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Abstract

In this thesis, we obtain several results in number theory.

Let & > 1 be a natural number and wg(n) denote the number of distinct prime factors
of a natural number n with multiplicity k. We estimate the first and the second moments
of the functions wy, k > 1. Moreover, we prove that the function w;(n) has normal order
loglogn and the functions wg(n) with £ > 2 do not have normal order F'(n) for any
nondecreasing nonnegative function F'.

Let x be a nonprincipal Dirichlet character modulo a prime number p > 3. Define

2 _
MP(_S7 X) = Tl Z L(L ¢)L(_Sa X¢)7
P2 4 (mod p)
P(-1)=-1

A= X L

1IKN<p—1 1<ng,n2<N
x(n1)=x(n2)

A= 3 MR i) > )

where A(n) is the error term in the Prime Number Theorem. We investigate the mean
value M, (—s, x) for R(s) > —1, give an exact formula for the average A,(x) and obtain
the meromorphic continuation of the function A(s, x) to the region R(s) > 1/2.
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Chapter 1

Introduction and Statements of
Results

In this chapter, we introduce the topics studied in Chapters 2-4 and state the main results
obtained in this thesis.

1.1 Number of Distinct Prime Factors

Let w(n) be the number of distinct prime factors of a natural number n. The behaviour
of the function w(n) on average is understood by the estimate, [21, p. 58],

Zw(n) = zloglogx + bx + O (L> (1.1.1)
— log

where b is a constant. Thus, the behaviour of w(n) on average is similar to loglogn and a
natural question to ask is how large the deviation |w(n) — loglogn| on average can be. For
this purpose, the concept of normal order is defined as follows, [10]. Let f, F : N — Ry
be functions such that F' is nondecreasing. Then f(n) is said to have normal order F(n)
if for any € > 0, the number of n < x that do not satisfy the inequality

(1—e)F(n) < f(n) < (1+¢€)F(n)

is o(z) as © — oo. The original definition in [L0] is given for increasing F', here we extend
this definition in order to include constant functions. Note that, [l 1, Section 22.11], the
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function defined by

n if n = 2™ for some m € N,
-

1 otherwise

has normal order 1 since the number of n < z which are of the form 2™ for some m € N

is o(x).

In [10] (see also [1 1, Section 22.11]), Hardy and Ramanujan proved that w(n) has normal
order loglogn. In [27], Turdn showed that
Z(w(n) —loglogz)? < zloglog x (1.1.2)
n<x

from which it follows that the number of n < z satisfying the inequality

lw(n) — loglogn|
> h(x 1.1.3
Vloglogn () ( )
is o(x) as © — oo for any increasing function h(z) — oo as  — oo. Thus, the next question
one may ask is whether the function on the left-hand side of (1.1.3) has a distribution.

In [8], Erdos and Kac proved the remarkable result that the function on the left-hand side
of (1.1.3) has normal distribution in the sense that

. w(n)—loglogn
o |1 72 0 < R <}
11m

1 B
= (&
T—r00 x \ 21 /a

—t2//2 dt

for any a < .

In Chapter 2 of the present thesis, we consider a refined version of the function w(n).
Let £ > 1 be a natural number and wg(n) denote the number of distinct prime factors of
n with multiplicity k. Note that

win) =Y wi(n)

k>1
for all n € N. In Chapter 2, we first estimate the summatory functions of wg(n), k > 1.
Theorem 1.1.1. Let k > 1 be a natural number. Define

1 =1
o= Y T bi=v%— Zﬁ (1.1.4)

p prime pprime j=2



where o 15 the Euler-Mascheroni constant. We have

Zwl(n) = xloglogz + (b —c1 — )z + O ( i ) :
log x

n<e
Moreover, for k > 2, we have

Zwk (ck—1 — 1)z + O (mdk i log? :L‘)

n<x

Here, we would like to note that all the implied constants throughout the thesis are
absolute unless such dependency is indicated by a subscript in the big-oh notation and in
the notation <.

Moreover, we estimate the second moments, i.e. the summatory functions of the
squares, of wg(n), k > 1.

Theorem 1.1.2. Let k > 1 be a natural number and ¢y be defined as in (1.1.4). Define

1 1\?
Cr = g1 — 1 + (o — 1)’ — Z (—k - k+1> , (k>2).
- p p
p prime
We have
Z w?(n) = z (loglog z)* + O (xloglog x) .

n<x
Moreover, for k > 2, we have
sz(n) =Crx + O (x% log® :c) :
n<x
By Theorems 1.1.1 and 1.1.2, we deduce the following result analogous to (1.1.2).
Corollary 1.1.3. We have
Z (wi(n) —loglogn)® < xloglog x.
2<n<z

Let h(x) be an increasing function such that h(x) — 0o as © — oo. Then the number of
natural numbers n < x such that

|wi(n) — loglog n|
Vvloglogn

is o(x) and thus wi(n) has normal order loglogn.

> h(z)
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In contrast, we prove the following result.

Theorem 1.1.4. Let k > 2 be a fized integer. Then the function wg(n) does not have
normal order F(n) for any nondecreasing function F : N — Ry,.

For a natural number n, let 2(n) be the number of prime factors of n counted with

multiplicity. It is known, [11, Section 22.10], that
ZQ(n)—mloglogz+ b+z; :13+O( ’ )
— —~p(p—1) log z

where b is the constant in (1.1.4) and the sum over p runs over all prime numbers as above.
By using the estimate above and (1.1.1), we have

1 T
> (Qn) - w(n)) :xzp:m+o (1oga;)' (1.1.5)

n<x

Note that

> (Qn) —wn) =D ) (k- Dwi(n). (1.1.6)

n<z n<x k=2

Since the error terms for the summatory functions of wy(.) with & > 2 in our main result
Theorem 1.1.1 are better than x/logxz, one may expect to obtain a better error term in
(1.1.5) by using Theorem 1.1.1. The largest error term for the summatory functions of
wi(.) with k > 2 comes from the case k = 2 and this error term is 2%°log® . Thus, we
do not expect to have a better error term for (1.1.5) than z%°log®z by using Theorem
1.1.1. However, a recent work of Hassani, [12], gives a surprisingly better error term which
is v/z/logx. Although the technique we use to prove Theorem 1.1.1 is different than the
ones in [12], we do not estimate the sum on the right-hand side of (1.1.6) in this thesis
since Hassani’s error term is much superior to the one we would have by using Theorem
1.1.1.

1.2 Discrete Mean Values of Dirichlet L-functions

Let s = o + it with o, t € R. For o > 1, the Riemann zeta function ((s) is defined by the
series



which can be written as the Fuler product

<) =11 (1 - l) R (1.2.1)

where the product runs over all prime numbers. In 1859, Riemann, [24], (see also [25, p.
135] or [1, p. 299]), proved that the function (s) has meromorphic continuation throughout
the complex plane and the only pole of ((s) is a simple pole at s = 1 with residue 1. More

precisely, the Riemann zeta function satisfies, [3], the functional equation
T (52)
C(s)=7m""2 22((1— ) (1.2.2)
r'(3)

where I'(.) is the Gamma function.

Although the most basic link between prime numbers and the Riemann zeta function
is the Euler product in (1.2.1), the connection between these two objects of arithmetic and
analysis is more visible by taking the logarithmic derivatives of both sides of (1.2.1) to
obtain the identity

n

¢ — A(n)
_Z<S) = Z s 7 (0 > ]‘)
n=1
where the von Mangoldt function A(.) is defined by

A(n) =

logp if n=p™, pprime, m € N,
0 otherwise.

Let > 2 be a real number and 7(x) be the number of prime numbers less than or equal to
z. In 1790’s, [1, p. 2], [9], Gauss made extensive calculations to compute m(x) for several
large values of = and compared the values of 7(x) with the values of the logarithmic integral
f; % by which he suggested, without giving theoretical evidence, that

/ T odu x

m(x) ~ ~ :
o logu  logx
The asymptotic above is now called the Prime Number Theorem proved independently by

Hadamard and de la Vallée Poussin in 1896, [21, p. 192]. By partial summation, the Prime
Number Theorem is equivalent to
> A(n) ~ .

n<x




A deeper connection between prime numbers and the Riemann zeta function is seen through
the fact that the error term

> Amn)—= (1.2.3)

n<x

in the Prime Number Theorem is < 227 for any € > 0 is equivalent, [3], to the famous
Riemann Hypothesis that all the zeros of the Riemann zeta function in the critical strip
0 < 0 < 1 have real part 1/2. The best known unconditional upper bound for the size of

3/5 ( -1/5

the error term in (1.2.3) is < z exp (—C (log )™ (log log x) ) for some constant C' > 0,

first due to Vinogradov and Korobov, independently, in 1958, [13, Section 12.3], [3, p. 113].

Let ¢ > 2 be a natural number. A Dirichlet character x modulo q is a function x : Z —
C satisfying the properties

1. (Total multiplicativity) x(nm) = x(n)x(m) for all n,m € Z,
2. (Periodicity) x(n+ q) = x(n) for all n € Z,
3. x(n) =0 if and only if (n,q) # 1.

Let ¢(.) denote the Euler totient function. The set of Dirichlet characters modulo ¢ forms
a multiplicative group of order ¢(q) with the identity element y,, called the principal
character modulo q, defined by x,(n) = 1 for all n € Z with (n,q) = 1. For a Dirichlet
character xy modulo ¢, let ¥ be defined by X(n) = x(n) for all n € Z. For a € Z with
(a,q) = 1, the Dirichlet characters modulo ¢ satisfy the orthogonality relation

1 ifa=0b(mod q),

1 N —
olq) N (mzod q)x(a)x(b) B {0 otherwise (1.24)

where the sum runs over all Dirichlet characters modulo ¢g. Thus, the Dirichlet characters
modulo ¢ provide a way of selecting a reduced residue class modulo q.

For a Dirichlet character y modulo ¢ and a complex number s = ¢ + it with o, t € R,
the Dirichlet L-function L(s,x) is defined by

L(s,x) =Y Xg) - H (1 - X]Ef))_ . (o> 1) (1.2.5)




If x is a primitive Dirichlet character modulo q, i.e. the least period of x is ¢, then L(s, x)

satisfies the functional equation, [3, Chapter 9],
sT 1—s+ay
7(x) (W) ( 2 ) -
L(s,x) = - - — L1 —s,X 1.2.6
0=y () Frmay t o0 (1.26)

where
a :

_1=x(=1) _JO ifx(=1)=1,
- 2 )1 ifx(—1) =1

and the Gauss sum 7(x) associated with the character x is defined by

)= Y x(be <9> (e(z) := ¥ z € C).

1<b<g—1 q

By taking logarithmic derivatives in (1.2.5), we have
r _ o X(mA(n)
——(sx) = ; = (o> (1.2.7)

The identities (1.2.4) and (1.2.7) give the link between Dirichlet L-functions and the prime
numbers in arithmetic progressions. Dirichlet used the functions L(s, x) and the orthogo-
nality relation (1.2.4) to prove, [3, Chapters 1 and 4], that there are infinitely many prime
numbers of the form gn + a where (a,q) = 1. Due to Siegel and Walfisz, [3, Chapter 22],
the strongest known form of the Prime Number Theorem in Arithmetic Progressions states
that for any A > 0, there exists a constant C'(A) > 0 such that if ¢ < (logz)*, then

Z A(n) = ﬁ +0 (x exp <—C(A) (log x)1/2)>

n<e
n=a (mod q)
for any a € Z with (a,q) = 1. The Generalized Riemann Hypothesis is the statement that
for any Dirichlet character x modulo ¢, all the the zeros of L(s,x) in the critical strip
0 < o < 1 have real part 1/2. On the Generalized Riemann Hypothesis, the error term
the Prime Number Theorem in Arithmetic Progressions is < z'/2log?z, [3, p. 125].

In Chapter 3, we investigate two problems related to discrete mean values of Dirichlet
L-functions. Let p > 3 be a prime number and y be a nonprincipal Dirichlet character
modulo p. In Chapter 3, we first consider the average

Ap(x);:p%l Y Y L

1IKN<p—1 1<n,n2<N
x(n1)=x(n2)



Our main result on the average A,(x) is the identity given below.

Theorem 1.2.1. [5] Let x be a nonprincipal Dirichlet character modulo a prime number
p = 3 of order k > 2. Then, we have

k2

Ay (x) = p(QZék— 1) N (k — 11)2(£+ 1) e 0 Z L(L x5

Theorem 1.2.1 can be considered in the context of discrete mean values of Dirichlet
L-functions since Theorem 1.2.1 gives a link between the mean value

5 /2

E Z ‘L(lv X2j_1)|2

Jj=1

and the average A,(x) when x(—1) = —1. The proof of Theorem 1.2.1 relies on a key
lemma, Lemma 3.2.9, which gives a closed formula for partial sums of a nonprincipal
Dirichlet character modulo p.

In Chapter 3, we also investigate the mean value

2 _
MP<_S>X) = Z L(]_,I/J)L(—S,le)
p—1
¥ (mod p)
P(-1)=-1
where x is a nonprincipal Dirichlet character modulo a prime number p > 3 and we ask
whether the mean value M, (—s, x) is related to L(1 —s, x) in some region for s. Our main

result on the mean value M, (—s, x) is the following theorem.

Theorem 1.2.2. [0] Let x be a nonprincipal Dirichlet character modulo a prime number
p = 3. Then, for s =0 + it with o > —1,t € R, we have

Mp(=s,x) = L(1 — s, x) + a,2p° L(1, )¢ (=) + Ep(s, x) (1.2.8)
where
Ty sT () > (lz] =+ 3)5%(2)
Ey(s,x): = &) (ﬂ) W(S + 1)/1 7 dx
and



For —1 < o <1, we have

1— (p'/? 1ogp)">

Ey(s,x) < pa_% <|t|a+% + }1 — (0 - aX)QD < olc+1)

In particular, if 0 < 0 < 1/2 is fized and |t| = o (p%), then (1.2.8) holds with E,(s, x) =
o(1) as p — 0.

The proof of Theorem 1.2.2 relies on the functional equations of Dirichlet L-functions
and the Gamma function, an auxiliary result (Theorem 3.1.2) and Lemma 3.2.9.

