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Abstract 

The work developed here was initially made to provide a comprehensive model for the modified 

Loschmidt cell, but the project evolved to derive a more robust transient composite domain diffusion 

(TCDD) model. The original work created a symmetrical TCDD model in cartesian coordinates. But the 

project grew to create a TCDD model for: any geometry, symmetric / non-symmetric and for any 

homogenous exterior boundary condition. The expansion of the work allows for this TCDD model to apply 

to more applications. Since, many complex experiments resort to quasi-steady state models to perform 

their analysis, when a more accurate TCDD model would be better suited. For instance, the need for a 

more accurate model for the modified Loschmidt cell was shown in [1], where the quasi-steady state 

model currently used to extract the effective diffusion coefficient had errors potentially as high as 100%. 

Whereas, the model developed here does not employ any assumptions regarding their experiment, and 

thus would yield better results. The model developed utilized Vodicka’s Orthogonality to resolve the 

inhomogeneous boundary conditions applied to the interior boundaries of the composite domain. The 

model was validated experimentally, by adapting a known radial diffusion experiment to become a 

composite domain diffusion experiment. The experiment, created by Kim [2], was adapted by performing 

it on an annulus disk and retrieving the effective diffusivity using the TCDD model and comparing those 

results to the solid disk’s. From this experiment it was statistically shown that the two models retrieved 

the same values, thus validating the TCDD model. Also, this thesis analyzed which solver was best to 

conduct parameter estimation on the model, by creating artificial data of a modified Loschmidt cell and 

fitting the known effective diffusivity that produced the concentration profile. It was discovered that in 

simple geometries, derivative based solvers work best. However, as the modified Loschmidt cell reached 

8 different domains of diffusion, a brute force tactic was considerably more accurate. Therefore, since this 

model developed is equipped to replace the erroneous quasi-steady state model of the modified 

Loschmidt cell, it should be employed to perform its parameter estimation. 
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1. Introduction 

Breakthrough developments in advanced materials require detailed characterization of their properties, 

and this in turn requires a mathematical model to interpret the data and quantify the unknown property 

of the material. Some properties require sophisticated experiments, and these must have a model 

counterpart that is sufficiently advanced, or else significant error will be introduced into the parameter 

estimation, undermining the validity of the experimental results.  Analytical mechanistic models are 

preferred for several reasons, including the fact that the error associated with the parameter estimation 

is easily quantified and, and in most cases it is much lower than numerical methods. In this work a 

generalized analytical solution to transient composite domain diffusion (TCDD) was developed. The 

solution was derived for diffusion through discrete regions with different properties, which is directly 

applicable to mass transport through a series of porous media layers such as electrodes found in fuel cells, 

zinc-air batteries, and some types of redox flow batteries.  The aim of this work was specifically targeted 

at analyzing the Loschmidt diffusion experiment, the literature reports of which have universally used a 

quasi-steady-state approximation to analyze the result.  Quasi-steady state models can fit experimental 

data well [3], even though their parameter estimates can deviate by more than 100% [1] from true values. 

Therefore, extracting accurate parameter estimates from these experiments requires more than a model 

that fits the data well, but describes the mechanism of the experiment properly.  Although TCDD models 

were used as far back as the 1950’s [4] & [5], their  ability to estimate parameters has not been 

investigated thoroughly, which is a gap addressed by this work.   
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1.1. Motivation 

Most TCDD models in the literature were derived for one specific scenario thus lack generality, and 

furthermore they do not approach the problem as a tool for parameter estimation [1], [6] & [7]. In other 

words, all existing applications of the TCCD model are aimed at predicting fluxes and/or species profiles 

in domains with known transport parameters, rather than the inverse problem of fitting a transport 

parameter based on measured fluxes or profiles. This thesis aims to fill that gap by creating a general 

model that can be used to extract more accurate parameter estimates from state-of-the-art 

characterization techniques that would be better represented with a TCDD model. For example, the 

application considered in this work is the Modified Loschmidt cell which characterizes the effective 

diffusion through thin porous media [3]. The original application of the Loschmidt cell was to measure 

binary diffusion coefficients by monitoring the transient diffusion species A from its reservoir into a 

connected reservoir filled with species B [8].  The ‘modified’ version of this experiment places a porous 

specimen between the reservoirs, and hence the diffusion rate is reduced by the effective diffusivity of 

the porous separator.  In its original form a quasi-steady state model is suitable since there is no composite 

domain.  Once the porous specimen is introduced as a separator, however, a composite domain is created 

and the complexity of the TCDD model is necessary [1]. This project was specifically aimed at creating a 

TCDD model for the Modified Loschmidt cell, however the work presents a general model that can be 

applied to many situations. The TCDD model formulated can simulate an arbitrary number of distinct 

domains of diffusion, with any homogeneous exterior boundary conditions applied, and in any coordinate 

system. This resulting formulation has been implemented as a Python package to ensure the model 

created can be used as easily as possible. 

In addition to the generalized solution and numerical implementation, this thesis additionally proves that 

the derived model is capable of performing parameter estimation, and this was validated experimentally. 

The development of this model should lessen the need for experimentalist to rely on numerical methods 

or quasi-steady state models to characterize materials and replace it with a more reliable analytical model. 

Therefore, the motivation behind this project was to develop a general TCDD model using Vodicka’s 

Orthogonality to improve upon current characterization tools. 
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2. Background 

The model developed could be applied to many different applications, but to narrow down the topic this 

work primarily discussed how it pertains to diffusion through thin porous media. More specifically, the 

solution was applied to model the modified Loschmidt cell, which is a commonly used experiment for 

measuring the diffusive properties of thin porous media in the through-plane direction. This chapter will 

first describe the role of diffusion in fuel cells, then provide a review of Fick’s law in it various forms 

including application to porous materials, survey two experimental technique for measuring effective 

diffusion coefficients which are both used in this work, and finally introduce Vodicka’s Orthogonality that 

will be used to solve the transient form of Fick’s law applied to composite domains.   

2.1. Diffusion in Polymer Electrolyte Membrane Fuel Cells 

One area where the rate of diffusion through porous materials is critical are electrochemical devices, such 

as fuel cells.  Polymer electrode membrane (PEM) hydrogen fuels operate on the following principles: 

hydrogen gas oxidizes at the anode to produce protons; while oxygen gas reacts with protons that are 

transported through the PEM to produce water. 

 

Figure 1: Schematic of a PEM Hydrogen Fuel Cell 
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A PEM fuel cell’s electrochemical process powers an external circuit, see Figure 1. Thin porous media and 

composite domain diffusion facilitate the transport of hydrogen/oxygen gas to the anode and cathode, 

respectively. A common electrode setup is to adhere a gas diffusion layer (GDL) to the catalyst layer 

connected by a microporous layer (MPL). The GDL serves several functions: distribute reactant more 

uniformly over the catalyst layer, drain produced water, structurally support the catalyst layer, transport 

current and dissipate heat [9]. Spreading the reactant, supplied by flow channels, to regions under the 

ribs is especially crucial to making a PEM commercially viable, since it aids in obtaining full utilization of 

the catalyst layer’s expensive catalytic materials. The catalyst layer accounts for the largest cost of the 

PEM fuel cell, due to the rare/expensive materials required to catalyze the reactions, primarily platinum 

[9]. Figure 2, depicts an illustration of a typical PEM electrode. 

 

 

Figure 2: Diagram of a typical GDL / Catalyst Layer stack [9] 

Therefore, the feed gases (hydrogen and oxygen) must diffuse through multiple different layers of porous 

media in a PEM hydrogen fuel cell. The diffusion/mass transport of these species strongly dictates the 
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efficiency of the overall fuel cell. This necessitates a significant emphasis on the characterization of the 

effective diffusion coefficient of GDLs and catalyst layers in hydrogen fuel cell research. Mass transport 

will typically occur in two directions: through-plane and in-plane. The through-plane effective diffusion 

coefficient refers to the diffusion of reactant towards the catalyst, while the in-plane pertains to the lateral 

diffusion to the regions under the ribs, creating a more uniform concentration profile at the catalyst layer. 

In-plane measurements can be conducted with relative ease [2] [10] [11], but the through-plane direction 

presents a challenge due to the thinness of the materials.  As such, the Loschmidt experiment is one of 

the only tools available.   

 

2.2. Conservation of Mass in Porous Media 

Describing mass transfer through a porous domain requires homogenizing the heterogenous domain. It 

assumes that the properties within the material are uniformly distributed; such that the solid phase’s 

topographical effects are approximated using effective parameters which represents the hinderance the 

solid matrix exerts on mass transport in the pore space. Homogenization transforms the material into a 

continuum, and so conventional analytical modelling techniques can be applied to perform predictions or 

fit for the effective properties. Alternatively, to capture the true pore scale phenomena would necessitate 

3D imaging and performing time consuming numerical methods on a voxel image of the porous media. 

Imaging in conjunction with numerical methods has several difficulties to overcome, such as: error 

propagation, image noise, time-consuming and expensive voxelated imaging. In many technical porous 

media (i.e. electrodes or vapor barriers), the property of interest is typically the effective diffusion 

coefficient. The effective diffusion coefficient is a measure of the porous media’s ability to conduct gases 

through it via diffusion.  

 

2.2.1. Fickian Diffusion 

In 1855 Fick adopted the mathematics of heat conduction, first derived by Fourier in 1822, to the transport 

of mass driven by concentration gradients [12]. The mathematical theory of diffusion states that the 

diffusion flux of a material is proportional to the concentration gradient, in the normal direction to the 

area through which the material diffuses. Such that: 
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𝑁𝐴 = −𝐷 ∇𝐶𝐴 (1.) 

 

 

Therefore, incorporating Fick’s first law into the conservation of mass in porous media (3.) results in: 

∅
𝜕𝐶𝐴

𝜕𝑡
=   𝐷 ∇2𝐶𝐴 

 

(2.) 

 

 

This governing equation dictates the behaviour of a Fickian diffusion mass transport process within a 

porous domain [13].   

