega$  we denote by  $\partial_{\omega}(T)$  the set of edges of color  $\omega$  that have exactly one vertex in T. Every vertex  $v \in V(T)$  is incident to an edge of G[T] of color  $\omega$ , or is incident to an edge of  $\partial_{\omega}(T)$ , or is incident to no edge of color  $\omega$ . Let  $m_{\omega}(T)$  be the number of vertices missing color  $\omega$  in T and  $q_{\omega}(T) = |\partial_{\omega}(T)| + m_{\omega}(T)$ . (Thus  $q_{\omega}(T)$  counts the number of vertices in T that are not incident with an edge of G[T] of color  $\omega$ .) By Theorem 6,  $m_{\omega}(T)$  is at most 1; so we have the following corollary.

Corollary 7 Let  $\phi$  be a maximal partial edge coloring of G with at most  $\chi'(G) - 1$  colors, and let T be a Tashkinov tree with respect to  $\phi$ . If |T| is odd then for every color  $\omega$ , the quantity  $|\partial_{\omega}(T)|$  is even if and only if  $\omega$  is missing at some vertex of T.

Let T be a Tashkinov tree with respect to some maximal coloring  $\phi$ . If a color  $\alpha$  is missing on  $v \in V(T)$  and not used by  $\phi$  on an edge of T we say that  $\alpha$  is free for T. The number of colors missing at v that are free for T is denoted by  $f_T(v)$ , or simply f(v) if there is no danger of confusion. Set  $f^*(T) = \min\{f(v) : v \in T\}$ . It was observed by e.g. [2] that if T is a Tashkinov tree with respect to  $\phi$  such that  $\rho(G)$  is not attained on V(T), and if  $f^*(T) > 0$ , then by (possibly) replacing  $\phi$  by another maximal coloring it is possible to construct a Tashkinov tree that is larger than T. This technical fact was used in several results using Tashkinov trees, for example [1, 5, 11]. Our main lemma, Lemma 8, is also based on this parameter. For technical reasons we will work with the slightly modified parameter  $f^k(T) = \min\{f^*(T), k\}$ .

**Lemma 8** Let G be a multigraph with maximum degree  $\Delta$  and suppose  $\chi'(G) \geq \Delta+2$ . Let  $\phi$  be a maximal  $(\Delta+k)$ -coloring of G, where  $\Delta+1 \leq \Delta+k \leq \chi'(G)-1$ , and let T be a Tashkinov tree with respect to  $\phi$  such that  $f^k(T) > 0$ . Let  $\omega \in \{1, \ldots, \Delta+k\}$  be a color. Then there exists a maximal  $(\Delta+k)$ -coloring  $\psi$  and a Tashkinov tree T' with respect to  $\psi$  such that

•  $T \subset T'$ 

- $f^k(T') \ge f^k(T) 1$ ,
- $|T'| \ge |T| + q_{\omega}(T) 1$ .

**Proof.** To simplify notation we let  $f(T) = f^k(T)$  throughout this proof.

If  $\omega$  is missing on a vertex of T then we may simply add the edges in  $\partial_{\omega}(T)$  to T, forming a Tashkinov tree T' with  $|T'| = |T| + q_{\omega}(T) - 1$ . Clearly  $f_T(v) \geq f_{T'}(v)$  for every vertex v of T. Since T' is a Tashkinov tree, each color used on an edge of T' is missing at some vertex of T. Thus by Theorem 6, each color missing at a vertex of T' - T is not used on an edge of T', and so each such color is free for T'. As at least k colors are missing at each vertex in  $V(T') \setminus V(T)$  and they are all free, we have  $f(T') \geq \min\{f(T) - 1, k\}$  for all vertices in  $V(T') \setminus V(T)$ . Hence by definition of  $f(T) = f^k(T)$  we find  $f(T') \geq f(T) - 1$  and so  $\psi = \phi$  satisfies the theorem.

We may therefore assume that  $\omega$  is not missing on T. Set  $q = q_{\omega}(T) = |\partial_{\omega}(T)|$ . There are at least  $k \geq 1$  colors missing on each vertex of T. By Theorem 6, these  $\geq k|T|$  colors are distinct. As T has only |T|-2 colored edges, there are at least k free colors missing on some vertex v; let  $\gamma$  be one of these.