Here we would like to note that there are some difficulties in extending the proof of
Theorem 1.2.2 to primitive Dirichlet characters modulo composite numbers due to the use
of the functional equations of Dirichlet L-functions associated with a product of Dirichlet
characters. However, generalizing Theorem 1.2.1 is possible if one wishes to obtain an
asymptotic for A,(x) but obtaining an exact formula requires some other ideas than the
ones used in the proof of Theorem 1.2.1. Further discussion in this direction is given at
the end of Section 3.1.

1.3 A Dirichlet Series Related to the Error Term in
the Prime Number Theorem

In this section, we state our main results given in Chapter 4. For a natural number n, let

A(n) == A(k) - # —n

k<n

be the error term in the Prime Number Theorem. Here we have a modification on the n'"
term above and the reason for such a modification is hinted by a technique of multiplicative
number theory called Perron’s formula (Lemma 2.2.1 below). For a prime number p > 3
and a nonprincipal Dirichlet character y modulo p, define

A(s,x) =Y W, (0 >2)

n=2

where s = o+1it, 0,t € R as usual. In Chapter 4, we investigate the meromorphic behaviour
of the function A(s,x). Since A(n) = o(n) by the Prime Number Theorem, the series

9



A(s,x) is absolutely convergent for ¢ > 2. On the Riemann Hypothesis, A(n) < nate
for any € > 0 and thus the series defining A(s, x) is absolutely convergent for o > 3/2
assuming the Riemann Hypothesis. Our main result in Chapter 4, Theorem 1.3.1 below,
gives the meromorphic continuation of A(s,x) in o > 1/2 and in particular, it shows that
A(s, x) is analytic in the region ¢ > 1 unconditionally.

Theorem 1.3.1. Let x be a nonprincipal Dirichlet character modulo a prime number
p>=3. Foro >1/2, we have

A = L(1 G 1.3.1
(s,x) T —1) % § Xw) (3 X)) + G(s, x) ( )
w(—1>:—1
where
L L(s—1,x) L(s=p.x)  ox~Lls—px)
=1L — — 7 _
G(s, x) )7 (s x) + = +5) = S 05— p)
1T /s 1 <= x(n) 1
—log(2m)L(s, x) + 5T <§ + 1> ~ 5 ; e log (1 - ﬁ)
L2k +s,x)—1
Z 2k +s 2 1

and G(s,x) is analytic in o > 1/2. Here the sums over p run over the nontrivial zeros of
the Riemann zeta function (the zeros p with 0 < R(p) < 1) counted with multiplicity and
Yo s the Fuler-Mascheroni constant.

Theorem 1.3.1 has the following interesting corollary about exceptional zeros. It is
known, [3, p. 93], that there exists a constant ¢ > 0 such that if y is a real nonprincipal
character modulo ¢, then the real line segment

R(q) == (1 - 1) (1.3.2)

logq’

contains at most one zero of L(s, x). Such a zero, if exists, is called an exceptional zero.

Corollary 1.3.2. Let p > 3 be a prime number and R(p) be defined by (1.53.2) and (13)
denote the Legendre symbol modulo p.

10



1. If p = 1 (mod 4) and A(s,x) is analytic in R(p) for at least one nonprincipal

Dirichlet character x modulo p with x(—1) = —1, then L <s, (5)) has no exceptional
zeros.

2. If p = 3 (mod 4) and A(s,x) is analytic in R(p) for at least one nonprincipal

Dirichlet character x modulo p with x(—1) =1, then L (s, <5>> has no exceptional
zeros.

We would like to note that it is possible to generalize Theorem 1.3.1 and Corollary
1.3.2 for primitive Dirichlet characters modulo ¢ which is not necessarily a prime number.
A route for such a generalization is described at the end of Section 4.1.

11



Chapter 2

Number of Prime Factors with a
Given Multiplicity

2.1 Introduction

For a number theoretical function f : N — C, the summatory function
>_fn)
n<e

of f is a fundamental object to study in order to understand the behaviour of f on average.
In the case that f(n) = w(n), the number of distinct prime factors of n, it is known [21, p.
58] that

T
Zw(n) = xloglogx + bx + O (log:c) (2.1.1)

n<x
where
=1
bi=v—» Y —, (2.1.2)
i Jr’

Yo is the Euler-Mascheroni constant and the sum Zp ranges over all prime numbers. The

second moment of w, i.e. the summatory function of w?(.), satisfies, [2, Theorem 3.1.1],
Zw2(n) =z (loglog z)® + O (z loglog ) (2.1.3)
n<x

12



by which we have

Z (w(n) — loglog n)2 < xloglogx.

n<e

Using the above estimate, one can prove that w(n) has normal order log logn as mentioned
in Section 1.1.

In this chapter, we consider some refined versions of the w(.) function through the
following set up. For a prime number p and a natural number n > 1, let v,(n) be the
multiplicity of p in the unique factorization of n, that is, v,(n) is the unique integer such
that p»™ | n but p*»™+! 4 n. For natural numbers k,n > 1, define

wi(n) = Z 1

pln
vp(n)=k

which counts the number of prime factors of n with multiplicity k. Note that the usual
w(.) function can be partitioned into the functions wy(.) with £ > 1 as

win) = wi(n)

k>1

for all n € N. We first prove the following result about the summatory functions of wy(.)
with £ > 1.

Theorem (Theorem 1.1.1). Let k > 1 be a natural number. Define

1
Cp = ; FoTT (2.1.4)

and let b be the constant defined by (2.1.2). We have

Zwl(n) =zloglogx + (b—c¢1 — o)z + O ( ’ ) :
log

n<e

Moreover, for k > 2, we have

Zwk(”) = (-1 — Cy1)r + O (37% log? 33) .

n<x

13



The reason why we have a better error term above for the functions w; with k£ > 2
than the one for k£ = 1 is the following. For wy(.), we use the summatory function of w(.)
(see (2.2.8)) which gives an error term z/logx by (2.1.1). However, if & > 2, then the
generating function corresponding to wy (see (2.2.4) and (2.2.8)) is analytic in a sufficiently
large region (except at s = 1) so that we can control the error term in a better way.

The functions wy, £ > 1, are neither additive nor multiplicative but the estimates given
in our main results above can be put into the context of additive number theory since they
are refined versions of the usual w function which is additive. Interestingly, the proof of
Theorem 1.1.1 uses a technique from multiplicative number theory.

Next, we consider the second moments of the functions wy, & > 1, and prove the
following theorem.

Theorem (Theorem 1.1.2). Let k > 1 be a natural number and ¢ be defined as in (2.1.4).
For k > 2, define

1 1\?
Ch o= o1 — g1 + (Cro1 — 1)’ — Z (_k - k+1> '
> p p

We have
Z w?(n) = z (loglog z)* 4 O (zloglog z) .
n<x

Moreover, for k > 2, we have

Zwﬁ(n) =Crz+ O (x% log? :E) :

n<e

Analogous to the usual w(.) function, we have the following corollary about the function
wi (.) and its normal order.

Corollary (Corollary 1.1.3). We have
Z (wi(n) —loglogn)® < xloglog .
n<e

Let h(x) be an increasing function such that h(x) — 0o as © — oo. Then the number of
natural numbers n < x such that

|wi(n) — loglog n|
> h
Vvl1oglogn (z)

is o(x) and thus wi(n) has normal order loglogn.

14



Here we would like to note that with a bit more work, [7], we also proved that
Z(w(n)—lo logn — C)? = zloglogx + 2C—i—7r—2—b+2bZ:l T

2<n<x
Lo (xloglog:v)
log =

where C' := b— c; — ¢y which appears in the first moment of the function w;. An analoguous
estimate where w; is replaced by w and C' is replaced by b can also be obtained.

Recall that the main terms for the summatory functions of w; and w? are zloglog x
and z(loglog z)?, respectively. Since

> (wi(n) —loglogn)® = > wi(n)? =23 wi(n)loglogn+ Y (loglogn)®,  (2.1.5)

n<x n<x n<x n<x

we will see in the proof of Corollary 1.1.3 that the main terms of the three sums on the
right-hand side of (2.1.5) cancel out and we obtain the first assertion of Corollary 1.1.3.
However, we do not have such a cancellation for w, with k& > 2. Instead, we have

Z (wk(n) — (Ck—l — Ck+1))2 = (Ck — 2(Ck_1 — Ck+1)2 -+ (Ck—l — Ck+1)2) x 4+ O (xzsc%ll log2 $>

n<x

- (Ck — (cp—1 — Clc+1)2) r+0 (x% log® 55)
by Theorems 1.1.1 and 1.1.2. Since

1 1

2
Ch — (chm1 = Chr1)® = Cho1 — 1 + (Cho1 — Cp1)” — Z <ﬁ - pk+1> — (Cho1 — Chp1)”
P

“2(G7)-G-7))

the analogous sum to (2.1.5) for wy with & > 2 is > « which is of the same order of
magnitude as the second moment of wy. This makes us wonder whether the functions
wi(n) with & > 2 have normal order F'(n) for some nondecreasing function F' : N — Ry
which is the content of the following theorem.

Theorem (Theorem 1.1.4). Let k > 2 be a fized integer. Then the function wy(n) does
not have normal order F(n) for any nondecreasing function F : N — Ry,.
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2.2 Proof of Theorem 1.1.1

To prove Theorem 1.1.1, we need some preliminary results. First, we state a variant of
Perron’s formula which is used in Chapter 4 as well.

Lemma 2.2.1. (Perron’s Formula, [20, Lemma 3.12]) For s = o + it with o,t € R, let

o0

f&) =3 (o>,

n=1

where a, = O(¥(n)), ¥(n) being nondecreasing. Assume that for some o € N, we have

> - (m=)

aso — 17, Let T >4 and Ty, Ty € (T/2,2T). Let ¢ >0, o +¢> 1 and x > 2. If x is not
an integer and N is the nearest integer to x, then

1 c+ils w c
L o)

—~n® 2w ) p o+c—1)
U (2x)x' 7 log x U(N)zt=7
+0 ( T +0 Te-N )
If x € N, then
a a 1 et v x¢
on T T dw+O ————
= 22°  2mi eiTy J(s +w) w * (T(J +c— 1)a>
U(2z)x =7 log x U(z)z—°
@) O|—————1.
* ( T * T

Next, we use the following upper bounds for the size of the Riemann zeta function.

Lemma 2.2.2. [13, p. 25] Let s = 0 + it with o,t € R. For |t| > 2, we have

1 if o>2,
it 2" log|t| if 0<o<1,

o
it|z=7log|t| if o <0.

16



The proof of Theorem 1.1.1 relies also on the following general result.

Proposition 2.2.3. Let g : N — C be a function such that |g(p)| < 1 for all prime numbers
p. For a fived natural number k > 1, define

agr(n) = > (1+g(p)+gp)+ .. + g(p)r"-+D) (2.2.1)
In
l/p(TSZk+1

with the convention that empty sum is taken to be zero. Define

1
Co.k = Z i

—~ pF(p—9(p))
Then we have

Z agr(n) =copr + O (m% log? x) (2.2.2)

n<x

where the implied constant is absolute.

Proof. Let o0 > 1 and define

A p(s) = Z ag,kgn)‘

n=1 n
We have
1 _ 1 glp) | glp)’ & by(n)
g prs(ps — g(p)) ; (p(lc+1)s + pk+2)s + plkt3)s T )= ; s (2.2.3)
where
et i p = p® a > k+ 1,
by (n) = 9(p) P
0 otherwise.
Note that

_ 3 Zanhsld)

n=1

() 3 sl

n

17



We have

S bld)= Y Z YD = a4 (n).

dln pln Jj=k+1
vp(n)=k+1

Thus, we have

1
prs(p* — g(p))

Agi(s) =((s) Z

p

(2.2.4)

for o > 1. Since the series in (2.2.3) is absolutely convergent for o > 1/(k+1), the identity
in (2.2.4) holds for o > 1/(k + 1) by analytic continuation.

Note that
lage(n)| < Z (1+ gp)| + lg()]* + ... + |g(p)’yp(n)_(k+l))

pln
vp(n)=>k+1

< Y (nn)—k) <logn (2.2.5)

pln
vp(n)=k+1

and

|agk y o 1 1
Z Zna Z p _C( )Zpka<pa_1)<<0_1

pln P
vp(n)=k+1
as o — 17, Let x > 2 be half of an odd integer and let T be a real number with 2 < T < .
By Lemma 2.2.1, we have

1 .
1+10g1 +iT

1 x® rlog®x
Zang(n) = 2—7” / Ag’k(S)? ds + O ( T ) .

n<x .
1+ lo;; p —iT

By pulling the line of integration above to the left and applying the residue theorem, we
have

xlog? x
Zag,k(n):Cg,kx—(]1+]2+l3)+0( 1% >

n<x

18



where

Cyke = Z 1

—~ pF(p—9(p))’

1 1 :
k+1 + log x +iT
S

1
L =— / A‘q’k(S)x_ ds,

211 S
1 .
1+10gx+'LT
1 1 .
m+logx_ZT
1 x®
I = — A, (s)—ds,
271 S
1 1 -
m+logx+ZT
1 .
1+10gx—zT
1 x®
I3 .= — A, (s)—ds.
271 S

1 1
T —iT

log x

1 1
Foro > 5 + gz We have

1
2 pe(p* — g(p))

p

1 1 1
<<Zp(k+1)‘7 <Z T 1 <<(1+@><<logx_
p

Thus, by Lemma 2.2.2, we have

1 1+10;;ac
T'?(logx)log T T \° logT i
L < = / (717) do+== / 27 do
T Togz !
zlog? x

T

Similarly, we have I3 < %. For I, we have

-1

tit|  dt+aF (log z)(log T')

t 2
t

1
k:—|—1+logx

M\
S
—
|
e
[
—
o]
08 |~
8

2
Ig<<xkillogx/’
0

where the implied constant is absolute. Note that

‘ 1 —1 —1

1

t
T k:—i—1+log$

<logx

k:+1+10g:v

|

19



and

1 1 1 1 1
-7 1ogw 1 2 I~ %1 Togz I~ 1 Togz
t 2 —dt = T 2 -2 2
t N ——

2

where the implied constant is absolute. Thus, we have

I, < G log? z + g (1-5) log? z
1 1 1
< meﬁ(lfm) ]0g2 T.

Thus, we have

log? L1
Z agr(n) = cgpz + O (x 07% x) +0 <xﬁT5(1_kT1) log® x) :

n<x

k
Taking T' = P equates the error terms above and we obtain

Z agr(n) =cgpr + O (a:;%é log? x)

n<x

where the implied constant is absolute. By (2.2.5), adding a single term a,;(|x] + 1) to
the left-hand side of the estimate above has contribution < logx and thus Proposition
2.2.3 follows. O

Now, we deduce Theorem 1.1.1 from Proposition 2.2.3.

