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Abstract

Waterborne pathogens are significant, ubiquitous threats to public health. Thus, mi-

crobial water quality evaluations comprise a critical component of the multi-barrier

approach to delivering safe drinking water. These assessments underpin the selection,

design, and management of drinking water treatment processes. However, the selection

of the right combination of tools from an ever-expanding repertoire is essential. This

dissertation informs prudent water quality monitoring using existing and emerging mi-

crobial tools to accurately characterize microbial water quality and associated risks,

especially in sources derived from subsurface environments.

Microbial non-detects cannot be directly construed as indicative of low microbial

concentrations due to inherent limitations of sampling and analyzing large volumes

of water and imperfect microbial analytical methods. Existing conventions to report

microbial non-detects as a measured concentration less than one microorganism within

the analyzed volume (the purported method detection limit) were demonstrated to be

misleading; handling these values as mathematically “censored” concentrations were

shown to result in bias (Chapter 2). Appropriate reporting conventions and statistical

approaches were recommended to support the accurate portrayal of microbial non-

detects. The minimization of microbial sampling effort while maintaining adequate

precision is a key consideration for monitoring program design. However, the impreci-

sion of information about concentration associated with small sample sizes is seldom

explicitly quantified. Using simulated protozoan monitoring data, the attainable preci-

sion of the estimated mean protozoan concentration under different hypothetical sam-

pling scenarios was evaluated. A framework was developed to quantify precision and

contrast the relative merits of additional sample collection for protozoan enumeration

from the source versus characterization of method analytical recovery (Chapter 3).

In microbial groundwater quality evaluations, the need for sufficient well purging to

obtain representative samples of microorganisms suspended in aquifer pore water with-

out artefacts attributable to well-related biofilms has been widely recognized. Adeno-

sine triphosphate (ATP) was therefore evaluated as a rapid, field-ready biochemical

indicator of microbial water quality changes (Chapter 4). Supported by concurrently

measured microbial water quality parameters, ATP measurements exhibited phenom-

ena reflective of time-limited (bio)particle transport behaviour. Microbial groundwater

quality assessments must therefore be designed using approaches that are necessarily

different from those used to describe dissolved solute transport behaviour. A subse-

quent focused investigation of one biomolecular tool—bacterial community analysis

based on 16S rRNA gene amplicon sequencing (Chapter 5) demonstrated its utility
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for identifying fecal source and surface connectivity indicators (e.g., cyanobacteria).

Factors contributing to bacterial community variations were examined. Collectively,

these assessments indicated that an appropriate suite of microbiological tools can be

concurrently utilized to overcome the challenges of spatial heterogeneity and dynamic

hydrogeological conditions to meaningfully characterize microbial water quality at the

aquifer scale.

In this dissertation, existing and emerging microbial tools to support groundwater

vulnerability assessments to fecal pathogen intrusion were critically examined. The

persistent need to consider the “fit-for-purpose” ability of these various tools to sup-

port microbial water quality evaluation is emphasized. Moreover, this dissertation

underscores the complementary use of these microbial tools to inform groundwater

vulnerability assessments; no single tool will entirely capture the elusive, multi-faceted

nature of subsurface microbial water quality.
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Introduction
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1.1 Background

Advances in the biological sciences made over the past century—and the technolog-

ical progress that made them possible—have profoundly influenced the water industry

in our pursuit of delivering microbiologically safe drinking water. From most-probable-

number (MPN) culture-based methods to enzyme-reaction based ColilertTM tests, and

from early polymerase chain reaction (PCR) technology to next generation sequencing

(NGS) techniques, how microbial water quality evaluations are performed in practice

continue to evolve along with approaches for interpreting and analyzing data emanating

from these tools. Consequently, practitioners responsible for making decisions related

to treatment infrastructure design, operations, and management are often left with the

overwhelming task of choosing and deploying the right combination of tools from an

ever-expanding repertoire.

In this thesis, fresh perspectives and insights are provided concerning how we, as

an industry, must adapt in light of these advances to facilitate evidence-based decision

making. The continued need for critical evaluations of the use of microbial data, as well

as the tools and approaches generated therefrom, is underscored. Their incorporation

into source water quality monitoring programs must be fit-for-purpose and contextu-

alized based on known and/or theorized scientific phenomena. This research addresses

potentially overlooked but critical issues, such as the number of samples required for ac-

curate microbial concentration estimation, and the handling of microbial non-detects.

Opportunities where emerging microbial tools (e.g., 16S rRNA gene amplicon sequenc-

ing) and methods borrowed from other disciplines (e.g., dynamic time warping) can

support conventional source microbial water quality assessments were also explored.

Their use to complement existing tools—rather than outright replacing them—is em-

phasized. While elements of this thesis is focused on subsurface water sources, most

of the concepts discussed in this work are broadly applicable and transferable to the

evaluation of microbial water quality for any source water. In this age of “big data”

where more data can be generated than can be meaningfully interpreted, opportunities

to advance microbial water quality monitoring and ensuing risk assessments are met

with cautious optimism.
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1.2 Microbial water quality evaluations of subsur-

face drinking water sources

Although microbial health risks associated with drinking water drawn from sub-

surface sources are generally perceived to be lower than those derived from surface

sources (WHO, 2017), disease outbreaks associated with drinking water drawn from

groundwater sources and tragedies like that in Walkerton, Ontario, Canada (2000)

are stark reminders that waterborne pathogens in these water sources can still pose

a significant, ubiquitous threat to public health (O’Connor, 2002). This year marks

the 20th anniversary of the Walkerton tragedy; both science and policy in Canada

and internationally have since evolved substantially. Although Canada remains with-

out legally enforceable national drinking water standards, provincial legislators have

responded with new regulations, technological changes, and investments intended to

better safeguard public health (Benidickson, 2017). The imminent promulgation of the

new Terms of Reference for the Determination of Treatment Requirements Well-Based

Municipal Systems to replace the Groundwater-Under-Direct-Influence of Surface Wa-

ter Terms of Reference (2001) in Ontario reflects an industry-wide paradigm shift from

site vulnerability assessments based primarily on hydrogeological features/indicators

(e.g., setback distances away from surface water features, unconfined aquifer settings,

etc.) towards assessments prioritizing microbial water quality (e.g., presence of water-

borne pathogens or fecal indicators).

While drinking water obtained from surface water sources intuitively requires an

additional level of precautionary protection (i.e., a question of “when” rather than

“if” contamination events occur), the presence of microbial pathogens in any source

water—be it groundwater or riverbank filtrate or a “pristine” stream—underpins the

decision to provide appropriate and adequate forms of treatment. Accordingly, the vul-

nerability of a drinking water source to pathogen intrusion must be evaluated. These

evaluations are herein collectively referred to in this dissertation as “pathogen vulnera-

bility assessments”. Pathogen vulnerability assessments are typically conducted by the

water purveyor to demonstrate that adequate and appropriate treatment is provided

for the range of microbial source water qualities observed and anticipated. Due to the

inherent limitations of microbial water quality monitoring, selected “index pathogens”

representing waterborne pathogenic viruses, bacteria, and enteric protozoa are often

monitored instead (Schijven et al., 2011). When these pathogens are not detected, ex-

tra vigilance is also warranted for sources that are susceptible to fecal contamination.

Upon establishing either or both of these microbial lines of evidence, hydrogeological
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indications of source water vulnerability to pathogen intrusion becomes a peripheral

consideration to the determination of treatment requirements, owing to relative uncer-

tainty of pathogen transport processes in the subsurface (e.g. Yates et al., 1988; Ginn

et al., 2005; Tufenkji, 2007; Emelko and Tufenkji, 2010; Bradford et al., 2015). Given

that a minimum level of disinfection is mandated in Ontario (Ontario Ministry of Envi-

ronment, Conservation and Parks, 2019) that inherently mitigates public health risks

attributable to a range of bacterial and viral pathogens, the determination of addi-

tional treatment requirements beyond a baseline level of disinfection would necessarily

imply the implementation of proactive intensive monitoring or treatment processes

appropriate and proportionate to address the protozoan pathogen risk at hand.

It is within this decision-making framework that key research questions of practical

importance were identified and explored in this thesis (Figure 1.1). The rest of this

thesis comprises of four (4) manuscripts currently submitted or published in peer-

reviewed journals that addresses the identified research questions (RQ):

RQ1. How have microbial non-detects been reported, interpreted, and analyzed, and

do some approaches lead to bias?

RQ2. What level of precision in the estimation of mean microbial concentrations is

attainable and which aspects of microbial monitoring program design are most

influential to improving or compromising precision?

RQ3. What additional considerations of the subsurface environment are necessary to

indicate that representative microbial water quality sampling of aquifer water

quality is achieved, and what tools are available to support these considerations?

RQ4. How can bacterial community analysis using emerging biomolecular tools such as

16S rRNA gene amplicon sequencing be used to inform vulnerability assessments?

First, microbial non-detects and their use to support concentration estimation were

critically examined. A critical review of current approaches used to report and handle

non-detects was performed. It was investigated whether some of the approaches would

lead to bias. Specifically, non-detects are commonly reported as values below a de-

tection threshold (e.g. <1 microorganism/L) and are interpreted as measured concen-

trations. Given this interpretation, “censored-data” analysis approaches have become

increasingly adopted for handling of microbial non-detects. Notably, a markedly differ-

ent set of approaches has also been suggested for the handling of microbial non-detects.

These approaches were examined in Chapter 2 to provide guidance on appropriate han-

dling of microbial non-detects, therefore answering RQ1.
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Figure 1.1: Conceptual model for the determination of minimum drinking water moni-

toring and treatment requirements for subsurface water sources. Green rectangles indi-

cate treatment/monitoring decisions that will vary depending on jurisdictional drinking

water policy contexts.
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The attainable precision of microbial concentration estimates (and particularly

those of protozoan pathogens) is often limited by the monitoring program design. The

minimization of sampling effort without substantially compromising accuracy is often

a key consideration for many monitoring programs and policy requirements. However,

the degree to which precision has been compromised is often unknown, but can be

quantified retrospectively using simulated data generated from estimated parameters.

Statistical power was evaluated based on the proportion of simulations successfully

rendering adequately accurate estimates of mean concentration. To answer RQ2, a

statistical framework for exploring the relative merits of enlarging sample size and

the quantification of analytical recovery (with the latter a key consideration of meth-

ods used to enumerate protozoan pathogens) was applied. Through a proof-of-concept

demonstration of this type of analysis to an extensive dataset from the City of Calgary,

the utility of such an approach to inform microbial monitoring program design on the

basis of statistical power is investigated in Chapter 3.

In Chapters 4 and 5, additional microbial lines of evidence to support evaluations of

(subsurface) source water vulnerability to pathogen intrusion were investigated using

emerging microbial tools and approaches. Adensoine triphosphate (ATP) patterns

were monitored throughout well purging activities and investigated as an indicator

of microbial water quality change and the sufficiency of purging in Chapter 4. The

presence of subsurface biofilms in the vicinity of the well are known to potentially

introduce microbial artefacts that can influence the acquisition of—and obscure the

subsequent interpretation of—microbial water quality samples representative of the

aquifer. A novel, parameter-free approach of time series analysis borrowed from speech

recognition was used to gain additional insights about spatio-temporal dynamics of the

ATP patterns, along with implications for microbial water quality monitoring program

implementation and interpretations. In this work to answer RQ3, the inadequacy of

physical and chemical water quality parameters for establishing the sufficiency of well

purging effort for microbial water quality evaluation is highlighted.

Next Generation Sequencing (NGS) biomolecular methods are another set of emerg-

ing tools that have been increasingly advocated to support source microbial water

quality evaluations. Their reduction in costs over the past decades have made them at-

tractive tools to consider in support of conventional enumeration- and/or culture-based

methods. Specifically, 16S rRNA gene amplicon sequencing for microbial community

analysis was investigated as a potential tool to establish lines of evidence for either mi-

crobiological source (i.e., indicators linked to fecal contamination), or transport (i.e.,

indicators that reflect surface connectivity). The sequence counts emanating from 16S

rRNA gene amplicon sequencing analysis was systematically examined using a nega-
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tive binomial generalized linear model (NB GLM) along major gradients to identify

microbial taxa of relevance. The use and limitations of this biomolecular method are

presented and discussed to answer RQ4 in Chapter 5.

In summary, the goals of this thesis were to:

1. Address handling of microbial non-detects:

• Critically review current approaches used to report and handle non-detects

• Investigate whether some approaches lead to bias

• Provide guidance on how to handle microbial non-detects

2. Evaluate the influence of microbial monitoring program design factors to the

estimation of mean microbial concentrations:

• Develop a framework to quantify how sampling effort (i.e., number of sam-

ples and number of matrix spike samples) influence the estimation of mean

microbial concentrations

• Evaluate the relative merits of increasing sampling intensity and quantifying

analytical recovery

3. Investigate ATP as a rapid sentinel of microbial water quality change in the

subsurface

• Examine the behaviour of ATP concentrations throughout well purging ac-

tivities at field scale

• Compare ATP fluctuations to the stabilization of physical and chemical

water quality parameters

• Explore ATP patterns to elucidate potential subsurface microbial dynamics

4. Examine the utility of 16S rRNA as a rapid biomolecular tool to complement

existing culture- and enumeration-based microbial methods in pathogen vulner-

ability assessments

• Determine the influence of key spatio-temporal gradients upon results ema-

nating from field application of this tool

• Corroborate results with known microbial indicators and screen for poten-

tially relevant indicators of microbial water quality change

• Interpret results collectively given the hydrogeological conditions at the site
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These topics collectively advance microbial water quality assessments of subsurface

water sources. Chapter 6 provides a brief summary of the various aspects covered

in this dissertation and presents major conclusions and implications of this work for

practice.
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Chapter 2

Learning something from nothing:

The critical importance of

rethinking microbial non-detects

Alex H.S. Chik

Philip J. Schmidt

Monica B. Emelko

Reprinted from Frontiers in Microbiology (2018); 9:2304, under Creative Commons

Attribution License from the copyright holders Chik, Schmidt, and Emelko
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2.1 Summary

Accurate estimation of microbial concentrations is necessary to inform many im-

portant environmental science and public health decisions and regulations. Critically,

widespread misconceptions about laboratory-reported microbial non-detects (NDs) have

led to their erroneous description and handling as “censored” values. This ultimately

compromises their interpretation and undermines efforts to describe and model mi-

crobial concentrations accurately. Herein, these misconceptions are dispelled by 1)

discussing the critical differences between discrete microbial observations and continu-

ous data acquired using analytical chemistry methodologies and 2) demonstrating the

bias introduced by statistical approaches tailored for chemistry data and misapplied

to discrete microbial data. Notably, these approaches especially preclude the accu-

rate representation of low concentrations and those estimated using microbial methods

with low or variable analytical recovery, which can be expected to result in non-detects.

Techniques that account for the probabilistic relationship between observed data and

underlying microbial concentrations have been widely demonstrated, and their neces-

sity for handling non-detects (in a way which is consistent with the handling of positive

observations) is underscored herein. Habitual reporting of raw microbial observations

and sample sizes is proposed to facilitate accurate estimation and analysis of microbial

concentrations.

2.2 Introduction

Whether describing pathogens in water or the density of red blood cells, the concen-

tration of discrete objects cannot be measured directly. In these cases, concentration

is estimated by enumerating or detecting the objects in finite sample portions (e.g.,

volumes); such approaches are used extensively in health, food, and water applications.

These estimates are required for decision making, during which they are typically eval-

uated against concentration-based criteria or targets (Dickey et al., 1999; Lund et al.,

2000; Havelaar et al., 2001; Gerba and Rose, 2003; Gracias and McKillip, 2004; John

et al., 2007; Schijven and de Roda Husman, 2011; Davis, 2014; WHO, 2017). This

underscores the importance of accurate representation and analysis of detection- and

enumeration-based data, especially where the protection of public health is at stake.

Regardless of application area, concentration estimates derived from non-detects

(NDs) or low counts are widely perceived to be more uncertain and less reliable than

those based on higher counts. This has often led to a desire to quantify enough of
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these objects by modifying the enumerated sample portion so that the count falls in

a range that is deemed acceptable (Emelko et al., 2008; US FDA, 2017; APHA et al.,

2017). When this is not possible, resulting NDs are widely reported as being less than

a detection limit (e.g., <1 per analytical sample size) and used as a statement about

true source concentration. This convention has been widely implemented and deemed

precautionary because it usually leads to higher (i.e., conservative) mean concentra-

tion estimates. Approaches for handling this type of ND data are often developed out

of computational convenience, though more elaborate approaches also continue to be

developed. One important reason for the development of more complex approaches

arises from the recognition that true microbe concentrations are imperfectly estimated

by the analytical methodologies used to obtain counts from samples (Nieminski et al.,

1995; Allen et al., 2000). For example, the impact of measurement error (i.e., random

sampling error and imperfect and/or variable analytical recovery) on microbial con-

centration estimates has been widely demonstrated and thoroughly discussed (Nahrst-

edt and Gimbel, 1996; Schmidt and Emelko, 2011; Gonzales-Barron and Butler, 2011;

Gronewold et al., 2008; Commeau et al., 2012; Pouillot et al., 2013; Duarte et al.,

2015). Measurement error applies universally to all microbial detection and enumera-

tion methods and refers to the random discrepancy between the actual concentration

in the presumably homogeneous source and the concentration estimate obtained from

a sample (Emelko et al., 2010). Failure to account for measurement error properly has

been shown to bias concentration estimates and associated risk estimates, sometimes

by orders of magnitude (Pouillot et al., 2013; Schmidt et al., 2013). In contrast, the

implications of interpreting and handling NDs using approaches that mishandle mea-

surement error have not been thoroughly discussed. Current reporting conventions for

NDs frequently obfuscate their interpretation, so data analysis approaches have been

tailored to how these data are reported rather than what the NDs truly represent.

Here, methods used to characterize microbial concentrations from detection- and

enumeration-based data are reviewed, and common misconceptions associated with the

reporting and handling of NDs are discussed. Examples that draw upon conventions

and standards in the drinking water industry are provided to demonstrate why common

approaches that treat NDs as censored data are incorrect and lead to bias in interpre-

tation. Finally, recommendations to facilitate standardized reporting and analysis of

such data are provided.
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2.3 State of scientific practice

Microbial concentrations in food and water are often estimated using detection- and

enumeration-based methods. A detection test produces either an ND or positive (≥1

microorganism) result. With a series of repeated presence/absence tests (e.g., Colilert

Quanti-Tray R©) and assumed Poisson-distributed numbers of microorganisms in each

test (as a function of aliquot size and shared source concentration), the most proba-

ble number (MPN) approach yields a maximum likelihood estimate of concentration

(Pouillot et al., 2013). In these detection methods, reporting of raw aliquot sizes and

presence/absence results is necessary for concentration estimation. Enumeration-based

methods are distinguished from detection-based methods because they yield a whole

number count of target microorganisms within an analytical sample size. These include

cultivation plate counts of colonies or virus plaques and cell counts obtained using mi-

croscopy or flow-/solid-phase cytometry. We suggest that the concepts addressed in

this paper also apply to increasingly common biochemical molecular methods (e.g.,

qPCR, 16S rRNA gene sequencing); however, such methods are excluded from the

scope of this work due to additional assumptions and complexities in the inference

of concentrations using these methods, which remain hotly debated (Keer and Birch,

2003).

Although many of the aforementioned microbial enumeration methods have been

standardized, protocols for the representation, reporting, and analysis of resulting data

remain largely inconsistent. Standard microbiological methods, such as those stipu-

lated within Standard Methods for the Examination of Water and Wastewater, Part

9000 (APHA et al., 2017), ASTM D5465-16 (ASTM, 2016), ISO 8199:2005 and ISO

7218:2007/2013 (ISO, 2005, 2013), advise that observations should be reported as a

count per analytical sample size (e.g., volume). These data (count and sample size) are

raw in the sense that the original information pertaining to the precision of the count

has not been lost , whereas neither the count nor sample size can be deduced when only

a concentration estimate is reported (e.g., 1 microorganism in 64.4 litres [L] is more

informative than just a reported concentration estimate of 0.0155 microorganisms/L).

In many cases, counts beyond certain thresholds are considered unreliable and

avoided if possible. For example, when counting colonies in plating protocols (APHA

et al., 2017; ASTM, 2016), an upper bound is often reasonably suggested because

of overcrowding and difficulty in distinguishing between individual colonies. In these

cases, an upper threshold is often applied beyond which a result of “too numerous to

count” (TNTC) is reported. Notably, many conventions related to lower thresholds and

NDs also exist. For example, some methods (e.g., in which counts are obtained from a
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dilution series) suggest that NDs should be omitted in concentration estimation (United

States Pharmacopeial Convention, 2014). It has been a common convention to report

NDs as <1 microorganism per analytical sample size (Forum on Environmental Mea-

surements (FEM) Microbiology Action Team, 2016; ISO, 2013; US FDA, 2017), which

is the purported method detection limit (MDL). This is frequently interpreted at face

value as the de facto concentration for statistical analyses and regulatory compliance—

despite the recently stipulated caveat that MDLs are inapplicable to “methods that

do not produce results with a continuous distribution such as [. . . ] presence/absence

methods, and microbiological methods that involve counting colonies” (US EPA, 2016).

2.3.1 NDs in analytical chemistry

To understand the widespread convention of reporting NDs as values below MDLs

in microbiology, it is important to understand the origin and motivation behind the

concept of an MDL. The MDL (also known as the “limit of detection”) was developed

as a performance criterion for chemical analyses (Glaser et al., 1981). This concept

has remained largely unchanged since its original conception (Currie, 1999). Although

slight variations of this concept exist, the MDL can be operationally defined as the

minimum measurement of concentration of a substance that can be reported with a high

degree of confidence (commonly 95 or 99%) that the concentration is actually greater

than zero (Armbruster and Pry, 2008) (i.e., that the measurement is unlikely to be just

random noise despite actual absence of the substance). In stark contrast to the field

of microbiology where NDs reflect the inability to observe a single microorganism in a

particular analysis, analytical chemistry results are much less susceptible to influence

by small numbers of analyte particles—signals obtained for quantification arise from

the collective effect of very large numbers of atoms/molecules/ions per mole (e.g.,

6.022 x 1023). In fact, merely 50 nanograms of lead in a litre of water (a detection

limit attainable by current lead analysis methods) is comprised of more than 1.45 x

1014 lead atoms due to the magnitude of Avogadro’s number. In chemistry, random

sampling errors associated with specific numbers of analyte particles in a well-mixed

sample is largely insignificant compared to errors introduced through the application

of the analytical method itself—the accuracy of the measurement is limited by the

precision of the measurement instrument. The construct of the MDL is intended to

reflect these method-specific errors to facilitate comparisons of data generated using

different analytical methods for the same analyte at the lower end of concentration

ranges.

Although the MDL construct can be useful, concentration observations falling be-
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low these thresholds are not devoid of meaning and it has been recommended that these

data should be reported as measured chemical detections. They are still valid observa-

tions from which true concentrations can be estimated (albeit with greater uncertainty)

by applying appropriate statistical approaches (e.g., that make relevant assumptions

concerning randomly distributed error, unbiased analytical methodology, and interfer-

ence effects) (Analytical Methods Committee, 1987). However, some policies require

substances to be described as “absent, present in only a limited number of samples,

or present in less than a specified number or amount of a given quantity” (National

Research Council (US) Subcommittee on Microbiological Criteria, 1985) in regulatory

and contractual frameworks, leading to the adoption of reporting limits (i.e., a value

below which data are not reported) by many laboratories.

While these reporting conventions are not themselves problematic, they become

problematic if these data are incorrectly interpreted or statistically analyzed. The im-

plications of NDs in environmental chemistry have long been recognized (Analytical

Methods Committee, 1987; Lambert et al., 1991). Unaltered zero concentrations pre-

clude the calculation of geometric means and cannot be fit by many continuous distri-

butions (without their explicit accommodation through a zero-inflated model). Values

reported as below detection or reporting limits have commonly been either omitted

or substituted with a function of the limit (Helsel, 2006) to facilitate computationally

convenient analysis. These approaches are deemed conservative, but sacrifice informa-

tion about data reliability and uncertainty that may be critical in decision making.

Chemical concentration data reported as less than a detection limit are an example of

censored continuous measurements (where the exact measured value within the speci-

fied interval is unknown), for which appropriate statistical approaches do exist (Helsel,

2005).

2.3.2 NDs in enumeration-based microbial methods

The direct application of analytical chemistry MDL concepts and associated cen-

soring conventions to microbial enumeration data has inflicted similar challenges for

statistical analysis in microbiology. Taking NDs as zeros and weighing them with

other non-zero counts based on their respective analytical sample sizes is sufficient for

the simple calculation of mean concentrations provided the microorganisms are ran-

domly dispersed and a representative sample was obtained (i.e., from a source where

the spatial distribution of the analyte is not heterogeneous); however, this approach

is insufficient for fitting concentration distributions and quantifying data reliability

or uncertainty in the calculated mean (Parkhurst and Stern, 1998). Commonly used
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omission and substitution methods borrowed from analytical chemistry for summariz-

ing and reporting mean microbial concentrations in water introduce bias; substitution

methods have been demonstrated to be increasingly biased with greater proportions

of NDs in both chemical and microbial data (Parkhurst and Stern, 1998; Roser and

Ashbolt, 2005; Helsel, 2005). While the bias introduced using substitution methods

can offer a substantial safety factor when harmful microorganisms are rare (by con-

sidering them to be present when they are not or they have not been detected), it is

critical to note that this bias offers no factor of safety when it is most needed (e.g.,

when pathogens are routinely observed) (Parkhurst and Stern, 1998).

The acknowledgement that “...[data reported as censored] cannot be treated sta-

tistically without modification” (APHA et al., 2017) and the growing need to quantify

uncertainty in the concentration estimate have led to the development of various sta-

tistical tools for analyzing these data. Critically, non-detect microbial data are in fact

observed counts of zero commonly misrepresented as censored data. Their misrepre-

sentation has led to the adoption of censored data approaches for handling microbial

NDs (Lorimer and Kiermeier, 2007; Busschaert et al., 2010; Williams and Ebel, 2012).

While many statistical analyses have assumed that microbial concentrations are mea-

sured directly and precisely, markedly different statistical methods have been developed

that acknowledge the probabilistic relationship between actual observed data (includ-

ing NDs) and the underlying microbial concentrations by accounting for measurement

error (Nahrstedt and Gimbel, 1996; Schmidt and Emelko, 2011; Gonzales-Barron and

Butler, 2011; Gronewold et al., 2008; Commeau et al., 2012; Pouillot et al., 2013; Duarte

et al., 2015). As would be expected, different approaches for handling microbial NDs

can result in substantially different outcomes. Specifically, the statistical analysis of

inappropriately censored NDs may lead to erroneous microbial concentration estimates

and subsequent interpretations—this is demonstrated by the examples below. It is crit-

ical to recognize that data for which both raw counts and sample sizes are known are

not censored—these include NDs that are based on counts of zero in known sample

sizes. These data are not censored and must not be statistically treated as such.
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2.4 Results: Evidence that microbial non-detects are

not censored data

2.4.1 Occurrences of microbial NDs are not solely a function of

analyte concentrations

All microbial concentration estimates are imprecise, not only non-detects. An ND

can arise when either the concentration is truly zero or when target microorganisms

are present in the source but not successfully detected. Because of the latter case, it is

commonly understood that an ND does not necessarily imply that the concentration is

truly zero. Indeed, consistent with the aphorism “absence of evidence is not evidence of

absence,” a concentration of zero cannot actually be proven by an ND for this reason.

Figure 2.1 examines factors leading to ND results at non-zero concentrations (deriva-

tion in Appendix A1). Figure 2.1a depicts the probability of observing an ND as a

function of the true concentration and the sample volume assuming Poisson-distributed

organism counts and a method with 100% analytical recovery. Probability of ND pro-

files are presented for volumes of 0.010 L, 1.0 L and 100 L to illustrate the impact of

hundredfold increases in the analytical sample size. Common sample volumes for total

coliform/E. coli and protozoan (oo)cyst analyses are 0.100 L and 100 L, respectively.