 

The treatment of mass conservation in homogenized porous media differs slightly from typical mass 

conservation in a true continuum since the presence of solid obstacles alters the volume available for 

accumulation.  The underlying principle remains the same: 

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = (𝑀𝑎𝑠𝑠 𝑖𝑛) − (𝑀𝑎𝑠𝑠 𝑜𝑢𝑡) + 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

To illustrate consider a representative volume of some porous media with porosity “∅” and a flux of 

species A across the boundary of the element, with no internal generation: 

 

Figure 3:  Diagram of Transient Flux through a porous volume element 

Let 𝐶𝐴 be the concentration of species A within the void space of the volume element and 𝑉 be the total 

volume of the volume element. Therefore, the accumulation of mass within the void space is described 

as: 
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𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  𝑉
𝜕(𝐶𝐴∅)

𝜕𝑡
 

The definition of flux is needed to properly describe the (𝑀𝑎𝑠𝑠 𝑖𝑛/𝑜𝑢𝑡) terms. The flux, 𝑁𝐴, is the molar 

rate of A to pass through a surface area. Therefore, the (𝑀𝑎𝑠𝑠 𝑖𝑛) and (𝑀𝑎𝑠𝑠 𝑜𝑢𝑡) terms are expressed 

as: 

(𝑀𝑎𝑠𝑠 𝑖𝑛) = 𝑁𝐴|𝑥=𝑥 × 𝐴|𝑥=𝑥 

(𝑀𝑎𝑠𝑠 𝑜𝑢𝑡) = 𝑁𝐴|𝑥=𝑥+∆𝑥 × 𝐴|𝑥=𝑥+∆𝑥 

There are many modes of mass transport that can contribute to flux, but the one focused on is gradients 

in concentration, or Fickian diffusion. 

The combination of these terms results in: 

∅
𝜕𝐶𝐴

𝜕𝑡
=  −∇ ∙ 𝑁𝐴 

(3.) 

 

 

Therefore, the porosity of the porous media becomes an important factor in accounting for the reduced 

space that species A can occupy within porous media. Also note that the porous mass conservation 

equation reduces to its open space counterpart for a porosity of unity (open space).  

 

2.2.2. Effective Properties in Porous Media 

The standard binary diffusion coefficient in open air provides an upper limit of the effective diffusion 

coefficient, which is always lower since the porosity of the solid matrix reduces available area for flux, and 

the tortuous path around the matrix further inhibits mass transport. The tortuosity of the material is a 

measure of the extra distance that diffusing species must take through the pore space, defined as: 

𝜏 = [
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑇𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡
]
2

 

The relationship between the effective diffusivity and the bulk ‘open-air’ value is given below. This 

equation also mathematically defines tortuosity which is essentially a fitting parameter to account for the 

fact that porosity alone does not explain the reduction of diffusivity observed in porous materials [13]: 
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𝐷𝑒𝑓𝑓 = 
∅

𝜏
 𝐷𝑏𝑖𝑛𝑎𝑟𝑦 

  

2.3. Experimental Characterization of Effective Diffusivity 

2.3.1. Modified Loschmidt Cell 

The original Loschmidt cell housed two separate gases in opposing and connected chambers or reservoirs. 

The experiment began by removing a solid plate that separated the two gases, allowing them to diffuse 

into one another. A probe located within one of the chambers measured the concentration of the invading 

gas, then the diffusion coefficient of the two gases would be calculated with the following equation which 

is an analytical solution to Fick’s second law: 

𝑪 (𝒙, 𝒕) =
𝑪𝒐,𝟏 + 𝑪𝒐,𝟐

𝟐
+ (𝑪𝒐,𝟐 − 𝑪𝒐,𝟏) (

𝟐

𝝅
) ∑

𝒆
−(

𝝅
𝟐𝑳

)
𝟐
(𝟐𝒎+𝟏)𝟐𝑫𝑨𝑩𝒕

𝟐𝒎 + 𝟏
𝒔𝒊𝒏(

𝝅𝒙

𝟐𝑳
(𝟐𝒎 + 𝟏))

∞

𝒎=𝟎

 (4.) 

 

where 𝐿 is the length of one of the two chambers; chamber 1 is located between −𝐿 ≤ 𝑥 < 0, and 

chamber 2 is 0 ≤ 𝑥 ≤ 𝐿; 𝐶𝑜,𝑖 is the initial concentration of the “invading” species in chamber 𝑖; and 𝐷𝐴𝐵 

is the diffusion coefficient of interest. 
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Figure 4: Photo of a modified Loschmidt cell, courtesy of Waterloo Technical Inc. [3] 

 

The modified Loschmidt cell builds on the original design, by inserting thin porous media sample(s) at the 

center of the apparatus between the two chambers. Both chambers are still initially charged with different 

gases, typically oxygen and nitrogen since the diffusion coefficient of the species must be known in order 

to determine the effective diffusivity of the sample.  The experiment proceeds in the same way, allowing 

the gases to diffuse into each other through the porous specimen, while a probe measures the oxygen 

concentration at one location. Thus, instead of binary diffusion, TCDD occurs [3] [1] [14], and from the 

concentration data collected the through-plane effective diffusion coefficients are estimated.  
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Figure 5: Example of a porous media “stack” studied with a modified Loschmidt cell [14]. 

 

Figure 4  shows a modified Loschmidt cell as built by Waterloo Technical Inc. In this setup “stacks” of 

porous media are analyzed, where multiple layers of porous media sample are layered upon one another. 

This is necessary for several reasons.  Firstly, a single piece of thin porous media does not present a 

detectable reduction in mass flux, so several layers may be tested simultaneously to amplify the signal. 

Secondly, many porous materials are inherently multilayers, such as fibrous gas diffusion layers with a 

microporous coating on one side.  Thirdly, some layers of interest are not self-supporting such as catalyst 

layers, so these must be applied to another layer for testing, such as a PTFE membrane.  This is depicted 

in Figure 5.  Lastly, due to the symmetry conditions used to obtain the analytical solution in (4.), it is 

necessary to create a symmetric stack of samples, so the layers of porous media are doubled as shown in 

Figure 6. 

 

Figure 6: Diagram of symmetrical GDL (porous media) stacks 



11 
 

 

To conduct the experiment, the concentration of the invading gas, in this instance oxygen, is measured 

with a probe in the chamber that’s initially saturated with nitrogen. The experiment can only determine 

a single effective diffusivity at a time; thus, to examine porous media stacks the experiment must be 

conducted iteratively, where each sample of porous media is isolated and analyzed individually [3] [14]. 

For example, the samples analyzed in [14] have two different types of porous media: a catalyst layer and 

PTFE filter. Before the catalyst layer with a PTFE filter could be analyzed, an experiment with just the PTFE 

filter alone was performed to fully characterize the PTFE and find its through-plane effective diffusion 

coefficient. Subsequently the experiment can be performed with the combined PTFE and catalyst layer, 

and the only unknown is the effective diffusivity of the catalyst layer. The concentration data collect in 

the modified Loschmidt cell is used to estimate the 𝐷𝐴𝐵 parameter in (4.), which becomes an equivalent 

diffusion coefficient that contains the diffusion in open space and the effective diffusivity of each layer in 

the stack. This equivalent coefficient must then be deconstructed to estimate the effective diffusion 

coefficient of a single porous media in the stack [3].  In all literature reports using the modified Loschmidt 

cell, a resistors in series approximation is used to relate the measured equivalent diffusion coefficient to 

the binary and effective diffusion coefficients, by the following relation; 

𝑅𝑇𝑜𝑡𝑎𝑙 = 𝑅𝑏𝑖𝑛𝑎𝑟𝑦 + ∑  𝑅𝑠𝑡𝑎𝑐𝑘,𝑖

# 𝑖𝑛 𝑠𝑡𝑎𝑐𝑘

𝑖=1

 

where the resistances are related to diffusion coefficients by the following;  

𝑅𝑖 =
𝑙𝑖
𝐷𝑖 

 

So, the iterative scheme of the experiment is as follows, first a single type of porous media is examined 

and is separated from the binary gas diffusion in open space as follows: 

𝑅1 = 𝑅𝑏𝑖𝑛𝑎𝑟𝑦,1 + ∑ 𝑅1,𝑖

𝑛1

𝑖=1

 

Then, another experiment with the addition of one other porous media sample is conducted, and the new 

unknown effective diffusivity is found from: 

𝑅2 = 𝑅𝑏𝑖𝑛𝑎𝑟𝑦,2 + ∑ 𝑅1,𝑖

𝑛1

𝑖=1

+ ∑ 𝑅2,𝑖

𝑛2

𝑖=1
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It can be shown that the difference between these resistances results in the following expression; 

𝑅2 − 𝑅1 = 𝑅𝑏𝑖𝑛𝑎𝑟𝑦,2 − 𝑅𝑏𝑖𝑛𝑎𝑟𝑦,1 + ∑ 𝑅2,𝑖

𝑛2

𝑖=1

  

Applying Poulliet’s law to these resistances yields: 

𝐿𝑐𝑒𝑙𝑙

𝐷𝑒𝑞,2
−

𝐿𝑐𝑒𝑙𝑙

𝐷𝑒𝑞,1
=

𝐿𝑜𝑝𝑒𝑛,2 − 𝐿𝑜𝑝𝑒𝑛,1

𝐷𝑏𝑖𝑛𝑎𝑟𝑦
+ 𝑛2

𝐿2

𝐷𝑒𝑓𝑓,2
 

where 𝐷𝑒𝑓𝑓,2 is then isolated and solved for [3], [14].   

This approach should be avoided for thin porous media, which was proven in [1].  

 

2.3.2. Radial Diffusion Device 

The Loschmidt device described above is used for measuring through-plane effective diffusivity.  The in-

plane direction is also of interest.  One method developed by Kim and Gostick [2] uses a cylindrical 

geometry and allows diffusion through the radial periphery of the sample.  The operating principles of this 

method are to suddenly change the boundary condition at the  disk perimeter and measure transient 

concentration response via an oxygen probe located at the center of the porous media disk [2]. This data 

is then used to find the effective diffusion coefficient by fitting an analytical solution to Fick’s section law 

in cylindrical coordinates [12]: 

𝐶(𝑟, 𝑡) = 𝐶𝑜 − (𝐶𝑜 − 𝐶𝑖)
2

𝑅
∑

𝐽0(𝜆𝑛 𝑟)𝑒
−𝐷𝜆𝑛

2 𝑡

𝜆𝑛𝐽1(𝜆𝑛𝑅)

∞

𝑛=1

   

The eigenvalues (𝜆𝑛) are determined by: 

𝐽0(𝜆𝑛𝑅) = 0 

The parameters and constants in the model are defined as: 𝐶𝑜 is the boundary applied concentration, 𝐶𝑖 

is the initial concentration, 𝐷 is the diffusivity of the domain and 𝜆𝑛 are the eigenvalues.  

