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Abstract

One consequence of a long-standing conjecture of Goldberg and Seymour
about the chromatic index of multigraphs would be the following statement.
Suppose G is a multigraph with maximum degree ∆, such that no vertex subset
S of odd size at most ∆ induces more than (∆ + 1)(|S| − 1)/2 edges. Then G
has an edge coloring with ∆ + 1 colors. Here we prove a weakened version of
this statement.

1 Introduction

In this note we study edge colorings of (loopless) multigraphs. We use the standard
notation χ′(G) to denote the chromatic index of the multigraph G, that is, the
smallest number of matchings needed to partition the edge set of G. It is clear
that the maximum degree ∆(G) is a lower bound for χ′(G) for every graph G. The
classical upper bounds for χ′(G) are χ′(G) ≤ 3∆(G)/2 (Shannon’s Theorem [15]) and
χ′(G) ≤ ∆(G) + µ(G) (Vizing’s Theorem [18]), where µ(G) denotes the maximum
edge multiplicity of G.

For a multigraph G, a subset S ⊆ V (G), and a subgraph H ⊆ G, we denote by
G[S] the subgraph induced by S, by ‖H‖ the number of edges in H, and by |H| the
number of vertices in H. We also set G[H] = G[V (H)] and ‖S‖ = ‖G[S]‖. Let ρ(S)

be the quantity ‖S‖
b|S|/2c . The parameter ρ(G) is defined by

ρ(G) = max{ρ(S) : S ⊆ V (G)}.
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Then dρ(G)e is a lower bound on χ′(G), since for a set S on which ρ(G) is attained,

each matching in G[S] has size at most b|S|/2c and therefore at least d ‖S‖b|S|/2ce colors

are needed to color the edges of G[S]. On the other hand, when ρ(G) ≥ ∆(G) the
chromatic index can also be bounded above in terms of dρ(G)e. Kahn [7] gave the
bound χ′(G) ≤ (1 + o(1))dρ(G)e, which was recently improved by Plantholt [10] to

χ′(G) ≤ (1 +
log3/2dρ(G)e
dρ(G)e

)dρ(G)e.

The focus of this paper is the long-standing conjecture due to Goldberg [3] (see
also [4]) and independently Seymour [14] which states that the chromatic index of
G should be essentially determined by either ρ(G) or ∆(G).

Conjecture 1 For every multigraph G

χ′(G) ≤ max{∆(G) + 1, dρ(G)e}.

Goldberg [4] also proposed the following sharp version for multigraphs with
ρ(G) ≤ ∆(G)− 1.

Conjecture 2 For every multigraph G, if ρ(G) ≤ ∆(G)− 1 then χ′(G) = ∆(G).

Conjecture 1 implies that if χ′(G) > ∆ + k, k ≥ 1, then G must contain a set S
of vertices for which ρ(S) > ∆ + k, certifying this inequality. Thus S induces a very
dense subgraph in G. As ‖S‖ ≤ ∆(G)|S|/2, if |S| is even then ρ(S) ≤ ∆(G); so |S|
is odd and ρ(S) ≤ ∆(G)|S|/(|S| − 1) = ∆(G) + ∆(G)/(|S| − 1). We say S is small
in the sense that its size depends only on ∆ and not on the number of vertices of G.
In particular |S| ≤ ∆(G). Conjecture 2 gives a similar statement for k = 0, but the
corresponding set S need not be small.

We can therefore think of Conjecture 1 as providing structural information about
multigraphs for which χ′(G) > ∆ + 1, namely, that they must contain small sets
S that are very dense. Our aim in this note is to prove a result of this form.
Unfortunately we cannot make such a conclusion about all G with χ′(G) > ∆ + 1,
but we show that when k is bounded below by a logarithmic function of ∆ then a
structural result of this type for multigraphs G satisfying χ′(G) > ∆ + k is possible.

Conjecture 1 has inspired a significant body of work, with contributions from
many researchers, see for example [16] or [6] for an overview. Here we mention just
the results that directly relate to this note. The best known approximate version is
as follows, due to Scheide [11] (independently proved by Chen, Yu and Zang [1], see

also [12] and [2]), who proved that the conjecture is true when dρ(G)e ≥ ∆ +
√

∆−1
2 .
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Theorem 3 For every multigraph G

χ′(G) ≤ max{∆(G) +

√
∆(G)− 1

2
, dρ(G)e}.

