
Finite Model Finding Using the Logic of
Equality with Uninterpreted Functions

Amirhossein Vakili and Nancy A. Day

Cheriton School of Computer Science
University of Waterloo

{avakili,nday}@uwaterloo.ca

Abstract. The problem of finite model finding, finding a satisfying
model for a set of first-order logic formulas for a finite scope, is an im-
portant step in many verification techniques. In MACE-style solvers, the
problem is mapped directly to a SAT problem. We investigate an alterna-
tive solution of mapping the problem to the logic of equality with unin-
terpreted functions (EUF), a decidable logic with many well-supported
tools (e.g., SMT solvers). EUF reasoners take advantage of the typed
functional structures found in the formulas to improve performance. The
challenge is that EUF reasoning is not inherently finite scope. We present
an algorithm for mapping a finite model finding problem to an equisatis-
fiable EUF problem. We present results that show our method has better
overall performance than existing tools on a range of problems.

1 Introduction

Finite model finding is the problem of finding a satisfying model of a set of
first-order logic (FOL) formulas for a finite scope. The utility of finite model
finding in verification has been well-established with the popularity of the Alloy
Analyzer [11], a tool for writing declarative models in relational algebra, and
its Kodkod library for finding satisfying instances [22]. Finite scope analysis has
been used in a range of applications, such as code analysis [21], test case genera-
tion [12], repairing invalid HTML code [19], temporal logic model checking [23],
and counterexample generation for higher-order logic [6].

Approaches to finite model finding have followed two main styles: the MACE-
style [14], which reduces the problem to SAT and uses a SAT solver; and the
SEM-style [24], which develops an algorithm (usually a backtracking algorithm)
for searching for a model explicitly. State-of-the-art tools for model finding are:
Kodkod [22], Mace4 [16], and Paradox [8]. Kodkod is a MACE-style solver used
in the Alloy Analyzer. Mace4 is used more in the mathematical community
and is written in the SEM-style (unlike its predecessor Mace2, which is in the
MACE-style). Paradox is a MACE-style solver.

The contribution of our work is the introduction of a new approach to finite
model finding in the MACE-style, based on a reduction to the problem of satis-
fiability in the logic of equality with uninterpreted functions (EUF) [1], and the
use of an SMT (satisfiability modulo theories) solver [4]. EUF is many-sorted

Jordan Hale
This is a post-peer-review, pre-copyedit version of a paper presented at the International Symposium on Formal Methods. The final authenticated version is available online at: https://dx.doi.org/10.1007/978-3-319-48989-6_41

(typed), quantifier-free first-order logic with equality. It is a decidable logic and
its complexity is NP-complete [1,13]. EUF has advanced solving implementations
in many SMT solvers. SMT solvers are first-order logic reasoning tools with an
integrated set of decision procedures that use the standard interpretations for
various types. We use the SMT solver Z3 [17].

Reynolds et al. [18] wrote a SEM-style prover for finite model finding on top
of the SMT solver CVC4 [2]. The goal of Reynolds’ approach was to find finite
satisfying solutions that the SMT solver deemed unsolvable. In our approach, we
use the SMT solver directly to solve the whole problem (as in the MACE-style),
in contrast to Reynolds approach, which creates a SEM-style solver integrated
into the SMT architecture.

As pointed out by Kroening and Strichman [13], despite the fact that the
complexity of EUF is the same as propositional logic, there are two reasons to
use EUF rather than propositional logic: 1) convenience in modelling, and 2)
performance. The larger vocabulary provided by EUF, i.e., equality, uninter-
preted functions and types, allows for more concise models. In the approaches
that reduce the finite model finding problem to SAT, the structure of types and
functions is not well preserved in propositional logic. Since we are reducing the
problem to EUF, this structure is retained and exploited in the EUF solving pro-
cess, which often results in better performance; moreover, translation to EUF
eliminates some simplification steps such as term flattening.

The challenge, however, is that problems in EUF are not inherently finite,
i.e., the solver does not search only for finite models of a certain scope. To make
our approach work, we add range formulas that force the solver to consider only
instances of a certain finite scope. We re-use many of the techniques found in
MACE-style provers, including symmetry breaking, to reduce the model space
that must be searched.

The contributions of our work are:

1. Introduction of range formulas to force an EUF solver to search for solutions
of an exact scope.

2. A Java library, called Fortress1, for mapping typed FOL problems (including
those specified in the input format TPTP) to SMT-LIB [3] (the standard
input language for SMT solvers) for a finite scope.

3. Demonstration that on benchmark problems, overall, Fortress has better
performance than Kodkod, Mace4, Paradox, and Reynolds. We show the
most improvement on problems that include functions.

4. Demonstration that re-modelling some benchmark problems using the more
convenient modelling approach with typed functions results in better per-
formance in Fortress.

5. A comparison of the methods of all the tools to discuss in detail why using
an SMT solver is preferable to mapping the problem directly to SAT.

