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Abstract

Investigations relating the emergence of the radial direction in the holography, solvable
irrelevant deformations of conformal field theories and holographic entanglement entropy
are reported. Emphasis is laid on how diffeomorphism invariance in the bulk emerges, in
both the classical and quantum regimes. The computation of von Neumann entanglement
and Renyi entropies in 77" deformed conformal field theories and their bulk dual quantities
are presented. Further, the peculiar properties of the deformed theory that these quantities
point to, are discussed. Finally, the connections between 7T deformed partition functions
and solutions to the radial Wheeler de Witt equation in three spacetime dimensions is
presented.
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Chapter 1

Introduction

1.1 Overview

The focus of this thesis is understanding the holographic principle as it applies to spacetime
regions of finite volume. The principle states that the description of gravitational physics
in some region of space is encoded entirely on the lower-dimensional boundary of the region
[38],[146]. Among the original motivations for proposing this principle were to explain why
a black hole’s entropy is proportional to the area of its horizon. Similarly, one could hope
to explain this way why the cosmological horizon surrounding any observer in a space with
positive cosmological constant too has an entropy that scales with its area.

In either the case of black holes in the physical universe or in case of the cosmolog-
ical horizon, what isn’t understood is the precise mechanism behind how the degrees of
freedom are localized to the boundary of the relevant spacetime regions, and what the
dynamics of these degrees of freedom are. The so-called Anti-de Sitter(AdS)/Conformal
Field theory(CFT) correspondence [111] is, however, a setting where such a mechanism
is very well understood. This correspondence or duality equates gravitational physics in
a space of negative cosmological constant and a quantum field theory that enjoys confor-
mal symmetry living on a one lower-dimensional, asymptotic boundary of this space. The
correspondence comes with a dictionary [71], [154] between observables on either side of
the duality, and therefore quantities computed in one setting can be translated into dual
quantities in the other. The hope is that an understanding of the robust features of the
duality in the AdS/CFT setting will carry over into those of physical relevance mentioned
above.



This thesis deals in particular with the matter of whether this duality is robust towards
a change in the asymptotic structure of the bulk spacetime. In particular, the setting of
interest is the situation where the boundary of the anti-de Sitter space is not infinitely
distant from points in the interior. Instead, a finite boundary truncates the AdS space,
and on it are imposed Dirichlet boundary conditions for any fields in the bulk. This is then
a region of finite spacetime volume, just like the interior of a black hole behind its event
horizon or the region behind a cosmological horizon in de Sitter space. Therefore studying
holography in this context is a step in the direction of applying it to the physically relevant
settings mentioned above.

The theory that lives on the boundary of this finite volume region involves deforming
the conformal field theory that would have inhabited the asymptotic boundary by a special
class of irrelevant operators. In particular, these will be the T'T deformation [113],[32] of
two dimensional conformal field theory and it’s higher-dimensional cousins, which will be
referred to as 7% deformation [147],[30].

These deformed theories possess many interesting properties of pure quantum field
theoretic interest as well. On the space of quantum field theories, the deforming operators
trigger a flow away from the conformal fixed point but are still contained in the critical
surface on which the fixed point lies. This is due to their irrelevant nature. Following them
away the fixed point leads us to theories that have very different locality properties. In
this thesis, some of these field-theoretic questions will also be investigated.

Returning to holography, we note that the AdS/CFT correspondence points towards an
identification between the direction normal to the boundary (also called the radial direc-
tion) and the energy scale associated with the renormalization group flow of the quantum
field theory living on the boundary. Then the renormalization group flow should map to
development along the radial direction. This is a bulk counterpart of the flow triggered by
the irrelevant deformations mentioned in the previous paragraph. Although holographic
RG flows [10] have been studied extensively in the past, it wasn’t quite understood how to
introduce breaking of conformal invariance in the field theory that mirrors the effect of a
sharp bulk radial cutoff surface.

On the theme of probing the locality properties of these quantum field theories, we will
also focus on the study of entanglement entropy. An important lesson the AdS/CFT corre-
spondence has taught us is the surprising connection between quantum information theory
and spacetime physics, which started with the study of a quantity known as holographic
entanglement entropy [137]. In the vein of learning broader lessons of holography, one can
ask whether these connections persist in the less idealized setting of finite spacetime regions
and the corresponding quantum theories on their boundaries. In so doing, the peculiar and



distinctive features of the quantum field theories inhabiting these finite boundaries will be
uncovered.

1.2 Themes and motivations

In this section, we will provide a cursory description of some of the broad questions that
the thesis deals with. These descriptions will contain very few technical details, but they
will appear in the coming chapters.

1.2.1 Gravity and Effective Field theory

General Relativity is our most successful attempt at describing gravitational physics on
a variety of scales. It has received and continues to receive experimental validation in a
variety of experiments and observations. An interesting question to ponder is what picks
out general relativity among other theories of a dynamical metric. Lovelock’s theorem
[109] answers this question. The statement of the theorem is the only possible second-order
Euler-Lagrange equation obtainable in a four-dimensional space from a scalar density of
the form L£(h) is

EAB = o (RAB — %gABR) + A8 =0, (1.1)
where o and A are constants. In dimensions higher than four, there are so called quasi-
topological theories whose actions are given by:

A A Bog_1B
5= [ dlayg (iRt RO (12)
where
A1 A A A
SAL A — (2d)l57 - 52 (1.3)

The equations of motion obtained from these actions are also second order in derivatives.
So in a general number of dimensions, the requirement of general covariance, specifying
that the metric is the only dynamical field, and restricting our attention to actions that
generate equations of motion that are second order in derivatives doesn’t suffice to pick
out general relativity.

By seeking a parallel theorem in the Hamiltonian framework, this ambiguity can be
circumvented. Whenever we ask about a Hamiltonian formalism, we need to introduce



a foliation of spacetime by codimension one surfaces. For general relativity too, as first
addressed in [1 1], this is indeed the procedure. For further details regarding the D+ 1 split
and the Hamiltonian formalism, see appendix A.2.1. The phase space variables here are
the metric induced on the codimension one slices

G = Py £ 0,1, (1.4)

where n,, is the one form dual to the normal vector to the hypersurfaces. Say the hy-
persurfaces are level sets of a function r, then the normal vector is related to the vector

field
(0" = N + ¢4 (1.5)

where N is called the lapse function and & is the shift vector. The latter has components
only tangential to the leaves of the foliation.

We also have its momentum conjugate 7 which is related to the extrinsic curvature
of the surface in the following manner:

2N
K,U«I/ = % (71-/“/ — g“ytrﬂ') . (16)

The Hamiltonian is a sum of constraints:
Hyoy — / 0P (N(2)H(g, ) + & H, (g, 7)) (1.7)

Before discussing the explicit form of the constraints H (g, 7) and H,(g, 7) in general rela-
tivity. Introducing the notation

H(N) = / P2 N () H (g, ) (1.8)

(") = [ Pz @H,(9.7) (1.9)

Before looking at the form of the functions H(g, ) and H,(g, 7), let’s ask- what could their
forms possibly be given that we are describing the dynamics of hypersurfaces covariantly
embedded in an ambient spacetime. The criterion for the embeddibility is encoded in
the Poisson algebra of these constraints, and the reason for this will be explained in the
following chapter. This Poisson algebra is given by:

{H(0), H(0")} = —H,(f*(0,0")), {H,(§"), H(0)} = H(£"0,0),

4



{HN<£M)7HV(CV)} = Hu([&du)- (1-10)

The interesting result due to Hojman, Kuchar and Teitelboim [138] is that this form of
the Poisson algebra, given the phase space variables directly implies that the constraints
must be those of general relativity, found by Arnowitt, Deser and Misner:

Hmm:/&hmw<§gewww—piﬂmﬁ—vaA—m) (1.11)

H,(6") = / APz et (1.12)

More will be made of this theorem and it’s implications in the coming chapters, but for
now, we see that the Hamiltonian of general relativity, which contains as much information
as the Einstein equations, were picked out uniquely by specifying the phase space and the
gauge invariance in the form of the Poisson algebra of constraints.

That the phase space variables are just the metric and the momentum conjugate mirrors
the statement that there are at most two derivatives of the metric in the action. However,
this statement can only be made precise for the derivatives of the metric w.r.t r.

The reason the quasi topological theories aren’t picked out is that we implicitly restrict
our attention to single-valued Hamiltonian flows. In the quasi topological case, the fact
that the relationship between the r derivatives of the metric induced on the hypersurface
and the momentum is not invertible, so in trying to find a Hamiltonian, it will inevitably
lead to a flow on phase space that branches.

In summary, if we pose the question: what theory of evolving D dimensional geometries
describe a theory of spacetime? then general relativity is the unique answer.

What it means for a direction of space to emerge: Let’s focus on the setting where
the theory in the bulk is classical. The holographic dictionary identifies bulk fields with
boundary sources, and this in turn implies that the equations of motion of the bulk are
in correspondence with the renormalization group equations of the boundary theory. The
variant of the renormalization group which can capture these dynamics is the so-called
local renormalization group [126]. This will be described in the coming chapter. Here,
sources are introduced for the composite operators of interest in the field theory and their
scale evolution is captured by equations of the form

&I (w,2) = 8'(). (113)



Here 87(.J) are the local analogs of the beta functions. Similarly, one can track the scale
evolution of the expectation value of the operators to which these sources couple:

d

d—((),) =T7(0;) +--- (1.14)
z

Here, I, are analogous to the anomalous dimensions. These equations will further be

explained in the coming chapter, but we already see what the puzzles might be if one is

interested in theories whose local RG equations can mimic bulk equations of motion.

First, the question to ask is whether these equations can replicate second-order equa-
tions of motion, that we are most accustomed to dealing with in theories of gravity coupled
to various fields. The answer to this is will lie in noting that the above equations resemble
Hamilton’s equations more than they do Euler Lagrange equations, and should be cast as
such. Furthermore, how a Hamiltonian that has the right number of momenta to replicate
that of a theory whose Euler Lagrange equations are second-order will be addressed by the
use of the quantum renormalization group. For the present discussion. Say we are granted
such a Hamiltonian. Then, what remains is to ensure that the Hamiltonian so obtained
is formed from constraints, and that the Poisson algebra mirrors that of general relativity.
Note that this is a radial Hamiltonian describing evolution along a space-like direction.
We will also mostly be interested in Euclidean field theories in the bulk.

Now, restricting our attention to the metric as a source, we see that we are in the
situation where a phase space is granted to us, and a Hamiltonian whose form we do
not know. However, if we demand that the Poisson algebra of constraints mimics that of
general relativity, then by the HK'T theorem, we are guaranteed general relativity emerges
in the bulk. In other words, here too we see that we are to choose from theories of
evolving geometries and ask which ones describe a covariant theory in spacetime. The
renormalization group equivalent to the statement of the Poisson algebra will be a central
focus of this thesis and will be shown explicitly in the coming chapter. This renormalization
group parallel to the Poisson algebra will be a particular way in which the Wess—Zumino
consistency conditions need be satisfied. It will be called the Holographic Wess—Zumino
consistency condition. Its implications will echo throughout the thesis.

To put very plainly, we are interested in how a holographic theory must respond to
scale transformations so that the scale direction that emerges is treated on equal footing
as the other spatial directions. Thus, to answer the question posed in the title of this
subsection, for a direction of space to emerge, it must happen in a way that respects the
diffeomorphism invariance in the bulk. A way to see what is happening here is that the
freedom to choose local frames of reference in the bulk translates to the freedom to specify



local rates of coarse-graining and choose different coordinate systems when considering the
coarse-grained theory.

1.2.2 Quantum Theory in the Bulk

One of the opportunities that holography affords us is a look at what could take over
from general covariance at the quantum level. If general relativity is to emerge, then all
we can say about diffeomorphism invariance is that it ought to be instated in the regime
where classical general relativity is valid, but beyond that, whatever is to become of it
depends crucially on what takes over from the theory of general relativity at the quantum
level. In particular, there isn’t any reason to believe that the invariance itself will remain
intact in the quantum theory. In the setup at hand, we shall have a renormalization group
parallel to the statement of general covariance at hand. This dual condition is identified
in the regime where the bulk theory is classical. Then, we need only consider the regime
of the quantum field theory in which the bulk dual is not classical. Since the consistency
condition of the renormalization group can still be phrased in this regime, it will tell us
how diffeomorphism invariance manifests at the quantum level.

In the final chapter of this thesis, we will consider quantum gravity in three dimensions
with a negative cosmological constant. The dual theory is the 7T deformation of a two-
dimensional conformal field theory, and as such, the flow equation defining that theory holds
at a finite central charge and mimics the Wheeler de Witt equation. In this situation, the
consistency conditions that are dual to the commutator algebra of the constraints are of
the same form as in the classical regime. (This is, provided we replace Poisson brackets
with commutators)

1.2.3 Holographic entanglement entropy with finite boundaries

In holographic entanglement entropy calculations in conventional AdS/CFT, the leading
divergences in the entanglement entropy in the CFT are matched by the divergent volumes
of the codimension two surfaces anchored to the entangling surface at the asymptotic
boundary. If we consider the finite volume regions of interest here, were we to imagine that
the volume of co-dimension two surfaces anchored to the boundary, it will always remain
finite. The question then is, whether such a quantity is dual to entanglement entropy in
the deformed theory living on the boundary at finite radius. This question is answered
in the affirmative in the third chapter of this thesis. This finiteness of the entanglement
entropy is an indicator that perhaps the theory at hand is somehow equivalent to a quantum

7



system with a finite-dimensional Hilbert space. Further, in the final chapter, we investigate
whether these calculations can be carried out when the bulk theory is no longer classical
as well.

1.3 Plan of the Thesis

In chapter 2, the aforementioned issue of how bulk diffeomorphism invariance emerges
will be addressed. The discussion starts with introducing the quantum renormalization
group, and within this context, the requirement of bulk covariance is seen to lead to
the Holographic Wess-Zumino consistency conditions. Connections are made to some
conventional results in holographic renormalization. In chapter 3, flows that satisfy the
holographic WZ conditions are discussed. The chapter begins with applying QRG to
two-dimensional holographic CFTs deformed by the 7T to construct the bulk Einstein
gravity theory in AdSs;. Then, higher dimensional T? deformations, and the connections
between the flows they trigger and the generalized gradient flow is discussed, and here too,
some connections to conventional holographic renormalization are made. Then chapter
4 addresses the computation of von Neumann and Renyi entanglement entropy in TT
deformed CFTs at large central charge. It is shown that the holographic entanglement
entropy conjectures generalize to the case where the bulk is cutoff at a finite radius. Finally,
in chapter 5, the connections between the partition function of 7T deformed CFTs at any
finite charge and the solutions to the radial Wheeler de Witt equation is described. The
computation of von Neumann entropy at a finite central charge in the 7T deformed theory
is also presented.



Chapter 2

Emergent Bulk diffeomorphism
invariance

As described in the previous chapter, a key feature of the holographic duality is the identi-
fication between the radial direction in the bulk and the energy scale of the quantum field
theory on the boundary. If the bulk theory is generally covariant, then it must be that the
energy scale and the directions of space on which the field theory lives must be treated on
equal footing. In other words, full bulk diffeomorphism invariance must be encoded in the
renormalization group flow of the holographic field theory. This is encoded in a particular
form of the Wess—Zumino consistency condition that the local renormalization group must
satisty.

In this chapter, these conditions will be presented in the context of the quantum renor-
malization group(QRG). This is a constructive prescription for deriving bulk theories from
re-organizing the RG flow of certain quantum field theories.

2.1 The Local RG Flow

The most general notion of coarse-graining available in real space which remains mean-
ingful even on arbitrary backgrounds is the one given by local Weyl transformations of
the background metric. The renormalization group flow can be seen as the response of
the generating functional under such a change. This perspective is known as the local
renormalization group. It is a continuum generalization of Kadanoft’s idea of block spin
transformations. This approach was pioneered by Osborn in [126].



The usual re-scaling transformations associated to the scale evolution can be seen as
Weyl transformations with a constant Weyl factor:

olnz

olnZ
— dD v
or / V99

dgh(x)’

and that more generally, one can have transformations with an arbitrary Weyl parameter:

, 0
50:/;0'(1‘)9# 5g/’LV’

and then, ask how the generating function responds:

0,InZ = /de\/ﬁa(x)ﬁd(J)dlLZ. (2.1)

§J%(x)
Here, the index set {a} includes the identity operator and the metric. Thus, the term
U(J) also appears on the right hand side.

One can then change scheme to include a term proportional to g"” in the definition of
the metric beta function, i.e. g* — [*” 4 g"”, and in the new scheme, the above equation
reads

A,nZ = /de\/ga(x)B’&(;lidZ =0. (2.2)

The beta functions 3’® are those that include the metric as per the aforementioned scheme
change. This is known as the local Callan-Symanzik equation.

2.2 Mapping RG flow equations to Hamilton’s equa-
tions

A very useful insight to this thesis is that of Dolan in [13], which is that RG flow equations
can be mapped to Hamilton’s equations. The phase space variables are identified as follows.
The source J(z) is taken to be the configuration variable, and its canonical conjugate
momentum is the one-point function of the corresponding operator:

olnZz

(©Oale))s = §ary

(2.3)
Note that this one point function is computed in presence of a general source.
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The symplectic form on this phase space reads
Q- / AP /G6(On () A 5T*(2). (2.4)

The generating functional W[J*(z), g, ()] = InZ[J%(2), g, ()] plays the role of Hamil-
ton’s principal function, or the on shell action. Hence, the symplectic form evaluated on
shell vanishes:

Q]<O>: sw = 0.

é

For notational convenience, henceforth we introduce the notation, P,(z) = (O,(x)). In
the case of the renormalised theory, these identifications were first made by Dolan in [13].
This identification for the regularised theory was also made in [130].

The simplest demand one can make of the Hamiltonian which generates scale evolution
and hence drives the renormalization group flow is that Hamilton’s equations are the flow
equations:

ore

OF, of . U(J)
or Tl T T g

(2.6)

The first equation is the renormalization group flow equation describing the scale evo-
lution of the sources, whereas the second equation is the equation describing the flow of the
one-point functions in the presence of sources. The function U(J) in the latter equation
encodes the flow of the coupling of the identity operator, which is also necessary to include.

Upon inspection, one sees that the Hamiltonian which satisfies these demands takes
the form

HILP = [ P2 y5(5° (D). = UD)) (2.7
The relationship between this Hamiltonian and the generating functional reads
0
H=—InZ =0. (2.8)
or

This is the usual statement regarding the RG invariance of the generating functional.
This fact implies that the Hamiltonian is zero and hence we are dealing with a completely
constrained system. In particular, this is reminiscent of a re-parameterization invariant
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system. Such systems are invariant under the relabelling 7 — f(7). It is of value to
introduce a lapse function o(7) which compensates for such changes so that odr remains
invariant. This means that under the re-parameterization transformation o — f/(7)"lo. It
appears in the action as the Lagrange multiplier enforcing the vanishing of the Hamiltonian
constraint. It will be convenient to define

H(o) = [ &Pa o (" ())Pa = V() 2.9)

Since we are interested in the local Renormalization group, we generalize this setup so
that our Hamiltonian constraint is:

H(o) = /dDa;\/Ea(x,T)B'd(J(x,T))Pd(x,T). (2.10)

This is a re-writing of equation (2.2), which, as mentioned before is a statement of local
RG invariance of the generating functional. It will be convenient though to separate the
term corresponding to the flow of the coupling of the identity operator:

H(o) = /dD:B\/EU(:L‘,T) (B*(J(x,7))Ps(x,7) — U(J)).

Notice that this Hamiltonian is linear in the momenta, and so it follows that Hamil-
ton’s equations are first order. To mimic nontrivial equations of motion of some bulk
theory, we would like second or higher-order equations of motion. This will require that
the Hamiltonian have a kinetic term that’s at least quadratic in momenta. The quan-
tum renormalization group applied to large N matrix field theories provides us with such
Hamiltonians, as we shall see.

2.3 Quantum RG

The Quantum Renormalization group (QRG) due to Sung-Sik Lee [103], [102], is a construc-
tive coarse-graining prescription used for finding holographic dual descriptions of quantum
field theories. This mechanism will be explained in this thesis through the example of large
N matrix field theories.
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2.3.1 Quantum RG applied to large N Matrix field theory

The fundamental fields are Hermitian N x N matrix fields ®(x) (we will suppress the
matrix indices for notational ease). Assume also that the matrix model is gauge under
some gauge group (U(N) for instance), this means that gauge invariant operators in the
action are necessarily sums and products of traces of monomials of the matrix fields and
their derivatives. Note that this was first worked out in [102] and similar results were
derived in [3] and in [18] under the name of the ‘planar Polchinski equation’.

The simplest gauge invariance operators are the so called single trace operators that
are of the form:

1
Ofmy = N*@tr (@(v#% . V%cp) e <Vu‘{ e V@gq@) 7 (2.11)

where the multi index set { ,u;i} is used to denote the fact that there can be varying number
of derivatives and arbitrary permutations of indices thereof in each term of the product of
derivatives in the above operator. For brevity, we will use just a single latin letter index m
to encapsulate the multi-index set above. Multi-trace operators are formed from products
and derivatives of products of single trace operators. The sources for single trace operators
will be denoted as J™ and for multi trace operators as J™. These sources have arbitrarily
many indices and in particular, the source for the term in the action with two derivatives
can be chosen to be the background metric.

The action reads:

S = S,[®(x)] + N? Z/d%\/g J™)O0 + Z/d%\/g Vo [O, T™]. (2.12)
m Single—Trace m Multi—Trace

For reasons which will be made clear in the remainder of this sub-section, it will be of
interest to study the renormalization group trajectories starting from the sub space of
single trace operators. The generating functional for a theory on this sub space is given by

21 = / Db exp i{S[On(@): 7]} (2.13)

Wilsonian RG describes how the sources(/couplings) change when the UV cutoff A is
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lowered by a factor! o(z) = a(x)dz:
A = o2y

through the equations defining beta functions ™ for sources J™(x). Solutions to those
first-order ODE’s will determine a path in the space of sources/couplings. As mentioned
before, when the theory is strongly coupled, there are, in general, infinitely many such
sources. In that case, solving all RG flow equations becomes intractable.

Now, in the limit as N — oo, the quantum corrections to the single trace action under

one step of RG (A — A — Adza(z)) take the form? :
85[0, J"] = NQ/de\/Ea(x)éz(ﬁc(J”(a:)) — B"(J"(x))Om+

Gl ()
2

V3OV On) + O(52%) (2.14)

Here, the term Lo (J"(2)) is the integrand within the anomaly term denoted in the
previous subsection as A,, i.e. [d”z/géza(z)(Lc(J"(2)) = Asea@)ss-

The value of applying quantum RG to the matrix field theory will become apparent here
because it cleverly re-organizes the renormalization of this theory without having to ever
leave the subspace of single trace operators. The honest fixed point of the flow cannot be
projected down to this subspace because multi-trace operators are generated by quantum
corrections. QRG is a method to nevertheless restrict the RG trajectory to this subspace
and thereby project down the fixed point, by paying the price of promoting the sources in
this subspace to fluctuating quantum fields. This is why it is apt to call this technique the
quantum renormalization group. What is meant by the above statement will be fleshed
out schematically in what follows.

The most important thing to notice about the quantum corrections to the single trace
action is that to linear order in 0z, only double trace operators are generated.

!This infinitesimal ‘RG time step’ 6z is introduced to keep track of how many iterations of infinitesimal
local RG transformations one performs.

2the indices in braces such as {u}, {v'} etc. of differential operators and tensors denote multi index sets
distinct from those incorporated into the indices m, n and will be used solely in situations where a differen-
tial operator of arbitrarily high order is involved. For instance, Am{“}v{ﬂ} = Z:zo ATHTREN eV
and k,, could in principle be infinity.
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Toy integral example

Making precise the statement about the single trace sources being promoted to dynamical
fields lies in the observation that the multi-trace operators (double trace in the planar
limit) can be removed by paying the price of functional integration over auxiliary fields.
To schematically describe this, we will take the example of an ordinary (as opposed to
functional) integral over a single variable for simplicity. The main idea will carry through
into the case of interest. Let the toy integrand to be transformed be of the following
exponential form:

/ dgoe“O = Z(J) = /dsﬁ ei{JO(cp)—i—a&z(ﬁ(J)O(w)+G(J)02(4,0)+lc)} (2.15)

Notice that each of these terms is analogous to the functional integrand of the single trace
planar matrix field theory. The variable ¢ now plays the role of the fundamental field
and the source for single trace operators O(y) is the variable J. The first term in the
exponential is analogous to the single trace action, the second term is analogous to the
single trace beta function term and the third to the double trace term. The latter two terms
are generated by quantum corrections in one step of RG, in addition to the renormalization
of the coupling of the identity or the ‘cosmological constant’ term [s, and hence a factor
of adz is retained as a reminder of this fact.

The goal is to remove the quadratic term in the exponent in the integrand at the cost
of introducing integration over a new ‘field’ p(\):

¢ 70(0)+ad2(B(1)O0(p)+G(1)0*(9)+lo) } _ / dpWs(pD — O)et—/p—ed=(BO WGP e}

(2.16)
The delta function itself can be represented in integral form over another variable j(:

/dp(l)(;(p(l) _ O)ei{pr“)fatSZ(ﬁ(J)p(”fp(”G(J)p(l)Jrlc)}

/ dpM D iV =0)D i{ =Ip—ad=(B(NpM —pD GNPV +1c) }

— /dp(l)dj(l)eip“)(j(”—J)ei(j“)O)6i{—a5z(B(J)p“)—p‘”G(J)p(”Jrlc)}’ (2.17)

and if the p™) integral were now performed, one would see that the above expression is
hiding a delta function 6(j®) — J), which becomes apparent if the above expression is
written as:

/ dpM D P D=0 i1 0) gi{ ~adz(B(pV—p VG +e)
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The fields 7 and p(M are denoted in a manner which suggests tentatively that they shall
be related to the fluctuating sources and their conjugate vacuum expectation values on the
RG phase space. The nature of this relation will be made explicit in what follows.

So now the ‘partition function’ can be written as

Z(J) _ /dp(l)dj(l)eip<l>(j(1>_J)ei{_a(sz(B(J)p(l)_p(l)G(J)p(l)+lC)}Z(j(l)), (218)

where Z(jV) = [dyexpi{jO}, and is thus the same as Z(.J) except that .J is replaced by
4. The RG transformations still involve coarse graining with respect to the fundamental
fields ¢ and so since the quantum corrections have all been factored out into the integral
in front of Z(j!)), the second step of RG will proceed exactly the way the first step did
except that J is now replaced by the source j1). Given this guarantee of maintenance of
the form of the quantum corrections, one once again may choose to integrate in auxiliary
fields (p?, ) to obtain a result similar to the one above, i.e.

Z(jV) = / dpDdj@) ™ (P =i0) i @B —pDCEOR D+ 7 5@y (9.19)

Here, o® is the analogue of the Weyl factor chose at the second step of RG, which is
free to be chosen to be different from «. Thus a pattern emerges, and if so the result of
iterating this procedure for k RG steps can be written as:

k
Z(J) = / [[lda®ap®d;@)x
=0

X k{éz (7”“) e ) —aD (B0~ )p<i>+p<i>G(j<H>)p<i>+zc)} (k)
e |G pon=0) | Z()-

(2.20)
Note that the different Weyl factors at each step of RG denoted o) are also integrated over
in order to ‘average’ over all possible RG paths. The consequences of the path independence
of this RG procedure will play a very important role in the remainder of this chapter.