Proof of Theorem 1.1.1. Let g(p) = —1 for all prime numbers p. Then, with this choice of
g(.), we have

ap(n) == age(n) = Y (L+g(p) +9(p)* + ... + g(p)r™~*D)

pln
vp(n)=k+1

= > 1 (2.2.6)

pln
vp(n)=k+1
vp(n)—k odd

20



which counts the number of prime factors of n whose multiplicities are of the form k +

1, k+3, k+5,...,1ie. of the form k + [ for some odd natural number [. By Proposition
2.2.3, we have
k42 2
S aw(n) = e + O, <x+ log x> . (k=1 (2.2.7)
n<x
where, as defined in (2.1.4),
1
k= _.
zp: pF(p+1)
Note that
wi(n) =w(n) —ai(n) —as(n), (2.2.8)
wi(n) = ap-1(n) — ars1(n), (k= 2).
Hence, the desired result in Theorem 1.1.1 follows from (2.1.1) and (2.2.7). O

2.3 The wf and w’ Functions

By the estimate given in (2.2.7), we can consider the functions

w(n) == Z 1,
pln

vp(n)=2
vp(n) even

w’(n) == Z 1

pln
vp(n)=3
vp(n)odd

which count the number of distinct prime factors of n with even multiplicities > 2 and

with odd multiplicities > 3, respectively. Note that

w(n) = ay(n),
w’(n) = az(n)

with the notation defined in (2.2.6). Thus, we immediately have the first moments of w®

and w°.
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Theorem 2.3.1. Let ¢; and ¢y be defined by (2.1.4). We have
Z wé(n) =cz+0 (x% log® ZL‘>
n<x

and

Zwo(n) =cor + O <x% log® w) :

n<e

In order to prove Theorem 1.1.2, we need estimates for the second moments of w® and
w?. We first consider the second moment of w*®.

Theorem 2.3.2. Let ¢; be defined by (2.1.4). Define

1
C®=c +c— —_.
1 1 ;pQ(p_’_l)Q

We have

Z wé(n)? = C + O (a:% log? x) .

ne

Proof. We have

Zwe(n)z = Z Z 1

n<x n<x pln
vp(n)>2, even

SIS S

n<e p.aln
vp(n),vq(n)>2, even

SIS SERRES SHED S

n<z p.qln n<z pygln
vp(n),vq(n)>2, even vp(n),vq(n)=>2, even
=4 P#q
= E w(n) + E E 1. (2.3.1)
n<e psq n<x
PISVT vp(n),vg(n)>2, even
P7q

22



Now, we consider

Z D 1.

nx

pq<\/§1/p( ),vq(n)>2, even
P7q

For given primes p, ¢ such that pg < v/z and p # ¢, note that the expression

TR

counts the number of n < z such that p? | n and v,(n) > 2 and v,(n) is even. For a natural
number ¢ > 2, define

fl,p,q,x) = LUZLQQJ - \‘I%Q?’J + \‘pgiq‘lJ - L%qSJ +.... (2.3.2)
Then,

Z Y11= (f@par) = fGp )+ f(4p.qx) = fGpg) +...).

n<T p.q
pq<\/5 vp(n)>2, even pPa<\T
PFQ  vg(n)>2,even p#q

(2.3.3)

Now we consider f(¢,p,q,x). For a given ¢ > 2, let my = myyp,, > 2 be the largest
exponent such that z/(p‘¢™) > 1. Then m, < logx where the implied constant is

absolute. Write
T T
s :_-+E‘€7j7p7Q7'r'
L?ZQJJ g ( )

By using the bound |E(¢,j,p,q,z)| < 1 for j < my and the bound |E((, j,p,q,7)| < &

Pl

for 5 = my + 1 for which LJ’ZLWJ = 0, we have

fl,p, g,z Z { J
s P
00 mye ) > .
o (—YE(Lj,p.¢.x)+ Y (=1)YE(l,].p,qx)
]:2 pq j=2 j=mp+1
x 1 = x
+0<Z1+ 3 _.>
2 V4
pq 1+1 = jm¢+1qu

23



where the implied constant is absolute. For the error term above, we have

my )

T T
Zl—f— le<<logI+W<<logx
] Jj=me+

by the definition of m,. Thus, we have

T

f(f,p,q,w)zm

+ O (log ). (2.3.4)

For given p,q with pg < /& and p # ¢, let m = m,,,, > 2 be the largest exponent such
that z/(p™q¢?) = 1. Then f(¢,p,q,x) = 0 for £ > m + 1 by (2.3.2) and m < logx where
the implied constant is absolute. Let

T

W‘FE(&IML@-

fll,p,q,x) =

By (2.3.4), we have |E(€ D, q, T )| < logx for all £ > 2. Since f({,p,q,z) =0for £ > m+1,

we also have |E({,p,q,x)| < 5 q(q+1 for £ > m + 1. Thus,

> (f2pa,2) = fB.pq,x) + f(4,p,q,7) — f(5,p,q,2) +...)

D,q
Pa<y/T
p#£q

ZZ ft,p,q,)

P4 =2
PISVT
P#q

; Z (p ‘q q+1 E(ﬂ%qax))

pq<\f
p#q

=z +0 mlogx + . (2.3.5)
; q+1) ; ( EZ:Hpqurl)
PaSV@ Pa<y/z
p#q
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By the definition of m, we have

2 x
Z (mlogx+ Z pqq—|—1><< Z (log x—i—W)
p,q

P,
pa<\/T Pa<VT
< log’x Z Z 1
p<fq<f/p
< Vzxlogz Z -
p<\f
< Vz(log? x)(loglog z). (2.3.6)

Now, we consider

1
2 pp+Dalg+1)

D,q
Pa<V/T
P#q

Define

r if S is true,
ﬂs(’l“) =

0 otherwise

where S is a statement and r is a real number. Then, by the integral test, we have

1 1 1
2 plp+ Dalg+1) Zp(pﬂ) 2 a(q+1)

p,q x VT
par/E p<VT q<q\;;/p
p#q
1 < 1 > du
St ()<, 4)
= p(p+1) p(p+1) Va/p U

For the contribution of the error term above, we have

1 o du loglogx
ZP(P+1)/f/ u? \/—Z Vr

pP<V@
Thus,
1 1 1 log log x
= — e — 1,1/ (—)>+O<—)
; p(p+1)g(g+1) p;ﬂ’(pﬂL 1) ( b plp + 1) VT
<V N
p%#q
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Similarly, by the integral test, we have

1 ( 1 1 1
Z— Cl—ﬂp<x1/4—>2612—— Z YY)
< 1 2 1)2
Splp 1) plp+1) ople 1) S ()
1 1 1
— (CI+O<%))_§MP+1)2+O<W)
1

Thus, we obtain

1 — 2 1 loglog
2. pp+glg+1) ;pz(ﬁ 1)2 +0 ( 7 ) : (2.3.7)

D,q
pg<\/T
p#q

By (2.3.3), (2.3.5)-(2.3.7), we have

e 1 log log x
S % (4 Tpptero ()

b
PISV/T vp(n),vq(n) =2, even
P#4q

+ O (Vz(log® z)(log log z))

— (cf — Z ﬁ) z + O (Vz(log” z)(loglog z)) .

o P
By (2.3.1), Theorem 1.1.1 and the above estimate, we have

¢(n)? = ey A — ; T
2 =a +(1 ;pz(ﬂl)?)

n<e

+0 (:p% log? x) + O (Vz(log® z)(log log z))
1

=+ — —_— :v—i—O(x%lo 2:E>
(44~ Z ) :
which finishes the proof. m
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Now, we estimate the second moment of w®.

Theorem 2.3.3. Let ¢y be defined by (2.1.4). Define
1
C°=cy+c2— _
Co Cy zp: p4(p + 1)2
We have
Zwo(n)2 =C%+ 0 (w% log? x) :

n<x

Proof. We have
2

RIS S D DN

n<a n<a pln
vp(n)>=3,0dd

=2 2 !

n<e p.qln
vp(n),vg(n)=3,0dd

S D SRIEES SHED SH

n<x p,q|n n<x p,q|n
vp(n),vg(n)=3,0dd vp(n),vg(n)=3,0dd
p=q PFq
= g w’(n) + g g 1. (2.3.8)
n<e p,q n<x
pg<z/3 vp(n),vq(n)=3, 0dd
p#q

For a natural number ¢ > 3 and distinct prime numbers p and ¢ with pg < /3, define

. X x x X
il e Il e g v el e

(_1)j+1 L)e_qu

(-1 + 0 (loga)

We have

g(l,p,q,x) =

M 10

<
Il
w

X
N2 EDN O llog2)
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where the implied constant is absolute. Since

IDREDD

q+1)

= Y Z D" g(L, p, g, ),
b,q

+0 (xl/?’(log2 ) loglog x)

n<x
pq<w1/3 »(n),vq(n)=3,0dd pg<a
P#q p#q
we have
Z >, 1= Z D
n<e p,q
pq<9:1/3 vp(n),vq(n)>3, 0dd pq<r1/3
P#q P#q
= Z
p + 1)q
pq<m1/3
pFq

We also have

1
2 pp+1)

£ ?lg+1)
pg<a/? b

p#q

Thus, we obtain

2 X

n<e
pq<x1/3 p(n),v ()>3,0dd

p#q

g+ 1) +0 (901/3(10g2 z) log log m) )

1 < du
TR (R R au
pset/ <p2(p + 1)) " (/xw/p u3))

1 )
- ( 2 m) 2+ 0 (108 2) g log ).

By (2.3.8), Theorem 1.1.1 and the above estimate, we have

Z wo(n)Q

n<e

1
= Cx + O <l’% ]_Og2 1’) + (C% — Z W) T + O ($1/3(10g2 I’) 10g log I)
p

(o4 g 0 (ot
( —pip+1)

which finishes the proof.
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2.4 Proof of Theorem 1.1.2

Now, we are ready to estimate the second moments of the functions wy with £ > 1 and
prove Theorem 1.1.2. First, we consider the second moment of w;. Note that

wi(n) = w(n) —w(n) —w(n).

Thus,
S = 3 ) () )
o nzjwm)z =23l ) ) + D ) )
 lloglog) ~ 23wl a) 4o ) + 3 + )
O logloga) -

by (2.1.3). By Theorems 2.3.2, 2.3.3 and the Cauchy-Schwarz inequality, we have

Z(we(n) +w’(n))* < .

n<x

By the Cauchy-Schwarz inequality, (2.1.3) and the upper bound above, we have

-2 Zw(n)(we(n) +w’(n)) + Z(we(n) +w’(n))* < (z (loglog :c)2)1/2 o 4

< rloglogx.

Thus, we obtain

Z wi(n)? = x (loglog z)* + O (xloglog )

n<x
which finishes the proof of the first assertion in Theorem 1.1.2.

Let k > 2. We have

)SETIED SEED DEIEED DI DI

n<z n<z pyqln n<T pyqn
Vp(”):Zq(n):k vp(n)=vq(n)=Fk
p=q p#q
=Y wn)+ Y > oL (2.4.1)
n<e p.q n<x
pa<at/* vp(n)=ve(n)=k
p#q
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For a natural number ¢ > k and distinct prime numbers p and ¢ with pg < z'/*, define

x x
h(f,p, q,x) = \‘pquJ - \‘pequrlJ

which counts the number of n < z such that p* | n and v,(n) = k. Then

> >oo1= Y (Wkpgx)—hlk+1pqz).

) S p,q
pa<z/* vp(n)=vq(n)=k pa<zt/®
P#q P#q
Since
T 1 1
h(¢,p,q,x) = p (% - F) +0(1)
we have
T 1 1 T 1 1
S = (G am) - () o)
E\ & ) k1 k k1
b )n@( b ZEAN| gkt prFtl \ ¢ gkt
<z vp(n)=vy(n)=k <z
pqméq ( qa(n) pqp;éq
1 1 1 1
= ) (7‘?) (—k—k—)
pk pht ¢ gt
pqgcql/’“
p#q
+0 (xl/k log log 1:) . (2.4.2)

We have

Z (1 1 )(1 1 )
o \pb Pt ) \gF gt

pg<al/k
pF£q
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For the contribution of the error term above, we have

1 1 pFt loglogx
Z ﬁ _pk+1 2 (k=1)/k (k= 1/k Z pE=1)/k

pgl‘l/k p<$1/k

Since

1 1 1 1
Ck—1 — C — — —= _—— ,
k—1 = Ck+1 Z (pk—l(p+ 1) pHi(p+ 1)) zp: (pk: pk+1)

p
we have
1 1 1 1
Z & k1) T T 2\ %~ o
¢ q p<w 2R prt

5 ( 11 ) (
ko pk+l
p<al/ p p 7 p
1 1 1 1
=D, pb o phrt )\t T G T L ok R

pgml/k
1 1 1 \? 1

2 -

= (k-1 — h1)” + O (x(k—l)/k) N Z (ﬁ N pk—i-l) +0 (x(%—l)/(?k))
p
1 1 \? 1

2

= (Ck—l - Ck+1) - Z (ﬁ o pk+1) +0 (x(kl)/k) )
p

Thus, we have

1 1 1 1 ) 1 1 \?
; (ﬁ — p_k+1) (? — _qu) = (Ch—1 — Cpy1)” — ; (E o pk+1)
pq<at/®
p#q
log log x
+0 (x(kl)/k ) :
By (2.4.2) and the above estimate, we have
1 1\?
S % (S (5 ) ) e o intons)
n<x

p
pq<fv1/k p(n)=vq(n)=k
p#q

(2.4.3)
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By (2.4.1), (2.4.3) and Theorem 1.1.1, we obtain

Zwk (k1 — 1)z + O (x% i log? a:)
nx
2 1 1) 1/k
+ | (ch-1 — chy1)” — Z oE T e z + O (z'/*loglog )
p

1 1\° ey
= (%—1 — g1+ (Cho1 — ch1)? — Z (E — p’fﬂ) ) z+0 (a:iﬂc—l log? :1:)

p

which finishes the proof of Theorem 1.1.2.

