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GRAPHICAL ABSTRACT 

An intelligent optimizer capable of handling multi-objective optimizations was developed 

based on Artificial Intelligence techniques to recognize copolymer microstructural 

patterns applying heuristic search strategies and identify optimal copolymerization 

recipes for synthesizing predefined copolymers. 
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ABSTRACT 

Manipulation and optimization of copolymer microstructure for tailoring final properties 

is of great importance in macromolecular science and engineering. Uncovering the 

complexities of the interrelationships between copolymerization recipe and copolymer 

microstructure (a challenging field of study in its own right) is a multi-objective 

optimization problem, which has attracted a lot of attention in the last 10-15 years. In the 

present study, a powerful optimizer was developed based on the Non-dominated Sorting 

Genetic Algorithm (NSGA-II) for transforming desired microstructural copolymerization 

profiles, including molecular weight distribution (MWD) and chemical composition 

distribution (CCD), back to optimal copolymerization recipes and operating conditions. 

The optimizer developed has the beneficial features of robust machine learning and multi-

objective optimization based upon heuristic search strategies. The metallocene-catalyzed 

ethylene/α-olefin copolymerization was selected as a sufficiently complex system to 

challenge the proposed optimization tool. The developed computer code was used to 

explore copolymerization recipes (polymerization temperature and concentrations of 

ethylene, 1-butene, cocatalyst, and hydrogen) needed to synthesize copolymers having 

desired microstructural features. Based on the results obtained, it is now possible to 

produce various grades or tailor-make the copolymer structure by suggesting the ‘best’ 

copolymerization recipe/conditions as reliably as possible.  

 

Keywords: Heuristic Search Strategy; Copolymerization; Microstructure; Multi-objective 

Optimization; Genetic Algorithms; Polyethylene 
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1. INTRODUCTION 

Manipulation and fine-tuning of copolymer properties has so far been realized mostly 

through detailed mathematical modeling for the simultaneous regulation of 

microstructural features of copolymer chains (monomer sequences/arrangements and 

chain length); see, for instance, [1-5]. Understanding the microstructure-property 

relationships in copolymerization is a rather cumbersome activity, and this arises mainly 

due to the complexity of the macromolecular reactions. It has been generally accepted 

that the molecular weight distribution (MWD) and the copolymer composition 

distribution (CCD) (and/or sequence length distribution, SLD) are the most important 

distributional properties representing the copolymer microstructure quantitatively [6, 7]. 

Nevertheless, both the characterization and optimization of copolymer microstructure 

are still a challenging field of study in polymer science and engineering. This is mostly due 

to the fact that variations in MWD and CCD (SLD) patterns can be severely nonlinear. 

More importantly, there is a need for a robust and versatile tool capable of foreseeing 

optimal operational conditions resulting in desirable microstructural patterns, i.e., a way 

of backward tracking copolymerization recipes/operating conditions from desirable 

properties. 

Basically, fine-tuning of copolymer microstructure and properties is intrinsically a multi-

objective optimization problem and needs to be managed by a robust and powerful multi-

objective optimization method. In contrast to time-consuming and often ineffective 

classical deterministic and stochastic approaches like random and/or exhaustive search 

strategies, more recent ‘Computational Intelligence’-based optimization techniques have 

demonstrated significant benefits and outstanding capabilities in different optimization 

fields [8-10]. 

All Artificial Intelligence techniques share critical components of ‘intelligence’, including 

learning, generalization, and decision-making, for modeling and optimization of complex 

nonlinear problems. Artificial Neural Networks (ANNs) and Fuzzy Logic Systems are very 

powerful intelligent ‘modelers’, while the most popular heuristic search strategies 
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(intelligent ‘optimizers’) include Swarm Intelligence, Simulated Annealing, Particle Swarm 

Optimization (PSO), and Genetic Algorithms (GAs) [11]. 

Generally speaking, ANNs are specifically designed as black-box modeling approaches to 

explore the nonlinear behavior of systems where mechanistic description of the 

interrelationships between input and output variables is unknown/overly complex [12]. 

Uses of ANNs in modeling polymerizations have been reported in several studies [13-19]. 

Although ANNs are essentially modeling techniques, they can also be applied in 

optimization of copolymer properties via a backward route. To do this, theoretical or 

experimental polymerization data collected for a well-defined number of polymerization 

scenarios (i.e., polymerization recipes and operating conditions as inputs and 

corresponding copolymer properties as outputs) are considered by a predefined ANN. 

Through training and testing stages, the parameters of the network, including weights 

and biases, are determined. The well-trained ANN is then capable of correlating inputs, 

i.e., copolymerization recipe/conditions, to copolymer properties as outputs. In fact, the 

ANN can predict the final copolymer properties for any given polymerization recipe. For 

the inverse route, i.e., when properties are set and polymerization conditions are 

required, another ANN has to be constructed and trained, which results in different sets 

of weights and biases, independent of those obtained via the forward route. Decision-

making absolutely depends on the extent to which the real behavior of the system has 

been successfully imitated by the trained ANN. 

In recent work [20], ANNs were applied for the optimization of ethylene/1-butene 

copolymerization with a two­single­site­type catalyst. Apparently, ethylene/α-olefin 

copolymers are appropriate case studies for exploring structure-property relationships, 

as a relatively broad range of microstructural patterns can be obtained depending on the 

catalyst composition and copolymerization conditions [21, 22]. Two ANNs (forward and 

inverse models) were trained and tested to find the interrelationship between inputs (i.e., 

copolymerization conditions including polymerization temperature and concentrations of 

ethylene, 1-butene, cocatalyst, and hydrogen as X variables) and outputs (i.e., 

microstructural patterns including MWD and CCD as Y responses) [20]. The forward model 
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was responsible for predicting the Y responses for any given set of the X variables, while 

the inverse model was arranged to function in the opposite manner, i.e., to determine 

the polymerization conditions required to deliver a given polymer microstructure. 

However, an ANN is not necessarily the best choice of an ‘expert’ optimization technique. 

Although most of the Artificial Intelligence techniques can be interchangeably applied for 

both modeling and optimization, each one is principally designed and developed for 

either modeling or optimization purposes. Basically, ANNs are more preferable for 

modeling purposes. Secondly, constructing and training an ANN not only requires the 

collection of an adequate (usually large) amount of experimental or theoretical data but 

also it is essentially a computationally time-consuming process, especially in case of 

problems having a large number of inputs and/or outputs. In addition, the training and 

test datasets should be collected in a precise manner in order to be appropriately 

representative of the whole search space. Last but not least, ANN, being a black-box 

‘modeler’, once trained, it returns only one output for any given input. On the other hand, 

multi-objective problems have multiple solutions in principle, known as Pareto optimal 

solutions. 