The above solution applies when the domain is at uniform initial concentration and a step change in the 

boundary conditions occurs at time 0.  Experimentally these conditions are accomplished as follows: 

initially the porous media is saturated with air, then pure nitrogen gas was flowed vertically past the outer 

radius. The nitrogen gas was flowed orthogonally to the direction of diffusion, to avoid confounding any 



13 
 

convection effects into the experiment. Then the transient depletion of oxygen from the porous media 

into the flowing nitrogen stream is monitored by the oxygen probe. The transport of oxygen was purely 

diffusive; therefore, Fick’s second law was applicable to model the mass transport, and so the effective 

diffusion coefficient can be fitted to the transient concertation data collected. Figure 7 contains a full 

schematic of the experimental device’s design. 

 

Figure 7: Schematic of Radial Diffusion Device [2] 

 

This device was used in the present work to validate the TCDD model.  This experiment normally does not 

have a composite domain situation since materials are typically not layered, and non-self-supporting 

materials can also be tested.  However, in this work composite domains were constructed by removing a 

disk from the middle and creating an annular shaped sample.  This arrangement then has effective 

diffusion through the porous media, and open-space diffusion in the center disk.  This is discussed in more 

detail in the Experimental Validation section. 

 

2.4. Vodicka’s Orthogonality  

Conventional Strum-Liouville Orthogonality is not equipped to be applied to TCDD situations, since it 

cannot resolve the in-homogeneous interior boundary conditions that naturally arise. Though, in 1955, 
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Vodicka proved a form of Orthogonality that resolves the in-homogeneous boundary conditions of 

transient conduction through composite domains [5]. The in-homogenous boundary conditions are 

continuous flux and perfect or imperfect contact between boundaries [15]. Vodicka’s Orthogonality is 

applied similarly to Strum-Liouville Orthogonality, where: each spatial function is multiplied by itself, but 

with a different index; then the function is integrated over the spatial function’s boundaries. Vodicka 

furthered the orthogonality relationship by multiplying each integral by its domain’s porosity (for mass 

transport) and finally summed each domain’s integral expression to obtain the following expression: 

∑∅𝒊 ∫ 𝑿𝒊,𝒎(𝒙)𝑿𝒊,𝒏(𝒙)𝒅𝒙

𝜻𝒊

𝜻𝒊−𝟏

𝑵

𝒊=𝟏

= {
𝟎 ;𝒎 ≠ 𝒏

𝑵𝒎 ;𝒎 = 𝒏
 

For the proof of Vodicka’s Orthogonality in cartesian coordinates see Vodicka’s Orthogonality Proof in the 

appendices. 

Most models developed using Vodicka’s Orthogonality have been for heat transport, however the 

mathematical form for mass and heat transport is identical in most scenarios. Therefore, the results found 

from these models can be transferred to mass transport, with few modifications.   

Vodicka’s orthogonality has been applied in several literature studies, surveyed here.  Chiba [15] 

developed an analytical solution to one-dimensional transient heat conduction in a composite cartesian 

domain. The exterior boundary conditions were in-homogeneous functions of time, while the interior 

boundary conditions were continuous heat flux, with perfect and imperfect thermal contact. The initial 

conditions for each domain were arbitrary functions of space. The model was developed for an arbitrary 

number of domains. 

The solution of the problem required the use of both Vodicka’s Orthogonality and the shifting function 

method. The in-homogeneous interior boundary conditions were resolved using Vodicka’s Orthogonality. 

However, the exterior boundary conditions are also in-homogeneous, which Vodicka’s Orthogonality 

cannot resolve. Instead, the shifting function method is applied which resolves time dependent boundary 

conditions, after applying several simplifying assumptions. 

Numerical simulations were performed to determine the limitations of the shifting function method, and 

it was found that the method was accurate for short times. In contrast, when the exterior boundary 

conditions are homogeneous, the numerical and analytical solutions were within the margin of numerical 
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error. Thus, the shifting function method was found to have noticeable limitations, whereas Vodicka’s 

Orthogonality did not [15]. 

Singh et al. [7] developed a closed form analytical solution to transient heat conduction in a multilayered 

annulus in polar coordinates where the composite domain expands through the radial direction, and 

boundary conditions are applied in the angular direction. The resulting scenario had two spatial 

coordinates and two sets of eigenvalues.  

Their solution is valid for homogeneous boundary conditions of the first and second kind applied to the 

angular exterior boundary, whereas the radial exterior boundary conditions are the first, second or third 

kind. Also, their solution accounts for internal generation that is a function of spatial coordinates but 

independent of time.  

The closed form solution results in double series summation, as a result of the two sets of eigenvalues. 

Numerical simulations were performed to demonstrate that only a few terms need to be added in order 

to approach an acceptably low error threshold [7]. This is advantageous, since an explicit analytical 

solution is computationally less expensive and its upper bound of error is simply determined. 

Monte [16]  formulated a closed form solution to the transient heat conduction of two cartesian slabs in 

perfect contact, such that the heat flux and temperature along the interior boundary was continuous. The 

solution was developed for convective exterior boundary conditions. Monte solved for the eigenvalues by 

finding a transcendental equation formed by the boundary conditions. This is an alternative to the more 

common practice of solving for the roots of a boundary condition matrix’s determinant, though both 

methods are equivalent. Since the closed form solution is an infinite series, the error associated with the 

series’ truncation was observed and found that only 17 terms were required to reach an upper bound 

error of less than 1%. 

Mikhailov et al [17], developed an algorithm to minimize the likelihood of omitting eigenvalues. It is not 

possible to guarantee that all eigenvalues are found from the transcendental equation that they belong 

to; and neglecting small eigenvalues will result in significant error in the truncated sum of the closed form 

analytical solution. Therefore, a convenient set of steps to reduce the odds of ignoring an important 

eigenvalue is incredibly important. The algorithm was formulated for transient heat conduction in 

cartesian, cylindrical and spherical coordinates, axial and radial coordinates. The boundary conditions 

applied for the derivation are convective heat flux along each exterior boundary; and continuous heat flux 

as well as continuous/discontinuous temperature at all interior boundaries. 
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Izadmehr et al [1], derived a composite domain model of Fick’s second law, with boundary conditions that 

resemble the operating conditions of a modified Loschmidt cell containing a single porous media sample 

[1]. The purpose of their study was to develop a model that requires fewer simplifying assumptions and 

determine the error of the model currently in wide use by experimentalist. The model currently used 

assumes quasi-steady state conditions, which is an unnecessary simplification. The boundary conditions 

of a modified Loschmidt are no flux at either exterior boundary, and continuous mass flux and 

concentration along all interior boundaries. The initial conditions are such that one chamber is initially 

charged with oxygen, and the other would be pure nitrogen (or any gas other than oxygen), then the gases 

would be allowed to diffuse through the porous separator into one another. The analytical model was 

validated against numerical simulations, and the results proved the validity of the model’s derivation. 

The model was then used to perform an error analysis on the quasi-steady state model that’s currently 

used to conduct the data analysis of the experiment. Their analysis concluded that the estimated effective 

diffusion coefficient would often produce erroneous estimates, especially if the experiment continues 

past 500 seconds. Therefore, it was recommended that the modified Loschmidt cell utilize a more 

mathematically rigorous model, otherwise the potential errors present in the effective diffusion 

coefficients would make all results untrustworthy [1]. 

The model’s restricted to only account for one porous media sample, however current operations of the 

modified Loschmidt cell has at most 6 individual porous media samples at once [14]. Therefore, it is not 

capable of correcting all the errors of the previous experimental results. 

 

 

3. Analytical Composite Domain Diffusion Derivation 

3.1. Model Formulation 

In the following subsections an analytical solution to TCDD is formulated. The set of PDEs and associated 

boundary conditions describes a species’ diffusion through a series of porous media, for any geometry. 

3.1.1. Governing Equation 

TCDD obeys the fundamental mass transport equation within each domain, the difficulty primarily arises 

from the coupling of the interior boundary conditions. Therefore, the conventional mass transport 

equation was the starting point for this derivation [12]: 
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∅𝒊

𝝏𝑪𝒊

𝝏𝒕
= 𝑫𝒊𝜵

𝟐𝑪𝒊 

For 𝑖 = 1…𝑁, where 𝑁 is the number of composite regions, 𝐶𝑖 is the concentration of species 𝑖 in the 

void space and 𝐷𝑖 is the effective diffusion coefficient. However, to ease calculations the porosity ∅𝒊 and 

effective diffusion coefficient are combined to a single parameter: 

𝑫𝒊
′ =

𝑫𝒊

∅𝒊
 

Therefore, the alternative form of the conventional mass transport equation becomes: 

𝝏𝑪𝒊

𝝏𝒕
= 𝑫𝒊

′𝜵𝟐𝑪𝒊 

 

(5.) 

The effective diffusion coefficient is a combined term, with multiple parameters multiplied together. The 

correct definition of 𝐷𝑖 would be 
∅𝑖𝐷𝑏𝑖𝑛𝑎𝑟𝑦

𝜏𝑖
. In contrast, the combined effective diffusion coefficient (𝐷′𝑖) 

is defined as  
𝐷𝑏𝑖𝑛𝑎𝑟𝑦

𝜏𝑖
 from which the tortuosity (𝜏) can be directly estimated [2], [18].  

The interior boundary conditions assume perfect contact, such that the concentration and molar flux at 

the boundaries are continuous: 

𝑪𝒊−𝟏|𝒛=𝒛𝒊−𝟏
= 𝑪𝒊|𝒛=𝒛𝒊−𝟏

 (6.) 

 

−𝑫𝒊

𝝏𝑪𝒊

𝝏𝒛
|
𝒛=𝒛𝒊−𝟏

= −𝑫𝒊−𝟏

𝝏𝑪𝒊−𝟏

𝝏𝒛
|
𝒛=𝒛𝒊−𝟏

  
(7.) 

 

Replacing 𝑫𝒊 for 𝑫𝒊
′ in Equation (7.): 

∅𝒊𝑫𝒊
′
𝝏𝑪𝒊

𝝏𝒛
|
𝒛=𝒛𝒊−𝟏

= ∅𝒊−𝟏𝑫𝒊−𝟏
′

𝝏𝑪𝒊−𝟏

𝝏𝒛
|
𝒛=𝒛𝒊−𝟏

 

 

(8.) 

 

For 𝑖 = 2…𝑁, and 𝑧𝑖−1 is the boundary separating regions 𝑖 and 𝑖 − 1. 