2.5 Proof of Corollary 1.1.3

We have
Z (wi(n) — loglogn)® = Z 2_2 Z wy(n)loglogn + Z (loglogn)?.
2<n<z 2<n<z 2<n<x 2<n<x

By partial summation and Theorem 1.1.1, we have

Z wi(n)loglogn = < Z wl(n)) loglog x — /; (Zwl(n)> ulc(l)l;u +O(1)

2<n<x 2<n<x n<u

?log1 ?d
:x(loglogx)2+0(xloglogx)—/ O{g Ogudu+0(/ “ )
2 2

ogu log u

= z (loglog z)* + O (zloglog z) .
By partial summation, we have

| log1
Z (loglogn)? = z(loglog x)? Lu v oe

2<n<x

du + O((loglog r)?)
ulogu

log1
= z(loglog z)* + O (/ olg(;) et du) + O((log log z)?)
2 gu

xlog loga:)

= z(loglog z)* + O ( Tog 2
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Thus, we have

Z (wi(n) — loglog n)* = z(loglog z)* 4+ O (z loglog )

2<n<z
— 2x(loglog )* + O (z log log z)

xloglogx)

+ z(loglog x)* + O <
log x

= O (zloglogz). (2.5.1)

Let h(z) be an increasing function such that h(z) — oo as x — oco. Let € be the set of

natural numbers n with @ < n < x such that

|w1(n) — 10g10gn| > h(l’)

Vvloglogn
Let |€| be the cardinality of £. Then

> (wi(n) —loglogn)* > > (wi(n) — loglogn)®

2<n<x ne&
> h?(x/log ) Zlog logn
neé
> h?(z/logx) |€| loglog (z/log x) . (2.5.2)
By (2.5.1) and (2.5.2), we have
log 1
€] oglogx 0

= h(z/logz)loglog(z/log z)

as © — oo since h(x) — oo as ¢ — oo. This finishes the proof of the second assertion of
Corollary 1.1.3 since the remaining set of natural numbers with n < x/logx is already of
size o(x).

2.6 Proof of Theorem 1.1.4

Now, we prove that the functions wy(n) with £ > 2 do not have normal order F'(n) for any
nondecreasing function F': N — R-,.
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First we assume that there exists ng € N such that F(ng) > 0. Then F(n) > 0 for
n = ng since F' is nondecreasing. Thus,

lim {n < N : F(n) > 0}| _

1.
N—oo N

For a natural number N, define

No(N) :={n < N :wi(n) =0}.

Since
1
D 1= ) 1<) ) 1SN} &
n<N p n<N p n<N p
ngNo(N) pkin pkin
P
we have
1
INo(N)| . N=N3, % 1 1 e
> =1- —>1- —>1—-(C2)—-1)=2——>0
4 ¢ B N I
Thus

. (Hn < N:F(n) >0} | No(N)
hmmf( N + N >>1

and the cardinality of the set of n < N for which F(n) > 0 and wg(n) = 0 is not o(N).
Since for such n, the inequality

fn) — F(m)| > T

is satisfied, we deduce that wi(n) does not have normal order F(n).
Now assume that F'(n) = 0 for all n € N. Then

lim {n < N : F(n) =0} _

1.
N—o0 N

Define

NM(N):={n <N :w(n) =1}



Since

n<N n<N n<N
v2(n)=k va(n)=k va(n)=k
vp(n)<k for all p > 3 vp(n)>k for some p > 3

[ le=] 2 2

p=3 ngAUQk

p*In
n is odd
N N N 1
>ﬁ_2k+1_ﬂ >3pk 1,
p/
we have
.. MV 1 /1 1 1 /1 1
PAVUL S = [ 2 s == -
i inf =3 > 5¢ | 2 Zpk Z 2k | 2 P
p=3 p=3
>1 1 2 ] 1
2k \ 2 6 4
B 1 /7 x?
S 2\4 6
> 0.
Thus

o (Hn<N:F(n) =0}  |M@V)
hmlnf( N + N )>1

N—oo

and the cardinality of the set of n < N for which F(n) = 0 and wg(n) = 1 is not o(N).
Since for such n, the inequality

fln) — F(m)| > T

is satisfied, we deduce that wi(n) does not have normal order F'(n).
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Chapter 3

Two Problems on Discrete Mean
Values of Dirichlet L-Functions

3.1 Introduction

Let p > 3 be a prime number and y be a nonprincipal Dirichlet character modulo p.
The first problem we consider in this chapter is the following: What is the average of the
number of solutions of x(n1) = x(n2) with 1 < ny,ny < N where the average is taken over
N with 1 < N < p — 17 This is measured by the quantity

A (X) Z oL

1<N<p 1 1<n1,na<N
x(n1)=x(n2)

Let us make a heuristic argument on the behaviour of A,(x). If the order of the
character y is k > 2 and p { ny, then the value x(n;) is a k™ root of unity. Thus, the
probability of x(n2) = x(n;) for a randomly chosen ny with p f ny seems to be 1/k and
one would expect that

p(2 —1)
Ap(x 1<NZ< DI D Z N2 — p .
<p—1n1<N nao<N 1<N<p 1

Thus, we may expect that A,(x) ~ p?/(3k). However, if the order k of the character y is
p — 1, then the condition x(n;) = x(n2) is equivalent to n; = ny and thus A,(x) = p/2.
Although this indicates that the heuristic argument given above is not valid for some large
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values of k, our first main result in this chapter, Theorem 1.2.1 below, shows that the
expected asymptotic A, (x) ~ p?/(3k) is true if k is not too large.

Theorem (Theorem 1.2.1). [5] Let p > 3 be a prime number and x be a nonprincipal
Dirichlet character modulo p of order k > 2. Let a,, = (1 — x(—1))/2. Then we have

k)2

Ap(x) = p(%ék_ D) + (k= 11>2(]f+ D +a Z IL(1,x¥ ) (3.1.1)

Remark 3.1.1. Theorem 1.2.1 gives an exact formula for the average A,(x) if x(—1) =1
since a, = 0 in this case. If x(—1) = —1, then the problem of estimating the average
A, (x) is closely related to the discrete mean value of the Dirichlet L-functions L(1, x*™1),
1 < j < k/2, where k is the order of the Dirichlet character x modulo p. Moreover, the
expected asymptotic behaviour A,(x) ~ p*/(3k) given by the heuristic argument above is
true as long as

| b2

_+ax Z|L G2

tends to zero as p — oo. Since L(1,x¥¥71) < logp for all 1 < j < k/2, we see that
k=o <1+a—1c>gp) is a sufficient condition for A,(x) ~ p?/(3k) to hold. However, if
k=p—1, then A,(x) = p/2 and in this case, we have

k/2
Z LA NP = ) L@y
¥ (mod p)
$(-1)=—1
In [28], Walum proved that
2 -1 -2
1 > ULy = 62 : (3.1.2)
¥ (mod p)
P(=1)=-1

Thus, Theorem 1.2.1 is in accordance with the above identity since in this case the right-
hand side of (3.1.1) is equal to

pp—1) (-1-1)+1) P’ “r-Dp-2)(p-1) _p
6(p — 1) 12(p — 1) m(p—1p—1) 6p? 2 2
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Moreover, in [19, Theorem 1|, Louboutin showed that if p = 1 (mod 6) is a prime
number and Y is a Dirichlet character modulo p of order k = (p — 1)/3, then

k/2

kZ|L Y5 %(1—%). (3.1.3)

Thus by Theorem 1.2.1, we have

2p—1) (B —-1Dp+1 2 mp-1)  Tp+2
AX) = p<6€’_1 L 5 121’)—(? '+ 2(p— 1)7T (f2 - T
= = TP p
In [19, Theorem 1], Louboutin also considered the case that p = 1 (mod 10) is a prime
number of the form p = (a® — 1)/(a — 1) for some a € Z \ {1} and k = Z-1. In this case

Louboutin proved that

o k2 ) )
2 1) -1
_E :IL e :%(14— ala+1) ) (3.1.4)

p

which in return gives

p2p—1) (B -1D(p+1) P> 2 2a(a+ 1) — 1
A(x) = gL T : 12821 * m(p—1)12 L+
5 5 p—1) p
_11p+3  ala+1)%p
I 6(p—1)

The results given in (3.1.2)-(3.1.4) are the only known cases for the mean value

k/2

—Z|L x5 (3.1.5)

and in general, estimating the average A,(x) where x(—1) = —1 may lead, in the future,
to a better comprehension of the mean value in (3.1.5).

Here we would like to note that one can also investigate analogous sums to A,(x) by
considering triples ny, ny, n3 with x(n;) = x(n2) = x(n3) or in general by considering d-
tuples ny,...,ng for d > 3 with common y-values. We will consider such extensions in a
future communication.
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Let ¢ be a natural number. The discrete mean value considered in (3.1.2) is a special
case of

2 _
M(q,w,5,6x) = ——= Y L(w,¢)L(s,x7) (3.1.6)
wla) , o=
¥(—1)=c

where € € {1}, ¢ is the Euler totient function, x is a Dirichlet character modulo a natural
number (not necessarily ¢) and w,s € C except possibly the only pole of the right-hand
side of (3.1.6) at 1, if exists. As some examples of the studies on such mean values, we refer
to [18] for M(q,n,n,¢€;x,), to [11] and [16] for M(q, m,n,€; x,) where m,n > 1 are some
natural numbers and x, denotes the principal Dirichlet character modulo ¢. For a similar
mean value with complex arguments w and s but again with y = x,, one may see [20]
and [22]. The only work that we were able to spot in the literature where y # x, is [29] in
which the authors consider the mean value M(p,n, 1,1; x,) where p > 5 is a prime number,
n > 2 is an even natural number and x, is the nonprincipal Dirichlet character modulo 4.

Before stating the second problem we consider in this chapter precisely, let us have a
closer look at Walum’s result in (3.1.2) which gives

2 2 _ 2

S X P =S Y LML) ~ =D, (L)
¢ (mod p) ¢ (mod p)
Y(-1)=-1 P(—1)=—1

The reason for us to write ((1 + 1) rather than ((2) above is to indicate the contribution
of the diagonal terms if one uses the Dirichlet series of L(1,1) and L(1,). By the Pélya-
Vinogradov Inequality (see Lemmata 3.2.2 and 3.2.3 below), the left-hand side of (3.1.7)

can be approximated by

2 P(a) (logp> ¥(b) (logp)
— +0 22 4o . (3.1.8)
p= 1 771!1[) (nllzoip% a<zp/2 a \/]_? b<zp/2 b \/]_)

By the orthogonality relation, [17, p. 191],

1 ifb=a (mod p),

2 _
¢ (mod p) 0 otherwise
YP(-1)=-1
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for (a,p) = 1, the expression in (3.1.8) becomes

> ot Y v +o (1()5;9) = Y G +0 (loj;p)

a,b<p/2 ¥ (mod p) a<p/2

(~1)=—1
_ 1 log® p
_g(1+1)+0(p) +O( N )

= C(1+ 1) + 0psas (1) (3.1.9)

Let p > 3 be a prime number and x be a nonprincipal Dirichlet character modulo p.
For s = 0 4 it with o,t € R, define

2 —
MP(_57X) = ./\/l(p,l,—s,—l,x) = Tl Z L(17¢)L(_5aX¢) (3110)
e

The second problem we consider in this chapter is estimating the mean value M,(—s, x)
when o > 0. The reason for us to consider M, (—s, x) with ¢ > 0 rather than M,(s, x)
with o > 0 is the following. For M,(s, x) with sufficiently large o > 0, one can effectively
use the partial sums of the Dirichlet series of the functions involved (as in (3.1.8)) and
observe that the resulting main term, for large p, bounded |s| and for x(—1) = 1, is
L(1 + s,x) (similar to ¢(1 + 1) in (3.1.9)). Here we are curious about whether such a
behaviour occurs for M, (—s,x) with ¢ > 0, that is, whether M,(—s,x) with ¢ > 0
approximates to L(1 — s, x).

Our second main result in this chapter, Theorem 1.2.2 below, gives an identity for

M, (—s,x) in a larger region where o > —1 and it shows that the behaviour explained
1—20

above is still valid if 0 < o < 1/2 is fixed and |t = Js| = o <p3+20> as p — oo and

x(—1) = 1. Moreover, by differentiation, one can obtain some information about the
derivatives Méj)(—s, X) in 0 > —1 as well.

Theorem (Theorem 1.2.2). [6] Let x be a nonprincipal Dirichlet character modulo a
prime number p > 3 and let a, = (1 — x(—1))/2. Then, for s = o + it with o > —1 and
t € R, we have

Mp(=s,x) = L(1 — 5, x) + a,2p° L(1, x)¢(—s) + Ep(s, x) (3.1.11)

where
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Byl = SV 2y T CR) gy [ T+ SE)

and

1<n<z

For —1 < o <1, we have

ol (s o (11— (p*logp)~?
In particular, if 0 < o < 1/2 is fized and |t| = 0<p%>, then (3.1.11) holds with
E,(s,x) =o0(1) as p — oc.

In the proof of Theorem 1.2.2, we use the functional equations of the factors L(—s, x1))
in (3.1.10). Note that for general moduli, the product of two nonconjugate characters is
not necessarily primitive even if both of them are primitive. However, the assumption
that the modulus p is a prime number guarantees the fact that a nonprincipal Dirichlet
character modulo p is primitive and thus one can use the functional equations corresponding
to such characters. This brings us to the problem of understanding the mean value of
L(1,¢)7(x)L(s + 1,Xv) over the characters ¢ # y with ¢)(—1) = —1. In Theorem 3.1.2
below, we relate such a mean value to the function

S(s,x) :== (0 >1) (3.1.12)

where

1<n<N

Note that the series in (3.1.12) is absolutely convergent in o > 1 since |S, ()| is bounded
in terms of p only by the Pdlya-Vinogradov Inequality, Lemma 3.2.2.

Theorem 3.1.2. Let x be a nonprincipal Dirichlet character modulo a prime number
p=3.
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(i) For any s € C, except s =1 if x(—1) = —1, we have

= —p T XU S
S6:0) = -5 5 =T w (;Od p)L(l,w (x¥) L(s, x¥)

Y(=1)=-1
Y#X
TP —1) L(s, x)
—= —J(1 .
S 00 + =
Thus, the function S(s,x) is analytic everywhere on C if x(—1) = 1; otherwise, the
only pole of S(s,x) is at s = 1 which is a simple pole with residue %L(l,y).

