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Abstract

In this thesis, we obtain several results in number theory.

Let k > 1 be a natural number and ωk(n) denote the number of distinct prime factors
of a natural number n with multiplicity k. We estimate the first and the second moments
of the functions ωk, k > 1. Moreover, we prove that the function ω1(n) has normal order
log log n and the functions ωk(n) with k > 2 do not have normal order F (n) for any
nondecreasing nonnegative function F .

Let χ be a nonprincipal Dirichlet character modulo a prime number p > 3. Define

Mp(−s, χ) :=
2

p− 1

∑
ψ (mod p)
ψ(−1)=−1

L(1, ψ)L(−s, χψ),

Ap(χ) :=
1

p− 1

∑
16N6p−1

∑
16n1,n26N
χ(n1)=χ(n2)

1,

∆(s, χ) :=
∞∑
n=2

χ(n)∆(n)

ns
, (<(s) > 2)

where ∆(n) is the error term in the Prime Number Theorem. We investigate the mean
value Mp(−s, χ) for <(s) > −1, give an exact formula for the average Ap(χ) and obtain
the meromorphic continuation of the function ∆(s, χ) to the region <(s) > 1/2.
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Chapter 1

Introduction and Statements of
Results

In this chapter, we introduce the topics studied in Chapters 2-4 and state the main results
obtained in this thesis.

1.1 Number of Distinct Prime Factors

Let ω(n) be the number of distinct prime factors of a natural number n. The behaviour
of the function ω(n) on average is understood by the estimate, [21, p. 58],∑

n6x

ω(n) = x log log x+ bx+O

(
x

log x

)
(1.1.1)

where b is a constant. Thus, the behaviour of ω(n) on average is similar to log log n and a
natural question to ask is how large the deviation |ω(n)− log log n| on average can be. For
this purpose, the concept of normal order is defined as follows, [10]. Let f, F : N → R>0

be functions such that F is nondecreasing. Then f(n) is said to have normal order F (n)
if for any ε > 0, the number of n 6 x that do not satisfy the inequality

(1− ε)F (n) < f(n) < (1 + ε)F (n)

is o(x) as x→∞. The original definition in [10] is given for increasing F , here we extend
this definition in order to include constant functions. Note that, [11, Section 22.11], the
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function defined by

f(n) :=

{
n if n = 2m for some m ∈ N,
1 otherwise

has normal order 1 since the number of n 6 x which are of the form 2m for some m ∈ N
is o(x).

In [10] (see also [11, Section 22.11]), Hardy and Ramanujan proved that ω(n) has normal
order log log n. In [27], Turán showed that∑

n6x

(ω(n)− log log x)2 � x log log x (1.1.2)

from which it follows that the number of n 6 x satisfying the inequality

|ω(n)− log log n|√
log log n

> h(x) (1.1.3)

is o(x) as x→∞ for any increasing function h(x)→∞ as x→∞. Thus, the next question
one may ask is whether the function on the left-hand side of (1.1.3) has a distribution.
In [8], Erdös and Kac proved the remarkable result that the function on the left-hand side
of (1.1.3) has normal distribution in the sense that

lim
x→∞

∣∣∣{n 6 x : α 6 ω(n)−log logn√
log logn

6 β
}∣∣∣

x
=

1√
2π

∫ β

α

e−t
2//2 dt

for any α 6 β.

In Chapter 2 of the present thesis, we consider a refined version of the function ω(n).
Let k > 1 be a natural number and ωk(n) denote the number of distinct prime factors of
n with multiplicity k. Note that

ω(n) =
∑
k>1

ωk(n)

for all n ∈ N. In Chapter 2, we first estimate the summatory functions of ωk(n), k > 1.

Theorem 1.1.1. Let k > 1 be a natural number. Define

ck :=
∑
p prime

1

pk(p+ 1)
, b := γ0 −

∑
p prime

∞∑
j=2

1

jpj
(1.1.4)
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where γ0 is the Euler-Mascheroni constant. We have∑
n6x

ω1(n) = x log log x+ (b− c1 − c2)x+O

(
x

log x

)
.

Moreover, for k > 2, we have∑
n6x

ωk(n) = (ck−1 − ck+1)x+O
(
x
k+1
3k−1 log2 x

)
.

Here, we would like to note that all the implied constants throughout the thesis are
absolute unless such dependency is indicated by a subscript in the big-oh notation and in
the notation �.

Moreover, we estimate the second moments, i.e. the summatory functions of the
squares, of ωk(n), k > 1.

Theorem 1.1.2. Let k > 1 be a natural number and ck be defined as in (1.1.4). Define

Ck := ck−1 − ck+1 + (ck−1 − ck+1)
2 −

∑
p prime

(
1

pk
− 1

pk+1

)2

, (k > 2).

We have ∑
n6x

ω2
1(n) = x (log log x)2 +O (x log log x) .

Moreover, for k > 2, we have∑
n6x

ω2
k(n) = Ckx+O

(
x
k+1
3k−1 log2 x

)
.

By Theorems 1.1.1 and 1.1.2, we deduce the following result analogous to (1.1.2).

Corollary 1.1.3. We have∑
26n6x

(ω1(n)− log log n)2 � x log log x.

Let h(x) be an increasing function such that h(x) → ∞ as x → ∞. Then the number of
natural numbers n 6 x such that

|ω1(n)− log log n|√
log log n

> h(x)

is o(x) and thus ω1(n) has normal order log log n.
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In contrast, we prove the following result.

Theorem 1.1.4. Let k > 2 be a fixed integer. Then the function ωk(n) does not have
normal order F (n) for any nondecreasing function F : N→ R>0.

For a natural number n, let Ω(n) be the number of prime factors of n counted with
multiplicity. It is known, [11, Section 22.10], that∑

n6x

Ω(n) = x log log x+

(
b+

∑
p

1

p(p− 1)

)
x+O

(
x

log x

)
where b is the constant in (1.1.4) and the sum over p runs over all prime numbers as above.
By using the estimate above and (1.1.1), we have∑

n6x

(Ω(n)− ω(n)) = x
∑
p

1

p(p− 1)
+O

(
x

log x

)
. (1.1.5)

Note that ∑
n6x

(Ω(n)− ω(n)) =
∑
n6x

∑
k>2

(k − 1)ωk(n). (1.1.6)

Since the error terms for the summatory functions of ωk(.) with k > 2 in our main result
Theorem 1.1.1 are better than x/ log x, one may expect to obtain a better error term in
(1.1.5) by using Theorem 1.1.1. The largest error term for the summatory functions of
ωk(.) with k > 2 comes from the case k = 2 and this error term is x3/5 log2 x. Thus, we
do not expect to have a better error term for (1.1.5) than x3/5 log2 x by using Theorem
1.1.1. However, a recent work of Hassani, [12], gives a surprisingly better error term which
is
√
x/ log x. Although the technique we use to prove Theorem 1.1.1 is different than the

ones in [12], we do not estimate the sum on the right-hand side of (1.1.6) in this thesis
since Hassani’s error term is much superior to the one we would have by using Theorem
1.1.1.

1.2 Discrete Mean Values of Dirichlet L-functions

Let s = σ + it with σ, t ∈ R. For σ > 1, the Riemann zeta function ζ(s) is defined by the
series

ζ(s) :=
∞∑
n=1

1

ns
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which can be written as the Euler product

ζ(s) =
∏
p

(
1− 1

ps

)−1
(1.2.1)

where the product runs over all prime numbers. In 1859, Riemann, [24], (see also [25, p.
135] or [4, p. 299]), proved that the function ζ(s) has meromorphic continuation throughout
the complex plane and the only pole of ζ(s) is a simple pole at s = 1 with residue 1. More
precisely, the Riemann zeta function satisfies, [3], the functional equation

ζ(s) = πs−
1
2

Γ
(
1−s
2

)
Γ
(
s
2

) ζ(1− s) (1.2.2)

where Γ(.) is the Gamma function.

Although the most basic link between prime numbers and the Riemann zeta function
is the Euler product in (1.2.1), the connection between these two objects of arithmetic and
analysis is more visible by taking the logarithmic derivatives of both sides of (1.2.1) to
obtain the identity

−ζ
′

ζ
(s) =

∞∑
n=1

Λ(n)

ns
, (σ > 1)

where the von Mangoldt function Λ(.) is defined by

Λ(n) :=

{
log p if n = pm, p prime, m ∈ N,

0 otherwise.

Let x > 2 be a real number and π(x) be the number of prime numbers less than or equal to
x. In 1790’s, [4, p. 2], [9], Gauss made extensive calculations to compute π(x) for several
large values of x and compared the values of π(x) with the values of the logarithmic integral∫ x
2

du
log u

by which he suggested, without giving theoretical evidence, that

π(x) ∼
∫ x

2

du

log u
∼ x

log x
.

The asymptotic above is now called the Prime Number Theorem proved independently by
Hadamard and de la Vallée Poussin in 1896, [21, p. 192]. By partial summation, the Prime
Number Theorem is equivalent to ∑

n6x

Λ(n) ∼ x.

5



A deeper connection between prime numbers and the Riemann zeta function is seen through
the fact that the error term ∑

n6x

Λ(n)− x (1.2.3)

in the Prime Number Theorem is � x
1
2
+ε for any ε > 0 is equivalent, [3], to the famous

Riemann Hypothesis that all the zeros of the Riemann zeta function in the critical strip
0 < σ < 1 have real part 1/2. The best known unconditional upper bound for the size of

the error term in (1.2.3) is� x exp
(
−C (log x)3/5 (log log x)−1/5

)
for some constant C > 0,

first due to Vinogradov and Korobov, independently, in 1958, [13, Section 12.3], [3, p. 113].

Let q > 2 be a natural number. A Dirichlet character χ modulo q is a function χ : Z→
C satisfying the properties

1. (Total multiplicativity) χ(nm) = χ(n)χ(m) for all n,m ∈ Z,

2. (Periodicity) χ(n+ q) = χ(n) for all n ∈ Z,

3. χ(n) = 0 if and only if (n, q) 6= 1.

Let ϕ(.) denote the Euler totient function. The set of Dirichlet characters modulo q forms
a multiplicative group of order ϕ(q) with the identity element χ0 , called the principal
character modulo q, defined by χ0(n) = 1 for all n ∈ Z with (n, q) = 1. For a Dirichlet
character χ modulo q, let χ be defined by χ(n) = χ(n) for all n ∈ Z. For a ∈ Z with
(a, q) = 1, the Dirichlet characters modulo q satisfy the orthogonality relation

1

ϕ(q)

∑
χ (mod q)

χ(a)χ(b) =

{
1 if a ≡ b (mod q),

0 otherwise
(1.2.4)

where the sum runs over all Dirichlet characters modulo q. Thus, the Dirichlet characters
modulo q provide a way of selecting a reduced residue class modulo q.

For a Dirichlet character χ modulo q and a complex number s = σ + it with σ, t ∈ R,
the Dirichlet L-function L(s, χ) is defined by

L(s, χ) :=
∞∑
n=1

χ(n)

ns
=
∏

p prime

(
1− χ(p)

ps

)−1
, (σ > 1). (1.2.5)

6



If χ is a primitive Dirichlet character modulo q, i.e. the least period of χ is q, then L(s, χ)
satisfies the functional equation, [3, Chapter 9],

L(s, χ) =
τ(χ)

iaχ
√
π

(
π

q

)s Γ
(

1−s+aχ
2

)
Γ
( s+aχ

2

) L(1− s, χ) (1.2.6)

where

aχ :=
1− χ(−1)

2
=

{
0 if χ(−1) = 1,

1 if χ(−1) = −1

and the Gauss sum τ(χ) associated with the character χ is defined by

τ(χ) :=
∑

16b6q−1

χ(b)e

(
b

q

)
, (e(x) := e2πix, x ∈ C).

By taking logarithmic derivatives in (1.2.5), we have

−L
′

L
(s, χ) =

∞∑
n=2

χ(n)Λ(n)

ns
, (σ > 1). (1.2.7)

The identities (1.2.4) and (1.2.7) give the link between Dirichlet L-functions and the prime
numbers in arithmetic progressions. Dirichlet used the functions L(s, χ) and the orthogo-
nality relation (1.2.4) to prove, [3, Chapters 1 and 4], that there are infinitely many prime
numbers of the form qn + a where (a, q) = 1. Due to Siegel and Walfisz, [3, Chapter 22],
the strongest known form of the Prime Number Theorem in Arithmetic Progressions states
that for any A > 0, there exists a constant C(A) > 0 such that if q 6 (log x)A, then∑

n6x
n≡a (mod q)

Λ(n) =
x

ϕ(q)
+O

(
x exp

(
−C(A) (log x)1/2

))
for any a ∈ Z with (a, q) = 1. The Generalized Riemann Hypothesis is the statement that
for any Dirichlet character χ modulo q, all the the zeros of L(s, χ) in the critical strip
0 < σ < 1 have real part 1/2. On the Generalized Riemann Hypothesis, the error term
the Prime Number Theorem in Arithmetic Progressions is � x1/2 log2 x, [3, p. 125].

In Chapter 3, we investigate two problems related to discrete mean values of Dirichlet
L-functions. Let p > 3 be a prime number and χ be a nonprincipal Dirichlet character
modulo p. In Chapter 3, we first consider the average

Ap(χ) :=
1

p− 1

∑
16N6p−1

∑
16n1,n26N
χ(n1)=χ(n2)

1.

7



Our main result on the average Ap(χ) is the identity given below.

Theorem 1.2.1. [5] Let χ be a nonprincipal Dirichlet character modulo a prime number
p > 3 of order k > 2. Then, we have

Ap(χ) =
p(2p− 1)

6k
+

(k − 1)(p+ 1)

12k
+ aχ

p2

π2k(p− 1)

k/2∑
j=1

|L(1, χ2j−1)|2.

Theorem 1.2.1 can be considered in the context of discrete mean values of Dirichlet
L-functions since Theorem 1.2.1 gives a link between the mean value

2

k

k/2∑
j=1

|L(1, χ2j−1)|2

and the average Ap(χ) when χ(−1) = −1. The proof of Theorem 1.2.1 relies on a key
lemma, Lemma 3.2.9, which gives a closed formula for partial sums of a nonprincipal
Dirichlet character modulo p.

In Chapter 3, we also investigate the mean value

Mp(−s, χ) :=
2

p− 1

∑
ψ (mod p)
ψ(−1)=−1

L(1, ψ)L(−s, χψ)

where χ is a nonprincipal Dirichlet character modulo a prime number p > 3 and we ask
whether the mean valueMp(−s, χ) is related to L(1−s, χ) in some region for s. Our main
result on the mean value Mp(−s, χ) is the following theorem.

Theorem 1.2.2. [6] Let χ be a nonprincipal Dirichlet character modulo a prime number
p > 3. Then, for s = σ + it with σ > −1 , t ∈ R, we have

Mp(−s, χ) = L(1− s, χ) + aχ2psL(1, χ)ζ(−s) + Ep(s, χ) (1.2.8)

where

Ep(s, χ) : =
iaχ
√
π

τ(χ)

( p
π

)s sΓ
( s+aχ

2

)
Γ
(

1−s+aχ
2

)(s+ 1)

∫ ∞
1

(bxc − x+ 1
2
)Sχ(x)

xs+2
dx

and

Sχ(x) :=
∑

16n6x

χ(n).

8



For −1 < σ 6 1, we have

Ep(s, χ)� pσ−
1
2

(
|t|σ+

3
2 +

∣∣1− (σ − aχ)2
∣∣)(1− (p1/2 log p)−σ

σ(σ + 1)

)
.

In particular, if 0 < σ < 1/2 is fixed and |t| = o
(
p

1−2σ
3+2σ

)
, then (1.2.8) holds with Ep(s, χ) =

o(1) as p→∞.

The proof of Theorem 1.2.2 relies on the functional equations of Dirichlet L-functions
and the Gamma function, an auxiliary result (Theorem 3.1.2) and Lemma 3.2.9.

Here we would like to note that there are some difficulties in extending the proof of
Theorem 1.2.2 to primitive Dirichlet characters modulo composite numbers due to the use
of the functional equations of Dirichlet L-functions associated with a product of Dirichlet
characters. However, generalizing Theorem 1.2.1 is possible if one wishes to obtain an
asymptotic for Aq(χ) but obtaining an exact formula requires some other ideas than the
ones used in the proof of Theorem 1.2.1. Further discussion in this direction is given at
the end of Section 3.1.

1.3 A Dirichlet Series Related to the Error Term in

the Prime Number Theorem

In this section, we state our main results given in Chapter 4. For a natural number n, let

∆(n) :=
∑
k6n

Λ(k)− Λ(n)

2
− n

be the error term in the Prime Number Theorem. Here we have a modification on the nth

term above and the reason for such a modification is hinted by a technique of multiplicative
number theory called Perron’s formula (Lemma 2.2.1 below). For a prime number p > 3
and a nonprincipal Dirichlet character χ modulo p, define

∆(s, χ) :=
∞∑
n=2

χ(n)∆(n)

ns
, (σ > 2)

where s = σ+it, σ, t ∈ R as usual. In Chapter 4, we investigate the meromorphic behaviour
of the function ∆(s, χ). Since ∆(n) = o(n) by the Prime Number Theorem, the series

9



∆(s, χ) is absolutely convergent for σ > 2. On the Riemann Hypothesis, ∆(n) � n
1
2
+ε

for any ε > 0 and thus the series defining ∆(s, χ) is absolutely convergent for σ > 3/2
assuming the Riemann Hypothesis. Our main result in Chapter 4, Theorem 1.3.1 below,
gives the meromorphic continuation of ∆(s, χ) in σ > 1/2 and in particular, it shows that
∆(s, χ) is analytic in the region σ > 1 unconditionally.

Theorem 1.3.1. Let χ be a nonprincipal Dirichlet character modulo a prime number
p > 3. For σ > 1/2, we have

∆(s, χ) =
τ(χ)χ(−1)

πi(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

L(1, ψ)τ
(
χψ
) L′
L

(s, χψ) +G(s, χ) (1.3.1)

where

G(s, χ) := L(0, χ)
L′

L
(s, χ0) +

L(s− 1, χ)

s− 1
+ s

∑
ρ

L(s− ρ, χ)

ρ2
− s2

∑
ρ

L(s− ρ, χ)

ρ2(s− ρ)

− log(2π)L(s, χ) +
1

2

Γ′

Γ

(s
2

+ 1
)
− 1

2

∞∑
n=2

χ(n)

ns
log

(
1− 1

n2

)
−
∞∑
k=1

L(2k + s, χ)− 1

2k + s
+
γ0
2

+ 1

and G(s, χ) is analytic in σ > 1/2. Here the sums over ρ run over the nontrivial zeros of
the Riemann zeta function (the zeros ρ with 0 < <(ρ) < 1) counted with multiplicity and
γ0 is the Euler-Mascheroni constant.