In the next section, we provide some brief background on finite model find-
ing. In Section 3, we show a simple example of how our approach works, and

1 Available at: rebrand.ly/fortress

rebrand.ly/fortress

then we define our translation in Section 4. Section 5 briefly overviews Fortress’
implementation. Our results on benchmarks are presented in Section 6. Section 7
demonstrates the advantages of using typed functions, and it is followed by a
detailed comparison to related work in Section 8. The conclusion and future
work are presented in Section 9.

2 Background

In typed2 first-order logic (FOL), a signature Σ is a pair 〈Θ,F 〉 where Θ is a set
of types, and F is a set of typed functional symbols. Every signature contains the
type Bool, which represents the Boolean type. A functional symbol f ∈ F that
takes as input n arguments of types θ1, . . . , θn respectively and produces output
type is θ is denoted as f : θ1 × · · · × θn → θ. A constant c of type θ, denoted by
c : θ, is a functional symbol that has no inputs. In FOL, predicate symbols are
functional symbols whose output type is Bool. For example, a relational symbol
R : A×A → Bool denotes a binary relational symbol over type A. Figure 1
shows the rules for constructing the formulas and terms of FOL. The notation
t : θ denotes that the type of the term t is θ. We use this notation only if the
type of a term is not obvious from the context.

Formulas

Φ ::= > | ⊥ | p
::= R(t1 : θ1, . . . , tn : θn)

::= ¬Φ | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | Φ1 ⇒ Φ2 | Φ1 ⇔ Φ2

::= ∃v : θ • Φ | ∀v : θ • Φ where v ∈ V

Terms

t : θ ::= v : θ where v ∈ V
::= c : θ

::= f(t1 : θn, . . . , tn : θn)

Fig. 1. Syntax of FOL over signature Σ = 〈Θ,F 〉 and set of typed variables V , where
c : θ, p : Bool, R : θ1 × · · · × θn → Bool, and f : θ1 × · · · × θn → θ are in F .

A structure (also called a model or an instance) M over a signature Σ =
〈Θ,F 〉 is a pair 〈U , .M 〉, where U , the universe of M , is a collection of mutually
disjoint non-empty sets, and .M is a mapping with the following properties:

1. for each θ in Θ, θM ∈ U ,
2. for each two distinct θ1 and θ2, θM1 ∩ θM2 = ∅,
3. for each p : Bool in F , pM ∈ {True, False},
4. for each R : θ1 × · · · × θn → Bool, RM is a subset of θM1 × · · · × θMn ,
5. for each c : θ in F , cM ∈ θM ,
6. for each f : θ1 × · · · × θn → θ, fM is a total function from θM1 × · · · × θMn to
θM .

We assume the standard semantics for FOL, and use M |= Φ to denote
that M is a structure that satisfies the formula Φ [10], meaning that Φ is true

2 We use “type” and “sort” interchangeably in this paper.

in structure M . We also use the notation M |= Γ , where Γ is a set of FOL
formulas, to denote that M satisfies all the formulas in Γ .

Given a set of FOL formulas Γ over signature Σ = 〈Θ,F 〉, and a function
bounds from Θ to natural numbers, the finite model finding problem means
determining if Γ has a satisfying structure M in which for every θ in Θ, the
size of the set assigned to θ by M is the finite number bounds(θ) (i.e., |θM | =
bounds(θ)). For each type θ, bounds(θ) is called the size of the scope or just the
scope. M is finite because the types in M are each of a fixed, finite, known size.
In untyped FOL, there is only one type and therefore only one scope is relevant.

The logic of equality with uninterpreted functions, EUF, is a subset of FOL
without quantifiers and variables, that includes the equality predicate (usually
written in infix form) with its standard interpretation. Checking whether a finite
set of EUF formulas has a satisfying structure is decidable and its complexity is
NP-complete [13].

3 Small Example

In this section, we present a small example to illustrate the challenge in mapping
the finite model finding problem to EUF.

Suppose Σ = 〈{A,B}, {f : A → B}〉 is a signature, and we are given the
following formula:

∀x, y : A • f(x) = f(y) ⇒ x = y (1)

The functional symbol f maps elements of A to B and the formula in Equation 1
states that every element of A is mapped to a unique element of B; in other
words, no two distinct elements of A are mapped to the same element of B. We
are interested in checking if this formula has a model where the size of A is 3
and the size of B is 2. Equation 1 means that in every finite model, the size of B
must be greater or equal to the size of A; therefore, there is no model with the
scopes proposed. To reduce this problem to checking the satisfiability of a set of
EUF formulas, we introduce three new constant symbols of type A, a1, a2, a3,
two new constant symbols of type B, b1, b2, and generate a set of constraints
stating that these new constants are distinct:

{a1 6= a2, a1 6= a3, a2 6= a3, b1 6= b2} (2)

Using the introduced constants, we expand each quantifier by substituting the
new constants for the variables. This step generates a set of EUF formulas:

{f(ai) = f(aj)⇒ ai = aj | 1 ≤ i, j ≤ 3} (3)

