
On Tolerant Testing and Tolerant
Junta Testing

by

Amit Levi

A thesis
presented to the University Of Waterloo

in fulfilment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2020

©Amit Levi 2020

 ii

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Examining
Committee is by majority vote.

External Examiner Anindya De
 Assistant Professor, University of Pennsylvania

Supervisor(s) Eric Blais
 Associate Professor, University of Waterloo

Internal Member Richard Cleve
 Professor, University of Waterloo

Internal-external Member Jane Gao
 Assistant Professor, University of Waterloo

Other Member(s) Gautam Kamath
 Assistant Professor, University of Waterloo

 iii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of

Contributions included in the thesis. This is a true copy of the thesis, including any required
 final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Statement of contributions

This thesis describes results from the following papers:

1. [BCE+19] Tolerant junta testing and the connection to submodular optimization and func-
tion isomorphism. Joint work with Eric Blais, Clément Canonne, Talya Eden and Dana
Ron. ACM Transactions on Computation Theory (TOCT) 11 (4), 2019 (Preliminary
version at SODA 2018).

2. [LW19] Lower bounds for tolerant junta and unateness testing via rejection sampling of
graphs. Joint work with Erik Waingarten. Presented at ITCS 2019.

3. [BFLR20] Hard properties with (very) short PCPPs and their applications. Joint work
with Omri Ben-Eliezer, Eldar Fischer and Ron D. Rothblum. Presented at ITCS 2020.

iv

Abstract

Over the past few decades property testing has became an active field of study in theoretical
computer science. The algorithmic task is to determine, given access to an unknown large object
(e.g., function, graph, probability distribution), whether it has some fixed property, or it is far
from any object having the property. The approximate nature of these algorithms allows in
many cases to achieve a significant saving in running time, and obtain sublinear running time.
Nevertheless, in various settings and applications, accepting only inputs that exactly have a
certain property is too restrictive, and it is more beneficial to distinguish between inputs that
are close to having the property, and those that are far from it. The framework of tolerant
testing tackles this exact problem. In this thesis, we will focus on one of the most fundamental
properties of Boolean functions: the property of being a k-junta (i.e., being dependent on at
most k variables).

The first chapter focuses on algorithms for tolerant junta testing. In particular, we show that
there exists a poly(k) query algorithm distinguishing functions close to k-juntas and functions
that are far from 2k-juntas. We also show how to obtain a trade-off between the “tolerance” of
the algorithm and its query complexity.

The second chapter focuses on establishing a query lower bound for tolerant junta testing.
In particular, we show that any non-adaptive tolerant junta tester, is required to make at least
Ω(k2/polylog k) queries.

The third chapter considers tolerant testing in a more general context, and asks whether
tolerant testing is strictly harder than standard testing. In particular, we show that for any
constant ` ∈ N, there exists a property P` such that P` can be tested in O(1) queries, but any
tolerant tester for P` is required to make at least Ω(n/ log(`) n) queries (where log(`) denote the
` times iterated log function).

The final chapter focuses on applications. We show how to leverage the techniques developed
in previous chapters to obtain results on tolerant isomorphism testing, unateness testing, and
erasure resilient testing.

v

Acknowledgments

It’s a dangerous business, Frodo, going
out your door. You step onto the road,
and if you don’t keep your feet, there’s no
knowing where you might be swept off to

J.R.R Tolkien

This marks the end of an adventure. One started long time ago across the oceans. This
adventure could not have been completed without the help and support of many.

First and foremost, I want to thank my advisor Eric Blais for his encouragement and support
during my years as a PhD student, and in particular, for allowing me to choose my own path
in research. Whenever I knocked at his door, I was always greeted with a smile (and sometimes
a fine cup of coffee). He never made me feel stupid (and I was at times), always offered good
advice and an optimistic point of view.

Throughout my years in grad-school I had the honor of collaborating with some great men-
tors. Specifically, I want to thank Xi Chen, Eldar Fischer, Sofya Raskhodnikova, Dana Ron, and
Yuichi Yoshida, whose immense knowledge and advice helped shape my research work. I offer
a special thanks to Eldar Fischer, for multiple visit invitations to the Technion, for teaching me
so much about math, and for being a great support in times of need.

I am also grateful to all my coauthors and collaborators: Michael Abebe, Omri Ben-Eliezer,
Clément Canonne, Khuzaima Daudjee, Talya Eden, Brad Glasbergen, Rajesh Jayaram, Gautam
Kamath, Ramesh Krishnan Pallavoor, Ron D. Rothblum, Nithin Varma and Erik Waingarten.
It was truly a wonderful experience to work with each and every one of them. A special thanks
goes to Erik Waingarten, my “academic bro”, for his hospitality (either in NYC or Berkeley),
numerous discussions about math and for being a great friend!

This thesis could not be completed without the support of my friends in Canada. I want to
thank my fellow students at the department, Vedat Levi Alev, Abhinav Bommireddi, Nathan
Harms, Anil Pacaci, Akshay Ramachandran and Hong Zhou, for many enjoyable conversations
throughout the years. Special thanks for Victoria Sakhnini, for wonderful friday dinners, and
for making me feel at home, away from home. To all of my friends in Waterloo, thank you for
making my grad school experience so enjoyable.

Lastly, to Mom, Dad, Shenhav, Savti, Sabi and the rest of my family, thanks for your never
ending support and encouragement, this journey could not have been completed without you.

New adventures are right around the corner...

vi

Table Of Contents

List of Figures ix

1 Introduction 1

1.1 Testing juntas . 2

1.2 Tolerant testing . 2

1.3 Our contributions . 3

1.4 Related work . 7

1.4.1 Property Testing of functions . 7

1.4.2 Property testing of graphs . 7

2 Preliminaries and Tools 9

2.1 Property testing and Juntas . 9

2.2 Influence of variables . 10

2.3 Probabilistically checkable proofs of proximity (PCPP) 12

2.4 Probabilistic tools . 12

2.5 Collection of covers . 13

2.6 Error correcting codes and polynomials over finite fields 14

2.6.1 Dual distance of linear codes . 15

3 Algorithms for Tolerant Junta Testing 17

3.1 Warm-up: An exp(k log k)/ε algorithm using dimension reduction 18

3.2 A tradeoff between tolerance and query complexity 20

3.2.1 Useful bounds on the expected influence of a random ρ-subset of a set . . 21

3.2.2 Approximation of the ρ-subset influences 22

3.2.3 Tradeoff between tolerance and query complexity 23

3.3 Polynomial bi-criteria algorithm via submodular minimization 24

3.3.1 Approximate submodular minimization under a cardinality constraint . . 25

3.3.2 Approximate submodular function minimization 27

4 Hardness Results for Tolerant Junta Testing 33

4.1 The Rejection Sampling Model . 34

4.2 Reducing Tolerant Junta Testing From Rejection Sampling 35

4.2.1 High Level Overview . 35

4.2.2 The Distributions Dyes and Dno . 36

4.2.3 Reducing from Rejection Sampling . 39

4.3 A lower bound for distinguishing G1 and G2 with rejection samples 41

4.3.1 High Level Overview . 42

vii

5 General Separation between Tolerant Testing and Intolerant Testing 53
5.1 Overview and Techniques . 53

5.1.1 Techniques . 54
5.2 Code Ensembles . 56

5.2.1 A construction of a hard code ensemble 56
5.3 PCUs and PCUSSs . 58
5.4 PCUSS construction . 59

5.4.1 The iterated construction . 60
5.4.2 Proof of Lemma 5.4.5 . 61
5.4.3 The Lower Bound . 64
5.4.4 Handling arbitrary input lengths . 67

5.5 Separation of testing models . 67

6 Applications 71
6.1 “Instance-adaptive” tolerant isomorphism testing 72

6.1.1 Proof of Theorem 6.1.2 . 73
6.1.2 Construction of a noisy sampler . 79

6.2 Lower bound for non-adaptive tolerant unateness testing 83
6.2.1 High Level Overview . 83
6.2.2 The Distributions Dyes and Dno . 85
6.2.3 Reducing from Rejection Sampling . 90
6.2.4 Proof of Lemma 6.2.4 . 91
6.2.5 Proof of Lemma 6.2.5 . 92

6.3 Separating Erasure-Resilient testing from property testing 100

Bibliography 103

Appendices

Appendix A 111
A.1 A Useful Claim . 111
A.2 Reducing to the case k = cn for constant c < 1 112

viii

List of Figures

4.1 Example of graphs G from Dyes and Dno. On the left, the graph G is the union
of two cliques of size n

4 , corresponding to Dyes. We note that χ(G) = 1
2 , since

if we let S = A (pictured as the blue set), we see that S contains half of the
edges. On the right, the graph G is the complete bipartite graph with side sizes
n
4 , corresponding to Dno. We note that χ(G) = 3

4 : consider any set S ⊂ M of
size at least n

4 pictured in the blue region, and let α = |S ∩ A| and β = |S ∩ A|,
where α+ β ≥ n

4 , so E(S, S) + E(S, S) ≥ (n4)2 − αβ ≥ (n4)2(1− 1
4). 38

4.2 A consistently partition of the components C1, C2, C3 and C4 according to G1

(on the left) and G2 (on the right). 43

5.1 Description of Verifier-Procedure E(`) . 63

5.2 Description of Testing Algorithm for Q(`) . 68

6.1 Example of a function hi : {0, 1}n → {0, 1} with hi(x) = xj1 ⊕ xj2 ⊕ xm1 with
variable j1 (which ought to be monotone), j2 (which ought to be anti-monotone),
and m1 (which is always monotone). The image on the left-hand side represents
hi, and the red edges correspond to violating edges for variables j1, j2 and m1.
In other words, the red edges correspond to anti-monotone edges in variables j1,
monotone edges in variables j2, and anti-monotone edges in direction m1. On the
right-hand side, we show how such a function can being “fixed” into a function
h′i : {0, 1}n → {0, 1} by changing 1

4 -fraction of the points. 84

6.2 Example of a function hi : {0, 1}n → {0, 1} with hi(x) = xj1 ⊕ xj2 ⊕ xm1 with
variables j1 and j2 (which ought to be monotone), and m1 (which ought to be
monotone). On the left side, we indicate the violating edges with red arrows, and
note that the functions in the left and right differ by 3

8 -fraction of the points.
We also note that any function h′i : {0, 1}n → {0, 1} which has j1, j2 and m1

monotone must differ from hi on at least 3
8 -fraction of the points because the

violating edges of hi form a cycle of length 6. 85

6.3 Similarly to Figure 6.2.1, this is an example of a function hi : {0, 1}n → {0, 1}
with hi(x) = xj1 ⊕ xj2 ⊕ xm1 variables j1 (which ought to be anti-monotone), j2
(which ought to be monotone), and m1 (which is always monotone) being “fixed”
into a function h′i : {0, 1}n → {0, 1} defined on the right-hand side. 89

6.4 Similarly to Figure 6.2.1, this is an example of a function hi : {0, 1}n → {0, 1}
with hi(x) = ¬xj1 ⊕ xj2 ⊕ xm2 variables j1 (which ought to be anti-monotone),
j2 (which ought to be monotone), and m2 (which is always anti-monotone) being
“fixed” into a function h′i : {0, 1}n → {0, 1} defined on the right-hand side. 89

ix

6.5 Examples of functions hi : {0, 1}n → {0, 1} with orientations on the variables and
violating edges. On the left-hand side, hi(x) = ¬xj1⊕xj2⊕xm2 with variables j1
and j2 (which ought to be monotone), and m2 (which is always anti-monotone).
On the right-hand side, hi(x) = ¬xj1 ⊕xj2 ⊕xm2 with variables j1 and j2 (which
ought to be anti-monotone), and m2 (which is always anti-monotone). We note
that the violating edges form a cycle of length 6, so any unate function whose
orientations on j1 and j2 are as indicated (both monotone on the left-hand side,
and both anti-monotone on the right-hand side) must disagree on a 3

8 -fraction of
the points. 90

x

Chapter 1

Introduction

The field of property testing is concerned with the analysis of the global structure of data.
Property testing algorithms are algorithms that perform a type of approximate decision. As
opposed to standard decision algorithms, which are required to determine whether a given
input has some specified property or not, property testing algorithms are required to determine
whether a given input has the property, or it is far from having the property. Informally, we say
that an input is far from a property if it needs to be significantly modified in order to obtain
the property (in particular, we will consider the Hamming distance). In the typical setting,
property testing algorithms are given a distance parameter ε, should reject inputs that that are
ε-far from having the property, and accept inputs having the property. However, if a given input
is close to having the property, the algorithm can either accept or reject .1

The approximate nature of these algorithms allows us, in many cases, to go below the gold-
standard linear time, and achieve a sublinear running time in the size of the input, and in some
cases the running time is even independent of the input size. The fact that property testing
algorithms may run in sublinear time suggests that the algorithm cannot even read the entire
input, and instead is given query access to the input. Property testing algorithms provide a
tradeoff between accuracy and efficiency. This tradeoff is beneficial in numerous scenarios such
as:

1. When the exact decision problem is NP-hard, property testing algorithms provide a type
of approximation which is necessary in such cases.

2. When reading the entire input is infeasible (for example, when the object is enormous).

3. When there is a need to quickly rule out far objects, and spend our resources only on
objects that are close to having the property.

This tradeoff also raises the following high level question:

Is it possible to leverage the structure of the property in order to achieve testers with
sublinear run time?

In general, property testing algorithms come in two flavors, non-adaptive and adaptive.
Non-adaptive algorithms need to fix their queries in advance and are not allowed to depend
on answers to previous queries. Indeed, the fact that the algorithm is allowed to pick its
queries depending on its previous ones, generally provides more power to the algorithm (see
e.g., [GR11, STW15, CSTW, CG17]). We say that a testing algorithm has a one-sided error
if it accepts every object that satisfies the property with probability 1, and otherwise, it has a

1For precise definitions, see Section 2.1

1

two-sided error. Similarly, allowing the algorithm to have a two-sided error generally decreases
its query complexity (see e.g.,[Lev15]).

1.1 Testing juntas

A significant portion of this thesis will focus on one of the most fundamental properties of
Boolean functions– the property of being a junta. A function f : {0, 1}n → {0, 1} is a k-junta
if it depends on at most k of its variables. Juntas are a central object of study in the analysis
of Boolean functions, in particular since they can be used as a good approximation for many
classes of (more complex) Boolean functions.

As an example, consider the class of s-term DNFs. That is, the class of all Boolean functions
of the form T1 ∨ . . . ∨ Ts, where each Ti is of the form

∧
j∈S xj for some S ⊆ [n]. It might be

surprising at first, but this very expressive class can be well approximated by juntas of size
independent of the dimension. Indeed, it is not hard to show that any s-term DNF is ε-close (in
Hamming distance) to a s log(s/ε)-junta, since any term with more than log(s/ε) variables can
be removed contributing an error of at most ε/s. More generally, Friedgut [Fri98] showed that
any boolean function f is close to a junta whose size depend on some “simplicity parameter”
of f (the average sensitivity of f).

In the context of learning, the study of juntas was introduced by Blum et al. [Blu94, BL97]
to model the problem of learning in the presence of irrelevant attributes. Blum asked whether
there exists a poly(n) time algorithm that learns O(log n)-juntas using samples from the uniform
distribution. The current state of the art algorithm for the above problem is due to Mossel
O’Donnell and Servedio. [MOS03] and has a running time of nck for some c < 1. Nevertheless,
the question whether there exists a polynomial time algorithm remains open. Since then, juntas
have been extensively studied both in computational learning theory (e.g., [MOS03, Val15]) and
in applied machine learning (e.g., [JL10]).

The problem of deciding whether a given function f : {0, 1}n → {0, 1} is a k-junta requires
exponential running time. Indeed, this task may require going through all 2n input strings,
which is unfeasible especially when the dimension n is large. However, one might want to
consider a possible relaxation of the above task to the: Is it possible to efficiently distinguish
functions which are k-juntas from functions that are far from any k-junta? Namely, we consider
property testing of juntas.

The problem of testing k-juntas was first addressed by Fischer et. [FKR+04]. They designed
an algorithm that queries the function on a number of inputs polynomial in k, and independent
of n. A series of subsequent works essentially settled the optimal query complexity for this
problem, establishing that Θ(k/ε · log(k/ε)) queries are both necessary and sufficient [Bla08,
Bla09, CG04, STW15, Sağ18].

Nevertheless, the setting of property testing is arguably fragile, since the testing algorithm
is only guaranteed to accept all functions that exactly satisfy the property. In various settings
and applications, accepting only inputs that exactly have a certain property is too restrictive,
and it is more beneficial to distinguish between inputs that are close to having the property,
and those that are far from it. To address this question, Parnas, Ron and Rubinfeld introduced
in [PRR06] a natural generalization of property testing, where the algorithm is required to be
tolerant.

1.2 Tolerant testing

A tolerant property testing algorithm is required to accept any function that is close to having
the property, and as in the standard model, to reject any function that is far from the property.

2

Ideally, a tolerant testing algorithm should work for any given tolerance parameter ε′ < ε (that
is, accept functions that are ε′-close to having the property), and have complexity that depends
on ε − ε′. However, in some cases the relation between ε′ and ε may be more restricted (e.g.,
ε′ = ε/c for a constant c). A closely related notion considered in [PRR06] is that of distance
approximation where the goal is to obtain an estimate of the distance that the object has to a
property.

As observed in [PRR06], any standard testing algorithm whose queries are uniformly (but
not necessarily independently) distributed is inherently tolerant to some extent. More precisely,
any q-query testing algorithm will accept objects which are O(ε/q)-close to the property. How-
ever, for many problems, strengthening the tolerance requires applying different methods and
devising new algorithms (see e.g., [GR05, PRR06, FN07, ACCL07, KS09, MR09, FR10, CGR13,
BMR16]).

In context of juntas, the problem of tolerant testing was previously considered by Diakoniko-
las et al. [DLM+07]. They applied the aforementioned observation from [PRR06] and showed
that one of the junta testers from [FKR+04] actually accepts functions that are poly(ε, 1/k)-
close to k-juntas. Chakraborty et al. [CFGM12] observed that the analysis of the (standard)
junta tester of Blais [Bla09] implicitly implies an exp(k/ε)-query complexity tolerant tester
which accepts functions that are ε/C-close to some k-junta (for some constant C > 1) and
rejects functions that are ε-far from every k-junta.

It is natural to ask whether in general tolerant testing is strictly harder than standard
testing. This question was explicitly studied by Fischer and Fortnow [FF06]. Using machinery
common in the field of probabilistically checkable proofs (PCP), they designed a property P ⊆
{0, 1}n that admits a tester with constant query complexity, but such that every tolerant tester
for P has query complexity Ω(nc) for some c ∈ (0, 1). Using modern PCP tools [BSS08, Din07]
combined with the techniques of [FF06] it is possible to construct a property demonstrating a
better separation, of constant query complexity for standard testing versus Ω(n/polylog n) for
tolerant testing.

1.3 Our contributions

In this thesis, we present progress on the question of tolerant junta testing, and on tolerant
testing in a more general context.

Chapter 3: Algorithms for tolerant junta testing

As observed in Section 1.2, it is not hard to obtain an algorithm that distinguishes functions
which are ε/C-close to k-juntas and functions that are ε-far from k-juntas (for some constant
C > 1), is relatively easy using exp(k)/ε queries (we provide a self contained proof in Sec-
tion 3.1). Our goal in this chapter is to understand whether such a dependence can be avoided.

First, we wish to understand how the amount of tolerance of the algorithm effects its query
complexity. The observation of [DLM+07] that it is possible to distinguish functions which are
poly(ε, 1/k)-close to k-juntas from those that are ε-far from k-juntas using poly(k, 1/ε) queries
hints towards a trade off in terms of tolerance and query complexity. However, what about
other settings of the closeness parameter? Is it possible to obtain an algorithm that interpolates
the above two results in terms of the distance gap?

We answer this question affirmatively, and in Section 3.2 we show how to obtain a smooth
tradeoff between the amount of tolerance and the query complexity of the algorithm.

Theorem 1.3.1. There exists an algorithm that, given query access to a function f : {−1, 1}n →
{−1, 1} and parameters k ≥ 1, ε ∈ (0, 1) and ρ ∈ (0, 1), satisfies the following.

3

• If f is ρε/16-close to some k-junta, then the algorithm accepts with high constant proba-
bility.

• If f is ε-far from every k-junta, then the algorithm rejects with high constant probability.

The query complexity of the algorithm is O
(

k log k
ερ(1−ρ)k

)
.

Note that setting ρ = O(1/k) results in a poly(k, 1/ε) query algorithm and setting ρ = O(1)
results in a exp(k)/ε query algorithm, exactly matching the two extreme cases mentioned above.

Our second angle considers the question of whether a moderate relaxation of the tolerant
testing model exhibits significant saving in query complexity. In Section 3.3, we show that if we
only require our algorithm to reject functions that are ε-far from 2k juntas (while still accepting
any function ε/C-close to a k-junta for some C > 1), one can achieve a tester with poly(k, 1/ε)
query complexity.

Theorem 1.3.2. There exists an algorithm that, given query access to a function f : {−1, 1}n →
{−1, 1} and parameters k ≥ 1 and ε ∈ (0, 1), satisfies the following.

• If f is ε/10-close to some k-junta, then the algorithm accepts with high constant probability.

• If f is ε-far from every 2k-junta, then the algorithm rejects with high constant probability.

The query complexity of the algorithm is poly(k, 1
ε) .

We note that similar relaxations have been considered both in the standard testing model
(e.g., [PR02, KR98, KNOW14]) and in the tolerant testing model [PRR06]. Although one may
hope for a stronger statement (distinguishing functions close to k-junta from those far from k-
junta), for most practical purposes the relaxation above is more than sufficient. Among others,
this is supported by the following two examples: (i) In the setting we are concerned about, k
is to be thought of as very small (constant, or very slowly growing function of n), while n is
dauntingly large. Thus, reducing the dimension of the problem from n features to 2k is already
enough to break the curse of dimensionality, (ii) For learning algorithms, it is common to try
and identify the smallest class of functions the unknown target belongs to, in order to apply an
efficient learning algorithm tailored to it. In order to do so, one often uses a doubling search (or
variant thereof) over the set of parameters (here, k) to identify the “best candidate parameter”
while not spending too many resources in this preliminary phase. This implies that, inherently,
any such search approach already loses a constant factor in this relevant parameter.

Chapter 4: Hardness results for tolerant junta testing

As noted in [PRR06], tolerant testing is not only a natural generalization of property testing,
but is also very often the desirable attribute of testing algorithms. This motivates the high
level question: how does the requirement of being tolerant affect the complexity of testing the
properties studied? From previous works, it was conceivable that the problem of tolerant junta
testing is not harder than standard junta testing. Our main result in this chapter shows that
non-adaptive tolerant testing of juntas is significantly harder than standard non-adaptive junta
testing. In particular, we prove the following theorem.

Theorem 1.3.3. For any α < 1, there exist constants 0 < ε0 < ε1 < 1 such that for any
k = k(n) ≤ αn, any non-adaptive algorithm that distinguish between functions f : {−1, 1}n →
{−1, 1} that are ε0-close to k-junta and functions ε1-far from any k-junta must make Ω(k2/polylog k)
queries.

4

For the setting of a non-adaptive algorithms, Blais [Bla08] gave O(k3/2 · poly log k)-query
tester for (non-tolerant) testing of k-juntas, which was shown to be optimal for non-adaptive
algorithms by Chen, Servedio, Tan, Waingarten and Xie in [CST+17]. Combined with Theo-
rem 1.3.3, this shows a polynomial separation in the query complexity of non-adaptive tolerant
junta testing and non-adaptive junta testing.

Chapter 5: General separation between tolerant and intolerant testing

This chapter deals with the high level question described in the previous chapter. Namely, how
hard can tolerant testing be compared to standard testing? As mentioned previously, Fischer
and Fortnow [FF06] constructed a property of n-bits boolean strings which is testable with a
number of queries independent of n, but require at least n/ log n many queries to tolerantly
test.

In this chapter, we provide an even stronger separation. We construct a family of properties,
such that each property in the family is testable using constant (independent of n) queries, but
require much more than n/ log n in order to tolerantly test. Specifically, we show the following.

Theorem 1.3.4 (informal). For any constant integer ` ∈ N, there exists a property P` such
that P` is testable with query complexity independent of n, but require Ω(n/ log(`) n) to tolerantly
test (where log(`) denote the iterated log function).

Chapter 6: Applications

Finally, we show how the techniques developed in previous chapters apply to other problems.

Tolerant isomorphism testing: In Section 6.1 we show how Theorem 1.3.1 can be applied
to the problem of isomorphism testing, which we recall next. Given query access to two unknown
Boolean functions f, g : {−1, 1}n → {−1, 1} and a parameter ε ∈ (0, 1), one has to distinguish
between (i) f is equal to g up to some relabeling of the input variables; and (ii) dist(f, g ◦ π) > ε
for every such relabeling π (where g ◦ π denote the natural function composition). The worst-
case complexity of this task is known, with Θ

(
2
n
2 /
√
ε
)

queries being necessary (up to the exact
dependence on ε) and sufficient [AB10, ABC+13]. However, is the exponential dependence on
n always necessary, or can we obtain better results for “simple” functions? Ideally, we would
like our testers to improve on this worst-case behavior, and instead have an instance-adaptive
query complexity, depending only on some intrinsic parameter of the functions f, g to be tested.
This is the direction we pursue here. Let k∗ = k∗(f, g, γ) be the smallest k such that either f or
g is γ-close to being a k-junta. We show that it is possible to achieve a query complexity only
depending on this (unknown) parameter, namely of the form O

(
2k
∗(f,g,O(ε))/2/ε

)
.2 Moreover,

our algorithm offers a much stronger guarantee: it allows tolerant isomorphism testing.

Theorem 1.3.5 (Tolerant isomorphism testing). There exists an algorithm that, given query
access to two functions f, g : {−1, 1}n → {−1, 1} and parameter ε ∈ (0, 1), satisfies the following,
for some absolute constant C ≥ 1.

• If f and g are ε
C -close to isomorphic, then the algorithm accepts with high constant prob-

ability.

2It is worth noting that this parameter can be much lower than the actual number of relevant variables
for either functions; for instance, there exist functions depending on all n variables, yet that are o(1)-close to
O(1)-juntas.

5

• If f and g are ε-far from isomorphic, then the algorithm rejects with high constant prob-
ability.

The query complexity of the algorithm is O
(
2
k∗
2 /ε

)
with high-probability (and O

(
2
n
2 /ε

)
in the

worst case), where k∗ = k∗(f, g, εC).

The above statement is rather technical, and requires careful parsing. In particular, the
parameter k∗ is crucially not provided as input to the algorithm: instead, it is discovered
adaptively by invoking the tolerant tester of Theorem 1.3.1. This explains the high-probability
bound on the query complexity: with some small probability, the algorithm may fail to retrieve
the right value of k∗ – in which case it may use instead a larger value, possibly up to n.

Lower bounds for tolerant unateness testing: In Section 6.2, we apply our techniques
from Chapter 4 to the problem of unateness testing. A function f : {0, 1}n → {0, 1} is unate
if f is either non-increasing or non-decreasing in every variable. Namely, there exists a string
r ∈ {0, 1}n such that the function f(x ⊕ r) is monotone with respect to the bit-wise partial
order on {0, 1}n.

The next two theorems concern tolerant testers for unateness.

Theorem 1.3.6. There exist constants 0 < ε0 < ε1 < 1 such that any (possibly adaptive)
algorithm that distinguishes between functions ε0-close to unate and functions ε1-far from unate,
must make Ω(n/polylog n) queries.

Theorem 1.3.7. There exist constant 0 < ε0 < ε1 < 1 such that any non-adaptive algorithm
that distinguishes between functions ε0-close to unate and functions ε1-far from unate, must
make Ω(n3/2/polylog n) queries.

A similar separation in tolerant and non-tolerant testing occurs for the property of unate-
ness as a consequence of Theorem 1.3.6 and Theorem 1.3.7. Recently, in [BCP+17], Baleshzar,
Chakrabarty, Pallavoor, Raskhodnikova, and Seshadhri gave a non-adaptive Õ(n)-query tester
for (non-tolerant) unateness testing, and Chen, Waingarten and Xie [CWX17a] gave an (adap-
tive) Õ(n3/4)-query tester for (non-tolerant) unateness testing. We thus, conclude that by
Theorem 1.3.6 and Theorem 1.3.7, tolerant unateness testing is polynomially harder than (non-
tolerant) unateness testing, in both adaptive and non-adaptive settings.

Separating erasure resilient testing from property testing: In Section 6.3, we show
how the tools developed in Chapter 5 allow us to separate the standard testing model from
the erasure resilient model. This model was defined by Dixit et. al. [DRTV18] to address cases
where data cannot be accessed at some domain points due to privacy concerns, or when some
of the values were adversarially erased. More precisely, an α-erasure-resilient ε-tester gets as
input parameters α, ε ∈ (0, 1), as well as oracle access to a function f , such that at most an α
fraction of its values have been erased. The tester has to accept with high probability if there
is a way to assign values to the erased points of f such that the resulting function satisfies the
desired property. The tester has to reject with high probability if for every assignment of values
to the erased points, the resulting function is still ε-far from the desired property.

Similarly to the tolerant testing scenario, [DRTV18] show that there exists a property of
Boolean strings of length n that has a tester with query complexity independent of n, but for any
constant α > 0 every α-erasure-resilient tester is required to query at least Ω(nc) bits for some
c > 0, thereby establishing a separation between the models. We give a stronger separation
between the erasure resilient model and the standard testing model.

6

Theorem 1.3.8 (informal restatement of Theorem 6.3.2). For any constant integer ` ∈ N, there
exist a property of boolean strings P ⊆ {0, 1}n and a constant ε1 ∈ (0, 1) such that P is ε-testable
for any ε > 0 with number of queries independent of n, but for any α = Ω(1/ log(`) n) and ε ∈
(0, ε1) such that ε < 1−α, any α-erasure-resilient ε-tester is required to query Ω(n/polylog(`)n)
many bits.

Remark. Some of the results presented in this thesis have recently been extended or improved.
In a followup work, De et al. [DMN19] show a tolerant junta testing algorithm that for any
0 ≤ ε0 < ε1 < 1/2, distinguishes between functions ε0-close to k-junta and functions ε1-far
from any k-junta, with query complexity 2k · poly(k, 1/(ε1 − ε0)), providing a wider range of
parameters. However, for some settings of ε0 and ε1 (e.g., ε0 = ε/ log k and ε1 = ε) our algorithm
from Theorem 1.3.1 provides a better query complexity than O(2k). Our lower bound presented
in Theorem 1.3.3 has been improved recently by Pallavoor et al. [PRW19] to a super-polynomial
in k and 1/ε.

1.4 Related work

1.4.1 Property Testing of functions

Property testing was first explicitly defined in the work of Rubinfeld and Sudan [RS96], who
considered testing whether a function is a low-degree (univariate) polynomial over a fixed finite
field F. The first time a question was phrased in terms of property testing was considered in
the work of Blum, Luby and Rubinfeld [BLR90], where the authors consider the task of testing
whether a function f : Fn → F is linear3 or ε-far (in Hamming distance) from any linear function.
The focus of the above was on testing algebraic properties of functions, which had an important
role in the design of Probabilistically Checkable Proofs (PCP) systems [ALM+98, AS98, BFL91,
BFLS91, GLR+91, FGL+91, FS95]. Since then, algebraic properties of functions continued to
be a central object in the study of property testing, partly because of their connection to the
area of error correcting codes. If we view functions as codeword, than the task is to distinguish
between codewords and words that are far from any codeword. Examples of such codes which
admit a sublinear time testers include Hadamard codes, Reed-Solomon codes and Reed-Muller
codes (see e.g., [AKK+05, KR06, JPRZ09]).

In general, property testing can be seen as a relaxation of learning. Instead of asking that
the algorithm output a good estimate of the function, which is assumed to belong to a particular
class of functions F , we require that the algorithm decide whether the function belongs to F
or is far from any function in F . With this view in mind, a natural motivation for property
testing is to serve as a preliminary step before learning (and in particular, agnostic learning
(e.g., [KSS94] where no assumption is made about the target function aside from it being a
member of F). We can first run the testing algorithm to decide whether to use a particular
class of functions as our hypothesis class.

Additional properties of boolean functions of interest include monotonicity and unateness
[GGLR98, DGL+99, FLN+02, EKK+00, BCGSM12, CC16, CS13, CS14, CWX17a, CWX17b],
half-spaces [MORS10] and sparsity [GOS+11].

1.4.2 Property testing of graphs

The study of property testing in a more combinatorial context was initiated by Goldreich,
Goldwasser and Ron [GGR98]. They gave several general results, among them results concerning
testing properties of graphs. In this model the algorithm may perform queries of the form: “Is

3A function f : Fn → F is linear if and only if for every x, y ∈ Fn, f(x) + f(y) = f(x+ y).

7

there an edge between vertices u and v in the graph?” That is, the algorithm may probe the
adjacency matrix representing the tested graph G = (V,E), which is equivalent to querying
the function fG : V × V → {0, 1}, where fG(u, v) = 1 if and only if (u, v) ∈ E. We refer to
such queries as vertex-pair queries. In the dense-graphs model, a graph is considered ε-far from
having property P if more than εn2 edges modifications should be performed on the graph so
that it obtains the property.

In their seminal result, [GGR98] showed various testing algorithms for “partition problems”
such as bipartiteness, k-Colorability and having a ρ-clique. All of which with query complexity
of poly(1/ε).

Further research shows that testable graph properties4 in this model can be precisely char-
acterized. A sequence of works [AFKS00, FN07, AS08] led to the work of Alon et al. [AFNS09]
which gave a full characterization for graph properties that are testable in a number of queries
independent of n, using variations of the Szemerédi regularity lemma. A different characteri-
zation, based on graph limits, was proved independently by Borgs et al. [BCL+06]. Recently,
it was shown that this result holds for a more general setting of ordered graphs.5 In [ABEF17],
the authors show that any hereditary property of ordered graphs is testable with a number
of queries independent of the size of the graph. Similarly to the case of unordered graphs,
this result has recently been obtained using a generalization of graph limits theory for ordered
graphs [BEFLY18].

Other results in property testing in the dense graphs model include results for directed
graphs (e.g. [BR02]) and extensions to hypergraphs (e.g. [KNR02]).

However, when dealing with sparse graphs, the above definition of distance makes little
sense. To handle this case [GR02] introduced the bounded-degree graph model. In this model,
the algorithm may perform queries of the form: “who is the i-th neighbor of a vertex v in the
graph?” That is, the algorithm may probe the incidence lists of the vertices in the graph, where
it is assumed that all vertices have degree at most d for some fixed degree-bound d. This is
equivalent to querying the function fG : V × [d] → V ∪ ⊥ that is defined as follows: For each
v ∈ V and i ∈ [d], if the degree of v is at least i then fG(v, i) is the i-th neighbor of v (according
to some arbitrary but fixed ordering of the neighbors), and if v has degree smaller than i, then
fG(v, i) = ⊥.

In the bounded degree graph model, a graph is said to be ε-far from having property P
if more than εdn edge modifications should be performed on the graph so that it obtains the
property. In this case ε measures the fraction of entries in the incidence lists representation
(which has size dn) that should be modified.

In [GR02], Goldreich and Ron showed various testing algorithms for properties such as
connectivity, k-edge connectivity, cycle-freeness and being Eulerian. All of which have query
complexity of poly(1/ε). In this paper, Goldreich and Ron formulated the question of testing
the expansion property, which resulted in a series of works [GR11, KS08, CS10, NS10]. In terms
of characterization, a sequence of works [CSS09, BSS10, HKNO09, LR15] establish that every
minor closed property is two-sided testable in a constant time. Recently, it was shown that for
one-sided algorithms, the same task requires Θ(

√
n) queries [CGR+14, KSS18].

It is important to note that the number of queries required to test a property in the bounded-
degree model may differ significantly from that required in the dense-graph model. For exam-
ple, testing bipartiteness, that can be performed in the dense-graphs model with a number of
queries independent of n ([GGR98]), but requires Ω(

√
n) queries in the bounded-degree model

([GR02]).

4i.e., using number of queries independent of the size of the graph
5an ordered graph is a graph with a total order on its vertex set.

8

Chapter 2

Preliminaries and Tools

We start with some notations. We use boldfaced letters such as a,m to denote random variables.
Let [n] the set of integers {1, . . . , n}. Given a string x ∈ {0, 1}n and j ∈ [n], we write x(j) to
denote the string obtained from x by flipping the j-th coordinate. An edge along the j-th
direction in {0, 1}n is a pair (x, y) of strings with y = x(j). In addition, for α ∈ {0, 1} we use
the notation x(j→α) to denote the string obtained from x by setting the jth coordinate to α.
Given x ∈ {0, 1}n and S ⊆ [n], we use x|S ∈ {0, 1}S to denote the projection of x on S. For
a distribution D we write d ∼ D to denote an element d drawn according to the distribution.
In addition, given an event E over some probability space, we use 1{E} to denote the indicator
function for E.

We sometimes write a ≈ b± c to denote b− c ≤ a ≤ b+ c. For a set A, we let 2A denote the
power-set of A. For two strings x, y ∈ {0, 1}∗ we use x t y to denote string concatenation.

For an integer k, a field F = GF(2k) and α ∈ F, we let 〈〈α〉〉 ∈ {0, 1}k denote the binary
representation of α in some canonical way. For two sets of strings A and B we use A t B to
denote the set {at b | a ∈ A, b ∈ B}. For a collection of sets {A(d)}d∈D we use

⊔
d∈D A(d) to

denote the set of all possible concatenations
⊔
d∈D ad, where ad ∈ A(d) for every d ∈ D.

2.1 Property testing and Juntas

Definition 2.1.1 (Property and Distance). A property P of Boolean functions is a subset of
all these functions, and we say that a function f has the property P if f ∈ P. The distance
between two functions f, g : {−1, 1}n → {−1, 1} is defined as their (normalized) Hamming

distance dist(f, g)
def
= Prx[f(x) 6= g(x)], where x is drawn uniformly at random.

Accordingly, for a function f and a property P we define the distance from f to P as

dist(f,P)
def
= ming∈P dist(f, g). Given ε ≥ 0 and a property P, we will say that a function f is

ε-far from P (resp. ε-close to P) if dist(f,P) > ε (resp. dist(f,P) ≤ ε).

We consider the following definition of tolerant testing of parameterized properties, restated
below.

Definition 2.1.2 (Tolerant Testing of Parameterized Properties). Let P = (P)s∈N be a non-
decreasing family of properties parameterized by s ∈ N, i.e. such that Ps ⊆ Pt whenever
s ≤ t; and σ : N → N be a non-decreasing mapping satisfying σ(s) ≥ s for all s. A σ-tolerant
testing algorithm for P is a probabilistic algorithm that gets three input parameters s ∈ N and
ε1, ε2 ∈ [0, 1] such that ε1 < ε2, as well as oracle access to a function f : {−1, 1}n → {−1, 1}.
The algorithm should output a binary verdict that satisfies the following two conditions.

9

• If dist(f,Ps) ≤ ε1 then the algorithm accepts f with probability at least 2/3.

• If dist(f,Pσ(s)) > ε2, then the algorithm rejects f with probability at least 2/3.

In some cases the algorithm is only given one parameter, ε2, setting ε1 = r(ε2) for some
prespecified function r : (0, 1)→ (0, 1).

Note that when σ is the identity function, the above definition corresponds to the tolerant
testing model, defined in [PRR06]. We sometimes use the “non-uniform” variant of the above
definition. Specifically, for parameters 0 < ε0 < ε1 < 1, an (ε0, ε1)-tolerant testing algorithm is
given an oracle access to the input, and is required to determine (with high probability) whether
a given input is ε0-close to the property or whether it is ε1-far from it.

The next lemma will be useful to prove that some properties are hard to test. The lemma
states that if we have two distributions whose restrictions to any set of queries of size at most
q are identical, then no (possibly adaptive) algorithm making at most q queries can distinguish
between them.

Definition 2.1.3 (Restriction). Given a distribution D over functions f : D → {0, 1} and a
subset Q ⊆ D, we define the restriction D|Q of D to Q to be the distribution over functions
g : Q→ {0, 1}, that results from choosing a function f : D → {0, 1} according to D, and setting
g to be f |Q, the restriction of f to Q.

Lemma 2.1.4 (e.g., [FNS04], special case). Let D1 and D2 be two distributions of functions over
some domain D. Suppose that for any set Q ⊂ D of size at most q, the restricted distributions
D1|Q and D2|Q are identically distributed. Then, any (possibly adaptive) algorithm making at
most q queries cannot distinguish D1 from D2 with any positive probability.

The main focus of this work will be the property of being a junta, that is, a Boolean function
that only depends on a (small) subset of its variables:

Definition 2.1.5 (k-Junta). A Boolean function f : {−1, 1}n → {−1, 1} is a k-junta if there
exists a set T ⊆ [n] of size at most k, such that f(x) = f(y) for every two assignments
x, y ∈ {−1, 1}n that satisfy xi = yi for every i ∈ T . We let Jk denote the set of all k-juntas
(over n variables).

2.2 Influence of variables

An important notion in this work is the influence of a set of variables of a Boolean function
f : {−1, 1}n → {−1, 1}, which generalizes the standard notion of influence of a variable:

Definition 2.2.1 (Set-influence). For a Boolean function f : {−1, 1}n → {−1, 1}, the set-
influence of a set S ⊆ [n] is defined as

Inff (S)
def
= 2 Pr[f(x t u) 6= f(x t v)], 1

where x ∼ {−1, 1}[n]\S , u,v ∼ {−1, 1}S .

The following properties of the influence function will be used extensively throughout this
thesis.

1Here, we define the influence of a set with an additional factor 2, so that the (set-)influence of a singleton
{i} coincides with the standard definition of the influence of the i-th variable (as the latter definition asks that
the i-th bit be flipped instead of re-randomized).

10

Fact 2.2.2 (See Chapter 5.3 in [Gol17]). Let f : {−1, 1}n → {−1, 1} be a Boolean function.

1. (Monotonicity and subadditivity of influence) For any S, T ⊆ [n]

Inff (S) ≤ Inff (S ∪ T) ≤ Inff (S) + Inff (T).

2. (Submodularity) For any T ⊂ S and i /∈ S, it holds that

Inff (T ∪ {i})− Inff (T) ≥ Inff (S ∪ {i})− Inff (S).

A direct implication of the definition of the influence function is an approximation algorithm
for the influence of a set S.

Lemma 2.2.3 (Influence estimation). Let f : {−1, 1}n → {−1, 1} be a Boolean function. There
exists an algorithm (Algorithm 1) receiving as an input oracle access to f , a set S ⊆ [n], and

γ, δ, ε ∈ (0, 1), uses m = O
(

log(1/δ)
ε·γ2

)
queries to f and satisfies the following with probability at

least 1− δ .

1. If Inff (S) ≥ ε, then the algorithm outputs an estimate Ĩnff (S) such that

(1− γ) · Inff (S) ≤ Ĩnff (S) ≤ (1 + γ) · Inff (S).

2. If Inff (S) < ε, then the algorithm outputs an estimate Ĩnff (S) such that

Ĩnff (S) ≤ (1 + γ) · Inff (S).

Algorithm 1 Approximate Influence (ε, γ, δ, S)

1: Set m = C·ln(2/δ)
γ2ε

, where C ≥ 1 is an absolute constant. . C ≥ 3 is sufficient.
2: for i = 1 to m do
3: Pick x ∼ {−1, 1}S , u,v ∼ {−1, 1}S uniformly at random and independently.
4: Set ϑi ← 1{f(xtu)6=f(xtv)}. . ϑi is 1 if f(x t u) 6= f(x t v), 0 otherwise.
5: end for
6: Let Ĩnff (S)← 2

m

∑
i∈[m]

ϑi be the estimate of the influence of S.