Theorem 1.3.1 has the following interesting corollary about exceptional zeros. It is
known, [3, p. 93], that there exists a constant c > 0 such that if χ is a real nonprincipal
character modulo q, then the real line segment

R(q) :=

(
1− c

log q
, 1

)
(1.3.2)

contains at most one zero of L(s, χ). Such a zero, if exists, is called an exceptional zero.

Corollary 1.3.2. Let p > 3 be a prime number and R(p) be defined by (1.3.2) and
(
.
p

)
denote the Legendre symbol modulo p.

10



1. If p ≡ 1 (mod 4) and ∆(s, χ) is analytic in R(p) for at least one nonprincipal

Dirichlet character χ modulo p with χ(−1) = −1, then L
(
s,
(
.
p

))
has no exceptional

zeros.

2. If p ≡ 3 (mod 4) and ∆(s, χ) is analytic in R(p) for at least one nonprincipal

Dirichlet character χ modulo p with χ(−1) = 1, then L
(
s,
(
.
p

))
has no exceptional

zeros.

We would like to note that it is possible to generalize Theorem 1.3.1 and Corollary
1.3.2 for primitive Dirichlet characters modulo q which is not necessarily a prime number.
A route for such a generalization is described at the end of Section 4.1.
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Chapter 2

Number of Prime Factors with a
Given Multiplicity

2.1 Introduction

For a number theoretical function f : N→ C, the summatory function∑
n6x

f(n)

of f is a fundamental object to study in order to understand the behaviour of f on average.
In the case that f(n) = ω(n), the number of distinct prime factors of n, it is known [21, p.
58] that ∑

n6x

ω(n) = x log log x+ bx+O

(
x

log x

)
(2.1.1)

where

b := γ0 −
∑
p

∞∑
j=2

1

jpj
, (2.1.2)

γ0 is the Euler-Mascheroni constant and the sum
∑

p ranges over all prime numbers. The

second moment of ω, i.e. the summatory function of ω2(.), satisfies, [2, Theorem 3.1.1],∑
n6x

ω2(n) = x (log log x)2 +O (x log log x) (2.1.3)

12



by which we have ∑
n6x

(ω(n)− log log n)2 � x log log x.

Using the above estimate, one can prove that ω(n) has normal order log log n as mentioned
in Section 1.1.

In this chapter, we consider some refined versions of the ω(.) function through the
following set up. For a prime number p and a natural number n > 1, let νp(n) be the
multiplicity of p in the unique factorization of n, that is, νp(n) is the unique integer such
that pνp(n) | n but pνp(n)+1 - n. For natural numbers k, n > 1, define

ωk(n) :=
∑
p|n

νp(n)=k

1

which counts the number of prime factors of n with multiplicity k. Note that the usual
ω(.) function can be partitioned into the functions ωk(.) with k > 1 as

ω(n) =
∑
k>1

ωk(n)

for all n ∈ N. We first prove the following result about the summatory functions of ωk(.)
with k > 1.

Theorem (Theorem 1.1.1). Let k > 1 be a natural number. Define

ck :=
∑
p

1

pk(p+ 1)
(2.1.4)

and let b be the constant defined by (2.1.2). We have∑
n6x

ω1(n) = x log log x+ (b− c1 − c2)x+O

(
x

log x

)
.

Moreover, for k > 2, we have∑
n6x

ωk(n) = (ck−1 − ck+1)x+O
(
x
k+1
3k−1 log2 x

)
.

13



The reason why we have a better error term above for the functions ωk with k > 2
than the one for k = 1 is the following. For ω1(.), we use the summatory function of ω(.)
(see (2.2.8)) which gives an error term x/ log x by (2.1.1). However, if k > 2, then the
generating function corresponding to ωk (see (2.2.4) and (2.2.8)) is analytic in a sufficiently
large region (except at s = 1) so that we can control the error term in a better way.

The functions ωk, k > 1, are neither additive nor multiplicative but the estimates given
in our main results above can be put into the context of additive number theory since they
are refined versions of the usual ω function which is additive. Interestingly, the proof of
Theorem 1.1.1 uses a technique from multiplicative number theory.

Next, we consider the second moments of the functions ωk, k > 1, and prove the
following theorem.

Theorem (Theorem 1.1.2). Let k > 1 be a natural number and ck be defined as in (2.1.4).
For k > 2, define

Ck := ck−1 − ck+1 + (ck−1 − ck+1)
2 −

∑
p

(
1

pk
− 1

pk+1

)2

.

We have ∑
n6x

ω2
1(n) = x (log log x)2 +O (x log log x) .

Moreover, for k > 2, we have∑
n6x

ω2
k(n) = Ckx+O

(
x
k+1
3k−1 log2 x

)
.

Analogous to the usual ω(.) function, we have the following corollary about the function
ω1(.) and its normal order.

Corollary (Corollary 1.1.3). We have∑
n6x

(ω1(n)− log log n)2 � x log log x.

Let h(x) be an increasing function such that h(x) → ∞ as x → ∞. Then the number of
natural numbers n 6 x such that

|ω1(n)− log log n|√
log log n

> h(x)

is o(x) and thus ω1(n) has normal order log log n.
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Here we would like to note that with a bit more work, [7], we also proved that

∑
26n6x

(ω1(n)− log log n− C)2 = x log log x+

(
2C +

π2

6
− b+ 2b

∑
p

1

p3

)
x

+O

(
x log log x

log x

)
where C := b−c1−c2 which appears in the first moment of the function ω1. An analoguous
estimate where ω1 is replaced by ω and C is replaced by b can also be obtained.

Recall that the main terms for the summatory functions of ω1 and ω2
1 are x log log x

and x(log log x)2, respectively. Since∑
n6x

(ω1(n)− log log n)2 =
∑
n6x

ω1(n)2 − 2
∑
n6x

ω1(n) log log n+
∑
n6x

(log log n)2, (2.1.5)

we will see in the proof of Corollary 1.1.3 that the main terms of the three sums on the
right-hand side of (2.1.5) cancel out and we obtain the first assertion of Corollary 1.1.3.
However, we do not have such a cancellation for ωk with k > 2. Instead, we have∑
n6x

(ωk(n)− (ck−1 − ck+1))
2 =

(
Ck − 2(ck−1 − ck+1)

2 + (ck−1 − ck+1)
2
)
x+O

(
x
k+1
3k−1 log2 x

)
=
(
Ck − (ck−1 − ck+1)

2
)
x+O

(
x
k+1
3k−1 log2 x

)
by Theorems 1.1.1 and 1.1.2. Since

Ck − (ck−1 − ck+1)
2 = ck−1 − ck+1 + (ck−1 − ck+1)

2 −
∑
p

(
1

pk
− 1

pk+1

)2

− (ck−1 − ck+1)
2

=
∑
p

((
1

pk
− 1

pk+1

)
−
(

1

pk
− 1

pk+1

)2
)
6= 0,

the analogous sum to (2.1.5) for ωk with k > 2 is � x which is of the same order of
magnitude as the second moment of ωk. This makes us wonder whether the functions
ωk(n) with k > 2 have normal order F (n) for some nondecreasing function F : N → R>0

which is the content of the following theorem.

Theorem (Theorem 1.1.4). Let k > 2 be a fixed integer. Then the function ωk(n) does
not have normal order F (n) for any nondecreasing function F : N→ R>0.
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2.2 Proof of Theorem 1.1.1

To prove Theorem 1.1.1, we need some preliminary results. First, we state a variant of
Perron’s formula which is used in Chapter 4 as well.

Lemma 2.2.1. (Perron’s Formula, [26, Lemma 3.12]) For s = σ + it with σ, t ∈ R, let

f(s) =
∞∑
n=1

an
ns
, (σ > 1),

where an = O(Ψ(n)), Ψ(n) being nondecreasing. Assume that for some α ∈ N, we have

∞∑
n=1

|an|
nσ

= O

(
1

(σ − 1)α

)
as σ → 1+. Let T > 4 and T1, T2 ∈ (T/2, 2T ). Let c > 0, σ + c > 1 and x > 2. If x is not
an integer and N is the nearest integer to x, then∑

n<x

an
ns

=
1

2πi

∫ c+iT2

c−iT1
f(s+ w)

xw

w
dw +O

(
xc

T (σ + c− 1)α

)
+O

(
Ψ(2x)x1−σ log x

T

)
+O

(
Ψ(N)x1−σ

T |x−N |

)
.

If x ∈ N, then∑
n6x−1

an
ns

+
ax
2xs

=
1

2πi

∫ c+iT2

c−iT1
f(s+ w)

xw

w
dw +O

(
xc

T (σ + c− 1)α

)
+O

(
Ψ(2x)x1−σ log x

T

)
+O

(
Ψ(x)x−σ

T

)
.

Next, we use the following upper bounds for the size of the Riemann zeta function.

Lemma 2.2.2. [13, p. 25] Let s = σ + it with σ, t ∈ R. For |t| > 2, we have

|ζ(s)| �


1 if σ > 2,

log |t| if 1 6 σ 6 2,

|t| 1−σ2 log |t| if 0 6 σ 6 1,

|t| 12−σ log |t| if σ 6 0.
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The proof of Theorem 1.1.1 relies also on the following general result.

Proposition 2.2.3. Let g : N→ C be a function such that |g(p)| 6 1 for all prime numbers
p. For a fixed natural number k > 1, define

ag,k(n) :=
∑
p|n

νp(n)>k+1

(1 + g(p) + g(p)2 + ...+ g(p)νp(n)−(k+1)) (2.2.1)

with the convention that empty sum is taken to be zero. Define

cg,k :=
∑
p

1

pk(p− g(p))
.

Then we have ∑
n6x

ag,k(n) = cg,kx+O
(
x
k+2
3k+2 log2 x

)
(2.2.2)

where the implied constant is absolute.

Proof. Let σ > 1 and define

Ag,k(s) :=
∞∑
n=1

ag,k(n)

ns
.

We have∑
p

1

pks(ps − g(p))
=
∑
p

(
1

p(k+1)s
+

g(p)

p(k+2)s
+

g(p)2

p(k+3)s
+ ...

)
=
∞∑
n=1

bg,k(n)

ns
(2.2.3)

where

bg,k(n) :=

{
g(p)α−(k+1) if n = pα, α > k + 1,

0 otherwise.

Note that

ζ(s)
∞∑
n=1

bg,k(n)

ns
=
∞∑
n=1

∑
d|n bg,k(d)

ns
.
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We have ∑
d|n

bg,k(d) =
∑
p|n

νp(n)>k+1

νp(n)∑
j=k+1

g(p)j−(k+1) = ag,k(n).

Thus, we have

Ag,k(s) = ζ(s)
∑
p

1

pks(ps − g(p))
(2.2.4)

for σ > 1. Since the series in (2.2.3) is absolutely convergent for σ > 1/(k+1), the identity
in (2.2.4) holds for σ > 1/(k + 1) by analytic continuation.

Note that

|ag,k(n)| 6
∑
p|n

νp(n)>k+1

(1 + |g(p)|+ |g(p)|2 + ...+ |g(p)|νp(n)−(k+1))

6
∑
p|n

νp(n)>k+1

(νp(n)− k)� log n (2.2.5)

and
∞∑
n=1

|ag,k(n)|
nσ

6
∞∑
n=1

1

nσ

∑
p|n

νp(n)>k+1

(νp(n)− k) = ζ(σ)
∑
p

1

pkσ(pσ − 1)
� 1

σ − 1

as σ → 1+. Let x > 2 be half of an odd integer and let T be a real number with 2 6 T 6 x.
By Lemma 2.2.1, we have

∑
n<x

ag,k(n) =
1

2πi

1+ 1
log x

+iT∫
1+ 1

log x
−iT

Ag,k(s)
xs

s
ds+O

(
x log2 x

T

)
.

By pulling the line of integration above to the left and applying the residue theorem, we
have ∑

n<x

ag,k(n) = cg,kx− (I1 + I2 + I3) +O

(
x log2 x

T

)
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where

cg,k :=
∑
p

1

pk(p− g(p))
,

I1 :=
1

2πi

1
k+1

+ 1
log x

+iT∫
1+ 1

log x
+iT

Ag,k(s)
xs

s
ds,

I2 :=
1

2πi

1
k+1

+ 1
log x
−iT∫

1
k+1

+ 1
log x

+iT

Ag,k(s)
xs

s
ds,

I3 :=
1

2πi

1+ 1
log x
−iT∫

1
k+1

+ 1
log x
−iT

Ag,k(s)
xs

s
ds.

For σ > 1
k+1

+ 1
log x

, we have∣∣∣∣∣∑
p

1

pks(ps − g(p))

∣∣∣∣∣�∑
p

1

p(k+1)σ
6
∑
p

1

p1+
1

log x

6 ζ

(
1 +

1

log x

)
� log x.

Thus, by Lemma 2.2.2, we have

I1 �
T 1/2(log x) log T

T

1∫
1
k+1

+ 1
log x

( x

T 1/2

)σ
dσ +

log T

T

1+ 1
log x∫

1

xσ dσ

� x log2 x

T
.

Similarly, we have I3 � x log2 x
T

. For I2, we have

I2 � x
1
k+1 log x

2∫
0

∣∣∣∣ 1

k + 1
+

1

log x
+ it

∣∣∣∣−1 dt+ x
1
k+1 (log x)(log T )

T∫
2

t
1− 1

k+1
− 1

log x
2

1

t
dt

where the implied constant is absolute. Note that∣∣∣∣ 1

k + 1
+

1

log x
+ it

∣∣∣∣−1 6 ∣∣∣∣ 1

k + 1
+

1

log x

∣∣∣∣−1 6 log x
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and

T∫
2

t
1− 1

k+1
− 1

log x
2

1

t
dt =

2

1− 1
k+1
− 1

log x

(
T

1− 1
k+1
− 1

log x
2 − 2

1− 1
k+1
− 1

log x
2

)
� T

1
2(1− 1

k+1)

where the implied constant is absolute. Thus, we have

I2 � x
1
k+1 log2 x+ x

1
k+1T

1
2(1− 1

k+1) log2 x

� x
1
k+1T

1
2(1− 1

k+1) log2 x.

Thus, we have∑
n<x

ag,k(n) = cg,kx+O

(
x log2 x

T

)
+O

(
x

1
k+1T

1
2(1− 1

k+1) log2 x
)
.

Taking T = x
2k

3k+2 equates the error terms above and we obtain∑
n<x

ag,k(n) = cg,kx+O
(
x
k+2
3k+2 log2 x

)
where the implied constant is absolute. By (2.2.5), adding a single term ag,k(bxc + 1) to
the left-hand side of the estimate above has contribution � log x and thus Proposition
2.2.3 follows.

Now, we deduce Theorem 1.1.1 from Proposition 2.2.3.

Proof of Theorem 1.1.1. Let g(p) = −1 for all prime numbers p. Then, with this choice of
g(.), we have

ak(n) := ag,k(n) =
∑
p|n

νp(n)>k+1

(1 + g(p) + g(p)2 + ...+ g(p)νp(n)−(k+1))

=
∑
p|n

νp(n)>k+1
νp(n)−k odd

1 (2.2.6)
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which counts the number of prime factors of n whose multiplicities are of the form k +
1, k + 3, k + 5, . . . , i.e. of the form k + l for some odd natural number l. By Proposition
2.2.3, we have ∑

n6x

ak(n) = ckx+Ok

(
x
k+2
3k+2 log2 x

)
, (k > 1) (2.2.7)

where, as defined in (2.1.4),

ck =
∑
p

1

pk(p+ 1)
.

Note that

ω1(n) = ω(n)− a1(n)− a2(n), (2.2.8)

ωk(n) = ak−1(n)− ak+1(n), (k > 2).

Hence, the desired result in Theorem 1.1.1 follows from (2.1.1) and (2.2.7).

2.3 The ωe and ωo Functions

By the estimate given in (2.2.7), we can consider the functions

ωe(n) :=
∑
p|n

νp(n)>2
νp(n) even

1,

ωo(n) :=
∑
p|n

νp(n)>3
νp(n) odd

1

which count the number of distinct prime factors of n with even multiplicities > 2 and
with odd multiplicities > 3, respectively. Note that

ωe(n) = a1(n),

ωo(n) = a2(n)

with the notation defined in (2.2.6). Thus, we immediately have the first moments of ωe

and ωo.
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Theorem 2.3.1. Let c1 and c2 be defined by (2.1.4). We have∑
n6x

ωe(n) = c1x+O
(
x

3
5 log2 x

)
and ∑

n6x

ωo(n) = c2x+O
(
x

1
2 log2 x

)
.

In order to prove Theorem 1.1.2, we need estimates for the second moments of ωe and
ωo. We first consider the second moment of ωe.

Theorem 2.3.2. Let c1 be defined by (2.1.4). Define

Ce := c1 + c21 −
∑
p

1

p2(p+ 1)2
.

We have ∑
n6x

ωe(n)2 = Cex+O
(
x

3
5 log2 x

)
.

Proof. We have

∑
n6x

ωe(n)2 =
∑
n6x

 ∑
p|n

νp(n)>2, even

1


2

=
∑
n6x

∑
p,q|n

νp(n),νq(n)>2, even

1

=
∑
n6x

∑
p,q|n

νp(n),νq(n)>2, even
p=q

1 +
∑
n6x

∑
p,q|n

νp(n),νq(n)>2, even
p 6=q

1

=
∑
n6x

ωe(n) +
∑
p,q

pq6
√
x

p 6=q

∑
n6x

νp(n),νq(n)>2, even

1. (2.3.1)
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Now, we consider ∑
p,q

pq6
√
x

p6=q

∑
n6x

νp(n),νq(n)>2, even

1.

For given primes p, q such that pq 6
√
x and p 6= q, note that the expression⌊

x

p2q2

⌋
−

⌊
x

p2q3

⌋
+

⌊
x

p2q4

⌋
−

⌊
x

p2q5

⌋
+ . . .

counts the number of n 6 x such that p2 | n and νq(n) > 2 and νq(n) is even. For a natural
number ` > 2, define

f(`, p, q, x) :=

⌊
x

p`q2

⌋
−

⌊
x

p`q3

⌋
+

⌊
x

p`q4

⌋
−

⌊
x

p`q5

⌋
+ . . . . (2.3.2)

Then,∑
p,q

pq6
√
x

p 6=q

∑
n6x

νp(n)>2, even
νq(n)>2, even

1 =
∑
p,q

pq6
√
x

p 6=q

(f(2, p, q, x)− f(3, p, q, x) + f(4, p, q, x)− f(5, p, q, x) + . . . ) .

(2.3.3)

Now we consider f(`, p, q, x). For a given ` > 2, let m` = m`,p,q,x > 2 be the largest
exponent such that x/(p`qm`) > 1. Then m` � log x where the implied constant is
absolute. Write ⌊

x

p`qj

⌋
=

x

p`qj
+ E(`, j, p, q, x).