The continuum limit of the above product of integrals can the be defined by send-
ing 0z — 0, and defining z = eexp(kdz) as the so called ‘radial’ time. Here, € de-
notes a short distance cutoff. The integration variables then become: {a(i), Fich p(i)} —
{a(2),j(2),p(2))}. The latter two parameterise the dynamical phase space alluded to
in earlier discussions. Then the set of integrals over all RG steps can be recast as the

16



functional integral:

. i zZ=2zx P 2 dj(=) —alz -
207) = [ Dale)Di()Dp(e)et 5 M) ) 10,2((2)) (220

These ‘fields’ now gaining additional dependence on the RG time is the signature of the
emergence of a new directions of space, or in other words, of holography. The field theory
of these sources is holographically dual to the original theory of the ¢ fields. The bound
on the integral z, denotes where the RG transformations are truncated, which needn’t
necessarily be infinity. The function Hgpre is then give by

Hqra = B(j(2))p(2) + p(2)G(j(2))p(2) + lc. (2.22)

As promised, the Hamiltonian is now quadratic in the ‘momenta’ p(z) that are conjugate
to the dynamical source variables j(z).

Back to the Matrix Field Theory

Similarly, in the planar matrix field theory case, the Quantum Renormalization pro-
motes the sources J™(x) and the vacuum expectation values of the single trace operators
(O (®(2))) to the dynamical fields (j™(z, 2), pm(x, z)). In the large N limit, these single
trace operators are equal to their vacuum expectation values. These fact that they are
labeled by the RG time z in addition to the labels x is the precise sense in which they live
in one dimension higher to the planar matrix fields. The Hamiltonian in that case reads:

Z[J™ = /Da(@z)Djm(:v,z)me(:v,z)x

iN? [dPzdz m(z,z)L(f’z)—a(z,z)H (™ (x,2),pm (2,2)) .

e 7ol 8 e EN) ) (amoymm @i -
(2.23)

The factor of N? out in front of the integral in the exponent plays the role of A~! for the

partition function on the space of sources.

The large N limit is the same as taking the semiclassical limit of the bulk theory which
in other words, allows the functional integral to be performed in the saddle point approx-
imation. This saddle point corresponds to extremising the action Sp = [ dPzdz (ppj™ —
a(x)Hore). The Hamiltonian density takes the form:

Hora(j™ (7, 2), pm(, 2)) =
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(2.24)
The truncation to the single trace subspace is what leads to the quadratic term in the
momenta and thus the truncation itself is responsible for the non trivial dynamics of these
fields. The potential for the bulk fields is given by the generalisation of the term which
renormalizes the coupling of the identity operator: Lo (5™ (x, 2)).

To conclude, the classical phase space in which QRG flow takes place is thus parame-
terised by the conjugate pairs (j"(x, z), pm(z, 2)). This means that they satisfy the fun-
damental Poisson bracket relation

{0 (2, 2), (Y, 2)} = 6,0(x, y). (2.25)

The Hamiltonian generating this QRG flow is Hora(j™(z, 2), pm(z, 2)) given by (2.24).
The phase space is thus a subspace (that of single race operators) of the one identified in the
previous section, but the Hamiltonian now contains a term quadratic in the momentum.

2.3.2 Emergent gravity from QRG

The QRG procedure in the context of the matrix field theory will also promote the source
of the single trace energy-momentum tensor, i.e. the metric to a dynamical field. As
mentioned before, to study the pure gravity limit in the bulk, a limit where the energy-
momentum tensor is the only operator in the theory with a finite scaling dimension needs to
be considered. This can happen if all operators acquire large anomalous dimensions but the
energy-momentum tensor is protected by its Ward Identity. This implicitly also requires
the strong coupling on the planar matrix field theory’s side, although the classicality of
the bulk still requires the large N limit. It must also be assumed that there are no other
conserved higher spin currents in the theory.

The phase space variables in this case will be the metric and the vacuum expectation
value of the energy momentum tensor (7, (z, 2), ¢"(z, 2)), satisfying fundamental Poisson
bracket relation

{7 (,2), 97 (y, 2)} = 626706, y). (2.26)
The bulk RG Hamiltonian then takes the form

/d?’x\/g (a(z, Z)H(ﬂ'uwgw) + &, 2) Hy(mp, ™)) =

5 GrveB{ni{r} (9) 5
[ @aviate. ) (Vo + S0 m T + ) ) +
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+ /d?’x\/gﬁ“(a:,z) (V7). (2.27)

The first term is the RG Hamiltonian described in the previous section, and it generates
local RG transformations. The Hamiltonian itself, (as opposed to the density) will be
denoted as

H(a) = /d?’x\/ﬁa(a:,z)ﬂ(ww,g“l’), (2.28)

and for reasons mentioned in the previous paragraph, this is a constraint with the function
« is the corresponding Lagrange multiplier. Diffeomorphism invariance of the matrix field
theory arising due to being coupled to an arbitrary background also needs to be taken into
account. This is captured by the Ward Identity:

<VMT;W> = Oa (229)

that is imposed in the QRG as a constraint:

(&) = [ Cryier (7m.) =0 (2.30)

where the the shift vector £* is the Lagrange multiplier enforcing this constraint.

Thus the phase space of the bulk theory is that of general relativity in the Hamiltonian
formalism (discovered by Arnowitt—Deser and Misner in [I1]). Of course, the algebraic
form of the scalar constraint is not quite that of general relativity. The question that will
be addressed in the remainder of the chapter is under what circumstances the QRG scalar
constraint becomes that of general relativity.

The functions V(g) , 8 (g) and G***#{nHr}(g) are not just functions of the metric but
also its derivatives (i.e. curvature tensors) to arbitrarily high orders, but they admit a
derivative expansion where the leading order terms are:

V(g)=—co+ iR+, B"(g)=PBg +--, Gebine(g) = gG&waﬂ +.-42.31)

Here, G = giog"? 4 g7 g — Agh* "

If one entertains the possibility of tuning the constants in the gradient expansion then
it is conceivable that the ADM scalar constraint can be obtained through the following
steps. The term linear in the momentum needs to be removed somehow to even match the
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terms in the ADM scalar constraint. Assuming this is done if the action were re-written
by truncating to the first few orders in the derivative expansions shown, or in other words,
the constants multiplying the higher-order terms are all set to zero. Further, if the relevant
constants are tuned take the values A = 1 = v = ¢, ¢g = A, then the bulk Hamiltonian
will be a sum of the Hamiltonian and diffeomorphism constraints of general relativity. i.e.

]' ra
H(T, ¢") = Vg(—Ace + R) + EG*;I%MM e (2.32)

. >
-~

Hapwm (7T,uu 79"“’)

The diffeomorphism constraint is the same as that of general relativity. Note that including
any of the terms with spatial derivatives of a higher order than those included above in the
Hamiltonian will lead to a breakdown of the general covariance of the theory. The reason
for this breakdown lies in the mismatch between the number of radial gradients hiding in
the two powers of the momenta in the kinetic term, and the spatial gradients. One simple
way to see why the ADM Hamiltonian has just the right number of these derivatives is to
perform the Legendre transform to find that the Lagrangian thus obtained can be written
as a scalar density of weight one formed from the spacetime metric ([11]).

There isn’t any reason a priori to believe that the aforementioned truncations follow
from any of the limits already imposed on the matrix field theory. What would be more
satisfying would be to find some additional criteria that the coarse-graining mechanism
needs to satisfy from which the ADM form for the constraints follows.

2.4 Wess—Zumino consistency condition

The geometrization of the renormalization group lies in identifying the radial evolution of
a constant ‘RG time’ hypersurface into the bulk with the local quantum renormalization
group flow of the boundary theory. This is only strictly true, however, if the evolution is
generated by normal deformations of this hypersurface which satisfy a certain commutator
or Poisson bracket algebra. This algebra can be seen as a consistency condition for the
Hamiltonian evolution because satisfying this condition is necessary for the Hamiltonian
flow to not stray away from the subspace of phase space where the constraints are satisfied.
And through QRG, it will also reflect the consistency of the local renormalization group
flow, in that it dictates how LRG transformations are composed consistently.

3Here, A.. denotes the Cosmological constant, and shouldn’t be confused with the UV cut-off A.
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The specific form of the structure functions of this algebra is dictated by the diffeo-
morphism invariance of the D 4 1 dimensional target space into which this hypersurface
is embedded. In other words, the property of the generators of the deformations of hy-
persurfaces forming a certain commutator or Poisson bracket algebra is a sign that these
hypersurfaces are embedded into a one higher dimensional (here Euclidean) spacetime.
This algebra is known as the hypersurface deformation algebra or the Dirac algebra. This
is because it mirrors the Lie bracket algebra of components of spacetime vector fields
decomposed tangentially and orthogonally to an embedded hypersurface [115].

In this section, the consequences of imposing the Dirac algebra through the Wess—
Zumino consistency condition for the Quantum renormalization group will be investigated.
From the field theory perspective, this will amount to relating the anomalous Ward identity
for broken Weyl/scale invariance to the Ward identity corresponding to diffeomorphism
invariance of the boundary theory coupled its background metric at every scale. This
relation between said Ward Identities will then impose restrictions on the algebraic form
of the RG Hamiltonian, which is nothing but the Hamiltonian of the dual gravity theory
and constrain it to be that of general relativity.

The guarantee that the only representation of this algebra on the gravitational phase
space being the ADM constraints follows from a theorem of Hojman, Kuchar, and Teit-
elboim [138]. Furthermore, the gradient formula for the metric beta function can also be
shown to follow from this demand that the constraint algebra close in a specific form. The
key result of interest form which this fact shall follow was first proven by Kuchar in [101].

2.4.1 The Wess—Zumino consistency condition as the holographic
dual to the Hypersurface deformation algebra

The Wess—Zumino consistency condition for the local renormalization group is simply a
statement of the fact that Weyl transformations commute. This means that when two local
RG transformations are composed, it doesn’t matter which of these transformations are
performed first, and which is performed second. Consider the the generating functional

and focus on its dependence on the metric: Wg,,| = InZ[g,,]. The statement of the
commutativity of the local RG transformations reads
[Aa(m)éza Aa’(a:)tSz]W[gul/(l')] =0. (233)

Even for a conformal field theory on a curved background, this condition imposes non
trivial constraints on the form of the conformal anomaly:

[Aa(x)7 AO”(:E)]WCFT[Q;U/] = AO'AU’ - AO'/AU = 0. (234)
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Away from the fixed point, when conformal invariance is broken, these consistency con-
ditions necessarily also lead to non trivial relations the beta functions needs to satisfy, in
addition to the anomaly terms.

In the QRG, the beta functions are coded into terms in the Hamiltonian, so the non
trivial relations the consistency conditions impose on the beta functions will thus translate
into restrictions on the form of the Hamiltonian. In order to see this more concretely, the
evaluation of the left hand side of the Wess—Zumino conditions in the QRG context reads:

(Ao AW lg] = ([H(0), H(o")]) = ({H(o), H(o")}), (2.35)
the vanishing of this, is how the Wess—Zumino consistency conditions are encoded in the
QRG. The diffeomorphism Ward identity does however allow for the possibility that the
right-hand side of the action of the commutator of the generators of Weyl transformations
to vanish as a consequence of being proportional to the covariant divergence of the energy-
momentum tensor. From the QRG perspective, this means that the right-hand side of
the bracket between H (o) and itself (smeared with a different lapse multiplier) can in
principle be proportional to the constraint H, with some smearing perhaps containing the
derivatives of the lapse multipliers. This means that the Poisson algebra of the constraints,
particularly a specific form of said algebra is the holographic dual to the Wess—Zumino
consistency conditions.

We conjecture that the anomalous Ward identity corresponding to the broken Weyl or
scale invariance of the theory which the Wess—Zumino consistency conditions pertain is, in
a specific way, related to the Ward identity corresponding to the diffeomorphism invariance
of the theory.? This means that the relationship between these Ward identities imply a
specific form of the Poisson algebra of the corresponding dual constraints. This form of
the Poisson algebra, given other assumptions we will further mention, will be sufficiently
strong to fix the algebraic form of the scalar Hamiltonian constraint to be identical to that
of general relativity.

Kinematics of Hypersurface Deformations

To start, it will help to describe the hypersurface deformation algebra at the kinematical
level. Consider an infinitesimal spacetime diffeomorphism generated by the vector field

4The mathematical statement of which is the covariant conservation of the energy momentum tensor’s
vacuum expectation value.
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v qe. y4 — yA 4+ 04, it can be decomposed into components tangential and orthogonal

to any given hypersurface as

v =ont + Uﬁl, (2.36)
where o = n‘v,, and vl’l“ = —(n%e)n + v4. Note that this vector is purely tangential
to the hypersurface, because n Avl’l“ = 0, so we will denote it as UIT in what follows. The

vector n?t is the normal to a co-dimension one hypersurface ¥.. The deformation of the
hypersurface generated by the vector field v# is given through the action of the operator

)
D A
which satisfies the commutation relations
(X (v), X(w)] = X([v,w]). (2.38)

Here [v,w] is the Lie bracket of the vector fields v, w?. Then a foliation dependent

decomposition of the above operator can be introduced as follows:

)
_ D A

No' = /Zd .CE\/EO'TL 5@/_‘4, (239)

)
T, = / AP /gu 0y —. (2.40)

pX oy

The algebra of these deformations is given by

[No, Notl = =Tf(001), [To, No| = —Nvﬁ‘aMW [Ty Ty ] = Thoy )] (2.41)

Here f“(o,0') = ¢"(0'0,0 — 00,0").

It is interesting to see that the above Lie bracket algebra is not a Lie algebra because the
analog of the structure constants is now replaced by phase space-dependent functions, i.e.
the vector f¥(o,0’). It is still analogous to a Lie algebra in the sense that the commutator
of these deformations generators closes to other deformation generators. Also, the structure
functions of the above deformation algebra are fixed by the demand that when the normal
and tangential deformations are combined to form the overall deformation X (v), it satisfied
the algebra of spacetime diffeomorphisms (2.37). In other words, the specific form of the
structure functions of this algebra is fixed by the demand for full diffeomorphism invariance
of the spacetime into which the hypersurface is embedded. This algebra must be mirrored
by the Poisson algebra of the constraints on the phase space of any dynamical theory which
respects full diffeomorphism invariance. This fact that spacetime structure is reflected in
the algebra of constraints was described in [148].

Swe will use uppercase latin letters such as A, B, ... for D + 1 dimensional spacetime tensors, which will

run form 0 to D.
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Implications for gravity

The result of key importance in the context of the phase space of general relativity is that
of Hojman, Kuchar and Teitelboim (HKT) in [138]. They prove that the unique repre-
sentation of the algebra of hypersurface deformations (2.41) on the phase space spanned
by the metric on a hypersurface and its conjugate momentum is given by the following
constraints:

N, — /E dPzo(z) (% (WWW -5 1_ 1tr7r2) — Vg(Aee — R)) :

Ty, %//Edeﬂvﬁ(x)(Vuﬁ’j). (2.42)

The Poisson algebra of these constraints mirrors the algebra of hypersurface deforma-
tions. These constraint functions are easily recognised as the ADM scalar and diffeomor-
phism constraints where the lapse Lagrange multiplier is identified with o(x) and the shift
multiplier is identified with v|’|‘ (). Thus the following Poisson algebra being satisfied by
the constraints:

{H(0), H(0")} = —H,(f*(0,0"), {H,(§"), H(0)} = H(§"0,0),
{H,.(&"), Hy(C")} = Hpu([€, ¢J")- (2.43)

is a necessary and sufficient condition for these constraints to take the ADM form.

The third of the above Poisson bracket relations is a representation of the algebra of
spatial diffeomorphism algebra. The second bracket is entirely a consequence of the fact
that the scalar constraint density is a tensor density of weight one. In a sense, these
brackets pertain to just kinematics, as far as QRG is concerned. This is because the
diffeomorphism constraint in the total QRG Hamiltonian is already of the same algebraic
form as the diffeomorphism constraint of GR, and hence necessarily satisfies the same
Poisson algebra. Also, the tentative scalar constraint density being a tensor density of
weight one only instructs where factors of /g ought to appear in each of its terms, but
it doesn’t fix the functional dependence of the functions themselves on the phase space
variables. The first Poisson bracket relation however does indeed pertain to dynamics. For
it to be satisfied, the form of various functions in the scalar constraint is fixed.

Going back to the quantum renormalization group, there is now potential to impose
a condition on the very coarse graining scheme itself, the satisfaction of which will force
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the RG Hamiltonian to take the ADM form. This condition is the holographic dual to the
hypersurface deformation algebra. It is given by:

Ay, ApIW g, = / /g (0,0 ) (V,TY), (2.44)

which, as mentioned before is but a particular manner in which the Wess Zumino consis-
tency condition is satisfied (because (V,T7) = 0).

We will now describe how the functions in the QRG Hamiltonian can be fixed by
demanding this particular form of the consistency condition, starting with the kinetic
term.

2.4.2 The Kinetic term

The tentative kinetic term is one which is quadratic in the momentum, but only the first
term in the gradient expansion is ultra local in the metric and momenta. The QRG scalar
constraint in this case takes the form

H(o) = [ aPsale2) (2 (mur = 5rgtnm?) + Flo.m) = Bula)e™ + VAV(W)).

(2.45)

The function F'(g, ) stands for the rest of the terms in the gradient expansion of the
quadratic in momentum term. This is a function which consists of an arbitrary number of
derivatives of the metric and the two powers of momenta. The key Poisson bracket relation

to use in order to fix the form of the remaining functions in this constraint is the bracket
between two scalar constraints, i.e.

{H(), H()} = Hu(f*(a, @), (2.46)

where leaving aside the specific form of f#(a, a’), a lot can be gained from just noticing the
fact that the right hand side of the above bracket is linear in the momentum. In order to
exploit this feature, it is useful first to recall that the Poisson brackets between two phase
space functions reduce the total polynomial order in the momenta by one and maintain
the order of spatial derivatives. The bracket between two scalar constraints breaks up into
a sum of several terms which can be ordered based on the total polynomial order of the
momenta. The highest order term from this counting would be the bracket between the
kinetic term and itself:

1 1
dPra(x, 2 (—ijaﬂ’ﬂ Vo + F(g,m ) ,/dDyO/ Y, 2 (—G‘“’O‘BW VTas + F(g,m )}
{ [arates) (So6m mumn + Plo.m) ). [[aP00't0.2) (26 mmes + o
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— (< ), (2.47)
This will split up again into three terms, the first being

dPx afz, Z>G’“’°‘67r VT ,/ dDy—a/(%Z)G“”O‘BW VTa }— a o 2.48
{/E N s | NG wTag ¢ — ( ) (2.48)

which vanishes because of the ultra locality of the resulting expression and subsequent
anti-symmetrisation of the smearing functions. The second and third terms of the form

{/EdD oz(\ﬂ;gz)(;uuaﬂmwmﬂ,/EdDyo/(y,z)F(g,w)} — (a ¢ o), (2.49)

{/Zdea(x,z)F(g,w),/EdDyO/(y,z)F(g,w)} —(a e a), (2.50)

don’t however identically vanish due to the presence of spatial gradients, and thus leads
to a set of terms genuinely cubic in the momenta. These terms vanish if and only if
F(g,m) = 0. The study of such terms is the subject of [110]. In that work, the demand
that the structure functions be independent of the momenta even is not imposed, but still,
the constraint algebra doesn’t remain first class under a wide class of such modifications
of the kinetic term. This eliminates the potentially cubic term in the result of this Poisson
bracket relation.

Thus from just positing this holographic version of the Wess—Zumino consistency con-
dition, it follows that
1 1
GrvaB{ntey _y _~_ e _ _(gu(agﬂ)v _ gwgaﬁ)‘ (2.51)

v Vi

Thus the double trace beta function is an ultra local function of the metric known as the
de-Witt super metric. This also implies that the kinetic term of the Hamiltonian is ultra
local in both the metric and the momenta. This is a canonically normalised kinetic term,
akin to that which is encountered in most field theories.

The super metric is a metric on the space of metrics is used to define an inner product
on field space, which in turn is necessary to define the functional integral over geometries in
the quantum theory. Paraphrasing from a discussion in [I 19], allowing this inner product
to be taken with respect to a super metric containing derivatives of the metric would have
the effect of defining a different set of dynamical fields in the theory. So the specification of
an ultra-local super metric can also be seen as a manifestation of the fact that the metric
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is taken to be the fundamental field variable and that the presence of derivatives of it in
the action is the cause for dynamics.

Furthermore, the ultra locality of the kinetic term in both the metric and the momenta
will ensure the invertibility of the relationship between the canonical momenta and the
extrinsic curvature tensor. The extrinsic curvature tensor is defined as

1
K,uzz - _éﬁngum (252)
where n* is the vector normal to the hypersurface. The relationship between this tensor
and the canonical momentum given the ultra-local kinetic term is

1 1
K,uy = ﬁ <7Tl“’ — mtrﬂgw) . (253)

The simple algebraic nature of the relationship between the canonical momenta and the
extrinsic curvature is one of the many necessary conditions to find a Lagrangian that can
be rewritten in the form of the Einstein Hilbert action which is manifestly covariant in
D + 1 dimensions after performing the Legendre transform.

The HKT result also seems to demand that the metric beta function ought to simply
vanish for the algebra of constraints to be satisfied, and also, the potential term should be
truncated to just the first two terms in its derivative expansion. There is a subtlety here
regarding the fate of the term linear in the momentum and the potential term and it will
be elucidated and addressed in the subsection to follow.

2.4.3 Gradient flow formula for the metric beta function and
canonical transformations

The constraint algebra enforced through the holographic Wess-Zumino consistency condi-
tions also has implications for the form of the beta function and potential term in the RG
Hamiltonian.

In the last section, it was deduced that the kinetic term should be ultra-local in both
the metric and the momenta to satisfy the hypersurface deformation algebra. Assuming
only this, the scalar constraint is given by

Ho) = [ dPs0e.2) (2 (mum = g ) = Aula) + ViV (@) (259

27



We will now sketch the derivation of the result showing that the demand that the hyper-
surface deformation algebra is satisfied will translate into the so-called ‘gradient formula’
for the metric beta function. For more detailed computations proceeding along this line of
reasoning to derive this result, see [110]. The original derivation of this result came from
an effort to formulate the HKT theorem in the Lagrangian framework by Kuchar in [101].

Given that the vanishing of the cubic resulting from the Poisson brackets has been es-
tablished, the next to higher order term will be a quadratic in momentum expression which
comes from the bracket between the kinetic term and the term linear in the momentum:

{ / @020 E) quen o / aPya(y, z)ﬁm,(g)ﬂ‘“’} ~(a o a). (2.55)
b V9 b

The function 8" (g) depends on the metric and its momenta, and the above expression will
not identically vanish despite the anti-symmetrisation of the smearing functions. In order
to satisfy the hypersurface deformation algebra however, this expression must strongly
vanish, by virtue of the fact that there is no term on the right hand side of (2.46) that is
quadratic in the momenta.

It can be shown ° that the vanishing of the above quadratic in momentum term will
imply that
(GO Bay) () 8(G"B5) (1)

59;)17(3/) - 5g/w<x>

Following similar logic, a term generated by the Poisson bracket calculation that is mo-
mentum independent should also vanish. The relevant piece of the bracket here will be

= 0. (2.56)

{Ldea(xaz)ﬁuu(g)ﬂ“”,/EdDy\/Eo/(y,z)V(g)} — (< ), (2.57)

which produces a term that is independent of the momenta and can be split up into a
sum of terms ordered by the number of spatial gradients. The first non-trivial order of
derivatives will be the second order, the vanishing of which is

V. (G R, = 0. (2.58)

The conditions (2.56) and (2.58) then imply that the function ,,(g)" has to take the form

dclg ]
B (9) = Grvpy 53, (2.59)
6See section 5 of [110]
"for a sketch of the proof of this statement, see [101] and references therein
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where c[g] is a functional of the metric and its derivatives.

From the quantum field theory perspective, the equation (2.59) is the so-called gradient
formula for the metric beta function. This result was arrived at solely through consider-
ations of the (‘holographic’) Wess—Zumino consistency conditions much akin to how such
a formula is derived in the traditional local RG literature, for instance in [?], [?]. Such
a formula was also derived from considerations of entanglement entropy in holographic
theories in [94], in the case where c[g] takes the form of the Einstein Hilbert action.

Coming back to the dual gravitational theory, consider just the kinetic term and the
term linear in the momentum, the sum of which can be manipulated as follows

1 dclg]

Gy TP — Gy A b

g e o S o

1 10 10 1 dclg) 0
Gl 7 — oclgl\ ((pm_ Loclgl) _ _Gwpnﬁ clgl (2.60)
V9 2 0w 200 4 0w 0Gpm
This manipulation makes the possibility for the following canonical transformation
vy 156[9],
209,

apparent. This is a canonical transformation because it preserves the canonical Poisson
brackets of the theory and subsequently comes at the cost of adding a total derivative term
to the action The role of such canonical transformations in holographic RG was discussed
in detail in . It follows from this canonical transformation that

/dz/de\/_ﬂ“”gW — /dz/dDa:\/_W“”gW /dz/de\/_; (;C 9l
Guv

_> / d / AP /G G, + clg] =5 (2.61)

This is just the statement of the fact that ¢[g| is the generating functional of the aforemen-
tioned canonical transformation.

This effectively removes the linear term in the scalar constraint, leaving only the ultra-
local, canonical kinetic term. The last term in the Hamiltonian constraint whose form
hasn’t yet been fixed in the above discussion from the demand of satisfaction of the hy-
persurface deformation algebra is the momentum independent potential term. It too gets
modified as a consequence of the canonical transformation mentioned above, i.e.

V(g) = V(9) = 7Gum " (9)3”(9) = Ulg). (2.62)
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Now, the form of the Hamiltonian constraint density after the canonical transformation
is:
1
N
and the HKT result will lead to the condition

1

Ulg) = V(9) = 5 GuwpmB" (9)6"(9) = V9(—Nee + R). (2.63)

Gy + U (9),

This difference between the potential term and the square of the beta function be-
ing exactly the potential term in the ADM Hamiltonian constraint is also related to the
vanishing of the difference between the a and ¢ anomaly coefficients in AAS/CFT as was
discussed in [123].%

We wish to emphasize that the above subsection provides a derivation of the gradient
condition for the metric beta function which was so far assumed in discussions relating to
the quantum renormalization group. The additional input however was the holographic
Wess—Zumino consistency conditions. On the gravity side of the duality, these conditions
translate into the closure of the constraint algebra in a very specific manner, which is a
stronger condition than just the demand for closure of the constraint algebra which was
already presented in [102].

2.4.4 The realm of possibilities

Despite the many arguments made in the previous sections to justify the conjectured form
of the Wess—Zumino consistency conditions, one can nevertheless ask what other consistent
choices could have been made on the gravity side for these conditions to be satisfied. A
consistent choice of how the Wess—Zumino conditions are satisfied translates through the
duality into a manner in which the Poisson algebra of constraints can close. Then, the
most general condition one can impose on the bracket between two scalar constraints is
just closure 7.e. to require

{H(c),H(c")} = 0. (2.64)
The symbol =~ denotes “weak equality” which means equality when the constraints are
satisfied. That would leave the possibility for the Poisson brackets to result in terms pro-
portional to both the scalar and vector constraint with arbitrary structure functions, whose
phase space dependence is made explicit with the notation f“(g, T, 0,0), 71(9, m0,0):

{H(0),H(0")} = H(Mg, m;0,0") + Hu(f*(9, 750, 0")). (2.65)

81t should be noted that conventions to do with factors of 2 differ between this chapter and [123].
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Before proceeding further in this discussion, it will help to first take a step back and
recall some basic notions in the theory of constrained Hamiltonian systems. The fact
that the Poisson algebra of the constraints results in terms proportional to the constraints
themselves implies that the constraint algebra is first class. The first-class nature of the
D + 1 constraints in the general relativity context is the manifestation of the fact that

there are W true degrees of freedom of the gravitational field.