Proof: We start by proving the first item. Note that by definition of the influence and the fact
that Inff (S) ≥ ε,

ε < Inff (S) = 2 Pr[f(x t u) 6= f(x t v)] = 2 E
x,u,v

[
1{f(xtu)6=f(xtv)}

]
,

where x ∼ {−1, 1}S , and u,v ∼ {−1, 1}S . Therefore, by a Chernoff bound

Pr
[∣∣∣Ĩnff (S)− Inff (S)

∣∣∣ > γ · Inff (S)
]
≤ 2 exp

(
−
mγ2 · Inff (S)

3

)
≤ δ.

The proof for the case where Inff (S) < ε, follows similarly.

11

2.3 Probabilistically checkable proofs of proximity (PCPP)

A PCPP verifier for a property P is given access to an input x and a proof π, as well as a
detection radius ε > 0 and soundness error δ > 0. The verifier should make a constant number
of queries (depending only on ε, δ) to the input x and the proof π, and satisfy the following.
If x ∈ P, then there exists π for which the verifier should always accept x. If dist(x,P) > ε,
the verifier should reject x with probability at least δ, regardless of the contents of π. More
formally, we define the following.

Definition 2.3.1 (PCPP). For n ∈ N, let P ⊂ {0, 1}n be a property of n-bit Boolean strings,
and let t ∈ N. We say that P has a q(ε, δ)-query, length-t Probabilistically Checkable Proof of
Proximity (PCPP) system if the following holds: There exists a verification algorithm V that
takes as input ε, δ > 0 and n ∈ N, makes a total of q(ε, δ) queries on strings w ∈ {0, 1}n and
π ∈ {0, 1}t, and satisfies the following:

1. (Completeness) If w ∈ P, then there exists a proof π = ProofP(w) ∈ {0, 1}t such that
for every ε, δ > 0, the verifier V accepts with probability 1.

2. (Soundness) If dist(w,P) > ε, then for every alleged proof π ∈ {0, 1}t, the verifier V
rejects with probability greater than δ.

The following lemma, establishing the existence of a quasilinear PCPP for any property P
that is verifiable in quasilinear time, will be an important tool throughout this work.

Lemma 2.3.2 (Corollary 8.4 in [Din07], see also [GM07]). Let P be a property of Boolean strings
which is verifiable by a size t Boolean circuit. Then, there exists a length-t′ PCPP system for
P, that for every ε, δ > 0 makes at most q(ε, δ) queries, where t′ = t · polylog t.

We note that maximally hard properties cannot have a constant query PCPP proof systems
with a sublinear length proof string.

Proposition 2.3.3. Let P ⊆ {0, 1}n and ε > 0 be such that any ε-tester for P has to make
Ω(n) many queries. Then, any constant query PCPP system for P (for e.g., where δ = 1/3)
must have proof length of size Ω(n).

Proof: Suppose that there exists a PCPP for P with O(1) queries and proof length t = o(n).
Since the PCPP verifier has constant query complexity, we may assume that it is non adaptive
and uses q = O(1) queries. By a standard amplification argument, we can construct an amplified
verifier that makes O(q · t) = o(n) queries, with soundness 2−t/3. By the fact that the verifier
is non-adaptive, it has the same query distribution regardless of the proof string. Therefore,
we can run 2t amplified verifiers in parallel while reusing queries, one verifier for each of the
2t possible proof strings. If any of the 2t amplified verifiers accept, we accept the input. If
the input belongs to P, one of the above 2t verifiers will accept (the one that used the correct
proof). If the input was ε-far from P, then by a union bound, the probability that there was any
accepting amplified verifier is at most 1/3. This yields an o(n) tester for P, which contradicts
our assumption.

2.4 Probabilistic tools

Throughout this thesis, we use a generalization of Chernoff bounds for negatively correlated
random variables.

12

Definition 2.4.1. Let x1, . . . ,xn ∈ {0, 1} be random variables. We say that x1, . . . ,xn are
negatively correlated if for all I ⊂ [n] the following hold:

Pr [∀i ∈ I : xi = 0] ≤
∏
i∈I

Pr [xi = 0]

Pr [∀i ∈ I : xi = 1] ≤
∏
i∈I

Pr [xi = 1] .

Theorem 2.4.2 (Theorem 1.16 from [Doe11]). Let x1, . . . ,xn be negatively correlated binary
random variables. Let a1, . . . , an ∈ [0, 1] and X =

∑n
i=1 aixi. Then, for δ ∈ [0, 1],

Pr [x ≥ (1 + δ) E [x]] ≤ exp(−δ2 E[x]/2)

Pr [x ≤ (1− δ) E [x]] ≤ exp(−δ2 E[x]/3) .

In addition, some of our proofs will use hyper-geometric random variables. Consider a
population of size N that consists of K objects of a special type. Suppose n objects are picked
without replacement. Let x be a random variable that counts the number of special objects
picked in the sample. Then, we say that x is a hyper-geometric random variable, and we denote
x ∼ HG(N,K, n). These hyper-geometric random variables enjoy tight concentration inequities
(which are similar to Chernoff type bounds).

Theorem 2.4.3 ([Hoe63]). Let x ∼ HG(N,K, n) and µ = K/N . Then for any t > 0

Pr [x ≤ (µ− t)n] ≤ exp(−2t2n)

Pr [x ≥ (µ+ t)n] ≤ exp(−2t2n) .

2.5 Collection of covers

In this section we introduce a combinatorial claim that will be useful later on in Section 3.2.

Definition 2.5.1. Let X be a set of j elements, and for any s ∈ [j] consider the family
(
X
s

)
of

all subsets of X that have size s. We shall say that C ⊆
(
X
s

)
is a s-cover of X, if

⋃
Y ∈C Y = X.

We shall say that C1, . . . , Cm is a legal collection of s-covers for X, if each Ct is a cover of X,
and these covers are disjoint.

Claim 2.5.2. For any set X of j elements, there exists a legal collection of s-covers for X of
size at least

m ≥

 (js)⌈
j
s

⌉
 .

(Moreover, this bound is tight.)

Proof: This claim follows from a result due to Baranyai [Bar75] on factorization of regular
hypergraphs. We state this result, and describe how to derive the claim from it, below (recall
that Kh

n denotes the h-regular hypergraph Kh
n on n vertices):2

Theorem 2.5.3 (Baranyai’s Theorem [Bar75, Theorem 1]). Let n, h be integers satisfying 1 ≤
h ≤ n, and a1, . . . , a` integers such that

∑`
i=1 ai =

(
n
h

)
. Then the edges of Kh

n can be partitioned
into hypergraphs H1 . . . ,H` such that

2An exposition of this result and the original proof as given by Baranyai can also be found in [Bra15, Theorem
4.1.1].

13

(i) |Hi| = ai for all i ∈ [`];

(ii) each Hi is almost regular: the number of hyperedges any two vertices u, v ∈ Hi participate

in differs by at most one (and here, specifically, is either
⌈
aih
n

⌉
or
⌊
aih
n

⌋
).

We apply Theorem 2.5.3 as follows: setting m
def
=

⌊
(js)
d jse

⌋
≤
(
j−1
s−1

)
and `

def
= m + 1, we let

ai
def
=
⌈
j
s

⌉
for all 1 ≤ i ≤ m, and a`

def
=
(
j
s

)
−
∑m

i=1 ai ≥ 0. By the theorem, we obtain a partition

of Ks
j into ` = m+ 1 hypergraphs H1 . . . ,H` such that the first m satisfy:

(i) |Hi| =
⌈
j
s

⌉
for all i ∈ [m];

(ii) for any i ∈ [m], any vertex u ∈ Hi participates in either 1 or 2 hyperedges;

(and we cannot say much about the “remainder“ hypergraph H`). Condition (ii) ensures that
each of the first m hypergraphs obtained indeed defines a cover of the set of j elements by
s-element subsets, while by definition of the partition of the hypergraph we are promised that
these m s-covers are disjoint. This proves the lemma, as H1 . . . ,Hm then induce a legal cover
of X.

As for the optimality of the bound, it follows readily from observing that one must have

m ≤
⌊

(js)
dj/se

⌋
since for every cover C we must have |C| ≥ dj/se, and

∣∣∣(Xs)∣∣∣ =
(
j
s

)
.

2.6 Error correcting codes and polynomials over finite fields

The relative Hamming distance of two strings x, y ∈ Σn is defined as dist(x, y) = 1
n · |{i ∈

[n] | xi 6= yi}|. For a string x ∈ Σn and a non-empty set S ⊆ Σn, we define dist(x, S) =
miny∈S dist(x, y). The following plays a central role in many complexity-related works, including
ours.

Definition 2.6.1. A code is an injective function C : Σk → Σn. If Σ is a finite field and C is a
linear function (over Σ), then we say that C is a linear code. The rate of C is defined as k/n,
whereas the minimum relative distance is defined as the minimum over all distinct x, y ∈ Σk of
dist(C(x), C(y)).

An ε-distance code is a code whose minimum relative distance is at least ε. When for a fixed
ε > 0 we have a family of ε-distance codes (for different values of k), we refer to its members
as error correcting codes.

In this work we use the fact that efficient codes with constant rate and constant relative
distance exist. Moreover, there exist such codes in which membership can be decided by a
quasi-linear size Boolean circuit.

Theorem 2.6.2 (see e.g., [Spi96]). There exists a linear code Spiel : {0, 1}k → {0, 1}100k with
constant relative distance, for which membership can be decided by a k · polylog k size Boolean
circuit.

Actually, the rate of the code in [Spi96] is significantly better, but since we do not try
to optimize constants, we use the constant 100 solely for readability. In addition, the code
described in [Spi96] is linear time decodeable, but we do not make use of this feature throughout
this work.

We slightly abuse notation, and for a finite field F of size 2k, view the encoding given in
2.6.2 as Spiel : F → {0, 1}100k, by associating {0, 1}k with F in the natural way. Note that for

14

f : F→ F, it holds that 〈〈f(β)〉〉 ∈ {0, 1}k for every β ∈ F, and therefore Spiel(f(β)) ∈ {0, 1}100k.
We slightly abuse notation, and for a function f : F→ F we write Spiel(f) to denote the length
100k · 2k bit string

⊔
β∈F Spiel(f(β)) (where we use the canonical ordering over F).

Definition 2.6.3. Let CF denote the set of polynomials g : F→ F such that deg(g) ≤ |F|2 .

The following lemma of [Hor72], providing a fast univariate interpolation, will be an impor-
tant tool in this work.

Lemma 2.6.4 ([Hor72]). Given a set of pairs {(x1, y1), . . . , (xr, yr)} with all xi distinct, we can
output the coefficients of p(x) ∈ F[X] of degree at most r− 1 satisfying p(xi) = yi for all i ∈ [r],
in O(r · log3(r)) additions and multiplications in F.

The next lemma states that a randomly chosen function λ : F → F is far from any low degree
polynomial with very high probability.

Lemma 2.6.5. With probability at least 1 − o(1), a uniformly random function λ : F → F is
1/3-far from CF.

Proof: Consider the size of a ball of relative radius 1/3 around some function λ : F→ F in the
space of functions from F to itself. The number of points (i.e., functions from F→ F) contained
in this ball is at most (

|F|
|F|/3

)
· |F||F|/3 ≤ (3e|F|)|F|/3.

By the fact that the size of CF is |F||F|/2+1, the size of the set of points that are at relative
distance at most 1/3 from any point in CF is at most

|F||F|/2+1 · (3e|F|)|F|/3 = o(|F||F|).

The lemma follows by observing that there are |F||F| functions from F to itself.

2.6.1 Dual distance of linear codes

We focus here specifically on a linear code C : Fk → Fn, and consider the linear subspace
of its image, VC = {C(x) : x ∈ Fk} ⊆ Fn. We define the distance of a linear space as
dist(V) = minv∈V \{0n} dist(v, 0n), and note that in the case of V being the image VC of a code
C, this is identical to dist(C). For a linear code, it helps to investigate also dual distances.

Definition 2.6.6. Given two vectors u, v ∈ Fn, we define their scalar product as u · v =∑
i∈[n] uivi, where multiplication and addition are calculated in the field F. Given a linear space

V ⊆ Fn, its dual space is the linear space V ⊥ = {u : ∀v ∈ V, u · v = 0}. In other words, it is the
space of vectors who are orthogonal to all members of V . The dual distance of the space V is
simply defined as dist(V ⊥).

For a code C, we define its dual distance, dist⊥(C), as the dual distance of its image VC . We
call C an η-dual-distance code if dist⊥(C) ≥ η. The following well-known lemma is essential to
us, as it will relate to the “secret-sharing” property that we define later.

Lemma 2.6.7 (See e.g., [MS77, Chapter 1, Theorem 10]). Suppose that C : Fk → Fn is a linear
η-dual distance code, let Q ⊂ [n] be any set of size less than η · n, and consider the following
random process for picking a function u : Q → F: Let w ∈ Fk be drawn uniformly at random,
and set u be the restriction of C(w) to the set Q. Then, the distribution of u is identical to the
uniform distribution over the set of all functions from Q to F.

15

16

Chapter 3

Algorithms for Tolerant Junta
Testing

In this chapter our main focus is developing algorithms for tolerant k-junta testing, while aiming
for query complexities lower than exp(k). As discussed in Chapter 1, it is relatively easy to
obtain an algorithm which uses exp(k)/ε many queries and distinguishes with high constant
probability between the case where the function is ε/C-close to some k-junta (for some constant
C > 1), and the case where the function is ε-far from any k-junta (as a warm-up toward a more
involved algorithm, we present a self contained proof for the above in section 3.1).

In contrast, [DLM+07] observed that distinguishing functions which are ε/k-close to some
k-junta from functions which are ε-far from any k-junta, can be done using poly(k, 1/ε) queries.
The above two extreme cases suggest a certain tradeoff between tolerance and query complexity.
Our first main result in this chapter is an algorithm which leverages this tradeoff, and allows in
some cases to avoid the exponential dependence in k in the query complexity.

Theorem 1.3.1. There exists an algorithm that, given query access to a function f : {−1, 1}n →
{−1, 1} and parameters k ≥ 1, ε ∈ (0, 1) and ρ ∈ (0, 1), satisfies the following.

• If f is ρε/16-close to some k-junta, then the algorithm accepts with high constant proba-
bility.

• If f is ε-far from every k-junta, then the algorithm rejects with high constant probability.

The query complexity of the algorithm is O
(

k log k
ερ(1−ρ)k

)
.

The above statement provides a smooth trade-off between the tolerance and the query
complexity and interpolates the above extreme cases.

Our second main result in this chapter, considers whether a slight relaxation of the tolerant
testing model exhibits significant savings in terms of query complexity. In Section 3.3 we show
that requiring the algorithm to reject functions which are ε-far from 2k-juntas (as oppose to the
original definition where the algorithm rejects functions which are far from k-juntas), results in
an algorithm which uses poly(k, 1/ε) queries. Specifically,

Theorem 1.3.2. There exists an algorithm that, given query access to a function f : {−1, 1}n →
{−1, 1} and parameters k ≥ 1 and ε ∈ (0, 1), satisfies the following.

• If f is ε/10-close to some k-junta, then the algorithm accepts with high constant probability.

• If f is ε-far from every 2k-junta, then the algorithm rejects with high constant probability.

17

The query complexity of the algorithm is poly(k, 1
ε) .

The proofs of Theorems 1.3.2 and 1.3.1 both rely on the notion of the influence of a set of
variables. Given a Boolean function f : {−1, 1}n → {−1, 1} and a set S ⊆ [n], the influence
of the set S (denoted Inff (S)) is the probability that f(x) 6= f(y) when x and y are selected
uniformly subject to the constraint that for any i ∈ S̄, xi = yi (see Definition 2.2.1). In both of
the above results, we consider a fixed partition I = {I1, . . . , I`} of [n] into ` = O(k2) parts and

for S ⊆ [`] we let φI(S)
def
=
⋃
i∈SIi.

3.1 Warm-up: An exp(k log k)/ε algorithm using dimension re-
duction

In this section we present an exp(k log k)/ε query algorithm for tolerant junta testing.

Lemma 3.1.1. There exists an algorithm that, given query access to a function f : {−1, 1}n →
{−1, 1} and parameters k ≥ 1 and ε ∈ (0, 1), satisfies the following.

• If f is ε/3-close to k-junta, then the algorithm accepts with probability at least 2/3.

• If f is ε-far from every k-junta, then the algorithm rejects with probability at least 2/3.

The query complexity of the algorithm is 2(1+o(1))k log k/ε.

The ideas behind our algorithm are similar to those in [FKR+04, Bla09]; We partition the
n variables into ` = O(k2) parts, which removes the dependence on n. It is not hard to verify
that if f is close to Jk, then there exist k parts for which the following holds. If we denote by
T ⊆ [n] the union of variables in these k parts, then the complement set T̄ has small influence.

On the other hand, Blais [Bla09] showed that if a function is far from Jk, then a random
partition into a sufficiently large number of parts ensures the following with high constant
probability. For every union T of k parts, the complement set T̄ will have large influence. The
above gives rise to a (2(1+(o(1))k log k/ε)-query complexity algorithm that distinguishes functions
that are 1

3ε-close to Jk from functions that are ε-far from Jk. The algorithm considers all unions
T ⊆ [n] of k parts, estimates the influence of T̄ using Lemma 2.2.3, and accepts if there exists
a set with sufficiently small estimated influence.

We start with a useful definition of k-part juntas, and two lemmas regarding their properties
with respect to random partitions of the domain. Recall that for a set S, we denote by

(
S
r

)
the

set of all subsets of S of size r. Given a partition I = {I1, . . . , I`} of [n] and a set J ⊆ [`], we
denote by φI(J) the union

⋃
i∈J Ii.

Definition 3.1.2 (Partition juntas [Bla12, Definition 5.3], extended). Let I be a partition of
[n] into ` parts, and k ≥ 1. The function f : {−1, 1}n → {−1, 1} is a k-part junta with respect
to I if the relevant coordinates in f are all contained in at most k parts of I. Moreover,

(i) f is said to ε-approximate being a k-part junta with respect to I if there exists a set

J∈
([`]
`−k
)

satisfying Inff (φI(J)) ≤ 2ε.

(ii) Conversely, f is said to ε-violate being a k-part junta with respect to I if for every set

J∈
([`]
`−k
)
, Inff (φI(J)) > 2ε.

Lemma 3.1.3 ([Bla12, Lemma 5.4]). For f : {−1, 1}n → {−1, 1} and k ≥ 1, let α
def
= dist(f,Jk).

Also, let I be a random partition of [n] with `
def
= 24k2 parts obtained by uniformly and inde-

pendently assigning each coordinate to a part. With probability at least 5/6 over the choice of
the partition I, the function f α

2 -violates being a k-part junta with respect to I.

18

Lemma 3.1.4. For f : {−1, 1}n → {−1, 1} and k ≥ 1, let α
def
= dist(f,Jk) and let I be any

partition of [n] into ` ≥ k parts. Then f 2α-approximates being a k-part junta with respect to
I.

Proof: Let g ∈ Jk be such that dist(f, g) = dist(f,Jk) = α. Let Ii1 , . . . , Iir be the r ≤ k
parts of I containing the relevant variables of g. Then, for any set J ⊂ [`] of size `−k such
that {i1, . . . , ir} ⊆ J̄ , we have that when drawing x ∼ {−1, 1}φI(J̄), and u,v ∼ {−1, 1}φI(J)

the following holds.

Inff (φI(J)) = 2 Pr[f(x t u) 6= f(x t v)] ≤ 2 Pr[f(x t u) 6= g(x t u) or f(x t v) 6= g(x t v)]

≤ 2 (Pr[f(x t u) 6= g(x t u)] + Pr[f(x t v) 6= g(x t v)]) ≤ 2 (α+ α) = 4α ,

where the first inequality follows from observing that (as g does not depend on variables in
φI(J)) one can only have f(x t u) 6= f(x t v) if f disagrees with g on at least one of the two
points; and the third inequality holds since both xtu and xtv are uniformly distributed.

The above two lemmas suggest the following approach for distinguishing between functions
that are ε′-close to some k-junta and functions that are ε-far from every k′-junta. Suppose we
select a random partition of [n] into O(k2) parts. Then, with high probability over the choice
of the partition, it is sufficient to distinguish between functions that 2ε′-approximate being a
k-junta and functions that ε/2-violate being a k′-part junta. Specifically, we get the proposition
below, which we apply throughout this work:

Proposition 3.1.5 (Reduction to part juntas). Let T be an algorithm that is given query
access to a function f : {−1, 1}n → {−1, 1}, a partition I = {I1, . . . , I`} of [n] into ` parts, and
parameters k ∈ N and ε ∈ (0, 1). Suppose that T performs q(k, ε, `) queries to f and satisfies
the following guarantees, for a pair of functions r : (0, 1)× N→ (0, 1) and r′ : N→ N.

• If f ε′-approximates being a k-part junta with respect to I and ε′ ≤ r(ε, k), then T returns
accept with probability at least 5/6;

• If f ε-violates being a k′-part junta with respect to I and k′ ≥ r′(k), then T returns
reject with probability at least 5/6.

Then there exists an algorithm T ′, that given query access to f and parameters k ∈ N and
ε ∈ (0, 1), satisfies the following.

• If dist(f,Jk) ≤ ε′

2 and ε′ ≤ r(ε, k), then T ′ outputs accept with probability at least 2/3;

• If dist(f,Jk′) > 2ε and k′ ≥ r′(k), then T ′ outputs reject with probability at least 2/3.

Moreover, the algorithm T ′ has query complexity q(k, ε, `).

Proof of Proposition 3.1.5: The algorithm T ′ first obtains a random partition I of [n] into

`
def
= 24(k′)2 parts by uniformly and independently assigning each coordinate to a part. T ′ then

invokes T with parameters ε, k, ` and the partition I. By Lemma 3.1.3 and the choice of `, with
probability at least 5/6 the partition I is good in the following sense. For α = dist(f,Jk′), it
holds that f α

2 -violates being a k′-part junta with respect to I. Conditioned on I being good,
and by Lemma 3.1.4, we are guaranteed that the following holds.

(i) If dist(f,Jk) ≤ ε′

2 , then f ε′-approximates being a k-part junta with respect to I;

(ii) If dist(f,Jk′) > 2ε, then f ε-violates being a k′-part junta with respect to I.

19

Therefore, T will answer as specified by the proposition with probability at least 5/6, making
q(ε, k, `) queries. Overall, by a union bound, T ′ is successful with probability at least 2/3.

Proof of Lemma 3.1.1: Given a partition I of [n] into ` parts, T considers all
(
`

`−k
)

sets of
variables that result from taking the union of k parts. For each such set T , it uses Lemma 2.2.3

to obtain an estimate Ĩnff (T) of the influence of T , by performing O
(
` log `
ε

)
queries to f . T

accepts if for at least one of the sets T , Ĩnff (T) is at most 3
2ε. Performing O(` log `

ε) queries
to the oracle for each set, ensures that the following holds with high constant probability. For
every set T such that Inff (T) ≤ 4

3ε, Ĩnff (T) ≤ 3
2ε and for every set T such that Inff (T) > 2ε,

Ĩnff (T) > 3
2ε. Hence, the algorithm T fulfills the requirements stated in Proposition 3.1.5 (for

r(ε, k) = 2
3ε and r′(k) = k), and it follows that:

• If f is 1
3ε-close to some k-junta then T ′ accepts with probability at least 2/3.

• If f is ε-far from every k-junta then T ′ rejects with probability at least 2/3.

Since ` = 24k2, the query complexity of the algorithm is
(
`

`−k
)
·O(` log `

ε) = 2(1+o(1))k log k/ε.

3.2 A tradeoff between tolerance and query complexity

In this section, we show how to obtain a smooth tradeoff between the amount of tolerance and
the query complexity. Formally, we prove Theorem 1.3.1, restated below.

Theorem 1.3.1. There exists an algorithm that, given query access to a function f : {−1, 1}n →
{−1, 1} and parameters k ≥ 1, ε ∈ (0, 1) and ρ ∈ (0, 1), satisfies the following.

• If f is ρε/16-close to some k-junta, then the algorithm accepts with high constant proba-
bility.

• If f is ε-far from every k-junta, then the algorithm rejects with high constant probability.

The query complexity of the algorithm is O
(

k log k
ερ(1−ρ)k

)
.

As discussed in the introduction, this in particular implies the two following results. Setting
ρ = Ω(1), we obtain a tolerant tester that distinguishes between functions O(ε)-close to Jk
and functions ε-far from Jk, with query complexity 2O(k log k)/ε, an improvement over the naive
tester from section 3.1. On the other hand, choosing ρ = O(1/k) yields a weakly tolerant tester
that distinguishes functions O(ε/k)-close to Jk from those ε-far from Jk, with query complexity
Õ
(
k2/ε

)
– thus matching the guarantees provided in [FKR+04].

The key idea behind our approach is the following. The exhaustive search algorithm, pre-
sented in Section 3.1 estimates the influence of the set of variables φI(J) for every set of indices
J ⊂ [`] such that |J | = `− k by performing pairs of queries specifically designed for J . Namely,
it queries the value of the function on pairs of points in {−1, 1}n that agree on the set J̄ . If it
were possible to use the same queries for estimating the influence of φI(J) for different choices
of J , then we could reduce the query complexity. We show that this can be done if we consider
the ρ-biased subset influence of a set J ⊂ [`], defined next.

Given a partition I = {I1, . . . , I`}, a parameter ρ ∈ (0, 1), and a set J ⊂ [`], a random ρ-
biased subset S ∼ρ J is a subset of J resulting from taking every index in J to S with probability
ρ. The expected influence of a random ρ-biased subset of J , referred to as the ρ-subset influence
of J , is ES∼ρJ [Inff (φI(S))]. We prove that for every set J ⊆ [`], its ρ-subset influence is in
[ρ3Inff (φI(J)), Inff (φI(J))].

20

A crucial element in our proof is a combinatorial result due to Baranyai [Bar75] on factor-
ization of regular hypergraphs (see Section 2.5) . With this fact in hand, we then present an
algorithm that allows to simultaneously estimate the ρ-subset influence of all sets J ⊂ [`] of size

`− k. The query complexity of the algorithm is O
(

k log k
ερ(1−ρ)k

)
.

3.2.1 Useful bounds on the expected influence of a random ρ-subset of a set

In this subsection we formally define the ρ-subset influence of a set and prove that for every set
J ⊆ [`], its ρ-subset influence is at least ρ

3 · Inff (φI(J)) and at most Inff (φI(J)). Then in the
next subsection we provide an algorithm that simultaneously estimates the ρ-subset influence

of all subsets J of [`] of size `− k. The query complexity of the algorithm is O
(

k log k
ερ(1−ρ)k

)
. We

start with a few definitions and notations.

Definition 3.2.1. For any ρ ∈ (0, 1) and any set R, we denote by S ∼ρ R the random ρ-biased
subset of R, resulting from including independently each i ∈ R in S with probability ρ. We
refer to such a set S as a random ρ-subset of R.

Definition 3.2.2. For a partition I = {I1, . . . , I`} and a set J ⊆ [`] we refer to the expected
value of the influence of a random ρ-biased subset of J , ES∼ρJ [Inff (φI(S))], as the ρ-subset
influence of J (with respect to I).

The next lemma describes the connection between the influence of a set J and its ρ-subset
influence.

Lemma 3.2.3. Let I = {I1, . . . , I`} be a partition of [n]. Then, for any J ⊆ [`] and ρ > 0,

ρ

3
Inff (φI(J)) ≤ E

S∼ρJ
[Inff (φI(S))] ≤ Inff (φI(J)).

Proof: The upper bound is immediate by monotonicity of the influence, as Inff (φI(S)) ≤
Inff (φI(J)) for all S ⊆ J (see Fact 2.2.2, item 1). As for the lower bound, let j = |J | and
observe that

E
S∼ρJ

[Inff (φI(S))] =

j∑
s=1

∑
S⊆J :|S|=s

ρs(1− ρ)j−s · Inff (φI(S)). (3.1)

We will lower bound the sum
∑

S⊆J :|S|=s Inff (φI(S)) for each s separately. In order to do so
we use Definition 2.5.1 regarding legal collection of s-covers for a set J , denoted by CJ .

We are interested in showing that there exists a legal collection of s-covers for J whose size
m = |CJ | is “as big as possible”. This is established in Claim 2.5.2 and gives

m ≥

 (js)⌈
j
s

⌉
 .

This claim is obtained from a result due to Baranyai [Bar75] on factorization of regular
hypergraphs: for completeness, we state this result, and describe how to derive the claim from
it, in Section 2.5.

Observe that if s divides j then

⌊
(js)
d jse

⌋
=
(
j−1
s−1

)
; and otherwise (js)⌈

j
s

⌉
 =

 j
s⌈
j
s

⌉(j − 1

s− 1

) ≥ ⌊ j
s

j
s + 1

(
j − 1

s− 1

)⌋
≥
⌊

1

2

(
j − 1

s− 1

)⌋
≥ 1

3

(
j − 1

s− 1

)
.

21

Therefore, by using the monotomicity of the influence (see Fact 2.2.2, item 1)∑
S⊆J :|S|=s

Inff (φI(S)) =
∑
S∈(Js)

Inff (φI(S)) ≥
∑
C∈CJ

∑
S∈C

Inff (φI(S))

≥ |CJ | · Inff (φI(J)) ≥ 1

3

(
j − 1

s− 1

)
Inff (φI(J)).

Plugging the above into Equation (3.1), we obtain that

Inff (φI(J)) ≥
j∑
s=1

ρs(1− ρ)j−s ·
(

1

3

(
j − 1

s− 1

)
Inff (φI(J))

)

=
ρ

3
Inff (φI(J))

j∑
s=1

(
j − 1

s− 1

)
ρs−1(1− ρ)j−s

=
ρ

3
Inff (φI(J))(ρ+ (1− ρ))j−1 =

ρ

3
Inff (φI(J)),

which concludes the proof.

3.2.2 Approximation of the ρ-subset influences

We now describe and analyze an algorithm that given a partition I = {I1, . . . , I`}, allows to

simultaneously get good estimates of the ρ-subset influences of all subset J ∈
([`]
`−k
)
. This

algorithm is the main building block of the tolerant junta tester of Theorem 1.3.1.

Algorithm 2 Simultaneously Approximate ρ-subset Influence (ρ, ε, γ, k, `, I)

1: Set m = C·k log `
γ2ερ(1−ρ)k

, where C ≥ 1 is an absolute constant. . C ≥ 256 ln 2 is sufficient.

2: for i = 1 to m do
3: Let Si ∼ρ [`].
4: Pick xi ∈ {−1, 1}n uniformly at random
5: Let zi obtained by flipping independently each coordinate of xiφI(Si)

w.p 1/2

6: Set yi ← xi
φI(S̄i)

t zi.
7: Set ϑSi ← 1{f(xi)6=f(yi)} . . ϑSi is 1 if f(xi) 6= f(yi), 0 otherwise.
8: end for
9: Let S be the multiset of subsets S1, . . . ,Sm.

10: for every J ∈
([`]
`−k
)

do
11: Let SJ ⊆ S denote the subset of sets S∈ S such that S ⊆ J .
12: Let νρJ ←

1
|SJ |

∑
S∈SJ

ϑS be the estimate of the ρ-subset influence of J .

13: end for

Lemma 3.2.4. Let I = {I1, . . . , I`} be a partition of [n]. For every ε ∈ (0, 1) and ρ ∈ (0, 1),
Algorithm 2 satisfies that, with probability at least 1 − o(1), the following holds simultaneously

for all sets J ∈
([`]
`−k
)
:

1. If ES∼ρJ [Inff (φI(S))] > ρε
3 , then the estimate νρJ is within a multiplicative factor of

(1± γ) of the ρ-subset influence of J .

2. If ES∼ρJ [Inff (φI(S))] ≤ ρε
4 , then the estimate νρJ does not exceed (1 + γ)ρε4 .

22

Proof: Let m′
def
= 1

2(1− ρ)k ·m = Ck log `
2γ2ερ

. We first claim that for any fixed set J ⊆ [`] of size

`− k, with probability at least 1− o(`−2k), |SJ | ≥ m′. To see why this is true, fix some J ⊂ [`]
of size ` − k. For every i ∈ [m], let 1{Si⊆J} be an indicator variable which is equal to 1 if and

only if Si ⊆ J . Then, for every i ∈ [m], Pr[1{Si⊆J} = 1] = (1− ρ)k. By a Chernoff bound,

Pr

[
1

m

m∑
i=1

1{Si⊆J} <
1

2
· (1− ρ)k

]
≤ e−

m
8

(1−ρ)k = e
−C·k log `

8εργ2 < 2−4k log ` ,

for a suitable choice of C ≥ 1. Therefore, by a union bound over all
(
`

`−k
)

=
(
`
k

)
= 2k log ` sets

J ∈
([`]
`−k
)
, it holds that with probability 1 − o(1), for every such J , |SJ | ≥ m′. We hereafter

condition on this.

We now turn to prove the two items of the lemma. Let X = {x1, . . . ,xm} and Z =
{z1, . . . ,zm}. For a set Si, Exi,zi [ϑS] = Inff (φI(S)). Hence, by the definition of νρJ in Step 12
of the algorithm,

E[νρJ] = E
S,X,Z

 1

|SJ |
∑
S∈SJ

ϑS

= E
S

 1

|SJ |
∑

Si∈SJ

E
xi,yi

[ϑSi]

=
∑
S⊆J

Pr[S ∈ S] · Inff (φI(S)) = E
S∼ρJ

[Inff (φI(S))] . (3.2)

Consider a set J with ES∼ρJ [Inff (φI(S))] > ρε
3 . By Equation (3.2), E[νρJ] > ρε

3 . Therefore, by

a Chernoff bound, and since for every J , |SJ | ≥ m′ = Ck log `
2γ2ερ

,

Pr

[∣∣∣∣νρJ − E
S∼ρJ

[Inff (φI(S))]

∣∣∣∣ > γ E
S∼ρJ

[Inff (φI(S))]

]
≤ 2e−

|SJ |γ2·ES∼ρJ [Inff (φI(S))]
3

≤ 2e−
m′γ2ερ

9 < 2−4k log `,

again for a suitable choice of the constant C ≥ 1. By taking a union bound over all subsets J ∈([`]
`−k
)
, we get that, with probability at least 1−o(1), for every J such that ES∼ρJ [Inff (φI(S))] >

ρε
3 , it holds that νρJ ∈ (1± γ) ·ES∼ρJ [Inff (φI(S))].

Now consider a set J ⊆ [`] such that |J | > ` − k and ES∼ρJ [Inff (φI(S))] ≤ ρε
4 . By a

Chernoff bound:

Pr
[
νρJ > (1 + γ)

ρε

4

]
≤ e−

γ2

3
ρε
4
|SJ | ≤ e−

γ2ρε
12

m′ < 2−4k log `.

The claim follows by taking a union bound over all subsets J ∈
([`]
`−k
)

for which ES∼ρJ [Inff (φI(S))] ≤
ρε/4. Overall, the conclusions above hold with probability at least 1− o(1), as stated.

3.2.3 Tradeoff between tolerance and query complexity

We now describe how the algorithm from the previous section lets us easily derive the tolerant
tester of Theorem 1.3.1.

23

Algorithm 3 ρ-Tolerant Junta Tester (ε, ρ, k)

1: Create a random partition I of ` = 24k2 parts by uniformly and independently assigning
each coordinate to a part.

2: Run Algorithm 2 with the partition I, ` = 24k2 and γ = 1/8.
3: if there is a set J ⊂ [`] of size `− k such that νρJ ≤

9ρε
32 then

4: return accept .
5: end if
6: return reject .

Proof of Theorem 1.3.1: Given Proposition 3.1.5 it is sufficient to consider a partition I
of size ` = 24k2 and show that Algorithm 3 distinguishes with probability at least 5/6 between
the following two cases.

1. f ρε
8 -approximates being a k-part junta with respect to I;

2. f ε
2 -violates being a k-part junta with respect to I

Suppose first that f ρε
8 -approximates being a k-part junta with respect to I. Then by Def-

inition 3.1.2, there exists a set J ∈
([`]
`−k
)

such that Inff (φ(J)) ≤ ρε
4 . By Lemma 3.2.3,

ES∼ρJ [Inff (φI(S))] ≤ ρε
4 , and by Lemma 3.2.4, we have that with probability at least 1−o(1),

the estimate νρJ is at most (1 + 1/8) ερ4 ≤
9ερ
32 . Therefore, Algorithm 3 will return accept when

considering J .

Consider now the case where f ε
2 -violates being a k-part junta with respect to I. Hence, by

Definition 3.1.2, every set J ∈
([`]
`−k
)

is such that Inff (φ(J)) > ε, and by Lemma 3.2.3, we have
that ES∼ρJ [Inff (φI(S))] ≥ ρ

3Inff (φ(J)) > ρε
3 . Therefore, by Lemma 3.2.4, with probability at

least 1− o(1), for every J ∈
([`]
`−k
)

νρJ ≥
7

8
E

S∼ρJ
[Inff (φI(S))] >

9ρε

32
.

Thus, with probability at least 1− o(1), Algorithm 3 will reject f .

3.3 Polynomial bi-criteria algorithm via submodular minimiza-
tion

In this section, we show how a mild relaxation of the tolerant testing model, allows dramatic
savings in the query complexity. We restate our main theorem proved in this section.

Theorem 1.3.2. There exists an algorithm that, given query access to a function f : {−1, 1}n →
{−1, 1} and parameters k ≥ 1 and ε ∈ (0, 1), satisfies the following.

• If f is ε/10-close to some k-junta, then the algorithm accepts with high constant probability.

• If f is ε-far from every 2k-junta, then the algorithm rejects with high constant probability.

The query complexity of the algorithm is poly(k, 1
ε) .

In order to describe the algorithm referred to in Theorem 1.3.2, it will be useful to introduce
the following function. For a Boolean function f and a partition I= {I1, . . . , I`}, we let h : 2[`] →
[0, 1] be defined as h(J)

def
= Inff (φI(J)). The starting point of our approach is the observation

24

that the exhaustive search algorithm described previously can be seen as performing a brute-
force minimization of h, under a cardinality constraint. Indeed, it effectively goes over all sets
J ⊆ [`] of size `− k, estimates h(J), and accepts if there exists a set J for which the estimated
value is sufficiently small. With this view, it is natural to ask whether this minimization can be
performed more efficiently, by exploiting the fact that by the diminishing marginal property of
the influence, h is submodular (see Fact 2.2.2 item 2). That is, for every two sets J1 ⊆ J2 and
variable i /∈ J2, it holds that h(J1 ∪ {i})− h(J1) ≥ h(J2 ∪ {i})− h(J2). While it is possible to
find the minimum value of a submodular function in polynomial time given query access to the
function, if a cardinality constraint is introduced, then even finding an approximate minimum
is hard [SF11]. In light of the hardness of the problem, we design an algorithm for the following
bi-criteria relaxation. Given oracle access to a non-negative submodular function h : 2[`] → R
and input parameters ε ∈ (0, 1) and k ∈ N, the algorithm distinguishes between the following
two cases:

• There exists a set J such that |J | ≥ `− k and h(J) ≤ ε;

• For every set J such that |J | ≥ `− 2k, h(J) > 2ε.

Moreover, the algorithm can be adapted to the case where it is only granted access to an
approximate oracle for h (for a precise statement, see Theorem 3.3.3). This is critical in our
setting, since h(J) = Inff (φI(J)), and we can only estimate the influence of sets of variables.

3.3.1 Approximate submodular minimization under a cardinality constraint

In this section we show how a certain bi-criteria approximate version of submodular minimiza-
tion with a cardinality constraint can be reduced to approximate submodular minimization with
no cardinality constraint. This reduction holds even when given approximate oracle access to
the submodular function, and is meaningful when the cardinality constraint is sufficiently large.
Precise details follow.

Definition 3.3.1 (Approximate oracle). Let h : 2[`] → R be a function. An approximate oracle
for h, denoted O±h , is a randomized algorithm that, for any input J ⊆ [`] and parameters

τ, δ ∈ (0, 1), returns a value h̃(J) such that |h̃(J)− h(J)| ≤ τ with probability at least 1− δ.

Definition 3.3.2 (Approximate submodular minimization algorithm). Let h : 2[`] → R be a
non-negative submodular function and let O±h denote an approximate oracle for h. An ap-
proximate submodular function minimization algorithm (ASFM) is an algorithm that, when
given access to O±h and called with input parameters ξ and δ, returns a value ν such that
|ν −minJ⊆[`]{h(J)}| ≤ ξ with probability at least 1− δ.

In Lemma 3.3.10 in Section 3.3.2 we establish the existence of such an ASFM algorithm
whose running time is polynomial in `, logarithmic in the maximal value of the function and
linear in the running time of the approximate oracle. We next present an algorithm for approx-
imate submodular minimization under a cardinality constraint.

Algorithm 4 Approximate Submodular Minimization under a Cardinality
Constraint(O±h , ε, δ, ξ, k)

1: Let h′(J) = h(J)− ε
k |J | so that for every τ ′, δ′ O±h′(J, τ

′, δ′) = O±h (J, τ ′, δ′)− ε
k |J |.

2: Let ν be the returned value from invoking an ASFM algorithm with access to O±h′ and
parameters ξ and δ.

3: Accept if and only if ν ≤ (2− `
k) · ε+ ξ.

25

Theorem 3.3.3. For a non-negative submodular function h, Algorithm 4 satisfies the following
conditions:

1. If there exists a set J ⊆ [`] such that |J | ≥ `− k and h(J) ≤ ε, then the algorithm accepts
with probability at least 1− δ.

2. If for every set J ⊆ [`] such that |J | ≥ ` − 2(1 + ξ
ε)k, we have h(J) > 2ε + 2ξ, then the

algorithm rejects with probability at least 1− δ.

Moreover, the second item can be strengthened so that it holds for functions h that satisfy the
following: (i) for every set J ⊆ [`] such that |J | ≥ `− k, h(J) > 2ε+ 2ξ and (ii) for every set
J ⊆ [`] such that |J | ≥ `− 2(1 + ξ

ε)k, h(J) > ε+ 2ξ.

Proof: First of all, note that the function h′ defined in Step 1 is indeed submodular, as it is
the sum of the submodular function h and a modular function (scalar multiple of the cardinality
function). By Definition 3.3.2, with probability at least 1 − δ the value ν defined in Step 2 of
the algorithm thus satisfies

|ν − min
J⊆[`]
{h′(J)}| ≤ ξ . (3.3)

We start with proving the first item in Theorem 3.3.3. If there exists a set J∗ ⊆ [`] such that
|J∗| ≥ `− k and h(J∗) ≤ ε, then

min
J⊆[`]
{h′(J)} ≤ h′(J∗) ≤ ε− ε

k
(`− k) =

(
2− `

k

)
· ε,

and therefore, by Equation (3.3), with probability at least 1− δ,

ν ≤ min
J⊆[`]
{h′(J)}+ ξ ≤

(
2− `

k

)
· ε+ ξ,

and the algorithm accepts.
We divide the analysis of the second item in the theorem into two cases depending on |J |.

• For sets J such that |J | ≥ `− 2(1 + ξ
ε)k,

h′(J) > 2ε+ 2ξ − ε

k
· ` =

(
2− `

k

)
ε+ 2ξ,

where in the first inequality we used the fact that for all sets J , |J | ≤ `.