By using the bound |E(`, j, p, q, x)| 6 1 for j 6 m` and the bound |E(`, j, p, q, x)| 6 x
p`qj

for j > m` + 1 for which
⌊

x
p`qj

⌋
= 0, we have

f(`, p, q, x) =
∞∑
j=2

(−1)j

⌊
x

p`qj

⌋

=
∞∑
j=2

(−1)j
x

p`qj
+

m∑̀
j=2

(−1)jE(`, j, p, q, x) +
∞∑

j=m`+1

(−1)jE(`, j, p, q, x)

=
x

p`q2
1

1 + 1
q

+O

(
m∑̀
j=2

1 +
∞∑

j=m`+1

x

p`qj

)
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where the implied constant is absolute. For the error term above, we have

m∑̀
j=2

1 +
∞∑

j=m`+1

x

p`qj
� log x+

x

p`qm`+1
� log x

by the definition of m`. Thus, we have

f(`, p, q, x) =
x

p`q(q + 1)
+O (log x) . (2.3.4)

For given p, q with pq 6
√
x and p 6= q, let m̃ = m̃p,q,x > 2 be the largest exponent such

that x/(pm̃q2) > 1. Then f(`, p, q, x) = 0 for ` > m̃ + 1 by (2.3.2) and m̃ � log x where
the implied constant is absolute. Let

f(`, p, q, x) =
x

p`q(q + 1)
+ Ẽ(`, p, q, x).

By (2.3.4), we have |Ẽ(`, p, q, x)| � log x for all ` > 2. Since f(`, p, q, x) = 0 for ` > m̃+ 1,
we also have |Ẽ(`, p, q, x)| 6 x

p`q(q+1)
for ` > m̃+ 1. Thus,∑

p,q
pq6
√
x

p6=q

(f(2, p, q, x)− f(3, p, q, x) + f(4, p, q, x)− f(5, p, q, x) + . . . )

=
∑
p,q

pq6
√
x

p 6=q

∞∑
`=2

(−1)`f(`, p, q, x)

=
∑
p,q

pq6
√
x

p 6=q

∞∑
`=2

(
(−1)`x

p`q(q + 1)
+ Ẽ(`, p, q, x)

)

= x
∑
p,q

pq6
√
x

p 6=q

1

p(p+ 1)q(q + 1)
+O

 ∑
p,q

pq6
√
x

(
m̃ log x+

∞∑
`=m̃+1

x

p`q(q + 1)

) . (2.3.5)
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By the definition of m̃, we have∑
p,q

pq6
√
x

(
m̃ log x+

∞∑
`=m̃+1

x

p`q(q + 1)

)
�

∑
p,q

pq6
√
x

(
log2 x+

x

pm̃+1q2

)

� log2 x
∑
p6
√
x

∑
q6
√
x/p

1

�
√
x log2 x

∑
p6
√
x

1

p

�
√
x(log2 x)(log log x). (2.3.6)

Now, we consider ∑
p,q

pq6
√
x

p 6=q

1

p(p+ 1)q(q + 1)
.

Define

1S(r) :=

{
r if S is true,

0 otherwise

where S is a statement and r is a real number. Then, by the integral test, we have∑
p,q

pq6
√
x

p 6=q

1

p(p+ 1)q(q + 1)
=
∑
p6
√
x

1

p(p+ 1)

∑
q6
√
x/p

q 6=p

1

q(q + 1)

=
∑
p6
√
x

1

p(p+ 1)

(
c1 − 1p6x1/4

(
1

p(p+ 1)

)
+O

(∫ ∞
√
x/p

du

u2

))
For the contribution of the error term above, we have∑

p6
√
x

1

p(p+ 1)

∫ ∞
√
x/p

du

u2
� 1√

x

∑
p6
√
x

1

p
� log log x√

x
.

Thus,∑
p,q

pq6
√
x

p6=q

1

p(p+ 1)q(q + 1)
=
∑
p6
√
x

1

p(p+ 1)

(
c1 − 1p6x1/4

(
1

p(p+ 1)

))
+O

(
log log x√

x

)
.
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Similarly, by the integral test, we have∑
p6
√
x

1

p(p+ 1)

(
c1 − 1p6x1/4

1

p(p+ 1)

)
= c1

∑
p6
√
x

1

p(p+ 1)
−
∑
p6x1/4

1

p2(p+ 1)2

= c1

(
c1 +O

(
1√
x

))
−
∑
p

1

p2(p+ 1)2
+O

(
1

x3/4

)
= c21 −

∑
p

1

p2(p+ 1)2
+O

(
1√
x

)
.

Thus, we obtain∑
p,q

pq6
√
x

p 6=q

1

p(p+ 1)q(q + 1)
= c21 −

∑
p

1

p2(p+ 1)2
+O

(
log log x√

x

)
. (2.3.7)

By (2.3.3), (2.3.5)-(2.3.7), we have

∑
p,q

pq6
√
x

p 6=q

∑
n6x

νp(n),νq(n)>2, even

1 = x

(
c21 −

∑
p

1

p2(p+ 1)2
+O

(
log log x√

x

))

+O
(√

x(log2 x)(log log x)
)

=

(
c21 −

∑
p

1

p2(p+ 1)2

)
x+O

(√
x(log2 x)(log log x)

)
.

By (2.3.1), Theorem 1.1.1 and the above estimate, we have

∑
n6x

ωe(n)2 = c1x+

(
c21 −

∑
p

1

p2(p+ 1)2

)
x

+O
(
x

3
5 log2 x

)
+O

(√
x(log2 x)(log log x)

)
=

(
c1 + c21 −

∑
p

1

p2(p+ 1)2

)
x+O

(
x

3
5 log2 x

)
which finishes the proof.
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Now, we estimate the second moment of ωo.

Theorem 2.3.3. Let c2 be defined by (2.1.4). Define

Co := c2 + c22 −
∑
p

1

p4(p+ 1)2
.

We have ∑
n6x

ωo(n)2 = Cox+O
(
x

1
2 log2 x

)
.

Proof. We have

∑
n6x

ωo(n)2 =
∑
n6x

 ∑
p|n

νp(n)>3, odd

1


2

=
∑
n6x

∑
p,q|n

νp(n),νq(n)>3, odd

1

=
∑
n6x

∑
p,q|n

νp(n),νq(n)>3, odd
p=q

1 +
∑
n6x

∑
p,q|n

νp(n),νq(n)>3, odd
p6=q

1

=
∑
n6x

ωo(n) +
∑
p,q

pq6x1/3

p6=q

∑
n6x

νp(n),νq(n)>3, odd

1. (2.3.8)

For a natural number ` > 3 and distinct prime numbers p and q with pq 6 x1/3, define

g(`, p, q, x) :=

⌊
x

p`q3

⌋
−

⌊
x

p`q4

⌋
+

⌊
x

p`q5

⌋
−

⌊
x

p`q6

⌋
+ . . . .

We have

g(`, p, q, x) =
∞∑
j=3

(−1)j+1

⌊
x

p`qj

⌋

=
∞∑
j=3

(−1)j+1 x

p`qj
+O (log x)

=
x

p`q2(q + 1)
+O (log x)
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where the implied constant is absolute. Since∑
p,q

pq6x1/3

p6=q

∑
n6x

νp(n),νq(n)>3, odd

1 =
∑
p,q

pq6x1/3

p6=q

∞∑
`=3

(−1)`+1g(`, p, q, x),

we have∑
p,q

pq6x1/3

p 6=q

∑
n6x

νp(n),νq(n)>3, odd

1 =
∑
p,q

pq6x1/3

p 6=q

∞∑
`=3

(−1)`+1 x

p`q2(q + 1)
+O

(
x1/3(log2 x) log log x

)

= x
∑
p,q

pq6x1/3

p 6=q

1

p2(p+ 1)q2(q + 1)
+O

(
x1/3(log2 x) log log x

)
.

We also have∑
p,q

pq6x1/3

p6=q

1

p2(p+ 1)q2(q + 1)
=
∑
p6x1/3

1

p2(p+ 1)

(
c2 − 1p6x1/6

(
1

p2(p+ 1)

)
+O

(∫ ∞
x1/3/p

du

u3

))

= c22 −
∑
p

1

p4(p+ 1)2
+O

(
log log x

x2/3

)
.

Thus, we obtain

∑
p,q

pq6x1/3

p 6=q

∑
n6x

νp(n),νq(n)>3, odd

1 =

(
c22 −

∑
p

1

p4(p+ 1)2

)
x+O

(
x1/3(log2 x) log log x

)
.

By (2.3.8), Theorem 1.1.1 and the above estimate, we have

∑
n6x

ωo(n)2 = c2x+O
(
x

1
2 log2 x

)
+

(
c22 −

∑
p

1

p4(p+ 1)2

)
x+O

(
x1/3(log2 x) log log x

)
=

(
c2 + c22 −

∑
p

1

p4(p+ 1)2

)
x+O

(
x

1
2 log2 x

)
which finishes the proof.
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2.4 Proof of Theorem 1.1.2

Now, we are ready to estimate the second moments of the functions ωk with k > 1 and
prove Theorem 1.1.2. First, we consider the second moment of ω1. Note that

ω1(n) = ω(n)− ωe(n)− ωo(n).

Thus, ∑
n6x

ω1(n)2 =
∑
n6x

(ω(n)− ωe(n)− ωo(n))2

=
∑
n6x

ω(n)2 − 2
∑
n6x

ω(n)(ωe(n) + ωo(n)) +
∑
n6x

(ωe(n) + ωo(n))2

= x(log log x)2 − 2
∑
n6x

ω(n)(ωe(n) + ωo(n)) +
∑
n6x

(ωe(n) + ωo(n))2

+O (x log log x)

by (2.1.3). By Theorems 2.3.2, 2.3.3 and the Cauchy-Schwarz inequality, we have∑
n6x

(ωe(n) + ωo(n))2 � x.

By the Cauchy-Schwarz inequality, (2.1.3) and the upper bound above, we have

−2
∑
n6x

ω(n)(ωe(n) + ωo(n)) +
∑
n6x

(ωe(n) + ωo(n))2 �
(
x (log log x)2

)1/2
x1/2 + x

� x log log x.

Thus, we obtain ∑
n6x

ω1(n)2 = x (log log x)2 +O (x log log x)

which finishes the proof of the first assertion in Theorem 1.1.2.

Let k > 2. We have∑
n6x

ωk(n)2 =
∑
n6x

∑
p,q|n

νp(n)=νq(n)=k
p=q

1 +
∑
n6x

∑
p,q|n

νp(n)=νq(n)=k
p 6=q

1

=
∑
n6x

ωk(n) +
∑
p,q

pq6x1/k

p6=q

∑
n6x

νp(n)=νq(n)=k

1. (2.4.1)
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For a natural number ` > k and distinct prime numbers p and q with pq 6 x1/k, define

h(`, p, q, x) :=

⌊
x

p`qk

⌋
−

⌊
x

p`qk+1

⌋

which counts the number of n 6 x such that p` | n and νq(n) = k. Then∑
p,q

pq6x1/k

p 6=q

∑
n6x

νp(n)=νq(n)=k

1 =
∑
p,q

pq6x1/k

p 6=q

(h(k, p, q, x)− h(k + 1, p, q, x)) .

Since

h(`, p, q, x) =
x

p`

(
1

qk
− 1

qk+1

)
+O(1)

we have∑
p,q

pq6x1/k

p 6=q

∑
n6x

νp(n)=νq(n)=k

1 =
∑
p,q

pq6x1/k

p6=q

(
x

pk

(
1

qk
− 1

qk+1

)
− x

pk+1

(
1

qk
− 1

qk+1

)
+O(1)

)

= x
∑
p,q

pq6x1/k

p 6=q

(
1

pk
− 1

pk+1

)(
1

qk
− 1

qk+1

)

+O
(
x1/k log log x

)
. (2.4.2)

We have∑
p,q

pq6x1/k

p 6=q

(
1

pk
− 1

pk+1

)(
1

qk
− 1

qk+1

)

=
∑
p6x1/k

(
1

pk
− 1

pk+1

)(∑
q

(
1

qk
− 1

qk+1

)
− 1

p6x
1
2k

(
1

pk
− 1

pk+1

)
+O

(∫ ∞
x1/k/p

du

uk

))

=
∑
p6x1/k

(
1

pk
− 1

pk+1

)(∑
q

(
1

qk
− 1

qk+1

)
− 1

p6x
1
2k

(
1

pk
− 1

pk+1

)
+O

(
pk−1

x(k−1)/k

))
.
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For the contribution of the error term above, we have∑
p6x1/k

(
1

pk
− 1

pk+1

)
pk−1

x(k−1)/k
� 1

x(k−1)/k

∑
p6x1/k

1

p
� log log x

x(k−1)/k
.

Since

ck−1 − ck+1 =
∑
p

(
1

pk−1(p+ 1)
− 1

pk+1(p+ 1)

)
=
∑
p

(
1

pk
− 1

pk+1

)
,

we have∑
p6x1/k

(
1

pk
− 1

pk+1

)(∑
q

(
1

qk
− 1

qk+1

)
− 1

p6x
1
2k

(
1

pk
− 1

pk+1

))

=
∑
p6x1/k

(
1

pk
− 1

pk+1

)(
ck−1 − ck+1 − 1

p6x
1
2k

(
1

pk
− 1

pk+1

))

= (ck−1 − ck+1)
2 +O

(
1

x(k−1)/k

)
−
∑
p

(
1

pk
− 1

pk+1

)2

+O

(
1

x(2k−1)/(2k)

)

= (ck−1 − ck+1)
2 −

∑
p

(
1

pk
− 1

pk+1

)2

+O

(
1

x(k−1)/k

)
.

Thus, we have

∑
p,q

pq6x1/k

p 6=q

(
1

pk
− 1

pk+1

)(
1

qk
− 1

qk+1

)
= (ck−1 − ck+1)

2 −
∑
p

(
1

pk
− 1

pk+1

)2

+O

(
log log x

x(k−1)/k

)
.

By (2.4.2) and the above estimate, we have

∑
p,q

pq6x1/k

p 6=q

∑
n6x

νp(n)=νq(n)=k

1 =

(
(ck−1 − ck+1)

2 −
∑
p

(
1

pk
− 1

pk+1

)2
)
x+O

(
x1/k log log x

)
.

(2.4.3)
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By (2.4.1), (2.4.3) and Theorem 1.1.1, we obtain∑
n6x

ωk(n)2 = (ck−1 − ck+1)x+O
(
x
k+1
3k−1 log2 x

)
+

(
(ck−1 − ck+1)

2 −
∑
p

(
1

pk
− 1

pk+1

)2
)
x+O

(
x1/k log log x

)
=

(
ck−1 − ck+1 + (ck−1 − ck+1)

2 −
∑
p

(
1

pk
− 1

pk+1

)2
)
x+O

(
x
k+1
3k−1 log2 x

)
which finishes the proof of Theorem 1.1.2.

2.5 Proof of Corollary 1.1.3

We have∑
26n6x

(ω1(n)− log log n)2 =
∑

26n6x

ω1(n)2 − 2
∑

26n6x

ω1(n) log log n+
∑

26n6x

(log log n)2.

By partial summation and Theorem 1.1.1, we have

∑
26n6x

ω1(n) log log n =

( ∑
26n6x

ω1(n)

)
log log x−

∫ x

2

(∑
n6u

ω1(n)

)
du

u log u
+O(1)

= x (log log x)2 +O (x log log x)−
∫ x

2

log log u

log u
du+O

(∫ x

2

du

log u

)
= x (log log x)2 +O (x log log x) .

By partial summation, we have∑
26n6x

(log log n)2 = x(log log x)2 − 2

∫ x

2

buc log log u

u log u
du+O((log log x)2)

= x(log log x)2 +O

(∫ x

2

log log u

log u
du

)
+O((log log x)2)

= x(log log x)2 +O

(
x log log x

log x

)
.
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Thus, we have ∑
26n6x

(ω1(n)− log log n)2 = x(log log x)2 +O (x log log x)

− 2x(log log x)2 +O (x log log x)

+ x(log log x)2 +O

(
x log log x

log x

)
= O (x log log x) . (2.5.1)

Let h(x) be an increasing function such that h(x) → ∞ as x → ∞. Let E be the set of
natural numbers n with x

log x
6 n 6 x such that

|ω1(n)− log log n|√
log log n

> h(x).

Let |E| be the cardinality of E . Then∑
26n6x

(ω1(n)− log log n)2 >
∑
n∈E

(ω1(n)− log log n)2

> h2(x/ log x)
∑
n∈E

log log n

> h2(x/ log x) |E| log log (x/ log x) . (2.5.2)

By (2.5.1) and (2.5.2), we have

|E|
x
� log log x

h(x/ log x) log log(x/ log x)
→ 0

as x → ∞ since h(x) → ∞ as x → ∞. This finishes the proof of the second assertion of
Corollary 1.1.3 since the remaining set of natural numbers with n < x/ log x is already of
size o(x).

2.6 Proof of Theorem 1.1.4

Now, we prove that the functions ωk(n) with k > 2 do not have normal order F (n) for any
nondecreasing function F : N→ R>0.
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First we assume that there exists n0 ∈ N such that F (n0) > 0. Then F (n) > 0 for
n > n0 since F is nondecreasing. Thus,

lim
N→∞

|{n 6 N : F (n) > 0}|
N

= 1.

For a natural number N , define

N0(N) := {n 6 N : ωk(n) = 0}.

Since ∑
n6N

n/∈N0(N)

1 =
∑
p

∑
n6N
pk|n
pk+1-n

1 6
∑
p

∑
n6N
pk|n

1 6 N
∑
p

1

pk
,

we have

|N0(N)|
N

>
N −N

∑
p

1
pk

N
= 1−

∑
p

1

pk
> 1−

∑
p

1

p2
> 1− (ζ(2)− 1) = 2− π2

6
> 0.

Thus

lim inf
N→∞

(
|{n 6 N : F (n) > 0}|

N
+
|N0(N)|
N

)
> 1

and the cardinality of the set of n 6 N for which F (n) > 0 and ωk(n) = 0 is not o(N).
Since for such n, the inequality

|ωk(n)− F (n)| > F (n)

2

is satisfied, we deduce that ωk(n) does not have normal order F (n).

Now assume that F (n) = 0 for all n ∈ N. Then

lim
N→∞

|{n 6 N : F (n) = 0}|
N

= 1.

Define

N1(N) := {n 6 N : ωk(n) = 1}.

34



Since

|N1(N)| >
∑
n6N

ν2(n)=k
νp(n)<k for all p > 3

1 =
∑
n6N

ν2(n)=k

1−
∑
n6N

ν2(n)=k
νp(n)>k for some p > 3

1

=

⌊
N

2k

⌋
−
⌊
N

2k+1

⌋
−
∑
p>3

∑
n6N/2k

pk|n
n is odd

1

>
N

2k
− N

2k+1
− N

2k

∑
p>3

1

pk
− 1,

we have

lim inf
N→∞

|N1(N)|
N

>
1

2k

(
1

2
−
∑
p>3

1

pk

)
>

1

2k

(
1

2
−
∑
p>3

1

p2

)

>
1

2k

(
1

2
−
(
π2

6
− 1− 1

4

))
=

1

2k

(
7

4
− π2

6

)
> 0.

