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Abstract

Network Virtualization (NV) is perceived as an enabling technology for the future Internet
and the 5th Generation (5G) of mobile networks. It is becoming increasingly difficult to
keep up with emerging applications’ Quality of Service (QoS) requirements in an ossified
Internet. NV addresses the current Internet’s ossification problem by allowing the co-
existence of multiple Virtual Networks (VNs), each customized to a specific purpose on the
shared Internet. NV also facilitates a new business model, namely, Network-as-a-Service
(NaaS), which provides a separation between applications and services, and the networks
supporting them. 5G mobile network operators have adopted the NaaS model to partition
their physical network resources into multiple VNs (also called network slices) and lease
them to service providers. Service providers use the leased VNs to offer customized services
satisfying specific QoS requirements without any investment in deploying and managing a
physical network infrastructure.

The benefits of NV come at additional resource management challenges. A fundamental
problem in NV is to efficiently map the virtual nodes and virtual links of a VN to physical
nodes and paths, respectively, known as the Virtual Network Embedding (VNE) problem.
A VNE that can survive physical resource failures is known as the survivable VNE (SVNE)
problem, and has received significant attention recently. In this thesis, we address variants
of the SVNE problem with different bandwidth and reliability requirements for transport
networks. Specifically, the thesis includes four main contributions. First, a connectivity-
aware VNE approach that ensures VN connectivity without bandwidth guarantee in the
face of multiple link failures. Second, a joint spare capacity allocation and VNE scheme
that provides bandwidth guarantee against link failures by augmenting VNs with neces-
sary spare capacity. Third, a generalized recovery mechanism to re-embed the VNs that
are impacted by a physical node failure. Fourth, a reliable VNE scheme with dedicated
protection that allows tuning of available bandwidth of a VN during a physical link failure.
We show the effectiveness of the proposed SVNE schemes through extensive simulations.
We believe that the thesis can set the stage for further research specially in the area of
automated failure management for next generation networks.
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Chapter 1

Introduction

Network Virtualization (NV) is an enabling technology for the future Internet and the
5th Generation (5G) of mobile networks [45, 10]. The current Internet suffers from “os-
sification” as the Internet’s size and rigidity make it very hard to adopt new networking
technologies [162]. For example, transition from Internet Protocol version 4 (IPv4) to IPv6
has started more than a decade ago, however, IPv6 adoption rate is still significantly low as
reported by major service providers (e.g., less than 30% of Google users adopted IPv6 [2]).
It is becoming increasingly cumbersome to keep up with emerging applications’ Quality
of Service (QoS) requirements in terms of bandwidth, reliability, throughput, and latency
in an ossified Internet. NV solves the ossification problem by allowing the co-existence of
multiple virtual networks, each of which is customized to a specific purpose (e.g., a virtual
network with low-power sensors using IPv4), on the shared Internet.

5G networks are on the horizon with the promise of revolutionizing the communication
landscape and our way of living. 5G will provide the communication infrastructure to
realize emerging technologies, including smart city, industry automation, e-health, intelli-
gent transportation, among others [57]. These technologies will enable a wide variety of
services and applications with diverse QoS requirements in terms of bandwidth, latency,
jitter, reliability, energy efficiency, and mobility [116]. For instance, telehealth services
need the highest level of reliability with a bandwidth guarantee, whereas real-time mon-
itoring and control services require data to be delivered satisfying a stringent end-to-end
(E2E) latency budget. Satisfying diverse requirements imposed by various applications
and services poses a challenge to 5G network operators. NV has been proposed to cope
with this challenge [33]. 5G mobile network operators will use NV technologies to partition
their physical network resources into multiple virtual networks (also called network slices)
tailored to specific QoS requirements [121].
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NV also facilitates a new business model, namely, Network-as-a-Service (NaaS), which
provides a separation between applications and services, and the networks supporting them
[33]. Infrastructure Providers (InPs) and mobile network operators have adopted the NaaS
model to deploy customized virtual networks (network slices) and lease them to Service
Providers (SPs) [121]. Service providers use the leased virtual networks to offer services
with diverse QoS requirements (e.g., enhanced mobile broadband, ultra-reliable and low
latency communication, and massive machine connectivity) without any investment in
deploying and managing a physical infrastructure.

The benefits of NV comes with additional resource management challenges for infras-
tructure providers as they have to keep virtual networks up and running throughout their
life-spans. A virtual network (VN), irrespective of being a slice of access, core, or transport
network, usually consists of virtual nodes (e.g., virtual machines and virtual switches) and
virtual links representing paths in the physical network, forming a virtual topology. For in-
stance, a virtual network in the Internet Protocol (IP) layer comprises of routers/switches
and overlay IP links connecting them, whereas a virtual network in the optical layer con-
nects optical transceivers through a lightpath (i.e., a circuit of fiber links) [90]. In 5G, a
network slice is an end-to-end virtual network that spans multiple technological and ad-
ministrative network segments (e.g., wireless radio, access/core transport networks, edge,
and central Data Centers (DCs)). A fundamental problem in NV is to allocate physical
resources to virtual networks, which is known as the Virtual Network Embedding (VNE)
problem [59]. The VNE problem respectively maps virtual nodes and links of a virtual
network to physical nodes and paths (a sequence of links) in a physical network, while
satisfying resource budgets and achieving specific objectives such as minimizing resource
usage [46].

Virtual networks cannot function properly in the face of network device or link failures
that are inevitable in everyday operations [3, 65, 117]. Such failures, if not treated properly,
may disrupt the services hosted by virtual networks, incurring high penalties in terms of
revenue losses and SLA violations [67]. For example, every minute of outage can cost a
network provider up to USD 5,600, leading to well over USD 300K per hour [1]. While
accepting the possibility of failures, infrastructure providers have to ensure different levels
of availability (e.g., 99.999%, 99.9999%, and so on) for their virtual networks as part
of SLAs [72]. Survivability mechanisms can greatly reduce the impact of failures, while
minimizing downtime and upholding the reputation of a network provider [78]. In this
context, a VN embedding that can survive substrate failures is known as the survivable
VNE (SVNE) [132], and has received significant attention from the research community.

This dissertation addresses variants of the SVNE problem with bandwidth and reliabil-
ity requirements for transport networks that provide data transmission services over large
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geographical (metro, regional, or national) areas. The considered transport technologies
are: Transport Software Defined Networks (T-SDNs) [13] and Elastic Optical Networks
(EONs) [28], expected to meet the demanding requirements of 5G networks. In these net-
works, failures (e.g., device outage or fiber-cut) can result in significant amount of data
loss [117, 65]. Existing SVNE strategies advocate for keeping failure management tasks
transparent to the service provider and support a limited set of QoS requirements [78].
In contrast, this dissertation argues for delegating failure management responsibilities to a
virtual network operator. Offloading failure management to a virtual network has two ben-
efits: i) enabling a variety of QoS requirements through different survivability models; ii)
offering more opportunities to minimize resource consumption. This dissertation presents
four different survivability models to enable failure management at the virtual network
layer as opposed to the physical network layer. Specifically, this dissertation makes the
following contributions:

� Guaranteeing virtual network connectivity against multiple link failures in T-SDNs.

� Jointly optimizing spare capacity allocation and survivable virtual network embed-
ding to guarantee bandwidth in the presence of multiple link failures in T-SDNs.

� Re-embedding a batch of virtual networks to recover from a node failure T-SDNs.

� Reliable slicing of EONs to ensure fast fail-over of virtual networks against a link
failure in EONs.

A more detailed overview of these contributions is provided in the remainder of this chapter.

1.1 Connectivity-aware Virtual Network Embedding

A critical challenge in SVNE is to ensure Connectivty-aware Virtual Network Embedding
(CoViNE ) [141, 142]. The goal of CoViNE is to find a VN embedding that remains
connected (without any bandwidth guarantee) in the presence of multiple substrate link
failures in T-SDNs. Guaranteeing connectivity in the VN embedding will incur less resource
overhead and reduced cost of leasing resources for a VN, however, providing a weaker form
of survivability. This survivability model is well-suited for VNs that carry best-effort traffic
(e.g., file transfer and email communication) and can tolerate disruption during failure
restoration. Upon failures, the affected VN traffic can be rerouted to alternate paths
following any predefined policy, e.g., customer priority. CoViNE ’s survivability model also
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allows to delegate failure handling responsibility to an SP, which can then use a Software
Defined Network (SDN) controller to employ their own network design and restoration
techniques instead of simply relying on the InP [154, 91, 74]. Our specific contributions in
this work are:

� CoViNE, an alternate survivability model for VNE, which requires significantly less
backup resources than traditional survivability approaches in the SVNE literature.

� Three novel solutions to CoViNE to guarantee VN connectivity under multiple sub-
strate link failures. We formulatedCoViNE as an Integer Linear Program (ILP)
for computing the optimal solution. To address the computational complexity of
the ILP, we devise two heuristic algorithms by decomposing CoViNE into multiple
sub-problems and solving them sequentially.

We performed extensive simulations to evaluate the optimality and scalability of the
proposed solutions under single and double substrate link failures. We restrict our simula-
tions to one and two link failures since the probability of more than two simultaneous link
failures is extremely low [117, 65]. We also compare our solutions with a VNE approach
that does not guarantee VN connectivity upon failures. Through our simulation study, we
show that virtual network connectivity is ensured against single link failures with about
25% additional resources, compared to a VNE that does not guarantee connectivity.

1.2 Joint Spare Capacity Allocation and Virtual Net-

work Embedding

Virtual networks for augmented/virtual reality or telehealth applications may need band-
width guarantee even in the presence of failures in T-SDNs. One way of providing such
guarantee is to allocate spare bandwidth on virtual links (as opposed to doing so on the
physical network) so that all the traffic impacted by a failure can be rerouted within the
virtual network [144, 145]. With this type of survivability, InPs can offload failure man-
agement tasks to SPs by augmenting VNs with sufficient spare capacity for backup and
embedding the VNs in a way that primary and backup VN resources are not affected by
the same substrate resource failure. When a substrate resource fails, it is the SP’s re-
sponsibility to reroute the affected traffic to the pre-allocated backup resources within the
VN.
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Independently addressing spare bandwidth allocation and VNE may lead to sub-optimal
solutions. In this work, we study the joint optimization problem of computing spare
bandwidth allocation and VNE with the objective of guaranteeing VN survivability under
multiple substrate link failures and minimizing resource usage in the SN. We start with
single link failure scenario and then extend the solution to survive multiple link failures.
Specifically, we make the following contributions:

� We formulate a joint optimization model using a Quadratic Integer Program (QIP)
to optimally solve spare capacity allocation and survivable VN embedding simul-
taneously. We transform the QIP into an Integer Linear Program (ILP) without
sacrificing its optimality. We provide two more ILP formulations for solving two
extreme cases of spare capacity sharing. We present a mathematical analysis that
dictates how the topological properties of the SN affect the level of spare capacity
sharing.

� The ILP formulations for the joint optimization problem are not scalable to large
problem instances. Hence, we devise an efficient heuristic algorithm to tackle the
computational complexity of the ILP-based solutions. The algorithm leverages a
novel spare bandwidth sharing model to estimate the spare capacity and computes
embedding based on the estimated spare capacity. In the final step, the algorithm
re-optimizes spare capacity allocation based on the final embedding information.

We perform simulations to evaluate our solutions for single and double link failures.
We also perform a quantitative comparison between the SVNE with VN level protection
and the traditional SVNE with physical network level protection. Our evaluation shows
that our solution decreases resource usage by 30% compared to traditional SVNE solutions
that rely on the physical network to perform failure management.

1.3 Recovery from Node Failure in Virtual Network

Embedding

In this work, we study the problem of Recovering from a Node failure in Virtual Network
Embedding (ReNoVatE ) [143, 140]. ReNoVatE takes a batch of VN failures resulting from
a single substrate node failure, and produces alternate embeddings for the failed virtual
nodes and links. The impact of a substrate node failure is more drastic than that of a
link failure since a node failure affects embedding of all the virtual nodes and links of all
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VNs passing through the failed node. Preallocating backup resources for multiple failures
resulting from a substrate node failure can be extremely expensive [82, 177]. Instead, an
SP may prefer to reactively re-embed the failed part of its VN to avoid the huge cost
of preallocated backup resources in a failure-prone SN. Such reactive approaches can be
adopted by a virtual network whose traffic can tolerate non-negligible service disruptions
(e.g., Internet of Things (IoT) traffic for non-realtime services).

To recover from a substrate node failure, the embedding of all affected virtual nodes
and links of all impacted VNs should be re-embedded on non-failed components of the
SN. The combinatorial number of possibilities of alternate embeddings of the failed virtual
nodes and links of the VNs makes the task of finding the most efficient recovery both non-
trivial and intractable. Furthermore, any recovery approach should not cause, ideally, any
service disruption for the unaffected parts of the VNs. We take into account these issues
to design a generalized recovery approach that can achieve various objectives such as fair
treatment on the failed VNs, partial treatment based on priority, and so on. Our specific
contributions in this work are:

� We propose a generalized recovery approach that allows partial recovery of an affected
VN, while adhering to SLA requirements. To demonstrate the versatility of our
approach, we investigate two different recovery models. The first one is a fair recovery
model (FRM) that maximizes the number of recovered virtual links across all the
affected VNs, while minimizing total bandwidth required for recovery. The second
model is a priority-based recovery model (PRM) that seeks to prioritize the recovery
of affected VNs based on some predefined requirements and minimize total bandwidth
needed for recovery.

� We formulate ReNoVatE as an ILP based optimization model. Since the optimization
model cannot scale to large instances of the problem, we devise an efficient heuristic
algorithm to find satisfactory solutions within prescribed time limits.

We evaluate our solutions through extensive simulations and compare them with the
most related state-of-the-art proposal in the literature [25]. Our evaluation results demon-
strate that our heuristic algorithm performs close to the ILP based optimization model
and outperforms the state-of-the-art solution, in terms of i) number of recovered virtual
links, ii) cost of recovery, and iii) execution time.
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1.4 Reliable Slicing of Elastic Optical Networks

The SVNE problem in EONs is compounded by a number of tunable transmission param-
eters (e.g., modulation format, baud rate, and error correction codes) and a larger solution
space for spectrum allocation. Compared to T-SDNs, EONs have additional constraints
imposed by the physical characteristics of optical devices and the properties of light. Fur-
thermore, lightpaths in EONs carry huge volumes of data, and hence, even a short-lived
outage can cause a significant traffic loss for virtual networks, necessitating a fast fail-
over (e.g., within 50 milliseconds [133]) capability. To meet this requirement, dedicated
protection is the appropriate survivability option, although it incurs a 100% resource over-
head that remains unused most of the time. To minimize resource footprint of dedicated
protection, we leverage two techniques: bandwidth squeezing rate (BSR) that allows a
virtual network operator to tune the amount of available bandwidth in case of failures and
multi-path provisioning with demand splitting [148, 146]. These two techniques allow to
significantly reduce spectrum usage for providing dedicated protection, especially in the
case of fully-flexible EONs. Specifically, we make the following contributions:

� We address the SVNE problem over EONs by capturing the full flexibility of an EON
in terms of finer-grained spectrum allocation, adapting modulation format and For-
ward Error Correction (FEC) overhead for rightsize resource allocation. To minimize
resource overhead of dedicated protection based SVNE, we leverage BSR along with
multi-path provisioning using demand splitting.

� We develop a mathematical model to optimally solve SVNE on EON by jointly con-
sidering all the flexible transmission parameters, while minimizing the total spectrum
usage. To the best of our knowledge, this is the first optimization model capturing
flexibility in all the transmission parameters of an EON. Given the NP-hardness of
the optimal solution, we propose a heuristic algorithm to solve larger instances of the
problem.

We perform simulations using realistic network topologies, which provide valuable in-
sight into how different levels of BSR and path diversity in the substrate EON’s can impact
the extent of backup resource savings for dedicated protection. We also analyze the steady
state behavior of our heuristic solution using a discrete event simulator. Our evaluation
shows that by using multi-path provisioning, it is possible to guarantee up to 40% of the
requested bandwidth of a VN during failure (i.e., BSR ≤ 40%) while using as low as 10%
additional spectrum resources. Consequently, VN blocking ratio for BSR ≤ 40% remains
very similar to that of the case with no backup.
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1.5 Thesis Organization

This dissertation proceeds as follows to detail our contributions. In Chapter 2, we present
CoViNE. We discuss the work on joint spare capacity allocation and virtual network em-
bedding in Chapter 3. Next, we present ReNoVatE and reliable slicing of elastic optical
networks in Chapter 4 and Chapter 5, respectively. Finally, concluding remarks are pre-
sented in Chapter 6 including a summary of the contributions of this thesis and a discussion
of potential future research directions.
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Chapter 2

Connectivity-aware Virtual Network
Embedding

NV operates in a dynamic environment where substrate resources may fail and multiple
concurrent failures is not a rare event [85]. Surviving failures is of paramount importance,
since a single failure in an SN may result in multiple failures in the embedded VNs. Find-
ing a VN embedding that can survive failures in an SN is known as the Survivable Virtual
Network Embedding (SVNE) problem [131]. The majority of the works on SVNE focus
on link failures, as they occur more frequently than node failures [117]. SVNE approaches,
in general, allocate redundant resources for each (or selected) virtual link(s) and node(s),
either pro-actively while computing the embedding or reactively after a failure occurs [78].
Traditionally, proactive SVNE approaches focus on guaranteeing virtual link demand in
the presence of failure(s). These approaches assume that InPs handle substrate failures
by provisioning redundant backup resources to guarantee virtual links’ bandwidth in the
event of failures, which in turn incurs additional cost to SPs. Backup resource require-
ment can increase substantially in a multiple (e.g., k) link failure scenario because of the
combinatorial number of k link failure possibilities.

In this chapter, we focus on a different form of survivability than traditional proactive
SVNE, namely Connectivty-aware Virtual Network Embedding (CoViNE ). Our goal is
to find a VN embedding that remains connected (without any bandwidth guarantee) in
the presence of multiple substrate link failures. Guaranteeing connectivity in the VN
embedding will incur less resource overhead and reduced cost of leasing resources for a VN,
however, providing a weaker form of survivability. This survivability model is well-suited
for VNs that carry best-effort traffic and can tolerate disruption during failure restoration.
Upon failures, the affected VN traffic can be rerouted to alternate paths following any
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predefined policy, e.g., customer priority. This survivability model also allows to delegate
failure handling responsibility to an SP, which can then use a Software Defined Network
(SDN) controller to employ their own network design and restoration techniques instead
of simply relying on the InP [154, 91, 74].

Although our focus is NV, CoViNE is equally applicable to IP-over-Wavelength-division
multiplexing (WDM) networks. The problem of ensuring IP network connectivity in the
presence of underlying WDM link failure(s) is known as link survivable mapping. Two
variations of the link survivability problem have been studied in IP-over-WDM litera-
ture [109]: i) weakly link survivable mapping (WLSM) ensures only IP-layer connectivity;
ii) strongly link survivable mapping guarantees both connectivity and bandwidth of the
failed IP link(s) against WDM link failures. However, a major difference between VNE
and mapping in IP-over-WDM networks is that IP routers are attached to fixed locations
in the latter, whereas the placement of virtual nodes is an outcome of VNE algorithm in
the former. Therefore, solutions for IP-over-WDM networks such as [104, 156, 182] cannot
be directly applied to CoViNE. As a matter of fact, WLSM problem is merely a special
case of CoViNE.

Solving CoViNE under k substrate link failures requires satisfying the following nec-
essary and sufficient condition [183]: at least one link in each edge-cut of a VN must
remain connected after any k substrate link failures. Given that there can be an expo-
nential number of edge-cuts in a VN and also the combinatorial number of k substrate
link failure possibilities, the aforementioned condition becomes impractical to be satisfied
even for small substrate networks [183]. Alternatively, the same connectivity guarantee
of a VN under k substrate link failures can be achieved by the following two necessary
conditions: i) the VN must be k + 1 edge connected, and ii) at least k + 1 edge-disjoint
paths must exist between every pair of virtual nodes in the embedding of the VN on the
SN. The first condition can be satisfied by augmenting the VN with additional virtual links
if needed [156, 103]. However, the number of augmented virtual links should be minimized
since these augmented links consume substrate resources during VNE. A naive way to
satisfy the second condition is to embed all the virtual links of a k+ 1 edge connected VN
on disjoint paths in the SN at the cost of increased resource requirements for embedding
virtual links [97]. However, as we demonstrate in Section 2.2.4, not all virtual links need
to be embedded on disjoint substrate paths to satisfy the second condition. Therefore,
a sought-after solution to CoViNE should simultaneously optimize the number of aug-
mented virtual links and the disjointness constraints in order to minimize the cost of VN
embedding.

Optimally solving CoViNE for k substrate link failures is intractable since it entails to
jointly optimize VN augmentation, disjointness constraints computation, and embedding
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of the augmented VN while satisfying the disjointness and capacity constraints. As each of
these problems, when solved independently, is either NP-complete [168] or NP-Hard [97,
185], addressing them simultaneously exacerbates the complexity of CoViNE. This chal-
lenging problem has not been well studied in the NV literature, although WLSM problem (a
special case of CoViNE ) has received significant attention in the IP-over-WDM literature.
The majority of the solutions to WLSM have overlooked the critical step of augmentation,
assuming that input VNs have the necessary edge-connectivity [120, 158, 159, 183], which
is not always the case. In addition, a significant body of existing literature on WLSM focus
on single substrate link failure [182, 120, 158]. Solutions for multiple substrate link failures
either fall short in dealing with arbitrary VN topologies [103], or consider only a special
case, i.e., Shared Risk Link Group (SRLG) failures [159, 183]. The authors in [156] address
a WLSM problem that considers both augmentation and multiple link failures. However,
the heuristic solution in [156] requires a large number of virtual links to be embedded
disjointly, possibly imposing an unsatisfiable number of disjointness constraints. To over-
come these limitations, in this chapter, we present novel solutions to CoViNE that can
embed an arbitrary VN topology on an SN, while guaranteeing VN connectivity against
k substrate link failures and minimizing substrate resource consumption. Our solutions, if
needed, augment a VN with minimal number of virtual links and preserve the topological
structure of the VN to remain transparent to the SP operating the VN. Specifically, we
make the following contributions, which build on our earlier study presented in [141].

First, we present CoViNE, an alternate survivability model for VNE, which embeds a
VN on an SN subject to the constraint that the VN remains connected under k substrate
link failures, i.e., at least one working path exists between every pair of virtual nodes
when up to k substrate links fail. While doing so, CoViNE minimizes the bandwidth
provisioning cost in the SN. The survivability model proposed by CoViNE significantly
reduces backup resource requirement compared to traditional survivability approaches in
the SVNE literature.

Second, we propose three novel solutions to CoViNE :

� CoViNE-opt : An Integer Linear Program (ILP) formulation that jointly optimizes
VN augmentation, disjointness constraints computation, and embedding of the aug-
mented VN to optimally solve CoViNE. CoViNE-opt has an exponential number of
variables and constraints that severely limits its scalability. To scale to larger prob-
lem instances, we decompose CoViNE into three sub-problems: (i) augmenting the
VN with zero or more virtual links to make it k + 1-edge connected; (ii) computing
the set of virtual links to be embedded disjointly for ensuring connectivity against
k substrate link failures; and (iii) embedding the VN while satisfying the aforemen-
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tioned disjointness constraints. The following two approaches (i.e., CoViNE-ILP and
CoViNE-fast) sequentially solve all the sub-problems of CoViNE in a more scalable
manner, however, without guaranteeing an optimal solution.

� CoViNE-ILP : Employs a heuristic that solves sub-problems (i) and (ii) in poly-
nomial time. This heuristic leverages conflicting set abstraction resulting from a
theoretical analysis of CoViNE. The conflicting set abstraction allows to generate
a polynomial number of variables and constraints to be used by an ILP for solving
sub-problem (iii). The complexity of this ILP limits its applicability to substrate
networks of few hundred nodes.

� CoViNE-fast : Uses heuristics for all three sub-problems of CoViNE to scale to
larger problem instances.

Finally, we perform extensive simulations to evaluate the optimality and scalability
of the proposed solutions under single and double substrate link failures. We restrict
our simulations to one and two link failure cases since the probability of more than two
simultaneous link failures is extremely low [117, 65]. We also compare our solutions with
a VNE approach that does not guarantee VN connectivity upon failures [185]. Although
our sequential solutions (i.e., CoViNE-ILP and CoViNE-fast) do not guarantee optimality,
simulation results show that they perform close to CoViNE-opt, and scale to larger problem
instances. Finally, we demonstrate how CoViNE can enable a VN operator to recover from
link failures without depending on the SN provider.

The rest of this chapter is organized as follows. We discuss the related literature in
Section 2.1. In Section 2.2, we present the system model, CoViNE problem statement,
definitions, and assumptions. An ILP formulation for optimally solving CoViNE is pre-
sented in Section 2.3. The theoretical analysis of CoViNE is laid in Section 2.4. Then, we
present a heuristic algorithm for VN augmentation and computing disjointness constraints
in Section 2.5.1, followed by an ILP formulation and a heuristic algorithm for CoViNE em-
bedding in Section 2.5.2 and in Section 2.5.3, respectively. Evaluation results for CoViNE
are presented in Section 2.6. Finally, we conclude the chapter in Section 2.7.

2.1 Related Works

Survivability in NV and IP-over-WDM networks has been well studied over the past
years [131, 182, 103, 120, 71, 171, 94, 145]. We discuss the most prominent approaches
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addressing survivability from both NV (§ 2.1.1) and IP-over-WDM literature (§ 2.1.2), and
contrast them with our solutions for CoViNE.

2.1.1 Survivable Virtual Network Embedding (SVNE)

Rahman et al., first formulated the SVNE for single substrate link failure as a mixed integer
liner program [131]. Subsequent research works have addressed different aspects of SVNE
such as substrate node failures [176, 177, 112, 47] and link failures [71, 150, 40, 94]. SVNE
approaches for node failures can be broadly classified into two groups. The first group of
works proposed to pro-actively provision dedicated or shared resources in the SN to survive
single or multiple node failures [176, 177, 47]. The second group proposed to reactively
compute VN embedding after one or more nodes have failed in the SN [112, 128, 140].
Another stream of SVNE research has focused on ensuring VN survivability during one or
more substrate link failures, both pro-actively during VN embedding [71, 94, 40, 145] and
reactively after a failure [80, 150]. In contrast, we address multiple substrate link failures
and propose a different form of survivability instead of guaranteeing full bandwidth of the
virtual links during failures as considered in the SVNE approaches.

Recently, there has been a growing interest in designing connectivity-guaranteed VNE
schemes [183, 184]. For instance, the proposal from Zhu et al. [184] ensures that the
unaffected part of a VN remains connected under a single substrate node failure to continue
the services provided by the VN. They formulate the problem as an ILP and develop an
ant colony optimization algorithm to obtain a local optimal solution. Hmaity et al. [79]
distinguish between network connectivity and content connectivity and focus on providing
content connectivity against double link failures. Their approach guarantees connectivity
in a VN after single substrate link failure and maintains content connectivity in the presence
of double substrate link failures. They argue that guaranteeing content connectivity may
require lower amount of resources compared to network connectivity, and can be the sought
after choice for Content Delivery Networks. Zhou et al. [183] propose to use cross-layer
spanning trees to design survivable cloud networks against SRLG failure. Each spanning
tree protects one SRLG by mapping the virtual links in the spanning tree in the paths that
avoid the substrate links in the SRLG. They also discuss a way to extend their SRLG based
solution to k substrate link failures. However, this solution needs a combinatorial number
of spanning trees to protect in order to survive arbitrary k link failures. In contrast, our
solution computes only one spanning tree of the VN even to survive any k substrate link
failures.
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2.1.2 Survivability in IP-over-WDM Network

Modiano et al. [120] presented an ILP formulation for survivable link routing of an IP
network on WDM SN in the presence of a WDM link failure. Their formulation explores
exponential number of edge-cuts in the IP network and ensures that the IP links belonging
to a edge-cut are routed on at least two disjoint WDM paths. This approach does not
scale well as the number of edge-cuts grows exponentially with the size of the IP network.
Todimala et al. [159] have proposed an improved ILP formulation by identifying polyno-
mial number of primary cuts in planar and hierarchical planar cyclic graphs representing
IP networks. Their formulation computes the survivable routing of these sub-classes of IP
networks against single node or SRLG failure(s). However, this formulation is not applica-
ble to non-planar IP topologies and arbitrary failure scenarios. Lee et al. [107] extended the
Max-flow min-cut theorem to multi-layer networks and proposed approximation algorithms
for survivable IP network mapping on an WDM SN, while maximizing the minimum cross
layer cut. Zhou et al. [181] identified four cross-layer metrics and presented mixed-integer
linear programs (MILPs) to determine a mapping that maximizes one of the defined met-
rics. They also provided an MILP formulation for augmenting the IP topology. A major
drawback of these MILP-based approaches is that they do not scale well with VN or SN
sizes, because of the inherent complexity of the LP-solvers.

