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Abstract

This thesis studies one-turn quantum refereed games, which are abstract zero-sum
games with two competing computationally unbounded quantum provers and a com-
putationally bounded quantum referee. The provers send quantum states to the referee,
who plugs the two states into his quantum circuit, measures the output of the circuit in
the standard basis, and declares one of the two players as the winner depending on the
outcome of the measurement. The complexity class QRG(1) comprises of those promise
problems for which there exists a one-turn quantum refereed game such that one of the
players wins with high probability for the yes-instances, and the other player wins with
high probability for the no-instances, irrespective of the opponent’s strategy. QRG(1) is
a generalization of QMA (or co-QMA), and can informally be viewed as QMA with a
no-prover (or co-QMA with a yes-prover).

We have given a full characterization of QRG(1), starting with appropriate definitions
and known results, and building on to two new results about this class. Previously, the
best known upper bound on QRG(1) was PSPACE. We have proved that if one of the
provers is completely classical, sending a classical probability distribution instead of a
quantum state, the new class, which we name CQRG(1), is contained in ∃ · PP (non-
deterministic polynomial-time operator applied to the class PP). We have also defined
another restricted version of QRG(1) where both provers send quantum states, but the
referee measures one of the quantum states first, and plugs the classical outcome into the
measurement, along with the other prover’s quantum state, into a quantum circuit, before
measuring the output of the quantum circuit in the standard basis. The new class, which
we name MQRG(1), is contained in P · PP (the probabilistic polynomial time operator ap-
plied to PP). ∃ · PP is contained in P · PP, which is, in turn, contained in PSPACE. Hence,
our results give better containments than PSPACE for restricted versions of QRG(1).
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Chapter 1

Introduction

Games have fascinating links to theoretical computer science. Many popular games can
be formulated as complete problems for complexity classes. For example, Minesweeper is
NP-complete [Kay00], Rush Hour is PSPACE-complete [FB02], and Chess is EXP-complete
[FL81]. Games are intricately linked with the alternating Turing machine model of compu-
tation [CKS81] from computability theory. Games have been used to define new complex-
ity classes: Arthur Merlin games [Bab85, BM88] define the complexity class AM. Interac-
tive proof systems [GMR85, GMR89], which generalize prover-verifier interactions of the
type seen in AM, can also be naturally formulated in terms of games [Con87, FKS95].

Quantum refereed games are played between two competing, computationally un-
bounded quantum provers who exchange quantum messages with a computationally
bounded quantum referee. We name the two players Alice and Bob. The complexity class
QRG is defined as the set of promise problems A = (Ayes, Ano) for which there exists
a quantum refereed game such that Alice wins with high probability for x ∈ Ayes and
Bob wins with high probability for x ∈ Ano, regardless of the other player’s strategy.
The complexity class RG is defined similarly, with classical refereed games. The players’
strategies can be described by probability distributions in the classical case and density
matrices in the quantum case. RG was investigated in the 1990s by Koller and Megiddo
[KM92], Feigenbaum, Koller, and Shor [FKS95], Condon, Feigenbaum, Lund, and Shor
[CFLS95, CFLS97], and Feige and Kilian [FK97]. In particular, Feige and Kilian showed
that RG is equal to EXP. QRG was later considered in [GW05], [Gut05], [GW07], and
[JW09]. It was shown in [GW07] that QRG, just like its classical analogue, is equal to EXP.

This thesis is concerned with quantum refereed games with only one turn of inter-
action between the players and the referee. This means the players and the referee first
receive a common input string, the two players then send two polynomial length quan-
tum or classical proofs to the referee, and the referee finally processes the two proofs to
decide which player has won. QRG(1) and RG(1) are defined similar to QRG and RG,
with one-turn quantum and classical refereed games respectively. Note that this naming
clashes with [FK97], which defines RG(1) as one-round (i.e., two-turn) refereed games,
which is RG(2) in terms of our naming conventions. An informal pictorial description of
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Alice Bob

ρ σ

0/1

Referee

Figure 1.1: A pictorial description of QRG(1). Alice and Bob send density matrices ρ and σ

respectively to the referee. The referee processes the two messages and decides who wins
the game, by outputting the classical bit 1 if Alice wins and the classical bit 0 if Bob wins.

the setting in QRG(1) follows in Figure 1.1. Although it is not stated explicitly, it follows
from the works of Althöfer [Alt94] and Lipton and Young [LY94] that the complexity class
RG(1) is equal to Sp

2 , which refers to the second level of the symmetric polynomial-time hi-
erarchy put forward by Canetti [Can96] and Russell and Sundaram [RS98]. Sp

2 is defined
in terms of games with two players where the players send polynomial length strings to
a deterministic referee. The equivalence means that Sp

2 does not change if the players are
allowed to choose probability distributions instead of strings and the referee is allowed
to use randomness. As stated earlier, a way to see this equivalence is the Althöfer-Lipton-
Young method which involves arguing for the existence of a near-optimal strategy for
non-interactive randomized two player zero sum games which is uniform over a polyno-
mial sized set of polynomial length strings. It is also known that RG(1) is closed under
Cook reductions [RS98] and satisfies RG(1) ⊆ ZPPNP [Cai07].

On the other hand, for the complexity class QRG(1), the only non-trivial containment
known is that QRG(1) ⊆ PSPACE [JW09]. We know slightly more about QRG(2), the two-
turn analogue of QRG(1). From the result of [GW13], QRG(2) equals PSPACE. QRG(1)
can be thought of as a generalization of QMA, with a no prover in addition to a yes prover.
It is easy to see that QRG(1) contains QMA∪ coQMA.

1.1. Summary of the results

In this thesis, we study the power of two restricted variants of QRG(1) and prove a con-
tainment better than PSPACE for these variants. In the first variant, Alice is restricted to
choosing a classical probability distribution while Bob is free to play a quantum state.
We call the corresponding class CQRG(1) and prove that it is contained in ∃ · PP (the
non-deterministic polynomial time operator applied to the complexity class PP). In the
second variant, Alice is free to send a quantum state but the referee measures Alice’s state

2



coQMA

CQRG(1)

MQRG(1)

QRG(1)

PSPACE

PP

∃ · PP

P · PP

Figure 1.2: Hasse diagram showing the relationships between CQRG(1), MQRG(1), and
other complexity classes.

before incorporating the classical outcome of the measurement into a subsequent mea-
surement of Bob’s state. We call the corresponding class MQRG(1) and prove that it is
contained in P · PP (the unbounded error probabilistic polynomial time operator applied
to the complexity class PP). Our results are pictorially represented in Figure 1.2, with a
Hasse diagram. A detailed definition of ∃ · PP and PP · PP will follow in later chapters.
Our proofs generalize the Althöfer-Lipton-Young method for quantum settings, by mak-
ing use of tail bounds for random matrices [Tro12].

Observing that ∃ ·PP and P ·PP are contained in the counting hierarchy, we conjecture
that QRG(1) is also contained in the counting hierarchy.

1.2. Overview

In this section, we give a bird’s eye view of the rest of the chapters.

• In Chapter 2, we introduce the basic notions of complexity theory, including con-
cepts from counting complexity.

• In Chapter 3, we introduce the basics of quantum information and relate them with
complexity theory.

• In Chapter 4, we give rigorous definitions of all the complexity classes under con-
sideration.

• In Chapter 5, we prove a folklore result: QRG(1) = PQRG(1). We also prove a contain-
ment result: CQRG(1) ⊆ ∃ · PP.

• In Chapter 6, we prove another containment result: MQRG(1) ⊆ P · PP.

• In Chapter 7, we conclude with future directions.

3



The proofs of the two containments CQRG(1) ⊆ ∃ ·PP and MQRG(1) ⊆ P ·PP appear
in the following paper:

• Soumik Ghosh and John Watrous. Complexity limitations on one-turn quantum
refereed games, 2020.
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Chapter 2

Complexity theory

In this chapter, we give an overview of parts of complexity theory that are relevant for
the rest of the theses. It is not meant to be exhaustive; it is only aimed at giving a unifying
picture of the rest of the thesis. We refer the interested reader to books by Arora and Barak
[AB09] or Goldreich [Gol08] for a detailed study in the concepts dealt with here.

The first section deals with notation, terminology, and the basics of complexity theory.
The second section deals with a few concepts from counting complexity that we general-
ize. We will find these generalized concepts very useful while proving the main theorems
of the thesis.

2.1. Basics of complexity theory

As a convention, we use Greek capital letters (like Σ, ∆, etc) to refer to finite, non-empty
sets of symbols called alphabets. The set of natural numbers, including 0, is denoted N.
When we are referring to the set {1, 2, . . . , n}, for some n ∈ N, we will often use the
shorthand [n]. Moreover, we will use the binary alphabet Σ = {0, 1} throughout the the-
sis. We will also use Σn

1 to denote the set of all strings over the binary alphabet Σ that have
length n and contain exactly one occurrence of the symbol 1. It is therefore the case that
|Σn

1 | = n.
A polynomially bounded function p : N → N is a function for which there exists a de-

terministic Turing machine which runs in polynomial time and outputs 0p(n) on input 0n

for all n ∈N. Unless it is explicitly indicated otherwise, the input of a given polynomially
bounded function p is assumed to be the natural number |x|, for whatever input string
x ∈ Σ∗ is being considered at that moment. With this in mind, we will write p in place of
p(|x|) when referring to the natural number that is the output for p. This clears clutter in
notation. For example, we have used this convention in Definition 1 below and in many
places in the thesis thereafter.

A promise problem is a pair A = (Ayes, Ano) of sets of strings Ayes, Ano ⊆ Σ∗ with
Ayes ∩ Ano = ∅. Strings in Ayes represent yes-instances of a decision problem, strings in
Ano represent no-instances, and all other strings represent “don’t care” inputs for which
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we do not care about whether it is a yes-instance or a no-instance. A language is a promise
problem A = (Ayes, Ano) where we require Ayes ∪ Ano = Σ∗. In other words, languages
are promise problems where do not have the “don’t care“ inputs. A language A is of-
ten identified with Ayes by dropping the subscript yes with the implicit assumption that
Ano = Σ∗ \ Ayes. A complexity class of languages is a set of languages. A characteristic
function of a language A is a function χA : Σ∗ → Σ that is defined as

χA(x) =

{
1 if x ∈ A
0 if x 6∈ A, (2.1)

We will often refer to two reductions between inputs of two languages. In a Karp re-
duction from a language A to a language B, there exists a polynomial-time computable
function g for transforming inputs x ∈ Σ∗ of language A to inputs y ∈ Σ∗ of language B
such that x ∈ A if and only if y ∈ B. In a Cook reduction from a language A to a language B,
there exists a polynomial-time oracle Turing machine M such that if N is any Turing ma-
chine that decides B, then MN decides A. In a polynomial-time truth-table reduction from
a language A to a language B, there exists a polynomial-time computable function g for
transforming inputs x ∈ Σ∗ of language A into a fixed number of inputs y1, . . . , yk ∈ Σ∗

of language B, and a polynomial-time computable function f : {0, 1}k → {0, 1} such that
x ∈ A if and only if

f
(
χB(y1), . . . , χB(yn)

)
= 1 (2.2)

where χB is the characteristic function for language B.
Another operation on languages, called join, will also be used in the next sections. The

join of languages A and B is defined as {x0 : x ∈ A} ∪ {x1 : x ∈ B}.
We fix a pairing function that efficiently encodes two strings x, y ∈ Σ∗ into a single

binary string denoted 〈x, y〉 ∈ Σ∗, and we assume that this function satisfies two simple
properties:

1. The length of the pair 〈x, y〉 depends only on the lengths |x| and |y|, and is polynomial
in these lengths.

2. The computation of x and y from 〈x, y〉, as well as the computation of 〈x, y〉 from x
and y, can be performed deterministically in polynomial time.

One such choice of function is as follows:

〈a1a2 · · · an, b1b2 · · · bm〉 = 0a10a2 · · · 0an1b1b2 · · · bm (2.3)

for a1, a2, . . . , an, b1, b2, . . . , bm ∈ Σ. This pairing function may be extended recursively as
follows:

〈x1, x2, x3, . . . , xk〉 = 〈〈x1, x2〉, x3, . . . , xk〉 (2.4)

for strings x1, . . . , xk ∈ Σ∗, where k ≥ 3. From now on, whenever we refer to the com-
putation of any function that takes multiple strings as arguments, we make the implicit
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assumption that these input strings have been encoded into a single string using this tu-
ple function. For instance, when f is a function that takes three binary strings x, y, and z
as arguments, we write f (x, y, z) rather than f (〈x, y, z〉).

Next, we define the nondeterministic and probabilistic polynomial-time operators.
These operators may be applied to arbitrary complexity classes.