(3.1.13)

(ii) For o >0, except s =1 if x(—1) = —1, we have
Lis=1.x) LX) . S/“ (lz] — 2+ 3)S\(@)
1

s—1 2 st

S(s,x) = dx. (3.1.14)

Here we would like make some remarks about extending Theorems 1.2.1 and 3.1.2 to
composite moduli. Let y be a primitive Dirichlet character modulo a composite number gq.
Then we first encounter with the problem of obtaining a closed formula for the partial sums
Sy (V) given by Lemma 3.2.9 below and this lemma is used in the proofs of Theorems 1.2.1
and 3.1.2. Although it is possible to have a similar identity for S, (N) when (V,q) = 1,
covering the case when (N, ¢) > 1 is not straightforward. Now, consider the average

A== ¥ Y

1KN<g—1 1<ny,n2<N
x(n1)=x(n2)
(n1in2,q)=1

to obtain an analogue of Theorem 1.2.1. If we follow the proof of Theorem 1.2.1, we
eventually come across with the sum

2

1

— > | 2t

q 1<KN<qg—-1 n<N
(n,g)=1

which makes the problem harder if one wishes to obtain an identity. However, by estimating
the sum above and using the mean square formula, given in [1],

S s = LT (1= L)+ L jpa P
X 12 P2 X2 ’ ’

ISN<g—-1 plg



we can prove that

Ag(x) = (SOSJQ))Q q<2{ék_ 2 1(2l€k(_q1—>q12) g (1 N z%)

k)2
T 1y 2 [E O+ 0 (p(@27?)

where k is the order of y.

For a generalization of Theorem 3.1.2, one may consider the series

SRS,

where Y is the principal Dirichlet character modulo ¢ as an analogue of the function S(s, x)
above. By having a closed formula for S, (N) for (N,q) = 1, it is possible to obtain an
analogue of the first part of Theorem 3.1.2. However, for the second part of Theorem 3.1.2,
in view of the identity given in (3.3.3) below, it is difficult to obtain an exact analogue of
the second part of Theorem 3.1.2. Instead, one can consider the partial sums of L(s, x,)
to proceed further.

3.2 Lemmata

Lemma 3.2.1. [21, Corollary 4.5] Let 11,19 be Dirichlet characters modulo ¢ > 2. Then

Loy ¢1<k>%<k>={1 =",

©(q) L<heg1 0 otherwise.

Lemma 3.2.2. [3, Chapter 23, Pdlya-Vinogradov Inequality] Let 1) be a nonprincipal
Dirichlet character modulo q > 3. Then

> v(n) < alogg

A<n<A+B

forany A,B > 1
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Lemma 3.2.3. Let K > 2 be a real number and v be a nonprincipal Dirichlet character

modulo ¢ > 3. Then
w _ Vaqlogg
E =L(1,¢)+ 0 e :

n<K

Proof. By partial summation and Lemma 3.2.2, we have

I PR s

n<K n<K
B () Valogg
n<u
= —_— — . 2.1
/1 .2 du+ O ( 7 ) (3.2.1)
By Lemma 3.2.2, the integral in (3.2.1) can be written as
u

/ me O(\/_Kgq). (3.2.2)

Replacing K in (3.2.1) by x and letting 2 — oo, we have

= /oo w du. (3.2.3)

By (3.2.1)-(3.2.3), the desired result follows. O

Now, we obtain the following identity about a weighted mean value of Dirichlet L-
functions.

Lemma 3.2.4. Let p > 3 be a prime number and M and N be natural numbers with
M>21, N>0andpt M(M + N). Then,

P(=1)=-1

(3.2.4)
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Proof. The result is clear if N = 0 as both sides of (3.2.4) are zero. Assume that M, N > 1
and pt M(M + N). Let € be the positively oriented circular contour with center M + %
and radius N/2. Let R be the line segment from M to M + N and €;, &, be the parts of
¢ lying in the upper and the lower half plane, respectively. Let

f(w) = w/p.

Note that f(w) is not an integer on € since p{ M (M + N). Moreover, f(w) € Z for some
w inside € if and only if w is a multiple of p with M < w < M + N. Thus, the function

1
e(f(w)) —1
is analytic on € and the only poles of this function inside € are at w = pk with M < pk <

M + N for some integer k, which are simple poles with residue

1 P
2mi, <p_k> Comi

p p

Thus,

= 2mi (i X (the number of multiples of p in the interval (M, M + N)))

271

(5 12)

by the residue theorem. Write

1 1
= o | (3.2.6)

¢ &y
and consider the first term in (3.2.6). Let K be a natural number. By the identity
1 1— ZK+1 ZK+1

2—1  z-1 z—1’

(z € C\{1})

where z is replaced by e(f(w)) for w € €;, we have

L [ D)
/de_ /hl( )d +/ d (3.2.7)

w)
[0S ¢1 5]
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where
l—e((K+1)f(w
() o L el D)
1—e(f(w))
Since K is an integer, the function h;(w) is analytic on and inside €. Thus, by the residue

theorem and the fact that €, U R is a positively oriented regular closed contour, the first
term on the right-hand side of (3.2.7) is

—/ﬁmmmmi/mwmw

¢ R

By (3.2.7) and the identity above, we have

L e [ mw)de s [CEEDI@)
/e(f(w)) _1d /hl( )d +/ e(f(w)) — 1 dw. (3.2.8)

¢ R (s

Now, we consider the second term on the right-hand side of (3.2.6). By the identity

1 B 1— 2K 2 K

= + (z e C\ {1})

z—1 z—1 z—1’

where z is replaced by e(f(w)) for w € €,, we have
1

— 7 N\ 7 aw = w) aw M w
/e(f(UJ))—ld /hQ( )d +/€(f(w))—1d (3.2.9)

where
- e(—Kf(w)
= T w1

Since K is an integer, the function ho(w) is also analytic on and inside €. Thus, by
considering the orientation of €, and by the residue theorem, we have

/Mwmcfmmmu

¢, R

By (3.2.9) and the identity above, we have

/de:/hg(w)dw—i-/%dw

Q:Q R €2
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By (3.2.6), (3.2.8) and the identity above, we have

I :/(hl(w) + ho(w)) dw + / e(f(ag(—ftu;))Ji(qllj)) dw+/%dw. (3.2.10)

R (5] [
By the definitions of h;(w) and hs(w) and the identities

1_2K+1 K .
— =24 (zeC\{1})
k=0
and
1_Z_K 71 k)
=34 ec\{o1),
k=K
we have

_1-e((K+Df(w) | 1—e(=Kf(w))
M) =Ty T e 1

= ) e(kf(w)) (3.2.11)

for w € R since hy and hy are analytic on R. By (3.2.5), (3.2.10) and (3.2.11), we have

(252 (1) £,
et [t

Q:l Qt2

=T +T,+T; (3.2.12)

where
K M+EN

Ty = Z /e(k;u/p)du,

k=—K 3

T, — / e((K + Dw/p) dw,

/ e(w/p) —1
_ [el=Kuw/p)
Tg.—/e(w/p)_ld .

()
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Since

we have

2 — k
k0
o) ()
p p p
=N+ _— 2.
o 2 (3:2.13)
——K
k40
pik
Let ¢ € N such that p 1 ¢. Define
< (%)
S(c) = ?
0-3 %
k=—K
k40
plk
Then by (3.2.13), we have
Ty = N+ -2 (S(M + N) — S(M)). (3.2.14)

21

Considering the residue classes of ck for p 1 ck in the definition of S(c), we have

SO =5 (%) 3 -

a=1 k=—K
k0
ptk
ck=a (mod p)
By the orthogonality relation (1.2.4), we have
K K
11 — (k)
Z — Z Y(a)y(c) Z 5 (pta)
k=—K p ¥ (mod p) =—K
k#£0 k0
plk plk

ck=a (mod p)
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Thus,

Since

we have

S(C)ZL1 > ww@Z%"”) (3.2.15)

v (mod p) k=1
P(=1)=-1

for c € N with p{c. By (3.2.14), (3.2.15) and Lemma 3.2.3, we have

=N+ Y wOr N - o) @) Y 5
TP =1, Gt p ~ k
d(=1)=-1
=N+ M(pp_ Ty (% ) (W(M + N) = (M) 7 () L(1,4) + Oy (%) (3.2.16)
P(=1)=-1

where the implied constant depends only on p.
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Recall

r,— [ A D),

e(wip)—1

-K
T, — / e(=Kw/p) ,
e(w/p) —1
2
where @; (resp. €,) is the part of the circle € lying in the upper (resp. the lower) half
plane. Now, our aim is to show that 75 and 75 tend to zero as K — oo. Note that for any
real number A, we have

le(Aw/p)| = exp (—2mA(w)/p) . (3.2.17)

Moreover, for any w € €, we have |e(w/p) — 1| >, 1 since p{ M (M + N). Thus, by taking
A=K+ 1in (3.2.17) and considering the contributions to the integral defining T along
which $(w) > —= and 0 < S(w) < 1/VK separately, we have

VK
K+1 K+1
S R S5\ PR G ST
; e(w/p) — 1 ; e(w/p) —1
3(w)>11/\/E %(w)gll/\/E
<o exp (~2n(K + 1/(VED)) + (3.2.18)
" Vi
which tends to zero as K — oo. Similarly, we have
-K —-K
T, = / e(=Kuwfp) , / e(~Kuwfp) .
e(w/p) — 1 e(w/p) —1
(95 ()
S(w)<—1/VK S(w)>—-1/VK
1
K p AN XD (—QW(—K) /(—ﬁp)) o (3.2.19)

which also tends to zero as K — oo. By (3.2.12), (3.2.16), (3.2.18), (3.2.19) and letting
K — oo among natural numbers, we have

qu”J - M) Nt S (M 4 N) = (M) 7 (7) L(1,9)

(p—1
p p mip—=1) o=
P(-1)=-1
and the desired result follows by reorganizing the terms above. O
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Lemma 3.2.5. Let p > 3 be a prime number and k € N. Define 1, = 1 if p | k and
Ik =0 if pf k. Then we have

2 — (k |k ,
1 . (%1 p)w{;)T () L(1,%) = —2mi (E — bJ) + i (1= L) - (3.2.20)
b(-1)=-1

Proof. Let M =1 and N =p—2 in Lemma 3.2.4. Since (M + N) —¢(M) =¢(p—1) —
(1) = =2 when ¢(—1) = —1, we have

LY s =
b ¥ (mod p) P
P(—1)=-1
which gives
SR C I
P2y Gnod ) b

P(=1)=-1
By the identity above and Lemma 3.2.4 with M =1, N > 0 such that pt N + 1, we have

2miN AN+1 2 —
S S = 2 Y 1) - () (@) L)
p p p—
¥ (mod p)
P(=1)=-1
2 — mi(p — 2
=—— Y YN+ Dr (@) L) - (—).
p—1 p
¢ (mod p)
Y(=1)=-1
Thus,

2 — 2miN i(p— 2 AN+1
S W e () ) = - TN T2 o {—J
Pl e P p p

mod p)
Y(-1)=-1
2mi(N + 1) . .{N%—lJ
= ————>+m+2m
p p
, (N +1 {N + 1J) 4
= —2m — + mi.
p p
Replacing N + 1 by k above gives the desired result for £ > 1 and p t k. The case that
p | k is clear since both sides of (3.2.20) are zero. O
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Lemma 3.2.6. Let p > 3 be a prime number and k € N such that pt k. Then we have

2 3 @(k)L(mp):ﬁcot(”—k).

—1
P70y (mod ) b p
Y(1)=—1

Proof. Forptk € N, let k=! € {1,2,3,...,p—1} be the inverse of £k modulo p. In (3.2.20), we
replace k by k~'m for some m € N. Then on multiplying both sides of (3.2.20) by e(m/p)
and summing over m with 1 < m < p and using the fact that 7 (¢) = ¥(=1)7(¢) = —7(¢)
for ¢)(—1) = —1, the left-hand side of (3.2.20) becomes

Y W@ L) ¥ ostme(2) =2 S G0 @) L)
¥ (mod p) 1<m<p ¥ (mod p)
YP(-1)=-1 P(=1)=—1
—— Y AbLa)
¥ (mod p)
P(=1)=-1

For the right-hand side of (3.2.20), we have

3 {—m{ k_;m} +i (1 — 11p|k1m)] e (%) = —mi—2mi Y {k;m}e (%) .

1<m<p

Thus, we have

2 _ i E~'m
— > ¢(k)L(1,X)=E<1+2 > { P }e(m/p))- (3.2.21)

P72y (mod p)
W(-1)=-1

On writing k~'m = a (mod p) where a € {1,2,..,p}, we have

> {k“;m}e(m/p)z > {%}e(ak/p):% S ae(ak/p). (3.2.22)

1<m<p 1<a<p 1<a<p—1

Define
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Since z # 1 and 2P = 1, we have

d d (2Pt —1
= R a ey R ——1
5(z) zdz<zz> Zdz( z—1 )
1<a<p

(p+1)2"(z—1) = ("' - 1)

(z—1)2
_ DD -(z-1)
=2z
(z = 1)
_ P
-1
Thus,
1 1 1/ 2p ) 1
- ae(ak/p) = = (S(z) —p) = - —p| =
;3 aelokp) = (5() () -
By (3.2.21)-(3.2.23), we have
— U’ 2 Tz +1
Y wmnaw =T (12 ) =T
p— z—1 pz—1
¥ (mod p)
P(=1)=-1

Since

e

k g T~ —T—
= P P

wk

p
o ik T nik ik ik .. ;
z—1 627r2p -1 ewzp <67T'Lp —e 7rzp> 2 sin (%c) 1

the desired result follows.

We continue with a special case of a result of Louboutin, |

(3.2.23)

, Proposition 1]. By using

the lemmata above, we give a different proof of this special case where the modulus is a

prime number.

Lemma 3.2.7. Let x be a Dirichlet character modulo a prime number p > 3 and let

a, = (1 —x(-1))/2. We have

Z X(a) cot

1<a<p—1

3)-

23

GX?L<1,Y)

(3.2.24)



Proof. 1f x(—1) =1, then

> X(a) cot (%’): > X(a)cot (”—a)+ Y Xla)cot (W—a)

1<a<p—1 1<a<p/2 p p/2<a<p—1 p
mTa T —a
= Z X(a) cot <—) + Z X(p — a) cot ( w ))
1<a<p/2 1<a<p/2 p

I
xl
s
o
O
-+
/|\
~_
|

—_
=l
s
o
O
—
VR
S|
SAE
~~

1<a<p/2
=0
' Y(p—a) =v(—a) =Y mlp=a)) _ _ ma
since X(p — a) = X(—a) = X(a) andcot( - )— cot(p).