If we pass the formulas in Equations 2 and 3 to an EUF solver, such as an
SMT solver, and check for their satisfiability, the solver finds a satisfying model
where B has three elements, rather than B having two elements as required.
This example shows that expanding quantifiers is not sufficient to reduce the
finite model finding problem to EUF satisfiability checking. One might think a

remedy to this problem is by adding a formula that states the only members of
B are b1 and b2:

∀b : B • b = b1 ∨ b = b2

This formula has a quantifier, therefore it is not part of EUF and its universal
quantifier needs to be expanded with b1 and b2:

b1 = b1 ∨ b1 = b2, b2 = b1 ∨ b2 = b2

This formula is a tautology and therefore, adding it has no effect.
Our solution to this problem is as follows: instead of adding a constraint

that ensures B has only two elements, we add constraints, which we call range
formulas, that guarantee the “effect” of B having two elements. In this example,
the effect of B having two elements is that for all a : A, f(a) must be either b1
or b2:

∀a : A • f(a) = b1 ∨ f(a) = b2 (4)

Expanding this equation results in the following set of EUF formulas:

{f(ai) = b1 ∨ f(ai) = b2 | 1 ≤ i ≤ 3}

An EUF solver shows that this set of formulas along with the constraints of
Equations 2 and 3 are unsatisfiable.

A range formula for a functional symbol ensures that an EUF solver does
not generate an instance that is outside the provided scope:

Definition 1. For a finite type θ = {e1, .., en} and a functional symbol f :
T1 × ..× Tm → θ, the following is the range formula that we add to ensure that
the values assigned to f by an EUF solver are within the specified scope of θ:

∀v1 : T1, .., vm : Tm • f(v1, .., vm) = e1 ∨ .. ∨ f(v1, .., vm) = en

4 Translation to EUF Logic

Suppose Γ is a set of FOL formulas over signature Σ = 〈Θ,F 〉, and bounds is
a function from Θ to natural numbers. The finite model finding problem means
determining if Γ has a finite model M where for each type θ in Θ, the size of
θM is equal to bounds(θ). Our translation to EUF consists of four steps:

1. Normalize each formula in Γ
2. Generate the universe
3. Add range formulas
4. Ground each normalized formula

Step (3) is the main novel contribution of our paper along with the idea of using
EUF solvers in the MACE-style for the finite model finding problem. For the
other steps leading up to EUF, we borrow the best practices from existing solvers
and include their description here for completeness. Next, we explain each step
in detail and illustrate the translation using the following example:

Example 1. Let Σ = 〈{A}, {f : A → A}〉 be a signature. We want to check if
the following two formulas have a model where the size of A (bounds(A)) is 3
by translating it to an equisatisfiable set of EUF formulas.

1. ∀x, y : A • f(x) = f(y) ⇒ x = y
2. ∃y : A • ∀x : A • f(x) 6= y

The first constraint states that f is a one-to-one mapping from A to itself. The
second constraint states that the range of f is a proper subset of A. These two
formulas are only satisfiable by an infinite model since it is not possible to have
a one-to-one mapping from a finite set to one of its proper subsets.

Step 1 - Normalize. The normalization step consists of the following trans-
formations: 1) put each formula in prenex normal form, and 2) skolemize and
remove existential quantifiers. Applying these transformations to the formulas
of Example 1 results in the following two formulas:

1. ∀x, y : A • ¬(f(x) = f(y)) ∨ x = y
2. ∀x : A • f(x) 6= sk

In the second formula, sk is a constant of type A that is introduced as the result
of skolemization. After normalization, each formula is either quantifier-free or it
is of the following form ∀x1 : θ1, . . . , xn : θn • Ψ, where Ψ is quantifier-free. The
complexity of this step is linear with respect to the size of the FOL formulas.
Step 2 - Generate Universe. In this step, for each type θ in Θ, we generate
bounds(θ) constants of type θ, and we assert that these constants are mutually
distinct. The generated constants at this step are fresh, do not appear anywhere
in Γ , and constitute the universe. In Step 3 (adding range formulas), the fact
that the introduced constants do not appear in Γ allows us to generate optimized
range formulas based on symmetry breaking.

In Example 1, we declare constants a1, a2, a3 of type A and add a constraint
to ensure that these constants are mutually distinct. The complexity of this step
is linear with respect to the size of the provided bounds3.
Step 3 - Add Range Formulas: EUF solvers check for the satisfiability of a
set of quantifier-free formulas without putting any restrictions on the number
of elements assigned to each type. To ensure that the elements of a type θ in
a model generated by an EUF solver are exactly the ones declared in Step 2,
we add range formulas for constants and functional symbols stating that their
values must be equal to the elements of the universe of that type. As mentioned in
Section 3, the range formulas allow us to reduce the finite model finding problem
to EUF solving. The complexity of adding range formulas is exponential with
respect to the arity of the functional symbols.