We consider the  $(\gamma, \omega)$ -alternating path P beginning at v. The other end z of P is not a vertex of T, since  $\omega$  is not missing in T and by Theorem 6 no  $x \in V(T)$  different from v can be missing  $\gamma$ . Let y be the last vertex of P in T and denote by Q the (y,z)-segment of P. Then  $E(Q) \cap E(T) = \emptyset$ . Since f(T) > 0 there exists a color  $\alpha$  missing on y that is not used on T. In the case v = y we choose  $\alpha = \gamma$ , otherwise  $\alpha \neq \gamma$  by Theorem 6. See Figure 1 for a general picture of P.

For  $i \geq 0$  we now define a sequence of Tashkinov trees  $T_i$  with respect to  $\phi$ , together with colors  $\alpha_i$ , vertices  $z_i$  and segments  $Q_i$  of Q satisfying the following properties.

- 1.  $T_0 \subset \cdots \subset T_i$ ,
- 2.  $\alpha_i$  is missing on  $z_i$  and not used on  $T_i$ ,
- 3.  $f(T_i) \ge f(T) 1$  for each  $i \ge 1$ ,
- 4. for  $i \geq 1$ , every edge of  $E(T_i) \setminus E(T_{i-1})$  is of color  $\gamma$  or  $\alpha_{i-1}$ ,
- 5.  $Q_i$  is the  $(z_i, z)$ -segment of Q, and the length of  $Q_i$  is positive but less than the length of  $Q_{i-1}$ .

We begin the construction by setting  $T_0 = T$ ,  $\alpha_0 = \alpha$ ,  $z_0 = y$ , and  $Q_0 = Q$ . Then (1)-(5) hold for i = 0.

Suppose  $i \geq 0$  and that we have completed the construction up to i. We now consider two cases according to whether any  $(\alpha_i, \gamma)$ -component intersects both  $T_i$ 



Figure 1: The path P in the proof of Lemma 8. Here  $\bar{c}$  means color c is missing at the vertex indicated.

and  $E(Q_i)$ . If there is such a component then we show that either  $\phi$  itself satisfies the theorem, or that we can extend our sequence. If no such component exists then we will terminate the sequence and find a recoloring  $\psi$  that satisfies the theorem.

Case 1: Some  $(\alpha_i, \gamma)$ -component R contains an edge of  $Q_i$  and a vertex of  $T_i$ .

Note that Case 1 occurs if the edge e of Q incident to y has color  $\gamma$  because e is in Q and has a vertex y in T. Also, Case 1 does not occur if v = y since then an  $(\alpha_0, \gamma)$ -component is an edge colored  $\gamma$ , which cannot be incident to v.

In Case 1 we define  $T_{i+1}$  to be the Tashkinov tree obtained by extending  $T_i$  to a spanning tree of  $T_i \cup R$ . This is a valid Tashkinov tree for  $\phi$  because  $\alpha_i$  and  $\gamma$  are both missing on  $T_i$ . Then (1) and (4) are satisfied for i+1. We let  $z_{i+1}$  be the vertex of  $T_{i+1}$  that is closest to z on  $Q_i$ , and note that the  $(z_{i+1}, z)$ -segment  $Q_{i+1}$  is shorter than  $Q_i$  because R contained an edge of  $Q_i$ , verifying the second condition in (5) for i+1. Let  $\alpha_{i+1}$  be any color missing on  $z_{i+1}$ ; then (2) is satisfied for i+1.