• For sets J such that |J | < `− 2(1 + ξ
ε)k, it holds that

h′(J) > 0− ε

k
·
(
`− 2

(
1 +

ξ

ε

)
k

)
=

(
2− `

k

)
· ε+ 2ξ,

where in the first inequality we used the fact that for all sets J , h(J) ≥ 0.

Hence,

min
J⊆[`]
{h′(J)} >

(
2− `

k

)
· ε+ 2ξ,

and by Equation (3.3), with probability at least 1− δ, it holds that

ν ≥ min
J⊆[`]
{h′(J)} − ξ >

(
2− `

k

)
· ε+ ξ,

and the algorithm rejects.

26

3.3.2 Approximate submodular function minimization

In this section we use results from [LSW15] to obtain an approximate submodular minimization
algorithm, as defined in Definition 3.3.2.1 This is done in three steps: (1) We use the known fact
that the problem of finding the minimum of a submodular function g can be reduced to finding
the minimum of the Lovász extension for that function, denoted Lg. (2) We then extend the
results of [LSW15] (and specifically of Theorem 61) and provide a noisy separation oracle for Lg
when only given approximate oracle access to the function g. (3) Finally, we apply Theorem 42
from [LSW15], which provides an algorithm that, when given access to a separation oracle for a
function, returns an approximation to that function’s minimum value. Note that in this section,
we analyze the time complexity of our algorithms for submodular function minimization; we
will later, in the following sections, switch back to query complexity when applying them to our
testing problem, using running time as an upper bound for query complexity.

We start with the following definition of the Lovász extension of a submodular function.

Definition 3.3.4 (Lovász Extension). Given a submodular function g : 2[`] → R, the Lovász
extension of g is a function Lg : [0, 1]` → R which is defined for all x ∈ [0, 1]` by

Lg(x)
def
= E

t∼[0,1]
[g({ i : xi ≥ t })] ,

where t ∼ [0, 1] denotes that t is drawn uniformly at random from [0, 1].

The following theorem is standard in combinatorial optimization (see e.g. [Bac13] and [GLS12,
Sch02]) and provides useful properties of the Lovász extension.

Theorem 3.3.5. The Lovász extension Lg of a submodular function g : 2[`] → R satisfies the
following properties.

1. Lg is convex and minx∈[0,1]`{Lg(x)} = minS⊆[`]{g(S)}.

2. If x1 ≥ . . . ≥ x` , then

Lg(x) =
∑̀
i=1

(
g([i])− g([i− 1])

)
xi .

By the first item of Theorem 3.3.5, in order to approximate the minimum value of a submod-
ular function g, it suffices to approximate the minimum of its Lovász extension. As discussed
at the start of the section, this is done by providing a separation oracle for Lg.

Definition 3.3.6 (Separation Oracle). Let h be a convex function over R` and let Ω be a convex
set in R`. A separation oracle for h with respect to Ω is an algorithm that for an input x ∈ Ω
and parameters η, γ ≥ 0 satisfies the follows. It either asserts that h(x) ≤ miny∈Ω{h(y)}+ η or

it outputs a halfspace H
def
= {z : aT z ≤ aTx+ c} such that

{ y ∈ Ω : h(y) ≤ h(x) } ⊂ H ,

where a ∈ [0, 1]`, a 6= 0, and c ≤ γ‖a‖2.

1We remark that more efficient algorithms, such as the convex optimization algorithm (given noisy access)
of [BLNR15] applied to the Lovász extension, might also apply. Such algorithms would yield a better polynomial
for the query complexity of our problem; however, they typically require stronger requirements on the noise (e.g.,
subgaussian distribution for [BLNR15]), where our implementation is robust to adversarial noise. This explicit
robustness to noise is the reason why we rely on the results of [LSW15], which – to the best of our knowledge –
is the first algorithm to provide the robustness guarantees we need.

27

In Theorem 61 in [LSW15] it is shown how to define a separation oracle for a function g
when given exact query access to g; we adapt the proof to the case where one is only granted
access to an approximate oracle for g, and the resulting procedure has small failure probability.

Algorithm 5 Separation Oracle (O±g , x̄, η, γ, δ)
1: Assume without loss of generality that x̄1 ≥ x̄2 ≥ . . . ≥ x̄` (otherwise re-index the coordi-

nates).
2: Let τ = min{η/4`, γ/2`}.
3: For each i ∈ [`], let g̃([i]) be the returned value from invoking O±g on the set [i] with

parameters τ2

2 and δ
` .

4: Define ã ∈ R` by ãi
def
= g̃([i])− g̃([i− 1]) for each i ∈ [`].

5: Let L̃g(x̄)
def
= ãT x̄.

6: if for every i ∈ [`], |ãi| < τ then
7: return x̄ (which satisfies “Lg(x̄) ≤ miny∈[0,1]`{Lg(y)}+ η”).
8: else
9: return the halfspace H = {z : ãT z ≤ L̃g(x̄) + 2τ`‖ã‖2} .

10: end if

Lemma 3.3.7. Let g : 2[`] → R be a convex function, and let Φg(·, ·) denote the running time of
the approximate oracle O±g for g. For every x ∈ [0, 1]`, η, γ, δ ∈ (0, 1), with probability at least

1− δ, Algorithm 5 satisfies the guarantees of a separation oracle for Lg (with respect to [0, 1]`).
The algorithm makes ` queries to O±g with parameters τ2/2 and δ/`, where τ = min{η/4`, γ/2`},
and its running time is ` ·

(
Φg(

τ2

2 , δ/`) + log `
)

.

In order to prove the above lemma we will use the following theorem from [LSW15].

Theorem 3.3.8 ([LSW15, Theorem 61], restated). Let g : 2[`] → R be a submodular function.
For every x ∈ [0, 1]`, ∑̀

i=1

(
g([i])− g([i− 1])

)
xi ≤ Lg(x) .

Proof of Lemma 3.3.7: For every i ∈ [`], let ai
def
= g([i])−g([i−1]), and note that by a union

bound over all i ∈ [`], we have that maxi∈[`] {|g([i])− g̃([i])|} ≤ τ2/2, with probability at least

1− δ. We henceforth condition on this, and observe that this implies that, for any y ∈ [0, 1]`,

|ãT y − aT y| ≤ 2` · τ
2

2
= `τ2 . (3.4)

We next consider two cases. Assume first that there exists an index i ∈ [`] such that |ãi| ≥ τ .

That is, assume that the condition in Step 6 of the algorithm does not hold. Then we prove
that for every y ∈ [0, 1]` such that Lg(y) ≤ Lg(x̄) it holds that y ∈ H, where H is the halfspace
defined in Step 9 of the algorithm.

By Theorem 3.3.8, we have that
∑`

i=1 ai · yi ≤ Lg(y) for every y ∈ [0, 1]`. Since Lg(y) ≤
Lg(x̄), we get that

ãT y ≤ aT y + `τ2 ≤ Lg(y) + `τ2 ≤ Lg(x̄) + `τ2 . (3.5)

By Theorem 3.3.5, together with the assumption that the coordinates of x̄ are sorted,

Lg(x̄) =
∑̀
i=1

ai · x̄i ≤
∑̀
i=1

ãi · x̄i + `τ2 = L̃g(x̄) + `τ2. (3.6)

28

Combining Equation (3.5) and Equation (3.6), and since there exists an i such that |ãi| ≥ τ ,

ãT y ≤ L̃g(x̄) + 2`τ2 ≤ L̃g(x̄) + 2`τ‖ã‖2 .

This implies that y is in H and that for c = 2τ`‖ã‖2 and γ ≤ 2τ`, H fulfills the requirements
stated in Definition 3.3.6.

Now consider the case that |ãi| ≤ τ for all i ∈ [`]. It follows that for any y ∈ [0, 1]`,
−`τ ≤ ãT y ≤ `τ . In particular, we have that −`τ ≤ L̃g(x̄) ≤ `τ , which implies that for every
y ∈ [0, 1]`,

L̃g(x̄)− 2`τ ≤ −`τ ≤ ãT y .

Therefore, for every y ∈ [0, 1]` we get

L̃g(x̄)− 3`τ ≤ ãT y − `τ ≤ aT y ≤ Lg(y) ,

where the second inequality follows from Equation (3.4), and the last inequality follows from The-
orem 3.3.8. Hence, if we let x∗ = arg minx{Lg(x)}, we have that

L̃g(x̄) ≤ Lg(x∗) + 3`τ .

By Equation (3.6) we have that Lg(x̄) ≤ L̃g(x̄) + `τ2. Hence,

Lg(x̄) ≤ Lg(x∗) + 3`τ + `τ2 ≤ Lg(x∗) + 4`τ ,

and since by the setting of τ in Step 2 of the algorithm, τ ≤ η/4`, we get that x̄ satisfies

Lg(x̄) ≤ min
y∈[0,1]`

{Lg(y)}+ η.

Therefore, with probability at least 1− δ the algorithm satisfies the conditions of a separation
oracle with parameters η and γ.

The algorithm performs ` queries to the approximate oracle for g with parameters τ2/2 and

δ/`, where τ = min{η/4`, γ/2`}. Hence, the running time of the algorithm is `·Φg(
τ2

2 ,
δ
`)+` log `,

as it also sorts the coordinates of x̄ (in order to re-index the coordinates).

We can now use the separation oracle for Lg and apply the following theorem to get an
approximate minimum of Lg, which is also an approximate minimum of g.

Theorem 3.3.9 ([LSW15, Theorem 42], restated). Let h be a convex function on R` and let
Ω be a convex set with constant min-width2 that contains a minimizer of h. Suppose we have

a separation oracle for h and that Ω is contained inside B∞(R)
def
= { x : ‖x‖∞ ≤ R }, where

R > 0 is a constant. Then there is an algorithm, which for any 0 < α < 1 and η> 0 outputs
x ∈ R` such that

h(x)−min
y∈Ω
{h(y)} ≤ η + α ·

(
max
y∈Ω
{h(y)} −min

y∈Ω
{h(y)}

)
.

In expectation, the algorithm performs O
(
` · log

(
`
α

))
calls to Algorithm 5, and has expected

running time of

O

(
` · SO(η, γ) log

(
`

α

)
+ `3 logO(1)

(
`

α

))
,

where γ = Θ
(

α
`3/2

)
and SO(η, γ) denotes the running time of the separation oracle when invoked

with parameters η and γ.
2For a compact set K ⊆ R`, the min-width is defined as mina∈R` : ‖a‖2=1 maxx,y∈K〈a, x− y〉. [LSW15,

Definition 41]. In particular, it is not hard to see that the set K = [0, 1]` ⊆ B∞(1) has unit min-width.

29

Lemma 3.3.10. Let g : 2[`] → R be a submodular function. There exists an algorithm that,
when given access to O±g , and for input parameters ξ, δ ∈ (0, 1), returns with probability at least
9/10− 2δ a value ν ∈ R such that ν ≤ minS⊆[`]{g(S)}+ ξ.

The algorithm performs O
(
`2 log

(
`M
ξ

))
calls to O±g with parameters ξ2

128`5M2 and δ

C`2 log
(
`M
ξ

) ,

where M
def
= max

{
2 maxS⊆[`]{|g(S)|}, ξ/2

}
and C > 0 is an absolute constant. The running

time of the algorithm is

O

(
`2 · Φg

(
ξ2

128`5M2
,

δ

C`2 log `M
ξ

)
log

`M

ξ
+ `3 logO(1) `M

ξ

)
,

where Φg is the running time of O±g .

Proof: We refer to the algorithm from Theorem 3.3.9 as the minimization algorithm and apply
it to Lg, with Algorithm 5 as a separation oracle. Once the minimization algorithm returns a
point x ∈ [0, 1]`, we return the value ν = O±Lg(x, ξ/4, δ).

Let M ′
def
= 2 maxS⊆[`]{|g(S)|}, and recall that Lg(x) = Et∼[0,1] [g({ i : xi ≥ t })]. Hence,

maxx∈[0,1]`{Lg(x)} −minx∈[0,1]`{Lg(x)} ≤ M ′. Setting α = ξ/(2M) and η = ξ/4 ensures that
0 < α < 1 and that

η + α ·
(

max
x∈[0,1]`

{Lg(x)} − min
x∈[0,1]`

{Lg(x)}
)
≤ η + αM ′ ≤ 3ξ/4 . (3.7)

The minimization algorithm invokes the separation oracle C1 · ` log(`/α) = C1 · ` log(`M/ξ)
times in expectation, for some constant C1. We convert this to a worst-case bound as follows.
If at some point the number of calls to the separation oracle exceeds 20C1 · ` log(`M/ξ), then
we halt and return fail . Similarly, the algorithm runs in expected time

T
def
= C2 ·

(
` · SO(η, γ) log

(
`

α

)
+ `3 logC3

(
`

α

))
for some absolute constants C2, C3 > 0. If at some point the running time exceeds 20T ,
then we also halt and return fail . By Markov’s inequality, both events each happen with
probability at most 1/20, and therefore by a union bound our algorithm halts and outputs
fail with probability at most 1/10. Hence, every time the minimization algorithm calls the
separation oracle with parameters η and γ we invoke Algorithm 5 with parameters η, γ and
δ′ = δ

10C1` log
(
`M
ξ

) . Therefore, by Lemma 3.3.7, with probability at least 1 − 1/10 − δ all the

calls to Algorithm 5 satisfy the guarantee of a separation oracle for Lg with parameters η and
γ. By Theorem 3.3.9 and Equation (3.7), with probability at least 9/10 − δ the minimization
algorithm returns a point x such that

Lg(x)− min
y∈[0,1]`

{Lg(y)} ≤ η + α ·
(

max
y∈[0,1]`

{Lg(y)} − min
y∈[0,1]`

{Lg(y)}
)
≤ 3ξ

4
,

and with probability at least 9/10− 2δ the value ν satisfies

ν ≤ min
y∈[0,1]`

{Lg(y)}+ ξ ,

as desired.
By the above settings and by Lemma 3.3.7 we get that τ = ξ

8`5/2M
so the running time of

each invocation of the separation oracle (recall that each such invocation involves ` calls to O±g)
is

30

` · Φg

(
τ2

2
,
δ′

`

)
+ ` log ` = `

(
Φg

(
ξ2

128`5M2
,

δ

10C1`2 log `M
ξ

)
+ log `

)
.

Since the evaluation of ν in the final step is negligible in the running time of the minimization
algorithm, we get that the overall time complexity is

O

(
`2 · Φg

(
ξ2

128`5M2
,

δ

10C1`2 log `M
ξ

)
log

`M

ξ
+ `2 log ` · log

`M

ξ
+ `3 logO(1) `M

ξ

)
,

which gives the stated bound, recalling that `2 log ` · log `M
ξ = O(`2 log2 `M

ξ) = O(`3 logO(1) `M
ξ).

Lemma 3.3.11. There exists an algorithm that, when given query access to a function f : {−1, 1}n →
{−1, 1} and a partition I = {I1, . . . , I`} of [n] into ` parts, as well as input parameters

k ∈ N, ε, ξ ∈ (0, 1), satisfies the following. It has query complexity Õ
(

max
(
`12

ξ4
, `

16ε4

k4ξ4

))
, and

distinguishes with probability at least 5/6 between the following two cases:

1. There exists a set S ⊆ [`] such that |S| ≥ `− k and h(S) ≤ ε.

2. For every set S such that |S| ≥ `− 2(1 + ξ
ε)k, h(S) > 2ε+ 2ξ,

where h : 2[`] → R is defined as h(S)
def
= Inff (φI(S)).

Moreover, the second item can be strengthened so that it holds for functions f that satisfy the
following: (i) for every set S such that |S| ≥ `− k, h(S) > 2ε+ 2ξ and (ii) for every set S such
that |S| ≥ `− 2(1 + ξ

ε)k, h(S) > ε+ 2ξ.

Proof: We apply Lemma 3.3.10 to h′ : 2[`] → R, defined as in Algorithm 4 by h′(S)
def
=

h(S) − ε
k |S|, with ξ, M

def
= max

(
2 max(2, ε`k), ξ/2

)
= 4 max(1, ε`2k), and δ

def
= 1

30 . In order to
do so, we need to simulate an approximate oracle for h′ (as defined in Definition 3.3.1). Since
h(S) = Inff (φI(S)), in order to estimate h′(S) within an additive approximation of τ ′ with
probability at least 1 − δ′, it is sufficient to estimate Inff (φI(S)) ∈ [0, 1] within an additive
approximation of τ ′ with probability at least 1 − δ′ (indeed, the additional term ε

k |S| can be
computed exactly). By Chernoff bounds, this can be done with Φh(τ ′, δ′) = O(1

τ ′2 log 1
δ′) queries

to f .
This yields an approximate oracle O±h , and therefore O±h′ which can be provided to the

algorithm of Theorem 3.3.3 (resulting in a success probability at least 9/10 − 2δ = 5/6). The
resulting query complexity is

O

(
`2 · Φh

(
ξ2

`5M2
,

1

10C1`2 log `M
ξ

)
log

`M

ξ
+`2 log `+ `3 logO(1) `M

ξ

)
which, given the above expression for Φh, can be bounded as follows.

• If ε < 2k
` , so that M = 4, this simplifies as

O

(
`12

ξ4
log2 `

ξ

)
.

• If ε ≥ 2k
` , which implies that M = 2ε`

k , this becomes

O

(
`16ε4

k4ξ4
log2 `

ξ

)
.

31

Observing that the function h is indeed a non-negative submodular function (and that h′ is also
submodular since it is the sum of a submodular function and a modular function) allows us to
conclude by Theorem 3.3.3.
In particular, setting ξ = ε/(4k) we get the following:

Lemma 3.3.12. There exists an algorithm that, given query access to a function f : {−1, 1}n →
{−1, 1}, a fixed partition I of [n] into ` = O(k2) parts, and parameters k ≥ 1 and ε ∈ (0, 1),

satisfies the following. The query complexity of the algorithm is Õ
(
k28

ε4
+ k32

)
= poly(k, 1/ε),

and:

1. if f ε
2 -approximates being a k-part junta with respect to I, then the algorithm accepts with

probability at least 5
6 ;

2. if f 5
4ε-violates being a 2k-part junta with respect to I, then the algorithm rejects with

probability at least 5
6 .

Moreover, the second item can be strengthened to “simultaneously
(
1 + 1

4k

)
ε-violates being a

k-part junta and (1 + 1
2k) ε2 -violates being a 2k-part junta.”

Proof: By applying Lemma 3.3.11 with ξ = ε/(4k), we get an algorithm that distinguishes
between (1) there exists a set S ⊆ [`] such that |S| ≥ ` − k and h(S) ≤ ε; and (2) either
(i) for every set S such that |S| ≥ ` − k, h(S) > 2

(
1 + 1

4k

)
ε or (ii) for every set S such

that |S| ≥ ` − (2k + 1
2), h(S) > ε(1 + 1

2k). Since |S| is always an integer, the condition
|S| ≥ ` − (2k + 1

2) is equivalent to |S| ≥ ` − 2k in (2)(ii). This implies the guarantees of the
lemma, by the correspondence with partition juntas (Definition 3.1.2) and using for simplicity
that 1 + 1

4k ≤
5
4 as k ≥ 1. (The claimed query complexity is immediate from Lemma 3.3.11.)

Proof of Theorem 1.3.2: The proof follows immediately from Lemma 3.3.12, together
with Proposition 3.1.5. With probability at least 5/6, a random partition of the variables into

`
def
= 192k2 parts will have the right guarantees, reducing the problem to distinguishing between

ε
2 -approximating being a k-part junta vs. 5

4ε-violating being a 2k-part junta (with regard to this
random partition). Overall, by a union bound, the result is therefore correct with probability
at least 2/3.

32

Chapter 4

Hardness Results for Tolerant Junta
Testing

In this chapter we consider the question of whether the tolerance requirement of a junta testing
algorithm affects the query complexity. Prior to our work, it was reasonable to believe that
the additional tolerance requirement does not result in a significant increase in the algorithm’s
query complexity. We show that it is not the case for non-adaptive algorithms. We restate the
main result proved in this chapter.

Theorem 1.3.3. For any α < 1, there exist constants 0 < ε0 < ε1 < 1 such that for any
k = k(n) ≤ αn, any non-adaptive algorithm that distinguish between functions f : {−1, 1}n →
{−1, 1} that are ε0-close to k-junta and functions ε1-far from any k-junta must make Ω(k2/polylog k)
queries.

Our lower bound combined with the fact that (standard) k-junta testing requires Θ̃(k3/2)
(see [Bla08, CST+17]) provides a polynomial separation in the query complexity of non-adaptive
tolerant testing and non-adaptive (standard) junta testing.

In order to prove our lower bound we will describe a new model of graph property testing,
which we call the rejection sampling model. For n ∈ N and a subset P of graphs on the vertex
set [n], we say a graph G on vertex set [n] has property P if G ∈ P and say G is ε-far from
having property P if all graphs H ∈ P differ on at least εn2 edges1. The problem of ε-testing
P with rejection sampling queries is the following task:

Given some ε > 0 and access to an unknown graph G = ([n], E), output “accept”
with probability at least 2

3 if G has property P, and output “reject” with probability
at least 2

3 if G is ε-far from having property P. The access to G is given by the
following oracle queries: given a query set L ⊆ [n], the oracle samples an edge
(i, j) ∼ E uniformly at random and returns {i, j} ∩ L.

We measure the complexity of algorithms with rejection sampling queries by considering the
sizes of the queries. The complexity of an algorithm making queries L1, . . . , Lt ⊂ [n] is

∑t
i=1 |Li|.

The rejection sampling model allows us to study testers which rely on random sampling of
edges, while providing the flexibility of making lower-cost queries. This type of query access
strikes a delicate balance between simplicity and generality: queries are constrained enough for
us to show high lower bounds, and at the same time, the flexibility of making queries allows us
to reduce the rejection sampling model to Boolean function testing problems. Specifically, we
reduce to tolerant junta testing (and tolerant unateness testing; see Chapter 6.2).

1The distance definition can be modified accordingly when one considers bounded degree or sparse graphs.

33

Our main result in the rejection sampling model is regarding non-adaptive algorithms. These
algorithms need to fix their queries in advance and are not allowed to depend on answers to
previous queries (in the latter case we say that the algorithm is adaptive). We show a lower
bound on the complexity of testing whether an unknown graph G is bipartite using non-adaptive
queries.

Theorem 4.0.1. There exists a constant ε > 0 such that any non-adaptive ε-tester for bipar-
titeness in the rejection sampling model has cost Ω̃(n2).

More specifically, Theorem 4.0.1 follows from applying Yao’s principle to the following
lemma.

Lemma 4.0.2. Let G1 be the uniform distribution over the union of two disjoint cliques of size
n/2, and let G2 be the uniform distribution over complete bipartite graphs with each part of size
n/2. Any deterministic non-adaptive algorithm that can distinguish between G1 and G2 with
constant probability using rejection sampling queries must have complexity Ω̃(n2).

In the next section we formally define the model and the distributions over graphs which
will be used throughout this chapter (and Chapter 6.2).

4.1 The Rejection Sampling Model

We describe a new model of graph property testing, which we call the rejection sampling model.
The rejection sampling model allows us to study testers which rely on random sampling of
edges, while providing the flexibility of making lower-cost queries. This type of query access
strikes a delicate balance between simplicity and generality: queries are constrained enough for
us to show high lower bounds, and at the same time, the flexibility of making queries allows us
to reduce the rejection sampling model to Boolean function testing problems. Specifically, we
reduce to tolerant junta testing and tolerant unateness testing (see Chapter 6.2).

Definition 4.1.1. Consider two distributions, G1 and G2 supported on graphs with vertex set
[n]. The problem of distinguishing G1 and G2 with a rejection sampling oracle aims to distinguish
between the following two cases with a specific kind of query:

• Cases: We have an unknown graph G ∼ G1 or G ∼ G2.

• Rejection Sampling Oracle: Each query is a subset L ⊂ [n]; an oracle samples an edge
(j1, j2) from G uniformly at random, and the oracle returns v = {j1, j2} ∩ L. The
complexity of a query L is given by |L|.

We say a non-adaptive algorithm Alg for this problem is a sequence of query sets L1, . . . , Lq ⊂
[n], as well as a function Alg : ([n] ∪ ([n]× [n]) ∪ {∅})q → {“G1”, “G2”}. The algorithm sends
each query to the oracle, and for each query Li, the oracle responds vi ∈ [n]∪ ([n]× [n])∪ {∅},
which is either a single element of [n], an edge in G, or ∅. The algorithm succeeds if:

Pr
G∼G1,
v1,...,vq

[Alg(v1, . . . ,vq) outputs “G1”]− Pr
G∼G2,
v1,...,vq

[Alg(v1, . . . ,vq) outputs “G1”] ≥ 1

3
.

The complexity of Alg is measured by the sum of the complexity of the queries, so we let
cost(Alg) =

∑q
i=1 |Li|.

34

Definition 4.1.2 (The distributions G1 and G2). Let G1 and G2 be two distributions supported
on graphs with vertex set [n] defined as follows. Let A ⊂ [n] be a uniform random subset of
size n

2 .

G1 =
{
KA ∪KA : A ⊂ [n] random subset size

n

2

}
G2 =

{
KA,A : A ⊂ [n] random subset size

n

2

}
,

where for a subset A, KA is the complete graph on vertices in A and KA,A is the complete

bipartite graph whose sides are A and A.

4.2 Reducing Tolerant Junta Testing From Rejection Sampling

In this section, we will prove that distinguishing the two distributions G1 and G2 using a rejection
sampling oracle reduces to distinguishing two distributions Dyes and Dno over Boolean functions,
where Dyes is supported on functions that are close to k-juntas and Dno is supported on functions
that are far from any k-junta with high probability.

4.2.1 High Level Overview

We start by providing some intuition. We define two distributions supported on Boolean func-
tions, Dyes and Dno, so that functions in Dyes are ε0-close to being k-juntas and functions in Dno

are ε1-far from being k-juntas (where ε0 and ε1 are appropriately defined constants and k = 3n
4).

We note that the proof for general k follows by a simple padding argument (see Lemma A.2.3).

As mentioned in the introduction, our distributions are based on the indexing function
used in [CST+17]. We draw a uniform random subset M ⊂ [n] of size n/2 and our function
Γ = ΓM : {0, 1}n → [2n/2] projects the points onto the variables in M. Thus, it remains to
define the sequence of functions H = (hi : {0, 1}n → {0, 1} : i ∈ [2n/2]).

We will sample a graph G ∼ G1 (in the case of Dyes), and a graph G ∼ G2 (in the case of
Dno) supported on vertices in M. Each function hi : {0, 1}n → {0, 1} is given by first sampling
an edge (j1, j2) ∼ G and letting hi be a parity (or a negated parity) of the variables xj1 and
xj2 . Thus, a function f from Dyes or Dno will have all variables being relevant, however, we
will see that functions in Dyes have a group of n

4 variables which can be eliminated efficiently2.

We think of the sub-functions hi defined with respect to edges from G as implementing a
sort of gadget : the gadget defined with respect to an edge (j1, j2) will have the property that if f
eliminates the variable j1, it will be “encouraged” to eliminate variable j2 as well. In fact, each
time an edge (j1, j2) ∼ G is used to define a sub-function hi, any k-junta g : {0, 1}n → {0, 1}
where variable j1 or j2 is irrelevant will have to change half of the corresponding part indexed
by Γ. Intuitively, a function f ∼ Dyes or Dno (which originally depends on all n variables)
wants to eliminate its dependence of n − k variables in order to become a k-junta. When f
picks a variable j ∈ M to eliminate (since variables in M are too expensive), it must change
points in parts where the edge sampled is incident on j. The key observation is that when f
needs to eliminate multiple variables, if f picks the variables j1 and j2 to eliminate, whenever
a part samples the edge (j1, j2), the function changes the points in one part and eliminates two
variables. Thus, f eliminates two variables by changing the same number of points when there
are edges between j1 and j2.

At a high level, the gadgets encourage the function f to remove the dependence of variables
within a group of edges, i.e., the closest k-junta will correspond to a function g which eliminates

2We say that a variable is eliminated if we change the function to remove the dependence of the variable.

35

groups of variables with edges within each other and few outgoing edges. More specifically, if
we wants to eliminate n

4 variables from f , we must find a bisection of the graph G whose cut
value is small; in the case of G1, one of the cliques will have cut value 0, whereas any bisection
of a graph from G2 will have a high cut value, which makes functions in Dyes closer to 3n

4 -juntas
than functions in Dno.

The reduction from rejection sampling is straight-foward. We consider all queries which are
indexed to the same part, and if two queries indexed to the same part differ on a variable j,
then we the algorithm “explores” direction j. Each part i ∈ [2n/2] where some query falls in
has a corresponding rejection sampling query Li, which queries the variables explored by the
Boolean function testing algorithm.

4.2.2 The Distributions Dyes and Dno

The goal of this subsection is to define the two distributions Dyes and Dno, supported over
Boolean functions with n variables. Functions f ∈ Dyes will be close to being a k-junta (for
k = 3n

4) with high probability, and functions f ∼ Dno will be far from any k-junta with high
probability.

Distribution Dyes A function f fromDyes is generated from a tuple of three random variables,
(M,A,H), and we set f = fM,A,H. The tuple is drawn according to the following randomized
procedure:

1. Sample a uniformly random subset M ⊂ [n] of size m
def
= n

2 . Let N = 2m and ΓM :
{0, 1}n → [N] be the function that maps x ∈ {0, 1}n to a number encoded by x|M ∈ [N].

2. Sample A ⊂ M of size n
4 uniformly at random, and consider the graph G defined on

vertices [M] with G = KA ∪KA, i.e., G is a uniformly random graph drawn according
to G1.

3. Define a sequence of N functions H = {hi : {0, 1}n → {0, 1} : i ∈ [N]} drawn from a
distribution E(G). For each i ∈ {1, . . . , N/2}, we let hi(x) =

⊕
`∈M x`.

For each i ∈ {N/2 + 1, . . . , N}, we will generate hi independently by sampling an edge
(j1, j2) ∼ G uniformly at random, as well as a uniform random bit r ∼ {0, 1}. We let

hi(x) = xj1 ⊕ xj2 ⊕ r.

4. Using M,A and H, define fM,A,H = hΓM(x)(x) for each x ∈ {0, 1}n.

Distribution Dno A function f drawn from Dno is also generated by first drawing the tuple
(M,A,H) and setting f = fM,A,H. Both M and A are drawn using the same procedure;
the only difference is that the graph G = KA,A, i.e., G is a uniformly random graph drawn
according to G2. Then H ∼ E(G) is sampled from the modified graph G.

We let

k
def
=

3n

4
ε0

def
=

1

8
ε1

def
=

3

16
.

Consider a fixed subset M ⊂ [n] which satisfies |M | = n
2 , and a fixed subset A ⊂ M which

satisfies |A| = n
4 . Let G be a graph defined over vertices in M , and for any subsets S1, S2 ⊂M ,

let

EG(S1, S2) = |{(j1, j2) ∈ G : j1 ∈ S1, j2 ∈ S2}| ,

36

be the number of edges between sets S1 and S2. Additionally, we let

χ(G) = min

{
EG(S, S) + EG(S, S)

EG(M,M)
: S ⊂M, |S| ≥ n

4

}
(4.1)

be the minimum fraction of edges adjacent to a set S of size at least n
4 . The following lemma

relates the distance of a function f = fM,A,H where H ∼ E(G) to being a k-junta to χ(G). We
then apply this lemma to the graph in Dyes and Dno to show that functions in Dyes are ε0-close
to being k-juntas, and functions in Dno are ε1-far from being k-juntas.

Lemma 4.2.1. Let G be any graph defined over vertices in A. If f = fM,A,H, where H ∼ E(G),
then for k = 3n/4

1

4
· χ(G)− o(1) ≤ dist(f , k-Junta) ≤ 1

4
· χ(G) + o(1)

with probability at least 1− o(1).

Proof: We first show that dist(f , k-Junta) ≤ 1
4 · χ(G) + o(1). Let S ⊂ M with |S| ≥ n

4 be
the subset achieving the minimum in (4.1), and consider the indicator random variables Xi for
i ∈ {N/2 + 1, . . . , N} defined as:

Xi =

{
1 hi(x) = xj1 ⊕ xj2 ⊕ r with j1 ∈ S or j2 ∈ S
0 otherwise

,

and note that the variables Xi are independent and equal 1 with probability χ(G). Consider
the function g : {0, 1}n → {0, 1} is defined as:

g(x) =

{
hΓM (x)(x) XΓM (x) = 0

0 otherwise
.

Note that the function g is a k-junta, since g only depends on variables in [n] \ S, and |S| ≥ n
4 .

In addition, we have that:

dist(f , k-Junta) ≤ dist(f , g) =
1

2n

N∑
i=N/2+1

2n−m

2
·Xi =

1

2 · 2m
N∑

i=N/2+1

Xi,

and by a Chernoff bound, we obtain the desired upper bound.
For the lower bound, let T ⊂ [n] of size n

4 . We divide the proof into two cases: 1) M ∩T 6= ∅,
and 2) M ∩ T = ∅.

We handle the first case first, and let j ∈M ∩ T .

• Suppose j is the highest order bit ofM , so that ΓM (x(j→0)) ∈ {1, . . . , N/2} and ΓM (x(j→1)) ∈
{N/2 + 1, . . . , N}. For y ∈ {0, 1}M\{j} and α ∈ {0, 1}, let Xy,α = {x ∈ {0, 1}n : x|M\{j} =
y, xj = α}, Xy = Xy,0 ∪Xy,1. For every x ∈ Xy,

f(x) =

{ ⊕
i∈M xi xj = 0

xj1 ⊕ xj2 ⊕ r xj = 1
,

for some j1, j2 ∈ M and r ∈ {0, 1}. Thus, for at least half of all points in x ∈ Xy,0,
f(x) 6= f(x(j)). Therefore, for any function g : {0, 1}n → {0, 1} which does not depend on
j, for each x ∈ Xy,0 where f(x) 6= f(x(j)), either f(x) 6= g(x), or f(x(j)) 6= g(x(j)), thus,

dist(f , g) ≥ 1

2n

∑
y∈{0,1}M\{j}

1

2
· |Xy,0| ≥

1

4
.

37

Dyes Dno

A A A A

α

β

Figure 4.1: Example of graphs G from Dyes and Dno. On the left, the graph G is the union
of two cliques of size n

4 , corresponding to Dyes. We note that χ(G) = 1
2 , since if we let S = A

(pictured as the blue set), we see that S contains half of the edges. On the right, the graph G is
the complete bipartite graph with side sizes n

4 , corresponding to Dno. We note that χ(G) = 3
4 :

consider any set S ⊂ M of size at least n
4 pictured in the blue region, and let α = |S ∩ A| and

β = |S ∩A|, where α+ β ≥ n
4 , so E(S, S) + E(S, S) ≥ (n4)2 − αβ ≥ (n4)2(1− 1

4).

• Suppose j is not the highest order bit of M . Then, if ΓM (x) ∈ {1, . . . , N/2}, then
ΓM (x(j)) ∈ {1, . . . , N/2}. We note that for each y ∈ {0, 1}M\{j} and x ∈ Xy,0 with
ΓM (x) ∈ {1, . . . , 2m−1}, f(x) 6= f(x(i)). Thus again, for any g : {0, 1}n → {0, 1} which
does not depend on j, dist(f , g) ≥ 1

4 , since half of all points x ∈ {0, 1}n satisfy ΓM (x) ∈
{1, . . . , N/2}.

Therefore, we may assume that T ⊂M . Again, consider the indicator random variables Xi

for i ∈ {N/2 + 1, . . . , N} given by

Xi =

{
1 if hi(x) = xj1 ⊕ xj2 ⊕ r with j1 ∈ T or j2 ∈ T
0 otherwise

,

and by the definition of χ(G), we have that Xi = 1 with probability at least χ(G). Suppose
x ∈ {0, 1}n with ΓM (x) = i and Xi = 1 with hi(x) = xj1 ⊕ xj2 ⊕ r with j1 ∈ T , then
f(x) 6= f(x(j1)), which means that any function g : {0, 1}n → {0, 1} which does not depend on
variables in T , either g(x) 6= f(x) or g(x(j1)) 6= f(x(j1)), thus, for all such functions g,

dist(f , g) ≥ 1

4 · 2m−1

N∑
i=N/2+1

Xi ≥
1

4
· χ(G)− 1

n

with probability 1 − exp
(
−Ω(N

n2)
)

by a Chernoff bound. Thus, we union bound over at most

2n/2 possible subsets T ⊂M with |T | ≥ n
4 to conclude that dist(f , k-Junta) ≥ 1

4 ·χ(G)− 1
n with

probability 1− o(1).

Corollary 4.2.2. We have that f ∼ Dyes has dist(f , k-Junta) ≤ ε0 + o(1) with probability
1− o(1), and that f ∼ Dno has dist(f , k-Junta) ≥ ε1 − o(1) with probability 1− o(1).

Proof: For the upper bound in Dyes, when G = KA ∪KA, we have χ(G) ≤ 1
2 . For the lower

bound in Dno, when G = KA,A, χ(G) ≥ 3
4 (see Figure 4.2.2).

38

4.2.3 Reducing from Rejection Sampling

In this subsection, we will prove that distinguishing the two distributions G1 and G2 using
rejection sampling oracle reduces to distinguishing the two distributions Dyes and Dno.

Lemma 4.2.3. Suppose there exists a deterministic non-adaptive algorithm Alg making q =
o(n50) queries to Boolean functions f : {0, 1}2n → {0, 1}. Then, there exists a deterministic
non-adaptive algorithm Alg′ making rejection sampling queries to an n-vertex graph such that:

Pr
f∼Dyes

[Alg(f) “accepts”] = Pr
G∼G1

[Alg′(G) outputs “G1”], and

Pr
f∼Dno

[Alg(f) “accepts”] = Pr
G∼G2

[Alg′(G) outputs “G1”].

and has cost(Alg′) = O(q log n) with probability 1− o(1) over the randomness in Alg′.

Proof: Consider an algorithm Alg making q queries to a Boolean function f = fM,A,H : {0, 1}2n →
{0, 1} (sampled from either Dyes or Dno). First, note that M and A is distributed in the same
way in Dyes and Dno. Therefore, a rejection sampling algorithm may generate M and A and
utilize its randomness from the rejection sampling oracle to simulate H.

Specifically, given the queries z1, . . . , zq ∈ {0, 1}2n of Alg, we will partition them into sets
Q1, . . . ,Qt, such that for all z, z′ ∈ Qi, we have that z|M = z′|M. Given the above partition,
we define our queries to the rejection sampling oracle L1, . . . ,Lt ⊂M such that for every i ∈ [t]
we let

Li
def
= {j ∈M : ∃z, z′ ∈ Qi, (z)j 6= (z′)j} .

Since |M| = n, we may associate each element of M with an integer in [n] and view the graphs
in G1 and G2 as having vertex set M. In short, we let Li is the set of indices with two queries
in Qi disagreeing in that index. Next, we claim that the cost of Alg′ is at most O(q log n) with
probability 1− o(1).

Consider the bad event which occurs if there exist two queries z, z′ ∈ {0, 1}2n such that
z|M = z′|M and ‖z−z′‖1 > 100 log(2n). Note that for any two queries z, z′ such that ‖z−z′‖1 >
100 log(2n), the probability that z|M = z′|M over the choice of M is at most 2−100 log(2n) � 1

q2
,

and thus we may use a union bound over all pairs of queries to get that the bad event occurs
with probability o(1). Therefore, we get that for any i ∈ [t] and two queries z, z′ ∈ Qi we have
that ‖z − z′‖1 ≤ 100 log(2n) with probability 1 − o(1), which implies that the cost of Alg′ is
O(q log n) with probability 1− o(1).

Now, given the responses to the queries L1, . . . ,Lt ⊂ [M], as well as the values of M,A,
we will be able to simulate all the randomness in the construction of the two distributions Dyes

and Dno. More formally, Alg′ works in the following way.

1. Alg′ makes set queries L1, . . . ,Lt.

2. Once Alg′ receives the responses v1, . . . ,vt ∈ M ∪
(
M×M

)
∪ {∅} from the oracle,

it will generate a Boolean string (r1, . . . , rq) ∈ {0, 1}q which is distributed exactly as
(fM,A,H(z1), . . . , fM,A,H(zq)), where fM,A,H ∼ Dyes if G ∼ G1 and fM,A,H ∼ Dno if
G ∼ G2.

3. Then if Alg(r1, . . . , rq) outputs “accept”, then Alg′ should output “G1”, if Alg(r1, . . . , rq)
outputs “reject”, then Alg′ should output “G2”.

Next, we will describe how to generate (r1, . . . , rq) ∈ {0, 1}q. We start with setting some
notations. For i ∈ [t], we denote Qi = {zi1, . . . , zi|Qi|} and ri1, . . . , r

i
|Qi|.

39

We aim to show that the random variables (fM,A,H(zi`) : ` ∈ [|Qi|], i ∈ [t]) when fM,A,H ∼
Dyes is distributed exactly the same as (ri` : ` ∈ [|Qi|], i ∈ [t]) when G ∼ G1 and v1, . . . ,vt are
sampled by the oracle (the complement case where fM,A,H ∼ Dno and G ∼ G2 is similar).

We will proceed in t stages, each in stage i ∈ [t], we will set the values of ri1, . . . , r
i
|Qi| which

will correspond to fM,A,H(zi1), . . . , fM,A,H(zi|Qi|).

If Qi contains strings z such that ΓM(z) ∈ {1, . . . , 2n−1} then we let ri1, . . . , r
i
|Qi| be given

by ri` =
⊕

j∈M(zi`)j for ` ∈ [|Qi|]. Otherwise ΓM(z) ∈ {2n−1 + 1, . . . , 2n}, the algorithm will

use the response vi to generate the values ri1, . . . , r
i
|Qi|: Alg′ samples a random bit ri ∼ {0, 1}

uniformly and generates ri1, . . . , r
i
|Qi| according to three cases, corresponding to the three cases

vi can be in:

• If vi = ∅, then ri1 = · · · = ri|Qi| = ri.

• If vi = {j} ⊂M, for each ` ∈ [|Qi|], ri` = ri if (zi`)j = 0, and ri` = 1− ri if (zi`)j = 1.

• If vi = {j1, j2} ⊂M, for each ` ∈ [|Qi|], ri` = ri if (zi`)j1 ⊕ (zi`)j2 = 0, and ri` = 1 − ri if
(zi`)j1 ⊕ (zi`)j2 = 1.

We conclude with the following claim which is immediate from the definition of Dyes, Dno,
G1 and G2, and the corresponding proof simply unravels the definitions of these distributions.

Claim 4.2.4. If G ∼ G1, then (r1, . . . , rq) is distributed exactly as (fM,A,H(z1), . . . , fM,A,H(zq))
when fM,A,H ∼ Dyes, and if G ∼ G2, then (r1, . . . , rq) is distributed exactly as (fM,A,H(z1), . . . , fM,A,H(zq))
when fM,A,H ∼ Dno.

Proof: We give the formal proof for Dyes and G1, as the case with Dno and G2 is the same
argument. Recall from the definition of Dyes, that M and A are uniform random sets of size
n and n

2 respectively. Conditioned on M and A, each sub-function hi is picked independently.
Thus, we have

Pr
fM,A,H∼Dyes

[
∀i ∈ [t], ∀` ∈ [|Qi|], fM,A,H(zi`) = yi`

]
=

(
2n

n

)−1(n

n/2

)−1 ∑
M⊂[2n]

∑
A⊂M

t∏
i=1

Pr
hi

[
∀` ∈ [|Qi|],hi(zi`) = yi` |M = M,A = A

]
.