In Example 1, the following are the range constraints:

sk = a1 ∨ sk = a2 ∨ sk = a3, f(a1) = a1 ∨ f(a1) = a2 ∨ f(a1) = a3,

f(a2) = a1 ∨ f(a2) = a2 ∨ f(a2) = a3, f(a3) = a1 ∨ f(a3) = a2 ∨ f(a3) = a3

3 In SMT-LIB, this constraint is written simply as: (distinct a1 a2 a3).

We use Claessen and Sörensson’s symmetry breaking technique [8] to reduce
the number of range formulas needed. Since the values a1, a2, and a3 do not
appear in the original formulas, one can assume an ordering on them and reduce
the range formulas to the following:

sk = a1,

f(a1) = a1 ∨ f(a1) = a2,

f(a2) = a1 ∨ f(a2) = a2 ∨ f(a2) = a3,

f(a3) = a1 ∨ f(a3) = a2 ∨ f(a3) = a3

where the first term is required to be a certain constant and the subsequent terms
have gradually more freedom in their possible values. Using symmetry breaking
to reduce the number of range formulas does not reduce the complexity of this
step.
Step 4 - Ground Formulas. The last step of our translation is grounding:
instantiating each universally quantified formula with the generated universe of
Step 2. As we substitute different constants for variables that are universally
quantified, we immediately simplify the generated formulas based on literals
that are discovered and the fact that the elements of the universe are mutually
distinct. For example, in the formula ∀x, y : A • f(x) 6= f(y) ∨ x = y, when x
and y are substituted with a1, the generated formula f(a1) 6= f(a1)∨ a1 = a1 is
simplified to > and it is discarded. Also, when x is substituted with a3 and y with
a2, the generated formula f(a3) 6= f(a2)∨ a3 = a2 is simplified to f(a3) 6= f(a2)
since we know that a2 6= a3. Moreover, we have a syntactic ordering on formulas
where t = s is considered to be the same as s = t for any two terms. This
ordering allows us to remove some redundant formulas that are generated during
the grounding step. The result of grounding Example 1 is the following set of
formulas:

f(a1) 6= f(a2), f(a1) 6= f(a3), f(a2) 6= f(a3),

f(a1) 6= sk, f(a2) 6= sk, f(a3) 6= sk

The complexity of this step is exponential with respect to the number of nested
universal quantifiers.

We omit the proof that checking the satisfiability of the generated EUF
formulas from Steps 3 and 4 is equivalent to checking if the original FOL formulas
have a finite model where the size of each type θ is bounds(θ) since it is quite
straightforward.

5 Implementation

Fortress is a Java library for creating typed first-order logic formulas and pro-
ducing finite model finding problems in SMT-LIB based on the translation of
Section 4. Besides the API, we parse a subset of TPTP. In Fortress, formulas
are represented as typed lambda calculus terms and all type checking is done at

this level for generality. Once type checked, FOL terms are converted to a more
compact representation suitable for FOL.

There are two types of simplifications/optimizations that can be applied:
1) simplifications on FOL terms not specific to finite model finding, such as
positive and negative propagations [16], 2) optimizations specific to finite model
finding, such as symmetry breaking constraints [8]. Since SMT solvers do an
excellent job at type 1 above, these are not implemented in Fortress. However,
since SMT solvers do not treat uninterpreted types as finite sets, optimizations of
type 2 are implemented in Fortress. We have flags to enable symmetry breaking
and our experiments have shown that SMT solvers cannot infer symmetries for
finite scope analysis and therefore, they need to be explicitly implemented.

6 Results

We compared our approach to Kodkod (version 2.1 with Minisat), Alloy (version
4.2 with Minisat), Mace4, and Paradox (version 4). We used Z3 (version 4.4.2)
as our backend EUF solver for Fortress. We compared the performance of the
tools on a set of TPTP benchmarks [20] that were originally used by Torlak and
Jackson in [22]. We tested on increased scopes for some benchmarks compared
the results reported in [22]. Fortress accepts TPTP as input. Torlak and Jackson
had manually translated TPTP examples to Kodkod and we used their trans-
lated versions when comparing to Kodkod. Paradox accepts TPTP as input, and
Mace4 comes with a tool (tptp to ladr [15]) that translates TPTP to its input
format. To compare with Alloy, we developed a simple translator from TPTP
to Alloy. We included Alloy in this comparison because it is equivalent to using
Kodkod without special support for partial instances (see Section 8).

All of these benchmarks are unsat: they do not have finite models with respect
to the provided scope sizes. Unsatisfiable cases are better for the comparison of
different tools because they are usually much harder than satisfiable ones. These
benchmark problems are all untyped and some contain functions.

Table 1 presents the performance of all tools. For Fortress, the performance
numbers include both the time for translation and the time for solving by Z3.
All our experiments were run on an Intel R©CoreTMi7-3667U machine running
Ubuntu 14.04 64-bit with up to 7.5GB of user memory. We used the solvers
in their default mode, without any flags or a customized configuration. Entries
marked by “−” indicate the analyses that did not finish within 1800 seconds
(30 minutes). The shaded entries show the fastest solver for each benchmark
(based on all scopes considered); where the difference was negligible we shaded
the entries for multiple tools.