Intuitively, the probability of an ND observation from a single sample increases with

decreasing concentration and analytical sample size. In practice, the occurrence of

random NDs can be reduced by increasing sample size.

Building upon the previous example, Figure 2.1b addresses the occurrence of NDs

given a 1.0 L sample volume and various analytical recovery profiles. The bold curve in

Figure 2.1b is identical to the one in Figure 2.1a, but plotted on a linear concentration

scale. It represents 100% analytical recovery, whereas the second curve addresses the

scenario of a constant analytical recovery of 40% (i.e., the probability of observation

for each microorganism initially gathered is 40% in any sample). Logically, the prob-

ability of NDs increases as microorganisms are more likely to be lost during sample

processing. The remaining curve retains a mean recovery of 40%; however, substantial

variation in recovery among samples is described by a beta distribution. This further

inflates the probability of an ND observation because some samples would have rela-

tively low recovery. Clearly, the occurrence of NDs is sensitive not only to the source

concentration and the analytical sample size, but also the analytical recovery profile of

the method for the particular sample matrix.
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Figure 2.1: Probability of a non-detect observation as a function of organism concen-

tration and (a) various analytical sample volumes given 100% analytical recovery, and

(b) various analytical recovery profiles given a 1.0-L sample, each assuming Poisson

random sampling error. The constant [0.4] and beta-distributed [beta(2,3)] recovery

profiles share a mean of 40% analytical recovery, but the latter is more variable.

It may be useful to consider the concentration beyond which NDs become improb-

able (e.g., probability <1%) when comparing alternative methods, choosing a target

sample volume, or determining the appropriateness of a method for a particular ap-

plication. We propose that this threshold may be called a method sensitivity limit

(MSL) because sensitivity is the probability of detection when the target microorgan-

isms are actually present in the source. Considering the examples in Figure 2.1b, the

scenario with 100% analytical recovery has an MSL of 4.6 organisms per litre. With

40% analytical recovery, the MSL increases to 11.5 organisms per litre. The MSL is

32.5 organisms per litre in the final scenario, illustrating the pronounced effect of vari-

ability in analytical recovery upon sensitivity of microbial analytical methods. While
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this calculated value could be useful, it is important to note that it is sensitive to

uncertainty in the parameters and shape of the analytical recovery distribution (where

low recovery values are common), and would not be practical to evaluate for every

method and sample matrix.

2.4.2 Uncertainty in concentration estimates precludes MDL-

based interpretation of results

The statistical analysis of inappropriately censored microbial data ultimately leads

to erroneous concentration estimates and subsequent interpretations. Bayesian tech-

niques (Gelman et al., 2014) provide a means of demonstrating the uncertainty sur-

rounding the concentration estimate obtained from microbial enumeration data (Grone-

wold et. al., 2008; Schmidt and Emelko, 2011; Gonzales-Barron and Butler, 2011;

Duarte et al., 2015). Accounting for measurement error, these methods describe the

relative probability of alternative values of the true microbial concentration given the

count observation obtained from the analytical sample and a prior representing beliefs

about the plausible values of concentration before data analysis. Figure 2.2 illustrates

what a single ND observation (Figure 2.2a) and an observation of two microorganisms

(Figure 2.2b) within a 1.0 L sample volume imply about concentration assuming per-

fect analytical recovery and using a relatively uninformative semi-infinite uniform prior

(derivation in Appendix A2).

When an ND is observed (Figure 2.2a), there is still a large probability (≈ 37%

in this example) that the actual concentration exceeds the purported MDL, therefore

invalidating the assertion that an ND means that the actual concentration is <MDL.

Conversely, a count of two organisms (Figure 2.2b) leads to a considerable probability

(≈ 8% in this example) that the actual concentration could still be less than the

purported MDL. This simple demonstration shows that the interpretation of NDs as

censored data below the purported MDL is inappropriate, and further underscores that

point estimates of concentration ought not be treated as exact measurements.

2.4.3 Censoring in detection- and enumeration-based microbial

methods

Although NDs in microbial detection and enumeration methods are not censored

data, there are scenarios when certain microbial methods yield truly censored data.
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Figure 2.2: Posterior probability density function (PDF) characterizing uncertainty in

the true concentration given (a) an ND observation, and (b) an observation of two

organisms, each based on a 1.0-L sample, 100% analytical recovery, and a semi-infinite

uniform prior. The purported MDL of 1 organism/L is shown with the probability of

the true concentration exceeding or falling short of the purported MDL, respectively.

Censored data occur when there is incomplete knowledge about an observed measure-

ment above, below or between specified values (Millard et al., 2012). Such censoring can

be inherent to the method or imposed deliberately by the analyst as exemplified below.

In either case, censoring applies to raw measurements (e.g., count test results) rather

than calculated values that are not measured directly (e.g., concentration estimates).

An ND in presence-absence tests (e.g., Colilert R©, Rapid Hi-ColiformTM, Aqua-

CHROMTM) implies a count of zero within the associated analytical sample volume.

A positive test result can be construed as an inherently censored count of at least one

microorganism because the method cannot reveal the exact number of microorganisms

leading to detection. For a series of presence-absence tests, MPN approaches implicitly

reflect censored data analysis by using the cumulative probability of all non-zero counts
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(i.e., the complement of the probability of a non-detect) to represent a positive test

result in the likelihood function.

When using culture-based methods, counts beyond an upper limit are convention-

ally reported as TNTC (e.g., 150 or 200 colony forming units (cfu) for spread plates,

80 cfu for membrane filtration, and 300 cfu for pour plates [APHA et al. 2017; ASTM

2016]). If a specific observed count is replaced with TNTC, then this is an example of

imposed censoring. In contrast, censoring is inherent if counting is terminated upon

reaching the limit or is not attempted because the count would clearly exceed it. Such

truly censored observations may be incorporated into the Bayesian method described

previously (or any likelihood-based method) using cumulative density for the censored

range of counts rather than just probability density associated with particular observed

counts. Some standards (APHA et al., 2017) recommend completing a new analysis

with dilution to replace TNTC results. We suggest that TNTC results should be re-

tained in subsequent statistical analyses by using likelihood-based methods that allow

inference from both the TNTC result and the count obtained through re-analysis of the

sample. This would enable more accurate description of knowledge about the concen-

tration by harnessing all of the available information rather than omitting inconvenient

data.

2.5 Implications for policy and practice

Many environmental science and public health decision-making and regulatory

frameworks rely upon the accurate evaluation of microbial concentrations and com-

parison with concentration-based criteria. For example, evaluation of source water

pathogen concentrations is used to determine minimum treatment infrastructure re-

quirements in the provision of safe drinking water (US EPA, 2006; Alberta Environ-

ment and Sustainable Resource Development, 2012). Here, concentration estimates

that bias high may lead to misallocation of resources including costly infrastructure

investments and operational adjustments.

Giardia has been the most commonly reported intestinal protozoan in North Amer-

ica and worldwide; it is also likely the most common cause of surface water-borne in-

fectious disease outbreaks (Adam et al., 2016; Efstratiou et al., 2017). A set of eight

source water Giardia cyst counts (Table 2.1) from the larger City of Calgary database

were used to illustrate the potential impacts of various ND data analysis approaches.

The impact of inappropriate ND data analysis approaches will vary in accordance to

characteristics of each dataset; greater bias can be expected when NDs constitute a
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larger proportion of the dataset and perfect analytical recovery is not attainable. How-

ever, more detailed analysis regarding the scale of implications associated with such

characteristics (e.g., number of samples, proportion of zeros, distribution of positive

detections, etc.) was beyond the scope of the present investigation. Consistent with

current practice and interpretation of the regulations, the raw data were not adjusted

for viability or infectivity, with 100% analytical recovery assumed.

Table 2.1: Summary of raw water samples analyzed for Giardia cysts from City of

Calgary, AB, Canada - October, 2012.

Sample Raw Volume processed Data reported

count [L] [cysts/100 L]

1 1 64.4 1.6

2 0 50.2 <2.0

3 0 50.0 <2.0

4 0 53.2 <1.9

5 0 50.2 <2.0

6 0 50.4 <2.0

7 0 50.4 <2.0

8 2 50.7 3.9

The data were used to obtain maximum likelihood estimates (MLE) of the mean and

standard deviation of Giardia cyst concentrations (US EPA, 2006; Alberta Environ-

ment and Sustainable Resource Development, 2012) assuming log-normally distributed

concentrations and independence among sampling events. NDs were omitted in Ap-

proach A and substituted with the MDL and half the MDL in Approaches B and C

(approaches critiqued by Helsel [2005]), and were handled as censored data in Ap-

proach D (Busschaert et al., 2010; Williams and Ebel, 2012). The purported MDL of

1 cyst per volume analyzed is critical for substitution and censored data methods. For

Approach D, the cumulative density between zero and the purported MDL was used

for NDs (Busschaert et al., 2010). MLE was applied for Approaches A–D using the

fitdistrplus package (v. 1.0-9) (Delignette-Muller et al., 2017) in R. In Approach E, a

Poisson distribution was used to account for random sampling error with log-normally

distributed concentrations, using the poilog package (v. 0.4) (Grøtan and Engen, 2008)

in R (details provided in Appendix A3). It is important to note that Approaches A–D

are based only on reported concentration estimates whereas Approach E (and other

approaches that account for measurement error) necessitates the reporting of raw data.
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Statistics from this analysis are summarized in Table 2.2.

As would be expected, Approaches A–D yielded substantially higher mean Giardia

cyst concentrations relative to Approach E because the NDs were omitted or repre-

sented as non-zero values. Omission and substitution approaches are known to lead

to biased mean concentration estimates relative to methods appropriate for censored

data (Helsel, 2005). However, the types of microbial ND data considered herein are

fundamentally not censored, as discussed above. There is a critical difference between

censored data approaches (Approach D) and those that actually incorporate NDs as le-

gitimate, discrete observations by accounting for measurement error (e.g., Approach E).

In this example, the parasite concentrations were overestimated relative to Approach

E by a factor of 2.1 to 3.9 when NDs were inappropriately handled (Approaches A-D).

Given sufficient and suitable information, the MLE approach incorporating ran-

dom sampling error (Approach E) can be extended to account for analytical recov-

ery. However, model fitting by MLE becomes more difficult with increasing model

complexity—numerical integration required for evaluating the resulting likelihood func-

tion becomes practically intractable in many cases. Bayesian methods can be used to fit

more complex probabilistic models to data, but also suffer from substantial parametric

uncertainty where insufficient data and/or data that are relatively uninformative about

model parameters are available (Gleit, 1985; Helsel and Cohn, 1988). Indeed, small

statistical sample sizes are often inevitable when using time- and/or resource-intensive

microbial analytical methods (such as those for protozoan (oo)cyst enumeration [US

EPA 2005, 2012]). For example, utilities undertaking minimum source water monitor-

ing requirements for the determination of drinking water treatment targets (Alberta

Environment and Sustainable Resource Development, 2012) would be determining run-

ning mean Giardia cyst concentrations based on monthly samples collected over the

course of two years (i.e., n=24). The impact of small statistical sample sizes on concen-

tration distribution parameter estimates is exacerbated when all of the data available

are non-detects, in which case statistical analysis is not possible without strongly sub-

jective priors.

Although treatment requirements are not typically determined based on mean Gia-

rdia cyst concentrations estimated from a handful of samples, these data may exemplify

monitoring results from utilities that draw upon high quality source waters. Such sys-

tems, especially those that have limited treatment, operational, and/or monitoring

capacity, are particularly vulnerable to the implications associated with overestimated

mean concentrations. As demonstrated in this analysis, concentration estimates may

be biased high by a factor of two or more just by handling NDs as censored. This could

lead to operational and maintenance costs/adjustments (e.g., energy for UV disinfec-
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tion, alteration of design flow rates) (Cotton et al., 2001) that are inordinate given the

levels of pathogens actually present in the source. Thus, such bias can also inappro-

priately affect assessments of water treatment plant “firm capacity,” which indicates

pathogen treatment capacity in absence of one key treatment barrier and therefore

informs infrastructure needs. While application of these approaches may result in

bias that invokes more conservative levels of treatment (Parkhurst and Stern, 1998),

it is better to analyze microbial concentrations accurately and apply consistent safety

factors, regardless of the data than to apply flawed data analysis approaches with

unspecified safety factors attributable to preventable bias. This precludes the univer-

sal and equitable application of microbial standards, and ultimately undermines the

consistent level of public health protection that the industry strives to maintain.

2.6 Conclusions

• Non-detect microbial detection and enumeration data are fundamentally not cen-

sored data and should not be reported or analyzed as such.

• MDLs are not intended to be used for, and have therefore been misapplied in,

detection- and enumeration-based methods that count discrete microorganisms.

• The convention of reporting NDs as censored values relative to an MDL is mis-

leading when using enumeration-based methods and has resulted in the misuse

of censored data statistical approaches for microbial data analysis.

• It is inconsistent to consider the uncertainty in non-detects by representing them

as censored data while ignoring the inherent uncertainty in all non-zero counts.

• Censored data approaches should be reserved for data correctly interpreted as

being censored, such as TNTC plate counts where the actual count is known

only to exceed a specified threshold.

• This work re-emphasizes that raw microbial data must be reported to facilitate

proper statistical analysis approaches that account for measurement error.
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3.1 Summary

Quantification of risks and determination of drinking water treatment needs for en-

teric protozoan pathogens relies critically on the characterization of their source water

concentrations. This involves the use of time-consuming and labour-intensive meth-

ods to enumerate protozoan pathogens in raw water samples as well as the evaluation

of analytical recovery to correct for losses from the application of the method. The

minimization of these efforts without substantially compromising precision is a key

consideration for monitoring program design, especially for systems serving small pop-

ulations or that are far from laboratories offering these types of analyses. In this study,

the precision of estimated mean source protozoan concentrations is evaluated under

different hypothetical monitoring scenarios using simulated data. The probability that

the mean concentration is precisely estimated—the statistical power of the sampling

scenario—is represented by the proportion of repeated simulations successfully render-

ing sufficiently precise mean concentration estimates. For the scenarios considered,

even low numbers of samples (e.g., n=4) consistently yielded mean concentration es-

timates within 0.5-log10. A more stringent goal of precision to attain 95% highest

density interval widths of <1.0-log10 required larger numbers of samples (e.g. 24 or

52 samples). The impact of reducing efforts to characterize recovery upon achieving

monitoring goals was comparatively minor. This work provides proof-of-concept for

Bayesian retrospective power analysis as a tool to explore the relative merits of various

protozoa monitoring strategies to support quantitative microbial risk assessments.

3.2 Introduction

Whether quantitative microbial risk assessments (QMRAs) are conducted to eval-

uate regulatory compliance, inform treatment process design, or for quantifying and

characterizing risk as part of a greater water safety plan approach, accurate drinking

water risk estimates begin with exposure assessment and more specifically, microbial

hazard identification and quantification (WHO, 2017). Given the inherent limitations

of monitoring pathogen concentrations in the treated drinking water (Regli et al., 1991;

Allen et al., 2000; Petterson et al., 2007; Smeets et al., 2010), the evaluation of mi-

crobial pathogen risk relies on the estimation of pathogen concentrations in the raw

source water (Teunis et al., 1997; Schijven et al., 2011). This typically involves the

enumeration of pathogens in raw water samples as well as the evaluation of analytical

recovery to correct for losses during sample processing and errors in counting. Current
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methods available for protozoan pathogen concentration estimation are particularly

costly, time-consuming and labour-intensive. In particular, the merit of protozoan

source water monitoring programs have often been scrutinized when low source con-

centrations are compounded by the impacts of imperfect analytical recovery to yield

highly variable results comprising many non-detects (Chik et al., 2018). The mean

concentrations estimated therefrom are often perceived to be highly uncertain. How-

ever, this presumption of imprecision in mean concentration estimates has not been

corroborated.

Existing works have addressed sampling effort based on the analytical sample vol-

ume; Emelko, Schmidt, and Roberson (2008) demonstrated that the best estimates of

source water pathogen concentrations arise from the collection and analysis of sample

volumes sufficient to have an average of at least 10 organisms in each sample. Depend-

ing on source water quality and the analytical recovery anticipated, sample volumes

well over 1000 L may be necessary, although practical sample volumes range from 10-

20 L (e.g. Reynolds et al., 1999; US EPA, 2005, 2012; Ruecker et al., 2007) to 100 L

(e.g. Rochelle et al., 1999; Quintero-Betancourt et al., 2002). Despite the costs and re-

sources that can be allocated based on the number of samples collected for 1) protozoan

enumeration and 2) internally-seeded matrix-spikes of non-native protozoan pathogen

surrogates (e.g., ColorSeedTM ) to enable quantification of analytical recovery, the in-

fluence of these critical factors on protozoan concentration estimation has not been

explicitly quantified.

Undoubtedly, enhanced sampling effort would yield increasingly precise pathogen

concentrations. However, as the mean is the most broadly used mathematical mea-

sure of average and the mean pathogen concentration estimate directly relates to the

calculation of mean risk (which is often interpreted/used as a target for regulatory

compliance), a focused evaluation of the precision attainable for this measure was per-

formed. Accordingly, an approach for estimating the level of precision attainable for

mean protozoan concentrations associated with a specific monitoring program design is

presented. To account for bias attributable to method losses, a hierarchical model that

incorporates consideration of analytical recovery developed by Schmidt and Emelko

(2011) was used. The model accounts for random measurement errors and integrates

available recovery information in temporally distributed protozoan enumeration data.

First, practically relevant parameter values (including the mean protozoan concen-

tration) for this model are estimated from a historical protozoan monitoring dataset.

These values are subsequently used to repeatedly simulate data sets that would em-

anate from them based on hypothetical monitoring scenarios. Goals related to the

precision of mean concentration estimates are evaluated for each simulated dataset;
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the proportion of repeated simulations for which goals of precision are achieved rep-

resent the probability that the desired level of precision would be attained using that

particular monitoring program design.

This overall approach described is consistent with a Bayesian retrospective power

analysis, which facilitates the exploration of the influence of the crucial factors on the

precision of mean protozoan concentration estimation. Given that treatment needs are

often described in terms of decimal reductions and regulatory treatment log-credits are

typically assigned to the nearest 0.5-log10, mean concentration estimates within half an

order-of-magnitude (±0.5-log10) of the true mean were herein investigated as the goal of

precision. The level of precision evaluated herein also implies accuracy provided that

enumerated protozoa are not subject to any other source of bias. Bias attributable

to species, subtypes, degree of viability and infectivity of the protozoa enumerated

(Ruecker et al., 2007; Efstratiou et al., 2017) was outside the scope of the present

work, as these factors require more extensive laboratory analyses that are not widely

evaluated. Two goals related to precision were evaluated: 1) the true mean and the

mode of the posterior mean concentration distribution differs by less than half an order-

of-magnitude (±0.5-log10), and 2) the 95% Bayesian highest density interval (HDI) is

less than an order-of-magnitude (1.0-log10) wide. This study provides proof-of-concept

for the broader consideration of statistical power in the design and implementation of

source water protozoan monitoring programs.

3.3 Methods

3.3.1 Estimation of practically relevant parameter values of hi-

erarchical model using historical protozoan monitoring

program data

The City of Calgary has an extensive historical protozoan (Giardia and Cryp-

tosporidium) monitoring dataset spanning from 2012 to 2019 with internally seeded

matrix-spikes for the evaluation of sample specific analytical recovery. These data

were analyzed using the hierarchical model described in Schmidt and Emelko (2011),

which is graphically presented in Appendix B1 and briefly summarized here. Specif-

ically, the number of (oo)cysts enumerated (yi) in a particular analyzed volume of

water (Vi) is Poisson distributed with the mean equal to the product of the source

protozoan concentration (Ci), volume, and sample-specific analytical recovery (pi).

Temporal protozoan concentrations are modelled as gamma distributed with mean (µ)
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and standard deviation (σ). The number of microorganisms recovered (ni) from those

seeded (Si) is binomially distributed conditional on the sample-specific recovery (pi).

This analytical recovery is regarded as the probability that each microorganism will

be observed and is assumed equal for seeded and indigenous microorganisms in any

given sample. It varies randomly among samples according to a beta distribution with

parameters α and β.

A Bayesian approach was used to estimate these parameters rather than maximum

likelihood estimation because the likelihood function cannot be evaluated explicitly

(Gelman and Hill, 2007; Gelman et al., 2014). Informative normal priors on the log10-

mean and log10-standard deviation of the concentrations were chosen to represent a

wide range of concentrations of practical relevance. The mean concentration is further

bound between 0.001 organisms/100 L and 1000 organisms/100 L. Additionally, the

variability of concentration was constrained to within two orders of magnitude of the

mean concentration for numerical stability when implemented in RunJAGS (Denwood,

2016) in the R environment. The parameters of the gamma distribution for concen-

tration variability (µ, σ) and the beta distribution for analytical recovery (α, β) were

estimated using the modes of the respective posterior distributions.

Gibbs sampling implemented in JAGS (Plummer, 2016) through RunJAGS was

deployed to obtain the posterior distribution of the mean concentration. For the es-

timation of the posterior parameter distributions, 3 chains were deployed to ensure

apparent convergence and parameter mixing. After a burn-in of 1,000 iterations and

2,000 adaptive iterations, every 5th of 25,000 iterations across 3 chains were used to

evaluate the posterior distribution of the mean concentration. Computational under-

flows in JAGS are known to occur when sampling from a gamma distribution with its

shape parameter less than 1 and when sampling from beta distributions with α or β

parameter values close to 0 and 1. Moreover, the choice of samplers (algorithm used

to generate Markov Chains) deployed is imposed by JAGS/RunJAGS. Given these

known software limitations, priors on α and β were set to be uniform distributions

bound by 0.01 and 100, while the gamma distributed concentrations was truncated to

exclude near-zero concentrations. A handful of simulations from RunJAGS were also

subsequently corroborated with results obtained in OpenBUGS (Spiegelhalter et al.,

2007) (that allows the specification of the sampler used) to verify the impact of these

adjustments.
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3.3.2 Bayesian retrospective power analysis

The probability that a particular sampling scheme would yield adequately precise

mean concentration estimates can be evaluated by means of a Bayesian retrospective

power analysis (Gelman and Hill, 2007; Kruschke, 2014). It is retrospective in the

sense that the power evaluated reflects the ability of the hypothetical monitoring sce-

narios investigated to precisely evaluate the historical parameter estimates. In such

an analysis, the posterior estimates of the model parameters obtained from historical

Cryptosporidium (n=229) and Giardia (n=234) data are assumed to be collectively

representative and sufficiently describe the source water pathogen concentrations and

anticipated analytical recovery. The analyses conducted herein were performed using

the parameters derived based on these two protozoan data sets.

The Cryptosporidium historical parameters are consistent with parameter values

that reflect low mean concentrations (µ=0.8 oocysts/100 L, σ=1.2 oocysts/100 L,

α=4.6, β=2.8) whereas the Giardia historical parameters are consistent with those

that reflect higher mean concentrations (µ=19.4 cysts/100 L, σ=25.3 cysts/100 L,

α=5.3, β=3.5). Inferences drawn from this analysis are strictly based on differences

in the parameter values rather than the characteristics of the protozoan pathogens

themselves. These historical parameters were used to simulate data sets representing

different hypothetical sampling scenarios stochastically. When the simulated data are

then analyzed with the same Bayesian hierarchical model as the original historical data,

the posterior distribution of the parameter(s) of interest can be examined for whether

the specified goals of precision are achieved (Kruschke, 2014). The long-term probabil-

ity of successfully attaining established goals is an explicit representation of statistical

power associated with the hypothetical monitoring scenario. While the extrapolation

of results from a retrospective power analysis to future monitoring conducted would re-

quire the presumption of stationarity, this process offers a pragmatic starting point that

can be used adaptively to evaluate the efficiency of monitoring strategies in relation to

attaining the desired goal(s) of precision.

3.3.3 Goals of precision related to the posterior distribution of

mean protozoan concentration

For all hypothetical monitoring scenarios, both point- and interval-based goals of

precision were evaluated for the posterior distribution estimated from each simulation:

1. the mode of the posterior distribution of mean concentrations to be estimated
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within 0.5-log10 of the true mean concentration

2. the width of the 95% Bayesian highest density interval (HDI) on the posterior

mean concentration to be at most 1.0-log10

The first goal is a point-based criterion that makes use of the posterior mode, which is a

special case of the Bayesian maximum likelihood estimate when prior knowledge of the

parameter values are equally likely (Cousineau and Helie, 2013). The posterior mode

criterion effectively allows a range of acceptable concentrations spanning 1.0-log10. The

second goal invokes the use of the 95% Bayesian HDI, which is the range of values from

the posterior distribution of mean concentrations that are most credible. A narrow

interval is intuitively more desirable and reflects higher precision in the parameter

estimated. While both measures of precision are equally valid, they reflect different

aspects of precision in the mean concentration estimate. The posterior mode relative to

the true data-generating mean is an explicit quantification of precision. On the other

hand, precision is implicit to the computation of the HDI width using the simulated

data for each trial that does not rely on knowledge of the true data-generating mean.

Both types of criteria were examined in this work to elucidate their use and limitations

in evaluating statistical power.

The collection of 4, 8, 12, 24, and 52 samples (that correspond to quarterly, biquar-

terly, monthly, biweekly, and weekly monitoring frequencies if conducted over an annual

time frame) with internally seeded matrix-spikes were first explored to determine the

influence of the monitoring effort necessary to attain a mean concentration estimate

within the specified targets. As long as the samples are collected as part of a routine

monitoring program and collectively representative of the conditions spanning an entire

year, the mean concentration estimated would be useful for quantitative microbial risk

assessments that are performed based on mean annual risk. Next, the effort associated

with internally seeded matrix-spikes was investigated. In this regard, the contribution

of analytical recovery to overall goals of precision was also investigated by randomly

removing a quarter, a half, and three quarters of the internally seeded matrix-spikes

(as though the spikes were only conducted for a subset of all source water samples).

Finally, the scenario of poorer analytical recovery was investigated, which provides an

example of how this framework can be used to evaluate the relative merits of increasing

efforts related to native protozoan enumeration versus improving analytical recovery.

For each hypothetical monitoring scenario, 100 simulations were performed.
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3.4 Results

3.4.1 Point-based goal of precision based on the mode of the

posterior mean concentration distribution

For both sets of low and high historical concentration parameters, the influence

of the informative but relatively flat prior centred at 10 microorganisms/100 L was

discernible when relatively few samples (n=4) were collected. The posterior modes

estimated from the simulation of the Cryptosporidium parameters tended to be inflated

compared to the historical mean. Conversely, the posterior modes from simulations of

the Giardia parameters tended to be reduced compared to the data-generating mean.

The influence of the prior becomes less discernible with additional samples, as reflected

by the tightening of the range of posterior modes when four additional samples were

collected (n=8). This will converge asymptotically upon the data-generating mean

with more samples collected.

A large proportion of the posterior modes estimated will fall within 0.5-log10 of

the true mean concentration even with very few samples (n=4) and minimal recovery

data (i.e., a single recovery estimate) (Table 3.1, Figure 3.1). A higher probability

of attaining a posterior mode within 0.5-log10 of the true mean for the set of Cryp-

tosporidium parameters (which reflect a lower historical mean concentration) compared

to the Giardia parameters (which reflect a higher historical mean concentration) used.

As additional points of reference, the probability of attaining a posterior mode within

1.0- and within 0.3-log10 of the true mean was also presented. It is all but certain that

posterior modes will fall within a full order-of-magnitude even with only four samples

for these scenarios investigated. Posterior modes that are within 0.3-log10 of the true

mean denotes the ability to capture a mean concentration that is either half or dou-

ble the true mean concentration. As expected, more samples are typically required to

achieve this higher level of precision.