Since dρ(S)e > ∆+
√

∆−1
2 implies |S| <

√
2∆2

∆−1 +1, the following corollary about

multigraphs without small dense subsets is implied by Theorem 3.

Corollary 4 Let G be a multigraph with maximum degree ∆. If dρ(S)e ≤ ∆+
√

∆−1
2

for every S ⊆ V (G) with |S| <
√

2∆2

∆−1 + 1 then χ′(G) ≤ ∆ +
√

∆−1
2 .

The main theorem of this note states that if the density of small vertex subsets S
is restricted somewhat further then a substantially better upper bound can be given

for χ′(G), in which the quantity
√

∆−1
2 in the conclusion of Corollary 4 is replaced

by a logarithmic function of ∆. It can also be viewed as a weakened version of the
statement of Conjecture 2.

Theorem 5 Let G be a multigraph with maximum degree ∆, and let ε be given where
0 < ε < 1. Let k = blog1+ε ∆c. If ρ(S) ≤ (1 − ε)(∆ + k) for every S ⊆ V (G) with
|S| < ∆/k + 1 then χ′(G) ≤ ∆ + k.

For example, this implies that χ′(G) < ∆ + 101 log ∆ unless G contains a set S
of vertices with |S| < ∆

100 log ∆ with density parameter ρ(S) > 0.99(∆ + 100 log ∆).

Our proof uses the technique of Tashkinov trees, developed by Tashkinov in [17].
In the next section we give a brief introduction to this technique together with the
main tools we use, including our main technical lemma, Lemma 8. The proof of
Theorem 5 appears in Section 3.

2 Tools

The method of Tashkinov trees, due to Tashkinov [17], is a sophisticated generaliza-
tion of the method of alternating paths. It is based on an earlier approach from [8].
See [16] for a comprehensive account of this technique.

Let G be a multigraph with χ′(G) ≥ ∆+2, and let φ be a partial edge coloring of
G that uses at most χ′−1 colors. We say φ is a t-coloring if the the codomain of φ is
{1, . . . , t}. We normally assume φ is maximal, that is, the maximum possible number
of edges of G are colored by φ. For a vertex v of G, color α is said to be missing at
v if no edge incident to v is colored α by φ. Let T = (p0, e0, p1, . . . , en − 1, pn) be a
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sequence of distinct vertices pi and edges ei of G, such that the vertices of each ei are
pi+1 and pr for some r ∈ {0, . . . , i}. Observe that the vertices and edges of T form a
tree. We say that T is a Tashkinov tree with respect to φ if e0 is uncolored, and for
all i > 0, the color φ(ei) is missing at pj for some j < i. Thus T is a Tashkinov tree
if its first edge is uncolored, and each subsequent edge is colored with a color that
is missing at some previous vertex. The key property of Tashkinov trees is captured
in the following theorem, due to Tashkinov [17].

Theorem 6 Let φ be a maximal partial edge coloring of G with at most χ′(G) − 1
colors, and let T be a Tashkinov tree with respect to φ. Then no two vertices of T
are missing the same color.

For a color ω we denote by ∂ω(T ) the set of edges of color ω that have exactly
one vertex in T . Every vertex v ∈ V (T ) is incident to an edge of G[T ] of color ω, or
is incident to an edge of ∂ω(T ), or is incident to no edge of color ω. Let mω(T ) be
the number of vertices missing color ω in T and qω(T ) = |∂ω(T )| + mω(T ). (Thus
qω(T ) counts the number of vertices in T that are not incident with an edge of G[T ]
of color ω.) By Theorem 6, mω(T ) is at most 1; so we have the following corollary.

Corollary 7 Let φ be a maximal partial edge coloring of G with at most χ′(G)− 1
colors, and let T be a Tashkinov tree with respect to φ. If |T | is odd then for every
color ω, the quantity |∂ω(T )| is even if and only if ω is missing at some vertex of T .