Definition 1. For a given complexity class of languages C, the complexity classes ∃ ·C and
P · C are defined as follows.

1. The complexity class ∃ · C contains all promise problems A = (Ayes, Ano) for which
there exists a language B ∈ C and a polynomially bounded function p such that the
two implications below are true:

x ∈ Ayes ⇒
{

y ∈ Σp : 〈x, y〉 ∈ B
}
6= ∅,

x ∈ Ano ⇒
{

y ∈ Σp : 〈x, y〉 ∈ B
}
= ∅.

(2.5)

2. The complexity class P · C contains all promise problems A = (Ayes, Ano) for which
there exists a language B ∈ C and a polynomially bounded function p such that the
two implications below are true:

x ∈ Ayes ⇒
∣∣∣{y ∈ Σp : 〈x, y〉 ∈ B

}∣∣∣ > 1
2
· 2p,

x ∈ Ano ⇒
∣∣∣{y ∈ Σp : 〈x, y〉 ∈ B

}∣∣∣ ≤ 1
2
· 2p.

(2.6)

2.2. Counting complexity

In this section, we will state some results which are minor generalizations of a few well
known results from counting complexity. It is not meant to be an exhaustive introduction
to counting complexity. Readers interested in the same should refer to Fortnow’s survey
paper [For97]. We will begin with a definition.

Definition 2. Let C be any complexity class of languages over the alphabet Σ. A function
f : Σ∗ → Z is a Gap · C function if there exist languages A, B ∈ C and a polynomially
bounded function p such that

f (x) =
∣∣{y ∈ Σp : 〈x, y〉 ∈ A

}∣∣− ∣∣{y ∈ Σp : 〈x, y〉 ∈ B
}∣∣ (2.7)

for all x ∈ Σ∗.

Observe that gap functions are usually defined in terms of the difference between the
number of accepting and rejecting paths of a non-deterministic Turing machine and our
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definition of gap functions is slightly non-standard. However, note that the two defini-
tions are equivalent when C = P 1, and for that case, we write GapP instead of Gap · P
in order to be consistent with the standard name for these functions. One way to see the
equivalence is to note that GapP can also be defined as the difference between the accept-
ing paths of two different non-deterministic Turing machines (instead of the difference
between the accepting and rejecting paths of the same machine). For a better elucidation
of this fact, we direct the reader to Proposition 3.5 of [FFK94] or Lemma 3.6 of Fortnow’s
survey [For97]. Later in the thesis, we will also consider Gap · PP, which will be defined
according to Definition 2, with C = PP.

Just like GapP functions, Gap · C functions have strong closure properties provided
C itself also has some closure properties. For the closure properties that we need, it suf-
fices for C to be nontrivial, which means that C contains at least one language that is not
equal to ∅ or Σ∗) and is closed under the join operation as well as polynomial-time truth-
table reductions; both these operations were defined in the previous section. It can be
worked out that the fact C is closed under joins and polynomial-time truth table reduc-
tions implies that C is closed under well-known properties like unions, intersections, and
complementation. These properties are possessed by both P and PP. The fact that PP is
closed under polynomial-time truth table reductions was proved by Fortnow and Rein-
gold [FR96] based on methods found in [BRS95]. We will soon state the closure properties
of Gap · C. Before that, we state and prove a proposition relating the class P · C to Gap · C
functions.

Proposition 3. Let C be a complexity class of languages that is closed under join and comple-
mentation. A promise problem A = (Ayes, Ano) is contained in P · C if and only if there exists a
Gap · C function f such that

x ∈ Ayes ⇒ f (x) > 0,

x ∈ Ano ⇒ f (x) ≤ 0.
(2.8)

Proof. Let us assume that a promise problem A is contained in P · C. This means there
exists a B ∈ C such that Definition 1 holds. With the understanding that B is contained in
C, define f (x) as

f (x) =
∣∣{y ∈ Σp : 〈x, y〉 ∈ B

}∣∣− ∣∣{y ∈ Σp : 〈x, y〉 ∈ B
}∣∣ (2.9)

for all x ∈ Σ∗. It may be observed that∣∣{y ∈ Σp : 〈x, y〉 ∈ B
}∣∣+ ∣∣{y ∈ Σp : 〈x, y〉 ∈ B

}∣∣ = 2p (2.10)

1The P here refers to the class of promise problems solvable in polynomial-time by a deterministic Tur-
ing machine. This is different from the probabilistic polynomial time operator of Definition 1. In general,
for the rest of this thesis, if the symbol P precedes a "·", interpret it as a probabilistic polynomial time op-
erator. Otherwise, interpret it as a complexity class of promise problems solvable in polynomial time by a
deterministic Turing machine.
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for all x ∈ Σ∗. Then, it immediately follows that

x ∈ Ayes ⇒ f (x) > 0,

x ∈ Ano ⇒ f (x) ≤ 0.
(2.11)

For the other direction, assume that for a promise problem A, there exists a Gap · C func-
tion f and a polynomially bounded function p such that

x ∈ Ayes ⇒ f (x) > 0,

x ∈ Ano ⇒ f (x) ≤ 0.
(2.12)

Consider that f (x) is given by

f (x) =
∣∣{y ∈ Σp : 〈x, y〉 ∈ B1

}∣∣− ∣∣{y ∈ Σp : 〈x, y〉 ∈ B2
}∣∣ (2.13)

for all x ∈ Σ∗ for B1, B2 ∈ C. Consider the language C where C is the join of B1 and B2.
Since C is closed under complementation and joins, we have C ∈ C. It can be observed
that ∣∣{y ∈ Σp+1 : 〈x, y〉 ∈ C

}∣∣
=
∣∣{y ∈ Σp : 〈x, y〉 ∈ B1

}∣∣+ 2p −
∣∣{y ∈ Σp : 〈x, y〉 ∈ B2

}∣∣ = 2p + f (x)
(2.14)

for all x ∈ Σ∗. Taking C as our language and p+ 1 as our polynomially bounded function,
it follows from equation (2.11) that

x ∈ Ayes ⇒
∣∣∣{y ∈ Σp+1 : 〈x, y〉 ∈ C

}∣∣∣ > 1
2
· 2p+1,

x ∈ Ano ⇒
∣∣∣{y ∈ Σp+1 : 〈x, y〉 ∈ C

}∣∣∣ ≤ 1
2
· 2p+1.

(2.15)

Next, we state and prove a few closure properties for GapP functions. The proof of the
first lemma utilizes the fact that C is closed under Karp reductions.

Lemma 4. Let C be a nontrivial complexity class of languages that is closed under Karp reduc-
tions. Let f ∈ Gap · C and let p be a polynomially bounded function. The function

g(x) = ∑
y∈Σp

f (x, y) (2.16)

is a Gap · C function.

Proof. Note that f ∈ Gap · C means that we can find a polynomially bounded function q
and languages A0, A1 ∈ C such that

f (x, y) =
∣∣{z ∈ Σq(|〈x,y〉|) : 〈x, y, z〉 ∈ A0

}∣∣− ∣∣{z ∈ Σq(|〈x,y〉|) : 〈x, y, z〉 ∈ A1
}∣∣ (2.17)
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for all x ∈ Σ∗ and y ∈ Σp. Taking into account the assumptions on the pairing func-
tion described in the last section, we can argue that |〈x, y〉| depends only on |x| and |y|.
Therefore, there exists a function r such that r(|x|) = p(|x|) + q(|〈x, y〉|) for all x ∈ Σ∗

and y ∈ Σp. Since p and q are polynomially bounded functions, r is also a polynomially
bounded function. Define

B0 =
{
〈x, yz〉 : y ∈ Σp, z ∈ Σq(|〈x,y〉|), 〈x, y, z〉 ∈ A0

}
,

B1 =
{
(x, yz) : y ∈ Σp, z ∈ Σq(|〈x,y〉|), 〈x, y, z〉 ∈ A1

}
.

(2.18)

By the nontriviality and closure of C under Karp reductions, it is evident that B0, B1 ∈ C.
To illustrate on the choice of function for the Karp reduction, note that with our choice of
the efficient pairing function, there is a polynomial time computable function that takes
〈x, yz〉 to 〈x, y, z〉. It may be verified that

g(x) =
∣∣{w ∈ Σr : 〈x, w〉 ∈ B0

}∣∣− ∣∣{w ∈ Σr : 〈x, w〉 ∈ B1
}∣∣ (2.19)

for all x ∈ Σ∗, and therefore g ∈ Gap · C.

The proof of the second lemma utilizes the full power of C, requiring it to be closed
under joins and polynomial-time truth table reductions.

Lemma 5. Let C be a nontrivial complexity class of languages that is closed under joins and
polynomial-time truth table reductions. Let f ∈ Gap · C and let p be a polynomially bounded
function. The function

g(x) = ∏
y∈Σp

1

f (x, y) (2.20)

is a Gap · C function.

Proof. Since f ∈ Gap · C, there exists a polynomially bounded function q and languages
A0, A1 ∈ C such that

f (x, y) =
∣∣∣{z ∈ Σq(|(x,y)|) : 〈x, y, z〉 ∈ A0

}∣∣∣− ∣∣∣{z ∈ Σq(|(x,y)|) : 〈x, y, z〉 ∈ A1

}∣∣∣ (2.21)

for all x, y ∈ Σ∗. Without loss of generality, we can assume that A0 and A1 are disjoint lan-
guages. If they are not, we may replace A0 and A1 with A0 ∩ A1 and A1 ∩ A0, respectively;
this does not change the value of the right-hand side of the equation (2.21) as the strings
that are common to A0 and A1 get subtracted anyway in equation (2.21), and hence do
not contribute to the value of f (x, y). The languages A0 ∩ A1 and A1 ∩ A0 must both be
contained in C for A0, A1 ∈ C by the closure of C under joins and truth-table reductions
(which implies that it is closed under intersection and complementation).

By the assumptions on our pairing function described in the last section, there exists a
polynomially bounded function r such that r(|x|) = q(|(x, y)|) for all x ∈ Σ∗ and y ∈ Σp.
We will write y1, . . . , yp to denote the elements of Σp

1 sorted in lexicographic order. Let us
define two languages B0 and B1 as follows:
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• B0 is the language of all pairs 〈x, z1 · · · zp〉, where x ∈ Σ∗ and z1, . . . , zp ∈ Σr, for
which there exists a string w ∈ Σp having even parity such that

〈x, y1, z1〉 ∈ Aw1 , . . . , 〈x, yp, zp〉 ∈ Awp . (2.22)

• B1 is the language of all pairs 〈x, z1 · · · zp〉, where x ∈ Σ∗ and z1, . . . , zp ∈ Σr, for
which there exists a string w ∈ Σp having odd parity such that

〈x, y1, z1〉 ∈ Aw1 , . . . , 〈x, yp, zp〉 ∈ Awp . (2.23)

Since A0 and A1 are disjoint and contained in C, and C is closed under joins and truth-
table reductions, it follows that B0, B1 ∈ C. Let us illustrate by reducing B0 to A1. One way
to see the truth-table reduction for B0 is to consider first a polynomial time computable
function that transforms 〈x, z1 · · · zp〉 to 〈x, y1, z1〉, . . . , 〈x, yp, zp〉. By our choice of an effi-
cient pairing function, we know that such a transformation is possible. Then, we consider
the function f : Σp → Σ defined as

f (x1, . . . , xk) = x1 ⊕ · · · ⊕ xk ⊕ 1 (2.24)

with x1, . . . , xk ∈ Σ. In other words, f computes the complementation of the modulo 2
addition of its input bits. It is easy to see that 〈x, z1 · · · zp〉 ∈ B0 if and only if

f
(
χA1(〈x, y1, z1〉), . . . , χA1(〈x, yp, zp〉)

)
= 1 (2.25)

where χA1 is the characteristic function for A1. Hence, B0 reduces to A1. We can similarly
show that B1 reduces to A1 by choosing f as just the modulo 2 addition (without the
complementation.)

Observe that

g(x) =
∣∣∣{z ∈ Σs : 〈x, z〉 ∈ B0

}∣∣∣− ∣∣∣{z ∈ Σs : 〈x, z〉 ∈ B1

}∣∣∣ (2.26)

for all x ∈ Σ∗, where s = p · r. The lemma follows from (2.26).

We will now combine the two lemmas stated above to state a new lemma which will
be very useful in our proofs.