3.4.2 Interval-based goals of precision based on the 95% HDI

width of the posterior mean concentration distribution

95% HDIs were estimated through sampling the posterior distribution of the mean

concentration by updating the prior with a truncated gamma likelihood distribution

(Table 3.2, Figure 3.1). There is a clear trend in the reduction of the 95% HDI width
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a) µ=0.8 organisms/100 L, σ=1.2 organisms/100 L, α=4.6, β=2.8
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Figure 3.1: Posterior modes (dots) and 95% highest density intervals (error bars)

of mean concentration across 100 simulations for a) Cryptosporidium (i.e., low mean

concentrations) and b) Giardia (i.e., high mean concentrations) historical parameters.

Individual facets within each subplot are labelled with the number of 100 L samples

collected from the source for enumeration and the number of internally seeded matrix-

spikes performed. The red line denotes the true mean concentration used to generate

the simulated data; the grey region denotes mean concentrations that are within 0.5-

log10 of the true mean concentration.
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b) µ=19.4 organisms/100 L, σ=25.3 organisms/100 L, α=5.3, β=3.5
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Figure 3.1: (continued)
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Table 3.1: Estimated power to achieve goal of precision based on the posterior mode of

the mean concentration, as a function of sample size reflecting a)Cryptosporidium (i.e.,

low mean concentrations) and b)Giardia (i.e., high mean concentrations) historical

parameters. All sample volumes are assumed to be 100 L and each paired with an

internally seeded matrix-spike count. Values in tables are the estimated proportion

of 100 simulations for which the modal posterior estimate of the mean lies within the

specified range of the historical mean concentration (with 95% HDI lower and upper

bounds on the estimated proportion in brackets, respectively)

a) Cryptosporidium

µ=0.8/100 L, σ=1.2/100 L

α=4.6, β=2.8

b) Giardia

µ=19.4/100 L, σ=25.3/100 L

α=5.3, β=3.5

posterior mode

No. of

samples
±1.0-log10 ±0.5-log10 ±0.3-log10 ±1.0-log10 ±0.5-log10 ±0.3-log10

4
1.0

(0.97, 1.0)

0.96

(0.91, 0.99)

0.76

(0.67, 0.84)

0.99

(0.95, 1.0)

0.82

(0.74, 0.89)

0.67

(0.58, 0.76)

8
1.0

(0.97, 1.0)

0.99

(0.95, 1.0)

0.84

(0.76, 0.90)

1.0

(0.97, 1.0)

0.96

(0.91, 0.99)

0.83

(0.75, 0.90)

12
1.0

(0.97, 1.0)

0.99

(0.95, 1.0)

0.93

(0.87, 0.97)

1.0

(0.97, 1.0)

0.97

(0.92, 0.99)

0.85

(0.77, 0.99)

24
1.0

(0.97, 1.0)

1.0

(0.97, 1.0)

0.90

(0.83, 0.95)

1.0

(0.97, 1.0)

1.0

(0.97, 1.0)

0.96

(0.91, 1.0)

52
1.0

(0.97, 1.0)

1.0

(0.97, 1.0)

0.91

(0.96, 0.99)

1.0

(0.97, 1.0)

1.0

(0.97, 1.0)

1.0

(0.97, 1.0)
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Table 3.2: Estimated power to achieve goal of precision based on 95% Bayesian HDI

widths, as a function of sample size reflecting a)Cryptosporidium (i.e., low mean con-

centrations) and b)Giardia (i.e., high mean concentrations) historical parameters. All

sample volumes are assumed to be 100 L and each paired with an internally seeded

matrix-spike count. Values in tables are the estimated proportion of 100 simulations

for which the 95% Bayesian HDI width is attained (with 95% HDI lower and upper

bounds on the estimated proportion in brackets, respectively)

a) Cryptosporidium

µ=0.8/100 L, σ=1.2/100 L

α=4.6, β=2.8

b) Giardia

µ=19.4/100 L, σ=25.3/100 L

α=5.3, β=3.5

95% Bayesian HDI width

No. of

samples
2.0-log10 1.0-log10 0.5-log10 2.0-log10 1.0-log10 0.5-log10

4
0.06

(0.02, 0.12)

0.01

(0, 0.05)

0

(0, 0.03)

0.80

(0.72, 0.87)

0.32

(0.23, 0.41)

0.04

(0.01, 0.09)

8
0.39

(0.30, 0.49)

0.05

(0.02, 0.11)

0

(0, 0.03)

1.0

(0.97, 1.0)

0.65

(0.55, 0.74)

0.01

(0, 0.05)

12
0.59

(0.49, 0.68)

0.08

(0.04, 0.14)

0

(0, 0.03)

1.0

(0.97, 1.0)

0.93

(0.87, 0.97)

0.07

(0.03, 0.13)

24
0.95

(0.90, 0.98)

0.59

(0.49, 0.68)

0

(0, 0.03)

1.0

(0.97, 1.0)

1.0

(0.97, 1.0)

0.48

(0.38, 0.58)

52
1.0

(0.97, 1.0)

0.98

(0.94, 1.0)

0.42

(0.33, 0.52)

1.0

(0.97, 1.0)

1.0

(0.97, 1.0)

1.0

(0.97, 1.0)
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Figure 3.2: Estimated 95% Bayesian HDI widths as a function of sample size with

paired recovery data.

with an increased number of samples collected for a given set of historical mean con-

centrations (Figure 3.2). HDI widths of approximately 1.0-log10 or less are generally

attainable with 52 and 24 samples for the low and high historical mean concentration

sets of parameters, respectively. Predictably, more samples were necessary to attain the

same HDI width for the Cryptosporidium parameters used than the Giardia parameters

used. This is largely attributable to the higher prevalence of relatively uninformative

non-detects to the precision of the mean concentration given that the historical mean

concentration simulated is over an order of magnitude lower. This leads to a wider HDI

that reflects the uncertainty in the mean concentration estimate. Notably, some 95%

HDI widths were further inflated (e.g., 95% HDI widths estimated to be approximately

4-log10 for the scenario with 4 samples using the Giardia historical parameters, Figure

3.2). These are recognized to be a computational artefact owing to the truncation of

the gamma likelihood distribution that was necessary at near-zero concentrations to

overcome computational underflows using the conjugate gamma sampler imposed by

JAGS when using RunJAGS. This artefact may be remedied through re-evaluating

the posterior mean distribution using OpenBUGS (that does not impose the choice

of samplers and necessitate the truncation of the gamma likelihood on concentration).

However, OpenBUGS is manually cumbersome for extensive computational iterations

that are required for Bayesian power analysis and therefore was only used to confirm

the influence of this artefact.
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3.4.3 Impact of analytical recovery on attaining precision mean

concentration estimates

Despite the rather variable recovery profiles that are estimated based on character-

istics of the City of Calgary protozoan dataset (e.g., mean recovery±standard deviation

63±15%), a reduction in the number of internally seeded matrix-spikes performed did

not substantially reduce the probability of achieving either point- or interval-based

criteria for a specified sample size. This was reflected by the similarities amongst the

different facets presented in Figure 3.1. This is expected as the uncertainty in concen-

tration estimates is minimally affected by improving method recovery and estimates

thereof when low organism counts are observed (Emelko et al., 2008). The Giardia

recovery parameters were further adjusted to investigate the influence of poorer mean

recovery but with a similar degree of variability (α=2, β=5, mean recovery = 20±16%,

Figure 3.3). All specified goals of precision did not appear to be substantially impacted

(Table 3.3). However, it can be noted that the poorer recovery has moderated the ten-

dency for inflation of 95% HDI widths owing to additional non-detects observed when

sample size was low (n=4).

3.5 Discussion

3.5.1 Relatively few samples may be sufficient for precise mean

concentration estimation

While it is intuitive that larger sample sizes will reduce the uncertainty surrounding

both point and interval estimates of mean concentration, there are diminishing returns

that are intricately linked to the source concentration and the recovery anticipated. Al-

though the uncertainty can be rather large with a minimal number of samples (n=4),

the probability of attaining a posterior mode mean concentration that differs by more

than 0.5-log10 from the true source concentration is practically insignificant for the

range of scenarios investigated. While this may suggest that utilities providing treat-

ment much beyond what is deemed necessary at low protozoan pathogen levels can

forego a more intensive sampling program to minimize costs, key caveats concerning

stationarity, sampling program duration, sampling based on routine (non-temporally

auto-correlated) monitoring are underscored. This retrospective power analysis can

only be interpreted in a prospective sense if the historical parameters do not change

in the future. In some environments (e.g., a deep subsurface aquifer that is not hy-
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Table 3.3: Estimated power to achieve goal of precision as a function of sample size

for the Giardia concentration parameters, with different mean recoveries simulated.

All sample volumes are assumed to be 100 L with internally seeded matrix-spike data

simulated to evaluate recovery. Values in tables are the estimated proportion of 100

simulations for which the specified goal of precision is attained (with 95% HDI lower

and upper bounds on the estimated proportion in brackets, respectively).

a) high mean recovery (60%)

µ=19.4/100 L, σ=25.3/100 L

α=5.3, β=3.5

b) low mean recovery (20%)

µ=19.4/100 L, σ=25.3/100 L

α=2, β=5

No. of

samples

posterior mode

within ±0.5-log10

95% HDI

width

≤1.0-log10

posterior mode

within ±0.5-log10

95% HDI

width

≤1.0-log10

4
0.82

(0.74, 0.89)

0.32

(0.23, 0.41)

0.72

(0.63,0.80)

0.18

(0.11, 0.26)

8
0.96

(0.91,0.99)

0.65

(0.55, 0.74)

0.85

(0.77,0.91)

0.60

(0.50,0.69)

12
0.97

(0.92,0.99)

0.93

(0.87, 0.97)

0.98

(0.94, 1.0)

0.84

(0.76,0.90)

24
1.0

(0.97, 1.0)

1.0

(0.97, 1.0)

1.0

(0.97, 1.0)

1.0

(0.97, 1.0)

52
1.0

(0.97, 1.0)

1.0

(0.97, 1.0)

1.0

(0.97, 1.0)

1.0

(0.97, 1.0)
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Figure 3.3: Histogram of posterior mode of the mean concentration (top) and 95% HDI

width (bottom) estimated from 100 simulations each of the Giardia parameters with 4

(purple), 12 (green), and 52 (yellow) samples with paired recovery data simulated with a

mean recovery of 60% (left, precovery beta[5.3,3.5]) and 20% (right, precovery beta[2,5]).

The red dashed line represents the reference mean concentration value used to simulate

the data; grey dashed lines indicate ±0.5-log10 from the reference value.
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draulically connected to the surface) this caveat may hold; however, a minimal routine

monitoring program would still be prudent to allow for the possibility of microbial

source water quality changes. The sampling program duration must adequately cap-

ture a range of representative conditions, including high and low concentrations driven

by seasonal generation and hydrologic patterns (Efstratiou et al., 2017; Ongerth, 2017),

yet consideration should also be given to avoid temporal auto-correlation during sample

collection. A final caveat is that a small sample size is not likely adequate if concentra-

tions are severely non-gamma distributed (e.g., bi-modal); in these cases more samples

may be required as consistent with the Central Limit Theorem.

3.5.2 Minimum treatment performance targets can effectively

alleviate implications associated with low, highly uncer-

tain mean concentration estimates

While overestimation of mean source concentrations bears the implication of costs

associated with excessive treatment, the underestimation of mean source concentrations

bears the potential consequence of inadequate protection of public health. However,

the prescription of minimum treatment requirements at low mean source concentra-

tions (e.g., as represented by Cryptosporidium historical parameters used in this work)

can effectively alleviate implications associated with the underestimation of low pro-

tozoan pathogen levels that are generally more uncertain compared to mean estimates

that typically yield higher counts. This is consistent with the recommendations of

the World Health Organization for providing QMRA-based performance targets as

requirements for the reduction of enteric protozoa. Health Canada currently recom-

mends a minimum 3-log10 reduction requirement for protozoan pathogens. The US

EPA generally stipulates minima of 2- and 3-log10 reductions for Cryptosporidium and

Giardia respectively. Neither the European Union nor the Australian National Health

and Medical Research Council have established minimum treatment requirements for

protozoa to date (Health Canada, 2019). However, the increasing adoption of QMRA

frameworks across a number of these jurisdictions (Bichai and Smeets, 2013) inevitably

allows for the stipulation of tailored minimum system-specific treatment requirements

for protozoan pathogens.
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3.5.3 Point- and interval-based goals reflect different aspects of

precision

Both point- and interval-based goals of precision in mean concentration estimation

were evaluated. The use of the posterior mode relative to the true mean concentration

as a goal of precision appears to be more readily achieved with fewer samples for the

simulations based on the lower mean concentration parameters (Cryptosporidium) than

for the higher mean concentration parameters (Giardia). The goal of precision related

to the 95% HDI width exhibits an apparent trend to the contrary; it is more readily

achieved with fewer samples for Giardia parameters than for Cryptosporidium param-

eters. Considering that the historical analytical recovery parameters simulated and

estimated for both protozoa are not substantially different, this apparent discrepancy

is essentially an effect of the difference in magnitude between the protozoan concen-

trations. It underscores that while both goals involve an allowable precision that is

equivalent to a 1.0-log10 span, they do not represent precision in the same way; the

goals of precision are not equally stringent. The point-based criterion is an explicit

representation of precision only made possible through simulations as the true mean

concentration is known, as in the case of the retrospective power analysis approach

applied herein. The posterior mode provides the mean protozoan concentration that is

most likely given the data. Even if this value is adequately precise (i.e., ±0.5-log10 of

the true mean), a substantial fraction of the posterior distribution of mean concentra-

tions may be much beyond the precision limit selected. On the other hand, the 95%

HDI represents the range of mean protozoan concentrations that are most probable

(with 95% probability), and therefore is a much more stringent goal of precision. Aside

from the more intuitive interpretation of the HDI width, it is also determinable when

the true mean is unknown as it is in practice. Nonetheless, the 95% HDI width eval-

uated based on sampling data requires careful implementation and computations in a

probabilistic framework. Artefacts associated with the implementation of the model in

the software used (e.g., inflated HDI widths as previously noted) must be taken into

consideration.

3.5.4 A broadly applicable framework for evaluating the level of

precision attainable based on monitoring program design

to support QMRA efforts

Amongst the range of hypothetical scenarios investigated, monitoring programs

with 52 and 24 samples collected from the source will practically ensure that 95% HDI
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widths of at most 1.0-log10 for Cryptosporidium and Giardia mean concentration dis-

tributions are attained, respectively. Practically, this corresponds to a weekly/biweekly

monitoring program for reliable estimation (±1.0-log10) of mean annual concentrations.

In fact, 95% HDI widths of at most 0.5-log10 can consistently be achieved when higher

mean concentrations are observed, as is the case for the Giardia historical parame-

ters. It should again be noted that the stringency of the approach used herein focuses

on limiting the worst precision (i.e., the specified HDI width will be attained in es-

sentially all simulations within each sampling scenario) rather than average precision

(i.e., all simulations of each sampling scenario will attain the specified HDI width, on

average) or another measure of precision (e.g., posterior mode compared to the true

data-generating mean). This implies that utilities implementing protozoan monitor-

ing programs with this sample size can be highly confident in the precision of their

mean source protozoan concentration estimates. Notably, comparable sample sizes

have already been adopted into decision-making frameworks of several jurisdictions.

For example, Cryptosporidium compliance monitoring for utilities serving over 10,000

people in the United States require the collection of monthly samples for 24 months.

In the Dutch Inspectorate Guideline 5318 (translated and referenced within Schijven

and de Roda Husman, 2011), a range of sampling frequencies spanning those examined

(6, 13, 26) was mandated for index pathogens (including Cryptosporidium and Giar-

dia). Therefore, this work provides a framework that can be broadly applied to other

historical data sets. This facilitates quantification of the level of precision attained to

inform sampling program design to support QMRA efforts.

3.5.5 Sample size enlargement can enhance precision in mean

concentration estimates more than performing additional

internally seeded matrix-spikes to quantify analytical re-

covery

In the absence of an independent recovery study (Schmidt et al., 2010), a handful

of internally seeded matrix-spikes may be sufficient to characterize the recovery pro-

file and supplement the native protozoan monitoring program without substantially

compromising estimates pertaining to the mean concentration. This holds true even

at substantially poorer mean recovery values; when counts are low, additional source

water quality samples (and thereby the cumulative volume analyzed) are more informa-

tive to mean concentration estimation than additional characterization of the recovery

profile (Emelko et al., 2008). Indeed, at levels of analytical recovery typified by the

historical dataset (mean recovery ≈ 60%) and simulated in this work, the contribution
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of analytical recovery to uncertainty in the mean concentration would be less than an

order of magnitude. While we agree with Petterson et al. (2007) that internal recovery

estimates for every protozoan assay is not likely necessary to limit uncertainty in mean

concentration estimation, a much smaller recovery dataset than the 20 recommended

by Petterson may be sufficient, assuming that the recovery analyses performed are ad-

equately representative across a range of water matrices. A critical difference in the

approach used was the handling of analytical recovery as a random variable indepen-

dent of the observed counts. Approaches that adjust microbial concentration estimates

by independent, random recovery values have been demonstrated to introduce bias that

can exceed an order of magnitude (Schmidt et al., 2013). This has been demonstrated

to bias concentration estimates, sometimes exceeding an order of magnitude when low

analytical recovery values are common (Schmidt et al., 2013).

3.6 Conclusions

To quantify the attainable precision associated with mean protozoan concentration

estimates, a range of protozoan sample sizes and number of internally seeded matrix-

spikes to quantify analytical recovery was investigated using simulated data. The

following conclusions can be drawn from this analysis:

• For the scenarios considered, mean concentration estimates within 0.5-log10 of

the true data-generating mean was attainable even with a low number of samples

(e.g., n=4).

• Although as few as four samples may provide adequately precise estimates of the

mean protozoan pathogen concentrations, practical considerations of stationarity,

sampling program duration, lack of temporal auto-correlation between samples,

and deviations from gamma-distributed concentrations must be considered.

• A more stringent goal for attaining 95% HDI widths of <1.0-log10 on the posterior

mean concentration was attained on the order of 24 to 52 samples for the scenarios

considered.

• As the true mean protozoan concentration is ultimately unknown in practice,

the HDI width provides an intuitive representation of the attainable precision

for a given sample data set. However, the computed HDI width can be sensitive

to the implementation of the probabilistic model and tools applied and requires

judicious interpretation.
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• Underestimation of mean source concentrations bears the potential consequence

of inadequate protection of public health (through prescription of inadequate

treatment).

• A minimum treatment target at low mean concentrations (as can be determined

through a reverse QMRA) can effectively alleviate the increased uncertainty as-

sociated with the characterization of these low mean concentrations.

• When enumeration of native protozoa from source water quality samples yield

low counts, additional source samples (and thereby the cumulative volume an-

alyzed) are more informative to mean concentration estimation than additional

characterization of the analytical recovery profile.
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4.1 Summary

Aquifer microbial water quality evaluations are often performed by collecting ground-

water samples from monitoring wells. While samples collected from continuously

pumped sources are seldom disputed as representative of the aquifer, natural biofilm

present in the vicinity of well screens may introduce unwanted microbial artefacts in

monitoring wells that are only periodically sampled. The need for well water purging

to obtain samples void of these artefacts has been widely recognized. However, purging

methods are not standardized; many approaches presume that physico-chemical wa-

ter quality stability achieved through the removal of 3 to 5 well volumes is indicative

of the stability of target analytes. Using a dataset collected from a shallow uncon-

fined aquifer in Southern Ontario, Canada, the need for using dedicated approaches

that account for the time-dependent nature of microbial water quality changes was

demonstrated. Specifically, the utility of adenosine triphosphate (ATP) as a rapid,

field-ready biochemical indicator of microbial water quality stability was investigated.

This work shows that ATP concentrations reflect time-limited (bio)colloid transport

processes that are consistent with other microbial water quality parameters monitored,

but different from commonly measured physical and chemical water quality indicators

of adequate well purging. ATP concentrations occasionally fluctuated even after 3 or 4

hours of purging, indicating that microbial artefacts attributable to subsurface biofilms

in the vicinity of the well screen can still persist. The recurrence of characteristic ATP

patterns in each well were systematically examined through the novel application of

dynamic time warping (DTW), a non-parametric time series analysis approach. These

patterns are believed to be linked with seasonal hydrogeological conditions, which war-

rant consideration in the design and interpretation of subsurface microbial water quality

investigations.

4.2 Introduction

Representative samples of aquifer microbial water quality—specifically, the compo-

sition and concentrations of suspended microorganisms in the aquifer pore water—are

crucial for aquifer source vulnerability assessments to pathogen/fecal contamination.

However, the ubiquity of microorganisms presents a significant challenge to ensuring

the integrity and representativeness of samples. For example, Harter et al. (2014)

demonstrated the need for extended well purging to control for significant fecal micro-

bial indicator contamination of the well-head, within the well casing and within the
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immediate aquifer vicinity of the well screen. Although there is general alignment to

suggest that extended purging/continuous operation of wells would all but ensure that

a sample representative of the microbial composition in the aquifer can be collected

(Cullimore, 2007; Harter et al., 2014), it is often impractical or infeasible. Therefore,

evaluations of subsurface microbial water quality parameters can greatly benefit from

an inexpensive, sensitive field-ready tool that can support the contextualization of

microbial results and aid in determining the minimal level of purging.

Owing to the contrast in hydrogeochemical conditions between a well and the sur-

rounding aquifer, naturally occurring conglomerates of sessile microorganisms and their

metabolites—collectively known as biofilm—form distinctive patterns on solid surfaces

in the vicinity of a well (i.e., well casing, well screen, and sediment surfaces). These sub-

surface biofilms are known to underpin microbial water quality when water is initially

pumped (Cullimore, 2007). The dynamic hydraulic conditions invoked by groundwa-

ter pumping can cause biofilm mobilization and entrainment (Cullimore, 2007; Smith

and Comeskey, 2009), therefore potentially introducing unwanted microbial artefacts

into a water sample. Intuitively, aquifer water quality during extended purging is

less impacted by biofilm and increasingly representative of suspended microorganisms

(Cullimore, 2007; Smith and Comeskey, 2009; van Driezum et al., 2017; Korbel et al.,

2017). The biofilms can be characterized throughout well purging activities by ex-

amining “zones of interrogation projections” in wells—increasingly sparse time-based

intervals—as proposed by Cullimore (2007). These zones feature irregularly spaced

sampling intervals that focus on capturing and describing microbial water quality shifts

at key points in time during purging and in absence of continuous monitoring.

Accordingly, it is both desirable and pragmatic to establish the minimum length

of time—using relevant microbial indicator(s)—required for well purging activities to

limit artefacts attributable to subsurface biofilms. Amongst a multitude of potential

microbiologically relevant indicators, adenosine triphosphate (ATP) is a biochemical

measurement of microbial activity suggested to be useful in the delineation of biofilm

expanse and microbial densities (Webster et al., 1985; Jensen, 1989; Metge et al., 1993;

Hammes et al., 2010). ATP is ubiquitous in living cells and lost rapidly from dead

cells; it is present in fairly constant concentrations in microorganisms and can be

measured rapidly with high sensitivity using bioluminescence when assayed with the

firefly enzyme luciferase (McElroy, 1947). In highly oxic conditions, elevated ATP

concentrations reflect elevated microbial densities (McCarthy, 1991; Abelho, 2005; van

der Kooij et al., 2017) or enhanced metabolism of fast-growing microorganisms without

substantial nutrient limitations (Howsam, 1988; Knezev and van der Kooij, 2004). The

relative microbial activity as manifested by ATP fluctuations monitored throughout
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well purging activities has been regarded as an indicator for characterizing subsurface

microbial biofilms (Cullimore, 2007). These measurements hold particular promise

as they are field-ready and have been recently adapted in laboratory instrumentation

for near real-time monitoring applications (e.g., Hach R© EZ7300 microbial load ATP

analyzer).

ATP behaviour during well purging activities has not been reported; the evolution

of its behaviour over spatial and seasonal time scales has also not been documented.

Therefore, the main goal of this work was to examine the potential of ATP mea-

surements as an indicator of purging sufficiency for collecting aquifer-representative

microbial water quality samples. We examine ATP concentrations in groundwater

samples collected sequentially throughout concurrent well purging activities at two lo-

cations developed in the same shallow unconfined aquifer, exhibiting practically equiv-

alent physical and chemical water quality characteristics. The following questions were

therefore addressed: (i) how do ATP concentrations fluctuate throughout well purg-

ing and (ii) how do they compare with other physical and chemical water quality

parameters measured concurrently? (iii) Will ATP concentrations measured simulta-

neously in these two wells converge to suggest microbial water quality conditions that

are increasingly representative of the aquifer? Lastly, we explore (iv) spatio-temporal

scales over which ATP patterns are observed to gain insights related to the dynam-

ics of subsurface biofilms. For this purpose, the novel application of a parameter-free

approach that leverages information within sequential ATP measurements was demon-

strated. While ATP concentrations may be analyzed solely based on their magnitude

and summary statistics, additional insights arising from the relative microbial activity

throughout purging may be overlooked unless underlying features captured by the se-

quentially collected data are considered. However, given the irregularly-spaced sample

collection intervals applied throughout purging that preclude parametric time series

analysis approaches, a non-parametric time series analysis approach—dynamic time

warping (DTW)—was applied. This approach facilitates the comparison of time series

of differing lengths and irregular sampling intervals by generating a metric to describe

the (dis)similarity of any features exhibited. This metric, the DTW distance, was

calculated for all pairs of time series and subsequently ordinated using non-metric mul-

tidimensional scaling to portray the collective relationships between ATP patterns and

explore potential spatio-temporal influences.
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4.3 Materials and methods

4.3.1 Study site

The study site (Figure 4.1) is situated near drinking water production wells six

kilometers south of Woodstock, Ontario, Canada. The topography of the site com-

prises rolling hills and drumlin features. This site was selected because this glacial

outwash aquifer system features extremely high groundwater velocities and is highly

aerobic (Devlin et al., 2012). Therefore, it provides ideal conditions that strengthen

the aforementioned relationships between ATP concentrations and microbial densities

(McCarthy, 1991; Abelho, 2005; van der Kooij et al., 2017). The geochemistry within

this aquifer system is known to be rather uniform (Critchley et al., 2014). Regional

groundwater flow is generally in a southeasterly direction (Critchley, 2010).

Figure 4.1: Study site and monitoring well locations. Monitoring wells used only for

regional hydraulic gradient estimation in this study are represented by grey circles.

Cross-section of transect A-B shows the hydrogeological conceptual model previously

developed at the site (adapted from Critchley, 2010).

The monitoring wells (WO77, WO78) of interest are developed in the shallow-

est unconfined aquifer of the regional aquifer system, comprising primarily of sand

and gravels interspersed with discontinuous silty till aquitard units (Haslauer, 2005;

Critchley, 2010; Critchley et al., 2014) (inset transect cross-section, Figure 4.1). These
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wells are situated 5 meters apart in a direction perpendicular to regional groundwa-

ter flow. Both monitoring wells (50.8 millimeter [mm] diameter, polyvinyl chloride

[PVC] construction) were screened at similar depths, between 5.91 m to 16.57 m be-

low ground surface (mBGS) and vented to the atmosphere. The average water table

elevation occurred at approximately 298 meters above sea level [mASL] (≈ 3 mBGS),

which was consistently above the top of the screened interval. The aquifer hydraulic

conductivity in the screened intervals was estimated to range from 4.8 x 10−4 to 1.9

x 10−2 m/s (based on grain size analysis, flowmeter test, point velocity probes [PVP]

measurements (Devlin et al., 2012), tracer tests, and three dimensional finite difference

model calibration). Horizontal velocities were estimated to be between 1 m/day and

about 13 m/day using a solute tracer study. Hydraulic conductivity profiles generated

between these two wells exhibited remarkable similarities (Critchley, 2010). Additional

well installation details are provided in Critchley (2010).