To verify Condition (3) for i + 1, first note that every vertex of  $V(T_{i+1}) \setminus V(T)$  has at least k missing colors that are not used on T. Observe that by (4), every edge of  $E(T_{i+1}) \setminus E(T)$  has one of the colors  $\gamma$  or  $\alpha_j$  for some  $0 \le j \le i$ . By (2), the colors  $\alpha_j$  for  $j \ge 1$  are missing on the vertices  $z_j$ , and since the  $z_j$  are all distinct (by the

second part of (5)), no other color missing on  $z_j$  is used on  $T_{i+1}$ . So  $f_{T_{i+1}}(z_j) \ge k-1$ . By the choice of  $\gamma$ , which is missing on v, we know  $f_{T_{i+1}}(v) \ge k-1 \ge f(T)-1$  since no other colors missing on v were used. Therefore the only new color used that may affect  $f(T_{i+1})$  is  $\alpha_0 = \alpha$ , and hence  $f(T_{i+1}) \ge f(T) - 1$ .

Finally we turn to the first condition in (5). If this condition holds, in other words  $z_{i+1} \neq z$ , then we extend our sequence using the above definitions. If  $z_{i+1} = z$ , then we claim that  $\phi$  satisfies the lemma in this case. Note that if  $\gamma$  is missing at z then we have a contradiction to Theorem 6, because  $\gamma$  is also missing at  $v \neq z$ . Therefore  $\omega$  is missing at z. Then we may construct T' by adding all remaining edges of  $\partial_{\omega}(T)$  that join a vertex of  $T_{i+1}$  to a vertex outside  $T_{i+1}$ . By the existence of R this in fact gives us  $|T'| \geq |T| + q$ . By (3) for i+1 we have  $f(T_{i+1}) \geq f(T) - 1$ , and the only new color used in the construction of T' from  $T_{i+1}$  is  $\omega$ , which is missing on  $z_{i+1}$ . But no other color missing on  $z_{i+1}$  appears on an edge of T', so  $f_{T_{i+1}}(z_{i+1}) \geq k - 1 \geq f(T) - 1$ . Thus  $f(T') \geq f(T) - 1$ .

Case 2: No  $(\alpha_i, \gamma)$ -component contains an edge of  $Q_i$  and a vertex of  $T_i$ .

In this case we modify  $\phi$ . Note that (as observed in Case 1) if i=0 then the edge e of Q incident to y has color  $\omega$ . First we interchange  $\alpha_i$  and  $\gamma$  on every  $(\alpha_i, \gamma)$ -component containing an edge of  $Q_i$ . Since we are in Case 2, this change does not affect the color of any edge induced by  $V(T_i)$ . Therefore  $T_i$  is a Tashkinov tree with respect to the new coloring. The path  $Q_i$  becomes an  $(\alpha_i, \omega)$ -path from  $z_i$  to z, which (as before) is disjoint from all of  $\partial_{\omega}(T)$  except possibly for e, if it has color  $\omega$ . (Note that if i=0 and v=y then none of these steps caused any change.) We complete the construction of  $\psi$  by interchanging  $\omega$  and  $\alpha_i$  on  $Q_i$ . Then  $\omega$  is missing on  $z_i$ . We construct T' by adding to  $T_i$  all the edges of  $\partial_{\omega}(T) \setminus \{e\}$  that join  $V(T_i)$  to its complement. Then  $|T'| \geq |T| + q - 1$  (and if  $i \geq 1$  then  $|T'| \geq |T| + q$ ). The only new color used that was not used on  $T_i$  is  $\omega$ , which is missing on  $z_i$ . If i=0 then trivially  $f(T') \geq f(T) - 1$ . If  $i \geq 1$  then by (3) and the fact that no other color on  $z_i$  is used on T' we have  $f(T') \geq f(T) - 1$ . This completes the proof.

### 3 Proof of Theorem 5

The proof of Theorem 5 follows by a sequence of applications of Lemma 8. Since k is fixed, we may again set  $f(T) = f^k(T)$  for simplicity of notation.

**Proof.** The theorem is trivially true for  $\Delta = 1$  so we may assume  $\Delta \geq 2$ , and hence  $k \geq 1$ . If  $\chi'(G) \leq \Delta + k$  then the conclusion of the theorem holds so we may assume on the contrary that  $\Delta + k \leq \chi'(G) - 1$ . Let  $\phi$  be a maximal  $(\Delta + k)$ -coloring of G. Since  $\chi'(G) > \Delta + k$ , there is an uncolored edge  $e_0$  with vertices  $p_0$  and  $p_1$ .