Several heuristic based approaches have been proposed for survivable IP link mapping
in large WDM networks. Kurant et al. [103, 104] proposed SMART, a framework for
finding survivable mapping of an IP network by repeatedly picking sub-graph (e.g., cycles)
of the network and mapping the IP links in the sub-graph on disjoint paths in the WDM
SN. SMART can ensure connectivity under double WDM link failures for IP networks
having a few special structures, thus limiting its applicability. An extension to SMART
has been proposed in [158] that exploits the duality between circuits and cuts in the graph
representing an IP topology. In [157], Thulasiraman et al. remove some of the shortcomings
of the dual framework of SMART by using generalized circuit and cutset cover sequences.
In another extension of SMART, Javed et al. [86] used the concept of randomized rounding
discussed in [130] to find disjoint WDM paths for the IP links that achieved higher success
rate than SMART. Zhou et al. [182] proposed an algorithm that identifies a set of spanning
trees of an IP network and computes a shortest-path based routing of the IP links such that
at least one of the spanning trees remains unaffected after a WDM link failure. Another
school of thought is to compute restoration path for each IP link in a way that the IP
link and its restoration path are not affetced by the same substrate link failures [109, 85].
However, these approaches require to know the set of substrate links that will potentially
fail together. In contrast, our solution is generic, i.e., does not assume any specific property
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of the IP network or the WDM SN, and can ensure connectivity in the presence of multiple
WDM link failures.

2.1.3 Virtual Link Augmentation

IP link augmentation strategies such as [182, 110, 105] to survive WDM link failures pri-
marily focus on single link failure scenarios and cannot be generalized to multiple failures.
Zhou et al., propose to augment logical VLinks between arbitrary pairs of VNodes [158].
In contrast, we propose to perform augmentation only between pairs of adjacent VNodes
not to alter the VN topology. Thulasiraman et al., propose an augmentation strategy for
ensuring survivability under k WDM link failures [156]. They propose to augment IP links
until a complete subgraph of k+ 2 nodes in the IP network is constructed and the remain-
ing nodes are k + 1 edge connected to the subgraph. Their solution maps all the IP links
in the complete subgraph of k+ 2 nodes onto mutually disjoint WDM paths. To survive k
link failures, this approach requires higher number of IP links to be augmented and more
disjointness constraints to be satisfied than those of our approach.

2.1.4 Complexity of the VNE problem

Optimally solving the general case of the VNE problem without any survivability require-
ments, is at least as hard as the NP-Hard Multi-commodity Unsplittable Flow Problem
(MCUFP) [58] when the source and destination of the flows are unknown. The best
known approximation bound for the MCUFP with known sources and destinations is (2
+ ε) for very simple classes of graphs, namely, line and cycle graphs [15]. A Linear Pro-
gramming relaxation based algorithm for unsplittable flows on trees has been proposed
in [61], however, the approximation ratio is a logarithmic function of the number of nodes.
In reality, SNs are more densely connected than line and cycle graphs, and trees. Finding
a constant factor approximation algorithm for general graphs still remains an open prob-
lem [27]. Moreover, line graphs and trees are 1-edge connected, therefore, they are not
suitable for deploying SNs to guarantee VN connectivity under k ≥ 1 link failures. Finally,
a more recent study has proved that the general case of the VNE problem with capacity
constraints on the links is NP-complete and cannot be approximated under any objective
unless P = NP [135].
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Table 2.1: Notation Table

G = (V,E) Substrate Network (SN)
Ḡ = (V̄ , Ē) Virtual Network (VN)

Ĝ = (V̂ , Ê) k-protected VN

Ĝk = (V̂k, Êk) k-protected component of a VN Ḡ

Ĝk � v̂ An expansion of Ĝk towards v̂

C̄i An edge-cut C̄i ⊂ Ē s.t. |Ci| > 0 in Ḡ

C̄Ḡ Set of edge-cuts C̄i ⊂ Ē s.t. |Ci| > 0 in Ḡ

C̄i ∪ C̄k
i The set of VLinks in C̄i ∈ C̄Ḡ and all the parallel

VLinks augmented to the VLinks in C̄i ∈ C̄Ḡ

(ū, v̄)k k-th VLink between ū and v̄

χûv̂k Conflicting set of a VLink (û, v̂)k

χûv̂k� Conflicting set of a VLink (û, v̂)k during expansion

χĜ Conflicting set of a VN Ĝ

Quv A path between SNodes u and v in G

P ûv̂ A path between VNodes û and v̂ in Ĝ

P ûv̂ Set of edge-disjoint paths between û and v̂ in Ĝ

P ûv̂
i i-th edge-disjoint path from û to v̂ in Ĝ

pûv̂i i-th edge-disjoint shortest path from û to v̂ in Ĝ

PĜk v̂ Set of edge-disjoint shortest paths from v̂ to Ĝk

K Set of integers from 0 to k, i.e., Z ∩ [0, k]

2.2 Preliminaries

The subsequent sections build upon the background, definitions, and assumptions presented
in this section. Table 2.1 lists all the major notations used in the rest of this chapter.

2.2.1 System Model

We represent an SN as an undirected graph, G = (V,E), where V and E denote the set of
Substrate Nodes (SNodes) and Substrate Links (SLinks), respectively. The set of neighbors
of an SNode u ∈ V is denoted by N (u). Bandwidth capacity of an SLink (u, v) ∈ E is
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buv, while the cost of allocating one unit of bandwidth in (u, v) is Cuv. Similarly, a VN is
represented as an undirected graph Ḡ = (V̄ , Ē), where V̄ and Ē denote the set of Virtual
Nodes (VNodes) and Virtual Links (VLinks), respectively. The set of neighbors of a VNode
v̄ ∈ V̄ is denoted by N (v̄). Each VLink (ū, v̄) ∈ Ē has bandwidth requirement būv̄. Each
VNode ū ∈ V̄ has a location constraint, L(ū) ⊆ V , that denotes the set of SNodes where
ū can be embedded. We represent the location constraint L(ū) ⊆ V of ū ∈ V̄ with the
binary variable `ūu that is set to 1 if ū ∈ V̄ can be mapped to u ∈ V , 0 otherwise. Let Quv

represent a path in the SN between a pair of SNodes u ∈ V and v ∈ V such that u 6= v..

2.2.2 CoViNE Problem Statement

Given an SN G = (V,E), a VN Ḡ = (V̄ , Ē), and location constraints L(ū), ∀ū ∈ V̄ ,
CoViNE finds an embedding that

� provides a function f : V̄ → V to map every VNode ū ∈ V̄ to exactly one SNode
u ∈ V while satisfying the location constraint and incurring no overlap, i.e., ∀ū, v̄ ∈
V̄ ∧ ū 6= v̄ =⇒ f(ū) 6= f(v̄) and ∀ū ∈ V̄ f(ū) ∈ L(ū),

� provides a function g : Ē → 2E to map each VLink (ū, v̄) ∈ Ē to a substrate path
Qf(ū)f(v̄) with sufficient bandwidth to satisfy the VLink demand būv̄,

� ensures the connectivity in Ḡ in the presence of up to k SLink failures in G,

� minimizes the total cost of embedding in terms of substrate bandwidth consumption
as defined by the following ∑

∀(ū,v̄)∈Ē

∑
∀(u,v)∈Qf(ū)f(v̄)

Cuv × būv̄ (2.1)

2.2.3 Definitions and Design Choices

Definition 1. Edge-cut: An edge-cut C̄i ⊂ Ē of a VN Ḡ is the set of VLinks that
connect the VNodes in a non-empty set S̄ ⊂ V̄ to the VNodes in V̄ \ S̄ and the removal of
the VLinks in C̄i partitions the VN. Let C̄Ḡ be the set of all edge-cuts in the VN Ḡ, C̄Ḡ =
{C̄1, C̄2, . . . , C̄m}. Since the number of non-empty proper subsets (i.e., S̄ 6= φ ∧ S̄ 6= V̄ ) of
V̄ is 2V̄ − 2, we have m = 2V̄ − 2. Let |C̄i| denote the number of VLinks in the edge-cut
C̄i.

17



A VN embedding remains connected during k SLink failures if the following two nec-
essary conditions are met: i) the VN is k + 1 edge-connected following the definition of
k + 1 edge-connected graphs, implying that the size of each edge-cut is at least k + 1,
∀Ci ∈ C̄Ḡ, |C̄i| >= k+ 1, ii) the VLinks in each edge-cut Ci are embedded on at least k+ 1
edge-disjoint paths in the SN. This can be trivially proved since the failure of k SLinks
can impact at most k edge-disjoint paths in the SN, leading to at most k VLink failures
from an edge-cut in a VN leaving at least one VLink to ensure connectivity. However, if
the given VN Ḡ lacks k + 1 connectivity, we need to augment Ḡ with additional VLinks.
This augmentation can be done in two ways: i) augment VLinks between arbitrary pair
of VNodes, which is a well studied problem [110, 105]; ii) augment parallel VLinks be-
tween already adjacent VNodes in Ḡ [182, 158, 109]. Arbitrary augmentation can ensure
k+ 1 edge connectivity by introducing minimal number of VLinks, however, this approach
will change the input VN topology. Although parallel VLink augmentation may not yield
minimal resource usage, it does not alter the input VN topology. From a VN operator
perspective, it is very important to preserve its VN topology. Hence, we opt for the second
alternative, i.e., augmenting a VN with only parallel VLinks.

Definition 2. k-protected VN: A k-protected VN, Ĝ = (V̂ , Ê), is a VN that becomes
k + 1 edge connected after augmenting the minimum number of parallel VLinks to a VN,
Ḡ = (V̄ , Ē). The k-th parallel VLink between ū and v̄ is denoted by (ū, v̄)k, where (ū, v̄)0

or simply (ū, v̄) represents the input VLink between ū and v̄. Here, V̂ = V̄ and Ê = Ē∪ Ẽ,
where Ẽ = {(ū, v̄)k|(ū, v̄) ∈ Ē, k ∈ K and k ≥ 1} is the set of augmented parallel VLinks.

Definition 3. k-protected component: A k-protected component of a graph Ḡ is a
multi-graph Ĝk = (V̂k, Êk), where V̂k ⊆ V̄ , Êk = Ēk ∪ Ẽk, Ēk ⊆ Ē, Ẽk ⊆ Ẽ and Ẽk is a
set of parallel VLinks augmented in such a way that simultaneous removal of k arbitrary
VLinks from Ĝk will not partition Ĝk.

Determining the bandwidth of the parallel VLinks as well as the amount of spare
bandwidth to be reserved for the input VLinks (in Ē) to survive failures is a separate
problem of its own, and has been studied in [109, 92, 113, 115]. Here, we assume that
the bandwidth of a parallel VLink will be the same as the bandwidth of the input VLink
parallel to it in order to salvage full bandwidth of the VLink upon failures. In the case
that a parallel VLink has lower bandwidth than the input VLink, the amount of restored
bandwidth will be decreased.
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2.2.4 CoViNE Example

We illustrate CoViNE examples for single and double failure scenarios in Fig. 2.1(a) and
Fig. 2.1(b), respectively. In these examples, xyz is the VN and ABCD is the SN. The arrow
from a VNode to an SNode denotes node mapping and the dotted lines between SNodes
denote link mapping. To survive single SLink failure (k = 1), the VN must be 2 edge-
connected. Since xyz is already 2 edge-connected, no augmentation is required. Fig. 2.1(a)
shows an un-survivable embedding (on the left) and a survivable embedding (on the right)
of xyz. They differ in satisfying disjointness constraints. The embedding on the left satisfies
no disjointness constraint, hence the VLinks of an edge-cut {(x, y), (y, z)} share an SLink
(A,B). Upon the failure of (A,B), both VLinks fail, and VNode y is disconnected from
the rest of the VN. The embedding on the right adheres to the disjointness constraints,
hence no SLinks are shared. Even though SLink (A,B) and correspondingly VLink (x, y)
fail, the VN remains connected.

To survive double link failures (Fig. 2.1(b)), i.e., for (k = 2), the VN should be 3 edge-
connected, which is not the case for VN xyz. Due to such lack of edge-connectivity, even
an edge-disjoint embedding of all the VLinks (the embedding on the left) cannot survive
two SLink failures. Hence, we transform the VN into a 2-protected one by augmenting
VLinks (dashed VLinks in the figure) and embedding the resulting VN adhering to the
disjointedness constraints as shown on the right. Note that, for a survivable embedding
of the 2-protected VN, some SLinks can be shared (e.g., (A,D)) among the mappings of
some VLinks since not all the VLinks need to be embedded on mutually disjoint paths.

(a) Single Failure (b) Double Failure

Figure 2.1: CoViNE examples
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2.3 Optimal Solution to CoViNE

In this section, we present CoViNE-opt, an ILP formulation for optimally solving CoViNE.
CoViNE-opt transforms an input VN Ḡ to a k-protected VN Ĝ by augmenting parallel
VLinks, and minimizes the total cost of provisioning bandwidth for the VLinks of Ĝ on an
SN G, while ensuring Ĝ’s connectivity in the presence of k SLink failures.

2.3.1 Decision Variables

Recall from Section 2.2.3 that Ḡ needs to be augmented with additional VLinks if Ḡ is
not already k + 1 edge-connected. This implies that we must add parallel VLinks to the
edge-cuts in Ḡ whose sizes are less than k + 1, thus ensuring that there are no edge-cuts
in Ḡ with size less than k + 1. Determining which parallel VLinks should be added to
Ḡ is non-trivial as augmenting one VLink parallel to (ū, v̄) may increase the sizes of all
edge-cuts that contain (ū, v̄), resulting in a combinatorial decision making problem. To
optimally decide which parallel VLinks are augmented, we introduce the following decision
variable:

aūv̄k =


1 if k-th VLink between ū and v̄ s.t. (ū, v̄) ∈ Ē

is augmented,
0 otherwise.

Note that, aūv̄0 denotes the input VLink between ū and v̄. Therefore, ∀(ū, v̄) ∈ Ē, aūv̄0 = 1.
Once a VLink (ū, v̄)k s.t. (ū, v̄) ∈ Ē ∧ k ∈ K ∧ k 6= 0 is augmented by CoViNE-opt, (ū, v̄)k

is included in all the edge-cuts that contain (ū, v̄). We denote the set of VLinks in C̄i
and all the parallel VLinks augmented to the VLinks in C̄i as C̄i ∪ C̄k

i . Mathematically,
C̄i ∪ C̄k

i = {{(ū, v̄)0 s.t. (ū, v̄) ∈ C̄i}∪ {(ū, v̄)k s.t. (ū, v̄) ∈ C̄i ∧ k ∈ K ∧ k 6= 0∧ aūv̄k = 1}}.
A VLink is mapped to a set of SLinks forming a path in the SN. In this ILP formulation,

we represent a bidirectional SLink by two unidirectional SLinks in opposite directions. We
represent the mapping between (ū, v̄)k, the k-th VLink between adjacent VNodes ū and v̄
and an SLink (u, v) ∈ E using the following decision variable:

xūv̄kuv =


1 if (ū, v̄)k s.t. (ū, v̄) ∈ Ē and k ∈ K is

mapped to (u, v) ∈ E,
0 otherwise.

The following decision variable represents the mapping between VNodes and SNodes:

yūu =

{
1 if ū ∈ V̄ is mapped to u ∈ V,
0 otherwise.
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To guarantee that a VN remains connected (i.e., at least one path exists between
any pair of VNodes) during any combination of k SLink failures, one of the necessary
conditions discussed in Section § 2.2.3 is that for any edge-cut C̄i ∈ CḠ, the VLinks in
C̄i∪ C̄k

i are embedded on at least k+1 edge-disjoint paths in the SN. CoViNE-opt enforces
this condition by partitioning the set of VLinks in each C̄i∪ C̄k

i into two mutually exclusive
groups. The first group, denoted as DC̄i , will contain the VLinks that cannot share an
SLink in their mappings to ensure the existence of at least k+1 edge-disjoint paths among
the mappings of the VLinks in C̄i ∪ C̄k

i . Hence, the size of DC̄i must be at least k + 1.
The second group will contain the rest of the VLinks in C̄i ∪ C̄k

i that are not in DC̄i . The
following decision variable decides the assignment of a VLink in C̄i ∪ C̄k

i to DC̄i :

dūv̄kC̄i
=


1 if (ū, v̄)k s.t. (ū, v̄) ∈ C̄i and k ∈ K

belongs to DC̄i ,
0 otherwise.

2.3.2 Constraints

Augmentation Constraints

Parallel VLinks are augmented to ensure that there is no edge-cut in the VN with less than
k+1 VLinks. (2.2) ensures that the size of each edge-cut is at least k+1 after augmentation.
Note that if CoViNE-opt decides to augment a parallel VLink, the augmented VLink must
also be mapped to a path in the SN (see § 2.3.2), increasing the cost of embedding. Since
the objective of CoViNE-opt is a minimization function (see § 2.3.3), CoViNE-opt will
augment the minimum number of parallel VLinks despite not having a strict equality in
(2.2).

∀C̄i ∈ C̄Ḡ s.t. |C̄i| < k + 1 :
∑

∀(ū,v̄)∈C̄i

∑
k∈K

aūv̄k >= k + 1 (2.2)

VLink Mapping Constraints

VLinks are mapped to substrate paths following a Multi-commodity Unsplittable Flow for-
mulation [119]. Bandwidth conservation is ensured by (2.3) which enforces that an SLink
is not assigned VLink demands that exceed the SLink’s bandwidth capacity. Then, (2.4)
ensures flow conservation by making sure that for each input (aūv̄0 , ∀(ū, v̄) ∈ Ē) and aug-
mented (aūv̄k = 1 s.t. (ū, v̄) ∈ Ē ∧ k ∈ K ∧ k 6= 0) VLink, the in-flow and out-flow of each

21



SNode is equal except at the SNodes where the endpoints of a VLink are mapped. Since
the decision of VLink augmentation is not known in advance, the right hand side of (2.4)
is multiplied by aūv̄k , yielding a quadratic constraint.

∀(u, v) ∈ E :
∑

∀(ū,v̄)∈Ē

∑
∀k∈K

xūv̄kuv × būv̄ ≤ buv (2.3)

∀(ū, v̄) ∈ Ē,∀k ∈ K, ∀u ∈ V :∑
∀v∈N (u)

(xūv̄kuv − xūv̄kvu ) = aūv̄k × (yūu − yv̄u) (2.4)

We take the following steps to linearize (2.4). First, we introduce two binary variables
wūv̄ku and zūv̄ku such that:

∀(ū, v̄) ∈ Ē,∀k ∈ K, ∀u ∈ V : wūv̄ku ≤ aūv̄k (2.5)

∀(ū, v̄) ∈ Ē,∀k ∈ K, ∀u ∈ V : wūv̄ku ≤ yūu (2.6)

∀(ū, v̄) ∈ Ē,∀k ∈ K, ∀u ∈ V : wūv̄ku ≥ aūv̄k + yūu − 1 (2.7)

∀(ū, v̄) ∈ Ē,∀k ∈ K, ∀u ∈ V : zūv̄ku ≤ aūv̄k (2.8)

∀(ū, v̄) ∈ Ē,∀k ∈ K, ∀u ∈ V : zūv̄ku ≤ yv̄u (2.9)

∀(ū, v̄) ∈ Ē,∀k ∈ K, ∀u ∈ V : zūv̄ku ≥ aūv̄k + yv̄u − 1 (2.10)

Then, we rewrite (2.4) in a linear form using the newly introduced variables as follows:

∀(ū, v̄) ∈ Ē,∀k ∈ K, ∀u ∈ V :∑
∀v∈N (u)

(xūv̄kuv − xūv̄kvu ) = wūv̄ku − zūv̄ku
(2.11)

Disjointedness Constraints

(2.12) ensures that for each edge-cut C̄i, the disjoint group DC̄i contains at least k + 1
VLinks from C̄i ∪ C̄k

i . To prevent the inclusion of a non-augmented VLink into DC̄i , we
multiply dūv̄k

C̄i
by aūv̄k in (2.12). An SLink (u, v) can be used at most once in the mappings

of the VLinks in C̄i ∪ C̄k
i that are assigned to DC̄i to ensure their edge-disjoint embedding.

We enforce this by (2.13). Since both (2.12) and (2.13) are quadratic, we linearize them
using the same technique discussed for (2.4).

∀C̄i ∈ C̄Ḡ : (
∑

∀(ū,v̄)∈C̄i

∑
k∈K

dūv̄kC̄i
× aūv̄k ) ≥ k + 1 (2.12)
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∀(u, v) ∈ E,∀C̄i ∈ C̄Ḡ :∑
∀(ū,v̄)∈C̄i

∑
∀k∈K

dūv̄kC̄i
× (xūv̄kuv + xūv̄kvu ) ≤ 1 (2.13)

VNode Mapping Constraints

(2.14) ensures that VNode mapping follows the given location constraint. (2.15) ensures
that a VNode is mapped to exactly one SNode. Finally, (2.16) ensures that an SNode does
not host more than one VNode from a VN. However, an SNode can host multiple VNodes
from different VNs.

∀ū ∈ V̄ ,∀u ∈ V : yūu ≤ `ūu (2.14)

∀ū ∈ V̄ :
∑
u∈V

yūu = 1 (2.15)

∀u ∈ V :
∑
ū∈V̄

yūu ≤ 1 (2.16)

2.3.3 Objective Function

The objective of CoViNE-opt is to minimize the bandwidth provisioning cost over all
the SLinks for embedding all the original and augmented VLinks of a VN, Ḡ, subject to
the augmentation constraints (§ 2.3.2), VLink mapping constraints (§ 2.3.2), disjointness
constraints (§ 2.3.2), and VNode mapping constraints (§ 2.3.2). Given that Cuv is the cost
of allocating unit bandwidth on SLink (u, v) ∈ E, we have the following objective function
for CoViNE-opt :

minimize

 ∑
∀(ū,v̄)∈Ē

∑
∀k∈K

∑
∀(u,v)∈E

xūv̄kuv × Cuv × būv̄

 (2.17)

2.3.4 Complexity Analysis

Rost et al., have shown that the VNE problem with capacity constraints on the links,
i.e., solving CoViNE-opt without the augmentation constraint (2.2) and disjointness con-
straints (2.12) - (2.13), is NP-complete and cannot be approximated under any objective
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unless P = NP [135]. Furthermore, when we include the augmentation and disjointedness
constraints, CoViNE-opt becomes even more computationally intractable. The reason is
that CoViNE-opt generates an exponential number of variables for dūv̄k

C̄i
and an exponential

number of constraints for (2.2), (2.12), and (2.13) since the number of edge-cuts in a VN
is O(2|V̄ |). For instance, total number of binary variables for dūv̄k

C̄i
is |Ē| × k × (2|V̄ | − 2)

and total number of constraints for (2.13) is |E| × (2|V̄ | − 2). In the worst case, all binary
vectors have to be enumerated and all the constraints need to be explicitly checked for each

of the enumeration, yielding the time complexity of O((|E| × (2|V̄ |− 2))× 2(|Ē|×k×(2|V̄ |−2))).
To reduce the size of the problem, we decompose the joint optimization, and separate
augmentation and disjointness constraints computation from embedding as presented in
the subsequent sections. Note that by decomposing CoViNE-opt into sub-problems and
solving them sequentially may yield sub-optimal solution.

2.4 Theoretical Analysis for k Link Survivability

In this section, we first devise an efficient mechanism to compute disjointness constraints
of a VN assuming that the VN is k-protected (§ 2.4.1). We then extend this mechanism
to transform an arbitrary VN to a k-protected VN (§ 2.4.2).

2.4.1 Disjointness Constraints Computation

As discussed in § 2.3.4, there are exponential number of edge-cuts in Ĝ and combinatorial
number of ways to assign VLinks from each edge-cut to its k + 1 disjoint groups. To
reduce the exponential number of constraints, we first define the disjointedness relationship
between the VLinks of Ĝ irrespective of the edge-cuts as follows.

Definition 4. Conflicting VLinks: Two VLinks are considered conflicting if they must
be embedded on edge-disjoint paths in the SN to ensure the VN remains connected (i.e., at
least one path exists between any pair of VNodes) in the presence of k SLink failures.

Definition 5. Conflicting set: A conflicting set of a VLink (û, v̂)k, denoted by χûv̂k,
is the set of VLinks in Ê that are conflicting with (û, v̂)k. A conflicting set of a VN

Ĝ = (V̂ , Ê), denoted by χĜ, is defined as χĜ = {χûv̂k|∀(û, v̂)k ∈ Ê}.

A conflicting set of Ĝ imposes disjointedness constraints on VLink embedding of Ĝ. The
larger the size of conflicting sets of the VLinks in Ĝ, the higher the number of disjointedness

24



constraints to be satisfied, and hence the longer becomes the substrate paths used for VLink
embedding. This increased number of disjointedness constraints can have a twofold impact
on embedding. First, it can increase the cost of embedding due to the longer substrate
paths. Second, and more importantly, it can lead to infeasible solutions due to the lack of
adequate edge-disjoint paths in a moderately dense SN. Therefore, we define the notion of
minimal conflicting set of Ĝ that ensures k + 1 edge connectivity of Ĝ after embedding,
while minimizing the requirement of having disjoint paths in the embedding. This can
be obtained by finding the minimum number of partitions of the VLinks of Ê such that
the VLinks in a partition are not conflicting with one another. Since VLinks in the same
partition do not impose any disjointedness constraint, minimizing the number of partitions
will yield a minimal conflicting set. However, partitioning the VLinks to yield a minimal
conflicting set is non-trivial as per the following theorem.

Theorem 1. Computing a minimal conflicting set of a VN is NP-complete.

Proof. This problem is clearly in NP because we can verify that a given conflicting set of
Ĝ ensures k + 1 edge connectivity in polynomial time by successively removing a VLink
êi ∈ Ê and all the VLinks in χêi , and then checking for VN connectivity. To show that the
problem is NP-complete, we reduce the NP-complete Minimum vertex coloring problem [51]
to computing a minimal conflicting set. Consider a graph H = (VH , EH) as an instance of
the Minimum vertex coloring problem. Also consider a bijection ξ : Ê → VH that maps
each VLink in Ê to a vertex in VH . There is an edge (ξ(êi), ξ(êj)) ∈ EH between the

vertices ξ(êi) ∈ VH and ξ(êj) ∈ VH if and only if two VLinks êi, êj ∈ Ê are conflicting
with each other. We can test if two VLinks are conflicting in polynomial time by removing
them and checking for k + 1 edge connectivity in Ĝ. Hence, the conflicting set of êi can
be computed from H as χêi = {êj|(ξ(êi), ξ(êj)) ∈ EH}, while the conflicting set of Ĝ can

be constructed as χĜ = {χêi |∀êi ∈ Ê}. If two VLinks êi, êj ∈ Ê are not conflicting with
each other, there is no edge between ξ(êi) and ξ(êj). Hence, ξ(êi) and ξ(êj) can be given

the same color in H. Thus, finding a partition of Ê consisting of non-conflicting VLinks is
equivalent to finding vertices with the same color in VH . Therefore, a minimal conflicting
set of Ĝ yields the minimum vertex coloring of H. Hence, Minimum vertex coloring ≤P
computing minimal conflicting set.