Thus

lim inf
N→∞

(
|{n 6 N : F (n) = 0}|

N
+
|N1(N)|
N

)
> 1

and the cardinality of the set of n 6 N for which F (n) = 0 and ωk(n) = 1 is not o(N).
Since for such n, the inequality

|ωk(n)− F (n)| > F (n)

2

is satisfied, we deduce that ωk(n) does not have normal order F (n).
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Chapter 3

Two Problems on Discrete Mean
Values of Dirichlet L-Functions

3.1 Introduction

Let p > 3 be a prime number and χ be a nonprincipal Dirichlet character modulo p.
The first problem we consider in this chapter is the following: What is the average of the
number of solutions of χ(n1) = χ(n2) with 1 6 n1, n2 6 N where the average is taken over
N with 1 6 N 6 p− 1? This is measured by the quantity

Ap(χ) :=
1

p− 1

∑
16N6p−1

∑
16n1,n26N
χ(n1)=χ(n2)

1.

Let us make a heuristic argument on the behaviour of Ap(χ). If the order of the
character χ is k > 2 and p - n1, then the value χ(n1) is a kth root of unity. Thus, the
probability of χ(n2) = χ(n1) for a randomly chosen n2 with p - n2 seems to be 1/k and
one would expect that

Ap(χ) ∼ 1

p− 1

∑
16N6p−1

∑
n16N

∑
n26N

1

k
=

1

k(p− 1)

∑
16N6p−1

N2 =
p(2p− 1)

6k
.

Thus, we may expect that Ap(χ) ∼ p2/(3k). However, if the order k of the character χ is
p − 1, then the condition χ(n1) = χ(n2) is equivalent to n1 = n2 and thus Ap(χ) = p/2.
Although this indicates that the heuristic argument given above is not valid for some large
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values of k, our first main result in this chapter, Theorem 1.2.1 below, shows that the
expected asymptotic Ap(χ) ∼ p2/(3k) is true if k is not too large.

Theorem (Theorem 1.2.1). [5] Let p > 3 be a prime number and χ be a nonprincipal
Dirichlet character modulo p of order k > 2. Let aχ = (1− χ(−1))/2. Then we have

Ap(χ) =
p(2p− 1)

6k
+

(k − 1)(p+ 1)

12k
+ aχ

p2

π2k(p− 1)

k/2∑
j=1

|L(1, χ2j−1)|2. (3.1.1)

Remark 3.1.1. Theorem 1.2.1 gives an exact formula for the average Ap(χ) if χ(−1) = 1
since aχ = 0 in this case. If χ(−1) = −1, then the problem of estimating the average
Ap(χ) is closely related to the discrete mean value of the Dirichlet L-functions L(1, χ2j−1),
1 6 j 6 k/2, where k is the order of the Dirichlet character χ modulo p. Moreover, the
expected asymptotic behaviour Ap(χ) ∼ p2/(3k) given by the heuristic argument above is
true as long as

k

p
+ aχ

1

p

k/2∑
j=1

|L(1, χ2j−1)|2

tends to zero as p → ∞. Since L(1, χ2j−1) � log p for all 1 6 j 6 k/2, we see that

k = o
(

p
1+aχ log2 p

)
is a sufficient condition for Ap(χ) ∼ p2/(3k) to hold. However, if

k = p− 1, then Ap(χ) = p/2 and in this case, we have

k/2∑
j=1

|L(1, χ2j−1)|2 =
∑

ψ (mod p)
ψ(−1)=−1

|L(1, ψ)|2 .

In [28], Walum proved that

2

p− 1

∑
ψ (mod p)
ψ(−1)=−1

|L(1, ψ)|2 =
π2(p− 1)(p− 2)

6p2
. (3.1.2)

Thus, Theorem 1.2.1 is in accordance with the above identity since in this case the right-
hand side of (3.1.1) is equal to

p(2p− 1)

6(p− 1)
+

(p− 1− 1)(p+ 1)

12(p− 1)
+

p2

π2(p− 1)(p− 1)

π2(p− 1)(p− 2)

6p2
(p− 1)

2
=
p

2
.
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Moreover, in [19, Theorem 1], Louboutin showed that if p ≡ 1 (mod 6) is a prime
number and χ is a Dirichlet character modulo p of order k = (p− 1)/3, then

2

k

k/2∑
j=1

|L(1, χ2j−1)|2 =
π2

6

(
1− 1

p

)
. (3.1.3)

Thus by Theorem 1.2.1, we have

Ap(χ) =
p(2p− 1)

6p−1
3

+
(p−1

3
− 1)(p+ 1)

12p−1
3

+
p2

π2(p− 1)

π2(p− 1)

12p
=

7p+ 2

6
.

In [19, Theorem 1], Louboutin also considered the case that p ≡ 1 (mod 10) is a prime
number of the form p = (a5 − 1)/(a − 1) for some a ∈ Z \ {1} and k = p−1

5
. In this case

Louboutin proved that

2

k

k/2∑
j=1

|L(1, χ2j−1)|2 =
π2

6

(
1 +

2a(a+ 1)2 − 1

p

)
(3.1.4)

which in return gives

Ap(χ) =
p(2p− 1)

6p−1
5

+
(p−1

5
− 1)(p+ 1)

12p−1
5

+
p2

π2(p− 1)

π2

12

(
1 +

2a(a+ 1)2 − 1

p

)
=

11p+ 3

6
+
a(a+ 1)2p

6(p− 1)
.

The results given in (3.1.2)-(3.1.4) are the only known cases for the mean value

2

k

k/2∑
j=1

|L(1, χ2j−1)|2 (3.1.5)

and in general, estimating the average Ap(χ) where χ(−1) = −1 may lead, in the future,
to a better comprehension of the mean value in (3.1.5).

Here we would like to note that one can also investigate analogous sums to Ap(χ) by
considering triples n1, n2, n3 with χ(n1) = χ(n2) = χ(n3) or in general by considering d-
tuples n1, . . . , nd for d > 3 with common χ-values. We will consider such extensions in a
future communication.
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Let q be a natural number. The discrete mean value considered in (3.1.2) is a special
case of

M(q, w, s, ε;χ) :=
2

ϕ(q)

∑
ψ (mod q)
ψ(−1)=ε

L(w,ψ)L(s, χψ) (3.1.6)

where ε ∈ {±1}, ϕ is the Euler totient function, χ is a Dirichlet character modulo a natural
number (not necessarily q) and w, s ∈ C except possibly the only pole of the right-hand
side of (3.1.6) at 1, if exists. As some examples of the studies on such mean values, we refer
to [18] for M(q, n, n, ε;χ0), to [14] and [16] for M(q,m, n, ε;χ0) where m,n > 1 are some
natural numbers and χ0 denotes the principal Dirichlet character modulo q. For a similar
mean value with complex arguments w and s but again with χ = χ0 , one may see [20]
and [22]. The only work that we were able to spot in the literature where χ 6= χ0 is [29] in
which the authors consider the mean valueM(p, n, 1, 1;χ4) where p > 5 is a prime number,
n > 2 is an even natural number and χ4 is the nonprincipal Dirichlet character modulo 4.

Before stating the second problem we consider in this chapter precisely, let us have a
closer look at Walum’s result in (3.1.2) which gives

2

p− 1

∑
ψ (mod p)
ψ(−1)=−1

|L(1, ψ)|2 =
2

p− 1

∑
ψ (mod p)
ψ(−1)=−1

L(1, ψ)L(1, ψ) ∼ π2

6
= ζ(1 + 1). (3.1.7)

The reason for us to write ζ(1 + 1) rather than ζ(2) above is to indicate the contribution
of the diagonal terms if one uses the Dirichlet series of L(1, ψ) and L(1, ψ). By the Pólya-
Vinogradov Inequality (see Lemmata 3.2.2 and 3.2.3 below), the left-hand side of (3.1.7)
can be approximated by

2

p− 1

∑
ψ (mod p)
ψ(−1)=−1

∑
a<p/2

ψ(a)

a
+O

(
log p
√
p

)∑
b<p/2

ψ(b)

b
+O

(
log p
√
p

) . (3.1.8)

By the orthogonality relation, [17, p. 191],

2

p− 1

∑
ψ (mod p)
ψ(−1)=−1

ψ(a)ψ(b) =


1 if b ≡ a (mod p),

−1 if b ≡ −a (mod p),

0 otherwise
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for (a, p) = 1, the expression in (3.1.8) becomes

∑
a,b<p/2

1

ab

2

p− 1

∑
ψ (mod p)
ψ(−1)=−1

ψ(a)ψ(b) +O

(
log2 p
√
p

)
=
∑
a<p/2

1

a1+1
+O

(
log2 p
√
p

)

= ζ(1 + 1) +O

(
1

p

)
+O

(
log2 p
√
p

)
= ζ(1 + 1) + op→∞(1). (3.1.9)

Let p > 3 be a prime number and χ be a nonprincipal Dirichlet character modulo p.
For s = σ + it with σ, t ∈ R, define

Mp(−s, χ) :=M(p, 1,−s,−1;χ) =
2

p− 1

∑
ψ (mod p)
ψ(−1)=−1

L(1, ψ)L(−s, χψ). (3.1.10)

The second problem we consider in this chapter is estimating the mean value Mp(−s, χ)
when σ > 0. The reason for us to consider Mp(−s, χ) with σ > 0 rather than Mp(s, χ)
with σ > 0 is the following. For Mp(s, χ) with sufficiently large σ > 0, one can effectively
use the partial sums of the Dirichlet series of the functions involved (as in (3.1.8)) and
observe that the resulting main term, for large p, bounded |s| and for χ(−1) = 1, is
L(1 + s, χ) (similar to ζ(1 + 1) in (3.1.9)). Here we are curious about whether such a
behaviour occurs for Mp(−s, χ) with σ > 0, that is, whether Mp(−s, χ) with σ > 0
approximates to L(1− s, χ).

Our second main result in this chapter, Theorem 1.2.2 below, gives an identity for
Mp(−s, χ) in a larger region where σ > −1 and it shows that the behaviour explained

above is still valid if 0 < σ < 1/2 is fixed and |t = =s| = o
(
p

1−2σ
3+2σ

)
as p → ∞ and

χ(−1) = 1. Moreover, by differentiation, one can obtain some information about the

derivatives M(j)
p (−s, χ) in σ > −1 as well.

Theorem (Theorem 1.2.2). [6] Let χ be a nonprincipal Dirichlet character modulo a
prime number p > 3 and let aχ = (1 − χ(−1))/2. Then, for s = σ + it with σ > −1 and
t ∈ R, we have

Mp(−s, χ) = L(1− s, χ) + aχ2psL(1, χ)ζ(−s) + Ep(s, χ) (3.1.11)

where
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Ep(s, χ) : =
iaχ
√
π

τ(χ)

( p
π

)s sΓ
( s+aχ

2

)
Γ
(

1−s+aχ
2

)(s+ 1)

∫ ∞
1

(bxc − x+ 1
2
)Sχ(x)

xs+2
dx

and

Sχ(x) :=
∑

16n6x

χ(n).

For −1 < σ 6 1, we have

Ep(s, χ)� pσ−
1
2

(
|t|σ+

3
2 +

∣∣1− (σ − aχ)2
∣∣)(1− (p1/2 log p)−σ

σ(σ + 1)

)
.

In particular, if 0 < σ < 1/2 is fixed and |t| = o
(
p

1−2σ
3+2σ

)
, then (3.1.11) holds with

Ep(s, χ) = o(1) as p→∞.

In the proof of Theorem 1.2.2, we use the functional equations of the factors L(−s, χψ)
in (3.1.10). Note that for general moduli, the product of two nonconjugate characters is
not necessarily primitive even if both of them are primitive. However, the assumption
that the modulus p is a prime number guarantees the fact that a nonprincipal Dirichlet
character modulo p is primitive and thus one can use the functional equations corresponding
to such characters. This brings us to the problem of understanding the mean value of
L(1, ψ)τ(χψ)L(s + 1, χψ) over the characters ψ 6= χ with ψ(−1) = −1. In Theorem 3.1.2
below, we relate such a mean value to the function

S(s, χ) :=
∞∑
N=1

Sχ(N)

N s
, (σ > 1) (3.1.12)

where

Sχ(N) =
∑

16n6N

χ(n).

Note that the series in (3.1.12) is absolutely convergent in σ > 1 since |Sχ(N)| is bounded
in terms of p only by the Pólya-Vinogradov Inequality, Lemma 3.2.2.

Theorem 3.1.2. Let χ be a nonprincipal Dirichlet character modulo a prime number
p > 3.
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(i) For any s ∈ C, except s = 1 if χ(−1) = −1, we have

S(s, χ) =
p

πiτ(χ)(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

ψ 6=χ

L(1, ψ)τ
(
χψ
)
L(s, χψ)

+ aχ
τ(χ)(ps − 1)

πips−1(p− 1)
L(1, χ)ζ(s) +

L(s, χ)

2
. (3.1.13)

Thus, the function S(s, χ) is analytic everywhere on C if χ(−1) = 1; otherwise, the

only pole of S(s, χ) is at s = 1 which is a simple pole with residue τ(χ)
πi
L(1, χ).

(ii) For σ > 0, except s = 1 if χ(−1) = −1, we have

S(s, χ) =
L(s− 1, χ)

s− 1
+
L(s, χ)

2
+ s

∫ ∞
1

(bxc − x+ 1
2
)Sχ(x)

xs+1
dx. (3.1.14)

Here we would like make some remarks about extending Theorems 1.2.1 and 3.1.2 to
composite moduli. Let χ be a primitive Dirichlet character modulo a composite number q.
Then we first encounter with the problem of obtaining a closed formula for the partial sums
Sχ(N) given by Lemma 3.2.9 below and this lemma is used in the proofs of Theorems 1.2.1
and 3.1.2. Although it is possible to have a similar identity for Sχ(N) when (N, q) = 1,
covering the case when (N, q) > 1 is not straightforward. Now, consider the average

Aq(χ) :=
1

q − 1

∑
16N6q−1

∑
16n1,n26N
χ(n1)=χ(n2)
(n1n2,q)=1

1

to obtain an analogue of Theorem 1.2.1. If we follow the proof of Theorem 1.2.1, we
eventually come across with the sum

1

q − 1

∑
16N6q−1

 ∑
n6N

(n,q)=1

1


2

which makes the problem harder if one wishes to obtain an identity. However, by estimating
the sum above and using the mean square formula, given in [1],∑

16N6q−1

|Sχ(N)|2 =
q2

12

∏
p|q

(
1− 1

p2

)
+ aχ

q2

π2
|L(1, χ)|2 ,
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we can prove that

Aq(χ) =

(
ϕ(q)

q

)2
q(2q − 1)

6k
+

(k − 1)q2

12k(q − 1)

∏
p|q

(
1− 1

p2

)

+ aχ
q2

π2k(q − 1)

k/2∑
j=1

∣∣L(1, χ2j−1)
∣∣2 +O

(
ϕ(q)2ω(q)

)
where k is the order of χ.

For a generalization of Theorem 3.1.2, one may consider the series

∞∑
n=1

χ0(N)Sχ(N)

N s
, (σ > 1)

where χ0 is the principal Dirichlet character modulo q as an analogue of the function S(s, χ)
above. By having a closed formula for Sχ(N) for (N, q) = 1, it is possible to obtain an
analogue of the first part of Theorem 3.1.2. However, for the second part of Theorem 3.1.2,
in view of the identity given in (3.3.3) below, it is difficult to obtain an exact analogue of
the second part of Theorem 3.1.2. Instead, one can consider the partial sums of L(s, χ0)
to proceed further.

3.2 Lemmata

Lemma 3.2.1. [21, Corollary 4.5] Let ψ1, ψ2 be Dirichlet characters modulo q > 2. Then

1

ϕ(q)

∑
16k6q−1

ψ1(k)ψ2(k) =

{
1 if ψ1 = ψ2,

0 otherwise.

Lemma 3.2.2. [3, Chapter 23, Pólya-Vinogradov Inequality] Let ψ be a nonprincipal
Dirichlet character modulo q > 3. Then∑

A6n6A+B

ψ(n)� √q log q

for any A,B > 1.
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Lemma 3.2.3. Let K > 2 be a real number and ψ be a nonprincipal Dirichlet character
modulo q > 3. Then ∑

n6K

ψ(n)

n
= L(1, ψ) +O

(√
q log q

K

)
.

Proof. By partial summation and Lemma 3.2.2, we have

∑
n6K

ψ(n)

n
=

1

K

∑
n6K

ψ(n) +

∫ K

1

∑
n6u ψ(n)

u2
du

=

∫ K

1

∑
n6u ψ(n)

u2
du+O

(√
q log q

K

)
. (3.2.1)

By Lemma 3.2.2, the integral in (3.2.1) can be written as∫ ∞
1

∑
n6u ψ(n)

u2
du−

∫ ∞
K

∑
n6u ψ(n)

u2
du =

∫ ∞
1

∑
n6u ψ(n)

u2
du+O

(
√
q log q

∫ ∞
K

du

u2

)
=

∫ ∞
1

∑
n6u ψ(n)

u2
du+O

(√
q log q

K

)
. (3.2.2)

Replacing K in (3.2.1) by x and letting x→∞, we have

L(1, ψ) =

∫ ∞
1

∑
n6u ψ(n)

u2
du. (3.2.3)

By (3.2.1)-(3.2.3), the desired result follows.

Now, we obtain the following identity about a weighted mean value of Dirichlet L-
functions.

Lemma 3.2.4. Let p > 3 be a prime number and M and N be natural numbers with
M > 1, N > 0 and p -M(M +N). Then,

2

p− 1

∑
ψ (mod p)
ψ(−1)=−1

(ψ(M +N)− ψ(M)) τ
(
ψ
)
L(1, ψ) = −2πiN

p
+ 2πi

(⌊
M +N

p

⌋
−
⌊
M

p

⌋)
.

(3.2.4)
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Proof. The result is clear if N = 0 as both sides of (3.2.4) are zero. Assume that M,N > 1
and p - M(M + N). Let C be the positively oriented circular contour with center M + N

2

and radius N/2. Let R be the line segment from M to M +N and C1,C2 be the parts of
C lying in the upper and the lower half plane, respectively. Let

f(w) := w/p.

Note that f(w) is not an integer on C since p -M(M +N). Moreover, f(w) ∈ Z for some
w inside C if and only if w is a multiple of p with M < w < M +N . Thus, the function

1

e(f(w))− 1

is analytic on C and the only poles of this function inside C are at w = pk with M < pk <
M +N for some integer k, which are simple poles with residue

1

2πi
p
e
(
pk
p

) =
p

2πi
.