If x(—1) = —1, then by Lemma 3.2.6, we have

2 _
Z x(a) ﬂp—fl) Z Y(a)L(1,9) | = Z X(a) cot (H) )
1<a<p—1 i(&rrllg)if% 1<a<p—1

By Lemma 3.2.1, the left-hand side above is equal to

Y ) Y i@ = 2rax)

(1) ¥ (mod p) 1<a<p—1
P(-1)=-1
Hence, the desired result follows. O

Next, we state a well-known identity for Dirichlet characters (see [3, Chapter 9] or [21,
Section 9.2], for example).

Lemma 3.2.8. [3/, [21] Let p > 3 be a prime number and n € N. If x is a nonprincipal
Dirichlet character modulo p, then we have

= 3 wae (). (3229

1<a<<p—1 p

If x = x, and p{n, then (3.2.25) still holds.
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Now, we obtain a closed formula for the partial sums

Sy (N)= > x(n)

1<n<N
of a nonprincipal Dirichlet character y modulo a prime number p > 3.

Lemma 3.2.9. Let x be a nonprincipal Dirichlet character modulo a prime number p > 3.
Then, for any natural number N > 1, we have

px(N)

SN = e -1

> L(1Ly)T (x¥) ¥(N)
i

7(X)

+ aX?L(lay)Xo (N) +

@. (3.2.26)

Proof. Since both sides of (3.2.26) are zero if p | N, we assume that p t N. By Lemma
3.2.8, we have

W= Y v (™) (3.2.27)

™), = p

for all n € N since y is nonprincipal. Then

I
\]
8»4
]
x|
s
g
Q)
RS
SAE
SN~—

The inner sum on the right-hand side above is equal to

1<§<:N€(%> e(egg—%>1(e (%) _1>7 (pta)

Since
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we have

SN == 3 () M+% (e(ﬂ)—l).

(0 o 2i p
By (3.2.27), the contribution of the term 1/2 to the right-hand side above is

27&) > X(a) <€ (%) — 1> = 27&) > X(a)e (%) — @

1<a<<p—1 1<a<p—1

Thus, we have

w00 5 0 () (2)

=T(x,N)+T(x)+ @ (3.2.28)
where
1 B Ta
R TR RCACIE O
and
T(x) = _ZiTl(y) Kglﬂa) cot (%) = _a"mf(y)[’(l’@
- aXTfT’Z?)L(L—)

by Lemma 3.2.7 and 7(Y) = —7(x) if x(—=1) = —1.
Now, we consider T'(x, N). By Lemmata 3.2.6 and 3.2.8, we have

TN =g X ¥ae(D5) 2 3 waLy

1<a<p—1 p p= 1) ¢ (mod p)
b(=1)=-1
B p (e [ Y
~ mir(x)(p—1) v (mzod p)L(l,@b) Kglx(a)w(a)e ( D )
b-1)=-1
SN L(1 NYU(N)T (x0) .
ARG, o ML ()
b=1=—1

By (3.2.28) and the above identities for T'(y) and T'(x, V), the desired result follows. [

o6



3.3 Proof of Theorem 3.1.2

First, we prove Theorem 3.1.2 from which we deduce Theorem 1.2.2 in the next section.

Let x be a nonprincipal Dirichlet character modulo a prime number p > 3. Recall that

— Si(IV)
Ns

S(s,x) = (0 >1)

N=

—_

where

1<n<N

Let o > 1. Dividing both sides of (3.2.26) by N* and summing over N > 1 give

S(s,x) = Ww (mZOd p)L(lﬂﬁ)T (x¥) L(s, xv)
H-D=-1
+ axyum)g(s) (1 - pi) + L<52’ X

If x(—1) = —1, then the term in the sum above with ¢» =Y contributes

p

s PR 9 (s (1 1
LD L) L1066 (1- ).

mi(p — 1) P
By the last two identities above, we have

= —p E T S
S<S7 X) - WZT(Y)(]? _ 1) . (mOd p) L<17¢) (le) L( 7X¢)
P(=1)=-1
Y#X

+ ang)L(l’Y)g(s) (1 _ pl) (1 +- i 1) . L(s2, X)

which gives the first assertion of Theorem 3.1.2 by analytic continuation.

For the second assertion of Theorem 3.1.2, we start with

) % =) NL D oxnm) = x(n) ) ]\1[ (3.3.1)

N<pk N<pk n<N n<pk n<N<pk
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for some £ € N and o > 1. Since

2 N

IR 253

nSNépk ]<pl<: ]<n
we have
1
ZMmz:ﬁ:ZAm[ D3
n<pk n<N<pk n<pk i<pk ]<n
o X)) 1
=2 2 Z
n<pk n<pk ]<n
- Sl 527
where
S, = x(n)’
ns
n<pk
1
Spi= D xm)} =
n<pk Jj<n J
By [26, Equation 3.5.3] we have
Lx —x + 5 nt=s 1
= dx — 0).
(= ss [ pr o (0> 0)

Thus,

5= 0) {«s)—s/nw%dw—fiuis}
Ay [T ey

n<pk n<pk

By the definition of S; and the above identity for Sy, we have

S1 — S,
x(n) 1 x( ) *|z] —x+3 1 < x(n)

_ - == 2x

ns + s—1 Z X(n) x5+l 2 ns

n<pk n<pk n<pk n<pk
1 X La: —x —i— 5

T s_1 ns 1 Z Tt

n<pk n<pk n<pk

o8

(3.3.2)

(3.3.3)




Note that

St [T e [TEEEE S ) | e

n<pk n n<pk
n<x
PR (lx] — 2+ 3)S,(z
[ s,
1 rstl

By letting k& — oo for ¢ > 1 and using (3.3.1), (3.3.2) and the last two identities above,
we obtain

] =z + 3)S(2)
1;3—0—1

S(s,x) = dx.

S_1L(s—1,)()—|—%L({S’,X)jLS/IOO<L

Since S, (z) <, 1, the integral above is convergent for ¢ > 0 and hence Theorem 3.1.2
follows.

3.4 Proof of Theorem 1.2.2

Replacing s by s+1 in Theorem 3.1.2 and equating the expressions in (3.1.13) and (3.1.14),
we have

00 o 1 S
Ty +Ty+Ts = (s—l—l)/ (] Zij) @) (3.4.1)
1
for o > —1 where
p -
T = —— L(1,9)r L(s+1, ,
-1, (Zi (L)7 (x¢) L(s + 1, xv)
mod p)
H(-1)=-1
Y#EX

L=ac o ML+,
T, — _L(i X)

Now, we consider T;. Note that if ¢(—1) = —1 and 9 # X, we have

Ay =1 —a,
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and

T(x)T(x¥) = x(=1)T(x¥)T(x¥) = —x(=1)p.

Thus, for such characters y and ¢, we have

r(x¥) (w) r(=5=)

/7 \ p @L(—&W)

T (W) L(s+1,x¢¥) =1 (W)

M(=1)p (w) r(=5=)

=i F(%> L(—s,x¥) (3.4.2)

by the functional equation (1.2.6). By (3.4.2), we have

— A\ _S+21_ax _

P(-1)=-1
Y#EX

ﬁ p r <5+2—‘1x> P ¥ (mod p)
P(=1)=-1
Y#X
Recall that
2 _
Mp(_37X) = — 7 Z L(LWL(—S,XW
P2y (mod
mod p)
P(=1)=-1
Since
1 — M, (—s,X _ 1—p°
LS n(-s ) = 22080 xg-0) i
¥ (mod p)
P(-1)=-1
Y#EX
T} can be written as
. sT 1—s—ay
iT(x) (7 ( 2 )
W (5) r (s+2—ax)Mp(‘5’X)
2
T (T ECHY =y
+a,—=| - L(1,%x)¢(—s). 3.4.3
r (3) T oy (3.4



For Ty, we use the functional equation (1.2.2) of {(s) and write

_ et -y T(F)
b= ooy X Ty )
_ () (' D(=5) -t
For T3, we have
1lT(x) (= SF(178JGX> =
Ty = — szax\/_( ) T (5*‘2%) L(1—s,%) (3.4.5)

by the functional equation (1.2.6). Thus, by (3.4.3)-(3.4.5), we have

imr(y) ()
T +Ty+ Ty = N - 7
1+49+ 13 N ( ) .

which is equivalent to
1—s+ay
Ly ()T (5E™)
T1 + T2 + T3 ( ) T stauN
sinvE \n) TED)
7129x <1 = aX) SF S+ax
2 F<S+2 aX)F(l s+ux>

) oD ()

—a,i . *L(1,X)((—s) — L(1 —s,X)]| . 3.4.6
a P(T)F(l—sw)p (1,X)¢(=s) — L( X) (3.4.6)

X

Mp(_sv Y)

By sI'(s) = I'(s + 1), we have

94 F(lfsfax) F m
Z2X — i f_i ) (3.4.7)
P ()
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and

L (=3) sT(55*) _ir(=3)
U () p (1_s+ax> T 20y (3.4.8)

2

By (3.4.6)-(3.4.8) and (3.4.1), we have
MP(_&X) - aXQpSL(l,y)C(—S) - L(l - S7Y)

_ (g (&) FSE <_ )) (5 41) /1°° (o) =2+ DS 0 540

for o > —1. Replacing x by X and reorganizing the terms in (3.4.9) finish the proof of the
first statement in Theorem 1.2.2.

Let

Ep<3> X) =

1%\ /T s s ﬁ% > (lz] —z+ 1)Sx(x)
7_(;)_ (%) T <1(S%)> (s + 1)[ xiz dx

for —1 < o0 < 1. By the Pélya-Vinogradov inequality, we have

oS o 1 S- A S
/ (lz] —= +22) (@) dr < / eV d + p? logp/ 22 dy
L st 1 A

{logA + p'/?(log p)A~! if 0 =0,

~L(A7 — 1)+ pP(logp) A if o #0.

Taking A = p'/?log p and noting that lim,_,o(1 — A™7) /0 = log A, we see that

/°° ([z] — 2+ 3)Sx(x) ir o L= (07 logp) 7

—-1<o<1
xst2 (c+1)o ( o<

where the right-hand side above is to be interpreted as the limit ¢ — 0 if ¢ = 0. By
Stirling’s formula [13, Equation A.34], we know that

|t 1
ID(s)| = (2m) /2Jt7~ 3¢~ (1 +0 (H)) , (l<o<1, |t|>1)
where the implied constant is absolute. Thus,

s(s+1)I' (Szux)

1—s+ay
r(=)

<, (~l<o <1, [t|>1).
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Now we consider the remaining case where || < 1. Since I'(s) is never zero and it has
simple poles at nonpositive integers, we have

s(s+ DT (55*) _ Is(s +1)(1 = s +a)|
p(%) |s + a,|

L (l<o<1, |t <1).

Thus,

Bys) <574 (1 o +1 - )1 = o+ o)) (LR8P

for —1 < o <1 and t € R which finishes the proof of Theorem 1.2.2.

3.5 Proof of Theorem 1.2.1

Define

where

n<N
First, we show that
p+1 P’ >
= L(1 ) 5.1
For a more general result than (3.5.1), we refer to [1]. For 1 < N < p— 1, we have
S (N) = T(x. N) + T(x) + XV 3.5.2
() =T N) + 00 + X8 (352)
where
px(N) —
( ) ﬂlT(X)(p_l)d}(Zd (L.9) ( ) (N)
mod p)
P(=1)=-1
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and

by Lemma 3.2.9. By (3.5.2), we have

M) =—— 3 (10 NP+ TP + -
1 4

p 1ISN<p—1

L1 3 (23% <T(X, N)W))

p—1 1<N<p—1
+ ]% 1<NZ<,,1 (25}% (T(X, N)@) + 2R (T(;@@)) . (3.5.3)

By orthogonality, Lemma 3.2.1, the last sum in (3.5.3) is zero and the second sum in (3.5.3)
1s

1 T T P _
p—] > (2§R (T(X, N)T(X)>> =2R (T(X)WL(LX)T(M))
p 1<N<p-1 X)\P
2p 2
=0, . 5.4
aX?TQ(p—l) ‘L(l’XN (35 )
Again by Lemma 3.2.1, the first sum in (3.5.3) is equal to
P 21 (T |2 P 2 1
S L1, - Ta, L)+ - 3.5.5
Cren P R OIEEETUYE
P(-1)=-1

By considering the cases x(—1) = £1 and using (3.1.2), we have

L 3 )l (@)

=1 4 (mod p)
P(—1)=—1
p2 Z 2 p—p2 2
== |L(L, )" + ay———5 [L(1, x)|
2 _ 2 2 _ 1 2
w2 (p—1) ¢ (ood 2) m(p—1)
P(—1)=—1
2 2
P ™~p—-1p—-2)p—1 P
~ 2 2 ( )2( ) —O0x— — |L(1:X)’2
m2(p — 1) 6p 2 m2(p—1)
p—2 P 2
= L(1 . 3.5.6
12 aX,n_Q(p 1) | ( 7X)’ ( )



By (3.5.3)-(3.5.6), we have

p—2 p 2 p 5 1 2p 2

S AP —— 1§ AT S ta—t L0
M(X) 12 axﬂ_g(p_l)’ (7X)‘ +aX7T2| <7X)| +4+ax7l'2(p—1)| <>X>’

S N (. L(1

12 aXﬂ.Q (p_]. +p)| ( ’X)|

p+1 P 2
S N ——} 01

12 +aX7T2(p—1)| (7X)|

which finishes the proof of (3.5.1).

Now, we deduce Theorem 1.2.1. Let k£ > 2 be the order of the Dirichlet character x
modulo p. For any integer a with p{ a, we have

ko if x(a) =1,

1+ x(a) + x*(a) + ... + X" '(a) = .
0 otherwise

since (1 — x(a))(1+ x(a) +x*(a) +...+x*(a)) =0 as pfa. Let pfniny and n,* denote
the multiplicative inverse of ny modulo p. Then we have

k—1
1+ ij(nl)xj(ng) =1+ x(mny") + x*(nany ) + . + X (nany )

j=1

Eoif SH=1

_ JF ifx(mng ) =1, (3.5.7)
0 otherwise.