Now, going back to the situation of interest, one can ask what class of gravitational
theories (i.e. theories defined on the phase space of GR) exist that possess spatial (i.e.
in the field theory’s space directions) diffeomorphism invariance and a local quadratic
in momentum Hamiltonian constraint which is first class and hence propagate the same
number of degrees of freedom as general relativity. No such theory has been found so far,
although a complete proof of the statement that no such theory could be found doesn’t
exist at the moment. Nevertheless, if additional restrictions such as the demand that the
kinetic term is ultra-local are imposed, then the mere demand for closure of the constraint
algebra will force the ‘tentative’ constraints to take the form of those of general relativity,
as was shown in [56]. This remains true if the kinetic term is also modified by the addition
of an arbitrary local, but quadratic in momentum term, see [70]. If the demand that the
modifications no longer remain quadratic in momenta is relaxed, then perhaps there is a
wide range of generalizations of the hypersurface deformation algebra that are admissible,
such as those described in [21].

If no such theory exists, then what one would conclude is that the only realization of a
first-class scalar constraint in otherwise spatially covariant theory of gravity is necessarily
the ADM Hamiltonian constraint of general relativity. In that case, the only demand that
one need impose is for the Wess—Zumino conditions to somehow be satisfied, i.e. that the
algebra of constraint simply be first class and the only consistent manner in which such
closure can be achieved is if the constraints are those of general relativity. Here, there will
be no need to make any conjecture about the specific manner in which the Wess—Zumino
consistency conditions are satisfied, and the covariance of the dual theory will follow solely
from the abelian nature of the group of local Weyl transformations.

2.5 Holographic Renormalization

The previous sections dealt with aspects of the renormalization group flow which in prin-
ciple will hold even if the theory under consideration is an effective field theory with a
finite UV cutoff. This means that any solution to the flow equations cannot be extended
to infinite flow time. The step of renormalization is to find a set of flows emanating from
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an ultraviolet fixed point so that the flow time can be taken to infinity. Corresponding to
that there is a chart on the theory space with well-defined transition maps corresponding
to the renormalized sources. This perspective is emphasized in [108].

To define renormalized correlation functions and other such observables, one need only
renormalize the generating functional. In the Hamiltonian system the flow gets mapped to,
this corresponds to finding the on-shell action defined with boundary conditions at large
flow times. The on-shell action is equal to Hamilton’s principle functional, so to study
renormalization of the boundary theory, we need to solve the Hamilton—Jacobi equation
with large (radial) time asymptotics. This procedure is known as holographic renormal-
ization (see for instance [10]). The approach followed henceforth is that of Skenderis,
Papadimitriou et. al. (see for instance[l28], [130], [131] and references therein) and is
known as the Hamiltonian approach to holographic renormalization. First, it will help to
clarify the role of the dilatation operator.

2.5.1 The Dilatation Operator

To describe a theory at the UV fixed point, one need recover the conformal Ward identities
at infinite flow time (from the perspective of the Hamiltonian system). As 7 — oo, we

need 5
0TN 2g" E(Soxz )
/z I G = 0

for later convenience, we denote dq(z)—1 = dg4

The Hamiltonian approach to Holographic renormalization is based on expanding Hamil-
ton’s principal functional in eigenvalues of this operator.

This identification corresponds to an asymptotic fixing of the Lagrange multipliers to
(0,&") = (1,0). Also, from the relation

T—00

g,uu ~ OgGuv = QQ;W, (266)
one can read off the asymptotic limit of the metric g, |; 00 = eZTg(O)W. So we see that the
action of the Hamiltonian and that of the dilatation operator at infinity is thus identified
simply:.

This type of behavior hints at asymptotic boundary conditions of the Anti-de Sitter
type (assuming the radial direction is Euclidean). To see clearly why the holographic UV

conformal field theory is dual to asymptotically AdS spacetime, will illustrate how to solve
the Hamilton—Jacobi equations, but in summary, it has to do with the dilatation being
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identified with radial evolution at infinity. Therefore, the holographic counterpart to the
renormalization procedure is to characterize asymptotic infinity which is seen as the limit
as the radial coordinate is taken to infinity. The construction of the requisite counterterms
needed to define the on-shell action thus coincide with those required to renormalize the
dual quantum field theory, as both the infrared divergence in the former as well as the
ultraviolet divergence in the latter arise in the 7 — oo limit.

Now we will demonstrate more explicitly how the conformal algebra emerges at the
fixed point

2.5.2 The Conformal Algebra

In the previous section, we see that when considering the U.V. fixed point of the theory the
background metric takes the form g,, = €27 g(p), where 7 — oco. In this section, we will
utilise this and focus on the case where g, = 7w, i.e. when the metric is conformally
flat. Also, if we choose the the diffeomorphism transformations to be generated by

= a" + wha” + At + 2(b - x)at — 2P, (2.67)
. 5-
and the Weyl factor given by 35,

o(x) = % =A+2b-u. (2.68)

It then follows that the local RG transformations and diffeomorphisms generated by

H(\) + H,(\") = DWW, H(2b-z) + H(2b- 2" — 2°0") = K,

H,(a") =P, H,(whz") = J«.

Then, it follows from the constraint algebra that these generators satisfy the following
algebra:

{K(b), D(A)} = — KW {p(a)7 D(’\)} = pQa), {K(b)7 p(a)} = —plab) 4 jlaxb) (2.69)
(J@ KO} = k@b [ ) p@) - pla) { J). J(m} _ Jlww)

Here a x b= al", w-a = wha’, w-b=whb” and w-w' = whw?. This is the conformal
algebra that emerges as the residual symmetry group of the background geometry that
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arises at the UV fixed point. Note that in order to derive the above algebra, it is crucial
that to note that the background given by the conformally flat metric with the infinite
Weyl factor, the Hamiltonian constraint commutes strongly. This is because the structure
function vanishes e*QTgE‘O’; (¢00,0' — d'0,0) — 0 as T — oo. This is consistent with the fact

that Weyl transformations commute.

2.5.3 Hamilton—Jacobi Equations

The Hamilton—Jacobi equation is obtained from setting the momenta equal to derivatives

of Hamilton’s principal functional:

S
0w

This is nothing but a restatement of (2.3) making the identification of the generating

functional with Hamilton’s principal functional. The Hamilton—Jacobi equations then take

the form

risad

(2.70)

S S
_ —9A) = 2.71
Gul/pa 59;“/ 5gp0 \/E(R ) O’ ( 7 )
VVﬁ =0 (2.72)
09w

These are nothing but a restatement of the local renormalization group equations satisfying
the holographic Wess—Zumino consistency conditions.

The Hamilton—-Jacobi equations can also be seen as a canonical transformation away
from zero momenta. From this perspective, the beta functions are given by the gradient
formula where C is replaced by S. To study the fixed point, it will suffice to consider pure
gravity, as all other beta functions would vanish here.

2.5.4 Solving the Hamilton—Jacobi Equations

The approach followed in this subsection and the next summarises what is described in
detail in [128], [130], and introduced in [131].

The Hamiltonian approach to Holographic renormalization is based on expanding Hamil-
ton’s principal functional in eigenfunctions of d,:
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These functions satisfy
598(k) = (D — k)S(k). (2.74)

The momenta thus also admit an expansion of the form
=g + Ty gy (2.75)

So the relation (2.74) can be written through the momenta as
trgy = (D — k)ﬁ(k), (2.76)

and this relation will be useful in the discussion to follow. The case of interest is to take
7 — 00 and pick out the divergent terms to cancel with counter-terms. This relation can be
used to iteratively solve the Hamilton—Jacobi equations but this procedure can be followed
only up to S(py due to poles. Given that the potential counter-terms of interest are all
pertinent to operators of dimension D or lower, this expansion will suffice to construct the
counterterms and compute the anomaly. These counterterms can be identified as

St == Su. (2.77)

The anomaly stems from the logarithmically divergent terms which appear for example

in four dimensions with the pole =—, that is converted through dimensional regularisation

D4
into —ln(e’%) /2. These must be summed together to obtain the logarithmically divergent

term L(p). The renormalized action is defined as

Sren = lim (8 + Su) = lim d”z\/9L p). (2.78)

T—00

To start with, begin with the zeroth order Hamilton—Jacobi equation:

0S80y 05(0) B
5g;w 5gpa

pvpo VA =0, (2.79)
which admits the solution Sy = [ Vgcr, where ¢; oc /—A, and in appropriate units of the
cosmological length scale, this can be set to one. We will specialise to D = 4 for simplicity.
To second order, the Hamilton—Jacobi equation reads

2 8Sw
+ R = 2.
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(D-2)

which admits a solution Sp) = f dr x\/gca R, where ¢ =

(D-1)°
Finally, the fourth order HJE in D = 4 reads
0S4 .
gMV 5 ( ) + Guypo_ﬂ-é)ﬂ"(oz) — O’ (281)
nv

and from knowing &), we see that the right hands side reads

174 ag 2 7
Gwpawé)ﬁé) - \/§ (gRQ —2R" RM”) .

This leads to the counter term action:

Set = /\/g {1 + 2 (R —1In(e™®) (%RQ — R“”RW>)] : (2.82)

The fourth order equation has another interpretation as the renormalised trace Ward-
Identity.

2.5.5 Renormalized Trace Ward Identity and the Anomaly

Recall the relation
tl“7T(4) = (D - 4),6(4),

which as D = 4 is ill defined. To cure this, dimensional regularisation is employed, as
mentioned before to set mp = ﬁ, and then one defines
£(4)‘T() = _27—(]["(4)‘707

so that

1
£(4) = —Etrﬂ'(4). (2.83)

This is finite as 7 — oo and in that limit this defines the trace Ward identity, again from
recalling the relation lim, ;o trms) = (T})ren. So, the interpretation is that this is the
expression for the anomaly at the fixed point:

I

<TM>T‘GTL = Ah - <%R2 - R'LLVR'[U/) . (284)
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This is known as the Holographic anomaly, which is one of the celebrated results of
the AdS/CFT correspondence: [25], [92]. Comparing this to the general expression for the
anomaly in conformal field theories in four dimensions, i.e.

A= (§ - a) R? + (=2c+ 4a) R" Ry + (@ — ¢) R* Ry o,

we see that the relation a = ¢ between the anomaly coefficients is implied by the above
expression.

From the fact that the asymptotic generator of radial translations is equated with the
generator of dilatations, as is expressed in (2.66), we see that the renormalized Hamiltonian
should, therefore, be equated with trmyy at 7 — oo. Thus the renormalized Hamiltonian
is equal to the holographic anomaly:

Hien = —(T")ren = Ap. (2.85)

m

Another way to see how the a = ¢ condition arises in the local holographic RG was
demonstrated by Nakayama in [123].
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Chapter 3

Flows satisfying the Holographic
Wess—Zumino consistency conditions

In the previous chapter, we discussed the Holographic Wess-Zumino consistency condition
and how it reflects the commutator or Poisson bracket algebra of the generators of defor-
mations of a hypersurface embedded in a one higher dimensional space time. Since it is a
re-writing of the bulk space-time diffeomorphism algebra, the asymptotic conformal sym-
metry algebra arises from this algebra at the boundary of an asymptotically AdS space.
The limit of approaching the boundary of the AdS space mirrors the limit of taking the
cutoff to zero in the theory on the boundary. What is missing in this story is and iden-
tification of the effective field theory that inhabits the surface at some finite radial slice.
Examples of such theories will be the focus of this chapter.

The paradigmatic example will be the TT deformation of large ¢ holographic, two
dimensional conformal field theories.

3.1 QRG meets TT deformed CFT,

In this section, we will discuss applying the QRG procedure to the TT flow of large ¢ two-
dimensional conformal field theories, and how this leads to general relativity in Ad.S;. Most
importantly, this flow satisfies the Holographic Wess—Zumino consistency condition, and in
fact, the structure of the flow equation is protected by this condition. In other words, the
flow equations receiving no corrections involving gradients or other operators formed from
higher powers of the stress tensor is a consequence of the consistency conditions. To set
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this all up, it will help to set some conventions for two-dimensional conformal field theories
on general backgrounds and their deformations.

3.1.1 2D conformal field theories on curved backgrounds

The conformal field theories under consideration are those living in two-dimensional space-
time. For our purposes, we will work with Euclidean conformal field theories. We will
denote the action of the conformal field theory as Scpr and the partition function reads

Zorr(g) = /D@e‘SCFT[<I’?9], (3.1)

Here g,,, denotes the metric tensor on the two-dimensional space on which the conformal
field theory lives. The ®s refer to fundamental fields of arbitrary spin in principle. They
needn’t be specific for the rest of the discussion.

Putting the theory on an arbitrary curved background with metric g,, means that
conformal symmetry will be anomalous. The anomaly itself is the sole source of scale
dependence in this theory, and hence it will be useful to isolate said scale dependence. It
will be useful to note that the metric can be decomposed as follows:

uv = BQW(I).@MW

where ¢(z) is referred to as the Liouville field. The partition function reflects this decom-
position in the following manner:

Zerrlg = 6290@] = esp[w;g]ZéFT[g]- (3.2)
The scale dependence rests in the Polyakov action
Spele; 9] = /dQ:c\/E(soDso —¢R(9)) -
The Ricci scalar R for g and that of § (denoted R(g)) are related in the following manner:
R(g = ge**™) = €**(R(g) + 20¢p)

The defining property of the conformal field theory is the Ward identity corresponding to
Weyl invariance which reads:

(% _ ﬁe_wR(g)) Zerrlg) = 0. (3.3)
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Here, ¢ denotes the central charge.

The purpose of isolating the ¢ dependence is to highlight the fact that the Polyakov
action is solely responsible for the scale anomaly:
0Splep; 4 ¢

=———¢ % 4

where as Z} pp[g] remains completely Weyl invariant.

Despite the Weyl anomaly, the aforementioned ward identity will still be referred to as
the conformal Ward identity. The breaking of conformal symmetry which results from RG
flows being triggered will alter the form of this Ward identity, and the form the identity
then takes will define an exact RG flow equation.

3.1.2 The deforming operator 7T

The form of the deforming operator O (which was referred to previously as 7T, and shall
continue to use these two notations interchangeably) on flat space with complex coordinates
(2,2) is
-1
O:TT—Z@,

where T, T, © stand for the holomorphic, antiholomorphic components and trace of the
energy-momentum tensor of the theory. In the limit where the theory is indeed conformal,
O = TT. Zamalodchikov in [113],[157] proved that this deformation is integrable. This
means that it is one of an infinite number of mutually commuting conserved charges. It
was also shown that in the flat space limit for a wide class of slowly varying, translation
invariant states, the following factorization property holds for the expectation value of this
operator:

(0) =(T)(T) — (©)". (3:5)

This will be useful in constructing the bulk dual to this theory. Clearly, this operator
is irrelevant, and as the above factorization property suggests, it is of dimension four.
Thus the coupling of this operator in the action of the perturbed field theory is of mass
dimension -2. It was shown in [51] that deforming a two dimensional quantum field theory
by this operator on flat space is equivalent to coupling the theory to Jackiw—Teitelboim
gravity. This is a very interesting observation but for the purposes of this chapter, i.e. to
construct the off shell Einstein-Hilbert action in the holographically dual bulk theory, it
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will be necessary to put the theory we are interested in on an arbitrary curved background.
In that case, O in a more covariant form is given by

0 = £ (LT — (T2)?). (36)

it can also be rewritten by noting that

T, T" — (T3 = GIW _Tr e,

pvpo
where the de Witt super metric is defined as

Gz}j\;})a = (g,u(pga)u - g;wgpo)- (37)

The desired factorization property (3.5) will now take the form

<GdW T,uVTpcr> — de <T,u1/><Tpcr>‘

pvpo pvpo
And in order for the dual theory to indeed be general relativity in three dimensions, we will
see that the above property has to be exact in addition to the fact that no operator other
than O is generated to leading order in the coupling in front of it in conformal perturbation
theory. In the next section, we will show that there is a natural consistency condition that
the quantum field theory must satisfy in order for these hopes to be realized. The Energy
Spectrum Here, we will briefly review the calculation of the energy spectrum of a 77T
deformed CFT on a cylinder. This is one of the first quantities that was computed in the
literature ([?], [32]) in the deformed theory, and it sheds light on some very fascinating
features of the deformation.

Given that the TT deformation preserves space and time translation invariance, a
natural basis of states to consider in the theory is that of the Hamiltonian and momentum
operators’ simultaneous eigenstates. They are denoted as:

Hln) = By[n), Pln) — 27;‘]”\@- (3.8)

Here L is the circumference of the spatial circle. In the deformed theory, the Hamiltonian
satisfies the flow equation:

O, (H) = / dz(0) (3.9)
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which follows form a similar flow equation that the partition function of the theory on a
general background satisfies. The expectation value on the right hand side is computed in
the energy eigenbasis, and the left hand side too can be expanded in said basis:

> 0,E, =) L{(n|Oln).

Therefore, we see that term by term we have

0. E, = (n|O|n). (3.10)

Thanks to the factorization result, which we know holds on translation invariance back-
grounds, this expectation value can be rewritten as

(n|On) = ((n|T|n){(n|T|n) — ((n|®]n))*)

_ —i ((n|Tyln) (n|Tuuln) — ((n|Ta|n))?) . (3.11)

On the cylinder, we know what the individual components of the energy momentum tensor
are in terms of energy, pressure and momentum:

2mid,

E,
(n|Tie|n) = —, (n|Tha|n) = OLEn, (n|Tw|n) = 12

7 (3.12)

The flow equation therefore becomes the following equation for the energy levels:

1 P2

This equation resembles the Burgers equation from hydrodynamics but without a viscosity
like term. The solution to this equation, in the case where a CF'T is being deformed is
given by

212 27 11 . c w22 -
En(p, L) = — ( - \/1 75 (An +A, - E) + (B - An)2) . (3.14)

W

Here the undeformed energy is given by E, = A, +A,, — 71 and the momentum eigenvalues
are the same in the deformed and undeformed theories.

Note that there are two solutions, corresponding to the two signs to choose from. To
match with calculations of quantities in AdSj3, it turns out that we have to choose the
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solution with a positive sign for p. Indeed, this solution isn’t real-valued for all values of
n if we fix p and it sees a square root singularity as a function of n. This level is to be
interpreted as demarcating a cutoff, which is the interpretation that the authors of [I14]
proposed.

Moving beyond this paradigmatic example, and back to the task of applying QRG to
a large ¢ CFT on general backgrounds, it will help to first introduce the Callan-Symanzik
equation for the deformed theory. This is needed since the definition involving the flow of
the Hamiltonian works only when there is a time-like killing vector on the background.

3.1.3 The local renormalization group equation

The theory of interest in the discussion to follow has the following action
M v (03
S[®; g, 1] = Scrr(®; g] + E/d%\/ﬁGmﬁT“ T, (3.15)

where p is kept infinitesimal for the rest of the discussion. This theory is no longer confor-
mal, but depends on an additional scale through p. The geometerization of the renormal-
ization group flow this operator generates will entail said flow being mapped to Einstein’s
equation in a three dimensional (Euclidean) spacetime.

The aim here is to write down a Callan-Symanzik like equation describing the response
of the generating functional to local Weyl transformations. These Weyl transformations
are to be seen as a continuum generalization of the blocking transformations of Kadanoff,
so they encode coarse-graining but in a space-dependent manner.

To begin, the partition function of the deformed field theory takes the form
Zorrlg, p] = ZCFT[QKG_%fdzxﬁGg\"Np”TWTW%FT- (3.16)

The key results of this subsection shall all follow from the above expression where p is
considered to be small. It will thus be very important to state the assumptions that go
behind this expression.

The most important one is that the only scale in the quantum field theory is p. This
implicitly assumes that no operators of higher dimensions suppressed by other scales enter
into the RG flow of the quantum field theory. We assume that the theory possesses a
large central charge c. Given that the energy-momentum tensor and its derivatives, i.e.
the descendants of the identity operator close under the operator product expansion with
each other, the higher dimension operators possibly entering with scales other than u
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are all composite operators of the energy-momentum tensor. In the next section, we will
describe what the necessary condition is in order to protect the theory of interest from
such corrections while retaining only O. For the time being, we will continue with more
the more stringent assumption that p is in fact the only scale available in the quantum
field theory, and also that g, (x) to vary slowly with z.

We will start by introducing the Liouville field:

* ~ a _& 21, de— d v o
ZQFT[gnu] = ZCFT[Q]GSP[WP}@ 5/ Cavge G, T >CFT'

The modified scale Ward identity that takes into account the breaking of conformal invari-
ance by the deformation-

e ** dlnZgprlg, 4] 1
— ’ = (T = ——_ _ P W uv rpo

which shows how in addition to the anomaly, how the operator O drive the RG flow, at
least to the lowest order in . Another use for the Liouville field is to act as a compensator
for Weyl transformations- where transformations of the form g,s — €**g,p, this can be
compensated through ¢ — ¢ — o. Thus the above equation can be written as

5,17 — / Lo /Gor (T2 = / oo (~ 5o Rlg) ~ (G rom) (3

where §, = [ d2w\/_ 90 Guvso— 6 . Notice that despite the split between the Liouville field
and the metric g,, the rlght hand side of the above equation only sees ¢ and g,, in
their combination g,,. This is an equation which describes the response of the generating
functional to the change of local scale encoded in the Weyl transformation g, — e~ 20(@) G
This Weyl transformation can be seen as a generalization of the blocking transformation
Kadanoff introduced on the lattice. In principle, if other sources were considered, then
functional derivatives with respect to such sources will result in correlation functions of
the operators to which they couple. The response of such correlation functions under
the aforementioned coarse-graining transformations corresponds to inserting the trace of
the energy-momentum tensor into said correlates which one can deduce from the above
equation. Thus this equation is the local Callan-Symanzik equation.

Now, in the large ¢ limit and taking §,, = 7., the factorisation property of Zamalod-
chikov can be utilised:

(8) = —=—R(¢) = & (Muielloys — Mo (T HT?). (3.18)
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Notice that 3 (u(oTey — MuNpe) (T )(T*7) = (T)(T) — (©)? in the (z, z) co-ordinates.

The local RG equation (3.18) can be seen as the defining property that the quantum field
theory perturbed by O needs to satisfy. But we must remember that several assumptions
were made to derive this equation, and the aim of the next section will be to present
a consistency condition which will allow one to relax a few of these assumptions and
also to allow the construction of the Einstein-Hilbert action of the holographically dual
bulk theory. In other words, this consistency condition too must be included in the very
definition of the theory we are interested in.

The last subsection to follow will describe why (3.18) would ensure that it is indeed
general relativity operating in the bulk theory.

3.1.4 What to aim at: The holographic interpretation of the local
Callan-Symanzik equation

If the field theory under consideration were to possess a holographic dual, then the gener-
ating function can be equated, at large ¢ to the on shell classical Einstein—Hilbert action
for gravity in 2 + 1 dimensions (denoted S..),

c
InZ, Tl = —=—— 1
nZqrrlg; 1l 247T5'c[9a g (3.19)
The local Callan-Symanzik equation for such a theory takes the form
5S. 08. 85, 1 (65.\”
Se _ e 2 R(p,§) — K :9 AS _ L[5 . (3.20)
dp 247 \ 00,0 0950 2 \ Op

This is nothing but the Einstein-Hamilton-Jacobi equation for pure (Euclidean) general
relativity in 2 4+ 1 dimensions provided one sets p = 247“. This observation was made
in [114], where the above expression first appeared. Notice however that in contrast to
(3.18), the above equation holds away from §,, = 7,., and beyond the leading order in the
gradient expansion. It is instructive to rewrite the above equation in terms of the metric

I 5S 5S. 58
V_c — R _ dzva c c ‘
P Ay P

Recalling that 569% = (T*), and comparing the above form of the local Callan—Symanzik

(3.21)

equation with the general form (3.17), we see that the factorisation condition

<de T;U/Tpa> — GdW <T/UJ><Tp0'>

pvpo pvpo
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holds for these theories that possess holographic duals. This is what we meant earlier when
it was mentioned that such a factorisation property will be crucial importance.

The remainder of this chapter is dedicated to deriving the above result (3.19) starting
from the 7T deformed boundary CFT by reorganizing the RG flow. Such efforts to con-
struct the bulk theory from the RG flow of the boundary theory go under the heading of
the ‘quantum renormalization group’ (QRG) [103], [102]. An intended by-product of such
an effort will be to clearly understand what criteria the theories which possess holographic
bulk duals should possess.

3.2 Constructing the Bulk theory

In this section, we wish to start only from the two-dimensional field theory deformed by
the operator O and construct from that the off-shell, Einstein Hilbert action in three
dimensions. We’ll show that the criterion for such a construction to work will hinge on a
very particular composition property of the coarse-graining transformations.

In other words, we wish to show what criterion needs be met in order for the O de-
formed quantum field theory to remain protected under corrections involving operators of
higher dimensions including gradients, etc. at least in the large ¢ limit and in conformal
perturbation theory. In other words, many of the assumptions from the previous section
can be dropped provided that this criterion is met.

The idea behind the holographic duality is that the evolving bulk fields (are a subset of)
the sources of the boundary operators somehow granted dynamics. More specifically, the
radial evolution of the bulk fields is equated with the renormalization group flow. In the
case of interest here, the conformal invariance is broken by a composite operator involving
solely the energy-momentum tensor, whose source is the metric. On the other side of the
duality, the only evolving field will thus be the metric, and so one can expect pure gravity
to be the theory at play in the bulk. In the first subsection, we describe how to grant
dynamics to sources of composite operators in the theory. In the case of interest, we have
just the metric and that couples to the energy-momentum tensor.

3.2.1 The dual theory

The end result of the QRG procedure applied to the theory we are interested in, which is
a two dimensional conformal field theory with large central charge ¢ deformed by the 17T
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operator. The path integral manifestation of the anomalous Ward identity is that it allows
us to answer the question of how the functional integral responds to the infinitesimal Weyl
transformations g,, — e"m)(”)‘szgw,, where 0z is an infinitesimal constant. This is given by

?

Z(gw) = / DipeSartldl=5z [, o0 @) (15— {5 G, T TP~ 55 R (3.22)

and the (---) stands for the potential corrections coming from potential higher dimension
operators that might arise. This was the possibility alluded to in the previous section.
In order to show how the consistency conditions we will later impose protect the form
of the local Callan—-Symanzik equation that can be interpreted as the Einstein Hamilton
Jacobi equations, we will begin by assuming that higher order corrections too can in prin-
ciple appear but all but the lowest order term corresponding to O will not satisfy the
aforementioned criterion. To begin however, let f(T"",g,,) encode all these corrections
ie.

v Haw v c
TH L)) = _G T+ TP77 _ R .
P G = 16 G Y

Now in order to grant the metric dynamics, we use the following trick:

/Dq)DQ;(LO)fS(QS,)j) _ gw)e—SQFT[‘P;g}—(;fo o0 (a)(Tg—f(TH, gﬁg)))'

v

It will also be useful to write think of 7" as a normalised functional derivative with respect
to the metric acting on the generating functional:

247 ) 24w O _ .(0)
/D@Dg£95<9£?_guu) eXp {_52/0(0)@) (Tg;(gz)é 0 f (T(; (@7932))) } e~ Sorrl®ig®],
r Guv Guv

and then we exponentiate the delta function

/ D(I)Dgl(f)y)pﬁ(omue_ﬁﬂ(o)uu(ggp —g) 5

247 ) 247§ _ . (0)
P {_52/0(0)<x) (Tgfg) DR (T (O)agfﬁ)» } e~ Sarrl®ig T,
z 0 Gpuw 0 Gpuw

At this stage, we can also make note of the fact that the theory coupled to an arbi-
(0) : . : . :

trary background geometry g, should be invariant under diffeomorphism transformations

gfg,) — gfg) +02(V( ufg))' This invariance manifests itself through the diffeomorphism Ward

identity which in the path integral appears as:

/ DODg Q) DO s 6l —a0)
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24 ) 247r ) 24 ) _ . (0)
exp { —0z / o) | gl — f 9 ) )+ T (Vb)) =y e e,
{ . c K 5g,8()y) ¢ o9 0) % (uSp) 59#!/)

We can then functionally integrate by parts so that the functional derivatives with respect
to the metric g,g()y) get replaced by 7(* and we find

/ D(IDDgI(Py) Dr(Onr g=gizm O (952 —9ur) ¢

¢ v v v - (0
o {02 (5) [ 200 (g2nO = (O g2)) + (V6 O feSorrea®

We see that the partition function of the original quantum field theory can be recollected
although the theory now lives on the geometry described by metric g,&?}:

/Dggl)pﬂ(o)m’e—mcﬂrw(o)uu(g((y g’“’)x

c
exp {—(5z <E> /0(0) (z) (QIS()V)W(O)MV — f (W(O)MV79,3()V))) + (V(Hfg’))ﬁ((})w} Zorr[g®).