Thus,

I :=

∫
C

1

e(f(w))− 1
dw

= 2πi
( p

2πi
× (the number of multiples of p in the interval (M,M +N))

)
= p

(⌊
M +N

p

⌋
−
⌊
M

p

⌋)
(3.2.5)

by the residue theorem. Write

I =

∫
C1

1

e(f(w))− 1
dw +

∫
C2

1

e(f(w))− 1
dw (3.2.6)

and consider the first term in (3.2.6). Let K be a natural number. By the identity

1

z − 1
=

1− zK+1

z − 1
+
zK+1

z − 1
, (z ∈ C \ {1})

where z is replaced by e(f(w)) for w ∈ C1, we have∫
C1

1

e(f(w))− 1
dw = −

∫
C1

h1(w) dw +

∫
C1

e((K + 1)f(w))

e(f(w))− 1
dw (3.2.7)
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where

h1(w) :=
1− e((K + 1)f(w))

1− e(f(w))
.

Since K is an integer, the function h1(w) is analytic on and inside C. Thus, by the residue
theorem and the fact that C1 ∪ R is a positively oriented regular closed contour, the first
term on the right-hand side of (3.2.7) is

−
∫
C1

h1(w) dw =

∫
R

h1(w) dw.

By (3.2.7) and the identity above, we have∫
C1

1

e(f(w))− 1
dw =

∫
R

h1(w) dw +

∫
C1

e((K + 1)f(w))

e(f(w))− 1
dw. (3.2.8)

Now, we consider the second term on the right-hand side of (3.2.6). By the identity

1

z − 1
=

1− z−K

z − 1
+

z−K

z − 1
, (z ∈ C \ {1})

where z is replaced by e(f(w)) for w ∈ C2, we have∫
C2

1

e(f(w))− 1
dw =

∫
C2

h2(w) dw +

∫
C2

e(−Kf(w))

e(f(w))− 1
dw (3.2.9)

where

h2(w) :=
1− e(−Kf(w))

e(f(w))− 1
.

Since K is an integer, the function h2(w) is also analytic on and inside C. Thus, by
considering the orientation of C2 and by the residue theorem, we have∫

C2

h2(w) dw =

∫
R

h2(w) dw.

By (3.2.9) and the identity above, we have∫
C2

1

e(f(w))− 1
dw =

∫
R

h2(w) dw +

∫
C2

e(−Kf(w))

e(f(w))− 1
dw.
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By (3.2.6), (3.2.8) and the identity above, we have

I =

∫
R

(h1(w) + h2(w)) dw +

∫
C1

e((K + 1)f(w))

e(f(w))− 1
dw +

∫
C2

e(−Kf(w))

e(f(w))− 1
dw. (3.2.10)

By the definitions of h1(w) and h2(w) and the identities

1− zK+1

1− z
=

K∑
k=0

zk, (z ∈ C \ {1})

and

1− z−K

z − 1
=

−1∑
k=−K

zk, (z ∈ C \ {0, 1}),

we have

h1(w) + h2(w) =
1− e((K + 1)f(w))

1− e(f(w))
+

1− e(−Kf(w))

e(f(w))− 1

=
K∑

k=−K

e(kf(w)) (3.2.11)

for w ∈ R since h1 and h2 are analytic on R. By (3.2.5), (3.2.10) and (3.2.11), we have

p

(⌊
M +N

p

⌋
−
⌊
M

p

⌋)
=

K∑
k=−K

M+N∫
M

e(ku/p) du

+

∫
C1

e((K + 1)w/p)

e(w/p)− 1
dw +

∫
C2

e(−Kw/p)
e(w/p)− 1

dw

= T1 + T2 + T3 (3.2.12)

where

T1 :=
K∑

k=−K

M+N∫
M

e(ku/p) du,

T2 :=

∫
C1

e((K + 1)w/p)

e(w/p)− 1
dw,

T3 :=

∫
C2

e(−Kw/p)
e(w/p)− 1

dw.
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Since

M+N∫
M

e(ku/p) du =

{
N if k = 0,
p

2πik

[
e
(

(M+N)k
p

)
− e

(
Mk
p

)]
if k 6= 0,

we have

T1 = N +
p

2πi

K∑
k=−K
k 6=0

e
(

(M+N)k
p

)
− e

(
Mk
p

)
k

= N +
p

2πi

K∑
k=−K
k 6=0
p-k

e
(

(M+N)k
p

)
− e

(
Mk
p

)
k

. (3.2.13)

Let c ∈ N such that p - c. Define

S(c) :=
K∑

k=−K
k 6=0
p-k

e
(
ck
p

)
k

.

Then by (3.2.13), we have

T1 = N +
p

2πi
(S(M +N)− S(M)) . (3.2.14)

Considering the residue classes of ck for p - ck in the definition of S(c), we have

S(c) =

p−1∑
a=1

e

(
a

p

) K∑
k=−K
k 6=0
p-k

ck≡a (mod p)

1

k
.

By the orthogonality relation (1.2.4), we have

K∑
k=−K
k 6=0
p-k

ck≡a (mod p)

1

k
=

1

p− 1

∑
ψ (mod p)

ψ(a)ψ(c)
K∑

k=−K
k 6=0
p-k

ψ(k)

k
, (p - a).
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Thus,

S(c) =

p−1∑
a=1

e

(
a

p

) 1

p− 1

∑
ψ (mod p)

ψ(a)ψ(c)
K∑

k=−K
k 6=0
p-k

ψ(k)

k


=

1

p− 1

∑
ψ (mod p)

ψ(c)
K∑

k=−K
k 6=0
p-k

ψ(k)

k

p−1∑
a=1

ψ(a)e

(
a

p

)

=
1

p− 1

∑
ψ (mod p)

ψ(c)τ
(
ψ
) K∑
k=−K
k 6=0
p-k

ψ(k)

k
.

Since

K∑
k=−K
k 6=0
p-k

ψ(k)

k
=

{
2
∑K

k=1
ψ(k)
k

if ψ(−1) = −1,

0 if ψ(−1) = 1,

we have

S(c) =
2

p− 1

∑
ψ (mod p)
ψ(−1)=−1

ψ(c)τ
(
ψ
) K∑
k=1

ψ(k)

k
(3.2.15)

for c ∈ N with p - c. By (3.2.14), (3.2.15) and Lemma 3.2.3, we have

T1 = N +
p

πi(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

(ψ(M +N)− ψ(M)) τ
(
ψ
) K∑
k=1

ψ(k)

k

= N +
p

πi(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

(ψ(M +N)− ψ(M)) τ
(
ψ
)
L(1, ψ) +Op

(
1

K

)
(3.2.16)

where the implied constant depends only on p.
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Recall

T2 =

∫
C1

e((K + 1)w/p)

e(w/p)− 1
dw,

T3 =

∫
C2

e(−Kw/p)
e(w/p)− 1

dw

where C1 (resp. C2) is the part of the circle C lying in the upper (resp. the lower) half
plane. Now, our aim is to show that T2 and T3 tend to zero as K →∞. Note that for any
real number A, we have

|e(Aw/p)| = exp (−2πA=(w)/p) . (3.2.17)

Moreover, for any w ∈ C, we have |e(w/p)− 1| �p 1 since p -M(M +N). Thus, by taking
A = K + 1 in (3.2.17) and considering the contributions to the integral defining T2 along
which =(w) > 1√

K
and 0 6 =(w) 6 1/

√
K separately, we have

T2 =

∫
C1

=(w)>1/
√
K

e((K + 1)w/p)

e(w/p)− 1
dw +

∫
C1

=(w)61/
√
K

e((K + 1)w/p)

e(w/p)− 1
dw

�p,M,N exp
(
−2π(K + 1)/(

√
Kp)

)
+

1√
K

(3.2.18)

which tends to zero as K →∞. Similarly, we have

T3 =

∫
C2

=(w)<−1/
√
K

e(−Kw/p)
e(w/p)− 1

dw +

∫
C2

=(w)>−1/
√
K

e(−Kw/p)
e(w/p)− 1

dw

�p,M,N exp
(
−2π(−K)/(−

√
Kp)

)
+

1√
K

(3.2.19)

which also tends to zero as K → ∞. By (3.2.12), (3.2.16), (3.2.18), (3.2.19) and letting
K →∞ among natural numbers, we have

p

(⌊
M +N

p

⌋
−
⌊
M

p

⌋)
= N +

p

πi(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

(ψ(M +N)− ψ(M)) τ
(
ψ
)
L(1, ψ)

and the desired result follows by reorganizing the terms above.
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Lemma 3.2.5. Let p > 3 be a prime number and k ∈ N. Define 1p|k = 1 if p | k and
1p|k = 0 if p - k. Then we have

2

p− 1

∑
ψ (mod p)
ψ(−1)=−1

ψ(k)τ
(
ψ
)
L(1, ψ) = −2πi

(
k

p
−
⌊
k

p

⌋)
+ πi

(
1− 1p|k

)
. (3.2.20)

Proof. Let M = 1 and N = p− 2 in Lemma 3.2.4. Since ψ(M +N)−ψ(M) = ψ(p− 1)−
ψ(1) = −2 when ψ(−1) = −1, we have

− 4

p− 1

∑
ψ (mod p)
ψ(−1)=−1

τ
(
ψ
)
L(1, ψ) = −2πi(p− 2)

p

which gives

2

p− 1

∑
ψ (mod p)
ψ(−1)=−1

τ
(
ψ
)
L(1, ψ) =

πi(p− 2)

p
.

By the identity above and Lemma 3.2.4 with M = 1, N > 0 such that p - N + 1, we have

−2πiN

p
+ 2πi

⌊
N + 1

p

⌋
=

2

p− 1

∑
ψ (mod p)
ψ(−1)=−1

(ψ(N + 1)− ψ(1)) τ
(
ψ
)
L(1, ψ)

=
2

p− 1

∑
ψ (mod p)
ψ(−1)=−1

ψ(N + 1)τ
(
ψ
)
L(1, ψ)− πi(p− 2)

p
.

Thus,

2

p− 1

∑
ψ (mod p)
ψ(−1)=−1

ψ(N + 1)τ
(
ψ
)
L(1, ψ) = −2πiN

p
+
πi(p− 2)

p
+ 2πi

⌊
N + 1

p

⌋

= −2πi(N + 1)

p
+ πi+ 2πi

⌊
N + 1

p

⌋
= −2πi

(
N + 1

p
−
⌊
N + 1

p

⌋)
+ πi.

Replacing N + 1 by k above gives the desired result for k > 1 and p - k. The case that
p | k is clear since both sides of (3.2.20) are zero.
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Lemma 3.2.6. Let p > 3 be a prime number and k ∈ N such that p - k. Then we have

2

p− 1

∑
ψ (mod p)
ψ(−1)=−1

ψ(k)L(1, ψ) =
π

p
cot

(
πk

p

)
.

Proof. For p - k ∈ N, let k−1 ∈ {1, 2, 3, ..., p−1} be the inverse of k modulo p. In (3.2.20), we
replace k by k−1m for some m ∈ N. Then on multiplying both sides of (3.2.20) by e(m/p)
and summing over m with 1 6 m 6 p and using the fact that τ

(
ψ
)

= ψ(−1)τ(ψ) = −τ(ψ)
for ψ(−1) = −1, the left-hand side of (3.2.20) becomes

2

p− 1

∑
ψ (mod p)
ψ(−1)=−1

ψ(k)τ
(
ψ
)
L(1, ψ)

∑
16m6p

ψ(m)e

(
m

p

)
=

2

p− 1

∑
ψ (mod p)
ψ(−1)=−1

ψ(k)τ(ψ)τ
(
ψ
)
L(1, ψ)

= − 2p

p− 1

∑
ψ (mod p)
ψ(−1)=−1

ψ(k)L(1, ψ).

For the right-hand side of (3.2.20), we have∑
16m6p

[
−2πi

{
k−1m

p

}
+ πi

(
1− 1p|k−1m

)]
e

(
m

p

)
= −πi− 2πi

∑
16m6p

{
k−1m

p

}
e

(
m

p

)
.

Thus, we have

2

p− 1

∑
ψ (mod p)
ψ(−1)=−1

ψ(k)L(1, χ) =
πi

p

(
1 + 2

∑
16m6p

{
k−1m

p

}
e(m/p)

)
. (3.2.21)

On writing k−1m ≡ a (mod p) where a ∈ {1, 2, .., p}, we have∑
16m6p

{
k−1m

p

}
e(m/p) =

∑
16a6p

{
a

p

}
e(ak/p) =

1

p

∑
16a6p−1

ae(ak/p). (3.2.22)

Define

S(z) :=
∑

16a6p

aza, z := e(k/p).
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Since z 6= 1 and zp = 1, we have

S(z) = z
d

dz

( ∑
16a6p

za

)
= z

d

dz

(
zp+1 − 1

z − 1
− 1

)
= z

(p+ 1)zp(z − 1)− (zp+1 − 1)

(z − 1)2

= z
(p+ 1)(z − 1)− (z − 1)

(z − 1)2

=
zp

z − 1
.

Thus,

1

p

∑
16a6p−1

ae(ak/p) =
1

p
(S(z)− p) =

1

p

(
zp

z − 1
− p
)

=
1

z − 1
. (3.2.23)

By (3.2.21)-(3.2.23), we have

2

p− 1

∑
ψ (mod p)
ψ(−1)=−1

ψ(k)L(1, ψ) =
πi

p

(
1 +

2

z − 1

)
=
πi

p

z + 1

z − 1
.

Since

z + 1

z − 1
=
e2πi

k
p + 1

e2πi
k
p − 1

=
eπi

k
p

(
eπi

k
p + e−πi

k
p

)
eπi

k
p

(
eπi

k
p − e−πi

k
p

) =
2 cos

(
πk
p

)
2i sin

(
πk
p

) =
1

i
cot

(
πk

p

)
,

the desired result follows.

We continue with a special case of a result of Louboutin, [17, Proposition 1]. By using
the lemmata above, we give a different proof of this special case where the modulus is a
prime number.

Lemma 3.2.7. Let χ be a Dirichlet character modulo a prime number p > 3 and let
aχ = (1− χ(−1))/2. We have∑

16a6p−1

χ(a) cot

(
πa

p

)
= aχ

2p

π
L(1, χ). (3.2.24)
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Proof. If χ(−1) = 1, then∑
16a6p−1

χ(a) cot

(
πa

p

)
=

∑
16a<p/2

χ(a) cot

(
πa

p

)
+

∑
p/2<a6p−1

χ(a) cot

(
πa

p

)

=
∑

16a<p/2

χ(a) cot

(
πa

p

)
+

∑
16a<p/2

χ(p− a) cot

(
π(p− a)

p

)

=
∑

16a<p/2

χ(a) cot

(
πa

p

)
−

∑
16a<p/2

χ(a) cot

(
πa

p

)
= 0

since χ(p− a) = χ(−a) = χ(a) and cot
(
π(p−a)

p

)
= − cot

(
πa
p

)
.

If χ(−1) = −1, then by Lemma 3.2.6, we have

∑
16a6p−1

χ(a)

 2p

π(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

ψ(a)L(1, ψ)

 =
∑

16a6p−1

χ(a) cot

(
πa

p

)
.

By Lemma 3.2.1, the left-hand side above is equal to

2p

π(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

L(1, ψ)
∑

16a6p−1

χ(a)ψ(a) =
2p

π
L(1, χ)

Hence, the desired result follows.

Next, we state a well-known identity for Dirichlet characters (see [3, Chapter 9] or [21,
Section 9.2], for example).

Lemma 3.2.8. [3], [21] Let p > 3 be a prime number and n ∈ N. If χ is a nonprincipal
Dirichlet character modulo p, then we have

χ(n)τ(χ) =
∑

16a6p−1

χ(a)e

(
an

p

)
. (3.2.25)

If χ = χ0 and p - n, then (3.2.25) still holds.
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Now, we obtain a closed formula for the partial sums

Sχ(N) =
∑

16n6N

χ(n)

of a nonprincipal Dirichlet character χ modulo a prime number p > 3.

Lemma 3.2.9. Let χ be a nonprincipal Dirichlet character modulo a prime number p > 3.
Then, for any natural number N > 1, we have

Sχ(N) =
pχ(N)

πiτ(χ)(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

L(1, ψ)τ
(
χψ
)
ψ(N)

+ aχ
τ(χ)

πi
L(1, χ)χ0(N) +

χ(N)

2
. (3.2.26)

Proof. Since both sides of (3.2.26) are zero if p | N , we assume that p - N . By Lemma
3.2.8, we have

χ(n) =
1

τ(χ)

∑
16a6p−1

χ(a)e

(
an

p

)
(3.2.27)

for all n ∈ N since χ is nonprincipal. Then

Sχ(N) =
∑

16n6N

1

τ(χ)

∑
16a6p−1

χ(a)e

(
an

p

)
=

1

τ(χ)

∑
16a6p−1

χ(a)
∑

16n6N

e

(
an

p

)
.

The inner sum on the right-hand side above is equal to

∑
16n6N

e

(
an

p

)
=

e
(
a
p

)
e
(
a
p

)
− 1

(
e

(
aN

p

)
− 1

)
, (p - a).

Since

e
(
a
p

)
e
(
a
p

)
− 1

=
cot
(
πa
p

)
2i

+
1

2
,
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we have

Sχ(N) =
1

τ(χ)

∑
16a6p−1

χ(a)

cot
(
πa
p

)
2i

+
1

2

(e(aN
p

)
− 1

)
.

By (3.2.27), the contribution of the term 1/2 to the right-hand side above is

1

2τ(χ)

∑
16a6p−1

χ(a)

(
e

(
aN

p

)
− 1

)
=

1

2τ(χ)

∑
16a6p−1

χ(a)e

(
aN

p

)
=
χ(N)

2
.

Thus, we have

Sχ(N) =
1

2iτ(χ)

∑
16a6p−1

χ(a)

(
e

(
aN

p

)
− 1

)
cot

(
πa

p

)
+
χ(N)

2

= T (χ,N) + T (χ) +
χ(N)

2
(3.2.28)

where

T (χ,N) :=
1

2iτ(χ)

∑
16a6p−1

χ(a)e

(
aN

p

)
cot

(
πa

p

)
and

T (χ) := − 1

2iτ(χ)

∑
16a6p−1

χ(a) cot

(
πa

p

)
= −aχ

p

πiτ(χ)
L(1, χ)

= aχ
τ(χ)

πi
L(1, χ)

by Lemma 3.2.7 and τ(χ) = −τ(χ) if χ(−1) = −1.

Now, we consider T (χ,N). By Lemmata 3.2.6 and 3.2.8, we have

T (χ,N) =
1

2iτ(χ)

∑
16a6p−1

χ(a)e

(
aN

p

)
2p

π(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

ψ(a)L(1, ψ)

=
p

πiτ(χ)(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

L(1, ψ)
∑

16a6p−1

χ(a)ψ(a)e

(
aN

p

)

=
p

πiτ(χ)(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

L(1, ψ)χ(N)ψ(N)τ
(
χψ
)
.

By (3.2.28) and the above identities for T (χ) and T (χ,N), the desired result follows.
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3.3 Proof of Theorem 3.1.2

First, we prove Theorem 3.1.2 from which we deduce Theorem 1.2.2 in the next section.
Let χ be a nonprincipal Dirichlet character modulo a prime number p > 3. Recall that

S(s, χ) =
∞∑
N=1

Sχ(N)

N s
, (σ > 1)

where

Sχ(N) =
∑

16n6N

χ(n).