A more powerful optimization tool is needed for the regulation of MWD and CCD/SLD. 

This tool should be capable of satisfying several predefined microstructural targets. 

Among all ‘computationally intelligent’ optimization methods and also classical 

deterministic and stochastic optimization techniques, the Non-dominated Sorting Genetic 

Algorithm (NSGA-II) is one of the most powerful methods to handle various multi-

objective problems concurrently. Although NSGA-II has been successfully applied to 

manage multi-objective optimization problems in different fields of study, it has never 

been employed in the manipulation of copolymer microstructure [23-26]. 

In this work, a computer code was developed based on NSGA-II to optimize concurrently 

the MWD and CCD of ethylene/α-olefin copolymers in terms of polymerization 

temperature and concentrations of ethylene, 1-butene, cocatalyst, and hydrogen. In 

contrast to the ANN modeling approach, NSGA-II is an expert optimizer and has the 

capability of decision-making in case of complex multi-objective problems, hence it 
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enables identification of all local optima and the global optimum [27-29]. The developed 

optimization algorithm was capable of precisely determining the copolymerization recipe 

and conditions required for the production of copolymers with preset desirable MWD and 

CCD patterns. 

 

2. MODEL DEVELOPMENT 

Mathematical modeling of metallocene-based copolymerization of ethylene with α-

olefins containing multi-site catalytic systems has been comprehensively dealt with [2]. 

Macroscopic properties are governed by distributions of short-chain branches and 

molecular weights. Two equations were used for tracking microstructural changes 

involving MWD and CCD, as follows: 
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In the above summation equations, the subscript j denotes the site type, m(j) is the mass 

fraction of polymer produced on site type j, Mw refers to molecular weight, w(-)(j) denotes 

the weight fraction (distribution) of molecular weight and/or chemical composition of 

polymer produced on site type j, W(-) denotes the total weight (distribution) of molecular 

weight and/or chemical composition, Ns is the total number of active site types on the 

catalyst, and F1 is the molar fraction of ethylene monomer in the copolymer. More 

information on the derivation of these equations can be found elsewhere [2, 20]. Despite 

the fact that the above equations are capable of precisely predicting the variations of 

MWD and CCD for a wide range of operational conditions (moving from X to Y), the 

establishment of structure-property relationships in such systems needs continuous 

update due to the fact that the interrelationships between copolymerization conditions 

and microstructural patterns are severely nonlinear (moving in an inverse manner, i.e., 
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from Y to X). For instance, a small change in copolymerization recipe/conditions may 

cause changing MWD and/or CCD profiles from unimodal to bimodal, and vice versa. 

More importantly, the problem becomes even more complex and multi-dimensional 

when one needs to find optimal polymerization conditions necessary for production of 

copolymers with desired microstructures. Therefore, considering the nonlinearity of the 

problem, copolymer microstructure manipulation and regulation applying the above 

summation equations is intrinsically a multi-objective optimization problem with 

multiplicity of solutions for any predefined copolymer microstructure. 

Basically, all typical problems are multi-objective. Usually, single-objective problems are 

mostly defined for the sake of simplicity for illustration purposes. This means that (i) most 

of the time one just selects/considers the most important objective and neglects the 

others to convert multi-objective problems into single-objective ones; or, (ii) sometimes 

one just selects one objective and considers one or more other objectives as constraints. 

In both cases, the optimization procedures are simplified and redefined as single-

objective optimizations. The fact is that the best solution for a multi-objective problem is 

obtained only if an expert multi-objective optimization method is applied. 

Multi-objective optimization problems, like the simultaneous optimization of MWD and 

CCD can be handled by both classical and evolutionary algorithms. Classical algorithms, 

such as weighted sum, goal programming, goal attainment, and ε-constraint, are mostly 

based on deterministic transition rules and attempt to ‘scalarize’ iteratively multiple 

objectives in exploring a set of Pareto optimal solutions [23]. Also, classical approaches 

mostly convert a multi-objective problem into a simplified single-objective optimization 

problem with or without considering certain constraints. By contrast, evolutionary 

algorithms use stochastic principles to find solutions in a single simulation run [24]. 

Principally, in solving a multi-objective problem, difficulties may arise from the execution 

of the searching and decision-making phases of optimization. This requires development 

of sophisticated computer codes and hybridization of computational algorithms in order 

to find the best optimal conditions and subsequently warrant multi-variable optimization 

of two or more targets [25,26]. 



 9 

Nowadays, Genetic Algorithms combined with heuristic search strategies are the most 

popular optimization techniques, widely applied in different fields of study considering 

their flexibility and ability to handle a large variety of problems. They are based on 

generating a population of potential solutions and stochastically evolving them toward 

better solutions via the application of powerful genetic operators. Not only are Genetic 

Algorithms masterful in single-objective optimizations, but also capable of handling multi-

objective optimizations with two or more objectives and constraints concurrently. Among 

different Genetic Algorithms, NSGA-II is a unique multi-objective version of the family 

established primarily based on the domination concept. Undoubtedly, it can be 

considered as one of the most applied optimization techniques in different fields of 

science and technology [23-26]. 

Due to these reasons, NSGA-II is selected and applied for recognition and multi-objective 

optimization of MWD and CCD patterns in a metallocene-catalyzed copolymerization of 

ethylene with an α-olefin. The ethylene/1-butene system with two-single-site-type 

catalyst is selected as a case study. The reaction scheme and kinetic parameters used are 

as described in [20]. The proposed copolymerization mechanism consists of site 

activation, chain initiation, propagation, chain transfer to monomer, chain transfer to 

hydrogen, chain transfer to cocatalyst, β-hydride elimination, and catalyst deactivation. 

The kinetic constants for the copolymerization of ethylene with 1-butene at 360 K are 

given in Table 1, as cited in [20]. 
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Table 1. Kinetics constants and activation energies for ethylene/1-butene 

copolymerization at 360 K [20]. 