We now turn to the graph problem. Recall from the definition of G ∼ G1, that conditioned on M
and A, the responses of the oracle, v1, . . . ,vt are independent, and r1, . . . , rt are independent.
Thus, we may write:

Pr
M,A,v1,...,vt
r1,...,rt

[
∀j ∈ [q],∀` ∈ [|Qi|], ri` = yi`

]
=

(
2n

n

)−1(n

n/2

)−1∑
M

∑
A

t∏
i=1

Pr
vi,ri

[
∀` ∈ [|Qi|], ri` = yi`

]
.

Therefore, it suffices to show that for any M ⊂ [2n] of size n, A ⊂M of size n
2 and any i ∈ [t],

the random variable (hi(z
i
`) : ` ∈ [|Qi|]) with hi from Dyes with sets M and A is distributed as

(ri1, . . . , r
i
|Qi|) with oracle response vi and bit ri.

Let (j1, j2) be a uniform random edge from KA ∪KA, and we let hi : {0, 1}2n → {0, 1} be
given by:

hi(x) =

{
xj1 ⊕ xj2 with probability 1

2
¬xj1 ⊕ xj2 with probability 1

2

40

Assume that vi = Li∩{j1, j2} = ∅. Then hi(z
i
1) = · · · = hi(z

i
|Qi|) is given by a uniform random

bit. Similarly, given these values of vi = ∅, ri1 = · · · = ri|Qi| is also given by a uniform random
bit.

Now, assume that Li ∩ {j1, j2} = {j}. Then, for any two queries z, z′ ∈ Qi such that
(z)j 6= (z′)j we must have that hi(z) 6= hi(z

′), but after this condition is set, the value of any
particular hi(z) is a uniform random bit. Likewise, these constraints are set by the procedure
generating ri1, . . . , r

i
|Qi|, and each ri` is a uniform random bit.

Finally, assume that Li ∩{j1, j2} = {j1, j2}. Then, for any two queries z, z′ ∈ Qi such that
(z)j1 ⊕ (z)j2 6= (z′)j1 ⊕ (z′)j2 we have that hi(z) 6= hi(z

′), and each value of hi(z) is a uniform
random bit. Finally, these constraints are also set forth in the definition of ri1, . . . , r

i
|Qi|.

Therefore, we conclude with the following corollary.

Corollary 4.2.5. Suppose Alg is a deterministic non-adaptive algorithm which distinguishes
Dyes and Dno supported on Boolean functions of 2n variables with query complexity q, then there
exists a non-adaptive algorithm Alg′ for distinguishing between G1 and G2 supported on graphs
with n vertices such that with probability 1 − o(1) over the randomness of Alg′ it holds that
cost(Alg′) = O(q log n).

Proof: We have:

Pr
G∼G1

[Alg′(G) outputs “G1”]− Pr
G∼G2

[Alg′(G) outputs “G1”]

= Pr
fM,A,H∼Dyes

[Alg(f) “accepts”]− Pr
fM,A,H∼Dno

[Alg(f) “accepts”] ≥ 1

3
− o(1).

We also have that with probability at least 1− o(1), for each i ∈ [t], if Qi = {zi1, . . . , zi|Qi|}, then

|Li| ≤
∑|Qi|

j=2 ‖zi1− zij‖1 ≤ |Qi| · 100 log(2n). Therefore, cost(Alg′) =
∑t

i=1 |Li| = O(q log n) with
probability at least 1− o(1).

4.3 A lower bound for distinguishing G1 and G2 with rejection
samples

In this section, we derive a lower bound for distinguishing G1 and G2 with rejection samples.

Lemma 4.3.1. Any deterministic non-adaptive algorithm Alg with cost(Alg) ≤ n2

log6 n
, has:

Pr
G∼G1

[Alg outputs “G1”] ≤ (1 + o(1)) Pr
G∼G2

[Alg outputs “G1”] + o(1).

We assume Alg is a deterministic non-adaptive algorithm with cost(Alg) ≤ n2

log6 n
. Alg makes

queries L1, . . . , Lt ⊂ [n] and the oracle returns v1, . . . ,vt, some of which are edges, some are lone
vertices, and some are ∅. Let Go ⊂ G be the graph observed by the algorithm by considering
all edges in v1, . . . ,vt. We let |Go| be the number of edges.

Before going on to prove the lower bound, we use the following simplification. First, we
assume that any algorithm Alg has all its queries L1, . . . , Lt satisfying that either |Li| ≤ n

logn ,
or Li = [n]. Thus, it suffices to show for this restricted class of algorithms, the cost must be at

least n2

log5 n
.

41

4.3.1 High Level Overview

In this subsection, we will give a high level overview of the proof of Lemma 4.3.1.
The idea is that we will argue outcome-by-outcome; i.e., we consider the possible ways the

algorithm can act, which depends on the responses to the queries the algorithm gets. Consider
some responses v1, . . . , vt ∈ [n]∪ ([n]× [n])∪{∅}, where each vi may be either a lone vertex, an
edge, or ∅. Suppose that upon observing this outcome, the algorithm outputs “G1”. There will
be two cases:

• The first case is when the probability of observing this outcome from G2 is not too much
lower than the probability of observing this outcome from G1. In these outcomes, we will
not get too much advantage in distinguishing G1 and G2.

• The other case is when the probability of observing this outcome from G2 is substantially
lower than the probability of observing this outcome from G1. These cases do help us
distinguish between G1 and G2; thus, we will want to show that collectively, the probability
that we observe these outcomes from G1 is o(1).

We will be able to characterize the outcomes which fall into the first case and the second
case by considering a sequence of events. In particular we define five events which depend on
v1, . . . , vt, as well as the random choice of A. Consider the outcome v1, . . . , vt which together
form components C1, . . . , Cα. The events are the following3:

1. ET (Observe small trees): this is the event where the values of v1, . . . , vt form components
C1, . . . , Cα which are all trees of size at most log n.

2. EF (Observe few non-empty responses): this is the event where the values of v1, . . . , vt
have at most n

log4 n
non-∅ responses. This event implies that the total number of vertices

in the responses v1, . . . , vt is at most n
log4 n

.

3. EC,yes and EC,no (Consistency condition of the components observed): these are the events
where A ⊂ [n] partitions the components C1, . . . , Cα in a manner consistent with G1 in
EC,yes or G2 in EC,no. See Definition 4.3.5 for a formal definition of this event. These
events are random variables that depend only on A. It will become clear that in order
to observe the outcome v1, . . . , vt in G1, event EC,yes must be triggered, and in G2, event
EC,no must be triggered. See Figure 4.2 for an illustration.

4. EO (Observe specific responses) : this event is over the randomness in A, as well as the
randomness in the responses of the oracle v1, . . . ,vt. The event is triggered when the
responses of the oracle are exactly those dictated by v1, . . . , vt; i.e., for all i ∈ [t], vi = vi.

5. EB (Balanced lone vertices condition) : this event is over the randomness in A, as well
as the responses v1, . . . ,vt. The event occurs when a particular quantity which depends
on A and v1, . . . ,vt is bounded by some predetermined value. See Definition 4.3.15 for a
formal definition.

Having defined these events, the lower bound follows by the following three lemmas. The
first lemma says that for any outcomes satisfying ET and EF , the probability over A of being
consistent in G1 cannot be much higher than in G2. The second lemma says that the outcomes
satisfying the events described above do not help in distinguishing G1 and G2. The third lemma
says that good outcomes occur with high probability over G1.

3We note that the first two event are not random and depends on the values v1, . . . , vt, and the rest are
random variables depending on the partition A and the oracle responses v1, . . . ,vt.

42

A A A A

C1

C3

C2

C4

C1

C2

C3

C4

Figure 4.2: A consistently partition of the components C1, C2, C3 and C4 according to G1 (on
the left) and G2 (on the right).

Lemma 4.3.2 (Consistency Lemma). Consider a fixed v1, . . . , vt ∈ [n]∪([n]× [n])∪{∅} forming
components C1, . . . , Cα where events ET and EF are satisfied. Then, we have:

Pr
G∼G1
v1,...,vt

[EC,yes] ≤ (1 + o(1)) Pr
G∼G2
v1,...,vt

[EC,no].

Lemma 4.3.3 (Good Outcomes Lemma). Consider a fixed v1, . . . , vt ∈ [n] ∪ ([n]× [n]) ∪ {∅}
forming components C1, . . . , Cα where events ET and EF are satisfied. Then, we have:

Pr
G∼G1
v1,...,vt

[EO ∧ EB | EC,yes] ≤ (1 + o(1)) Pr
G∼G2
v1,...,vt

[EO | EC,no].

Lemma 4.3.4 (Bad Outcomes Lemma). We have that:

Pr
G∼G1
v1,...,vt

[¬ET ∨ ¬EF ∨ ¬EB] = o(1).

Assuming the above three lemmas, we may prove Lemma 4.3.1.
Proof: Let Λ be the set of outcomes of the algorithm which output “G1.” Each outcome is a
collection of responses v1, . . . , vt. We let

ΛG = {` ∈ Λ : responses v1, . . . , vt satisfy ET ∧ EF },

and EO,` be the event that responses v1, . . . ,vt result in outcome `. We have:

Pr
G∼G1
v1,...,vt

[Alg outputs “G1”] ≤
∑
`∈ΛG

Pr
G∼G1
v1,...,vt

[` is observed by Alg | EC,yes] Pr
G∼G1
v1,...,vt

[EC,yes] + Pr
G∼G1
v1,...,vt

[¬ET ∨ ¬EF]

≤
∑
`∈ΛG

Pr
G∼G1
v1,...,vt

[EO,` ∧ EB | EC,yes] Pr
G∼G1
v1,...,vt

[EC,yes] + Pr
G∼G1
v1,...,vt

[¬ET ∨ ¬EF ∨ ¬EB]

≤ (1 + o(1))
∑
`∈ΛG

Pr
G∼G2
v1,...,vt

[EO,` | EC,no] Pr
G∼G2
v1,...,vt

[EC,no] + o(1)

≤ (1 + o(1)) Pr
G∼G2
v1,...,vt

[Alg outputs “G1”] + o(1),

where we used Lemma 4.3.2, Lemma 4.3.3, and Lemma 4.3.4 from the second to third line.

43

4.3.1.1 Proof of the Consistency Lemma: Lemma 4.3.2

We now turn to proving Lemma 4.3.2. We first give the formal definitions of events EC,yes

and EC,no. Next, we set up some definitions necessary for the proof and give two claims which
imply the lemma. For the remainder of the section, we consider fixing the responses v1, . . . , vt ∈
[n] ∪ ([n]× [n]) ∪ {∅}. We assume the responses form the components C1, . . . , Cα which satisfy
events ET and EF . For each i ∈ [α], let ui be the minimum vertex in Ci with respect to the
natural ordering of [n], and consider rooting the trees Ci at ui, forming a layered tree with at
most log n layers. Namely, ui will be in the first layer, all its neighbors in Ci will be in the
second layer, and so on. We let Ci(even) be the set of vertices in even layers, and Ci(odd) be
the set of vertices in odd layers.

Definition 4.3.5. We let EC,yes be the event that A ⊂ [n] is consistent with the observations
v1, . . . , vt when G = KA ∪ KA, and EC,no be the event that A ⊂ [n] is consistent with the
observations v1, . . . , vt when G = KA,A. In other words,

• In EC,yes: for all i ∈ [α], either Ci ⊂ A or Ci ⊂ A.

• In EC,no: for all i ∈ [α], either Ci(odd) ⊂ A and Ci(even) ⊂ A, or Ci(odd) ⊂ A and
Ci(even) ⊂ A.

For each i ∈ [α], let Yi be the indicator random variable for ui ∈ A. Let:

WA,yes =
α∑
i=1

Yi ·|Ci| WA,no =
α∑
i=1

(Yi · |Ci(odd)|+ (1−Yi) · |Ci(even)|) V =
α∑
i=1

|Ci|.

Definition 4.3.6. We let EW be the event where:

V

2
−
√
V log n ≤WA,no ≤

V

2
+
√
V log n.

Lemma 4.3.2 follows from the next two claims.

Claim 4.3.7. For v1, . . . , vt satisfying events ET and EF , we have:

Pr
G∼G1
v1,...,vt

[EC,yes ∧ EW] ≤ (1 + o(1)) Pr
G∼G2
v1,...,vt

[EC,no].

Claim 4.3.8. For v1, . . . , vt satisfying events ET and EF , we have:

Pr
G∼G1
v1,...,vt

[¬EW | EC,yes] = o(1).

Given Claim 4.3.7 and Claim 4.3.8, we proceed to proving Lemma 4.3.2.
Proof of Lemma 4.3.2: We simply compute the respective probabilities.

Pr
G∼G1
v1,...,vt

[EC,yes] = Pr
G∼G1
v1,...,vt

[EC,yes ∧ EW] + Pr
G∼G1
v1,...,vt

[¬EW | EC,yes] Pr
G∼G1
v1,...,vt

[EC,yes]

≤ (1 + o(1)) Pr
G∼G2
v1,...,vt

[EC,no] + o(1) Pr
G∼G1
v1,...,vt

[EC,yes], (4.2)

Where we applied both Claim 4.3.7 and Claim 4.3.8 in Line (4.2). Finally, this implies:

(1− o(1)) Pr
G∼G1
v1,...,vt

[EC,yes] ≤ (1 + o(1)) Pr
G∼G2
v1,...,vt

[EC,no],

44

which finishes the proof.

We now proceed to proving Claim 4.3.7, followed by the proof of Claim 4.3.8.

Proof of Claim 4.3.7: Note that V ≤ n
log4 n

since event EF is satisfied. Let y ∈ {0, 1}α be

an assignment of u1, . . . , uα to A; more formally, for a fixed y ∈ {0, 1}α, we let Ey be the event
that for each i ∈ [α], ui ∈ A if yi = 1, and ui ∈ A if yi = 0. Additionally, let

YG = {y ∈ {0, 1}α : if A satisfies Ey, then EW is satisfied}.

Then,

Pr
G∼G1
v1,...,vt

[EC,yes ∧ EW] =
∑
y∈YG

Pr
G∼G1
v1,...,vt

[EC,yes ∧ Ey].

It suffices to show that for y ∈ YG:

Pr
G∼G1
v1,...,vt

[EC,yes ∧ Ey] ≤ (1 + o(1)) Pr
G∼G2
v1,...,vt

[EC,no ∧ Ey].

Note that if A satisfies Ey and EC,yes is satisfied, there is precisely one choice for assigning each
vertex in C1, . . . , Cα to A or A. Likewise, if A satisfied Ey and EC,no, there is precisely one
choice for assigning each vertex in C1, . . . , Cα to A or A. The remaining vertices may be placed
in A or A so the resulting set A contains half of all vertices, therefore, we have:

Pr
G∼G1
v1,...,vt

[EC,yes ∧ Ey] ≤

(n−V
n
2
−V

2

)(
n
n/2

) Pr
G∼G2
v1,...,vt

[EC,no ∧ Ey] ≥

(n−V
n
2
−V

2
−
√
V logn

)(
n
n/2

) .

Taking the ratio, we have:

Pr[EC,yes ∧ Ey]
Pr[EC,no ∧ Ey]

≤

(n−V
n
2
−V

2

)(
n
n/2

) · (
n
n/2

)(n−V
n
2
−V

2
−
√
V logn

) ≤ (n
2 −

V
2 +
√
V log n

n
2 −

V
2 −
√
V log n

)√V logn

≤
(

1 +O

(
1√

n log n

))√n/ logn

= 1 + o(1).

Proof of Claim 4.3.8: We let:

W
(O)
A,no =

α∑
i=1

Yi · |Ci(odd)| and W
(E)
A,no =

α∑
i=1

(1−Yi) · |Ci(even)|.

where W
(O)
A,no + W

(E)
A,no = WA,no specifies the number of vertices in ∪i∈[α]Ci assigned to A.

Conditioning on event EC,yes, A and A can be interchanged, so

Pr
G∼G1
v1,...,vt

[Yi = 1 | EC,yes] = Pr
G∼G1
v1,...,vt

[Yi = 0 | EC,yes] =
1

2
.

So,

E
G∼G1
v1,...,vt

[WO
A,no | EC,yes] =

1

2

∑
i∈[α]

|Ci(odd)| and E
G∼G1
v1,...,vt

[WE
A,no | EC,yes] =

1

2

∑
i∈[α]

|Ci(even)|.

45

Additionally, for any set of indices I ⊂ [α],

Pr
G∼G1
v1,...,vt

[∀i ∈ I,Yi = 1 | EC,yes] ≤
1

2|I|
and Pr

G∼G1
v1,...,vt

[∀i ∈ I,Yi = 0 | EC,no] ≤ 1

2|I|
,

which implies that the variables Yi, as well as the variables in 1−Yi are negatively correlated.
We may apply Chernoff bounds (for negatively correlated variables) to obtain deviation bounds

for W
(O)
A,no and W

(E)
A,no. Then, a union bound gives the desired result for WA,no.

4.3.1.2 Proof of the Bad Outcomes Lemma: Lemma 4.3.4

In this section, we give a proof of Lemma 4.3.4, which says that the probability over G ∼ G1

and v1, . . . ,vt of not satisfying events ET , EF , as well as EB is o(1). In order to prove this,
we will show that individually, the probability of not satisfying each event is o(1) and conclude
with a union bound.

4.3.1.3 ET : components observed are small trees

The goal of this section is to show that with high probability, the algorithm only sees edges
which form various components of small trees.

Definition 4.3.9. We let ET be the event that observed responses v1, . . . ,vt generate compo-
nents C1, . . . ,Cα which are all trees of size less than log n.

Lemma 4.3.10. We have that:

Pr
G∼G1
v1,...,vt

[ET] ≥ 1− o(1).

We prove the above lemma by showing the following two claims.

Claim 4.3.11. With probability 1 − o(1) over the draw of G ∼ G1 and the draw of v1, . . . ,vt,
Go has no cycles.

Proof: Recall that L1, . . . , Lt are the set queries made, and let E◦,` be the event that Go has
a cycle of length `. We have:

Pr
G∼G1
v1,...,vt

[E◦,`] ≤
∑
S⊂[t]

S={i1,...,i`}

Pr
G∼G1
v1,...,vt

[vi1 , . . . ,vi` form cycle]

≤
∑
S⊂[t]

S={i1,...,i`}

∑
U⊂[n]

U={u1,...,u`}
uj∈Lij∩Lij+1

Pr
G∼G1
v1,...,vt

[∀j ∈ [`],vij = (uj , uj+1)], (4.3)

where we think j + 1 = 1 when j = `. The above restriction of uj ∈ Lij ∩ Lij+1 is necessary
if edges vij and vij+1 will be the edges of the cycle incident on node uj . Additionally, we may

upper bound (4.3) by disregarding the effect of the partition A and A; in fact, the presence
of A and A make it harder to achieve a cycle, since if uj ∈ A and uj+1 ∈ A, the probability
of vij = (uj , uj+1) is 0. For any S = {i1, . . . , i`}, once we fix a set U = {u1, . . . , u`} where
uj ∈ Lij ∩ Lij+1,

Pr
G∼G1
v1,...,vt

[∀j ∈ [`],vij = (uj , uj+1)] ≤

(
1

2
(
n/2
2

))` .
46

Thus, we have:

Pr
G∼G1
v1,...,vt

[E◦,`] ≤
∑
S⊂[t]

S={i1,...,i`}

∏̀
j=1

|Lij ∩ Lij+1 |

(1

2
(n

2
2

))`

≤
(

1

Ω(n)

)2` ∑
S⊂[t]

S={i1,...,i`}

∏̀
j=1

|Lij |

≤
(

1

Ω(n)

)2`
(

t∑
i=1

|Li|

)`(
1

t

)`(t
`

)
≤
(
O

(
1

log5 n

))`
.

where we used the fact that
∑

S

∏`
j=1 |Lij | is the elementary symmetric polynomial of degree

`, and
∑t

i=1 |Li| ≤
n2

log5 n
. Thus, we obtain:

Pr
G∼G1
v1,...,vt

[Go contains a cycle] ≤
t∑

`=1

(
O

(
1

log5 n

))`
= o(1).

Claim 4.3.12. With probability 1 − o(1) over the draw of G ∼ G1 and the draw of v1, . . . ,vt,
we have Go has all components of size at most log n.

Proof: This proof is very similar to the one above. Let ET,` be the event there exists a tree
of ` edges. We note that there are at most exp(O(`)) rooted trees of ` edges and `+ 1 vertices.
We consider first picking a rooted tree, and we pick an arbitrary vertex to be the root of the
tree. We then pick the ` edges of the tree to some responses, vi1 , . . . ,vi` . We select the vertex
on query of the edge going away from the root; this leaves the root, which we choose arbitrarily
from [n].

So we have:

Pr
G∼G1
v1,...,vt

[ET,`] ≤ exp(O(`))
∑
S⊂[t]

S={i1,...,i`}

n ∏̀
j=1

|Lij |

(1

2
(
n/2
2

))`

≤ n ·
(
O

(
1

log5 n

))`
=

(
O

(
1

log5 n

))`
,

when ` ≥ log n. Thus, we sum over all ` ≥ log to get that there exists a tree of size log n or
greater with probability o(1).

4.3.1.4 EF : few vertices are observed

The goal of this section is to show that the algorithm does not observe too many vertices from
the responses v1, . . .vt with high probability.

Definition 4.3.13. We let EF be the event that the responses v1, . . . ,vt contain at most n
log4 n

values which are not ∅.

47

Lemma 4.3.14. We have:

Pr
G∼G1
v1,...,vt

[EF] ≥ 1− o(1) and Pr
G∼G2
v1,...,vt

[EF] ≥ 1− o(1).

In other words, any rejection sampling algorithm with cost less than n2

log6 n
will observe at most

n
log4 n

non-∅ responses in both G1 and G2 with high probability.

Proof: Simply note that for a query Li, and any G ∈ G1, the probability of observing a

response which is not ∅ is at most
|Li| · n2
2
(
n/2
2

) = O(|Li|/n) (in the case of G1, and
|Li|·n2
n2/4

in the case

of G2). Therefore, the expected number of responses which are not ∅ is at most O(n/ log5 n),
and via a Markov bound, we have the desired result.

4.3.1.5 EB: vertices observed do not prefer any side too much

We now formally define the event EB, and prove the event occurs with high probability over
the draw of G ∼ G1 and v1, . . . ,vt.

Definition 4.3.15. Let VL ⊂ [t] be the random variable corresponding to the set of indices of
responses v1, . . . ,vt which correspond to observing lone vertices, and for i ∈ VL, we let yi be
the indicator random variable for vi ∈ A. Let EB be the event where:

B =
∑
i∈VL

(−1)yi
(
|Li ∩A| − |Li ∩A|

)
= O

(
n

log n

)
.

We start by giving some intuition. Fix some query Li such that |Li| ≤ n
logn . By using

Chernoff bound we have that ||Li ∩A| − |Li ∩A|| = O(
√
|Li| log n) with high probability. Now

assume that every query we make is skewed toward A. This bad event will create a gap in the
probabilities to see a lone vertex between the two distributions, and the algorithm might use it
in order to distinguish G1 and G2. Hence, we would like to claim that collectively the probability
of observing such bad events is extremely small. More precise details follows.

Definition 4.3.16. Let EQ be the event that all queries L1, . . . , Lt satisfy:∣∣|Li ∩A| − |Li ∩A|
∣∣ = O

(√
|Li| log n

)
.

Claim 4.3.17. We have:
Pr

G∼G1
[EQ] ≥ 1− o(1).

Proof: This simply follows from a union bound over 2t applications of the Chernoff bound for
negatively correlated random variables. In particular, for all k ∈ [n], let Yk be the indicator
random variable for k ∈ A. Then we note that for each i ∈ [t],

|Li ∩A| =
∑
k∈Li

Yk and |Li ∩A| =
∑
k∈Li

(1−Yk).

In a similar way to the proof of Claim 4.3.8, we note that all Yk are negatively correlated, and
all (1−Yi) are negatively correlated, thus, we have that with probability at least 1− n−10,

|Li ∩A| ≤ |Li|
2

+O(
√
|Li| log n) and |Li ∩A| ≤ |Li|

2
+O(

√
|Li| log n).

Thus, we may union bound over all 2t events, for the desired result.

48

Lemma 4.3.18. We have that:

Pr
G∼G1
v1,...,vt

[¬EB ∧ EF] = o(1).

Proof: We first note that because of Claim 4.3.17, we have:

Pr
G∼G1
v1,...,vt

[¬EB ∧ EF] =
∑
A⊂[n]

EQ satisfied

Pr
G∼G1
v1,...,vt

[A = A] Pr
G∼G1
v1,...,vt

[¬EB ∧ EF | A = A] + o(1).

So consider a fixed set A ⊂ [n] which satisfies event EQ. Additionally, we have:

Pr
G∼G1
v1,...,vt

[¬EB∧EF | A = A] =
∑
VL⊂[t]

|VL|≤ n
log4 n

Pr
G∼G1
v1,...,vt

[VL = VL | A = A] Pr
G∼G1
v1,...,vt

[¬EB | A = A,VL = VL]

Thus, it suffices to prove that for all A ⊂ [n] which satisfy EQ and VL ⊂ [t] of size at most n
log4 n

,

Pr[¬EB | A = A,VL = VL] = o(1). In fact, once we condition on A = A and VL = VL, we
have:

B =
∑
i∈VL

(−1)yi
(
|Li ∩A| − |Li ∩A|

)
,

which is a sum of independent random variables. Additionally, since yi is the indicator random
variable for vi ∈ A conditioned on vi being a lone vertex, we have each yi is independent and
is 1 with probability pi, where:

pi =
|Li ∩A|

(
n
2 − |Li ∩A|

)
|Li| · n2 − |Li ∩A|2 − |Li ∩A|2

=
1

2
±O

(
log n√
n

)
.

Thus, we have:

E
G∼G1
v1,...,vt

[B | A = A,VL = VL] = |VL| ·O(log2 n) = O

(
n

log2 n

)
.

Additionally, each variable can contribute O(
√
|Li| log n) to the sum, so via a standard Chernoff

bound, noting the fact that
∑

i∈VL |Li| log2 n ≤ n2

log3 n
, we have that EB is satisfied with high

probability.

4.3.1.6 Proof of the Good Outcomes Lemma: Lemma 4.3.3

We may divide v1, . . . , vt into three sets: 1) VE contain the indices i ∈ [t] whose responses vi
which are edges, 2) VL contain the indices i ∈ [t] whose responses vi are vertices, and 3) VT
contain the indices i ∈ [t] whose responses vi are ∅. We let:

Pr
G∼G1
v1,...,vt

[EO ∧ EB | EC,yes] = Y Pr
G∼G2
v1,...,vt

[EO | EC,no] = N .

We note that for a fixed A the values of vi are independent. Therefore, we may write:

Y = E
A

[YE · YL · YT · EB | EC,yes] N = E
A

[NE · NL · NT | EC,no]

YE =
∏
i∈VE

Pr
vi

[vi = vi | Y (A)] NE =
∏
i∈VE

Pr
vi

[vi = vi | N(A)]

YL =
∏
i∈VL

Pr
vi

[vi = vi | Y (A)] NL =
∏
i∈VL

Pr
vi

[vi = vi | N(A)]

YT =
∏
i∈VT

Pr
vi

[vi = ∅ | Y (A)] NT =
∏
i∈VT

Pr
vi

[vi = ∅ | N(A)]

49

where we slightly abused notation to let Prvi [vi = vi | Y (A)] denote the probability that the
sampled response vi is vi conditioned on the graph G being from G1 with partition A; i.e.,
G = KA ∪ KA. Likewise, Prvi [vi = vi | N(A)] denotes the probability that the sampled
response vi is vi conditioned on the graph G being from G2 with partition A; i.e., G = KA,A.
We now simply go through the three products in to show each is at most 1 + o(1). We shall
prove the following claims:

Claim 4.3.19. For any A for which EC,yes occurs, we have YE ≤ (1 + o(1))NE.

Proof: Note that for any choice of A for which EC,yes occurs, since the vi’s are specific edges:

Pr
vi

[vi = vi | Y (A)] =
1

2
(
n/2
2

)
and for any choice of A for which EC,no occurs,

Pr
vi

[vi = vi | N(A)] =
1

(n/2)2
.

Thus,
Prvi [vi = vi | Y (A)]

Prvi [vi = vi | N(A)]
=
n2

4
· 4

n2 − 2n
= 1 +O

(
1

n

)
,

and since |VE | ≤ n
log4 n

, we get that
YE
NE

= 1 + o(1).

Claim 4.3.20. For any A for which EC,yes occurs, we have YT ≤ NT .

Proof: Here, we have that for any set A which satisfies EC,yes, we have

Pr
vi

[vi = ∅ | Y (A)] =
2
(
n/2
2

)
− |Li|n2

2
(
n/2
2

) = 1− 2|Li|
n− 2

and similarly, for any set A which satisfies EC,no, we have

Pr
vi

[vi = ∅ | N(A)] =
(n/2)2 − |Li|n2 + |A ∩ Li||A ∩ Li|

(n/2)2
≥ 1− 2|Li|

n
.

Which finishes the proof.
Thus, by Claims 4.3.19 and 4.3.20 we have:

EA [YE · YL · YT · EB | EC,yes]

EA [NE · NL · NT | EC,no]
≤ (1 + o(1))

EA[YL · EB | EC,yes]

EA[NL | EC,no]
.

Therefore, it suffices to prove the following:

EA[YL · EB | EC,yes]

EA[NL | EC,no]
≤ 1 + o(1).

Suppose A ⊂ [n] satisfies EC,yes, then if vi is a vertex response at query Li. We have:

Pr
vi

[vi = vi | Y (A)] =
2

n− 2

(
1− |Li|

n
+ (−1)Yi

(
|Li ∩A| − |Li ∩A|

n

))
=

2

n− 2

(
1− |Li|

n

)
(1 + Zi) ,

50

where:

Zi = ci(−1)Yi

(
|Li ∩A| − |Li ∩A|

n

)
,

where ci =
1

1− |Li|/n
≤ 1 + o(1), since |Li| � n

logn , and Yi is the indicator random variable

for vi ∈ A. Thus, we may simplify:

E
A

[YL · EB | EC,yes] =

(
2

n− 2

)|VL|(
1− |Li|

n

)|VL|
E
A

EB ∏
i∈VL

(1 + Zi) | EC,yes

 .
Similarly, suppose A ⊂ [n] satisfies EC,no, then if vi is a vertex response at query Li, we have:

Pr
vi

[vi = vi | N(A)] =
2

n

(
1− |Li|

n

)
(1 + Si) ,

where we let Si be the random variable:

Si = ci(−1)Yi

(
|Li ∩A| − |Li ∩A|

n

)
,

Therefore, we have:

E
A

[NL | EC,no] =

(
2

n

)|VL|(
1− |Li|

n

)|VL|
E
A

∏
i∈VL

(1 + Si) | EC,no

 .
We note that since |VL| ≤ n

log4 n
, we finish off the proof with the following two claims.

Claim 4.3.21.

E
A

EB ∏
i∈VL

(1 + Zi) | EC,yes

 ≤ 1 + o(1).

Claim 4.3.22.

E
A

∏
i∈VL

(1 + Si) | EC,no

 ≥ 1− o(1)

Proof of Claim 4.3.21:

E
A

EB ∏
i∈VL

(1 + Zi) | EC,yes

 ≤ E
A

[
EB · e

∑
i∈VL

Zi | EC,yes

]
≤ e

1
logn = 1 + o(1).

Where the last inequality follows from the fact that EB occurs.

Proof of Claim 4.3.22: Recall that

Si = ci(−1)Yi

(
|Li ∩A| − |Li ∩A|

n

)
,

51

therefore, by Chernoff bound (for negative correlations) we have that with probability at least

1 − 1
n10 , |Si| ≤ O

(
logn√
n

)
. We let S′i be the random variable which is equal to Si when |Si| ≤

O(logn√
n

) and −2n otherwise. Via a very similar analysis to Claim A.1 from [CWX17a], we have:

E
A

∏
i∈VL

(1 + Si) | EC,no

 ≥ (1− o(1))

1 +
∑
i∈VL

E
A

[S′i | EC,no]

 .

We now evaluate each EA[S′i | EC,no] for i ∈ VL individually. We have:

E
A

[S′i | EC,no] ≥ E
A

[Si | EC,no] + (−2n− ci) Pr
A

[
|Si| > O

(
log n√
n

)
| EC,no

]
≥ E

A
[Si | EC,no]−O

(
1

n9

)
.

Assume that vi is in component Cj , and note that since A and A are inter-changeable,

Pr
A

[vi ∈ A | EC,no] = Pr
A

[vi ∈ A | EC,no] =
1

2
.

Now we have that,

E
A

[Si | EA,no] ≥ ci
n

∑
k∈Li\Cj

E
A

[
(−1)Yi(−1)Yk | EC,no

]
−O

(
log n

n

)

=
ci
n

∑
k∈Li\Cj

(
2 Pr

A
[Yk = 1 | Yi = 1;EC,no]− 1

)
−O

(
log n

n

)
,

where we used the fact that |Ci| ≤ log n, as well as the fact that A and A are interchangeable.
Since |VL| ≤ n

log4 n
and |Li| ≤ n

logn for each i ∈ VL (otherwise, we would have observed an edge),

it suffices to prove that PrA[Yk = 1 | Yi = 1;EC,no] ≥ 1
2 −

log4 n
n . This is indeed true, since∑α

i=1 |Ci| ≤
n

log4 n
and |Ci| ≤ log n (see Lemma A.1.1).

Putting everything together, we have:

EA[YL · EB · EQ | EC,yes]

EA[NL | EC,no]
≤
(

n

n− 2

)|VL| 1 + o(1)

1− o(1)
≤ 1 + o(1).

52

Chapter 5

General Separation between
Tolerant Testing and Intolerant
Testing

The question of whether tolerant testing is strictly harder than standard testing was explicitly
studied in the work of Fischer and Fortnow [FF06]. They showed that there exists a property
P ⊆ {0, 1}n that admits a tester with constant query complexity (independent of n), but every
tolerant tester for P has to query Ω(n/ log n) many bits. In this chapter we provide a stronger
separation. We construct a family of properties testable using number of queries independent
of n, but require much more than Ω(n/ log n) in order to tolerantly test. Specifically, the main
result in this chapter is the following:

Theorem 5.0.1 (informal restatement of Theorem 5.5.1). For any constant integer ` ∈ N,
there exist a property of boolean strings P ⊆ {0, 1}n and a constant ε1 ∈ (0, 1) such that P is
ε0-testable for any ε0 > 0 with a number of queries independent of n, but for any ε0 ∈ (0, ε1),
every (ε0, ε1)-tolerant tester for P requires Ω(n/polylog(`)n) many queries.

The main tool used toward proving their result was designing short probabilistically checkable
proof of proximity (PCPP). We refer the reader to Chapter 2.3 for formal definitions.

5.1 Overview and Techniques

PCPPs were introduced independently by Ben-Sasson et al. [BGH+06] and Dinur and Rein-
gold [DR06]. In the PCPP setting, a verifier is given oracle access to both an input x and a
proof π. It should make a few (e.g., constant) number of queries to both oracles to ascertain
whether x ∈ L. Since the verifier can only read a few of the input bits, we only require that it
rejects inputs that are far (in Hamming distance) from L, no matter what proof π is provided.
PCPPs are highly instrumental in the construction of standard PCPs. Indeed, using modern
terminology, both the original algebraic construction of PCPs [ALM+98] (see also [BGH+06])
as well as Dinur’s [Din07] combinatorial proof utilize PCPPs.

By combining the seminal works of Ben-Sasson and Sudan [BSS08] and Dinur [Din07],
one can obtain PCPs and PCPPs with only poly-logarithmic (multiplicative) overhead. More
specifically, the usual benchmark for PCPPs is with respect to the CircuitEval problem, in
which the verifier is given explicit access to a circuit C and oracle access to both an input x
and a proof π, and needs to verify that x is close to the set {x′ : C(x′) = 1}. The works of

53

[BSS08, Din07] yield a PCPP whose length is quasilinear in the size |C| of the circuit C.1

Our main technical result is designing a property P ⊆ {0, 1}n such that any testing algorithm
for P requires Ω(n) queries, while P admits a constant query PCPP with almost linear proof
length. This construction will be used to derive our improved separation (Theorem 5.0.1).

Theorem 5.1.1 (informal restatement of Theorem 5.4.2). For every constant integer ` ∈ N,
there exists a property P ⊆ {0, 1}n such that any testing algorithm for P requires Ω(n) many
queries, while P admits a (constant query) PCPP system with proof length O(n · log(`)(n)).

We remark that all such maximally hard properties cannot have constant-query PCPP proof-
systems with a sub-linear length proof string (see Proposition 2.3.3), leaving only a small gap
of log(`)(n) on the proof length in 5.1.1.

We remark that Theorem 5.1.1 might be of interest in its own merit. Given the important
connections both to constructions of efficient proof-systems, and to hardness of approximation,
a central question in the area is whether this result can be improved: Do PCPPs with only a
constant overhead exist? In a recent work, Ben Sasson et al. [BKK+16] construct PCPs with
constant overhead, albeit with very large query complexity (as well as a non-uniform verification
procedure).2 To verify that C(x) = 1 the verifier needs to make |C|δ queries, where δ > 0 can
be any fixed constant.

Given the lack of success (despite the significant interest) in constructing constant-query
PCPPs with constant overhead, it may be the case that there exist languages that do not have
such efficient PCPPs. A natural class of candidate languages for which such PCPPs may not
exist are languages for which it is maximally hard to test whether x ∈ L or is far from such,
without a PCPP proof. In other words, languages (or rather properties) that do not admit
sub-linear query testers. Thus, one might investigate the following question:

Supposing that L requires Ω(n) queries for every (property) tester, must any constant-
query PCPP for L have proof length n · (log n)Ω(1)?

Theorem 5.1.1 answers the above question negatively, by constructing a property that is
maximally hard for testing, while admitting a very short PCPP.

5.1.1 Techniques

Central to our construction are (univariate) polynomials over a finite field F. A basic fact is
that a random polynomial p : F → F of degree (say) |F|/2, evaluated at any set of at most
|F|/2 points, looks exactly the same as a totally random function f : F → F. This is despite
the fact that a random function is very far (in Hamming distance) from the set of low degree
polynomials. Indeed, this is the basic fact utilized by Shamir’s secret sharing scheme [Sha79].

Thus, the property of being a low degree polynomial is a hard problem to decide for any
tester, in the sense that such a tester must make Ω(|F|) queries to the truth table of the function
in order to decide. Given that, it seems natural to start with this property in order to prove
5.1.1. Here we run into two difficulties. First, the property of being a low degree polynomial
is defined over a large alphabet, whereas we seek a property over boolean strings. Second, the
best known PCPPs for this property have quasi-linear length [BSS08], which falls short of our
goal.

1Note that a PCPP for CircuitEval can be easily used to construct a PCP for CircuitSAT with similar
overhead (see [BGH+06, Proposition 2.4]).

2Although it is not stated in [BKK+16], we believe that their techniques can also yield PCPPs with similar
parameters.

54

To cope with these difficulties, our approach is to use composition, or more accurately, an
iterated construction. The main technical contribution of this paper lies in the mechanism
enabling this iteration. More specifically, rather than having the property contain the explicit
truth table of the low degree polynomial p, we would like to use a more redundant representation
for encoding each value p(α). This encoding should have several properties:

• It must be the case that one needs to read (almost) the entire encoding to be able to
decode p(α). This feature of the encoding, which we view as a secret-sharing type of
property, lets us obtain a hard to test property over boolean strings.

• The encoding need not be efficient, and in fact it will be made long enough to eventually
subsume the typical length of a PCPP proof-string for the low degree property, when
calculated with respect to an unencoded input string.

• Last but not least, we need the value to be decodable using very few queries, when given
access to an auxiliary PCP-like proof string. This would allow us to “propagate” the PCPP
verification of the property across iterations.

In more detail, we would like to devise a (randomized) encoding of strings in {0, 1}k by
strings in {0, 1}m. The third requirement listed above can be interpreted as saying that given
oracle access to v ∈ {0, 1}m and explicit access to a value w ∈ {0, 1}k, it will be possible verify
that v indeed encodes w using a PCPP-like scheme, i.e. by providing a proof that can be verified
with a constant number of queries. We refer to this property as a probabilistically checkable
unveiling (PCU)3. Note that in our setting a single value w may (and usually will) have more
than one valid encoding.

Going back to the first requirement of the encoding, we demand that without a proof, one
must query at least Θ(m) bits of v to obtain any information about the encoded w, or even
discern that v is indeed a valid encoding of some value. Given this combination of requirements,
we refer to the verification procedure as a Probabilistically Checkable Unveiling of a Shared Secret
(PCUSS).

Low degree polynomials can be used to obtain a PCUSS based on Shamir’s secret sharing
scheme. More specifically, to encode a k bit string w, we take a random polynomial whose
values on a subset H ⊆ F are exactly equal to the bits of w. However, we provide the values of
this polynomial only over the sub domain F \H. Then, the encoded value is represented by the
(interpolated) values of g over H, which admit a PCU scheme. On the other hand, the “large
independence” feature of polynomials makes the encoded value indiscernible without a supplied
proof string, unless too many of the values of g over F \H are read, thus allowing for a PCUSS.

This construction can now be improved via iteration. Rather than explicitly providing the
values of the polynomial, they will be provided by a PCUSS scheme. Note that the PCUSS
scheme that we now need is for strings of a (roughly) exponentially smaller size. The high level
idea is to iterate this construction ` times to obtain the ` iterated log function in our theorems.

At the end of the recursion, i.e., for the smallest blocks at the bottom, we utilize a linear-
code featuring both high distance and high dual distance, for a polynomial size PCUSS of the
encoded value. This is the only “non-constructive” part in our construction, but since the
relevant block size will eventually be less than log log(n), the constructed property will still be
uniform with polynomial calculation time (the exponential time in poly(log log(n)), needed to
construct the linear-code matrix, becomes negligible).

Our PCUSS in particular provides a property that is hard to test (due to its shared secret fea-
ture), and yet has a near-linear PCPP through its unveiling, thereby establishing Theorem 5.1.1.

3In fact, we will use a stronger variant where the access to w is also restricted.

55

We utilize this property for separation results in a similar manner to [FF06] and [DRTV18], by
considering a weighted version of a “PCPP with proof” property, where the proof part holds
only a small portion of the total weight. The PCPP proof part enables a constant query test,
whereas if the PCPP proof is deleted.

5.2 Code Ensembles

It will be necessary for us to think of a generalized definition of an encoding, in which each
encoded value has multiple legal encodings.

Definition 5.2.1 (Code ensemble). A code ensemble is a function E : Σk → 2Σm . Namely,
every x ∈ Σk has a set of its valid encodings from Σm. We define the distance of the code
ensemble as

min
x 6=x′∈{0,1}k

min
(v,u)∈E(x)×E(x′)

dist(v, u).

It is useful to think of a code ensemble E : Σk → 2Σm as a randomized mapping, that given
x ∈ Σk, outputs a uniformly random element from the set of encodings E(x). Using the above
we can define a shared secret property. In particular, we use a strong information theoretic
definition of a shared secret, in which o(m) bits do not give any information at all about the
encoded value. Later on, we construct code ensembles with a shared secret property.