For the proof of Theorem 5 we provide a construction consisting of a series of steps. We begin with the partial coloring  $\psi_1 = \phi$ . At each step  $i \geq 2$  an application

of Lemma 8 is used to construct a new maximal  $(\Delta + k)$ -coloring  $\psi_i$  with  $e_0$  uncolored and a new Tashkinov tree  $T_i$  with  $|T_i| \ge 1 + (1 + \varepsilon)^i$ , where  $|T_i|$  is odd.

Step 1. Set  $\psi_1 = \phi$  and let  $p_2$  be a vertex joined to  $p_1$  by an edge whose color  $\alpha$  is missing at  $p_0$ . Then  $\{p_0, p_1, p_2\}$  forms a Tashkinov tree  $T_1$  with respect to  $\psi_1$ , and  $f(T_1) \geq k$  because there were at most  $\Delta - 1$  colored edges incident to  $p_0$ . Note that  $|T_1| = 3 \geq 1 + (1 + \varepsilon)$ , since  $\varepsilon < 1$ .

**Step i.** Suppose that the Tashkinov tree  $T_{i-1}$  and coloring  $\psi_{i-1}$  have been defined for some  $2 \le i \le k+1$ , such that  $f(T_{i-1}) \ge k-i+2$ ,  $|T_{i-1}| \ge 1+(1+\varepsilon)^{i-1}$ , and  $|T_{i-1}|$  is odd. Choose a color  $\omega$  such that  $q = q_{\omega}(T_{i-1})$  is largest. Since  $|T_{i-1}|$  is odd, we know by Corollary 7 that q is odd. Consider two cases:

Case 1:  $q = q_{\omega}(T_{i-1}) \le \varepsilon |T_{i-1}| + 1 - \varepsilon$ .

Then each color occurs on at least  $(|T_{i-1}| - q)/2 \ge (1 - \varepsilon)(|T_{i-1}| - 1)/2$  edges of  $T_{i-1}$ . As  $e_0 \in T_{i-1}$  is uncolored,

$$||T_{i-1}|| \ge (\Delta + k)(1 - \varepsilon)(|T_{i-1}| - 1)/2 + 1.$$

Therefore  $S = V(T_{i-1})$  is such that

$$\rho(S) > (1 - \varepsilon)(\Delta + k).$$

Moreover  $|S| < \Delta/k + 1$  by Theorem 6, because at least k|S| + 2 colors are missing on the vertices of S. This contradicts the assumptions of Theorem 5.

Case 2:  $q = q(T_{i-1}) > \varepsilon |T_{i-1}| + 1 - \varepsilon$ .

As  $|T_{i-1}| \ge 3$  and q is an odd integer,  $q \ge 3$ . Let  $\psi_i$  be the maximal coloring and T' be the Tashkinov tree given by Lemma 8. Then by that lemma  $f(T') \ge k - i + 1$ , and

$$|T'| \ge |T_{i-1}| + q - 1 > 1 + (|T_{i-1}| - 1)(1 + \varepsilon) \ge 1 + (1 + \varepsilon)^i.$$

If |T'| is odd (e.g. if  $|T'| = |T_i| + q - 1$ ) then we set  $T_i = T'$ . If |T'| is even then choose an arbitrary color  $\beta$  that is used by  $\psi_i$  on an edge of T'. Then Theorem 6 implies that some edge e colored  $\beta$  has exactly one vertex in T'. We define  $T_i$  to be the Tashkinov tree formed by adding e to T', so that  $|T_i|$  is odd and  $f(T_i) = f(T') \ge k - i + 1$ .