Mechanism  Kinetic 
constant 

Units  Site 1 Site 2 Activation energy 
Site 1 (cal.mol−1) 

Activation energy 
Site 2 (cal.mol−1) 

Activation kf L mole-1 s-1 1 1 12945.44 12946.44 
Initiation ki,1 L mole-1 s-1 1 1 9000 9100 

ki,2 L mole-1 s-1 0.14 0.14 9200 9300 
Propagation kp,11 L mole-1 s-1 8.5 8.5 10000 10100 

kp,12 L mole-1 s-1 2 1.5 15001 15101 
kp,21 L mole-1 s-1 6.4 6.4 10001 10101 
kp,22 L mole-1 s-1 1.5 2.26 15000 15100 

Transfer to 
Monomer 

kM,11 L mole-1 s-1 0.0021 0.0021 19824.21 19834 
kM,12 L mole-1 s-1 0.006 0.11 19825.21 19835 
kM,21 L mole-1 s-1 0.0021 0.0021 19826.21 19836 
kM,22 L mole-1 s-1 0.006 0.11 19827.21 19837 

Transfer to H2 kH,1 L mole-1 s-1 0.088 0.37 19820.21 19830 
kH,2 L mole-1 s-1 0.088 0.37 19821.21 19831 

Transfer to 
cocatalyst 

kA,1 L mole-1 s-1 0.024 0.12 19822.21 19832 
kA,2 L mole-1 s-1 0.048 0.24 19823.21 19833 

β-Hydride 
elimination 

kβ,1 s-1 0.0001 0.0001 15005 15006 
kβ,2 s-1 0.0001 0.0001 15008 15007 

Deactivation kd s-1 0.0001 0.0001 12900 13500 
 

Possible ranges of variation of copolymerization recipe/conditions used in the multi-

objective optimization of MWD and CCD patterns are presented in Table 2, again as 

implemented in [20]. 

 

Table 2. Range of variation of copolymerization conditions (as per [20]) used in multi-

objective optimizations. 

Operation condition Unit Range of Values 
Ethylene mol L-1 0.200 - 3.740 
1-Butene mol L-1 0.030 - 1.050 
Hydrogen mol L-1 0.0001  - 0.0100 
Co-catalyst mol L-1 0.0003 - 0.0143 
Temperature °C 70.0 - 90.0 
 
Average reactor residence time (tr) 

 
s 

 
1000 

The total molar flow rate of catalyst precursor (Cin) mole s-1 0.00001 
Molar fraction of site type j (x(j)) - 0.5 (j = 1 and 2) 

 

Four different microstructural patterns, referred to from now on as Cases I-IV, are defined 

as target ethylene/1-butene copolymer microstructures to be imitated, patterned, and 
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optimized by NSGA-II. To do this, an in-house computer code was written in PASCAL 

programming language (Lazarus IDE 1.6.4) and compiled into 64-bits executable using FPC 

2.6.2. The program was run on a desktop computer with Intel Core i7-3770K (3.50 GHz), 

32 GB of memory (2133 MHz), under Windows 7 Ultimate 64-bit operating system. The 

optimization runtime took less than two minutes for all cases studied in this work (Case I: 

~17 s, Case II: ~112 s, Case III: ~83 s, and Case IV: ~98 s). 

The developed code is capable of tracking the copolymer microstructural patterns as a 

function of copolymerization recipe/conditions, i.e., solving multi-objective optimization 

problems (e.g., arrive at the appropriate copolymerization recipes to synthesize 

copolymers with preset MWD and CCD profiles). 

Scheme 1 is a graphical flowchart that demonstrates the multi-objective optimization 

algorithm developed in this work. First of all, the copolymerization recipe/conditions 

(reaction temperature (T), concentrations of ethylene (E), 1-butene (B), cocatalyst (C), and 

hydrogen (H)) are codified into a chromosome-like structure with tightly connected genes 

resembling a potential solution for the problem under study (Scheme 2). In this 

chromosome, 30 targets are considered to represent the patterns of MWD and CCD, 

responsible for transferring microstructural information. In other words, both MWD and 

CCD profiles are divided into 14 identical intervals in an attempt to specify 15 discretized 

data points as representatives of MWD and CCD patterns. The developed computer code 

identifies chromosomes of the same structure, but with different genes. The computer 

program is capable of receiving a coded copolymerization recipe as a genotype and 

decoding it via the application of the previously described summation equations into the 

corresponding phenotype, i.e., MWD and CCD patterns. As can be observed, NSGA-II is 

able to make a direct interconnection between genotypes and phenotype. In other words, 

it receives copolymerization recipes and calculates/visualizes MWD and CCD patterns for 

each recipe via recalling online the summation equations (1) and (2). In contrast, ANN 

recalls the summation equations in an offline mode, i.e., as an ‘avatar’ for the summation 

equations; it can only estimate equations (1) and (2). Hence, there inevitably exists an 

intrinsic error in the prediction of microstructural patterns when ANNs are utilized for 
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multi-objective optimization purposes. Also, changing the potential operating ranges for 

copolymerization recipes/conditions, NSGA-II can still handle the optimization of 

microstructural patterns in the operating space, whereas new ANNs should be 

constructed and trained for the new search space, every time the operating space 

changes. 

Secondly, the predefined target copolymer with preset MWD and CCD patterns is directly 

received by the computer code. As per previous work in the literature, 15 data points on 

both MWD and CCD microstructural patterns are specified by equally-spaced slicing of 

input patterns, which is shown to be adequate for reflecting the behavior of such 

distribution curves [20]. Then, in the third step, an initial population of chromosomes (i.e., 

copolymerization recipes) is generated randomly. It is worth mentioning that in all 

Genetic Algorithms the population generation is random only in the first iteration. In 

other words, new generations emerge via the genetic operators capable of adjusting the 

gene(s) values to evolve the population and produce optimum solutions. In the fourth 

step, the optimization algorithm calculates/visualizes the MWD and CCD patterns for the 

generated chromosomes one by one recalling the summation equations (equations (1) 

and (2)). Since the summation equations are directly recalled by NSGA-II instead of being 

approximated by the trained ANN (as in [20]), the degree of accuracy is much higher. 

In the fifth step, the visualized MWD and CCD patterns of each chromosome are 

separately compared with the target MWD and CCD patterns to evaluate the fitness via 

determination of their deviation from the predefined targets. The calculated errors are 

reported as the fitness values of each chromosome. Obviously, for each chromosome, 

two error values represent the amount of deviation from the target MWD and CCD 

patterns, respectively. 
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Scheme 1. Detailed graphical flowchart based on NSGA-II for copolymer microstructure 

recognition and optimization. 
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The genetic algorithm includes selection, sorting, mating, crossover, and mutation 

operators, and these are applied in the sixth step to establish new generations via an 

evolutionary pathway. Basically, the main difference between NSGA-II and other single-

objective versions of Genetic Algorithms is the mechanism of sorting the potential 

solutions. NSGA-II utilizes the domination concept to sort chromosomes in a multi-

objective optimization framework. According to this mechanism, the chromosomes are 

sorted based on the “quality” and “diversity” of the solutions. The former criterion 

organizes the solutions into classes named Pareto fronts, whereas the latter separately 

puts the members of each Pareto front into order by fitness values. 