In order to homogenize the boundary conditions, which allows Vodicka’s Orthogonality to be applied and 

solution to be found, the general solution (𝐶𝑖) must be split up into the transient (𝑦𝑖(𝑡, 𝑧)) and steady-

state (𝐶𝑖
𝑠𝑠(𝑧))  concentration solutions: 
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𝑪𝒊(𝒕, 𝒛) =  𝑪𝒊
𝒔𝒔(𝒛) + 𝒚𝒊(𝒕, 𝒛) 

 

(9.) 

 

After substituting Equation (9.) into Equation (5.) the governing equation for the transient solution 

becomes: 

𝝏𝒚𝒊

𝝏𝒕
= 𝑫𝒊

′𝜵𝟐𝒚𝒊 
(10.) 

 

The PDEs for each domain are then made dimensionless using the following parameters: 𝐷𝑚𝑖𝑛, the 

minimum diffusivity for any of the composite domains; 𝑅, the length of the entire domain; and 𝑦𝑟𝑒𝑓, a 

reference concentration, then multiply each PDE by: 

𝑹𝟐

𝑫𝒎𝒊𝒏
′

𝟏

𝒚𝒓𝒆𝒇
 

Resulting in the new set of dimensionless PDEs: 

𝝏𝜼𝒊

𝝏𝝉
= 𝜺𝒊𝛁

𝟐𝜼𝒊 

 

(11.) 

 

The new parameters are: 

𝝉 =
𝑫𝐦𝐢𝐧𝒕

𝑹𝟐
 

𝜺𝒊 =
𝑫𝒊

′

𝑫𝒎𝒊𝒏
′  

𝜼𝒊 =
𝒚𝒊

𝒚𝒓𝒆𝒇
 

Note that the Laplacian is with respect to a new spatial variable 𝜉 = 𝑧/𝑅. 

3.1.2. Separation of Variables  

The solution to the dimensionless set of PDEs given in Equation (11.)  requires the application of 

separation of variables, which yields the time and spatial functions for each geometry [17], [15], [7]. To 

apply separation of variables, let: 
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𝜼𝒊 = 𝑭𝒊(𝝃)𝑮𝒊(𝝉) (12.) 

 

Then substitute Equation (12.) into Equation (10.), to obtain the following relation: 

𝑭𝒊

𝒅𝑮𝒊

𝒅𝝉
=  𝜺𝒊𝑮𝒊𝛁

𝟐𝑭𝒊 
(13.) 

 

Equation (13.) can be rearranged, to result in two separate ordinary differential equations: 

𝟏

𝜺𝒊𝑮𝒊

𝒅𝑮𝒊

𝒅𝝉
=

𝟏

𝑭𝒊
𝛁𝟐𝑭𝒊 =  −𝝀𝒊

𝟐 
(14.) 

 

where the eigenvalues 𝜆𝑖
2 are specific to each region [15] [7]. 

The form of the time function is known to be the same for all geometries, which is: 

𝑮𝒊(𝝉) = 𝒆−𝜺𝒊𝝀𝒊
𝟐𝝉 (15.) 

 

After rearranging the ordinary differential equation pertaining to the spatial function (𝐹𝑖(𝜉)) in Equation 

(14.) it becomes; 

𝛁𝟐𝑭𝒊 + 𝝀𝒊
𝟐𝑭𝒊 = 𝟎 (16.) 

 

For all geometries the solutions to Equation (16.) are shown in Table 1 [12]. 

 

Table 1: Depicts solution to spatial functions for each geometry 

Coordinate Spatial Function Abbreviation 

Cartesian  𝐹𝑖(𝜉) = 𝐴𝑖 sin(𝜆𝑖𝜉) + 𝐵𝑖cos (𝜆𝑖𝜉) 𝑓𝐿,𝑖(𝜉) = sin(𝜆𝑖𝜉) ; 𝑓𝑅,𝑖(𝜉) = cos (𝜆𝑖𝜉) 

Cylindrical 𝐹𝑖(𝜉) = 𝐴𝑖J0 (𝜆𝑖𝜉) + 𝐵𝑖𝑌0(𝜆𝑖𝜉) 𝑓𝐿,𝑖(𝜉) = J0(𝜆𝑖𝜉) ; 𝑓𝑅,𝑖(𝜉) = 𝑌0(𝜆𝑖𝜉) 

Spherical   𝐹𝑖(𝜉) = 𝐴𝑖

sin(𝜆𝑖𝜉) 

𝜉
+ 𝐵𝑖

cos(𝜆𝑖𝜉)

𝜉
 𝑓𝐿,𝑖(𝜉) =

sin(𝜆𝑖𝜉) 

𝜉
; 𝑓𝑅,𝑖(𝜉) =

cos(𝜆𝑖𝜉)

𝜉
 

 

Also shown in Table 1 is an abbreviation for each equation, that allows each geometry’s spatial function 

to be described as: 
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𝑭𝒊(𝝃) = 𝑨𝒊𝒇𝑳,𝒊(𝝃) + 𝑩𝒊𝒇𝑹,𝒊(𝝃) (17.) 

 

 

3.1.3. Exterior Boundary Conditions  

There are two exterior boundaries on the domain each can have three possible boundary conditions 

applied: (i) constant value, (ii) constant flux and (iii) convective transfer. Exterior boundary conditions are 

only applied to regions 1 and 𝑁, since those are the only that interact with the exterior. Splitting the 

general solution into transient and steady-state solutions homogenized the exterior boundary conditions 

for the transient solution, which is shown in Table 2 for each scenario.   

 

Table 2: List of exterior boundary conditions, where  𝒊 = 𝟏 𝒐𝒓 𝑵 

Boundary Condition General form Transient form 

Constant Value 𝐶𝑖(𝑡, 𝑧 = 𝑧𝑖) = 𝐶∗ 𝜂𝑖(𝜏, 𝜉 = 𝜁𝑖) = 0 

Constant Flux 𝜕𝐶𝑖

𝜕𝑧
|
𝑧=𝑧𝑖

= 𝐹𝑙𝑢𝑥∗ 
𝜕𝜂𝑖

𝜕𝜉
|
𝜉=𝜁𝑖

= 0 

Convective Flux 
−𝐷𝑖

𝜕𝐶𝑖

𝜕𝑧
|
𝑧=𝑧𝑖

= ℎ𝑖(𝐶𝑖(𝑡, 𝑧 = 𝑧𝑖) − 𝐶∞) 
𝜕𝜂𝑖

𝜕𝜉
|
𝜉=𝜁𝑖

= −𝐵𝑖𝑜𝑡𝑖  𝜂𝑖(𝜏, 𝜉 = 𝜁𝑖) 

 

3.1.4. Interior Boundary Conditions 

The interior boundaries are assumed to be in perfect contact, where the concentration and flux along the 

partition of the two materials is continuous such that: 

𝑪𝒊(𝒕, 𝒛𝒊−𝟏) =  𝑪𝒊−𝟏(𝒕, 𝒛𝒊−𝟏) 

It is possible to have imperfect contact or contact resistance [15], however this is not done in the present 

work since the focus was on diffusion in porous materials. 

Once the general solution is separated into steady and transient solutions the boundary conditions take 

the following form, respectively: 

𝑪𝒊
𝒔𝒔(𝒛𝒊−𝟏) = 𝑪𝒊−𝟏

𝒔𝒔 (𝒛𝒊−𝟏) 
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𝜼𝒊(𝝉, 𝝃 = 𝜻𝒊−𝟏) = 𝜼𝒊−𝟏(𝝉, 𝝃 = 𝜻𝒊−𝟏) (18.) 

 

The continuous molar flow boundary condition takes the form: 

−∅𝒊𝑫𝒊
′
𝝏𝑪𝒊

𝝏𝒛
|
𝒛𝒊−𝟏

= −∅𝒊−𝟏𝑫𝒊−𝟏
′

𝝏𝑪𝒊−𝟏

𝝏𝒛
|
𝒛𝒊−𝟏

 

And for steady and transient solutions the boundary condition becomes: 

−∅𝒊𝑫𝒊
′
𝒅𝑪𝒊

𝒔𝒔

𝒅𝒛
|
𝒛𝒊−𝟏

= −∅𝒊−𝟏𝑫𝒊−𝟏
′

𝒅𝑪𝒊−𝟏
𝒔𝒔

𝒅𝒛
|
𝒛𝒊−𝟏

 

−∅𝒊𝜺𝒊

𝝏𝜼𝒊

𝝏𝝃
|
𝝃=𝜻𝒊−𝟏

= −∅𝒊−𝟏𝜺𝒊−𝟏

𝝏𝜼𝒊−𝟏

𝝏𝝃
|
𝝃=𝜻𝒊−𝟏

 
(19.) 

 

 

3.1.5. Initial Conditions 

Initial conditions can either be uniform or non-uniform within the material. In fact, many commonplace 

experiments rely solely on the driving force of initial concentration gradients [3]. The initial condition of 

the general solution will be referred to as the following: 

𝑪𝒊(𝒕 = 𝟎, 𝒛) = 𝑪𝒊
𝒐(𝒛) 

within the domain 𝑧𝑖−1 ≤ 𝑧 ≤ 𝑧𝑖. 

𝑪𝒊
𝒐(𝒛) = 𝑪𝒊

𝒔𝒔(𝒛) + 𝒚𝒊(𝒕 = 𝟎, 𝒛) 

Therefore, the initial condition, over the domain of 𝜁𝑖−1 ≤ 𝜉 ≤ 𝜁𝑖, for the dimensionless transient 

solution becomes: 

𝜼𝒊(𝝉 = 𝟎, 𝝃) =
𝑪𝒊

𝒐(𝒛) − 𝑪𝒊
𝒔𝒔(𝒛)

𝒚𝒓𝒆𝒇
= 𝜼𝒊

𝒐(𝝃) 
(20.) 
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3.2. Model Solution  

3.2.1. Applying Exterior Boundary Conditions 

For each boundary condition found in Table 2, substitute the separated variables expression for 𝜂𝑖. The 

expression for the constant value boundary condition is found by replacing 𝜂𝑖  with the combination of 

Equations (15.) and (17.) which simplifies to: 

𝑨𝒊𝒇𝑳,𝒊(𝝃 = 𝜻𝒊) + 𝑩𝒊𝒇𝑹,𝒊(𝝃 = 𝜻𝒊) = 𝟎 (21.) 