It suffices to show that eventually Case 1 occurs. Otherwise, we construct a maximal coloring  $\psi_{k+1}$  and a Tashkinov tree  $T_{k+1}$  with  $|T_{k+1}| \ge 1 + (1+\varepsilon)^{k+1}$ . By Theorem 6 this implies that the number of colors that are missing on the vertices of  $T_k$  is at least  $k(1+(1+\varepsilon)^{k+1})+2$ . Then using the definition of k we derive the contradiction

$$\Delta + k > k(1 + (1 + \varepsilon)^{k+1}) > k + k\Delta.$$

For each  $0 < \epsilon < 1$  and  $k = \lfloor \log_{1+\epsilon} \Delta \rfloor$ , the proof of Theorem 5 shows the existence of either an edge coloring of G with  $\Delta + k$  colors or a small, dense set S with  $|S| \leq \Delta/k + 1$  and  $\rho(S) > (1 - \epsilon)(\Delta + k)$ . In fact this yields a procedure for constructing one of these structures in time polynomial in |E(G)|. We start by greedily coloring the edges of G with colors  $\{1, \ldots, \Delta + k\}$ . If we get stuck before finishing then as in the proof of Theorem 5 we attempt to construct a large Tashkinov tree T. If we halt in Case 1 then we have constructed a small, dense set S = V(T). Otherwise at some point in Case 2, some color is missed at distinct vertices of T. In this case, the proof of Theorem 6 (which gives a polynomial time algorithm [17], see e.g. [9] or [13]) allows us to recolor G so that there is an additional colored edge. Then we start over using this new coloring. After fewer than |E(G)| restarts our procedure halts with a small, dense subset or a proper edge coloring with  $\Delta + k$  colors.

## References

- [1] G. Chen, X. Yu, and W. Zang, Approximating the chromatic index of multigraphs, *J. Comb. Optim.* 21 (2011), 219–246.
- [2] L. M. Favrholdt, M. Stiebitz and B. Toft, Graph edge coloring: Vizing's Theorem and Goldberg's Conjecture, Preprint 2006 No. 20, IMADA, The University of Southern Denmark, 91 pages.
- [3] M. K. Goldberg, On multigraphs with almost-maximal chromatic class, *Diskret. Analiz.* 23 (1973) 3–7. [In Russian]
- [4] M. K. Goldberg, Edge-coloring of multigraphs: recoloring technique, *J. Graph Th.* 8 (1984), 123–137.
- [5] P. E. Haxell and J. M. McDonald, On characterizing Vizing's edge-coloring bound, *J. Graph Th.* 69 (2012), 160–168.
- [6] T. Jensen and B. Toft, Graph Coloring Problems, Wiley-Interscience, New York, 1995.
- [7] J. Kahn, Asymptotics of the chromatic index for multigraphs, J. Combin. Theory Ser. B 68 (1996) 233–254.
- [8] H. A. Kierstead, On the chromatic index of multigraphs without large triangles, J. Combin. Theory Ser. B 36 (1984) 156–160.
- [9] J. M. McDonald, Multigraphs with high chromatic index, PhD thesis, University of Waterloo (2009).
- [10] M. Plantholt, A combined logarithmic bound on the chromatic index of multigraphs, J. Graph Theory 73 (2013) 239–259.

- [11] D. Scheide, Graph edge coloring: Tashkinov trees and Goldberg's conjecture, *J. Combin. Theory Ser. B* 100:1 (2009) 68–96.
- [12] D. Scheide, A polynomial-time  $\Delta + \sqrt{\frac{\Delta-1}{2}}$ -edge coloring algorithm, Preprints 2009 No. 4, IMADA, The University of Southern Denmark, 15 pages.
- [13] D. Scheide, Kantenfärbungen von Multigraphen. Diploma Thesis, TU Ilmenau, Ilmenau (2007)
- [14] P. D. Seymour, On multi-colorings of cubic graphs, and conjectures of Fulkerson and Tutte, *Proc. London Math. Soc.* 3 (1979) 423–460
- [15] C. E. Shannon, A theorem on coloring the lines of a network, J. Math. Phys. 28 (1949), 148–151
- [16] M. Stiebitz, D Scheide, B. Toft, L. Favrholdt, Graph Edge Coloring: Vizing's Theorem and Goldberg's Conjecture, Wiley, 2012.
- [17] V. A. Tashkinov, On an algorithm to color the edges of a multigraph, *Diskret. Analiz.* 7 (2000) 72–85. [in Russian]
- [18] V. G. Vizing, On an estimate of the chromatic class of a p-graph, Discret. Analiz. 3 (1964), 25–30