Let σ > 1. Dividing both sides of (3.2.26) by N s and summing over N > 1 give

S(s, χ) =
p

πiτ(χ)(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

L(1, ψ)τ
(
χψ
)
L(s, χψ)

+ aχ
τ(χ)

πi
L(1, χ)ζ(s)

(
1− 1

ps

)
+
L(s, χ)

2
.

If χ(−1) = −1, then the term in the sum above with ψ = χ contributes

p

πiτ(χ)(p− 1)
L(1, χ)τ(χ0)L(s, χ0) =

τ(χ)

πi(p− 1)
L(1, χ)ζ(s)

(
1− 1

ps

)
.

By the last two identities above, we have

S(s, χ) =
p

πiτ(χ)(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

ψ 6=χ

L(1, ψ)τ
(
χψ
)
L(s, χψ)

+ aχ
τ(χ)

πi
L(1, χ)ζ(s)

(
1− 1

ps

)(
1 +

1

p− 1

)
+
L(s, χ)

2

which gives the first assertion of Theorem 3.1.2 by analytic continuation.

For the second assertion of Theorem 3.1.2, we start with∑
N6pk

Sχ(N)

N s
=
∑
N6pk

1

N s

∑
n6N

χ(n) =
∑
n6pk

χ(n)
∑

n6N6pk

1

N s
(3.3.1)
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for some k ∈ N and σ > 1. Since∑
n6N6pk

1

N s
=

1

ns
+
∑
j6pk

1

js
−
∑
j6n

1

js
,

we have ∑
n6pk

χ(n)
∑

n6N6pk

1

N s
=
∑
n6pk

χ(n)

[
1

ns
+
∑
j6pk

1

js
−
∑
j6n

1

js

]

=
∑
n6pk

χ(n)

ns
−
∑
n6pk

χ(n)
∑
j6n

1

js

= S1 − S2, (3.3.2)

where

S1 :=
∑
n6pk

χ(n)

ns
,

S2 :=
∑
n6pk

χ(n)
∑
j6n

1

js
.

By [26, Equation 3.5.3], we have

ζ(s) =
∑
j6n

1

js
+ s

∫ ∞
n

bxc − x+ 1
2

xs+1
dx+

n1−s

s− 1
− 1

2ns
, (σ > 0). (3.3.3)

Thus,

S2 =
∑
n6pk

χ(n)

[
ζ(s)− s

∫ ∞
n

bxc − x+ 1
2

xs+1
dx− n1−s

s− 1
+

1

2ns

]

= − 1

s− 1

∑
n6pk

χ(n)

ns−1
− s

∑
n6pk

χ(n)

∫ ∞
n

bxc − x+ 1
2

xs+1
dx+

1

2

∑
n6pk

χ(n)

ns
.

By the definition of S1 and the above identity for S2, we have

S1 − S2

=
∑
n6pk

χ(n)

ns
+

1

s− 1

∑
n6pk

χ(n)

ns−1
+ s

∑
n6pk

χ(n)

∫ ∞
n

bxc − x+ 1
2

xs+1
dx− 1

2

∑
n6pk

χ(n)

ns

=
1

s− 1

∑
n6pk

χ(n)

ns−1
+

1

2

∑
n6pk

χ(n)

ns
+ s

∑
n6pk

χ(n)

∫ ∞
n

bxc − x+ 1
2

xs+1
dx.
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Note that

∑
n6pk

χ(n)

∫ ∞
n

bxc − x+ 1
2

xs+1
dx =

∫ ∞
1

bxc − x+ 1
2

xs+1

∑
n6pk
n6x

χ(n)

 dx

=

∫ pk

1

(bxc − x+ 1
2
)Sχ(x)

xs+1
dx.

By letting k → ∞ for σ > 1 and using (3.3.1), (3.3.2) and the last two identities above,
we obtain

S(s, χ) =
1

s− 1
L(s− 1, χ) +

1

2
L(s, χ) + s

∫ ∞
1

(bxc − x+ 1
2
)Sχ(x)

xs+1
dx.

Since Sχ(x) �p 1, the integral above is convergent for σ > 0 and hence Theorem 3.1.2
follows.

3.4 Proof of Theorem 1.2.2

Replacing s by s+1 in Theorem 3.1.2 and equating the expressions in (3.1.13) and (3.1.14),
we have

T1 + T2 + T3 = (s+ 1)

∫ ∞
1

(bxc − x+ 1
2
)Sχ(x)

xs+2
dx (3.4.1)

for σ > −1 where

T1 :=
p

πiτ(χ)(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

ψ 6=χ

L(1, ψ)τ
(
χψ
)
L(s+ 1, χψ),

T2 := aχ
τ(χ)(ps+1 − 1)

πips(p− 1)
L(1, χ)ζ(s+ 1),

T3 := −L(s, χ)

s
.

Now, we consider T1. Note that if ψ(−1) = −1 and ψ 6= χ, we have

aχψ = 1− aχ
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and

τ(χψ)τ(χψ) = χψ(−1)τ(χψ)τ(χψ) = −χ(−1)p.

Thus, for such characters χ and ψ, we have

τ
(
χψ
)
L(s+ 1, χψ) = τ

(
χψ
) τ(χψ)

i1−aχ
√
π

(
π

p

)s+1 Γ
(
−s+1−aχ

2

)
Γ
(
s+2−aχ

2

) L(−s, χψ)

= − χ(−1)p

i1−aχ
√
π

(
π

p

)s+1 Γ
(
−s+1−aχ

2

)
Γ
(
s+2−aχ

2

) L(−s, χψ) (3.4.2)

by the functional equation (1.2.6). By (3.4.2), we have

T1 =
p

πiτ(χ)(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

ψ 6=χ

L(1, ψ)

− χ(−1)p

i1−aχ
√
π

(
π

p

)s+1 Γ
(
−s+1−aχ

2

)
Γ
(
s+2−aχ

2

) L(−s, χψ)



=
iaχτ(χ)√

π

(
π

p

)s Γ
(

1−s−aχ
2

)
Γ
(
s+2−aχ

2

) 1

p− 1

∑
ψ (mod p)
ψ(−1)=−1

ψ 6=χ

L(1, ψ)L(−s, χψ).

Recall that

Mp(−s, χ) :=
2

p− 1

∑
ψ (mod p)
ψ(−1)=−1

L(1, ψ)L(−s, χψ).

Since

1

p− 1

∑
ψ (mod p)
ψ(−1)=−1

ψ 6=χ

L(1, ψ)L(−s, χψ) =
Mp(−s, χ)

2
− aχL(1, χ)ζ(−s)1− ps

p− 1
,

T1 can be written as

T1 =
iaχτ(χ)

2
√
π

(
π

p

)s Γ
(

1−s−aχ
2

)
Γ
(
s+2−aχ

2

)Mp(−s, χ)

+ aχ
iτ(χ)√
π

(
π

p

)s Γ
(
− s

2

)
Γ
(
s+1
2

) ps − 1

p− 1
L(1, χ)ζ(−s). (3.4.3)
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For T2, we use the functional equation (1.2.2) of ζ(s) and write

T2 = aχ
τ(χ)(ps+1 − 1)

πips(p− 1)
L(1, χ)πs+

1
2

Γ
(−s

2

)
Γ
(
s+1
2

)ζ(−s)

= aχ
iτ(χ)√
π

(
π

p

)s Γ
(
− s

2

)
Γ
(
s+1
2

) 1− ps+1

p− 1
L(1, χ)ζ(−s) (3.4.4)

For T3, we have

T3 = −1

s

τ(χ)

iaχ
√
π

(
π

p

)s Γ
(

1−s+aχ
2

)
Γ
( s+aχ

2

) L(1− s, χ) (3.4.5)

by the functional equation (1.2.6). Thus, by (3.4.3)-(3.4.5), we have

T1 + T2 + T3 =
iaχτ(χ)

2
√
π

(
π

p

)s Γ
(

1−s−aχ
2

)
Γ
(
s+2−aχ

2

)Mp(−s, χ)

− aχ
iτ(χ)√
π

(
π

p

)s Γ
(
− s

2

)
Γ
(
s+1
2

)psL(1, χ)ζ(−s)

− 1

s

τ(χ)

iaχ
√
π

(
π

p

)s Γ
(

1−s+aχ
2

)
Γ
( s+aχ

2

) L(1− s, χ)

which is equivalent to

T1 + T2 + T3 =
1

s

τ(χ)

iaχ
√
π

(
π

p

)s Γ
(

1−s+aχ
2

)
Γ
( s+aχ

2

)
×

i2aχ
2

Γ
(

1−s−aχ
2

)
Γ
(
s+2−aχ

2

) sΓ
( s+aχ

2

)
Γ
(

1−s+aχ
2

)Mp(−s, χ)

−aχi1+aχ
Γ
(
− s

2

)
Γ
(
s+1
2

) sΓ
( s+aχ

2

)
Γ
(

1−s+aχ
2

)psL(1, χ)ζ(−s)− L(1− s, χ)

 . (3.4.6)

By sΓ(s) = Γ(s+ 1), we have

i2aχ

2

Γ
(

1−s−aχ
2

)
Γ
(
s+2−aχ

2

) sΓ
( s+aχ

2

)
Γ
(

1−s+aχ
2

) = 1 (3.4.7)
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and

aχi
1+aχ

Γ
(
− s

2

)
Γ
(
s+1
2

) sΓ
( s+aχ

2

)
Γ
(

1−s+aχ
2

) = 2aχ
− s

2
Γ
(
− s

2

)
Γ
(
2−s
2

) = 2aχ. (3.4.8)

By (3.4.6)-(3.4.8) and (3.4.1), we have

Mp(−s, χ)− aχ2psL(1, χ)ζ(−s)− L(1− s, χ)

=
iaχ
√
π

τ(χ)

( p
π

)s sΓ
( s+aχ

2

)
Γ
(

1−s+aχ
2

)(s+ 1)

∫ ∞
1

(bxc − x+ 1
2
)Sχ(x)

xs+2
dx (3.4.9)

for σ > −1. Replacing χ by χ and reorganizing the terms in (3.4.9) finish the proof of the
first statement in Theorem 1.2.2.

Let

Ep(s, χ) :=
iaχ
√
π

τ(χ)

( p
π

)s sΓ
( s+aχ

2

)
Γ
(

1−s+aχ
2

)(s+ 1)

∫ ∞
1

(bxc − x+ 1
2
)Sχ(x)

xs+2
dx

for −1 < σ 6 1. By the Pólya-Vinogradov inequality, we have∫ ∞
1

(bxc − x+ 1
2
)Sχ(x)

xs+2
dx�

∫ A

1

x−σ−1 dx+ p1/2 log p

∫ ∞
A

x−σ−2 dx

=

{
logA+ p1/2(log p)A−1 if σ = 0,

− 1
σ

(A−σ − 1) + p1/2(log p)A
−σ−1

σ+1
if σ 6= 0.

Taking A = p1/2 log p and noting that limσ→0(1− A−σ)/σ = logA, we see that∫ ∞
1

(bxc − x+ 1
2
)Sχ(x)

xs+2
dx� 1− (p1/2 log p)−σ

(σ + 1)σ
, (−1 < σ 6 1)

where the right-hand side above is to be interpreted as the limit σ → 0 if σ = 0. By
Stirling’s formula [13, Equation A.34], we know that

|Γ(s)| = (2π)1/2|t|σ−
1
2 e−

π|t|
2

(
1 +O

(
1

|t|

))
, (−1 < σ 6 1, |t| > 1)

where the implied constant is absolute. Thus,

s(s+ 1)Γ
( s+aχ

2

)
Γ
(

1−s+aχ
2

) � |t|σ+
3
2 , (−1 < σ 6 1, |t| > 1).
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Now we consider the remaining case where |t| < 1. Since Γ(s) is never zero and it has
simple poles at nonpositive integers, we have

s(s+ 1)Γ
( s+aχ

2

)
Γ
(

1−s+aχ
2

) � |s(s+ 1)(1− s+ aχ)|
|s+ aχ|

, (−1 < σ 6 1, |t| < 1).

Thus,

Ep(s, χ)� pσ−
1
2

(
|t|σ+

3
2 + |(σ + 1− aχ)(1− σ + aχ)|

)(1− (p1/2 log p)−σ

(σ + 1)σ

)
for −1 < σ 6 1 and t ∈ R which finishes the proof of Theorem 1.2.2.

3.5 Proof of Theorem 1.2.1

Define

M(χ) :=
1

p− 1

∑
16N6p−1

|Sχ(N)|2

where

Sχ(N) =
∑
n6N

χ(n).

First, we show that

M(χ) =
p+ 1

12
+ aχ

p2

π2(p− 1)
|L(1, χ)|2 . (3.5.1)

For a more general result than (3.5.1), we refer to [1]. For 1 6 N 6 p− 1, we have

Sχ(N) = T (χ,N) + T (χ) +
χ(N)

2
(3.5.2)

where

T (χ,N) =
pχ(N)

πiτ(χ)(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

L(1, ψ)τ
(
χψ
)
ψ(N)
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and

T (χ) = aχ
τ(χ)

πi
L(1, χ)

by Lemma 3.2.9. By (3.5.2), we have

M(χ) =
1

p− 1

∑
16N6p−1

(
|T (χ,N)|2 + |T (χ)|2 +

1

4

)
+

1

p− 1

∑
16N6p−1

(
2<
(
T (χ,N)T (χ)

))
+

1

p− 1

∑
16N6p−1

(
2<

(
T (χ,N)

χ(N)

2

)
+ 2<

(
T (χ)

χ(N)

2

))
. (3.5.3)

By orthogonality, Lemma 3.2.1, the last sum in (3.5.3) is zero and the second sum in (3.5.3)
is

1

p− 1

∑
16N6p−1

(
2<
(
T (χ,N)T (χ)

))
= 2<

(
T (χ)

p

πiτ(χ)(p− 1)
L(1, χ)τ(χ0)

)
= aχ

2p

π2(p− 1)
|L(1, χ)|2 . (3.5.4)

Again by Lemma 3.2.1, the first sum in (3.5.3) is equal to

p

π2(p− 1)2

∑
ψ (mod p)
ψ(−1)=−1

|L(1, ψ)|2
∣∣τ (χψ)∣∣2 + aχ

p

π2
|L(1, χ)|2 +

1

4
. (3.5.5)

By considering the cases χ(−1) = ±1 and using (3.1.2), we have

p

π2(p− 1)2

∑
ψ (mod p)
ψ(−1)=−1

|L(1, ψ)|2
∣∣τ (χψ)∣∣2

=
p2

π2(p− 1)2

∑
ψ (mod p)
ψ(−1)=−1

|L(1, ψ)|2 + aχ
p− p2

π2(p− 1)2
|L(1, χ)|2

=
p2

π2(p− 1)2
π2(p− 1)(p− 2)

6p2
p− 1

2
− aχ

p

π2(p− 1)
|L(1, χ)|2

=
p− 2

12
− aχ

p

π2(p− 1)
|L(1, χ)|2 . (3.5.6)
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By (3.5.3)-(3.5.6), we have

M(χ) =
p− 2

12
− aχ

p

π2(p− 1)
|L(1, χ)|2 + aχ

p

π2
|L(1, χ)|2 +

1

4
+ aχ

2p

π2(p− 1)
|L(1, χ)|2

=
p+ 1

12
+ aχ

1

π2

(
p

p− 1
+ p

)
|L(1, χ)|2

=
p+ 1

12
+ aχ

p2

π2(p− 1)
|L(1, χ)|2

which finishes the proof of (3.5.1).

Now, we deduce Theorem 1.2.1. Let k > 2 be the order of the Dirichlet character χ
modulo p. For any integer a with p - a, we have

1 + χ(a) + χ2(a) + ...+ χk−1(a) =

{
k if χ(a) = 1,

0 otherwise

since (1− χ(a))(1 + χ(a) + χ2(a) + ...+ χk−1(a)) = 0 as p - a. Let p - n1n2 and n−12 denote
the multiplicative inverse of n2 modulo p. Then we have

1 +
k−1∑
j=1

χj(n1)χj(n2) = 1 + χ(n1n
−1
2 ) + χ2(n1n

−1
2 ) + ...+ χk−1(n1n

−1
2 )

=

{
k if χ(n1n

−1
2 ) = 1,

0 otherwise.
(3.5.7)

Let Ep(χ) denote the expected behaviour of Ap(χ), that is,

Ep(χ) :=
1

k(p− 1)

∑
16N6p−1

( ∑
16n6N

1

)2

=
p(2p− 1)

6k
.

Since the condition χ(n1n
−1
2 ) = 1 in (3.5.7) is equivalent to χ(n1) = χ(n2) for p - n1n2, we

have

kEp(χ) +
k−1∑
j=1

M(χj) =
1

p− 1

∑
16N6p−1

∑
16n1,n26N

(
1 +

k−1∑
j=1

χj(n1)χj(n2)

)
= kAp(χ).
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Thus,

Ap(χ) = Ep(χ) +
1

k

k−1∑
j=1

M(χj).

By the identity above and (3.5.1) applied to the the nonprincipal Dirichlet characters χj

for j = 1, 2, .., k − 1, we have

Ap(χ) = Ep(χ) +
1

k

k−1∑
j=1

(
p+ 1

12
+ aχj

p2

π2(p− 1)

∣∣L(1, χj)
∣∣2)

= Ep(χ) +
(k − 1)(p+ 1)

12k
+

p2

π2k(p− 1)

k−1∑
j=1

aχj
∣∣L(1, χj)

∣∣2
= Ep(χ) +

(k − 1)(p+ 1)

12k
+ aχ

p2

π2k(p− 1)

k/2∑
j=1

∣∣L(1, χ2j−1)
∣∣2

which finishes the proof of Theorem 1.2.1.
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Chapter 4

A Dirichlet Series Related to the
Error Term in the Prime Number
Theorem

4.1 Introduction

Let n > 2 be a natural number and recall that

Λ(n) =

{
log p if n = pm, p prime, m ∈ N,

0 otherwise

is the von Mangoldt function and

∆(n) =
∑
k6n

Λ(k)− Λ(n)

2
− n

is the error term in the Prime Number Theorem.

Let p > 3 be a prime number and χ be a nonprincipal Dirichlet character modulo p.
Let s = σ + it with σ, t ∈ R as usual. In this chapter, we investigate the meromorphic
behaviour of the function

∆(s, χ) :=
∞∑
n=2

χ(n)∆(n)

ns
, (σ > 2).
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On the Riemann Hypothesis and its equivalent form that ∆(n)� n
1
2
+ε for any ε > 0, we

see that the series ∆(s, χ) is absolutely convergent in σ > 3/2. In our main result of this
chapter, Theorem 1.3.1 below, we obtain the meromorphic continuation of the function
∆(s, χ) to the region σ > 1/2 which in particular shows that ∆(s, χ) is analytic in σ > 1.