 

 
Scheme 2. Defined chromosome-like structure illustrating (i) the variation interval for 

each polymerization variable and (ii) the microstructural patterns with 15 equally-

spaced MWD and CCD target points to be optimized. 

 

To classify the chromosomes based on the quality of solutions, the domination concept is 

applied. A certain chromosome (e.g., chromosome i) dominates (over) another 

chromosome (e.g., chromosome j) if it is not worse than the latter chromosome in all 

predefined objectives and definitely better in at least one objective (see Equation 3). If all 

objectives should be mutually minimized, then the domination concept is expressed as 

the following mathematical equation: 
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where Fx(i) is the fitness value of chromosome i in objective x and Nobj is the total number 

of predefined objectives. Comparing all possible pairs of solutions, a number or rank is 

assigned to each chromosome based on the dominations. The chromosomes are 
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subsequently organized into a set of Pareto fronts. Accordingly, non-dominated 

chromosomes are placed in the first Pareto front, while the second Pareto front hosts 

those chromosomes dominated once by the members in the first front and the front 

classification goes on. Afterwards, the chromosomes in the first front are given a rank 

value of 1, those in the second front are assigned the rank value of 2, and so on. 

Finally, the chromosomes in each Pareto front are separately sorted based upon the 

Crowding Distance (C.D.) criterion, defined as follows: 
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In this equation, dx(i) is the crowding distance of chromosome i with respect to objective 

x. Also, min(Fx) and max(Fx) are the minimum and maximum values of objective x, 

respectively. Nobj denotes the number of objectives and CD (i) is the crowding distance of 

chromosome i. 

After sorting and selecting the most suitable chromosomes, these chromosomes are 

utilized to generate new members to be replaced by rejected chromosomes of the 

previous generation. This is handled by two well-known powerful intelligent genetic 

operators; crossover and mutation. Both operators are expert stochastic search tools but 

their searching mechanism and implementation are quite different. Crossover is mainly 

applied for exploitation, while mutation is employed for exploration. More specifically, 

the crossover operator takes two chromosomes as parents from the existing population 

and attempts to generate two new chromosomes as offsprings which are more similar to 

the parents. Hence, the crossover operator seeks promising regions in the hope to find 

additional solutions, i.e., local optima. On the other hand, mutation influences a single 

chromosome and changes it into a new chromosome which may or may not be in the 

current population. Thus, the mutation operator seeks the unexplored regions to 

guarantee that all regions of the search space are thoroughly explored and the search is 
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not confined to limited regions. It is clear that the rate and type of crossover and mutation 

can be regulated depending on the problem under study. 

The evolutionary process stops whenever one or more evolved solutions satisfy the 

predefined target(s). Then, optimal solution(s) containing polymerization temperature 

and concentrations of the specific ingredients are reported. Lastly, the MWD and CCD 

patterns are calculated at predicted optimum polymerization conditions using the 

summation equations in order to evaluate the authenticity of the optimization process. 

 

3. RESULTS AND DISCUSSION 

3.1. Verification of NSGA-II performance 

Two different copolymerization recipes (Cases I and II) are shown in Table 3. Their 

corresponding MWD and CCD patterns are theoretically calculated/visualized applying 

summation equations 1 and 2 considering the copolymerization reaction mechanism and 

kinetic parameters given in Tables 1 and 2 (blue curves at the bottom plots of Table 3). 

Then, as mentioned in the previous section, both MWD and CCD profiles are divided into 

14 identical intervals to specify 15 discretized data points as representative of the MWD 

and CCD patterns of the target copolymers, respectively (red lines at the bottom plots of 

Table 3). It can be observed that the target MWD and CCD patterns (red curves) yielded 

by connecting neighboring pairs of target points by a straight line can appropriately 

represent the theoretical MWD and CCD patterns. In order to demonstrate the 

capabilities of the NSGA-II code written in this work, the MWD patterns of Case I and Case 

II are deliberately taken in a manner to exhibit a bimodal and a unimodal distribution, 

respectively. The assigned points are chosen at specified steps of Log(MW) and F1, 

represented by hollow circles in the plots at the bottom of Table 3. The values 

corresponding to each point are explicitly cited in Table 3 for Cases I and II. 

Now, for both cases, the aforementioned target MWD and CCD patterns are 

simultaneously fed into the NSGA-II optimization code to assess the ability of the 

developed code with respect to recognizing MWD and CCD patterns and prediction of 

optimum copolymerization recipe(s) (i.e., those recipies defined in this section to produce 
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Cases I and II). As mentioned in the model development section, the NSGA-II algorithm 

randomly produces a wide variety of recipes as the initial population in the first step in an 

attempt to recognize the microstructural patterns it has received as model inputs. In the 

current study, the initial population size is set to be 500 recipes. In the second step, the 

algorithm recalls summation equations (1) and (2) for calculating/visualizing MWD and 

CCD patterns of each randomly generated recipe. The obtained microstructural patterns 

are utilized to evaluate the error values in prediction of Log(MW) and F1 with respect to 

the predefined targets. It is obvious that except for the initial population, NSGA-II 

generates the next populations intelligently via the evolutionary manner described in 

section 2. 

 

Table 3. Polymerization conditions along with corresponding target MWD and CCD 

patterns used in multi-objective optimization of copolymer microstructure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case I Case II 
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Ethylene 1.720  mol L-1  Ethylene 1.000 mol L-

1 
 

1-Butene 0.322 mol L-1 1-Butene 0.030 mol L-

1 
Hydrogen 0.0080 mol L-1 Hydrogen 0.0100 mol L-

1 
Co-catalyst 0.0020 mol L-1 Co-catalyst 0.0030 mol L-

1 
Temperature 80.0 °C Temperature 90.0 °C 
  
log(Mw) W(log(Mw)) F1 W(F1) log(Mw) W(log(Mw)) F1 W(F1) 
2.50 0.000649 0.9500 1.132431 2.50 0.000252 0.9500 0.000536 
2.75 0.002015 0.9535 2.892383 2.75 0.000789 0.9535 0.000809 
3.00 0.006168 0.9570 10.25696 3.00 0.002449 0.9570 0.001267 
3.25 0.018418 0.9605 48.24930 3.25 0.007500 0.9605 0.002072 
3.50 0.052600 0.9640 85.32231 3.50 0.022405 0.9640 0.003576 
3.75 0.138839 0.9675 42.24941 3.75 0.064050 0.9675 0.006593 
4.00 0.319001 0.9710 35.96399 4.00 0.169513 0.9710 0.013228 
4.25 0.576326 0.9745 27.90146 4.25 0.392502 0.9745 0.029660 
4.50 0.703022 0.9780 15.72296 4.50 0.726335 0.9780 0.077500 
4.75 0.542841 0.9815 7.496707 4.75 0.954761 0.9815 0.253234 
5.00 0.508694 0.9850 3.465868 5.00 0.853227 0.9850 1.182868 
5.25 0.626147 0.9885 1.658637 5.25 0.583979 0.9885 10.57321 
5.50 0.419150 0.9920 0.839843 5.50 0.207541 0.9920 173.2091 
5.75 0.083879 0.9955 0.451203 5.75 0.014572 0.9955 98.70366 
6.00 0.001959 0.9990 0.256128 6.00 5.29E-05 0.9990 11.03536 