Lemma 6. Let C be a nontrivial complexity class of languages that is closed under joins and
polynomial-time truth table reductions, let f0, f1 ∈ Gap · C, and let p and q be polynomially
bounded functions. For every string x ∈ Σ∗ and y ∈ Σq

1, define the matrix Mx,y as

Re
(
〈z|Mx,y|w〉

)
= f0(x, y, z, w),

Im
(
〈z|Mx,y|w〉

)
= f1(x, y, z, w),

(2.27)

for all z, w ∈ Σp. There exist Gap · C functions g0 and g1 satisfying

Re
(
〈z|Mx,y1 · · ·Mx,yq |w〉

)
= g0(x, z, w),

Im
(
〈z|Mx,y1 · · ·Mx,yq |w〉

)
= g1(x, z, w),

(2.28)

for all x ∈ Σ∗ and z, w ∈ Σp, where y1, . . . , yq denote the elements of Σq
1 sorted in lexicographic

order.
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Proof. Because of the assumptions on C stated in the lemma, we can argue that there exists
a Gap · C function h satisfying

h(x, y, 0z, 0w) = f0(x, y, z, w),

h(x, y, 0z, 1w) = f1(x, y, z, w),

h(x, y, 1z, 0w) = − f1(x, y, z, w),

h(x, y, 1z, 1w) = f0(x, y, z, w),

(2.29)

for all x ∈ Σ∗, y ∈ Σq
1, and z, w ∈ Σp. Define a matrix Nx,y as

〈u|Nx,y|v〉 = h(x, y, u, v) (2.30)

for all x ∈ Σ∗, y ∈ Σq
1 and u, v ∈ Σp+1. This matrix can be visualized as a 2× 2 block

matrix:

Nx,y =

(
Re(Mx,y) Im(Mx,y)

− Im(Mx,y) Re(Mx,y)

)
. (2.31)

We can prove by mathematical induction that

Nx,y1 · · ·Nx,yq =

(
Re
(

Mx,y1 · · ·Mx,yq

)
Im
(

Mx,y1 · · ·Mx,yq

)
− Im

(
Mx,y1 · · ·Mx,yq

)
Re
(

Mx,y1 · · ·Mx,yq

)) . (2.32)

Since h is a Gap · C function, we can argue for the existence of a Gap · C function F for
which

F(x, u0 · · · uq, yk) = h(x, yk, uk−1, uk) (2.33)

for all x ∈ Σ∗, u0, . . . , uq ∈ Σp+1, and k ∈ {1, . . . , q}.
Let us define

G(x, u0 · · · uq) = ∏
y∈Σq

1

F(x, u0 · · · uq, y) = h(x, y1, u0, u1) · · · h(x, yq, uq−1, uq) (2.34)

for all x ∈ Σ∗ and u0, . . . , uq ∈ Σp+1, as well as

g0(x, z, w) = ∑
u∈Σ(q−1)(p+1)

G(x, 0zu0w),

g1(x, z, w) = ∑
u∈Σ(q−1)(p+1)

G(x, 0zu1w),
(2.35)

for all x ∈ Σ∗ and z, w ∈ Σp. It follows by Lemmas 4 and 5 that g0, g1 ∈ Gap · C.
We observe that g0 and g1 satisfy the equations (2.28). A way to see this is to note that

G(x, u0 · · · uq) = 〈u0|Nx,y1 |u1〉 · · · 〈uq−1|Nx,yq |uq〉 (2.36)

and that
∑

u∈Σp+1

|u〉〈u| = 12p+1×2p+1 . (2.37)
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This means that
g0(x, z, w) = 〈0z|Nx,y1 · · ·Nx,yq |0w〉,
g1(x, z, w) = 〈0z|Nx,y1 · · ·Nx,yq |1w〉.

(2.38)

The observation is now evident from equation (2.32), and the proof of the lemma is com-
plete.
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Chapter 3

Quantum information

In this chapter, we will give the reader an overview of quantum information. Once again,
it is not meant to be exhaustive. The purpose is just to give a clearer account of the
notations and conventions used in the rest of the thesis. We refer the reader to books
[NC00, KSV02, Wil17, Wat18] for further details. We will begin by defining quantum reg-
isters, quantum channels, and quantum circuits. Then, we will elaborate more on the con-
nections between the complexity theoretic tools of the earlier chapter and the concepts
discussed here.

3.1. Basics of quantum information

For an alphabet Σ, a complex Euclidean space CΣ is the space of all the complex vectors
indexed by Σ with addition and scalar multiplication is defined in the following way:

1. Addition: For vectors u, v ∈ CΣ, the vector u + v ∈ CΣ is defined as

(u + v)(a) = u(a) + v(a), (3.1)

for all a ∈ Σ.

2. Scalar multiplication: For a vector u ∈ CΣ, and a scalar α ∈ C, the vector αu ∈ CΣ is
defined as

(αu)(a) = αu(a), (3.2)

for all a ∈ Σ.

for all a ∈ Σ. The dimension of a complex Euclidean space CΣ is |Σ|. We will use capital
letters to refer to complex Euclidean spaces, like A,B,W,X etc. We will use the lower case
alphabets, like u, v etc, to refer to vectors in a complex Euclidean space. The inner product
between two vectors u, v ∈ CΣ is defined as

〈u, v〉 = ∑
a∈Σ

u(a) v(a), (3.3)
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where u(a) and v(a) refer to the entries indexed by a of vectors u and v respectively. The
Euclidean norm of a vector u ∈ CΣ is defined by

||u|| =
√
〈u, u〉. (3.4)

We will often refer to probability distributions. For an alphabet Σ, a probability distri-
bution p ∈ RΣ is a vector such that

p(a) ≥ 0, (3.5)

for all a ∈ Σ and
∑
a∈Σ

p(a) = 1. (3.6)

The set of all such vectors is denoted by the set P(Σ).
A register is a hypothetical device storing quantum information. A register X refers to

a collection of qubits we want to view as a single entity. The complex Euclidean space X is
associated with a register X. Each quantum state of the register X is denoted by a density
operator ρ ∈ D(X). A qubit is a register with dim(X) = 2. Note that since general registers
are collections of qubits, the dimension of the complex Euclidean space corresponding to
any register is 2d for some d ∈N. No generality is lost here. This is because, when padded
appropriately with zeros, each quantum state of a register with arbitrary dimension is also
a quantum state of a register whose dimension is 2 raised to a sufficiently large exponent.

A channel transforming a register X into a register Y is a completely positive and trace-
preserving linear map Φ that transforms each density operator ρ ∈ D(X) into a density
operator Φ(ρ) ∈ D(Y). The adjoint of Φ is the unique linear map Φ∗ transforming linear
operators acting on Y into linear operators acting on X that satisfies the equation

Tr
(

PΦ(ρ)
)
= Tr

(
Φ∗(P)ρ

)
(3.7)

for all density operators ρ ∈ D(X) and all positive semidefinite operators P acting on Y.
The adjoint map may not be a channel but is a completely positive and unital linear map,
which means that Φ∗(1Y) = 1X (for 1X and 1Y denoting the identity operators acting on
X and Y, respectively).

A quantum circuit is an acyclic network of quantum gates connected by qubit wires.
While discussing quantum circuits, we use the general model of quantum information
based on density matrices and channels, instead of the restricted model based on unitary
operators and pure states. For the general model, each gate is a quantum channel acting
on a fixed number of qubits. As noted in [AKN98] or [Wat09], the general model is equiv-
alent to the restricted model. Although no generality is lost by choosing either model, we
contend that the general model has many operational advantages:

• Since we consider quantum channels instead of unitary operators, in addition to
all the unitary gates of the restricted model, we also have non-unitary gates—like
gates that introduce fresh qubits and gates that throw away qubits. This allows us
to avoid having to distinguish between input qubits and ancillary qubits, or output
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qubits and garbage qubits. The advantage will be clearer in later chapters, especially
when we define the different complexity classes.

• Through this model, any classical circuit, including classical circuits that introduce
randomness, can be easily viewed as a special case of quantum circuits. We can
use our non-unitary gates to introduce the randomness and perform irreversible
computations.

• Quantum measurements can be represented by quantum circuits.

• By considering density matrices instead of pure states, we can eliminate the appear-
ance of the irrational number 1/

√
2 in many of the formulas that will appear. This

is a minor advantage but, for the sake of neatness, it is nevertheless helpful.

We will fix a universal gate set for the remainder of the thesis. The gates in this set in-
clude Hadamard, Toffoli, and phase-shift gates (which induce the single-qubit unitary trans-
formation determined by the actions |0〉 7→ |0〉 and |1〉 7→ i|1〉), as well as ancillary gates
and erasure gates. Ancillary gates take no input qubits and output a single qubit in the
|0〉 state, while erasure gates take one input qubit and produce no output qubits, and are
described by the partial trace. Any other choice of a universal gate set also works just as
well. We have chosen this particular one out of simplicity and convenience.

The size of a quantum circuit is the total number of gates in the circuit, added to the to-
tal number of input and output qubits. If the quantum circuit is represented as a directed
acyclic graph with the input and output qubits corresponding to vertices, the size of the
circuit is just the number of vertices of the graph.

A collection {Qx : x ∈ Σ∗} of quantum circuits is termed as polynomial-time generated
if there exists a polynomial-time deterministic Turing machine that, on input x ∈ Σ∗, out-
puts an encoding of the circuit Qx. As is clear from the definition, the size of a polynomial-
time generated quantum circuit is always upper-bounded by a polynomially bounded
function in the input length. When such a family is parameterized by tuples of strings,
it is implicit that we are referring to one of the tuple-functions discussed previously. We
will not get into the details of the encoding function and will just note that the encoding
should be efficient, with the size of the circuit polynomially related to its encoding length.

3.2. Relation to complexity theory

We will state a lemma that relates quantum circuits to GapP functions discussed in Chap-
ter 2. Fortnow and Rogers [FR99] proved a variant of the lemma for quantum Turing
machines. A similar result is also discussed in [Wat09] without a formal proof. We in-
clude a comprehensive proof below. A result that is similar in spirit, relating quantum
circuits to counting classes, can be found in [DHM+05].
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Lemma 7. Let {Qx : x ∈ Σ∗} be a polynomial-time generated family of quantum circuits, where
each circuit Qx takes n input qubits and outputs k qubits, for polynomially bounded functions n
and k. There exists a polynomially bounded function r and GapP functions f0 and f1 such that

Re
(
〈u|Qx

(
|z〉〈w|

)
|v〉
)
= 2−r f0(x, z, w, u, v),

Im
(
〈u|Qx

(
|z〉〈w|

)
|v〉
)
= 2−r f1(x, z, w, u, v),

(3.8)

for all x ∈ Σ∗, z, w ∈ Σn, and u, v ∈ Σk.

Proof. Let us begin by considering first an arbitrary channel Φ that maps n-qubit density
operators to k-qubit density operators. Since the action of Φ on density operators is linear,
it can therefore be represented by means of matrix multiplication. A way to do this is by
the natural representation (also known as the linear representation) of quantum channels.
We give a brief description below. It starts with a description of the vectorization mapping.

Assume that M is a matrix whose rows and columns are indexed by strings of some
length m. The corresponding vector vec(M) is defined as

vec(M) = ∑
y,z∈Σm

〈y|M|z〉 |yz〉. (3.9)

Observe that it is indexed by strings of length 2m. Qualitatively, the vectorization map
makes a vector out of a matrix by transposing the rows of the matrix into column vectors
and putting them on top of one another.

The natural representation K(Φ) of a channel Φ is defined as the linear mapping that
has the following action:

K(Φ) vec(ρ) = vec(Φ(ρ)) (3.10)

for every n-qubit density operator ρ.
The matrix entries of K(Φ) are explicitly given by the equation

〈uv|K(Φ)|zw〉 = 〈u|Φ(|z〉〈w|)|v〉 (3.11)

holding for every z, w ∈ Σn and u, v ∈ Σk. Note that the matrix K(Φ) has columns indexed
by strings of length 2n and rows indexed by strings of length 2k. Thus, the equations (3.8)
are equivalent to the equations

Re
(
〈uv|K(Qx)|zw〉

)
= 2−r f0(x, z, w, u, v),

Im
(
〈uv|K(Qx)|zw〉

)
= 2−r f1(x, z, w, u, v).

(3.12)

Note that the natural representation is multiplicative. In other words,

K(ΦΨ) = K(Φ)K(Ψ) (3.13)

for all channels Φ and Ψ for which the composition ΦΨ makes sense. Also note that a
channel Φ(ρ) = UρU∗ which corresponds to a unitary operation U has as its natural
representation the operator

K(Φ) = U ⊗U. (3.14)

17



Let us consider the circuit family {Qx : x ∈ Σ∗}. Since this family is polynomial-time
generated, from our discussion about polynomial-time generated circuits in the earlier
section, there must exist a polynomially bounded function r such that size(Qx) ≤ r for all
x ∈ Σ∗. We may therefore write

Qx = Qx,r · · ·Qx,1, (3.15)

where Qx,1, . . . , Qx,r are either identity channels or channels that correspond to the action
of a single gate of Qx tensored with the identity channel on all of the qubits other than the
qubits that are input to that single gate. It is easy to see that the number of input qubits
and output qubits of each Qx,k must be bounded by r.