The last three rows of Table 1 summarize the performance of the solvers:
Fortress produced the best results more often than any other tool. We also added
up the performance time for all the benchmark problems. In this summation, we
counted timeouts as 1800 seconds, which is preferential to all the other solvers
since Fortress produced results without timing out on all benchmark problems.
The total time for Fortress was 2504 seconds. The total times for Kodkod, Alloy,

Table 1. Benchmark Problems (Time in Seconds)

Scope Size Fortress Kodkod Alloy Mace4 Paradox

alg195 14 1 0 30 − 5

alg197 21 1 0 20 − 5

num378 21 2 0 − 0 6

infinity

5 0 1 1 0 0
15 0 19 57 0 0
25 0 704 − 0 0

alg212

6 0 5 3 0 0
8 8 207 201 1 5

10 563 − − 6 81

com008

7 4 0 0 − 0
9 48 0 0 − 0

11 335 1 4 − 58

geo091

7 3 2 12 − 7
9 9 29 33 − 279

11 24 745 268 − −

geo158

7 3 1 1 − 80
9 9 28 17 − −

11 24 378 233 − −

med009

7 2 0 0 19 0
9 11 0 0 141 0

11 31 0 0 139 0

num374

5 2 21 20 0 3
6 38 262 358 6 147
7 850 − − 613 −

set943

7 1 4 66 − 55
9 2 − − − −

11 2 − − − −

set948

7 1 0 71 − 62
9 2 0 − − −

11 4 1 − − −

top020

7 2 1 2 0 0
8 13 4 8 0 1
9 509 13 16 0 17

Best out of 13 7 6 1 5 2

Total Time 2504 9637 15821 31525 15211

Total Time X 1X 3.85X 6.32X 12.59X 6.07X

Fortress Kodkod Alloy Mace4 Paradox

Mace4, and Paradox are respectively 3.85, 6.32, 12.59, and 6.07 times the
total time of Fortress. This shows that, overall, Fortress is significantly better
than the state-of-art solvers.

We also ran the benchmarks using the tool of Reynolds et al. [18], however
since their tool solved only 2 of the 33 benchmark problems within the 30 minutes
time threshold, its results are not presented in Table 1.

A closer look at the benchmarks show that Fortress excels at solving problems
that have functional symbols, such as geo091 and set943. Also, SMT solvers
are capable of using terms with functions to simplify the reasoning steps by
rewriting equalities, such as those found in alg195 and num378. In some cases,
this rewriting can solve the problem without performing any search.

Next, we compared the performance of multiple SMT solvers as backends
for Fortress. We compared the performance of Z3, CVC4 (version 1.4), and
MathSAT5 (version 5.3.10) [7] on six of the nontrivial benchmarks. Table 2
presents the time that it took for each SMT solver to check the satisfiability of
the SMT-LIB models generated by Fortress. Our results show that Z3 is more
effective in solving EUF formulas that are generated as the result of finite model
finding than CVC4 and MathSAT5.

Table 2. Comparing SMT solvers (Time in Seconds)

alg212 com008 geo091 med009 num374 top020

Scope Size 10 9 11 11 6 8

Z3 562 47 6 6 38 11

CVC4 − 69 45 53 − 3

MathSAT5 − 91 7 20 117 3

7 Exploiting Functions and Types

Functions vs. Relations. Functions and relations have the same expressive
power: a total function f : A→ B can be described as a relation Rf : A×B →
Bool with the following two constraints:

∀a : A • ∃b : B • Rf (a, b), (5)

∀a : A, b, b′ : B • b = b′ ∨ ¬Rf (a, b) ∨ ¬Rf (a, b′) (6)

where Constraint 5, a totality definition, states that every element of A is mapped
to some element of B and Constraint 6, a functional definition, states that every
element of A is not mapped to more than one element of B. Every relation is
also a function: a relation maps every tuple to True or False, depending on if
the tuple is in the relation or not. Kodkod and Paradox consider functions as
relations accompanied by the totality and functional definitions. Since functions

10 11 12 13 14 15

100

101

102

Scope Size

T
im

e
(i

n
se

co
n

d
s)

Functional

Relational

Fig. 2. Lists: Functions vs. Relations

14 16 18 20 22 24 26 28

101

102

103

Scope Size

T
im

e
(i

n
se

co
n
d
s)

Functional

Relational

Fig. 3. MED009: Partitioning Attributes

are built into EUF, Fortress does not need to add the totality and functional
definitions, which simplifies the translation.

Another important benefit of functions is that they allow “true” skolemiza-
tion. Skolemization is a technique to remove existential quantifiers by introducing
functions. For example, in the formula ∀a : A, b : B • ∃c : C • P (a, b, c), skolem-
ization results in the introduction of a functional symbol sk : A×B → C and
the formula ∀a : A, b : B • P (a, b, sk(a, b)). In a language where functions are
considered as relations, the skolem function sk needs to be accompanied by the
totality definition ∀a : A, b : B •∃c : C •Rsk(a, b, c), which still has an existential
quantifier.