Note that computing the optimal conflicting set of a VN is harder than the NP-complete
problem of computing a minimal conflicting set, since the former takes SN and embedding
cost into account in addition to the number of disjointness constraints. Hence, we propose
a heuristic algorithm in § 2.5.1 to compute a conflicting set that tries to minimize number
of disjointedness constraints as well as embedding cost. The following Theorem, known as
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Figure 2.2: The VN with only solid edges is the input VN, Ḡ. The VN with both solid
edges (Ē) and dashed edges (Ẽ) is the 2-protected VN, Ĝ. Any subgraph of Ĝ having 3
edge connectivity is Ĝ2.

Menger’s Theorem [5], provide the basis for our algorithm to compute the conflicting set
of a VN Ĝ within a reasonable time.

Theorem 2. ( [5]) The size of the minimum edge-cut for two distinct VNodes û, v̂ ∈ Ĝ is
equal to the maximum number of edge-disjoint paths between û and v̂ in Ĝ.

According to Theorem 2 any pair of VNodes û and v̂ in Ĝ will remain connected in the
presence of k SLink failures, if at least one of the edge-disjoint paths P ûv̂

i ∈P ûv̂ remains
intact. This can be achieved by mapping any k + 1 paths in P ûv̂ into k + 1 edge-disjoint
paths in the SN. There are a combinatorial number of ways of choosing these k + 1 edge-
disjoint paths between û and v̂. If P ûv̂

1 = P ûv̂
1 , P ûv̂

2 , ...., P ûv̂
k+1 is one possible combination

chosen to have edge-disjoint mapping, two VLinks (x̂, ŷ)q ∈ P ûv̂
i and (ŵ, ẑ)r ∈ P ûv̂

j , such
that x 6= w and y 6= z, cannot share an SLink in their mappings. Therefore, a VLink
(x̂, ŷ)q ∈ P ûv̂

i is conflicting with all other VLinks present in the paths in P ûv̂
1 \P ûv̂

i , leading
to |χx̂ŷq| =

∑
P ûv̂i ∈Pûv̂

1 ∧(x̂,ŷ)q 6∈P ûv̂i
|P ûv̂
i |. For example, in Fig. 2.2, VNodes a and b will

remain connected in presence of two SLink failures if the VLinks on paths P ab
1 = (a, b),

P ab
2 = {(a, d), (d, c), (c, b)}, and P ab

3 = {(a, c), (c, e), (e, d), (d, b)} are mapped to disjoint
SN paths. Hence, χab = P ab

2 ∪ P ab
3 .

We now discuss some heuristics to reduce the above computation. First, we can ensure
connectivity in Ĝ by ensuring connectivity in a minimum spanning tree (MST) T̂ of Ĝ. In
this case, we need to compute k+1 edge-disjoint paths only for the |V̂ |−1 VLinks in T̂ , as
opposed to considering all the VLinks in Ĝ. For instance, in Fig. 2.2, k+1 edge-disjoint path
computations are required for the VLinks in T̂ = {(a, b), (a, c), (c, d), (d, e), (e, f)} instead of
all the 12 VLinks in Ĝ. Second, instead of arbitrarily selecting k+1 edge-disjoint paths from
P ûv̂, we can choose the first k+ 1 edge-disjoint shortest paths between û and v̂. Thus, the
size of the conflicting set of a VLink (û, v̂)q ∈ T̂ becomes |χûv̂q| =

∑i≤k+1

pûv̂i ∈Pûv̂∧(û,v̂)q 6∈pûv̂i
|pûv̂i |,

where pûv̂i is the i-th edge-disjoint shortest path between two adjacent VNodes û and v̂.
This method yields smaller conflicting sets than selecting arbitrary edge-disjoint paths.
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For instance, the conflicting set of VLink (a, b) in Fig. 2.2 is χab = pab2 ∪ pab3 where pab2 =
{(a, c), (c, b)}, and pab3 = {(a, d), (d, b)}. The following definitions, lemmas, and theorem
formalize our heuristics and prove that they result in better conflicting sets than individual
computation.

Definition 6. Expansion Operator �: Given a k-protected component Ĝk of a VN Ĝ
and a VNode v̂, such that v̂ ∈ V̂ \ V̂k and ∃û ∈ V̂k, v̂ ∈ N (û), we define Ĝk � v̂ as an
expansion of Ĝk generated by adding v̂ and all the incident VLinks on v̂ from any VNode
in Ĝk. Mathematically, Ĝk � v̂ = (V̂k ∪ {v̂}, Êk ∪ {(û, v̂)q|û ∈ V̂k, û ∈ N (v̂)})

Definition 7. EDSP PĜk v̂: We define EDSP as a set of Edge-Disjoint Shortest Paths
PĜk v̂ = {px̂v̂i } between Ĝk and a VNode v̂ ∈ V̂ \ V̂k, such that x̂ ∈ V̂k and all px̂v̂i terminate
as the first VNode x̂ in V̂k is encountered, i.e., the only VNode from V̂k that is on px̂v̂i is x̂.

Observation 1: Using the expansion lemma, it can be shown that Ĝk � v̂ is a k-
protected component if and only if there exists k + 1 edge-disjoint paths from Ĝk to v̂ in
Ĝ.

Lemma 1. In an expansion Ĝk � v̂, a VLink in (x̂, ŷ)q ∈ Êk can not be present in one of

the k + 1 EDSPs in PĜk v̂.

Proof. This proof is based on the observation that v̂ may not have shortest paths to
some of the VNodes in Ĝk. We consider an arbitrary VLink (x̂, ŷ)q ∈ Êk. There can be

three possibilities: i) there are two edge-disjoint paths from x̂ and ŷ to v̂, P x̂v̂ ∈ PĜk v̂
and P ŷv̂ ∈ PĜk v̂, respectively, such that (x̂, ŷ)q 6∈ P x̂v̂ ∧ (x̂, ŷ)q 6∈ P ŷv̂. To ensure edge
disjointness, (x̂, ŷ)q can only be added to any of P x̂v̂ or P ŷv̂. Adding (x̂, ŷ)q to one of P x̂v̂

or P ŷv̂ increases the length of respective path. ii) There is only one path from x̂ (or ŷ) to

v̂, P x̂v̂ ∈ PĜk v̂ (or P ŷv̂ ∈ PĜk v̂), such that (x̂, ŷ)q 6∈ P x̂v̂ (or (x̂, ŷ)q 6∈ P ŷv̂) and there is no
path from ŷ (or x̂) to v̂ excluding (x̂, ŷ)q. Again, adding (x̂, ŷ)q to P x̂v̂ (or P ŷv̂) does not
contribute in finding a new edge-disjoint path and only increases the length of the path
P x̂v̂ (or P ŷv̂). iii) There is no edge-disjoint path from x̂ or ŷ to v̂. In this case, (x̂, ŷ)q can

not be present in any of the k + 1 EDSPs in PĜk v̂.

Lemma 2. In an expansion Ĝk�v̂, the size of the conflicting set of a VLink (û, v̂)q ∈ Ê\Êk
is given by
|χûv̂q� | =

∑i≤k+1

pûv̂i ∈P
Ĝkv̂∧(û,v̂)q 6∈pûv̂i

|pûv̂i |, where û ∈ V̂k and v̂ ∈ N (û).

Proof. For the embedding of Ĝk � v̂ on G to remain connected in the presence of k SLink
failures, we need to satisfy two conditions: i) at least k+1 edge-disjoint paths from v̂ to Ĝk
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exist (i.e., |PĜk v̂| ≥ k + 1), and ii) all of these paths are embedded on k + 1 edge-disjoint
paths in G. Therefore, a VLink (û, v̂)q ∈ pûv̂i is conflicting with all the VLinks present in

the k + 1 EDSPs in PĜk v̂ \ pûv̂i . This leads to |χûv̂q� | =
∑i≤k+1

pûv̂i ∈P
Ĝkv̂∧(û,v̂)q 6∈pûv̂i

|pûv̂i |.

Theorem 3. For any VLink (û, v̂)q , the size of a conflicting set χûv̂q� obtained through the

expansion of Ĝk � v̂ is less than or equal to the size of any conflicting set χûv̂qI of the same
VLink when computed independently, i.e., |χûv̂qE | ≤ |χ

ûv̂q
I |.

Proof. We consider two VNodes û ∈ V̂k and v̂ ∈ V̂ \ V̂k, such that v̂ ∈ N (û). When com-
puted independently, the size of the conflicting set of (û, v̂)q is |χûv̂qI | =

∑i≤k+1

pûv̂i ∈Pûv̂∧(û,v̂)q 6∈pûv̂i
|pûv̂i |.

On other hand, when we construct conflicting set through the expansion, Ĝk � v̂, the size
of the conflicting set of the VLink (û, v̂)q ∈ Ê \ Êk is |χûv̂q� | =

∑i≤k+1

pûv̂i ∈P
Ĝkv̂∧(û,v̂)q 6∈pûv̂i

|pûv̂i | (as

proven in Lemma 2). In the beginning, when Ĝk contains only one VNode, i.e., |V̂k| = 1, it
is obvious that |χûv̂qI | = |χ

ûv̂q
� |. For |V̂k| > 1, consider x̂ ∈ V̂k such that ∃pûv̂i ∈P ûv̂ contains

x̂ and px̂v̂j ∈ PĜk v̂. Since pûv̂i contains x̂, according to the optimal substructure property of
the shortest path, we get pûv̂i = pûx̂i ||px̂v̂j , assuming || is the path concatenation operator.

Thus, |px̂v̂j | < |pûv̂i | resulting into |χûv̂q� | < |χ
ûv̂q
I |. If no such x̂ is found, we can assume

x̂ = û and in that case px̂v̂j = pûv̂i yielding |χûv̂q� | = |χ
ûv̂q
I |. Hence, |χûv̂q� | ≤ |χ

ûv̂q
I |.

As an example of Theorem 3, let us consider the VLink (d, e) in Fig. 2.2 and the
VN needs to survive single SLink failure. If we compute independently, we get χde =
{(d, c), (c, e)}. When we compute through the expansion Ĝ1� e where V̂1 = {a, b, c, d}, we
get χde = {(c, e)}.

2.4.2 VLink Augmentation

As described in § 2.2.3, we may need to augment a given VN Ḡ with parallel VLinks
to transform Ḡ to a k-protected VN Ĝ. Since augmented parallel VLinks increase both
the number of disjointness constraints and embedding cost, it is intuitive to minimize the
number of parallel VLinks. Again, we use Theorem 2 to find the pair of VNodes with less
than k+1 edge connectivity and add parallel VLinks as needed. Assume that for each pair
of adjacent VNodes ū, v̄ ∈ V̄ , there are at least m edge-disjoint paths in Ḡ. If m ≥ k+1, Ḡ
is at least k+1 edge-connected, hence no augmentation is needed. If m < k+1, we need to
add k+ 1−m parallel VLinks between ū and v̄. In general, max(0, k+ 1−m) VLinks are
needed for each pair of adjacent VNodes. For instance, a VN should be 3-edge connected to
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survive 2 SLink failures. Since there are 2 edge-disjoint paths between d and e in Fig. 2.2,
we add a parallel VLink. Similarly, we add 2 parallel VLinks between e and f to make
the VN 3-edge connected. No augmentation is required for the rest of the adjacent pair
of VNodes. It can be easily shown that the number of VLinks to be augmented remains
the same during the expansion, Ĝk � v̄. In other words, if there are m̂ edge-disjoint paths
from Ĝk to v̄ in Ḡ, augmentation of max(0, k+ 1− m̂) parallel VLinks is needed to ensure
the k + 1 edge connectivity between û and v̄, where û ∈ V̂k and v̄ ∈ N (û).

Theorem 4. Given a k-protected component Ĝk and two arbitrary VNodes in Ḡ such that
v̄1 /∈ V̂k and v̄2 /∈ V̂k; Ĝk� v̄1� v̄2 and Ĝk� v̄2� v̄1 are the resulting k-protected components
obtained by incrementally applying expansion operator � while considering v̄1 and v̄2 as
the initial nodes, respectively; A and B are the ordered set of parallel links (ordered in the
sequence they were added) augmented to Ḡ in the process of obtaining Ĝk � v̄1 � v̄2 and
Ĝk � v̄2 � v̄1, respectively: |A| = |B|.

Proof. To prove the theorem, we assume without loss of generality that an initial k-
protected component Ĝk of Ḡ consists of an arbitrarily selected VNode û ∈ V̄ with no
VLinks. Let’s consider two arbitrary VNodes v̄1 ∈ N (û) and v̄2 ∈ N (û). The sets of
edge-disjoint paths from û to v̄1 and v̄2 are P ûv̄1 and P ûv̄2 , respectively. However, a
path P ûv̄1 ∈ P ûv̄1 does not need to be edge-disjoint with a path P ûv̄2 ∈ P ûv̄2 . Suppose,
|P ûv̄1| = m1 and |P ûv̄2| = m2. If either or both of m1 and m2 are greater than or equal
to k + 1 then the theorem is trivially proved. Hence we assume that m1 < k + 1 and
m2 < k + 1. We need to show that the order of including v̄1 and v̄2 to Ĝk has no effect on
the total number of parallel VLinks needed to get either Ĝk � v̄1 � v̄2 or Ĝk � v̄2 � v̄1.

If we expand to v̄1 first, k + 1−m1 parallel VLinks will be augmented between û and
v̄1 to get Ĝk � v̄1. The parallel VLinks between û and v̄1 only contribute in increasing the
connectivity between û and v̄1, and become part of Ĝk � v̄1. Now, we consider v̄2. There
can be two possibilities based on whether v̄1 is on a path P ûv̄2 or not. If v̄1 is on a path
P ûv̄2 , P ûv̄2 = {(ū, v̄1)}||P v̄1v̄2 . According to Lemma 1, VLinks between û and v̄1 are in
the k-protected component Ĝk � v̄1, and cannot be present in any of the m2 edge-disjoint
paths from Ĝk � v̄1 to v̄2, thus the number of edge-disjoint paths between v̄2 and Ĝk � v̄1

will remain the same as that of between v̄2 and Ĝk. For the second possibility, when v̄1 is
not present on any P ûv̄2 ∈ P ûv̄2 , the paths in P ûv̄2 will remain unaffected by expansion
of Ĝk � v̄1. In both cases, the number of edge-disjoint paths from Ĝk to v̄2 remains the
same. In other words, the number of parallel VLinks needed to produce Ĝk � v̄2 from Ĝk

is the same as that for obtaining Ĝk � v̄1 � v̄2 from Ĝk � v̄1. The same can be shown if
we consider v̄2 before v̄1. Therefore, the order of choosing VNodes for inclusion into Ĝk
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does not have any impact on the number of parallel VLinks to be augmented needed to
get either Ĝk � v̄1 � v̄2 or Ĝk � v̄2 � v̄1.

2.4.3 Necessary Conditions for a Feasible VN Embedding

VN augmentation satisfies only one of the two necessary conditions for CoViNE that is a
VN must be k + 1 edge connected. As we discussed earlier, the other necessary condition
for CoViNE is to have at least k + 1 edge-disjoint paths between every pair of VNodes
after embedding the VN on the SN. Indeed, an SN that is k + 1 edge-connected, i.e., each
SNode degree is at least k + 1, satisfies this necessary condition to support the successful
embedding of an augmented VN. However, an SN without k+1 edge-connectivity between
all SNode pairs can also support the successful embedding of an augmented VN as long as
there exists at least a node mapping function f : V̄ → V for which each pair of SNodes
f(ū) and f(v̄), where ū, v̄ ∈ V̄ ∧ ū 6= v̄, have at least k + 1 edge-disjoint paths in the SN
with sufficient bandwidth. In other words, the SN G must have a non-empty sub-graph
with at least |V̄ | SNodes that contains at least one SNode from the location constraint
sets of each VNode ū ∈ V̄ and that sub-graph is k + 1 edge-connected. A brute-force
algorithm can enumerate all such sub-graphs of G to compute the optimal solution for
CoViNE. However, as the number of sub-graphs grows exponentially with the number of
nodes in either VN or SN, such brute-force approach cannot scale. In the following, we
briefly describe the factors that influence the steps that should be taken to satisfy the
aforementioned conditions, which we also exploit to design a scalable heuristic.

Since parallel VLinks added to a VLink (û, v̂) as part of the graph augmentation provide
the required edge-connectivity between the two VNodes û and v̂, VLink (û, v̂) and all the
parallel VLinks added to (û, v̂) must be embedded on mutually edge-disjoint paths in the
SN. In the worst case, a VLink (û, v̂) can be augmented with k parallel VLinks requiring
k+ 1 edge-disjoint paths between the two SNodes where û and v̂ are mapped. In addition,
conflicting sets may enforce the SPaths used for embedding the augmented VLinks to
be disjoint with the embedding of other VLinks of the same VN. Therefore, some of the
SPaths used for embedding augmented VLinks can have a large number of SLinks to ensure
disjointness with other SPaths, thus resulting in a higher embedding cost. Although the
augmentation process described in § 2.4.2 ensures that the number of augmented VLinks
remains constant irrespective of initial VNode choice and the subsequent order, the decision
of which VLinks to augment is still a combinatorial optimization problem as discussed in
§ 2.3. This decision of which VLink to augment can have an impact on the subsequent VN
embedding since one combination of augmentation may lead to an infeasible embedding
due to the lack of sufficient edge-disjoint paths in the SN, while another combination may
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result in a higher embedding cost due to using longer edge-disjoint paths. To address
these issues, we develop a heuristic algorithm in § 2.5.1 that takes both the existence of
sufficient number of edge-disjoint paths in the SN and the number of SLinks present in
those edge-disjoint paths into account while expanding a k-protected component Ĝk. The
heuristic algorithm in § 2.5.1 also computes conflicting sets for each VLink by expanding a
k-protected component Ĝk as discussed in § 2.4.1. These conflicting sets can then be used
by any embedding algorithm to ensure the existence of k + 1 edge-disjoint paths between
every pair of VNodes in the VN embedding. We also present an ILP formulation and
a heuristic algorithm in § 2.5.2 and § 2.5.3, respectively, that leverage conflicting sets of
VLinks to compute embedding while satisfying the conditions discussed in this section.

2.5 Sequential Solutions to CoViNE

Due to the intractability of CoViNE-opt, in this section, we present two sequential solutions
to CoViNE. The first solution consists of a heuristic algorithm (Alg. 1) and a simplified
formulation of CoViNE-opt, namely CoViNE-ILP. In this solution, we delegate the task
of transforming a VN Ḡ to a k protected VN Ĝ and computing conflicting set χĜ of Ĝ
to Alg. 1 as described in § 2.5.1. The outputs (Ĝ and χĜ) of Alg. 1 are then fed into
CoViNE-ILP that embeds a VN on an SN using a multi-commodity flow formulation as
presented in § 2.5.2. However, CoViNE-ILP cannot scale to larger VNs and SNs due to
the limitations of LP solvers. Hence, we propose a heuristic algorithm (Alg. 2) in § 2.5.3

that takes Ĝ and χĜ as inputs and embeds VNodes and disjointness constrained VLinks
of Ĝ in a coordinated manner. Combining Alg. 1 and Alg. 2, we get our last solution,
CoViNE-fast, that can solve larger problem instances within a reasonable time.

2.5.1 Heuristic Algorithm for Conflicting Set and Augmentation

Alg. 1 starts with a seed k-protected component, Ĝk, containing an arbitrary VNode ū ∈ V̄
with degree at least k+ 1. Then the algorithm adds all of ū’s neighbors v̄ ∈ N (ū) to V̂k in
the increasing order of a score computed for each VLink (ū, v̄). The score function assigns
each VLink (ū, v̄) a value proportional to an estimated cost of embedding (ū, v̄) along with
all its augmented VLinks (if necessary) on the SN. Since ū already belongs to a k-protected
component Ĝk, the number of additional VLinks that need to be augmented for a VLink
(ū, v̄) s.t., v̄ ∈ N (ū), depends on the degree of v̄ denoted by degree(v̄). In the worst case,
the VLink (ū, v̄) needs to be augmented with max((k + 1− degree(v̄)), 0) parallel VLinks
as degree(v̄) imposes an upper bound on the number of EDSPs between ū and v̄. When
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Algorithm 1: Compute Conflicting Sets and Augmentation

1 function ConflictingSetsAugmentation(Ḡ, k)
2 foreach (ū, v̄) ∈ Ē do
3 χūv̄ ← φ. aūv̄0 ← 1, Q← φ
4 // v̄ is an arbitrary VNode with degree≥ k + 1

5 ∃v̄ ∈ V̄ : Ĝk ← ({v̄}, φ)
6 ENQUEUE(Q, v̄)
7 while Q is not empty do
8 ū← DEQUEUE(Q)

9 Σ← {(ū, v̄)|v̄ ∈ N (ū) ∧ v̄ 6∈ V̂k}
10 foreach (ū, v̄) ∈ Σ do
11 if degree(v̄) ≥ k + 1 then score(ū, v̄)←∞
12 else
13 foreach (l,m) ∈ L(û)× L(v̂) ∧ l 6= m do
14 P lm ← EDSP(G, l,m, k + 2− degree(v̄)) if

|P lm| < k + 2− degree(v̄) then
15 rank(l,m)←∞
16 else
17 rank(l,m)←

∑
p∈Plm |p|

18 score(ū, v̄)← min
(l,m)∈L(û)×L(v̂)

rank(l,m)būv̄

19 Ē ← Sort Σ in increasing order of score(ū, v̄)
20 foreach (ū, v̄) ∈ Ē do

21 PĜk v̄ ← EDSP(Ḡ, Ĝk, ū, v̄, k + 1)

22 foreach i = 1→ (k + 1− |PĜk v̄|) do

23 Ê ← Ē ∪ (ū, v̄)i, aūv̄k ← 1

24 PĜk v̄ ← PĜk v̄ ∪ (ū, v̄)i

25 foreach pĜk v̄i ∈ PĜk v̄ do

26 foreach (x̄, ȳ)q ∈ pĜk v̄i do

27 foreach pĜk v̄j ∈ PĜk v̄|j 6= i do

28 χx̄ȳq ← χx̄ȳ ∪ {∀(s̄, t̄)r ∈ pĜk v̄j }
29 Ĝk ← Ĝk � v̄, ENQUEUE(Q, v̄)

30 return χḠ
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degree(v̄) ≥ k + 1, no augmentation is needed for the VLink (ū, v̄) and the score function
assigns a large value for the estimated embedding cost of (ū, v̄) to make it appear at the
end of the sorted order (Line 10). Otherwise, when degree(v̄) < k+1, the VLink (ū, v̄) and
all the k+ 1−degree(v̄) parallel VLinks need to be embedded on mutually disjoint SPaths
following the discussion in § 2.4.3. Therefore, Alg. 1 computes the estimated embedding
cost for (ū, v̄) by multiplying the bandwidth demand būv̄ with the number of SLinks present
in the k+ 2− degree(v̄) EDSPs in the SN that yields the lowest cost embedding for (ū, v̄)
and its up to k + 1− degree(v̄) augmented VLinks (Line 18).

To estimate the lowest embedding cost for (ū, v̄) and its up to k + 1− degree(v̄) aug-
mented parallel VLinks, Alg. 1 computes the sets of k+2−degree(v̄) EDSPs in the SN using
EDSP procedure for each possible pair of SNodes where VNodes ū and v̄ can be mapped.
For a pair of such SNodes l and m, EDSP iteratively applies Dijkstra’s shortest path algo-
rithm [53] to compute a set of k+2−degree(v̄) EDSPs as P lm (Line 13). After computing
each EDSP, all the SLinks present in the EDSP are removed from G in order to ensure the
edge-disjointness of the subsequent paths. Alg. 1 then uses the set of k + 2 − degree(v̄)
EDSPs with the least number of SLinks over all pairs of (l,m) ∈ L(û) × L(v̂) ∧ l 6= m to
compute the estimated embedding cost of (ū, v̄). Such sorted order of VLinks ensures that
parallel VLinks are augmented to VLinks of an MST T̂ of Ĝk to ensure necessary connec-
tivity with the lowest estimated cost whenever possible. Such SN awareness also rules out
the possibility of augmenting a VLink (ū, v̄) with k+ 1−degree(v̄) parallel VLinks if none
of the SNode pairs (l,m) ∈ L(û) × L(v̂) ∧ l 6= m has at least k + 2 − degree(v̄) EDSPs
(Line 15). The final node and link embedding are computed by Alg. 2 that neither uses
the estimated embedding cost nor the mappings computed by Alg. 1.

The above process is repeated until all the VNodes of Ḡ are added to Ĝk. For each v̄,
Alg. 1 computes k + 1 EDSPs in the VN, PĜk v̄ between Ĝk and v̄ using EDSP procedure

(Line 21). EDSP initially selects the VLink, (ū, v̄) as the first shortest path pĜk v̄1 to PĜk v̄. It

then invokes Dijkstra’s shortest path algorithm [53] k times to compute pĜk v̄i , the i-th EDSP

between Ĝk and v̄. After computing each pĜk v̄i , all VLinks present in pĜk v̄i are removed
from Ḡ in order to ensure the edge-disjointness of the later paths. Dijkstra’s shortest path
algorithm is modified to use the bandwidth demand of a VLink as the VLink weight while
computing EDSPs. Alg. 1 then proceeds to check if any augmentation is required between
Ĝk and v̄. To do so, it counts the number of EDSPs, |PĜk v̄|, computed in line 21. If the

number of EDSPs is less than k + 1, line 23 of Alg. 1 adds k + 1− |PĜk v̄| parallel VLinks

between ū and v̄. The i-th parallel VLink, denoted by (ū, v̄)i, constitutes the (|PĜk v̄|+i)-th
EDSP between Ĝk and v̄. Finally, Alg. 1 updates the conflicting sets of the corresponding
VLinks as described in Lemma 2 (Line 28).
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Discussion

When augmentation is needed, Alg. 1 invokes EDSP procedure O(|V̄ ||N (ū)||L(ū)|2) times.
EDSP invokes Dijkstra’s shortest path algorithm on SN G k + 1 times in the worst case.
The time complexity of Dijkstra’s shortest path algorithm on SN G based on a min-
priority queue is O(|E| + |V | log |V |). Therefore, calls to EDSP requires running time of
O((k+1)|V̄ ||N (ū)||L(ū)|2(|E|+|V | log |V |)). When augmentation is not required, the time
complexity of Alg. 1 is dominated by the EDSP procedure that is invoked O(|V̄ ||N (ū)|)
times. EDSP invokes Dijkstra’s shortest path algorithm on VN Ḡ k + 1 times yielding
O((k+1)(|Ē|+ |V̄ | log |V̄ |)) running time. In this case, the running time of Alg. 1 becomes
O((k + 1)|V̄ ||N (ū)|(|Ē|+ |V̄ | log |V̄ |)).

An alternate way for implementing EDSP is to use a maximum flow algorithm [55].
However, the iterative shortest path based method and the maximum flow algorithm have
similar running time and solution quality [55]. The only scenario where maximum flow
algorithms are known to be more effective is when the graph has a trap topology [55].
Dunn et al., have shown that the formation of trap topologies require many conditions to
be met simultaneously, hence, they are very rare in production networks [55]. Therefore,
taking any special measures for such topology seems unnecessary. Consequently, we made a
choice and resorted to using the iterative application of Dijkstra’s shortest path algorithm
for implementing EDSP.