Let T be a Tashkinov tree with respect to some maximal coloring φ. If a color
α is missing on v ∈ V (T ) and not used by φ on an edge of T we say that α is free
for T . The number of colors missing at v that are free for T is denoted by fT (v),
or simply f(v) if there is no danger of confusion. Set f∗(T ) = min{f(v) : v ∈ T}.
It was observed by e.g. [2] that if T is a Tashkinov tree with respect to φ such
that ρ(G) is not attained on V (T ), and if f∗(T ) > 0, then by (possibly) replacing
φ by another maximal coloring it is possible to construct a Tashkinov tree that
is larger than T . This technical fact was used in several results using Tashkinov
trees, for example [1, 5, 11]. Our main lemma, Lemma 8, is also based on this
parameter. For technical reasons we will work with the slightly modified parameter
fk(T ) = min{f∗(T ), k}.

Lemma 8 Let G be a multigraph with maximum degree ∆ and suppose χ′(G) ≥
∆+2. Let φ be a maximal (∆+k)-coloring of G, where ∆+1 ≤ ∆+k ≤ χ′(G)−1, and
let T be a Tashkinov tree with respect to φ such that fk(T ) > 0. Let ω ∈ {1, . . . ,∆+k}
be a color. Then there exists a maximal (∆ + k)-coloring ψ and a Tashkinov tree T ′

with respect to ψ such that

• T ⊂ T ′
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• fk(T ′) ≥ fk(T )− 1,

• |T ′| ≥ |T |+ qω(T )− 1.

Proof. To simplify notation we let f(T ) = fk(T ) throughout this proof.

If ω is missing on a vertex of T then we may simply add the edges in ∂ω(T ) to T ,
forming a Tashkinov tree T ′ with |T ′| = |T |+ qω(T )− 1. Clearly fT (v) ≥ fT ′(v) for
every vertex v of T . Since T ′ is a Tashkinov tree, each color used on an edge of T ′

is missing at some vertex of T . Thus by Theorem 6, each color missing at a vertex
of T ′ − T is not used on an edge of T ′, and so each such color is free for T ′. As at
least k colors are missing at each vertex in V (T ′) \ V (T ) and they are all free, we
have f(T ′) ≥ min{f(T )− 1, k} for all vertices in V (T ′) \ V (T ). Hence by definition
of f(T ) = fk(T ) we find f(T ′) ≥ f(T )− 1 and so ψ = φ satisfies the theorem.

We may therefore assume that ω is not missing on T . Set q = qω(T ) = |∂ω(T )|.
There are at least k ≥ 1 colors missing on each vertex of T . By Theorem 6, these
≥ k|T | colors are distinct. As T has only |T | − 2 colored edges, there are at least k
free colors missing on some vertex v; let γ be one of these.

We consider the (γ, ω)-alternating path P beginning at v. The other end z of P
is not a vertex of T , since ω is not missing in T and by Theorem 6 no x ∈ V (T )
different from v can be missing γ. Let y be the last vertex of P in T and denote
by Q the (y, z)-segment of P . Then E(Q) ∩ E(T ) = ∅. Since f(T ) > 0 there exists
a color α missing on y that is not used on T . In the case v = y we choose α = γ,
otherwise α 6= γ by Theorem 6. See Figure 1 for a general picture of P .

For i ≥ 0 we now define a sequence of Tashkinov trees Ti with respect to φ,
together with colors αi, vertices zi and segments Qi of Q satisfying the following
properties.

1. T0 ⊂ · · · ⊂ Ti,

2. αi is missing on zi and not used on Ti,

3. f(Ti) ≥ f(T )− 1 for each i ≥ 1,

4. for i ≥ 1, every edge of E(Ti) \ E(Ti−1) is of color γ or αi−1,

5. Qi is the (zi, z)-segment of Q, and the length of Qi is positive but less than
the length of Qi−1.

We begin the construction by setting T0 = T , α0 = α, z0 = y, and Q0 = Q. Then
(1)-(5) hold for i = 0.

Suppose i ≥ 0 and that we have completed the construction up to i. We now
consider two cases according to whether any (αi, γ)-component intersects both Ti
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Figure 1: The path P in the proof of Lemma 8. Here c̄ means color c is missing at
the vertex indicated.

and E(Qi). If there is such a component then we show that either φ itself satisfies
the theorem, or that we can extend our sequence. If no such component exists then
we will terminate the sequence and find a recoloring ψ that satisfies the theorem.

Case 1: Some (αi, γ)-component R contains an edge of Qi and a vertex of Ti.

Note that Case 1 occurs if the edge e of Q incident to y has color γ because e is
in Q and has a vertex y in T . Also, Case 1 does not occur if v = y since then an
(α0, γ)-component is an edge colored γ, which cannot be incident to v.