  

2.
50

2.
75

3.
00

3.
25

3.
50

3.
75

4.
00

4.
25

4.
50

4.
75

5.
00

5.
25

5.
50

5.
75

6.
00

0.0

0.2

0.4

0.6

0.8

W
(L

og
(M

W
))

Log(MW)

 Theory
 Target

2.
50

2.
75

3.
00

3.
25

3.
50

3.
75

4.
00

4.
25

4.
50

4.
75

5.
00

5.
25

5.
50

5.
75

6.
00

0.0

0.2

0.4

0.6

0.8

1.0

W
(L

og
(M

W
))

Log(MW)

 Theory
 Target



 19 

  
 

The error values calculated for a given recipe are taken as the fitness values for that 

specific recipe. The roulette wheel mechanism, double-point mechanism, and uniform 

single-gene mechanism are utilized for mating, crossover, and mutation operators, 

respectively. As already mentioned earlier, one of the beneficial aspects of NSGA-II in 

optimization of microstructural patterns is its capability to recall directly the summation 

equations (equations (1) and (2)) in order to calculate the fitness values of the 

chromosomes. On the other hand, ANNs just imitate the behavior of the summation 

equations with an error which is normally preset in the training and testing stages. Put 

simply, the ANN approach utilizes the ‘modeled’ version of the summation equations with 

a built-in error. 

Figure 1 provides a perspective on the evolutionary nature of the NSGA-II optimization 

code in which MWD and CCD patterns of a copolymer calculated by NSGA-II are plotted 

as a sample for recipe #200 after 100 iterations. As can be observed, the algorithm 

compares the obtained microstructural patterns with the target patterns defined as Case 

I and calculates the corresponding errors. It should be emphasized that the maximum 

allowable error values, i.e., stopping condition in identifying target copolymer I, are 

arbitrarily set to be 0.2% for both MWD and CCD patterns. 
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Figure 1. (A and B) MWD and CCD patterns of Recipe #200 proposed by the optimization 

algorithm for Case I after 100 iterations; (Aꞌ and Bꞌ) Error calculation mechanism along 

with corresponding errors in prediction/recognition of the microstructural patterns for 

the same recipe and at the same epoch. 

 

It can be observed that some local errors at target points located on the MWD and CCD 

curves (i.e., E1, E2 … E15 specified in Figures 1Aꞌ and 1Bꞌ) may have approached zero, but 

overall the NSGA-II algorithm needs to seek out and match target microstructural patterns 

by further interactions. Obviously, to make an appropriate comparison, both generated 

patterns and target patterns are separately normalized between -1 and +1. The errors are 

then calculated through the summation of local errors for both MWD and CCD patterns. 

Figure 2 shows the results of the multi-objective optimization for the target copolymer 

defined in Case I, accomplished after 378 iterations. Interestingly, 18 solutions have 

successfully met the primary criterion of NSGA-II, i.e., the ranking criterion, but only one 
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solution has been labeled as the best solution (Solution #1), which satisfied the allowable 

error constraints, that is 0.2% for either MWD or CCD. Once the best solution was 

identified, the code stopped running. The other 17 solutions were those positioned in the 

first Pareto front as non-dominating solutions, whose errors in MWD and/or CCD 

exceeded 0.2%. The corresponding microstructures were close to the one reported as the 

optimum solution (solution #1). It is apparent from Figure 2 that the NSGA-II optimizer 

has successfully and simultaneously recognized the target patterns (both MWD and CCD 

patterns) and identified the optimum recipe for synthesizing the target copolymer in Case 

I. 

 

 
Figure 2. MWD (A) and CCD (B) patterns of target copolymer defined in Case I, achieved 

after 378 iterations. 

 

The Pareto front and iteration errors in predicting the MWD and CCD patterns computed 

and reported by the NSGA-II code for target copolymer I are presented in Figure 3. It can 

be observed that the developed code can appropriately find the best solution in view of 

the 0.2% error (filled circle in Figure 3A). It is worth mentioning that there are some 

solutions (unfilled circles in Figure 3A) that only meet the allowable error of 0.2% with 

respect to the MWD pattern. These solutions have been distinguished by the NSGA-II code 

and bypassed as optimal solutions, because of the CCD error constraint not having been 

met, although they are all placed in the first Pareto front. The descending trends in the 

individual errors in MWD, CCD, and the total error during the optimization process of the 
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target copolymer I emphasize further the reliability of the proposed optimization method 

(Figure 3B). At the final iteration, the exact error values were 0.1105, 0.1639, and 0.2744 

%, respectively. 

 

 
Figure 3. The Pareto optimal front (A) and errors in prediction of MWD and CCD 

patterns (B) proposed by the NSGA-II code for Case I target copolymer. 

 

Figure 4 compares the microstructural patterns of the best solution (solution #1) 

proposed by the optimizer (green symbols) with the theoretical patterns yielded from 

summation equations 1 and 2 (blue curves) and those considered by the code as the 

target copolymer I (red lines). It is obvious that NSGA-II has predicted the MWD and CCD 

profiles of the target copolymer I satisfactorily. The developed optimization code 

successfully recognized the MWD and CCD patterns simultaneously through a multi-

objective optimization pathway. There is also evidence that the selected points are 

adequate and have an acceptable resolution to represent the real picture of the 

microstructural patterns in the case of target copolymer I. 
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Figure 4. Comparison of the optimization results (NSGA-II) and predefined targets 

(theoretical plots obtained using summation equations 1 and 2) in case of copolymer I; 

MWD (A) and CCD (B) patterns. 