To see the effect of using functions on the performance of the SMT solvers for
finite model finding, in Fortress we modelled a simple theory of lists presented
in [11] in both the functional and relational styles. Figure 2 compares the per-
formance of Fortress for both approaches on different scopes. As depicted in this
plot, functions improve the performance of Fortress. For the relational approach,
the performance degrades rapidly as the scope size increases. For example, for
the scope size 15, the relational approach takes over 7 minutes whereas in the
functional approach the scope size of 30 is analyzed in less than 10 seconds (not
shown on the plot).

Types. In an untyped system, all elements are in one set. For example,
to model a database system for a university, Person, Courses, IDs, etc., are
entities that need to be modelled. In an untyped relational world, all these are
in one set, and any mapping from one set to another, such as id : Person →
IDs, becomes a relation that is only defined for people and needs totality and
functional definitions. In typed systems, types partition the universe into subsets.
These partitions have two benefits for finite model finding: 1) functions from one
type to another can be defined succinctly, 2) in the grounding step (Step 4), a
universal quantifier is only expanded for elements of the relevant type.

Together, functions and types can lead to concise modelling of some concepts.
For example, in an untyped, relational language, to state that each Person in
a university is either a student, faculty, or a staff member, three unary
relations over the type Person must be declared. Four FOL constraints are re-

quired to express that these unary relations partition the set Person: every
person belongs to one of the partitions, and three other constraints that en-
sure that no one belongs to more than one category. In a language with types
and functions, the same concept can be modelled by introducing a new type
Role with three elements student, faculty, staff, and introducing a func-
tion attribute : Person → Role. The totality and functional properties of
attribute ensure that at least one role is assigned to each person and no one
is assigned more than one role respectively. We call the values of the type Role

partitioning attributes. In the relational style, the number of FOL formulas that
are required to model partitioning attributes with N values is

(
N
2

)
+ 1, which is

quadratic with respect to the number of values. A functional approach eliminates
the need for these constraints.

To evaluate the effect of using types and functions for partitioning, we man-
ually translated a modified version of med009 and compared the untyped, rela-
tional version to one with partitioning via types and functions, and compared
the results. Figure 3 shows that performance of the functional approach is much
better than the relational approach in Fortress.

8 Comparison with Related Work

In this section, we discuss the question of why our method of using EUF to solve
FOL problems of finite scope has better overall performance than related solvers.
First, we briefly present the method of each related solver and then present a
number of points of comparison. Table 3 summarizes the options and methods
supported by different finite model finders.

Table 3. Comparison of Finite Model Finders

Fortress Kodkod Paradox Mace4 Reynolds

Solver SMT SAT SAT SEM SEM/SMT

Input TPTP, Java API Java API TPTP LADR, TPTP SMT-LIB

Types YES NO NO NO YES

Functions YES NO YES YES YES

Relational Ops NO YES NO NO NO

Symmetry Breaking Static Static Static Dynamic EUF

Partial Instances NO YES NO NO NO

8.1 Related Solvers

Kodkod [22] is the MACE-style solver used in the Alloy Analyzer. Its Java
API accepts untyped FOL formulas with relational constructs, such as join and
transitive closure, as input. Functions must be transformed into relations having
functional properties prior to using Kodkod. Once bounds are provided, Kodkod
transforms transitive closure into a finite number of applications of join. Kodkod
translates the finite model finding problem to SAT using the following steps: 1)
detect symmetries in the model and compute symmetry breaking predicates, 2)

allocate Boolean variables to represent relations, 3) expand quantified formulas
and make them into constraints over the allocated Boolean variables, and 4)
transform the generated Boolean constraints to CNF form. Kodkod represents
relations by sparse matrices of Boolean variables, and some of the relational op-
erations become matrix operations. To simplify the translated formulas, Kodkod
represents expanded quantified formulas as Compact Boolean Circuits (CBCs).
This representation allows Kodkod to detect sharing structures in the grounded
formulas and as a result, produce a more optimized CNF formula. Kodkod opti-
mizes for explicitly provided partial instances by using this information during
the translation to CNF step.

Paradox [8] is MACE-style prover, whose first step is to allocate a set of
Boolean variables to represent each functional symbol. These Boolean variables
encode each functional symbol as a relation. Then, every formula is “flattened”:
a process that removes nested function applications in a formula. For example,
flattening the formula ∀x • f(g(x)) = x results in the formula ∀x, t • g(x) = t⇒
f(t) = x. At this point, the quantifiers of the given formulas are instantiated with
all possible values from the universe resulting in a set of quantifier-free formulas.
Each of these quantifier-free formulas are translated to propositional logic using
the allocated Boolean variables. Since functional symbols are encoded as rela-
tions, Paradox adds “functional definition” constraints (every input is mapped to
at most one value), and “totality definition” constraints (every input is mapped
to some value). The result of this translation is a CNF formula that is passed
to a SAT solver. To improve its performance, Paradox uses three techniques:
1) reduce the number of nested quantifiers by splitting disjunctions, 2) adding
symmetry breaking constraints, and 3) inferring sorts (types) from the formulas
to optimize the translation to SAT.