In Case 1 we define Ti+1 to be the Tashkinov tree obtained by extending Ti to
a spanning tree of Ti ∪ R. This is a valid Tashkinov tree for φ because αi and γ
are both missing on Ti. Then (1) and (4) are satisfied for i+ 1. We let zi+1 be the
vertex of Ti+1 that is closest to z on Qi, and note that the (zi+1, z)-segment Qi+1 is
shorter than Qi because R contained an edge of Qi, verifying the second condition
in (5) for i+ 1. Let αi+1 be any color missing on zi+1; then (2) is satisfied for i+ 1.

To verify Condition (3) for i + 1, first note that every vertex of V (Ti+1) \ V (T )
has at least k missing colors that are not used on T . Observe that by (4), every edge
of E(Ti+1)\E(T ) has one of the colors γ or αj for some 0 ≤ j ≤ i. By (2), the colors
αj for j ≥ 1 are missing on the vertices zj , and since the zj are all distinct (by the
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second part of (5)), no other color missing on zj is used on Ti+1. So fTi+1(zj) ≥ k−1.
By the choice of γ, which is missing on v, we know fTi+1(v) ≥ k− 1 ≥ f(T )− 1 since
no other colors missing on v were used. Therefore the only new color used that may
affect f(Ti+1) is α0 = α, and hence f(Ti+1) ≥ f(T )− 1.

Finally we turn to the first condition in (5). If this condition holds, in other words
zi+1 6= z, then we extend our sequence using the above definitions. If zi+1 = z, then
we claim that φ satisfies the lemma in this case. Note that if γ is missing at z then we
have a contradiction to Theorem 6, because γ is also missing at v 6= z. Therefore ω is
missing at z. Then we may construct T ′ by adding all remaining edges of ∂ω(T ) that
join a vertex of Ti+1 to a vertex outside Ti+1. By the existence of R this in fact gives
us |T ′| ≥ |T |+q. By (3) for i+1 we have f(Ti+1) ≥ f(T )−1, and the only new color
used in the construction of T ′ from Ti+1 is ω, which is missing on zi+1. But no other
color missing on zi+1 appears on an edge of T ′, so fTi+1(zi+1) ≥ k − 1 ≥ f(T ) − 1.
Thus f(T ′) ≥ f(T )− 1.

Case 2: No (αi, γ)-component contains an edge of Qi and a vertex of Ti.

In this case we modify φ. Note that (as observed in Case 1) if i = 0 then the
edge e of Q incident to y has color ω. First we interchange αi and γ on every (αi, γ)-
component containing an edge of Qi. Since we are in Case 2, this change does not
affect the color of any edge induced by V (Ti). Therefore Ti is a Tashkinov tree with
respect to the new coloring. The path Qi becomes an (αi, ω)-path from zi to z,
which (as before) is disjoint from all of ∂ω(T ) except possibly for e, if it has color
ω. (Note that if i = 0 and v = y then none of these steps caused any change.) We
complete the construction of ψ by interchanging ω and αi on Qi. Then ω is missing
on zi. We construct T ′ by adding to Ti all the edges of ∂ω(T ) \ {e} that join V (Ti)
to its complement. Then |T ′| ≥ |T | + q − 1 (and if i ≥ 1 then |T ′| ≥ |T | + q). The
only new color used that was not used on Ti is ω, which is missing on zi. If i = 0
then trivially f(T ′) ≥ f(T )− 1. If i ≥ 1 then by (3) and the fact that no other color
on zi is used on T ′ we have f(T ′) ≥ f(T )− 1. This completes the proof. �

3 Proof of Theorem 5

The proof of Theorem 5 follows by a sequence of applications of Lemma 8. Since k
is fixed, we may again set f(T ) = fk(T ) for simplicity of notation.

Proof. The theorem is trivially true for ∆ = 1 so we may assume ∆ ≥ 2, and hence
k ≥ 1. If χ′(G) ≤ ∆ + k then the conclusion of the theorem holds so we may assume
on the contrary that ∆ + k ≤ χ′(G)− 1. Let φ be a maximal (∆ + k)-coloring of G.
Since χ′(G) > ∆ + k, there is an uncolored edge e0 with vertices p0 and p1.