 

Table 4 provides detailed information on the 18 solutions shown in Figure 2 and proposed 

by the developed NSGA-II code. These solutions are obtained at the 378th iteration, 

where only the first solution met the overall error criteria of 0.2% for both Log(MW) and 

F1 constraints. The others were separated and stored because of being non-dominating 

but located in the first Pareto front. It is apparent that all solutions are successful in 

identifying and reporting the best values for the target MWD and CCD patterns. The first 

column of Table 4 represents the solution number sorted in accordance with total error 

values from smaller to larger. The second to sixth columns represent the copolymerization 

recipes proposed by the NSGA-II optimizer, i.e., values of the operating variables including 

concentrations of ethylene, 1-butene, hydrogen, and cocatalyst, and the polymerization 

temperature. The seventh and eighth columns give errors in the optimization patterns of 

MWD and CCD, respectively. In the ninth and tenth columns are the values of the first and 

second criteria used in the multi-objective optimization of the MWD and CCD profiles, 

respectively. The former, named “Ranking”, is calculated and assigned based on the 

sorting of solutions in view of the domination concept, which classifies solutions in 

different Pareto fronts. It can be seen that from the perspective of this first criterion all 

solutions are acceptable because of having been located in the first Pareto front. The 
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latter, i.e., C.D. column, is indicative of the crowding distance of solutions located in each 

Pareto front. This second criterion is able to sort the solutions isolated in different Pareto 

fronts separately. The solutions scoring higher crowding distance values are more 

acceptable. 

 

Table 4. Details of Pareto optimal solutions obtained at the last iteration for target 

copolymer I by NSGA-II optimizer. 
Solution Ethylene 

(mol L-1) 
1-Butene 
(mol L-1) 

Hydrogen 
(mol L-1) 

Cocatalyst 
(mol L-1) 

Temperature 
(°C) 

Error in MW 
(%) 

Error in F1 
(%) 

Ranking C.D. 

1 1.7212 0.3222 0.0081 0.0020 80.0080 0.1105 0.1639 1 Infinity 
2 1.7472 0.3222 0.0060 0.0038 80.6674 0.0268 0.4185 1 Infinity 
3 1.7472 0.3222 0.0060 0.0038 80.6674 0.0268 0.4185 1 Infinity 
4 1.7472 0.3222 0.0060 0.0038 80.6674 0.0268 0.4185 1 0.0000 
5 1.7472 0.3222 0.0060 0.0038 80.6674 0.0268 0.4185 1 0.0000 
6 1.7472 0.3222 0.0057 0.0048 80.6674 0.0413 0.4173 1 0.2092 
7 1.7472 0.3222 0.0057 0.0048 80.6674 0.0413 0.4173 1 0.1195 
8 1.7472 0.3222 0.0061 0.0020 80.6674 0.0509 0.4083 1 0.1474 
9 1.7472 0.3222 0.0061 0.0020 80.6674 0.0509 0.4083 1 0.0000 
10 1.7472 0.3222 0.0061 0.0020 80.6674 0.0509 0.4083 1 0.5350 
11 1.7472 0.3222 0.0081 0.0045 80.0080 0.0928 0.4001 1 0.4996 
12 1.7472 0.3222 0.0081 0.0045 80.0080 0.0928 0.4001 1 0.0324 
13 1.7472 0.3222 0.0081 0.0045 80.0080 0.0928 0.4001 1 0.1473 
14 1.7472 0.3222 0.0081 0.0045 80.0080 0.0928 0.4001 1 0.0000 
15 1.7212 0.3222 0.0063 0.0037 79.6674 0.1039 0.3963 1 0.0794 
16 1.7212 0.3222 0.0063 0.0037 79.6674 0.1039 0.3963 1 0.0000 
17 1.7212 0.3222 0.0063 0.0037 79.6674 0.1039 0.3963 1 0.9126 
18 1.7212 0.3222 0.0063 0.0037 79.6674 0.1039 0.3963 1 0.1473 

 

Generally, there is a need for a simple and at the same time reliable criterion for assessing 

the level of trustworthiness in selecting the best solution among those located in the first 

Pareto front. The crowding distance criterion routinely being used in NSGA-II seems to be 

sufficient, but it is a pure mathematical measure. Hence, depending on the specific 

engineering problem to be addressed, one may need more practical criteria. For instance, 

in the current problem, it is apparent that one would need to identify solutions for which 

the summation of errors in both objectives took a minimum value. Thus, although 18 

solutions obtained are all acceptable from a purely mathematical measure point of view, 

they are identified and sorted on the basis of least total error. Thus, the first solution is 

identified as the best with a minimum sum of errors in MWD and CCD profiles. The errors 

in MWD and CCD patterns are 0.110513 and 0.163938%, with the total error of 

0.274451%. 
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The copolymerization recipe corresponding to this solution (first row of Table 4) is 

suggesting 1.7212, 0.3222, 0.0081, and 0.0020 mol L-1, respectively, as optimal 

concentrations for ethylene, 1-butene, hydrogen, and cocatalyst, to be used in the 

synthesis of the target copolymer defined as Case I, at the polymerization temperature of 

80 °C. The final optimal copolymerization recipe is very close to the one identified initially 

and utilized to calculate/construct the target MWD and CCD patterns fed into the NSGA-

II code as inputs (Table 3). Obviously, the optimizer has been quite successful in 

reproducing satisfactorily (acceptably in practical terms) the same recipe in the reverse 

pathway. 

In a similar manner, the NSGA-II code identified after 9,403 iterations the first Pareto front 

for the target copolymer defined as Case II in Table 3. In this regard, the maximum 

allowable error in the simultaneous optimization of MWD and CCD patterns was 

arbitrarily set to be 0.02 %. The Pareto front of this case together with variation of errors 

in the optimization of MWD and CCD profiles in terms of epoch, individually and 

cumulatively, are plotted in Figure 5. It was found that only one among 314 solutions 

located in the first Pareto front met the criterion of maximum error of 0.02 %, with 

0.019901 and 0.002867 % errors in the optimization of the MWD and CCD patterns, and 

total error of 0.022768 %. Similar to what happened in the case of target copolymer I, the 

copolymerization recipes obtained were close to each other. The optimum 

copolymerization recipe proposed by the NSGA-II code for the production of target 

copolymer II was ethylene concentration of 1.012782 mol L-1, 1-butene concentration of 

0.030382 mol L-1, hydrogen concentration of 0.008090 mol L-1, cocatalyst concentration 

of 0.003001 mol L-1, and temperature of 89.99997 °C. These are again very close to the 

quantities manually set to construct target MWD and CCD patterns (as per Table 3). 
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Figure 5. The Pareto optimal front (A) and errors in prediction of MWD and CCD 

patterns (B) proposed by the NSGA-II code for Case II target copolymer. 