 

For the case of constant flux boundary conditions mentioned above, the boundary conditions are given 

as:  

𝑨𝒊

𝒅𝒇𝑳,𝒊

𝒅𝝃
|
𝝃=𝜻𝒊

+ 𝑩𝒊

𝒅𝒇𝑹,𝒊

𝒅𝝃
|
𝝃=𝜻𝒊

= 𝟎 
(22.) 

 

And, finally the convective flux boundary condition results in: 

𝑨𝒊 (
𝒅𝒇𝑳,𝒊

𝒅𝝃
|
𝝃=𝜻𝒊

+ 𝑩𝒊𝒐𝒕𝒊 𝒇𝑳,𝒊(𝝃 = 𝜻𝒊)) + 𝑩𝒊 (
𝒅𝒇𝑹,𝒊

𝒅𝝃
|
𝝃=𝜻𝒊

+ 𝑩𝒊𝒐𝒕𝒊 𝒇𝑹,𝒊(𝝃 = 𝜻𝒊)) = 𝟎 

(23.) 

 

 

Region 1 was set to be the basis region, meaning the eigenvalues and constant pairs of region 1 are used 

to build the eigenvalues and constant pairs for the rest of the regions. Now let: 

�⃑⃑� 𝑪𝟏 = [
𝑨𝟏

𝑩𝟏
] 

(24.) 

 

The �⃑⃑�  vector is a combination of the “left” and “right” spatial functions, which varies for each geometry 

and exterior boundary condition applied to region 1. 

 

3.2.2. Applying Interior Boundary Conditions 

Continuous concentration boundary condition between domains are expressed as: 

𝜼𝒊(𝝉, 𝝃 = 𝜻𝒊−𝟏) = 𝜼𝒊−𝟏(𝝉, 𝝃 = 𝜻𝒊−𝟏)  

for 𝑖 = 2…𝑁.  Substituting 𝜂𝑗 with the combination of Equations (15.) and (17.) gives: 
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𝑮𝒊(𝝉)(𝑨𝒊𝒇𝑳,𝒊(𝝃 = 𝜻𝒊−𝟏) + 𝑩𝒊𝒇𝑹,𝒊(𝝃 = 𝜻𝒊−𝟏))

= 𝑮𝒊−𝟏(𝝉)(𝑨𝒊−𝟏𝒇𝑳,𝒊−𝟏(𝝃 = 𝜻𝒊−𝟏) + 𝑩𝒊−𝟏𝒇𝑹,𝒊−𝟏(𝝃 = 𝜻𝒊−𝟏)) 

(25.) 

 

 

The only non-constants in Equation (25.) are 𝐺𝑖(𝜏) and 𝐺𝑖−1(𝜏). For the expression to hold for all time, 

the time functions must take the form [6]; 

𝑮𝒊(𝝉)

𝑮𝒊−𝟏(𝝉)
= 𝟏 

(26.) 

 

Therefore, by substituting Equation (15.) into Equation (26.), the following relation between eigenvalues 

can be formulated: 

(−𝜺𝒊𝝀𝒊
𝟐 + 𝜺𝒊−𝟏𝝀𝒊−𝟏

𝟐 )𝝉 = 𝟎 

𝝀𝒊
 = √

𝜺𝒊−𝟏𝝀𝒊−𝟏
𝟐

𝜺𝒊
 

It can be recursively shown that every eigenvalue can be written as an expression of the basis eigenvalue:  

𝝀𝒊
 = 𝝀𝟏√

𝜺𝟏

𝜺𝒊
 

(27.) 

 

Now Equation (25.) can be simplified to: 

𝑨𝒊𝒇𝑳,𝒊(𝝃 = 𝜻𝒊−𝟏) + 𝑩𝒊𝒇𝑹,𝒊(𝝃 = 𝜻𝒊−𝟏) =  𝑨𝒊−𝟏𝒇𝑳,𝒊−𝟏(𝝃 = 𝜻𝒊−𝟏) + 𝑩𝒊−𝟏𝒇𝑹,𝒊−𝟏(𝝃 = 𝜻𝒊−𝟏) (28.) 

 

Additionally, applying continuous molar flow boundary condition between each interior regions gives: 

−∅𝒊𝜺𝒊 (𝑨𝒊

𝒅𝒇𝑳,𝒊

𝒅𝝃
|
𝝃=𝜻𝒊−𝟏

+ 𝑩𝒊

𝒅𝒇𝑹,𝒊

𝒅𝝃
|
𝝃=𝜻𝒊−𝟏

)

= −∅𝒊−𝟏𝜺𝒊−𝟏 (𝑨𝒊−𝟏

𝒅𝒇𝑳,𝒊−𝟏

𝒅𝝃
|
𝝃=𝜻𝒊−𝟏

+ 𝑩𝒊

𝒅𝒇𝑹,𝒊−𝟏

𝒅𝝃
|
𝝃=𝜻𝒊−𝟏

) 

(29.) 

 

Combining both interior boundary conditions into matrix form yields: 
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[

𝒇𝑳,𝒊(𝝃 = 𝜻𝒊−𝟏) 𝒇𝑹,𝒊(𝝃 = 𝜻𝒊−𝟏)

∅𝒊𝜺𝒊

𝒅𝒇𝑳,𝒊

𝒅𝝃
|
𝝃=𝜻𝒊−𝟏

∅𝒊𝜺𝒊

𝒅𝒇𝑹,𝒊

𝒅𝝃
|
𝝃=𝜻𝒊−𝟏

] [
𝑨𝒊

𝑩𝒊
]

= [

𝒇𝑳,𝒊−𝟏(𝝃 = 𝜻𝒊−𝟏) 𝒇𝑹,𝒊−𝟏(𝝃 = 𝜻𝒊−𝟏)

∅𝒊−𝟏𝜺𝒊−𝟏

𝒅𝒇𝑳,𝒊−𝟏

𝒅𝝃
|
𝝃=𝜻𝒊−𝟏

∅𝒊−𝟏𝜺𝒊−𝟏

𝒅𝒇𝑹,𝒊−𝟏

𝒅𝝃
|
𝝃=𝜻𝒊−𝟏

] [
𝑨𝒊−𝟏

𝑩𝒊−𝟏
]  

Define a new 2 x 2 matrix  𝑀𝑖,𝑗 as: 

𝑴𝒊,𝒋 = [

𝒇𝑳,𝒊(𝝃 = 𝜻𝒋) 𝒇𝑹,𝒊(𝝃 = 𝜻𝒋)

∅𝒊𝜺𝒊

𝒅𝒇𝑳,𝒊

𝒅𝝃
|
𝝃=𝜻𝒋

∅𝒊𝜺𝒊

𝒅𝒇𝑹,𝒊

𝒅𝝃
|
𝝃=𝜻𝒋

] 

(30.) 

 

The interior boundary condition matrix thus becomes: 

𝑴𝒊,𝒊−𝟏 [
𝑨𝒊

𝑩𝒊
] = 𝑴𝒊−𝟏,𝒊−𝟏 [

𝑨𝒊−𝟏

𝑩𝒊−𝟏
] 

(31.) 

 

3.2.3. Solving for Eigenvalues 

The eigenvalues produced in Equation (14.) need to be found through the combination of Equations (21.), 

(22.), (23.) and (31.), to create a 2N by 2N coefficient matrix. Then the regional eigenvalues can be 

expressed in terms of the basis eigenvalue. Finally, the eigenvalues are found by forcing the determinant 

of coefficient matrix to zero. Eigenvalues that force the determinant of the coefficient matrix to zero in 

turn make the paired constants for each region linearly dependent; this allows for each region’s paired 

constants to be expressed in terms of the basis constants. 

For the exterior boundary conditions, let the three different types found in Equations (21.), (22.) and (23.) 

be described as: 

[𝑬𝒙𝒕𝑳,𝒊(𝝀𝒊) 𝑬𝒙𝒕𝑹,𝒊(𝝀𝒊)] [
𝑨𝒊

𝑩𝒊
] = 𝟎 

(32.) 

 

where 𝑖 = 1 𝑜𝑟 𝑁.  The coefficient matrix is constructed using Equations (31.) and (32.) to yield the 

following matrix, which is an 2N by 2N sparse array: 
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[
 
 
 
 
 
 
 
 
 
 
 𝑬𝒙𝒕𝑳,𝟏(𝝀𝟏) 𝑬𝒙𝒕𝑹,𝟏(𝝀𝟏) 𝟎 𝟎 𝟎 𝟎 … …

𝟎 𝟎
𝟎 𝟎

[𝑴𝟏,𝟏] −[𝑴𝟐,𝟏]
𝟎 𝟎
𝟎 𝟎

… … ⋮

𝟎 𝟎
𝟎 𝟎

[𝑴𝟐,𝟐] −[𝑴𝟑,𝟐]
𝟎 𝟎
𝟎 𝟎

… ⋮

⋮
𝟎 𝟎
𝟎 𝟎

𝟎 𝟎
𝟎 𝟎

⋱
𝟎 𝟎
𝟎 𝟎

⋮

⋮ ⋮ ⋮ [𝑴𝒊−𝟏,𝒊−𝟏] −[𝑴𝒊,𝒊−𝟏] ⋮

⋮ ⋮ ⋮
𝟎 𝟎
𝟎 𝟎

⋱ −[𝑴𝑵,𝑵−𝟏]

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝑬𝒙𝒕𝑳,𝑵(𝝀𝑵) 𝑬𝒙𝒕𝑹,𝑵(𝝀𝑵)]
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 

𝑨𝟏

𝑩𝟏

𝑨𝟐

𝑩𝟐

⋮
𝑨𝒊−𝟏

𝑩𝒊−𝟏

𝑨𝒊

𝑩𝒊

⋮
𝑨𝑵

𝑩𝑵 ]
 
 
 
 
 
 
 
 
 
 
 

= �⃑⃑�  

In more concise notation, the above matrix operation can be expressed as; 

𝑴𝒄𝒐𝒆𝒇(𝝀𝟏, 𝝀𝟐, … , 𝝀𝑵) 𝑨𝑩⃑⃑⃑⃑⃑⃑ = �⃑⃑�  

Now, the coefficient matrix can be expressed as a function of the basis eigenvalue using Equation (27.): 

𝑴𝒄𝒐𝒆𝒇(𝝀𝟏) 𝑨𝑩⃑⃑⃑⃑⃑⃑ = �⃑⃑�  (33.) 

 

Finally, values of 𝜆1 must be found that satisfy [17], [15], [7]: 

𝒅𝒆𝒕(𝑴𝒄𝒐𝒆𝒇(𝝀𝟏)) = 𝟎 
(34.) 