For the proof of Theorem 5 we provide a construction consisting of a series of
steps. We begin with the partial coloring ψ1 = φ. At each step i ≥ 2 an application
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of Lemma 8 is used to construct a new maximal (∆+k)-coloring ψi with e0 uncolored
and a new Tashkinov tree Ti with |Ti| ≥ 1 + (1 + ε)i, where |Ti| is odd.

Step 1. Set ψ1 = φ and let p2 be a vertex joined to p1 by an edge whose color α is
missing at p0. Then {p0, p1, p2} forms a Tashkinov tree T1 with respect to ψ1, and
f(T1) ≥ k because there were at most ∆− 1 colored edges incident to p0. Note that
|T1| = 3 ≥ 1 + (1 + ε), since ε < 1.

Step i. Suppose that the Tashkinov tree Ti−1 and coloring ψi−1 have been defined
for some 2 ≤ i ≤ k + 1, such that f(Ti−1) ≥ k − i + 2, |Ti−1| ≥ 1 + (1 + ε)i−1, and
|Ti−1| is odd. Choose a color ω such that q = qω(Ti−1) is largest. Since |Ti−1| is odd,
we know by Corollary 7 that q is odd. Consider two cases:

Case 1: q = qω(Ti−1) ≤ ε|Ti−1|+ 1− ε.

Then each color occurs on at least (|Ti−1| − q)/2 ≥ (1 − ε)(|Ti−1| − 1)/2 edges of
Ti−1. As e0 ∈ Ti−1 is uncolored,

‖Ti−1‖ ≥ (∆ + k)(1− ε)(|Ti−1| − 1)/2 + 1.

Therefore S = V (Ti−1) is such that

ρ(S) > (1− ε)(∆ + k).

Moreover |S| < ∆/k + 1 by Theorem 6, because at least k|S|+ 2 colors are missing
on the vertices of S. This contradicts the assumptions of Theorem 5.

Case 2: q = q(Ti−1) > ε|Ti−1|+ 1− ε.

As |Ti−1| ≥ 3 and q is an odd integer, q ≥ 3. Let ψi be the maximal coloring and T ′

be the Tashkinov tree given by Lemma 8. Then by that lemma f(T ′) ≥ k − i + 1,
and

|T ′| ≥ |Ti−1|+ q − 1 > 1 + (|Ti−1| − 1)(1 + ε) ≥ 1 + (1 + ε)i.

If |T ′| is odd (e.g. if |T ′| = |Ti|+q−1) then we set Ti = T ′. If |T ′| is even then choose
an arbitrary color β that is used by ψi on an edge of T ′. Then Theorem 6 implies that
some edge e colored β has exactly one vertex in T ′. We define Ti to be the Tashkinov
tree formed by adding e to T ′, so that |Ti| is odd and f(Ti) = f(T ′) ≥ k − i+ 1.

It suffices to show that eventually Case 1 occurs. Otherwise, we construct a
maximal coloring ψk+1 and a Tashkinov tree Tk+1 with |Tk+1| ≥ 1 + (1 + ε)k+1. By
Theorem 6 this implies that the number of colors that are missing on the vertices
of Tk is at least k(1 + (1 + ε)k+1) + 2. Then using the definition of k we derive the
contradiction

∆ + k > k(1 + (1 + ε)k+1) > k + k∆.

�
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For each 0 < ε < 1 and k = blog1+ε ∆c, the proof of Theorem 5 shows the
existence of either an edge coloring of G with ∆ + k colors or a small, dense set
S with |S| ≤ ∆/k + 1 and ρ(S) > (1 − ε)(∆ + k). In fact this yields a procedure
for constructing one of these structures in time polynomial in |E(G)|. We start by
greedily coloring the edges of G with colors {1, . . . ,∆ + k}. If we get stuck before
finishing then as in the proof of Theorem 5 we attempt to construct a large Tashkinov
tree T . If we halt in Case 1 then we have constructed a small, dense set S = V (T ).
Otherwise at some point in Case 2, some color is missed at distinct vertices of T . In
this case, the proof of Theorem 6 (which gives a polynomial time algorithm [17], see
e.g. [9] or [13]) allows us to recolor G so that there is an additional colored edge.
Then we start over using this new coloring. After fewer than |E(G)| restarts our
procedure halts with a small, dense subset or a proper edge coloring with ∆ + k
colors.
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