Mace4 [16] is a SEM-style finite model finder: it has its own backtracking
search mechanism to try different assignments. To check if a set of FOL formu-
las has model of size n, Mace4 allocates “cells” that range from 0 to n − 1 for
each functional symbol. By skolemizing, every existential quantifier is removed.
After skolemization, the universal quantifiers are expanded using the elements
of {0, .., n − 1}. The expanded formulas are now constraints over the allocated
cells. The search mechanism assigns values to cells and checks if the assign-
ment contradicts any of the expanded formulas. If a contradiction is detected,
it backtracks; otherwise, the search goes on until either all cells are assigned or
there is no possible assignment left. Mace4 uses the least number heuristic to
detect some symmetries [25]. It also has a propagation mechanism that allows
the search algorithm to prune its search tree.

Reynolds et al. [18] extended CVC4 with finite model finding capabilities so
that for satisfiable instances of undecidable SMT logics a user could get a finite
model and the SMT solver would not report “unknown”. They combined finite
model finding with decision procedures for built-in theories using the DPLL(T)
architecture. Their approach does not introduce constants and can be classified
as a SEM-style technique. According to our results, the method of Reynolds is

not effective in finding finite models of a specific size when SMT theories are not
used and the problem is unsatisfiable.

8.2 Comparison

Types. Since EUF is typed, in Fortress we benefit from types without requir-
ing any special mechanism to infer sorts as is done in Paradox. In an untyped
language, types can be mimicked by predicates and this is the approach used
to translate problems in the typed Alloy language to Kodkod. Fortress’ direct
use of sorts can reduce the number of constraints generated in the quantifier
expansion step because only elements of the correct sort are substituted into the
formula for the quantified variable.

Functions. Kodkod does not support functions and assumes that functions
have been converted to relations. In Fortress, we do not need to flatten the
functional symbols or add the special functional definition and totality con-
straints required by Paradox since we are translating to a logic that includes
functional symbols. As a result, there are fewer constraints in our representation
in EUF and in that of Reynolds. Furthermore, the SMT solver can exploit the
structure of these functions in its reasoning; in particular, terms that contain
functional symbols are used for rewriting and simplification of the input prob-
lem. Examples of such techniques are (near) assignment and (near) elimination
simplifications [16].

Relational Operators. The relational operators of Kodkod (e.g., join) do
not increase its expressive power but they ease the modelling task. In FOL, the
meaning of such operators can be represented through logical operations and
quantifiers.

Symmetry Breaking Predicates. In most MACE-style finite model find-
ers, such as Fortress, Kodkod, and Paradox, symmetry breaking is static: a
set of constraints are added to the model to prevent the solver from exploring
symmetric instances. Such constraints are called symmetry breaking predicates.
Fortress uses the same symmetry breaking predicates as Paradox. In SEM-style
finite model finding, the symmetry detection is built into the search algorithm
and it is performed dynamically during the model finding stage [24].

Partial Instances. A partial instance for a set of FOL formulas is an ex-
plicit assignments of values to some variables. Kodkod supports explicitly pro-
vided partial instances. The first three case studies, alg195, alg197, and num378

contain partial instances. Fortress and Kodkod outperform other tools on these
case studies. Alloy uses Kodkod as its solver, and yet its performance on the first
three case studies is not comparable to Kodkod because the partial instances are
not explicitly given to Kodkod. In Fortress, we get good performance without
any explicit support for partial instances. Partial instances in EUF are regu-
lar constraints that happen to be equalities of variables to values. SMT solvers
have sophisticated mechanisms to propagate equalities and reduce the constraint
solving time.

Exact scopes. Currently, we only support analysis for a fixed scope, whereas
in the Alloy Analyzer, a scope can be specified to include all instances of a certain

size or smaller. Kodkod has this capability and it encodes the whole problem
in one SAT formula. On the other hand, Mace4 has an iterative approach that
solves each fixed scope separately.

Transitive Closure. Because the Alloy language includes the second-order
transitive closure operator, Kodkod supports it and expands its definition using
a brute force method (for a finite scope). Our method and the other solvers do
not currently support transitive closure, but it would be straightforward to add
a step to expand the transitive closure operator as is done in Kodkod.

8.3 Other Related Work

Baumgartner et al. reduce the finite model finding problem to function-free
clause logic [5]. Similar to Kodkod, they represent functions as relations with
functional constraints. As their results show, current function-free clause logic
reasoners are not efficient enough. According to the authors, their results are
“as good as” Paradox. We were not able to access their tool.