Now this process of performing infinitesimal Weyl transformations can be iterated say
k times until we find

i (4) (QL) gf 1))
. . c ) pr 1% na
/ [ [ Dol DrOr et ko2 i M TR

w3 {0 (552) [0 (6r O = £ (10 52)) + (Ve m } Zorrly™)

The continuum limit can now be taken where 0z — 0, kdz ZZ o := 7 dz, and the

collections of fields (gug( ), 7@ () @ (z), EDH(z)) now are replaced by fields with z
dependence (g, (z, 2), " (z, 2),0(z, 2),"(x,2)). Then we find the emergence of a ‘bulk
theory’” with action Sp:

/ Dy, (z, 2) D (2, 2)Do(x, 2)DEy(x, z)e” 27 Flta ) T (@20 @2 70 b g (2, 2 = 2,)].

Here, the o(x, z) and &(x, z) are also integrated over because they appear only linearly in
the action and are thus Lagrange multipliers.
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The form of the bulk action is given by

Sp = /dQZ‘dZ\/E(ﬂ"LW(I, 2) 4w (z, 2) — Hp(m", g, 0, ")) . (3.23)

We see that the normalisation of the functional derivatives that get traded for the momenta
and thus the overall normalisation of the action is chosen such that the large ¢ limit of
this theory does indeed give the semiclassical limit where the partition function can be
evaluated in the saddle point approximation. Now, the bulk Hamiltonian reads

HB(W“V7 g,u,u7 g, fu) = O'(ZE, Z)H<7le7 g;w) + é.'u('ra Z)H,u(ﬂ—“y) g,LLV>)

which is a sum of just constraints. These constraints are the dual versions of the anomalous
Ward identity for broken Weyl invariance and for diffeomorphism invariance on the side of
the quantum field theory.

H<7T/Wa g;ux) = trm — f('/THV> g;w)> (3'24)

H, (", gu) = =2V b (3.25)

The question then is what form the function f(7*”,g,,) can take, and what dictates it’s
structure. In the following subsection, we will show how the demand that the Poisson
algebra of these constraints agrees with that of general relativity fixes completely the form
of this function and when translated back to the field theory, this will correspond exactly
to the desirable form of the anomalous Ward Identity.

3.2.2 Leveraging the consistency conditions

Note that the Holographic Wess—Zumino (WZ) consistency conditions:

0=[As, A ]InZgrr[g]lcmoo = /dQ:E\/Eg“”(a(‘?VJ' —0'0,0)(V.T). (3.26)
applied to the present context implies that we must have:

(" gu) = 7G3X20w“"wﬂ“ ViR, (3.27)

As a reminder, the reason for this is that demanding the Poisson bracket algebra of the
smeared constraints takes the form
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{H,(8"), Hu(X")} = Hyu([€, x]") (3.28)

{H (o), H.(6")} = H(§"V u0) (3.29)

{H(0),H(c")} = H,(¢" (00,0" — 0'0,0)), (3.30)

will fix the form of the total Hamiltonian, and consequently of both H and H, to be of
the form

H= 7Gi¥i07r“”7r"’" VR + trm (3.31)
H, = —2V,7". (3.32)

When these conditions are satisfied, they ensure that the form of the exact RG equation
that corresponds to the Hamilton—Jacobi equation in the bulk gravitational theory.

3.2.3 The Hamilton—Jacobi Equation

Given the normalization of the bulk action that has been chosen, we see that the role of
h in the bulk theory is played by % In the large ¢ limit, this is small and the functional
integral can be evaluated in the saddle point approximation. In other words, the bulk
theory is in its semiclassical limit. This implies that the relationship

c
lim InZ, —SE¥ 3.33
i InZgrrlg) o 555" (33

c—00

holds, where o.s. superscript denotes that the bulk action is taken on- shell. The Hamilto-
nian constraint then takes the form of the Einstein-Hamilton-Jacobi equation

65%° 05%° 6S%°
=R Gwv :
0w (9) = G 3G 0Gps

G~

Which is simply the Hamiltonian constraint re-written with the identification " = iiﬁ
"z

being made. Given the identification (3.33), this implies that:

247§
™ = lim il
c—oo  C 59#“’

InZoprlg] = (T").

As promised, this is nothing but the factorised exact RG equation
(T3) = —R(g) = Gy (T )/(T77), (3.34)

v po
with no corrections.

In the following subsection, we will describe where the cosmological constant lies in this
construction.
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3.2.4 The cosmological constant

In order to bring the Hamiltonian constraint to a more standard form, it is necessary
to eliminate the term linear in the momentum. This will require performing a canonical
transformation:

6Clg]

" — - —=
O

(3.35)
with generating functional Clg] = 2= [ de\/ﬁ proportional to the volume. The price of
performing this canonical transformation is that the momentum independent part of the
scalar constraint is modified as follows:

ViR(g) — Vi (R(g) — ——qw 31l Clg

_ —2\/§ praf 59#11 59045

Thus we see that the net effect of the canonical transformation is to add a cosmological
constant to the theory (in units where it has been set to 1). The overall normalisation of

the action is thus consistent with the identification ¢ o é

Also note that the momenta 7 can now be integrated out in the bulk partition func-
tion, which in the saddle point approximation is nothing but the Legendre transform. We
then find that

= Va(R(g) — 2. (3.36)

C

= o0 / Pz (PR(Y) - 2)/7. (3.37)

which is nothing but the Einstein—Hilbert action for the three dimensional metric ~,, on
the bulk space with negative cosmological constant set to 1.

Sp

3.3 Epilogue

In this section, we showed the HWZ conditions can be used as a criterion to select deformed
CFTS which can be mapped to the dual of a bulk theory cutoff at a finite radial slice. This
is provided we restrict our attention to the identity module of two-dimensional CFT's picks
out the TT deformation at large c.

However, the form of the 7T deformed flow equation mirroring that of the Hamiltonian
constraint at large ¢ is but a limiting case of how this flow equation even at finite ¢
is an exact re-writing of the Wheeler de Witt equation, which is a quantization of the
Hamiltonian constraint. This mapping will be described in one of the sections to follow.
It somehow turns out that the 7T flow satisfies the HWZ conditions even away from the
limit where the bulk theory is described by classical gravity.
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3.4 Higher dimensional Examples

In this section, we will describe higher-dimensional generalizations of the 7T deformation
that play the role of the dual theories to gravity (and coupled matter) in AdS space, cutoff
at some finite radial slice. In particular, we will look once again at AdS5. Furthermore, we
will connect these deformations to earlier results of holographic RG, and to the so-called
generalized gradient flow.

The first attempt at such a generalization was done in [30], where the authors define
the effective field theory’s generating functional through the following flow equation (in
two, three or four dimensions):

olnZ,
FREeff _ / dPx\/gX, (3.38)
o\
N2 1 N2 D [ R N
D—-2 D—-2 ~w c
X = <T“V + apr, Ol“’) - m (Ti + aqr, Cl/) — DX (tﬁ — m - (IDCZL
(3.39)

Here, T}, denotes the energy momentum tensor, the quantity C’W depends on the curvature
tensors of the background geometry with metric g,,. The constant 7. denotes the radius

in the bulk corresponding to the cutoff surface, and the constant ap stands for m.

The re-scaled Ricci scalar is denoted R = 7P~2R and the tensor t,,, is a function of sources
other than the metric that are also turned on.

A brief explanation for why the scale associated with these double trace deformations
can also be seen as a cutoff in energy for the deformed holographic quantum field theory
is necessary at this point. Following the authors of [30], consider the theory defined on
a simple geometry, namely a square torus of length L, and let us momentarily turn off
sources other than the metric.! Also assume that there is no momentum carried in the
state in which the energy-momentum tensor’s expectation values are evaluated. In this
situation, the energy density is given by the expectation value of one of the components
of the energy-momentum tensor. This can be integrated up to find the energy F(L, \) of
the system and it is found to be

By - L=D (1 B w B M) | (3.40)

2D\ D —1)LP-1

'This can be done more generally, as the authors of [30] show, however, for the purpose of illustrating
the role of X\ as a cutoff scale, this setting is sufficient
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where E,(L) denotes the energy of the undeformed CFT. This function hits a square root
singularity at B* = %, after which the energies take imaginary values. The idea is
to discard all energies above E* and treat this value of the energy as a cutoff. In fact, this

equation could also be used to write A as % which clarifies its role as a cutoff scale.

This expression arises from taking the radial bulk Hamiltonian constraint in AdS space
and identifying the metric on a constant radius hypersurface in the bulk with r2g,,, the
momentum conjugate to this metric with \/g((r2-PT# — (D — 1)g" (z,7 = 0)) + aqC*"),
and the parameter A identified as

4G
A= . 3.41
r.D ( )
This allows us to rewrite the derivative % in terms of the derivative 6%0 in the left hand
side of (3.38). For the full list of identifications, see [$0]. The above equation is guaranteed

to give rise to the right kind of bulk physics although it is unclear what the underlying
coarse graining mechanism is that gives rise to such a flow.

However, we will present an alternative prescription to the one above, through which
flow equations similar to the one above are derived for four dimensional, large N, holo-
graphic conformal field theories. The advantage of our approach is that the functions of
background fields appearing in (3.38) are shown to arise from certain cancellations rather
than being posited in the definition of the effective field theory. The route taken is to start
from the definition of a conformal field theory deformed by certain double trace operators:

T = [ devg (~utrT) - 5(00)) - Ag.dl. (3.42)

where ¢, (z) and ¢(z) are sources for the operator 7" and O(z) respectively. The func-
tional Alg, ¢| is the integrated conformal anomaly. The reason why it appears here is that
when the deformation parameters 1 and x are set to zero, the flow equation reduces to the
statement that the conformal field theory in the presence of arbitrary background fields
is anomalous under scale transformations. The scalar double trace deformation is formed
from the single trace scalar operator O(x) which couples to source ¢(x), and its expectation
value is denoted by (OO). Similarly, (T'T) denotes the expectation value of the following
operator:

TT(z) = (Goupo T T?) (), (3.43)

where G up0 = Gu(pYoy — %g,wgpa is the de Witt supermetric in four dimensions.>

2We assume tentatively that an appropriate regularization prescription has been chosen to define these
double trace operators but this will not feature in anything to follow because we will be using large N
factorization to make sense of the expectation values of the operators in the above flow equation.

23



The operator (3.43) is the same as the one proposed by Taylor in [147] as the higher
dimensional generalizations of the two dimensional 77" deformation introduced in [1413],

[32].

In the large N limit, the expectation value of the double trace operators factorizes:
(TT) = Gupo (T )T, (OO) = (O)?, (3.44)

and so the equation that we will use reads

0lnZlg, ¢ P
L0 — — [ o5 (4G T 1T + 510) — Al (345
The left hand side can be rewritten as follows
onZ[g,d] [a 5 5
—— 2 = [d g, 0)— ,0)— | InZ|g, ¢]. 3.46
where the flow functions are defined as:
09w 09
Similar flow functions are defined in [128] although the beta functions there also depend

on the expectation values of the deforming operators, and lead in a different manner to RG
flow equations that can be mapped into the bulk Hamiltonian and momentum constraints.

Going back to our flow equation (3.46), the exercise now is to find an appropriate
change of variables so that the equation

[ eV (Buta. 005~ + il )5 ) 2. 6] =
— [ VG (4G (1)1 + 5(O)2) = Alg. (3.48)

can be rewritten as the radial Hamiltonian of a gravitational theory in one higher dimen-
sion. This will require identifying the right change of variables, and furthermore, we will
find that the flow functions (3.47) must take a very particular form.
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3.4.1 Pure gravity in the bulk

Lets start by turning off the sources for the scalar operator. In this case, the flow equation
(3.48) reads

/ A2 /GB,9) Mggffg] _ / A /G0 () By (9)(T™) =
— [ A0 (G (1277 — Al (3.49)

The aim is to convert this into the radial Hamiltonian constraint of general relativity
operating in one higher dimension. The idea is to identify the theory’s background metric
with the metric induced on a constant radius hypersurface and relate the one-point function
of the energy-momentum tensor in a general background to the momentum conjugate to
this metric.

The latter is what we will pay attention to here. The discrepency between the energy
momentum tensor’s one point function and the momentum is captured by the ambiguity
in adding local counterterms. By counterterms here, we are referring to local functionals of
the source, here the metric, and its derivatives that are added to the generating functional.
These aren’t added in order to cancel any divergences although in the limit where the
regularization is removed, this would be their purpose. In other words:

ST = i fsi—[i] _ (3.50)

Plugging this into the flow equation leads to the following equation:

[ ateys (ume+ 220 -

uv

_ / /g <_ % G +2qupa7r””%S{g] 55g] 55[9]) A9,

Hee 5g,u,u 59/}0

v
(3.51)
First, we require the cancellation of the term linear in the momentum. This gives us the

following gradient condition:

B (g) = QMGWW%- (3.52)

09ps
The first term on the left hand side cancels against the second term on the right hand side.
Then, we also see that the second term on the left hand side reads
0Slg 0S1g] 6S|g
Bon 9] G l9] 05(g]
59,“/ 59/”’ (SgPU

(3.53)
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And, the flow equation then reduces to

05[] 6S[gl
d4 _L vpo Hmpe vpo
/ :E\/E( \/EGM oo T+ G, —(59}“} 500

) — A(g) = 0. (3.54)

The integrated Weyl anomaly for four dimensional conformal field theories takes the
form:

Al = [ a5 (5 - a) 2+ (<26 + 4R By 0= R Ry, (359

Then, recalling that the theory we are dealing with is holographically dual to general
relativity, requires a = ¢, as discovered in [35]. So, we have

1
Alg] = / d*z/g2a <R“”RW - gRQ) = aA=9[g]. (3.56)
For the function S[g], if we take the Holographic counterterm of [14], i.e.?

Slgl = % (/ d'z\/g (1 + K%R)) , (3.57)

then we find that first, the anomaly term cancels against the following term:

§ (fd'z\/gR) ¢ ([ d'z\/gR)
0 Gy 0Gpo

Al=9 = / Ad*2/9G po : (3.58)

if the identification “TEQ = a is made. This form of the a = ¢ anomaly also appeared in

[129]. Recalling that a = %, for supergravity in AdSs x S® which is dual to ' = 4 Super
w24

Yang-Mills theory at large IV, the relation found here implies that u = 5.

A caveat is in order at this point: note that the correct counter-term to use at asymp-
totic infinity is the one presented in [20] that involves in addition to what is above a
logarithmically divergent (as the asymptotic boundary is approached) term that multiplies
a fourth derivative term arising from the anomaly itself. Thus an additional canonical
transformation that involves the addition of that counter term must be performed before
taking the asymptotic limit of quantities defined in the setup considered here in order to
avoid divergences that would otherwise arise in the action on-shell.

3 Again, this is just a local function that has the same form as the Holographic couterterm, but it isn’t
added with the intention to cancel any divergences, because at a finite radius boundary, there aren’t any.
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Then, the remaining terms in (3.54) organise themselves into

H:—/d%(%—\@(mr%)): : (3.59)

This is nothing but the Hamiltonian constraint of five dimensional general relativity with
a negative cosmological constant, smeared against unit lapse. We also have the vector
constraint density:

VvV, =0, (3.60)
that follows from the covariant conservation of the stress tensor, and can be integrated

against an arbitrary shift vector field to obtain the constraint.

The flow function now reveals that the boundary metric satisfies a generalized Ricci
flow equation:

14
ﬁuu(g) =K <%gul/ + 5 <Ruu - éng/)> . (361)

This is similar to what was found in [91] and [123].

3.4.2 Including the scalar matter

In this section, the effect of adding a double trace scalar operator deformation to the above
setup is considered. The effect of adding this deformation in the bulk is similar to that of
the stress tensor double trace deformation in that it regulates the theory on the boundary
in a way that corresponds to pulling the boundary to a finite radius.

First, note that the source ¢(z) of the single trace scalar deformation is also space
dependent and hence it contributes towards the anomaly, and for holographic theories it
reads:?

Alg.ol= [ d‘*wa(aw)RWRW () + C(6)0,60" R + (9) R(060,0)+

1
+&(4)0" 90" ¢ (R;W - §RQW) + M) V2oV29 + x(g, ¢)uupaa“¢3"¢5”¢3“¢>- (3.62)

Then the various functions are found in terms of those that go into the definition of the
function S[g, ¢] that specifies the canonical transformation relating the one-point function
of O to the momentum p, conjugate to the source ¢ in the bulk Hamiltonian.

4See [?] the form of the scalar source and metric dependent anomaly in general CFTs
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Recall that the flow equation now looks like:

— [ 4/ ( Bulg, 0) < + Bolg, D) ) mZ[g, 6] =
09w

0¢
_ 4 1% po K 2
=~ [ G (4G (T)(17) + 5 (0)7) + Al ). (3.63)
Like in the pure gravity case, we make the identification
0S|y,
V9(O) = py — —([;‘(; 7 : (3.64)

in addition to the identification made of the momentum conjugate to the metric made in
the previous section.

The flow equation then becomes

[t ( B(0.9) (W - %) + (9. 9) (m - %f])) -

o 50 - 5 - ) )t
(3.65)

then, like in the gravity case, we set:

9509, ¢]

Bs(g,0) = K 5 (3.66)
Then, the final expression for the bulk Hamiltonian reads
2

/d4x <_MM7TMV7TIW _ Do ) —
Vi 23
0519, ¢]6Slg,¢]  # (6Slg, 4]\
— d* Voo ’ ’ = ’ : :
Alg, o] + / T (MGu A T T 3\ o0 (3.67)

Given that the scalar field (like any matter field) couples to gravity with a strength set by
Newton’s constant which has been set to unity, and that there is no other scale involved in
this coupling requires ;1 = k. Then we divide throughout by p and absorb the remaining
factor of it in the denominator of the term involving Alg, #] by redefining the as yet
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undetermined functions in its definition. This equality is significant, as it implies that
there is just one scale associated to the total double trace deformation. More will be said
about this condition in the discussion.

In order for the momentum independent part of the above constraint equation to be of

the form /g (—%ﬂ + R+ V(qﬁ)), the potential S[g, ¢] can have two derivatives of the
sources at most.

The ansatz made is
Slg, 4] = / Ao y/5 (X(0) + U(G)R + P(6)(0"60,8)) (3.68)

If we require the cancellation between the anomaly and the square of the derivatives of
this functional present in the momentum independent terms of (3.67), then the flow equa-
tion now reads as the Hamiltonian constraint for the five dimensional bulk gravity- scalar
system:

2
/ d*z {—% (GWUWWW@J + %) -9 (%auqsa% + R+ V(¢)> } =0, (3.69)

provided the following superpotential like relations are satisfied:

X/Q X2 X
( - _> =V, <U’X’ — U—> =1, (PX)-PX=1. (3.70)

2 3 3

As promised before, the functions in the anomaly are related to the functions in the defin-
tion of S, i.e.

U2
X(gu (b),ul/po - P2 (gu(pga)u - g,uzxgpcr) 705(¢) = 7 (371)
U2 U/2
! P2
(@) = (PU), &(¢9)=PU, A¢) =~ (3.73)
This analysis reproduces a part of the results obtained in [129] where a completely generic

scalar coupled to AdS gravity was first considered. In all these expressions, the prime
denotes partial differentiation with respect to ¢, i.e. ()’ = 9,(). Note that in deriving these
conditions, many integrations by parts have been carried out and boundary terms have
been discarded.
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Some of these relations are identical to those derived previously in the context of holo-
graphic renormalization (in say, [98]). The flow function for the scalar field can also be
interpreted as the beta function for the renormalization group flow triggered by the addi-
tion of the deformation. To leading order in perturbation theory, the beta function takes
the form

Po(g,0) xx (4= A)p+---, (3.74)

where A is the conformal dimension of the operator (0. This implies that the function
X(¢) is given to leading order by:

6 1
X(p) = i 27<4 — A)p* + - - (3.75)
The reason for the specific numerical factor in the ¢ independent part and the factors of ¢
being where they are is to ensure that the bulk potential computed through the relation:
X? X% 12 1A(A—4)¢?
_ 2 _ 22 kS S I 3.76
> "3 @ 2 e " (3.76)
becomes the appropriate cosmological constant in the pure gravity Hamiltonian constraint
when ¢ — 0.

Also, note that the mass-conformal dimension relationship

A(A —4)

m? = —r (3.77)
has been recovered. So, for example, when A = 4, i.e. when O is marginal, the bulk scalar
field is massless and minimally coupled.

The expression of diffeomorphism invariance tangential to the hypersurfaces in this

coupled system, takes the form:
V, " +p,VHp =0, (3.78)

which is the vector constraint in the bulk, whose form follows again from the Ward identity
associated to diffeomorphism invariance of the holographic theory coupled to the metric
and scalar sources.

3.4.3 Closure and Cancellation

Now we see that the key feature of the holographic anomaly which allows us to convert
the flow equation (3.48) into the constraint equation (3.31) is the following property:

! 05l9,910S19,9] | 1 (8S19,9]\"\ _
Alg-7) _/d ! (G“V‘"’ 60w 0Gpo 3 (T) ) -
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- / d*z\/g (—% (0"$0,0) + R+ v) . (3.79)

This holds, provided the relations (3.70)-(3.73) all hold. In fact, these relations were derived
above by requiring (3.79) to hold, which in turn came from wanting to transform the flow
equation (3.48) into the constraint (3.31).

We could however have chosen to derive this relation from an alternative, yet equivalent
demand. Namely, starting from (3.48) and making the appropriate change of variables, we
are led to (3.67), which we reproduce here:

H = /d4xN(9c){ —/LMW“VW'M mi—l—
N 25

(A1 6 SIS0 (SN Y

Note that independently of this equation, we are granted the vector constraint (3.78), which
simply follows form the diffeomorphism Ward identity of the energy momentum tensor and
the scalar source.

Without assuming that the final expression for the scalar constraint should take any
particular form, but simply that its Poisson algebra closes, i.e. that

{H(N),H(M)} ~ 0, (3.81)

where the symbol ~ here denotes equality on the sub-space of phase space where the
constraints are satisfied °, implies that the relation (3.79) must hold. This is guaranteed
by a theorem proven in [56] and strengthened further in [?]. The assumptions that go
behind the theorem are simply that the vector constraint holds and that the momentum
dependent part of the scalar constraint is quadratic and ultralocal. Although it was proven
there for the pure gravity case, it is not hard to see that for the case at hand, where the

scalar field’s kinetic term in the Hamiltonian takes the form =, the potential term has to

2\f’
contain a derivative independent potential V' (¢) in addition to the term — (ama 9 |

to close at all.

in order

Note that the closure condition (3.81) is in fact weaker than the statement of the Poisson
algebra. There, the specific combination of constraints that vanish on the right-hand side of

5The right-hand side of (3.81) is, in general, some combination of the constraints H(N) and the vector
constraint, and so it vanishes when they are satisfied. In the language of constrained Hamiltonian dynamics,
satisfying this closure property qualifies constraints to be ‘first-class’.
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(3.81) and the corresponding structure functions (as opposed to constants due to the field
dependence) are also known. Thus, the condition (3.81) is not quite the same as demanding
the emergence of bulk diffeomorphism invariance which is what is encoded in the Poisson
algebra. It is the non-linear generalization of the requirement that five-dimensional general
relativity only propagates the spin two modes of the graviton in addition to the coupled
scalar field.

That being said, the uniqueness of the form of the constraint functions that satisfy
(3.81) given (3.78) implies that the only way to satisfy the closure condition is in the
manner general relativity does. In other words, there is something unique about how
the diffeomorphism invariance tangential to an embedded hypersurface gets promoted to
the full diffeomorphism invariance of the ambient spacetime, at least at the level of the
constraints that generate the corresponding transformations on phase space.

The requirement that the momentum dependent ‘kinetic term’ in the constraint equa-
tion be quadratic and ultralocal, i.e. of the form
_ Chupomn7 PG

v o

is equivalent to the statement that the radial velocities in the bulk of the fields g,, and ¢
are at most linear in the momenta. In other words:

\/g (5uu(ga gb) - v(ugu)) =Ty — %guVﬂ-/’[))7 \/§<ﬁ¢(gv ¢) - §VVV¢) = DP¢- (383)

(3.82)

This feature of the flow was also noted in [30], and follows directly from the structure
of the double trace deformations being added, and is not sensitive to the background fields
organizing themselves into any particular form, which is what (3.79) reflects. We see here
however that these two features are intimately related through the closure condition.

In the rest of this chapter, 84(g, ¢), 8. (g, ¢) are interpreted not just as beta functions
for the holographic quantum field theory, but also as the flow functions of the gradient
flow regularization applied to the induced gravity theory obtained from integrating out the
fields of this quantum field theory.

3.5 Generalized gradient flows and holography

One way to think of the holographic duality is that it operates between quantum field
theories in D dimensions and gravitational theories in D + 1 dimensions. However, when
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arbitrary background sources are turned on in the quantum field theory, there is an al-
ternative statement of the duality which is seemingly more mundane but perhaps still
illuminating. First, one interprets the generating functional of the quantum field theory in
the presence of said sources, metric included, as a non-local induced gravity theory. Then,
the holographic duality implies that this D dimensional non-local induced gravity theory
and the D + 1 dimensional theory, i.e. general relativity coupled to matter fields with
negative cosmological constant, are equivalent to each other. This way of thinking about
the duality was emphasized in [107].

This section aims to explain how this duality manifests when the boundary is at a
finite radius. The key mechanism behind this version of the duality will be the generalized
gradient flow, which will be discussed briefly in what follows.

The gradient flow ([L10], [8]) is a method to regulate the correlation functions of com-
posite operators of various quantum field theories in the coincidence limit. The idea is to
append an additional dimension to the space on which the quantum field theory lives, and
declare that the dependence of the fields of the theory on this additional dimension are
dictated by gradient flow conditions. It was introduced in the context of Yang-Mills theory
but can be applied to more general quantum field theories as well.

3.5.1 How gradient flows lead to smearing

To illustrate the idea, consider the simple example of applying it to the O(/N) non-linear
sigma model in two dimensions.®. The action for the theory reads

Slo] = 2—;2 / & (hay(0) (9,0°0" ")) . (3.84)

where the fields 0%(z) are multi component scalars and the metric hq,(0) is given by the
inverse of

h (o) = 6% — g%”. (3.85)
The generalized gradient flow method for regularizing the divergences in correlators of
composite operators in the contact limit starts by appending an additional dimension to
the two dimensional space on which the field theory lives with an additional scale dimension
A 0%(x) — 0%x, A). Then, the dependence of the fields along this dimension is dictated
by the flow equation

Jo(x, \)
O\

5The explanations here closely follow those in [3]

0S|o(z, A
= —hab(O'(:L‘, /\))%ba(@_ma(%)\). (386)
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The |5a(z)—0a(2,) denotes the boundary condition o®(x, A = 0) = ¢%(x) at the boundary of
the three dimensional space. The potential driving this flow, S[o(x, \)] is the non-linear
sigma model action where the fields o%(z) are extended to the ‘flowed’ fields o%(z, A).