Groundwater levels were regularly monitored in 28 additional piezometers within a

500 m radius of the two wells of interest; the mean regional groundwater gradient over

the study period was estimated to be 0.0069 using HydrogeoEstimatorXL (Devlin and

Schillig, 2017). Groundwater levels were highest in the spring months (April/May) and

lowest during late fall/early winter (December) (Appendix C1). Annual recharge at this

location is estimated to be 396 mm/year (Koch, 2009). Local infiltration travel time

through the unsaturated zone to the water table is estimated to be on the order of 2.8 to

5.6 years (Sousa, 2013). These observations are generally consistent with the seasonal

hydrogeological fluctuations observed historically at this site (Haslauer, 2005; Koch,

2009; Christie et al., 2009; Critchley, 2010; Brook, 2012). Water level measurements

do not support vertical flow at this site to be a significant factor (Critchley, 2010).

4.3.2 Field and laboratory analyses

Twelve groundwater sampling events occurred between May 2017 and May 2018. A

minimum of two weeks between sampling events was used in this study to limit inter-

ferences from irreversible subsurface biofilm perturbations associated with the preced-

ing sampling event(s) (Lundkvist et al., 2007; Tolhurst et al., 2008; Worley-Parsons,

2015). During each event, a series of samples was collected from one or both moni-

toring wells throughout continuous well purging from quiescence to over three hours

time. All samples were collected using dedicated pumps with PVC tubing that were

pre-sterilized in the laboratory by soaking and pumping a dilute bleach solution (0.6%

sodium hypochlorite) through the tubing for a minimum of one hour followed by a

sterile deionized water flush. Sterile deionized water was also used on site to prime the
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pumps (Flojet model No. 4105 Series diaphragm pump, Irvine, California, USA) as

necessary. Water levels were measured prior to pumping and the rate of water extrac-

tion from the wells was tracked periodically (average pumping rate = 5.8 litres/minute

[L/min]). The pumping rates applied are consistent with the goal of minimizing draw-

down within the well as in low-flow purging to minimize artificial mobilization and

entrainment of particulates (Puls and Barcelona, 1996; Barcelona et al., 2005); how-

ever, low levels of shear stress under laminar flow regimes are still expected to result in

some degree of biofilm detachment, mobilization and entrainment processes (Rittman,

1982). Temperature, dissolved oxygen, pH and electrical conductivity were measured

on-site throughout the well purging process using dedicated portable multiparameter

meters (YSI Quattro Professional Plus, YSI Inc./Xylem Inc., Ohio, USA). Turbidity

was also monitored using a portable turbidimeter (Hach R©, Colorado, USA). All probes

and meters were calibrated using standards as per the manufacturers’ instructions.

Additional parameters relevant for microbial water quality were measured for se-

lected samples. Flow cytometry was deployed for the evaluation of microbial cell den-

sities using the FACSCaliburTM flow cytometer (BD Biosciences, New Jersey, USA).

Culture-based methods, in the form of Biological Activity Reaction Tests (BARTTM ,

Droycon Bioconcepts Inc., Regina, Canada) for iron-related bacteria (IRB BARTTM ),

sulfate reducing bacteria (SRB BARTTM ), slime-forming bacteria (SLYM BARTTM ),

and algae (ALGE BARTTM including grass-green algae, blue-green algae, desmids,

diatoms and euglenoids) were also deployed in select samples to corroborate the rela-

tive abundance of specific groups of microorganisms. A molecular method for microbial

community analysis (16S rRNA gene amplicon sequencing) was performed concurrently

with some samples. As these analyses were the focus of another study (Chik et al.,

2020a), only key findings relevant for the interpretation of the ATP data are presented

in Appendix C4 and discussed. The parameters were first monitored in WO78 for four

additional sampling campaigns prior to initiating sample collection from WO77 on the

fifth sampling event.

4.3.3 Determination of ATP concentrations

All ATP measurements were determined using the Lumitester C-110 luminometer

(Kikkoman Food Products Company, Tokyo, Japan) with the Quench-Gone Aqueous

(QGATM) test kit (LuminUltra, Fredericton, New Brunswick, Canada) in accordance

to the manufacturer’s procedures (compliant with ASTM Standard D4012) in the lab-

oratory. Briefly, 120 mL of sample was collected and passed through a 25 mm diameter

glass microfiber syringe filter with a 0.7 micron (µm) nominal pore size (WhatmanTM
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GD/X, Florham Park, New Jersey, USA). Internal tests conducted by the manufacturer

have ascertained the ability of these depth filters to capture microorganisms down to

0.2 µm. The larger analytical volume was used compared to that recommended by the

manufacturer (25 to 50 mL for this type of source water matrix) to improve method

sensitivity, which would therefore allow for the quantification of microbial activity lev-

els anticipated to be near the nominal method detection limit. The syringe filter was

first removed from the syringe barrel to avoid the application of excessive negative

pressure to the filter membrane upon removal of the syringe plunger, and reattached

to the barrel. One (1) millilitre (mL) of UltraLyse 7 was added to the barrel and

passed through the filter and collected in a new 9 mL UltraLute (dilution) tube. The

sample was capped and inverted three times to mix the contents. Dedicated pipette

tips were used to transfer 100 µL of the contents of the dilution tube and 100 µL of

luminase enzyme to a new assay tube. The tube was gently swirled five times and

immediately inserted into the luminometer for measurement. The RLU (relative light

units) associated with the cellular ATP is measured using the luminometer, recorded

and converted to cellular ATP concentration in units of picograms/mL (pg-ATP/mL).

The luminometer was calibrated for each set of samples analyzed as recommended by

the manufacturer’s instructions. All ATP measurements were conducted on the same

day of sample collection. Duplicate aliquots were collected every fifteen samples to

characterize intra-sample variation; negative controls were also measured to evaluate

potential cross-contamination throughout sample collection and analysis. A total of 20

ATP time series between two wells were collected over a year at near-monthly intervals;

the collection of additional time series would be necessary to facilitate more rigorous

statistical tests and was beyond the scope of this initial proof-of-concept demonstration.

4.3.4 Non-metric multidimensional scaling of ATP time series

using DTW distances

Dynamic time warping (DTW) was originally developed for speech recognition to

facilitate pairwise comparisons between sequences of different lengths with irregularly

spaced observations (Sakoe and Chiba, 1978; Mueen and Keogh, 2016). DTW has been

recently used to elucidate spatial, temporal and/or seasonal dynamics for phosphorus

transport in watersheds (Dupas et al., 2015), geophysical seismic images to delineate

geological strata (Hale, 2013), and sewer flow monitoring (Dürrenmatt et al., 2013).

Here, the novel application of time series analysis using DTW to investigate ATP

patterns is demonstrated. This technique realigns the most similar features of each

time series to those of another based on imposed constraints, before a distance metric
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representing the (dis)similarity between the time series is computed. This temporal

realignment allows for time series of differing lengths and irregular sampling intervals

to be compared, based on morphological features of the biofilm as manifested by the

ATP time series. During a given purging sequence, peaks in microbial parameters

(such as ATP) have been interpreted as the location(s) of elevated microbial biomass

attributable to enhanced biofilm growth in the vicinity of the well from which water

is abstracted (Cullimore, 2007). As the relative microbial activity is of interest, each

ATP time series was normalized by re-scaling each ATP concentration measurement

between the minimum and maximum values for each well and sampling event. Thus,

the maximum ATP value within a time series would be indicative of the foci of biomass

from subsurface microbial biofilms while lower values can be expected with extended

purging (Cullimore, 2007). Details of the calculation of DTW distances are provided

in Appendix C2. In this work, DTW was implemented using the dtw package (v1.20-1)

in R (Giorgino, 2009) with local Euclidean distances. These distances were computed

for all pairs of time series and compiled in a distance matrix.

Non-metric multidimensional scaling (NMDS) is a robust, indirect ordination ap-

proach that can be applied to any (dis)similarity or distance matrix involving quan-

titative, semi-quantitative, or qualitative variables (Kenkel and Orloci, 1986). A low-

dimensional portrayal of ATP time series relationships was generated using NMDS,

which iteratively places each time series in a position that reflects the order of the

pairwise distances calculated. Accordingly, the scale of the axes and the ordination

of the plot are arbitrary and do not reflect the magnitude of the pairwise distances.

The emergence of patterns in the ordination allows for the corroboration of existing

knowledge, generation of hypotheses, or design of further sampling campaigns to target

any observed variation(s) (Kenkel and Orloci, 1986). It also provides an exploratory

tool to contextualize the strength of the (dis)similarities between the objects ordinated.

NMDS solutions with stress values above 0.20 should be interpreted with caution and

those with stress above 0.30 are highly suspect (Buttigieg and Ramette, 2014). The

NMDS ordination approach has been discussed extensively elsewhere (Kenkel and Or-

loci, 1986; Buttigieg and Ramette, 2014).
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4.4 Results

4.4.1 Physical and chemical water quality characteristics

Physical and chemical water quality parameters (Appendix C3) were generally con-

sistent with those observed historically at this site (Critchley et al., 2014). In ac-

cordance with common practice for groundwater chemistry evaluations, purging was

considered adequate when pH stabilized within 0.1 Standard Units (SU), electrical con-

ductivity fluctuated by less than approximately 5%, dissolved oxygen stabilized within

0.2 mg/L or 10% saturation (whichever is greater) and/or turbidity either stabilized or

fell below 10 Nephelometric Turbidity Units (NTUs) (Striggow, 2017). Temperature

is subject to rapid changes when collected for parameter measurement and therefore

was not typically used for determining well purging adequacy (Striggow, 2017). In all

sampling campaigns, these criteria were all achieved within the time taken to purge 3

to 5 well volumes, which corresponds to approximately 10 to 15 minutes depending on

exact purging flow rate.

To facilitate comparisons between the various parameters measured, the coefficient

of variation was evaluated for a running window of three consecutive measurements for

each parameter throughout purging (Figure 4.2). The apparent fluctuations exhibited

by turbidity are attributable to a large standard deviation relative to the low turbid-

ity values measured (i.e., consistently less than 10 NTUs). Meanwhile, the maximum

coefficients of variation observed for pH, electrical conductivity (EC), dissolved oxygen

(DO), and temperature were 3%, 6%, 30%, and 8%, respectively. The largest fluctua-

tions in dissolved oxygen concentrations were traceable to measurements taken when

the flow-through cell was disturbed during purge water sampling.

4.4.2 Adenosine triphosphate measurements

Groundwater microbial ATP concentrations ranged between 0.046 and 58.6 pg-

ATP/mL. Median ATP concentrations across all sampling events were 0.27 pg-ATP/mL

(n=126) and 0.38 pg-ATP/mL (n=190) for wells WO77 and WO78, respectively.

Across sampling events, ATP concentrations exhibited a slight decreasing trend from

the end of summer (sampling event 5) to late spring (sampling event 12) (Figure 4.3).

For sampling events during which ATP concentrations were measured concurrently in

both wells, ATP concentrations were generally higher in WO78 than in WO77, pre-

sumably due to local subsurface biofilm heterogeneities. A notable exception was the
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Figure 4.2: Stabilization history of groundwater quality parameters monitored, ex-

pressed as the coefficient of variation evaluated for running windows of three con-

secutive measurements throughout purging. Red and blue markers/lines are used to

denote monitoring wells WO77 and WO78, respectively. Each row of the plot denotes

a sampling event (corresponding dates provided in Figure 4.5). The panel columns

correspond to the following parameters: adenosine triphosphate (ATP), turbidity, pH,

electrical conductivity (EC), dissolved oxygen (DO), and temperature.

ATP concentrations observed in WO77 during sampling event 8 (Figure 4.3), which

was likely attributable to a higher average flow rate (12 L/min) sustained by the al-
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ternate pump used (Simer 2825SS, Delavan, WI, USA). Within a purge sequence, the

coefficient of variation evaluated for three consecutive ATP measurements fluctuated

as high as 168%, but was usually less than 50% towards the termination of most

sampling events (Figure 4.2). Ninety-five percent confidence intervals on the paired

differences of ATP concentrations between wells all contained zero, regardless of the

extent of purging achieved (Table 4.1). However, the margins of error calculated for

these confidence intervals progressively reduced with extended purging, decreasing by

nearly an order of magnitude (0.70 to 0.08 pg-ATP/mL) amongst samples collected in

the first 30 minutes of purging (n=35) compared to samples collected after 1.5 hours of

purging (n=39). This observation is consistent with the decreasing median of relative

differences between ATP concentrations in both wells with extended purging (Figure

4.4).
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Figure 4.3: Stabilization of ATP concentrations throughout purging. Red and blue

fill are used to denote monitoring wells WO77 and WO78, respectively. Each column

panel denotes the stage of purging attained. The dates corresponding to each sampling

event are provided in Figure 4.5.

The relative microbial activity (i.e., normalized ATP concentrations) in each well

was used to characterize the foci of biomass from subsurface microbial biofilms during

each sampling event (Figure 4.5). This normalization effectively addresses potential

biases attributable to the individual sampling campaign and well-specific factors (e.g.,
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Figure 4.4: Box-and-whisker plots of relative differences between WO77 (ATP1) and

WO78 (ATP2) paired ATP measurements throughout concurrent purging activities,

where t represents the time elapsed since start of purging in hours and n reflects the

number of paired samples falling within the specified period. The medians are marked

by diamonds, the boundaries of the box indicate the 25th- and 75th-percentile, and the

whiskers indicate the highest and lowest values of the results excluding extreme values.

Table 4.1: Paired t-test results comparing ATP concentrations between WO77 and

WO78. Tests were performed against the alternative hypothesis that the true difference

in means is not equal to zero.

Time since

start of purging

[hours]

n
mean difference

[pg-ATP/mL]

standard error

[pg-ATP/mL]

95% confidence interval

[lower, upper bound]
t-value p-value

t≤0.5 35 0.29 0.36 [-0.40, 0.99] 0.86 0.40

0.5<t≤1.5 37 0.04 0.18 [-0.31, 0.39] 0.22 0.83

t>1.5 39 0.01 0.04 [-0.06, 0.09] 0.36 0.72

steady-state flow rate attained, generally higher ATP concentrations in WO78). Com-

parisons of these patterns were made visually. A generally monotonic, decreasing trend

was sometimes observed; however, elevated ATP concentrations can also be observed

at later stages of purging. This indicates that the highest levels of microbial activity

(and by association, densities) are not always highest in the immediate vicinity of the

well casing. Recurring ATP patterns were noted in each well over consecutive sam-
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pling campaigns in September and November (Figure 4.5, sampling events 6 and 7) and

again in April 2018 (sampling events 10 and 11). During these periods, WO77 ATP

patterns typically exhibited two peaks during the latter stages of purging, while a single

prominent peak was exhibited within the first hour of purging in WO78. These peaks

reflect order-of-magnitude changes in microbial activity. The ATP patterns observed

on August 30, December 20, and May 30 (sampling events 5, 8, and 12, respectively)

within each well also bear some resemblance to each other, albeit with some visually

erratic fluctuations. Similar ATP patterns were also noted during the sampling event

on January 30, 2018 (sampling event 9) between the wells. This event coincided with

the first major increase in groundwater elevation (+20 cm) captured during the study

period. To confirm that the variation in these data is not inherent to the method

of analysis, additional microbial water quality analyses were conducted–—these are

described below and detailed in Table C4 of Appendix C.

4.4.3 Additional microbial water quality parameters

Microbial cell densities estimated using flow cytometry generally yielded sample

concentration estimates (mean≈500 cells/mL, median≈60 cells/mL) below the limit of

reliable quantification using this technique (i.e., ≈1000 cells/mL) (Hammes and Egli,

2010) (Appendix Table S4). These estimated densities are consistent with those that

can be estimated using ATP concentrations as microbial equivalents (by assuming an

average of 0.001 pg-ATP/microorganism as per QGATM test kit manufacturer’s rec-

ommendations), which confirmed that cell densities were largely below this threshold.

Despite the majority of flow cytometry cell densities falling below the limit of reliable

quantification, a weak positive correlation between ATP concentrations and sample

microbial cell concentration estimates was noted (Spearman’s ρ=0.147, p=0.03). 16S

rRNA gene sequences attributable to bacterial taxa (e.g., Paenibacillus and Rhizobia)

that are known to produce extracellular polymeric substances (EPS) and are prevalent

in the biofilm of reactors mimicking aerobic groundwater conditions (Ross et al., 2001)

were generally higher in abundance during the early and intermediate stages of purg-

ing (<60 minutes, corresponding with upwards of 10 well volumes purged, Chik et al.,

[2020a]). Sequences linked with Sphingomonadales, which are known to co-aggregate

with other bacteria and play a quantitatively important role in freshwater biofilm com-

munities (Rickard et al., 2002), were also in higher abundance during the early and

intermediate stages of purging. The vast majority of microbial taxa did not signifi-

cantly increase after an hour of purging (Chik et al., 2020a). This is consistent with

more prominent expression of BARTTM reactions observed for iron-related and slime-
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forming bacteria conducted for samples collected during the early stages of purging.

Low levels of sulfate reducing bacteria and algae were consistently observed (Appendix

C4).
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4.4.4 Non-metric multidimensional scaling of ATP time series

based on DTW distances

Figure 4.6: (Dis)similarities between all ATP time series portrayed through non-metric

multidimensional scaling (NMDS). Each red circle or blue triangle represents an ATP

time series corresponding to wells WO77 and WO78, respectively, and is labelled se-

quentially in order of sampling events. Markers appearing closer together reflect greater

similarities between the time series. The shaded regions are consistent with the marker

colors used for each well. This NMDS solution resulted in a stress value of 0.139,

indicating that this solution captures the order of (dis)similarities reasonably well.

Pairwise (dis)similarities between ATP time series calculated as DTW distances

were compiled in a matrix and ordinated using NMDS to generate a two-dimensional

representation of these relationships (Figure 4.6). ATP time series that have similar

features will typically exhibit a lower DTW distance metric than those that do not.

Accordingly, NMDS uses the order of the distance metrics between ATP time series

(each represented by a single marker) to position similar ATP time series closer to-

gether. ATP time series associated with each well and sampling event is represented

by a colored marker (red circles for WO77 and blue triangles for WO78) denoted with

the corresponding sampling event number. To aid visualization and interpretation, the

regions represented by each of the wells were also shaded consistently with the marker

colors.
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Notably, the markers denoting ATP time series collected from the two wells during

the same sampling campaign generally occupied different quadrants of this ordination,

with the exception of the ATP time series collected from both wells during the sampling

event on January 30 (Figure 4.6, sampling event 9). ATP time series collected during

the same pairs of consecutive events (i.e., sampling events 6/7, 10/11) in each well can

also be noted. These observations of (dis)similarities are consistent with those iden-

tified through a visual inspection of normalized ATP patterns (Figure 4.5). Notably,

not all (dis)similarities can be perfectly portrayed by NMDS and DTW distances. For

example, events 5, 8, and 12 were not clustered in this particular ordination. The

inability of this ordination to perfectly represent all time series (dis)similarities is re-

flected by the stress value of this NMDS solution (0.139), which indicates their good,

but not excellent portrayal.

4.5 Discussion

4.5.1 Physical and chemical indicators do not reflect purging

adequacy for microbial water quality evaluations

As would be expected, ATP does not follow the same types of trends as other physi-

cal and chemical water quality parameters as it is directly and exclusively linked to the

presence of microorganisms. Fluctuations in this biochemical must be interpreted with

consideration of the method used to measure it. Hammes et al. (2010) demonstrated a

strong, significant correlation between microbial ATP and estimated cellular densities

using flow cytometry across a range of different source waters (including groundwater).

While the same extent of correlation was not observed for this study (due to microbial

densities falling below the threshold deemed reliably quantifiable by flow cytometry), a

statistically significant correlation was nonetheless observed between these parameters.

Microbial ATP is measured only after its extraction from a discrete number of living

microorganisms—that are in essence, particles—in the sample. Strategies for inform-

ing microbial water quality that rely on ATP must therefore reflect particle transport

behaviour rather than that of dissolved solutes. Particle and (bio)colloid transport

through the subsurface are subject to advection, dispersion, physico-chemical filtration

(attachment/detachment), size-exclusion, and straining processes (Ginn et al., 2005).

Subsurface biofilms are conglomerates of microorganisms and their metabolites (Palmer

and White, 1997). Thus, they are also subject to these processes once detached and

entrained in pore water during purging (Liu et al., 2018). Accordingly, the break-
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through of these conglomerates, and ATP by association, is likely to exhibit extended

tailing resulting from attachment/detachment processes. Moreover, the transport of

these conglomerates can lead to increased variability in microbial observations (i.e.,

overdispersion) relative to that which would be expected if microorganisms were not

clustered. Patterns of ATP concentrations were consistent with the occurrence of these

phenomena, thereby indicating its utility for signifying fluctuations in microbial water

quality.

The use of continuous physical and chemical water quality measurements for the

determination of purging adequacy has rarely been disputed for evaluations of chem-

ical water quality sampling. However, this work underscores an important caveat:

the use of these conventional indicators of purging adequacy are not likely appropri-

ate for biochemical water quality parameters related to microbiological water quality.

This disparity between the transport of dissolved-phase substances in contrast with the

mobilization and transport of (bio)particles has been a widely observed phenomenon

(e.g., Schijven and Hassanizadeh, 2000; Ginn et al., 2005; Bradford and Torkzaban,

2008; Emelko and Tufenkji, 2010; Molnar et al., 2015) and critically underscores the

need to consider dedicated purge volume-based and purging time-based approaches for

chemical and microbial water quality evaluation, respectively. Purge volume-based ap-

proaches presume that the substance measured in a sample occupies negligible volume

within the voids of subsurface sediments in order to evaluate the position from which

the sample originated relative to the well. Conversely, all particles occupy volume;

biofilm biomass and other inorganic particles can reduce effective porosity through

obstructing connected flow paths through the subsurface. When the degree of obstruc-

tion becomes significant, the estimation of the sample’s position using purge volume

based-approaches also becomes increasingly inaccurate. Therefore, extrapolations be-

yond the time of sample collection using the same purging protocol (e.g., similar flow

rates, type of pump, etc.) has not been recommended for comparisons of field scale

microbial water quality data acquired from purge water sampling (Cullimore, 2007).

4.5.2 ATP measurements can be useful for indicating aquifer-

representative microbial water quality

The utility of ATP concentrations as indicators of minimal purging requirements

for informing microbial water quality sampling was evaluated. ATP evaluation is useful

in describing microbial activity and density (Webster et al., 1985; Jensen, 1989; Metge

et al., 1993; Hammes et al., 2010). Over the past decades, advances of the ATP method

to address possible matrix interference effects have resulted in greater sensitivity (limit
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of detection [LOD]≤0.1 pg-ATP/mL) than the first ATP assays developed (LOD≥10

pg ATP/mL). Thus, it should be useful in differentiating between microorganisms

suspended in aquifer pore water and the often higher densities of sessile microorganisms

on well screens and unconsolidated sedimentary aquifer materials in the vicinity of wells

(Harvey et al., 1984; Hazen et al., 1991; Griebler and Lueders, 2009; Sorensen et al.,

2013), especially at highly aerobic conditions that should strengthen the correlation

between ATP concentrations and microbial densities (McCarthy, 1991; Abelho, 2005;

van der Kooij et al., 2017). Its sensitivity relative to other microbial water quality

metrics lends itself for its use as a discriminatory indicator.

Recognizing that potentially dynamic aquifer water quality could be confounded

with measurable changes in ATP concentrations attributable to purging, the concurrent

purging of two adjacent wells situated in the same aquifer (here, 5 meters apart) was

necessary. Although the mean differences in ATP concentrations between the wells were

never significantly different from zero, their variability decreased by nearly an order

of magnitude during the latter stages of purging (Table 4.1). The results from other

microbial parameters evaluated (i.e., BARTTM results, microbial community analysis

through 16S rRNA gene sequencing) were largely consistent with this interpretation.

Accordingly, these multiple lines of evidence suggest that purging times on the order

of two hours or more are likely necessary to move beyond contributions from biofilms

in the immediate vicinity of the well. These observations are in alignment with the

recommended sampling times proposed by Cullimore (2007): at 1 hour, samples taken

would be from the outer edge of the biofilm biomass and partially reflect microbial

loadings from the groundwater; at 1.5 hours, samples should indicate the outer edge of

the subsurface biofilm biomass surrounding the well; and at 2 hours, the sample should

be from beyond the biomass but may still be subject to lingering impacts of detached

biofilms. Although ATP stabilization occurred during some events to suggest that the

outer edge of the biomass can be reached prior to 2 hours, a site-specific—arguably even

well-/season-specific—understanding of the subsurface biofilm community’s behaviour

may still need to be developed prior to attempting to minimize purging time. This work

is the first to document the behaviour of ATP concentrations throughout purging in a

shallow, unconfined and highly aerobic aquifer and demonstrate that this biochemical

measurement generally aligns with the behaviour expected of other microbial water

quality metrics.

It is commonly acknowledged that extended purging time at rates consistent with

the goals of low-flow purging will likely yield increasingly representative indications of

aquifer microbial water quality void of unwanted well-related biofilm artefacts. Purging

times of over several hours per monitoring well are seldom pragmatic due to constraints
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such as purge water disposal and the need for most microbiological parameters to

be evaluated within 24 hours of sample collection. Indeed, extended purging times

of at least 24 to 48 hours have been recommended so that the sample obtained is

most representative of the “natural flows of [suspended] microorganisms through the

well” (i.e., not unduly influenced by biofilm artefacts from pumping) (Cullimore, 2007);

some studies have suggested that even longer periods are necessary (Kwon et al., 2008;

Roudnew et al., 2014). From this perspective, the additional effort to track ATP

concentrations beyond several hours to minimize purging time for representative aquifer

water quality sampling is not likely warranted and beyond the scope of the current

work. However, in circumstances where extended purging is not practical or possible,

the relative (in)stability of ATP concentrations may still be useful for contextualizing

the possible influence of subsurface biofilms on microbial results.

4.5.3 Possible insights related to the spatio-temporal scales of

ATP patterns and associated subsurface biofilm behaviour

The heterogeneity of subsurface microbiology has been well-documented at a range

of spatial and temporal scales (Young et al., 2008). Due to the complexity of these

spatial patterns that result from environmental controls at multiple scales and over

time (Ettema and Wardle, 2002), much of the existing work has been qualitative in

nature (e.g. Young et al. 2008) and does not fully exploit the information inherent to

the acquired data (such as that available from sequential measurements). In fact, spa-

tial patterns of microbial biomass have been shown to be more complex than those of

other soil/porous media properties based on fractal dimension (Oline and Grant, 2002).

In this work, to facilitate the systematic examination of the patterns emanating from

purge water ATP measurements, dynamic time warping was applied. This approach

overcomes limitations of irregular sampling time intervals for which parametric time se-

ries analysis approaches would not be possible. Moreover, the reliance upon a measure

of microbial activity to characterize subsurface biofilm expanse requires consideration

of its sensitivity to systematic differences between wells (e.g., steady-state flow rate

achieved and inherently higher ATP concentrations in WO78). This taken into con-

sideration, the differences—and remarkably, similarities—exhibited by the normalized

ATP concentration sequences (i.e., relative microbial activity) throughout purging can

be used to gain further insights related to subsurface biofilm dynamics. This may have

more specific implications for applications such as remediation of biofouled wells and

studies of subsurface microbial ecology in well environments.