Theorem (Theorem 1.3.1). Let χ be a nonprincipal Dirichlet character modulo a prime
number p > 3. For σ > 1/2, we have

∆(s, χ) =
τ(χ)χ(−1)

πi(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

L(1, ψ)τ
(
χψ
) L′
L

(s, χψ) +G(s, χ) (4.1.1)

where

G(s, χ) := L(0, χ)
L′

L
(s, χ0) +

L(s− 1, χ)

s− 1
+ s

∑
ρ

L(s− ρ, χ)

ρ2
− s2

∑
ρ

L(s− ρ, χ)

ρ2(s− ρ)

− log(2π)L(s, χ) +
1

2

Γ′

Γ

(s
2

+ 1
)
− 1

2

∞∑
n=2

χ(n)

ns
log

(
1− 1

n2

)
−
∞∑
k=1

L(2k + s, χ)− 1

2k + s
+
γ0
2

+ 1

and G(s, χ) is analytic in σ > 1/2. Here the sums over ρ run over the nontrivial zeros
of the Riemann zeta function counted with multiplicity and γ0 is the Euler-Mascheroni
constant.

The classical zero-free region for Dirichlet L-functions is given by the following result, [3,
p. 93]. There exists a constant c > 0 with the following property. If χ is a complex Dirichlet
character modulo q, then L(s, χ) has no zeros in the region defined by

σ >

{
1− c

log(q|t|) if |t| > 1,

1− c
log q

if |t| 6 1.
(4.1.2)

If χ is a real nonprincipal Dirichlet character modulo q, then the only possible zero of
L(s, χ) in this region is a single (simple) real zero. Such a zero, if exists, is called an
exceptional zero.

Theorem 1.3.1 gives the following corollary about exceptional zeros.

Corollary (Corollary 1.3.2). Let p > 3 be a prime number and R be the real line segment(
1− c

log p
, 1
)

where c is as in (4.1.2) and let
(
.
p

)
denote the Legendre symbol modulo p.
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1. If p ≡ 1 (mod 4) and ∆(s, χ) is analytic in R for at least one nonprincipal Dirichlet

character χ modulo p with χ(−1) = −1, then L
(
s,
(
.
p

))
has no exceptional zeros.

2. If p ≡ 3 (mod 4) and ∆(s, χ) is analytic in R for at least one nonprincipal Dirichlet

character χ modulo p with χ(−1) = 1, then L
(
s,
(
.
p

))
has no exceptional zeros.

Remark 4.1.1. An interesting feature of Corollary 1.3.2 is that the assumption is related
to the zeros of the Riemann zeta function via the error term ∆(.) and to the existence of a

Dirichlet character χ 6=
(
.
p

)
for which ∆(s, χ) is analytic in R, but the conclusion is about

a zero of L
(
s,
(
.
p

))
.

Here again, we would like to note that it is possible to generalize Theorem 1.3.1 and
Corollary 1.3.2 for primitive Dirichlet characters to any moduli not necessarily prime. Let
χ be a primitive Dirichlet character modulo q > 3 and let χ0 be the principal Dirichlet
character modulo q. By using a generalization of Lemma 3.2.9 concerning the partial sums
Sχ(N) where (N, q) = 1, one can consider the expression

∑
26n6qk

χ(n)

(∑
m6n

χ0(m)Λ(m)

ms
− χ0(n)Λ(n)

2ns

)
, (k ∈ N)

in view of Propositions 4.3.1 and 4.3.2 below. Then by following the proofs of these
propositions, one can obtain such a generalization of Theorem 1.3.1 and Corollary 1.3.2.

4.2 Lemmata

Lemma 4.2.1. [21, Lemma 12.4] Let A denote the set of those points s ∈ C such that
σ 6 −1 and |s+ 2k| > 1/4 for every positive integer k. Then

ζ ′

ζ
(s)� log(|s|+ 1)

uniformly for s ∈ A.

The following lemma is a modified version of Lemma 12.2 in [21].
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Lemma 4.2.2. [21, Lemma 12.2] Let A > 2 be fixed and 2 6 σ 6 A and t ∈ R be fixed.
Let T > 4(1 + |t|). Then there are real numbers T1 and T2 with −T − 1 6 t − T1 6 −T
and T 6 t+ T2 6 T + 1 such that

ζ ′

ζ
(σ + it+ u− iT1)� log2 T

and

ζ ′

ζ
(σ + it+ u+ iT2)� log2 T

uniformly in u with −1− σ 6 u 6 A+ 1− σ.

Lemma 4.2.3. [15] Let ε > 0 and let χ be a nonprincipal Dirichlet character modulo a
prime number p > 3. Then,

L(s, χ)�


(p(|t|+ 2))

1
2
−σ+ε if σ 6 0,

(p(|t|+ 2))
1−σ
2

+ε if 0 6 σ 6 1,

(p(|t|+ 2))ε if σ > 1.

Lemma 4.2.4. [21, Corollary 10.14] We have

ζ ′

ζ
(s) = B +

log π

2
− 1

s− 1
− 1

2

Γ′

Γ

(s
2

+ 1
)

+
∑
ρ

(
1

s− ρ
+

1

ρ

)
where

B := −
∑
ρ

<1

ρ
= −γ0

2
− 1 +

log(4π)

2
(4.2.1)

and γ0 is the Euler-Mascheroni constant.

Lemma 4.2.5. [21, Theorem 12.5] Let n > 2 be a natural number and T > 2 be a real
number. For a nontrivial zero ρ of ζ(s), let γ = =(ρ). Then

∑
k6n−1

Λ(k) +
Λ(n)

2
= n−

∑
ρ

|γ|6T

nρ

ρ
− log(2π)− 1

2
log

(
1− 1

n2

)
+R(n, T )
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where

R(n, T )� (log n) min

{
1,

n

T 〈n〉

}
+
n log2(nT )

T
(4.2.2)

and 〈n〉 denotes the distance from n to the nearest prime power, other than n itself.

Lemma 4.2.6. [3, Chapter 15] For u > 2, we have

N(u) =
u

2π
log
( u

2πe

)
+O(log u)

where N(u) is the number of zeros ρ of the Riemann zeta function with 0 < =(ρ) 6 u
counted with multiplicity.

4.3 Two Key Propositions

In this section, we prove two propositions that are used in the proof of the main result,
Theorem 1.3.1, of this chapter.

Proposition 4.3.1. Let χ be a nonprincipal Dirichlet character modulo a prime number
p > 3 and σ > 1. Define

E(n, s) :=
∑
m6n

Λ(m)

ms
− Λ(n)

2ns
, (n > 2). (4.3.1)

Then we have

lim
k→∞
k∈N

∑
26n6pk

χ(n)E(n, s) =
τ(χ)χ(−1)

πi(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

L(1, ψ)τ
(
χψ
) L′
L

(s, χψ)

+ L(0, χ)
L′

L
(s, χ0), (σ > 1).

Proof. By Lemma 3.2.9 and the functional equation (1.2.6), we have

Sχ(N) =
τ(χ)χ(−1)χ(N)

πi(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

L(1, ψ)τ
(
χψ
)
ψ(N)

+ L(0, χ)χ0(N) +
χ(N)

2
, (N ∈ N). (4.3.2)
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On multiplying both sides of (4.3.2) by Λ(N)/N s and summing over N ∈ N for σ > 1, we
have

S̃(s, χ) :=
∞∑
N=1

Sχ(N)Λ(N)

N s
=
τ(χ)χ(−1)

πi(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

L(1, ψ)τ
(
χψ
)(
−L

′

L
(s, χψ)

)

+ L(0, χ)

(
−L

′

L
(s, χ0)

)
− 1

2

L′

L
(s, χ). (4.3.3)

Let k > 1 be a natural number. Then

S̃k(s, χ) :=
∑
N6pk

Sχ(N)Λ(N)

N s
=
∑
N6pk

Λ(N)

N s

∑
n6N

χ(n)

=
∑
n6pk

χ(n)
∑

n6N6pk

Λ(N)

N s
.

Since ∑
n6N6pk

Λ(N)

N s
=

Λ(n)

ns
+
∑
m6pk

Λ(m)

ms
−
∑
m6n

Λ(m)

ms
,

and k ∈ N, we have

S̃k(s, χ) =
∑
n6pk

χ(n)

(
Λ(n)

ns
+
∑
m6pk

Λ(m)

ms
−
∑
m6n

Λ(m)

ms

)

=
∑
n6pk

χ(n)Λ(n)

ns
−
∑
n6pk

χ(n)
∑
m6n

Λ(m)

ms
.

Thus,

S̃k(s, χ) =
∑
n6pk

χ(n)Λ(n)

ns
−
∑

26n6pk

χ(n)
∑
m6n

Λ(m)

ms

=
1

2

∑
n6pk

χ(n)Λ(n)

ns
−
∑

26n6pk

χ(n)

(∑
m6n

Λ(m)

ms
− Λ(n)

2ns

)
(4.3.4)

Recall that

E(n, s) =
∑
m6n

Λ(m)

ms
− Λ(n)

2ns
, (n > 2, σ > 1).
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Note that the series
∑

n χ(n)E(n, s) is not necessarily convergent since we can find some
complex number s with σ > 1 such that E(n, s) does not tend to zero as n→∞. However,
for σ > 1, S̃k(s, χ) and the first term on the right-hand side of (4.3.4) converge as k →∞.
Thus, the subsequence ∑

26n6pk

χ(n)E(n, s)

of partial sums of
∑

n χ(n)E(n, s) is convergent for σ > 1 as k →∞ on natural numbers.
Hence, we have

S̃(s, χ) = −1

2

L′

L
(s, χ)− lim

k→∞
k∈N

∑
26n6pk

χ(n)E(n, s), (σ > 1). (4.3.5)

By (4.3.3) and (4.3.5), we have

lim
k→∞
k∈N

∑
26n6pk

χ(n)E(n, s) =
τ(χ)χ(−1)

πi(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

L(1, ψ)τ
(
χψ
) L′
L

(s, χψ)

+ L(0, χ)
L′

L
(s, χ0), (σ > 1)

which finishes the proof of Proposition 4.3.1.

Proposition 4.3.2. Let χ be a nonprincipal Dirichlet character modulo a prime number
p > 3 and E(n, s) be defined by (4.3.1). For σ > 2, we have

lim
k→∞
k∈N

∑
26n6pk

χ(n)E(n, s) = ∆(s, χ) + log(2π)L(s, χ) +
1

2

∞∑
n=2

χ(n)

ns
log

(
1− 1

n2

)
− γ0

2
− 1− 1

2

Γ′

Γ

(s
2

+ 1
)

+
1

1− s
L(s− 1, χ)

− s
∑
ρ

L(s− ρ, χ)

ρ2
+ s2

∑
ρ

L(s− ρ, χ)

ρ2(s− ρ)

+
∞∑
k=1

L(2k + s, χ)− 1

2k + s

where the sums over ρ run over the nontrivial zeros of the Riemann zeta function counted
with multiplicity and γ0 is the Euler-Mascheroni constant.
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Proof. Let n > 2 be a natural number and c := 1/ log(2n). Let s = σ + it be fixed
with σ > 2, t ∈ R. Let T > 4(1 + |t|) and T1 and T2 be as in Lemma 4.2.2. Note that
T1, T2 ∈ (T/2, 2T ). Then, by Lemma 2.2.1, we have

E(n, s) =
∑
m6n

Λ(m)

ms
− Λ(n)

2ns
=

1

2πi

∫ c+iT2

c−iT1
−ζ
′

ζ
(s+ w)

nw

w
dw +O

(
1

T

)
.

Let K > 5 and assume that σ −K is a negative odd integer. Define

I1 :=
1

2πi

∫ c+iT2

c−iT1
−ζ
′

ζ
(s+ w)

nw

w
dw,

I2 :=
1

2πi

∫ −K+iT2

c+iT2

−ζ
′

ζ
(s+ w)

nw

w
dw,

I3 :=
1

2πi

∫ −K−iT1
−K+iT2

−ζ
′

ζ
(s+ w)

nw

w
dw,

I4 :=
1

2πi

∫ c−iT1

−K−iT1
−ζ
′

ζ
(s+ w)

nw

w
dw.

Then,

I1 = −ζ
′

ζ
(s) +

n1−s

1− s
−

∑
ρ

−T1<γ−t<T2

nρ−s

ρ− s
−

∑
16k<K−σ

2

n−2k−s

−2k − s
− (I2 + I3 + I4)

where the sum over ρ ranges over the nontrivial zeros of ζ(s) with imaginary part γ such
that −T1 < γ − t < T2 and such zeros are counted with multiplicity.

Now, we find upper bounds for the size of I2, I3 and I4. We have

I2 =
1

2πi

∫ −1−σ+iT2
c+iT2

−ζ
′

ζ
(s+ w)

nw

w
dw +

1

2πi

∫ −K+iT2

−1−σ+iT2
−ζ
′

ζ
(s+ w)

nw

w
dw

� log2 T

T
nc(σ + 1) +

∫ −1−σ
−K

log(|σ + it+ u+ iT2|+ 1)

|σ + it+ u+ iT2|
nu du

� log2 T

T
+

log T

T

∫ −1−σ
−∞

nu du� log2 T

T
(4.3.6)

by Lemmata 4.2.1 and 4.2.2. The bound in (4.3.6) holds also for I4 by symmetry. By
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Lemma 4.2.1, we have

I3 � n−K
∫ T2

−T1

log(|σ + it−K + iv|+ 1)

|σ + it−K + iv|
dv

� n−K
log(KT )

K
T.

Letting K →∞ with the assumption that σ −K is an odd integer, we obtain

E(n, s) = −ζ
′

ζ
(s) +

n1−s

1− s
−

∑
ρ

−T1<γ−t<T2

nρ−s

ρ− s
+
∞∑
k=1

n−2k−s

2k + s
+O

(
log2 T

T

)

for σ > 2 and n > 2 where the implied constant depends on s but not on n. Let x > 3 be
a multiple of p. Then,

∑
26n6x

χ(n)E(n, s) =
∑

26n6x

χ(n)

−ζ ′
ζ

(s) +
n1−s

1− s
−

∑
ρ

−T1<γ−t<T2

nρ−s

ρ− s
+
∞∑
k=1

n−2k−s

2k + s


+O

(
x log2 T

T

)
. (4.3.7)

Since p | x, we have

∑
26n6x

χ(n)

−ζ ′
ζ

(s) +
n1−s

1− s
−

∑
ρ

−T1<γ−t<T2

nρ−s

ρ− s
+
∞∑
k=1

n−2k−s

2k + s


=
ζ ′

ζ
(s)− 1

1− s
+

∑
ρ

−T1<γ−t<T2

1

ρ− s

+
1

1− s
∑

16n6x

χ(n)n1−s +
∑

16n6x

χ(n)n−s
∑
ρ

−T1<γ−t<T2

nρ

s− ρ

+
∑

26n6x

χ(n)
∞∑
k=1

n−2k−s

2k + s
. (4.3.8)
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Define

S1 :=
1

1− s
∑

16n6x

χ(n)n1−s,

S2 :=
∑

16n6x

χ(n)n−s
∑
ρ

−T1<γ−t<T2

nρ

s− ρ
,

S3 :=
∑

26n6x

χ(n)
∞∑
k=1

n−2k−s

2k + s
.

Then by (4.3.7) and (4.3.8), we have∑
26n6x

χ(n)E(n, s) =
ζ ′

ζ
(s)− 1

1− s
+

∑
ρ

−T1<γ−t<T2

1

ρ− s

+ S1 + S2 + S3

+O

(
x log2 T

T

)
. (4.3.9)

For S1, we have

S1 =
1

1− s
L(s− 1, χ) +Os

(∫ ∞
x

(∑
n6u

χ(n)

)
u−σ du

)

=
1

1− s
L(s− 1, χ) +Os,p

(
x1−σ

)
(4.3.10)

by partial summation and the Pólya-Vinogradov Inequality, Lemma 3.2.2.

For S3, we have

S3 =
∞∑
k=1

1

2k + s

∑
26n6x

χ(n)n−2k−s (4.3.11)

and ∑
26n6x

χ(n)n−2k−s =
∑

16n6x

χ(n)n−2k−s − 1

= L(2k + s, χ)− 1−
∑
n>x+1

χ(n)n−2k−s. (4.3.12)
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By the integral test, we have∣∣∣∣∣ ∑
n>x+1

χ(n)n−2k−s

∣∣∣∣∣ 6 (x+ 1)−2k−σ +

∫ ∞
x+1

u−2k−σ du

= (x+ 1)−2k−σ +
(x+ 1)−2k−σ+1

2k + σ − 1
(4.3.13)

for k > 1 and σ > 2. Thus, by (4.3.11)-(4.3.13), we have

S3 =
∞∑
k=1

L(2k + s, χ)− 1 +O
(

(x+ 1)−2k−σ + (x+1)−2k−σ+1

2k+σ−1

)
2k + s

. (4.3.14)

Note that the series

∞∑
k=1

L(2k + s, χ)− 1

2k + s

is absolutely convergent for σ > −1 since L(2k+s, χ)−1� 2−2k−σ by (4.3.13) where x+1
is replaced by 2. The contribution of the error term in (4.3.14) is

�
∞∑
k=1

x−2k−σ

|2k + s|
+
∞∑
k=1

x−2k−σ+1

|2k + s|(2k + σ − 1)

6
∞∑
k=1

x−2k−σ +
∞∑
k=1

x−1−σ

|2k + s|(2k + σ − 1)

� x−2−σ + x−1−σ � x−1−σ (4.3.15)

where the implied constant is absolute. Thus,

S3 =
∞∑
k=1

L(2k + s, χ)− 1

2k + s
+O

(
x−1−σ

)
. (4.3.16)

Now we consider S2. By the identity,

1

s− ρ
= −1

ρ
− s

ρ2
+

s2

ρ2(s− ρ)
,
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we have∑
16n6x

χ(n)n−s
∑
ρ

−T1<γ−t<T2

nρ

s− ρ
=
∑

16n6x

χ(n)

ns

∑
ρ

−T1<γ−t<T2

nρ
(
−1

ρ
− s

ρ2
+

s2

ρ2(s− ρ)

)

=
∑

16n6x

χ(n)

ns

∑
ρ

−T1<γ−t<T2

(
−n

ρ

ρ

)
− s

∑
ρ

−T1<γ−t<T2

1

ρ2

∑
16n6x

χ(n)

ns−ρ

+ s2
∑
ρ

−T1<γ−t<T2

1

ρ2(s− ρ)

∑
16n6x

χ(n)

ns−ρ
.

Define

S21 :=
∑

16n6x

χ(n)

ns

∑
ρ

−T1<γ−t<T2

(
−n

ρ

ρ

)
,

S22 := −s
∑
ρ

−T1<γ−t<T2

1

ρ2

∑
16n6x

χ(n)

ns−ρ
,

S23 := s2
∑
ρ

−T1<γ−t<T2

1

ρ2(s− ρ)

∑
16n6x

χ(n)

ns−ρ
.