Explicitly, the flow equation reads:

0o®(x, \)
O\

o (O*a®)(0,0p)
4(1 —oco,) '

= 0,0"0" + 0°(0,0°0" 0y) + (3.87)
where the indices of the internal vector components are contracted with the metric hgy (o).
For simplicity, consider the linearization of the above equation. This takes the form of a
heat equation with the role of time being played by the flow parameter A\. The solution to
the linearized equation then implies that to leading order in A, the dependence of o%(xz, \)
on the flow time is given by smearing the original fields o®(z) with the heat kernel:

o%(z,\) = exp (A (9%)) () + - - (3.88)

The non locality associated to this smearing is what renders the correlators of composite
operators built out of o%(z, \) finite.

3.5.2 Gradient flows for the induced boundary gravity theory

The similarity between this general procedure and the holographic duality leads one to
wonder whether they coincide when applied to theories expected to possess holographic
duals. This was the focus of [5], [0], [9], [10] and [7], where the generalized gradient flow is
applied to the O(N) vector model, and various aspects of the holographic duality having to
do with reconstructing the bulk metric, understanding the effects of diffeomorphisms in the
bulk and even computing 1/N corrections to the cosmological constant were considered.

Here the aim is more modest, unlike the work mentioned in the previous paragraph
which aims to understand the duality constructively through implementing the gradient
flow, here we just notice there are gradient flows hiding in holography at a finite radius
as implemented through the double trace deformations described in the previous sections.
First, it would help to identify which theory this procedure is being applied to. The

equations
109, 05[g.¢] 104 _ 65[¢, 9|

TS A VY ) T R

certainly seem to have the structure of the generalized gradient flow equations barring the
fact that they are not describing the flow of the fundamental fields of the theory itself

(3.89)
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but of its sources. This motivated Jackson et. al. in [91] to call equations such as these
‘geometric RG flow” equations. However, if one considers the induced gravity theory in
four dimensions that arises from integrating out the fundamental fields of the CFT. It is
obtained by computing the generating functional as a function of the sources:

InZ[g, ¢] = 8™g, ¢, (3.90)

and interpret the resulting, non-local function of the metric and the other sources as
the effective action for a four-dimensional gravitational theory. The holographic duality
appears to really coincide with applying the gradient flow regularization to this induced
gravity theory, where the dependence of its fields g,, and ¢ on the additional dimension
parameterized by A is given by the equations (3.52) and (3.66).

The statement of the holographic correspondence in terms of this induced theory is
fairly straightforward at least at large N. It is just the statement that the effective ac-
tion Sd[g, @] satisfies the Hamilton—Jacobi equations of general relativity in one higher
dimension:

oS, 6] 1 U W A (9,60") B
T (Ga— e 3 () V(- ereve) o
(3.91)

and therefore should be identified with the on shell action for the bulk theory. This
was noticed first by Liu and Tseytlin in [107], where checks at the level of the linearized
theory in the bulk were performed. The only novel insight here has to do with the radial
development of the induced theory leading to gradient flow conditions for the theory’s
fundamental fields.

3.6 Getting from the local CS equation to the Hamil-
tonian constraint in d =3,4,5

We’ve mostly concentrated in the previous sections on boundary dimensions 2 and 5.
However, even in dimensions between 2 and 5, the large N local CS equation coming
from the deformation of CFTs by the T? deformation can be mapped to the Hamiltonian
constraint equation in one higher dimension.

In dimensions higher than 2, the deforming operator O(z) is defined as

1

Ofa) = lim § (Tulo) = 35 T2 hge) ) 7). (3.92)
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It helps to introduce the de Witt super metric in any number of dimensions:

Gu(0) = (90(05) = 5 00)g(0) ) (5.99
so that 1
T () — mT:(x)guV<$> = Gupo(2)T7 (). (3.94)

From the definition of the energy momentum tensor, we have

i . 1 J 1 8Z[g]
(NN 2 G 2 (¢g<_> 59, (2) (m 6gpa<y>>> oo

In order to generate the R term in the Hamiltonian constraint, we will implement the
coincidence limit through the heat kernel. This method is similar to the one of [93] although
the context is quite different. The heat kernel K (z,y;€), satisfies the property

lim K (z, y; €) = 6(z,y). (3.96)
This property should be thought of as an initial condition for the heat equation

We can now implement the point splitting regularization as follows

. . 1 ) 1 §Z[g]
lim G o (TH (2)T7° (y)) Z]g] = lim | APyK (., y; €)G pupo (x ( >
Yy Hyp < ( ) ( )> [ ] 0 ( ) Hyp ( )\/E(ZE) 6gle<x> \/§<y> 6gpg<y)
(3.98)
We also exploit the fact that we can add to the effective action terms involving local

functions of the metric
Z[g] = “¥Z[g), (3.99)

where Clg] is chosen to be

D

Clg] = ag (e[;l /deﬁ+ %—E);;/deﬁR) . (3.100)

Here, «yq is a constant given by

D-2
— ( ) (3.101)



where

(D?* — 3)(D(D(9D — 11) — 28) + 42)
12D(D —1)?

With this choice of € scaling in the improvement term C[g], one can show (as we do in

appendix ?7) that the deforming operator becomes

k(D) = . (3.102)

(O()) =lim [ dPyK (2, €)Gupe (2){T" (2)T7 (y)) + o R() (3.103)

which we then subject to the large /N limit to obtain

(O@) e =10 [ APYE (2,55 €) G () (T ()T (3)) + a0 R(z) (3.104)
= Gy ()T (@))(T7 (1)) + o R(x). (3.105)

Here we have used the fact that the large N factorized two point function does not suffer
any coincidence divergences so the limit can be taken to turn the heat kernel into a delta
function, and the y integral can be performed. We can plug this back into the local CS
equation (?7?), which now reads, at large N
D -2
D=2k~ A, (3.100)
27z
In d =3 and d = 5, the anomaly A(y) = 0. Here we immediately obtain (??) provided we
make the choice 7% = T%. In d = 4, the holographic anomaly is given by
o 1

% (e - 3err), (3.107)

TV = —DAG e TH TP —

A=—

where G, = R, — %Rg,w is the Einstein tensor, and a is the anomaly coefficient. This
can be absorbed into an improvement of the energy momentum tensor, which is subsumed
in the definition of the bare energy momentum tensor

TH = ey %GW. (3.108)
In other words, the equation
1 g
TF = —4NT"T,, — ——(TF)*) — —R —
becomes
Qay Qg [87) ]. (8 7] 2 Oy
T+ SHGr = A (1 + 516 ) (T + 56w — ——= (Tr+ St6x) ) - SR
n T ( L pr T G ) =g e T A
(3.109)

67



Limitations of this method

One can ask what justifies the specific choices such as the powers of € appearing in the
definition of C[g], and the choice of £(D) that appears in the appendix ?7. For now, we
can only offer a post facto justification, in that these choices lead to the form of the flow
equation. It would be interesting to find an intrinsically field-theoretic justification for this
scheme.

Also, in odd dimensions, the information about the counterterms one can add to the
energy-momentum tensor cannot be divined from transforming the flow equation to reveal
an anomaly term, as one can in four dimensions.
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Chapter 4

Entanglement Entropy and the T'T
deformation

In this chapter, we will pivot towards questions relating to quantum information theory and
finite cutoff holography. In particular, we will describe the computation of the holographic
entanglement entropy, which is both sensitive to the ultraviolet physics of the theory on
the boundary and probes the bulk geometry. We will first describe how this quantity can
be computed at large ¢, where the bulk geometry is classical and then we will describe
how 1/c corrections can be accounted for. Such corrections will correspond to quantum
corrections in the bulk.

To set the stage, we will introduce notions of entanglement entropy and the Hartle—
Hawking state, which we will focus on in this chapter.

4.1 Entanglement entropy

Here is a brief review of entanglement entropy and its calculation in field theory. A nice
introductory reference is chapter 3 of [115].

In quantum field theory, we can adopt the functional Schrodinger picture where we
view the state as a functional of the fields at a given time. So a state is a wavefunctional
P[] where ®(x) : x € ¥ is the field at on a given time slice ¥. We can denote the Hilbert
space of all such functionals Hsy..

If we divide ¥ into two disjoint pieces ¥ = AU B, AN B = () then we can consider
restricting the field separately to A and B, and view the field as a pair of functions & =
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(P4, Pp). The wavefunctional is now a functional of two arguments, ¥(®) = (P4, Pp).
Thus we can view it as a state in a tensor product Hilbert space,’

1/167'[2:7'[,4@7‘[3. (41)

Given such a state, we can consider the reduced density matrices

pa=uy (VY),  pp =wna (V). (4.2)

Here p4 tells us all we need to know if we make measurements confined to region A.

To quantify the amount of entanglement between regions A and B we use entanglement
entropy, defined as

S = —(palogpa) = —(pplog pp). (4.3)
More generally, given a reduced density matrix p4, we define the modular Hamiltonian
H, = —log(pa). The spectrum of Hy is called the entanglement spectrum and contains a

lot more information than just the entanglement entropy. Note that as we have defined it
H 4 is dimensionless, unlike a usual Hamiltonian which has dimensions of energy.

Unfortunately, we hardly ever calculate entanglement entropy this way. The issue is
that to calculate log(p4) we should first diagonalize p,, and in general this is hard to do.?
Instead, we use the following trick.

4.1.1 The Hartle-Hawking state

The main method used to calculate entanglement entropy in field theory uses the Euclidean
path integral. Let us consider a state that is prepared by the Euclidean path integral. The
simplest example is the ground state, but we will be interested in the Hartle-Hawking state
in 141 de Sitter space [95].

Recall that the metric of 141 de Sitter space dS, is

ds® = r*(—dr* + cosh(1)*d¢?). (4.4)

'We have skimmed over a lot of details here, really one should be very careful about exactly which
functionals one is allowing, etc. When we do this, we find that the tensor product decomposition is not
quite true, basically, the states in H 4 and Hp are too singular to really exist. We can make all of this
precise by introducing a regulator such as a lattice, but the price we pay is that the quantities we wish to
define will diverge when we take the lattice spacing to zero. Our strategy will be to boldly forge ahead
ignoring these issues, but we should be careful in interpreting the results we get.

2However, there are exceptions: see [1141], where an explicit calculation is done for a free scalar field
with a lattice regulator.
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To define the Hartle-Hawking state we Wick rotate 7 = 10 and we find
ds® = r*(df* + cos()*d¢?) (4.5)

which we recognize as the metric of the 2-sphere of radius r.

The Hartle-Hawking state is defined as a wave functional on the 8 = 0 slice of dS,. We
integrate over all field configurations in the “lower hemisphere” # < 0 with fixed boundary
conditions on the equator:

Yun[®o] = / [D®] 119, (4.6)
D(0=0,0)=Po(¢)

Here we're using I[¢] for the Euclidean action since we already used S for the entropy.

To get a Hamiltonian description of this process, we can slice up the path integral; this
is just the usual way we define the path integral from the Hamiltonian formulation but in
reverse. We will be interested in the entanglement between two halves of the equator. It
will be useful to rotate our coordinate system so that the boundary separating systems A
and B consists of the two poles at § = +7/2. Let K be the generator of rotations in ¢,
which fixes those two points. By inserting resolutions of identity along the angular slicing
we find

Urn(a, 08) = (Pale ™ |op). (4.7)

In the original Lorentzian spacetime, K generates “de Sitter boosts” which are symmetries
that preserve a single observer’s static patch.

Now to obtain the reduced density matrix, we put two path integrals together and trace
along the opposite region. The result is:

(@alpalda) = (@ale™ ™ |o.). (4.8)

In other words, the modular Hamiltonian is H4 = 27 K. So the entanglement spectrum
can be determined from the spectrum of the de Sitter boost K.

4.1.2 The replica trick

To find the entropy, it is useful to be able to vary the temperature. In our case, the
“energy” H, is dimensionless, and so the temperature is too. The partition function at

temperature 1/n is
7 = e nHa (4.9)
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which corresponds to a Euclidean path integral on a sphere where the range of the azimuthal
angle is changed from [0,27) to [0,27n). The resulting manifold is not smooth, it has
conical singularities at two points.

Knowing Z as a function of n is equivalent to knowing the full entanglement spectrum;
(4.9) is the Laplace transform of the entanglement spectrum, so we “just” have to invert
the Laplace transform.

To extract the entropy at temperature 1/n, we use an identity from thermodynamics:

d
=(1—n—]logZ. 4.1
S ( ndn) og (4.10)

To get the entanglement entropy, we evaluate this expression at n = 1.

4.1.3 The sphere trick

The replica trick is useful, but it requires us to consider manifolds with conical singularities.
In the de Sitter case, there is a further simplification that makes use of the rotational
symmetry [19]. Unfortunately, it only gives us the entanglement entropy, not the full
spectrum.

At n =1, the entropy is given by

S =logZ — (K). (4.11)
The generator K is given in terms of the stress tensor by
w/2
K = r2/ do COS(H)T(f. (4.12)
—7/2

And the expectation value is taken in the Hartle-Hawking state of the sphere.

Now we make use of the spherical symmetry: the stress tensor must be proportional
to the metric (7),,) = ag,,. This means we can relate K directly to the trace of the stress
tensor, T(f = 3T, and hence (K) = 3 [d?x\/g(T%). Using the definition of the stress
tensor, we find

rd

Thus to find the entanglement entropy of the Hartle-Hawking state, we only need to know
the partition function of the sphere, which is a huge simplification.

Now, we can apply the sphere trick to the T deformed CFT at large c.
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4.2 Large ¢ von Neumann and Conical Entropy

We first calculate the sphere partition function in the TT-deformed CFT. We will see that
this is sufficient to calculate the entanglement entropy when the entangling surface is two
antipodal points on the sphere.

To find the sphere partition function, we consider the metric ds* = r?(d6? + sin(6)?d¢?)
and vary the radius r:

d L
ogz = —;/d /G (TH), (4.14)

By symmetry, the stress tensor takes the form 7}, = ag,,, where « is determined by the
large ¢ flow equation:

(1)) = =3B =5 (") (T0) = (T2)?). (4.15)

which becomes a quadratic equation for «. The solution is:

2 clh
az;(l—,/l—l—W). (4.16)

In solving the quadratic equation we have chosen the branch that gives the CFT trace
anomaly in the limit © — 0. This yields a differential equation for the partition function

as a function of radius
dlogZ 16w | 5, i
= — — — ) 4.17
dr ! < o 2ur (4.17)

This can be integrated with the help of the substitution » = ,/5i-sinh(z), giving the
sphere partition function

log Z = < (:c + % (1- e—%)) (4.18)

24 8
g () E (k) e

Note that we have chosen the boundary condition log Z = 0 at » = 0; this would not have
been possible in a CF'T, where the partition function continues to change as a function of
scale at arbitrarily short distances. Here we see that the flow equation is consistent with
a trivial theory in the UV.

The Euclidean path integral on S? corresponds to the de Sitter vacuum. We will
consider the entanglement entropy of this state across an entangling surface consisting
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of two antipodal points. This entropy can be obtained directly from the sphere partition
function as follows.® To calculate the entanglement entropy by the replica trick, we consider
the n-sheeted cover of the sphere:

ds® = r*(d6® + n*sin(0)d¢?). (4.20)

The entropy is then obtained from the partition function as:

S = (1 —ni> log Z
dn

In the absence of rotational symmetry, this formula requires analytic continuation in n,
but in the case of antipodal points we can continuously vary n.

(4.21)

n=1

Under a change of n, the partition function changes as

dlog Z
dn

n=

= —/\/ET(f. (4.22)

Since the stress tensor on the sphere is isotropic, T = %Tg. From (4.14) we conclude that
the entropy can be expressed in terms of the sphere partition function as

rd c 247
=(1-=—)logZ = —sinh™' ([ /=—r]). 4.2
S ( 2d'r) og 5 Sin ( ” r) (4.23)

For r > \/uc we see that this formula reproduces the well-known CFT result [87, 21] with

subleading corrections
c 967 Au
S=-1 O (p?) . 4.24
3 Og(\/ cur>+2887rr2+ () (4:24)

The corrections to the logarithmic term in the entanglement entropy are polynomial in
i starting from order one. In the UV limit, » — 0 the entanglement entropy vanishes,
indicating that the theory flows to a trivial theory.

We can also compare this result with the holographic proposal of [1141]. The metric of
Euclidean AdS3 in global coordinates is

ds® = (*(dp* + sinh(p)*(d6* + sin()*d¢?)). (4.25)

3We thank Aron Wall for teaching us this trick.
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The sphere of radius r» embeds into this geometry as a surface p = po, where p is defined
by r = £sinh(pg). According to the conjecture of [114], the TT deformed theory is dual to
quantum gravity in the region p < pog. According to the Ryu-Takayanagi formula [137], the
holographic entanglement entropy is given by L/(4G) where L is the length of a minimal
geodesic connecting the points of the entangling surface. In the case of antipodal points,
the geodesic passes through the center and has length L = 2¢py. Thus the Ryu-Takayanagi
formula yields:

A
S_E_2Gsmh (€>, (4.26)

which agrees precisely with (4.23) with the identifications (77).

4.2.1 Conical entropy

The entanglement entropy is just one measure of entanglement. More information about
the spectrum of the reduced density matrix is encoded in the conical entropy *:

~ d
So=(1-nZ Y1002, 428
(1) o (4.28)

which reduces to the entanglement entropy when n = 1. In the case of two antipodal
points on the sphere, S, is the de Sitter entropy at a temperature ~ 1/n. By varying n
we probe the density of states at different energy scales.

To calculate S, via the replica trick, we consider the partition function of the theory
on the conical sphere (4.20). We will assume rotational symmetry in ¢, so that we can
parametrize the stress tensor in terms of two nonzero components Typg(6) and T, (6). The
problem simplifies if we consider the variables u = ng —landv = %T(f — 1, in terms of
these variables stress tensor conservation and the flow equation are

du cp

0 cot(0)(v — u), uw =1+ Sy (4.29)

This has the solution , e c
=1 2amr? sin(6)2’ (4:30)

4The conical entropy S, is related to the Rényi entropy S, as
S, = n28, (" - 1sn> . (4.27)
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where ¢, is independent of #. The value of ¢,, is determined by the coupling of the theory
to the conical singularity at 6 = 0, 7.

Boundary conditions We will define the theory on a surface with a conical singularity
via a limiting procedure similar to Ref. [61]. We first define a family of smoothed replica
geometries in which a small neighborhood of the conical singularity is replaced by a smooth
“cap”. We will take this cap to be a portion of maximally symmetric space; for n < 1 this
is a sphere, and for n > 1 a hyperbolic space.

Near the conical singularity, the geometry is approximately a flat cone ds?> = dr2 +
72n%d¢?, from which we cut out the region 7 < e. For n > 1 we attach this to a cap which
is the region o < o, of the hyperbolic space with metric ds? = ¢2(do? +sinh(o)?d¢?), which
has constant negative curvature R = —2/¢%. Matching the intrinsic and extrinsic geometry
of the circle determines

en

by = ——, 0. = cosh™*(n). (4.31)
n? —1

The nonsingular solution on the cap takes the form 7, = %(u + 1) where

w=14 -H (i - 1) . (4.32)

247e? \ n?

However, (4.32) has no real solutions for small € which prevents us from taking the limit
¢ — 0.° In terms of bulk variables, there are no solutions when ¢, < ¢: this corresponds
to the fact that we cannot embed a hypersurface with more negative curvature than the
ambient space without breaking rotational symmetry.

In the spherically symmetric case, we can instead analytically continue from n < 1; a
similar strategy has been employed for calculating entanglement in string theory [37, 30,

, , , ]. For n < 1, we can replace a neighborhood of the conical singularity
with a spherical cap consisting of the region 6 < 6, of the sphere with radius r.:

ds* = r?(df? + sin(6)*de?). (4.33)

Matching the length and extrinsic curvature determines
en
V1—n?’

5In the CFT limit this issue does not arise, because we take y — 0 prior to taking ¢ — 0.

re = 0. = cos ' (n). (4.34)
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The equation for the stress tensor is given by (4.32) just as in the hyperbolic case, except
that for n < 1 it always has real solutions.

We can now use this solution to determine the constant in (4.30). Stress tensor conser-
vation implies that u should be continuous, which fixes the singular part of u:

1
I oI (——1) (4.35)

247r?2 - 24mr2sin(6)? \ n?

This equation determines the stress tensor

clh clh 1 1
1—4/1 ——1
( \/ HiYECR Y- (n2 ) sin(9)2> ’

1+ 3t s 247r7’2
1 1
\/1 + 247r7"2 247r7"2 (ﬁ - 1) sin(0)2

The sign of w in (4.35) has been chosen so that the CFT limit y — 0 is finite. In this limit,
the stress tensor agrees with the result obtained from the Schwarzian transformation law
of the stress tensor [37].

Ty =

tll\D

S\
[\

Computing the Conical Entropy Having found an appropriate boundary condition
for the stress tensor, we can now proceed to calculate the entropy 5, for n < 1. To find
the partition function at fixed n, we vary the radius to obtain:

dlog Z )
B — —ommr / df sin(0) (Tg + T;f’) (4.36)
47m 2r? + L 4 o?
= df sin(0 24m — r] 4.37
r ) l N (4.37)

where we have defined

a2 = % (1 + (% - 1) sini@)Q) . (4.38)

This can be integrated in r to obtain

_ i 2ginh ! (- Va2 +r2 — 2
log Z WYeT, df sin(0) [6 sinh <a>—|—r a?+r 7‘}. (4.39)
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For n = 1, this reduces to (4.18).
From (4.39) we obtain the entropy

~ d (logZ
= —n?_ 4.4
Sn, ' ( - ) (4.40)
rc 1 1— £
=— [db 2ol 4.41
on sin(@) (\/042 —+ 7"2) ( )
1 2 2 cp
3 247712 +n re+ 24mn?
IT is the complete elliptic integral of the third kind:
w/2 A6
(nlm) = / | ___ (4.43)
o (1 —msin(#)?)y/1 — msin(6)?

This function has a branch cut for n > 1, corresponding to a pole in the integral (4.43).
However, we can take the principal value of this integral, which is real for all n > 0. This
function is displayed in figure 4.2.

The limit n — 0 gives the logarithm of the rank of the reduced density matrix:

. 5
So = /gi:m (4.44)

which scales with the length, 77, of the boundary. This is suggestive of a lattice theory in

which an interval of length L has a Hilbert space of dimension exp <, /%CL).

4.2.2 Comparison with holography

We now compare our result (4.42) with the prediction from holography. According to
the proposal of Ref. [11], S, is given by L/4AG, where L is the length of a cosmic string
whose tension induces an angle 27” in the bulk. By rescaling ¢, this is equivalent to finding
the length of a geodesic in a smooth geometry with induced boundary metric given by
(4.20). Finding this solution is equivalent to finding an embedding of the metric (4.20)

into Euclidean AdSs.

This embedding problem is most easily solved in the coordinates:
ds* = (*(dp* + e **(dp® + p*d¢?)). (4.45)
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Figure 4.1: At fixed n, the entropy S, is a smoothly increasing function of 7.

We will assume the embedding preserves rotational symmetry, so that the ¢ coordinate on
the boundary is the same as the ¢ coordinate of the bulk. The embedding is then defined
by two functions ¢(6) and p(f). Demanding that the embedding be isometric leads to the

equations
ro. r? dy 2 o, [ dp 2
p= e‘pzn sin(0), 7 (@) +e (@) . (4.46)
This can be rewritten as a single differential equation for ¢,
r? dp\> n2r? [[dp\ . 2
7z <@> + Iz {(E) sin(f) + 005(9)} , (4.47)

which can be solved algebraically for %‘g. The resulting embedding in global coordinates is
shown in figure 4.3.

The length of the geodesic connecting the point # = 0 and 6 = 7 in the metric (4.45)

is given by
L =/{(p(m) —(0)) = E/O d 2—? (4.48)

79



Figure 4.2: At fixed r, S, is a decreasing function of n, with a kink at n = 1.

. d
To find the total entropy, we integrate 7

L r 1 1+r? 1
E - ﬁm r2 K<m) o ﬁH<7]|m) ) (449>

where K (m) = II(0|m) is the complete elliptic integral of the first kind and

n?(1+r?) _ortn?
1+ n2r2’ n_l—l—Tan'

(4.50)

Using an identity of elliptic integrals®, this agrees with our expression (4.42) for the entropy,
with the identification of p and ¢ given in (?77?).

5(m — n)I(n|m) + (m — n")II(n'|m) = mK (m) where (1 —n)(1 —n') =1 —m [12, Eq. 19.7.9].
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Figure 4.3: Embedded surfaces with » = £ = 1 in Euclidean AdS3. For this graph, we

have used Poincaré disk coordinates in which the metric is ds? = % with the third
coordinate suppressed. The AdS boundary is the outer circle. At n = 1, the embedding
is a circle. As n is decreased the embeddings have an increasingly elongated “football”

shape. At n = 0, the embedding degenerates to a line.

4.3 Finite ¢ von Neumann Entropy

At finite ¢, we take the operator T'T to be defined as the coincidence limit of the bilocal
operator

TT(x) =8Gupo(z) Um (T" (x) T (y)). (4.51)

Yy—x

This is in keeping with the definition of the T2 operators in higher dimensions

Assume that the only deforming operator is @ = T'T, with coupling constant z. Then,
there is only one dimensionful scale in the theory: it is defined by g, which has dimensions
of length squared. This means that the expectation value of this operator can be obtained
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by taking a derivative with respect to pu:

O log 7 — % / (TT (). (4.52)

We will promote the deformation parameter p to a function pA(x) and ask what happens
when we compute the trace of the stress tensor. In other words, that the equation (4.52)

can be upgraded to
ologZ pu,. -
=TT (x)). 4.53
G = T (15
Recalling that the trace of the stress tensor encodes the response of the partition function
under the change of every length scale present in the theory:

0log Z 0log Z c
—— = {(TF =— - — 4.54
Jap 59046 < #(ZL’» H 5)\(1‘) 2471_R(x)7 ( i) )
we obtain the flow equation:
p — ey - C
(T",(z)) 1 (TT(z)) 247TR(3:). (4.55)

We assume that no other scale is generated, and hence that we can extrapolate (4.55) to
finite p.

Recall that the partition function, viewed as a functional of the metric, is a generating
functional for stress-tensor correlation functions:

v TP () = 1 —2 0 —2 J
) T ) Z[g]<\r<m>6gw<xl>> (F(%WWW)Z[gy (459

Substituting (4.56) into the flow equation (4.55) yields a functional differential equation
for the partition function Z[y]:

-2 gu) 22 gy M) I € gy 1) (457)

(@) g (@) ~2 Jg@)\/9(y) 0 (£)00,0(y) 24w

This is a linear second-order functional differential equation for Z[g|, a functional of the
two-dimensional metric g.
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4.3.1 Finite ¢ Flow equation and the Wheeler-DeWitt equation

At generic values of ¢, the bulk equation that the 7T flow equation gets mapped to is the
Wheeler de Witt equation.

It will help to introduce a change of variables to eliminate the linear term in (4.57).
This is given by
2 2
U[g] = er ! TVIZ]g). (4.58)

(4.57) then becomes the following equation for Wg]:

_16nG o Vg ] 2 _
@) (R4 ) v =0 ()

o=y 09, ()00, (y) +167TG (2
This equation is the radial Wheeler-DeWitt equation in a space with negative cosmological
constant provided we identify bulk constants as in (?7). Eq. (4.59) can be obtained from the
classical constraint equation (3.31) by replacing the momenta with functional derivatives
with respect to v;;(z). Conversely, the classical constraint equation (3.31) can be obtained
from the Wheeler-DeWitt equation (4.59) in the leading-order WKB approximation, as we
will see in detail in the following section.