 

There are an infinite number of eigenvalues that will satisfy Equation (34.); thus, the model becomes an 

infinite sum. 

 

3.2.4. Vodicka’s Orthogonality  

Vodicka’s orthogonality applied to the initial conditions was used to solve for 𝐶𝑛 (see Equation (24.)), for 

a given 𝜆1,𝑛. When implementing Vodicka’s orthogonality, as with Strum-Louisville orthogonality, the aim 

is to use the orthogonality property to reduce the infinite sum of 𝜂𝑖  to a single summand [4], [5]. From 

which a closed form expression for 𝐶𝑛 can be found. 

 

 Firstly, substitute Equations (15.) and (17.) into (20.) in order to equate the initial conditions to their 

associated spatial and time functions; 
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𝜼𝒊 
𝒐(𝝃) = ∑ (𝑨𝒊,𝒏𝒇𝑳,𝒊(𝝃) + 𝑩𝒊,𝒏𝒇𝑹,𝒊(𝝃)) 

∞

𝒏=𝟏

 
(35.) 

 

To find a more concise notation, Equation (31.) was used to find a relationship between the basis 

constants to the rest of the constants. Begin with Equation (31.): 

𝑴𝒊,𝒊−𝟏,𝒏 [
𝑨𝒊,𝒏

𝑩𝒊,𝒏
] = 𝑴𝒊−𝟏,𝒊−𝟏,𝒏 [

𝑨𝒊−𝟏,𝒏

𝑩𝒊−𝟏,𝒏
] 

Observe the interior boundary conditions between regions 1 and 2, by setting 𝑖 = 2: 

𝑴𝟐,𝟏,𝒏 [
𝑨𝟐,𝒏

𝑩𝟐,𝒏
] = 𝑴𝟏,𝟏,𝒏 [

𝑨𝟏,𝒏

𝑩𝟏,𝒏
] 

Substitute Equation (24.) to replace the basis constants: 

𝑴𝟐,𝟏,𝒏 [
𝑨𝟐,𝒏

𝑩𝟐,𝒏
] = 𝑴𝟏,𝟏,𝒏�⃑⃑� 𝑪𝒏 

Therefore, an expression for region 2’s constants become:  

[
𝑨𝟐,𝒏

𝑩𝟐,𝒏
] =  𝑴𝟐,𝟏,𝒏

−𝟏 𝑴𝟏,𝟏,𝒏�⃑⃑� 𝑪𝒏 

For concise notation, the following matrix was defined to generate the constants for any arbitrary region 

in the TCDD problem: 

𝑸𝒊,𝒏 = {
[
𝟏 𝟎
𝟎 𝟏

] ; 𝒊 = 𝟏

𝑴𝒊,𝒊− 𝟏,𝒏
−𝟏 𝑴𝒊−𝟏,𝒊−𝟏,𝒏 ; 𝒊 > 𝟏

  

Using this 𝑄𝑖,𝑛 matrix a relationship between the basis constants and any other region’s constants is 

determined, which was found to be: 

[
𝑨𝒊,𝒏

𝑩𝒊,𝒏
] =  ∏𝑸𝒋,𝒏

𝒊

𝒋=𝟏

�⃑⃑� 𝑪𝒏 

 

(36.) 

 

 

Therefore, after substituting Equation (36.) into Equation (35.) the initial condition of the transient 

function can be expressed as: 
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𝜼𝒊 
𝒐(𝝃) = ∑[𝒇𝑳,𝒊,𝒏(𝝃) 𝒇𝑹,𝒊,𝒏(𝝃) ]

∞

𝒏=𝟏

 ∏𝑸𝒋,𝒏

𝒊

𝒋=𝟏

�⃑⃑� 𝑪𝒏 

 

(37.) 

 

For porous mass transport Vodicka’s Orthogonality takes the form [4], [5]: 

∑∅𝒊 ∫ 𝑿𝒊,𝒎(𝒙)𝑿𝒊,𝒏(𝒙)𝒅𝒙

𝜻𝒊

𝜻𝒊−𝟏

𝑵

𝒊=𝟏

= {
𝟎 ;𝒎 ≠ 𝒏

𝑵𝒎 ;𝒎 = 𝒏
 

To get the initial condition into the form required to apply Vodicka’s Orthogonality, multiply the initial 

condition expression by: 

∅𝒊[𝒇𝑳,𝒊,𝒎(𝝃) 𝒇𝑹,𝒊,𝒎(𝝃) ]  ∏𝑸𝒋,𝒎

𝒊

𝒋=𝟏

�⃑⃑� 𝑪𝒎 

Then integrate each expression from it lower to upper spatial boundary, and sum all expressions together 

to obtain the following: 

∑∅𝒊 ∫ 𝜼𝒊 
𝒐(𝝃)([𝒇𝑳,𝒊,𝒎(𝝃) 𝒇𝑹,𝒊,𝒎(𝝃) ] ∏𝑸𝒋,𝒎

𝒊

𝒋=𝟏

�⃑⃑� 𝑪𝒎)𝒅𝝃

𝜻𝒊

𝜻𝒊−𝟏

𝑵

𝒊=𝟏

= ∑∅𝒊 ∫ ∑ ([𝒇𝑳,𝒊,𝒏(𝝃) 𝒇𝑹,𝒊,𝒏(𝝃) ]∏𝑸𝒋,𝒏

𝒊

𝒋=𝟏

�⃑⃑� 𝑪𝒏)

∞

𝒏=𝟏

([𝒇𝑳,𝒊,𝒎(𝝃) 𝒇𝑹,𝒊,𝒎(𝝃) ] ∏𝑸𝒋,𝒎

𝒊

𝒋=𝟏

�⃑⃑� 𝑪𝒎)𝒅𝝃

𝜻𝒊

𝜻𝒊−𝟏

𝑵

𝒊=𝟏

 

Utilizing orthogonality property, where if the index 𝑛 ≠ 𝑚 then summed integrals are zero, the infinite 

sum can be reduced to a single summand where 𝑛 = 𝑚: 

∑∅𝒊 ∫ 𝜼𝒊 
𝒐(𝝃)([𝒇𝑳,𝒊,𝒎(𝝃) 𝒇𝑹,𝒊,𝒎(𝝃) ] ∏𝑸𝒋,𝒎

𝒊

𝒋=𝟏

�⃑⃑� 𝑪𝒎)𝒅𝝃

𝜻𝒊

𝜻𝒊−𝟏

𝑵

𝒊=𝟏

= ∑∅𝒊 ∫ ([𝒇𝑳,𝒊,𝒎(𝝃) 𝒇𝑹,𝒊,𝒎(𝝃) ] ∏𝑸𝒋,𝒎

𝒊

𝒋=𝟏

�⃑⃑� 𝑪𝒎)

𝟐

𝒅𝝃

𝜻𝒊

𝜻𝒊−𝟏

𝑵

𝒊=𝟏

 

After rearrangement, 𝐶𝑚 becomes: 
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𝑪𝒎 =
∑ ∅𝒊 ∫ 𝜼𝒊 

𝒐(𝝃)([𝒇𝑳,𝒊,𝒎(𝝃) 𝒇𝑹,𝒊,𝒎(𝝃) ] ∏ 𝑸𝒋,𝒎
𝒊
𝒋=𝟏 �⃑⃑� )𝒅𝝃

𝜻𝒊

𝜻𝒊−𝟏

𝑵
𝒊=𝟏

∑ ∅𝒊 ∫ ([𝒇𝑳,𝒊,𝒎(𝝃) 𝒇𝑹,𝒊,𝒎(𝝃) ]  ∏ 𝑸𝒋,𝒎
𝒊
𝒋=𝟏 �⃑⃑� )

𝟐
𝒅𝝃

𝜻𝒊

𝜻𝒊−𝟏

𝑵
𝒊=𝟏

 

(38.) 

 

Finally, a complete expression for TCDD is expressed as: 

𝑪(𝝉, 𝝃) = 𝑪𝒔𝒔(𝝃) + ∑[𝒇𝑳,𝒊,𝒏(𝝃) 𝒇𝑹,𝒊,𝒏(𝝃) ]

∞

𝒏=𝟏

 ∏𝑸𝒋,𝒏

𝒊

𝒋=𝟏

�⃑⃑� 𝑪𝒏𝒆
−𝜺𝟏𝛌𝟏

𝟐𝝉 
(39.) 

 

 

4. Results and Discussion 

4.1. Solver Analysis 

Unlike previous studies, the present work aims to use this model for parameter estimation. Since 

eigenvalues are functions of the parameters, the gradient with respect to the parameters could be 

problematic. As shown in Equations (31.) and (32.), the coefficient matrix becomes a function of the fitting 

parameters, and as the number of composite domains increases, the gradient of the eigenvalues with 

respect to the fitting parameters will become more sporadic. To examine this closer, artificial data was 

generated using the TCDD model, and various methods of determining the effective diffusion coefficient 

were conducted. This approach allows for noise-free “data” to be examined for which the effective 

diffusion coefficients for all domains are known. The data generated in this section is a simulation of the 

modified Loschmidt cell, since it is a prevalent composite domain diffusion device, and is one of the target 

devices for which this model and its associated software were developed.  

4.1.1. Derivative-Based vs Brute Force Solver Performance  

The modified Loschmidt cell was simulated using the TCDD model formulated, the experimental setup 

simulated resembles the experiments conducted in [14]. The thickness and diffusivity of the GDL stack 

was randomly generated between the values of: 300 − 600 𝜇𝑚 and 0.2 − 0.8 of binary diffusion. The 

GDL stack used had ranges from 1 to 3 GDLs, creating 4 to 8 composite domains of diffusion. The 

simulation performed the fitting on 300 randomly generated GDL stacks, 100 samples per GDL stack size.  
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Figure 8: illustration of the simulated Modified Loschmidt Cell 

 

The derivative-based solver used is known as “dogbox” which is implemented in the SciPy.optimization 

module. This is the recommended solver for minimizing least squares problems with rectangular 

constraints [19]. The brute-force technique assumes a unique minimum to the sum of square errors, and 

recursively restricts the domain over which it guesses parameters. The brute-force technique is taken as 

a baseline to compare the relative performance of the derivative based solver. Performance was 

measured by accuracy and time required to converge to a solution. The GDL whose diffusion coefficient 

is solved for is found on the interface between the GDL stack and open space (denoted by the grey zone 

in Figure 8) the remainder of the porous media’s effective diffusivity is known. Also, the same artificially 

generated data is sent to both solvers. 