Let &,(x) denote the expected behaviour of A,(x), that is,
1 Cop2p—1)
plap —
gy = (5 e
k(p—1) 1<N<p—1 \1<n<N 6k

Since the condition x(niny ') = 1 in (3.5.7) is equivalent to x(n1) = x(n2) for p { niny, we
have

kEy(x) + iM(Xj) = I% Z Z (1 + iX“”l)?(%))

7=1 ISN<p—11<ni,na<N 7=1

= kA (x)-
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Thus,

By the identity above and (3.5.1) applied to the the nonprincipal Dirichlet characters x?
for j=1,2,..,k — 1, we have

A0 =00 + 1 3 (B + ozt 100 )

) p2 k—1 o
= § i | L 17 !

) k/2
p 2j—1y |2
SO0+ Tk R 2 )

which finishes the proof of Theorem 1.2.1.
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Chapter 4

A Dirichlet Series Related to the
Error Term in the Prime Number
Theorem

4.1 Introduction

Let n > 2 be a natural number and recall that

lo if n =p™, pprime, m € N,
A(n):{ gp p,pp

0 otherwise

is the von Mangoldt function and

A
A(n) =Y A(k) — % —n
k<n
is the error term in the Prime Number Theorem.

Let p > 3 be a prime number and x be a nonprincipal Dirichlet character modulo p.
Let s = 0 + it with o,t € R as usual. In this chapter, we investigate the meromorphic
behaviour of the function

A(s,x) =Y M, (o > 2).

n
n=2
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On the Riemann Hypothesis and its equivalent form that A(n) < n2te for any € > 0, we
see that the series A(s, x) is absolutely convergent in ¢ > 3/2. In our main result of this
chapter, Theorem 1.3.1 below, we obtain the meromorphic continuation of the function
A(s, x) to the region o > 1/2 which in particular shows that A(s, x) is analytic in o > 1.

Theorem (Theorem 1.3.1). Let x be a nonprincipal Dirichlet character modulo a prime
number p > 3. For o > 1/2 we have

A(s,x) = Z L(1 X¢) (5 x¥) + G(s, x) (4.1.1)
¥ (mod p)
P(-1)=-1
where
L L(s—1,x) L(s = p.x)
G = L0, x)— — s — "
(5.0 = L0000 3 (5,0) + 222 Z Z 20 )
1T /s 1 <= x(n) 1
_ IOg(QTF)L(S,X) —I— 5? <§ —I— 1) — 5 2 e 10g (1 — ﬁ)
> L2k+s,x)—1 v
_ —+1
Z 2k + s 2 *

and G(s,x) is analytic in o > 1/2. Here the sums over p run over the nontrivial zeros
of the Riemann zeta function counted with multiplicity and o is the Fuler-Mascheroni
constant.

The classical zero-free region for Dirichlet L-functions is given by the following result, [3,
p. 93]. There exists a constant ¢ > 0 with the following property. If y is a complex Dirichlet
character modulo ¢, then L(s, x) has no zeros in the region defined by

1—

1——5— if |t 1,
o> { log(qltl) | > (4.1.2)
logq

If x is a real nonprincipal Dirichlet character modulo ¢, then the only possible zero of
L(s,x) in this region is a single (simple) real zero. Such a zero, if exists, is called an
exceptional zero.

Theorem 1.3.1 gives the following corollary about exceptional zeros.

Corollary (Corollary 1.3.2). Let p > 3 be a prime number and R be the real line segment

(1 logp’ 1) where ¢ is as in (4.1.2) and let ( ) denote the Legendre symbol modulo p.
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1. If p=1 (mod 4) and A(s, x) is analytic in R for at least one nonprincipal Dirichlet
character x modulo p with x(—1) = —1, then L <s, (5)) has no exceptional zeros.

2. If p=3 (mod 4) and A(s,x) is analytic in R for at least one nonprincipal Dirichlet
character x modulo p with x(—1) =1, then L (s, (5)) has no exceptional zeros.

Remark 4.1.1. An interesting feature of Corollary 1.3.2 is that the assumption is related
to the zeros of the Riemann zeta function via the error term A(.) and to the existence of a

Dirichlet character x # < ) for which A(s, x) is analytic in R, but the conclusion is about

a zero of L (s, (;)) ’

Here again, we would like to note that it is possible to generalize Theorem 1.3.1 and
Corollary 1.3.2 for primitive Dirichlet characters to any moduli not necessarily prime. Let
X be a primitive Dirichlet character modulo ¢ > 3 and let y, be the principal Dirichlet
character modulo ¢q. By using a generalization of Lemma 3.2.9 concerning the partial sums
Sy (N) where (N, q) = 1, one can consider the expression

S (Z X(mAm) _ Xo(n)/\(n)>, (keN)

2ns
2<n<qk

m<n

in view of Propositions 4.3.1 and 4.3.2 below. Then by following the proofs of these
propositions, one can obtain such a generalization of Theorem 1.3.1 and Corollary 1.3.2.

4.2 Lemmata

Lemma 4.2.1. [2], Lemma 12.4] Let A denote the set of those points s € C such that
o< —1 and |s + 2k| > 1/4 for every positive integer k. Then

Z(S) < log(|s| + 1)
uniformly for s € A.

The following lemma is a modified version of Lemma 12.2 in [21].
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Lemma 4.2.2. [2], Lemma 12.2] Let A > 2 be fized and 2 < 0 < A and t € R be fized.
Let T > 4(1 + |t|]). Then there are real numbers Ty and Ty with =T — 1 <t —-T, < =T
and T <t+Ty < T +1 such that

!/

%(a—i—it—i—u—z’Tl) < log*T

and

!

Z(0+it—l—u+iT2) < log?T

uniformly in u with —1 —oc <u<A+1—o0.

Lemma 4.2.3. [15] Let € > 0 and let x be a nonprincipal Dirichlet character modulo a
prime number p > 3. Then,

1

(p(t] +2))277" if o <
L(s,x) < % (p(Jt] +2)) 2" if0< o <1,
(p(ft] +2))° ifo>1

Lemma 4.2.4. [21, Corollary 10.14] We have

where

B::—Z%E:—@—H— (4.2.1)

and 7o 18 the Euler-Mascheroni constant.

Lemma 4.2.5. [2], Theorem 12.5] Let n > 2 be a natural number and T > 2 be a real
number. For a nontrivial zero p of ((s), let v = (p). Then

Z A(k)+¥:n— Z n?;—log(%r)—%log(l—%)+R(n,T)

k<n—1 P
[vI<T
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where

(4.2.2)

2
R(n,T) < (logn) min {1, " } + nlog”(nT)

T(n) T
and (n) denotes the distance from n to the nearest prime power, other than n itself.

Lemma 4.2.6. [, Chapter 15] For u > 2, we have

N(u) = %log (2: ) + O(logu)

where N(u) is the number of zeros p of the Riemann zeta function with 0 < I(p) < u
counted with multiplicity.

4.3 Two Key Propositions
In this section, we prove two propositions that are used in the proof of the main result,
Theorem 1.3.1, of this chapter.

Proposition 4.3.1. Let x be a nonprincipal Dirichlet character modulo a prime number
p =3 and o > 1. Define

A(m)  A(n)
— _ > 2). 3.
N o (431)
Then we have
lim > x(n)E(n,s) = —7——= Y L(l w) (8 X))
kel%o 2<n<pk (mod p
w( 1)=
+ L(O,X)f(s,xo), (0 >1).

Proof. By Lemma 3.2.9 and the functional equation (1.2.6), we have

TOO)Xx(=1)x(N)
mi(p — 1)

Sy(N) = > LY (x®) $(N)

¥ (mod p)
P(—1)=-1

L0, (V) + X

=, (NeN) (4.3.2)
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On multiplying both sides of (4.3.2) by A(N)/N*® and summing over N € N for ¢ > 1, we
have

/

S(s.) = Z SX(N]\):(N) _ T(X)X(—l) Z L(1, )7 (xX¥) <_£(S’X¢))

N=1 m(p N 1) ¥ (mod p) L
P(=1)=-1
L 1L
L — —_ - . 4.3.
+ (0,x)< L(s,xo)) 2L(s,><) (4.3.3)

Let k > 1 be a natural number. Then

Sis. 0= Y, 2O 52 A S )

Ns
N<pk N<pk n<N
A(N)
=2 xm) ),
n<pk n<N<pk

Since

AN Aln Alm Alm
> A A, e A s A

n<N<pk m<pk m<n

and k € N, we have

e = Y atn (2l 37 A 57 20)

n<pk m<pk msn
x(n)A(n) A(m)
— AT S (n) )
Thus,
Si(s, ) = 30 MRy 3 A
S e ()

Recall that
E(n,s):ZM—M, (n>20>1).

ms 2ns
m<n
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Note that the series ) x(n)E(n,s) is not necessarily convergent since we can find some
complex number s with o > 1 such that E(n, s) does not tend to zero as n — co. However,
for 0 > 1, Si(s, x) and the first term on the right-hand side of (4.3.4) converge as k — co.
Thus, the subsequence

S x(m)E(n,s)

2<n<pk

of partial sums of ) x(n)E(n,s) is convergent for o > 1 as kK — oo on natural numbers.
Hence, we have

S(s,x) = =5 (s:x) = lim > x(n)E(n,s),  (o>1). (4.3.5)

keN 2<n<pk

By (4.3.3) and (4.3.5), we have

klggo xX(n)E(n,s) = Z L(1 X1/1) (5 Xv)
kEN 2<n<pk ¥ (mod p)
Y(=1)=
/
-+ L(O,X)Z(S,X()), (U > 1)

which finishes the proof of Proposition 4.3.1. O]

Proposition 4.3.2. Let x be a nonprincipal Dirichlet character modulo a prime number
p =3 and E(n,s) be defined by (4.3.1). For o > 2, we have

lim Z x(n)E(n,s) = A(s, x) + log(2m) L X (1 — i)

k—o0 7’L2
keEN 2<n<pk
Yo 1F/( ) 1
02 )+ —IL(s—1
2 2T 27L +1— (S )
Say M) z
o
iLQk—l—sX—l
pt 2k + s

where the sums over p run over the nontrivial zeros of the Riemann zeta function counted
with multiplicity and ~y is the Euler-Mascheroni constant.
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Proof. Let n > 2 be a natural number and ¢ := 1/log(2n). Let s = o + it be fixed
with 0 > 2, ¢t € R. Let T" > 4(1 + |t|) and 7} and 75 be as in Lemma 4.2.2. Note that
T1,T, € (T/2,2T). Then, by Lemma 2.2.1, we have

E(n,s) = Z Alm) _ Aln) _ L/:HT2 —C—/(s+w)ﬁdw+0 (l) .

S S o y
om 2n 270 Jooir, G w T

Let K > 5 and assume that 0 — K is a negative odd integer. Define

1 c+iTo CI w

n
I = — —= —d
L on i Q(S +w) w
1 —K+iT> / w
I = — —C—(s + w)n—dw,
210 Jorim, ¢ w
1 —K—iTy / w
I3 .= — —£(3+w)n—dw,
2mi ) gy, G w
1 c—iTy C/ nw
Iy = — —= —dw.
1= o e € (s +w) dw
Then,
C/ nl—s nP—s n—2k—s
I, =—=> — — — (I3 + I3+ 1
! C(S)+1—s Z p—S Z —2k —s (B + Iy + 1)

K—o
=T <vy—t<T> I<k< 2

where the sum over p ranges over the nontrivial zeros of {(s) with imaginary part - such
that =77 < v —t <15 and such zeros are counted with multiplicity.

Now, we find upper bounds for the size of I, I3 and I;. We have

1 —1—o+iT>s ! w 1 —K+iTs CI w

n n
I, = — > D dw 4 — > =~ d
i O ) T G
log? T 1o it Tl + 1
< og nc(a—l—l)—i—/ og(|0+@. +u+1.2|+ )n“du
K o+ it +u + T3]
log?T  logT [~'° log? T
< OgT + 0? / ntdu < 28 (4.3.6)

by Lemmata 4.2.1 and 4.2.2. The bound in (4.3.6) holds also for I, by symmetry. By
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Lemma 4.2.1, we have

T2 1 o . 1
Ig<<n_K/ og(|a+z-t K+z.1)|—|— )dv
7 lo + it — K + iv|
_i log(KT)

— T,
<«<n I%

Letting K — oo with the assumption that 0 — K is an odd integer, we obtain

C/ nl—s nP=s .~ n—2k—s 10g2T
E(n,s) = —= _
(n,s) C(S)+1—5 ; +Z%+S+O T

— S
P k=1

T <y—t<T>

for o > 2 and n > 2 where the implied constant depends on s but not on n. Let x > 3 be
a multiple of p. Then,

> B = Y A |-ty My
x(n)E(n,s) = x(n) |—=(s) + — +
2<n<z 2<n<z C 1= § p—>= k=1 2k +s
S = =T <v—t<Tn B
zlog® T
O 4.3.7
ro(TET) (13.7)
Since p | x, we have
CI nl—s nP—s 0 n—Qk—s
D x) | =%+ - +
o, ¢ 1—s5 Z p—Ss ;2/{—1—3
—T1<y—t<T>
B ¢’ 1 1
= (s) - + ; s
T <y—t<T>
1 1—s —s np
e Y e Y e Y
5 1<n<z 1<n<z P S—P
=T <y—t<T3
o n—2k—s
. 4.3.8
D) pp (433
2<n<x k=1
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Define

1 1—s
Sl = : Z X(n)n y

1<n<z
s n’
Sy = Z x(n)n Z )
1<n<z p S
T <y—t<T>
o0 n—Qk—s
Sz = )
SR o
2<n<x k=1
Then by (4.3.7) and (4.3.8), we have
¢ 1 1
S W) B, 5) = S(s) - —— +
2<n<z C l—s zﬁ: p—s
T <y—t<Tr
+ 51+ 5+ 53
log® T
+0 (m ng ) . (4.3.9)

For Sy, we have

S = %_SL(S —1,x)+ O </:O (Z X(n)) (T du>

n<u

- iL(s —1,x) + Oy (2'77) (4.3.10)

by partial summation and the Pélya-Vinogradov Inequality, Lemma 3.2.2.