The symbol : (---) : denotes a procedure for regularizing the functional derivative at
coincident points, which we will leave unspecified as it is unnecessary for the purposes of
this work. This is because we will not attempt to solve the above second-order functional
differential equation. Instead, we will specialize to the case where the constant radius slices
are spheres and consider the quantization of the Hamiltonian constraint (3.31) after phase
space reduction.

4.3.2 Phase space reduction for S? radial slices

From the point of view of quantizing the bulk theory, it is natural to introduce a gauge
fixing for the Hamiltonian constraint. We choose the constant mean curvature gauge

T
\/—% =, (4.60)

where 7 is constant. We then decompose the momentum conjugate to the metric as follows:

™ = (599" + o), (4.61)
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where o is traceless. Imposing the constancy of 7 implies additionally that
Vo =0, (4.62)

and therefore o"” is transverse and tracefree. On the sphere, such tensors must vanish
identically, so 0*” = 0. We can then do a conformal decomposition of the metric

Guv = 62)\(z)hul/7 (463)

where h,, is the standard round metric on the unit 2-sphere, with R[h] = 2. The Ricci
scalar of g is R[g] = e ?*(R[h]—2V?)\). Having fixed the gauge as in (4.63) the Hamiltonian
constraint for sphere radial slices becomes an equation for the conformal factor \:

AN = @ — e (% - 612) . (4.64)

This equation has a unique solution up to a zero mode, which was shown in [I 18, (3]
(although for a different combination of signs). All two-dimensional spherical geometries
are conformal to the round sphere and solutions to (4.64) give us the factor with which
to perform the Weyl transformation between the given metric and the round two-sphere
metric. Only the global part of the Hamiltonian constraint remains unfixed. This is
obtained by integrating the above equation over the sphere

1% <(167TG)2T2 — %) — 47 =0, (4.65)

where V = [ d*x h e*®) is the volume.

York’s method involves taking the mean curvature 7 to be ‘time’ and treating the
volume as a true Hamiltonian

V(r) =

4
AR (4.66)

(16wG)272 — 75

This is the well-known deparameterization of the Hamiltonian constraint in terms of York
time. However, it is not convenient for our purposes, since we are interested in the wave-
function of a spherical geometry as a function of radius. In this representation, the volume
is a function of the configuration variable r, V' = 4772, The mean curvature 7 is the
conjugate momentum to the volume, which is related to the momentum conjugate to r as

py = (4.67)

8
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With these variables, the classical constraint equation (4.66) becomes

G22—(1+ﬁ>:0 (4.68)
28 7 : :

The quantization of the above constraint equation is therefore a time-independent Schrodinger
equation, and the phase space reduction necessitates limiting our attention to the global
modes of the geometry. We choose to parameterize these modes through the radius r and
its conjugate momentum p,..

4.3.3 Symmetry reduced action and Wheeler-DeWitt equation

In this section, we give an alternative derivation of the Wheeler-DeWitt equation (4.77) by
symmetry reduction of the action for AdSs3 gravity, c.f. [27]. This will be useful in order
to make contact with the Euclidean path integral formalism in section 4.4.

The action for general relativity with a negative cosmological constant including the

counterterm [11] takes the form Sgr = Sgu + Sguy + Scr where the various terms are
given by:
St = —— d? R+ — 2 (4.69)
BH = 16 G ) 4 ) ‘
Sary = ﬁ d*r\/g K (4.70)
= 2 4.71
SCT S G€ d 33\/_ ( 7 )

Note that the counterterm is precisely the factor appearing in (4.58) that relates the
deformed CFT partition function and the bulk gravity wavefunction:

U[g] = e%rZ[g]. (4.72)

The context, however, is slightly different from Ref. [14]. There, the counterterm was
required to obtain a finite partition function in the limit where ~ is large. Here it appears
as a generating function in a canonical transformation that eliminates the first derivative
term from the flow equation (4.57).

We wish then to pass to the Hamiltonian formalism, which first requires foliating the
spacetime by hypersurfaces. We will assume spherical symmetry, under which a general
metric takes the form

ds® = N%(p) dp* + r*(p) dQy. (4.73)
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This form is quite familiar from studies of homogeneous and isotropic cosmology: the
function r(p) controls the size of the sphere of fixed p and is analogous to the scale factor
in the Friedman-Robertson-Walker metric. The function N(p) is analogous to the lapse,
the difference being that in the metric (4.73) the normal to the surfaces of constant p is
spacelike.

The action, not including the counterterm then becomes:

Sert + Seny = —— [ dp N(p) (1 + <r/(p) )2 + T<p)2> . (4.74)

2G N(p) Iz

We note that the Euclidean action is both negative and unbounded below. The fact that the
action is negative is an important feature — we will see that it is precisely this feature that
leads to the positivity of the entropy, and consistency with the Ryu-Takayanagi formula
when evaluated on the classical solution. The fact that the fluctuations around the classical
solution also have negative Euclidean action is a serious problem since the integral of ™
will diverge. This is the famous conformal mode problem, which we will be forced to revisit
in section 4.4.

The derivation of the Wheeler-DeWitt equation from the symmetry reduced action is
standard. We first identify the conjugate momenta to r and N:

,r./

Pr=-an PN 0. (4.75)

The latter is a constraint, and its preservation leads directly to the Hamiltonian constraint

G*p? — (1 + T—Q) =0 (4.76)
2 7 . .

This agrees with the result (4.68) derived from gauge-fixing in the hamiltonian formalism.

The classical limit in the bulk theory is one where G < ¢, which in terms of the
field theory implies that ¢ > 1. In that limit, the 7T flow equation becomes the radial
Hamiltonian constraint in the bulk. In the minisuperspace approximation, i.e. when we
truncate to the symmetry reduced sector, this constraint reduces to (4.68). When we
quantize this theory, we obtain an equation valid when G and ¢ are comparable, which
translates into ¢ remaining O(1). This is why the arbitrary ¢ flow equation in the symmetry
reduced TT theory should be identified with the minisuperspace Hamiltonian constraint.
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4.3.4 Emergent diffeomorphism invariance

The phase space reduction presented in 4.3.2 shows us how the large ¢ flow equation is
written purely in terms of variations with respect to the global geometrical modes. From
the intrinsically two dimensional point of view, this is to be expected given that the flow
equation is written in terms of only one point functions of the stress tensor which are
themselves given purely in terms of the derivatives of the partition function with respect
to the radius.

However, the fact that the RG flow equation even at finite ¢ involves only derivatives
with respect to the global modes of the metric is nontrivial. This happens for the TT
flow equation (in [50], [28]) on T? as well, except for very different reasons ". There,
the localization of the flow equation on to the zero-mode sector is due to the separation
independence of the contracted two-point function of stress tensors whose coincidence limit
defines the T'T operator [99].

In our case, however, it is crucially important that the flow equation that arises from
deforming a conformal field theory with 77 can be rewritten as the Wheeler-DeWitt
equation. The Wheeler-DeWitt equation and the Ward identity V;(T%) = 0 encode the
invariance of the wave function W[g] under normal and tangential deformations of the
hypersurface on which it is evaluated. In quantum gravity, these deformations describe the
action of diffeomorphisms of the bulk space-time into which the hypersurface is embedded.

One could ask how important it was to deform a holographic CFT in order to exploit
bulk diffeomorphism invariance. We argue that in fact, it isn’t important since all we have
done is to make a change of variables and identified constants in a certain manner. When
we are considering pure gravity in the bulk, this agrees with a finite cutoff generalization of
the conventional AdS/CFT dictionary. However, when other matter fields are involved in
the bulk, in order to maintain the identifications as dictated by the AdS/CFT dictionary,
this mapping is inadequate [100] and other double trace deformations involving operators
other than the stress tensor must be included in the boundary theory [30].

Given the expectation that correlation functions of local operators are expected to
be smeared or delocalized by the TT deformation [29], even if the standard dictionary is
maintained unless other double-trace deformations are included, the bulk theory likely also
involves nonlocal matter fields.

"The TT flow equation is the one that reads 0,2 = (T'T(z))Z, and it tells us how the quantum field
theory responds under the change of one scale in the problem, i.e. the one associated to the TT operator.
The RG flow equation or Callan-Symanzik equation on the other hand tells us how the theory responds
to a local change of scale
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However, one can also consider the stress tensor sector of a general CFT at finite c,
which isn’t expected to possess a classical bulk dual. In such a theory, we can apply the
TT deformation and find that the local RG flow equation will take the form (4.57). After
making some simple identification of the constants and by redefining the partition function
in terms of W[g|, this flow equation takes the form of the Wheeler-DeWitt equation (4.59),
irrespective of whether or not it has a semiclassical bulk dual. ®

In this chapter, we are interested in computing the sphere partition function in a 7T
deformed CF'T with some arbitrary, finite central charge. Although the method involves
exploiting the emergent bulk diffeomorphism invariance in order to turn our problem into
an effectively quantum mechanical one, we do not require the theory we are deforming to
possess a holographically dual description in terms of string theory on AdSs.

4.4 Sphere partition function

The quantization of the reduced phase space Hamiltonian constraint leads to the following
spherically symmetric Wheeler-DeWitt equation:

G? ((f—; 42 13) W(r) = (1 + Z—j) W(r), (4.77)

r dr

where (1) = ¥[ys2] is the wavefunctional evaluated on a sphere of radius r. The constant
b appears due to the ordering ambiguity for the kinetic term. Then, if we recall the rela-
tionship between the partition function and the solution to the Wheeler-DeWitt equation
(4.58), the sphere partition function of the TT deformed CFT is given by

Z(r) = e~ 3 (r). (4.78)

It will be convenient to work in terms of gravitational units and set ¢ = 1. In these
units, G becomes a dimensionless parameter, the ratio of the Planck length to the AdS
radius, which is small in the classical limit. Although the equation admits an exact solution
in terms of special functions, it will be instructive to first study the solution semiclassically.

8We acknowledge that Aitor Lewkowycz independently realized this perspective on 7T deformed the-
ories
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4.4.1 WKB approximation

When G is small, the equation (4.77) can be treated by the WKB approximation. It will
be convenient to define ¢ = eV, where W = log Z + Scr is the effective action, up to the
counterterm. We then expand in powers of G,

1
W= SWo t Wit GWa .. (4.79)

In terms of the effective action, equation (4.77) becomes
2 " "2 2b—1 / 2
G (W' '+ W)+ ——W") =1 +7r7). (4.80)
T

4

where ’ denotes il

For a second-order equation, there are two classical solutions W;=. We can then consider
the expansion around each of these solutions, and a general solution is given by:

W(r) = a+eéWJ+Wl++'“ +a_eaWo tWit (4.81)

The negative solution W, is suppressed relative to the positive solution by the exponential
of the classical action. This is non perturbatively small when r is larger than the Planck
scale. For now, we focus on corrections around the dominant saddle point.

Classical solution At leading order in the G expansion we have two solutions for Wy,
Wi(r) = £Vr2 + 1. (4.82)

The positive solution is given by
wywy:%@mlwﬂ+r¢ﬁiiy (4.83)

This solution corresponds to the Euclidean action (without the holographic counterterm)
evaluated on the classical saddle point, which in this case is a region of Euclidean AdS
space bounded by a sphere of radius r. Restoring ¢ and the counterterm, this corresponds
to a classical solution

Z(r) ~ exp (% (Sinh_1 (%) + %\/ Z—z +1- 2—2)) (4.84)
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This agrees with the evaluation of the classical action for a region of Euclidean AdS;
bounded by a sphere of radius r [19].

The other classical solution Wy (r) corresponds to the opposite sign of (4.83). This
yields a saddle point whose contribution to the partition function is exponentially sup-
pressed when r > G.

One-loop correction The WKB expansion also allows us to find subleading corrections
in the loop expansion. Substituting the leading-order WKB solution into the first order
equation yields

1/2b—-1  W{(r)
/ 0
Wir)=—= + ) 4.
The one-loop correction is given by
Wi(r) = —1(2b — 1) log(r) — 1 log(1 + ). (4.86)

Note that the one-loop correction is the same around both classical solutions W, since
(4.85) is unaffected by flipping the sign of W.

Note also that the corrections become large as r — 0, while the leading term Wy (r) van-
ishes in that limit. This indicates that the WKB approximation breaks down at distances
approaching the Planck scale.

From this result, we can infer the leading order quantum corrected partition function
in the bulk:

A ro[r2 r? 1 r? r
Z(r)wexp<ﬁ<smh <Z>+Z €—2+1—€—2>+110g(m)—b10g<z> )

(4.87)
There are two important caveats with this solution: we have neglected the contribution of
the subdominant saddle point, and we have not fixed the constant in front of the solution.
To appropriately resolve this issue we require boundary conditions as r — 0. Since the
point 7 = 0 is outside the regime of validity of the WKB approximation, we have to use
other methods to determine the solution in that regime.

4.4.2 Exact solution

Equation (4.77) admits an exact solution. Changing to the independent variable to z =
r?/G and rescaling 1 to g as

9(z) = e*Y(VGz), (4.88)

90



(4.77) becomes Kummer’s equation ([12], §13)

26'(2) + (b— 2)g'() — ag(z) = 0, (4.89)

where @ = 4= + 2. When b ¢ Z, the general solution of (4.89) is given by a linear
combination of the confluent hypergeometric functions U(a, b, z) and M (a,b, z).® Forb € Z
the expansion for z — 0 is more complicated and so we will assume the generic case b ¢ Z
from here on.

In the limit z — 0, the solution is parameterized by
g(2) = eiM(a,b,2) + 22" "M (a — b+ 1,2 — b, 2). (4.90)

As z — 0,
g(2) = c1(14 0(2)) + 22" 78(1 + O(2)). (4.91)

The constants c1, ¢ are determined from the boundary conditions as z — 0. In the classical
solution (4.83), we only need a single boundary condition since the leading order WKB
equation is first-order. However, the Wheeler-DeWitt equation is second-order and so we
require a second boundary condition to fully specify the solution. This additional boundary
condition determines the contribution from the subdominant saddle point.

The boundary condition chosen in Ref.[10] was to take Z = 1+ O(r?) as r — 0. The
simplest choice which achieves this is ¢; = 1, ¢ = 0. This leads to a partition function
that coincides with that of a trivial theory in the ultraviolet, and we will see in section 4.5
that this makes the entanglement entropy vanish as 7 — 0 as might be expected if the TT
deformation acts as an effective ultraviolet cutoff.*

4.4.3 Path integral representation

The preceding results can also be obtained from a Euclidean path integral. This will be
useful in the following section in comparing the entanglement entropy with the bulk length.

We first deparametrize the system by introducing a parameter L be the diameter of
the bulk, i.e. twice the proper distance from the center to a sphere of fixed radius 7.
The wavefunction (r) is replaced with a wavefunction ¢ (r, L) in which L plays the réle

9M (a,b, z) is sometimes denoted 1 Fy(a;b; 2).
10 An alternative prescription [71] is to start from the conformal field theory in the limit 7 — co. In this
limit, the partition function has an undetermined constant coming from the cutoff scale.
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of a Euclidean time coordinate. The Wheeler-DeWitt equation is then replaced with the
Euclidean Schrodinger equation:

(—4G8L - G? (83 + 2~ 1&) +r? 4 1) U(r, L) = 0. (4.92)

-
The solution of the Wheeler-DeWitt equation will be obtained by integration,

b(r) = / yidL (r, L), (4.93)

The measure factor py, is required by dimensional analysis and has units of inverse length.
We also leave the contour of integration unspecified; provided (r, L) solves (4.92), then
the integral (4.93) will solve the Wheeler-DeWitt equation if the contour is chosen such
that the contribution from the endpoints vanishes.

We can solve this with an ansatz i(r, L) = e D+BL? which leads to a pair of equa-
tions

d 2 02 _
4G55 +4G°p*—-1=0 (4.94)
d 2

These equations are easily integrated, but two constants of integration must be specified.
One constant can be absorbed into a redefinition of L (and hence in a shift of the contour
used in integrating L). The second constant can be absorbed into the measure factor py,.
Having made these choices, the solution is given by:

1 L
L _ L
= 5= blog sinh <§) . (4.97)
Which yields
AN L r? L
W(r, L) = sinh (§> exp [E + 5 coth (5)} . (4.98)

Before carrying out the path integral, we first look at the classical solutions. The
exponential has two real saddle points £ L, where

sinh(Ly/2) = r. (4.99)
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The positive saddle point at L = L corresponds to Euclidean AdSs; with line element
ds? = dp® + sinh(p)2dQs (4.100)

which has r = sinh(p) and L = 2p. Evaluating (r, L) at this point yields

Y(r, Ly) = r"exp {% (sinh_l(r) + rm)} (4.101)

The quantity in the exponential is precisely the classical solution W, given by the WKB
method (4.83). The saddle point at L = —L, gives the exponentially suppressed WKB
solution Wy . 1!

We now turn to carry out the Euclidean path integral, and the choice of contour for L.

The conformal mode problem: Since L is a Euclidean length, it would seem natural
to integrate over positive real L. However, the result (4.98) diverges as e” for large L, and
as e'/L for small L. This is a manifestation of the conformal mode problem.

The Euclidean Einstein—Hilbert action is not bounded from below on the space of real
metrics. In perturbation theory, when the action is expanded around a flat background, we
find that the scalar mode corresponding to the fluctuations of the conformal mode comes
with the wrong sign in its kinetic term. In particular, if we can find a gauge where the
metric can be decomposed as:

Jab = € Gap (4.102)

where g, is a metric with fixed determinant, then the offending mode in the perturbative
analysis is the fluctuation field ¢:

¢ = do+ o, (4.103)

where ¢, is the background value of the conformal factor, which on flat space is zero.

In minisuperspace, the only dynamical field is the zero mode of ¢, in other words, the
scale factor. Therefore, we expect to face the full brunt of the conformal mode problem
when we study the quantum theory. And indeed, the action isn’t bounded from below, even
at the fully nonlinear level. This in turn prevents us from carrying out straight forward
path integral quantization of this system.

"There are an infinite number of complex saddle points at L = +Lg + 27in for n € Z. Shifting the
imaginary part of L — L + 27in shifts the integrand as ¥ (r, L + 2min) = (r,L)e2¢ , so the complex
contours and saddle points differ from their real counterparts by a phase.
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One way to remedy this problem would be to analytically continue to complex metrics,
which on minisuperspace just means that we should analytically continue to complex values
of the scale factor. Then, to perform the path integral over the complexified scale factor,
a contour of integration has to be chosen. It must be such that at the very least, the
partition function converges.

There is not however a single agreed-upon prescription for carrying out gravitational
path integrals of this type; but a list of desired criteria were outlined in Ref. [75].

There are other remedies for this issue in the literature in the context of performing the
full Euclidean path integral (i.e. beyond symmetry reduction in d > 3). One such prescrip-
tion is to perform a Wick rotation in a ‘proper time gauge’ of the metric fluctuations, as
discussed in [33]. Another way to circumvent the issue involves a nonlocal field redefinition
[113]. In both of these contexts, a Jacobian arising from the path integral measure cancels
the divergence of the Euclidean action.

We know that on general grounds, whatever contour we choose to integrate (4.93),
it should be deformable to a combination of steepest descent contours which will pass
through some set of saddle points. In order to match with the expected classical behavior,
this set of saddle points must include the positive saddle L. We will also demand that the
solution 1 (r) is real: the original Euclidean integral we want to deform, though divergent,
is formally real, and we will see in section 4.5 that complex solutions for ¥ (r) lead to
complex entropy.

The steepest descent curves passing through the real saddle points have a stationary
phase, which means the quantity in the exponential of (4.98) is real. Letting L = x + iy,
these curves are solutions of

2 sin(y)
2r cos(y) — cosh(x)

=0 (4.104)

The solutions, displayed in figure 4.4, consist of the real line, together with a loop encircling
the origin. Starting from the positive saddle L, the steepest descent contour leaves the
real axis along the loop and intersects the negative saddle —Ly. Starting from —L, the
steepest descent contour covers the negative real axis.

To carry out the integral defined by (4.93) we introduce a substitution w = coth(L/2).
Under this substitution we obtain

2

() = ~2p / dw(w +1)165 ™ (w — 1) 70T 2 el (4.105)
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Figure 4.4: Steepest descent contours for the evaluation of the integral of ¢(r, L). The thick
lines denote values for which v (r, L) is real; here we have set r = 1, but the qualitative
behavior is independent of r. The direction of the arrows denotes the direction in which
the integrand is decreasing. The cross at the origin denotes an essential singularity of the
integrand.

The saddle points at +L, are mapped to the points +wy where wy = /1 + 1/r2. The
positive L-axis is mapped to w > 1, while the negative L axis is mapped to w < —1.
These two lines are separated by a branch cut for —1 < w < 1; crossing the branch cut
shifts the imaginary part of L.

We can carry out the integral along either steepest descent contour using known integral
representations of the confluent hypergeometric functions ([12], §13.4)

I = / dw (w+1)" M w — 1) e = —T(a) 2" 'e /20 (a, b, 2), (4.106)
—1

z F
Iy = j{dw (w4 1) w — 1)70H01eaw = 2wiﬁ2b_le_z/2l\/l(a, b,z). (4.107)

We have reintroduced the variables a, z from subsection 4.4.2. The curve vy encircles the

interval (—1, 1) clockwise. We see that these integrals give solutions to the Wheeler-DeWitt
equation, as required. [ is real, while I is imaginary.

The simplest solution to the conformal mode problem is simply to rotate the contour
to the negative real axis, resulting in a convergent integral [66]. In [17], it was shown how
conformal bootstrap can be used to resolve the ambiguities associated with the analytic
continuation of the integration over the Weyl mode in two space-time dimensions. However,
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we see here that the contour does not pass through the saddle point at Ly, so gives a
partition function that is exponentially suppressed. The resulting entropy is negative: it is
given by —L/4G in the classical limit. Thus the naive resolution to the conformal mode
problem gives an unphysical result in our application.

Instead, we can consider a contour passing through the saddle point at Ly. This contour
terminates on another saddle point, the one at — L. In cases such as this when the steepest
descent curve intersects another saddle point, the saddle point is said to be on a Stokes
line. We must decide how to extend the contour past the other saddle point. The standard
method to deal with this case is to analytically continue the parameters of the problem to
complex numbers: for example, by giving GG a small imaginary part, G — G +ic. When we
do this, the steepest descent contour passing through Lg slightly misses the saddle point at
— Lo and continues close to the negative real axis. As we take ¢ — 0 the contour becomes
a union of the loop encircling the origin and the negative real axis.

However, depending on the sign of the imaginary part of GG, the contour will traverse
(—00,0) in either the positive or negative direction. Thus the real part of v (r) will be
discontinuous as a function of the complexified G. A natural prescription, in this case,
is to take the average of the two results [1]. This cancels out the contribution from the
negative real axis, and the result is proportional to the loop integral (4.107). While this
gives a purely imaginary integral, the result for 1(r) can be made real by choosing an
imaginary value for the measure factor up.

We can further choose the measure factor p; so that the partition function satisfies
Z(r) — 0 as 7 — 0. The result is

W) =e "M 1 by o (4.108)
N 4G 277 2G ) '
This is the same as the exact solution obtained in section 4.4.2.

We note that other choices of the contour are possible. which could also include contri-
butions from complex saddle points. Each of these contributions comes with a nontrivial
phase, but they can be summed over to give a real result. We note, for example, that by
choosing the Pochhammer contour in carrying out the integral (4.105), we obtain a result
proportional to M(a,b, z) c.f. ([12], 13.4.11).

4.5 Entanglement Entropy

We now consider entanglement entropy in the 77T-deformed theory. Specifically, we will
consider the setup of Ref. [19], where the conformal field theory lives on a sphere and the
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entangling surface consists of two antipodal points. This corresponds to the entanglement
entropy of the Hartle-Hawking state of the CFT, viewed as a state on a circle divided into
two semicircles. Equivalently, it is the de Sitter entropy of the CFT.

This calculation was carried out in Ref. [19] in the strict large ¢ limit. This corresponds
to the classical limit of the bulk gravity theory, and in this limit, the result reproduces the
Ryu-Takayanagi formula [137].

However, our result also includes 1/¢ corrections, which correspond to quantum cor-
rections in the bulk. These corrections to the entanglement entropy are conjectured to
capture entanglement of the bulk fields across the minimal surface [57]:

L
S = L) + Spuic + O(1/¢). (4.109)
4G
In the present case, the bulk theory is pure gravity and has no local degrees of freedom, so
it is not clear exactly what bulk degrees of freedom could be responsible for Sy.

Higher-order corrections in the 1/c expansion generically are expected to deform the
location of the extremal surface to a quantum extremal surface [51]. In our case, the
location of the bulk surface is fixed by rotational symmetry, so the quantum extremal
surface coincides with the extremal surface at all orders: a geodesic through the center
of the bulk. In this case, the higher-order corrections to the entanglement entropy of the
boundary are higher-order corrections in the semiclassical expansion of % + Spuk about
the classical minimal surface.

Even when a theory has no local degrees of freedom, it still has an entanglement entropy.
The best-known example is Chern-Simons theory, where the entanglement comes from edge
modes localized on the entangling surface [151, 59, |. Since 3D gravity is closely related
to Chern-Simons theory [153], we might expect that the bulk entanglement entropy has a
similar description in terms of edge modes.

To precisely describe entanglement entropy in terms of bulk gravity, we need a de-
scription of the gravitational edge modes and their multiplicities. It is not known how to
do this for general relativity, but some aspects of the problem at the classical level were
worked out in Ref. [19]. In 3D gravity there are a number of more specific proposals ,
see e.g. [115, 65, |. We expect the area to play a preferred role in the edge modes for
gravity, based on the algebra and generators and also an analogy with the Ryu-Takayanagi
formula [79, |. In 3D gravity, the total length is the only invariant of the intrinsic
geometry of the entangling surface. Moreover, calculations in holography [15, 2] show that
the entanglement spectrum is flat for fixed area states, at least to leading order in the 1/N
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expansion. This suggests that the gravitational edge modes in 3D are labeled by the length
of the entangling surface, with a multiplicity given by exp (%) in the classical limit.

We will find some evidence for this picture, namely that the corrections to the entropy
of the boundary theory capture fluctuations of the length of the bulk geodesic. However,
this interpretation relies on choosing a real contour for the gravitational path integral.
The interpretation of the entropy as fluctuations of the bulk length operator is obscured
when the length is continued to complex values. We will comment on this further in the
discussion.

4.5.1 Entropy for antipodal points on the sphere

We first briefly review the calculation of the entanglement entropy in the special case
of antipodal points, and its relation to the sphere partition function. We are essentially
repeating the argument of Ref. [19].

The entropy is computed through the replica trick, which first involves evaluating the
partition function on an n-sheeted branched cover of the sphere, where the branch points
are at the entangling surface. The line element on such a space is:

ds?* = r?[d6? + n?sin®(0)de?). (4.110)

The entanglement entropy is then given by the formula:
S =(1-n0d,)log Z|,=1. (4.111)

In the absence of rotational symmetry, the partition function must be analytically continued
to a neighbourhood of n = 1. In the present situation, rotational symmetry allows us to
vary n continuously.

Under infinitesimal variations of n, the generating functional responds as follows:
dlog Z
— [ & T?) = —22| . 4.112
[y = S (1112)

In the limit n — 1, the full spherical symmetry is re-instated, so the one point function of
the energy momentum tensor is isotropic (T*") = «a(r)g". This in particular tells us that
<qu15> = 3(T). This means that the von Neumann entropy in the situation at hand can
be computed through the formula:

rd
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Here Z is the sphere partition function without a conical singularity.

Thus we can obtain the entanglement entropy directly from the sphere partition func-
tion. The formula (4.113) is the usual thermodynamic formula for the entropy in terms
of the partition function but with 72 playing the role of inverse temperature 3. We will
return to this point shortly.

Note that the counterterm introduces a shift in the partition function of the form
log Z — log Z + ar? where « is constant. This shift of the partition function does not
change the entanglement entropy (4.113), so the counterterm drops out of the calculation
of the entropy.