Definition 5.2.2 (Shared Secret). For m, k ∈ N and a constant ζ > 0, we say that a code
ensemble C : {0, 1}k → 2({0,1}m) has a ζ-shared secret property it satisfies the following. For
any Q ⊆ [m] of size |Q| ≤ ζm, any w,w′ ∈ {0, 1}k such that w 6= w′, and any t ∈ {0, 1}|Q| it
holds that

Pr
v∼C(w)

[v|Q = t] = Pr
v′∼C(w′)

[v′|Q = t].

Namely, for any w 6= w′ and any Q ⊆ [m] of size at most ζm, the distribution obtained by
choosing a uniformly random member of C(w) and considering its restriction to Q, is identical
to the distribution obtained by choosing a uniformly random member of C(w′) and considering
its restriction to Q.

5.2.1 A construction of a hard code ensemble

We describe a construction of a code ensemble for which a linear number of queries is necessary
to verify membership or to decode the encoded value. This code will be our base code in the
iterative construction. The existence of such a code ensemble is proved probabilistically, relying
on the following simple lemma.

Lemma 5.2.3. Fix constant α, β > 0 where β log(e/β) < α. Let s, t ∈ N so that s ≤ (1− α)t.
Then, with probability 1 − o(1), a sequence of s uniformly random vectors {v1, . . . , vs} from
{0, 1}t is linearly independent, and corresponds to a β-distance linear code.

Proof: The proof follows from a straightforward counting argument. If we draw s uniformly
random vectors v1, . . . , vs ∈ {0, 1}t, then each non-trivial linear combination of them is in itself
a uniformly random vector from {0, 1}t, and hence has weight less than β with probability at
most

2−t ·
(
t

βt

)
≤ 2−t

(
et

βt

)βt
= 2−t · 2β log(e/β)t = 2(γ−1)t,

where we set γ = β log(e/β) < α.

56

By a union bound over all 2s ≤ 2(1−α)t possible combinations, the probability that there
exists a linear combination with weight less than β is at most 2(γ−α)t = o(1). If this is not
the case, then v1, . . . , vs are linearly independent, and moreover, {v1, . . . , vs} corresponds to a
β-distance linear code (where we use the fact that the distance of a linear code is equal to the
minimal Hamming weight of a non-zero codeword).

Our construction makes use of a sequence of vectors that correspond to a high-distance and
high-dual distance code, as described below.

Definition 5.2.4 (Hard code ensemble Hk). Let k ∈ N and let {v1, . . . , v3k} be a sequence of
vectors in {0, 1}4k such that Span{v1, . . . , v3k} is a 1/30-distance code, and that Span{vk+1, . . . , v3k}
is a 1/30-dual distance code. Let

A =

 | |
v1 · · · v3k

| |

 .
We define the code ensemble Hk : {0, 1}k → 2{0,1}

4k
as

Hk(w) = {Au : u ∈ {0, 1}3k where u|{1,...,k} = w},

where all operations are over GF(2).

The next lemma states that a collection of random vectors {v1, . . . , v3k} in {0, 1}4k satisfies
the basic requirements of a code ensemble Hk with high probability (that is, with probability
tending to one as k →∞), and hence such a code ensemble exists.

Lemma 5.2.5. A set {v1, . . . , v3k} of random vectors in {0, 1}4k satisfies with high probability
the following two conditions: Span{v1, . . . , v3k} is a 1/30-distance code, and Span{vk+1, . . . , v3k}
is a 1/10-dual distance code. In particular, for all k large enough the code ensemble Hk exists.

Proof: We apply Lemma 5.2.3 multiple times. First, picking t = 4k, s = 3k, α = 1/4, and
β = 1/30, we conclude that v1, . . . , v3k with high probability correspond to a 1/30-distance
code.

To show that with high probability the code spanned by the last 2k vectors has high dual
distance, we compare the following two processes, whose output is a linear subspace of (GF(2))4k,
that we view as a code: (i) Choose 2k vectors and return their span. (ii) Choose 4k − 2k =
2k vectors and return the dual of their span. Conditioning on the chosen 2k vectors being
linearly independent, the output distributions of these two processes are identical. Indeed, by
a symmetry argument it is not hard to see that under the conditioning, the linear subspace
generated by Process (i) is uniformly distributed among all rank-2k subspaces V of (GF(2))4k.
Now, since we can uniquely couple each such V with its dual V ⊥ (also a rank-2k subspace) and
since V = (V ⊥)⊥, this means that the output distribution of Process (ii) is uniform as well.

However, it follows again from Lemma 5.2.3 (with t = 4k, s = 2k, α = 1/2, and any β > 0
satisfying the conditions of the lemma) that the chosen 2k vectors are independent with high
probability. This means that (without the conditioning) the output distributions of Process
(i) and Process (ii) are o(1)-close in variation distance. Applying Lemma 5.2.3 with t = 4k,
s = 2k, α = 1/2, and β = 1/10 we get that the distance of the code generated by Process (i) is
at least β = 1/10 with high probability. However, the latter distance equals by definition to the
dual distance of the code generated by Process (ii). By the closeness of the distributions, we
conclude that the dual distance of Process (i) is also at least 1/10 with high probability.

We next state a simple but important observation regarding membership verification.

Observation 5.2.6. Once a matrix A with the desired properties is constructed (which may
take exp(k2) time if we use brute force), given w ∈ {0, 1}k, the membership of v in Hk(w) can
be verified in poly(k) time (by solving a system of linear equations over GF(2)).

57

5.3 PCUs and PCUSSs

Next, we define the notion of Probabilistically Checkable Unveiling (PCU). This notion is similar
to PCPP, but here instead of requiring our input to satisfy a given property, we require our
input to encode a value w ∈ {0, 1}k (typically using a large distance code ensemble). We then
require that given the encoded value w, it will be possible to prove in a PCPP-like fashion that
the input is indeed a valid encoding of w.

Definition 5.3.1 (PCU). Fix m, t, k ∈ N, and let C : {0, 1}k → 2{0,1}
m

be a code ensemble. We
say that C has a q(ε, δ)-query, length-t PCU if the following holds. There exists a verification
algorithm V that takes as inputs ε, δ > 0, m ∈ N, and w ∈ {0, 1}k, makes at most q(ε, δ) queries
to the strings v ∈ {0, 1}m and π ∈ {0, 1}t, and satisfies the following:

1. If v ∈ C(w), then there exists a proof π = ProofC(v) ∈ {0, 1}t such that for every ε, δ > 0,
the verifier V accepts with probability 1.

2. If dist(v, C(w)) > ε, then for every alleged proof π ∈ {0, 1}t, the verifier V rejects v with
probability greater than δ.

In order to facilitate the proof of the main theorem, we utilize a more stringent variant of the
above PCU definition. Recall that Spiel is a constant rate and relative distance code, in which
membership can be decided using quasi-linear size circuit; See Chapter 2.6 and Theorem 2.6.2
therein.

Instead of supplying w ∈ {0, 1}k to the algorithm, we supply oracle access to a a string
τ ∈ {0, 1}100k that is supposed to represent Spiel(w), along with the proof π, and the algorithm
only makes q(ε, δ) queries to the proof string π, the original encoding v and the string τ . For
cases where v ∈ C(w), we use Value(v) to denote Spiel(w).

Definition 5.3.2 (Spiel-PCU). Fix m, t, k ∈ N, and let C : {0, 1}k → 2{0,1}
m

be a code ensemble.
We say that C has a q(ε, δ)-query, length-t Spiel-PCU if the following holds. There exists a
verification algorithm V that takes as inputs ε, δ > 0, m ∈ N, makes at most q(ε, δ) queries to
the strings v ∈ {0, 1}m, τ ∈ {0, 1}100k and π ∈ {0, 1}t, and satisfies the following:

1. If there exists w ∈ {0, 1}k for which v ∈ C(w) and τ = Value(v) = Spiel(w), then there
exists a proof π = ProofC(v) ∈ {0, 1}t such that for every ε, δ > 0, the verifier V accepts
with probability 1.

2. If for every w ∈ {0, 1}k either dist(τ,Spiel(w)) > ε or dist(v, C(w)) > ε, then for every
alleged proof π ∈ {0, 1}t, the verifier V rejects v with probability greater than δ.

Note that a code ensemble admitting a Spiel-PCU automatically admits a PCU. Indeed,
given the string w, an oracle for Spiel(w) can be simulated.

The following lemma states the existence of Spiel-PCU for efficiently computable code en-
sembles, and will be used throughout this work. The proof follows from Lemma 2.3.2 together
with a simple concatenation argument.

Lemma 5.3.3. Let k,m, t ∈ N be such that t ≥ m, and let C : {0, 1}k → 2{0,1}
m

be a code
ensemble. If given w ∈ {0, 1}k and v ∈ {0, 1}m, it is possible to verify membership of v in
C(w) using a circuit of size t, then there is a q(ε, δ)-query, length-t′ Spiel-PCU for C where
t′ = t · polylog t.

58

Proof: Assume without the loss of generality that m ≥ |Spiel(0k)|. Let ξ =
⌊

m
|Spiel(0k)|

⌋
(note

that ξ ≥ 1), and define

Ceq
def
=
{
v t (Spiel(w))ξ

∣∣ ∃w ∈ {0, 1}k for which v ∈ C(w)
}
,

where (Spiel(w))ξ denotes the ξ-times concatenation of Spiel(w).
For any string u it is possible to check, using a quasilinear size circuit (see [Spi96]), that

the substring that corresponds to the domain of (Spiel(w))ξ is a ξ-times repetition of Spiel(w)
for some w. After doing so, we decode w using a quasilinear size circuit (as in [Spi96]), and
then, by the premise of the lemma, we can verify membership in C(w) using a circuit of size t.
Therefore, membership in Ceq can be decided using a O(t) size boolean circuit, and therefore
by Lemma 2.3.2 admits a PCPP system whose proof length is quasilinear in t.

Given an input v to Spiel-PCU, let v′ = vt(Spiel(w))ξ and use the PCPP system for Ceq, with
detection radius ε/3 and soundness δ, where each query to v′ is emulated by a corresponding
query to v or Spiel(w). Note that if v ∈ C(w), then v′ ∈ Ceq, so the PCPP system for Ceq will
accept with probability 1.

Next, suppose that dist(v, C(w)) > ε, and observe that this implies that v′ is at least ε/3-
far from Ceq. Thus, by the soundness property of the PCPP for Ceq, the verifier rejects with
probability at least δ, regardless of the contents of the alleged proof π it is supplied with.

Next we define Probabilistically Checkable Unveiling of a Shared Secret (PCUSS).

Definition 5.3.4. For m, k, t ∈ N, we say that a function C : {0, 1}k → 2({0,1}n) has a q(ε, δ)-
query, length-t PCUSS, if C has a shared secret property, as well as C has a q(ε, δ)-query,
length-t PCU. Similarly, when C has a shared secret property (for constant ζ), as well as C has
a q(ε, δ)-query, length-t Spiel-PCU, we say that C has a q(ε, δ)-query, length-t Spiel-PCUSS.

Note that C admitting a Spiel-PCUSS directly implies that it admits a PCUSS with similar
parameters.

The following lemma establishes the existence of a Spiel-PCUSS for Hk, where Hk is the
code ensemble from Definition 5.2.4.

Lemma 5.3.5. For any k ∈ N, Hk has a q(ε, δ)-query, length-t′ Spiel-PCUSS where t′ = poly(k).

Proof: By Observation 5.2.6, given w, membership in Hk(w) can be checked in poly(k) time,
which means that there exists a polynomial size circuit that decides membership in Hk(w).
Combining the above with Lemma 5.3.3 implies a q(ε, δ)-query, length-t′ Spiel-PCU where t′ =
poly(k). By Lemma 2.6.7, the large dual distance property of Hk implies its shared secret
property for some constant ζ, which concludes the proof of the lemma.

5.4 PCUSS construction

In this section we give a construction of code ensembles that admit a PCUSS. First we show
that our code ensemble has a PCU with a short proof. Specifically,

Lemma 5.4.1. For any fixed ` ∈ N and any k ∈ N, there exists n0(`, k) and a code ensemble
E(`) : {0, 1}k → 2({0,1}n), such that for all n > n0(`, k), the code ensemble E(`) has a q(ε, δ)-query
length-t PCU, for t = O(n · polylog(`)n).

Later, we prove that our code ensemble has a shared secret property, which implies that it
has a PCUSS (which implies Theorem 5.1.1, as we shall show).

Theorem 5.4.2. For any fixed ` ∈ N and any k ∈ N, there exists n0(`, k) and a code ensemble
E(`) : {0, 1}k → 2({0,1}n), such that for all n > n0(`, k), the code ensemble E(`) has a q(ε, δ)-query
length-t PCUSS, for t = O(n · polylog(`)n).

59

5.4.1 The iterated construction

Our iterative construction uses polynomials over a binary finite field GF(2t). In our proof we
will need to be able to implement arithmetic operations over this field efficiently (i.e., in poly(t)
time). This can be easily done given a suitable representation of the field: namely, a degree t
irreducible polynomial over GF(2). It is unclear in general whether such a polynomial can be
found in poly(t) time. Fortunately though, for t = 2 · 3r where r ∈ N, it is known that the
polynomial xt + xt/2 + 1 is irreducible over GF(2) (see, e.g., [Gol08, Appendix G]). We will
therefore restrict our attention to fields of this form. At first glance this seems to give us a
property that is defined only on a sparse set of input lengths. However, towards the end of this
section, we briefly describe how to bypass this restriction.

We next formally define our iterated construction, starting with the “level-0” construction
as a base case. The constants c, d in the definition will be explicitly given in the proof of
Lemma 5.4.8. Additionally, for any ` ∈ N, we shall pick a large enough constant c` that satisfies
several requirements for the “level-`” iteration of the construction.

Definition 5.4.3 (Iterated coding ensemble). For k ∈ N and w ∈ {0, 1}k, we define the base
code ensemble of w (i.e., level-` code ensemble of w for ` = 0) as

E(0)
k (w) = Hk(w).

Let c, d ∈ N be large enough global constants, fix ` > 0, let c` be large enough, and let F be a
finite field for which |F| ≥ max{c`, c · k}.

We define the level-` code ensemble of w ∈ {0, 1}k over F as follows. Let r ∈ N be the
smallest integer such that (log |F|)d ≤ 22·3r , set F′ = GF

(
22·3r) and k′ = log |F|. Note that

these satisfy the recursive requirements of a level-(`−1) code ensemble provided that c` is large
enough (specifically we require (log |F|)d−1 > c, so that |F′| ≥ ck′). Finally, let H ⊆ F be such
that |H| = k, and define

E(`)
F,k(w) =

⋃
g∈CF: g|H=w

⊔
β∈F\H

E(`−1)
F′,k′ (〈〈g(β)〉〉).

(Note that for ` = 1 we just use E(1)
F,k(w) =

⋃
g∈CF: g|H=w

⊔
β∈F\H E

(0)
k′ (〈〈g(β)〉〉)).

That is, v ∈ E(`)
F,k(w) if there exists a polynomial g ∈ CF such that v =

⊔
β∈F\H vβ, where

vβ ∈ E
(`−1)
F′,k′ (〈〈g(β)〉〉) for every β ∈ F\H and g|H = w (where we identify the 0 and 1 elements of

F with 0 and 1 bits respectively). When the context is clear, we sometimes omit the subscripts.

Our choice of the constants c, d, c` needs to satisfy the following conditions. The constant
c is chosen such that H will not be an overly large portion of F (this requirement is used in
Lemma 5.4.14). The constant d is needed to subsume the length of PCPP proof string which
is part of the construction (this requirement is used in Lemma 5.4.8). Finally, the constant c`
needs to be large enough to enable iteration (as explained in Definition 5.4.3 itself).

Let ` ≥ 0 be some fixed iteration. The following simple observation follows by a simple
inductive argument using the definition of the level-` coding ensemble, and in particular that
|F′| = polylog |F|.

Observation 5.4.4. For ` > 0, let n = |F| and w ∈ {0, 1}k. If v ∈ E(`)(w), then m
(`)
F

def
= |v| =

n ·poly(log n) ·poly(log log n) · · · poly(log(`) n), where log(`) n is the log function iterated ` times.

60

When the field F is clear from context, we shall usually write m(`) as a shorthand for m
(`)
F .

The following lemma, proved in the next subsection, establishes the existence of short length
Spiel-PCUs for our code ensembles.

Lemma 5.4.5. For any ` ≥ 0, the code ensemble E(`)
F,k admits a q(ε, δ)-query, length-t Spiel-PCU

for t = O(m(`) · polylog(`)m(`))

5.4.2 Proof of Lemma 5.4.5

We start by defining the PCU proof string for a given v ∈ E(`)
F,k(w) for some w ∈ {0, 1}k.

Definition 5.4.6 (The PCU Proof String). For ` = 0, let v ∈ E(0)
k (w) and Value(0)(v) =

Spiel(w). We define the proof string for v, Proof (0)(v), as the one guaranteed by Lemma 5.3.5
(note that the length of Proof (0)(v) is poly(k)).

For ` > 0, let g ∈ CF and w ∈ {0, 1}k be such that v ∈
⊔
β∈F\H E(`−1)(〈〈g(β)〉〉), Value(`)(v) =

Spiel(w) and g|H = w. In addition, set Sv
def
=
⊔
β∈F\H Value(`−1)(vβ) =

⊔
β∈F\H Spiel(g(β)).

The proof string for v ∈ E(`)
F,k is defined as follows.

Proof (`)(v) = Sv t
⊔

β∈F\H

Proof (`−1)(vβ) tProofL (Sv)

where the code ensemble L : {0, 1}k → 2{0,1}
O(|F|·log |F|)

is defined as follows. Given w ∈ {0, 1}k,
S ∈ L(w) if and only if there exists a polynomial g ∈ CF such that the following conditions are
satisfied.

1. g|H = w.

2. S =
⊔
β∈F\H Spiel(g(β)).

The following lemma establishes the existence of a Spiel-PCU for L.

Lemma 5.4.7. L has a q(ε, δ)-query length-t Spiel-PCU for t = O(|F| · polylog |F|).

Proof: By Theorem 2.6.2, there exists a quasilinear size circuit that decodes Spiel(α). Using
such a circuit, we can decode g(β) from S for every β ∈ F. Then, using all the values g(β)
and w (where the i-th bit of w correspond to the value of the i-th element in H according to
the ordering), we use Theorem 2.6.4 to interpolate the values and achieve a representation of
a polynomial g : F → F. If g ∈ CF we accept S and otherwise we reject. Since deciding if
S ∈ L(w) has a quasilinear size circuit, by Lemma 5.3.3, there is a quasilinear length Spiel-PCU
for L.

Having defined Proof (`), we first provide an upper bound on the bit length of the prescribed

proof string. For ` > 0, let z
(`)
F,k denote the bit length of the proof for membership in E(`) as

defined in Definition 5.4.6, where for ` = 0 we replace the (nonexistent) field F with |w|.

The following lemma, establishing the proof string’s length, relies on our choice of the
constant d in Definition 5.4.3. In particular, d needs to be large enough to subsume the size of
ProofL(·)

Lemma 5.4.8. For any ` ≥ 0, we have that z
(`)
F,k = O

(
m(`) · polylog(`)m(`)

)
.

61

Proof: The proof follows by induction on `. The base case (` = 0) follows directly from the
definition of P(0) by our convention that log(0) |w| = |w|.

Consider ` > 0, and note that since the size of Sv is O(|F| log |F|), the size of ProofL(Sv) is
O(|F| · polylog |F|). By combining the above with the definition of the proof string we have

z
(`)
F,k ≤ |F| · polylog |F|+ |F| · z(`−1)

F′,k′ .

Now, assume that z
(`−1)
F′,k′ = O(m(`−1) · polylog(`−1)|F′|). Note that since the global constant d

was chosen so that |F| · |F′| ≥ |ProofL(Sv)|, we have that |F| · z(`−1)
F′,k′ ≥ |F| · |F

′| ≥ |ProofL(Sv)|.
Therefore,

m(`) = Θ(|F| ·m(`−1)) = Ω(|F| · |F′|) = Ω(|F| · polylog |F|),

so that |F| · polylog |F| = O(m(`)), and

z
(`)
F,k = O(|F| · z(`−1)

F′).

In addition, by the fact that m` = Θ(|F| ·m(`−1)) and the induction hypothesis we obtain

|F| · z(`−1)
F′,k′ = O(|F| ·m(`−1) · polylog(`−1)|F′|) = O(m(`) · polylog(`)|F|) = O(m(`) · polylog(`)m`).

So overall, we get that z
(`)
F,k = O(m(`) · polylog(`)m(`)) as required.

Next, for an alleged proof π = Proof (`)(v), we use the notation π|Dom(X) to denote the
restriction of π to the bits that correspond to X in π as defined in Definition 5.4.6. For
example, π|Dom(Value(`−1)(vβ)) refers to the bits that represent Value(`−1)(vβ).

We introduce the verifier procedure for E(`)
F,k (see Figure 5.1), and prove its completeness and

soundness.

Lemma 5.4.9. If there exist w ∈ {0, 1}k for which v ∈ E(`)
F,k(w), then Verifier-Procedure E(`)

accepts v with probability 1 when supplied with oracle access to the corresponding Proof (`)(v)
and τ = Value(`)(v) = Spiel(w).

Proof: The proof follows by induction on `. The base case follows directly from Lemma 5.3.5.
Hence, the verifier for E(0) supplied with Proof (0)(v) as the proof oracle and Value(`)(v) as the
value oracle, will accept v with probability 1.

Assume that Verifier-Procedure E(`−1) accepts with probability 1 any valid encoding v′

when supplied with the corresponding oracles for Value(`−1)(v′) and Proof (`−1)(v′). Let v ∈
E(`) and write v =

⊔
β∈F\H vβ, where there exist w ∈ {0, 1}k and g ∈ CF such that for all

β ∈ F \ H, vβ ∈ E(`−1)(g(β)), where g|H = w and τ = Value(`)(v) = Spiel(w). Then, by

the definition of the language L and the first two components of Proof (`)(v), Step (2a) of
Verifier-Procedure E(`) will always accept. In addition, for every β ∈ F \ H, we have that
vβ ∈ E(`−1), and therefore by the induction hypothesis, Step (2b) of Verifier-Procedure E(`)
will accept the corresponding unveiling for any picked β ∈ F \H.

Lemma 5.4.10. If for every w ∈ {0, 1}k either dist(τ,Spiel(w)) > ε or dist(v, E(`)(w)) > ε (or
both), then with probability greater than δ, Verifier-Procedure E(`) will reject v regardless of
the contents of the supplied proof string.

Proof: Let τ ∈ {0, 1}100k be an alleged value for v, and π ∈ {0, 1}z
(`)
F,k be an alleged proof

string for v. We proceed by induction on `. For ` = 0 we use the PCU verifier for E(0) with error

62

Verifier-Procedure E(`)

Input: Parameters ε, δ ∈ (0, 1), an input v ∈ {0, 1}m(`)
, an alleged value τ ∈ {0, 1}100k of

v, and an alleged proof π ∈ {0, 1}z
(`)
F,k for v.

1. If ` = 0, use the PCU for E(0) with parameters ε and δ.

2. If ` > 0:

(a) Use the PCU verifier for L with error ε/300 and soundness δ, to verify the
unveiling of π|Dom(Sv), using τ as the value oracle and π|Dom(ProofL(Sv)) as the
proof oracle.

(b) For 6/ε many times:

i. Pick β ∈ F \H uniformly at random.

ii. Use the PCU verifier procedure for E(`−1) with parameters ε/3 and 2δ, to
verify the unveiling of vβ, using π|Dom(Value(`−1)(vβ)) as the value oracle and

π|Dom(Proof (`−1)(vβ)) as the proof oracle.

If any of the stages rejected then Reject, and otherwise Accept.

Figure 5.1: Description of Verifier-Procedure E(`) .

ε and soundness δ to check that v is a member of the code ensemble E(0) and τ is its value. If
the PCU verifier for E(0) rejects with probability at most δ, then there exist w ∈ {0, 1}k such
that dist(v, E(0)(w)) ≤ ε and dist(τ,Spiel(w)) ≤ ε, and the base case is complete.

Next assume that the lemma holds for ` − 1. If the PCU verifier for L in Step (2a) rejects
with probability at most δ, then there exist a function g ∈ CF and w ∈ {0, 1}k for which g|H = w
so that

dist(π|Dom(Sv), Spiel(g|F\H)) ≤ ε/300 and dist(τ,Spiel(w)) ≤ ε/300.

In particular, the leftmost inequality means that for at most ε
3 |F\H| of the elements β ∈ F\H,

it holds that

dist(π|Dom(Value(`−1)(vβ)),Spiel(g(β)) > 1/100.

We refer to elements β ∈ F \H satisfying the above inequality as bad elements, and to the rest
as good elements. Let G denote the set of good elements.

Next, we show that if the loop that uses the PCU verifier for E(`−1) in Step (2b) rejects with
probability at most δ, then for at most an ε/3 fraction of the good β ∈ F \H, it holds that

dist
(
vβ, E(`−1)(〈〈g(β)〉〉)

)
> ε/3.

Assume that there are more than ε
3 ·|G| good elements such that dist

(
vβ, E(`−1)(〈〈g(β)〉〉)

)
> ε/3.

Then, by our induction hypothesis, each of them will be rejected by the PCU verifier for E(`−1)

with probability more than 2δ. In addition, with probability at least 1/2 we sample at least one
such good β, and then during this iteration the verifier in Step (2b(ii)) rejects with conditional
probability more than 2δ, and hence the verifier will reject with overall probability more than

63

δ. Summing everything up, when the input is rejected with probability at most δ,

dist

v, ⊔
β∈F\H

E(`−1)(〈〈g(β)〉〉)

 ≤ ε/3 + (1− ε/3) · ε/3 + (1− ε/3)2 · ε/3 ≤ ε,

where the three summands are respectively the contribution to the distance of the bad elements,
the good elements with vβ being far from any level `− 1 encoding of 〈〈g(β)〉〉, and all the other
elements.

The proof of Lemma 5.4.5 follows directly by combining Lemma 5.4.8, Lemma 5.4.9 and
Lemma 5.4.10.

The following corollary follows directly from Lemma 5.4.5 and the definition of Spiel-PCU (Def-
inition 5.3.2), and implies Lemma 5.4.1.

Corollary 5.4.11. Let F be a finite field and k ∈ N which satisfy the requirements in Def-

inition 5.4.3. Then, for every ` ≥ 0 the coding ensemble E(`)
F,k : {0, 1}k → 2

(
{0,1}m(`)

)
has a

q(ε, δ)-query, length-t Spiel-PCU for t = O(m(`)polylog(`)m(`)).

5.4.3 The Lower Bound

We turn to prove the linear query lower bound for the testability of our property. We start by
defining distributions over strings of length m(`).

Distribution D(`)
yes(w): Given w ∈ {0, 1}k, we define the distribution D(`)

yes(w) to be the uni-
form distribution over elements in E(`)(w).

Distribution D(`)
no: An element v from D(`)

no is drawn by the following process. For ` = 0,
v is a uniformly random string in {0, 1}4k. For ` > 0, we pick a uniformly random function
λ : F \H → F, and let v be a uniformly random element of

⊔
β∈F\H E(`−1)(〈〈λ(β)〉〉)

Lemma 5.4.12. For any ` ≥ 0, every w ∈ {0, 1}k and q = o(m(`)/10`), any algorithm making

at most q queries cannot distinguish (with constant probability) between v ∼ D(`)
yes(w) and u

which is drawn according to any of the following distributions:

1. D(`)
yes(w′) for any w′ 6= w.

2. D(`)
no .

Note that Item (1) in the above follows immediately from Item (2). Additionally, the first
item implies the shared secret property of the code ensemble E(`). Furthermore, we remark
that that above lemma implies a more stringent version of PCUSS. In addition to the shared
secret property, Item (2) implies that the ensemble E(`) is indistinguishable from strings that

are mostly far from any encoding (i.e., drawn from D(`)
no).

The proof of Lemma 5.4.12 follows by induction over `. Before we continue, we introduce
some useful lemmas that will be used in the proof.

Lemma 5.4.13. For any ` ≥ 0 and w,w′ ∈ {0, 1}k for which w 6= w′ it holds that

min
(v,v′)∈E(`)(w)×E(`)(w′)

dist(v, v′) = Θ
(

1/4`+1
)

64

Proof: The proof follows by induction over `. The base case for ` = 0 follows directly by the fact
that the code from Definition 5.2.4 has high distance, and in particular dist(E(0)(w), E(0)(w′)) >
1/10. Assume that the lemma holds for `− 1. Namely, for w,w′ ∈ {0, 1}k′ for which w 6= w′ it
holds that

min
(v,v′)∈E(`−1)(w)×E(`−1)(w′)

dist(v, v′) = Θ
(

1/4`
)
.

Let w̃, w̃′ ∈ {0, 1}k be such that w̃′ 6= w̃. Then we can write (ṽ, ṽ′) ∈ E(`)(w̃)× E(`)(w̃′) as

ṽ =
⊔

β∈F\H

E(`−1)(〈〈g(β)〉〉) and ṽ′ =
⊔

β∈F\H

E(`−1)(〈〈g′(β)〉〉),

for some g, g′ ∈ CF such that g|H = w̃ and g′|H = w̃′. By the fact that g and g′ are degree |F|/2
polynomials (which are not identical), we have that g and g′ disagree on at least |F\H|/4 of the
elements β ∈ F \H. By applying the induction hypothesis on the minimum distance between
E(`)(〈〈g(β)〉〉) and E(`)(〈〈g′(β)〉〉), for all β such that g(β) 6= g′(β), we have that

min
(ṽ,ṽ′)∈E(`)(w̃)×E(`)(w̃′)

dist(ṽ, ṽ′) >
1

4
·Θ
(

1

4`

)
= Θ

(
1/4`+1

)
.

Lemma 5.4.14. For any ` ≥ 0, with probability at least 1 − o(1), a string v drawn from D(`)
no

satisfies dist(v, E(`)(w)) = Θ
(
1/4`+1

)
for all w ∈ {0, 1}k.

Proof: The proof follows by induction over `. For ` = 0, fix some w ∈ {0, 1}k. Consider the
size of a ball of relative radius 1/40 around some v ∈ E(0)(w) in the space of all strings {0, 1}4k.
The number of strings contained in this ball is at most(

4k

k/10

)
≤ (40e)k/10 = 2k/10·log(40e).

Thus, the size of the set of strings which are at relative distance 1/40 from any legal encoding
of some word w ∈ {0, 1}k is at most

23k · 2k/10·log(40e) = o(24k).

This implies that with probability at least 1 − o(1), a random string from {0, 1}4k is 1/40-far
from E(0)(w) for any w ∈ {0, 1}k.

For any ` > 0, consider v′ sampled according to D(`)
no . Then, v′ can be written as

v′ =
⊔

β∈F\H

E(`−1)(〈〈λ(β)〉〉),

where λ : F \ H → F is a uniformly random function. On the other hand, each member ṽ of
P(`) can be written as

ṽ =
⊔

β∈F\H

E(`−1)(〈〈g(β)〉〉),

for some g ∈ CF such that g|H = w for some w ∈ {0, 1}k. Note that by Lemma 5.4.13,
whenever λ(β) 6= g(β), we have that the minimum distance between any ṽ ∈ E(`−1)(〈〈g(β)〉〉)
and v′ ∈ E(`−1)(〈〈λ(β)〉〉) is at least Θ(1/4`). In addition, by Lemma 2.6.5, we have that that
with probability at least 1 − o(1), a uniformly random function λ : F → F is 1/3-far from any
g ∈ CF. By the restrictions on k in Definition 5.4.3, which implies that |H| ≤ |F |/c, we can

65

ensure (by the choice of c) that with probability at least 1 − o(1), that a uniformly random
λ : F \ H → F is at least 1/4-far from the restriction g|F\H . This implies that for at least
|F \ H|/4 of the elements β ∈ F \ H, we have that λ(β) 6= g(β). Therefore, we have that
dist(v′, E(`)(w)) = 1

4 ·Θ
(

1
4`

)
= Θ

(
1/4`+1

)
for all w ∈ {0, 1}k, and the proof is complete.

Lemma 5.4.15. Fix any ` > 0, and suppose that for any w′ ∈ {0, 1}k′, and for any set Q′ of

at most q
(`−1)
F′,k′ queries (where F′ and k′ are picked according to the recursive definition of the

level `-encoding, and for q(0) we substitute k′ for the nonexistent F′) the restricted distributions

D(`−1)
yes (w′)|Q′ and D(`−1)

no |Q′ are identical. Then, for any w ∈ {0, 1}k, and any set Q of at most
|F\H|

10 · q(`−1)
F′,k′ queries, the restricted distributions D(`)

yes(w)|Q and D(`)
no |Q are identical.

Proof: Let Q ⊂ [m(`)] be the set of queries, and fix a canonical ordering over the elements in

F \H. Let v be an element drawn according to distribution D(`)
yes(w), and let v′ be an element

drawn according to distribution D(`)
no . The sampling process from D(`)

yes(w) can be thought of as
first drawing a uniformly random function g ∈ CF such that g|H = w, and for every β ∈ F \H,
letting vβ be a uniformly random element in E(`−1)(〈〈g(β)〉〉).
For each β ∈ F \H we set Qβ = Q ∩Dom(vβ), and define the set of big clusters

I =
{
β ∈ F \H : |Qβ| ≥ q

(`−1)
F′,k′

}
.

Note that since |Q| ≤ |F \H| · q(`−1)
F′,k′ /10, we have that |I| ≤ |F \H|/10.

By the fact that g is a uniformly random polynomial of degree |F|/2 > |I|, we have that g|I
is distributed exactly as λ|I (both are a sequence of |I| independent uniformly random values),
which implies that v|⋃

j∈I Qj
is distributed exactly as v′|⋃

j∈I Qj
.

Next, let F \ (I ∪ H) = {i1, . . . , i|F\(I∪H)|} be a subset ordered according to the canonical
ordering over F. We proceed by showing that v|⋃

j∈I∪{i1,...,it}
Qj is distributed identically to

v′|⋃
j∈I∪{i1,...,it}

Qj by induction over t.

The base case (t = 0) corresponds to the restriction over
⋃
j∈I Qj , which was already proven

above. For the induction step, let T = {i1, . . . , it−1} ⊆ F \ (I ∪H) be an ordered subset that
agrees with the canonical ordering on F, and let it ∈ F \ (H ∪ T ∪ I) be the successor of it−1

according to the ordering. We now prove that for each x ∈ {0, 1}m(`)
for which v|⋃

j∈I∪T Qj
has

a positive probability of being equal to x|⋃
j∈I∪T Qj

, conditioned on the above event taking place

(and its respective event for v′), v|Qit is distributed exactly as v′|Qit .
Observe that conditioned on the above event, v|Qit is distributed exactly as a uniformly

random element in E(`−1)(ρ) for some ρ ∈ {0, 1}k′ (which follows some arbitrary distribution,
possibly depending on x|⋃

j∈I∪T Qj
), while v′|Qit is distributed exactly as a uniformly random

element in E(`−1)(y) for a uniformly random y ∈ {0, 1}k′ . By the fact that |Qit | ≤ q
(`−1)
F′,k′ /10,

we can apply the induction hypothesis and conclude that v|Qit is distributed exactly as v′|Qit ,
because by our hypothesis both are distributed identically to the corresponding restriction of

D(`−1)
no , regardless of the values picked for ρ and y. This completes the induction step for t.

The lemma follows by setting t = |F \H ∪ I|.

Lemma 5.4.16. For any ` ≥ 0, w ∈ {0, 1}k and any set of queries Q ⊂ [m(`)] such that

|Q| = O
(
m(`)

10`

)
, the restricted distributions D(`)

yes(w)|Q and D(`)
no |Q are identically distributed.

Proof: By induction on `. For ` = 0 and any w ∈ {0, 1}k, by the fact that our base encoding
E(0)(w) is a high dual distance code, we can select (say) q(0) = k/c (for some constant c > 0),
making the assertion of the lemma trivial.

66

Assume that for any w′ ∈ {0, 1}k′ , and any set of queries Q′ of size at most O(m(`−1)/10`−1)

the conditional distributions D(`−1)
yes (w′)|Q′ and D(`−1)

no |Q′ are identically distributed. Then, by
Lemma 5.4.15, we have that for any w ∈ {0, 1}k and any set of queries Q of size at most

O

(
|F \H|

10`
·m(`−1)

)
,

the restricted distributions D(`)
yes(w)|Q and D(`)

no |Q are identically distributed. Note that by
definition of the level `-encoding, m(`) = |F \ H| ·m(`−1), which implies the conclusion of the
lemma.

Proof of Lemma 5.4.12: Lemma 5.4.12 follows directly by combining Lemma 2.1.4, and
Lemma 5.4.16.

Combining Lemma 5.4.12 with the definition of Spiel-PCU (Definition 5.3.2) establishes that
we have constructed a Spiel-PCUSS, which implies Theorem 5.4.2.

Corollary 5.4.17. Let F be a finite field and k ∈ N which satisfy the requirements in Def-

inition 5.4.3. Then, for every ` ≥ 0, the coding ensemble E(`)
F,k : {0, 1}k → 2

(
{0,1}m(`)

)
has

q(ε, δ)-query length-t Spiel-PCUSS for t = O(m(`)polylog(`)m(`)).

5.4.4 Handling arbitrary input lengths

As mentioned in the beginning of this section, our construction of code ensembles relies on
the fact that operations over a finite field GF(2t) can be computed efficiently. In order to
do so we need to have an irreducible polynomial of degree t over GF(2), so that we have a
representation GF(2t). Given such a polynomial, operations over the field can be implemented
in polylogarithmic time in the size of the field. By [Gol08] (Appendix G), we know that for
t = 2 · 3r where r ∈ N, we do have such a representation. However, the setting of t restricts the
sizes of the fields that we can work with, which will limit our input size length.

We show here how to extend our construction to a set of sizes that is “log-dense”. For a global
constant c′, our set of possible input sizes includes a member of [m′, c′m′] for every m′. Moving
from this set to the set of all possible input sizes now becomes a matter of straightforward
padding.

For any n ∈ N, let r be the smallest integer such that n < 22·3r and let F = GF(22·3r). We
make our change only at the level-` construction. First, we use 4d instead of d in the calculation
of the size of F′. Then, instead of using F \H as the domain for our input, we use E \H, for
any arbitrary set E ⊆ F of size n ≥ max{4k, |F|1/4, c`} that contains H. Then, for the level-`,
instead of considering polynomials of degree |F|/2, we consider polynomials of degree |E|/2.
The rest of the construction follows the same lines as the one defined above. This way, all of
our operations can be implemented in polylogarithmic time in |E|.

5.5 Separation of testing models

In this section we use Theorem 5.4.2 to prove a separation between the standard testing model,
and the tolerant testing model (in Chapter 6.3 we will show a similar separation between the
standard testing model and the erasure resilient model). Specifically, we prove the following.

Theorem 5.5.1 (Restatement of Theorem 5.0.1). For every constant ` ∈ N, there exist a
property Q(`) and ε1 = ε1(`) ∈ (0, 1) such that the following hold.

67

1. For every ε ∈ (0, 1), the property Q(`) can be ε-tested using a number of queries depending
only on ε (and `).

2. For every ε0 ∈ (0, ε1), any (ε0, ε1)-tolerant tester for Q(`) needs to make Ω(N/10` ·
polylog(`)N) many queries on inputs of length N .

In order to prove the separation we use the code ensemble E(`)
F,k where k is set to 0. Namely,

we consider EF,0(∅). Note that in this case, the code ensemble becomes a property (i.e. a subset
of the set of all possible strings).

Next, we define the property that exhibits the separation between the standard testing
model and the tolerant testing model

Definition 5.5.2. Fix a finite field F and a constant integer ` ∈ N and let ε(`) = Θ(1/4`). Let

n
def
= m

(`)
F , z

(`)
F,0 ≤ n·polylog(`)n denote the length of the proof for the PCUSS from Theorem 5.4.2,

and let N = (log(`) n+ 1) · z(`)
F,0. Let Q(`) ⊆ {0, 1}N be defined as follows. A string x ∈ {0, 1}N

satisfies Q(`) if the following hold.

1. The first z
(`)
F,0 · log(`) n bits of x consist of s =

z
(`)
F,0·log(`) n

n copies of y ∈ E(`)
F,0.

2. The remaining z
(`)
F,0 bits of x consist of a proof string π ∈ {0, 1}z

(`)
F,0 , for which the

Verifier-Procedure E(`)F,0
in Figure 5.1 accepts y given oracle access to y and π.

We first show that Q(`) can be tested using a constant number of queries in the standard
testing model.

Testing Algorithm for Q(`)

Input: Parameter ε ∈ (0, 1), an oracle access to x ∈ {0, 1}N .

1. Set s
def
=

z
(`)
F,0·log(`) n

n .

2. Repeat 4/ε times:

(a) Sample j ∈ [n] and i ∈ [s] \ {1} uniformly at random.

(b) If xj 6= x(i−1)·n+j , then Reject.

3. Let v = (x1, . . . , xn), π = (x
z
(`)
F,0·log(`) n+1

, . . . , x
(log(`) n+1)z

(`)
F,0

) and τ be the empty

string.

4. Run the PCU verifier for E(`)
F,0 with parameters ε/3 and δ = 2/3 on v, using π as the

alleged proof for v, and τ as the alleged value for v.

5. If the PCU verifier rejects, then Reject; otherwise Accept.

Figure 5.2: Description of Testing Algorithm for Q(`) .

Lemma 5.5.3. The property Q(`) has a tester with query complexity depending only on ε.

Proof: We show that the algorithm described in Figure 5.2 is a testing algorithm for Q(`). We
assume that n is large enough so that log(`) n > 6/ε.

68

Assume that x ∈ Q(`). Then, there exists a string y ∈ E(`)
F,0, such that x1, . . . , xz(`)F,0 log(`) n

=

(y)s (where (y)s denotes the concatenation of s copies of y), and x
z
(`)
F,0·log(`) n+1

, . . . , x
(log(`) +1)z

(`)
F,0

=

π ∈ {0, 1}z
(`)
F,0 , where π is a proof that makes the PCU verifier for E(`)

F,0 accept when given oracle
access to y and π. Therefore, the algorithm in Figure 5.2 accepts x.

Next, assume that x is ε-far fromQ(`), and let y′ = x1, . . . , xn. Note that if x1, . . . , xz(`)F,0·log(`) n

is ε/2-far from being (z′)s, then the loop in Step 2 rejects x with probability at least 2/3, and

we are done. If x1, . . . , xz(`)F,0·log(`) n
is ε/2-close to (y′)s, then y′ must be ε/3-far from E(`)

F,0. To

see this, assume toward a contradiction that y′ is ε/3-close to E(`)
F,0. Then, by modifying at most

ε·z(`)F,0·log(`) n

2 bits, we can make x1, . . . , xz(`)F,0·log(`) n
equal to (y′)s. Since, by our assumption y′ is

ε/3-close to E(`)
F,0, we can further modify the string (y′)s to (ỹ)s, where ỹ ∈ E(`)

F,0, by changing at

most
ε·z(`)F,0·log(`) n

3 bits. Finally, by changing at most z
(`)
F,0 bits from π, we can get a proof string

π̃ which will make the PCPP verifier accept ỹ. By our assumption that 6/ε < log(`) n, the total
number of changes to the input string x is at most

ε · z(`)
F,0 · log(`) n

2
+
ε · z(`)

F,0 · log(`) n

3
+ z

(`)
F,0 ≤ ε · (log(`) n+ 1) · z(`)

F,0 = εN,

which is a contradiction to the fact that x is ε-far from E(`)
F,0.

Finally, having proved that y′ is ε/3-far from E(`)
F,0, the PCU verifier for E(`)

F,0 (when called
with parameters ε/3 and δ = 2/3) rejects with probability at least 2/3.