Elghazi and Taghdiri [9] translate Alloy to SMT-LIB to provide analysis of
unbounded scopes. Alloy is translated to an undecidable logic, and SMT solvers
are considered as FOL theorem provers that do not necessarily terminate.

9 Conclusion and Future Work

In this paper, we have shown that by reducing the finite model finding problem
to the logic of equality with uninterpreted functions (EUF), we can use an SMT
solver to find instances with better performance than existing approaches based
on translations of the problem to SAT. In our translation, we add range formulas
to force the SMT solver to search only for models of a finite scope. Our results
show that maintaining the structure of problems (in this case, the types and
function structure) can be beneficial in analysis procedures that need to explore
exhaustively a model space (as opposed to flattening the problem before search).
Our results also give credit to the excellent development of tools of the SMT-
solver community.

With respect to modelling constructs, we would like to integrate with Alloy
and extend our method to handle the transitive closure operator and a range of
scopes. We are also considering taking SMT-LIB as input and the specification
of scopes and creating SMT-LIB output. The challenge here is that we do not
support all of SMT-LIB, i.e., all of its built-in types (such as taking a finite
scope for reals).

In the future, we plan to automate the inference of functional patterns,
such as the partitioning attributes in Section 7, to improve the performance
of Fortress. Also, our benchmarks show that despite the fact that our tech-
nique for finite model finding is superior to the state-of-the-art, there are some
benchmarks that other tools solve faster than Fortress. We plan to explore a
characterization of the problems that different methods are good at and create
a portfolio solver for finite model finding.

References

1. Ackermann, W.: Solvable Cases of the Decision Problem. North Holland Publishing
Company (1954)

2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovi, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Computer-Aided Verification (CAV), LNCS,
vol. 6806, pp. 171–177. Springer (2011)

3. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.5. Tech.
rep., Department of Computer Science, The University of Iowa (2015)

4. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability Modulo Theories,
Frontiers in Artificial Intelligence and Applications, vol. 185, chap. 26, pp. 825–885.
IOS Press (2009)

5. Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models
by reduction to function-free clause logic. Journal of Applied Logic 7(1), 58 – 74
(2009)

6. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order
logic based on a relational model finder. In: Interactive Theorem Proving (ITP).
pp. 131–146. Springer (2010)

7. Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT
Solver. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). LNCS, vol. 7795. Springer (2013)

8. Claessen, K., Sörensson, N.: New techniques that improve mace-style finite model
finding. In: Proceedings of the CADE-19 Workshop: Model Computation - Princi-
ples, Algorithms, Applications (2003)

9. El Ghazi, A.A., Taghdiri, M.: Analyzing Alloy constraints using an SMT solver: A
case study. In: International Workshop on Automated Formal Methods (2010)

10. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer (1990)

11. Jackson, D.: Software Abstractions - Logic, Language, and Analysis. MIT Press
(2012)

12. Khurshid, S., Marinov, D.: TestEra: Specification-based testing of Java programs
using SAT. Automated Software Engineering 11(4), 403–434 (2004)

13. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View.
Springer (2008)

14. McCune, W.: A Davis-Putnam program and its application to finite first-order
model search: Quasigroup Existence Problem. Tech. rep., Argonne National Lab-
oratory (1994)

15. McCune, W.: Prover9 and mace4 (2005–2010), http://www.cs.unm.edu/~mccune/
prover9

16. McCune, W.: Mace4 reference manual and guide. CoRR cs.SC/0310055 (2003)

17. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). LNCS, vol. 4963, pp. 337–
340. Springer (2008)

18. Reynolds, A., Tinelli, C., Goel, A., Krstić, S.: Finite Model Finding in SMT.
In: Computer-Aided Verification (CAV). LNCS, vol. 8044, pp. 640–655. Springer
(2013)

19. Samimi, H., Schfer, M., Artzi, S., Millstein, T., Tip, F., Hendren, L.: Automated
repair of HTML generation errors in PHP applications using string constraint
solving. In: International Conference on Software Engineering (ICSE). pp. 277–
287 (2012)

http://www.cs.unm.edu/~mccune/prover9
http://www.cs.unm.edu/~mccune/prover9

20. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)

21. Taghdiri, M., Jackson, D.: Inferring specifications to detect errors in code. Auto-
mated Software Engineering 14(1), 87–121 (2007)

22. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 4424,
pp. 632–647 (2007)

23. Vakili, A., Day, N.A.: Temporal logic model checking in Alloy. In: International
Conference on Abstract State Machines, Alloy, B, VDM, and Z (ABZ). LNCS, vol.
7316, pp. 150–163. Springer (2012)

24. Zhang, H., Zhang, J.: MACE4 and SEM: A comparison of finite model generators.
In: Automated Reasoning and Mathematics - Essays in Memory of William W.
McCune. pp. 101–130 (2013)

25. Zhang, J., Zhang, H.: Sem: A system for enumerating models. In: International
Joint Conference on Artificial Intelligence (IJCAI)

	Finite Model Finding Using the Logic of Equality with Uninterpreted Functions