Then S2 = S21 + S22 + S23. For S22, we have

S22 = −s
∑
ρ

−T1<γ−t<T2

1

ρ2

(
L(s− ρ, χ) +O

(
1

xσ−β
+

∫ ∞
x

du

uσ−β

))
.

The contribution of the error term above is

�
∑
ρ

xβ−σ+1

|ρ|2 (σ − β − 1)
� x2−σ

since s is fixed with σ > 2, <(ρ) < 1 for all zeros ρ and
∑

ρ
1
ρ2

is absolutely convergent.
Moreover,

∑
ρ

−T1<γ−t<T2

L(s− ρ, χ)

ρ2
=
∑
ρ

L(s− ρ, χ)

ρ2
+O

 ∑
ρ

γ /∈(−T1+t,T2+t)

|L(s− ρ, χ)|
|ρ|2

 .
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The error term above is∑
ρ

γ /∈(−T1+t,T2+t)

|L(s− ρ, χ)|
|ρ|2

� ζ(σ − 1)
∑
ρ

γ /∈(−T1+t,T2+t)

1

|ρ|2

�
∑
ρ

γ /∈(−T1+t,T2+t)

1

|ρ|2
(4.3.17)

for σ > 2. Since t is fixed and T1, T2 ∈ (T/2, 2T ), we have∑
ρ

γ /∈(−T1+t,T2+t)

1

|ρ|2
�
∫ ∞
T

1

u2
d(N(u)) (4.3.18)

where N(u) is the number of zeros ρ with 0 < γ = =(ρ) 6 u counted with multiplicity.
Let R(u) be defined by

N(u) =
u

2π
log

u

2πe
+R(u).

Then

∫ ∞
T

1

u2
dN(u) =

∫ ∞
T

1

u2

(
1

2π
log
( u

2πe

)
+

u

2π

2πe

u

1

2πe

)
du

+

∫ ∞
T

1

u2
dR(u)

�
∫ ∞
T

log u

u2
du+

∣∣∣∣−R(T )

T 2
+

∫ ∞
T

R(u)

u3
du

∣∣∣∣
� 1 + log T

T
+

log T

T 2
� log T

T
(4.3.19)

on integration by parts and Lemma 4.2.6. By (4.3.17)-(4.3.19), we have∑
ρ

γ /∈(−T1+t,T2+t)

|L(s− ρ, χ)|
|ρ|2

� log T

T
(4.3.20)

for σ > 2. Thus,

S22 = −s
∑
ρ

L(s− ρ, χ)

ρ2
+O

(
log T

T

)
+O

(
x2−σ

)
(4.3.21)
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Similarly, we have

S23 = s2
∑
ρ

−T1<γ−t<T2

1

ρ2(s− ρ)

(
L(s− ρ, χ) +O(x2−σ)

)
= s2

∑
ρ

L(s− ρ, χ)

ρ2(s− ρ)
+O

(
log T

T

)
+O

(
x2−σ

)
(4.3.22)

by using the same bounds above since |s− ρ| > σ − 1 > 1.

By considering the terms with n = 1 and n > 2 in S21, we have

S21 =
∑

26n6x

χ(n)

ns

∑
ρ

−T1<γ−t<T2

(
−n

ρ

ρ

)
+

∑
ρ

−T1<γ−t<T2

(
−1

ρ

)
(4.3.23)

Now, we want to replace the condition −T1 < γ − t < T2 by −T 6 γ 6 T in the sums
above and in the third term on the right-hand side of (4.3.9). Since T1 and T2 satisfy
−T − 1 6 t− T1 6 −T and T 6 t+ T2 6 T + 1, the number of zeros we include or discard
by the replacement of the condition −T1 < γ − t < T2 by −T 6 γ 6 T is �t log T by
Lemma 4.2.6. Also, for such zeros ρ, we have 1

ρ
� 1

T
and 1

ρ−s �
1
T

since t is fixed and

T > 4(1 + |t|). Thus, for the third term on the right-hand side of (4.3.9), we have∑
ρ

−T1<γ−t<T2

1

ρ− s
=
∑
ρ

|γ|6T

1

ρ− s
+O

(
log T

T

)
(4.3.24)

By (4.3.23) and the argument above, we have

S21 =
∑

26n6x

χ(n)

ns

∑
ρ

|γ|6T

(
−n

ρ

ρ

)
+O

(
n log T

T

)
−
∑
ρ

|γ|6T

1

ρ
+O

(
log T

T

)
.

The contributions of the error terms above are

� log T

T

∑
n6x

1

nσ−1
� log T

T
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since σ > 2. Thus,

S21 =
∑

26n6x

χ(n)

ns

∑
ρ

|γ|6T

(
−n

ρ

ρ

)
−
∑
ρ

|γ|6T

1

ρ
+O

(
log T

T

)
. (4.3.25)

By Lemma 4.2.5, we have, for n > 2,

∆(n) :=
∑
k6n−1

Λ(k) +
Λ(n)

2
− n = −

∑
ρ

|γ|6T

nρ

ρ
− log(2π)− 1

2
log

(
1− 1

n2

)
+R(n, T )

where

R(n, T )� (log n) min

{
1,

n

T 〈n〉

}
+
n log2(nT )

T
(4.3.26)

and 〈n〉 denotes the distance from n to the nearest prime power, other than n itself. Thus,∑
26n6x

χ(n)

ns

∑
ρ

|γ|6T

(
−n

ρ

ρ

)
=
∑

26n6x

χ(n)

ns

[
∆(n) + log(2π) +

1

2
log

(
1− 1

n2

)
−R(n, T )

]
.

(4.3.27)

Since ∆(n)� n, we have

∑
26n6x

χ(n)∆(n)

ns
=
∞∑
n=2

χ(n)∆(n)

ns
+O

(∑
n>x

1

nσ−1

)
= ∆(s, χ) +O

(
x2−σ

)
(4.3.28)

and similarly ∑
26n6x

χ(n)

ns
= L(s, χ)− 1 +O

(
x1−σ

)
. (4.3.29)

Since log (1− 1/n2)� 1/n2, we have

∑
26n6x

χ(n)

ns
log

(
1− 1

n2

)
=
∞∑
n=2

χ(n)

ns
log

(
1− 1

n2

)
+O

(∑
n>x

1

nσ+2

)

=
∞∑
n=2

χ(n)

ns
log

(
1− 1

n2

)
+O

(
x−1−σ

)
. (4.3.30)
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By (4.3.26), we have

∑
26n6x

χ(n)

ns
R(n, T )�

∑
26n6x

1

nσ

(
(log n) min

{
1,

n

T 〈n〉

}
+
n log2(nT )

T

)
� log2 T

T

∑
26n6x

log2 n

nσ−1

� log2 T

T
(4.3.31)

since σ > 2. By (4.3.27) and (4.3.28)-(4.3.31), we have

∑
26n6x

χ(n)

ns

∑
ρ

|γ|6T

(
−n

ρ

ρ

)
= ∆(s, χ) + log(2π) (L(s, χ)− 1) +

1

2

∞∑
n=2

χ(n)

ns
log

(
1− 1

n2

)

+O
(
x2−σ

)
+O

(
log2 T

T

)
. (4.3.32)

By (4.3.25) and (4.3.32), we have

S21 = ∆(s, χ) + log(2π) (L(s, χ)− 1) +
1

2

∞∑
n=2

χ(n)

ns
log

(
1− 1

n2

)
−
∑
ρ

|γ|6T

1

ρ

+O
(
x2−σ

)
+O

(
log2 T

T

)
. (4.3.33)

By (4.3.21), (4.3.22) and (4.3.33), we have

S2 = ∆(s, χ) + log(2π) (L(s, χ)− 1) +
1

2

∞∑
n=2

χ(n)

ns
log

(
1− 1

n2

)
−
∑
ρ

|γ|6T

1

ρ

− s
∑
ρ

L(s− ρ, χ)

ρ2
+ s2

∑
ρ

L(s− ρ, χ)

ρ2(s− ρ)

+O
(
x2−σ

)
+O

(
log2 T

T

)
. (4.3.34)
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By (4.3.9), (4.3.16), (4.3.10), (4.3.24) and (4.3.34), , we have

∑
26n6x

χ(n)E(n, s) = ∆(s, χ) + log(2π) (L(s, χ)− 1) +
1

2

∞∑
n=2

χ(n)

ns
log

(
1− 1

n2

)
+
ζ ′

ζ
(s)− 1

1− s
+
∑
ρ

|γ|6T

1

ρ− s
−
∑
ρ

|γ|6T

1

ρ

+
1

1− s
L(s− 1, χ)− s

∑
ρ

L(s− ρ, χ)

ρ2
+ s2

∑
ρ

L(s− ρ, χ)

ρ2(s− ρ)

+
∞∑
k=1

L(2k + s, χ)− 1

2k + s

+O

(
x log2 T

T

)
+O

(
x2−σ

)
.

By letting T →∞ and using Lemma 4.2.4 in the form

ζ ′

ζ
(s)− 1

1− s
−
∑
ρ

(
1

s− ρ
+

1

ρ

)
= log(2π)− γ0

2
− 1− 1

2

Γ′

Γ

(s
2

+ 1
)

where γ0 is the Euler-Mascheroni constant, we have

∑
26n6x

χ(n)E(n, s) = ∆(s, χ) + log(2π)L(s, χ) +
1

2

∞∑
n=2

χ(n)

ns
log

(
1− 1

n2

)
− γ0

2
− 1− 1

2

Γ′

Γ

(s
2

+ 1
)

+
1

1− s
L(s− 1, χ)

− s
∑
ρ

L(s− ρ, χ)

ρ2
+ s2

∑
ρ

L(s− ρ, χ)

ρ2(s− ρ)

+
∞∑
k=1

L(2k + s, χ)− 1

2k + s
+O

(
x2−σ

)
.
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By taking x = pk and letting k →∞ among natural numbers, we have

lim
k→∞
k∈N

∑
26n6pk

χ(n)E(n, s) = ∆(s, χ) + log(2π)L(s, χ) +
1

2

∞∑
n=2

χ(n)

ns
log

(
1− 1

n2

)
− γ0

2
− 1− 1

2

Γ′

Γ

(s
2

+ 1
)

+
1

1− s
L(s− 1, χ)

− s
∑
ρ

L(s− ρ, χ)

ρ2
+ s2

∑
ρ

L(s− ρ, χ)

ρ2(s− ρ)

+
∞∑
k=1

L(2k + s, χ)− 1

2k + s

for σ > 2 which finishes the proof of Proposition 4.3.2.

4.4 Proof of Theorem 1.3.1

By Propositions 4.3.1 and 4.3.2, we have

∆(s, χ) + log(2π)L(s, χ) +
1

2

∞∑
n=2

χ(n)

ns
log

(
1− 1

n2

)
− γ0

2
− 1− 1

2

Γ′

Γ

(s
2

+ 1
)

+
1

1− s
L(s− 1, χ)

− s
∑
ρ

L(s− ρ, χ)

ρ2
+ s2

∑
ρ

L(s− ρ, χ)

ρ2(s− ρ)
+
∞∑
k=1

L(2k + s, χ)− 1

2k + s

=
τ(χ)χ(−1)

πi(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

L(1, ψ)τ
(
χψ
) L′
L

(s, χψ) + L(0, χ)
L′

L
(s, χ0) (4.4.1)

for σ > 2. Define

G(s, χ) := L(0, χ)
L′

L
(s, χ0) +

L(s− 1, χ)

s− 1
+ s

∑
ρ

L(s− ρ, χ)

ρ2
− s2

∑
ρ

L(s− ρ, χ)

ρ2(s− ρ)

− log(2π)L(s, χ) +
1

2

Γ′

Γ

(s
2

+ 1
)

− 1

2

∞∑
n=2

χ(n)

ns
log

(
1− 1

n2

)
−
∞∑
k=1

L(2k + s, χ)− 1

2k + s
+
γ0
2

+ 1
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for σ > 2. Then by (4.4.1), we have

∆(s, χ) =
τ(χ)χ(−1)

πi(p− 1)

∑
ψ (mod p)
ψ(−1)=−1

L(1, ψ)τ
(
χψ
) L′
L

(s, χψ) +G(s, χ) (4.4.2)

for σ > 2. Now, we observe that the function G(s, χ) is analytic in σ > 1/2 unconditionally.
The term

− log(2π)L(s, χ) +
1

2

Γ′

Γ

(s
2

+ 1
)
− 1

2

∞∑
n=2

χ(n)

ns
log

(
1− 1

n2

)
−
∞∑
k=1

L(2k + s, χ)− 1

2k + s

is clearly analytic in σ > 1/2 since L(s, χ) is analytic therein and

∞∑
n=2

χ(n)

ns
log

(
1− 1

n2

)
�

∞∑
n=2

1

nσ+2
,

and

∞∑
k=1

L(2k + s, χ)− 1

2k + s
�

∞∑
k=1

2−2k−σ

|2k + s|

and Γ(z) is never zero and the poles of Γ(z) are at z = 0,−1,−2, . . . . For the term

L(0, χ)
L′

L
(s, χ0) +

L(s− 1, χ)

s− 1
+ s

∑
ρ

L(s− ρ, χ)

ρ2
− s2

∑
ρ

L(s− ρ, χ)

ρ2(s− ρ)
,

let s0 = σ0 + it0 be a complex number with σ0 := <(s0) > 1/2 such that s0 6= 1 and
ζ(s0) 6= 0. Then the term

L(0, χ)
L′

L
(s, χ0) +

L(s− 1, χ)

s− 1
(4.4.3)

is clearly analytic at s = s0. By Lemma 4.2.3 and the fact that <(ρ) < 1 for all zeros ρ of
ζ(s), we have the bounds

L(s0 − ρ, χ)�p

{
(|t0 − γ|+ 2)

1
2
+ε if σ0 > 1,

(|t0 − γ|+ 2)
1
2
−(σ0−1)+ε if 1

2
< σ0 6 1

(4.4.4)
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for any ε > 0. Note that for such a complex number s0, we have |s0 − ρ| � 1 for all zeros
ρ and thus convergence of the sums∑

ρ

L(s− ρ, χ)

ρ2
and

∑
ρ

L(s− ρ, χ)

ρ2(s− ρ)
(4.4.5)

when s→ s0 is determined by the contributions of the zeros ρ with |γ| > 2|t|. By (4.4.4),
we have ∣∣∣∣∣∣∣

∑
ρ

|γ|>2|t|

L(s− ρ, χ)

ρ2

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
∑
ρ

|γ|>2|t|

L(s− ρ, χ)

ρ2(s− ρ)

∣∣∣∣∣∣∣
�

∑
ρ

|γ|>2|t|

|L(s− ρ, χ)|
|ρ|2

�p

∑
ρ

|γ|>2|t|

max
{

(|t0 − γ|+ 2)
1
2
+ε , (|t0 − γ|+ 2)

1
2
−(σ0−1)+ε }

|γ|2

�p

∑
ρ

|γ|>2|t|

max
{

(|γ|+ 2)
1
2
+ε , (|γ|+ 2)

3
2
−σ0+ε }

|γ|2
. (4.4.6)

Since the sum
∑

ρ
1

γ1+ε
is convergent for any ε > 0, we have

∑
ρ

|γ|>2|t|

(|γ|+ 2)
1
2
+ε

|γ|2
�
∑
ρ

1

γ
3
2
−ε
� 1

and ∑
ρ

|γ|>2|t|

(|γ|+ 2)
3
2
−σ0+ε

|γ|2
�
∑
ρ

1

γ
1
2
+σ0−ε

� 1

since σ0 > 1/2 is fixed and ε > 0 is arbitrary. Thus, the sums in (4.4.5) are absolutely
convergent in this case.

If s0 = 1, the the sums in (4.4.5) are absolutely convergent at s = s0 as in the previous
case since |1 − ρ| � 1 for all zeros ρ. Now, we consider the behaviour of the terms in
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(4.4.3) as s→ s0 = 1. Since

L′

L
(s, χ0) =

d

ds
log

(
ζ(s)

(
1− 1

ps

))
=
ζ ′

ζ
(s) +

log p

ps − 1
(4.4.7)

= − 1

s− 1
+ f1(s)

where f1(s) is analytic at s = 1 by Lemma 4.2.4, it is enough to consider

lim
s→1

(
L(0, χ)

(
− 1

s− 1

)
+
L(s− 1, χ)

s− 1

)
= lim

s→1

L(s− 1, χ)− L(0, χ)

s− 1

= L′(0, χ)

and the existence of the limit above gives the analyticity of G(s, χ) at s = 1.

Now assume that there exists a zero ρ0 of ζ(s) with β0 := <(ρ0) > 1/2. Let mρ0 be
the multiplicity of ρ0. By the argument in (4.4.6), the sums over zeros in the definition of
G(s, χ) are absolutely convergent if s is not close to a zero ρ. Thus, for the analyticity of
G(s, χ) at s = ρ0 it is enough to consider the behaviour of

L(0, χ)
L′

L
(s, χ0)− s2

L(s− ρ0, χ)

ρ2(s− ρ0)
mρ0 (4.4.8)

when s→ ρ0 as the other terms in the definition of G(s, χ) are analytic at s = ρ0. Since

L′

L
(s, χ0) = mρ0

1

s− ρ0
+ f2(s) (4.4.9)

where f2(s) is analytic at s = ρ0 by (4.4.7) and Lemma 4.2.4, it is enough to consider

lim
s→ρ0

(
L(0, χ)mρ0

1

s− ρ0
− s2L(s− ρ0, χ)

ρ2(s− ρ0)
mρ0

)
= mρ0 lim

s→ρ0

L(0, χ)− s2

ρ20
L(s− ρ0, χ)

s− ρ0

= mρ0 lim
h→0

L(0, χ)− h2+2hρ0+ρ20
ρ20

L(h, χ)

h

= mρ0

(
2

ρ0
L(0, χ)− L′(0, χ)

)
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and the existence of the limit above gives the analyticity of G(s, χ) at s = ρ0.

Hence, G(s, χ) is analytic in σ > 1/2 unconditionally and this finishes the proof of
Theorem 1.3.1 by analytic continuation and (4.4.2).

4.5 Proof of Corollary 1.3.2

By Euler’s criterion, [23, Corollary 2.38], we have(
−1

p

)
= (−1)

p−1
2 .

Thus, if p ≡ 1 (mod 4), then the Legendre symbol
(
.
p

)
is an even Dirichlet character,

i.e.
(
−1
p

)
= 1. If χ is an odd Dirichlet character, i.e. χ(−1) = −1, then the Dirichlet

characters χψ in the first term on the right-hand side of (4.1.1) range over all even Dirichlet
characters and thus one of the terms in this sum is

L

(
1, χ

(
.

p

))
τ

((
.

p

))
L′

L

(
s,

(
.

p

))
.

If ρ ∈ R is a zero of L
(
s,
(
.
p

))
, then the pole of the above function at s = ρ can not

be canceled by another term in the sum on the right-hand side of (4.1.1). This gives the
desired contradiction with the assumption that ∆(s, χ) is analytic in R. By a similar
argument, the second assertion of Corollary 1.3.2 follows and this finishes the proof.
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