4.5.2 Loop expansion of the entropy

It is straightforward to apply this formula to the partition function in the WKB approxi-
mation, yielding

1 r 1 1 2b—-1 1 r
§ = s sinh™ (%) = 52— 1) log(r) — 7 log(1 + 17 = . (4114
2G Sin f 2( ) og(r) 1 og( +r ) -+ A + 11 I 7”2 ( )
The first term, propotional to 1/G, is the classical term f—é. The remaining terms are a

one-loop quantum correction. We recall that this solution is ambiguous up to the addition
of a constant, which can be fixed by the choice of boundary conditions.

Another limit of interest is one where r > ¢. In the large r limit, we find

S = (% — b) logr + O(r%) = (g — b) log(r) + O(r). (4.115)

This gives a correction to the CFT result, which is small if we hold b fixed in the large ¢
limit.

4.5.3 Finite radius FLM corrections

We recall that the partition function takes the form

: AN L L
Z(r) = / prdL sinh <§> exp [E + %coth (5)} , (4.116)
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up to a counterterm which does not affect the entropy. Provisionally, we will treat (4.116)
as though it were a convergent real integral, returning to the issues of the conformal mode
in due course.

We note that (4.116) resembles a canonical thermal partition function in which the
states are labelled by L, with density of states dn and energy FE,

7 - / dn(L)ePED), (4.117)

In this equation we identify r? with the inverse temperature 3; this is consistent with the
formula (4.113) for the entropy. The density of states and energy can be read off from
(4.116) as:

dn(L) = jpdL sinh (g) e {%} | (4.118)
B(L) = —% coth (g) | (4.119)

Including the counterterm simply shifts F(L) by a constant.

We can now relate the entropy calculated by the sphere trick to fluctuations of the
length L. The distribution over lengths implied by this canonical distribution is given by
the measure )

dp(L) = Ze_’BE(L)dn(L). (4.120)
Since L is a continuous parameter, the entropy of the distribution dp is not invariant under
reparametrizations of L. Instead, one should consider the relative entropy S(p||lo) where
o is a reference distribution:

S(plle) = / dp(L) log (%) | (4.121)

This quantity is invariant under reparametrizations when both dp and do transform as
measures. Note that the sign is opposite from the one appearing in the entropy, S =
—>_plogp.
Having put the partition function into the canonical form, we can straightforwardly
calculate the entropy. It takes the suggestive form
(L)

S = YTl S(pllo), (4.122)
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where (L) denotes the expectation value in the distribution p. The reference distribution
o is defined by

I\
do(L) = prdLsinh (5) : (4.123)

This suggests an interpretation in which the gravitational edge modes are labelled by the
length L of the bulk geodesic. The number of distinct eigenvalues of L is given by the
measure do(L), while the degeneracy of the eigenvalues is given by e®/4¢. This would
appear to give a realization of the Faulkner-Lewkowycz-Maldacena proposal [57] in which

the bulk entanglement entropy can be understood as arising from gravitational edge modes
labeled by the length.

Unfortunately, such a nice interpretation seems to be precluded by the conformal mode
problem. When the contour for the L integral is complex, the interpretation of the states
being labeled by a real geometric length is not available. We do not know whether there
is any interpretation of the entropy analogous to (4.122) when L is allowed to be complex.
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Chapter 5

TT partition functions as solutions to
the Wheeler de Witt equation

In this section, we will see how the partition function of a TT deformed quantum field
theory can directly be obtained by a functional integral transformation of the undeformed
theory’s partition function. The integral will be over the frame fields of the geometry on
which the theory lives, weighted by a Gaussian kernel. As such, this definition circumvents
the need to solve a flow equation in order to obtain the partition function, although we
will indeed see that the flow equation does follow from this alternative definition. When
considering the deformation of conformal field theories, we will in fact see that the Callan—
Symanzik equation that the partition function solves can be rewritten as the Wheeler de
Witt equation in three dimensions.

5.1 The Integral Kernel and the Flow equation

The integral transformation referred to in the paragraph above is given by
1
Zlf] = /De exp [—;/eo‘ﬁeab(e — fae— f)% Zole] . (5.1)

Here, e}, denotes the zweibein on the space where the field theory lives, and f7 denotes
the one on the space on which the deformed theory lives. In the appendix [], basic rela-
tionships between the objects in the first order and metric variables will be summarised.
Zyle] denotes the undeformed theory’s partition function.
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For notational convenience, we introduce:
1 af a b
Ky(e f) = /€ can(€ = flale = f) (5.2)

To see that this defines the partition function of the 7T deformed theory, we take the
derivative with respect to p:

1 0 )
0. Z\f] = | dx (=%, : ————: | Z[f], 5.3
A= [ (3% 573(@) 55 (@) )z )
where the ‘normal ordering’ is defined not by a coincident limit of any sort but simply as
1 ab 1 ab 2 (2)
56" 1 0gp(@)0fs(e) 1= 5 Ewlpg@) g (a) + 10 (0). (5.4)

This is all the normal ordering one needs to do to get the flow equation (5.3) to work; if it
turns out that there are more divergences on the RHS, they also drive this flow.

Before proving the equation, let us define the one- and two-point functions of the stress
tensor. The one-point function is defined by

1
(T2 @) = ~(det J(@) s o= 21 (5.
which means that
5(—log Z) = / (det F)5£2(TH). (5.6)
Similarly, the two-point function is defined as
1 1
(T3 (2)Ty (y)) = Z[7] det F (@) detf(y)5fg(x)5f3(y)z[f]a (5.7)

where the det f factors are outside so that the change in the free energy is a double
integral of the two-point function. With this definition, the RHS of (5.3) (up to the
normal ordering) is !

/ d*x(det f(x)) gabewm(sméﬁz =7 / d*x det fee,,, (THTY) (5.8)

IRecall that € is a tensor density. & on the other hand is simply the Levi-Civita symbol. Hence,
€ = det(f)e .
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Thus, it appears a sensible generalisation of the T'T operator.

Moving on to prove the kernel satisfies the flow equation, we see the left hand side of
(5.3) becomes simply

2171 = [ Pe (50 [[enls = ar a(f = o ) el (59)

Let us first work out the right hand side, without the normal-ordering, keeping any
new contact terms which may arise:

3] @2 Pensp )5ff( 2= [ e e | De (e o)) e 2l

— _;5(0) (/d%) Z+/De (Tjﬂ/sab(f—a)“/\ (f—e)b) e K1 Zlel.

(5.10)

We thus define the normal-ordering by subtracting out the piece proportional to §(0).
Note this term exists equally well in flat space. With this prescription, the flow equa-
tion(5.3) holds rather trivially:

outonlf| = (s [(7=ern(r-of) (5.11)

_ 1 aw, 1.0 0
_ Zm/d?xg wy s A (5.12)

In fact, the weight in the exponent K, (e, f) is itself the action of ghost-free massive
gravity in two dimensions. This connection was highlighted in ].

The equation (5.1) was introduced in [01], but towards a different end. There, it was
shown that when this integral transformation is applied to a conformal field theory partition
function satisfies:

{F@0 50 — (et HRIS() | Zolf) = 0. (5.13)

then the deformed partition function satisfies:

b P R B T ) B
{0 s+ 0ot s = SR 210 =0, (51

This is the three dimensional Wheeler de Witt equation.

This definition justifies the assumption made in the previous chapter where the local
Callan—Symanzik equation of the deformed theory is identified with three dimensional the
Wheeler de Witt equation.
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5.2 Annular Path Integral

The wavefunction Z|[f], being a functional of the vielbein f on the 2d slice, is expressed in
the analog of the position basis 2

Zf1=(f1¥) (5.15)

Satisfying C’a|\P> = 0, the state |W¥) resides in the physical Hilbert space. It is also
convenient to write it in the analog of the momentum basis

o) = / D ]| = / Dr ( / De el ‘se“bﬁm—ﬂwe“zo[eo T (5.16)

where we used the overlap (r|e) = e Jemae”,

We stress the state |3) = [ DeZyle]|e), built purely from the CFT partition function,
does not solve the second-order Wheeler-de Witt equation (but rather ”only” the first-order
conformal anomaly equation). This makes clear that even an infinitesimal deformation
radically alters the nature of the state.

An annular path integral corresponds to a transition amplitude. The two sets of bound-
ary conditions on either side encode the initial and final state data. In 3d gravity, transition
amplitudes involving at least one physical state reduce to an overlap. Indeed, since the
total Hamiltonian is simply the sum of constraints C,, which annihilate any physical state,
we have

<¢|6_Sﬁt0t|quhys> = <¢|6_Sza C?a|\11phy8> = (@ ¥phys) (5.17)

We may thus equally view the partition function Z[f] as a transition amplitude between
the state f, corresponding to fixing the vielbein on one of the 2d boundaries, and the state
|W,) on the other.

Let us spell out the connection to the 3d gravity path integral and the choice of bound-
ary conditions a bit further. We will show how a semi-classical treatment of our asymptotic
boundary state connects to the boundary conditions discussed in [70]. Inserting a resolution
of the identity, we can write

2Dirichlet boundary conditions in quantum gravity are notoriously tricky. We will mostly gloss over
those subtleties in this discussion.
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Z1f) = [ Detfle 1w e
= /De(f|e_SHt°t|e> (/ Dﬂe_f”aAea+éaab”a”b_bgz@[e]) (5.18)

The 3d gravity path integral of interest is schematically then:

Z[f] = / DeVle] / E‘m:eDEe’SGR(E) (5.19)

E‘Tc:f

Here Sgr(FE) is the action for three-dimensional gravity in first-order variables with
a negative cosmological constant along with the appropriate boundary terms needed for
finiteness and for a well-posed variational principle. The integration variable E is the bulk
vielbein and we gauge fix to the n = 0 gauge. The boundary values are related to the
vielbeins e and f that feature in the kernel.

In the classical limit, we may evaluate Z,[f] via a steepest descent approximation:

Z[f] N e—fﬁa/\éa—%eabﬁa/\ﬁb—so[é] (5'20)
where 7 and e satisfy the saddle-point equations
& — pe®Tpy =0 Tap 4 det(€)(T))o =0 (5.21)
where, in this limit,
_1050[e]

(T2)0 = — det(¢)

e=e 522
er (5.22)

becomes the on-shell stress tensor of the undeformed theory.

As for the asymptotic boundary conditions, we echo the insight of [76]. They argued
that 7T should be treated like any other double trace deformation in holography which
leads to a change of boundary conditions at infinity (see [?]). In particular, the fixed dyad
boundary conditions at infinity in the undeformed setting should turn into mixed boundary
conditions that involve both the dyad and its radial derivative or its conjugate momentum
when the deformation is turned on.

How this works is that at large ¢ (or N in dimensions greater than two) the action of
the deformed theory reads

Sies = So +u/ (TT). (5.23)
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We then take a variation of this action to find

s = [ Tes+ o [ (17) = [ 17,5, (5.24)

where, T(‘; o is the stress tensor of the seed theory which couples to its source, the dyad e®.
Similarly, T(‘:L Ja is the deformed theory’s stress tensor, which couples to a new source e*.

As was shown in [76], the latter is given by
& = e — e Tl (5.25)

Note that by having to hold é fixed, the above variation vanishes. In the bulk, this
is equivalent to the statement that the bulk action that Sg.; is on shell and, through the
holographic dictionary, also a function of solely the boundary data. In particular, the
variation of the action on shell with an appropriate boundary term corresponding to the
TT deformation added is given by the symplectic potential:

05,5 X /ij N dey, (5.26)
where the RHS is integrated over the boundary, and 7# is the momentum conjugate to the

dyad €, induced on the boundary. The canonical transformation needed to get from the
phase space parameterized by (e, 7,) to the (€% m,) is given by:

&= et — 522”), (5.27)
where
W(r) = 2,u/eab7ra A Trp. (5.28)

This is indeed the boundary term in the three dimensional gravity theory that corresponds
to the TT" deformation.

The specification of fixed €* boundary conditions, therefore, corresponds to finding
some subspace of phase space on which the symplectic form computed from this potential
vanishes, i.e. to a Lagrangian submanifold.

Translating the condition (5.25) into bulk language, we see that the mixed boundary
condition that the 77" deformation leads to is one where

& = et — pee,,my (5.29)
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is fixed at the boundary. Again, we see that the radial momentum is playing the role of
the stress tensor. The function F' in the path integral (5.19) is therefore é written as a
function of radial derivatives of the dyad instead of the momenta.

As mentioned before, since the state |¥) satisfies the Wheeler de Witt equation, it can
be computed from a radial slice arbitrarily close to the r = r. surface. Thus, schematically,
we compute the path integral between these two surfaces as:

E©)|o=(e—exm)
/ DE exp (—Ssq4(E)) = [ DnDe
Elro=f be

exp (/ F,. — / Foo> exp (/ Ty N éa> ) (5.30)
21":7‘(; Zr:oo AdSS

Here bc stands for the boundary conditions at the r = r. surface and the surface at
infinity brought to its vicinity. The functions F,, and F, are the boundary terms at the
r = r. surface and infinity respectively. In first-order variables, the first term is zero, and
the second term is a combination of the CFT generating functional, and the term W (7(>))
that generates the canonical transformation corresponding to the T'T deformation discussed
above. The vanishing of the Hamiltonian means that the phase space action involves only
the kinetic term [ m, A €.

Then, noting that the two surfaces are arbitrarily close to each other, we can decompose
the path integral over the fields (eq(r, z), 7(r, )) into (€)% (z), e (), (7 (), Wéoo)(x))):

= /DW(TC)DB(TC)DW(OO)DQ(OO) exp (_/T(C(LTC) A (6(7'0) . f)a) X

exp (—/W((loo) A (el — e(“))a) exp (—g / x> A 7rl§°°) - WCFT[e(OO)]). (5.31)

The integral over the fields at » = r, can be performed straightforwardly to obtain

/DWD@ exp (—/wa(e—f)a— g/ﬁabﬂa/\ﬂb)ZCFT[e] =

/De e~ [ EanlI= NI 7 1) — Z[f]. (5.32)

where we dropped the (co0) superscript for brevity.

We, therefore, recover the Freidel kernel formula for the 7T deformed partition function.
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5.3 Reduced kernel and the S? partition function

The prescription described in this section to define the 7T deformed partition function can
be applied to the case of the S? partition function. In the previous chapter, we described
how this calculation can be done by solving the reduced Wheeler de Witt equation- which
reduces to a Schrodinger like equation. It would, therefore, be overkill to use the general
kernel to compute this quantity.

It will be more convenient to write this equation in terms of the variable r = e where
Q) is the conformal factor:

Gy (0 k+1 1/r?

This is identical to the equation that was solved in [18], and also discussed earlier in [20],
[27]. Introducing z = r?/Gy, and re-scaling Z to g as:

z/2
e
g(z) = 5 Z(v/Gnz), (5.34)
we find that the reduced WdW equation (5.33) becomes Kummer’s equation:
9 k
2079 + 5 +1—2)0.9—ag(z) =0, (5.35)
where a = ﬁ + (%) The general solution to this equation reads
k k k
g(z) =c11Fy (a, 5 +1, z) + @z‘g na (a — 5 1— > z) . (5.36)

Boundary conditions must be chosen in order to fix ¢; and ¢y, but having done that we will
have a one parameter family of radial wave-functions. It turns out that for a special value
of k, there is in fact a way to both indirectly obtain the solution to this equation and fix
the boundary conditions.

5.3.1 The reduced Kernel

For the purposes of this subsection, let us choose £ = —1, and so the equation we want to
solve is o L /2
N 42 r _
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Given that we want solutions to this equation with AdS asymptotics, we need that at large
r, up to a counter term, Z,(r) ~ Zcpr(r) where the CEFT partition function solves the
Weyl anomaly condition on S%:

c

ROrZcrpr(R) = §ZCFT(R). (5.38)

It turns out that we can in fact write the solution to the differential equation (5.37) as an

integral transformation of the CFT partition function satisfying (5.38), which takes the
form:

b
Z)\(r) = - /dR (E) 6_%(R_T)QZCFT(R)7 (5.39)

where b parameterizes our ignorance of the measure factors that might have entered due
to, for example ratios of determinants that the gauge fixing porcedure leads to. For our
purposes, we will just assume that it is an arbitrary real parameter. The solution to (5.38)
is given by

R\ 3
Zorr(R) = (?) , (5.40)
and so in all, we have
1 r2 2 ]% §_%b
Z\(r) = EeT /dRe_i(R_T) (—) : (5.41)
€

We note that this integral can be thought of as the following Mellin transformation *:

2ﬁr2

Z(r) = ¢ 2“ Mp (e—%<R—”2, bt g + 1) . (5.42)

Which gives us:

c w2 §(3b+0) 1 1 3 4mr?
Z(r) =280 (L) (47‘F (6(3b+c+6)) Py <6(3b+c+6);§; = )+

+ ﬁ\/gr (%(Sb tot 3)) F (é(sm ¢+ 3): %; 47ZQ> ) (5.43)

*Here we take the definition of the Mellin transformation to be My (f(t),s) = & [ dtt*~ f(t)
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This function solves the equation

2
J T2 mr 1 2c
———0:Z(r)+ —Z(r)+-(1+2b+ = | Z =0

which is identical to (5.37) if we make the identifications:

H 2 M 2c 2
=Gy, —(1+26+ ) =12 5.44
8m(l+2b+2%) ¥ 87r< 3) (5:44)

Like in the full kernel, if we demand that at the reduced level

A—0

lim (eéiezm) = Zopr(r), (5.45)

then we find that we have to set b = 0.

Now we can ask what values for ¢; and ¢, the above solution picks, and we find:

c c/6+1/2
C1 = 2_6_3 (i) F ct+ 3 , C2
2 6

This connects back to the results from the previous chapter, except the choice of bound-
ary conditions at r = oo are different here.

2-§-% (ﬂ)c/6 2/27 (g + 1) . (5.46)

27

111



Chapter 6

Concluding Remarks

Let us summarise what’s been done in this thesis: We started by considering the quantum
renormalization group, which is a very general recipe to construct bulk duals from re-
organizing the renormalization group flow of a given quantum field theory. We looked at
the case where it is applied towards the construction of pure general relativity in the bulk,
which led us to the question of how general covariance is encoded in QRG. This question
is answered in the form of the holographic Wess—Zumino consistency condition, which
posits a relationship between the anomalous Weyl Ward identity and the diffeomorphism
Ward identity. This condition fixes the form of the flow equation that the theory living
on the cutoff radial slice needs satisfy and therefore the bulk Hamilton-Jacobi equations
as well. Then, when considering the limit as the cutoff is taken to infinity, we saw how
we can recover the classic results pertaining to the holographic anomaly. In particular, in
four-dimensional holographic CFTs, the a and ¢ holographic anomaly coefficients must be
equated.

Then we looked for what flows satisfy this consistency condition. There, we saw that
for large ¢ theories in D = 2 and for large N matrix field theories in higher dimensions, the
consistency conditions picked out the 7T, and more generally the 72 + OO deformation
of holographic CFTs. It was also shown how the superpotential relations for holographic
RG flows in D = 4 were picked out as a consequence of covariance.

Then we looked at the computation of holographic entanglement entropy in two-dimensional
holographic CFTs deformed by the TT operator. There, we saw how the holographic en-
tropy conjectures of Ryu and Takayanagi and also that of Dong for Conical entropies held
even int he finite cutoff setting.

Finally, we went beyond the regime of classical gravity in the bulk and looked at how
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the partition functions of 7T deformed CFTs at some finite central charge furnish solutions
to the three dimensional Wheeler de Witt equation.

We saw how the conformal mode problem affects the calculation of the bulk dual to
the entanglement entropy at finite c. We propose a particular analytic continuation of
the fields to circumvent this problem in minisuperspace, but the question is whether there
is a nonperturbative way to implement such an analytic continuation. Also, what is the
meaning of such a continuation from the quantum field theory’s perspective? Analytic
continuation in the space of couplings has been extensively applied in resummation tech-
niques. It would be fascinating to see whether there is a Borel like resummation calculation
on the field theory side which mirrors the analytic continuation we performed.

There are of course many questions pertaining to other topics in this thesis that remain
to be answered. Some of them are listed below.

Although the emphasis here is on the emergence of a direction of space that plays a
dual role to the RG scale of the holographic field theory, an important and deep question to
ponder is whether time can emerge in such a manner. In one version of de Sitter holography;,
this is indeed the hypothesis: the quantum field theory now inhabits a spacelike boundary
of dS space and the energy scale associated with this theory becomes the time like direction
in the bulk. Although these models are fascinating, since the bulk theories that have so far
been studied typically involve an infinite tower of massless fields interacting non locally at
the cosmological scale (e.g. Vasiliev’s higher spin gravity), it is hard to straight-forwardly
probe the phenomenon of the emergence of the time direction. The opportunity that
the deformations described in this thesis provide is an alternate mechanism that might
instantiate a version of de Sitter holography with space-like boundaries.

As for the bulk Wheeler de Witt equation, we clearly see that the situation in dimensions
greater than two is substantially more complicated away form large N. It is entirely unclear
whether the T? deformation can be unambiguously defined, which is dual to the problem of
finding a suitable regularization of the kinetic term in the WdW equation which involves
coincident functional variations with respect to the metric. One route to progress may
lie in following [27], where the authors find that minsuperspace calculations of the wave-
function in AdS, mirror the calculation of sphere partition functions in ABJM theory that
are normally obtained through supersymmetric localization. This mysterious fact warrants
more attention and the connection between supersymmetric localization on the boundary
and minisuperspace localization in the bulk must be more thoroughly studied. Perhaps in
so doing, there might be some way of ‘defining’ the T? operator in D = 3 for this very
particular setting.

Given that the TT" OPE in D > 2 does not close on to the energy-momentum sector, the
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worry might be that there is no hope of defining a proper WdW equation via holography
in D > 2. However, this fact might just be a way forward, beyond canonical quantum
gravity where new degrees of freedom are inevitable if one wants to define solutions of the
WdAW equation through holography. The question then is, what ought to replace the WdW
equation? Perhaps it is some version of a Schrodinger equation for string fields. What kind
of bulk symmetry does the Wess—Zumino consistency condition for the generator of local
RG transformations in these deformed theories capture?

114



References

1]

2]

Ofer Aharony, Shouvik Datta, Amit Giveon, Yunfeng Jiang, and David Kutasov.
Modular invariance and uniqueness of T'T" deformed CFT. JHEP, 01:086, 2019.

Chris Akers and Pratik Rath. Holographic Renyi Entropy from Quantum Error
Correction. JHEP, 05:052, 2019.

Emil T. Akhmedov. Notes on multitrace operators and holographic renormalization
group. In Workshop on Integrable Models, Strings and Quantum Gravity Chennai,
India, January 15-19, 2002, 2002.

Inés Aniceto and Ricardo Schiappa. Nonperturbative Ambiguities and the Reality
of Resurgent Transseries. Commun. Math. Phys., 335(1):183-245, 2015.

Sinya Aoki, Janos Balog, Tetsuya Onogi, and Peter Weisz. Flow equation for the
large N scalar model and induced geometries. PTEP, 2016(8):083B04, 2016.

Sinya Aoki, Janos Balog, Tetsuya Onogi, and Peter Weisz. Flow equation for the
scalar model in the large N expansion and its applications. PTEP, 2017(4):043B01,
2017.

Sinya Aoki, Janos Balog, and Shuichi Yokoyama. Holographic computation of quan-
tum corrections to the bulk cosmological constant. arXiv:1804.04656[hep-th/, 2018.

Sinya Aoki, Kengo Kikuchi, and Tetsuya Onogi. Generalized Gradient Flow Equation
and Its Applications. PoS, LATTICE2015:305, 2016.

Sinya Aoki and Shuichi Yokoyama. AdS geometry from CF'T on a general conformally
flat manifold. Nucl. Phys., B933:262-274, 2018.

Sinya Aoki and Shuichi Yokoyama. Flow equation, conformal symmetry, and anti-de
Sitter geometry. PTEP, 2018(3):031B01, 2018.

115



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

Richard L. Arnowitt, Stanley Deser, and Charles W. Misner. The Dynamics of
general relativity. Gen. Rel. Grav., 40:1997-2027, 2008.

Meseret, Asrat, Amit Giveon, Nissan [tzhaki, and David Kutasov. Holography Beyond
AdS. Nucl. Phys., B932:241-253, 2018.

Joseph J. Atick and Edward Witten. The Hagedorn Transition and the Number of
Degrees of Freedom of String Theory. Nucl. Phys., B310:291-334, 1988.

Vijay Balasubramanian and Per Kraus. A Stress tensor for Anti-de Sitter gravity.
Commun. Math. Phys., 208:413—-428, 1999.

Aritra Banerjee, Arpan Bhattacharyya, and Soumangsu Chakraborty. Entanglement
Entropy for TT deformed CFT in general dimensions. Nucl. Phys., B948:114775,
2019.

Florent Baume, Boaz Keren-Zur, Riccardo Rattazzi, and Lorenzo Vitale. The local
Callan-Symanzik equation: structure and applications. JHEP, 08:152, 2014.

Teresa Bautista, Atish Dabholkar, and Harold Erbin. Quantum Gravity from Time-
like Liouville theory. 2019.

C. Becchi, S. Giusto, and C. Imbimbo. The Wilson-Polchinski renormalization group
equation in the planar limit. Nucl. Phys., B633:250-270, 2002.

Jibril Ben Achour and Etera R. Livine. Protected SL(2,R) Symmetry in Quantum
Cosmology. JCAP, 1909:012, 2019.

Massimo Bianchi, Daniel Z. Freedman, and Kostas Skenderis. Holographic renormal-
ization. Nucl. Phys., B631:159-194, 2002.

Martin Bojowald, Suddhasattwa Brahma, Umut Buyukcam, and Fabio D’Ambrosio.
Hypersurface-deformation algebroids and effective spacetime models. Phys. Rewv.,
D94(10):104032, 2016.

Giulio Bonelli, Nima Doroud, and Mengqi Zhu. 7T7T-deformations in closed form.
JHEP, 06:149, 2018.

J. David Brown and M. Henneaux. Central Charges in the Canonical Realization of
Asymptotic Symmetries: An Example from Three-Dimensional Gravity. Commun.
Math. Phys., 104:207-226, 1986.

116



[24]

[25]

[20]

[27]

28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Pasquale Calabrese and John Cardy. Entanglement entropy and conformal field
theory. J. Phys., A42:504005, 2009.

Pasquale Calabrese and Alexandre Lefevre. Entanglement spectrum in one-
dimensional systems. Phys. Rev. A, 78:032329, Sep 2008.

Pawel Caputa, Shouvik Datta, and Vasudev Shyam. Sphere partition functions and
cut-off AdS. 2019.

Pawel Caputa and Shinji Hirano. Airy Function and 4d Quantum Gravity. JHEP,
06:106, 2018.

John Cardy. The TT deformation of quantum field theory as random geometry.
JHEP, 10:186, 2018.

John Cardy. TT deformation of correlation functions. 2019.

S Carlip. A phase space path integral for (21)-dimensional gravity. Classical and
Quantum Gravity, 12(9):2201-2207, sep 1995.

Horacio Casini, Marina Huerta, and Robert C. Myers. Towards a derivation of
holographic entanglement entropy. JHEP, 05:036, 2011.

Andrea Cavaglia, Stefano Negro, Istvan M. Szécsényi, and Roberto Tateo. TT-
deformed 2D Quantum Field Theories. JHEP, 10:112, 2016.

Soumangsu Chakraborty, Amit Giveon, Nissan Itzhaki, and David Kutasov. Entan-
glement Beyond AdS. 2018.

Bin Chen, Lin Chen, and Peng-Xiang Hao. Entanglement entropy in 77T-deformed
CFT. Phys. Rev., D98(8):086025, 2018.

Steven Corley. A Note on holographic Ward identities. Phys. Lett., B484:141-148,
2000.