2.5.2 CoViNE-ILP: ILP formulation for CoViNE Embedding

CoViNE-ILP, takes a k-protected VN Ĝ and its conflicting set χĜ as inputs. It embeds
Ĝ on an SN G while ensuring the disjointness constraints imposed by χĜ and minimizing
cost according to (2.17). CoViNE-ILP is similar to CoViNE-opt, excluding the variables
and constraints related to the augmentation and disjointness requirement computation.
CoViNE-ILP does not use the augmentation variable (i.e., aūv̄k ) and constraint (2.2) of
CoViNE-opt since augmentation is performed by Alg. 1. Therefore, CoViNE-ILP replaces
(2.4) by the following:

∀(ū, v̄) ∈ Ē,∀k ∈ K, ∀u ∈ V :∑
∀v∈N (u)

(xūv̄kuv − xūv̄kvu ) = yūu − yv̄u (2.18)

Furthermore, CoViNE-ILP uses the disjointness constraints imposed by pre-computed
χĜ. Hence, it eliminates disjoint group assignment variable dūv̄k

C̄i
and replaces disjointness
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constraints (2.12) and (2.13) from CoViNE-opt with the following:

∀(u, v) ∈ E,∀(ū, v̄) ∈ Ē,∀k ∈ K, ∀(ā, b̄)q ∈ χūv̄k :

xūv̄kuv + xūv̄kvu + xāb̄quv + xāb̄qvu ≤ 1
(2.19)

(2.19) ensures that VLink embedding of (û, v̂)k ∈ Ê will never share an SLink with the
embeddings of the conflicting VLinks present in χûv̂k, thus satisfying the disjointness re-
lation among them. If the SN does not have sufficient number of EDSPs to satisfy the
disjointness constraint (2.19), CoViNE-ILP becomes infeasible rendering no solution for
the embedding. The total number of binary variables for xūv̄kuv is |Ē| × k × |E| and total
number of constraints generated by (2.19) is k×|E|× |Ē|2. Therefore, unlike CoViNE-opt,
which has an exponential number of variables and constraints, CoViNE-ILP has a poly-
nomial number of variables and constraints. Note that even with the polynomial number
of variables and constraints CoViNE-ILP is intractable as the worst case time complexity
is O((k × |E| × |Ē|2)× 2(|Ē|×k×|E|)).

2.5.3 Heuristic Algorithm for CoViNE Embedding

Alg. 2 computes two functions, nmap and emap, which represent the VNode and VLink
mapping of Ĝ on G, respectively. Since there is no cost associated with VNode mapping, a
VLink mapping that minimizes total cost determines the VNode mapping. As discussed in
§ 2.4.1, disjointness constraints imposed by conflicting sets may lead to infeasible solutions.
Hence, Alg. 2 prioritizes finding a feasible mapping than minimizing the embedding cost.
Following this intuition, Alg. 2 first sorts the VNodes û ∈ V̂ in decreasing order of the sum
of conflicting set sizes of incident VLinks. This sorted list of VNodes is represented by V̂ .
Since a VNode with VLinks having larger conflicting sets becomes too constrained to be
mapped to a suitable SNode, Alg. 2 tries to map VNodes in the order of V̂ . However, Alg. 2
maps a VNode from V̂ to the candidate SNode that satisfies the disjointness constraints
and minimizes the embedding cost.

For each VNode û ∈ V̂ , Alg. 2 searches for an unallocated SNode in û’s location
constraint set, L(û), which yields a feasible mapping with the minimum cost. To embed
û, Alg. 2 loops through each candidate SNode l ∈ L(û) (Line 5− 13), to first temporarily
map û to l (Line 6). Then the algorithm computes temporary mappings for all the VLinks
incident to û. The VL-MAP (Alg. 3) procedure is invoked to find the mapping for each such
VLink (Line 9). VLinks incident to û are picked in decreasing order of their conflicting
set sizes to maximize the chances of finding a feasible solution. Alg. 2 finally embeds û to
the candidate l that leads to a feasible mapping for all the VLinks incident to û and yields
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Algorithm 2: Compute VN Embedding

1 function VN-EMBEDDING(G, Ĝ, χĜ)

2 V̂ ← Sort û ∈ V̂ in decreasing order of
∑

∀v̂∈N (û)

∑
∀k∈K

|χûv̂k|

3 foreach û ∈ V̂ do
4 Candidate← φ
5 foreach l ∈ L(û) do
6 nmap(û)← l

7 E ← Sort (û, v̂)q ∈ Ê in decreasing order of |χûv̂q|
8 foreach (û, v̂)q ∈ E| emap(û, v̂)q = φ do

9 P [(û, v̂)q]← VL-MAP(G, Ĝ, χĜ, (û, v̂)q)

10 if
∑

∀(û,v̂)q∈E

cost(P [(û, v̂)q]) is minimum then

11 M ← P , Candidate← l
12 nmap(û)← φ
13 ∀(û, v̂)q ∈ E : emap(û, v̂)q ← φ

14 if Candidate 6= φ then
15 Add mapping û→ Candidate to nmap
16 ∀(û, v̂)q ∈ E|nmap(û) 6= φ ∧ nmap(v̂) 6= φ:
17 Add (û, v̂)q →M [(û, v̂)q] to emap

18 else return No Solution Found

19 return {nmap, emap}

the minimum embedding cost (Line 15). The algorithm fails, if no such feasible l is found.
Once a VNode û has been finally mapped, Alg. 2 creates the final mapping for only those
VLinks incident to û whose both endpoints are already finally mapped (Line 17). If we
map a VLink with one unmapped endpoint (e.g., , v̂), we have to map v̂ based on this local
information. This would reduce the degrees of freedom for v̂ when other VLinks incident to
v̂ would have been mapped, and may lead to infeasible solution. Mappings of such VLinks
incident to û are finalized when their unmapped endpoints are finally mapped.

We now describe the VL-MAP (Alg. 3) procedure for finding the mapping of a VLink,
(û, v̂)q. First we remove all the SLinks used by the mappings of all the VLinks in χûv̂q

to satisfy the disjointness constraints (Line 4). Then, we compute mapping for (û, v̂)q

by considering the following two cases: (i) both endpoints of (û, v̂)q have already been
mapped to some SNodes. In this case, we find a minimum cost path between nmap(û)
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Algorithm 3: Compute VLink Mapping

1 function VL-MAP(G, Ĝ, χĜ, (û, v̂)q)
2 pûv̂ ← φ

3 foreach (ŝ, t̂)r ∈ χûv̂q : do
4 E ← E − {(a, b) ∈ E|(ŝ, t̂)r is mapped to (a, b)}
5 if nmap(û) 6= φ ∧ nmap(v̂) 6= φ then
6 Qnmap(û)nmap(v̂) ← MP(G, nmap(û), nmap(v̂), bûv̂)
7 else if nmap(û) = φ ∧ nmap(v̂) 6= φ then
8 Qnmap(û)nmap(v̂) ← min

∀l∈L(û)
{MP(G, l, nmap(v̂), bûv̂)}

9 else if nmap(û) 6= φ ∧ nmap(v̂) = φ then
10 Qnmap(û)nmap(v̂) ← min

∀l∈L(v̂)
{MP(G, nmap(û), l, bûv̂)}

11 if Qnmap(û)nmap(v̂) 6= φ then
12 Add (û, v̂)q → Qnmap(û)nmap(v̂) to emap

13 return Qnmap(û)nmap(v̂)

and nmap(v̂) with capacity at least bûv̂ in G (Line 6); (ii) only û (or v̂) is mapped and the
other endpoint v̂ (or û) has not been mapped. In this case, we compute the minimum cost
path between nmap(û) (or nmap(v̂)) and all possible locations for the unmapped VNode
v̂ (or û), l ∈ L(v̂) (or L(û)) with at least bûv̂ capacity (Line 8 (or Line 10)). The VLink
(û, v̂)q is temporarily mapped to the computed path and the mapping is added to emap
(Line 12). We modified Dijkstra’s shortest path algorithm [53] to consider SLink capacities,
while computing the minimum-cost path (MP procedure call in Alg. 3). The cost of each
SLink (u, v) ∈ E is set to Cuv × bûv̂, where bûv̂ is the bandwidth requirement of the VLink
to be embedded.

Discussion

The most computationally expensive step of Alg. 2 is the VL-MAP procedure, which invokes
Dijkstra’s shortest path algorithm requiring O(|E|+ |V | log |V |) time. Since VL-MAP is in-
voked O(|V̂ ||L(û)||N (û)|) times, the running time of Alg. 2 is O(|V̂ ||L(û)||N (û)|(|E| +
|V | log |V |)). Unlike most of the approaches in the literature that perform VNode and
VLink mapping sequentially [59], Alg. 2 addresses VNode mapping and disjointness con-
strained VLink mapping simultaneously. However, Alg. 2 maps VNodes of a VN (or, the
VLinks incident to a VNode) one-by-one, starting from the most constrained VNode (or,
VLink) to the least constrained one. Although these orders increase the chances of finding
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a feasible solution, they may lead to sub-optimal solutions. Meta-heuristic approaches can
achieve better orders by exploring larger solution space at the cost of increased execution
time [21].

2.6 Evaluation

We evaluate our proposed solutions for CoViNE through extensive simulations. We briefly
discuss the compared approaches in § 2.6.1, performance metrics in § 2.6.2 followed by the
simulation setup in § 2.6.3. Finally, we describe our evaluation results in § 2.6.4 focusing
on optimality, scalability, embedding performance, and failure restoration.

2.6.1 Compared Approaches

We compare the performance of our sub-optimal solutions (CoViNE-ILP and CoViNE-
fast) to the optimal solution, CoViNE-opt under single (k = 1) and double (k = 2) SLink
failure scenarios. We have restricted our failure scenarios to double link failures, since the
possibility of more than two simultaneous failures is extremely low in practice [117, 65].
To measure how much extra resources are needed to guarantee connectivity under different
failure scenarios, we compare our approaches with an optimal VNE algorithm [185] that
does not ensure any connectivity during substrate failure (k = 0). Table 2.2 summarizes
these approaches by listing the failure scenarios and names of the ILP and algorithm they
use along with their worst case time complexities.

2.6.2 Performance Metrics

Embedding Cost

The cost of provisioning bandwidth for the VLinks in a VN, computed using (2.17).

Execution Time

The time required for an algorithm to find the solution for CoViNE.
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Table 2.2: Compared Approaches

Failure Notation
Augmentation
&

Scenario conflicting set Embedding
Worst case time
complexity

computation

k = 0 ViNE-ILP [185] None ILP of MCUFP
O((|E| × |Ē|) ×
2(|Ē|×|E|))

k = 1
S-CoViNE-opt CoViNE-opt CoViNE-opt

O((|E| × (2|V̄ | − 2))×
2(|Ē|×(2|V̄ |−2)))

S-CoViNE-ILP Alg. 1 CoViNE-ILP
O((|E| × |Ē|2) ×
2(|Ē|×|E|))

S-CoViNE-fast Alg. 1 Alg. 2
O(2 × |V̄ | × |N (ū)| ×
|L(ū)|2 × (|E| + |V | ×
log |V |))

k = 2
D-CoViNE-opt CoViNE-opt CoViNE-opt

O((|E| × (2|V̄ | − 2))×
2(|Ē|×2×(2|V̄ |−2)))

D-CoViNE-ILP Alg. 1 CoViNE-ILP
O((2 × |E| × |Ē|2) ×
2(|Ē|×2×|E|))

D-CoViNE-fast Alg. 1 Alg. 2
O(3 × |V̄ | × |N (ū)| ×
|L(ū)|2 × (|E| + |V | ×
log |V |))

Restored Bandwidth

The percentage of VLinks’ bandwidth that is restored after these VLinks have been affected
by one or more SLink failure(s).

2.6.3 Simulation Setup

We implement the ILP formulations of CoViNE-opt and CoViNE-ILP using IBM ILOG
CPLEX C++ library and Alg. 1 and Alg. 2 using C++. The evaluation was performed
on a machine with 8×10-core hyper-threaded Intel Xeon E7-8870 2.40GHz CPU and 2TB
RAM. To demonstrate the scalability of our solutions, we consider both small and large
network topologies summarized in Table 2.3. For small and large cases, we vary both
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the size and LNR of SNs and VNs to assess the robustness of our solutions. Note that
the problem instances have been selected by studying ISP network measurement research
literature [153, 125, 100] and consulting with our industry partners. For each problem
instance in Table 2.3, with a given SN size and VN size, we generate 3 VNs for each
generated SN, and execute the compared approaches in Table 2.2 to embed each VN on the
SN independently. For a particular VN and SN, the source and destination of an SLink or
a VLink and the location constraints of VNodes are chosen randomly, and VLink demands
are set to 10% of the SLink bandwidths. For each VN, we measure the performance metrics
and plot the metrics’ average value with errorbar showing the maximum and the minimum
values. To analyze the impact of using different algorithms for solving VN embedding
(Fig. 2.6), we use star, ring, and randomly connected VN topologies on anonymous inter-
continental network topologies with varying Link-to-Node Ratios (LNRs). However, due
to huge cost of deploying inter-continental links, these SNs do not have enough LNRs to
guarantee necessary edge-connectivity against double link failures. Therefore, we do not
evaluate double link failure scenarios for this analysis. In addition, we demonstrate how
our approaches can survive affected VLinks’ bandwidth in the presence of single and double
SLink failures (Fig. 2.9).

Table 2.3: Summary of Simulation Parameters

Scenario Figure(s) SNodes SLinks VNodes VLinks

Small Scale

2.3(a), 2.3(b), 50-210 105-412 5 7
2.5(a), 2.5(b)
2.3(c), 2.3(d), 100 198 4-20 5-37
2.5(c), 2.5(d)
2.4(a), 2.4(b) 25 38-78 5 7
2.4(c), 2.4(d) 25 46 6 6-14

2.6 29-158 35-303 3-20 3-40

Large Scale

2.7(a) 500 2017 10-100 21-285
2.8(a) 1000 4023 10-100 21-285
2.7(b) 500 1500 10 11-31
2.8(b) 1000 2000 10 11-31
2.7(c) 500 1000-2000 10 21
2.8(c) 1000 2000-4000 10 21

Failure 2.9 150 310 10 11-31
Restoration
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2.6.4 Results

Small Scale Scenarios

Optimality Analysis Fig. 2.3(a)–2.3(d) compares embedding cost for guaranteeing con-
nectivity against different failure scenarios (k = 0, 1, and 2) by varying SN and VN sizes,
while Fig. 2.4(a)–2.4(d) presents embedding cost by varying SN and VN LNRs. Fig. 2.3(a)
and Fig. 2.3(b) show that cost increases for all the compared approaches with the increase
in SN size. This is due to the fact that location constraints of the VNodes of a VN are
placed far apart from one another in a larger SN, thus involving more SLinks in the sub-
strate paths for mapping VLinks of the VN and consuming more substrate resources along
those SLinks. An opposite trend is observed when SN LNR is increased in Fig. 2.4(a)
and Fig. 2.4(b). Incrementing SN density increases substrate path diversity with higher
number of shorter and disjoint paths that result in lower embedding costs. In constrast,
increasing VN size or VN LNR escalates embedding cost in general as seen in Fig. 2.3(c),
Fig. 2.3(d), and Fig. 2.4(c) except for double link failure scenario in Fig. 2.4(d). This stems
from the fact that a larger or denser VN has a higher number of VLinks to be embedded
that increase substrate resource consumption. In contrast, sparse VNs require higher num-
ber of VLinks to be augmented (see Fig. 2.9(d)) to guarantee connectivity against double
link failures that results in higher cost for embedding the augmented VLinks at lower VN
LNRs.

Among the approaches that guarantee connectivity for single failure scenario (i.e.,
k = 1) as shown in Fig. 2.3(a) and Fig. 2.3(c), S-CoViNE-opt generates the lowest cost of
embedding. Such behavior is expected since S-CoViNE-opt jointly optimizes all the sub-
problems of CoViNE yielding the optimal cost, whereas S-CoViNE-ILP and S-CoViNE-
fast address them sequentially. However, as can be seen in Fig. 2.3(c), S-CoViNE-opt
does not scale beyond a VN of size 8 due to its dependency on the exponential number of
edge-cuts in the VN. S-CoViNE-ILP eliminates this dependency by leveraging conflicting
set of a VN and adopting a heuristic algorithm for performing augmentation and com-
puting disjointness requirement. Despite using a heuristic for solving part of CoViNE,
the embedding costs of S-CoViNE-ILP remain very close (within ∼ 3% on average) to
those of S-CoViNE-opt. In contrast, S-CoViNE-fast employs heuristic algorithms for all
the sub-problems of CoViNE and incurs ∼18% and ∼16% additional cost compared to
S-CoViNE-opt and S-CoViNE-ILP, respectively. Slightly higher optimality gaps are ob-
served among the solutions for double failure scenarios (i.e., k = 2) in Fig. 2.3(b) and
Fig. 2.3(d) compared to single failure cases. In particular, the optimality gap between
D-CoViNE-ILP and D-CoViNE-opt is ∼ 4%, whereas the same between D-CoViNE-fast
and D-CoViNE-ILP is ∼ 19%. The increased optimality gaps among the solutions for
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Figure 2.3: Embedding Cost Analysis by varying topology size for Small Scale Topologies
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Figure 2.4: Embedding Cost Analysis by varying topology LNR for Small Scale Topologies
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Figure 2.5: Execution Time Analysis for Small Scale Topologies
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k = 2 is due to having more augmentation and disjointness constraints than the single
failure solutions.

Embedding Cost for Different Failure Scenarios A comparison of costs between
single and double failure scenarios of any solution (e.g., S-CoViNE-opt and D-CoViNE-opt)
in Fig. 2.3(a)–2.3(d) reveals that ensuring connectivity against a higher degree of failure
(k = 2) incurs a higher embedding cost. The reasons are twofold. First, D-CoViNE-opt,
as well as D-CoViNE-ILP and D-CoViNE-fast, require more parallel VLinks to be added
than their single failure counterparts to ensure the necessary edge-connectivity in the VN,
consuming additional substrate resources for embedding the augmented VLinks. Second,
solutions for double SLink failures require more disjointness constraints to be satisfied
to preserve necessary edge-connectivity in the embedding of the VN, resulting in longer
substrate paths for VLink mapping. Following these arguments, ViNE-ILP (with k = 0)
produces the lowest cost of embedding, since it neither augments any VLink nor imposes
any disjointness constraint. Empirically, D-CoViNE-opt incurs ∼24% and ∼66% more cost
than S-CoViNE-opt and ViNE-ILP, respectively.

Scalability Analysis Fig. 2.5(a)–2.5(d) reports execution times in logarithmic scale for
guaranteeing connectivity against different failure scenarios by varying the SN and VN
sizes. These figures show that the execution times of all the approaches, relying on ILP
formulation for part of the problem, increase exponentially with increasing problem size.
In contrast, execution times of the heuristic (i.e., S-CoViNE-fast and D-CoViNE-fast)
remain well within a second for similar problem instances. Furthermore, S-CoViNE-opt
and D-CoViNE-opt are the slowest among the approaches for single and double failure
scenarios, respectively, due to the intricacy of CoViNE-opt as discussed in § 2.3.4. In
addition, D-CoViNE-opt is an order of magnitude slower than S-CoViNE-opt due to hav-
ing more disjointness constraints and variables than S-CoViNE-opt. Finally, Fig. 2.5(c)
and Fig. 2.5(d) reveal that VN size has a more profound impact on the scalability of the
ILP based approaches than what SN size has. For instance, with our current hardware,
CoViNE-opt and CoViNE-ILP hit a ceiling in terms of VN size of 8 and 22 nodes, respec-
tively, on a 100 node SN.

Optimality Analysis of Alg. 2 We now analyze how much extra resources are allocated
by S-CoViNE-fast compared to S-CoViNE-ILP for different VN topologies. This extra
resource usage is measured as the ratio of their embedding costs since both S-CoViNE-fast
and S-CoViNE-ILP use the same Alg. 1 for augmentation and conflicting set computation.
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Therefore, the cost ratio indicates the perfomance comparison between ILP formulation
for VN embedding and Alg. 2. Fig. 2.6(a) presents the Cumulative Distribution Function
(CDF) of cost ratio for different types of VNs. This plot shows that 95% VNs with star
and random topologies are embedded by S-CoViNE-fast with at most 20% extra resources
compared to S-CoViNE-ILP. For ring topologies, costs of 91% of the VNs incurred by S-
CoViNE-fast remain within 35% of those of S-CoViNE-ILP. Ring topologies are different
from star and random topologies as all the VLinks in the ring need to be embedded on
mutually disjoint substrate paths to ensure connectivity against failures. Such stringent
disjointness constraints affect the sequential VLink mapping of Alg. 2 in S-CoViNE-fast,
resulting in the highest cost ratio for ring topologies. However, the higher costs of S-
CoViNE-fast, compared to S-CoViNE-ILP, are compensated by their higher scalability
and much faster execution time as discussed earlier.
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Figure 2.6: Performance Analysis of Alg. 2

Fig. 2.6(a) exhibits higher cost ratios between S-CoViNE-fast and S-CoViNE-ILP than
those observed in Fig. 2.3(a). This is due to using real SN topologies that are sparser than
synthetic SNs used in Fig. 2.3(a). To analyze this further, Fig. 2.6(b) shows how the
density of the underlying SN impacts the performance of S-CoViNE-fast. As we observe in
Fig. 2.6(b), the costs of S-CoViNE-fast and S-CoViNE-ILP for ring and random VNs differ
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by a larger margin in a ring-like SN (i.e., LNR=1.2). In this extreme case, the penalty for
missing an optimal solution by S-CoViNE-fast is substantial as the disjoint path becomes
much longer than the shorter one due to lack of SN path diversity, resulting in a higher cost
ratio. However, cost ratios between S-CoViNE-fast and S-CoViNE-ILP decrease initially
with the increase in SN LNR (Fig. 2.6(b)), and do not change significantly for SNs with
LNR≥1.6. An increase in SN LNR increases SN path diversity. S-CoViNE-fast exploits
this path diversity to find a shorter path for embedding a VLink, resulting in lower cost
ratios. For star VNs, disjointness requirement is much less than denser VNs, yielding close
to unit cost ratios in all cases.

Large Scale Scenarios

Embedding Cost Fig. 2.7(a) shows embedding costs of S-CoViNE-fast and D-CoViNE-
fast with varying VN sizes on 500 and 1000 node SNs. As expected, cost increases with
the increase in both VN size and SN size. Fig. 2.7(b) and Fig. 2.7(c) show embedding
cost by varying VN and SN LNRs, respectively. In these scenarios, embedding cost is
mostly influenced by disjointness constraint and parallel VLink augmentation. For D-
CoViNE-fast, augmentation cost dominates for VNs with LNR ≤ 2.1 (see Fig. 2.9(d)). In
addition, the number of augmented VLinks decreases with the increase in VN LNR, hence
the initial decrease in embedding cost. However for VNs with LNR > 2.1, cost for ensuring
disjointness constraint dominates, which justifies the later increase in Fig. 2.7(b) for D-
CoViNE-fast. On the other hand, for S-CoViNE-fast, disjointness constraint dominates
and embedding cost increases as higher number of VLinks are embedded on the same
SN for VNs with larger LNR. For the same reason discussed for small cases, higher path
diversity accounts for the decrease in cost with an increase in SN LNR in Fig. 2.7(c).

Scalability Analysis Confirming to the running time analysis in § 2.5.1 and § 2.5.3,
the execution times for S-CoViNE-fast and D-CoViNE-fast increase with the increase in
VN and SN sizes (Fig. 2.8(a)), VN LNR (Fig. 2.8(b)), and SN LNR (Fig. 2.8(c)). In
addition, the execution times for S-CoViNE-fast and D-CoViNE-fast are comparable with
each other in the large scale scenarios.

2.6.5 Failure Restoration

To demonstrate the failure restoration capability of CoViNE, we steer three classes of traffic
in a VN, labeled as Pr-1 (highest priority), Pr-2, and Pr-3 (lowest priority) demanding 20%,
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Figure 2.7: Embedding Cost Analysis for Large Scale Topologies
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Figure 2.8: Execution Time Analysis for Large Scale Topologies
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Figure 2.9: Restored Bandwidth and Overhead Analysis
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30%, and 50% of each VLink’s bandwidth, respectively. A controller handles failures by
rerouting traffic in the affected VLinks along alternate shortest paths in the embedding of
the VN. Bandwidth sharing along these paths follows fair sharing policy between traffic
from the same class and weighted fair sharing across different traffic classes.

Fig. 2.9(a) and Fig. 2.9(b) show the restored bandwidth of CoViNE-fast and ViNE-
ILP in the presence of single and double SLink failures, respectively. On the other hand,
Fig. 2.9(c) and Fig. 2.9(d) present the overhead for ensuring connectivity in terms of embed-
ding cost and number of augmented VLinks, respectively. As envisioned at the beginning
of this chapter, CoViNE-fast successfully restores almost the full bandwidth for the high-
est priority traffic in the presence of both single and double SLink failures as shown in
Fig. 2.9(a) and Fig. 2.9(b), respectively. However, the successful restoration of the highest
priority traffic achieved by CoViNE-fast comes at the expense of penalizing the traffic from
lower priority classes. The overall decrease in restored bandwidth for CoViNE-fast with
increasing VN LNR is counter-intuitive. This can be explained by observing the overhead
shown in Fig. 2.9(d). As VN LNR increases in Fig. 2.9(d), the number of augmented
VLinks and the amount of spare bandwidth decrease, thus offering less bandwidth to re-
store the same or possibly higher amount of bandwidth lost due to failures. Allocating
spare bandwidth in the VLinks of a denser VN could help restore more bandwidth upon
failure. However, spare bandwidth allocation with guaranteed connectivity is a separate
problem that is out of the scope of this chapter.

Fig. 2.9(a) and Fig. 2.9(b) also demonstrate that restored bandwidths of a specific traffic
class achieved by ViNE-ILP are always lower than those achieved by both S-CoViNE-fast
and D-CoViNE-fast. This is expected since ViNE-ILP does not take any measure to
guarantee connectivity in the VN embedding against SLink failures. In addition, restored
bandwidth of ViNE-ILP with the increase in VN LNR follows an opposite (increasing)
trend compared to CoViNE-fast. The reasons are twofold. First, a higher LNR induces
a higher path diversity in a VN that reduces the chances of VN partitioning in the pres-
ence of SLink failures. Second, a denser VN has more options for rerouting traffic in the
affected VLinks along alternate paths. Despite the increasing trend, restored bandwidths
of ViNE-ILP do not exceed those of CoViNE-fast even in higher LNR VNs, thanks to the
disjointeness constraints of CoViNE-fast. Furthermore, restored bandwidths of ViNE-ILP
are very poor in sparse VNs leaving the VNs vulnerable to failures, whereas CoViNE-fast
offers much better restorability in such VNs.
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2.7 Conclusion

In this chapter, we have studied the Connectivty-aware Virtual Network Embedding
(CoViNE) problem that ensures VN connectivity in the presence of multiple substrate
link failures. We have presented an ILP formulation, CoViNE-opt, that jointly solves
three sub-problems of CoViNE, namely, VN augmentation, computation of disjointness
constraints, and VN embedding. To address the intractability of CoViNE-opt, we have
separated VN augmentation and disjointness constraint computation from embedding and
addressed them sequentially. We have introduced the concept of conflicting set of a VN
to efficiently compute disjointness constraints without relying on the exponential number
of edge-cuts in a VN as required by CoViNE-opt. Given the NP-complete nature of each
of the sub-problems and their inter-dependency, we have presented a heuristic algorithm
that solves both VN augmentation and conflicting set computation simultaneously. The
conflicting set as well as the augmented VN, both produced by the heuristic algorithm, are
then used to impose polynomial number of disjointness constraints to the sub-problem of
VN embedding. Based on how we address the constrained VN embedding sub-problem,
we have provided two more solutions to CoViNE, namely CoViNE-ILP and CoViNE-fast.
CoViNE-ILP extends a Multi-commodity Unsplittable Flow based ILP formulation to ad-
dress the constrained VN embedding, while CoViNE-fast uses a heuristic algorithm to
do the same. In contrast to the state-of-the-art, our solutions are generalized to handle
multiple substrate link failures for arbitrary topologies.