For S3, we have

_ . 1 —2k—s
Sy = ; T > x(n)n (4.3.11)

2<n<z
and

S e = 3 e -1

2<n<z 1<n<x

=L(2k+s,x)—1— Z x(n)n=275, (4.3.12)

n>x+1
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By the integral test, we have

> xmn T < (@ 1)+ / w2k dy
n>x+1 z+1
o + 1)—2k—a+1
1)ty & 431
(x+1) + Sy — (4.3.13)
for k > 1 and ¢ > 2. Thus, by (4.3.11)-(4.3.13), we have
T 2k—o+1
o L(2k+5,x) = 1+ 0 (@ +1)7 % 4 o)
Sy=>_ ST . (4.3.14)
k=1
Note that the series
i L(2k+s,x)—1
—~ 2k + s

is absolutely convergent for o > —1 since L(2k+s, x) — 1 < 272*79 by (4.3.13) where 2+ 1
is replaced by 2. The contribution of the error term in (4.3.14) is

—2k o —2k—0o+1

X
<<Z|2k+s| Z]2k+s|(2k+a—1)

o0 —1-0

xr
<Y gy
\; ;\2k+sy(2k+a—1)
B T e (4.3.15)

where the implied constant is absolute. Thus,

o - L(2k+87X) -1 o
Ss = ]; s o). (4.3.16)

Now we consider S;. By the identity,

11 s 52
s=p p P pPs—p)

7



we have

DRIOIRID SR D

1<n<x P 1<n<x

3 np<_1_i+3_2>

p P p(s—p)

=T <y—t<T> —T1<’y t<To
-y oy () Y Z
ns P ns P
1<n<x P 1<n<m
=T <vy—t<T> —T1<’y—t<T2

+ g2 Z . 1 X(il)

pP(s —p) G2, 0"

p
T <y—t<T>
Define
o x(n) n’
21 = s - >
1<n<x P p
—T1<’Y t<T>
x(
Smi==s ), = Z =
P 1<n<:p
—T1<"/—t<T2

3 1 3 x(n)

2

523 =S ns_p.
—T1<7pft<T2 =

Then SQ = Sgl + 522 + 523. For 522, we have

1 1 > du
522:—8 Z ;(L<S_p’X)+O<xa—,B / UU—B>>'

)
=T <y—t<Tn

The contribution of the error term above is

pB—o+1

< S and
Z o[ ( —1)

since s is fixed with ¢ > 2, R(p) < 1 for all zeros p and p piz is absolutely convergent.
Moreover,

L(s = p,x) L(s = p, x) |L(s = p, X))
I S N _— O N AU

Zp: P2 Zp: P2 Z,; I
—Ty <y—t<Th Y (=T1+t,T2+t)
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The error term above is

Z |L(s |;|2p, X)| < ((o—1) Z %

P )
Y (=T1+t,Ta+t) ¥ (=T1+t,To+t)

1
< D>y = (4.3.17)
; p|

yE(—Ti+t,To+t)

for 0 > 2. Since t is fixed and 11,75 € (1/2,2T), we have
1 <1
Yo < / —d(N(u)) (4.3.18)
P o] T U
vE(=T1+t,To+t)

where N (u) is the number of zeros p with 0 < v = J(p) < u counted with multiplicity.
Let R(u) be defined by

u
N(u) = —log— + R
(1) = o log 5+ Riu)
Then
<1 <1 1 2 1
/ —QdN(u)—/ — (=1 g<i) LI _Z ) du
T U r ut \2m 2me 2 u 2me
<1
*logu R(T) * R(u)
<</T 2 du—i—'— T2 +/T 5 du
1+logT logT  logT
4.3.1
< T + T < T (4.3.19)
on integration by parts and Lemma 4.2.6. By (4.3.17)-(4.3.19), we have
L(s — log T’
Z |L(s 2P>X)| < 0g (4.3.20)
; o] r
YE(=T1+t,To+t)
for o > 2. Thus,
L(S_:O7X> IOgT —c
Saz = —s;TJrO —— ) +0 (") (4.3.21)
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Similarly, we have

2 ; g — :L,Q—U
Sas =3 Ep ) (L(s = p,x) +O(a*7))
_ 2N L) log T 20
— § ) +0< 7 )+0( ) (4.3.22)

p

by using the same bounds above since |s —p| >0 —1 > 1.

By considering the terms with n =1 and n > 2 in Sy, we have

Su= > XSZ) 3 (—%)Jr Zp: (—1> (4.3.23)

2<n<z P

=T <vy—t<T> =T <vy—t<T>

Now, we want to replace the condition -7} < v —1t < Ty by =T < v < T in the sums
above and in the third term on the right-hand side of (4.3.9). Since T} and T, satisfy
—T—-1<t-TT <-Tand T <t+7T5, <T+1, the number of zeros we include or discard
by the replacement of the condition —7} < v —t < Ty by =T < v < T is <; logT by
Lemma 4.2.6. Also, for such zeros p, we have % < % and ;ﬁ < % since t is fixed and
T > 4(1 + |t|). Thus, for the third term on the right-hand side of (4.3.9), we have

1 1 log T’
) = +0 (2 (4.3.24)
> p— 35 —~ p—s T

—T1<y—t<T> [v|<T

By (4.3.23) and the argument above, we have

x(n) ( np) <n10g T)
So1 = . -——+0
2;71;1 n Z p T

lv|<T

The contributions of the error terms above are

log T 1 log T
< T Z ne—1 < T

n<x

30



since o > 2. Thus,

Su= Y

2<n<z

Z ( ) D %Jro (biT) . (4.3.25)

|v|<T ly[<T
By Lemma 4.2.5, we have, for n > 2,

1
ZA — ——Z——10g27r ——log(l n2>+R(n,T)

k<n—1
|’Y|<T

where

R(n,T) < (logn) min {1, T?”) } + nlog;(nT) (4.3.26)

and (n) denotes the distance from n to the nearest prime power, other than n itself. Thus,

> Z ( ) o {Am) +log(2m) +  log (1 - %) - R(n,T)] .

2<n<z 2<n<z
|7|<T
(4.3.27)
Since A(n) < n, we have
x(MA(n) _ = x(m)A(n) ( ! )
— = ——=+0 —
= A(s,x) + O (*7) (4.3.28)
and similarly
> M =L(s,x)—1+0 (2'77). (4.3.29)
2<n<z
Since log (1 — 1/n?) < 1/n?, we have
x(n) — X() 1 1
> 1 (1 —2)22 g (1-—)+0 an
2<n<x n=2 n>x
S 1
— Z x(n) log (1 - —2> +0 (z777). (4.3.30)
p— n? n



By (4.3.26), we have

> o X y< Y % ((log n) min {1, T?Zn) } + nlog;(nT>)

2<n<e 2<n<x

log? T log?n
< BT 5 o

o—1

2<n<z
log®> T
T

since o > 2. By (4.3.27) and (4.3.28)-(4.3.31), we have

Z Z ( > (s, x) + log(2) (L(s, X)_1>+%ix7(£) log (1_%>

2<n<z n=2
|7\<T
log® T
+0 (2*7) o(ogT ) (4.3.32)
By (4.3.25) and (4.3.32), we have
B 1 <= x(n) 1 1
21 = 805, ) +log07) (15,0 =) + 5 32 X Pl (1) -
- i<t
log? T

+0 () +0 ( = ) . (4.3.33)

By (4.3.21), (4.3.22) and (4.3.33), we have

S = Als, ) + log(2m) (L(s, ) — 1) + % > M (1-5) -2

Sy B

+0 (@) +0 (108} T) . (4.3.34)
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By (4.3.9), (4.3.16), (4.3.10), (4.3.24) and (4.3.34), , we have

3 x(m)E(n,s) = A(s, x) +log(2m) (L(s, x) — 1) + % X000 (1

nS
2<n<z n=2
¢ 1 1
+5 () - ;
¢ L—s zp:p
|’Y|<T |7|<T
'L S _>p7
ey - e ey By

p

. L(2k -1
+Z (2k + s, %)

2k + s

log® T
+0 (x = ) +0 (227).
T
By letting T — oo and using Lemma 4.2.4 in the form
C’ (

C
where 7q is the Euler-Mascheroni constant, we have

Z x(n)E(n,s) = A(s, x) + log(2m)L )+ ; Z ng (1 _

2<n<x

Yo 1F’< > 1
SO R T 1)+ —L(s -1
2 2T 2+ +1 (s ’X)

gt en ey

2k'+—8 Xf 2—0
kz: 2k + s +0(277).
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By taking x = pk and letting & — oo among natural numbers, we have

lim Z x(n)E(n,s) = A(s, x) +log(2m)L Z X ( - %)

k—o00
keN 2<n<pk

117 1
—E—l———<2+1)+1—L(s—1,X)

2 2T
—sz“ )y s z

2k+3

p?

k=1
for o > 2 which finishes the proof of Proposition 4.3.2. O

4.4 Proof of Theorem 1.3.1

By Propositions 4.3.1 and 4.3.2, we have

n=2 n’ TLQ
Y0 117
2 2F(2+1)+1— L(s = 1,x)
L(s — p,x) 2 L(s—p,X) ~=L(2k+s,x) -1

—s)y P g kA R A

; p? ~ (s —p) ; 2k + s
T(x)x(—1) — )%

i e L(1, )7 (x¢) —(s,x¥) + L(0, x)—(s, x,) (4.4.1)
m(p—l)w(;ip) ( )L L
Y(—1)=—1

s—1
Iz p

1TV /s
— log(2m) L(s, ——<— 1)
og(2) (SX)+2F 5t
1 OOX(n) 1 OOL(Zk:—i—s,x) 1
_ = log(1— =) — LN
52 oy (1- ) - S EEEEAUZL



for 0 > 2. Then by (4.4.1), we have

Asx) = TXED S 11y (1) 2 sx0) + G0 (14.2)
milp—1) |, o)
b(-1)=—1

for o > 2. Now, we observe that the function G(s, x) is analytic in ¢ > 1/2 unconditionally.
The term

1T 1=y 1 L2k +s,x) — 1
_1og(27T)L(s,x)+§F( +1>—§Z log(l—ﬁ>—z s

k=1

is clearly analytic in o > 1/2 since L(s, x) is analytic therein and

ixéz) log (1——) <<Z M,

n=2
and
iLQk}—I—SX—l Z22’”
— 2k + s |2k + s|
and I'(z) is never zero and the poles of I'(z) are at z = 0,—1,—2,.... For the term
L L(S—lx s—p, s—p,
L(OaX)f(SaXo)+ +s Z 22

let sp = o9 + ity be a complex number with oy := $(s¢) > 1/2 such that sy # 1 and
((s9) # 0. Then the term

L L(s—1,x)

TR — (4.4.3)

L(0, x)

is clearly analytic at s = sg. By Lemma 4.2.3 and the fact that R(p) < 1 for all zeros p of
((s), we have the bounds

1
to — 2)27° if og > 1
2

L(sog—p,x) <
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for any € > 0. Note that for such a complex number sy, we have |so — p| > 1 for all zeros
p and thus convergence of the sums

L(s—p,x) . L(s — p,x)
Xp: e d Ep: G (4.4.5)

when s — s is determined by the contributions of the zeros p with || > 2|t|. By (4.4.4),
we have

L(s — p, L(s — p,
3 ( px)+z (s —p,X)

> p? —~ p(s—p)
REST RESIT
< 3 o
ECH
1ie 1 _(og—1)+e¢
max { (|to — ] +2)2, (Jto — | +2)2~ 1
< Y 2
- ol
=2l
1 3
max +2)27C, 4 2)z7 70t
< ¥ { (] +2) 2(Ivl ) }_ (4.4.6)
- ol
|v|=>2]¢|

Since the sum 71% is convergent for any € > 0, we have

Z (|7”+2 <<Z 7_6<<1

p V7

P
[vI=2[t|

and

3
+2 5—0oo+te
Z (’ﬁy’ )2 <<Z 7—‘,—0 €
7 7l PR AN
Iv1=2[¢]

since o9 > 1/2 is fixed and € > 0 is arbitrary. Thus, the sums in (4.4.5) are absolutely
convergent in this case.

If s = 1, the the sums in (4.4.5) are absolutely convergent at s = sg as in the previous
case since |1 — p| > 1 for all zeros p. Now, we consider the behaviour of the terms in
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(4.4.3) as s — so = 1. Since

-2

o (447)
1
T s—1 + hils)

where fi(s) is analytic at s = 1 by Lemma 4.2.4, it is enough to consider

Lirg (L(Uax) (—Sil) G 1’X)> _ g 28 =120 = £(0,x)

s—1 s—1 s—1
= L'(0,x)
and the existence of the limit above gives the analyticity of G(s,x) at s = 1.

Now assume that there exists a zero py of ((s) with £y := R(pg) > 1/2. Let m,, be
the multiplicity of pg. By the argument in (4.4.6), the sums over zeros in the definition of
G (s, x) are absolutely convergent if s is not close to a zero p. Thus, for the analyticity of
G(s,x) at s = pyg it is enough to consider the behaviour of

’ L(s — po, X)
L0, x)— -t 4.4.8
( aX)L(S’XO) S P2(S—,00) mPO ( )
when s — pp as the other terms in the definition of G(s, x) are analytic at s = py. Since
L 1
f<5’ Xo) = Moo T + fa(s) (4.4.9)

where f5(s) is analytic at s = pg by (4.4.7) and Lemma 4.2.4, it is enough to consider

1 L(s —
lim (L(O7X)mpo— - 52%”@0)

577P0 5= Po p*(s = po)
 L(0,X) = 5 L(s = po, X)
= m,, lim .
S§—pP0 S — pPo
2 2
O L(0.x) = AL (R, )
= Mo i h

= m,, (%L(O,x} - L’(O,x)>
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and the existence of the limit above gives the analyticity of G(s, x) at s = pp.

Hence, G(s,x) is analytic in ¢ > 1/2 unconditionally and this finishes the proof of
Theorem 1.3.1 by analytic continuation and (4.4.2).

4.5 Proof of Corollary 1.3.2

By Euler’s criterion, [23, Corollary 2.38|, we have

()

Thus, if p = 1 (mod 4), then the Legendre symbol (5) is an even Dirichlet character,

ie. (%) = 1. If x is an odd Dirichlet character, i.e. x(—1) = —1, then the Dirichlet

characters x1 in the first term on the right-hand side of (4.1.1) range over all even Dirichlet
characters and thus one of the terms in this sum is

()7 (G) 2 (6))

If p € R is a zero of L (s, (5)>, then the pole of the above function at s = p can not

be canceled by another term in the sum on the right-hand side of (4.1.1). This gives the
desired contradiction with the assumption that A(s,x) is analytic in R. By a similar
argument, the second assertion of Corollary 1.3.2 follows and this finishes the proof.
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