The recurring ATP patterns characteristic of each well (i.e., double peaks after an
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hour of purging in WO77, a single peak less than an hour of purging in WO78) during

consecutive events was supported by the systematic evaluation of their (dis)similarities

using the approach proposed in this work. Spatial heterogeneity clearly underpins

the distinctive patterns exhibited in each well despite exhibiting practically equiva-

lent physical and chemical water quality characteristics. The proximity of WO77 to

two monitoring wells installed within 2 meters may exert considerable influence on the

double ATP peaks observed in WO77. We suspect the visually similar ATP patterns

(i.e., sampling events 5, 8, and 12) within each well that follow consecutive sampling

events during which the recurring characteristic ATP patterns were observed may re-

flect a maturation of subsurface biofilm in the vicinity of the well screen at relatively

stable hydrogeological conditions. We believe that the similar ATP patterns between

the wells on January 30 coinciding with the first substantial increase in groundwa-

ter levels observed over the one year period reflect a hydrogeological perturbation to

both wells that overwhelms underlying spatial biofilm heterogeneity normally char-

acteristic of each well. Seasonal fluctuations of the water table have been suggested

to promote multi-directional flow (i.e., vertical and horizontal flow), which can result

in a greater degree of mixing in the aquifer (Smith et al., 2018). Collectively, the

ATP patterns observed at this site supports previously documented hydrogeological

influences on microbial water quality changes at field scale manifested as changes to

seasonal groundwater elevations (Lin et al., 2012), groundwater flow velocities, and/or

hydraulic gradients (van Driezum et al., 2018).

4.6 Conclusions

1. The use of ATP concentrations as a sensitive, field-ready tool for indicating micro-

bial water quality stability during well purging activities was evaluated in a shal-

low, unconfined, and highly aerobic aquifer. ATP observations were supported

by the results of other microbial water quality parameters measured concurrently

(i.e., microbial densities through flow cytometry, relative abundance/activity of

biofilm-related groups of microorganisms) and reflected time-limited (bio)particle

transport processes rather than that of dissolved solutes throughout purging.

However, the extrapolation of these results to other environments—such as anaer-

obic subsurface environments where ATP concentrations and microbial densities

may not exhibit the same degree of correlation—must be further investigated.

2. Whereas physical and chemical water quality characteristics appeared to stabilize

as anticipated within 10 to 15 minutes (approximately 3 to 5 well volumes), fluc-

73



tuations in ATP concentrations occasionally persisted beyond 2 hours of purging

(>30 well volumes). Assessments of microbial quality of drinking water sources

originating in the subsurface must therefore be conducted using approaches that

are designed to adequately reflect these differences in temporal scale. For exam-

ple, this may involve relying on pumping tests of several days duration rather

than relying on a limited number of well purge volumes for analysis.

3. Extended purging time at rates consistent with the goals of low-flow purging is

commonly acknowledged to yield increasingly representative indications of aquifer

microbial water quality. However, purging times of over several hours per mon-

itoring well are seldom pragmatic. In circumstances where extended purging is

not practical or possible, the (in)stability of ATP concentrations may be used to

contextualize the possible influence of subsurface biofilms on microbial results.

4. Patterns based on the relative microbial activity, as captured using normalized

ATP fluctuations throughout purging, are suggestive of subsurface biofilm be-

haviour. Such patterns can be systematically examined using the non-parametric

time series analysis approach applied. The recurrence of characteristic patterns in

each well during multiple sampling campaigns appears linked to seasonal hydro-

geological conditions (specifically, groundwater level fluctuations). Disruptions of

these patterns are speculated to be attributable to sufficiently large hydrogeolog-

ical perturbations, which may overwhelm ATP patterns normally characteristic

of each well. These dynamics warrant further investigation and should be con-

sidered in the design and interpretation of subsurface microbial water quality

investigations.
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5.1 Summary

Microbial water quality evaluations are essential for determining the vulnerability

of subsurface drinking water sources to fecal pathogen intrusion. Rather than directly

monitor waterborne pathogens using culture- or enumeration-based techniques, the

potential of assessing bacterial community using 16S rRNA gene amplicon sequencing

to support these evaluations was investigated. A framework for analyzing 16S rRNA

gene amplicon sequencing results featuring negative-binomial generalized linear mod-

els is demonstrated, and applied to bacterial taxa sequences in purge water samples

collected from a shallow, highly aerobic, unconfined aquifer. Bacterial taxa relevant as

indicators of fecal source and surface connectivity were examined using this approach.

Observed sequences of Escherichia, a genus that is suggestive of fecal source, were con-

sistently detected but not confirmed by culture-based methods. On the other hand,

episodic appearance of anaerobic taxa sequences in this highly aerobic environment,

namely Clostridia and Bacteroides, warrants further investigation as potential indi-

cators of fecal contamination. Betaproteobacteria sequences varied significantly on a

seasonal basis, and therefore may be linked to understanding surface-water groundwa-

ter interactions at this site. However, sequences that are often encountered in surface

water bodies (Cyanobacteria and Flavobacteriia) were notably absent or present at

very low levels, suggesting that microbial transport from surface-derived sources may

be rather limited. This work demonstrates the utility of 16S rRNA gene amplicon

sequencing for contextualizing and complementing conventional microbial techniques,

allowing for hypotheses about source and transport processes to be tested and refined.

5.2 Introduction

Updated terms of reference in the province of Ontario, Canada for treatment re-

quirements of drinking water derived from Groundwater Under the-Direct-Influence

of Surface Water (GUDI/GWUDI) sources will be promulgated imminently. They fo-

cus on establishing lines of evidence in support of human/mammalian fecal pathogen

contamination and/or microbial transport from the surface (Ahmed et al., 2013). Al-

though the updated terms of reference will rely heavily on conventional culture- and

enumeration-based microbial methods, the potential for emerging methods to support

the establishing additional lines of evidence has been acknowledged. Due to inherent

challenges of microbial concentration estimation through groundwater sampling, non-

detects are not uncommon despite their actual presence in the source (Chik et al.,
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2018). When pathogens or fecal indicators are not observed, additional lines of evi-

dence can be sought to gain a better conceptual understanding of microbial source and

transport at a given site.

16S rRNA gene amplicon sequencing offers a broad coverage of microbial water

quality, and its costs have been reduced substantially over time. Therefore, it is an at-

tractive tool for complementing conventional microbial methods in assessing the vulner-

ability of a subsurface drinking water source to fecal pathogen contamination (Griebler

and Lueders, 2009; Vierheilig et al., 2015; Savio et al., 2018). The highly conserved

regions (e.g., V3-V4 regions) of the 16S rRNA gene are present in every bacterium

and archaeon, but are adequately unique to enable their detection and differentiation

to the genus level of classification (Yarza et al., 2014). While this technique does not

inform whether these sequences originate from viable or culturable microorganisms,

it provides a rapid means of characterizing bacterial community composition and has

become a staple in many ecological microbiome studies (Vierheilig et al., 2015; Savio

et al., 2018).

Microbial communities within subsurface environments suitable for potable water

use have been increasingly characterized using 16S rRNA gene sequencing and similar

bio-molecular techniques in the past decades (e.g., Griebler and Lueders, 2009; Korbel

et al., 2017; Savio et al., 2019). In these contexts, indicator microbial taxa are often

sought to formulate hypotheses about relevant processes underpinning microbial water

quality, especially those that may indicate source water vulnerability to fecal pathogen

intrusion. However, most microbiome studies to date have relied upon proportions

(i.e., relative abundance) and rarefied counts (i.e., re-sampling of sequences reads from

samples with adequate library sequencing depth) for the identification of indicator

taxa (McMurdie and Holmes, 2014). These approaches have been demonstrated to

bear a strong risk of bias towards false positive indications of taxa exhibiting differ-

ential abundance (McMurdie and Holmes, 2014). Approaches based on relative taxa

sequence abundance fail to account for differences in library sequencing depth and am-

plification biases; rarefied sequence reads can also lead to a loss of statistical power

(McMurdie and Holmes, 2014). While statistically rigorous approaches for compar-

ing taxa sequence read abundance across samples have been proposed (McMurdie and

Holmes, 2014) and developed (e.g., Robinson et al., 2010; Love et al., 2014), they have

not been applied systematically to identify relevant indicator microbial taxa for sup-

porting pathogen vulnerability assessments. Critically, identification of such indicators

requires consideration of variability attributable to the sample collection protocol and

other key spatial and temporal gradients spanned by the samples collected.

The groundwater bacterial community was monitored over nine sampling campaigns
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spanning a year to demonstrate a progression of steps for identifying relevant bacterial

indicators. A focused investigation of two wells installed less than 5 meters apart in the

same shallow, unconfined aquifer was deployed. The bacterial core community (i.e.,

taxa that are abundant and prevalent across the samples collected) was inspected for

obvious trends prior to evaluating sample (dis)similarity based on taxa sequences and

environmental parameters concurrently measured. In the absence of obvious trends ex-

hibited by the bacterial core community at high taxonomic levels, differential sequence

read abundance testing was performed to examine the behaviour of known bacterial

indicators and screen for potentially relevant indicator taxa across spatio-temporal

factors. This demonstration provides proof-of-concept for the use, interpretations, and

limitations of 16S rRNA gene sequencing for supporting vulnerability evaluations of a

subsurface drinking water source to fecal pathogen contamination.

5.3 Materials and methods

5.3.1 Site location

The Woodstock groundwater study area is situated near drinking water produc-

tion wells six kilometers south of Woodstock, Ontario, Canada (Chik et al., 2020b).

The site comprises of rolling hills and drumlin features. A series of monitoring wells

were installed in a shallow unconfined aquifer comprising of mainly sand and gravels

interspersed with discontinuous silty till aquitard units (Haslauer, 2005).

A focused investigation of two wells situated 5 meters apart in a direction per-

pendicular to regional groundwater flow was conducted. Both monitoring wells (50.8

millimeter [mm] diameter, polyvinyl chloride [PVC] construction) were screened ap-

proximately 5.91 m to 16.57 m below ground surface (mBGS) and vented to the atmo-

sphere. Additional well installation details are provided in Koch (2009) and Critchley

(2010). The groundwater table was consistently above the top of the screened interval

throughout the duration of this study.

The aquifer in which the wells are developed is the shallowest of the regional aquifer

system and features extremely high groundwater velocities (aquifer hydraulic conduc-

tivity in the well screened interval estimated to be 4.8 × 10−4 to 1.9 × 10−2 m/s

(Devlin et al., 2012; Critchley, 2010)) and highly aerobic conditions (mean dissolved

oxygen during study period = 7.9 mg/L). The highly aerobic conditions are suggestive

of a relatively high degree of groundwater-surface connectivity. Regional groundwater
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flow is generally in a southeasterly direction. Annual recharge at this location is es-

timated to be 396 mm/year (Koch, 2009). Local infiltration travel time through the

unsaturated zone to the water table is estimated to be on the order of 2.8 to 5.6 years

(Sousa, 2013).

5.3.2 Experimental design

Given that the atmosphere is the primary source of dissolved oxygen in ground-

water (Rose and Long, 1988), the extremely aerobic nature of this unconfined aquifer

suggests a high degree of surface connectivity. Accordingly, bacterial community com-

position was expected to exhibit seasonality. However, spatial heterogeneity and the

extent of purging performed prior to sample collection are also known to confound

bacterial community characterization. Accordingly, three primary factors that con-

tribute to the variability of the 16S rRNA gene amplicon sequences (herein referred

to as ‘sequence reads’) were investigated: the season during which sampling was per-

formed (three levels), the well sampled (two levels), and the extent of purging (three

levels). Seasonality was represented by three sampling campaigns per season as guided

by surficial climatic conditions and groundwater level measurements (Appendix D1).

At this site, the respective periods are: summer (“baseline” period characterized by

relatively stable water table conditions, typically June - September), winter (transi-

tional period typically exhibiting the lowest but variable annual water table levels due

to occasional surface melt events, typically October - January), and spring freshet (pe-

riod exhibiting highest annual water table levels due to snowmelt recharge, typically

February - May) (Pasha, 2018). Two wells (WO77, WO78) within the same hydrogeo-

logical formation were sampled to characterize spatial heterogeneity attributable to the

individual wells. WO77 was sampled for only one event during the summer and phased

in such that both wells were consistently monitored in all sampling campaigns for the

following seasons. As groundwater samples are expected to be increasingly representa-

tive of the suspended microorganisms in the aquifer pore water without artefacts from

well-related biofilms with extended purging (Cullimore, 2007; Chik et al., 2020b), a

minimum of two groundwater samples were collected in each well during early (<20

minutes), intermediate- (>20 minutes, <1 hours) and late stages of purging (>1 hours,

<4 hours) that loosely correspond with major zones of interrogation projections as

described by Cullimore (2007). These projections delineate zones for describing the

influence of subsurface biofilms in and surrounding wells on abstracted water quality.

A total of 83 samples were collected. All factors were handled as fixed effects as

levels associated with each factor are not random; inferences extrapolated based on
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these data would not be very precise. A greater number of years of sampling from

additional wells would allow for these factors to be treated as random effects and

broader extrapolation of this work. However, this level of characterization was beyond

the scope of this proof-of-concept demonstration and does not contribute to supporting

the key objectives of this work.

5.3.3 Sample collection

Samples were collected in general accordance with purge-water sampling protocols

described by Cullimore (2007). Briefly, wells during each sampling campaign were

pumped from quiescence using dedicated pumps. The pumps (Flojet model No. 4105

Series diaphragm pump, Irvine, California, USA) and attached PVC tubing were pre-

sterilized in the laboratory using a dilute bleach solution (0.6% sodium hypochlorite)

followed by a sterile deionized water rinse. Sterile deionized water was also used on

site to prime the pumps as necessary. Groundwater samples were collected in ster-

ile WheatonTM bottles throughout well purging. Physical and select chemical water

quality parameters (turbidity, pH, dissolved oxygen, electrical conductivity, and tem-

perature) were monitored using a portable turbidimeter (Hach R©, Colorado, USA) and

a portable multiparameter meter (YSI Quattro Professional Plus, YSI Inc./Xylem Inc.,

Ohio, USA). These parameters generally did not fluctuate substantially after the re-

moval of 3-5 well purge volumes (approximately 10 to 15 minutes of purging) (Chik

et al., 2020b). All probes and meters were calibrated using standards as per the man-

ufacturers’ instructions. Additional chemical water quality parameters, including one

biochemical parameter (i.e., adenosine triphosphate), were also monitored in a related

study (Chik et al., 2020b). Summary statistics are presented in Appendix D2.

Two fecal indicators were concurrently enumerated in 100 mL aliquots of the

groundwater samples. Escherichia coli was enumerated by membrane filtration (Stan-

dard Method 9222) in samples using Trypton-Bile-X-Glucuronide (TBX) medium (Ox-

oid, Hampshire, UK) and incubation at 44±0.5◦C for 44±4 h, and male-specific (F+)

coliphage was enumerated in accordance with US EPA Method 1601 (US EPA, 2001).

All fecal indicator samples yielded non-detects. Additional parameters relevant for

microbial water quality were also evaluated in selected samples. Microbial cell densi-

ties estimated using the FACSCaliburTM flow cytometer (BD Biosciences, New Jersey,

USA) yielded results below reliable quantification limits of the method (<1 000 parti-

cles/mL)(Chik et al., 2020b). A qualitative culture-based tool, Biological Activity Re-

action Tests (ALGE-BARTTM , Droycon Bioconcepts Inc., Regina, Canada), was also

deployed during selected sampling campaigns to test for the presence of grass-green
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algae, blue-green algae, desmids, diatoms and euglenoids. These tests consistently

yielded non-detects.

5.3.4 16S rRNA gene amplicon sequencing

750 mL aliquots of the groundwater samples were filtered through EMD Milli-

pore Sterivex polyethersulfone 0.22 µm syringe filters (Millipore, Massachusetts, USA),

stored in dedicated Whirl-PakTM(Nasco c©, Fort Atkinson, Wisconsin, USA) and kept

in a -80◦C freezer until DNA extraction. A commercial kit (DNeasy PowerWater

Sterivex Kit, Qiagen, MO BIO Laboratories, USA) was then used to extract the DNA

(e.g., (Fiedler et al., 2018)). 16S rRNA gene fragments were amplified and labelled with

a unique, sample-specific multiplex-identifier (“barcode”) in a PCR-based one step bar-

coding procedure. Pro341F-Pro805R (5’-CCT ACG GGN BGC ASC AG-3’,5’-GAC

TAC NVG GGT ATC TAA TCC-3’) primers were used to target 16S rRNA V3-V4

regions (Takahashi et al., 2014). Briefly, PCR was set in triplicate for each sample (25

microlitres (µL)). The reaction mixture contained 2.5 µL of 10× standard Taq buffer,

0.5 µL of 10 millimolar (mM) dNTP, 1.0 µL of bovine serum albumin (20 mg/mL),

5.0 µL of 1 micromolar (µM) forward primer, 5.0 µL of 1 µM reverse primer, 1.0 µL

DNA, 0.125 µL of Taq DNA polymerase (5u/µL) and 9.875 µL of PCR water, DNA

was denatured at 95◦C for 5 min, followed by 30 cycles of 95◦C for 30 sec, 50◦C for

30 sec and 72◦C for 50 sec and followed by a final extension step at 72◦C for 10 min.

The triplicate PCR products were pooled. Two µL of PCR amplicons were loaded

onto a 2% TAE agarose gel to verify the amount and size of PCR products. PCR

products with equivalent amounts of correct amplicons were pooled, gel purified, and

quantified using the Qubit dsDNA HS assay kit. Library DNA was sequenced with

MiSeq Reagent Kit v2 (2x250 cycles); raw sequencing data have been deposited in

the NCBI SRA database (accession number PRJNA625549). A laboratory blank com-

prising of sterile DI water was performed for every 30 samples as negative controls.

The microbiome data analyses described below were first conducted with these quality

control samples included to evaluate the extent of the reagent contamination. While

these results are not central to the goals of the present investigation, they are integral

to the broader interpretation of results emanating from the field purge water samples.

Accordingly, results of the statistical analyses performed to identify bacterial taxa that

require judicious interpretation are summarized and presented in Appendix D3.
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5.3.5 Microbiome data analysis

Taxa have routinely been described as Operational Taxonomic Units (OTUs) gen-

erated from the de-novo clustering of sequences into bins using a threshold of 97%

sequence similarity. Clustering-independent approaches for determining amplicon se-

quence variants (ASVs, also known as sub-OTUs (Knight et al., 2018)) have been more

recently advocated to replace OTUs given their ability to distinguish subtle but real bi-

ological sequence variants (Callahan et al., 2017). While ASVs undoubtedly contribute

to increased differentiation of taxa at the species and sub-species levels (which may be

fundamentally important in cladistics-based studies), appreciable differences in bacte-

rial community composition related to changing source water quality conditions appear

to be captured at higher taxonomic classifications (e.g., class/order) across many stud-

ies (Lin et al., 2012; Flynn et al., 2013; Ben Maamar et al., 2015; Gülay et al., 2016;

Graham et al., 2017; Pogoda, 2017; Lee et al., 2018; Fiedler et al., 2018). Accordingly,

a phenetics-based OTU approach was applied.

The UPARSE amplicon analysis algorithm (Edgar, 2013) from the USEARCH8 (32-

bit) package (Edgar, 2010) implemented in IMNGS (Lagkouvardos et al., 2016) using

default quality settings was used to generate OTUs. A minimum abundance cutoff of

0.25% for each OTU in a sample was set for its inclusion in the final OTU feature table.

OTU sequences were aligned and classified as taxa using the SILVA reference database

(v. 132, Quast et al., 2013; Glöckner et al., 2017); OTUs classified as chloroplast (2

965 sequence reads, 0.1% of sequence reads), mitochondria (602 sequence reads,0.02%

of sequence reads), or archaea (79 582 sequence reads, 3% of sequence reads) were also

filtered prior to data analysis.

After sequence quality filtering, a total of 2 541 261 sequence reads across all 83

purge water samples were assignable to 288 bacterial OTUs. The mean relative abun-

dance of unclassified bacterial sequence reads accounted for 26% at the class level, and

increased to 55% at the genus level. Twenty bacterial OTUs were unclassified at the

phylum rank (mean relative abundance 9.5%) and were taxonomically filtered as these

sequences are likely associated with DNA that were unintended targets of the primers

used, or are novel chimeras (Haas et al., 2011). The mean sequencing library depth af-

ter quality and taxonomic filtering was 27 891 sequence reads. The sequences affiliated

with 183 of 259 bacterial OTUs (for which model fitting was possible) were deemed

to be either significantly greater or present exclusively in the environmental samples

(Appendix D3).

All analyses were performed within the “R” environment using the packages “phy-

loseq” (McMurdie and Holmes, 2013) “vegan” (Oksanen et al., 2019) and “DESeq2”
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(Love et al., 2014) on the raw sequence read data. Alpha diversity was evaluated us-

ing the number of observed species and the Chao1 and Shannon indices (Chao, 1984;

Shannon, 1948). Non-metric multidimensional scaling (NMDS) was conducted using

Bray-Curtis dissimilarities calculated from log-transformed sequence counts (with a

pseudo-count of one for non-detects) to facilitate a two-dimensional representation of

the sample relationships. This log-transformation down weights the influence of the

most abundant OTUs given that most differences between samples are anticipated to

be observed with the transient/rare bacterial community. The pseudo-count adjust-

ment was used only for the visualization of samples rather than for statistical testing.

Permutational Multivariate Analysis Of Variance (PERMANOVA) using the ordinated

distance matrices against key factors was performed using the adonis function in the

package “vegan” (Oksanen et al., 2019). Constrained Analysis of Principal Coordinates

(CAP) was also performed to explore relationships between sample 16S rRNA bacterial

composition and physical and chemical parameters measured concurrently.

Key taxa contributing to the observed sample relationships were identified by statis-

tical testing of the original raw sequence counts. Rather than omitting samples due to

low library sequence depth, the negative binomial generalized linear model (NB GLM)

framework as implemented through DESeq2 (Love et al., 2014) was used to explore

taxa differential abundance. A negative binomial model allows for overdispersion in

the sequence count distribution. Briefly, NB GLMs were applied to sequence counts

nij for each taxon i in sample j with fitted mean µij and a taxon-specific dispersion

parameter αi. The fitted mean is a function of a sample-specific size factor sj and a

parameter qij proportional to the expected true concentration of that taxon for sample

j. The coefficients βi provide the log2-fold-difference estimates for each taxon. Log2-

fold-difference estimates were re-expressed as log10-fold-differences for more intuitive

order-of-magnitude interpretations. The default setting for shrinkage estimates was

utilized; this allows for imprecise log10-fold-difference estimates associated with OTUs

comprising of low counts to be shrunk and facilitate a better comparison of these es-

timates across factors (Love et al., 2014). Saturated models comprising of two- and

three-way interactions between all factors were first investigated. Overall model sig-

nificance was evaluated by determining the difference in likelihood values between a

fitted model and a reduced model. All models were reduced to simple additive GLMs

of the three main factors after a lack of significant (p>0.05) interactions was observed

for the majority of taxa. The significance of differential abundance estimated for a

taxon between factor levels was tested using a Wald chi-square test (Love et al., 2014).

All p-values were adjusted for multiple comparisons controlling for the false discovery

rate (Benjamini and Hochberg, 1995).
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5.4 Results

5.4.1 The core microbial community: dominant taxonomic

groups observed in groundwater samples

Two major discontinuities in the empirical taxa abundance distribution compris-

ing all groundwater samples were observed (Appendix D4) and are used to distinguish

the bacterial core (OTUs in greater than 91% of samples), transient (OTUs between

56% and 91% of samples), and rare bacterial community (OTUs in less than 56% of

samples). The discontinuities are marked by OTU sequence reads affiliated with the

genera Novosphingobium (present in 76 of 83 samples, Figure 5.1 dashed-line) and Bre-

vibacillus (present in 46 of 83 samples, Figure 5.1 dash-dotted line). Additionally, 107

bacterial OTUs were consistently observed in all groundwater samples collected; their

reads collectively comprised 78% of reads within each sample, on average. Sequence

reads affiliated with OTUs from the phyla Proteobacteria (372 762 reads, 27 OTUs),

Omnitrophia (646 620 reads, 56 OTUs), and Patescibacteria (167 169 reads, 8 OTUs)

dominated the core bacterial community. Rokubacteria (115 352 sequence reads, 9

OTUs), Nitrospirae (38 080 sequence reads, 4 OTUs), Cyanobacteria (48 081 sequence

reads, 3 OTUs) can also be considered part of this environment’s core community.

Notably, sequence reads belonging to an OTU of the Escherichia genus was the most

abundant of the Proteobacteria (93 794 reads) and ubiquitous across all 83 purge wa-

ter samples. Escherichia sequence reads were also present in the negative controls,

albeit at significantly lower levels than in the purge water samples (p<0.001). Bac-

teroidetes, Firmicutes and Proteobacteria were the only phyla that had OTU sequences

represented as part of the core, transient and rare bacterial communities.

A relative abundance plot of bacterial taxa on phylum level across all purge water

samples was generated (Figure 5.2); additional relative abundance plots comprising of

only core community taxa, and a focused examination of Proteobacteria composition,

are presented in Appendix D4. These plots complement the empirical taxa distribution

plot and highlight the stability of the core bacterial community and the dominance of

members affiliated with the Proteobacteria, Omnitrophia, and Patescibacteria phyla.

Sequence reads affiliated with members of the Firmicutes phylum are notably excluded

from the core community, but were generally present at higher relative abundances

during the intermediate stages of purging. Sequence reads of Proteobacteria OTUs

appear more prominent in the summer than the following seasons. Over the same

seasons, the relative proportions of Betaproteobacteria to other Proteobacteria classes

changed substantially.

85



0

25

50

75

100

10
2

10
3

10
4

10
5

Total abundance

F
ra

c
ti
o
n

 o
f 
s
a

m
p
le

s
 [

%
]

Phylum

Acidobacteria

Actinobacteria

Bacteroidetes

Chloroflexi

Cyanobacteria

Deinococcus−Thermus

Epsilonbacteraeota

Firmicutes

GAL15

Gemmatimonadetes

Nitrospirae

Omnitrophicaeota

Patescibacteria

Planctomycetes

Proteobacteria

Rokubacteria

Verrucomicrobia

WPS−2

Zixibacteria

Class Prevalence in All Samples
Colored by Phylum

Figure 5.1: Total abundance of OTU sequence reads across all samples plotted against

their prevalence (fraction of samples across which an OTU was detected). Dashed

(91%) and dot-dashed (56%) lines denote the prevalence thresholds determined based

on the empirical taxa abundance distribution of all samples (Appendix D4).

5.4.2 Seasonal/event-based influences and spatial heterogene-

ity as key drivers of bacterial community diversity

All alpha diversity metrics calculated (observed diversity richness [OTUs], estimated

OTU richness [Chao1], and Shannon diversity, Appendix D5) were consistently higher

in well WO78 than WO77 as supported by a Wilcoxon rank sum test (p<0.001). Alpha

diversity was not linked to the stage of purging (p>0.20). Seasonality appeared to

be influential only for some alpha diversity metrics (i.e., number of OTUs and Chao1

indices, p<0.10), which indicated that more diversity was exhibited in samples collected

during the summer period.

Bray-Curtis distances were calculated to characterize the beta-diversity between

samples; NMDS performed based on these distances (Figure 5.3) revealed a clear sep-

aration of samples between the well (PERMANOVA, R2 = 0.189, p<0.001) and the

seasons (PERMANOVA, R2 = 0.142, p<0.001) from which the samples were collected.

The purging stage appeared least influential of the factors investigated but remained a

significant factor within the ordination (PERMANOVA, R2 = 0.054, p<0.001). When

PERMANOVA was repeated using individual sampling campaigns as levels in place of
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Figure 5.3: Non-metric multidimensional scaling (NMDS) ordination of purge water

samples using Bray-Curtis dissimilarities (Stress=0.138). Three facets were used to

portray the purging stage achieved at the time of sample collection. Circles and tri-

angles represent the wells from which the samples were collected (WO77 and WO78,

respectively); their colours are indicative of the season during which the samples were

collected.
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the seasonal factor, substantially more of the variation was explained by sampling cam-

paigns (R2 = 0.395, p<0.001) than the well membership (R2 = 0.160, p<0.001) and

purging stage (R2 = 0.044, p<0.001). The implications from this analysis are two-fold.