 

Figure 6 compares the microstructural patterns of the best solution proposed by the 

NSGA-II optimizer (green symbols) with the theoretical patterns yielded from summation 

equations 1 and 2 (blue curves) and those considered by the code for the target 

copolymer II (red lines). Again, the obtained results verify the reliability of the multi-

objective optimization process using the developed NSGA-II code. Based upon the NSGA-

II code results with the microstructural patterns of two target copolymers arbitrarily 

selected with known copolymerization recipes, the simulator can be put to practice in 

order to identify/select the best copolymerization recipe needed for 

synthesizing/tailoring ethylene/α-olefin copolymers with predefined microstructural 

patterns. 
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Figure 6. Comparison of the optimization results (NSGA-II) and predefined targets 

(theoretical plots obtained using summation equations 1 and 2) in case of copolymer II; 

MWD (A) and CCD (B) patterns. 

 

3.2. Implementation of NSGA-II optimizer in synthesis of desirable copolymers 

In the previous section it has been confirmed that the developed optimization tool is 

capable of receiving microstructural patterns (i.e., MWD and CCD profiles discretized over 

30 points as 30 objectives) and finding the best copolymerization recipe, consisting of 5 

optimal levels of operating variables to be set for the realization of the target copolymers. 

In this part, two desirable copolymers with arbitrary MWD and CCD profiles are defined 

to challenge further the performance of the developed NSGA-II optimization tool. Table 

5 cites the distribution patterns of molecular weight and copolymer composition of the 

defined desirable copolymers, from which 30 equally-spaced points are specified as 

inputs for the NSGA-II optimizer. As visualized earlier in Scheme 1, the NSGA-II optimizer 

explores the preset search space and recalls summation equations 1 and 2 along with 

kinetic parameters in order to calculate and analyze the fitness of chromosomes (utilizing 

operators of the genetic algorithm) and eventually find the best solutions for each 

desirable case. In contrast to cases studied in the previous section, the copolymerization 

recipes are now unknown. For the desirable copolymer defined as Case III in Table 5, the 

NSGA-II optimizer searched over thousands of scenarios in order to locate the most 

similar MWD and CCD patterns among all possible scenarios through multi-objective 
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optimization based on 30 target values or objectives. In this case, the optimization process 

is set to stop whenever the error values for the best member of the evolving population 

remain unchanged for at least 100 consecutive iterations. 17 solutions were separated as 

the optimum solutions located in the first Pareto front after 5,473 iterations, and the 

solution with minimum total error value was reported as the best solution. The errors for 

recognition of the target MWD and CCD patterns by the best solution were 4.933 % and 

7.857 %, respectively. The corresponding optimum copolymerization recipe proposed by 

the NSGA-II code for the production of target desirable copolymer III was ethylene 

concentration of 3.106811 mol L-1, 1-butene concentration of 0.132823 mol L-1, hydrogen 

concentration of 0.000860 mol L-1, cocatalyst concentration of 0.004096 mol L-1, and 

temperature of 86.47378 °C. The microstructural profiles of the best solution along with 

the target copolymer microstructural profiles, are shown in Figure 7 for copolymer III. The 

green symbols represent the best values among all possibilities checked and proposed by 

the optimizer considering the preset search space for input variables. Also, the 

corresponding theoretical microstructural patterns (blue curves) are constructed by 

recalling summation equations 1 and 2 for the best recipe in view of the kinetics of 

ethylene/1-butene copolymerization. It is worth mentioning here that the errors 

calculated/reported in this work do not reflect the precision of the applied intelligent 

optimization method. In fact, the word ‘error’ shows/quantifies the amount of deviation 

for each phenotype (i.e., the microstructural patterns corresponding to each genotype or 

recipe) from the target input microstructural profiles. In fact, the optimizer not only 

meticulously explores and identifies all the best possible solution(s) for any given set of 

target microstructural patters, but also precisely computes and reports the exact amount 

of the deviation from the predefined target. 

 

 

 

Table 5. MWD and CCD patterns of two desirable copolymers defined and utilized to 

challenge the performance of the multi-objective optimization tool. 



 29 

Case III Case IV 
log(Mw) W(log(Mw)) F1 W(F1) log(Mw) W(log(Mw)) F1 W(F1) 
2.50 0 0.9500 0 2.50 0 0.9500 0 
2.75 0 0.9535 0 2.75 0 0.9535 0 
3.00 0 0.9570 0 3.00 0 0.9570 0 
3.25 0 0.9605 0 3.25 0 0.9605 0 
3.50 0 0.9640 0 3.50 0.25 0.9640 0 
3.75 0 0.9675 0 3.75 0.50 0.9675 0 
4.00 0 0.9710 0 4.00 0.75 0.9710 50 
4.25 0.25 0.9745 0 4.25 1.00 0.9745 100 
4.50 0.50 0.9780 0 4.50 0.75 0.9780 50 
4.75 0.75 0.9815 0 4.75 0.50 0.9815 0 
5.00 1.00 0.9850 0 5.00 0.25 0.9850 0 
5.25 0.75 0.9885 50 5.25 0 0.9885 0 
5.50 0.50 0.9920 100 5.50 0 0.9920 0 
5.75 0.25 0.9955 50 5.75 0 0.9955 0 
6.00 0 0.9990 0 6.00 0 0.9990 0 
  

 

 

 

 
 

In the case of desirable copolymer IV, 249 solutions were obtained after 8,073 iterations. 

In this case, the errors reported for recognition of the target MWD and CCD patterns by 

the best solution were 16.317 % and 16.782 %, respectively. Furthermore, the optimum 
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copolymerization recipe was ethylene concentration of 0.318207 mol L-1, 1-butene 

concentration of 0.035784 mol L-1, hydrogen concentration of 0.009655 mol L-1, cocatalyst 

concentration of 0.013206 mol L-1, and temperature of 88.05094 °C. The MWD and CCD 

patterns of the best solution (green symbols) along with the target copolymer 

microstructural profiles (red lines), are shown in Figure 8 for copolymer IV. Interestingly, 

although a unimodal MWD profile has been defined for desirable copolymer IV, the 

optimization results proposed a bimodal MWD pattern. Undoubtedly, this is dictated by 

the copolymerization kinetics and the nature of recipe-microstructure interrelationships 

(summation equations 1 and 2), along with the range of variations (potential search 

spaces) preset for compositional and operational conditions. Since the NSGA-II optimizer 

needs to satisfy 30 objectives at the same time, one cannot expect to obtain always a 

unimodal profile for MWD or CCD patterns by the optimizer. However, the unimodal 

profile suggested by the NSGA-II optimizer for MWD in the case of desirable copolymer 

IV is close to the bimodal profile proposed by Eq. (1). Thus, the developed NSGA-II 

optimizer can find the ‘best’ microstructural patterns for any desired pair of MWD and 

CCD. 