We have evaluated our solutions using a variety of network topologies under different
failure scenarios. Evaluation results reveal that although CoViNE-opt can be used to
benchmark the solutions to CoViNE, it cannot be used to solve practical problems due
to its severely low scalability. Our evaluation results demonstrate that CoViNE-ILP very
closely approximates CoViNE-opt, and can be used as a baseline to compare heuristic
algorithms. In contrast, CoViNE-fast scales to large topologies at the cost of provisioning
about 16% additional resources compared to CoViNE-ILP, while executing several orders
of magnitude faster for the same problem instances. Evaluation results also show that
CoViNE for single and double link failure scenarios require on average ∼ 24% and ∼ 66%
extra resources than a VN embedding strategy that does not guarantee any connectivity.
We have also demonstrated that VN connectivity can be leveraged to restore higher priority
traffic in the presence of multiple substrate link failures.
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Chapter 3

Joint Spare Capacity Allocation and
Virtual Network Embedding

The SVNE research literature focuses primarily on protection (i.e., pro-actively provision-
ing backup during embedding) and restoration (i.e., reactively take action after failure)
methods [78]. In this chapter, we focus on the former, i.e., protection mechanism for
SVNE, which is usually faster than restoration approaches [59]. When a VN is embed-
ded with SN layer protection, it is the InP’s responsibility to handle substrate resource
failures. As an illustrative example, consider the embedding of VN abc on SN WXY Z
with SN layer survivability in Fig. 3.1, where a, b, and c are virtual nodes and W , X, Y ,
and Z are substrate nodes. In Fig. 3.1, if the substrate link (X, Y ) fails, the InP needs to
reroute the affected traffic on the virtual link (a, b) to its backup embedding in the SN, i.e.,
{(X,W ), (W,Z)}. A key challenge in providing protection is to efficiently utilize resources,
since backup resources remain idle until a failure has occurred. Protection based SVNE
approaches have adopted different techniques to increase resource efficiency including dedi-
cated backup capacity allocation [173, 48], backup resource sharing [71, 43, 20], multi-path
embedding [122, 93], providing weaker forms of survivability [141], and so on.

A rather unexplored spectrum in SVNE is to provide protection at the VN layer, much
like providing survivability at the upper layer (e.g., Internet Protocol (IP)) of a multi-layer
network (e.g., IP over optical such as IP-over-Wavelength Division Multiplexing (WDM)
network) [92, 115, 102]. Fig. 3.2 shows a VN embedding with protection at the VN layer.
With this type of protection, InPs can offload some of the failure management tasks to
SPs by augmenting VNs with sufficient spare capacity for backup and embedding the VNs
in a way that primary and backup VN resources are not affected by the same substrate
resource failure. When a substrate resource fails, it is the SP’s responsibility to reroute
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(a) VN topology (b) VNE with protection in SN

Figure 3.1: Survivability at SN (WXY Z) layer. Primary (or backup) embedding of a
virtual link is shown with thick (thin) lines. For example, virtual link (a, b) has a primary
and backup embedding of {(X, Y ), (Y, Z)} and {(X,W ), (W,Z)}, respectively.

(a) VN with protection (b) VN Embedding on SN (WXY Z)

Figure 3.2: Survivability at VN (abc) layer. Backup path of a virtual link in a VN is shown
with a thin line having same dash pattern. For example, virtual link (a, b) has a backup
virtual path {(a, c), (c, b)} and an embedding {(X, Y ), (Y, Z)}.

the affected traffic to the pre-allocated backup resources within the VN. For example, in
Fig. 3.2, when virtual link (a, b) is affected by the failure of substrate link (X, Y ), the SP
reroutes traffic between a and b along the backup virtual path {(a, c), (b, c)}.

The motivation for providing survivability at the VN level is to shift control to SPs,
as anticipated in future Transport Software Defined Networks (T-SDNs) [165]. T-SDNs
are the next generation of transport networks that leverage Software Defined Networking
(SDN) technologies and provide full fledged Virtual Transport Networks (VTNs) instead
of traditional end-to-end connectivity to SPs [6]. In essence, an SP can manage its VTN
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in the same way as managing its own transport network, and can deploy its own routing,
traffic engineering, and failure management solutions [165]. Consequently, with VN layer
survivability, the SP can offer different classes of service with differing survivability guar-
antees to its customers [62]. For instance, the spare backup capacity allocated to the VN of
Fig. 3.2(a) can also be used for carrying traffic of a service from best-effort protection class
during normal operation, while the same capacity can be used to guarantee protection for
a high priority service when substrate resources fail. Such different classes of service and
utilization of resources could not be easily achieved in a VN with SN level survivability,
since the spare capacity at the SN layer is usually transparent to the SP [52].

Another benefit of providing survivability at the VN layer is that it yields more re-
source efficient embedding compared to providing the same level of survivability at the SN
layer [102]. The intuition behind such claim is that the former can offer more opportunities
for spare capacity sharing than the latter. In the case of SN layer protection in Fig. 3.1(b),
only the backup capacity on the substrate link (Y,W ) can be shared among the backup
paths {(X, Y ), (Y,W )} and {(Z, Y ), (Y,W )} due to higher path diversity. However, VN
layer protection in Fig. 3.2(a) can exploit lower path diversity in a VN to share spare
capacities allocated on all the virtual links with one another. Although backup capacity
sharing across different VNs could increase the amount of sharing, such sharing is restricted
by the fact that virtual links from different VNs may be embedded on different substrate
paths to satisfy the location constraints of virtual nodes. These substrate paths may have
small number of substrate links in common, resulting in less opportunities of spare capac-
ity sharing than the VN level sharing. We also validate this claim later in our evaluation
(§ 3.5). Despite the backup sharing advantages, one can argue that the increased num-
ber of signaling and rerouting operations required for VN level survivability may lead to
slower restoration compared to ensuring survivability at the SN layer. However, A recent
study empirically evaluated the impact of providing protection at the SN level, compared
to that at the VN level, on a real testbed [165]. The study shows that: (i) both approaches
have similar protection switching time during a failure, and (ii) the latter can accommodate
more VNs than the former, thanks to its resource efficiency. InPs can thus increase revenue
by adopting VN level survivability without severely impacting failure response times.

A major challenge in SVNE with VN level protection is to jointly optimize spare backup
capacity allocation in the VN and survivable VN embedding on the SN. Spare capacity
allocation and survivable VN embedding have been studied extensively as independent
problems [114, 92, 78] and have been proven to be NP-complete and NP-hard, respec-
tively. SVNE with VN level protection stresses the need to solve these two problems
simultaneously, since they can affect each other. For example, an optimal spare capac-
ity allocation without considering VN embedding can be suboptimal, or may even render
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the embedding infeasible. Similarly, an optimal VN embedding without consideration for
spare capacity allocation may lead to suboptimal or even infeasible spare capacity alloca-
tion later. The intricacy of the problem is exacerbated by spare capacity sharing, which is
an efficient technique for minimizing aggregate spare capacity [71, 43, 20]. Spare capacity
sharing is possible as long as the virtual links, that use the spare capacity as backup in
the event of a substrate link failure, are not impacted by the same substrate failure. This
requirement can impose constraints such as having a certain number of disjoint paths for
backup provisioning that, in turn, can lead to increased embedding cost. Such path dis-
jointedness requirements can be alleviated by allocating dedicated spare capacities instead
of sharing the spare capacity. This can also increase embedding cost. Therefore, there is
a trade-off between backup path selection and spare backup capacity sharing in a VN and
embedding of the VN with disjoint path constraints. Striking a good balance between these
choices is challenging, and mandates a thorough investigation. Existing schemes either do
not consider all the subproblems of this joint optimization, or address them in separate
independent steps, leading to suboptimal solutions [92, 115, 108, 165, 141].

In this chapter, we study the joint optimization problem discussed above with the objec-
tive of guaranteeing VN survivability under multiple substrate link failures and minimizing
resource usage in the SN. We start with single link failure scenario and then extend the
solution to survive multiple link failures. Specifically, we make the following contributions:

� We formulate a joint optimization model using a Quadratic Integer Program (QIP)
to optimally solve spare capacity allocation and survivable VN embedding simul-
taneously. We transform the QIP into an Integer Linear Program (ILP) without
sacrificing its optimality. We provide ILP formulations for solving two extreme cases
of spare capacity sharing, one of which defines the upper bound of the cost function.
We present a mathematical analysis that dictates how the topological properties of
the SN affect the level of spare capacity sharing.

� The ILP formulations for the joint optimization problem are not scalable to large
problem instances. Hence, we devise an efficient heuristic algorithm to tackle the
computational complexity of the ILP-based solutions.

� We perform simulations to evaluate our solutions for single and double link failures.
We restrict our evaluation to one and two link failures since the probability of more
than two simultaneous link failures is extremely low [65, 117]. We also compare
shared backup protection at the VN level with the same at the SN layer proposed
in [43].
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� We discuss the signaling mechanism and the enabling technology to realize the pro-
tection at the VN layer. We also discuss the flexibilities an SP can have by leveraging
the spare capacity on the virtual links of a VN.

The rest of this chapter is organized as follows. We present the related literature in
§ 3.1 and contrast our work with the state-of-the-art. In § 3.2, we present the system model
and problem statement followed by a discussion on how spare capacity can be allocated
along a virtual link. Then, we present our QIP formulation for the joint optimization
problem and the ILP formulations for the optimal and special cases of the problem along
with a mathematical analysis in § 3.3. We present the design of our heuristic in § 3.4. The
evaluation of our solutions are presented in § 3.5. Finally, we conclude the chapter in § 3.6.

3.1 Related Work

We discuss the state-of-the-art in SVNE with Protection at SN level and VN level in
§ 3.1.1 and § 3.1.2, respectively. We then contrast our approach with similar works from
multi-layer (e.g., IP-over-WDM) network survivability literature in § 3.1.3.

3.1.1 SVNE with Protection at SN

Rahman et al., were the first to address the SVNE problem using a mixed ILP formu-
lation [132]. Since then a number of subsequent research works have addressed different
aspects of SVNE such as substrate node failure [176, 177, 171], leveraging multi-path em-
bedding [122, 93], shared backup protection [71, 43, 20], reactive recovery [112, 128, 140, 18],
and dedicated VN topology protection [173, 48] among others. Reactive recovery ap-
proaches are fundamentally different from our approach. They do not preallocate backup
resources and take action after a failure. Therefore, we exclude the reactive approaches
from our discussion here.

The SVNE literature exhibits a wide spectrum of protection approaches to improve
resource utilization. For instance, shared backup approaches proposed in [71, 43, 20] pro-
mote sharing of backup substrate resources for different virtual entities. In contrast, the
proposals in [173, 48] go to another extreme and propose to provide dedicated protection
for the whole VN topology, i.e., provision a full copy of the VN as a backup. Their motiva-
tion is to strictly satisfy failure recovery SLAs in transport networks carrying high volume
of traffic. The approaches described in [122, 93] try to optimize backup resource allocation
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by assuming in-network multi-path routing support. They do not share backup among
the virtual entities, nor do they provide dedicated protection to the VN topology. These
proposals assume a virtual link demand can be realized by multiple paths in the SN. Given
that the probability of all the embedding paths failing simultaneously is very low, only a
fraction of the virtual link demand needs to be provisioned disjointedly as a backup. All
the discussed approaches address the SVNE problem from an InP’s perspective, i.e., the
InP provisions backup resources for a VN in the SN and manages failure recovery tasks.
However, they do not explore the solution space where a VN is embedded in a way that
an SP can perform failure handling as we study in this chapter.

3.1.2 SVNE with Protection at VN

Compared to the approaches that provide protection at the SN level, only a few SVNE
approaches focus on providing protection at the VN level. Among them, an empirical
study by Wang et al., [165] compared different protection schemes for VNs in T-SDNs. The
results in [165] show that providing protection at the VN level can increase VN acceptance
ratio. However, [165] does not provide any mechanism to jointly optimize spare capacity
allocation in a VN and embed the VN accordingly. We previously studied a weaker version
of the SVNE problem with VN level protection in [141]. This work proposed to embed a
VN on an SN in such way that VN connectivity is ensured against multiple substrate link
failures. When failure occurs, the SP has to compute alternate paths in the VN to restore
the affected traffic which may incur delay. In addition, this work does not guarantee any
bandwidth in case of a failure and only allows the VN to operate in a best effort manner.
Barla et al., proposed design models for cloud services that provide resiliency either at the
VN or at the SN layer [23]. Their resiliency model employs dedicated backup consisting
of additional virtual links to reach the recovery data center. In contrast, our approach
alleviates the need for changing the VN topology and uses shared spare capacity allocated
to existing virtual links to survive link failures.

3.1.3 Network Survivability in Multi-layer Networks

A similar problem to our joint optimization has been studied in the IP-over-WDM lit-
erature, namely, Strongly Survivable Routing (SSR) [108]. SSR performs mapping and
capacity assignment of IP links over lighpaths in a WDM network in way that guarantees
connectivity and spare capacity at the IP layer during a failure in either IP or WDM layer.
A simplified version of SSR, namely, Weakly Survivable Routing (WSR) determines the
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mapping of an IP network that remains connected upon a WDM link failure. Although
SSR and WSR delegate survivability to the IP layer of a multi-layer network, they do not
pre-compute backup paths as we propose in this chapter. After a link fails, they require a
time-consuming step for finding alternate paths using the spare capacity in the IP layer. In
our approach for VN layer survivability, we obviate such restoration step by computing and
storing the backup paths during VN embedding. Despite the difference, we now discuss
some prominent works that address SSR as well as spare capacity allocation problem in
multi-layer networks.

The authors in [108] and [92] addressed the SSR problem in two separate steps. In
the first step, they solve the WSR problem with distinct objectives. Specifically, Lin et
al., [108] map IP links on WDM lightpaths such that the smallest capacity of the WDM
link in the lightpaths is maximized, whereas Kan et al., [92] minimize the maximum IP
bandwidth lost due to a WDM link failure. In the second step, they assign spare capacity
to the resultant mapping to ensure that bandwidth demands of the IP links can be rerouted
with full capacity after a WDM link fails. However, their two stage approach to the problem
may not lead to the optimal solution. More importantly, the first stage of their approach
can generate a mapping that may become infeasible in the second stage if the required
spare capacity cannot be assigned due to some resource constraints. In addition, they do
not consider spare capacity sharing to minimize resource usage.

To improve resource efficiency, Liu et al., [115] leveraged backup capacity sharing by
allocating spare capacity in the top layer of a two-layer network. However, this work
assumes that the mapping between top and bottom layers is pre-computed and given as
input to the spare capacity allocation problem. Hence, this approach suffers from its
inability to achieve optimality similar to [108] and [92]. Kubilinskas et al., [102] studied
the survivability problem at the IP layer of an IP-over-WDM network using hot standby
path protection. Their formulation has two shortcomings. First, it requires a set of pre-
computed candidate paths for each IP layer demand. Second, although the formulation
supports capacity sharing between a primary path and its standby protection path, it does
not support capacity sharing among the protection paths, thus resulting in poor resource
utilization. A common feature of the solutions of IP-over-WDM literature is that they
assume a fixed placement of IP routers in the network, whereas an SVNE algorithm needs
to determine both the mappings of virtual nodes and links. Hence, solutions from IP-over-
WDM networks cannot be directly applied to our problem.
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3.2 System Model and Background

We first present basic notations in § 3.2.1 and a formal statement of the problem in § 3.2.2.
We explain the concept of shared risk groups in § 3.2.3. We then discuss how embedding
affects spare capacity allocation on virtual links in § 3.2.4.

3.2.1 Basic Notations

Substrate Network

We represent the substrate network (SN) as an undirected graph, G = (V,E), where V
and E denote the set of substrate nodes (SNodes) and links (SLinks), respectively. The set
of neighbors of an SNode u ∈ V is denoted by N (u). We associate the following attributes
with each SLink (u, v) ∈ E: (i) buv : bandwidth capacity of the SLink (u, v), (ii) Cuv :
cost of allocating unit bandwidth on (u, v) for a VLink. We assume that the SNodes are
network nodes with sufficient capacity to switch traffic at peak rate between any pair of
ports. Therefore, we do not consider any node mapping cost or node capacity constraint.

Virtual Network

We represent the virtual network (VN) as an undirected graph Ĝ = (V̂ , Ê), where V̂ and Ê
represent the set of virtual nodes (VNodes) and virtual links (VLinks), respectively. The set
of neighbors of a VNode v̂ ∈ V̂ is denoted byN (v̂). Each VLink (û, v̂) ∈ Ê has a bandwidth
demand bûv̂. We also have a set of location constraints (LC), L = {L(û)|L(û) ⊆ V, ∀û ∈ V̂ },
such that a VNode û ∈ V̂ can only be provisioned on an SNode u ∈ L(û). We use a binary
variable `ûu (1 if û ∈ V̂ can be provisioned on u ∈ V , 0 otherwise), to represent this location
constraint. We denote the spare backup bandwidth allocated to a VLink (û, v̂) ∈ Ê that
serves as a backup for other VLinks by Sûv̂. We assume VNs are already K-edge connected
to survive K SLink failures. K-edge connectivity is a necessary condition to ensure that
at least K edge disjoint backup virtual paths always exist for each VLink (û, v̂) ∈ Ê [108].
However, if a VN has less than K-edge connectivity, any VN augmentation strategy such
as [182, 156, 141] can make the VN K-edge connected.

3.2.2 Problem Statement

Given an SN G = (V,E), a VN Ĝ = (V̂ , Ê), and LC L:
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� For each VLink (û, v̂) ∈ Ê, allocate spare capacity along a set of K backup virtual

paths (VPaths) P̂K
ûv̂ = {P̂ k

ûv̂|1 ≤ k ≤ K} in the VN, where P̂ k
ûv̂ is the kth VPath

between û and v̂ such that P̂ k
ûv̂ is edge disjoint from (û, v̂) and from each P̂ j

ûv̂ ∈ P̂K
ûv̂

with j 6= k, and bûv̂ spare bandwidth is available on the VLinks in P̂ k
ûv̂ after (û, v̂) is

affected by an SLink failure.

� Map each VNode v̂ ∈ V̂ to exactly one SNode, u ∈ V . Multiple VNodes from the
same VN request should not be mapped to the same SNode. However, multiple
VNodes from different VNs can share an SNode.

� Map each VLink (û, v̂) to a non-empty substrate path (SPath) Pûv̂ having sufficient
bandwidth to accommodate the primary demand of (û, v̂) and the spare backup
bandwidth allocated on (û, v̂). A VLink (û, v̂) and the VLinks on its VPath P̂ k

ûv̂ are
edge disjointedly mapped on the SN to ensure that SLink failures do not affect them
at the same time. Similarly, two VLinks present in the two VPaths, such as P̂ k

ûv̂ and
P̂ j
ûv̂ where j 6= k, of the same VLink (û, v̂) are mapped on edge disjoint SPaths to

eliminate the risk of both the VPaths failing together.

� Minimize the total cost of allocating bandwidth on the SN to embed the VN equipped
with spare bandwidth.

3.2.3 Shared Risk Group

VLinks that share at least one SLink on their mapped SPaths share the same risk since all of
them can be impacted if the shared SLink fails. In a context where only single SLink failure
is considered, a set of VLinks belong to the same shared risk group (SRG) if and only if they
share at least one SLink on their mapped SPaths. In contrast, VLinks that do not share
any SLink on their mapped SPaths belong to different SRGs. To represent the SRGs, we
partition the VLinks into a number of SRGs represented by the set D = {d1, d2, d3, . . . d|D|},
where |D| ≤ |Ê|. A VLink belongs to exactly one SRG di ∈ D and shares at least one
SLink on its mapped SPath with other VLinks in di. We use the following variable to
decide a VLink’s membership to an SRG:

dûv̂i =

{
1 iff (û, v̂) ∈ Ê belongs to SRG di ∈ D,
0 otherwise.
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3.2.4 Spare Capacity Assignment Model

Based on how the VLinks form different SRGs during VN embedding, the requirement for
spare backup capacity on the VLinks can be different. We explain this fact with a simple
example illustrated in Fig. 3.3. In this example, VLink (a, b) is on the backup VPaths
of three other VLinks: (c, d), (e, f), and (g, h) as shown in Fig. 3.3(a). We can assign
different spare capacity on (a, b) to protect (c, d), (e, f), and (g, h), based on how these
three VLinks are mapped. Consider the following scenarios regarding their mappings:

(a) VLink (a, b) is on the backup
VPaths of VLinks (c, d), (e, f), (g,
h)

(b) (c, d), (e, f), and (g, h) in the same SRG

(c) (c, d), (e, f), and (g, h) in different SRGs (d) (c, d), (e, f) in one SRG, (g, h) in a different
SRG

Figure 3.3: Illustration of different SRGs based on embedding

All three belong to the same SRG. If all three VLinks are in the same SRG, then
they share at least one SLink on their mapped SPaths (Fig. 3.3(b)). A single SLink failure
can affect all three VLinks. Therefore, spare backup capacity allocated on (a, b) should be
sufficient to support the bandwidth requirement of all three VLinks, i.e., Sab = bcd+bef+bgh.

All three belong to different SRGs. If all three VLinks belong to different SRGs,
then they do not share any SLink on their mapped SPaths (Fig. 3.3(c)). At most one
of the VLinks will be affected by a single SLink failure. Therefore, Sab should be suffi-
cient to support the maximum bandwidth requirement of these three VLinks, i.e., Sab =
max(bcd, bef , bgh).
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Two belong to the same SRG, the third in a different SRG. The mapped SPaths
can create multiple SRGs out of these three VLinks. For example, in Fig. 3.3(d), VLinks
(c, d) and (e, f) belong to the same SRG, whereas VLink (g, h) belongs to a different SRG.
A single SLink failure will then affect only one group. Therefore, Sab should be sufficient to
support the group with the maximum requirement. For the group with (c, d) and (e, f), the
bandwidth requirement is bcd+ bef . For the other group, the requirement is bgh. Therefore,
spare backup bandwidth on (a, b) should be max(bcd + bef , bgh).

More formally, if a VLink (û, v̂) ∈ Ê is present on the backup VPaths of a set of VLinks
Ĥûv̂ ⊆ Ê, and VLinks in Ê form a set of D = {d1, d2, d3, . . . d|D|} SRGs, we can generalize
the spare backup bandwidth allocated to (û, v̂) as:

Sûv̂ = max
∀di∈D

 ∑
∀(x̂,ŷ)∈Ĥûv̂

dx̂ŷi bx̂ŷ

 (3.1)

3.3 Problem Formulation

We first provide a QIP formulation to optimally solve the joint spare capacity allocation
and survivable embedding problem for the case of single substrate link failure in § 3.3.1.
We then describe the transformation of the QIP to an ILP, namely Opt-ILP, in § 3.3.2.
However, due to an overwhelming number of decision variables and constraints, Opt-ILP is
only scalable to very small problem instances. Therefore, in § 3.3.3, we present simplified
ILP formulations for two special cases of the joint optimization problem, along with a
mathematical analysis that dictates how to select one of the ILP formulations based on
the topological properties of an SN. Finally, § 3.3.4 discusses how we can extend our
solution to handle multiple independent SLink failures.

3.3.1 Quadratic Integer Program Formulation

We first present our decision variables (§ 3.3.1). Then we introduce the constraints (§ 3.3.1)
followed by the objective function of our formulation (§ 3.3.1).

Decision Variables

For each VLink (û, v̂) ∈ Ê, there is a backup VPath P̂ûv̂ that provides protection to (û, v̂)
from a single SLink failure. When any SLink on the VLink’s mapped SPath fails, P̂ûv̂
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provides the full bandwidth bûv̂ between the VNodes û and v̂. The following decision
variable defines whether a VLink (û, v̂) ∈ Ê belongs to the VPath protecting a VLink
(x̂, ŷ) ∈ Ê:

zûv̂x̂ŷ =

{
1 if (û, v̂) ∈ Ê is on the backup VPath of (x̂, ŷ) ∈ Ê,
0 otherwise.

Note that, zûv̂ûv̂ = 0, since a VLink’s backup VPath has to be edge disjoint from itself.

The following decision variable indicates the mapping between a VLink (û, v̂) ∈ Ê and
an SLink (u, v) ∈ E:

xûv̂uv =

{
1 if (û, v̂) ∈ Ê is mapped to (u, v) ∈ E,
0 otherwise.

The VNode to SNode mapping is denoted using the following decision variable:

yûu =

{
1 if û ∈ V̂ is mapped to u ∈ V,
0 otherwise.

As discussed in § 3.2.3, VLinks that share at least one SLink on their mapped SPaths
belong to the same SRG. SRG membership is defined using the decision variable dûv̂i ,
presented in § 3.2.3.

Constraints

VNode Mapping Constraints (3.2) and (3.3) ensure that each VNode of a VN is
provisioned on an SNode satisfying the provided location constraints. Moreover, (3.4)
constraints an SNode to host at most one VNode from the same VN. Note that VNode
mapping follows from the VLink mapping, since there is no cost associated with the VNode
mapping.
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∀û ∈ V̂ ,∀u ∈ V : yûu ≤ `ûu (3.2)

∀û ∈ V̂ :
∑
u∈V

yûu = 1 (3.3)

∀u ∈ V :
∑
û∈V̂

yûu ≤ 1 (3.4)

Backup VPath Continuity Constraints A VLink in a VN is protected by a VPath
in the VN to survive a single SLink failure. (3.5) ensures continuity of a backup VPath
protecting a VLink (x̂, ŷ) ∈ Ê:

∀(x̂, ŷ) ∈ Ê :
∑

∀v̂∈N (û)\{ŷ}

(zûv̂x̂ŷ − zv̂ûx̂ŷ ) =


1 if û = x̂

−1 if û = ŷ

0 otherwise

(3.5)

VLink Mapping Constraints We ensure that every VLink is mapped to a non-empty
set of SLinks using (3.6). Then, (3.7) makes sure that the in-flow and out-flow of each
SNode is equal, except for the SNodes where the endpoints of a VLink are mapped. This
ensures that the non-empty set of SLinks corresponding to a VLink’s mapping form a single
continuous SPath.

∀(û, v̂) ∈ Ê :
∑

∀(u,v)∈E

xûv̂uv ≥ 1 (3.6)

∀û, v̂ ∈ V̂ ,∀u ∈ V :
∑

∀v∈N (u)

(xûv̂uv − xûv̂vu) = yûu − yv̂u (3.7)

The binary nature of the VLink mapping decision variable and the flow constraint
prevent any VLink from being mapped to more than one SPaths, thus, restricting the
VLink mapping to the Multi-commodity Unsplittable Flow Problem [58].
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Capacity Constraints We also need to ensure that we do not over-commit the band-
width resources we have on the SLinks. To do so, we first compute the spare backup
bandwidth allocated to a VLink (û, v̂) ∈ Ê using (3.1) as follows:

Sûv̂ = max
∀di∈D

∑
∀(x̂,ŷ)∈Ê\{(û,v̂)}

zûv̂x̂ŷ × d
x̂ŷ
i × bx̂ŷ (3.8)

Then, the following constraints prevent any over-commit of the bandwidth resource on
the SLinks:

∀(u, v) ∈ E :
∑

∀(û,v̂)∈Ê

xûv̂uv × (bûv̂ + Sûv̂) ≤ buv (3.9)

Note that (3.9) is a cubic constraint, since Sûv̂ is quadratic according to (3.8). Therefore,
we take the following steps to linearize Sûv̂ in order to keep (3.9) in quadratic order. First,
we introduce a new variable gûv̂x̂ŷ(i), defined as follows:

gûv̂x̂ŷ(i) =

{
0 if zûv̂x̂ŷ = 1 and dx̂ŷi = 1,
1 otherwise.