Atish Dabholkar. Quantum corrections to black hole entropy in string theory. Phys.
Lett., B347:222-229, 1995.

Atish Dabholkar. Strings on a cone and black hole entropy. Nucl. Phys., B439:650—
664, 1995.

A. Dasgupta and R. Loll. A Proper time cure for the conformal sickness in quantum
gravity. Nucl. Phys., B606:357-379, 2001.

117



[39] Shouvik Datta and Yunfeng Jiang. T7T deformed partition functions. JHEP, 08:106,
2018.

[40] Jan de Boer, Erik P. Verlinde, and Herman L. Verlinde. On the holographic renor-
malization group. JHEP, 08:003, 2000.

[41] Avinash Dhar and Spenta R. Wadia. Noncritical strings, RG flows and holography.
Nucl. Phys., B590:261-272, 2000.

[42] NIST Digital Library of Mathematical Functions. Release 1.0.18 of 2018-03-27.
F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert,
C. W. Clark, B. R. Miller and B. V. Saunders, eds.

[43] Brian P. Dolan. Symplectic geometry and Hamiltonian flow of the renormalization
group equation. Int. J. Mod. Phys., A10:2703-2732, 1995.

[44] Xi Dong. The Gravity Dual of Renyi Entropy. Nature Commun., 7:12472, 2016.

[45] Xi Dong, Daniel Harlow, and Donald Marolf. Flat entanglement spectra in fixed-area
states of quantum gravity. 2018.

[46] Xi Dong, Eva Silverstein, and Gonzalo Torroba. De Sitter Holography and Entan-
glement Entropy. 2018.

[47] William Donnelly and Laurent Freidel. Local subsystems in gauge theory and gravity.
JHEP, 09:102, 2016.

(48] William Donnelly, Elise LePage, Yan-Yan Li, Andre Pereira, and Vasudev Shyam.
Quantum corrections to finite radius holography and holographic entanglement en-
tropy. arXiw:1909.11402[hep-th).

[49] William Donnelly and Vasudev Shyam. Entanglement entropy and 77T deformation.
Phys. Rev. Lett., 121:131602, 2018.

[50] Sergei Dubovsky, Victor Gorbenko, and Guzman Herndndez-Chifflet. 7T partition
function from topological gravity. JHEP, 09:158, 2018.

[51] Sergei Dubovsky, Victor Gorbenko, and Mehrdad Mirbabayi. Asymptotic fragility,
near AdSsy holography and T7T. JHEP, 09:136, 2017.

[52] Roberto Emparan. Black hole entropy as entanglement entropy: A Holographic
derivation. JHEP, 06:012, 2006.

118



[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]
[62]

[63]

[64]

[65]

[66]

Netta Engelhardt. Into the Bulk: A Covariant Approach. Phys. Rev., D95(6):066005,
2017.

Netta Engelhardt and Aron C. Wall. Quantum Extremal Surfaces: Holographic
Entanglement Entropy beyond the Classical Regime. JHEP, 01:073, 2015.

Johanna Erdmenger. A Field theoretical interpretation of the holographic renormal-
ization group. Phys. Rev., D64:085012, 2001.

Szilard Farkas and Emil J. Martinec. Gravity from the Extension of Spatial Diffeo-
morphisms. J. Math. Phys., 52:062501, 2011.

Thomas Faulkner, Aitor Lewkowycz, and Juan Maldacena. Quantum corrections to
holographic entanglement entropy. JHEP, 11:074, 2013.

Thomas Faulkner, Hong Liu, and Mukund Rangamani. Integrating out geometry:
Holographic Wilsonian RG and the membrane paradigm. JHEP, 08:051, 2011.

Jackson R. Fliss, Xueda Wen, Onkar Parrikar, Chang-Tse Hsieh, Bo Han, Taylor L.
Hughes, and Robert G. Leigh. Interface Contributions to Topological Entanglement
in Abelian Chern-Simons Theory. JHEP, 09:056, 2017.

Adrian Franco-Rubio and Guifre Vidal. Entanglement and correlations in the con-
tinuous multi-scale entanglement renormalization ansatz. JHEP, 12:129, 2017.

Laurent Freidel. Reconstructing AdS/CFT. 2008.

Daniel Friedan and Anatoly Konechny. Gradient formula for the beta-function of 2d
quantum field theory. J. Phys., A43:215401, 2010.

Yoshihisa Fujiwara and Jiro Soda. Teichmiiller Motion of (2+1)-Dimensional Gravity
with the Cosmological Constant. Progress of Theoretical Physics, 83(4):733-748, 04
1990.

Dmitri V. Fursaev and Sergey N. Solodukhin. On the description of the Riemannian
geometry in the presence of conical defects. Phys. Rev., D52:2133-2143, 1995.

Marc Geiller. Edge modes and corner ambiguities in 3d Chern—Simons theory and
gravity. Nucl. Phys., B924:312-365, 2017.

G. W. Gibbons, S. W. Hawking, and M. J. Perry. Path Integrals and the Indefinite-
ness of the Gravitational Action. Nucl. Phys., B138:141-150, 1978.

119



[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]
[77]

Gaston Giribet. TT-deformations, AdS/CFT and correlation functions. JHEP,
02:114, 2018.

Amit Giveon, Nissan Itzhaki, and David Kutasov. TT and LST. JHEP, 07:122,
2017.

Amit Giveon, Nissan Itzhaki, and David Kutasov. A solvable irrelevant deformation

of AdS;/CFT,. JHEP, 12:155, 2017.

Henrique Gomes and Vasudev Shyam. Extending the rigidity of general relativity.
J. Math. Phys., 57(11):112503, 2016.

Victor Gorbenko, Eva Silverstein, and Gonzalo Torroba. dS/dS and TT. JHEP,
03:085, 2019.

Eric Gourgoulhon. 341 formalism and bases of numerical relativity. arXiv:gr-
qc/0703035, 2007.

Sebastian Grieninger. Entanglement entropy and 7T deformations beyond antipodal
points from holography. 2019.

S.S. Gubser, I.R. Klebanov, and A.M. Polyakov. Gauge theory correlators from
non-critical string theory. Physics Letters B, 428(1-2):105-114, May 1998.

Monica Guica. An integrable Lorentz-breaking deformation of two-dimensional
CFTs. SciPost Phys., 5(5):048, 2018.

Monica Guica and Ruben Monten. 7T and the mirage of a bulk cutoff. 2019.

Jutho Haegeman, Tobias J. Osborne, Henri Verschelde, and Frank Verstraete. En-
tanglement Renormalization for Quantum Fields in Real Space. Phys. Rev. Lett.,
110(10):100402, 2013.

Jonathan J. Halliwell and James B. Hartle. Integration Contours for the No Boundary
Wave Function of the Universe. Phys. Rev., D41:1815, 1990.

Daniel Harlow. The Ryu-Takayanagi Formula from Quantum Error Correction. Com-
mun. Math. Phys., 354(3):865-912, 2017.

Thomas Hartman, Jorrit Kruthoff, Edgar Shaghoulian, and Amirhossein Tajdini.
Holography at finite cutoff with a T2 deformation. arXiv:1807.11401[hep-th], 2018.

120



[31]

[82]

83]

[84]

[85]

[36]

[87]

[38]

[39]

[90]

[91]

[92]

[93]

[94]

Stephen Hawking, Juan Martin Maldacena, and Andrew Strominger. de Sitter en-
tropy, quantum entanglement and AdS / CFT. JHEP, 05:001, 2001.

Song He, Tokiro Numasawa, Tadashi Takayanagi, and Kento Watanabe. Notes on
Entanglement Entropy in String Theory. JHEP, 05:106, 2015.

Matthew Headrick. Entanglement Renyi entropies in holographic theories. Phys.
Rev., D82:126010, 2010.

Idse Heemskerk and Joseph Polchinski. Holographic and Wilsonian Renormalization
Groups. JHEP, 06:031, 2011.

M. Henningson and K. Skenderis. The Holographic Weyl anomaly. JHEP, 07:023,
1998.

Christopher P. Herzog, Kuo-Wei Huang, and Kristan Jensen. Universal Entanglement
and Boundary Geometry in Conformal Field Theory. JHEP, 01:162, 2016.

Christoph Holzhey, Finn Larsen, and Frank Wilczek. Geometric and renormalized
entropy in conformal field theory. Nucl. Phys., B424:443-467, 1994.

Gerard 't Hooft. The holographic principle. Basics and Highlights in Fundamental
Physics, Apr 2001.

Qi Hu and Guifre Vidal. Spacetime Symmetries and Conformal Data in the
Continuous Multiscale Entanglement Renormalization Ansatz. Phys. Rev. Lett.,
119(1):010603, 2017.

Ling-Yan Hung, Robert C. Myers, Michael Smolkin, and Alexandre Yale. Holographic
Calculations of Renyi Entropy. JHEP, 12:047, 2011.

Luca V. Iliesiu, Silviu S. Pufu, Herman Verlinde, and Yifan Wang. An exact quan-
tization of Jackiw-Teitelboim gravity. 2019.

C. Imbimbo, A. Schwimmer, S. Theisen, and S. Yankielowicz. Diffeomorphisms and
holographic anomalies. Class. Quant. Grav., 17:1129-1138, 2000.

Eyo Eyo Ita, Chopin Soo, and Hoi-Lai Yu. Intrinsic time gravity, heat kernel regu-
larization, and emergence of Einstein’s theory. arXiv:1707.02720[gr-qc/, 2017.

Steven Jackson, Razieh Pourhasan, and Herman Verlinde. Geometric RG Flow.
arXiv:1312.6914 [hep-th], 2013.

121



[95]

[96]

[97]

(98]

[99]

[100]

101]

[102]

[103]

[104]

[105]

[106]
107]

[108]

[109]

Ted Jacobson. A Note on Hartle-Hawking vacua. Phys. Rev., D50:R6031-R6032,
1994.

Yunfeng Jiang. Expectation value of TT operator in curved spacetimes.
arXiv:1903.07561 [hep-th], 2019.

Justin Khoury and Herman L. Verlinde. On open - closed string duality. Adv. Theor.
Math. Phys., 3:1893-1908, 1999.

Elias Kiritsis, Wenliang Li, and Francesco Nitti. Holographic RG flow and the Quan-
tum Effective Action. Fortsch. Phys., 62:389-454, 2014.

Zohar Komargodski. The ¢T" deformation, 2018. Second Simons Bootstrap Collabo-
ration School, Caltech.

Per Kraus, Junyu Liu, and Donald Marolf. Cutoff AdSs versus the 7T deformation.
JHEP, 07:027, 2018.

K. Kuchar. Geometrodynamics Regained: A Lagrangian Approach. Journal of
Mathematical Physics, 15:708-715, 1974.

Sung-Sik Lee. Background independent holographic description : From matrix field
theory to quantum gravity. JHEP, 10:160, 2012.

Sung-Sik Lee. Quantum Renormalization Group and Holography. JHEP, 01:076,
2014.

Robert G. Leigh, Onkar Parrikar, and Alexander B. Weiss. Exact renormalization
group and higher-spin holography. Phys. Rev., D91(2):026002, 2015.

Aitor Lewkowycz and Juan Maldacena. Generalized gravitational entropy. JHEP,
08:090, 2013.

Jennifer Lin. Ryu-Takayanagi Area as an Entanglement Edge Term. 2017.

Hong Liu and Arkady A. Tseytlin. D = 4 superYang-Mills, D = 5 gauged supergrav-
ity, and D = 4 conformal supergravity. Nucl. Phys., B533:88-108, 1998.

J. M. Lizana and M. Perez-Victoria. Wilsonian renormalisation of CFT correlation
functions: Field theory. JHEP, 06:139, 2017.

D. Lovelock. The Einstein tensor and its generalizations. J. Math. Phys., 12:498-501,
1971.

122



[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

Martin Liischer. Properties and uses of the Wilson flow in lattice QCD. JHEP,
08:071, 2010. [Erratum: JHEP03,092(2014)].

Juan Maldacena. International Journal of Theoretical Physics, 38(4):1113-1133,
1999.

Edward A. Mazenc, Vasudev Shyam, and Ronak M. Soni. A TT Deformation for
Curved Spacetimes from 3d Gravity. arXiv:1912.09179[hep-th/, 2019.

Pawel O. Mazur and Emil Mottola. The Gravitational Measure, Solution of the

Conformal Factor Problem and Stability of the Ground State of Quantum Gravity.
Nucl. Phys., B341:187-212, 1990.

Lauren McGough, Mark Mezei, and Herman Verlinde. Moving the CFT into the
bulk with TT. JHEP, 04:010, 2018.

Lauren McGough and Herman Verlinde. Bekenstein-Hawking Entropy as Topological
Entanglement Entropy. JHEP, 11:208, 2013.

Thomas G. Mertens, Henri Verschelde, and Valentin I. Zakharov. Revisiting non-
interacting string partition functions in Rindler space. Phys. Rev., D93(10):104028,
2016.

Thomas G. Mertens, Henri Verschelde, and Valentin I. Zakharov. String Theory
in Polar Coordinates and the Vanishing of the One-Loop Rindler Entropy. JHEP,
08:113, 2016.

Vincent Moncrief. Reduction of the einstein equations in 2+1 dimensions to a hamil-
tonian system over teichmiiller space. Journal of Mathematical Physics, 30(12):2907—
2914, 1989.

Emil Mottola. Functional integration over geometries. J. Math. Phys., 36:2470-2511,
1995.

Chitraang Murdia, Yasunori Nomura, Pratik Rath, and Nico Salzetta. Comments
on holographic entanglement entropy in 77" deformed conformal field theories. Phys.
Rev., D100(2):026011, 2019.

Robert C. Myers, Razieh Pourhasan, and Michael Smolkin. On Spacetime Entangle-
ment. JHEP, 06:013, 2013.

123



[122]

[123]

[124]
[125]

[126]

[127)

[128]

[129]

[130]

131]

[132]

[133]

[134]

[135]

136

Robert C. Myers and Aninda Sinha. Holographic c-theorems in arbitrary dimensions.
JHEP, 01:125, 2011.

Yu Nakayama. a — ¢ test of holography versus quantum renormalization group. Mod.
Phys. Lett., A29(29):1450158, 2014.

Yu Nakayama. Scale invariance vs conformal invariance. Phys. Rept., 569:1-93, 2015.

Frank William John Olver. Uniform asymptotic expansions for weber parabolic
cylinder functions of large order. J. Res. Natl. Bur. Stand. B, 63:131-169, 1959.

H. Osborn. Weyl consistency conditions and a local renormalization group equation
for general renormalizable field theories. Nucl. Phys., B363:486-526, 1991.

H. Osborn and G. M. Shore. Correlation functions of the energy momentum tensor
on spaces of constant curvature. Nucl. Phys., B571:287-357, 2000.

I. Papadimitriou. Holographic renormalization as a canonical transformation. J.
High Energ. Phys. (2010), 2010: 14:708-715, 2010.

loannis Papadimitriou. Holographic Renormalization of general dilaton-axion grav-
ity. JHEP, 08:119, 2011.

loannis Papadimitriou. Lectures on Holographic Renormalization. Springer Proc.
Phys., 176:131-181, 2016.

loannis Papadimitriou and Kostas Skenderis. AdS / CFT correspondence and geom-
etry. IRMA Lect. Math. Theor. Phys., 8:73-101, 2005.

Andrea Prudenziati. A perturbative expansion for entanglement entropy in string
theory. arXiv:1805.09311[hep-th).

Lisa Randall and Raman Sundrum. An Alternative to compactification. Phys. Rewv.
Lett., 83:4690-4693, 1999.

T. Regge and C. Teitelboim. Improved hamiltonian for general relativity. Physics
Letters B, 53(1):101 — 105, 1974.

Tullio Regge and Claudio Teitelboim. Role of surface integrals in the hamiltonian
formulation of general relativity. Annals of Physics, 88(1):286 — 318, 1974.

V. A. Rubakov and O. Yu. Shvedov. A Negative mode about Euclidean wormhole.
Phys. Lett., B383:258-261, 1996.

124



[137]

138

[139]

[140]

141]

142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

Shinsei Ryu and Tadashi Takayanagi. Holographic derivation of entanglement en-
tropy from AdS/CFT. Phys. Rev. Lett., 96:181602, 2006.

K. Kuchar S.A. Hojman and C. Teitelboim. Geometrodynamics Regained. Annals
Phys., 96:88-135, 1976.

Vasudev Shyam. Background independent holographic dual to TT deformed CFT
with large central charge in 2 dimensions. JHEP, 10:108, 2017.

Vasudev Shyam. General Covariance from the Quantum Renormalization Group.

Phys. Rev., D95(6):066003, 2017.

Vasudev Shyam. Connecting holographic Wess-Zumino consistency condition to the
holographic anomaly. JHEP, 03:171, 2018.

Vasudev Shyam. Finite Cutoff AdS; Holography and the Generalized Gradient Flow.
JHEP, 12:086, 2018.

F. A. Smirnov and A. B. Zamolodchikov. On space of integrable quantum field
theories. Nucl. Phys., B915:363-383, 2017.

Mark Srednicki. Entropy and area. Phys. Rev. Lett., 71:666—-669, 1993.

L. Susskind and J. Lindesay. An introduction to black holes, information and the
string theory revolution: The holographic universe. 2005.

Leonard Susskind. The world as a hologram. Journal of Mathematical Physics,
36(11):6377-6396, Nov 1995.

Marika Taylor. TT deformations in general dimensions. arXiv:1805.10287[hep-th],
2018.

Claudio Teitelboim. How commutators of constraints reflect the space-time structure.

Annals Phys., 79:542-557, 1973.

Nico M Temme. Numerical and asymptotic aspects of parabolic cylinder functions.
Journal of computational and applied mathematics, 121(1-2):221-246, 2000.

Arkady A. Tseytlin. On sigma model RG flow, 'central charge’ action and Perelman’s
entropy. Phys. Rev., D75:064024, 2007.

125



[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

Xueda Wen, Shunji Matsuura, and Shinsei Ryu. Edge theory approach to topological
entanglement entropy, mutual information and entanglement negativity in Chern-

Simons theories. Phys. Rev., B93(24):245140, 2016.

Wolfgang Wieland. Fock representation of gravitational boundary modes and the
discreteness of the area spectrum. Annales Henri Poincare, 18(11):3695-3717, 2017.

Edward Witten. (2+1)-Dimensional Gravity as an Exactly Soluble System. Nucl.
Phys., B311:46, 1988.

Edward Witten. Anti de sitter space and holography, 1998.

Edward Witten. A Note On Boundary Conditions In Euclidean Gravity.
arXiv:1805.11559/hep-th/, 2018.

Gabriel Wong. A note on entanglement edge modes in Chern Simons theory. JHEP,
08:020, 2018.

Alexander B. Zamolodchikov. Expectation value of composite field T anti-T in two-
dimensional quantum field theory. arXiv:hep-th/0401146, 2004.

Mengqi Zhu. TT deformations of quantum field theory. PhD thesis, SISSA, Via
Bonomea 265 - 34136 Trieste, Italy, 2018.

126



APPENDICES

127



Appendix A

Details about the D + 1 split

A.1 Gauss and Codazzi relations

In this section, we will provide some useful formulae for the D + 1 decomposition of the
Riemann curvature tensor and its various contractions. These will be needed for the
Hamiltonian formulation of General Relativity. For more detailed derivations of these
formulae, see for instance [72]. First, we will need the orthogonal projector:

Vg = 52 - nAnB7 (A1>

which will allow us to project tensors in d = D+ 1 dimensions to its tangential components
along the D dimensional slices:
AyAn  _ A1 B Ay BprE1-Ep,
T\gy b, = VB0 VR  YELVE TR, (A.2)
Applying this to vectors, we see a very straightforward relationship:

vﬁl = ypuB = v — nA(vPnp). (A.3)

This straightforwardly generalizes to covariant derivatives of tensors as well:
Ay-Ap A, B An B J By By,
VIIKTHzlal---Bn = Ve, Vm Ve VE Ve VTR R (A4)

Then, we also note that the extrinsic curvature tensor can be defined in relation to the

normal:
Vpna = Kap + aang, (A.5)
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where a? = n“VenA, and so
(Vpna) = Kap. (A.6)

This allows us to write the covariant derivatives of vector fields for instance as:
Vavg = VHAUHB + KAcUCnB (A?)

With these relations, we can obtain the following projection formula for the Riemann
tensor, noting that it can be obtained from the commutator between covariant derivatives
and applying the projection relations:

737§787§RgGH = RﬁlBCD - KgKBD + KSKBC- (A.8)

This is known as the Gauss relation. Form this relation, we can obtain a contracted Gauss
relation:
VA5 Rer — vaen®y5n° Ripg = Rjap — KKap + Kac K, (A.9)

which can further be contracted till we obtain
R—2Rapn”n® = R — K> + K"PK4p. (A.10)
Further, we can look at other contractions between the Riemann tensor and the normal

vectors:
VSHBV{EW%REU = VeKg — VeKf. (A.11)

This is known as the Codazzi relation.

A.2 D + 1 split of the Action and the Hamiltonian
formalism

Now we consider the decomposition of the Einstein—Hilbert action

S:/M%@mm. (A12)
Then, using the decompositions described above, and the relation

V9 =Na; (A.13)
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where, due to the lack of indices, the notation of the parallel symbol is used to denote the
determinant of the metric induced on the hypersurface. Then, noting that in fact, the con-
tracted Gauss relation written solely in terms of qunatities tangential to the hypersurface
reads

1
R=R|— K+ K"K,, + L,K + ~ Ve VN, (A.14)

and that the total derivatives under the integral can be dropped (here we assume that
there are no boundaries of the spacetime region under consideration), the action can now
be written in D + 1 split form:

S = /dr/deN\/ﬁ (R+ K* — K;;KV). (A.15)

Here, the subscript || has been dropped since all the quantities are understood to be
tangential to the hypersurfaces. From here, the Legendre transform can be performed.

The relationship between the extrinsic curvature and the ‘velocity’ with respect to the
metric reads

K;w = Eng;w = g;u/ - 'Cfg;w; (A16)

where " denotes the shift vector. Then, we define the momentum conjugate to the metric
induced on the hypersurface

oL 1
T = D = N(K/w — Gu ). (A.17)

Then, the Hamiltonian can be defined through the Legendre transform
Htot = ﬂ-uyguu - La (A18)

This gives us the following expressions:

Hyy = — / dPx\/gNH + ¢"H,,, (A.19)
where: o
H(g,7) = -2 xtvnb? —  [gR A.20
(g, 7) N V9 (A.20)
H,(g,m) = =2V,m. (A.21)
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A.2.1 241 Decomposition in First-Order Formalism

This section of the appendix summarises an application of the ideas in the rest of the
appendix to the first-order formalism in 2+1 spacetime dimensions.

We can write the 3d metric in terms of the vielbeins via the standard relation
gap(x) = 6, E4(x) Ep(x) (A.22)
The spin connection is defined as
dE'+w'; NE? =0 (A.23)

A peculiarity of 3d is that we may define a one indexed spin connection using the Levi-
Civita symbol w® = €%w ;. In terms of these variables, the Einstein Hilbert action for a
3d spacetime with negative cosmological constant reads (after a rescaling of the vielbeins):

/M E;NRw)' — éeijkE’ ANE'ANEF, R =dw+ 5”kwj Nwr, (A.24)
3

where Gy is Newton’s constant and [ is the AdS; radius of curvature.

Consider now a foliation of the 3d geometry by 2d submanifolds, M3 = > x R. Using
a locally adapted coordinate system with normal direction labeled by a coordinate r and
coordinates x* on the 2d slice, we decompose the vielbeins and spin connections as:

E° = EYdr + n,da"
w? = Wldr + w,da"
E* = Eldr + fdx"
w® = wydr + mdz". (A.25)

In terms of these, the action becomes

S = 167TZGN/dT/E n/\w—kfa/\?‘ra—kEno{dw—k%%b(ﬁa/\ﬂb—f‘l/\fb)}
+Ef{d7ra—€ab(w/\7rb—n/\fb)}
—|—w9 {dn — T A fb}
+wi {df* +ew (WA fF—m"An)}. (A.26)

where the dot denotes the partial derivative with respect to the radial coordinate. We
may view this as a Hamiltonian system with canonically conjugate variables {n,, "w,}

131



and { fﬁ,e“l’wa,y}. agree with this def of momentum here? because of the wedge The
radial components of the vielbeins and of 3d spin connection serve as Lagrange multipliers
enforcing constraints. From this form of the action, we see the Hamiltonian consists solely
of these constraints C,,, which we label as

1
H:dw+§€ab (7T“/\7rb—f“/\fb)
P, =dr, — cap(w AT —n A fP)
G =dn —eum® A f°
Go=dfs +ea(wA fP+nAT). (A.27)

Note these constraints C, are local and hold pointwise on ¥. The H constraint encodes
invariance under re-foliations. Its quantization leads to the Wheeler-de-Witt equation.
The two P, constraints correspond to diffeomorphisms tangential to the 2d surface while
G generates local Lorentz rotations.

As can be seen from (A.25), the induced metric on ¥ is

dsﬁ = (5abfl‘jf£ + nun,) de*ds” (A.28)

. To make contact with the second-order formalism, we can use the G, constraints to set
the redundant variable n, to zero; this amounts to orienting the local tangent spaces to
agree with the foliation. Following [(1], we call this ‘radial’ gauge. In this gauge the G,
constraints just become the torsionlessness constraint setting w to be a function of the
vielbeins.
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Appendix B

Heat Kernel Calculation

B.1 Generalities

The heat kernel K (x,y;e€), satisfies the property

lim K (z, y; €) = 6(z,y).

This property should be thought of as an initial condition for the heat equation

This object admits an expansion in small e:

exp (252 — Bl (o — y)i(a — y))
K(v,y;¢) =

(47e)2

car(g:€) — Can(g;€) + o<e3>},

where:

w9 = (€ §) Aw),

2

1 1\ s 1 1\,
w08 =5 (6 3) VR@ 45 (6 §) R+
These are known as the Seeley—de Witt coefficients.

133

1
60

R"™ R, (x)

{1+

- LRQ(x).
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B.2 Generating R in the flow equation

The specific € scaling of the coefficients in the expression (3.100) are chosen such that in
the limit € — 0, the following terms vanish!

lim C[g] = 0 = lim 0C1g)

e—0 e—0 (59#,/

(B.6)

The second functional derivative however will remain finite, provided we smear it against
the heat kernel. This means that if we distribute the limit, we have

. §(eClalz
lime o [ APy K (2, 4, €) G upo (€) Hos 5t (ﬁl(y) (@MW[)QD) (B.7)
. 6Z
= limeo | dPYK (2,9, €) G (7) 7y sty (v ot ) (B-8)
. 6C
+ (hme—>0 f dDyK(:L‘7 Y, E)G/Ll/pa (ZL’) \/gl(x) 59‘“{(3;) (\/gl(y) 5gpg[??]4)>> Z[g] (Bg)

We then take a closer look at the term on the second line of the RHS in the expression
above

<lime_>0deyK(a:,y,e)Gqua(:c)\[l(m)égui( < 1 agli[g )) (B.10)

— _aplime_sg ((Dggi;f’)) R (w,ay€) + 22 (v@) +§R(w)> K(z,; e)) Z[gl(B.11)

Here
(B.12)

- 3D3 —4D? — 9D + 14
B 2D(D —1)
Then, the heat equation implies that we can write
D

lim,_,q g ((D((gi)s)) 6%471.7((1‘, z;€) + 25 (V?x) + §R($)) K(x,x; e)) (B.13)

D _4 D
= ap lim,_, ((D(D2_3)> € K(x,z;€) + 265 0. K (x,x; e)> = agR(z). (B.14)

(D-1) 4

!'Note that the order of limits here is to first take ¢ — 0 with N fixed and then taking N — oo at the
end.
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