Lemma 5.5.4. For every constant ` ∈ N, there exists ε1
def
= Θ(1/4`) such that for every ε0 < ε1,

any (ε0, ε1)-tolerant tester for Q(`) needs to make at least Ω
(

N
10`·polylog(`)N

)
many queries.

Proof: Fix some constant ` ∈ N. The proof follows by a reduction from 2ε1-testing of E(`)
F,0.

Given oracle access to a string y ∈ {0, 1}n which we would like to 2ε1-test for E(`)
F,0, we construct

an input string x ∈ {0, 1}N where N = (log(`) n+ 1) · z(`)
F,0 as follows.

x
def
= (y)

z
(`)
F,0·log

(`) n

n t (0)z
(`)
F,0 .

That is, we concatenate z
(`)
F,0 · log(`) n/n copies of y, and set the last z

(`)
F,0 bits to 0. Note that a

single query to the new input string x can be simulated using at most one query to the string
y.

If y ∈ E(`)
F,0, then for large enough n we have that x is ε0-close to Q(`), since the last z

(`)
F,0 bits

that are set to 0 are less than an ε0-fraction of the input length.

On the other hand, if dist(x, E(`)
F,0) > 2ε1, since each copy of y in x is 2ε1-far from E(`)

F,0, then

x is 2ε1·log(`) n

log(`) n+1
-far from Q(`) (note that log(`) n

log(`) n+1
> 1/2). Therefore, an (ε0, ε1)-tolerant tester

for Q(`) would imply an 2ε1-tester for E(`)
F,0 with the same query complexity. By Lemma 5.4.12,

since for some ε1 = Θ(1/4`), every 2ε1-tester for E(`)
F,0 requires Ω(n/10`) queries on inputs of

length n, any (ε0, ε1)-tolerant tester for Q(`) requires to make Ω
(

N
10`·polylog(`)N

)
many queries.

Proof of Theorem 5.5.1: The proof follows by combining Lemma 5.5.3 and Lemma 5.5.4.

69

70

Chapter 6

Applications

In this chapter we will use the techniques developed throughout this thesis to obtain additional
applications. We consider the following problems.

Tolerant isomorphism testing. In the problem on isomorphism testing, we are given access
to two unknown Boolean functions f, g : {−1, 1}n → {−1, 1} and a parameter ε ∈ (0, 1), and
wish to distinguish between the case that f is equal to g up to some permutation of the input
variables, or the distance between f and g is at least ε for every relabeling of the variables
in g. We show how to obtain a tolerant testing algorithm for the above problem whose query
complexity is parameterized by k∗ = k(f, g, γ) – the smallest k such that either f or g is γ-close
to a k-junta.

Theorem 1.3.5 (Tolerant isomorphism testing). There exists an algorithm that, given query
access to two functions f, g : {−1, 1}n → {−1, 1} and parameter ε ∈ (0, 1), satisfies the following,
for some absolute constant C ≥ 1.

• If f and g are ε
C -close to isomorphic, then the algorithm accepts with high constant prob-

ability.

• If f and g are ε-far from isomorphic, then the algorithm rejects with high constant prob-
ability.

The query complexity of the algorithm is O
(
2
k∗
2 /ε

)
with high-probability (and O

(
2
n
2 /ε

)
in the

worst case), where k∗ = k∗(f, g, εC).

Lower bounds for tolerant unateness testing. Recall that a function f : {−1, 1}n →
{−1, 1} is unate if it is either non-increasing or non-decreasing in every variable. Namely, there
exists a string r ∈ {0, 1}n such that the function f(x ⊕ r) is monotone with respect to the
bit-wise partial order on {0, 1}n. We will show that the lower bound for testing bipartiteness
using rejection sampling oracle (Theorem 4.0.1) implies lower bounds for tolerant unateness
testing for both the adaptive and non-adaptive settings. Specifically,

Theorem 1.3.6. There exist constants 0 < ε0 < ε1 < 1 such that any (possibly adaptive)
algorithm that distinguishes between functions ε0-close to unate and functions ε1-far from unate,
must make Ω(n/polylog n) queries.

Theorem 1.3.7. There exist constant 0 < ε0 < ε1 < 1 such that any non-adaptive algorithm
that distinguishes between functions ε0-close to unate and functions ε1-far from unate, must
make Ω(n3/2/polylog n) queries.

71

Separating property testing from erasure-resilient testing. Finally, we will use the
short PCPP developed in Chapter 5 (Theorem 5.1.1) to obtain a sharper separation between
the erasure-resilient testing model and the standard testing model.

Theorem 1.3.8 (informal restatement of Theorem 6.3.2). For any constant integer ` ∈ N, there
exist a property of boolean strings P ⊆ {0, 1}n and a constant ε1 ∈ (0, 1) such that P is ε-testable
for any ε > 0 with number of queries independent of n, but for any α = Ω(1/ log(`) n) and ε ∈
(0, ε1) such that ε < 1−α, any α-erasure-resilient ε-tester is required to query Ω(n/polylog(`)n)
many bits.

6.1 “Instance-adaptive” tolerant isomorphism testing

In this section, we show how the machinery developed in section 3.2, and more precisely the al-
gorithm from Theorem 1.3.1, can be leveraged to obtain instance-adaptive tolerant isomorphism
testing between two unknown Boolean functions f .

The structure of our tolerant isomorphism testing algorithm is quite intuitive, and consists
of two phases. In the first phase, we run a linear search on k, repeatedly invoking our tolerant
junta tester to discover the smallest value k satisfying min(dist(f,Jk), dist(g,Jk)) ≤ ε/C. We
note that a similar approach using a tester whose tolerance is only poly(ε/k) might return a
much larger value of k, since as k increases, the allowed tolerance decreases. In the second
phase, we use this value of k to tolerantly test isomorphism between f and g. This phase,
however, is not as straightforward as it seems: indeed, to achieve the desired query complexity,
we would like to test isomorphism – for which we have known algorithms – between fk and gk,
that is, the k-juntas closest to f and g respectively.

Yet here we face two issues: (i) we do not have query access to fk and gk; (ii) even in
the completeness case fk and gk need not actually be isomorphic. Indeed, f and g are only
promised to be close to k-juntas, and close to isomorphic. Hence, the corresponding juntas are
only guaranteed to be close to isomorphic.

Addressing item (ii) relies on adapting the algorithm of [ABC+13], along with a careful and
technical analysis of the distribution of the points it queries. (This analysis is also the key to
providing the tolerance guarantees of our isomorphism tester.) We address item (i) as follows.
Our algorithm builds on the ideas of Chakraborty et al. [CGM11], namely on their notion of a
“noisy sampler”. A noisy sampler is given query access to a function that is promised to be close
to some k-junta and provides (almost) uniformly distributed samples labeled (approximately)
according to this k-junta. While the [CGM11] noisy sampler works for functions that are
poly(ε/k)-close to Jk, we need a noisy sampler that works for functions that are only ε

C -close
to Jk. To this end, we replace the weakly tolerant testing algorithm of [Bla09] used in the
noisy sampler of [CGM11] with our tolerant testing algorithm. The query complexity of the
resulting noisy sampler is indeed much higher than that of [CGM11]. However, this does not
increase the overall query complexity of our tolerant isomorphism testing algorithm, as stated
in Theorem 1.3.5.

We begin with some notation: Let Sn denote the set of permutations of [n]. For f, g : {−1, 1}n →
{−1, 1}, we denote by distiso(f, g) the distance between f and the closest isomorphism of

g, that is distiso(f, g)
def
= minπ∈Sn dist(f, g ◦ π). Given oracle access Of ,Og to two unknown

Boolean functions f, g : {−1, 1}n → {−1, 1} and a parameter ε ∈ (0, 1), isomorphism testing
then amounts to distinguishing between (i) distiso(f, g) = 0; and (ii) distiso(f, g) > ε.1

Our result will be parameterized in terms of the junta degree of the unknown functions f and
g, formally defined below:

1Phrased differently, this is testing the property P =
{

(f, f ◦ π) : f ∈ 22[n]

, π ∈ Sn
}
⊆ 22[n]

× 22[n]

.

72

Definition 6.1.1 (Junta degree). Let f : {−1, 1}n → {−1, 1} be a Boolean function, and
γ ∈ [0, 1] a parameter. We define the γ-junta degree of f as the smallest integer k such that f
is γ-close to being a k-junta, that is

k∗(f, γ)
def
= min { k ∈ [n] : dist(f,Jk) ≤ γ } .

Finally, we extend this definition to two functions f, g by setting k∗(f, g, γ) = min(k∗(f, γ), k∗(g, γ)).

With this terminology in hand, we can restate Theorem 1.3.5:

Theorem 6.1.2 (Theorem 1.3.5, rephrased). There exist absolute constants c ∈ (0, 1), ε0 ∈
(0, 1) and a tolerant testing algorithm for isomorphism of two unknown functions f and g
with the following guarantees. On inputs ε ∈ (0, ε0], δ ∈ (0, 1], and query access to functions
f, g : {−1, 1}n → {−1, 1}:

• if distiso(f, g) ≤ cε, then it outputs accept with probability at least 1− δ;

• if distiso(f, g) > ε, then it outputs reject with probability at least 1− δ.

The query complexity of the algorithm satisfies the following, where k∗ = k∗(f, g, ρcε16) is the
ρcε
16 -junta degree of f and g:

• it is Õ
(
2
k∗
2

1
ε log 1

δ

)
with probability at least 1− δ;

• it is always at most Õ
(
2
n
2

1
ε log 1

δ

)
.

Moreover, one can take c = 1
1750 , and ε0

def
= 16

15(5− 2
√

6) ' 0.108.

6.1.1 Proof of Theorem 6.1.2

As described in the opening of this section, our algorithm first performs a linear search on
k, invoking at each step the tolerant tester of section 3.2 with parameter ε′, to obtain (with

high probability) a value k∗ such that k∗(f, g, ε′) ≤ k∗ ≤ k∗(f, g, ρε
′

16). In the second stage, it
calls a “noisy sampler” to obtain uniformly random labeled samples from the “cores” of the
k∗-juntas closest to f and g (both notions are defined formally in subsubsection 6.1.1.2), and
robustly tests isomorphism between them. We accordingly divide this section in two, proving
respectively these two statements:

Lemma 6.1.3. There exists an algorithm (Algorithm 6) with the following guarantees. On
inputs ε′, δ ∈ (0, 1) and query access to f, g : {−1, 1}n → {−1, 1}, it returns a value 0 ≤ k ≤ n,
such that:

• with probability at least 1− δ, we have that:

(i) k∗(f, g, ε′) ≤ k ≤ k∗(f, g, ρε
′

16);

(ii) the algorithm performs O
(

2
k
2

+o(k) · 1
ε log 1

δ

)
queries;

• the algorithm performs at most O
(

2
n
2

+o(n) · 1
ε log 1

δ

)
queries.

Proposition 6.1.4. There exists an algorithm (Algorithm 7) with query complexity Õ
(

2k/2

ε

)
for testing of isomorphism of two unknown functions f and g, under the premise that f is close
to Jk. More precisely, there exist absolute constants c > 0 and ε0 ∈ (0, 1] such that, on inputs
k ∈ N, ε ∈ (0, ε0] and query access to functions f, g : {−1, 1}n → {−1, 1}, the algorithm has the
following guarantees. Conditioned on dist(f,Jk) ≤ cε, it holds that:

73

• if distiso(f, g) ≤ cε, then it outputs accept with probability at least 8/15;

• if distiso(f, g) > ε, then it outputs reject with probability at least 8/15.

Moreover, one can take c = 1
1750 , and ε0

def
= 16

15(5− 2
√

6) ' 0.108.

Theorem 6.1.2 follows by the combination of Lemma 6.1.3 and Proposition 6.1.4.

Proof of Theorem 6.1.2: Let ρ
def
= 1 − 1√

2
, and ε′ = cε. The algorithm proceeds as

follows: it first invokes Algorithm 6 with inputs f, g, ε′, δ/2, and gets by Lemma 6.1.3, a value

1 ≤ k∗ ≤ n such that k∗(f, g, ε′) ≤ k∗ ≤ k∗(f, g, ρε
′

16) with probability at least 1 − δ
2 . In

particular, conditioning on this we are guaranteed that either f or g is ε′-close to some k∗-junta
(i.e., by our choice of c, one of the functions is cε-close to Jk∗). It then calls Algorithm 7 with
inputs f, g,k∗, ε independently O(log 1

δ) times (for probability amplification from 8/15 to 1− δ
2),

and accepts if and only if the majority of these executions returned accept . The correctness
of the algorithm follows from Proposition 6.1.4 and the bound on the query complexity follows
from the bounds in Lemma 6.1.3 and Proposition 6.1.4.

6.1.1.1 Linear search: finding k∗.

Let T denote the algorithm of Theorem 1.3.1, with probability of success amplified by standard
techniques to 1− δ for any δ ∈ (0, 1] (at the price of a factor O

(
log 1

δ

)
in its query complexity);

and write qT (k, ε, ρ, δ) = O
(

k log k
ερ(1−ρ)k

log 1
δ

)
for its query complexity. Algorithm 6, given next,

performs the linear search for k∗: we then analyze its correctness and query complexity.

Algorithm 6 Junta Degree Finder(Of ,Og, ε′, ρ, δ)
1: Set ρ← 1− 1√

2
and let T be the algorithm of Theorem 1.3.1.

2: for k = 0 to n do
3: Call T on f with parameters k, ε′, ρ, and 3δ/(2π2(k + 1)2).
4: Call T on g with parameters k, ε′, ρ, and 3δ/(2π2(k + 1)2).
5: if either call to T returned accept then return k.
6: end if
7: end for
8: return n

Proof of Lemma 6.1.3: By a union bound, all executions of T will be correct with probability
at least 1−2

∑∞
j=1

3δ
2π2j2

= 1− δ
2 . Conditioning on this, the tester will accept for some k between

k∗(f, g, ε′) and k∗(f, g, ρε′/16). This is true since as long as we invoke T with values k such
that f and g are ε′-far from Jk, both invocations of T will reject. Therefore, once we accept, we
have that either f or g is at least ε′-close to Jk. Hence, k ≥ k∗(f, g, ε′). Also, T is guaranteed
to accept on some k′ whenever invoked on a function that is ρε′/16-close to Jk′ . By definition,
k∗(f, g, ρε′/16) is such a k′ for either f or g; hence, k ≤ k∗(f, g, ρε′/16).

In the case that all the executions of T returned correctly, the query complexity is

q(ε, f, g) =

k∗(f,g, ρε
′

16
)∑

k=0

2qT

(
k, ε′, ρ,

3δ

2π2(k + 1)2

)
.

By the expression of qT , we get that q(ε, f, g) is upper bounded by

q(ε, f, g) ≤ O(1)

ερ

k?∑
k=1

k log k log k
δ

(1− ρ)k
≤ O(1)

ε
(k? log k?)22

k? log 1
1−ρ log

1

δ

74

where k?
def
= k∗(f, g, ρε

′

16). In particular, from the choice of ρ, we get q(ε, f, g) ≤ O
(

2
k?

2
+o(k?) 1

ε log 1
δ

)
.

(If not all the executions of the tester are successful, in the worst case the algorithm considers
all possible values of k, before finally returning n. In this case, the query complexity is similarly

bounded by O
(

2
n
2

+o(n) 1
ε log 1

δ

)
.)

6.1.1.2 Noisy samplers and core juntas.

For a Boolean function f : {−1, 1}n → {−1, 1} we denote by fk : {−1, 1}n → {−1, 1} the k-junta
closest to f . That is, the function h ∈ Jk such that dist(f, h) = dist(f,Jk) (if this function
is not unique, then we define fk to be the first according to lexicographic order). Moreover,
following Chakraborty et al. [CGM11], for a k-junta h ∈ Jk (where we assume without loss of
generality that h depends on exactly k variables) we define the core of h, as follows. The core
of h, denoted coreh : {−1, 1}k → {−1, 1}, is the restriction of h to its relevant variables (where
these variables are numbered according to the natural order); so that for some i1 ≤ · · · ≤ ik ∈ [n]
we have

h(x) = coreh(xi1 , . . . , xik)

for every x ∈ {−1, 1}n.

Definition 6.1.5 ([CGM11, Definition 1]). Let g : {−1, 1}k → {−1, 1} be a function and let
η, µ ∈ [0, 1). An (η, µ)-noisy sampler for g is a probabilistic algorithm that on each execution
outputs a pair (x,a) ∈ {−1, 1}k × {−1, 1} such that

(i) For all y ∈ {−1, 1}k, Pr[x = y] ∈
[

1−µ
2k
, 1+µ

2k

]
;

(ii) Pr[a = g(x)] ≥ 1− η;

(iii) the pairs output on different executions are mutually independent.

An η-noisy sampler is an (η, 0)-noisy sampler, i.e., one that on each execution selects a uniformly
random x ∈ {−1, 1}k.

Chakraborty et al. [CGM11] show how to build an efficient O(ε)-noisy sampler for corefk ,
which is guaranteed to apply as long as dist(f,Jk) = O

(
ε6/k10

)
. In more detail, they first run a

modified version of the junta tester from [Bla09], which, whenever it accepts, also returns some
preprocessing information that enables one to build such a noisy sampler. Moreover, they show
that this tester will indeed accept any function that is O

(
ε6/k10

)
-close to Jk (in addition to

rejecting those ε-far from it), giving the above guarantee. Using instead (a small modification
of) our tolerant tester from section 3.2, we are able to extend their techniques to obtain the
following – less efficient, but more robust – noisy sampler.

Proposition 6.1.6 (Noisy sampler for close-to-junta functions). There are algorithms AP ,AS
(respectively preprocessor and sampler), which both require oracle access to a function f : {−1, 1}n →
{−1, 1}, and satisfy the following properties.

• The preprocessor AP takes ε′ ∈ (0, 1], ρ ∈ (0, 1), k ∈ N as inputs, makes O

(
k log k

ε′
ε′ρ(1−ρ)k

)
queries to f , and either returns fail or a state σ ∈ {0, 1}poly(n). The sampler AS takes
as input such a state σ ∈ {0, 1}poly(n), makes a single query to f , and outputs a pair
(x,a) ∈ {−1, 1}k × {−1, 1}. We say that a state σ is γ-good if for some permutation
π ∈ Sk, AS(σ) is a γ-noisy sampler for corefk ◦π.

75

• AP (ε′, ρ, k) fulfills the following conditions:

(i) If dist(f,Jk) ≤ ρ
16ε
′, then with probability at least 4/5, AP returns a state σ that is

3ε′-good.

(ii) If dist(f,Jk) > ε′, then with probability at least 4/5, AP returns fail .

(iii) If dist(f,Jk) ≤ ε′, then with probability at least 4/5, Ap either returns fail or returns
a state σ that is 3ε′-good.

The proof of Proposition 6.1.6 is deferred to Appendix 6.1.2; indeed, it is almost identical
to the proof of Proposition 4.16 in [CGM11], with small adaptations required to comply with
the use of the tolerant tester from section 3.2 instead of the tester from [Bla09].

We note that the main difference between the guarantees of our noisy sampler and those of
the noisy sampler in [CGM11, Lemma 2] lies in the set of functions for which the noisy sampler
is required to return a good state. In our case, this set consists of functions that are somewhat
close to k-juntas. In comparison, the construction from [CGM11] is more query-efficient (only
Õ(k/ε) queries to f in the preprocessing stage), but only guarantees the output of a noisy
sampler for functions f that are O

(
ε6/k10

)
-close to Jk.

With these primitives in hand, we are almost ready to prove the main proposition of this sub-
section, Proposition 6.1.4. To state the algorithm (Algorithm 7) and proceed with its analysis,
we will require the following definition:

Definition 6.1.7 (Number of violating pairs Vπ). Given two sets Q1, Q2 ⊆ {−1, 1}k × {−1, 1}
and a permutation π ∈ Sk we say that pairs (x, a1) ∈ Q1 and (y, a2) ∈ Q2 are violating with
respect to π, if y = π(x) and a1 6= a2. We denote the number of violating pairs with respect to
π by Vπ.

Algorithm 7 Tolerant isomorphism testing to an unknown f such that distfJk ≤ cε
(Of ,Og, ε, k)

1: Let AP ,AS be as in Proposition 6.1.6, ρ← 1− 1√
2
, ε′ ← ε

16 , α← 4cε.

2: s← C 2k/2

ε

√
k ln k, t← (3α+ 9ε′) s

2

2k
. . C > 1 is an absolute constant.

3: Run the preprocessor AP on f and g with parameters ε′, ρ, k.
4: if either invocation of AP returned fail then
5: return reject .
6: end if
7: Using the 3ε′-noisy sampler AS (called with the states returned on Step 3), construct “core”

sets Qf ,Qg ⊆ {−1, 1}k × {−1, 1} each of size s← C 2k/2

ε

√
k ln k.

8: if there exist π ∈ Sk such that Vπ ≤ t then
9: return accept .

10: end if
11: return reject .

Proof of Proposition 6.1.4: The query complexity is the sum of the query complexities
from Steps 3 and 7, i.e.,

O

(
k log k

ε

ερ(1− ρ)k

)
+ 2s · 1 = O

(
2k/2

ε
k log

k

ε
+

2k/2

ε

√
k ln k

)
= O

(
2k/2

ε
k log

k

ε

)
.

76

Completeness. Assume that g is cε-close to isomorphic to f , which itself is cε-close to being
a k-junta. Therefore, by the triangle inequality and by our choice of c ≤ ρ

512 , dist(g,Jk) ≤
2cε ≤ ρε′/16 as well, so that with probability at least 3/5 the algorithm does not output reject
on Step 5 (we thereafter analyze this case). Moreover, by the triangle inequality there exists

a permutation π ∈ Sn such that dist(fk, gk ◦ π) ≤ 2cε + 2cε = 4cε
def
= α. In particular, this

implies that there exists a permutation π∗ ∈ Sk such that dist(corefk , coregk ◦π∗) ≤ α. Let
T ∗ ⊆ {−1, 1}k be the disagreement set between corefk and coregk ◦π∗: by the above |T ∗| ≤ α2k.

Let Qs
f ,Q

s
g ⊆ {−1, 1}k denote the sets resulting from taking the first element in each pair

in Qf and Qg respectively. The size of the intersection Z
def
=
∣∣∣Qs

f ∩ T ∗
∣∣∣ is distributed as a

Binomial random variable, namely Z ∼ Bin
(
s, |T

∗|
2k

)
, and conditioned on Z we have Z∗

def
=∣∣∣Qsf ∩Qs

g ∩ T ∗
∣∣∣ ∼ Bin

(
s, Z

2k

)
. In particular, we get

E[Z] =
s |T ∗|

2k
, E[Z∗|Z] = E

[∣∣Qsf ∩Qs
g ∩ T ∗

∣∣ | ∣∣Qsf ∩ T ∗∣∣] =
sZ

2k
.

Let AfS denote the noisy sampler algorithm when invoked for f , and for every x ∈ Qs
f let

AfS(x) denote the label given to x by AfS . Since AfS is a 3ε′-noisy sampler for corefk , Pr[AfS(x) 6=
corefk(x)] ≤ 3ε′. An analogous statement holds for g. We let N

def
=
∣∣∣{x ∈ Qs

f ∩Qs
g : AfS(x) 6= corefk(x) or AgS(x) 6= coregk(x)}

∣∣∣
be the number of common samples incorrectly labelled by either noisy sampler, and observe

that N is dominated by a Binomial random variable Ñ ∼ Bin
(∣∣∣Qsf ∩Qsg∣∣∣ , 6ε′).

With this in hand, we can bound Pr[Vπ∗ > t] as follows (recall that t = 3α+ 9ε′):

Pr

[
Vπ∗ > (3α+ 9ε′)

s2

2k

]
≤ Pr

[∣∣Qs
f ∩Qs

g ∩ T ∗
∣∣ > 3α

s2

2k

]
+ Pr

[
N > 9ε′

s2

2k

]
≤ Pr

[∣∣Qs
f ∩Qs

g ∩ T ∗
∣∣ > 3α

s2

2k

]
+ Pr

[
Ñ > 9ε′

s2

2k

]
.

Recall that Z∗ =
∣∣∣Qs

f ∩Qs
g ∩ T ∗

∣∣∣. Since Pr
[∣∣∣Qs

f ∩Qs
g ∩ T ∗

∣∣∣ > 3α s
2

2k

]
is maximized when |T ∗|

is maximal, we assume without loss of generality that |T ∗| = α2k. We will handle each term
separately.

Pr

[
Z∗ >

3

2
· αs

2

2k

]
= Pr

[
Z∗ >

3

2

s2 |T ∗|
22k

]
= Pr

[
Z∗ >

3

2

s2 |T ∗|
22k

∣∣∣∣ Z >
5

4

s |T ∗|
2k

]
·Pr

[
Z >

5

4

s |T ∗|
2k

]
+ Pr

[
Z∗ >

3

2

s2 |T ∗|
22k

∣∣∣∣ Z ≤ 5

4

s |T ∗|
2k

]
·Pr

[
Z ≤ 5

4

s |T ∗|
2k

]
≤ Pr

[
Z >

5

4

s |T ∗|
2k

]
+ Pr

[
Z∗ >

3

2

s2 |T ∗|
22k

∣∣∣∣ Z ≤ 5

4

s |T ∗|
2k

]
.

We again bound the two terms separately. By the assumption that |T ∗| = α2k and by the
choice of s,

Pr

[
Z >

5

4

s |T ∗|
2k

]
= Pr

[
Z >

5

4
E[Z]

]
< exp

(
−1

3
·
(

1

4

)2

· s |T
∗|

2k

)
<

1

30
.

77

As for the second term, since E[Z∗] = sZ
2k

and by the assumption on T ∗ and the setting of s,

Pr

[
Z∗ >

3

2

s2 |T ∗|
22k

∣∣∣∣ Z <
5

4

s |T ∗|
2k

]
≤ Pr

[
Z∗ >

3

2

s2 |T ∗|
22k

∣∣∣∣ Z =
5

4

s |T ∗|
2k

]
= Pr

[
Z∗ >

6

5
E[Z∗]

∣∣∣∣ Z =
5

4

s |T ∗|
2k

]
< exp

(
−1

3
·
(

1

5

)2

· s
2k
s |T ∗|

2k

)
<

1

30

for a sufficiently large constant C in the definition of s.

As for the last term of the initial expression, since E[Ñ] = 6ε′
∣∣∣Qsf ∩Qsg∣∣∣ we have,

Pr

[
Ñ > 9ε′

s2

2k

]
≤ Pr

[
Ñ > 9ε′

s2

2k

∣∣∣∣ ∣∣Qs
f ∩Qs

g

∣∣ ≤ 5

4

s2

2k

]
·Pr

[∣∣Qs
f ∩Qs

g

∣∣ ≤ 5

4

s2

2k

]
+ Pr

[∣∣Qs
f ∩Qs

g

∣∣ > 5

4

s2

2k

]
≤ Pr

[
Ñ > 9ε′

s2

2k

∣∣∣∣ ∣∣Qs
f ∩Qs

g

∣∣ =
5

4

s2

2k

]
+ Pr

[∣∣Qs
f ∩Qs

g

∣∣ > 5

4

s2

2k

]
≤ Pr

[
Ñ >

6

5
E[Ñ]

∣∣∣∣ ∣∣Qs
f ∩Qs

g

∣∣ =
5

4

s2

2k

]
+ Pr

[∣∣Qs
f ∩Qs

g

∣∣ > 5

4

s2

2k

]
< exp

(
−1

3
·
(

1

6

)2

· 16ε′ · 5s2

4 · 2k

)
+ exp

(
−1

3
·
(

1

4

)2

· s
2

2k

)
≤ 1

15
.

(Actually o(1).)

The algorithm will therefore reject with probability at most 2
5 + 1

15 + 1
15 = 7

15 .

Soundness. Assume that dist(f,Jk) ≤ cε, and that g is ε-far from being isomorphic to f .
Then one of the following must hold:

1. dist(g,Jk) > ε′.

2. for all π ∈ Sk, dist(corefk , coregk ◦π) > ε− (ε′ + cε) > ε− 2ε′.

If the first case holds, then the function will be rejected in Step 3 with probability at least 4
5 ,

and so the algorithm will reject as desired. We can therefore focus on the second case.
If the second case holds, either the tester rejects in Step 5 (and we are done) or it outputs a

state which will be used to get the 3ε′-noisy sampler. Fix any π ∈ Sk. Since distcorefkcoregk ◦π >
(ε − 2ε′), there are m

def
= m(π) ≥ (ε − 2ε′)2k inputs x ∈ {−1, 1}k such that corefk(x) 6=

coregk ◦π(x). Let T = T (π) ⊆ {−1, 1}k denote the set of all such inputs (so that |T | = m).

We can make a similar argument as for the completeness case: we have that
∣∣∣Qs

f ∩ T
∣∣∣

is a random variable with Binomial distribution (of parameters s, and |T |
2k

). Conditioned on∣∣∣Qs
f ∩ T

∣∣∣, we also have
∣∣∣Qsf ∩Qs

g ∩ T
∣∣∣ ∼ Bin

(
s,
|Qsf∩T |

2k

)
, so that

E[
∣∣Qs

f ∩Qs
g ∩ T

∣∣] = E
[
E
[∣∣Qs

f ∩Qs
g ∩ T

∣∣ ∣∣ ∣∣Qs
f ∩ T

∣∣]]
= E

s
∣∣∣Qs

f ∩ T
∣∣∣

2k

 =
s2 |T |
22k

≥ (ε− 2ε′)
s2

2k
= 14ε′

s2

2k
.

78

(Recall that our threshold was set to t = (3α + 9ε′) s
2

2k
≤ 12ε′ s

2

2k
.) Moreover, each element

x ∈ Qsf ∩ Qsg ∩ T will contribute to Vπ with probability at least (1− 3ε′)2 > 24
25 (since this is

a lower bound on the probability that both AfS(x) = corefk(x) and AgS(x) = coregk(x), and as

ε′ ≤ ε0
16). As before, we can therefore write, letting Z

def
=
∣∣∣Qs

f ∩Qs
g ∩ T

∣∣∣, and taking |T | to be

minimal so that |T | = (ε− 2ε′)2k,

Pr[Vπ > t] ≥ Pr

[
Vπ > t

∣∣∣∣ Z ≥ 13

12
t

]
Pr

[
Z ≥ 13

12
t

]
≥ (1− e−

1
3(1

26)
2· 24

25
· 13t
12) Pr

[
Z ≥ 13

12
t

]
=
(

1− e−
t

2000

)
Pr

[
Z ≥ 13

12
t

]
(Chernoff bound)

so that it is sufficient to lower bound Pr
[
Z ≥ 13

12 t
]
. To do so, we will bound the probability of

the two following events:

E1: Y
def
=
∣∣∣Qs

f ∩ T
∣∣∣ < 99

100
s|T |
2k

E2: Z =
∣∣∣Qs

f ∩Qs
g ∩ T

∣∣∣ < 99
100

s
2k

∣∣∣Qs
f ∩ T

∣∣∣, conditioning on
∣∣∣Qs

f ∩ T
∣∣∣ ≥ 99

100
s|T |
2k

.

This will be sufficient for us to conclude, as by our choice of t = (3α + 9ε′) s
2

2k
, the setting

|T | = (ε− 2ε′)2k = 7
8ε2

k, and since α ≤ ε′, we have

13

12
· t ≤ 13

12
· 12ε′ · s

2

2k
=

13

16
· ε · s

2

2k
≤
(

99

100

)2 s2|T |
22k

.

Therefore, by a Chernoff bound

Pr

[
Z <

13

12
t

]
≤ Pr

[
Z <

(
99

100

)2 s2 |T |
22k

]

≤ Pr

[
Y <

99

100

s |T |
2k

]
+ Pr

[
Z <

99

100

s

2k
Y

∣∣∣∣ Y ≥ 99

100

s |T |
2k

]
Pr

[
Y ≥ 99

100

s |T |
2k

]
≤ Pr

[
Y <

99

100

s |T |
2k

]
+ Pr

[
Z <

99

100

s

2k
Y

∣∣∣∣ Y ≥ 99

100

s |T |
2k

]
< exp

(
−1

2
·
(

1

100

)2

· s |T |
2k

)
+ Pr

[
Z <

99

100

sY

2k

∣∣∣∣ Y =
99

100

s |T |
2k

]

≤ exp

(
−1

2
·
(

1

100

)2

· s(ε− 2ε′) · 2k

2k

)
+ exp

(
−1

2
·
(

2

100

)2

· s
2(ε− 2ε′) · 2k

22k

)
< exp(−τC2k ln k),

by the choice s = C 2k/2

ε

√
k ln k, and for some constant τ ∈ (0, 1). Hence setting C to a suffi-

ciently large constant, the foregoing analysis implies that Pr[Vπ ≤ t] ≤ e−
t

2000 + e−τC
2k ln k =

e−
12c+3/4

2000
εs2/2k + e−τC

2k ln k ≤ 7
15kk

. A union bound over all k! < kk permutations π ∈ Sk finally

yields Pr[∃π, Vπ ≤ t] ≤ 7
15 as claimed.

6.1.2 Construction of a noisy sampler

In this subsection we provide the proof of Proposition 6.1.6, restated below:

79

Proposition 6.1.8 (Noisy sampler for close-to-junta functions). There are algorithms AP ,AS
(respectively preprocessor and sampler), which both require oracle access to a function f : {−1, 1}n →
{−1, 1}, and satisfy the following properties.

• The preprocessor AP takes ε′ ∈ (0, 1], ρ ∈ (0, 1), k ∈ N as inputs, makes O

(
k log k

ε′
ε′ρ(1−ρ)k

)
queries to f , and either returns fail or a state σ ∈ {0, 1}poly(n). The sampler AS takes
as input such a state σ ∈ {0, 1}poly(n), makes a single query to f , and outputs a pair
(x,a) ∈ {−1, 1}k × {−1, 1}. We say that a state σ is γ-good if for some permutation
π ∈ Sk, AS(σ) is a γ-noisy sampler for corefk ◦π.

• AP (ε′, ρ, k) fulfills the following conditions:

(i) If dist(f,Jk) ≤ ρ
16ε
′, then with probability at least 4/5, AP returns a state σ that is

3ε′-good.

(ii) If dist(f,Jk) > ε′, then with probability at least 4/5, AP returns fail .

(iii) If dist(f,Jk) ≤ ε′, then with probability at least 4/5, Ap either returns fail or returns
a state σ that is 3ε′-good.

We will very closely follow the argument from the full version of [CGM11] (Proposition
4.16),2 adapting the corresponding parts in order to obtain our result. For completeness, we
tried to make this appendix below self-contained, reproducing almost verbatim several parts of
the proof from [CGM11].3

Proof of Proposition 6.1.6: In order to use our result from section 3.2 in lieu of the junta
tester from [Bla09], we first need to make a small modification to our algorithm. Specifically,

in its first step our tester will now pick a random partition I of [n] in `
def
= Ck2

ε parts instead
of 24k2 (for some (small) absolute constant C > 1). It is easy to check that both Lemma 3.1.3
and Lemma 3.1.4 still hold (e.g., from the proof of [Bla12, Lemma 5.4]), now with probability
at least 19/20. Moreover, our modified tolerant tester offers the same soundness and complete-

ness guarantees as Theorem 1.3.1, at the price of a query complexity O
(
k log(k/ε)
ερ(1−ρ)k

)
(instead of

O
(

k log k
ερ(1−ρ)k

)
). Moreover, in Step 4 of Algorithm 3, i.e. when the algorithm found a suitable set

J ⊆ [`] (of size ` − k) as a witness for accepting, we make the algorithm return I and the set

J def
= {Ij}j∈J̄ along with the verdict accept .

We will also require the definitions of the distribution induced by a partition I and a subset
J ⊆ I, and of such a couple (I,J) being good for a function:

Definition 6.1.9 ([CGM11, Definition 4.6]). For any partition I = {I1, . . . , I`} of [n], and
subset of parts J ⊆ I, we define a pair of distributions:

The distribution DI on {−1, 1}n. An element y ∼ DI is sampled by

1. picking z ∈ {−1, 1}` uniformly at random among all
(
`
`/2

)
strings of weight `

2 ;

2. setting yi = zj for all j ∈ [`] and i ∈ Ij .

The distribution DJ on {−1, 1}|J |. An element x ∼ DJ is sampled by

1. picking y ∼ DI ;
2The full version can be found at http://www.cs.technion.ac.il/~ariem/eseja.pdf.
3The reader may notice that Chakraborty et al. rely on a definition of set-influence that differs from ours by

a factor 2; we propagated the changes through the argument.

80

http://www.cs.technion.ac.il/~ariem/eseja.pdf

2. outputting extract(I,J)(y), where x = extract(I,J)(y) is defined as follows. For all
j ∈ [`] such that Ij ∈ J :

• if Ij 6= ∅, set xj = yi (where i ∈ Ij);
• if Ij = ∅, set xj to be a uniformly random bit.

Lemma 6.1.10 ([CGM11, Lemma 4.7]). DI and DJ as above satisfy the following.

• For all a ∈ {−1, 1}n, PrI,y∼DI [y = a] = 1
2n .

• Assume ` > 4 |J |2. For every I and J ⊆ I, the total variation distance between DJ and
the uniform distribution on {−1, 1}|J | is bounded by 2 |J |2 /`. Moreover, the `∞ distance
between the two distributions is at most 4 |J |2 /(`2|J |).

Definition 6.1.11 ([CGM11, Definition 4.8]). Given (I,J) as above and oracle access to
f : {−1, 1}n → {−1, 1}, we define a probabilistic algorithm sampler(I,J)(f) that on each execu-

tion produces a pair 〈x,a〉 ∈ {−1, 1}|J | × {−1, 1} as follows: first it picks a random y ∼ DI ,
then it queries f on y, computes x = extract(I,J)(y) and outputs the pair 〈x, f(y)〉.

Definition 6.1.12 ([CGM11, Definition 4.9]). Given α > 0, a function f : {−1, 1}n → {−1, 1},
a partition I = {I1, . . . , I`} of [n] and a subset J ⊆ I of k parts, we call the pair (I,J) α-
good (with respect to f) if there exists a k-junta h ∈ Jk such that the following conditions are
satisfied:

1. Conditions on h:

(a) Every relevant variable of h is also a relevant variable of fk;

(b) dist(h, fk) ≤ α.

2. Conditions on I:

(a) For all j ∈ [`], Ij contains at most one variable of corefk ;

(b) Pry∼DI [f(y) 6= fk(y)] ≤ 10 · dist(f, fk).

3. Condition on J : the set S
def
=
⋃
I∈J I contains all relevant variables of h.

Lemma 6.1.13 ([CGM11, Lemma 4.10]). Let α, f, I,J be as in the preceding definition. If
the pair (I,J) is α-good (with respect to f), then sampler(I,J)(f) (as per Definition 6.1.11) is

an (η, µ)-noisy sampler for some permutation of corefk , with η ≤ 2α+ 4k2

` + 10 · dist(f, fk) and

µ ≤ 4k2

` .

The last piece we shall need is the ability to convert an (η, µ)-noisy sampler to a (η′, 0)-noisy
sampler – that is, one whose samples are exactly uniformly distributed.

Lemma 6.1.14 ([CGM11, Lemma 4.4]). Let g̃ be an (η, µ)-noisy sampler for g : {−1, 1}k →
{−1, 1}, that on each execution picks x according to some fixed (and fully known) distribution
D. Then g̃ can be turned into an (η + µ)-noisy sampler g̃unif for g.

With this in hand, we are ready to prove the main lemma:

Lemma 6.1.15 (Analogue of [CGM11, Proposition 4.16]). The tester from Theorem 1.3.1,

modified as above, has the following guarantees. It has query complexity O
(
k log(k/ε)
ερ(1−ρ)k

)
and

outputs, in case of acceptance, a partition I of [n] in `
def
= O

(
k2/ε

)
parts along with a subset

J ⊆ I of k parts such that for any f the following conditions hold:

81

• if dist(f,Jk) ≤ ρ
16ε, the algorithm accepts with probability at least 9/10;

• if dist(f,Jk) > ε, the algorithm rejects with probability at least 9/10;

• for any f , with probability at least 4/5 either the algorithm rejects, or it outputs J such
that the pair (I,J) is 1

2(1 + 3
8ρ)ε-good (as per Definition 6.1.12).

In particular, if dist(f,Jk) ≤ ρ
16ε, then with probability at least 4/5 the algorithm outputs a set

J such that (I,J) is 1
2(1 + 3

8ρ)ε-good.

Proof of Lemma 6.1.15: The first two items follow from the analysis of the tester (Theo-
rem 1.3.1) and the foregoing discussion; we thus turn to establishing the third item.

Called with parameters k, ρ, ε, our algorithm, with probability at least 19/20, either rejects
or outputs a partition I of [n] into ` = O

(
k2
)

parts and set J ⊆ I satisfying Inff (φ(J)) ≤ ε.
Let R ⊆ [n] (with |R| ≤ k) denote the set of relevant variables of fk, and V ⊇ R (with |V | = k)
the set of relevant variables of corefk . Assume that dist(f,Jk) ≤ ρε

16 .4 We then have:

• by the above, with probability at least 19/20 the algorithm outputs a set J ⊆ I which
satisfies

Inff (φ(J)) ≤ ε;

• since `� k2, with probability at least 19/20 all elements of V fall in different parts of the
partition I;

• by Lemma 6.1.10 and by Markov’s inequality, with probability at least 9/10 the partition
I satisfies Pry∼DI [f(y) 6= fk(y)] ≤ 10 · dist(f, fk).

So by a union bound, with probability at least 4/5 all three of these events occur. Now we

show that conditioned on them, the pair (I,J) is (1 + 3
2ρ)ε-good. Let U

def
= R ∩

(⋃
I∈J I

)
(informally, U is the subset of the relevant variables of fk that were successfully “discovered” by
the tester). Since dist(f,Jk) ≤ ρε

16 , we have Inff (V̄) ≤ 4dist(f,Jk) ≤ ρε
4 . By the sub-additivity

and monotonicity of influence we get

Inff (Ū) ≤ Inff (V̄) + Inff (V \ U) ≤ Inff (V̄) + Inff (φ(J)) ≤ ρε

4
+ ε.

where the second inequality follows from V \ U ⊆ φ(J). This means (see e.g. [Bla12, Lemma
2.21]) that there is a k-junta h on U such that dist(f, h) ≤ 1

2(ρε4 + ε), and by the triangle
inequality dist(fk, h) ≤ 1

2(ρε4 + ε) + ρε
16 = 1

2(1 + 3
8ρ)ε. Based on this h, we can verify that the

pair (I,J) is 1
2(1 + 3

8ρ)ε-good by going over the conditions in Definition 6.1.12.

Concluding the proof of Proposition 6.1.6. We conclude as in Section 4.6 of [CGM11],
and start by describing how AP and AS operate. The preprocessor AP starts by calling the
tester T of Lemma 6.1.15. Then, in case T accepted, AP encodes in the state σ the partition I
and the subset J ⊆ I output by T (see Lemma 6.1.15), along with the values of k and ε. The
sampler AS , given σ, obtains a pair 〈x, a〉 ∈ {−1, 1}k × {−1, 1} by executing sampler(I,J)(f)
(from Definition 6.1.11) once. Now we show how Proposition 6.1.6 follows from Lemma 6.1.15.
The first two items are immediate. As for the third item, notice that we only have to analyze
the case where dist(f, fk) ≤ ρε

16 and T accepted; all other cases are taken care of by the first
two items. By the third item in Lemma 6.1.15, with probability at least 4/5 the pair (I,J) is

4For other f ’s, the third item follows from the second item.