Since we have
K(Qx) = K(Qx,r) · · ·K(Qx,1), (3.16)

we will consider the natural representation of each channel Qx,k. For convenience, let us
identify each operator K(Qx,k) with the matrix indexed by strings of length 2r, instead
of being indexed by strings whose lengths depend on the number of qubits in existence
before and after Qx,k is applied. We can achieve this simply by padding K(Qx,k) with rows
and columns of zero entries.

The natural representations of the individual gates in the universal gate set we have
defined in the previous section are as follows:

1. Hadamard gate:

1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (3.17)

2. Phase gate: 
1 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 1

 (3.18)

3. Toffoli gate: 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


⊗



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(3.19)
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4. Ancillary qubit gate: 
1
0
0
0

 (3.20)

5. Erasure gate: (
1 0 0 1

)
(3.21)

On the basis of these representations, we can see that the real and imaginary parts of the
matrix entries of each of these gates come from the set {−1,−1/2, 0, 1/2, 1}. The −1/2
and 1/2 entries of the set come from the Hadamard gate. Keeping this in mind (and the
fact that Qx is polynomial-time generated), it is straightforward to argue for the existence
of GapP functions (or, in fact, FP functions 1) g0 and g1 such that

Re
(
〈uv|K(Qx,k)|zw〉

)
=

1
2

g0(x, z, w, u, v, yk),

Im
(
〈uv|K(Qx,k)|zw〉

)
=

1
2

g1(x, z, w, u, v, yk),
(3.22)

for all x ∈ Σ∗, k ∈ {1, . . . , r}, and u, v, z, w ∈ Σr, where y1, . . . , yr denote the elements
of Σr

1 sorted in lexicographic order. The factor of 1/2 in front of g0 and g1 comes from
the Hadamard gate. Intuitively, the fact that g0 and g1 are in FP can be visualized by
noting that there exists a polynomial-time deterministic Turing machine such that it takes
as input 〈x, z, w, u, v, yk〉, computes an encoding of Qx in polynomial time (it can do so
as Qx is polynomial time generated), efficiently figures out what Qx,k is from yk (since
we assume efficient pairing-functions, yk is efficiently computable from 〈x, z, w, u, v, yk〉),
efficiently figures out u, v, z, and w from 〈x, z, w, u, v, yk〉 (once again, it can do so because
of our assumption of an efficient pairing function for the input), and outputs twice the
real or imaginary part (depending on g0 or g1) of the (u, v, z, w)th entry of K(Qx,k) (we
consider a value that is twice the actual entry of K(Qx,k) to adjust for the 1/2 in front
of the natural representation of the Hadamard gate and make the output an integer for
any input). Note that Qx,k is one of the five universal gates, padded with zeroes. The zero
padding depends on r but is independent of the input to the machine. We can assume
that the matrices corresponding to twice the natural representation of these five gates,
with requisite zero padding, are hard-coded into the memory of the machine from the
start. Since the entries of these matrices are independent of the input, accessing them from
the memory tape incurs only a constant overhead. Observe that the whole operation of
this machine takes time that is polynomial in the length of the input. Also observe that
depending on whether it outputs the real or the imaginary part, this machine computes
g0 or g1, which puts them in FP.

1FP functions are a class of functions f : Σ∗ → Z that are computable in polynomial time, with the
integer output being encoded in binary. It can be easily proven that FP is contained in GapP.
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It now follows through a direct application of Lemma 6 there must exist GapP func-
tions f0 and f1 satisfying (3.8) and therefore (3.12), for all x ∈ Σ∗, z, w ∈ Σn, and u, v ∈ Σk,
thus completing the proof.
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Chapter 4

Definitions

This chapter will serve as a warm-up to our results. Here, we will rigorously define all the
unfamiliar complexity classes, both quantum and classical, that we will consider for the
rest of the thesis. For familiar complexity classes, like QMA and PP, we refer the reader to
the survey by Watrous [Wat09]. For the quantum classes, we will start with the definition
of QRG(1). Then, we will define CQRG(1) and MQRG(1). For the classical cases, we will
start with a brief recap of ∃ · PP and P · PP from Chapter 2.

4.1. Quantum complexity classes

In this section, we define the three quantum complexity classes to be considered in this
thesis: QRG(1), CQRG(1), and MQRG(1). While defining all these quantum classes, we
will always talk about a referee. Hence, before we start, we will formalize the notion of the
same.

Definition 8. A referee is a polynomial-time generated family

R = {Rx : x ∈ Σ∗} (4.1)

of quantum circuits which has the following features, for each x ∈ Σ∗:

1. The inputs to the circuit Rx can be divided into two registers: an n-qubit register A

and an m-qubit register B, where n and m are polynomially bounded functions.

2. The output of the circuit Rx is a single qubit, which is measured in the standard basis
immediately after running the circuit.

This definition of the referee works just as well when one of the inputs to the referee
is a classical state. This is because any classical probability distribution, which represents
a general classical state, can be represented in turn as a quantum state, by a diagonal
density matrix.

In our definitions that follow, there will be two players, Alice and Bob, sending two
quantum (or classical) states to the referee, for a particular input string x ∈ Σ∗. The input
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to the circuit Rx is of the form ρ ⊗ σ, where ρ ∈ D(A) is sent by Alice, and σ ∈ D(B)
is sent by Bob. The state ρ is stored in register A and σ is stored in register B. When
the measurement of the output qubit of Rx in the standard basis yields outcome 1, we
interpret it as “Alice wins.” Similarly, if it yields outcome 0, we interpret it as “Bob wins.”

Now, let us consider the quantity ω(Rx) defined below.

ω(Rx) = max
ρ∈D(A)

min
σ∈D(B)

〈1|Rx(ρ⊗ σ)|1〉. (4.2)

Observe that D(A) and D(B) are compact and convex sets, and the value 〈1|Rx(ρ⊗ σ)|1〉
is bilinear in ρ and σ. Applying Sion’s min-max theorem, we can argue that changing
the order of the minimum and maximum does not change the value of the expression. In
other words, this quantity may alternatively be written

ω(Rx) = min
σ∈D(B)

max
ρ∈D(A)

〈1|Rx(ρ⊗ σ)|1〉. (4.3)

Note that this value represents the probability that Alice ”wins the game” when the ref-
eree’s circuit is described by Rx, for a particular x ∈ Σ∗, assuming both Alice and Bob
play optimally. With this quantity defined, let us now turn our attention to the definition
of QRG(1).

Definition 9. A promise problem A = (Ayes, Ano) is contained in the complexity class
QRG(1)α,β if there exists a referee R = {Rx : x ∈ Σ∗} such that the following properties
are satisfied:

1. For every string x ∈ Ayes, it is the case that ω(Rx) ≥ α.

2. For every string x ∈ Ano, it is the case that ω(Rx) ≤ β.

We also define QRG(1) = QRG(1)2/3,1/3.

In Definition 9, α and β may be constants, or they may be functions of the length of the
input x. A few known facts about QRG(1) are summarized below.

• QMA ⊆ QRG(1). The QRG(1) referee may discard Bob’s state and only consider
Alice’s state ρ as a quantum proof. Thus, any QMA referee has an analogous QRG(1)
referee.

• QRG(1) is closed under complementation: QRG(1) = co-QRG(1). For a promise
problem A = (Ayes, Ano) ∈ QRG(1), we can just exchange the roles of Alice and
Bob to obtain a new one-turn quantum refereed game for A.

• It is true that, like the error bounds for BPP, BQP, and QMA, QRG(1) = QRG(1)α,β
if α and β are polynomial-time computable functions and satisfy the following rela-
tions:

α ≤ 1− 2−p, β ≥ 2−p, and α− β ≥ 1
p

(4.4)

for some choice of a strictly positive polynomially bounded function p.
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Rx

Qx

A

B

Figure 4.1: A pictorial depiction of a CQRG(1) referee. The register A is initially measured
(or, in more technical terms, dephased) with respect to the standard basis, which results
in a classical state to be input into Qx, along with the register B, which is not disturbed by
this standard basis measurement.

• Error reduction in QRG(1) can be performed by means of parallel repetition followed
by majority vote. An analysis of the parallel repetition method in QRG(1) requires one
to take into account the fact that the dishonest player—the player who is supposed to
lose with high probability—can try to cheat by sending a state that is entangled across
the different repetitions of the game, instead of sending a product state. The analysis
of this method is similar in spirit to the analysis of parallel repetition followed by
majority vote for QMA [KSV02]. Note that unlike the Marriott-Watrous technique of
QMA [MW05], no "in place" error reduction scheme is known for QRG(1).

• QRG(1) ⊆ PSPACE [JW09].

Originally, we set out to prove a better containment than PSPACE for QRG(1). We did
not succeed in proving that containment. However, we proved better containments for
two restricted versions of QRG(1). The first such complexity class is called CQRG(1): in
CQRG(1), Alice’s state ρ ∈ D(A) is restricted to be a classical state.

Definition 10. A promise problem A = (Ayes, Ano) is contained in the complexity class
CQRG(1)α,β if there exists a referee R = {Rx : x ∈ Σ∗} such that the following properties
are satisfied:

1. For every string x ∈ Σ∗, the circuit Rx takes the form depicted in Figure 4.1. In other
words, Rx takes an n-qubit register A and an m-qubit register B as input, measures
each qubit of A with respect to the standard basis, leaving it in a classical state, and
then runs the circuit Qx on the pair (A,B), producing a single output qubit.

2. For every string x ∈ Ayes, it is the case that ω(Rx) ≥ α.

3. For every string x ∈ Ano, it is the case that ω(Rx) ≤ β.

Like in the previous definition, we define CQRG(1) = CQRG(1)2/3,1/3.
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|1〉

|0〉

Tr

Tr

Figure 4.2: A pictorial representation of a dephasing channel made of universal gates.

|0〉 Tr

Figure 4.3: A second pictorial representation of a dephasing channel made of a different
set of universal gates.

In more technical terms, the standard basis measurement in Definition 10 can be im-
plemented by independently applying the completely dephasing channel on each qubit
of A. The completely dephasing channel can be constructed with the universal gate set we
defined in Chapter 3. For the sake of completeness, we give a description below. In Figure
4.2, the square labeled |0〉 is an ancillary gate, the square labeled |1〉 is an ancillary gate
composed with a not-gate X = HPPH, where H and P denote Hadamard and phase-
shift gates, and the square labeled Tr denotes an erasure gate. A way to see that the circuit
above performs the completely dephasing channel is be to consider the density matrix of
a general quantum state on the first qubit, consider the density matrix of all three qubits
by tensoring the density matrix of the ancillas with that of the first qubit, apply the Toffoli
gate to the density matrix over three qubits, and then consider the reduced density matrix
of the first qubit after tracing out the second and third qubit. We will see that the reduced
density matrix of the first qubit after the final step contains only the diagonal entries.

Note that there is nothing unique or special about the universal gate set we defined
or the way we constructed the completely dephasing channel. If we fixed a different uni-
versal gate set, we would get a different way to construct the channel. For example, if we
chose Hadamard, controlled NOT, phase shift, and the T gate in our universal gate set, along
with ancillary and erasure gates, where the T gate is given as(

1 0
0 eiπ/4

)
, (4.5)

the dephasing channel can be constructed as in Figure 4.3.
Qualitatively, a referee R that meets the first requirement of Definition 10 forces Alice

to be classical (i.e., play a state represented by a diagonal density operator). Mathemati-
cally, for any density operator ρ that Alice chooses to play, the state of A that goes into Qx
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Rx

Qx

Pxρ

σ

Figure 4.4: An MQRG(1) referee.

is given by
∑

y∈Σn
p(y) |y〉〈y| (4.6)

for some probability vector p over n-bit strings. In other words, the first n qubits of Qx
represent a diagonal density operator (i.e., a classical state). Since that the standard basis
measurement acts trivially on all diagonal density operators, instead of sending a quan-
tum state which then gets dephased and turned to a diagonal density state, Alice may just
start with an arbitrary diagonal density state of the form (4.6) from the very beginning.
To summarize, an analysis of Figure 4.1 reveals that the set of possible states that may be
input into the first n qubits of the circuit Qx is precisely the set of n-qubit diagonal density
operators.

Now, we will define a second restricted version of QRG(1). In this class, Alice and
Bob both send quantum states to the referee, but the referee measures Alice’s state first,
obtains a classical outcome, which is then measured together with Bob’s state. We call this
class MQRG(1). The referee’s action is illustrated in Figure 4.4.