Essentially, for a given VLink (û, v̂) ∈ Ê, the zero values of gûv̂x̂ŷ(i) induce a set of VLinks

that belong to the same SRG and have (û, v̂) on their backup VPaths. The value of gûv̂x̂ŷ(i)
is set using the following constraint:

∀(û, v̂) ∈ Ê,∀(x̂, ŷ) ∈ Ê,∀di ∈ D : zûv̂x̂ŷ + dx̂ŷi + gûv̂x̂ŷ(i) ≤ 2 (3.10)

We can use gûv̂x̂ŷ(i) to rewrite (3.8) in a linear form as follows:

Sûv̂ = max
∀di∈D

∑
∀(x̂,ŷ)∈Ê\{(û,v̂)}

(1− gûv̂x̂ŷ(i))× bx̂ŷ (3.11)

Since our objective function will be a minimization function, we define gûv̂x̂ŷ(i) such that
setting it to 1 minimizes the value of Sûv̂, unless it is constrained to be 0 according to
(3.10). This constrained case will only occur when both zûv̂x̂ŷ and dx̂ŷi are 1, as enforced by
(3.10).
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SRG Constraints The mapped SPaths of the VLinks from an SRG di, must be edge
disjoint from the mapped SPaths of the VLinks from a different SRG dj (∀j 6= i). This is
accounted for in (3.12). (3.13) ensures that two VLinks from the same SRG share at least
one SLink on their mapped SPaths. Note that a VLink (û, v̂) ∈ Ê cannot be present in
more than one SRGs, which is satisfied by (3.14).

∀(u, v) ∈ E,∀(û, v̂) ∈ Ê,∀(x̂, ŷ) ∈ Ê,
∀di ∈ D, ∀dj ∈ D s.t. (û, v̂) 6= (x̂, ŷ) and i 6= j :

dûv̂i + dx̂ŷj + xûv̂uv + xûv̂vu + xx̂ŷuv + xx̂ŷvu ≤ 3

(3.12)

∀di ∈ D, ∀(û, v̂) ∈ Ê,∀(x̂, ŷ) ∈ Ê s.t. (û, v̂) 6= (x̂, ŷ),

∃(u, v) ∈ E : dûv̂i + dx̂ŷi + xûv̂uv + xûv̂vu + xx̂ŷuv + xx̂ŷvu = 4
(3.13)

∀(x̂, ŷ) ∈ Ê :
∑
∀di∈D

dx̂ŷi = 1 (3.14)

Survivability Constraints To ensure survivability of the VN under single SLink fail-
ure, the mapped SPath of a VLink cannot share any SLink with the mapped SPaths of
the VLinks present on its backup VPath. The following constraints make sure this edge
disjointedness requirement:

∀(u, v) ∈ E,∀((û, v̂), (x̂, ŷ)) ∈ Ê × Ê s.t. (û, v̂) 6= (x̂, ŷ) :

zx̂ŷûv̂ + xûv̂uv + xûv̂vu + xx̂ŷuv + xx̂ŷvu ≤ 2 (3.15)

Objective Function

As per the problem statement presented in § 3.2.2, we do not consider any node mapping
cost in our VN embedding. Thus, our cost function minimizes the total cost of provisioning
the working and spare backup bandwidth for the VLinks of a VN on the SLinks of an SN.
This gives us the following objective function:

minimize

 ∑
∀(û,v̂)∈Ê

∑
∀(u,v)∈E

xûv̂uv × Cuv × (bûv̂ + Sûv̂)

 (3.16)
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3.3.2 ILP Transformation, Opt-ILP

Our formulation for the joint optimization problem has a quadratic constraint (3.9) and a
quadratic objective function (3.16). Therefore, the QIP presented in § 3.3.1 is a Quadrat-
ically Constrained Quadratic Program (QCQP) and falls into the general category of the
Quadratic Assignment Problem (QAP) [106]. Solving a QAP is computationally expensive
and is known to be NP-hard [36]. Sahni et al., proved that even finding an ε−approximate
solution of QAP is NP-hard [139]. We now present the steps to linearize the QIP by using
a technique similar to the one discussed in [124]. For the purpose of linearization, we first
put a bound on the spare backup bandwidth of a VLink (û, v̂) ∈ Ê, i.e., Sûv̂: 0 ≤ Sûv̂ ≤ λ,
where λ is a very large value. We also introduce a new integer variable qûv̂uv , defined in
terms of xûv̂uv as follows:

qûv̂uv =

{
Sûv̂ if xûv̂uv = 1,

0 if xûv̂uv = 0.

The following constraints enforce the above definition.

∀(u, v) ∈ E,∀(û, v̂) ∈ Ê : qûv̂uv ≥ 0 (3.17)

∀(u, v) ∈ E,∀(û, v̂) ∈ Ê : Sûv̂ − λ× (1− xûv̂uv) ≤ qûv̂uv (3.18)

To elaborate, when xûv̂uv = 0, constraints (3.17) and (3.18) become qûv̂uv ≥ 0 and Sûv̂−λ ≤
qûv̂uv , respectively. Since λ is a very large value by definition, the constraints finally reduce
to qûv̂uv ≥ 0. On the other hand, when xûv̂uv = 1, constraint (3.17) and (3.18) become qûv̂uv ≥ 0
and Sûv̂ ≤ qûv̂uv , respectively. In this latter case, constraint (3.18), i.e., Sûv̂ ≤ qûv̂uv dominates.
Finally, if we include qûv̂uv in the minimization objective function, the smallest possible value
of qûv̂uv will be used to minimize the value of the objective function, yielding qûv̂uv = Sûv̂ (for
xûv̂uv = 1) and qûv̂uv = 0 (for xûv̂uv = 0).

We now rewrite the capacity constraint (3.9) as the following linear constraint using
qûv̂uv .

∀(u, v) ∈ E :
∑

∀(û,v̂)∈Ê

(xûv̂uv × bûv̂ + qûv̂uv) ≤ buv (3.19)
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Similarly, the quadratic objective function can be written in a linearized form as follows:

minimize

 ∑
∀(û,v̂)∈Ê

∑
∀(u,v)∈E

xûv̂uv × Cuv × bûv̂ + Cuv × qûv̂uv)

 (3.20)

3.3.3 Problem Variations

Opt-ILP is scalable to very small problem instances due to its large number of constraints
and variables. For instance, the number of constraints generated by capacity constraints
(3.10) and SRG constraints (3.12) and (3.13) are Ê3, E × Ê4, and E × Ê3, respectively.
Similarly, the number of variables generated by dx̂ŷi and gûv̂x̂ŷ(i) are Ê2 and Ê3. To reduce
problem complexity, we formulate two simpler variants of Opt-ILP, namely Max-ILP and
Min-ILP, that represent maximum and minimum sharing of spare capacity, respectively.

ILP for Maximum Spare Capacity Sharing, Max-ILP

Design of Max-ILP is motivated by an observation from our evaluation results that for a
VLink (û, v̂), Opt-ILP assigns the VLinks in Ĥûv̂ into separate SRGs whenever VLinks in
Ĥûv̂ can be mapped to disjoint SPaths, thus preferring more sharing of the spare capacity.
Therefore, Max-ILP enforces maximum sharing of spare backup capacity Sûv̂ of a VLink
(û, v̂) among the VLinks in Ĥûv̂ that have (û, v̂) in their VPaths, similar to the example
shown in Fig. 3.3(c). In order to guarantee full bandwidth between pairs of VNodes
during an SLink failure, Max-ILP forcefully assigns VLinks in Ĥûv̂ into separate SRGs
instead of deciding the assignment dynamically during embedding. In this way, Max-ILP
eliminates decision variables dx̂ŷi and gûv̂x̂ŷ(i) from the capacity and SRG constraints of Opt-
ILP. Therefore, in Max-ILP, we can rewrite (3.11) as follows and eliminate the constraints
in (3.10):

Sûv̂ = max
∀(x̂,ŷ)∈Ê\{(û,v̂)}

zûv̂x̂ŷ × bx̂ŷ (3.21)

Similarly, we can replace SRG constraints (3.12), (3.13), and (3.14) of Opt-ILP by the
following disjointedness constraints:
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∀(u, v) ∈ E,∀(û, v̂) ∈ Ê,∀(x̂, ŷ) ∈ Ê \ {(û, v̂)},
∀(â, b̂) ∈ Ê \ {(û, v̂), (x̂, ŷ)} :

zûv̂x̂ŷ + zûv̂
âb̂

+ xx̂ŷuv + xx̂ŷvu + xâb̂uv + xâb̂vu ≤ 3

(3.22)

These disjointedness constraints ensure that if a VLink (û, v̂) ∈ Ê is in the backup
VPaths of two other VLinks such as (x̂, ŷ) ∈ Ê \ (û, v̂) and (â, b̂) ∈ Ê \ (û, v̂), (x̂, ŷ) and
(â, b̂) cannot share an SLink in their mappings. However, (x̂, ŷ) and (â, b̂) can share an
SLink if their VPaths do not have any common VLink. Therefore, Max-ILP consists of the
constraints (3.21), (3.22), and all the constraints of Opt-ILP except the constraints (3.10),
(3.11), (3.12), (3.13), and (3.14). The same objective function (3.20) of Opt-ILP prevails
in Max-ILP. Thus, Max-ILP replaces higher order variables and constraints of Opt-ILP
by a lower order constraint. The disadvantage of Max-ILP is that it may require more
disjoint SPaths to satisfy constraints of (3.22) than those required by Opt-ILP .

ILP for No Spare Capacity Sharing, Min-ILP

Max-ILP requires that all the VLinks in Ĥûv̂ are mapped to disjoint SPaths. This is
only achievable in SNs where adequate disjoint SPaths can be found. However, in sparse
SNs, Max-ILP may become infeasible due to the unavailability of disjoint SPaths. Such
infeasibility can also occur in SNs having trap topological structure [55, 69]. We have
observed this behavior in our evaluation for embedding VNs in sparser SNs. Despite the
infeasibility of Max-ILP, Opt-ILP is able to find a solution in such SNs by striking a balance
between the level of spare capacity sharing and the number of disjoint SPaths. Following
this observation, we present an ILP formulation, Min-ILP, that does not allow any sharing
of spare backup capacity as shown in Fig. 3.3(b). Consequently, all the VLinks in Ĥûv̂

belong to only one SRG and the SRG constraints (3.12), (3.13), and (3.14) of Opt-ILP can
be eliminated from Min-ILP. In addition, we can exclude decision variables dx̂ŷi and gûv̂x̂ŷ(i)
and the constraint (3.11) from Min-ILP. However, the disadvantage of Min-ILP is that all
the VLinks in Ĥûv̂ can be affected during an SLink failure due to sharing of the same risk.
Hence, the spare backup capacity of a VLink Sûv̂ in Min-ILP should be adequate enough
to serve the bandwidth of all the VLinks in Ĥûv̂. This increases the spare backup capacity
requirement Sûv̂ of a VLink as shown by the following equation:

Sûv̂ =
∑

∀(x̂,ŷ)∈Ê\{(û,v̂)}

zûv̂x̂ŷ × bx̂ŷ (3.23)
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Similar to Max-ILP, Min-ILP consists of the constraints (3.23) and all the constraints
of Opt-ILP except the constraints (3.10), (3.11), (3.12), (3.13), and (3.14). The same
objective function (3.20) of Opt-ILP prevails in Min-ILP as well. In this way, Min-ILP
replaces all the higher order decision variables and constraints of Opt-ILP. Another po-
tential drawback of Min-ILP is that it has to explore a larger search space than Max-ILP
would require due to Min-ILP ’s lower number of constraints.

Comparative Study between Max-ILP and Min-ILP

Recall from § 3.2.4 that based on how the VLinks are sharing risks in their mappings,
the spare capacity allocation can be different on a VLink. One extreme case is when all
the VLinks in Ĥûv̂ are mapped disjointedly (Max-ILP). Another extreme case is when
there is minimal disjointedness in the mapping, i.e., VLinks are mapped disjointedly only
when constrained by the backup VPath’s survivability constraints (3.15) (Min-ILP). We
now present a mathematical analysis showing how the mapped SPath length affects the
preference for disjointedness.

Let us assume for the sake of simplicity that VLinks in Ĥûv̂ are not on the backup
VPath of any other VLink. We represent the mean mapped SPath length for Max-ILP
and Min-ILP as P and R, respectively. Note that P and R should be different since Max-
ILP has to satisfy disjointedness constraints (3.22), thus resulting in longer SPaths. On
the other hand, SPaths in Min-ILP have no such disjointedness requirements to adhere to,
thereby yielding shorter SPaths. Finally, we assume a unit cost of allocating bandwidth on
the SLink, i.e., ∀(u, v) ∈ E : Cuv = 1. In Max-ILP, each VLink in Ĥûv̂ belongs to different
SRGs. Using (3.21), spare capacity requirement for Max-ILP is:

Smaxûv̂ = max
∀(x̂,ŷ)∈Ĥûv̂

bx̂ŷ (3.24)

In Min-ILP, all the VLinks in Ĥûv̂ for a given (û, v̂) ∈ Ê belong to the same SRG.
Therefore, we can compute spare capacity requirement for Min-ILP using (3.23) as follows:

Sminûv̂ =
∑

∀(x̂,ŷ)∈Ĥûv̂

bx̂ŷ (3.25)

For Max-ILP, the cost of mapping the VLinks in Ĥûv̂∪{(û, v̂)} is obtained by combining
(3.16) and (3.24) as follows:
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costmax = P ×

bûv̂ + max
∀(x̂,ŷ)∈Ĥûv̂

bx̂ŷ +
∑

∀(x̂,ŷ)∈Ĥûv̂

bx̂ŷ


Similarly, the cost of mapping the VLinks in Ĥûv̂∪{(û, v̂)} for Min-ILP can be obtained

by combining (3.16) and (3.25) as:

costmin = R×

bûv̂ + 2
∑

∀(x̂,ŷ)∈Ĥûv̂

bx̂ŷ


Now, costmax < costmin will be true if:

P ×

bûv̂ + max
∀(x̂,ŷ)∈Ĥûv̂

bx̂ŷ +
∑

∀(x̂,ŷ)∈Ĥûv̂

bx̂ŷ

 <

R×

bûv̂ + 2
∑

∀(x̂,ŷ)∈Ĥûv̂

bx̂ŷ


This gives us the following final inequality:

P
R
<

bûv̂ + 2×
∑

∀(x̂,ŷ)∈Ĥûv̂

bx̂ŷ

bûv̂ + max
∀(x̂,ŷ)∈Ĥûv̂

bx̂ŷ +
∑

∀(x̂,ŷ)∈Ĥûv̂

bx̂ŷ

When the set Ĥûv̂ is sufficiently large, we have bûv̂ ≤ max
∀(x̂,ŷ)∈Ĥûv̂

bx̂ŷ <<
∑

∀(x̂,ŷ)∈Ĥûv̂

bx̂ŷ,

yielding P <∼ 2R. This gives us the following insight: as long as the mean mapped SPath
length of the Max-ILP does not become about twice the mean mapped SPath length of the
Min-ILP, Max-ILP yields an embedding with a lower cost than Min-ILP. In other words,
cost of Max-ILP will only exceed the cost of Min-ILP when the increase in mean SPath
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length due to satisfying disjointedness constraints (3.22) is almost equal to the mean SPath
length computed without the disjointedness constraints (3.22). Such situation can occur
in sparse SNs that lack path diversity. In contrast, dense SNs have higher path diversity
and higher number of SLinks. Consequently, the number of edge-disjoint SPaths is also
higher in denser SNs than in sparser SNs [31]. To satisfy disjointedness constraints, denser
SNs increase mean SPath length by a smaller factor compared to that in sparser SNs.
Therefore, Min-ILP should be the preferred choice only in extremely sparse SNs, whereas
Max-ILP can be used in all other types of SNs. This result motivates us to develop a
heuristic algorithm that prefers sharing of spare capacity much like the case of Max-ILP.

3.3.4 Single to Multiple SLink Failures

We now discuss how our solutions for single SLink failure can be extended to handle
multiple SLink failures. Since Max-ILP closely approximates Opt-ILP (see § 3.5.3) and
Max-ILP is more resource efficient than Min-ILP (see § 3.3.3), we focus on extending Max-
ILP for multiple SLink failures. As discussed in [76], there are two methods to survive
against multiple (say K) link failures in a single layer network, a VN in our case. In
the first method, for each VLink (û, v̂), provision spare capacities across K edge-disjoint
backup VPaths so that at least one of them provides the full bandwidth even if (û, v̂)
and K − 1 of the backup VPaths are affected by K simultaneous VLink failures. During
VN embedding, the disjoint path requirement translates to the following: a VLink in the
k-th edge-disjoint backup VPath (including (û, v̂)) and another VLink in the j-th (j 6= k)
edge-disjoint VPath should be embedded on disjoint SPaths. In the second method, for
each VLink (û, v̂), provision only one backup VPath P̂ûv̂ such that the VLinks in P̂ûv̂ have
enough spare capacity to carry all the traffic of any K VLinks in the VN. In this case,
rerouting of traffic during the failure of (û, v̂) is the same as previous case. However,
during the failures of (û, v̂) and any VLink (x̂, ŷ) ∈ P̂ûv̂, traffic is rerouted to the VPath
consisting of (P̂ûv̂ − (x̂, ŷ)) ∪ P̂x̂ŷ, where P̂x̂ŷ is the backup VPath between x̂ and ŷ. This
method requires lesser number of disjoint paths compared to the first method, i.e., only
(û, v̂) and any VLink in P̂ûv̂ need to be embedded on disjoint SPaths. However, spare
capacity requirement can be unnecessarily high since a VLink in P̂x̂ŷ has to carry the
traffic of K other VLinks that may have been impacted by K SLink failures, limiting the
applicability of the second method. An additional disadvantage of this method is that
rerouted traffic may have to traverse many VLinks chained through backup VPaths when
K VLinks fail [76]. Hence, we adopt the first method in extending Max-ILP to handle the
case of multiple SLink failures as discussed in the following. First, we modify the decision
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variable defining VPath relationships to take into account multiple VPaths as below:

zûv̂x̂ŷ (k) =

{
1 if (û, v̂) is on the kth backup VPath of (x̂, ŷ),
0 otherwise.

Similar to (3.5), we need to have VPath continuity constraints for each of backup
VPaths of a VLink. In addition, we need the following constraints to ensure the edge-
disjointedness of the K backup VPaths of a VLink.

∀k = 1, 2, ..., K,∀j = 1, 2, ..., K s.t. k 6= j,

∀((û, v̂), (x̂, ŷ)) ∈ Ê × Ê s.t. (û, v̂) 6= (x̂, ŷ) :

zx̂ŷûv̂(k) + zx̂ŷûv̂(j) ≤ 1 (3.26)

Following (3.15), we need survivability constraints between the mappings of a VLink
and the VLinks in each of its backup VPaths. We also need to ensure that two VLinks
present in two backup VPaths of a VLink are embedded on disjoint SPaths:

∀k = 1, 2, ..., K,∀j = 1, 2, ..., K s.t. k 6= j,

∀(x̂, ŷ),∀((û, v̂), (â, b̂)) ∈ Ê × Ê s.t. (û, v̂) 6= (â, b̂) :

zx̂ŷûv̂(k) + zx̂ŷ
âb̂

(j) + xûv̂uv + xûv̂vu + xâb̂uv + xâb̂vu ≤ 3 (3.27)

Finally, the spare capacity constraints in (3.21) need to be modified to handle K SLink
failures. Ideally, the spare capacity Sûv̂ on a VLink (û, v̂) should be sufficient to carry the
traffic of any K VLinks that have (û, v̂) in any of their backup VPaths. Accordingly, we
modify the spare capacity requirement as follows:

Sûv̂ = max
∀ξ⊂Ê s.t. |ξ|=K

∑
∀(x̂,ŷ)∈ξ

∑
1≤k≤K

zx̂ŷûv̂(k)× bx̂ŷ (3.28)

As discussed in [76, 77], not all backup VPaths are used simultaneously even for K = 2
in a single layer VN. In fact, spare capacity along VPaths can be efficiently shared by
introducing constraints similar to the ones presented in [77] and by taking into account
different embedding options of the VLinks of a VN. Extending these constraints for em-
bedding a VN with K >= 2 can result in combinatorial number of constraints, and can be
investigated as a future research.
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3.4 Heuristic Algorithm

The coordinated node and link mapping of the aforementioned ILP formulations without
the disjointedness constraints is at least as hard as the NP-Hard Multi-commodity Un-
splittable Flow Problem [58], when the sources and destinations of the flows are unknown.
To tackle the computational intractability of the ILP formulations, we develop a heuristic
algorithm for the joint spare backup capacity allocation and survivable embedding problem
against multiple (e.g., K) SLink failures. Our heuristic algorithm is presented as a pseu-
docode in Alg. 5. The algorithm solves the joint optimization problem for arbitrary K in
two steps: (i) estimate the spare backup bandwidth on the VLinks, determine the disjoint-
edness requirements based on this estimation, and perform a VN Embedding (§ 3.4.1),
(ii) re-optimize spare backup bandwidth allocations using different backup multiplexing
techniques proposed in [17, 76, 77] (§ 3.4.2).

3.4.1 Joint Spare Bandwidth Allocation and VN Embedding

Algorithm 4: VN Initialization

1 function VNInitialization(G, Ĝ, K)
2 D ← {d1, d2, . . . d|Ê|}
3 foreach û ∈ V̂ do nmapû ← NIL

4 foreach (û, v̂) ∈ Ê do
5 Sestûv̂ ← 0, Λûv̂ ← σ, SRGûv̂ ← d1, emapûv̂ ← φ
6 Tûv̂ ←Max− Priority −Queue()
7 foreach k=1, 2, ..., K do
8 backupestûv̂ (k)← φ

9 V̂ ← Sort û ∈ V̂ in decreasing order of |N (û)|
10 return V̂

Alg. 5 first initializes the data structures for estimated spare capacity of the VLinks
and the SRGs by invoking Alg. 4. To do so, Alg. 4 sets estimated spare backup bandwidth
of each VLink, Sestûv̂ to 0 and places all the VLinks into a single SRG d1. In addition, it
initializes a Max-Priority-Queue Tûv̂ for each (û, v̂) to be used for spare capacity compu-
tation. Tûv̂ will contain, in descending order, the bandwidths of all the VLinks in Ĥûv̂.
Alg. 4 then sorts the VNodes in the VN from the most constrained to the least constrained
ones, i.e., in decreasing order of their degrees and returns the sorted list of VNodes as V̂ .
Note that if two VNodes have equal degrees then Alg. 4 arbitrarily selects one of them.

75



Algorithm 5: Embed VN with Protection

1 function VNEmbedding(G, Ĝ, C, σ, K)

2 V̂ ← VNInitialization(G, Ĝ, K)

3 foreach û ∈ V̂ do
4 foreach v̂ ∈ N (û) do
5 foreach k=1, 2, ..., K do

6 backupestûv̂ (k)← GetBackup(Ĝ, (û, v̂),Λ, emap, k)
7 foreach (x̂, ŷ) ∈ backupestûv̂ (k) do
8 Tx̂ŷ.EnQueue(bûv̂), S

est
x̂ŷ ←

∑
0≤i<min(K, Tx̂ŷ .Size())

Tx̂ŷ[i]

9 if SRGûv̂ = SRGx̂ŷ then

10 Find dj ∈ D s.t. SRGŵẑ 6= dj,∀(ŵ, ẑ) ∈ Ê
11 SRGûv̂ ← dj
12 Ĥx̂ŷ ← {(â, b̂) ∈ Ê|(x̂, ŷ) ∈ backupest

âb̂
(1)}

13 foreach (â, b̂) ∈ Ĥx̂ŷ do
14 if SRGûv̂ = SRGâb̂ then

15 Find dj ∈ D s.t. SRGŵẑ 6= dj,∀(ŵ, ẑ) ∈ Ê
16 SRGûv̂ ← dj
17 if K > 1 then
18 foreach j=1, 2, ..., k-1 do

19 foreach (â, b̂) ∈ backupestûv̂ (j) do
20 if SRGx̂ŷ = SRGâb̂ then

21 Find dj ∈ D s.t. SRGŵẑ 6= dj,∀(ŵ, ẑ) ∈ Ê
22 SRGx̂ŷ ← dj
23 bestû ← NIL, Qbest

û ← φ, cbest ←∞
24 foreach l ∈ L(û) do
25 foreach v̂ ∈ N (û) do

26 ζ ← {(u, v) ∈ E|SRGx̂ŷ 6= SRGûv̂ ∧ (u, v) ∈ emapx̂ŷ,∀(x̂, ŷ) ∈ Ê}
27 W ← C, foreach (m,n) ∈ ζ do Wmn ←∞
28 if nmapv̂ 6= NIL then Qûv̂ ←CWSP(G, l, nmapv̂, bûv̂,W )
29 else Qûv̂ ← min

∀m∈L(v̂)
{CWSP(G, l,m, bûv̂,W )}

30 if ∃v̂ ∈ N (û) : Qûv̂ = φ then c←∞
31 else c←

∑
∀v̂∈N (û) Qûv̂

32 if c < cbest then bestû ← l, Qbest
û ← Qû, cbest ← c

33 if bestû = NIL then return {φ, φ, φ, φ}
34 nmapû ← bestû
35 foreach v̂ ∈ N (û) and nmapv̂ 6= NIL do
36 emapûv̂ ← Qbest

ûv̂ , Λûv̂ ← Cost(Qbest
ûv̂ )

37 {backup, S} ← UpdateBackup(Ĝ, backup, SRG, K)
38 return {nmap, emap, backup, S}
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Alg. 5 then proceeds to map the VNodes in the sorted order of V̂ . For a VNode û, Alg. 5
first finds K estimated backup VPaths for each VLink incident to û by iteratively invok-
ing GetBackup procedure (Alg. 6). Alg. 6 invokes Constrained Weighted Shortest Path
(CWSP) procedure to compute a VPath with at least bûv̂ bandwidth between û and v̂ in
the VN Ĝ, according to a weight function, Weightest.

Alg. 6 first computes the weight function Weightest for all the VLinks and invokes
CWSP procedure to obtain kth backup VPath between û and v̂. For the VLink (û, v̂),
Alg. 6 assigns infinite weights to all the VLinks which have been used by the other backup
VPaths of (û, v̂) to avoid having them appear again in the current backup VPath (Line 3).
It gives lower weights to a VLink (x̂, ŷ), if at least K VLinks in Ĥx̂ŷ have bandwidth larger
than bûv̂. This means that Sestx̂ŷ is already sufficient to serve the bandwidth of K VLinks
impacted by K SLink failures, thus allowing (û, v̂) to share the assigned spare bandwidth
Sestx̂ŷ without increasing it (Line 4). On the other hand, if Ĥx̂ŷ has less than K VLinks (i.e.,

|Tx̂ŷ| < K) or if bûv̂ is larger than at least one of the first K largest bandwidths of Ĥx̂ŷ,
Sestx̂ŷ will increase as a result of using (x̂, ŷ) in the kth backup VPath between û and v̂. The

increased spare capacity requirement is represented by Stempx̂ŷ and the amount of increase is
bûv̂ in the first case or the difference between bûv̂ and the Kth element of Tx̂ŷ in the second
case. The weight function of CWSP takes the possibility of increase in the spare capacity
requirement and the mapping cost Λx̂ŷ of an already mapped VLink (x̂, ŷ) into account
and assigns (x̂, ŷ) a weight proportional to both of these. In line 7, a special case occurs
when a VLink (x̂, ŷ) is not yet mapped. In this case, Λx̂ŷ is set to use the mean SPath
length (σ) as an indicator of future cost (Line 5 of Alg. 4). Finally, an infinite weight is set
to the VLinks whose mapped SPaths do not have adequate residual capacity to exclude
them from the search space (Line 8 of Alg. 6).