82

1
2(1 + 3

8ρ)ε-good. If so, by Lemma 6.1.13, sampler(I,J)(f) is an (η, µ)-noisy sampler for some
permutation of corefk , where

η ≤ 2 · 1

2
(1 +

3

8
ρ)ε+

4k2

`
+ 10 · dist(f,Jk) ≤ (1 +

3

8
ρ)ε+

10ρε

16
+

4k2

`
= (1 + ρ)ε+

4k2

`

and µ ≤ 4k2

` . This in turn implies by Lemma 6.1.14 an η′-noisy sampler, for

η′ = η + µ ≤ (1 + ρ)ε+
8k2

`
≤ (2 + ρ)ε ≤ 3ε

as claimed. (Where we used that 8k2

` ≤ ε by our choice of `.)

6.2 Lower bound for non-adaptive tolerant unateness testing

In this section, we show an additional application to our lower bound techniques from Chapter
4. In particular, we show how to reduce distinguishing distributions G1 and G2 (as defined in
Section 4.2.2) to distinguishing between Boolean functions which are close to unate and Boolean
functions which are far from unate. We start with a high level overview of the constructions
and reduction, and then proceed to give formal definitions and the reductions for adaptive and
non-adaptive tolerant testing.

6.2.1 High Level Overview

Similarly to Section 4.2, we define two distributions Dyes and Dno supported on Boolean func-
tions, so that functions in Dyes are ε0-close to being unate, and functions in Dno are ε1-far from
being unate (where ε0 and ε1 are appropriately defined constants).

We will use a randomized indexing function Γ : {0, 1}n → [N] based on the Talagrand-style
constructions from [BB16, CWX17a] to partition {0, 1}n in a unate fashion. Again, we will
then use a graph G ∼ G1 or G2 to define the sequence of sub-function H = (hi : {0, 1}n →
{0, 1} : i ∈ [N]). The sub-functions hi will be given by a parity (or negated parity) of three
variables: two variables will correspond to the end points of an edge sampled (j1, j2) ∼ G, the
third variable will be one of two pre-specified variables, which we call m1 and m2. Consider for
simplicity the case when hi(x) = xj1 ⊕ xj2 ⊕ xm1 , and assume that we require that variable m1

is non-decreasing.

Similarly to Section 4.2, the functions hi are thought of as gadgets. We will have that if
hi is defined with respect to an edge (j1, j2) and m1, then the function f will be “encouraged”
to make variables j1 and j2 have opposite directions, i.e., either j1 is non-increasing and j2 is
non-decreasing, or j1 is non-decreasing and j2 is non-increasing. In order to see why the three
variable parity implements this gadget, we turn our attention to Figure 6.2.1 and Figure 6.2.1.

Intuitively, the function f needs to change some of its inputs to be unate, and it must
choose whether the variables j1 and j2 will be monotone (non-decreasing) or anti-monotone
(non-increasing). Suppose f decides that the variable j1 should be monotone and j2 be anti-
monotone, and m1 will always be monotone (since it will be too expensive to make it anti-
monotone). Then, when hi(x) = xj1 ⊕ xj2 ⊕ xm1 , hi will have some violating edges, i.e., edges
in direction j1 which are decreasing, or edges in direction j2 which are increasing, or edges in
direction m1 which are decreasing (see Figure 6.2.1, where these violating edges are marked in
red). In this case, there exists a way that f may change 1

4 -th fraction of the points and remove
all violating edges (again, this procedure is shown in Figure 6.2.1).

83

j1
+

j2
−

m1

+

−→

j1
+

j2
−

m1

+

Figure 6.1: Example of a function hi : {0, 1}n → {0, 1} with hi(x) = xj1⊕xj2⊕xm1 with variable
j1 (which ought to be monotone), j2 (which ought to be anti-monotone), and m1 (which is always
monotone). The image on the left-hand side represents hi, and the red edges correspond to
violating edges for variables j1, j2 and m1. In other words, the red edges correspond to anti-
monotone edges in variables j1, monotone edges in variables j2, and anti-monotone edges in
direction m1. On the right-hand side, we show how such a function can being “fixed” into a
function h′i : {0, 1}n → {0, 1} by changing 1

4 -fraction of the points.

In contrast, suppose that f decides that the variables j1 and j2 both should be monotone.
Then, when hi(x) = xj1 ⊕ xj2 ⊕ xm1 , the violating edges (shown in Figure 6.2.1) form vertex-
disjoint cycles of length 6 in {0, 1}n, thus, the function f will have to change 3

8 -th fraction of
the points in order to remove all violating edges. In other words, when there is an edge (j1, j2)
sampled in hi, the function f is “encouraged” to make j1 and j2 have opposite directions, and
“discouraged” to make j1 and j2 have the same direction. The other cases are presented in
Figures 6.2.2, 6.2.2, and 6.2.2.

In order for f to become unate, it must first choose whether each variable will be monotone
or anti-monotone. f will choose all variables in M to be monotone, the variable m1 to be
monotone, and m2 to be anti-monotone, but will have to make a choice for each variable in M,
corresponding to each vertex of the graph G. As discussed above, for each edge (j1, j2) in the
graph, f is encouraged to make these orientations opposite from each other, so f will want to
look for the maximum cut on the graph, whose value will be different in G1 and G2.

Similarly to the case in Section 4.2, the reduction will follow by defining the rejection
sampling queries Li corresponding to variables explored in sub-function hi. The unate indexing
functions Γ are not as strong as the indexing functions from the Section 4.2, so for each query
in the Boolean function testing algorithm, our reduction will lose some cost in the rejection
sampling algorithm. In particular, the adaptive reduction loses n cost for each Boolean function
query, since adaptive algorithms can efficiently explore variables with a binary search; this
gives the Ω̃(n) lower bound for tolerant unateness testing. The non-adaptive reduction loses
O(
√
n log n) cost for each Boolean function query since queries falling in the same part may

be Ω(
√
n) away from each other (the same scenario occurs in the non-adaptive monotonicity

lower bound of [CWX17a]). The non-adaptive reduction is more complicated than the adaptive
reduction since it is not exactly a black-box reduction (we require a lemma from Section 4.3).
This gives the Ω̃(n3/2) lower bound for non-adaptive tolerant unateness testing.

84

j1
+

j2
+

m1

+

−→

j1
+

j2
+

m1

+

Figure 6.2: Example of a function hi : {0, 1}n → {0, 1} with hi(x) = xj1⊕xj2⊕xm1 with variables
j1 and j2 (which ought to be monotone), and m1 (which ought to be monotone). On the left
side, we indicate the violating edges with red arrows, and note that the functions in the left
and right differ by 3

8 -fraction of the points. We also note that any function h′i : {0, 1}n → {0, 1}
which has j1, j2 and m1 monotone must differ from hi on at least 3

8 -fraction of the points
because the violating edges of hi form a cycle of length 6.

6.2.2 The Distributions Dyes and Dno

We now turn to describing a pair of distributions Dyes and Dno supported on Boolean functions
f : {0, 1}n → {0, 1}. These distributions will have the property that for some constants ε0 and
ε1 with 0 < ε0 < ε1,

Pr
f∼Dyes

[dist(f ,Unate) ≤ ε0] = 1− o(1) and Pr
f∼Dno

[dist(f ,Unate) ≥ ε1] = 1− o(1).

We first define a function f ∼ Dno, where we fix the parameter:

N = 2
√
n.

1. Sample some set M ⊂ [n] of size |M| = n
2 uniformly at random and let m1,m2 ∼M be

two distinct indices.

2. We let T ∼ E(M \ {m1,m2}) (which we describe next). T is a sequence of terms
(Ti : i ∈ [N]) which is used to defined a multiplexer map ΓT : {0, 1}n → [N] ∪ {0∗, 1∗}.

3. We sample A ⊂M of size |A| = n
2 and define a graph as:

G = KA ∪KA.

4. We now define the distribution over sub-functions H = (hi : i ∈ [N]) ∼ H(m1,m2,G).
For each function hi : {0, 1}n → {0, 1}, we generate hi independently:

• When i ≤ 3N/4, we sample j ∼ {m1,m2} and we let:

hi(x) =

{
xj j = m1

¬xj j = m2
.

• Otherwise, if i > 3N/4, we sample an edge (j1, j2) ∼ G and an index j3 ∼ {m1,m2}
we let:

hi(x) =

{
xj1 ⊕ xj2 ⊕ xj3 j3 = m1

¬xj1 ⊕ xj2 ⊕ xj3 j3 = m2
.

85

The function f : {0, 1}n → {0, 1} is given by f(x) = fT,A,H(x) where:

fT,A,H(x) =

1 |x|M| > n

4 +
√
n

0 |x|M| < n
4 −
√
n

1 ΓT(x) = 1∗

0 ΓT(x) = 0∗

hΓT(x)(x) otherwise

. (6.1)

We now turn to define the distribution E(M) supported on terms T, as well as the multiplexer
map ΓT : {0, 1}n → [N]. As mentioned above, T ∼ E(M) will be a sequence of N terms
(Ti : i ∈ [N]), where each Ti is given by a DNF term:

Ti(x) =
∧
j∈Ti

xj ,

where the set Ti ⊂M is a uniformly random
√
n-element subset. Given the sequence of terms

T, we let:

ΓT(x) =

0∗ ∀i ∈ [N],Ti(x) = 0
1∗ ∃i1 6= i2 ∈ [N],Ti1(x) = Ti2(x) = 1
i Ti(x) = 1 for a unique i ∈ [N]

.

It remains to define the distribution Dyes supported on Boolean functions. The function f ∼
Dyes will be defined almost exactly the same. We still have f = fT,A,H as defined above,
however, the graph G will be different. In particular, we will let:

G = KA,A.

Fix any set M ⊂ [n] of size n
2 and let m1,m2 ∈ M be two distinct indices and M ′ =

M \ {m1,m2}. For any T ∼ E(M ′), let X ⊂ {0, 1}n be the subset of points indexed to some
subfunction hi:

X
def
=
{
x ∈ {0, 1}n : |x|M | ∈ [n/4−

√
n, n/4 +

√
n] and ΓT (x) ∈ [N]

}
,

and define γ ∈ (0, 1) be the parameter:

γ
def
= E

T∼E(M ′)

[
|X|
2n

]
.

Claim 6.2.1. With probability at least 1 − exp
(
−Ω(N/n2)

)
over the draw T ∼ E(M) the set

X has size |X| = 2nγ(1± 1
n), where γ = Ω(1).

Proof: Note that:

E
T∼E(M)

[|X|] =
∑

x∈{0,1}n:

n/4−
√
n≤|x|M |≤n/4+

√
n

Pr
T∼E(M)

[x ∈ X] .

Fix x ∈ {0, 1}n such that n/4 −
√
n ≤ |x|M | ≤ n/4 +

√
n. We can view the probability on the

right hand side as a sequence of N disjoint events. Every event j ∈ [N] correspond to the case
where x satisfies the unique term Tj . The probability of each such event is:

Pr
T∼E(M)

[ΓT(x) = i] ≥

 1

(n/2− 2)
√
n

√
n−1∏
k=0

(|x|M | − k − 2)

 ·(1−
(|x|M |
n/2− 2

)√n)N−1

≥
(
n/4− 2

√
n

n/2

)√n
·

(
1−

(
n/4 +

√
n

n/2− 2

)√n)N−1

= Ω(1/N).

86

Therefore, the probability that x ∈ X is at least Ω(1). Summing up all the x with |x|M | ≈ n
4±
√
n

gives ET∼E(M)[|X|] = Ω(2n), so γ = Ω(1). In order to show that the random variable |X| is
concentrated around the mean, let Ω be the space of all possible

√
n-sized terms with variables in

M \ {m1,m2}, and let c : ΩN → Z≥0 be the function on the independent terms which computes
the size of X:

c(T1, . . . ,TN) = |X|.
For every j ∈ [N] and T1, . . . , TN , T

′
j ∈ Ω∣∣c(T1, . . . , T

′
j , . . . , TN)− c(T1, . . . , Tj , . . . , TN)

∣∣ ≤ 2n

N
,

so by McDiarmid’s inequality:

Pr
T∼E(M)

[||X| − γ2n| ≥ 2n/n] ≤ exp

(
− Ω(22n/n2)∑N

i=1 22n/N2

)
= exp

(
−Ω(N/n2)

)
.

In addition, let Xi ⊂ X be the subset of points x ∈ X with ΓT (x) = i, and note that
the subsets X1, . . . , XN partition X, where each |Xi| ≤ 2n−

√
n. With a similar argument as

Claim 6.2.1, we conclude that with probability 1− o(1) over the draw of T ∼ E(M), we have:

3N/4∑
i=1

|Xi| = 2n · 3γ

4

(
1± 1

n

)
and

N∑
i=3N/4+1

|Xi| = 2n · γ
4

(
1± 1

n

)
. (6.2)

Thus, we only consider functions f ∼ Dyes (or ∼ Dno) where the sets M , and T satisfy (6.2).
We consider any set A ⊂ M of size n

4 . Now, consider any graph G defined over vertices in
M , and we let:

χ(G) = min

{
EG(S, S) + EG(S, S)

EG(M,M)
: S ⊂M

}
.

In other words, we note that χ(G) is one minus the fractional value of the maximum cut, and
the value of χ(G) is minimized for the set S achieving the maximum cut of G. The following
lemma relates the distance to unateness of a function f = fT,A,H with H ∼ H(m1,m2, G),
where G is an underlying graph defined on vertices in M .

Lemma 6.2.2. Let G be any graph defined over vertices in M . If f = fT,A,H where H ∼
H(m1,m2, G), then

γ

16

(
1 +

1

2
· χ(G)

)
− o(1) ≤ dist(f ,Unate) ≤ γ

16

(
1 +

1

2
· χ(G)

)
+ o(1).

with probability 1− o(1).

Proof: We first show that dist(f ,Unate) ≤ γ
16

(
1 + 1

2 · χ(G)
)

+ o(1) with high probability.
Consider the set S ⊂M which achieves the minimum of χ(G), i.e.,

χ(G) =
E(S, S) + E(S, S)

E(M,M)
,

and let g : {0, 1}n → {0, 1} be the unate function which makes variables in M monotone, m1

monotone, m2 anti-monotone, S monotone, and M \S anti-monotone. We defined g as follows:

g(x) =

1 |x|M | > n

4 +
√
n

0 |x|M | < n
4 −
√
n

1 ΓT (x) = 1∗

0 ΓT (x) = 0∗

h′ΓT (x)(x) otherwise

,

87

where we define h′i : {0, 1}n → {0, 1} as a Boolean function which depends on hi. In particular,
if i ≤ 3N/4, we let h′i = hi. Otherwise, suppose hi is defined with respect to (j1, j2, j3). There
are two cases:

• (Directions of j1 and j2 disagree) If j1 ∈ S and j2 /∈ S, or j1 /∈ S and j2 ∈ S, then we let
h′i be the function on variables xj1 , xj2 and xj3 with dist(hi,h

′
i) = 1

4 (see Figure 6.2.1 for
an example with j3 = m1 which needs to be monotone, j1 ∈ S and j2 ∈ S; Figure 6.2.2
and Figure 6.2.2 give the symmetric constructions when j1 and j2 are flipped, and when
variable m2 is used instead of m1, respectively).

• (Directions of j1 and j2 agree) If j1 ∈ S and j2 ∈ S, or j1 /∈ S and j2 /∈ S, then we let h′i
be the function on variables xj1 , xj2 and xj3 with dist(hi,h

′
i) = 3

8 (see Figure 6.2.1 for an
example with j3 = m1 which needs to be monotone, j1 ∈ S and j2 ∈ S; Figure 6.2.2 gives
the violating edges of the symmetric examples when variable m2 is used, and either both
j1 and j2 are monotone, or both anti-monotone).

Therefore, we define the indicator random variable Ci for each i ∈ {3N/4 + 1, . . . , N} by

Ci =

{
1 (j1, j2) from hi is not cut by S
0 otherwise

,

and we note that all Ci are independent and PrH[Ci] = χ(G). By the two cases displayed
above, we have that:

dist(f , g) =
1

2n

N∑
i=3N/4+1

|Xi|
(

1

4
+ Ci ·

1

8

)
≤ γ

16

(
1 +

1

2
· χ(G)

)
+ o(1/n),

with probability at least 1− exp
(
−Ω(N/n2)

)
over the draw of all Ci.

For the lower bound, consider any function g : {0, 1}n → {0, 1} which is unate. Suppose
variable xm1 is anti-monotone in g, then let Ci for i ∈ [3N/4] be the indicator random variable

Ci =

{
1 hi(x) = xm1

0 hi(x) = ¬xm2

.

We note that if Ci = 1, then f and g differ on at least |Xi|/2 from Xi. Thus, we have
dist(f , g) ≥ 3γ

8

(
1− 1

n

)
− o(1) with high probability over the draw of Ci. Likewise, we may say

that if xm2 is monotone, then dist(f , g) ≥ 3γ
8

(
1− 1

n

)
− o(1). Thus, we may consider functions

g : {0, 1}n → {0, 1} with xm1 being monotone and xm2 being anti-monotone. In this case,
consider a set S ⊂ M , then if g is any unate function with variables in S being monotone and
variables in M \ S being anti-monotone, then we note that for each i ∈ {3N/4 + 1, . . . , N},
if hi sampled an edge (j1, j2) which is cut by S, then Xi must differ on 1

4th of the points in
Xi (see Figure 6.2.1 for an example of the violating edges if j1 and j2 are oriented in opposite
directions). On the other hand, if (j1, j2) is not cut by S, then Xi must differ on 3

8ths of the
points in Xi (see Figure 6.2.1 to see how the violating edges require 3

8ths of the points being
different). Thus, if we let the indicator random variable Ci be

Ci =

{
1 (j1, j2) from hi is not cut by S
0 otherwise

,

we may write:

dist(f , g) ≥ 1

2n

N∑
i=3N/4+1

|Xi|
(

1

4
+

1

8
·Ci

)
≥ γ

16

(
1 +

1

2
· χ(G)

)
+O(1/n),

88

j1
−

j2
+

m1

+

−→

j1
−

j2
+

m1

+

Figure 6.3: Similarly to Figure 6.2.1, this is an example of a function hi : {0, 1}n → {0, 1} with
hi(x) = xj1 ⊕ xj2 ⊕ xm1 variables j1 (which ought to be anti-monotone), j2 (which ought to
be monotone), and m1 (which is always monotone) being “fixed” into a function h′i : {0, 1}n →
{0, 1} defined on the right-hand side.

j1
−

j2
+

m2

−

−→

j1
−

j2
+

m2

−

Figure 6.4: Similarly to Figure 6.2.1, this is an example of a function hi : {0, 1}n → {0, 1}
with hi(x) = ¬xj1 ⊕ xj2 ⊕ xm2 variables j1 (which ought to be anti-monotone), j2 (which
ought to be monotone), and m2 (which is always anti-monotone) being “fixed” into a function
h′i : {0, 1}n → {0, 1} defined on the right-hand side.

89

j1
+

j2
+

m2

−

j1
−

j2
−

m2

−

Figure 6.5: Examples of functions hi : {0, 1}n → {0, 1} with orientations on the variables and
violating edges. On the left-hand side, hi(x) = ¬xj1 ⊕ xj2 ⊕ xm2 with variables j1 and j2
(which ought to be monotone), and m2 (which is always anti-monotone). On the right-hand
side, hi(x) = ¬xj1 ⊕xj2 ⊕xm2 with variables j1 and j2 (which ought to be anti-monotone), and
m2 (which is always anti-monotone). We note that the violating edges form a cycle of length 6,
so any unate function whose orientations on j1 and j2 are as indicated (both monotone on the
left-hand side, and both anti-monotone on the right-hand side) must disagree on a 3

8 -fraction
of the points.

with probability 1− exp
(
−Ω(N/n2)

)
over the draw of Ci, since Pr[Ci = 1] ≥ χ(G). Thus, we

may union bound over all 2n/2 subsets S ⊂M to conclude the claim.

We consider the constants

ε0 =
γ

16
and ε1 =

5γ

64
.

Corollary 6.2.3. We have that f ∼ Dyes has dist(f ,Unate) ≤ ε0 + o(1) with high probability,
and f ∼ Dno has dist(f ,Unate) ≥ ε1 − o(1) with high probability.

Proof: We simply note that when G = KA,A (as is the case in Dyes), we have χ(G) = 0, and

when G = KA ∪KA, we have χ(G)→ 1
2 as n→∞.

6.2.3 Reducing from Rejection Sampling

The goal of this section is to prove the following two lemmas.

Lemma 6.2.4. Suppose there exists a deterministic algorithm Alg making q queries to Boolean
functions f : {0, 1}2n → {0, 1}. Then, there exists a deterministic non-adaptive algorithm Alg′

making rejection sampling queries to an n-vertex graph with cost(Alg′) = qn such that:

Pr
f∼Dyes

[Alg(f) “accepts”] = Pr
G∼G2

[Alg′(G) outputs “G2”], and

Pr
f∼Dno

[Alg(f) “accepts”] = Pr
G∼G1

[Alg′(G) outputs “G2”].

Lemma 6.2.5. Suppose there exists a deterministic non-adaptive algorithm Alg making q

queries to Boolean functions f : {0, 1}2n → {0, 1} where q ≤ n3/2

log8 n
. Then, there exists a de-

terministic non-adaptive algorithm Alg′ making rejection sampling queries to an n-vertex graph

90

such that:

Pr
f∼Dyes

[Alg(f) “accepts”] ≈ Pr
G∼G2

[Alg′(G) outputs “G2”]± o(1), and

Pr
f∼Dno

[Alg(f) “accepts”] ≈ Pr
G∼G1

[Alg′(G) outputs “G2”]± o(1).

and has cost(Alg′) ≤ q
√
n log n with probability 1− o(1) over the randomness in Alg′.

Combining Lemma 6.2.4 with Theorem 4.0.1, we conclude Theorem 1.3.6, and combining
Lemma 6.2.5 with Theorem 4.0.1, we conclude Theorem 1.3.7.

6.2.4 Proof of Lemma 6.2.4

Consider an algorithm Alg making q queries to a Boolean function which receives access to a
Boolean function f = fT,A,H : {0, 1}2n → {0, 1} (sampled from either Dyes or Dno).

Since the values of M,m1,m2 and T are distributed in the same way in Dyes and Dno, a
rejection sampling algorithm may generate M,m1,m2 and T, and utilize the randomness from
rejection sampling to output values of H. In particular, for each query in Alg, we will query
the set [n] in the rejection sampling algorithm. Then, given the edges sampled, as well as the
values of M, m1, m2 and T, we will be able to simulate all the randomness in the construction
of Dyes and Dno. We give a formal description of a rejection sampling algorithm Alg′ which
assumes access to an algorithm Alg testing Boolean functions.

1. We first sample M ⊂ [2n] of size n, and let m1,m2 ∼M be two distinct indices. Sample
T ∼ E(M \ {m1,m2}). We may now view the hidden graph G (from rejection sampling)
as a graph on vertex set M.

2. For each t ∈ [q], perform the query Lt = M, which returns (j
(t)
1 , j

(t)
2) ∈ G, we sample

j
(t)
3 ∼ {m1,m2} and j(t) ∼ {m1,m2}. Intuitively, the values of (j

(t)
1 , j

(t)
2 , j

(t)
3) will

generate the t-th accessed subfunction hi with ΓT(x) > 3N/4, and j(t) will generate the
t-th accessed subfunction hi with ΓT(x) ≤ 3N/4.

3. We simulate Alg by maintaining two q-tuples p1, p2 ∈ ({0} ∪ [N])q, which is initially
p1 = p2 = (0, 0, . . . 0) which will record the indices of the subfunctions accessed. We
proceed as follows, where we assume that Alg makes the query z ∈ {0, 1}2n:

• Suppose |z|M| > n
2 +
√

2n, |z|M| < n
2 −
√

2n, ΓT(z) = 1∗, or ΓT(z) = 0∗, report to
Alg the appropriate value of f(x).

• Otherwise, consider ΓT(z) = i ∈ [N].

– Suppose i ≤ 3N
4 and (p1)t = i (if (p1)t 6= i for all t, then find the first t ∈ [q]

with (p1)t = 0 and write (p1)t = i). In this case, report zj(t) if j(t) = m1 and

¬zj(t) if j(t) = m2.

– If i > 3N
4 and (p2)t = i (again, if (p2)t 6= i for all t, then find the first t ∈ [q]

with (p2)t = 0 and write (p2)t = i). In this case, we report ¬z
j
(t)
1

⊕ z
j
(t)
2

⊕ z
j
(t)
3

if

j
(t)
3 = m1 and z

j
(t)
1

⊕ z
j
(t)
2

⊕ z
j
(t)
3

if j
(t)
3 = m2.

4. If Alg outputs “accept”, then Alg′ outputs “G2”, if Alg outputs “reject”, then Alg′ outputs
“G1”.

91

Clearly, cost(Alg′) = qn. In addition, we may view Alg′(G) as generating the necessary
randomness for answering queries f(x) on the go, where G will determine whether f ∼ Dyes or
f ∼ Dno. When G = KA,A (in the case G ∼ G2, the resulting function f is distributed as a
function drawn from Dyes; when G = KA ∪KA (in the case G ∼ G1), the resulting function f
is distributed as a function drawn from Dno. Therefore, by the principle of deferred decisions,
we have that Alg′(G) perfectly simulates queries to a Boolean function f ∼ Dyes (if G ∼ G2)
or f ∼ Dno (if G ∼ G1). We conclude that

Pr
G∼G1

[Alg′(G) outputs “G2”] = Pr
f∼Dyes

[Alg(f) “accepts”], and

Pr
G∼G2

[Alg′(G) outputs “G2”] = Pr
f∼Dno

[Alg(f) “accepts”].

Remark. A close inspection of the proof of Lemma 6.2.4 reveals that the rejection sampling
algorithm distinguishing G1 and G2 always makes queries Li = [n]. This makes the lower bound
simpler, as we can focus on proving lower bounds against algorithms which receive random edge
samples.

6.2.5 Proof of Lemma 6.2.5

Similarly to the proof of Lemma 6.2.4, we will proceed by generating the necessary randomness
to generate the functions f from Dyes or from Dno. However, unlike Lemma 6.2.4, this will not
be a black box reduction, since we will not be able to simulate f exactly.

Consider a deterministic non-adaptive algorithm Alg which makes queries to a Boolean
function f : {0, 1}2n → {0, 1} sampled from Dyes or Dno and outputs “accept” if Alg believes f
was sampled from Dyes, and outputs “reject” if Alg believes f was sampled from Dno. Since Alg
is non-adaptive and deterministic, all queries are determined, so consider the queries z1, . . . , zq ∈
{0, 1}2n, and let Alg : {0, 1}q → {“accept”, “reject”} be a function.

We will now define a non-adaptive algorithm Alg′ which makes rejection sampling queries to
an unknown graph G on n vertices sampled from G1 or from G2. The algorithm Alg′ proceeds
as follows:

1. Using some randomness and answers from rejection sampling queries to an unknown graph
G, we generate a sequence of r bits (r1, . . . , rq) satisfying the following two conditions
(we give the procedure to generate these random bits after)5:

• If G ∼ G1, then (r1, . . . , rq) will be roughly distributed as (f(z1), . . . ,f(zq)) where
f is a Boolean function f ∼ Dno.

• If G ∼ G2, then (r1, . . . , rq) will be roughly distributed as a (f(z1), . . . ,f(zq)) where
f is a Boolean function f ∼ Dyes.

2. Finally, if Alg(r1, . . . , rq) outputs “accept”, then Alg′ outputs “G2”, and if Alg(r1, . . . , rq)
outputs “reject”, then Alg′ outputs “G1”.

In order to formalize the notion of “roughly distributed as” from above, let Vyes and Vno be
the distributions supported on {0, 1}q given by:

r ∼ Vyes where ∀i ∈ [q], ri = f(zi), and f ∼ Dyes.

r ∼ Vno where ∀i ∈ [q], ri = f(zi), and f ∼ Dno.

5With a slight abuse of notation, we let Alg′(G) correspond to to the output (r1, . . . , rq) that Alg′ produces
with rejection sampling access to graph G.

92

Now, given the algorithm Alg′, we let Uyes,Uno be the distributions supported in {0, 1}q given
by:

r ∼ Uyes where Alg′(G) outputs (r1, . . . , rq) when G ∼ G2

r ∼ Uno where Alg′(G) outputs (r1, . . . , rq) when G ∼ G1

The following lemma is a simple consequence will allow us to conclude Lemma 6.2.5.

Lemma 6.2.6. Suppose Vyes,Vno,Uyes and Uno satisfy:

dTV (Vyes,Uyes) = o(1) and dTV (Vno,Uno) = o(1).

Then, we have that:

Pr
G∼G1

[Alg′(G) outputs “G1”] ≈ Pr
f∼Dno

[Alg(f) “rejects”]± o(1).

Pr
G∼G2

[Alg′(G) outputs “G2”] ≈ Pr
f∼Dyes

[Alg(f) “accepts”]± o(1).

Proof: We show the first inequality in the conclusion, as the argument is the same for the
second inequality. Consider the set R = {r ∈ {0, 1}q : Alg(r) = “reject”}. Then, we have:

Pr
f∼Dno

[Alg(f) “rejects”] = Pr
r∼Vno

[r ∈ R]

≈ Pr
r∼Uno

[r ∈ R]± o(1)

≈ Pr
G∼G1

[Alg′(G) outputs “accept”]± o(1).

Given Lemma 6.2.6, it remains to describe the randomized procedure Alg′ which given
rejection sampling access to an unknown n-vertex graph G from G1 or G2 outputs a bit-string
of length q such that:

dTV (Vyes,Uyes) = o(1) and dTV (Vno,Uno) = o(1).

The procedure will work as follows:

1. First, sample a random subset M ⊂ [2n] of size n, and let m1,m2 ∼M be two distinct
random indices, and let T ∼ E(M \ {m1,m2}). This defines an indexing function6

ΓT : {0, 1}2n → [N]. We may view the unknown graph G as being defined over vertices
in M 7.

2. We now consider partitioning the queries z1, . . . , zq ∈ {0, 1}2n into at most t + 4 sets

(where we will have t ≤ q) Q
(+)
M ,Q

(−)
M ,Q

(0)
∗ ,Q∗(1) and Q`1 , . . . ,Q`t non-empty sets where

`1, . . . , `t ⊂ [N]:

Q
(−)
M =

{
zi : |(zi)|M| <

n

2
−
√

2n
}
,

Q
(+)
M =

{
zi : |(zi)|M| >

n

2
+
√

2n
}
,

Q
(0)
∗ =

{
zi : ΓT(zi) = 0∗ ∧ zi /∈ Q

(−)
M ∪Q

(+)
M

}
,

Q
(1)
∗ =

{
zi : ΓT(zi) = 1∗ ∧ zi /∈ Q

(−)
M ∪Q

(+)
M

}
,

Q` =
{
zi : ΓT(zi) = ` ∧ zi /∈ Q

(−)
M ∪Q

(+)
M

}
.

6Note that now, N = 2
√
2n since we are considering Boolean functions with 2n variables.

7We may assume this by picking an arbitrary mapping of the indices in M to [n].

93

3. If zi ∈ Q
(−)
M , we let ri = 0, if zi ∈ Q

(+)
M , we let ri = 1. If zi ∈ Q

(0)
∗ , we let ri = 0, and if

zi ∈ Q
(1)
∗ , we let ri = 1. We may thus only consider the queries in Q`1 , . . . ,Q`t , and for

simplicity in the notation, we re-index the queries to let:

Q`i =
{
z

(i)
1 , z

(i)
2 , . . . , z

(i)
|Q`i
|

}
for each i ∈ [t], and the corresponding bits r

(i)
1 , r

(i)
2 , . . . , r

(i)
|Q`i
|.

4. We thus consider each i ∈ [t] and independently set the values of r
(i)
1 , . . . , r

(i)
|Q`i
| as follows:

(a) If `i ≤ 3N/4, sample some j ∼ {m1,m2}, and for every α ∈ [|Q`i |], let:

r(i)
α =

{
(z

(i)
α)j j = m1

¬(z
(i)
α)j j = m2

.

(b) Otherwise, if `i > 3N/4, consider the following sets

Li =
{
k ∈M : ∃α, β ∈ [|Q`i |], (z

(i)
α)k 6= (z

(i)
β)k

}
,

and,

L
(0)
i =

{
k ∈M \ Li : z ∈ Q`i , zk = 0

}
L

(1)
i =

{
k ∈M \ Li : z ∈ Q`i , zk = 1

}
.

We make the query Li if |Li| ≤ n
logn and M otherwise to the rejection sampling oracle

and obtain a response v ∈ (M×M)∪M∪{∅}. In addition, sample j3 ∼ {m1,m2}.
We now consider three cases:

i. If v = (j1, j2) ∈M×M is an edge, then for each α ∈ [|Q`i |], we let:

r(i)
α =

{
(z

(i)
α)j1 ⊕ (z

(i)
α)j2 ⊕ (z

(i)
α)j3 j3 = m1

¬(z
(i)
α)j1 ⊕ (z

(i)
α)j2 ⊕ (z

(i)
α)j3 j3 = m2

.

ii. If v = j2 ∈M is a lone vertex, then let w = ¬(z
(i)
1)j2 and pv(L

(w)
i) =

|L(w)
i |
|Li|

, we

sample b ∼ Ber(pv(L
(w)
i)) and for each α ∈ [|Q`i |], we let:

r(i)
α ⊕ (z(i)

α)j2 ⊕ (z(i)
α)j3 =

{
b⊕ (z

(i)
1)j2 j3 = m1

¬b⊕ (z
(i)
1)j2 j3 = m2

.

iii. Lastly, if v = ∅ is the empty set, then let p∅(Li) =
2|L(0)

i ||L
(1)
i |

|Li|2
and sample

b ∼ Ber(p(Li)) and for each α ∈ [|Q`i |], we let:

r(i)
α ⊕ (z(i)

α)j3 =

{
b j3 = m1

¬b j3 = m2
.

Remark. The procedure described above does not exactly simulate queries to a f ∼ Dyes or
Dno (in the case of G ∼ G2 or G ∼ G1, respectively) as in the reductions of Lemma 6.2.4
and Lemma 4.2.3). Let us briefly explain why this happens by giving an illuminating example.
Consider a one-query algorithm which makes query z ∈ {0, 1}n and suppose |zM| ≈ n

2 ±
√

2n

94

and ΓT(z) = i > 3N
4 with zm1 = 0 and zm2 = 1. Then, the value f(z) = hi(z) will be 0 if

zj1 = zj2 , and 1 if zj1 6= zj2 , where (j1, j2) ∼ G is the edge sampled for subfunction hi.

We note that this probability is slightly different for G ∼ G1 and G ∼ G2 and depends
on how A partitions the 0-variables and 1-variables of z. Despite this difference, Alg′ always
observes ∅ from the rejection sampling oracle, so the output bit r ∈ {0, 1} which Alg′ produces
will not simulate f(z) exactly. The bulk of the argument shows that Alg′ can sample a random
bit whose distribution is close to f(z) in total variation distance, so that Alg cannot exploit the
fact that the simulation is not exact.

We first note the following lemma.

Lemma 6.2.7. With probability 1 − o(1) over the draw of M ⊂ [n], m1,m2 and T ∼ E(M \
{m1,m2}), we have that for all i ∈ [t],

|Li| ≤ |Q`i | · 90
√
n log n.

Proof: We will prove this by showing that for any two z, z′ ∈ Q`i , ‖z − z′‖1 ≤ 90
√
n log n

with probability 1− 1
n10 , so that we may union bound over all possible pairs. More specifically,

consider two queries z, z′ ∈ {0, 1}2n which differ by more than 90
√
n log n indices. Note that the

distribution of the random variable ‖(z−z′)|M‖1 ∼ HG(2n, |z−z′|, n). Then using Theorem 2.4.3
we have that with probability at least 1− 1

n10 over the draw of M, ‖z|M − z′|M‖1 ≥ 30
√
n log n.

Next, if |z|M| ≈ n
2 ±
√

2n and |z′|M| ≈
n
2 ±
√

2n (if either of these conditions do not hold,

then we know the strings are not in Q`i for any i), then there exists a set P ⊂ M with
|P| = 15

√
n log n such that for all k ∈ P, zk = 1 and z′k = 0. Thus, we have that:

Pr
T

[∃i ∈ [t], z, z′ ∈ Q`i] ≤ Pr
T

[z′ ∈ Q`i | z ∈ Q`i] ≤ Pr
T`i

[T`i ∩P = ∅] ≤
(

1− 15 log n√
n

)√n
� 1

n10
.

So we may union bound over all pairs of queries to conclude that if z, z′ ∈ Q`i , then ‖z− z′‖1 ≤
90
√
n log n with high probability, which gives the desired claim.

Thus, given Lemma 6.2.7 as well as the fact that we query [n] when |Li| ≥ n
logn , we conclude

that if Alg makes q queries, then Alg′ has complexity at most q ·O(
√
n log2 n) in the rejection

sampling model.

Lemma 6.2.8. If q ≤ n3/2

log8 n
, then with probability 1− o(1) over the draw of M ⊂ [n],m1,m2,

T, and A ⊂ M, we have that for every i ∈ [t] where |Li| ≤ n
logn , the sets |L(0)

i |, |L
(1)
i | satisfy

the following

|L(0)
i |, |L

(1)
i | = Ω(n) ,

∣∣∣A ∩ L
(0)
i

∣∣∣ ≈
∣∣∣L(0)

i

∣∣∣
2
±
√
n log n and

∣∣∣A ∩ L
(1)
i

∣∣∣ ≈
∣∣∣L(1)

i

∣∣∣
2
±
√
n log n.

Proof: We first claim that with probability 1 − o(1) over the choice of M, all the queries
z ∈ {0, 1}2n that are mapped to some Q`i are such that |z| ≈ n ± 50

√
2n log n. Assume

z ∈ {0, 1}2n is such that |z| > n + 50
√

2n log n, and consider the random variable |z|M|.
Note that the distribution of |z|M| is hyper-geometric with parameters (2n, |z|, n). By using
Theorem 2.4.3 on the tail bounds for hyper-geometric random variable, we get that for any
t > 0

Pr
M

[
|z|M| <

(
|z|
2n
− t
)
n

]
≤ e−2t2n .

95

By choosing t = 50 logn√
2n
−
√

2√
n

, and considering the complement event, we have that

Pr
M

[
|z|M| ≥

|z|
2
− 50

√
n log n√

2
+
√

2n

]
≥ 1− 1

n50
.

Combining this with the fact that |z| > n + 50
√

2n log n, we get that the probability that
|z|M| > n/2 +

√
2n is at least 1− 1/n50.

Similarly, we get that when |z| < n− 50
√

2n log n , we have that with probability 1− 1/n50

over the choice of M, |z|M| < n/2 −
√

2n. By using a union bound on the number of queries
we get that with probability 1− o(1) over the choice of M, all the queries z ∈ {0, 1}2n that are
mapped to some Q`i are such that |z| ≈ n± 50

√
2n log n.

We henceforth condition on such M = M . Consider any T ∼ E(M) and all the indices
i ∈ [t] such that |Li| ≤ n

logn . By definition, if z ∈ {0, 1}2n is mapped to some Q`i , then

|z|M | ≈ n/2±
√

2n, which implies that |z|M | ≈ n/2± 49
√

2n log n. Therefore, by the fact that

all queries in Q`i must agree on all of the coordinates in Li, we can conclude that |L(0)
i | and

|L(1)
i | are Ω(n).

Next, consider the random variable |A ∩ L(1)
i |, and note that its distribution is hyper-

geometric with parameters (n, |L(1)
i |, n/2). By using tail bounds for hyper-geometric random

variable, we get that with probability at least 1− o(1) over the choice of A

|A ∩ L(1)
i | ≈

|L(1)
i |
2
±
√
n log n .

Using the same argument, we also get that with probability 1 − o(1) over the choice of A we
have that

|A ∩ L(0)
i | ≈

|L(0)
i |
2
±
√
n log n .

By applying a union bound over all indices i ∈ [t] the lemma follows.

Lemma 6.2.9. If cost(Alg′) ≤ n2

log6 n
which occurs with high probability over M, with probability

1 − o(1) over the draw of v in Step 4(b), there are at most n
log4 n

responses v ∈ M which are

lone vertices of case (ii).

As discussed earlier, the proof of the above lemma is given in the lower bound for distin-
guishing G1 and G2 in Section 4.3 (Lemma 4.3.14). We assume its correctness for the rest of
this section.

We note that since M,m1,m2 and T are distributed in the same way in f ∼ Dyes and in
Step 1 of Alg, we may consider the distribution Vyes(M,m1,m2, T) denoting Vyes conditioned
on M = M,m1 = m1,m2 = m2 and T = T , and we analogously define Uyes(M,m1,m2, T),
Vno(M,m1,m2, T) and Uno(M,m1,m2, T). In addition, we may denote the event EA to denote
the event that the hidden subset A sampled in f or in the graph G satisfies the conditions
of Lemma 6.2.8, and the event EV to be the event that there are at most n

log4 n
responses

which are lone vertices from Lemma 6.2.9. We thus consider a fixed set M,m1,m2, and T
satisfying the following conditions of Lemma 6.2.7 and consider the distribution V ′yes to be the
distribution given by sampling r ∼ Vyes(M,m1,m2, T) conditioned on events EA and EV . We
analogously define V ′no, U ′yes and U ′no. We note it suffices to show dTV (V ′yes,U ′yes) = o(1) and
dTV (V ′no,U ′no) = o(1).

We now note that conditioned on M,m1,m2 and T , the sets Q
(+)
M ,Q

(−)
M ,Q

(1)
∗ and Q

(0)
∗ , as

well as all Q`1 , . . . ,Q`t are no longer random. Furthermore, when z ∈ Q
(+)
M ∪ Q

(−)
M ∪ Q

(1)
∗ ∪

96

Q
(0)
∗ the values of fT,A,H(z) from Dyes (and from Dno) are fixed to their corresponding values

according to (6.1), which match their settings in U ′yes and U ′no. Likewise, when z ∈ Q`i with

`i ≤ 3N
4 , fT,A,H(z) is determined by a dictator or anti-dictator in {m1,m2}; by the principle of

deferred decisions, the values of fT,A,H(z) can be simulated exactly. Therefore, it remains to

consider the values of r
(i)
α corresponding to fT,A,H(z

(i)
α) for each i ∈ [t], where `i >

3N
4 , so for

simplicity, assume that every `i >
3N
4 .

Consider a function v : [t] → {“edge”, “lone vertex”, “empty set”} which indicates whether
the response of the ith rejection sampling query sampled in Step 4(b) falls into case (i) (when
vi is an edge), or case (ii) (when vi is a lone vertex), or case (iii) (when vi is ∅). In other words,

v(i) =

“edge” vi ∈M×M

“lone vertex” vi ∈M
“empty set” vi = ∅

We thus consider one fixed function v : [t]→ {“edge”, “lone vertex”, “empty set”} and con-
dition on the fact that v specifies the three cases of Step 4(b) (in the case of Uyes and Uno) and
whether the edge sampled (j1, j2) ∼ G in the fourth step of generating Dyes and Dno for h`i
either intersects Li fully (in the case of an edge), or partially (in the case of a lone vertex), or
it does not intersect at all (in the case of the empty set). Thus, again, we may consider the
distributions conditioned on the edges sampled are specified correctly by v.