Definition 11. A promise problem A = (Ayes, Ano) is contained in the complexity class
MQRG(1)α,β if there exists a referee R = {Rx : x ∈ Σ∗} such that the following properties
are satisfied:

1. For each string x ∈ Σ∗, the circuit Rx takes the form of Figure 4.4. To elaborate, Rx
takes an n-qubit register A and an m-qubit register B as input, and first applies a
quantum circuit Px to A, producing a k-qubit register Y, where k is a polynomially
bounded function. Then, the register Y is measured with respect to the standard basis,
so that it then stores a classical state. Finally, a quantum circuit Qx is applied to the
pair (Y,B), producing a single qubit.

2. For every string x ∈ Ayes, it is the case that ω(Rx) ≥ α.

3. For every string x ∈ Ano, it is the case that ω(Rx) ≤ β.

As before, we also define MQRG(1) = MQRG(1)2/3,1/3.
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Qualitatively, an MQRG(1) referee measures Alice’s qubits with respect to a general
measurement that we can implement efficiently and produces a k-bit classical state, which
is then plugged into Qx alongside Bob’s quantum state.

Note that a CQRG(1) referee is a special case of an MQRG(1) referee in which Px is the
identity map on n qubits. In turn, MQRG(1) referee is a special case of a QRG(1) referee.
It follows immediately that

CQRG(1) ⊆ MQRG(1) ⊆ QRG(1). (4.7)

Remark 12. Note that when Px is restricted to be a unitary quantum circuit, the containment
MQRG(1) ⊆ CQRG(1) also holds, which implies that for this special case, CQRG(1) = MQRG(1).
A way to see the containment is to note that since Px is assumed to be a unitary quantum circuit,
for every state ρ ∈ D(A) that Alice sends to an MQRG(1) referee, she can send the diagonal den-
sity matrix ∆⊗n(PxρP∗x ) ∈ D(A) to a CQRG(1) referee, where ∆⊗n is the n-fold tensor product
of the one-qubit completely dephasing channel ∆, which when applied to the density matrix of a
qubit leaves the diagonal entries intact and sets the off-diagonal entries to zero.

Observe that both CQRG(1) and MQRG(1) are robust with respect to error bounds,
similar to QRG(1).

4.2. Classical complexity classes

In this section, we define the classical complexity classes we consider in this thesis: ∃ · PP
and P · PP. These classes are all contained in PSPACE. These were already defined in
general terms in Chapter 2. We give a brief recap for convenience. We also include a short
proof that they are contained in PSPACE.

Definition 13. The complexity class ∃ · PP contains all promise problems A = (Ayes, Ano)
for which there exists a language B ∈ PP and a polynomially bounded function p such
that these two implications hold:

x ∈ Ayes ⇒
{

y ∈ Σp : 〈x, y〉 ∈ B
}
6= ∅,

x ∈ Ano ⇒
{

y ∈ Σp : 〈x, y〉 ∈ B
}
= ∅.

(4.8)

Definition 14. The complexity class P · PP contains all promise problems A = (Ayes, Ano)
for which there exists a language B ∈ PP and a polynomially bounded function p such
that these two implications hold:

x ∈ Ayes ⇒
∣∣∣{y ∈ Σp : 〈x, y〉 ∈ B

}∣∣∣ > 1
2
· 2p,

x ∈ Ano ⇒
∣∣∣{y ∈ Σp : 〈x, y〉 ∈ B

}∣∣∣ ≤ 1
2
· 2p.

(4.9)
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Proposition 15. ∃ · PP ⊆ P · PP

Proof. Consider a promise problem A in ∃ · PP such that there exists a language B ∈ PP
and a polynomially bounded function p for which:

x ∈ Ayes ⇒
{

y ∈ Σp : 〈x, y〉 ∈ B
}
6= ∅,

x ∈ Ano ⇒
{

y ∈ Σp : 〈x, y〉 ∈ B
}
= ∅.

(4.10)

Consider a language C defined as

C = {x0 : x ∈ Σ∗} ∪ {x1 : x ∈ B}. (4.11)

Since PP is closed under complementation, joins, and unions, it follows that C ∈ PP.
It is now easy to see that p + 1 is a polynomially bounded function such that

x ∈ Ayes ⇒
∣∣∣{y ∈ Σp+1 : 〈x, y〉 ∈ C

}∣∣∣ > 1
2
· 2p+1,

x ∈ Ano ⇒
∣∣∣{y ∈ Σp+1 : 〈x, y〉 ∈ C

}∣∣∣ ≤ 1
2
· 2p+1.

(4.12)

Since Definition 14 is satisfied, the lemma follows.

Proposition 16. P · PP ⊆ PSPACE

Proof. Consider a promise problem A ∈ P · PP. From the definition, there exists a lan-
guage B ∈ PP and a polynomially bounded function p such that

x ∈ Ayes ⇒
∣∣∣{y ∈ Σp : 〈x, y〉 ∈ B

}∣∣∣ > 1
2
· 2p,

x ∈ Ano ⇒
∣∣∣{y ∈ Σp : 〈x, y〉 ∈ B

}∣∣∣ ≤ 1
2
· 2p.

(4.13)

Since PP ⊆ PSPACE, we have that B ∈ PSPACE. Let N be a PSPACE machine that estab-
lishes this containment. Consider a machine M taking x ∈ Σ∗ as input. The action of M is
described as follows:

• M iterates over every y ∈ Σp.

• During each iteration, M simulates the action of N on input 〈x, y〉.

• M has a p-bit register, initialized to all 0s, that it increments everytime N accepts.

• At the end of each iteration, M stores nothing except for the contents of that p-bit
register, and reuses memory space during each new iteration.

• M stops and accepts whenever the binary string stored in the p-bit register is more
than 1

2 · 2p.
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• M rejects if, even after iterating over every y ∈ Σp, the binary string stored in the
p-bit register is less than or equal to 1

2 · 2p.

Note that since M reuses space during every iteration, it takes, at most, a polynomial
amount of space. Also note that M accepts every string x ∈ Ayes and rejects every string
x ∈ Ano. For any x in the promise gap, since N outputs garbage for any y ∈ Σp, M
also outputs garbage at the end. It is evident that, with respect to the machine M, A is
contained in PSPACE.
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Chapter 5

Results - Part I

In this chapter, we will first state a folklore result: QRG(1) = PQRG(1). Even though this
result is known, there has not been a detailed proof of it in literature. We will give a proof
here. Then, we will elaborate on a Chernoff-type bound on matrix valued random vari-
ables that will be used to prove both of our main containment results. The bound is due
to a more general result by [Tro12]. Finally, we will explain one of our main containment
result: CQRG(1) ⊆ ∃ ·PP. The other containment result will be proven in the next chapter.

5.1. Folklore result

Here, we will prove that the complexity class QRG(1) is equal to the complexity class
PQRG(1). We will split the containment into two parts, first proving that QRG(1) ⊆ PQRG(1)

and then proving that PQRG(1) ⊆ QRG(1). The second containment only holds if, for each
x ∈ Σ∗, each query made by the PQRG(1) machine to the QRG(1) oracle lies within the
promise. In other words, for a particular x, each query is a string y ∈ Byes ∪ Bno for a
promise problem B ∈ QRG(1). 1

Theorem 17. QRG(1) = PQRG(1).

Proof. It is easy to prove that QRG(1) ⊆ PQRG(1). Consider a promise problem A =
(Ayes, Ano) in QRG(1). To construct a PQRG(1) algorithm to decide A, just query the QRG(1)
oracle and accept or reject based on the answer.

Proving PQRG(1) ⊆ QRG(1) is slightly more involved. Consider a promise problem
A = (Ayes, Ano) in PQRG(1). For every input x ∈ Σ∗, we can assume, without loss of gen-
erality, that the polynomial-time algorithm that decides A makes exactly p(|x|) queries
to the QRG(1) oracle, for a polynomially bounded function p. The algorithm can be visu-
alized as a complete binary decision tree. Each node of the tree represents a query to the
QRG(1) oracle. Depending on whether the oracle answers 0 or 1, there are two edges from
each node, representing two different polynomial time computation paths. The leaves of

1Reductions where querying the promise gap is forbidden are called "smart" reductions. See Goldreich
[Gol06] (especially section 5.1) for a primer.
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the tree represent accept and reject nodes. Since it is a complete binary tree, the leaves are
all at the same level. Depending on the input x, the algorithm traverses the tree determin-
istically and terminates at an accept or a reject node.

Now, consider a QRG(1) referee for A and consider an input x. Alice, the yes player,
wants to convince the referee that the input leads to an accept node. Bob, the no player,
wants to convince the referee that the input leads to a reject node. Let us look at the
strategies of Alice and Bob below.

• Alice’s strategy: Alice sends a binary string a1a2 · · · ap ∈ Σp and registers

(A1,A2, . . . ,Ap), (5.1)

each n qubits long. The register Ai stores a quantum proof that the bit ai is indeed
the correct answer to the ith query for i ∈ {1, 2, . . . , p}. Let the quantum state across
the p registers be ρ ∈ D(A⊗p).

• Bob’s strategy: Bob sends a binary string b1b2 · · · bp ∈ Σp and registers

(B1,B2, . . . ,Bp), (5.2)

each m qubits long. The register Bi stores a quantum proof that the bit bi is indeed
the correct answer to the ith query for i ∈ {1, 2, . . . , p}. Let the quantum state across
the p registers be σ ∈ D(B⊗p).

• Referee’s action: The referee performs three tasks:

– Firstly, the referee actually verifies the computation. He considers Alice’s string
a1a2 . . . ap, considers the polynomial-time computation path through the deci-
sion tree where the answer to the ith query is indeed ai, for i ∈ {1, 2, . . . , p},
and verifies whether that polynomial-time computation path indeed leads to
an accept node. If it leads to a reject node instead, he declares Bob as the winner
by outputting 0.

– If it does lead to an accept node, he considers Bob’s string b1b2 . . . bp and sees
whether there is any mismatch between Alice’s string and Bob’s string. If there
is none, he declares Alice as the winner (as Bob’s string would have led him
to the same accept node as that of Alice’s string, instead of a reject node) by
outputting 1.

– If there is a mismatch, he considers the first such position j ∈ {1, 2, . . . , p} that
Alice’s and Bob’s strings disagree on. He considers the quantum circuit which
simulates the action of the oracle for the jth position. Note that if aj = 0, Alice
is the no-player and Bob is the yes-player, with respect to the jth oracle query.
Similarly, If aj = 1, Alice is the yes-player and Bob is the no-player, with re-
spect to the jth oracle query. With this subtle distinction in mind, he plugs in
the reduced density matrices ρ[Aj] ∈ D(A)—–which is the quantum state of the
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register Aj with all the other registers traced out—and σ[Bj] ∈ D(B)–—which
is the quantum state of the register Bj with all the other registers traced out—–
into his quantum circuit. Note that depending on who is the yes-player and
who is the no-player, the proofs are plugged into the circuit in their proper
places. The referee outputs 1, signaling Alice has won, if the output of the cir-
cuit is aj and outputs 0, signaling Bob has won, if it is bj.

Let us analyze the referee’s action. Observe that if x ∈ Ayes, Alice is the honest player
and aj, the jth entry of the string a1a2 · · · ap, represents the correct answer of the oracle
to the jth query, for every j ∈ [p]. Hence, it follows from the definition of QRG(1) that
Alice can send a state ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρp ∈ D(A⊗p) such that ρj ∈ D(A) allows her
to win with probability at least 2/3 for the jth query, for every j ∈ [p], regardless of
whether she is the yes-prover or the no-prover for that instance, and regardless of any
σ[Bj] ∈ D(B), even if σ ∈ D(B⊗p) does not take a product state form. Informally, Alice
wins with high probability by sending a product state irrespective of whether Bob tries to
cheat by entangling his state across all the p registers.

Similarly, if x ∈ Ano, Bob is the honest player and bj, the jth entry of the string
b1b2 · · · bp, represents the correct answer of the oracle to the jth query, for every j ∈ [p].
Hence, it follows from the definition of QRG(1) that Bob can send a state σ1 ⊗ σ2 ⊗ · · · ⊗
σp ∈ D(B⊗p) such that σj ∈ D(A) allows him to win with probability at least 2/3 for the
jth query, for every j ∈ [p], regardless of whether he is the yes-prover or the no-prover
for that instance, and regardless of any ρ[Aj] ∈ D(A), even if ρ ∈ D(A⊗p) does not take
a product state form. Informally, Bob wins with high probability by sending a product
state, irrespective of whether Alice tries to cheat by entangling her state across all the p
registers.

Note that notwithstanding whether there is any mismatch in Alice’s or Bob’s strings
and whether Alice is the yes-prover or the no-prover for the jth instance, the referee out-
puts 1 if Alice wins and 0 if Bob wins. This fact, along with our discussion above, implies
that when x ∈ Ayes, the referee outputs 1 with probability at least 2/3 and when x ∈ Ano,
the referee outputs 1 with probability at most 1/3. This proves that PQRG(1) ⊆ QRG(1).
Having established both the directions, the proof of the theorem is complete.