First, spatial heterogeneity is demonstrated to exert considerable influence on bacterial

community composition in the samples, even when collected from wells spaced merely

5 m apart in the same aquifer. Second, sampling campaign-based changes explained

more of the variability in bacterial community composition than the seasonal factor

(i.e., summer, winter, spring as specified) while accounting for spatial heterogeneity and

the purging extent. This observation suggests that 16S rRNA gene amplicon sequenc-

ing is sufficiently sensitive—and therefore suitable for—denoting episodic microbial

water quality changes occurring at event-based scales. However, a full site character-

ization (including the re-definition of seasonality at this site) is beyond the scope of

this proof-of-concept demonstration. Consequently, subsequent analyses of individual

OTUs in this study were focused on the factors originally specified. CAP yielded similar

inferences as the NMDS ordination, although the variability in bacterial community

composition attributable to seasonal/sampling campaign influences was made more

prominent (Appendix D6). This result was to be expected as the measured environ-

mental variables (e.g., groundwater electrical conductivity, temperature, pH) differed

more between sampling campaigns than between wells or throughout the purging pro-

cess. As expected, seasonally-influenced parameters of temperature, pH and electrical

conductivity were weakly aligned with the first two ordination axes (Appendix D6).

5.4.3 Identification of relevant OTUs through differential abun-

dance testing

Useful indicator taxa were identified by ranking the significance of factor coefficients

within the three-factor NB GLM fitted for each OTU (Appendix D7). OTUs comprising

of more than an average of 5 sequence reads per sample are represented in Figure 5.4

and summarized by class, in order of increasing log10-fold differences in comparison to

the base level of each factor. Rather than blanket removal of all OTUs detected in

negative control samples, the same statistical framework was used to flag OTUs in the

purge water samples that were also detected in the negative controls to account for the

possibility of background/reagent contamination.
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Despite a generally higher alpha-diversity in WO78 than WO77, the sequences of the

vast majority of OTUs comprising the core bacterial community were not significantly

different between the two wells. The higher alpha-diversity is suspected to be linked

with a higher abundance of bacteria present in WO78; ATP measurements in the

same wells indicated higher levels of microbial activity in WO78 that is suggestive of

higher microbial densities (Chik et al., 2020b). Many OTUs of the same bacterial

class responded to each factor investigated similarly. For the purging stage factor

coefficients, several OTUs affiliated with the Bacilli and Alphaproteobacteria classes

were significantly higher during the intermediate purging stage. No OTUs between the

intermediate and the late stages of purging exhibited a significant increase in sequence

read abundance. The shifts of Proteobacteria composition between seasons noted by

means of relative abundance was confirmed; sequence reads of OTUs from the bacterial

class Betaproteobacteria were most significantly different between seasons. Sequence

reads affiliated with classes of Bacilli, Clostridia, and Bacteroidetes OTUs were also

noted to be significantly different between seasons.

5.5 Discussion

5.5.1 Bacterial diversity and core community analysis as initial

indicators for surface-water groundwater interactions

A handful of studies deploying NGS methods to document microbial communities

in subsurface environments suitable for potable water supplies have emerged over the

past decade (e.g. Vierheilig et al., 2015; Savio et al., 2018). Although there is no

evidence that a community endemic to groundwater sources exists or has been described

(Griebler and Lueders, 2009), differences in groundwater and surface water bacterial

communities may be used to evaluate the vulnerability of subsurface water sources

to fecal pathogen intrusion (e.g. Lin et al., 2012; Ben Maamar et al., 2015; Braun

et al., 2016; Graham et al., 2017; Pogoda, 2017; Fiedler et al., 2018). Savio et al.

(2019) observed dynamic response of Flavobacteriia proportions in karst aquifer water

bacterial core community during recharge events. Where the hydrogeological setting

is susceptible to rapid changes to microbial water quality (e.g., due to flashy responses

attributable to preferential flow paths in mature karst aquifers with high secondary

porosity), major bacterial core community shifts are likely indicative of heightened

vulnerability to surface-derived microbial transport. In contrast, the hydrogeological

setting investigated herein is an unconsolidated sand-and-gravel aquifer where changes
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to groundwater quality can be expected to be gradual in comparison. In this study,

relative abundance and prevalence-based approaches at higher taxonomic levels did

not reveal substantial shifts to the core bacterial community observed. Accordingly, a

bacterial core community analysis of 16S rRNA gene amplicon sequencing data may

serve only as an initial litmus test for obvious signs of vulnerability to surface-derived

fecal pathogen intrusion.

Failure to observe substantial shifts to the bacterial core community should not

be directly interpreted as a lack of surface water influence or source water quality

changes. Both alpha- and beta-diversity metrics indicated that spatial heterogeneity

and aspects of seasonality at this site were influential to overall bacterial community

composition. In taking spatial heterogeneity into consideration, bacterial community

composition was revealed to be sensitive to episodic microbial water quality changes

occurring at event-based scales. However, their influences on relevant microbial indica-

tor taxa—especially those comprising the transient/rare community—must be further

parsed out considering the inherent limitations of 16S rRNA gene amplicon sequencing

(e.g., artefacts arising due to unequal sample sequencing depths). This requires dedi-

cated approaches for differential abundance analysis of sequence read count data. The

ensuing discussion focuses on how site-specific source and transport hypotheses can be

developed based on the taxa identified from the progression of core community analysis

to differential abundance testing. These hypotheses can be refined and further tested

to inform groundwater vulnerability assessments to fecal pathogen intrusion.

5.5.2 Escherichia sequence reads from 16S rRNA gene sequenc-

ing require judicious interpretation

Fecal contamination of human/mammalian origin remains the most relevant source

of human waterborne diseases globally (Santo Domingo and Ashbolt, 2012). Many

members of the genus Escherichia are universal gut biota found in humans and warm

blooded animals (Madigan et al., 2017); Escherichia coli remains the de facto uni-

versal indicator of fecal contamination (Santo Domingo and Ashbolt, 2012; Odonkor

and Ampofo, 2013). While the negative controls did yield some Escherichia sequence

reads to indicate possible contamination of the DNA extraction kits used (e.g., Corless

et al., 2000; Salter et al., 2014; Pollock et al., 2018), the levels observed in the controls

were significantly lower than those typically found in the groundwater samples. Their

presence and abundance across all groundwater samples (mean 1 165.7 sequence reads

per sample) considering the small effective volume amplified and sequenced indicate

the probable presence of a persistent fecal source likely quantifiable by culture-based
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methods (only 3.0 µL of undiluted DNA extract from the 100 µL elution volume rep-

resenting the original 750 mL filtered sample volume was amplified, and only a portion

equivalent to 4 nanomolar (nM) of the pure amplicons was sequenced). However, none

of the conventional culture-based enumeration procedures (Escherichia coli and male-

specific coliphage) performed using 100 mL aliquots yielded detections of the target

fecal indicators. This discrepancy underscores the challenges of corroborating results

emanating from culture-based and molecular-based methods.

Many factors can ultimately confound the use of Escherichia sequences detected

using 16S rRNA gene sequencing as fecal indicators. This may include the inher-

ent limitations of measurement error, physiological state of bacteria from which the

recovered sequences originate, and the presence of background environmental DNA

sequence fragments from deceased microorganisms. Moreover, Escherichia coli may

be more prevalent in the natural environment than historically anticipated, including

those that may not originate from mammalian fecal sources (Scott et al., 2002; van der

Wielen and Medema, 2010; Frick et al., 2018). Therefore, extreme caution should be

exercised in using these gene sequences directly as replacements of culture-based fecal

indicators without enhanced characterization of these sequences. This type of charac-

terization is possible through the design and use of targeted primers and protocols for

Escherichia coli as in Sabat et al. (2000) and Reischer et al. (2008)) or more extensive

source monitoring programs designed to track known sources (e.g., septic tanks, agri-

cultural manure, poikilothermic organisms). The use of targeted fecal gene sequences

for concentration estimation and comparisons with culture-based results would require

evaluation against a standard PCR regression curve (e.g., as applied in quantitative

PCR); the method sensitivity limit (MSL, Chik et al., 2018) based on the minimal

detectable number of fecal gene sequences per reaction volume (Reischer et al., 2006,

2008) can further facilitate comparisons of method sensitivity using different instru-

ments, protocols, and water matrices.

5.5.3 Anaerobic taxa sequences as potential vulnerability indi-

cators within an aerobic environment

Sequences of Clostridia OTUs in this subsurface environment were generally rare

(with several OTUs detected in the negative controls). However, the occurrence of

sequence reads of these obligate anaerobes coincided with other anaerobic taxa such

as Bacteroides and Prevotella (phylum Bacteroidetes) as well as a notable decrease

in several aerobic Bacillales OTUs during some sampling campaigns. These anaero-

bic taxa dominate human and mammalian gut microbiota (Embley and Stackebrandt,
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1997; Turnbaugh et al., 2009), but are not exclusive to these sources (van der Wielen

and Medema, 2010). In similar aerobic freshwater environments, they are expected to

be orders of magnitude lower than aerobic bacteria (e.g., Balkwill and Ghiorse, 1985).

Coupled with the fact that Clostridia are subject to documented biases attributable

to DNA/RNA extraction from gram-positive bacteria (which have structures that are

difficult to disrupt, as typical of bacteria within the Firmicutes phylum (Embley and

Stackebrandt, 1997; von Wintzingerode et al., 1997; Frosteg̊ard et al., 1999)), their de-

tection from the overwhelmingly aerobic conditions characteristic of this aquifer (mean

dissolved oxygen = 7.9 mg/L, historical mean dissolved oxygen = 8.7 mg/L (Critchley,

2010)) was made more remarkable. Accordingly, the divergent behaviour of anaero-

bic and aerobic genera may be suggestive of episodic microbial source water quality

changes and warrants additional investigation as a site-specific vulnerability indicator

of fecal contamination.

5.5.4 Betaproteobacteria sequences as potential indicators of

seasonal subsurface processes

Consistent with the majority of past studies, sequences belonging to the phylum

Proteobacteria were most dominant in this study (Lin et al., 2012; Flynn et al., 2013;

Ben Maamar et al., 2015; Gülay et al., 2016; Graham et al., 2017; Pogoda, 2017; Lee

et al., 2018; Fiedler et al., 2018). The conditions of the present study are perhaps most

closely aligned with bacterial groups observed from nitrate-impacted groundwaters in

Brittany, France (Ben Maamar et al., 2015). The nitrate levels were much higher in

the groundwater samples (45-57 mg/L) than in the present study (14.0 mg/L) and

sequences from the Betaproteobacteria class were identified to be the most abundant.

Ben Maamar et al. (2015) observed that owing to their prevalence across samples and

their distinct relative abundance profiles, Betaproteobacteria were useful to distinguish

“recent” (< 25 years) from “older” (> 40 years) groundwaters. OTUs belonging to

the Comamonadaceae, Burkholderiaceae, and Oxalobacteraceae bacterial families were

observed to dominate over other Betaproteobacteria families in “recent” groundwaters

compared to “older” groundwaters. In another study of a riverbank filtration site, the

increase of Burkholderiaceae sequences in wells relative to other Proteobacteria has also

been suggested to be indicative of allochthonous microbial loads (Fiedler et al., 2018).

In the present study, OTUs from the Betaproteobacteria class (classified in SILVA

v. 132 as the order Betaproteobacteriales within the class of Gammaproteobacteria)

were identified to exhibit the most significant seasonal responses. Their levels (both in

terms of relative and differential abundance) were elevated during the summer when
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elevated groundwater electrical conductivity measurements may otherwise suggest an

“older” average groundwater age. While this observation apparently contradicts the

inferences drawn by Ben Maamar et al. for their use as an indicator of groundwater

age, we speculate that both observations may be collectively explained by the ele-

vated nitrate levels associated with the “recent” groundwater in Ben Maamar’s study

and the historically elevated nitrate concentrations during the growing season at this

agricultural site (Haslauer, 2005; Koch, 2009). Closer examination of relative abun-

dance at lower levels of bacterial taxonomy (Appendix D8) revealed the dominance of

Pseudomonadaceae and Burkholderia OTUs. Both families are known to contain deni-

trifying organisms (and generally regarded as copiotrophs) that could catalyze the full

series of denitrification reactions or specialize in the reduction of nitrite produced by

bacteria affiliated with the Enterobacteriales order (Lycus et al., 2017; Grießmeier and

Gescher, 2018). Additional microbial and chemical water quality analyses focused on

Betaproteobacteria taxa and nitrogenous chemical species in wells within the vicinity

may be warranted to investigate their use as indicators of surface water-groundwater

interaction (as they may be linked to agricultural activities occurring at this site).

Bacterial biomass turnover times through analysis of leucine incorporation as in van

Driezum et al. (2018) may also be used to discern whether the seasonal response exhib-

ited by Betaproteobacteria is a result of autochthonous (i.e., growth of existing bacteria

in response to nutrient availability in the groundwater) or allochthonous processes (i.e.,

introduction of microorganisms from external water source[s]).

5.5.5 Bacillales and Sphingomonadales sequences as potential

indicators of adequate well purging

Subsurface microbial biofilms in and surrounding the well screen are known to

contribute microbial water quality artefacts in abstracted well water, especially upon

initiation of well purging activities (Cullimore, 2007; Chik et al., 2020b). Consequently,

extensive purging is often necessary to obtain samples that are representative of sus-

pended microorganisms in the aquifer pore water void of these artefacts (Harter, 2003).

In this regard, the elevated levels of sequence reads affiliated with Bacillales and Sph-

ingomonadales OTUs during the intermediate purging stage appear to indicate the

relative position of the “focal biomass” (Cullimore, 2007) in the subsurface. Both gen-

era of bacteria are ubiquitous in soil and groundwater environments (Brooks et al.,

2015). Some of the Bacillales (Paenibacillus, Brevibacillus) and Sphingomonadales

(Sphingomonas, Novosphingobium) sequences belong to genera known to produce ex-

tracellular polymeric substances (EPS) and are key taxa found in biofilm reactors
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mimicking aerobic groundwater conditions (Ross et al., 2001; Rickard et al., 2002).

However, as Bacillales-affiliated OTUs may be subject to aforementioned biases at-

tributable to DNA/RNA extraction from gram-positive bacteria, sequence reads of

Sphingomonadales OTUs may be more useful to indicate biofilm artefacts related to

purging activities. Sphingomonas spp. in particular have been identified to be a

“highly co-aggregating genera” that are quantitatively important members of freshwa-

ter biofilms due to their ability to provide other community members with a coloniza-

tion advantage through adhesion mechanisms (Rickard et al., 2002). The significant

reduction of sequence reads from both Bacillales and Sphingomonas OTUs—and the

lack of significant increase of all other OTUs during the last purging stage—provides

a useful indication of adequate well purging for aquifer-representative microbial water

quality samples.

5.5.6 Scarce Cyanobacteria and Flavobacteriia sequences as

potential lines of evidence of limited surface water-ground-

water bacterial transport processes

Recently, pigment-bearing microorganisms including those commonly found in the

phylum Cyanobacteria have been suggested as indicators of recent surface-derived mi-

crobial water quality influence (Ahmed et al., 2013). Many of the bacteria within this

phylum are obligate photoautotrophs which have been deemed unlikely to persist in the

subsurface void of light sources (Minda et al., 2008). Therefore, their increased levels in

the subsurface is likely indicative of surface-derived microbial transport. Flavobacteriia

abundance in the bacterial community has also been suggested to indicate microbial

water quality changes associated with surface discharge events in riverbank filtration

and karst environments respectively (Fiedler et al., 2018; Savio et al., 2019).

In this study, all Cyanobacteria sequences were affiliated with three OTUs belong-

ing to the class Melainabacteria. However, this bacterial class has been more recently

proposed as a candidate phylum sibling to Cyanobacteria as its members can fix ni-

trogen and does not perform photosynthesis (Di Rienzi et al., 2013). The lack of

other Cyanobacteria taxa and scarce levels of Flavobacteriia-affiliated sequences across

all samples—along with consistent non-detects across all culture-based ALGE-BARTs

conducted—indicate that the shallow unconfined aquifer in the present study may not

be highly susceptible to local/recent surface-derived microbial water quality impacts

through transport. This hypothesis is further supported by hydrogeological evidence

that average travel times through the unsaturated zone to the water table at this lo-

cation has been estimated to be on the order of 2.8 to 5.6 years (Sousa, 2013). The
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confirmation of the abundance and prevalence in higher soil horizons or nearby surface

water features (e.g., ephemeral streams and agricultural ditches) may be a promising

line of evidence indicating limited surface-derived microbial transport processes.

5.6 Conclusions

In this work, the utility of bacterial community composition to inform vulnerability

assessments of subsurface water sources to fecal pathogen intrusion was investigated.

An initial evaluation of the core bacterial community did not yield any obvious in-

dication of a high level of vulnerability. Spatio-temporal factors influencing bacterial

community composition and identification of useful indicator taxa was subsequently

demonstrated. Spatial heterogeneity exerted appreciable influence on bacterial commu-

nity composition; its consideration was paramount to parsing out changes attributable

to event-specific/seasonal factors. The consideration of these factors are necessary to

meaningfully characterize microbial water quality at the aquifer scale. Accordingly,

examination of bacterial indicator taxa relevant as indicators of fecal source and sur-

face connectivity was performed using NB GLMs considering these key spatio-temporal

factors.

16S rRNA gene sequences linked to fecal contamination (i.e., Escherichia genus)

were consistently detected in all samples. However, their use in lieu of culture-based

fecal indicators is not recommended due to inherent differences between culture-based

and culture-independent methods. On the other hand, the divergent behaviour of

anaerobic taxa (specifically Clostridia and Bacteroides) and aerobic taxa (Bacilli) se-

quences during some events was observed. Their episodic appearance in highly aerobic

conditions at this site warrants further investigation as possible indicators of fecal

contamination. The sequence reads belonging to the order Burkholderiales (class: Be-

taproteobacteria) exhibited dynamics that likely reflect seasonal water quality changes

and nutrient dynamics at this site. How these changes are linked to surface-water

groundwater interactions can further be elucidated through focused evaluation of this

taxon, the use of biochemical techniques such as leucine incorporation, and chemical

water quality analyses. Additionally, the abundance of Bacillales and Sphingomon-

adales sequences may be useful for informing the adequacy of well purging to obtain

groundwater samples representative of suspended microorganisms in the aquifer pore

water. Finally, the few Cyanobacteria and Flavobacteriia gene sequences observed—

both of which are commonly reported in microbial community studies of surface water

sources—provide a promising line of evidence that microbial transport from surface-
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derived sources may be rather limited at this site. Additional targeted chemical and

microbial sampling informed by this work can be used to refine site-specific hypotheses

related to microbial source and transport, thereby informing vulnerability assessments

of these subsurface water sources to fecal pathogen intrusion.
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Chapter 6

Synthesis of findings & research outlook
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6.1 Synthesis

The overall objective of this dissertation was to investigate opportunities to im-

prove microbial water quality monitoring as it pertains to evaluating vulner-

ability of a subsurface drinking water source to pathogens. Whereas surface

waters are automatically deemed to be at higher risk of microbial contamination from

human and mammalian fecal sources (e.g., US EPA’s Surface Water Treatment Rules),

subsurface water sources are typically considered to be less susceptible to contami-

nation. Accordingly, pathogen vulnerability assessments of subsurface drinking water

sources have often been conducted to ascertain the level of risk associated with such

sources. The onus is on the water purveyor to demonstrate that adequate treatment is

provided for the range of source water qualities observed and reasonably anticipated.

Ironically, microbiological water quality of pristine water sources is amongst the

most difficult to demonstrate. Source waters of high microbiological water quality for

potable use necessarily implies that pathogen concentrations in the source water are

low. However, absence of evidence is not evidence of absence (Chapter 2). Imperfect

methodologies used in the estimation of pathogen/fecal indicator concentrations, cou-

pled with our inability to monitor all pathogens/indicators comprehensively present in

the source, have led to the need for multiple lines of evidence to determine treatment

needs. In some cases, the effort involved in demonstrating good microbial water quality

can outweigh that associated with providing treatment based on a conservative esti-

mate of source water quality. However, the pervasive application of the precautionary

principle throughout risk assessment can inadvertently lead to the adoption of risk

management actions that are disproportionate to the actual threat posed.

This was a key consideration behind the Ontario Ministry of Environment’s ef-

forts in updating the soon-to-be superseded Terms of Reference: Hydrogeological Study

to Examine Groundwater Sources Potentially Under Direct Influence of Surface Wa-

ter. Many “GUDI”/“GWUDI” studies and assessments of public drinking water sup-

plies across the majority of North American jurisdictions have historically relied upon

mandatory evaluations of whether specific hydrogeological environments are more vul-

nerable to waterborne pathogen contamination. However, (microbial) water qual-

ity, both current and anticipated, underpins drinking water treatment de-

sign and operational decisions. Until uncertainties associated with models of mi-

crobial source and transport through the subsurface can be substantially reduced, this

is the core principle enshrined in the updated Terms of Reference. This dissertation

therefore serves to inform a prudent level of microbial water quality monitoring, and

the potential (and limitations) of emerging microbial tools to support pathogen vulner-
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ability assessments. The contributions of this work can be contextualized as answers

to the progression of research questions previously formulated in Chapter 1:

RQ1. How have microbial non-detects been reported, interpreted, and analyzed, and

do some approaches lead to bias?

RQ2. What level of precision in the estimation of mean microbial concentrations is

attainable and which aspects of microbial monitoring program design are most

influential to improving or compromising precision?

RQ3. What additional considerations of the subsurface environment are necessary to

indicate that representative microbial water quality sampling of aquifer water

quality is achieved, and what tools are available to support these considerations?

RQ4. How can bacterial community analysis using emerging biomolecular tools such as

16S rRNA gene amplicon sequencing be used to inform vulnerability assessments?

6.2 Key contributions

6.2.1 Handling microbial non-detects without incurring bias

Non-detects of microbial pathogens and fecal indicators alike are an important line

of evidence that would be suggestive of a high quality water source. However, ex-

isting conventions to report and analyze them as a measured concentration less than

one microorganism within the analyzed volume can lead to a conservative bias (i.e.,

overestimation) when used to estimate microbial concentrations. This reported value

is widely regarded as the method detection limit. However, as revealed through a

critical review of the state-of-the-scientific-practice, this convention is misleading. The

method detection limit is not intended to be used for, and therefore has been misap-

plied in, detection and enumeration-based methods that count discrete microorganisms.

Whereas the method detection limit facilitates comparisons of method sensitivity to

the target analyte in chemistry, non-detects in microbiology are not strictly a reflec-

tion of the lack of method sensitivity (i.e., the probability of detection when the target

microorganisms are actually present) but also the limitations associated with success-

fully capturing and enumerating discrete organisms within a finite sample volume to

estimate concentration. Both sample volume and analytical recovery can and were

demonstrated to influence the probability of observing a non-detect. Furthermore,
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uncertainty in concentration estimates precludes an MDL-based interpretation of re-

sults; a non-detect can arise from a non-zero source concentration just as a non-zero

observation can arise from a source concentration that is known to be less than the

purported method detection limit. The concepts described herein also apply to increas-

ingly common biochemical molecular methods (e.g., qPCR, 16S rRNA gene amplicon

sequencing). However, additional assumptions and complexities would be necessary in

the inference of concentration estimates using these approaches.

The reporting of microbial non-detects as censored values relative to the purported

MDL is therefore misleading, and has led to the misuse of censored data statistical

approaches. Proper statistical analysis approaches of raw microbial data (i.e., raw

count and analyzed sample volume) that account for measurement error are critically

underscored. Censored data approaches should be reserved for data correctly inter-

preted as being censored, such as TNTC plate counts where the actual count is known

only to exceed a specified threshold. Bias attributable to interpretation and analysis of

microbial non-detects as censored concentrations is regarded as conservative and “pre-

cautionary” because risk is overstated. However, this safety factor progressively fails

to be incorporated at higher pathogen concentrations that might pose a health risk.

Accurate risk assessments with known, quantifiable safety factors are preferable over

relying on “rounding errors” to provide peace of mind in delivering microbiologically

safe drinking water.

6.2.2 Source water monitoring program design to ensure ade-

quate treatment of protozoan pathogens

Quantitative microbial risk assessment (QMRA) has been increasingly applied as

a tool to set health-based targets for quantifying the disease burden attributable to

waterborne pathogens. Commonly-used health-based targets used in drinking water

include an acceptable infection risk level of 1 person per 10 000 consumers per year

(10−4) (The Netherlands, US EPA), or 10−6 disability-adjusted life years (DALYs)

per person per year (World Health Organization, Health Canada, Australia) for each

pathogen. When such a target is set as an acceptable level of mean annual risk, a reverse

QMRA can be performed to determine the minimum treatment required to attain the

target given the mean pathogen concentration in the source water. Therefore, accurate

mean pathogen concentrations are critical for prescribing treatment that would be

adequately, but not excessively, protective of public health. Excessive treatment is

not always desirable as this could lead to other implications such as the formation of
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hazardous by-products when using chlorine disinfection, or costly infrastructure for the

treatment of specific pathogens such as Cryptosporidium and Giardia (oo)cysts.

The level of precision attainable as a function of sample sizes (for native protozoan

enumeration and for quantification of analytical recovery) has not been demonstrated or

quantified in the peer-reviewed literature. Accordingly, this work provides an approach

that explicitly links minimum pathogen sample size requirements to the attainable level

of precision. This is particularly useful for systems that serve small populations or are

far from laboratories offering these analyses where minimization of sampling effort

without substantially compromising precision is a key consideration for monitoring

program design. Given the relevance of the two aforementioned protozoan pathogens

for determining treatment needs, an extensive protozoan monitoring dataset from the

City of Calgary was used for demonstrating Bayesian retrospective power analysis as

a tool to evaluate the level of precision attainable through changes in the design of

the monitoring program. Specifically, the loss of precision in the mean concentration

estimate attributable to small sample sizes was explicitly quantified. Even with as few

as four samples for protozoan enumeration and limited quantification of analytical re-

covery, mean concentration estimates within 0.5-log10 of the true mean can usually be

attained across the scenarios investigated. However, extrapolation of the results ema-

nating from this analysis requires that key caveats of stationarity, sampling program

duration, assessment based on routine (non-temporally auto-correlated) monitoring re-

sults, and consistency with gamma-distributed concentrations must be met. Such an

assessment may be a useful first step to inform future monitoring efforts.

The results emanating from this work further underscored that analytical recovery—

if accounted for in the estimation of concentration—should not be handled indepen-

dently of the enumerated count within the analyzed sample volume. Although in many

cases analytical recovery may appear uncorrelated with the observed count, the two

are necessarily linked. When the expected number of recovered microorganisms is low

and/or method recovery is variable, the relationship between these necessarily depen-

dent variables may be obscured. Treating the two variables as being independent will

inevitably bias concentration estimates as well as the level of precision attained. The

results of this work suggests that the collection of additional samples for pathogen

enumeration is likely to improve precision in mean concentration estimation more than

devoting additional effort to quantify analytical recovery, especially when the number

of pathogens enumerated are expected to be low.

In this work, two goals of precision of the mean concentration estimate were eval-

uated. One was evaluated with respect to a difference of less than 0.5-log10 between

the posterior mode and the true mean concentration used to simulate the data; the
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other was a 1.0-log10 interval corresponding to the 95% of the most probable values

of the posterior mean concentrations (i.e., the Bayesian highest density interval [HDI]

width). This work underscores that although both goals of precision are related to a

span of 1.0-log10, the latter is a much more stringent goal of precision and therefore

required on the order of 24 to 52 samples to attain this goal of precision consistently

for the scenarios investigated. The HDI was demonstrated to be a useful and perhaps

a more intuitively interpretable metric pertaining to the precision of the mean concen-

tration estimate; however, it was noted that computational artefacts can lead to its

inflation and hence would require judicious interpretation, especially when non-detects

are expected to be prevalent in the modelled (or real) data sets.