Table 3: Solver’s Average Performance 

 dogbox brute-force 

Domain Size Time [sec] Relative Error Time [sec] Relative Error 

4 56.0 2.12E-11 138.7 7.33E-05 

6 82.5 1.61E-11 195.4 2.58E-04 

8 115.3 4.23E-03 251.3 1.68E-04 

 

As can be seen in Table 3, the derivative solver was consistently much faster, therefore, the dog-box solver 

was adequately able to handle the sporadic derivatives with respect to the fitting parameter. Aside from 

a domain size of 8, the dog-box solver was more accurate than the brute-force technique, while taking 

approximately half the time. The runs with 8 domains of diffusion showed that the brute-force technique 

was ≈ 20 × more accurate, which suggests that as the domain becomes more complex the derivative 
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solver’s effectiveness is reduced. However, more than 8 domains of diffusion is a rare experimental 

condition, so the “dog-box” solver is generally recommended over the brute-force solver. 

4.2. Experimental Validation  

With the model having been shown to be capable of fitting artificially generated data with known diffusion 

coefficients, the next step was to show the model can be used for real experiments. Noise is present in all 

experiments, so for the TCDD model and its associated solver to effectively be implemented it must 

provide reasonable results despite the inevitability of instrumental noise. But more importantly, 

comparing the TCDD to a conventional and proven parameter estimation model will determine if the TCDD 

model works as intended. 

 

4.2.1. Composite Radial Diffusion Experiments 

In order to verify the model’s ability to fit for diffusivities, the effective diffusivities of GDLs were measured 

according to the radial method of Yong and Gostick [2]. The experiment was run with solid disk GDLs, as 

well as with a ring disk. The solid disk is a single domain diffusion method, which has been proven to work 

as intended, and it used as a reference value to compare to the TCDD model. The ring disk creates a 

composite domain, since the outer disk is a porous GDL with the center being composed of open air. The 

effective diffusion coefficients of both samples were then found, and it was statistically determined if the 

effective diffusion coefficient values extracted from both methods are equivalent. 

 

Figure 9: Image of the Composite Domain disk (left) and Solid disk (right) 
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Table 4 provides the diffusion coefficients determined for a variety of GDL materials, for both the 

composite domain tests on the ring disk (𝐷𝑐𝑜𝑚𝑝) and the full domain tests on the solid disk (𝐷𝑤ℎ𝑜𝑙𝑒).  

Table 4: The fitting results for the composite and whole radial disk experiment 

SGL-type Porosity 

𝐷𝑐𝑜𝑚𝑝 

[
𝑚2

𝑠
] 

𝐷𝑤ℎ𝑜𝑙𝑒 

[
𝑚2

𝑠
] 

𝐷𝑐𝑜𝑚𝑝

𝐷𝑏𝑖𝑛𝑎𝑟𝑦
 

𝐷𝑤ℎ𝑜𝑙𝑒

𝐷𝑏𝑖𝑛𝑎𝑟𝑦
 ∆𝑑 

24AA 
0.884 

1.46E-05 1.46E-05 7.23E-01 7.23E-01 0.00E+00 

24AA 1.48E-05 1.49E-05 7.34E-01 7.36E-01 -2.09E-03 

25AA 
0.841 

1.24E-05 1.24E-05 6.16E-01 6.14E-01 1.55E-03 

25AA 1.21E-05 1.22E-05 5.99E-01 6.04E-01 -4.78E-03 

34AA 
0.854 

1.30E-05 1.35E-05 6.42E-01 6.66E-01 -2.42E-02 

34AA 1.36E-05 1.33E-05 6.75E-01 6.58E-01 1.66E-02 

35BC 
0.89 

1.54E-05 1.47E-05 7.61E-01 7.29E-01 3.30E-02 

35BC 1.51E-05 1.53E-05 7.46E-01 7.56E-01 -1.00E-02 

 

The results are in near perfect agreement, but to be rigorous, a T-test was performed on the differences 

in the measurements (∆𝑑) to determine if its mean is zero, which implies that there’s no difference in the 

fitting done by the TCDD model and the traditional radial diffusion model. The alpha used for this two-

tailed test was 5%, the calculations of the T-test found: 𝑡𝑜𝑏𝑠 = 0.192, and the 𝑡0.05

2
,7

= 2.36. Therefore, 

the null hypothesis was accepted and based on the data collected there is no observable difference 

between the fitted values of the TCDD model and the accepted radial diffusion model [2]. 

 

5. Concluding Remarks 

5.1. Conclusions 

An analytical solution to a TCDD model was formulated, with an arbitrary number of domains and for any 

conventional geometry. The solution was programmed into python, which was the software used to 

perform the data analysis in this thesis. The program provides an easy method to implement an analytical 

solution to characterizing relevant experiments and lessen the usage of potentially erroneous quasi-

steady state models. 

An analysis of whether the derivative based solver dogbox could be employed to this TCDD. The analysis 

was performed on randomly generated artificial concentration data of a modified Loschmidt cell. The 
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results of this found that for experiments with 6 or less domains the derivative solver was considerably 

faster and more accurate than the brute force solver. Though in the case of 8 domains of diffusion, the 

brute force solver was ~20 × more accurate than the dogbox derivative solver tested.  

The model was validated using a Radial diffusion device, where composite domain diffusion was created 

and compared to a known solution to its single domain counterpart. It was statistically proven that the 

effective diffusion coefficients found from the TCDD and single domain (ground truth) experiments were 

identical. 

 

5.2. Recommendations 

Upon the critiques found in [1] regarding the modified Loschmidt cell’s quasi-steady state model, this 

experiment’s characterization results would be more accurate with the use of a TCDD model. The model 

developed has been shown to be perfectly suited to meet this need. Specifically, since it has variable 

numbers of domains of diffusion and this model was developed to handle such scenarios. 

It is suggested that any experiment that utilizes a quasi-steady state model to overcome the modelling 

difficulties of composite domain diffusion/conduction, should consider implementing this analytical 

solution. Since, the error associated with model inadequacy may be dramatically reduced 

The techniques to solving the TCDD PDEs used in this work can also be applied to areas outside of mass 

transport through porous media. It is suggested that these other applications are explored. 
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7. APPENDICES 

A. Vodicka’s Orthogonality Proof 

The following proof of Vodicka’s Orthogonality is for Cartesian coordinates, or porous media mass 

transport with convective mass transport as the boundary conditions applied to both exterior boundary 

conditions. The convective mass transport boundary condition is used, since it is equivalent to constant 

value and constant flux boundary conditions under the following scenarios, if the mass transport 

coefficient is infinite then the boundary condition is a constant value, and if the mass transport coefficient 

is zero then the it is equal to a constant flux boundary condition. Now the proof is performed as follows: 

 

𝒅𝟐𝑭𝒊,𝒏

𝒅𝝃𝟐
+ 𝝀𝒊,𝒏

𝟐 𝑭𝒊,𝒏 = 𝟎 
(40.) 

 

 

Using the following relation between each eigenvalue for each region found in [Eigenvalue Equ], relates 

each eigenvalue to the primary region (region 1): 

𝝀𝒊,𝒏
𝟐 = 𝝀𝟏,𝒏

𝟐
𝜶𝟏

𝜶𝒊
 (41.) 

 

 

The boundary conditions for each exterior surface are: 

𝒌𝟏

𝒅𝑭𝟏,𝒏

𝒅𝝃
|
𝝃=𝜻𝟎

= 𝒉𝟏 𝑭𝟏,𝒏|𝝃=𝜻𝟎
 

(42.) 

 

 

𝒌𝑵

𝒅𝑭𝑵,𝒏

𝒅𝝃
|
𝝃=𝜻𝑵

= 𝒉𝑵 𝑭𝑵,𝒏|𝝃=𝜻𝑵
 

(43.) 

 

 

Notes that 𝑘𝑖 = 𝛼𝑖∅𝑖, as per the derivation of the analytical model. 
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Each interior contact surface has the following two boundary conditions, first is continuous mass flux and 

the second is continuous concentration: 

 

−𝒌𝒊

𝒅𝑭𝒊,𝒏

𝒅𝝃
|
𝝃=𝜻𝒊−𝟏

= −𝒌𝒊−𝟏

𝒅𝑭𝒊−𝟏,𝒏

𝒅𝝃
|
𝝃=𝜻𝒊−𝟏

 
(44.) 

 

 

𝑭𝒊|𝝃=𝜻𝒊−𝟏
= 𝑭𝒊−𝟏|𝝃=𝜻𝒊−𝟏

 (45.) 

 

 

For 𝑖 = 2…𝑁 

Insert (41.) into (40.) resulting in: 

𝒅𝟐𝑭𝒊,𝒏

𝒅𝝃𝟐
+ 𝝀𝟏,𝒏

𝟐
𝜶𝟏

𝜶𝒊
𝑭𝒊,𝒏 = 𝟎 

(46.) 

 

 

Multiply (46.) by 𝐹𝑖,𝑚 then integrate the equation from the start the end of its domain. 

∫ (
𝒅𝟐𝑭𝒊,𝒏

𝒅𝝃𝟐
+ 𝝀𝟏,𝒏

𝟐
𝜶𝟏

𝜶𝒊
𝑭𝒊,𝒏)𝑭𝒊,𝒎𝒅𝝃

𝜻𝒊

𝜻𝒊−𝟏

= 𝟎 
(47.) 

 

 

Perform integration by parts on the second derivative term in (47.): 

 

∫
𝒅𝟐𝑭𝒊,𝒏

𝒅𝝃𝟐
𝑭𝒊,𝒎𝒅𝝃

𝜻𝒊

𝜻𝒊−𝟏

=
𝒅 𝑭𝒊,𝒏

𝒅𝝃 
𝑭𝒊,𝒎|

𝝃=𝜻𝒊−𝟏

𝝃=𝜻𝒊

− ∫
𝒅 𝑭𝒊,𝒏

𝒅𝝃 

𝒅𝑭𝒊,𝒎

𝒅𝝃
  𝒅𝝃

𝜻𝒊

𝜻𝒊−𝟏

 
(48.) 