5.2. A tail bound for operator-valued random variables

Now, we will state a tail bound for operator valued random variables that we will use to
upper bound CQRG(1). Let us first look at what operator-valued random variables are.

Definition 18. For a given alphabet Σ and a given probability distribution p ∈ P(Σ),
an operator-valued random variable X, distributed with respect to p, is a function of the
form

X : Σ→ L(Y,Z), (5.3)
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for some fixed choice of complex Euclidean spaces Y and Z, such that, for every subset
T ⊆ Σ, the probability that X takes a value in T is defined as

Pr(X ∈ T) = ∑
a∈T

p(a). (5.4)

The expected value of such a random variable is

E(X) = ∑
a∈Σ

p(a)X(a). (5.5)

Now, the bound stated in the corollary below follows from Theorem 5.1 of [Tro12]
together with Pinsker’s inequality, which relates the relative entropy of two probability
vectors to the 1-norm of the two vectors. A simplified form of Pinsker’s inequality—the
form which we use in our proof—follows.

Theorem 19 (Pinsker’s inequality). Let P and Q be two probability distributions over the al-
phabet Σ with P(0) = p, P(1) = 1− p, Q(0) = q, and Q(1) = 1− q. Let

D(P||Q) = p log
p
q
+ (1− p) log

1− p
1− q

(5.6)

be defined as the relative entropy between the two distributions and

||P−Q||1 = 2|p− q| (5.7)

be defined as the L1 norm between the two distributions. Then, we have

D(P||Q) ≥ 1
2 ln 2

||P−Q||21. (5.8)

Next, we state the tail bound. The proof directly follows from Theorem 5.1 of [Tro12].
We will state a simplified version of this theorem and then state our required tail bound
as a corollary. We will also include a short proof of the corollary, just for the sake of com-
pleteness.

Theorem 20 (Tropp). Let η, α ∈ [0, 1] with η ≥ α. Let X1, . . . , XN be independent operator-
valued random variables having the following properties:

1. Each Xk takes d× d positive semidefinite operator values satisfying Xk ≤ 1.

2. The minimum eigenvalue of the average of the expectation value of each of the random vari-
ables satisfies

λmin

(
1
N

N

∑
k=1

E(Xk)

)
≥ η. (5.9)
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It is the case that

Pr
(

λmin

(
X1 + · · ·+ XN

N

)
< α

)
≤ d exp(−N · D(α||η)), (5.10)

where the relative entropy D(α||η)) for scalars α and η is defined as

D(α||η)) = α log
α

η
+ (1− α) log

1− α

1− η
. (5.11)

Remark 21. Originally, in the statement of this theorem, the author had that

λmin

(
1
N

N

∑
k=1

E(Xk)

)
= η. (5.12)

However, the theorem is also true for (5.9). This follows from the observation that for scalars
α, η ∈ [0, 1] and for another scalar β ≥ 1, we have

D(α||β η) = D(α||η) + α log
1
β

≤ D(α||η).
(5.13)

Now, we will use this theorem to prove the corollary that we state below.

Corollary 22. Let d and N be positive integers, let η, ε ∈ [0, 1] with η > ε be real numbers,
and let X1, . . . , XN be independent and identically distributed operator-valued random variables
having the following properties:

1. Each Xk takes d× d positive semidefinite operator values satisfying Xk ≤ 1.

2. The minimum eigenvalue of the expected operator E(Xk) satisfies λmin(E(Xk)) ≥ η.

It is the case that

Pr
(

λmin

(
X1 + · · ·+ XN

N

)
< η − ε

)
≤ d exp(−2Nε2). (5.14)

Proof. Observe that
η > η − ε > 0, (5.15)

and that, since the random variables are identically distributed,

λmin

(
1
N

N

∑
k=1

E(Xk)

)
= λmin(E(Xk)) ≥ η, (5.16)

for each k ∈ [N]. Now, by directly applying Theorem (20) (by taking α as η − ε), we get
that

Pr
(

λmin

(
X1 + · · ·+ XN

N

)
< η − ε

)
≤ d exp(−N · D(η − ε||η)). (5.17)
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Noting from (5.8) that

exp (−N · D(η − ε||η)) ≤ exp
(
− 2

ln 2
Nε2

)
≤ exp(−2Nε2), (5.18)

where the last inequality follows from the fact that

exp
(
− 2

ln 2

)
≈ 0.0558 < exp(−2) ≈ 0.135, (5.19)

the proof is complete.

5.3. Upper-bound on CQRG(1)

In this section, we will upper bound the complexity class CQRG(1). Specifically, we will
show that it is contained in ∃ · PP. Informally, the proof will be a generalization of the
Althöfer–Lipton–Young [Alt94, LY94] technique, briefly covered in Chapter 1, of argu-
ing for the existence of an almost-optimal distribution for the winning player which is
uniform over a polynomially large set of polynomial sized strings. While the original
Althöfer–Lipton–Young technique relied on Bernoulli random variables, we generalize it
to operator valued random variables to account for the quantum setting. The proof of
containment is divided into two initial lemmas and a final theorem where the contain-
ment is established. We will reuse the two lemmas in the next chapter, while proving that
MQRG(1) is contained in P · PP. The first lemma is an application of Corollary 22 to state
something more relevant to our setting.

Lemma 23. Let k and m be positive integers, let p ∈ P(Σk) be a probability distribution on
k-bit strings, let Sy be a 2m × 2m positive semidefinite operator satisfying 0 ≤ Sy ≤ 1 for each
y ∈ Σk, and let N ≥ 72(m + 2). For strings y1, . . . , yN ∈ Σk sampled independently from the
distribution p, it is the case that

Pr

(
λmin

(
Sy1 + · · ·+ SyN

N

)
< λmin

(
∑

y∈Σk

p(y)Sy

)
− 1

12

)
<

1
3

. (5.20)

Proof. Let X1, . . . , XN be independent and identically distributed operator-valued ran-
dom variables, each taking the value Sy with probability p(y), for every y ∈ Σk. Thus, the
expected value of each of these random variables is given by

P = ∑
y∈Σk

p(y)Sy. (5.21)

Observe that by taking η = λmin(P) and ε = 1/12 and by applying Corollary 22,

Pr
(

λmin

(
X1 + · · ·+ XN

N

)
< λmin(P)− 1

12

)
≤ 2m exp

(
−N

72

)
<

1
3

, (5.22)

which proves the lemma.

34



The second lemma relates minimum eigenvalues of special types of quantum mea-
surement operators operators to PP languages. It does so with GapP functions of count-
ing complexity. Note that the relations in (5.26), which relate the maximum eigenvalue
of an operator with the trace of that operator raised to a certain power, is the main idea
behind the unpublished proof of QMA ⊆ PP claimed in [KW00].

Lemma 24. Let {Qx : x ∈ Σ∗} be a polynomial-time generated family of quantum circuits,
where each circuit Qx takes as input a k-qubit register Y and an m-qubit register B, for polynomi-
ally bounded functions k and m, and outputs a single qubit. For each x ∈ Σ∗ and y ∈ Σk, define
an operator

Sx,y =
(
〈y| ⊗ 1B

)
Q∗x(|1〉〈1|)

(
|y〉 ⊗ 1B

)
. (5.23)

For every polynomially bounded function N, there exists a language B ∈ PP for which the follow-
ing implications are true for all x ∈ Σ∗ and y1, . . . , yN ∈ Σk:

λmin

(
Sx,y1 + · · ·+ Sx,yN

N

)
≥ 2

3
⇒ (x, y1 · · · yN) ∈ B, (5.24)

λmin

(
Sx,y1 + · · ·+ Sx,yN

N

)
≤ 1

3
⇒ (x, y1 · · · yN) 6∈ B. (5.25)

Proof. Let us give a brief informal description of the proof. First, we will relate the maxi-
mum eigenvalue of a 2m × 2m positive semidefinite operator P with the trace of P raised
to the power r, where r is a polynomially bounded function. Then, we will choose a P
whose real and imaginary parts are proportional to GapP functions and use the relations
to define new GapP functions whose real and imaginary parts are proportional to the real
and imaginary parts of Tr(Pr). Finally, by choosing an appropriate r, we will relate these
new GapP functions with a language B in PP such that (5.24) and (5.25) hold.

We begin by observing the following relations for any 2m × 2m positive semidefinite
operator P:

λmax(P)r = λmax(Pr) ≤ Tr(Pr) ≤ 2mλmax(Pr) = 2mλmax(P)r. (5.26)

For our case, it will be sufficient to take r = 2m.
Now, let us define

Tx,y =
(
〈y| ⊗ 1B

)
Q∗x(|0〉〈0|)

(
|y〉 ⊗ 1B

)
(5.27)

for each x ∈ Σ∗ and y ∈ Σk. Note that Sx,y and Tx,y are positive semidefinite operators
which satisfy Sx,y + Tx,y = 1B. The implications (5.24) and (5.25) may now be written as

λmax

(
Tx,y1 + · · ·+ Tx,yN

N

)
≤ 1

3
⇒ (x, y1 · · · yN) ∈ B, (5.28)

λmax

(
Tx,y1 + · · ·+ Tx,yN

N

)
≥ 2

3
⇒ (x, y1 · · · yN) 6∈ B. (5.29)
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Define an operator Px,y1···yN as

Px,y1···yN =
Tx,y1 + · · ·+ Tx,yN

N
. (5.30)

If λmax(Px,y1···yN) ≤ 1/3, we have by (5.26)

Tr(P2m
x,y1···yN

) ≤ 2m

32m <
1

3m . (5.31)

On the other hand, if λmax(Px,y1···yN) ≥ 2/3, we have by (5.26)

Tr(P2m
x,y1···yN

) ≥
(2

3

)2m
>

1
3m . (5.32)

By Lemma 7 we can argue for the existence of a polynomially bounded function r and
GapP functions f and g which satisfy

Re(〈z|Tx,y|w〉) = Re
(
〈0|Qx

(
|yz〉〈yw|

)
|0〉
)
= 2−r f (x, y, z, w),

Im(〈z|Tx,y|w〉) = − Im
(
〈0|Qx

(
|yz〉〈yw|

)
|0〉
)
= 2−rg(x, y, z, w),

(5.33)

for all x ∈ Σ∗, y ∈ Σk, and z, w ∈ Σm. Define two new functions F and G such that:

F(x, y1 · · · yN, z, w) = f (x, y1, z, w) + · · ·+ f (x, yN, z, w),

G(x, y1 · · · yN, z, w) = g(x, y1, z, w) + · · ·+ g(x, yN, z, w),
(5.34)

for all x ∈ Σ∗, y1, . . . , yN ∈ Σk, and z, w ∈ Σm. From (5.30), we can see that F and G are
GapP functions satisfying

F(x, y1 · · · yN, z, w) = 2r · N · Re(〈z|Px,y1···yN |w〉),
G(x, y1 · · · yN, z, w) = 2r · N · Im(〈z|Px,y1···yN |w〉).

(5.35)

Applying Lemmas 4 and 6, observe that there must exist a GapP function H satisfying

H(x, y1 · · · yN) = 22rm · N2m · Tr
(

P2m
x,y1···yN

)
. (5.36)

Define a new GapP function

K(x, y1 · · · yN) = 22rm · N2m − 3m · H(x, y1 · · · yN). (5.37)

Observe that it is positive if λmax(Px,y1···yN) ≤ 1/3, and negative if λmax(Px,y1···yN) ≥ 2/3.
This implies the existence of a PP language B as claimed in the theorem and the proof is
complete.
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Theorem 25. CQRG(1) ⊆ ∃ · PP.

Proof. Let A = (Ayes, Ano) be any promise problem contained in CQRG(1). We fix a ref-
eree for which A ∈ CQRG(1)3/4,1/4, and let {Qx : x ∈ Σ∗} be the collection of circuits
describing this referee, according to Definition 10.

Let x ∈ Ayes ∪ Ano be any input string. First, let us consider the situation where Alice
sends a deterministic string y ∈ Σn to the referee, so that ρ = |y〉〈y|. Let us suppose Bob
plays a quantum state σ ∈ D(B). The probability that the referee gets outcomes 0 and 1
after plugging in the states of Alice and Bob is given by

〈0|Qx(|y〉〈y| ⊗ σ)|0〉 and 〈1|Qx(|y〉〈y| ⊗ σ)|1〉 (5.38)

respectively. Define an operator Sx,y ∈ Pos(B) as

Sx,y =
(
〈y| ⊗ 1B

)
Q∗x(|1〉〈1|)

(
|y〉 ⊗ 1B

)
. (5.39)

Observe that from the properties of quantum channels elaborated in Chapter 3, especially
(3.7),

Tr
(
Sx,y σ

)
= 〈1|Qx(|y〉〈y| ⊗ σ)|1〉 (5.40)

and
Tr
(
(1B − Sx,y)σ

)
= 〈0|Qx(|y〉〈y| ⊗ σ)|0〉 (5.41)

for all σ ∈ D(B), which indicates that Sx,y and 1B − Sx,y are a pair of quantum measure-
ment operators on space B.