6.2.3 Microbial water quality observed during purge water ab-

straction from monitoring wells are subject to time-limited

(bio)colloid mobilization and transport mechanisms

Well water purging is widely regarded as common practice to obtain samples void of

artefacts attributable to contrasting hydrogeochemical conditions between the well and

the aquifer. Although both chemical and microbial water quality are well-recognized to

be subject to influences of the well environment, and that their transport phenomena

in the subsurface are known to be mechanistically different, many studies continue to

presume that physico-chemical water quality stability achieved through purging of 3

to 5 well volumes is indicative of the stability of target microbial analytes. Therefore,

the utility of adenosine triphosphate (ATP) as a sentinel for subsurface microbial wa-

ter quality change was investigated. Specifically, the fluctuations of this biochemical

were monitored throughout well purging activities, with the expectations that i) ATP

concentrations will progressively decrease with extended purging, but independently

of other physico-chemical water quality parameters, ii) ATP concentrations between

two “identical” wells (with similar hydrogeological characteristics) developed in close

proximity (<5 m apart, cross-gradient) to each other will become progressively similar,

and iii) ATP patterns observed in each well during each sampling occasion may provide

insights to subsurface biofilm dynamics.

In Chapter 4 the results of the investigation were presented. Observations gener-

ally confirmed these initial hypotheses. Physical and chemical water quality param-

eters typically stabilized after 3 to 5 well volumes (usually within 10 to 15 minutes

of purging), as expected. ATP fluctuations sometimes persisted for the entire dura-

tion of purging activities conducted; however, the difference between ATP concentra-

tions observed in both wells generally decreased with extended purging. Although
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the confirmation of the first two hypotheses was rather unsurprising given the docu-

mented/expected phenomena for other microbial parameters, the emergent, recurring

similarities in ATP patterns that were suggestive of hysteretic biofilm behaviour was

least expected. (Dis)similarities in ATP patterns over the course of a year are be-

lieved to reflect the growth and maturation of subsurface biofilms at relatively stable

hydrogeological conditions characteristic of each well. An apparent interruption to the

pattern appeared to coincide with a shift in the hydrogeological conditions that may

be indicative of surface water groundwater interaction dynamics at the site.

This work reaffirmed the critical importance of dedicated considerations for mi-

crobial water quality monitoring in environments that cannot be assumed to be at a

pseudo-steady state (e.g., continuously pumping wells). Moreover, this work—amongst

a limited handful of published works—explicitly documents the influence of purging on

ATP concentrations in monitoring wells and highlights the dedicated need for time-

based approaches for microbial water quality sampling from subsurface environments.

Although only continuous purging for up to 4 hours was performed in piezometers

during the various sampling campaigns, this work provides proof-of-concept for an

analogous investigation in other subsurface environments. In the updated Terms of

Reference, a continuous, 72 hour pumping test is proposed for new production well

installations. While this was originally intended to support the evaluation of well

performance, capacity, zone of influence and aquifer characteristics (e.g., storativity,

transmissivity, anisotropy), a pumping test of this length likely ensures that micro-

bial water quality samples collected prior to termination of the pumping should be

adequately representative of the aquifer.

From an analytical perspective, this work also features the use of dynamic time

warping (DTW), a time series analysis approach for which conventional parametric

time series analysis approaches would be deemed unsuitable. Where samples are col-

lected at irregular intervals in time or space (often due to minimization of resources to

capture anticipated phenomena), features such as peaks and troughs within the time

series can be systematically compared to that of another using DTW algorithms. Fea-

tures are matched given user-specified constraints, and pairwise normalized distances

can be generated as a measure of (dis)similarity between time series. (Dis)similarity

measures can be subsequently used in a variety of exploratory ordination and cluster-

ing approaches that would further allow for the generation and testing of hypotheses.

This type of analysis that originated from applications in speech recognition has sel-

dom been used to analyze patterns arising in the natural sciences; this work is the

first documented use of DTW for elucidating subsurface biofilm dynamics with ATP

patterns.
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6.2.4 The use and limitations of “next-generation sequencing”

biomolecular tools for supporting vulnerability assessments

of subsurface water sources to pathogen intrusion

In the foreseeable future, enumeration-based tests for protozoan pathogens Cryp-

tosporidium and Giardia and culture-based tests for Escherichia coli will continue to

be relied upon in microbial monitoring programs to evaluate source water vulnera-

bility to pathogen/fecal contamination, respectively. In light of advances in the past

decades, analogous bio-molecular methods for detection and estimation of fecal indica-

tors and pathogen concentrations have become equally, or even more feasible, compared

to their enumeration- or culture-based counterparts. They have been touted for their

increased sensitivity (probability of detection given that a single sequence were present

in the analyzed sample), specificity (detection of specific strains of interest), and quick

turn-around-time. However, several fundamental limitations preclude them from un-

equivocally replacing widely-used enumeration- and culture-based methods:

1. Perfect sensitivity in a small aliquot of the processed sample volume does not

enable estimation of low target analyte concentrations

2. PCR chemistry has been deemed to be more influenced by inhibitors than culture-

based methods in environmental matrices

3. Viability and infectivity of target pathogens typically require a cell-culture step

(e.g., integrated cell-culture reverse transcription polymerase chain reaction)

Steps necessary for biomolecular evaluations such as sample DNA concentration,

aliquoting of eluted DNA concentrate, amplification, and sequencing collectively con-

tribute to additional biases that are often not practically quantifiable. Across various

forms of quantitative PCR, standard calibration curves are used to estimate concen-

trations in water samples indirectly. Accordingly, the utility of bacterial community

analysis by means of 16S rRNA gene amplicon sequencing was investigated to pro-

vide broader context for understanding microbial water quality changes and to identify

potentially relevant indicators for a water source’s vulnerability to pathogen intru-

sion. Negative binomial generalized linear models—which allow for the consideration

of overdispersed sequence read counts amongst different sequencing depths achieved

for each sample—facilitate systematic comparisons of bacterial taxa sequence read

counts across the major spatial and temporal gradients spanned by the study. Despite

the quantitative nature of this approach, it is emphasized that sequence read counts
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emanating from 16S rRNA gene amplicon sequencing facilitate relative comparisons

between samples but are generally not suitable for concentration estimation.

Proof-of-concept of the progressive approach described was presented in Chapter 5,

through examining the sequence reads of the bacterial communities present at the same

field site used for the ATP investigation (Chapter 4). From this analysis, it was revealed

that the bacterial core community in this environment was rather stable at high levels

of taxonomic classification; however, differences in bacterial taxa sequence abundance

at sub-class taxonomic levels can be linked to the major spatial and temporal gradi-

ents spanned in the study. A focused investigation of sequence reads related to known

fecal-indicators and sequence reads exhibiting the most dynamic response to each of

the key factors identified was used to contextualize subsurface microbial water quality

at this site. Escherichia sequences were abundant and prevalent in the bacterial core

community; however, this observation was not supported by any of the culture-based

fecal indicators performed (which consistently yielded non-detects). This observation

underscores the disparity between culture- and biomolecular-based methods. Some rare

sequence reads affiliated with known anaerobic taxa (Clostridia, Bacteroides) common

to human/mammalian gut microbiome were detected, which may suggest their po-

tential use as site-specific fecal indicator should their relationship to a fecal source

be ascertained. Sequence reads affiliated with Bacillales and Sphingomonadales were

significantly elevated in samples collected during the intermediate (between 20 min-

utes and 1 hour) stage of low-flow purging; these taxa may be useful indicators of the

previously-described foci of biomass associated with subsurface biofilms in the vicinity

of the well installations. Sequences of several Betaproteobacteria taxa were amongst

those exhibiting the greatest seasonal responses and may reflect shifting nutrient con-

ditions in the subsurface. Finally, the limited number of Cyanobacteria (all of which

were Melainabacteria and not capable of photosynthesis) and Flavobacteriia sequence

reads observed may be useful as lines of evidence that recent surface water intrusion

may not play a substantial role at this site.

6.3 General conclusion and research outlook:

Recommendations for further research

As biological sciences and technology continue to advance, how microbial water

quality evaluations are performed will continue to evolve. In this age of “big data”,

it can be easy to lose sight of the underlying purpose of a study/tool/technology, or

rationale for a particular policy or regulation. More data can be generated than can be
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meaningfully interpreted whilst data generators and data analysts take on increasingly

specialized roles (e.g., bioinformaticians for some tools). This dissertation serves to

inform a prudent level of microbial water quality monitoring, and the potential and

limitations of emerging microbial tools to support pathogen vulnerability assessments.

Chapters 2 and 4 provide two key examples where concepts and ideas originating

from chemistry (i.e., method detection limits, physical and chemical water quality in-

dicators of adequate well purging) have likely propagated—and been indiscriminately

(mis)applied—to the realm of microbial water quality evaluations. Chapter 3 high-

lights that in some circumstances, “more” data (i.e., more samples) will not always

yield an appreciable improvement in precision of the mean concentration estimate and

associated microbial risk estimates. Finally, Chapter 5 demonstrates the use of an

increasingly popular biomolecular method in 16S rRNA gene amplicon sequencing and

how it should be interpreted alongside existing culture-based tools rather than out-

right replacing them. Although microbial data, tools, and approaches will inevitably

evolve, this dissertation emphasizes the persistent need to critically evaluate their use

and “fit-for-purpose” ability to support the underlying goal of public health protection

through the provision of microbiologically safe drinking water.

Based on the conclusions drawn from this work, research in the following areas

may contribute to further advancements in the provision of safe drinking water from

subsurface water sources:

• Examining the concept of method sensitivity limits as it applies to compare mi-

crobial analytical methods, especially PCR-based methods that rely on standard

curve calibrations for estimation of concentration

• Tailoring of a hierarchical model to support the use of native microbial indica-

tors (e.g., somatic coliphages) as an estimate of analytical recovery of microbial

pathogens (e.g., enterovirus)

• Investigating the generalizability of sample sizes required to make adequately pre-

cise mean concentration estimates through further factorial design of simulated

scenarios (e.g., as part of a prospective power analysis)

• Investigating the impact of substantially higher flow-rates during well-water purg-

ing and other subsurface environments, including those which are anaerobic, on

the use of ATP as a sentinel for microbial water quality change

• Exploring the use of non-parametric alternatives (such as DTW) to facilitate

comparisons of time series data between studies deployed at offset time intervals

(e.g., to elucidate mechanisms controlling natural or engineered (bio-)filtration)
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• Applying DTW to other domains of public health research to elucidate trends

and mechanisms (e.g., positive test cases of coronavirus disease (COVID-19) with

hospitalization/mortality rates that are monitored/reported at different time in-

tervals across jurisdictions)

• Characterizing spatio-temporal heterogeneity of bacterial community composi-

tion in wells and surface water features in the vicinity of the site investigated

(along with “standard” culture-based tools), especially to further elucidate the

role(s) of the potential microbial vulnerability indicators identified

• Examining the source of Escherichia sequence reads observed and what they

imply about source water quality

• Investigating the role of Betaproteobacteria in the macro- and micro- nutrient

dynamics at this site, especially in context of the biological removal of nitrates

through denitrification

110



References

Abelho, M. (2005). Extraction and Quantification of ATP as a Measure of Microbial

Biomass. In Methods to Study Litter Decomposition, pages 223–229. Springer.

Adam, E. A., Yoder, J. S., Gould, L. H., Hlavsa, M. C., and Gargano, J. W. (2016). Gia-

rdiasis Outbreaks in the United States, 1971–2011. Epidemiol. Infect., 144(13):2790–

2801.

Ahmed, A., Emelko, M. B., Conant, B., and Chik, A. H. S. (2013). Development of the

New MOE Guidance Document to Determine Minimum Treatment Requirements

for Municipal Residential Groundwater Systems. In OWWA/OMWA Joint Annual

Conference, Ottawa, ON.

Alberta Environment and Sustainable Resource Development (2012). Standards and

Guidelines for Municipal Waterworks, Wastewater and Storm Drainage Systems.

Alberta Queen’s Printer, Edmonton.

Allen, M. J., Clancy, J. L., Rice, E. W., and others (2000). The Plain, Hard Truth

about Pathogen Monitoring. Journal AWWA, 92(9):64–76.

Analytical Methods Committee (1987). Recommendations for the Definition, Estima-

tion and Use of the Detection Limit. Analyst, 112(2):199–204.

APHA, AWWA, and WEF (2017). Standard Methods For the Examination of Water

& Wastewater. American Public Health Assn, Washington, DC, 23rd edition.

Armbruster, D. A. and Pry, T. (2008). Limit of Blank, Limit of Detection and Limit

of Quantitation. The Clinical Biochemist Reviews, 29(Suppl 1):S49–S52.

ASTM (2016). ASTM D5465-16 - Standard Practices for Determining Microbial

Colony Counts from Waters Analyzed by Plating Methods. ASTM.

111



Bagnall, A., Lines, J., Bostrom, A., Large, J., and Keogh, E. (2017). The Great Time

Series Classification Bake off: A Review and Experimental Evaluation of Recent

Algorithmic Advances. Data Mining and Knowledge Discovery, 31(3):606–660.

Balkwill, D. L. and Ghiorse, W. C. (1985). Characterization of Subsurface Bacteria

Associated with Two Shallow Aquifers in Oklahoma. Applied and Environmental

Microbiology, 50(3):580–588.

Barcelona, M., Varljen, M., Puls, R., and Kaminski, D. (2005). Ground Water Purging

and Sampling Methods: History vs. Hysteria. Groundwater Monitoring & Remedi-

ation, 25(1):52–62.

Ben Maamar, S., Aquilina, L., Quaiser, A., Pauwels, H., Michon-Coudouel, S.,

Vergnaud-Ayraud, V., Labasque, T., Roques, C., Abbott, B. W., and Dufresne,

A. (2015). Groundwater Isolation Governs Chemistry and Microbial Community

Structure along Hydrologic Flowpaths. Frontiers in Microbiology, 6.

Benidickson, J. (2017). The Evolution of Canadian Water Law and Policy: Securing

Safe and Sustainable Abundance. McGill J. Sust. Dev. L., 13:59.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the False Discovery Rate: A

Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical

Society: Series B (Methodological), 57(1):289–300.

Bichai, F. and Smeets, P. W. M. H. (2013). Using QMRA-Based Regulation as a

Water Quality Management Tool in the Water Security Challenge: Experience from

the Netherlands and Australia. Water Research, 47(20):7315–7326.

Bradford, S., Schijven, J., and Harter, T. (2015). Microbial Transport and Fate in the

Subsurface: An Introduction to the Special Collection. Journal of Environmental

Quality, 10.

Bradford, S. A. and Torkzaban, S. (2008). Colloid transport and retention in unsatu-

rated porous media: A review of interface-, collector-, and pore-scale processes and

models. Vadose Zone Journal, 7(2):667–681.

Braun, B., Schröder, J., Knecht, H., and Szewzyk, U. (2016). Unraveling the Microbial

Community of a Cold Groundwater Catchment System. Water Research, 107:113–

126.

Brook, J. M. (2012). Evaluating Innovative Nutrient Management Options and Sea-

sonal Groundwater Recharge Dynamics in an Agricultural Source Water Protection

Area. Master’s Thesis, University of Waterloo, Waterloo, Ontario, Canada.

112



Brooks, G., Carroll, K. C., Butel, J., Morse, S. A., and Mietzner, T. A. (2015). Spore-

Forming Gram-Positive Bacilli : Bacillus and Clostridium Species. In Jawetz, Mel-

nick, & Adelberg’s Medical Microbiology. McGraw-Hill Education, New York, NY,

27th edition.

Busschaert, P., Geeraerd, A. H., Uyttendaele, M., and Van Impe, J. F. (2010). Es-

timating Distributions out of Qualitative and (Semi) Quantitative Microbiological

Contamination Data for Use in Risk Assessment. Int. J. Food Microbiol., 138(3):260–

269.

Buttigieg, P. L. and Ramette, A. (2014). A Guide to Statistical Analysis in Micro-

bial Ecology: A Community-Focused, Living Review of Multivariate Data Analyses.

FEMS microbiology ecology, 90(3):543–550.

Callahan, B. J., McMurdie, P. J., and Holmes, S. P. (2017). Exact Sequence Variants

Should Replace Operational Taxonomic Units in Marker-Gene Data Analysis. The

ISME Journal, 11(12):2639–2643.

Chao, A. (1984). Nonparametric Estimation of the Number of Classes in a Population.

Scandinavian Journal of Statistics, 11(4):265–270.

Chik, A. H. S., Emelko, M. B., Anderson, W. B., O’Sullivan, K. E., Savio, D., Farnleit-

ner, A. H., Blaschke, A. P., and Schijven, J. F. (2020a). Evaluation of Groundwater

Microbial Community Composition to Inform Waterborne Pathogen Vulnerability

Assessments. Submitted to Science of the Total Environment.

Chik, A. H. S., Emelko, M. B., Blaschke, A. P., and Schijven, J. F. (2020b). Illuminating

Subsurface Microbial Water Quality Patterns Using Adenosine Triphosphate and

Dynamic Time Warping Approaches. Ground Water Monitoring & Remediation.

Chik, A. H. S., Schmidt, P. J., and Emelko, M. B. (2018). Learning Something From

Nothing: The Critical Importance of Rethinking Microbial Non-detects. Frontiers

in Microbiology, 9.

Christie, M., Rudolph, D. L., Payment, P., and Locas, A. (2009). Monitoring the

Occurrence of Microbial Contaminants within the Wellhead Protection Area of a

Municipal Well Field in an Agricultural Setting. In 1st International Conference

on Assessing Pathogen Fate, Transport and Risk in Natural and Engineered Water

Treatment, Niagara-on-the-Lake, Ontario, Canada.

Commeau, N., Parent, E., Delignette-Muller, M.-L., and Cornu, M. (2012). Fitting a

Lognormal Distribution to Enumeration and Absence/Presence Data. Int. J. Food

Microbiol., 155(3):146–152.

113



Corless, C. E., Guiver, M., Borrow, R., Edwards-Jones, V., Kaczmarski, E. B., and

Fox, A. J. (2000). Contamination and Sensitivity Issues with a Real-Time Universal

16S rRNA PCR. Journal of Clinical Microbiology, 38(5):1747–1752.

Cotton, C. A., Owen, D. M., Cline, G. C., and Brodeur, T. P. (2001). UV Disinfection

Costs for Inactivating Cryptosporidium. J. American Water Works Association,

93(6):82–94.

Cousineau, D. and Helie, S. (2013). Improving Maximum Likelihood Estimation Using

Prior Probabilities: A Tutorial on Maximum a Posteriori Estimation and an Exami-

nation of the Weibull Distribution. Tutorials in Quantitative Methods for Psychology,

9(2):61–71.

Critchley, C. (2010). Stimulating In Situ Denitrification in an Aerobic, Highly Con-

ductive Municipal Drinking Water Aquifer. Master’s thesis, University of Waterloo,

Waterloo, Ontario, Canada.

Critchley, C., Rudolph, D. L., Devlin, J. F., and Schillig, P. C. (2014). Stimulating

in Situ Denitrification in an Aerobic, Highly Permeable Municipal Drinking Water

Aquifer. Journal of Contaminant Hydrology, 171:66–80.

Cullimore, D. R. (2007). Practical Manual of Groundwater Microbiology, Second Edi-

tion. CRC Press.

Currie, L. A. (1999). Detection and Quantification Limits: Origins and Historical

Overview. Anal. Chim. Acta, 391(2):127–134.

Davis, C. (2014). Enumeration of Probiotic Strains: Review of Culture-Dependent

and Alternative Techniques to Quantify Viable Bacteria. J. Microbiol. Methods,

103:9–17.

Delignette-Muller, M.-L., Dutang, C., Pouillot, R., Denis, J.-B., and Siberchicot, A.

(2017). Fitdistrplus: Help to Fit of a Parametric Distribution to Non-Censored or

Censored Data. R package.

Denwood, M. J. (2016). Runjags: An R Package Providing Interface Utilities, Model

Templates, Parallel Computing Methods and Additional Distributions for MCMC

Models in JAGS. Journal of Statistical Software, 71(9):1–25.

Devlin, J. F. and Schillig, P. C. (2017). HydrogeoEstimatorXL: An Excel-Based Tool

for Estimating Hydraulic Gradient Magnitude and Direction. Hydrogeology Journal,

25(3):867–875.

114



Devlin, J. F., Schillig, P. C., Bowen, I., Critchley, C. E., Rudolph, D. L., Thomson,

N. R., Tsoflias, G. P., and Roberts, J. A. (2012). Applications and Implications

of Direct Groundwater Velocity Measurement at the Centimetre Scale. Journal of

Contaminant Hydrology, 127(1):3–14.

Di Rienzi, S. C., Sharon, I., Wrighton, K. C., Koren, O., Hug, L. A., Thomas, B. C.,

Goodrich, J. K., Bell, J. T., Spector, T. D., Banfield, J. F., and Ley, R. E. (2013).

The Human Gut and Groundwater Harbor Non-Photosynthetic Bacteria Belonging

to a New Candidate Phylum Sibling to Cyanobacteria. eLife, 2:e01102.

Dickey, R. P., Pyrzak, R., Lu, P. Y., Taylor, S. N., and Rye, P. H. (1999). Compar-

ison of the Sperm Quality Necessary for Successful Intrauterine Insemination with

World Health Organization Threshold Values for Normal Sperm. Fertility Sterility,

71(4):684–689.

Duarte, A. S. R., Stockmarr, A., and Nauta, M. J. (2015). Fitting a Distribution to

Microbial Counts: Making Sense of Zeroes. Int. J. Food Microbiol., 196:40–50.

Dupas, R., Tavenard, R., Fovet, O., Gilliet, N., Grimaldi, C., and Gascuel-Odoux, C.

(2015). Identifying Seasonal Patterns of Phosphorus Storm Dynamics with Dynamic

Time Warping. Water Resources Research, 51(11):8868–8882.

Dürrenmatt, D. J., Del Giudice, D., and Rieckermann, J. (2013). Dynamic Time

Warping Improves Sewer Flow Monitoring. Water Research, 47(11):3803–3816.

Edgar, R. C. (2010). Search and Clustering Orders of Magnitude Faster than BLAST.

Bioinformatics, 26(19):2460–2461.

Edgar, R. C. (2013). UPARSE: Highly Accurate OTU Sequences from Microbial Am-

plicon Reads. Nature Methods, 10(10):996–998.

Efstratiou, A., Ongerth, J. E., and Karanis, P. (2017). Waterborne Transmission of

Protozoan Parasites: Review of Worldwide Outbreaks - An Update 2011-2016. Water

Research, 114:14–22.

Embley, T. M. and Stackebrandt, E. (1997). Species in Practice: Exploring Uncultured

Prokaryote Diversity in Natural Samples. Systematics Association Special Volume,

54:61–82.

Emelko, M. B., Schmidt, P. J., and Reilly, P. M. (2010). Particle and Microorgan-

ism Enumeration Data: Enabling Quantitative Rigor and Judicious Interpretation.

Environ. Sci. Technol., 44(5):1720–1727.

115



Emelko, M. B., Schmidt, P. J., and Roberson, J. A. (2008). Quantification of Uncer-

tainty in Microbial Data—reporting and Regulatory Implications. Journal AWWA,

pages 94–104.

Emelko, M. B. and Tufenkji, N. (2010). Transport and Fate of Colloids and Microbes

in Granular Aqueous Environments. Water Research, 44(4):1027.

Ettema, C. H. and Wardle, D. A. (2002). Spatial Soil Ecology. Trends in Ecology &

Evolution, 17(4):177–183.

Fiedler, C. J., Schönher, C., Proksch, P., Kerschbaumer, D. J., Mayr, E., Zunabovic-

Pichler, M., Domig, K. J., and Perfler, R. (2018). Assessment of Microbial Commu-

nity Dynamics in River Bank Filtrate Using High-Throughput Sequencing and Flow

Cytometry. Frontiers in Microbiology, 9:2887.

Flynn, T. M., Sanford, R. A., Ryu, H., Bethke, C. M., Levine, A. D., Ashbolt, N. J., and

Santo Domingo, J. W. (2013). Functional Microbial Diversity Explains Groundwater

Chemistry in a Pristine Aquifer. BMC Microbiology, 13:146. 00047.

Forum on Environmental Measurements (FEM) Microbiology Action Team (2016).

Method Validation of U.S. EPA Microbiological Methods of Analysis. Technical

Report 2009-01, US EPA.

Frick, C., Vierheilig, J., Linke, R., Savio, D., Zornig, H., Antensteiner, R., Baumgart-

ner, C., Bucher, C., Blaschke, A. P., Derx, J., Kirschner, A. K. T., Ryzinska-Paier,

G., Mayer, R., Seidl, D., Nadiotis-Tsaka, T., Sommer, R., and Farnleitner, A. H.

(2018). Poikilothermic Animals as a Previously Unrecognized Source of Fecal Indica-

tor Bacteria in a Backwater Ecosystem of a Large River. Applied and Environmental

Microbiology, 84(16).
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J., and Glöckner, F. O. (2013). The SILVA Ribosomal RNA Gene Database

Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Research,

41(D1):D590–D596.

123



Quintero-Betancourt, W., Peele, E. R., and Rose, J. B. (2002). Cryptosporidium

Parvum and Cyclospora Cayetanensis: A Review of Laboratory Methods for Detec-

tion of These Waterborne Parasites. Journal of Microbiological Methods, 49(3):209–

224.

Regli, S., Rose, J. B., Haas, C. N., and Gerba, C. P. (1991). Modeling the Risk from

Giardia and Viruses in Drinking Water. Journal AWWA, pages 76–84.

Reischer, G. H., Haider, J. M., Sommer, R., Stadler, H., Keiblinger, K. M., Hornek,

R., Zerobin, W., Mach, R. L., and Farnleitner, A. H. (2008). Quantitative Microbial

Faecal Source Tracking with Sampling Guided by Hydrological Catchment Dynamics.

Environmental Microbiology, 10(10):2598–2608.

Reischer, G. H., Kasper, D. C., Steinborn, R., Mach, R. L., and Farnleitner, A. H.

(2006). Quantitative PCR Method for Sensitive Detection of Ruminant Fecal Pollu-

tion in Freshwater and Evaluation of This Method in Alpine Karstic Regions. Applied

and Environmental Microbiology, 72(8):5610–5614.

Reynolds, D. T., Slade, R. B., Sykes, N. J., Jonas, A., and Fricker, C. R. (1999).

Detection of Cryptosporidium Oocysts in Water: Techniques for Generating Precise

Recovery Data. Journal of Applied Microbiology, 87(6):804–813.

Rickard, A. H., Leach, S. A., Hall, L. S., Buswell, C. M., High, N. J., and Handley,

P. S. (2002). Phylogenetic Relationships and Coaggregation Ability of Freshwater

Biofilm Bacteria. Applied and Environmental Microbiology, 68(7):3644–3650.

Rittman, B. E. (1982). The Effect of Shear Stress on Biofilm Loss Rate. Biotechnology

and Bioengineering, 24(2):501–506.

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edgeR: A Bioconduc-

tor Package for Differential Expression Analysis of Digital Gene Expression Data.

Bioinformatics, 26(1):139–140.

Rochelle, P. A., De Leon, R., Johnson, A., Stewart, M. H., and Wolfe, R. L. (1999).

Evaluation of Immunomagnetic Separation for Recovery of Infectious Cryptosporid-

ium parvum Oocysts from Environmental Samples. Appl. Environ. Microbiol.,

65(2):841–845.

Rose, S. and Long, A. (1988). Monitoring Dissolved Oxygen in Ground Water: Some

Basic Considerations. Ground Water Monitoring & Remediation, 8(1):93–97.

124



Roser, D. J. and Ashbolt, N. J. (2005). Source Water Quality Assessment and the

Management of Pathogens in Surface Catchments and Aquifers. CRC for Water

Quality and Treatment.

Ross, N., Villemur, R., Marcandella, E., and Deschenes, L. (2001). Assessment of

Changes in Biodiversity When a Community of Ultramicrobacteria Isolated from

Groundwater Is Stimulated to Form a Biofilm. Microbial Ecology, 42(1):56–68.