 

4. CONCLUSION 

Regulating the balance between the elements of the triplet polymer processing-

properties-price is part of the Engineering art. In case of coordination copolymerization, 

difficulties are mainly due to the inability of exactly tuning the efficiency and 

characteristics of multi-site catalytic systems. Therefore, the resulting copolymers may 

exhibit a range of properties depending on feed composition, catalyst combination, and 

operating conditions, including recipe component concentrations and polymerization 

temperature. 
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Figure 7. Comparison of the optimization results (NSGA-II) and predefined targets 

(theoretical plots obtained using summation equations 1 and 2) in case of desirable 

copolymer III; MWD (A) and CCD (B) patterns. 

 

 
Figure 8. Comparison of the optimization results (NSGA-II) and predefined targets 

(theoretical plots obtained using summation equations 1 and 2) in case of desirable 

copolymer IV; MWD (A) and CCD (B) patterns. 

 

There is need, however, for synthesizing copolymers with desired microstructures for 

target applications. In this sense, the three vertices of the polymer processing-properties-

price triangle should be designed and delivered appropriately, for the length and angle 

between them can be determined by application considerations. 
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Artificial Intelligence methodology was applied to recognize copolymer microstructural 

patterns and identify optimal copolymerization recipes for synthesizing predefined 

copolymers. A computer code was developed based on NSGA-II that receives desirable 

MWD and CCD profiles and suggests the best copolymerization recipe. Metallocene-

catalyzed copolymerization of ethylene with 1-butene was chosen as a typical case study 

in view of complexities associated with multiple catalytic systems and availability of 

reliable experimental data and modeling equations for prediction of MWD and CCD 

patterns in terms of operating conditions, including polymerization temperature and 

concentrations of feed components. It was shown that the developed optimizer can 

explore and find the best copolymerization recipe needed for the production of target 

ethylene/1-butene copolymers, as signaled by negligible differences between the 

optimizer outputs and the preset targets, i.e., for case studies with known recipe-

microstructure interrelationships. Even more interestingly, the optimizer proposed the 

best MWD and CCD profiles when it was fed by desirable copolymer microstructures, 

which is a very unique feature of this work. 

 

REFERENCES 

[1] J.-F. Lutz, J.-M. Lehn, E. W. Meijer, K. Matyjaszewski, Nature Reviews Materials, 2016, 

1, 1. 

[2] J. B. P. Soares, Chemical Engineering Science, 2001, 56(13), 4131. 

[3] M. R. Saeb, Y. Mohammadi, A. S. Pakdel, A. Penlidis, Macromolecular Therory and 

Simulations, 2016, 25(4), 369. 

[4] M. R. Saeb, Y. Mohammadi, H. Rastin, T. S. Kermaniyan, A. Penlidis, Macromolecular 

Therory and Simulations, 2017, 26(5), DOI: 10.1002/mats.201700041. 

[5] Y. Mohammadi, M. Najafi, V. Haddadi-Asl, Macromolecular Therory and Simulations, 

2005, 14(5), 325. 

[6] W. Stockmayer, The Journal of Chemical Physics, 1945, 13, 199. 

[7] B. M. Shaw, K. B. McAuley, D. W. Bacon, Polymer Reaction Engineering, 1998, 6(2), 

113. 



 33 

[8] N. R. Sturtevant, V. Bulitko, Journal of Artificial Intelligence Research, 2016, 57, 307. 

[9] K. Muthukumar, S. Jayalalitha, International Journal of Electrical Power & Energy 

Systems, 2016, 78, 299. 

[10] J. W. Simpson-Porco, F. Bullo, IEEE Transactions on Smart Grid, 2016, 7(4), 1979. 

[11] D. M. D’Addona, R. Teti, Procedia CIRP, 2013, 7, 323. 

[12] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P.-Y. Glorennec, H. 

Hjalmarsson, A. Juditsky, Automatica, 1995, 31(12), 1691. 

[13] F. A. N. Fernandes, L. M.F. Lona, Brazilian Journal of Chemical Engineering, 2005, 

22(3), 401. 

[14] J. Zhang, Chemical Engineering Science, 2008, 63(5), 1273. 

[15] J. Zhang, A.j. Morris, E.B. Martin, C. Kiparissides, Chemical Engineering Journal, 1998, 

69(2), 135. 

[16] A. d'Anjou, F. J. Torrealdea, J. R. Leiza, J. M. Asua, G. Arzamendi, Macromolecular 

Theory and Simulations, 2003, 12(1), 42. 

[17] C. W. Ng, M. A. Hussain, Chemical Engineering and Processing: Process 

Intensification, 2004, 43(4), 559. 

[18] J. C. B. Gonzaga, L. A. C. Meleiro, C. Kiang, R. Maciel Filho, Computers & Chemical 

Engineering, 2009, 33(1), 43. 

[19] R. J. Minari, G. S. Stegmayer, L. M. Gugliotta, O. A. Chiotti, J. R. Vega, Macromolecular 

Reaction Engineering, 2007, 1(3), 405. 

[20] T. Charoenpanich, S. Anantawaraskul, J. B. P. Soares, Macromolecular Reaction 

Engineering, 2016, 10(3), 215. 

[21] J. D. Kim, J. B.P. Soares, G. L. Rempel, Journal of Polymer Science Part A: Polymer 

Chemistry, 1999, 37(3), 331. 

[22] S. Chakravarti, W. H. Ray, Journal of Applied Polymer Science, 2001, 80(8), 1096. 

[23] P. K. Shukla, K. Deb, S. Tiwari, International Conference on Evolutionary Multi-

Criterion Optimization, 2005, 311. 



 34 

[24] D. Greiner, B. Galván, J. Periaux, N. Gauger, K. C. Giannakoglou, G. Winter, Advances 

in Evolutionary and Deterministic Methods for Design, Optimization and Control in 

Engineering and Sciences, Springer International Publishing, Switzerland, 2015. 

[25] S. Garshasbi, J. Kurnitski, Y. Mohammadi, Applied Energy, 2016, 179, 626. 

[26] B. Baghaei, M. R. Saeb, S. H. Jafari, H. A. Khonakdar, B. Rezaee, V. Goodarzi, Y. 

Mohammad, Journal of Applied Polymer  Science, 2017, 134(33), 45145. 

[27] R. Azari, S. Garshasbi, P. Amini, H. Rashed-Ali, Y. Mohammadi, Energy and Buildings, 

2016, 126, 524. 

[28] S. Kannan, S. Baskar, J. D. McCalley, P. Murugan, IEEE Transactions on Power systems, 

2009, 24(1), 454. 

[29] M. Hosseinnezhad, M. R. Saeb, S. Garshasbi, Y. Mohammadi, Solar Energy, 2017, 314. 