Note that Bob wants to minimize the probability of outcome 1 appearing. To reason
about Bob’s strategy, we should look at the minimum eigenvalue λmin(Sx,y) of Sx,y. This is
because a large minimum eigenvalue means that Alice wins with high probability regard-
less of what state Bob chooses while a small minimum eigenvalue means that Bob has at
least one quantum state (the density matrix corresponding to an eigenvector for the min-
imum eigenvalue in a spectral decomposition of Sx,y) that allows Bob to win with high
probability. More technically, Bob’s optimal strategy in the case that Alice plays ρ = |y〉〈y|
is to play any state σ ∈ D(B) whose image is contained in the eigenspace of Sx,y corre-
sponding to the minimum eigenvalue λmin(Sx,y), which causes Alice to win with proba-
bility λmin(Sx,y) and causes Bob to win with probability 1− λmin(Sx,y). A way to see it is
to consider a spectral decomposition for Sx,y given by

Sx,y =
k

∑
i=1

λx,y,iux,y,iu∗x,y,i, (5.42)

with {ux,y,i : i ∈ [k]} forming an orthonormal basis for B and {λx,y,i : i ∈ [k]} being the
eigenvalues of Sx,y, where the eigenvalues may not all be unique. Now, consider the set

T = {j : j ∈ [k], λx,y,j = λmin(Sx,y)}. (5.43)
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Observe that a choice of σ ∈ D(B) is

σx,y = ∑
i∈T

µx,y,iux,y,iu∗x,y,i, (5.44)

where each µi ≥ 0 and
∑
i∈T

µx,y,i = 1. (5.45)

It is easy to verify that σx,y is an operator whose image is contained in the eigenspace
of Sx,y corresponding to the minimum eigenvalue λmin(Sx,y) and, as described above,
represents an optimal play for Bob.

In the general case, Alice will not play a single deterministic string, but will instead
play a probability distribution p ∈ P(Σn) over a lot of deterministic strings. For this
general strategy, the resulting measurement operator on Bob’s space becomes

∑
y∈Σn

p(y)Sx,y. (5.46)

Then, the probability that Alice wins when she plays a distribution p ∈ P(Σn), and Bob
plays optimally against this distribution, is given by the expression

λmin

(
∑

y∈Σn
p(y)Sx,y

)
. (5.47)

Now, the task of determining whether x ∈ Ayes or x ∈ Ano reduces to the task of deter-
mining whether there exists a distribution p ∈ P(Σn) for which the minimum eigenvalue
(5.47) is at least 3/4 or whether the minimum eigenvalue is at most 1/4 for all choices of
p ∈ P(Σn).

We will prove that the decision problem mentioned above is contained in ∃ ·PP. Qual-
itatively, the ∃ operator represents the presence or absence of an optimal distribution
for which the minimum eigenvalue (5.47) is large and the PP helps us to estimate that
minimum eigenvalue. A problem that arises for this case is that the ∃ operator requires
the optimal distribution to have a polynomial-length description. However, Alice’s op-
timal distribution does not generally have a polynomial length description. Instead, in
the general case, a distribution can be explicitly specified only by an exponential-length
description, assuming each individual probability is specified upto polynomial precision.

To overcome this challenge, we consider a variant of the Althöfer–Lipton–Young tech-
nique. Instead of specifying a distribution p ∈ P(Σn) with exponential support, we will
choose a different distribution q ∈ P(Σn) as follows. Consider the N-tuple of strings
(y1, . . . , yN) where N(|x|) is a polynomially bounded function and the strings (y1, . . . , yN)
represent N deterministic strings that Alice can play. This N-tuple represents the distri-
bution q ∈ P(Σn), where q(y) is found by choosing an index j ∈ {1, . . . , N} uniformly at
random and then outputting the string yj. More technically, q ∈ P(Σn) represented by the
N-tuple (y1, . . . , yN) is given by

q(y) =

∣∣{j ∈ {1, . . . , N} : y = yj}
∣∣

N
(5.48)
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for each y ∈ Σn. As one would expect, most choices of q ∈ P(Σn) are very bad approxi-
mations for the distribution p. But the existence of an optimal distribution for which the
minimum eigenvalue (5.47) is large implies the existence of an N-tuple (y1, . . . , yN) (and
hence, a distribution q) for which

λmin

(
Sx,y1 + · · ·+ Sx,yN

N

)
(5.49)

is also sufficiently large, provided we choose a large but still polynomially bounded N.
This is formally shown in Lemma 23.

Specifically, Lemma 23 implies that by choosing N = 72(m + 2), where m is the num-
ber of qubits of B, we find that if the minimum eigenvalue (5.47) is at least 3/4, then with
probability at least 2/3 over the random choices of y1, . . . , yN, the minimum eigenvalue
(5.49) is at least 2/3. By the probabilistic method, this implies the existence of at least one
N-tuple (y1, . . . , yN) for which the minimum eigenvalue (5.49) is at least 2/3.

On the other hand, if x ∈ Ano, then the minimum eigenvalue (5.47) is at most 1/4 for
all choices of p ∈ P(Σn), and therefore it holds that

λmin

(
Sx,y1 + · · ·+ Sx,yN

N

)
≤ 1

4
<

1
3

(5.50)

for all N-tuples (y1, . . . , yN). This follows from the definition of CQRG(1) and the fact that
the distribution q defined by (5.48) is simply one example of a distribution in P(Σn).

Finally, we apply Lemma 24 to argue that there exists a language B ∈ PP such that
if the minimum eigenvalue (5.49) is at least 2/3, then (x, y1 · · · yN) ∈ B, while if this
minimum eigenvalue is at most 1/3, then (x, y1 · · · yN) 6∈ B. As a consequence of this
fact, if x ∈ Ayes, then there exists a string y1 · · · yN ∈ ΣnN such that (x, y1 · · · yN) ∈ B,
while if x ∈ Ano, then for every string y1 · · · yN ∈ ΣnN it is the case that (x, y1 · · · yN) 6∈ B.
It now follows that A ∈ ∃ · PP.
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Chapter 6

Results - Part II

We will now prove that MQRG(1) is contained in P · PP. The proof will make use of the
two lemmas proved in the last chapter, and also a variant of Hoeffding’s lemma that we
prove in Appendix A. Additionally, the proof will involve an intermediate complexity
class QMA · PP, or the QMA operator acting on the class PP. Just as we did for the ∃
and P operators, we will prove certain general facts about the QMA-operator in the next
section, before we start our actual proof.

6.1. Properties of the QMA operator

In this section, we will define the class QMA · C, or the QMA operator applied to a com-
plexity class C. Then, we will use properties of Gap · C functions, proved in Chapter 2, to
prove that QMA · C is contained in P · C, for a complexity class C closed under joins and
truth table reductions. Since PP is closed under joins and truth table reductions, it follows
that QMA · PP is contained in P · PP.

Definition 26. For a given complexity class C, the complexity class QMA · C contains all
promise problems A = (Ayes, Ano) for which there exists a polynomial-time generated
family of quantum circuits {Px : x ∈ Σ∗}, where each Px takes n = n(|x|) input qubits
and outputs k = k(|x|) qubits, along with a language B ∈ C, such that the following
implications hold.

1. If x ∈ Ayes, then there exists a density operator ρ on n qubits for which

Pr
(

Px(ρ) ∈ B
)
≥ 2

3
. (6.1)

2. If x ∈ Ano, then for every density operator ρ on n qubits,

Pr
(

Px(ρ) ∈ B
)
≤ 1

3
. (6.2)
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χBPxρ

Figure 6.1: A pictorial description of QMA · C. As per Definition 26, we are interested in
the probability that the output of a circuit Px, measured with respect to the standard basis,
is contained in the language B, assuming the input is ρ.

The notation Px(ρ) ∈ B means that the quantum circuit Px is applied to the state ρ, the
output qubits are measured in the standard basis, and the binary string that is the mea-
surement outcome is contained in the language B. Figure 6.1 illustrates this fact, with χB
being the characteristic function of B on inputs of length k.

Theorem 27. If C is a nontrivial complexity class of languages that is closed under joins and
truth-table reductions, then QMA · C ⊆ P · C.

Proof. Let A = (Ayes, Ano) ∈ QMA · C be a promise problem. Let {Px : x ∈ Σ∗} be a
polynomial-time generated family of quantum circuits and let B ∈ C be a language that
together establish the fact that A ∈ QMA · C according to Definition 26.

Applying Lemma 7, we can argue for the existence of a polynomially bounded func-
tion r and GapP functions f0 and f1 such that

Re
(
〈u|Px

(
|z〉〈w|

)
|v〉
)
= 2−r f0(x, z, w, u, v),

Im
(
〈u|Px

(
|z〉〈w|

)
|v〉
)
= 2−r f1(x, z, w, u, v),

(6.3)

for all x ∈ Σ∗, z, w ∈ Σn, and u, v ∈ Σk. Define

g0(x, z, w, u) =

{
f0(x, z, w, u, u) if u ∈ B
0 if u 6∈ B,

g1(x, z, w, u) =

{
f1(x, z, w, u, u) if u ∈ B
0 if u 6∈ B,

(6.4)

for all x ∈ Σ∗, z, w ∈ Σn, and u ∈ Σk. We will now show that by the nontriviality and
closure of C under joins and truth table reductions and the fact that P is contained in C,
g0 and g1 are contained in Gap · C. We will show this explicitly for g0 and note that the
inclusion for g1 follows a similar process.

Note that since C is non-trivial and closed under Karp (polynomial-time) reductions,
we have that P ⊆ C. By the assumption that f0 ∈ GapP, and the fact that P ⊆ C, there
exists a polynomially bounded function q and languages A0, A1 ∈ C such that

f0(x, z, w, u, v) =
∣∣{y ∈ Σq(|〈x,z,w,u,v〉|) : 〈x, z, w, u, v, y〉 ∈ A0

}∣∣
−
∣∣{y ∈ Σq(|〈x,z,w,u,v〉|) : 〈x, z, w, u, v, y〉 ∈ A1

}∣∣, (6.5)
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for all x ∈ Σ∗, z, w ∈ Σn, and u ∈ Σk. Define a polynomially bounded function s such that

s(|〈x, z, w, u〉|) = q(|〈x, z, w, u, u〉|). (6.6)

Now, define languages B0, B1, and B2 as follows

B0 =
{
〈x, z, w, u, y〉 : y ∈ Σs(|〈x,z,w,u〉|), 〈x, z, w, u, u, y〉 ∈ A0

}
,

B1 =
{
〈x, z, w, u, y〉 : y ∈ Σs(|〈x,z,w,u〉|), 〈x, z, w, u, u, y〉 ∈ A1

}
,

B2 =
{
〈x, z, w, u, y〉 : y ∈ Σs(|〈x,z,w,u〉|), u ∈ B

}
.

(6.7)

Since C is closed under Karp reductions, it immediately follows that B0, B1, B2 ∈ C. Since
C is also closed under joins and truth table reductions (and hence, under intersections), it
follows that D0 = B0 ∩ B2 and D1 = B1 ∩ B2 are contained C. It is easy to see that

g0(x, z, w, u) =
∣∣{y ∈ Σs(|〈x,z,w,u〉|) : 〈x, z, w, u, y〉 ∈ D0

}∣∣
−
∣∣{y ∈ Σs(|〈x,z,w,u〉|) : 〈x, z, w, u, y〉 ∈ D1

}∣∣, (6.8)

for all x ∈ Σ∗, z, w ∈ Σn, and u ∈ Σk. From Definition 2, it now follows that g0 is a Gap · C
function. As stated before, by a very similar argument it follows that g1 is also a Gap · C
function.