The following three lemmas give the distribution of r
(i)
1 ∼ V ′yes and r

(i)
1 ∼ V ′no in the cases

when vi is an edge, or a lone vertex, or the empty set. We note that the three lemmas indicate

how to generate the bits r
(i)
α in Step 4(b) of Alg′.

Lemma 6.2.10. For every i ∈ [t] with v(i) = “edge”, we have that every α ∈ [|Q`i |] has r
(i)
α

generated from Alg′ is distributed exactly as f(z
(i)
α).

Proof: This simply follows from the principle of deferred decisions, since Alg′ generates all
the necessary randomness to simulate a query to a function f ∼ Dyes or f ∼ Dno which indexes
to the sub-function h`i .

Lemma 6.2.11. For every i ∈ [t] with v(i) = “empty set”, there exists |γyes|, |γno| = O(log2 n
n)

such that for r ∼ V ′yes satisfies

r
(i)
1 ⊕ (z

(i)
1)j3 ∼

{
Ber

(
p∅(Li) + γyes

)
j3 = m1

Ber(1− p∅(Li)− γyes) j3 = m2
,

and r ∼ V ′no satisfies

r
(i)
1 ⊕ (z

(i)
1)j3 ∼

{
Ber

(
p∅(Li) + γno

)
j3 = m1

Ber
(
1− p∅(Li)− γno

)
j3 = m2

.

Proof: We recall that h`i is determined by (j1, j2) ∼ G and j3 ∼ {m1,m2} in the fourth step

of generating f ∼ Dyes or Dno. Consider the case when j3 = m1, and the case when (z
(i)
1)m1 = 0

(since the case (z
(i)
1)m1 = 1 is symmetric, except we flip the answer).

Recall that we condition on the fact that the edge (j1, j2) ∼ G satisfies Li ∩ {j1, j2} = ∅,
as well as the conclusions from Lemma 6.2.8, so we may write:

Pr
r∼Vyes

[
r

(i)
1 = 1 | v(i) = “empty set”

]
= Pr

G∼Dno
(j1,j2)

[(
j1 ∈ A ∩ L

(0)
i ∧ j2 ∈ A ∩ L

(1)
i

)
∨
(
j1 ∈ A ∩ L

(1)
i ∧ j2 ∈ A ∩ L

(0)
i

)
| v(i) = “empty set”

]
,

=
1

|A ∩ Li| · |A ∩ Li|
·
(
|A ∩ L

(0)
i | · |A ∩ L

(1)
i |+ |A ∩ L

(1)
i | · |A ∩ L

(0)
i |
)

(6.3)

97

since the value of f(z
(i)
1) in the case of j3 = m1 will be a parity of the end points, so this parity

will be 1 when the values of the variables j1 and j2 under z
(i)
1 disagree. In order to see this, we

recall that G is the complete bipartite graph (in the case when r ∼ Vyes) with sides A and A,

so the edge (j1, j2) ∈ A×A must have (z
(i)
1)j1 6= (z

(i)
1)j2 , and j1, j2 ∈ Li.

Since v(i) = “empty set”, we note that |Li| ≤ n
logn , so |Li| = Ω(n). In addition, by

Lemma 6.2.8, let:

|A ∩ L
(0)
i | =

|L(0)
i |
2

+ ξ0 and |A ∩ L
(1)
i | =

|L(1)
i |
2

+ ξ1, (6.4)

where |ξ0|, |ξ1| ≤
√
n log n, which in turn, implies:

|A ∩ L
(0)
i | =

|L(0)
i |
2
− ξ0 and |A ∩ L

(1)
i | =

|L(1)
i |
2
− ξ1. (6.5)

Therefore, combining (6.3) with (6.4) and (6.5),

Pr
r∼Vyes

[
r

(i)
1 = 1 | v(i) = “empty set”

]
=

1(
|Li|

2 + ξ0 + ξ1

)(
|Li|

2 − ξ0 − ξ1

) ((|L(0)
i |
2

+ ξ0

)(
|L(1)
i |
2
− ξ1

)
+

(
|L(1)
i |
2

+ ξ1

)(
|L(0)
i |
2
− ξ0

))

=
2|L(0)

i | · |L
(1)
i | − 8ξ0ξ1

|Li|2 − 4ξ2
0 − 4ξ2

1 − 8ξ0ξ1

=
2|L(0)

i | · |L
(1)
i |

|Li|2
+ γyes,

where |γyes| ≤ O(log2 n
n), since |Li|, |L

(0)
i |, |L

(1)
i | = Ω(n).

The case when r ∼ Vno is analogous, except that now the underlying graph is the union of
two cliques at A and A, so:

Pr
r∼Vno

[
r

(i)
1 = 1 | v(i) = “empty set”

]
= Pr

G∼G1
(j1,j2)

[(
j1 ∈ A ∩ L

(0)
i ∧ j2 ∈ A ∩ L

(1)
i

)
∨
(
j1 ∈ A ∩ L

(0)
i ∧ j2 ∈ A ∩ L

(1)
i

)
| v(i) = “empty set”

]
,

=
1(|A∩Li|

2

)
+
(|A∩Li|

2

) · (|A ∩ L
(0)
i | · |A ∩ L

(1)
i |+ |A ∩ L

(0)
i | · |A ∩ L

(1)
i |
)

=
1(|Li|

2
+ξ0+ξ1

2

)
+
(|Li|

2
−ξ0−ξ1

2

)
((
|L(0)
i |
2

+ ξ0

)(
|L(1)
i |
2

+ ξ1

)
+

(
|L(0)
i |
2
− ξ0

)(
|L(1)
i |
2
− ξ1

))

=
2|L(0)

i | · |L
(1)
i |

|Li|2
+ γno,

were again, |γno| ≤ O(log2 n
n).

Lemma 6.2.12. For every i ∈ [t] with v(i) = “lone vertex”, let j2 ∈ M be the lone vertex

observed and let w = ¬(z
(i)
1)j2. There exists |γ′yes|, |γ′no| ≤ O(logn√

n
) such that for r ∼ V ′yes

satisfies

r
(i)
1 ⊕ (z

(i)
1)j3 ∼

{
Ber(pv(L

(w)
i) + γ′yes) j3 = m1

Ber(1− pv(L
(w)
i)− γ′yes) j3 = m2

,

98

and r ∼ V ′no satisfies

r
(i)
1 ⊕ (z

(i)
1)j3 ∼

{
Ber(pv(L

(w)
i) + γ′no) j3 = m1

Ber(1− pv(L
(w)
i)− γ′no) j3 = m2

.

Proof: We follow a similar strategy to Lemma 6.2.11, where we know that we sample an edge
(j1, j2) ∼ G whose value of j2 ∈ Li, and j1 /∈ Li. Consider for simplicity the case when G is a

complete bipartite graph with sides A and A, and j3 = m1 and (z
(i)
1)m1 = 0.

Similarly to (6.3), we have that in order for r
(i)
1 = 1, we must have (z

(i)
1)j1 6= (z

(i)
1)j2 .

Suppose that j2 ∈ A and w = ¬(z
(i)
1)j2 , then in order for r

(i)
1 = 1, j1 must have been sampled

from A ∩ L
(w)
i . Using Lemma 6.2.8, we have that there exists |ξ0|, |ξ1| ≤

√
n log n so:

Pr
r∼V ′yes

[r
(i)
1 = 1 | v(i) = “lone vertex”] =

|A ∩ L
(w)
i |

|A ∩ L|
=
|L(w)
i |/2− ξw

|Li|/2− ξ0 − ξ1

≈ |L
(w)
i |
|Li|

±O(logn√
n

),

where we used the fact that |Li|, |L(w)
i | = Ω(n). If j2 ∈ A, then

Pr
r∼V ′yes

[r
(i)
1 = 1 | v(i) = “lone vertex”] =

|A ∩ L
(w)
i |

|A ∩ L|
=
|L(w)
i |/2 + ξw

|Li|/2 + ξ0 + ξ1

≈ |L
(w)
i |
|Li|

±O(logn√
n

).

In both cases, we have that r
(i)
1 ∼ Ber(pv(L

(w)
i)±O(logn√

n
)), and when we have (z

(i)
1)m1 = 1, we

simply flip the answer. Likewise, when j3 = m2, we flip the answer once more.

In the case of G being the union of two cliques at A and A, when j3 = m1 and (z
(i)
1)m1 = 0,

we have that when j2 ∈ A,

Pr
r∼V ′no

[r
(i)
1 = 1 | v(i) = “lone vertex”] =

|A ∩ L
(w)
i |

|A ∩ L|
=
|L(w)
i |/2 + ξw

|Li|/2 + ξ0 + ξ1

≈ |L
(w)
i |
|Li|

±O(logn√
n

),

and when j2 ∈ A,

Pr
r∼V ′no

[r
(i)
1 = 1 | v(i) = “lone vertex”] =

|A ∩ L
(w)
i |

|A ∩ L|
=
|L(w)
i |/2− ξw

|Li|/2− ξ0 − ξ1

≈ |L
(w)
i |
|Li|

±O(logn√
n

),

so we obtain the analogous conclusion.

We note that after defining r
(i)
1 in the cases with v(i) = “empty set”, we have that all values

r
(i)
α are determined by flipping the answer when (z

(i)
α)j3 6= (z

(i)
1)j3 . Likewise, after defining r

(i)
1

in the cases with v(i) = “lone vertex”, we have that all values r
(i)
α are determined by flipping

the answer when (z
(i)
α)j3 6= (z

(i)
1)j3 and when (z

(i)
α)j2 6= (z

(i)
1)j2 .

Finally, consider the indices i ∈ [t] of responses r
(i)
α with v(i) = “empty set”, and call these

E. We have that for all i ∈ E, U ′yes and U ′no outputs bits which equal 1 with probability τi

where τi = Ω(1), and V ′yes and V ′no outputs bits which equal 1 with probability τi ± O(log2 n
n).

Since these groups are independent and there at at most q � n1.5 groups, we have that the bits

(r
(i)
1)i∈E ∼ U ′yes (and also U ′no) satisfy:

(r
(i)
1)i∈E ∼

∏
i∈E

Ber(τi),

99

and for each i ∈ E, there exists γi,yes and γi,no with |γi,yes|, |γi,no| = O(log2 n
n) such that

(r
(i)
1)i∈E ∼ V ′yes satisfies

(r
(i)
1)i∈E ∼

∏
i∈E

Ber(τi + γi,yes),

and if (r
(i)
1)i∈E ∼ V ′no satisfies

(r
(i)
1)i∈E ∼

∏
i∈E

Ber(τi + γi,no).

Thus, by [Roo01], we have that the distance in total variation between these two distributions
is at most o(1).

Similarly, we consider the indices i ∈ [t] with v(i) = “lone vertex”, and call these V . By
Lemma 6.2.9, we have that |V | ≤ n

log4 n
with probability 1 − o(1) if the cost of the rejection

sampling algorithm is less than n2

log6 n
. So similarly to the case with the groups in E, these can

only incur at most o(1) in distance in total variation.

6.3 Separating Erasure-Resilient testing from property testing

Similarly to the tolerant testing scenario, PCPPs were also used in [DRTV18] to show that
there exists a property of boolean strings of length n that has a tester with query complexity
independent of n, but for any constant α > 0, every α-erasure-resilient tester is required to query
Ω(nc) many bits for some c > 0, thereby establishing a separation between the models. Later,
in [RRV19] PCPP constructions were used to provide a separation between the erasure-resilient
testing model and the tolerant testing model.

We start with some terminology. A string x ∈ {0, 1,⊥}n is α-erased if xi is equal to ⊥ on
at most αn coordinates. A string x′ ∈ {0, 1}n that differs from x only on coordinates i ∈ [n] for
which xi = ⊥ is called a completion of x. The (pseudo-)distance dist(x,P) of an α-erased string
x from a property P is the minimum, over every completion x′ of x, of the relative Hamming
distance of x′ from P. Note that for a string with no erasures, this is simply the Hamming
distance of x from P. As before, x is ε-far from P if dist(x,P) > ε, and ε-close otherwise.

Definition 6.3.1 (Erasure-resilient tester). Let α ∈ [0, 1) and ε ∈ (0, 1) be parameters satis-
fying α + ε < 1. An q-query α-erasure-resilient ε-tester T for P is a probabilistic algorithm
making q queries to an α-erased string x ∈ {0, 1,⊥}n, that outputs a binary verdict satisfying
the following two conditions.

1. If dist(x,P) = 0 (i.e., if there exists a completion x′ of x, such that x′ ∈ P), then T
accepts x with probability at least 2/3.

2. If dist(x,P) > ε (i.e., if every completion of x′ of x is ε-far from P), then T rejects x with
probability at least 2/3.

Our main result in this section is the following.

Theorem 6.3.2. For every constant ` ∈ N, there exist a property Q(`) and ε1 = ε1(`) ∈ (0, 1)
such that the following hold.

1. For every ε ∈ (0, 1), the property Q(`) can be ε-tested using a number of queries depending
only on ε (and `).

100

2. For every ε ∈ (0, ε1) and any α = Ω(1/ log(`)N) satisfying ε + α < 1, any α-erasure
resilient ε-tester for Q(`) needs to make Ω(N/10` ·polylog(`)N) many queries on inputs of
length N .

Proof of Theorem 6.3.2: The proof of Theorem 6.3.2 is almost identical to the proof of
Theorem 5.5.1. The only difference is that we replace Lemma 5.5.4 with a counterpart for

erasure resilient testing, where instead of setting the last z
(`)
F,0 bits of x to (0)z

(`)
F,0 , we use (⊥)z

(`)
F,0 ,

noting that the relative size of this part of the input is 1/(s+ 1) = Θ(1/ log(`)(N)).

101

102

Bibliography

[AB10] Noga Alon and Eric Blais. Testing Boolean function isomorphism. In Approxima-
tion, Randomization and Combinatorial Optimization. Algorithms and Techniques,
volume 6302 of Lecture Notes in Computer Science, pages 394–405. Springer, 2010.

[ABC+13] Noga Alon, Eric Blais, Sourav Chakraborty, David Garćıa-Soriano, and Arie Mat-
sliah. Nearly tight bounds for testing function isomorphism. SIAM Journal on
Computing, 42(2):459–493, 2013.

[ABEF17] Noga Alon, Omri Ben-Eliezer, and Eldar Fischer. Testing hereditary properties of
ordered graphs and matrices. In Proceedings of the 58th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 848–858, 2017.

[ACCL07] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the
distance to a monotone function. Random Structures and Algorithms, 31(3):371–
383, 2007.

[AFKS00] Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy. Efficient test-
ing of large graphs. Combinatorica, 20(4):451–476, 2000.

[AFNS09] Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira. A combinatorial
characterization of the testable graph properties: It’s all about regularity. SIAM
Journal on Computing, 39(1):143–167, 2009.

[AKK+05] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana
Ron. Testing reed-muller codes. IEEE Transactions on Information Theory,
51(11):4032–4039, 2005.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and the hardness of approximation problems. J. ACM,
45(3):501–555, 1998.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new charac-
terization of np. Journal of the ACM (JACM), 45(1):70–122, 1998.

[AS08] Noga Alon and Asaf Shapira. Every monotone graph property is testable. SIAM
Journal on Computing, 38(2):505–522, 2008.

[Bac13] Francis R. Bach. Learning with submodular functions: A convex optimization
perspective. Foundations and Trends in Machine Learning, 6(2-3):145–373, 2013.

[Bar75] Zsolt Baranyai. On the factorization of the complete uniform hypergraph. In
Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th
birthday), volume 1, pages 91–108, 1975.

103

[BB16] Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing mono-
tonicity. In Proceedings of the 48th ACM Symposium on the Theory of Computing
(STOC ’16), pages 1021–1032, 2016.

[BCE+19] Eric Blais, Clément L Canonne, Talya Eden, Amit Levi, and Dana Ron. Tol-
erant junta testing and the connection to submodular optimization and function
isomorphism. ACM Transactions on Computation Theory, 11(4):1–33, 2019.

[BCGSM12] Jop Briët, Sourav Chakraborty, David Garćıa-Soriano, and Arie Matsliah. Mono-
tonicity testing and shortest-path routing on the cube. Combinatorica, 32(1):35–
53, 2012.

[BCL+06] Christian Borgs, Jennifer Chayes, László Lovász, Vera T Sós, Balázs Szegedy, and
Katalin Vesztergombi. Graph limits and parameter testing. In Proceedings of the
38th ACM Symposium on the Theory of Computing (STOC), pages 261–270, 2006.

[BCP+17] Roksana Baleshzar, Deeparnab Chakrabarty, Ramesh Krishnan S. Pallavoor, So-
fya Raskhodnikova, and C. Seshadhri. Optimal unateness testers for real-values
functions: Adaptivity helps. In Proceedings of the 44th International Colloquium
on Automata, Languages and Programming (ICALP), 2017.

[BEFLY18] Omri Ben-Eliezer, Eldar Fischer, Amit Levi, and Yuichi Yoshida. Ordered graph
limits and their applications. arXiv preprint arXiv:1811.02023, 2018.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential
time has two-prover interactive protocols. Computational Complexity, 1(1):3–40,
1991.

[BFLR20] Omri Ben-Eliezer, Eldar Fischer, Amit Levi, and Ron D. Rothblum. Hard proper-
ties with (very) short pcpps and their applications. In Proceedings of the 11th In-
novations in Theoretical Computer Science Conference (ITCS), volume 151, pages
9:1–9:27, 2020.

[BFLS91] László Babai, Lance Fortnow, Leonid Levin, and Mario Szegedy. Checking com-
putations in polylogarithmic time. In Proceedings of the 23rd Annual ACM Sym-
posium on Theory of Computing (STOC, pages 21–31, 1991.

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P.
Vadhan. Robust pcps of proximity, shorter pcps, and applications to coding.
SIAM Journal on Computing, 36(4):889–974, 2006.

[BKK+16] Eli Ben-Sasson, Yohay Kaplan, Swastik Kopparty, Or Meir, and Henning
Stichtenoth. Constant rate PCPs for circuit-SAT with sublinear query complexity.
Journal of the ACM, 63(4):32:1–32:57, 2016.

[BL97] Avrim L. Blum and Pat Langley. Selection of relevant features and examples in
machine learning. Artificial intelligence, 97(1):245–271, 1997.

[Bla08] Eric Blais. Improved bounds for testing juntas. In Approximation, Randomiza-
tion and Combinatorial Optimization. Algorithms and Techniques, pages 317–330.
Springer, 2008.

[Bla09] Eric Blais. Testing juntas nearly optimally. In Proceedings of the 41st ACM
Symposium on the Theory of Computing (STOC ’09), pages 151–158, 2009.

104

[Bla12] Eric Blais. Testing properties of Boolean functions. PhD thesis, CMU, 2012.

[BLNR15] Alexandre Belloni, Tengyuan Liang, Hariharan Narayanan, and Alexander
Rakhlin. Escaping the local minima via simulated annealing: Optimization of
approximately convex functions. In Proceedings of the 28th Annual Conference on
Learning Theory (COLT ’15), pages 240–265, 2015.

[BLR90] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with
applications to numerical problems. In Proceedings of the 22nd ACM Symposium
on the Theory of Computing (STOC ’90), pages 73–83. ACM, 1990.

[Blu94] Avrim Blum. Relevant examples and relevant features: Thoughts from computa-
tional learning theory. In AAAI Fall Symposium on ‘Relevance, volume 5, page 1,
1994.

[BMR16] Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. Tolerant testers
of image properties. pages 90:1–90:14, 2016.

[BR02] Omer Barkol and Yuval Rabani. Tighter lower bounds for nearest neighbor search
and related problems in the cell probe model. Journal of Computer and System
Sciences, 64(4):873–896, 2002.

[Bra15] Madeline V. Brandt. Intersecting hypergraphs and decompositions of complete
uniform hypergraphs. B.A. Thesis, Reed College, 2015.

[BSS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity.
SIAM Journal on Computing, 38(2):551–607, 2008.

[BSS10] Itai Benjamini, Oded Schramm, and Asaf Shapira. Every minor-closed property
of sparse graphs is testable. Advances in mathematics, 223(6):2200–2218, 2010.

[CC16] Deeparnab Chakrabarty and Seshadhri Comandur. An o(n) monotonicity tester
for boolean functions over the hypercube. SIAM Journal on Computing, 45(2):461–
472, 2016.

[CFGM12] Sourav Chakraborty, Eldar Fischer, David Garćıa-Soriano, and Arie Matsliah.
Junto-symmetric functions, hypergraph isomorphism and crunching. In Proceed-
ings of the 27th Conference on Computational Complexity (CCC ’12), pages 148–
158. IEEE, 2012.

[CG04] Hana Chockler and Dan Gutfreund. A lower bound for testing juntas. Information
Processing Letters, pages 301–305, 2004.

[CG17] Clément L. Canonne and Tom Gur. An adaptivity hierarchy theorem for property
testing. arXiv preprint arXiv:1702.05678, 2017.

[CGM11] Sourav Chakraborty, David Garćıa-Soriano, and Arie Matsliah. Efficient sample
extractors for juntas with applications. In Proceedings of the 38th International
Colloquium on Automata, Languages and Programming (ICALP ’11), volume 6755
of Lecture Notes in Computer Science, pages 545–556. Springer, 2011.

[CGR13] Andrea Campagna, Alan Guo, and Ronitt Rubinfeld. Local reconstructors and tol-
erant testers for connectivity and diameter. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, pages 411–424. Springer,
2013.

105

[CGR+14] Artur Czumaj, Oded Goldreich, Dana Ron, C Seshadhri, Asaf Shapira, and Chris-
tian Sohler. Finding cycles and trees in sublinear time. Random Structures &
Algorithms, 45(2):139–184, 2014.

[CS10] Artur Czumaj and Christian Sohler. Testing expansion in bounded-degree graphs.
Combinatorics, Probability and Computing, 19(5-6):693–709, 2010.

[CS13] Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and
lipschitz testing over hypercubes and hypergrids. In Proceedings of the 45th ACM
Symposium on the Theory of Computing (STOC ’13), pages 419–428, 2013.

[CS14] Deeparnab Chakrabarty and C. Seshadhri. An optimal lower bound for mono-
tonicity testing over hypergrids. Theory of Computing, 10(17):453–464, 2014.

[CSS09] Artur Czumaj, Asaf Shapira, and Christian Sohler. Testing hereditary properties of
nonexpanding bounded-degree graphs. SIAM Journal on Computing, 38(6):2499–
2510, 2009.

[CST+17] Xi Chen, Rocco A. Servedio, Li-Yang Tan, Erik Waingarten, and Jinyu Xie. Set-
tling the query complexity of non-adaptive junta testing. In Proceedings of the
32nd Conference on Computational Complexity (CCC ’17), 2017.

[CSTW] Xi Chen, Rocco A. Servedio, Li-Yan Tan, and Erik Waingarten. Adaptivity is
exponential powerful for testing monotonicity of halfspaces. Available at: http:

//www.cs.columbia.edu/~eaw/CSTW.pdf.

[CWX17a] Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond talagrand functions: new lower
bounds for testing monotonicity and unateness. In Proceedings of the 49th ACM
Symposium on the Theory of Computing (STOC ’17), 2017.

[CWX17b] Xi Chen, Erik Waingarten, and Jinyu Xie. Boolean unateness testing with Õ(n3/4)
adaptive queries. In Proceedings of the 58th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), 2017.

[DGL+99] Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron,
and Alex Samorodnitsky. Improved testing algorithms for monotonocity. In
Approximation, Randomization and Combinatorial Optimization. Algorithms and
Techniques, 1999.

[Din07] Irit Dinur. The pcp theorem by gap amplification. Journal of the ACM, 54(3):12,
2007.

[DLM+07] Ilias Diakonikolas, Homin K Lee, Kevin Matulef, Krzysztof Onak, Ronitt Rubin-
feld, Rocco A Servedio, and Andrew Wan. Testing for concise representations.
In Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer
Science (FOCS ’07), pages 549–558. IEEE, 2007.

[DMN19] Anindya De, Elchanan Mossel, and Joe Neeman. Junta correlation is testable.
2019. To appear.

[Doe11] Benjamin Doerr. Analyzing randomized search heuristics: Tools from probability
theory. Theory of randomized search heuristics, 1:1–20, 2011.

[DR06] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof
of the PCP theorem. SIAM Journal on Computing, 36(4):975–1024, 2006.

106

http://www.cs.columbia.edu/~eaw/CSTW.pdf
http://www.cs.columbia.edu/~eaw/CSTW.pdf

[DRTV18] Kashyap Dixit, Sofya Raskhodnikova, Abhradeep Thakurta, and Nithin M. Varma.
Erasure-resilient property testing. SIAM Journal on Computing, 47(2):295–329,
2018.

[EKK+00] Funda Ergün, Sampath Kannan, S. Ravi Kumar, Ronitt Rubinfeld, and Ma-
hesh Vishwanthan. Spot-checkers. Journal of Computer and System Sciences,
60(3):717–751, 2000.

[FF06] Eldar Fischer and Lance Fortnow. Tolerant versus intolerant testing for boolean
properties. Theory of Computing, 2(9):173–183, 2006.

[FGL+91] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy.
Approximating clique is almost np-complete. In Thirty-Second Annual Symposium
of Foundations of Computer Science (FOCS, pages 2–12. IEEE, 1991.

[FKR+04] Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and Alex Samorodnitsky.
Testing juntas. Journal of Computer and System Sciences, 68(4):753–787, 2004.

[FLN+02] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubin-
feld, and Alex Samorodnitsky. Monotonicity testing over general poset domains.
In Proceedings of the 34th ACM Symposium on the Theory of Computing (STOC
’02), pages 474–483, 2002.

[FN07] Eldar Fischer and Ilan Newman. Testing versus estimation of graph properties.
SIAM Journal on Computing, 37(2):482–501, 2007.

[FNS04] Eldar Fischer, Ilan Newman, and Jǐŕı Sgall. Functions that have read-twice con-
stant width branching programs are not necessarily testable. Random Structures
& Algorithms, 24(2):175–193, 2004.

[FR10] Shahar Fattal and Dana Ron. Approximating the distance to monotonicity in high
dimensions. ACM Transactions on Algorithms, 6(3):52, 2010.

[Fri98] Ehud Friedgut. Boolean functions with low average sensitivity depend on few
coordinates. Combinatorica, 18(1):27–35, 1998.

[FS95] Katalin Friedl and Madhu Sudan. Some improvements to total degree tests. In
Proceedings Third Israel Symposium on the Theory of Computing and Systems,
pages 190–198. IEEE, 1995.

[GGLR98] Oded Goldreich, Shafi Goldwasser, Eric Lehman, and Dana Ron. Testing mono-
tonicity. In Proceedings of the 39th Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’98), pages 426–435, 1998.

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its con-
nection to learning and approximation. Journal of the ACM, 45(4):653–750, 1998.

[GLR+91] Peter Gemmell, Richard Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi Wigder-
son. Self-testing/correcting for polynomials and for approximate functions. In
Thirty-Second Annual ACM Symposium on the Theory of Computing (STOC),
volume 91, pages 32–42, 1991.

[GLS12] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms
and combinatorial optimization, volume 2. Springer Science & Business Media,
2012.

107

[GM07] Oded Goldreich and Or Meir. A small gap in the gap amplification of assignment
testers, 2007. In ECCC, 2007, TR05-46, Comment 3.

[Gol08] Oded Goldreich. Computational complexity - A conceptual perspective. Cambridge
University Press, 2008.

[Gol17] Oded Goldreich. Introduction to property testing. Cambridge University Press,
2017.

[GOS+11] Parikshit Gopalan, Ryan O’Donnell, Rocco A Servedio, Amir Shpilka, and Karl
Wimmer. Testing fourier dimensionality and sparsity. SIAM Journal on Comput-
ing, 40(4):1075–1100, 2011.

[GR02] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Al-
gorithmica, 32(2):302–343, 2002.

[GR05] Venkatesan Guruswami and Atri Rudra. Tolerant locally testable codes. In Approx-
imation, Randomization and Combinatorial Optimization. Algorithms and Tech-
niques, pages 306–317. Springer, 2005.

[GR11] Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs.
In Studies in Complexity and Cryptography. Miscellanea on the Interplay between
Randomness and Computation, pages 68–75. Springer, 2011.

[HKNO09] Avinatan Hassidim, Jonathan A Kelner, Huy N Nguyen, and Krzysztof Onak.
Local graph partitions for approximation and testing. In Proceedings of the 50th
Annual IEEE Symposium on Foundations of Computer Science (FOCS ’09), pages
22–31. IEEE, 2009.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American statistical association, 58(301):13–30, 1963.

[Hor72] Ellis Horowitz. A fast method for interpolation using preconditioning. Information
Processing Letters, 1(4):157–163, 1972.

[JL10] Z. Q. John Lu. The elements of statistical learning: data mining, inference, and
prediction. Journal of the Royal Statistical Society: Series A (Statistics in Society),
173(3):693–694, 2010.

[JPRZ09] Charanjit S Jutla, Anindya C Patthak, Atri Rudra, and David Zuckerman. Test-
ing low-degree polynomials over prime fields. Random Structures & Algorithms,
35(2):163–193, 2009.

[KNOW14] Pravesh Kothari, Amir Nayyeri, Ryan O’Donnell, and Chenggang Wu. Testing
surface area. In Proceedings of the 25th ACM-SIAM Symposium on Discrete Al-
gorithms (SODA ’14), pages 1204–1214. Society for Industrial and Applied Math-
ematics, 2014.

[KNR02] Yoshiharu Kohayakawa, Brendan Nagle, and Vojtěch Rödl. Efficient testing of
hypergraphs. In International Colloquium on Automata, Languages, and Pro-
gramming, pages 1017–1028. Springer, 2002.

[KR98] Michael Kearns and Dana Ron. Testing problems with sub-learning sample com-
plexity. In Proceedings of the 11th Annual Conference on Learning Theory (COLT
’98), pages 268–279. ACM, 1998.

108

[KR06] Tali Kaufman and Dana Ron. Testing polynomials over general fields. SIAM
Journal on Computing, 36(3):779–802, 2006.

[KS08] Satyen Kale and C Seshadhri. Testing expansion in bounded degree graphs. 35th
ICALP, pages 527–538, 2008.

[KS09] Swastik Kopparty and Shubhangi Saraf. Tolerant linearity testing and locally
testable codes. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, pages 601–614. Springer, 2009.

[KSS94] Michael J Kearns, Robert E Schapire, and Linda M Sellie. Toward efficient agnostic
learning. Machine Learning, 17(2-3):115–141, 1994.

[KSS18] Akash Kumar, C Seshadhri, and Andrew Stolman. Finding forbidden minors in
sublinear time: A nˆ 1/2+ o (1)-query one-sided tester for minor closed properties
on bounded degree graphs. In Proceedings of the 59th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 509–520. IEEE, 2018.

[Lev15] Amit Levi. On symmetric structures in graphs and applications in property test-
ing. M.Sc thesis, The Zandman-Slaner Graduate School of Engineering, Tel Aviv
University, 2015.

[LR15] Reut Levi and Dana Ron. A quasi-polynomial time partition oracle for graphs
with an excluded minor. ACM Transactions on Algorithms, 11(3):24, 2015.

[LSW15] Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane
method and its implications for combinatorial and convex optimization. In Pro-
ceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’15), pages 1049–1065. IEEE, 2015.

[LW19] Amit Levi and Erik Waingarten. Lower bounds for tolerant junta and unateness
testing via rejection sampling of graphs. In Proceedings of the 10th Innovations in
Theoretical Computer Science Conference (ITCS), pages 52:1–52:20, 2019.

[MORS10] Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, and Rocco A Servedio. Testing
halfspaces. SIAM Journal on Computing, 39(5):2004–2047, 2010.

[MOS03] Elchanan Mossel, Ryan O’Donnell, and Rocco A. Servedio. Learning juntas. In
Proceedings of the 35th ACM Symposium on the Theory of Computing (STOC
’03), pages 206–212. ACM, 2003.

[MR09] Sharon Marko and Dana Ron. Approximating the distance to properties in
bounded-degree and general sparse graphs. ACM Transactions on Algorithms,
5(2):22, 2009.

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of
error-correcting codes, volume 16. Elsevier, 1977.

[NS10] Asaf Nachmias and Asaf Shapira. Testing the expansion of a graph. Information
and Computation, 208(4):309–314, 2010.

[O’D14] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

[PR02] Michal Parnas and Dana Ron. Testing the diameter of graphs. Random Structures
& Algorithms, 20(2):165–183, 2002.

109

[PRR06] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and
distance approximation. Journal of Computer and System Sciences, 72(6):1012–
1042, 2006.

[PRW19] Ramesh Krishnan S Pallavooh, Sofya Raskhodnikova, and Erik Waingarten. Ap-
proximating the distance to monotonicity of boolean functions. In Proceedings
of the 31st ACM-SIAM Symposium on Discrete Algorithms (SODA ’20), pages
1995–2009. SIAM, 2019.

[Roo01] Bero Roos. Binomial approximation to the poisson binomial distribution: The
krawtchouk expansion. Theory of Probability & Its Applications, 45(2):258–272,
2001.

[RRV19] Sofya Raskhodnikova, Noga Ron-Zewi, and Nithin M. Varma. Erasures vs. errors
in local decoding and property testing. In Proceedings of the 10th Innovations in
Theoretical Computer Science Conference (ITCS), pages 63:1–63:21, 2019.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials
with applications to program testing. SIAM Journal on Computing, 25(2):252–
271, 1996.

[Sağ18] Mert Sağlam. Near log-convexity of measured heat in (discrete) time and conse-
quences. In Proceedings of the 59th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 967–978. IEEE, 2018.

[Sch02] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, vol-
ume 24. Springer Science & Business Media, 2002.

[SF11] Zoya Svitkina and Lisa Fleischer. Submodular approximation: Sampling-based
algorithms and lower bounds. SIAM Journal on Computing, 40(6):1715–1737,
2011.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[Spi96] Daniel A Spielman. Linear-time encodable and decodable error-correcting codes.
IEEE Transactions on Information Theory, 42(6):1723–1731, 1996.

[STW15] Rocco A Servedio, Li-Yang Tan, and John Wright. Adaptivity helps for testing
juntas. In Proceedings of the 30th Conference on Computational Complexity (CCC
’15), pages 264–279, 2015.

[Val15] Gregory Valiant. Finding correlations in subquadratic time, with applications to
learning parities and the closest pair problem. Journal of the ACM, 62(2):13, 2015.

110

Appendix A

A.1 A Useful Claim

Consider any set of trees C1, . . . , Cα ⊂ [n] with roots u1, . . . , uα satisfying the following condi-
tions:

• Each |Ci| ≤ log n for i ∈ [α],

• We have
∑α

i=1 |Ci| ≤
n

log4 n
.

Recall that EC,no is the event that the components C1, . . . , Cα is consistent with the partition
A ⊂ [n]. More formally, for each i ∈ [α], we consider layering the tree Ci with root ui. We
let |Ci(odd)| be the odd layers and |Ci(even)| be the even layers. Then, we have event EC,no

is satisfied if for each i ∈ [α], either Ci(odd) ⊂ A and Ci(even) ⊂ A or Ci(even) ⊂ A and
Ci(odd) ⊂ A.

The following lemma is the last necessary step of Claim 4.3.22.

Lemma A.1.1. Then, for any two indices j, k, which do not lie in the same component, we
have:

Pr
A

[k ∈ A | j ∈ A,EC,no] ≥ 1

2
− log4 n

n
.

Proof: The proof is very straight-forward, we simply count the number of possible partitions
A for which j ∈ A and are consistent with C1, . . . , Cα and divide by the total number of such
partitions. For simplicity, assume that j lies in C1(odd) and k lies in C2(odd); the other cases,
when j ∈ C1(even) or k ∈ C2(even) follow from very similar arguments.

We let X be the number of partitions A ⊂ [n] of size n
2 which trigger event EC,no and have

C1(odd) ⊂ A and C2(odd) ⊂ A. In order to count these, we first choose which roots u3, . . . , uα
will be included in A, and then we pick from the remaining vertices to include in A. For a
subset S ⊂ {3, . . . , α}, we define the quantities:

• Q =
∑α

i=3 |Ci| is the total vertices assigned from components.

• SA =
∑

i∈S |Ci(odd)|+
∑

i∈[α]\S |Ci(even)| is the total vertices assigned from components
to A if we included the roots of components in S in A.

• SA = Q− SA.

Note that for all subsets S ⊂ {3, . . . , α}, we have SA ≤ n
log4 n

.

Then we have:

X =

α−2∑
`=0

∑
S⊂[3;α]
|S|=`

(
n−Q− |C1| − |C2|

n
2 − SA − |C1(odd)| − |C2(odd)|

)
.

111

Let Y be the number of partitions A ⊂ [n] of size n
2 which trigger event EC,no and have

C1(odd) ⊂ A and C2(even) ⊂ A. Similarly, we have:

Y =

α−2∑
`=0

∑
S⊂[3;α]
|S|=`

(
n−Q− |C1| − |C2|

n
2 − SA − |C1(odd)| − |C2(even)|

)
.

For a particular fixed S ⊂ [3;α] of size `, we consider the ratio of the summand in X and in Y :(
n−Q− |C1| − |C2|

n
2 − SA − |C1(odd)| − |C2(odd)|

)
(

n−Q− |C1| − |C2|
n
2 − SA − |C1(odd)| − |C2(even)|

) =

(
n
2 − SA − |C1(odd)| − |C2(even)|

)
!(

n
2 − SA − |C1(odd)| − |C2(odd)|

)
!

×
(
n
2 − SA − |C1(even)| − |C2(odd)|

)
!(

n
2 − SA − |C1(even)| − |C2(even)|

)
!

=

(
1±O

(
log n

n

))logn(
1±O

(
log n

n

))logn

= 1±O
(

log2 n

n

)
,

where we used the fact that |C2(even)|, |C2(odd)| ≤ log n, and n
2 − SA − |C1(odd)| = Ω(n) and

n
2 − SA − |C1(odd)| = Ω(n). Thus, we have:

X

Y
= 1±O

(
log2 n

n

)
,

and since:

Pr
A

[k ∈ A | j ∈ A,EC,no] =
X

X + Y
,

we get the desired claim.

A.2 Reducing to the case k = cn for constant c < 1

Claim A.2.1. For ε < 1
2 , let f : {0, 1}n → {0, 1} have dist(f,Jk) = ε < 1

2 . Then, g : {0, 1}n ×
{0, 1} → {0, 1} given by g(x, y) = f(x)⊕ y has dist(g,Jk+1) = ε.

Proof: For the upper bound, suppose h : {0, 1}n → {0, 1} had dist(f, h) = ε. Then, we have
that h′ : {0, 1}n×{0, 1} → {0, 1} given by h′(x, y) = h(x)⊕ y has dist(h′, g) = ε. Thus, we have
dist(g,Jk+1) ≤ dist(f,Jk).

For the lower bound, suppose for the sake of contradiction that h′ : {0, 1}n×{0, 1} → {0, 1}
is a (k + 1)-junta with dist(g, h′) = dist(g,Jk+1) < dist(f,Jk). We note that since ε < 1

2 , the
last variable must be influential in h′. Then, consider the functions h0, h1 : {0, 1}n → {0, 1}
given by h0(x) = h′(x, 0) and h1(x) = h(x, 1). Since y is influential in h′, h0 and h1 are both
k-juntas, and therefore

dist(h′, g) =
dist(h0, f) + dist(h1,¬f)

2
≥ dist(f,Jk),

which is a contradiction.

112

Claim A.2.2. Let f : {0, 1}n → {0, 1} have dist(f,Jk) = ε. Then g : {0, 1}n × {0, 1} → {0, 1}
given by g(x, y) = f(x) has dist(g,Jk) = ε.

Proof: For the upper bound, we have that if h : {0, 1}n → {0, 1} has dist(f, h) = ε, then if
h′ : {0, 1}n × {0, 1} → {0, 1} is given by h(x, y) = h(x), then dist(h′, g) = ε. Thus, we have
dist(g,Jk+1) ≤ dist(f,Jk).

For the lower bound, suppose for the sake of contradiction that h′ : {0, 1}n×{0, 1} → {0, 1}
is a k-junta with dist(g, h′) = dist(g,Jk) < dist(f,Jk). Then, similarly to above, the functions
h0, h1 : {0, 1}n → {0, 1} given by h0(x) = h′(x, 0) and h1(x) = h′(x, 1) are k-juntas with

dist(g,Jk) = dist(g, h′) =
dist(f, h0) + dist(f, h1)

2
≥ ε,

which is a contradiction.

Lemma A.2.3. Fix a constant c < 1. For 0 < ε0 < ε1 <
1
2 , let B be a (ε0, ε1)-tolerant k-junta

tester for n(k) variable functions making q(k) queries, where k ≤ αn(k). Then, there exists a
(ε0, ε1)-tolerant cn-junta tester making q(O(n)) queries.

Proof: We give an algorithm which on input f : {0, 1}n → {0, 1}, determines whether f is ε0-
close from being a cn-junta or is ε1-far from being a cn-junta. The algorithm works as follows:
on input f : {0, 1}n → {0, 1}, we let g : {0, 1}n × {0, 1}n′ → {0, 1} be given by:

g(x, y) = f(x)⊕
n′⊕
j=1

yj ,

where n′ = max{ (c−1+α)n
1−α , 0}. Note that if we let m = n + n′ (the number of variables in g),

by Claim A.2.1, if f is ε0-close from being a cn-junta, then g is ε0-close to being an αm-junta,
and if f is ε1-far from being a cn-junta, then g is ε1-far from being an αm-junta. Finally, we
run the tester B with k = αm on f , where we add m− n(k) dummy variables.

The query complexity is given by q(O(n)), since k = O(n) when α < 1 is a constant.

113

	List of Figures
	Introduction
	Testing juntas
	Tolerant testing
	Our contributions
	Related work
	Property Testing of functions
	Property testing of graphs

	Preliminaries and Tools
	Property testing and Juntas
	Influence of variables
	Probabilistically checkable proofs of proximity (PCPP)
	Probabilistic tools
	Collection of covers
	Error correcting codes and polynomials over finite fields
	Dual distance of linear codes

	Algorithms for Tolerant Junta Testing
	Warm-up: An exp(klogk)/ algorithm using dimension reduction
	A tradeoff between tolerance and query complexity
	Useful bounds on the expected influence of a random -subset of a set
	Approximation of the -subset influences
	Tradeoff between tolerance and query complexity

	Polynomial bi-criteria algorithm via submodular minimization
	Approximate submodular minimization under a cardinality constraint
	Approximate submodular function minimization

	Hardness Results for Tolerant Junta Testing
	The Rejection Sampling Model
	Reducing Tolerant Junta Testing From Rejection Sampling
	High Level Overview
	The Distributions Dyes and Dno
	Reducing from Rejection Sampling

	A lower bound for distinguishing G1 and G2 with rejection samples
	High Level Overview

	General Separation between Tolerant Testing and Intolerant Testing
	Overview and Techniques
	Techniques

	Code Ensembles
	A construction of a hard code ensemble

	PCUs and PCUSSs
	PCUSS construction
	The iterated construction
	Proof of Lemma 5.4.5
	The Lower Bound
	Handling arbitrary input lengths

	Separation of testing models

	Applications
	``Instance-adaptive'' tolerant isomorphism testing
	Proof of Theorem 6.1.2
	Construction of a noisy sampler

	Lower bound for non-adaptive tolerant unateness testing
	High Level Overview
	The Distributions Dyes and Dno
	Reducing from Rejection Sampling
	Proof of Lemma 6.2.4
	Proof of Lemma 6.2.5

	Separating Erasure-Resilient testing from property testing

	Bibliography
	Appendix
	A Useful Claim
	Reducing to the case k = cn for constant c<1