After computing each estimated backup VPath backupestûv̂ (k), Alg. 5 updates Sestx̂ŷ for
all (x̂, ŷ) ∈ backupestûv̂ (k). To do so, Alg. 5 first inserts bûv̂ into the right position of the
decreasingly sorted queue Tx̂ŷ. Following (3.28), Alg. 5 computes Sestx̂ŷ as the summation of
either the first K largest elements of Tx̂ŷ or all the elements of Tx̂ŷ if |Tx̂ŷ| < K (Line 8).
It then places (û, v̂) and (x̂, ŷ) into different SRGs (Line 11). It also places (û, v̂) and all
other VLinks that use (x̂, ŷ) in their backup VPaths into different SRGs (Line 16). Finally,
it places (x̂, ŷ) and any VLink (â, b̂) present in any of the other K − 1 backup VPaths of
(û, v̂) into different SRGs. After finding the estimated backup VPaths and SRGs of all the
incident VLinks of a VNode û, Alg. 5 finds the mapping of û and VLinks incident to û.
It iterates over all candidate SNodes l ∈ L(û) and selects the one that results in the least
cost mapping for all the VLinks incident to û (Line 24 − 34). For a specific l ∈ L(û) and
v̂ ∈ N (û), if v̂ is already mapped to nmapv̂, Alg. 5 computes CWSP from l to nmapv̂ (Line
28), while satisfying capacity constraints and SRG constraints in the SN (using the weights
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Algorithm 6: Compute Backup VPath of a VLink

1 function GetBackup(Ĝ, (û, v̂), Λ, emap, k)

2 foreach (x̂, ŷ) ∈ Ê do
3 if (∃j|j < k and (x̂, ŷ) ∈ backupestûv̂ (j)) then Weightestx̂ŷ ←∞
4 else if Tx̂ŷ[K − 1] ≥ bûv̂ then Weightestx̂ŷ ← 1

5 else if emapx̂ŷ = φ or min
(u,v)∈Qx̂ŷ

bresidualuv ≥ bûv̂ then

6 Stempx̂ŷ ← bûv̂ +
∑

0≤i<min(K−1, Tx̂ŷ .Size())
Tx̂ŷ[i]

7 Weightestx̂ŷ ← (Stempx̂ŷ − Sestx̂ŷ )× Λx̂ŷ

8 else Weightestx̂ŷ ←∞
9 Weightestûv̂ ←∞

10 return CWSP(Ĝ, û, v̂, bûv̂,Weightest)

in W ). To do so, Alg. 5 identifies the set of SLinks that the mapping of (û, v̂) should be
disjoint from and assigns ∞ as their weights (Line 27). On the other hand, if v̂ is not
mapped yet, it computes CWSPs from l to the SNodes m ∈ L(v̂) and selects the CWSP
with the minimum cost (Line 29). After mapping a VNode û, Alg. 5 maps the VLinks
whose both endpoints have already been mapped and updates Λ of the mapped VLinks
(Line 36). Upon mapping all the VLinks of a VN, Alg. 5 returns nmap, emap, backup, and
S representing the VNode mapping, VLink mapping, backup VPaths, and spare backup
capacities, respectively.

3.4.2 Reconfiguring the Allocated Spare Backup Bandwidth

The last phase (Alg. 7) of our heuristic employs different techniques to further optimize the
spare capacity allocation. Since Alg. 5 performs spare capacity assignment and embedding
of VLinks sequentially based on some estimation, it is possible that spare capacity of initial
VLinks may have been allocated using partial backup VPath selection and VLink embed-
ding information. Once complete information is available, sharing of spare capacity can
be further enhanced by taking into account SRGs of different failure scenarios and backup
VPath multiplexing combinations [76, 77]. Due to space constraints, Alg. 7 illustrates the
spare capacity optimization for only single (i.e., K = 1) and double (i.e., K = 2) link
failure scenarios. Techniques similar to [76, 77] can be adopted to optimize spare capacity
for higher (i.e., K > 2) failure scenarios albeit the expected huge number of SRG and
VPath multiplexing combinations.

78



Algorithm 7: Reconfigure Spare Capacities of all VLinks

1 function UpdateBackup(Ĝ, backup, SRG,K)
2 if K = 1 then

3 foreach (û, v̂) ∈ Ê do Sûv̂ ← 0

4 R̂← longest cycle in Ĝ such that no VLink pair in R̂ shares an SLink on
their mapped SPaths

5 foreach (x̂, ŷ) ∈ R̂ do
6 Sx̂ŷ ← max∀(û,v̂)∈R̂{bûv̂}
7 foreach (û, v̂) ∈ Ê do

8 foreach (x̂, ŷ) ∈ Ê \ {(û, v̂)} do
9 if SRGûv̂ = SRGx̂ŷ then Weightx̂ŷ ←∞

10 else if Sx̂ŷ ≥ bûv̂ then Weightx̂ŷ ← 1
11 else Weightx̂ŷ ← (bûv̂ − Sx̂ŷ)
12 Weightûv̂ ←∞
13 backupûv̂ ← CWSP(Ĝ, û, v̂, bûv̂,Weight)
14 foreach (x̂, ŷ) ∈ backupûv̂ do
15 Sx̂ŷ ← max(Sx̂ŷ, bûv̂)
16 else if K = 2 then

17 foreach ((û, v̂), (â, b̂)) ∈ Ê × Ê s.t. (û, v̂) 6= (â, b̂) do

18 if ({(û, v̂) ∩ backupest
âb̂

(1)} = φ and {(â, b̂) ∩ backupestûv̂ (1)} = φ and

{Qûv̂ ∩Qâb̂} = φ) then
19 foreach (x̂, ŷ) ∈ backupestûv̂ (1) do
20 if (x̂, ŷ) ∈ backupest

âb̂
(2) then

21 Tx̂ŷ.DeQueue(min(bûv̂, bâb̂))
22 Sx̂ŷ ←

∑
0≤i<min(K, Tx̂ŷ .Size())

Tx̂ŷ[i]

23 foreach (x̂, ŷ) ∈ backupestûv̂ (2) do
24 if (x̂, ŷ) ∈ backupest

âb̂
(1) then

25 Tx̂ŷ.DeQueue(min(bûv̂, bâb̂))
26 Sx̂ŷ ←

∑
0≤i<min(K, Tx̂ŷ .Size())

Tx̂ŷ[i]

27 foreach (x̂, ŷ) ∈ backupestûv̂ (2) do
28 if (x̂, ŷ) ∈ backupest

âb̂
(2) then

29 Tx̂ŷ.DeQueue(min(bûv̂, bâb̂))
30 Sx̂ŷ ←

∑
0≤i<min(K, Tx̂ŷ .Size())

Tx̂ŷ[i]

31 return {backup, S}

For single SLink failure, Alg. 7 leverages p-cycle based protection to optimize the spare
backup bandwidth Sûv̂ for each mapped VLink (û, v̂) ∈ Ê [17]. Alg. 7 first finds the longest
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cycle R̂ in Ĝ such that no pairs of VLinks in R̂ share an SLink in their mappings (Line 4).
Recall from § 3.2.4 that each (x̂, ŷ) ∈ R̂ belongs to distinct SRGs for K = 1. Therefore,
Alg. 7 allocates the maximum of the demands of all the VLinks in R̂ to each Sx̂ŷ ∈ R̂

(Line 6). It then recomputes backup VPath backupûv̂ for each (û, v̂) ∈ Ê using a process
similar to Alg. 6. However, Alg. 7 utilizes VLink embedding information to better compute
the backup VPaths. It does so by setting ∞ as the weight of the VLink (x̂, ŷ) if (û, v̂)
and (x̂, ŷ) are in the same SRG (Line 9). Alg. 7 also enhances the spare capacity sharing
by setting unit weights to the VLinks having already assigned spare capacities (Line 10).
Alg. 7 then invokes CWSP procedure with the weight function to compute backupûv̂ (Line
13). Finally, Sx̂ŷ for each (x̂, ŷ) ∈ backupûv̂ is updated accordingly (Line 15).

For two SLink failures, Alg. 7 utilizes backup VPath multiplexing to optimize spare
backup bandwidth allocation [76, 77]. Backup multiplexing is based on the observation
that not all backup VPaths are used simultaneously for certain failure scenarios, thus
allowing to share the spare bandwidth allocated to the common VLinks in those VPaths.
For instance, if two VLinks (û, v̂) ∈ Ê and (â, b̂) ∈ Ê do not share any SLink in their
SPaths and none of (û, v̂) and (â, b̂) is present in the first backup VPaths of the other one,
two SLink failures can only impact either both (û, v̂) and (â, b̂) or one of (û, v̂) and (â, b̂)
and one of the VLinks in the first backup VPaths of (û, v̂) and (â, b̂). In the first case,
both the first VPaths of (û, v̂) and (â, b̂) are used together, whereas only the second VPath
of either (û, v̂) or (â, b̂) is used in the second case. Therefore, the first VPath of (û, v̂)
(or (â, b̂)) and the second VPath of (â, b̂) (or (û, v̂)) are not used together. The same is
true for both the second VPaths of (û, v̂) and (â, b̂). Alg. 7 exploits such observations by
reducing the spare bandwidths of the common VLinks in those VPaths that will not be
used simultaneously for two SLink failure scenarios (Line 17− 30).

3.4.3 Running Time Analysis

CWSP procedure is the core of both Alg. 5 and Alg. 7. CWSP procedure is implemented
using a modified Dijkstra’s shortest path algorithm that takes into account the constraints
and weights as depicted above. Dijkstra’s algorithm using a min-priority queue on G
runs in O(|E| + |V | log |V |) time. CWSP is invoked O(|V̂ |Lδ2) times in Alg. 5, where
L and δ are the maximum size of a location constraint set and maximum degree of a
VNode, respectively. Therefore, the overall running time of the heuristic is O(|V̂ |Lδ2(|E|+
|V | log |V |)).
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3.5 Evaluation

We first describe the simulation setup and compared approaches in § 3.5.1. The perfor-
mance metrics are defined in § 3.5.2. Finally, we describe our evaluation results focusing
on: (i) evaluation for single link failure scenarios (§ 3.5.3), (ii) performances of double
link failure scenarios (§ 3.5.5), and (iii) Comparison with Existing SN level survivability
(§ 3.5.4).

3.5.1 Simulation Setup

We implement Opt-ILP, Max-ILP, and Min-ILP from § 3.3 using IBM ILOG CPLEX
libraries and compare them with a C++ implementation of the heuristic algorithm, referred
as Heuristic from now on. For each simulation run, we generate an SN and 5 random VNs.
For each SN, we take the mean value of each performance metric over the 5 VNs. For
single failure scenarios (K = 1), SN and VN size is varied between 20 and 100 nodes and
3 and 11 nodes, with increments of 10 and 2, respectively. We change the connectivity of
both SNs and VNs by varying the link to node ratio (LNR) from 1.12 to 3.00 and from
1.0 to 2.17, respectively to match with realistic topologies [67, 153]. We make sure VNs
are 2- and 3-edge connected to survive single and double link failures, respectively. For
double failure cases (K = 2), we start with VNs of size 4 since there is no simple graph of
size less than 4 that has 3-edge connectivity. For K = 2, we vary VN sizes on an SN with
size 25 and LNR 1.8. We also compare performances of Heuristic for K = 1 and K = 2
in large scale topologies. In these cases, VN sizes vary between 10 and 100 nodes with
21 and 285 links on SNs with 500 and 1000 nodes with 2016 and 4022 links. Given the
number of nodes and links of a problem instance, the source and destination of an SLink
or a VLink are decided randomly. Location constraints of VNodes are chosen randomly,
and VLink demands are set to 10% of the SLink bandwidths. Simulations are performed
on a machine with 2×8-core 2.0 Ghz Intel Xeon E5-2650 processors and 256GB of RAM.

3.5.2 Performance Metrics

Cost

The cost of embedding a VN computed using (3.20). We set a unit cost for allocating
bandwidth on an SLink, therefore, (3.20) directly represents resource consumption.
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Figure 3.4: Impact of SN Size on Single Link Failure Protection
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(c) VPath Length Analysis

Figure 3.5: Impact of SN Density on Single Link Failure Protection

Mean SPath Length

The mean length of the SPath used to map a VLink of a VN.

Mean VPath Length

The mean length of the VPath used as a backup path for a VLink in a VN.

Execution Time

The time required for an algorithm to find an embedding of a VN.

3.5.3 Evaluation Results for Single SLink Failure Scenarios

Impact of SN Topology

Fig. 3.4 presents performance metrics for different SN sizes, while keeping the VN size
and SN LNR fixed at 5 and 1.8, respectively. Since SNode degrees remain the same, SN
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(c) VPath Length Analysis

Figure 3.6: Impact of VN Size on Single Link Failure Protection
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(c) VPath Length Analysis

Figure 3.7: Impact of VN Density on Single Link Failure Protection
diameters increase with increasing SN size. We see that embedding costs in Fig. 3.4(a)
increase for all the compared approaches with increasing SN size. This stems from the fact
that the location constraints of the VNodes of a VN are chosen to be far apart from one
another in an SN with larger diameter. This behavior is verified in Fig. 3.4(b) that shows
the increase in SPath lengths with the increase in SN sizes. Longer SPaths require higher
amount of substrate resources for embedding the VLinks of a VN, hence, the higher cost.
Another takeaway from Fig. 3.4(b) is that mean SPath lengths of Min-ILP and heuristic
are the lowest and highest, respectively. Min-ILP selects shorter SPaths for embedding
VLinks because of the lower number of disjoint path constraints imposed by the shorter
VPaths as shown in Fig. 3.4(c). Min-ILP prefers the shorter VPaths since it has to allocate
dedicated spare capacity on all the VLinks in a VPath. In contrast, all other approaches
choose longer VPaths to maximize the spare capacity sharing on VLinks.

Fig. 3.5 presents the impact of SN density on the performance metrics by varying SN
LNRs. For very sparse SNs, i.e., SNs with very low LNRs, Max-ILP and heuristic fail
to find sufficient disjoint SPaths, imposed by the SRG constraints, resulting in infeasible
solutions. However, Opt-ILP and Min-ILP are able to find solutions with very high costs
by reducing the number of SRGs (Fig. 3.5(a)). Lower number of SRGs, in turn, reduces the
opportunities of spare capacity sharing on VPaths. Despite reducing SRGs, Opt-ILP and
Min-ILP still have to find disjoint SPaths to satisfy survivability constraints. In a sparse
SN, a set of disjoint SPaths between pairs of SNodes becomes significantly longer than
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(b) Varying SN Density
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(c) Varying VN Size
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(d) Varying VN Density

Figure 3.8: Scalability Analysis for Single Link Failure Protection
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(d) SPath Length Analysis

Figure 3.9: Comparison with SN level Survivability of [43]
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(d) Execution Time Analysis

Figure 3.10: Performance of Heuristic with Single (K = 1) and Double (K = 2) Link
Failure Protections on Large Scale Test Cases
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the set of non-disjoint SPaths between the same pairs of SNodes. These aforementioned
factors contribute to the higher embedding costs for sparse SNs. As SN LNR increases, the
number and length of the SPaths (also disjoint SPaths) increase and decrease, respectively,
hence the decrease in mean SPath lengths in Fig. 3.5(b). As a consequence, cost decreases
for all the approaches as shown in Fig. 3.5(a). Fig. 3.5(c) shows that mean VPath lengths
for all the approaches except Min-ILP increase initially with increasing SN LNR. When
VPath lengths get closer to the VN diameter in these approaches, they remain almost
constant with increasing SN LNR. The initial increase in mean VPath length is due to the
use of the same VLinks by more VPaths, leading to more spare capacity sharing. However,
sparse SNs cannot satisfy the SRG constraints imposed by longer VPaths, therefore, all
the approaches except Min-ILP select shorter VPaths. Since Min-ILP does not allow any
spare capacity sharing, there is little impact of SN density on VPath lengths.

Impact of VN Topology

Fig. 3.6 presents performance metrics for different VN sizes, while keeping the SN size,
SN LNR, and VN LNR fixed at 50, 1.82, and 1.4, respectively. Fig. 3.6(a) shows that
cost increases as VN size gets larger. This is partially due to the allocation of more SN
resources for embedding higher number of VLinks of a larger VN. The other contributor is
the longer embedding SPath as shown in Fig. 3.6(b). SPath length increases with VN size
to find the higher number of disjoint SPaths that are required to satisfy the higher number
of SRG and survivability constraints induced by longer VPaths shown in Fig. 3.6(c). In
case of Min-ILP, VPath lengths increase due to rise in VN diameter resulting from increase
in VN size. The other approaches select even longer VPaths to enable more spare capacity
sharing on the VLinks of the selected VPaths.

Fig. 3.7 compares performance metrics by varying the VN LNR, while keeping the
SN size, SN LNR, and VN size fixed at 50, 1.82, and 6, respectively. The takeaway
from Fig. 3.7(a), Fig. 3.7(b), and Fig. 3.7(b) is that both cost and mean SPath length
increase with increasing VN LNR, whereas mean VPath length shows an opposite trend.
We explain these behaviors as follows. The sparsest connected VN is a ring topology. In
such a topology, each VLink (û, v̂) has exactly one VPath that contains all the other VLinks
in the ring except (û, v̂), and all the VLinks in the ring have to be embedded disjointedly to
satisfy the survivability constraints. Hence, all the approaches have the same mean VPath
length for the sparsest VN, i.e., VN with the lowest LNR. The results of ring VNs also
illustrate that Min-ILP allocates ∼ 3 times extra resources to guarantee the same level of
survivability provided by the other approaches. As VN LNR increases, Min-ILP prefers the
shortest possible VPaths to minimize the amount of additional resources. Other approaches
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strike a balance between reducing disjoint path requirements for satisfying survivability
constraints and increasing spare capacity sharing as well as disjoint path requirements
of SRG constraints induced by shorter and longer VPaths, respectively. Hence, the mean
VPath lengths of all the approaches leveraging spare capacity sharing decrease much slower
than those of Min-ILP, which does not allow any sharing. Despite a decrease in VPath
lengths as VN LNR increases, all the approaches except Min-ILP have to satisfy higher
number of SRG constraints to enable more spare capacity sharing. This contributes to the
increasing trend of cost and mean SPath length.

Discussion of results for Max-ILP and Min-ILP

As we see in Fig. 3.4-Fig. 3.7, Max-ILP closely approximates Opt-ILP, whereas Min-
ILP provides the upper bound of cost. The proximity between Max-ILP and Opt-ILP
can be explained using the analysis presented in § 3.3.3 and mean SPath length values.
Since SPath lengths of Max-ILP are always less than twice the SPath lengths of Min-ILP,
Max-ILP yields the lower cost. Hence, for embedding a VLink, Opt-ILP prefers spare
capacity sharing of Max-ILP than dedicated spare capacity allocation of Min-ILP. Despite
the sequential nature of Heuristic, its performance remains closer to those of Max-ILP
than Min-ILP. Specifically, compared to Max-ILP, Heuristic provisions ∼21% additional
resources on average.

Scalability Analysis

Fig. 3.8 demonstrates the scalability of the compared approaches by plotting execution
times in logarithmic scale. As we can see, Opt-ILP only scales to very small networks.
The reduction in problem complexities in terms of constraints and variables in Max-ILP
and Min-ILP are reflected in their ability to scale to larger problem instances than Opt-
ILP. Among them Min-ILP has to satisfy the lowest number of disjoint path constraints.
It explores a much larger solution space than Max-ILP, requiring more time. Following
our discussion on problem complexities in § 3.3.3, VN dimension has a more profound
impact on the scalability of the ILP-based approaches than SN dimension. We observe
this impact in Fig. 3.8(c) and Fig. 3.8(d) that show, with our current hardware, the ILP-
based approaches hit ceilings in terms of VN size or VN LNR. Even for the successful cases,
the ILP-based approaches require several orders of magnitude more time to solve similar
problem instances compared to Heuristic that can scale to much larger problem instances.
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3.5.4 Comparison with Existing SN Level Survivability

One of the key motivations for embedding a VN augmented with spare capacity is the
hypothesis that more resource efficient embedding is possible with protection at the VN
layer compared to doing the same at the SN layer. We provide a quantitative comparison
to support this hypothesis. For this scenario, we have explored the SVNE literature to
find a representative VN embedding approach that adopts SN level shared spare capacity
allocation and found the proposal in [43] as the closest match. However, [43] only provides
a heuristic algorithm that yields suboptimal solutions. Hence, we have formulated an ILP,
namely SN-ILP, following the concepts presented in [43] for solving the exact problem of
VN embedding with SN layer shared spare capacity allocation and used it as a baseline for
comparison. We implement SN-ILP using IBM ILOG CPLEX library. For each VLink in
a VN, SN-ILP allocates SN resources on a primary and a backup SPath disjoint from the
primary. However, the spare capacity allocated on the backup SPaths can be shared among
the VLinks whose primary SPaths are edge disjoint. For a fair comparison, we juxtapose
the performance metrics of SN-ILP with those of our ILP formulations that share spare
capacity, i.e., Opt-ILP and Max-ILP in Fig. 3.9. Fig. 3.9(a) reveals that, similar to Max-
ILP, SN-ILP yields infeasible solutions for sparse SNs due to lack of path diversity. In all
the cases when SN-ILP is able to find a solution as shown in Fig. 3.9(a) and Fig. 3.9(c),
SN-ILP incurs higher costs than both Opt-ILP and Max-ILP. In these cases, SN-ILP
allocates, on average, ∼33% additional resources compared to Max-ILP. We explain this
behavior with the help of Fig. 3.9(b) and Fig. 3.9(d). These figures show that both primary
and backup SPath lengths of SN-ILP exceed SPath lengths of Opt-ILP and Max-ILP. This
is due to the fact that finding a pair of disjoint SPaths between a pair of SNodes is more
difficult than finding an SPath that is disjoint from a set of SPaths between different set
of SNodes [84]. Another reason for lower costs of Opt-ILP and Max-ILP compared to
SN-ILP is that Opt-ILP and Max-ILP employ more spare capacity sharing on the VPaths
than spare capacity sharing on the SPaths employed by SN-ILP.

3.5.5 Evaluation Results for Multiple Link Failure Scenarios

Small Scale Performance

Table 3.1 compares the performances of ILP formulation presented in § 3.3.4 and Heuristic
for K = 2. As evident from the table, the ILP formulation does not scale beyond 5 node
VNs due to the combinatorial number of constraints for K = 2. On the other hand,
Heuristic scales to larger topologies at the expense of incurring higher cost. As seen in

89



Table 3.1: Evaluation results for double (K = 2) link failures

VNode
Count

Cost
(ILP)

Cost
(Heuris-
tic)

SPath
Length
(ILP)

SPath
Length
(Heuris-
tic)

VPath
Length
(ILP)

VPath
Length
(Heuris-
tic)

4 112×103 127×103 1.57 1.77 2.1 2.0
5 158×103 184×103 1.65 1.93 2.47 2.25
6 - 247×103 - 2.0 - 2.4

the table, the higher cost of Heuristic than ILP is attributed to the longer SPaths for
embedding VLinks and less sharing of spare capacity along shorter VPaths. Nonetheless,
the average cost of Heuristic remains within 20% of the ILP.

Large Scale Performance

In Fig. 3.10, we present the performances of the Heuristic with K = 1 and K = 2 for
large scale topologies, where multiple failures are more likely to occur [67, 65]. Fig. 3.10(a)
shows that cost increases proportionally with the increase in VN size, following the same
trend observed in Fig. 3.6(a). The ∼ 100% increase in embedding cost of K = 2 from
K = 1 is due to the increase in spare backup bandwidth requirements to survive double
link failures. The slightly higher embedding cost for an SN with 1000 nodes than for an SN
with 500 nodes in both K = 1 and K = 2 cases is due to the increase in SN diameter similar
to the cases in Fig. 3.4(a). The increase in SN diameter is reflected in Fig. 3.10(b) that
shows SPaths are longer in a 1000 node SN than in the 500 node one. Different behavior
is observed in Fig. 3.10(c) that shows VPath lengths of K = 1 are much larger than those
of K = 2. This is due to adopting different reconfiguration strategies for different failure
scenarios by Alg. 7. For K = 1, the goal of Alg. 7 is to assign spare bandwidth along
the longest p-cycle, thus resulting in longer VPaths. Such strategy can be expensive for
K > 1, since K disjoint p-cycles are needed to survive K SLink failures. Furthermore, p-
cycle based strategy offers less room for spare capacity sharing for K > 1, as two VLinks on
the p-cycle are on the backup VPaths of each other. Therefore, for K = 2, Alg. 7 prefers
shorter VPaths as shown in Fig. 3.10(c) and optimizes spare capacity through backup
multiplexing technique described in Alg. 7. Finally, Fig. 3.10(d) shows that our Heuristic
is able to find solutions within a reasonable time limit in compliance with the running time
analysis presented in § 3.4.3.
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3.6 Conclusion

In this chapter, we have studied the SVNE problem that arises in network virtualization
a.k.a. network slicing from a new perspective. Instead of managing failure survivability at
the SN level, we have proposed to delegate the failure management tasks to the VN level
in support of more autonomous VNs. Hence, a new variety of SVNE problem emerges that
requires a VN to be augmented with sufficient spare backup capacity and embedded on
the SN accordingly to ensure survivability against multiple substrate link failures. For the
case of single substrate link failure, we have formulated the optimal solution to this joint
optimization problem as a QIP and transformed it into an ILP. We have presented simplified
ILP formulations to solve special cases of the problem and presented a mathematical study
to analyze the impact of SN topology on the level of spare capacity sharing. We have
then extended the most resource efficient ILP formulation for single link failure to handle
the case of multiple substrate link failures. We have also proposed a heuristic algorithm
to tackle the computational complexity of the ILP formulations. The heuristic algorithm
provides a generic framework to survive multiple link failures and demonstrates spare
capacity optimization techniques for single and double link failure scenarios.

We have performed simulations to evaluate our solutions for single and double link
failure scenarios. Simulation results show that ILP formulations for the two special cases
can provide upper and approximately lower bounds of the solution spectrum. Moreover, the
heuristic allocates ∼21% additional resources compared to the approximated lower bound,
while executing several orders of magnitude faster. Large scale simulations of the heuristic
algorithm shows that protection against double link failures comes at the cost of nearly two
times of the resources incurred by protection against single link failures. A quantitative
comparison between the SVNE with VN level protection and the traditional SVNE with
SN level protection reveals that the former can save ∼33% resources on average, compared
to those required by the latter.
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Chapter 4

Recovery from Node Failure in
Virtual Network Embedding

With increasing deployments of virtual networks (VNs) in commercial-grade networks with
commodity hardware, VNs need to tackle failures in the underlying substrate network. In
this chapter, we study the problem of recovering a batch of VNs affected by a substrate
node failure. A number of mechanisms have been proposed to increase VN reliability
against substrate resource failures. These mechanisms can be broadly classified into two
categories [78]: a) proactively provision disjoint redundant resources as backup [71, 131] and
b) reactively re-embed the failed nodes and links of a VN on the available resources after a
failure has occurred [37, 25]. Proactive approaches offer immediate recovery from failures
at the expense of backup resource reservation [70, 82, 88]. However, preallocating backup
resources for multiple failures resulting from a substrate node failure can be extremely
expensive [82, 177]. Instead, an SP may prefer to reactively re-embed the failed part of
its VN to avoid the huge cost of preallocated backup resources in a failure-prone SN. The
SP can adopt a load balanced VN embedding strategy to leave higher amount of available
resources during re-embedding. Moreover, in case of permanent substrate node failures
(e.g., hardware malfunction), the nodes and links of all the affected VNs have to be re-
embedded. These scenarios motivate us to study the problem of re-embedding a batch of
VNs affected by a substrate node failure.

While VN embedding is already intractable, the combinatorial number of sequences
of VNs in a batch re-embedding further increases the complexity [152]. In addition, any
solution must be significantly fast (e.g., in the order of milliseconds) to meet the stringent
timing requirement usually imposed by Service Level Agreements (SLAs). To meet such
requirements, we consider the re-embedding of only the failed nodes and links of a batch
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of VNs without disrupting their unaffected parts. While re-embedding the failed part as
well as the unaffected part of an active VN may incur lower costs of re-embedding [37, 32],
it will require additional time for virtual node migration and virtual link re-configuration,
which may increase VN downtime. Further, the reactive approaches in [25], [80] opt for
the recovery of all the failed nodes and links of a VN. If the SN does not have adequate
resources to recover all the failed nodes and links, those approaches re-embed the complete
VN, turning it inactive for a while and causing service disruptions.