Roudnew, B., Lavery, T. J., Seymour, J. R., Jeffries, T. C., and Mitchell, J. G. (2014).

Variability in Bacteria and Virus-Like Particle Abundances During Purging of Un-

confined Aquifers. Groundwater, 52(1):118–124.

Ruecker, N. J., Braithwaite, S. L., Topp, E., Edge, T., Lapen, D. R., Wilkes, G.,

Robertson, W., Medeiros, D., Sensen, C. W., and Neumann, N. F. (2007). Track-

ing Host Sources of Cryptosporidium spp. in Raw Water for Improved Health Risk

Assessment. Applied and Environmental Microbiology, 73(12):3945–3957.

Sabat, G., Rose, P., Hickey, W. J., and Harkin, J. M. (2000). Selective and Sensitive

Method for PCR Amplification of Escherichia coli 16S rRNA Genes in Soil. Applied

and Environmental Microbiology, 66(2):844–849.

Sakoe, H. and Chiba, S. (1978). Dynamic Programming Algorithm Optimization for

Spoken Word Recognition. IEEE Transactions on Acoustics, Speech, and Signal

Processing, 26(1):43–49.

Salter, S. J., Cox, M. J., Turek, E. M., Calus, S. T., Cookson, W. O., Moffatt, M. F.,

Turner, P., Parkhill, J., Loman, N. J., and Walker, A. W. (2014). Reagent and Labo-

ratory Contamination Can Critically Impact Sequence-Based Microbiome Analyses.

BMC Biology, 12(1):87.

Santo Domingo, J. and Ashbolt, N. J. (2012). Fecal Pollution of Water. In Encyclopedia

of Earth. National Council for Science and the Environment, Washington, D.C.,

USA.

Savio, D., Stadler, P., Reischer, G. H., Demeter, K., Linke, R. B., Blaschke, A. P.,

Mach, R. L., Kirschner, A. K. T., Stadler, H., and Farnleitner, A. H. (2019). Spring

Water of an Alpine Karst Aquifer is Dominated by a Taxonomically Stable but

Discharge-Responsive Bacterial Community. Frontiers in Microbiology, 10.

Savio, D., Stadler, P., Reischer, G. H., Kirschner, A. K. T., Demeter, K., Linke, R.,

Blaschke, A. P., Sommer, R., Szewzyk, U., Wilhartitz, I. C., Mach, R. L., Stadler,

125



H., and Farnleitner, A. H. (2018). Opening the Black Box of Spring Water Micro-

biology from Alpine Karst Aquifers to Support Proactive Drinking Water Resource

Management. WIREs. Water, 5(3):e1282.

Schijven, J. F. and de Roda Husman, A. M. (2011). Applications of Quantitative Mi-

crobial Source Tracking and Quantitative Microbial Risk Assessment. In Hagedorn,

C., Blanch, A. R., and Harwood, V. J., editors, Microbial Source Tracking: Methods,

Applications & Case Studies, pages 559–583. Springer New York.

Schijven, J. F. and Hassanizadeh, S. M. (2000). Removal of Viruses by Soil Passage:

Overview of Modeling, Processes, and Parameters. Critical Reviews in Environmen-

tal Science and Technology, 30(1):49–127.

Schijven, J. F., Teunis, P. F., Rutjes, S. A., Bouwknegt, M., and de Roda Husman,

A. M. (2011). QMRAspot: A Tool for Quantitative Microbial Risk Assessment from

Surface Water to Potable Water. Water Research, 45(17):5564–5576.

Schmidt, P. J. and Emelko, M. B. (2011). QMRA and Decision-Making: Are We Han-

dling Measurement Errors Associated with Pathogen Concentration Data Correctly?

Water Research, 45(2):427–438.

Schmidt, P. J., Emelko, M. B., and Reilly, P. M. (2010). Quantification of Analyti-

cal Recovery in Particle and Microorganism Enumeration Methods. Environ. Sci.

Technol., 44(5):1705–1712.

Schmidt, P. J., Emelko, M. B., and Thompson, M. E. (2013). Analytical Recovery of

Protozoan Enumeration Methods: Have Drinking Water QMRA Models Corrected

or Created Bias? Water Research, 47(7):2399–2408.

Scott, T. M., Rose, J. B., Jenkins, T. M., Farrah, S. R., and Lukasik, J. (2002).

Microbial Source Tracking: Current Methodology and Future Directions. Applied

and Environmental Microbiology, 68(12):5796–5803.

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System

Technical Journal, 27(3):379–423.

Smeets, P. W. M. H., Rietveld, L. C., van Dijk, J. C., and Medema, G. J. (2010).

Practical Applications of Quantitative Microbial Risk Assessment (QMRA) for Wa-

ter Safety Plans. Water Science and Technology: A Journal of the International

Association on Water Pollution Research, 61(6):1561–1568.

126



Smith, H. J., Zelaya, A. J., De León, K. B., Chakraborty, R., Elias, D. A., Hazen, T. C.,

Arkin, A. P., Cunningham, A. B., and Fields, M. W. (2018). Impact of Hydrologic

Boundaries on Microbial Planktonic and Biofilm Communities in Shallow Terrestrial

Subsurface Environments. FEMS Microbiology Ecology, 94(12).

Smith, S. A. and Comeskey, A. E. (2009). Sustainable Wells: Maintenance, Problem

Prevention, and Rehabilitation. CRC Press.

Sorensen, J. P. R., Maurice, L., Edwards, F. K., Lapworth, D. J., Read, D. S., Allen, D.,

Butcher, A. S., Newbold, L. K., Townsend, B. R., and Williams, P. J. (2013). Using

Boreholes as Windows into Groundwater Ecosystems. PLOS ONE, 8(7):e70264.

Sousa, M. (2013). Using Numerical Models for Managing Water Quality in Public

Supply Wells. PhD thesis, University of Waterloo, Waterloo, Ontario, Canada.

Spiegelhalter, D., Thomas, A., Best, N., and Lunn, D. (2007). OpenBUGS, Version 3.0.

2. User Manual. MRC and Imperial College of Science, Technology and Medicine.

Available at http://mathstat. helsinki. fi/openbugs/[Verified August 2009].

Striggow, B. (2017). Groundwater Sampling. Technical Report SESDPROC-301-R4,

US Environmental Protection Agency, Science and Ecosystem Support Division,

Athens, Georgia.

Takahashi, S., Tomita, J., Nishioka, K., Hisada, T., and Nishijima, M. (2014). Devel-

opment of a Prokaryotic Universal Primer for Simultaneous Analysis of Bacteria and

Archaea Using Next-Generation Sequencing. PLOS ONE, 9(8):e105592.

Teunis, P. F. M., Medema, G. J., Kruidenier, L., and Havelaar, A. H. (1997). Assess-

ment of the Risk of Infection by Cryptosporidium or Giardia in Drinking Water from

a Surface Water Source. Water Research, 31(6):1333–1346.

Tolhurst, T. J., Consalvey, M., and Paterson, D. M. (2008). Changes in Cohesive

Sediment Properties Associated with the Growth of a Diatom Biofilm. Hydrobiologia,

596(1):225–239.

Tufenkji, N. (2007). Modeling Microbial Transport in Porous Media: Traditional Ap-

proaches and Recent Developments. Advances in Water Resources, 30(6):1455–1469.

Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley, R. E.,

Sogin, M. L., Jones, W. J., Roe, B. A., Affourtit, J. P., Egholm, M., Henrissat, B.,

Heath, A. C., Knight, R., and Gordon, J. I. (2009). A Core Gut Microbiome in

Obese and Lean Twins. Nature, 457(7228):480–484.

127



United States Pharmacopeial Convention (2014). <61> Microbiological Examination

of Nonsterile Products: Microbial Enumeration Tests. Technical Report USP 37,

United States Pharmacopeial Convention.

US EPA (2001). Method 1601: Male-Specific (F+) and Somatic Coliphage in Water

by Two-Step Enrichment Procedure. Technical Report EPA 821-R-01-030, Office of

Water, Washington, D.C.

US EPA (2005). Method 1623: Cryptosporidium and Giardia in Water by Filtra-

tion/IMS/FA. Technical Report EPA 815-R-05-002, US EPA.

US EPA (2006). National Primary Drinking Water Regulations: Long Term 2 En-

hanced Surface Water Treatment Rule.

US EPA (2012). Method 1623.1: Cryptosporidium and Giardia in Water by Filtra-

tion/IMS/FA. Technical Report EPA 816-R-12-001, US EPA.

US EPA (2016). Definition and Procedure for the Determination of the Method De-

tection Limit, Revision 2. Technical Report EPA821-R-16-0 06, US EPA Office of

Water, Washington, D.C.

US FDA (1998/2017). Bacteriological Analytical Manual. Technical Report Edition 8

Revision A, 1998, US Food and Drug Administration.

van der Kooij, D., Bakker, G. L., Italiaander, R., Veenendaal, H. R., and Wullings,

B. A. (2017). Biofilm Composition and Threshold Concentration for Growth of

Legionella Pneumophila on Surfaces Exposed to Flowing Warm Tap Water without

Disinfectant. Applied and Environmental Microbiology, 83(5):e02737–16.

van der Wielen, P. W. J. J. and Medema, G. (2010). Unsuitability of Quantitative Bac-

teroidales 16S rRNA Gene Assays for Discerning Fecal Contamination of Drinking

Water. Applied and Environmental Microbiology, 76(14):4876–4881.

van Driezum, I. H., Chik, A. H. S., Jakwerth, S., Lindner, G., Farnleitner, A. H., Som-

mer, R., Blaschke, A. P., and Kirschner, A. K. T. (2018). Spatiotemporal Analysis

of Bacterial Biomass and Activity to Understand Surface and Groundwater Inter-

actions in a Highly Dynamic Riverbank Filtration System. Science of the Total

Environment, 627:450–461.

van Driezum, I. H., Derx, J., Saracevic, E., Kirschner, A. K., Sommer, R., Farnleitner,

A. H., and Blaschke, A. P. (2017). Does Pumping Volume Affect the Concentration of

Micropollutants in Groundwater Samples? Groundwater Monitoring & Remediation,

37(4):82–88.

128



Vierheilig, J., Savio, D., Ley, R. E., Mach, R. L., Farnleitner, A. H., and Reischer,

G. H. (2015). Potential Applications of Next Generation DNA Sequencing of 16S

rRNA Gene Amplicons in Microbial Water Quality Monitoring. Water Science and

Technology, 72(11):1962–1972.
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A1 Calculation of the probability of a non-detect

observation

In this work, the number of microorganisms present within a sample volume V

collected from a presumably homogeneous source with a true concentration of c can be

represented as the Poisson random variable X:

P (X = x) =
e−cV (cV )x

x!
(A.1)

The probability of a non-detect observation assuming all microorganisms that are

present are successfully recovered and enumerated is simply:

P (X = 0) =
e−cV (cV )0

0!
= e−cV (A.2)

The product of the concentration and the volume provides the number of microor-

ganisms that can be expected to be present. Therefore, the expected number of mi-

croorganisms for a recovery of r would be multiplied by this factor, as reflected in the

exponent:

P (X = 0|r) = e−cV r (A.3)

Recovery can also be a random variable R represented by the standard beta distribution

with parameters a, b and the following characteristics:

E[R] =
a

a+ b
(A.4)

V ar[R] =
ab

(a+ b)2(a+ b+ 1)
(A.5)

fR(r) =
Γ(a+ b)

Γ(a)Γ(b)
ra−1(1− r)b−1 (A.6)

The probability of a non-detect considering the recovery profile as defined by the

beta distribution is obtained by integrating over the range of possible recovery values,

thereby obtaining the confluent hypergeometric function 1F1(a, b, c, V ) (hyperg1F1 in

R):

P (X = 0; a, b) =
Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

e−cV rra−1(1− r)b−1dr (A.7)
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A2 Evaluation of the posterior probability density

function of the microbial concentration based on

a single observation

In this work, Bayesian techniques were used to evaluate the uncertainty in the true

concentration. A relatively uninformative semi-infinite uniform prior (f(c) = 1, c > 0)

on the concentration was updated with the additional information provided by the

count observation (incorporated through its likelihood function) to obtain a posterior

distribution. Based on Bayes theorem:

posterior ∝ prior × likelihood (A.8)

The likelihood function of the concentration is given by:

L(c) =
e−cV (cV )x

x!
(A.9)

Therefore the posterior becomes:

P (c|x) ∝ e−cV (cV )x

x!
(A.10)

∝ (cV )xe−cV (A.11)

This posterior for concentration has the form of a gamma distribution with shape

parameter ρ = x+ 1 and scale parameter λ = 1/V .
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A3 Fitting a Poisson log-normal distribution to

Giardia cyst raw data assuming 100% analytical

recovery

In this work, maximum likelihood estimates (MLEs) of arithmetic mean and stan-

dard deviation of the log-normal distribution within the Poisson log-normal model for

count data were evaluated based on raw Giardia data (including both counts and sam-

ple volumes) and assuming 100% analytical recovery of the method (i.e., perfect sensi-

tivity). Analytical recovery data were available for this dataset based on ColorSeedTM

internal seeding standards; however, such data are not widely available in practice for

all drinking water treatment systems and therefore have not been widely mandated in

the current interpretation and application of water regulations such as those specified in

Alberta ((Alberta Environment and Sustainable Resource Development, 2012)). Vari-

able analytical recovery and other factors influencing Giardia concentration estimates

can be accounted for within hierarchical Bayesian frameworks, but is not considered

here for simplicity and has been discussed elsewhere (e.g., Schmidt et al., 2013). The

concentration c can be estimated if n samples with volumes (Vi, i = 1, 2, ..., n) are as-

sumed to be independent and collectively representative of the log-normally distributed

concentration. If the cysts in the source are randomly dispersed and the sample is well

mixed, then the number of cysts observed in each sample (Xi) is Poisson-distributed

with mean cVi, assuming all present cysts are successfully enumerated. By accounting

for random sampling error, non-detects are integrated seamlessly with non-zero counts

(and their respective analytical volumes).

ln(c) ∼ N(µ, σ2) (A.12)

Xi ∼ Poisson(λi) (A.13)

where λi = cVi

and ln(λi) = ln(c) + ln(Vi)

By mathematical expectation,

E[ln(c)] = µ (A.14)

V ar[ln(c)] = σ2 (A.15)
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The expectation of the natural logarithm of λ yields:

E[ln(λi)] = E[ln(c)] + E[ln(Vi)]

= µ+ ln(Vi) (A.16)

V ar[ln(λi)] = V ar[ln(c)] + V ar[ln(Vi)]

= σ2 + 0 = σ2 (A.17)

Therefore, the probability of the number of cysts observed in each sample provided the

assumptions inherent in Equations A.12 and A.13 is Poisson log-normally distributed

with mean µ+ ln(Vi) and standard deviation σ. The probability density function can

be solved numerically using the poilog package (v. 0.4)((Grøtan and Engen, 2008)) in

R, which was originally developed for the analysis of species abundance data in ecology.

The dpoilog function within the package does not explicitly allow for the specification

of “sampling intensity” (or in this case, the sample volume) as the sampling intensity

is seldom known for species abundance data in many ecological applications. However,

given mathematical expectation properties (Equations A.16 and A.17), we can re-

express the probability of the number of cysts observed in each sample in terms of µ,

σ and the measured volume Vi:

P (Xi|µ;σ;Vi) = dpoilog(Xi, µ+ ln(Vi), σ) (A.18)

Clearly, the unbiased estimates of µ and σ accounting for measured (i.e., known) sample

volumes can be easily determined (V. Grøtan, personal communication, January 9th,

2018). The joint probability of all Xi observations gives the likelihood function that

can be expressed as the product of the probability of each observation.

L =

n∏
i=1

dpoilog(Xi, µ+ ln(Vi), σ) (A.19)

The resulting likelihood function can be maximized by testing values of the MLE

parameters µ and σ iteratively.
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B1 Hierarchical model description

Figure B1: Hierarchical model used to estimate posterior distribution of mean proto-

zoan concentrations (µ)

The probabilistic model and the priors used in the Bayesian analysis are represented

as follows:

log10(µ) ∼ Normal(1,1) (prior distribution)

log10(σ) ∼ Normal(1,1) (prior distribution)

ρ = µ2/σ2 (shape parameter of the gamma distribution)

θ = µ/σ2 (rate parameter of the gamma distribution)

Ci ∼ gamma(ρ,θ) (in units of microorganisms/100 L)

yi ∼ Poisson(piCiVi) (no. of enumerated microorganisms

in processed sample volume)

α ∼ uniform(0.01,100) (prior distribution)

β ∼ uniform(0.01,100) (prior distribution)

pi ∼ beta(α,β) (stochastic, analytical recovery)

ni ∼ binomial(piSi) (no. of microorganisms recovered from

matrix-spike)
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Appendix C

Supporting information for

Illuminating subsurface microbial water

quality patterns using adenosine triphosphate

and dynamic time warping approaches
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C1 Groundwater levels

Figure C1: Groundwater levels (in meters above sea level) were measured manually in

wells WO77 and WO78 (dark blue triangles) during each of the sampling events and

consistently differed by less than 1 cm between the two wells. Groundwater levels were

continuously monitored at nearby well WO75 (red) and calibrated using manual water

levels (light blue circles).
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C2 Illustrative example of dynamic time warping

(DTW) distance determination

Although model-based approaches have been applied to many time series datasets

((Bagnall et al., 2017)), and extensively in various environmental applications ((Hipel

and McLeod, 1994)), the relatively short time series (n per time series ¡ 20) encountered

in this study are unique in that they do not typically contain sufficient information

for estimating model parameters. While model-based approaches may be applied for

long time series with unequal lengths ((Bagnall et al., 2017)), they are not commonly

proposed for investigating time series with irregularly-spaced intervals. We underscore

that time series analysis as presented in this work exploits the dynamics exhibited by

the whole time series rather than intervals or subsequences of the time series ((Keogh

and Lin, 2005))—all features exhibited by the data sequence will be incorporated into

the estimation of the pairwise, normalized DTW distance and therefore are implicitly

considered in analyses related to the ATP pattern (dis)similarities. Therefore, the

approach described herein provides an organizational framework to further explore

potential mechanisms and drivers of the subsurface biofilm patterns observed.

Briefly, pairs of normalized sequences (say, T1 and T2) of length m and n respec-

tively are aligned using DTW by constructing an m by n matrix, where each element

comprises of a local distance measure between the ith datum of T1 and j th datum

of T2. A path through the cost matrix that minimizes the total cumulative distance

between T1 and T2, subject to imposed constraints (i.e., boundary conditions, mono-

tonic condition, continuity condition, adjustment window condition), is designated as

the warping path for optimal alignment of the time series. In this work, the optimal

warping path through the distance matrix was constrained using a slanted band win-

dow of size 3 (i.e., allowing for a measurement to be aligned with another taken within

three sequential measurements) and a symmetric2 step pattern (i.e., equally weighing a

diagonal step with the sum of equivalent Manhattan steps) with an open-ended align-

ment (to accommodate sampling occasions that had to be terminated before the four

hour mark). This temporal realignment allowed for ATP time series of differing lengths

and irregular sampling intervals to be compared, while providing some tolerance for

out-of-phase (i.e., shifts in the position of) peak ATP concentrations.

Consider the two time series from WO77 in April 2018 presented in Table C1.

ATP concentrations were re-scaled between 1 and 0 with respect to the maximum and

minimum values of each respective time series. A cost matrix comprising the Euclidean

distance between each pair of normalized values was calculated, subject to a ”slanted
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band” window that allows for the distance to be calculated for values within three

sequential measurements (values outside this window are not compared) (Table C2).

A continuous path through the cost matrix subject to a symmetric2 step pattern

(i.e., equally weighted diagonal steps with the sum of equivalent Manhattan steps)

that minimizes the cumulative distance between the two time series is designated as

the optimal warping path (Figure C2). This path allows for features (such as peaks and

troughs) to be matched, or “re-aligned” from one time series to the other (Figure C3).

A smaller “normalized dynamic time warping (DTW) distance” (i.e., the cumulative

distance of the optimal path normalized by the number of steps taken) reflects time

series that are closely aligned (more similar). A normalized DTW distance is calculated

for each pair of time series compared to generate a triangular similarity distance matrix

for subsequent hierarchical clustering.

Figure C2: Optimal dynamic time warping path based on constraints imposed (i.e.,

slanted band, window size of 3, open-ended alignment, symmetric2 step pattern).

Calculated DTW distances can be quite sensitive to the constraints that are im-

posed. The constraints imposed must be tailored to the application and the nature of

the time series data available. In this study, an open-ended DTW alignment with a

slanted band of size 3 and a symmetric2 step pattern was used to accommodate time
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Figure C3: Time series aligned by dynamic time warping. Black: April 10, Red: April

24.

series of differing lengths, with the potential for a sample of position n in one time

series to be aligned to a sample of position n±3 in another time series, and a conti-

nuity constraint that equally weights a diagonal step with the sum of the equivalent

Manhattan steps within the distance matrix, respectively. While the results of the cur-

rent analysis were less sensitive to minor changes to these constraints, application- and

data-specific adjustments to the stringency of constraints imposed may be required

(e.g., adjustment window condition may be relaxed for a time series with relatively

small but frequent time intervals). Although more advanced, complex algorithms for

DTW distance calculation may also be adapted to the approach described herein (e.g.,

weighted DTW, derivative DTW, or combinations thereof)((Bagnall et al., 2017)), the

“basic” algorithm applied in this work offers an adaptable, parsimonious approach to

support exploratory data analysis and the generation of hypotheses when working with

time series with irregularly-spaced sampling intervals.
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C3 Background physical and chemical water quality
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C4 Supporting microbial water quality parameters

evaluated

BARTTM reactions were observed for 10 days as per the manufacturers’ instruc-

tions. The day on which a specific reaction occurs is inversely proportional to estimated

abundance of related bacteria responsible for their expression in the original sample

collected. Various reactions may be observed for the same test; each reaction may also

be expressed to a different extent (Figures C4 and C5), which may not necessarily be

captured by the number of days until the first reaction was observed as summarized

in the Table C4 below. Flow cytometry performed to estimate cell densities for the

corresponding samples were generally deemed below reliable quantification limits of

the method.

Figure C4: Example of IRB-BARTTM observed from sampling occasion conducted

April 24, 2018 (WO78), arranged by increasing extent of purging. Reactions for iron-

related bacteria (foaming, brown coloration) are visibly more prominent in the early

stages of purging than the latter.

Figure C5: Example of SLYM-BARTTM observed from sampling occasion conducted

April 24, 2018 (WO77), arranged by increasing extent of purging. Reactions for slime-

forming bacteria (fluorescence, cloudiness) are visibly more prominent in the first two

samples than the latter two, even though reactions were recorded to have occurred on

the same day.
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Appendix D

Supporting information for

Evaluation of groundwater bacterial

community composition to inform waterborne

pathogen vulnerability assessments
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D1 Groundwater levels

Groundwater levels during the study period are presented in Appendix C1.

D2 Water quality parameters evaluated along with

16S rRNA gene amplicon sequencing samples

Table D1: Summary statistics of physical and chemical water quality characteristics

(subset of parameters from Chik et al., [in review])

WO77 WO78

Parameter Mean SD na Mean SD na

Temperature (◦C) 8.91 0.92 37 9.41 0.57 46

Electrical conductivity (µS/cm) 538 20.2 37 551 30.4 45

pH 7.16 0.18 37 7.24 0.15 46

Turbidity (NTU) 0.29 0.28 37 0.33 0.54 46

Dissolved oxygen (mg/L) 8.05 1.43 37 7.92 1.65 46

Nitrate (mg/L) 13.8 0.55 10 13.7 0.38 10

Nitrite (mg/L) <0.01c - 10 <0.01 - 10

Sulfate (mg/L) 33.2 1.69 10 33.3 0.79 10

Bromide (mg/L) <0.10 - 10 <0.10 - 10

Manganese (mg/L) <0.0005 - 10 <0.0005 - 10

Iron (mg/L) <0.05 - 10 <0.05 - 10

ATP (pg/mL) 0.52 1.13 130 0.99 4.54 200
aChemical parameters were monitored intensively during a sampling event prior to

this study and ascertained to stabilize for the duration of the event after three

well purge volumes (generally achieved within <10 to 15 minutes of well purging);

select chemical water quality parameters were henceforth evaluated at least once

per event at the end of the last purging stage for each well.
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D3 Quality control samples
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183 of 259 OTUs that allowed for the sequence counts to converge within the NB

GLM framework were identified to be significantly different in abundance in purge

water samples compared to negative controls, of which 12 were found exclusively in

the purge water samples (Wald-test, p<0.05). The majority of OTU sequences were

expressed higher in the purge water samples than in the negative controls. All taxa with

sequences at least 2.0-log10-fold higher in the purge water samples than in the negative

controls were statistically significant. However, there are some notable exceptions

(e.g., sequences affiliated with the genus Escherichia/Shigella were only 1.395-log10

greater than those exhibited in the negative controls but deemed statistically significant

[p=0.00096]).
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D4 Bacterial core community analysis
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Figure D2: Empirical taxa abundance distribution to determine the core community

across all purge water samples. Dashed and dash-dotted lines denote key discontinuities

observed in at least 91% and 56% of purge water samples, respectively.
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Figure D3: Summary of relative abundance of bacterial taxa on phylum level, core

community only (present in at least 91% of samples).

157



2017−08−02 2017−08−30 2017−09−20 2017−11−08 2017−12−20 2018−01−30 2018−04−10 2018−04−24 2018−05−30

W
O

7
7

W
O

7
8

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Stage of purging

P
ro

p
o

rt
io

n
 o

f 
 P

ro
te

o
b

a
c
te

ri
a

 s
e

q
u

e
n

c
e

 r
e

a
d

s

Family

A0839

Acetobacteraceae

Acidiferrobacteraceae

Acidithiobacillaceae

Alteromonadaceae

Azospirillaceae

bacteriap25

Bacteriovoracaceae

Bdellovibrionaceae

Beijerinckiaceae

BIrii41

Burkholderiaceae

Caulobacteraceae

Cellvibrionaceae

Chromobacteriaceae

Dongiaceae

Enterobacteriaceae

Haliangiaceae

Halomonadaceae

Hydrogenophilaceae

Hyphomonadaceae

Idiomarinaceae

Methylophilaceae

Micropepsaceae

mle1−27

Moraxellaceae

Nitrosomonadaceae

P3OB−42

Pseudomonadaceae

Rhizobiaceae

Rhodobacteraceae

Sandaracinaceae

SC−I−84

Solimonadaceae

Sphingomonadaceae

VHS−B4−70

Xanthobacteraceae

Xanthomonadaceae

Figure D4: Summary of Proteobacteria taxa on family level.
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Figure D5: Summary of Proteobacteria taxa on family level, core community only

(present in at least 91% of samples).
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D5 Alpha-diversity measures associated with

16S rRNA gene amplicon sequencing samples

Table D2: Summary statistics for α-diversity measures

WO77 WO78

α-diversity measures Mean Median Range Mean Median Range

Number of OTUs 184 185 146-206 200 202 172-222

Chao1 194 194 159-220 206 207 183-237

Shannon 4.0 4.3 2.0-4.5 4.3 4.5 2.9-4.7

D6 Constrained analysis of principal coordinates
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Figure D6: Constrained analysis of principal coordinates (CAP) ordination of purge

water samples using Bray-Curtis dissimilarities. Circles and triangles represent the

wells from which the samples were collected (WO77 and WO78, respectively). CAP

axes 1 and 2 explain 10.4% and 3.3% of the microbial composition, respectively. The

influence of environmental variables (temperature, pH, electrical conductivity) are in-

dicated by arrows. Additional variables (i.e., dissolved oxygen, turbidity, ATP) did not

yield improved estimates of microbial composition and hence have been omitted from

the ordination. The influence of seasonal/sampling occasion to the variability of the

samples is more prominent than within the original NMDS ordination.
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D7 Identification of potentially relevant indicator taxa
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