Now we define
F0(x, z, w) = ∑

u∈Σk

g0(x, z, w, u),

F1(x, z, w) = − ∑
u∈Σk

g1(x, z, w, u),
(6.9)

for all x ∈ Σ∗ and z, w ∈ Σn. By Lemma 4 it follows that F0, F1 ∈ Gap · C. Observe that
from the definition of the adjoint of a map from (3.7), and from (6.3), (6.4) and (6.8),

Re
(
〈w|Rx|z〉

)
= 2−rF0(x, z, w),

Im
(
〈w|Rx|z〉

)
= 2−rF1(x, z, w)

(6.10)

for all x ∈ Σ∗ and z, w ∈ Σn, where

Rx = ∑
u∈Σk∩B

P∗x
(
|u〉〈u|

)
. (6.11)

Now let us take into account the two cases x ∈ Ayes and x ∈ Ano. If x ∈ Ayes then
λmax(Rx) ≥ 2/3, while if x ∈ Ano then λmax(Rx) ≤ 1/3. Observe that as Rx is a 2n × 2n

positive semidefinite operator. Hence, similar to equation (5.26) in the proof of Lemma 24,
we have that

λmax(Rx)
n+1 = λmax(Rn+1

x ) ≤ Tr(Rn+1
x ) ≤ 2nλmax(Rn+1

x ) = 2nλmax(Rx)
n+1. (6.12)

By Lemma 6 it holds that there exists a Gap · C function G such that:
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1. If x ∈ Ayes then

G(x) = 2(n+1)r Tr(Rn+1
x ) ≥ 2(n+1)r+n+1

3n+1 (6.13)

2. If x ∈ Ano then

G(x) = 2(n+1)r Tr(Rn+1
x ) ≤ 2(n+1)r+n

3n+1 . (6.14)

The Gap · C function
H(x) = 3n+1G(x)− 2(n+1)r+n (6.15)

thus satisfies H(x) > 0 when x ∈ Ayes and H(x) ≤ 0 when x ∈ Ano. By Proposition 3 it
holds that A ∈ P · C.

6.2. Upper-bound on MQRG(1)

In this section, we prove that MQRG(1) is contained in QMA · PP. Combining this fact
with the fact that QMA · PP is contained in P · PP, which we proved in the earlier section,
will prove that MQRG(1) is contained in P · PP.

Theorem 28. MQRG(1) ⊆ QMA · PP.

Proof. Consider any promise problem A = (Ayes, Ano) in MQRG(1). Let us and fix a ref-
eree for which A ∈ MQRG(1)3/4,1/4. Let {Px : x ∈ Σ∗} and {Qx : x ∈ Σ∗} be a collection of
circuits that describe this referee, as per Definition 11. Just like in the proof of Theorem 25,
define an operator

Sx,y =
(
〈y| ⊗ 1B

)
Q∗x(|1〉〈1|)

(
|y〉 ⊗ 1B

)
(6.16)

for each x ∈ Σ∗ and y ∈ Σk. If x ∈ Ayes, there exists a state ρ ∈ D(A) such that

λmin

(
∑

y∈Σk

〈y|Px(ρ)|y〉Sx,y

)
≥ 3

4
, (6.17)

whereas, if x ∈ Ano, we have that

λmin

(
∑

y∈Σk

〈y|Px(ρ)|y〉Sx,y

)
≤ 1

4
(6.18)

for every ρ ∈ D(A).
Now, let us define a polynomially bounded function N = 72(m + 2). By applying

Lemma 24, we can argue for the existence of a language B ∈ PP such that for all x ∈ Σ∗

and y1, . . . , yN ∈ Σk:

λmin

(
Sx,y1 + · · ·+ Sx,yN

N

)
≥ 2

3
⇒ (x, y1 · · · yN) ∈ B, (6.19)

λmin

(
Sx,y1 + · · ·+ Sx,yN

N

)
≤ 1

3
⇒ (x, y1 · · · yN) 6∈ B. (6.20)
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Finally, for each input x, let us construct a circuit Kx as follows. Kx takes as input N reg-
isters (A1, . . . ,AN), each consisting of n qubits, and outputs N + 1 registers (X,Y1, . . . ,YN).
The register X is initialized to the state |x〉〈x|, so that it hard-codes the input string x, and
each register Yj is obtained by independently applying the circuit Px to Aj. More techni-
cally, one could write

Kx = |x〉〈x| ⊗ P⊗N
x , (6.21)

where the state |x〉〈x| is identified with the channel that inputs nothing and outputs the
state |x〉〈x|.

Note that to prove that the promise problem A is contained in QMA ·PP, it is sufficient
to prove two things:

Completeness. If it is the case that x ∈ Ayes, then there must exist a state ξ ∈ D(A⊗N) such
that

Pr(Kx(ξ) ∈ B) ≥ 2
3

. (6.22)

Soundness. If it is the case that x ∈ Ano, then for every state ξ ∈ D(A⊗N) it must be that

Pr(Kx(ξ) ∈ B) ≤ 1
3

. (6.23)

The proof of completeness is similar to the proof of Theorem 25. Let ρ ∈ D(A) be any
state for which (6.17) is satisfied, and let ξ = ρ⊗N. Observe that the output of Kx(ξ) is
given by (x, y1 · · · yN), for y1, . . . , yN ∈ Σk sampled independently from the distribution

p(y) = 〈y|Px(ρ)|y〉. (6.24)

It follows by Lemma 23 that

Pr(Kx(ξ) ∈ B) ≥ 2
3

. (6.25)

For the proof of soundness, we consider the case that the state ξ ∈ D(A⊗N) does not
take a product form. To give an overview of the proof, we will show that if y1, . . . , yN are
randomly selected according to the distribution that assigns the probability〈

y1 · · · yN
∣∣P⊗N

x (ξ)
∣∣y1 · · · yN

〉
(6.26)

to each tuple (y1, . . . , yN), then

Pr

(
λmin

(
Sx,y1 + · · ·+ Sx,yN

N

)
≤ 1

3

)
≥ 2

3
. (6.27)

This immediately implies that Pr(Kx(ξ) ∈ B) ≤ 1/3 by (6.20). Now, to show this, choose
a density operator σ ∈ D(B) for which

∑
y∈Σk

〈y|Px(ρ)|y〉Tr
(
Sx,y σ

)
≤ 1

4
(6.28)
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for all ρ ∈ D(A). The existence of such a σ is made possible by Sion’s min-max theorem
under the assumption (6.18), and the observation, by the linearity of trace, that

Tr

(
∑

y∈Σk

〈y|Px(ρ)|y〉Sx,yσ

)
= ∑

y∈Σk

〈y|Px(ρ)|y〉Tr
(
Sx,y σ

)
. (6.29)

In essence, the assumption (6.18) says that if the minimum eigenvalue of the operator

∑
y∈Σk

〈y|Px(ρ)|y〉Sx,y (6.30)

is less than 1/4, then there exists a state σ for which the quantity

Tr

(
∑

y∈Σk

〈y|Px(ρ)|y〉Sx,yσ

)
, (6.31)

which is essentially the inner product of (6.30) with σ, is less than 1/4. Define random
variables Z1, . . . , ZN as

Zj = Tr
(
Sx,yj σ

)
(6.32)

for every j ∈ {1, . . . , N}, assuming that y1, . . . , yN are chosen at random as above. It suf-
fices to prove that

Pr

(
Z1 + · · ·+ ZN

N
≤ 1

3

)
≥ 2

3
, (6.33)

as we have λmin(H) ≤ Tr(Hσ) for all Hermitian operators H.
The challenge now is that the random variables Z1, . . . , ZN are not necessarily inde-

pendent (because ξ does not necessarily have product form). Hence, we cannot use the
standard form of Hoeffding’s inequality to prove (6.33). However, note that Z1, . . . , ZN are
discrete random variables that take values in the interval [0, 1] and satisfy the inequality

E(Zj|Z1 = α1, . . . , Zj−1 = αj−1) ≤
1
4

(6.34)

for all j ∈ {2, . . . , N} and α1, . . . , αj−1 ∈ [0, 1] for which Pr(Z1 = α1, . . . , Zj−1 = αj−1) is
nonzero. This fact follows from the inequality (6.28), which must hold when ρ is equal to
the reduced state of register Aj, conditioned on any choice of y1, . . . , yj−1 (and therefore
on any choice of values Z1 = α1, . . . , Zj−1 = αj−1) that appear with nonzero probability.
In essence, (6.33) is a very strong condition. It implies that no matter what state Alice
plays, irrespective of the state being entangled across all the N registers and the outcome
of the measurement of the reduced state across one register dependent on the outcome
of previous measurements of the reduced state across other registers, Bob still has a σ ∈
D(B) that allows him to win with high probability.
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As explained in Appendix A, we can leverage the standard proof of Hoeffding’s in-
equality to get a variant of Hoeffding’s inequality for dependent random variables with
bounded conditional expectation which establishes that

Pr

(
Z1 + · · ·+ ZN

N
≥ 1

3

)
= Pr

(
Z1 + · · ·+ ZN

N
≥ 1

4
+

1
12

)
≤ exp

(
− 2N

144

)
<

1
3

. (6.35)

After obtaining this bound, the proof is complete.

Corollary 29. MQRG(1) ⊆ P · PP.
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Chapter 7

Conclusion

We defined two restricted versions of QRG(1), which we named CQRG(1) and MQRG(1).
We proved that CQRG(1) is contained in ∃ · PP and MQRG(1) is contained in P · PP.

An open problem can be to prove a better containment than PSPACE for the unre-
stricted version of QRG(1). Our containments put CQRG(1) and MQRG(1) in the count-
ing hierarchy. We wonder whether QRG(1) is also in the counting hierarchy. There can
be other restrictions on QRG(1), like restricting both provers to be classical. Since RG(1)
is contained in ZPPNP we wonder whether QRG(1) with both provers being classical is
contained in ZPPQCMA. Other open problems can be to try and find oracle separations
between QRG(1) and counting classes like PP, AWPP, or WAPP.
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Appendix A

A modified Hoeffding’s inequality

In our proof of Theorem 28 we used a slight modified version of Hoeffding’s inequality. In
our version, the random variables were no longer independent. However, we did have an
upper bound on the conditional expectation value of each of those random variables. It is
likely that such a modification has been used before in literature, but we have not found a
suitable reference. A similar bound is proved in [BCF+95] (see Corollary 2.2 of this paper)
for Bernoulli random variables, with a given lower bound on the conditional expectation
of each of those variables. For our case, we need something that holds more generally for
discrete random variables, with a given upper bound on the conditional expectation of
each of those variables.

Note that we can slightly modify the standard proof of the usual Hoeffding’s inequal-
ity to get our bound. We will start with Hoeffding’s lemma: it is a common lemma and a
proof of it can be found in [BW16], and other references. Hence, we omit the proof here.

Lemma 30 (Hoeffding’s lemma). Let X be a random variable which takes values in [α, β], for
real numbers α < β, and assume E(X) ≤ 0. For every λ > 0, we have

E
(
exp(λX)

)
≤ exp

(
λ2

8(β− α)2

)
. (A.1)

Remark 31. Usually, in the statement of this lemma, we assume that E(X) = 0. However, the
lemma is also true when E(X) ≤ 0. This follows from the observation that if E(X) ≤ 0, we have

E(exp(λX)) ≤ E(exp(λ(X− E(X)))). (A.2)

The next lemma we prove will be used in the final proof of Hoeffding’s inequality. We
will prove the lemma for discrete random variables, which is enough for our needs.

Lemma 32. Let X and Y be discrete random variables taking values in [α, β] for real numbers
α < β, and assume that E(Y |X) ≤ 0. For every λ > 0 it is the case that

E(exp(λ(X + Y)) ≤ exp
(

λ2

8(β− α)2

)
E(exp(λX)). (A.3)

54



Proof. Let us write

E(exp(λ(X + Y)) = ∑
x

exp(λx)E(exp(λY) |X = x)Pr(X = x), (A.4)

where we take the sum over all possible values of X. We have assumed that E(Y |X) ≤ 0.
Hence, upon applying Hoeffding’s lemma, we have

∑
x

exp(λx)E(exp(λY) |X = x)Pr(X = x)

≤ exp
(

λ2

8(β− α)2

)
∑
x

exp(λx)Pr(X = x) = exp
(

λ2

8(β− α)2

)
E(exp(λX)).

(A.5)

This proves the lemma.

We are now ready to prove the modified version of Hoeffding’s inequality that we
have used in our thesis.

Theorem 33. Let X1, . . . , Xn be discrete random variables taking values in [0, 1], let γ ∈ [0, 1],
and assume that

E(Xk |X1, . . . , Xk−1) ≤ γ (A.6)

for all k ∈ {1, . . . , n}. For all ε > 0 it is the case that

Pr
(
X1 + · · ·+ Xn ≥ (γ + ε)n

)
≤ exp(−2nε2). (A.7)

Proof. Observe that for every λ > 0, it is true that

Pr
(
X1 + · · ·+ Xn ≥ (γ + ε)n

)
= Pr

(
exp

(
λ(X1 + · · ·+ Xn − γn)

)
≥ exp(λεn)

)
≤

E
(
exp

(
λ(X1 + · · ·+ Xn − γn)

))
exp(λεn)

,

(A.8)

where the last line follows from Markov’s inequality. If we apply Lemma 32 iteratively,
we have that

E
(
exp

(
λ(X1 + · · ·+ Xn − γn)

))
≤ exp

(
nλ2

8

)
. (A.9)

The proof now follows from choosing λ = 4ε.
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