 

 

Now substitute (48.) into (47.): 
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𝒅 𝑭𝒊,𝒏

𝒅𝝃 
𝑭𝒊,𝒎|

𝝃=𝜻𝒊−𝟏

𝝃=𝜻𝒊

− ∫
𝒅 𝑭𝒊,𝒏

𝒅𝝃 

𝒅𝑭𝒊,𝒎

𝒅𝝃
  𝒅𝝃

𝜻𝒊

𝜻𝒊−𝟏

+ 𝝀𝟏,𝒏
𝟐

𝜶𝟏

𝜶𝒊
∫ 𝑭𝒊,𝒏𝑭𝒊,𝒎𝒅𝝃

𝜻𝒊

𝜻𝒊−𝟏

 = 𝟎 
(49.) 

 

 

Multiply (49.) by 𝑘𝑖 then sum equation expression for 𝑖 = 1…𝑁 

∑𝒌𝒊 (
𝒅 𝑭𝒊,𝒏

𝒅𝝃 
𝑭𝒊,𝒎|

𝝃=𝜻𝒊−𝟏

𝝃=𝜻𝒊

− ∫
𝒅 𝑭𝒊,𝒏

𝒅𝝃 

𝒅𝑭𝒊,𝒎

𝒅𝝃
  𝒅𝝃

𝜻𝒊

𝜻𝒊−𝟏

+ 𝝀𝟏,𝒏
𝟐

𝜶𝟏

𝜶𝒊
∫ 𝑭𝒊,𝒏𝑭𝒊,𝒎𝒅𝝃

𝜻𝒊

𝜻𝒊−𝟏

)

𝑵

𝒊=𝟏

= 𝟎 
(50.) 

 

𝑘𝑖

𝑑 𝐹𝑖,𝑛

𝑑𝜉  
𝐹𝑖,𝑚|

𝜉=𝜁𝑖−1

𝜉=𝜁𝑖

= 𝑘𝑖

𝑑 𝐹𝑖,𝑛

𝑑𝜉  
𝐹𝑖,𝑚|

𝜉=𝜁𝑖

− 𝑘𝑖

𝑑 𝐹𝑖,𝑛

𝑑𝜉  
𝐹𝑖,𝑚|

𝜉=𝜁𝑖−1

 

∑𝑘𝑖

𝑑 𝐹𝑖,𝑛

𝑑𝜉  
𝐹𝑖,𝑚|

𝜉=𝜁𝑖

− 𝑘𝑖

𝑑 𝐹𝑖,𝑛

𝑑𝜉  
𝐹𝑖,𝑚|

𝜉=𝜁𝑖−1

𝑁

𝑖=1

= 𝑘1

𝑑 𝐹1,𝑛

𝑑𝜉  
𝐹1,𝑚|

𝜉=𝜁1

− 𝑘1

𝑑 𝐹1,𝑛

𝑑𝜉  
𝐹𝑖,𝑚|

𝜉=𝜁0

+ 𝑘2

𝑑 𝐹2,𝑛

𝑑𝜉  
𝐹2,𝑚|

𝜉=𝜁2

− 𝑘2

𝑑 𝐹2,𝑛

𝑑𝜉  
𝐹2,𝑚|

𝜉=𝜁1

+ ⋯+ 𝑘𝑁

𝑑 𝐹𝑁,𝑛

𝑑𝜉  
𝐹𝑁,𝑚|

𝜉=𝜁𝑁

− 𝑘𝑁

𝑑 𝐹𝑁,𝑛

𝑑𝜉  
𝐹𝑁,𝑚|

𝜉=𝜁𝑁−1

 

Apply the interior boundary conditions in the following form: 

−𝑘𝑖

𝑑𝐹𝑖,𝑛

𝑑𝜉
|
𝜉=𝜁𝑖−1

𝐹𝑖|𝜉=𝜁𝑖−1
= −𝑘𝑖−1

𝑑𝐹𝑖−1,𝑛

𝑑𝜉
|
𝜉=𝜁𝑖−1

𝐹𝑖−1|𝜉=𝜁𝑖−1
 

Which eliminates all summands evaluated at an interior boundary condition, resulting in the sum to 

become: 

∑𝒌𝒊

𝒅 𝑭𝒊,𝒏

𝒅𝝃 
𝑭𝒊,𝒎|

𝝃=𝜻𝒊

− 𝒌𝒊

𝒅 𝑭𝒊,𝒏

𝒅𝝃 
𝑭𝒊,𝒎|

𝝃=𝜻𝒊−𝟏

𝑵

𝒊=𝟏

= 𝒌𝑵

𝒅 𝑭𝑵,𝒏

𝒅𝝃 
𝑭𝑵,𝒎|

𝝃=𝜻𝑵

− 𝒌𝟏

𝒅 𝑭𝟏,𝒏

𝒅𝝃 
𝑭𝒊,𝒎|

𝝃=𝜻𝟎

 
(51.) 

 

 

Substitute (51.) into (50.) for to obtain: 

 

∑𝝀𝟏,𝒏
𝟐

𝜶𝟏

𝜶𝒊
𝒌𝒊 ∫ 𝑭𝒊,𝒏𝑭𝒊,𝒎𝒅𝝃

𝜻𝒊

𝜻𝒊−𝟏

− 𝒌𝒊 ∫
𝒅 𝑭𝒊,𝒏

𝒅𝝃 

𝒅𝑭𝒊,𝒎

𝒅𝝃
  𝒅𝝃

𝜻𝒊

𝜻𝒊−𝟏

𝑵

𝒊=𝟏

= 𝟎 
(52.) 
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Now switch the 𝑛 and 𝑚 indexes in (52.) 

∑𝝀𝟏,𝒎
𝟐

𝜶𝟏

𝜶𝒊
𝒌𝒊 ∫ 𝑭𝒊,𝒏𝑭𝒊,𝒎𝒅𝝃

𝜻𝒊

𝜻𝒊−𝟏

− 𝒌𝒊 ∫
𝒅 𝑭𝒊,𝒏

𝒅𝝃 

𝒅𝑭𝒊,𝒎

𝒅𝝃
  𝒅𝝃

𝜻𝒊

𝜻𝒊−𝟏

𝑵

𝒊=𝟏

= 𝟎 
(53.) 

 

 

Now perform (52.) − (53.) 

∑𝜆1,𝑛
2

𝛼1

𝛼𝑖
𝑘𝑖 ∫ 𝐹𝑖,𝑛𝐹𝑖,𝑚𝑑𝜉

𝜁𝑖

𝜁𝑖−1

− 𝑘𝑖 ∫
𝑑 𝐹𝑖,𝑛

𝑑𝜉  

𝑑𝐹𝑖,𝑚

𝑑𝜉
  𝑑𝜉

𝜁𝑖

𝜁𝑖−1

𝑁

𝑖=1

− ∑𝜆1,m
2

𝛼1

𝛼𝑖
𝑘𝑖 ∫ 𝐹𝑖,𝑛𝐹𝑖,𝑚𝑑𝜉

𝜁𝑖

𝜁𝑖−1

− 𝑘𝑖 ∫
𝑑 𝐹𝑖,𝑛

𝑑𝜉  

𝑑𝐹𝑖,𝑚

𝑑𝜉
  𝑑𝜉

𝜁𝑖

𝜁𝑖−1

𝑁

𝑖=1

 = 0 

Which reduces to: 

(𝜆1,𝑛
2 − 𝜆1,m

2 )∑
𝑘𝑖

𝛼𝑖
∫ 𝐹𝑖,𝑛𝐹𝑖,𝑚𝑑𝜉

𝜁𝑖

𝜁𝑖−1

𝑁

𝑖=1

= 0 

 

Recall the definition 𝑘𝑖 = 𝛼𝑖∅𝑖: 

(𝜆1,𝑛
2 − 𝜆1,m

2 )∑∅𝑖 ∫ 𝐹𝑖,𝑛𝐹𝑖,𝑚𝑑𝜉
𝜁𝑖

𝜁𝑖−1

𝑁

𝑖=1

= 0 

 

The expression above implies the following: 

 

∑∅𝑖 ∫ 𝐹𝑖,𝑛𝐹𝑖,𝑚𝑑𝜉
𝜁𝑖

𝜁𝑖−1

𝑁

𝑖=1

= {
0, 𝑖𝑓 𝑛 ≠ 𝑚

𝑁𝑚, 𝑖𝑓 𝑛 = 𝑚
 

Due to the following inequality: 

𝜆1,𝑛
2 ≠ 𝜆1,m

2  

Note, 𝑁𝑚 is the solution to the following integral: 
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∑∅𝑖 ∫ 𝐹𝑖,𝑚
2 𝑑𝜉

𝜁𝑖

𝜁𝑖−1

𝑁

𝑖=1

= 𝑁𝑚 

Therefore, Vodicka’s orthogonality has been proven for porous mass transport. 

 

B. Experimental Data Fittings 

The validation experimental data and curve fittings are presented in this section. The experimental results 

are for both the conventional use of the Radial Diffusion Device, which are denoted as solid cylinders in 

each figure caption. Also, the modified version meant to produce composite domain diffusion, which are 

referred to as disks in the figure captions. This experiment had the sole purpose of validating the TCDD 

model formulated in this work. Duplicate runs were performed, to increase the degrees of freed in the 

statistical analysis performed on this experiment, thusly there are runs 1 and 2 for each GDL type and 

geometry. 

 

Figure 10: Concentration profile of SGL 24AA as a disk, run 1 
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Figure 11: Concentration profile of SGL 24AA as a disk, run 2 

 

Figure 12: Concentration profile of SGL 24AA as a solid cylinder, run 1 

 

Figure 13: Concentration profile of SGL 24AA as a solid cylinder, run 2 
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Figure 14: Concentration profile of SGL 25AA as a disk, run 1 

 

Figure 15: Concentration profile od SGL 25AA as a disk, run 2 

 

Figure 16: Concentration profile of SGL 25AA as a solid cylinder, run 1 
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Figure 17: Concentration profile of SGL 25AA as a solid cylinder, run 2 

 

Figure 18: Concentration profile of SGL 34AA as a disk, run 1 

 

Figure 19: Concentration profile of SGL 34AA as a disk, run 2 
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Figure 20: Concentration profile of SGL 34AA as a solid cylinder, run 1 

 

Figure 21: Concentration profile of SGL 34AA as a solid cylinder, run 2 

 

Figure 22: Concentration profile of SGL 35BA as a disk, run 1 
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Figure 23: Concentration profile of SGL 35BA as a disk, run 2 

 

Figure 24: Concentration profile of SGL 35BA as a solid cylinder, run 1 

 

Figure 25: Concentration profile of 35BA as a solid cylinder, run 2 

 