Unlike existing approaches, we adopt a generalized recovery approach that allows partial
recovery of an affected VN, while adhering to any SLA requirement. To demonstrate the
versatility of our approach, we investigate two different recovery models. The first one is a
fair recovery model (FRM) that maximizes the number of recoveries across all the affected
VNs. This can be the sought-after choice of an InP who wants to treat all the affected
VNs fairly in a resource constrained SN. Then, we explore a priority-based recovery model
(PRM) that takes into account an InP’s preference during recovery. PRM allows an InP to
prioritize the recovery of affected VNs based on SLA strictness, impacts of failure, profits,
and so on to achieve its goal. It is worth discussing here that a partial recovery scheme
may lead to skewness in the utilization of SN resources. To eliminate such skewness, VN
reconfiguration mechanisms such as [49, 118, 161, 160] should be performed periodically
during an off-peak period.

In this chapter, we focus on the problem of Recovering from a Node failure in Virtual
Network Embedding (ReNoVatE ). It accepts a batch of VN failures resulting from a single
substrate node failure, and produces alternate embeddings for the failed virtual nodes and
links. The objective of FRM is to maximize the number of recovered virtual links across
all the affected VNs, while minimizing total bandwidth required for recovery. On the other
hand, PRM seeks to prioritize the recovery of affected VNs based on some predefined
requirements and minimize total bandwidth for recovery. We formulate ReNoVatE as
an Integer Linear Programming (ILP) based optimization model, namely Opt-ReNoVatE.
Since Opt-ReNoVatE cannot scale to large instances of the problem, we devise an efficient
heuristic algorithm, called Fast-ReNoVatE, to find satisfactory solutions within prescribed
time limits. We evaluate Fast-ReNoVatE by extensive simulations and compare it with Opt-
ReNoVatE, as well as with the most related state-of-the-art proposal in the literature [25].
Evaluation results demonstrate that Fast-ReNoVatE performs close to Opt-ReNoVatE and
outperforms the state-of-the-art solution in terms of i) number of recovered virtual links,
ii) cost of recovery, and iii) execution time.

The rest of the chapter is organized as follows. Section 4.1 presents the related liter-
ature. In Section 4.2, we present the system model and formally introduce the problem.
Section 4.3 presents two variants of Opt-ReNoVatE for solving the problem optimally.
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The heuristic solution, Fast-ReNoVatE, is presented in Section 4.4. Evaluation results are
presented in Section 4.5. Finally, we summarize our findings and conclude in Section 4.6.

4.1 Related Work

Survivability of VNs during substrate failures was first addressed by Rahman et al., in [132].
They formulated the problem of ensuring survivability in VNs under single SLink failure as
a Mixed Integer Linear Program and proposed heuristics to obtain solutions in a reasonable
time. A large body of research literature has been developed since to address different as-
pects of SVNE such as considering single SLink failure [71, 94], multiple SLink failures [141],
single SNode failure [177, 43], regional failures [176, 112, 128], and ensuring certain levels
of availability [129, 179, 89] among others. The approaches for ensuring survivability of
VNs during substrate failures can be broadly classified into two categories, namely, proac-
tive and reactive approaches. Proactive approaches provision redundant backup resources
when a VN is embedded in the first place, whereas, reactive approaches take mitigation
actions after a failure has occured. In the following we discuss the proactive (§ 4.1.1) and
reactive (§ 4.1.2) approaches from SVNE literature and contrast them with our solution
for ReNoVatE .

4.1.1 Pro-active Approaches

Pro-active approaches for SVNE preallocates backup resources to ensure Quality of Service
for the VNs during one or more substrate failures. Most of the approaches focusing on
substrate node (SNode) failure are pro-active [70, 82, 177]. Yu et al., , [177] proposed
a two-step method to recover a VN. The first step enhances the VN with backup virtual
nodes (VNodes) and virtual links (VLinks), and the second step maps this enhanced VN on
the SN. This approach, in the worst case, has to reserve a backup VNode for each VNode.
In contrast, [70] designed the enhanced VN with a failure-dependent strategy to reduce
backup resources. Despite the resource efficiency of this approach, it is not practical due to
the large number of migrations of working VNodes. Unlike these methods, [82] presented
a joint optimization strategy for allocating primary and backup resources altogether. The
location constrained SVNE, to address geographically-correlated SNode failures, has been
studied in [176, 88, 81]. While [81] adopts sequential embedding of working and backup
VNodes, [176, 88] embeds them jointly to minimize total bandwidth. Recently, [48, 47]
proposed embedding primary and dedicated backup resources for each VNode and VLink
in a VN simultaneously. There is a growing trend towards designing survivable resource
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allocation schemes for embedding virtual data centers (VDCs) in cloud [11], [22], [174]. For
instance, [171] proposed a scheme for provisioning VDCs with backup virtual machines and
links. Bodik et al., , [26] proposed an optimization framework for improving survivability,
while reducing total bandwidth consumption. Yeow et al., , [174] defines the reliability
level as a function of backup resources that are shared between VNs through opportunistic
pooling. Finally, [179] provided a VDC embedding framework for achieving high VDC
availability by considering heterogeneous failure rates.

Preallocated backup resources remain unused during normal operations and hence re-
duce resource utilization. In contrast, ReNoVatE takes a reactive approach and allocates
resources only when a failure has occurred, thus improving on the resource utilization.

4.1.2 Reactive Approaches

Reactive approaches, on the other hand, do not preallocate any backup resources. Chang
et al., , [37] proposed a migration aware VN re-embedding algorithm to recover from an
SNode failure. The algorithm allows the migration of some active VNodes and VLinks to
free up some substrate resources, thus facilitating the re-mapping of the failed VNodes and
VLinks. Cai et al., [32] addressed the problem of optimally upgrading the existing VN in a
highly evolving SN. Their goal is to minimize the upgrading cost, in addition to migration
and remapping costs, while satisfying QoS constraints. Both of these approaches may
need a chain of migrations to converge, thus disrupting ongoing communication in the VN.
Reactive approaches to recover from geographically correlated failures has been proposed
in [112] and [128]. However, unlike ReNoVatE, [112, 128] allow the VNs to operate at a
degraded Quality of Service. Recently, reactive recovery approaches have been proposed
for multi-cast VNs. Unlike traditional VNs, multi-cast VNs take the Quality of Service
requirements of multi-cast services (e.g., bounded delay for multi-cast completion) into
account. Ayoubi et al., has shown that restoring multi-cast trees with delay constraints
during a single substrate node failure is NP-hard for general graphs [19]. Polynomial time
heuristic algorithms for restoring multi-cast trees in VNs during single substrate node,
single substrate link and multiple substrate node and link failures have been proposed
in [18], [63], and [64], respectively. In contrast to the reactive approaches for restoring
multi-cast VNs, our proposal does not make any assumption about the structure of SN and
communication pattern in the VN. Another line of works [132, 123], originated in optical
networks, proposed a hybrid mechanism to select from a set of precomputed detours for
recovery during failure. However, in a highly saturated SN, this mechanism may not find
adequate resources left for the recovery.
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Distributed reactive approaches including, [80, 150], proposed multi-agent based algo-
rithms to dynamically adapt the VNs in response to SN failures. When an agent detects a
failure of another agent in the same cluster, the agents within the same cluster collaborate
with each other to re-provision the failed VNodes and VLinks. These approaches may
generate sub-optimal solutions due to the lack of global knowledge of the SN. Finally, [25]
proposed a greedy algorithm to find alternate substrate resources for the affected part of
a VN. In case of resource inadequacy, this approach requires remapping the entire VN re-
sulting in prolonged service unavailability. Nonetheless, existing reactive algorithms focus
on re-embedding only a single VN, whereas ReNoVatE, for the first time, considers partial
re-embedding of a set of affected VNs to improve recovery performance.

4.2 System Model and Problem Statement

We first present a mathematical representation of a substrate network, virtual network,
and types of failure (§ 4.2.1). Then, we formally define the problem (§ 4.2.2). A glossary
of key notations used in the chapter is provided in Table 4.1.

4.2.1 System Model

Substrate Network (SN)

We represent the SN as an undirected graph, G = (V,E), where V and E denote the set
of SNodes and Substrate Links (SLinks), respectively. The set of neighbors of an SNode
u ∈ V is denoted by N (u). Bandwidth capacity and residual bandwidth of an SLink
(u, v) ∈ E are represented by buv and ruv, respectively, while the cost of allocating one unit
of bandwidth in (u, v) is Cuv. V

f and Ef represent the set of failed SNodes and SLinks,
respectively. Puv represents a path between SNodes u and v

Virtual Network (VN)

We denote the set of VNs embedded on the SN G as Ḡ = {Ḡ1, Ḡ2, . . . Ḡ|Ḡ|}. Each VN
Ḡi ∈ Ḡ is represented as an undirected graph Ḡi = (V̄i, Ēi), where V̄i and Ēi are the sets of
VNodes and VLinks of Ḡi, respectively. The set of neighbors of a VNode ū ∈ V̄i is denoted
byN (ū). Each VLink (ū, v̄) ∈ Ēi has a bandwidth demand biūv̄. We associate a penalty πiūv̄
to each VLink (ū, v̄) ∈ Ēi, where πiūv̄ represents the penalty due to resource unavailability
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of (ū, v̄). Each VN Ḡi has a set of location constraints, Li = {Li(ū)|Li(ū) ⊆ V, ∀ū ∈ V̄i},
such that a VNode ū ∈ V̄i can only be mapped to an SNode u ∈ Li(ū). We represent this
location constraint with a binary variable `iūu, defined as:

`iūu =

{
1 iff ū ∈ V̄i can be provisioned on u ∈ V,
0 otherwise.

Types of failure

Let, f(ū) and g(ūv̄) denote the SNode and substrate path where ū and (ū, v̄) have been
embedded, respectively. An SNode failure results in a set of VNode and VLink failures of a
VN Ḡi defined as V̄ f

i = {ū ∈ V̄i|f(ū) ⊆ V f} and Ēf
i = {(ū, v̄) ∈ Ēi|(u, v) ∈ g(ūv̄)∧ (u, v) ∈

Ef}, respectively. There are two types of VLinks in Ēf
i :

Adjacent VLinks: The set of VLinks adjacent to the failed VNode ū ∈ V̄ f
i is represented

by Ēfi = {(ū, v̄)|ū ∈ V̄ f
i ∧ v̄ ∈ N (ū)}.

Independent VLinks: The set of VLinks that have failed due to the failure of some
SLinks on their mapped substrate paths is denoted by Ē

f
i = {(ū, v̄)|(u, v) ∈ g(ūv̄)∧ (u, v) ∈

Ef ∧ ū /∈ V̄ f
i ∧ v̄ /∈ V̄

f
i }.

Finally, V̄ f = {
⋃

V̄ f
i }, Ēf = {

⋃
Ēf
i }, and Ēf = {

⋃
Ē
f
i } represent the set of failed

VNodes, VLinks, and Independent VLinks of all the VNs in Ḡ, respectively. Fig. 4.1
illustrates the embedding of two VNs, Ḡ1 with V̄1 = {a, b, c} and Ḡ2 with V̄2 = {d, e} on
the SN G shown in the bottom. The numbers next to a VLink and an SLink represent
the VLink demand and SLink residual bandwidth, respectively. The VNode mapping i.e.,
f(.) is shown by placing a VNode beside its mapped SNode and the VLink mapping i.e.,
g(.) is depicted by dashed paths between SNodes. For instance, f(a) = {D}, f(b) = {C},
f(c) = {G}, f(d) = {B}, f(e) = {H} and g(ab) = {DB,BC}, g(ac) = {DH,HG},
g(bc) = {CF, FG}, and g(de) = {BD,DH}. We now show the impact of an SNode failure
with V f = {D} and Ef = {DB,DE,DH}. VN Ḡ1 experiences a VNode failure with
V̄ f

1 = {a}. Consequently, the VLinks adjacent to a fail leading to Ēf1 = {ab, ac}. Note
there is no Independent VLink failures in Ḡ1, and so Ēf

1 = Ēf1 . On the other hand, V̄ f
2 = φ

since no VNode of Ḡ2 is mapped on D. However, the failure of D results in an independent
VLink failure yielding Ēf

2 = Ē
f
2 = {de}. Hence, any recovery algorithm should re-embed

all the affected VNodes and VLinks from Ḡ1 and Ḡ2 leaving unaffected part such as VLink
bc undisrupted.
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Figure 4.1: VN embedding and impact of failure

4.2.2 Problem Statement

Given an SN G = (V,E), a failed SNode implying |Vf | = 1, and a set of affected VNs Ḡ
embedded on G, re-embed the failed VNodes in V̄ f and the failed VLinks in Ēf on G such
that the re-embedding achieves the following objectives:

� Primary objective differs based on the recovery model being chosen. For FRM,
primary objective is to maximize the total number of recovered VLinks across all the
affected VNs. In PRM, primary objective is to minimize the total penalty for all the
failed VLinks that remain unrecovered.

� Secondary objective is to minimize the total cost of re-embedding in terms of SLink
bandwidth consumption.

subject to the following constraints:

� a failed VNode ū ∈ V̄ f
i is re-embedded on exactly one SNode, v ∈ Li(ū). In addition,

multiple VNodes of the same VN cannot be mapped to an SNode. However, multiple
VNodes from different VNs can share an SNode.

� a failed VLink (ū, v̄) ∈ Ēf
i is re-embedded on a substrate path Pf(ū)f(v̄) having suf-

ficient bandwidth to accommodate the demand of the VLink. The re-embedding
cannot use a substrate path containing the failed SNode.
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� VNodes and VLinks not affected by the SNode failure are not re-embedded.

4.3 ILP Formulation: Opt-ReNoVatE

We provide an ILP formulation, Opt-ReNoVatE, based on the Multi-commodity Flow Prob-
lem formulation of ReNoVatE. We first present the decision variables (§ 4.3.1). Then, we
introduce the constraints (§ 4.3.2) followed by the objective functions of the two variants
of Opt-ReNoVatE (§ 4.3.3 and § 4.3.4). Finally, we describe the complexity of the problem
in § 4.3.5.

4.3.1 Decision Variables

The following decision variables indicate VNode and VLink embedding of a VN Ḡi ∈ Ḡ on
an SN G.

yiūu =

{
1 iff ū ∈ V̄i is mapped to u ∈ V,
0 otherwise.

xiūv̄uv =

{
1 iff (ū, v̄) ∈ Ēi is mapped to (u, v) ∈ E,
0 otherwise.

The objective of Opt-ReNoVatE is to recover as many failed VLinks in Ēf as possible
to mitigate the impact of failure. It may be possible that not all VLinks in Ēf can be
re-embedded due to substrate resource limitation. The following decision variable defines
which VLinks are re-embedded:

ziūv̄ =

{
1 iff (ū, v̄) ∈ Ēf

i is mapped to any substrate path
0 otherwise.
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Table 4.1: Summary of Key Notations

G = (V,E) Substrate Network

buv Bandwidth capacity of SLink (u, v) ∈ E
ruv Residual bandwidth of SLink (u, v) ∈ E
V f Set of failed SNodes

Ef Set of failed SLinks

Cuv Cost of unit bandwidth on SLink (u, v) ∈ E
Ḡi = (V̄i, Ēi) i-th Virtual Network Request

biūv̄ Bandwidth requirement of virtual link (ū, v̄) ∈ Ēi
Li(ū) Location constraint set for virtual node ū ∈ V̄i

`iūu ∈ {0, 1} `iūu = 1 if u ∈ Li(ū), u ∈ V, ū ∈ V̄i
f(ū) ∈ V Embedding of VNode ū

g(ūv̄) ∈ 2E Embedding of VLink (ū, v̄)

V̄ f
i Set of failed VNodes from VN V̄i
Ēf
i Set of failed VLinks from VN V̄i
Ēfi Set of failed VLinks adjacent to a failed VNode

Ē
f
i Set of VLinks not adjacent to a failed VNode

xiūv̄uv ∈ {0, 1} xiūv̄uv = 1 if (u, v) ∈ E is on the embedded substrate

path for (ū, v̄) ∈ Ēi
yiūu ∈ {0, 1} yiūu = 1 if ū ∈ V̄i is mapped to u ∈ V
ziūv̄ ∈ {0, 1} ziūv̄ = 1 iff (ū, v̄) ∈ Ēf

i is mapped to any substrate

path

πiūv̄ Penalty due to resource unavailability of (ū, v̄) ∈ Ēf
i
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4.3.2 Constraints

Intactness of Unaffected VNodes and VLinks

The mapping of VNodes and VLinks that are not affected by the substrate failure remains
unchanged. Constraints (4.1) and (4.2) ensure that unaffected VNodes and VLinks are not
re-embedded.

∀Ḡi ∈ Ḡ,∀ū ∈ V̄i \ V̄ f
i : yiūf(ū) = 1 (4.1)

∀Ḡi ∈ Ḡ,∀(ū, v̄) ∈ Ēi \ Ēf
i ,∀(u, v) ∈ g(ūv̄) : xiūv̄uv = 1 (4.2)

Exclusion of Failed SNodes and SLinks from Re-embedding

The failed VNodes or VLinks cannot use any of the failed SNodes or SLinks during re-
embedding. Constraint (4.3) ensures that the failed VNodes are not re-embedded on the
failed SNodes, and (4.4) ensures that the failed VLinks are not re-embedded on substrate
paths containing a failed SLink.

∀Ḡi ∈ Ḡ,∀ū ∈ V̄ f
i , ∀u ∈ Vf : yiūu = 0 (4.3)

∀Ḡi ∈ Ḡ,∀(ū, v̄) ∈ Ēf
i ,∀(u, v) ∈ Ef : xiūv̄uv = 0 (4.4)

Link Mapping Constraints

Constraint (4.5) prevents overcommitment of SLink bandwidth. Constraint (4.6) ensures
that the in-flow and out-flow of each SNode is equal except at the SNodes where the
endpoints of a failed VLink are embedded. Finally, constraint (4.7) ensures that if a VLink
(ū, v̄) is selected to be re-embedded due to the failure of ū, there is some flow from the
SNode u where v̄ is embedded already.
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∀(u, v) ∈ E :
∑
∀Ḡi∈Ḡ

∑
∀(ū,v̄)∈Ēi

xiūv̄uv × biūv̄ ≤ buv (4.5)

∀Ḡi ∈ Ḡ,∀(ū, v̄) ∈ Ēf
i ,∀u ∈ V \ f(v̄) :∑

∀v∈N (u)

(xiūv̄uv − xiūv̄vu ) ≤ yiūu − yiv̄u (4.6)

∀Ḡi ∈ Ḡ,∀(ū, v̄) ∈ Ēf
i ,∀u ∈ f(v̄) :∑

∀v∈N (u)

(xiūv̄uv − xiūv̄vu ) = ziūv̄ (4.7)

Node Mapping Constraints

First, constraint (4.8) ensures that re-embedding of a failed VNode should be done ac-
cording to the provided location constraint set. Second, constraint (4.9) makes sure that a
VNode should be mapped to at most an SNode in the SN. Third, constraint (4.10) enforces
that an SNode will not host more than one VNodes from the same VN. Finally, constraint
(4.11) ensures that if a VLink (ū, v̄) ∈ Ēfi is selected to be re-embedded due to the failure
of ū, the VNode ū must be re-embedded on an SNode according to the location constraint.
Here, λ is a very large integer that turns the left side of (4.11) into a fraction between 0
and 1 when any of the ziūv̄ is 1. This enforces the right side of (4.11) to become 1, thus
ensuring the failed VNode to be re-embedded.

∀Ḡi ∈ Ḡ,∀ū ∈ V̄ f
i ,∀u ∈ V : yiūu ≤ `iūu (4.8)

∀Ḡi ∈ Ḡ,∀ū ∈ V̄ f
i , :

∑
u∈V

yiūu ≤ 1 (4.9)

∀Ḡi ∈ Ḡ,∀u ∈ V :
∑
ū∈V̄i

yiūu ≤ 1 (4.10)

∀Ḡi ∈ Ḡ,∀ū ∈ V̄ f
i :

1

λ

∑
v̄∈N (ū)

ziūv̄ ≤
∑
∀u∈V

yiūu (4.11)
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4.3.3 Fair Recovery Model

The fair recovery model (FRM) treats all the failed VLinks equally while recovering them.
Hence, the objective of this model is to recover as many failed VLinks as possible. Fol-
lowing the problem statement, the objective function (4.12) of FRM has two components.
The first and primary component maximizes the number of re-embedded failed VLinks. In
other words, it minimizes the total number of un-recovered VLinks as shown in (4.12). It
is obvious to observe that the minimum value of the primary component is zero. However,
there can be multiple solutions that achieve the minimum value. Hence, we need a sec-
ondary component in the objective function to break ties among multiple solutions having
the same value for the primary objective. Therefore, the secondary component minimizes
the total cost of provisioning bandwidth for re-embedding the failed VLinks on substrate
paths. A weight factor w is multiplied to the second component to impose the relative
weight to the components of (4.12). The value of w is chosen to be a very small fraction
so that it comes into effect only to break ties among multiple solutions that have the same
value for the primary objective. In this way, w prefers the number of recovered VLinks
over the cost of re-embedding.

minimize

|Ēf | −
∑
∀Ḡi∈Ḡ

∑
∀(ū,v̄)∈Ēfi

ziūv̄


+w

 ∑
∀Ḡi∈Ḡ

∑
∀(ū,v̄)∈Ēfi

∑
∀(u,v)∈E

xiūv̄uv × Cuv × biūv̄

 (4.12)

4.3.4 Priority-based Recovery Model

The priority-based recovery model (PRM) prioritizes some failed VLinks over others to
satisfy the SLA requirements or to minimize the impact of failure or to maximize profits.
To impose such priorities, we utilize the penalty parameter πiūv̄ associated to each VLink
(ū, v̄) ∈ Ēf

i . Each πiūv̄ can be given as an input based on SLA requirement violation
penalty or can be computed based on the impact of failure. For instance, a VLink with
strict SLA requirement may have a higher value of the penalty than that of a VLink with
less-stringent SLA requirement. The objective of PRM is to minimize the total penalty
across all the failed VLinks. Similar to the FRM case, the objective function (4.13) has two
components. The primary component minimizes the total penalty incurred by the VLinks
that are not recovered. The second one minimizes the total cost of provisioning bandwidth
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for re-embedding the failed VLinks on substrate paths. A weight factor w is multiplied
to the second component to impose the relative weight to the components of (4.13). The
value of w is chosen to be a very small fraction so that it comes into effect only to break
ties among multiple solutions that have the same value for the primary objective. In this
way, w prioritizes minimizing total penalty over the cost of re-embedding.

minimize

 ∑
∀Ḡi∈Ḡ

∑
∀(ū,v̄)∈Ēfi

(1− ziūv̄)× πiūv̄


+w

 ∑
∀Ḡi∈Ḡ

∑
∀(ū,v̄)∈Ēfi

∑
∀(u,v)∈E

xiūv̄uv × Cuv × biūv̄

 (4.13)

Note that, if we assume πiūv̄ = 1, ∀Ḡi ∈ Ḡ,∀(ū, v̄) ∈ Ēi, (4.13) reduces to (4.12). Therefore,
objective function of PRM i.e., (4.13) encompasses objective functions of both FRM and
PRM, and can be considered as the generalized recovery model.

4.3.5 Complexity of the Problem

The binary nature of the decision variables and the flow constraints of Opt-ReNoVatE
prevent any VLink from being mapped to multiple substrate paths. This restricts the
re-embedding of Independent VLinks to the NP-hard Multi-commodity Unsplittable Flow
Problem [58]. The VNode re-embedding follows from VLink re-embedding since there
are no costs associated with VNodes. Therefore, the re-embedding of a VNode and its
adjacent VLinks of a VN becomes the NP-hard Single-source Unsplittable Flow Problem
with unknown source [54]. When there are a batch of affected VNs, computing the best
sequence of VNs from a combinatorial number of sequences to maximize the number of
recovered VLinks makes the problem computationally intractable.

4.4 Heuristic Solution: Fast-ReNoVatE

Due to the intractability of Opt-ReNoVatE, we resort to a heuristic algorithm, Fast-
ReNoVatE, to find feasible solutions in reasonable time. Fast-ReNoVatE re-embeds the
failed VNodes and their Adjacent VLinks (§ 4.4.1) and Independent VLinks (§ 4.4.2) of
the affected VNs efficiently.

104



4.4.1 Recovery of VNodes and Adjacent VLinks

The inputs to the VNode Recovery algorithm (Alg. 8) comprise an SN G, a set of affected
VNs Ḡ that are embedded on G, the recovery model to be applied, and a set of failed
SNodes V f and failed SLinks Ef . The purpose of the recovery model is to select the
proper model between the two possibilities i.e., FRM and PRM. Alg. 8 initially sorts the
affected VNs in Ḡ and Ḡ represents this sorted order. The sorting function depends on
the recovery model being adopted. In FRM, the function sorts the affected VNs in Ḡ
in increasing order of the total lost bandwidth in their Adjacent VLinks. The total lost
bandwidth of a VN, Ḡi ∈ Ḡ is computed as the summation of the bandwidth demands for
all the failed VLinks in Ēfi of Ḡi. On the other hand, PRM sorts the affected VNs in Ḡ in
decreasing order of the total penalty in their Adjacent VLinks. The total penalty of a VN,
Ḡi ∈ Ḡ is computed as the summation of the penalty πiūv̄ of all the failed VLinks in Ēfi of
Ḡi. Intuitively, the algorithm proceeds to recover the VNs in Ḡ in the sorted order of Ḡ
to increase the number of recovered VLinks in FRM or to decrease the cumulative penalty
in PRM. For each VN Ḡi, the algorithm tries to re-embed the failed VNode ū ∈ V̄ f

i and
the VLinks adjacent to ū i.e., Ēfi to an SNode present in the location constraint set of ū
i.e., Li(ū) and to substrate paths, respectively. To accomplish this, it iterates over all the
SNodes l ∈ Li(ū) \ V f , and selects the SNode, bestū that maximizes the cardinality of the
set of substrate paths, Pl, computed for the VLinks in Ēfi . In case of a tie, the SNode
with the lower cost of the paths in Pl, denoted by M , is selected. Finally, the algorithm
re-embeds ū and the VLinks in Ēfi to bestū and to the paths in M , respectively.

As discussed in § 4.3.5, optimally computing the set of substrate paths Pl from an
SNode l ∈ Li(ū) \ V f for the VLinks in Ēfi of a VN is NP-hard. Majority of the VN
embedding proposals aims to minimize the cost of embedding [59]. They would embed
each VLink in Ēfi one-by-one by adopting a minimum cost substrate path finding approach.
However, in a bandwidth constrained scenario, a minimum cost path may contain some
bottleneck SLinks. Allocating the bandwidth of these SLinks to a VLink may leave later
VLinks unrecoverable. The objective of ReNoVatE is to maximize the number of recovered
VLinks irrespective of the cost of recovery. Hence, our heuristic (Alg. 9) simultaneously
computes Pl for all the VLinks in Ēfi to maximize the cardinality of Pl. Alg. 9 works by
finding maximum flow from a source to a sink in a graph avoiding any bottleneck SLink.
If we always send unit flow from a source to a sink in a graph, the paths carrying the
maximum amount of flow will correspond to the maximum number of paths between the
source and the sink without exceeding the capacity of the SLinks.

To implement this idea, Alg. 9 first augments the SN graph G with a pseudo sink
SNode, namely S. It then adds a pseudo SLink from each SNode that hosts a VNode,
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Figure 4.2: Maxflow Realization

v̄ ∈ N (ū) to S, where ū ∈ V̄ f
i . The capacity of each augmented SLink is set to 1 to

ensure the un-splittability of the substrate paths. Further, each bidirectional SLink in
E \Ef is replaced with two unidirectional SLinks, and the capacity of these new SLinks are

discretized according to an estimation function,
ruv

max
∀{(ū,v̄)∈Ēfi }

{biūv̄}
. This stringent estimation

ensures that each selected SLink can provide the bandwidth even for the VLink with the
maximum demand among all the VLinks in Ēfi . Other estimation functions such as min
or average could be used allowing over-subscription of bandwidth for some of the VLinks.
Fig. 4.2 illustrates the maximum flow realization for the recovery of VN Ḡ1 embedded on
SN G according to Fig. 4.1. Upon the failure of SNode D, VNode a and VLinks ab and ac
of Ḡ1 fail. Since N (a) = {b, c}, f(b) = C, and f(c) = G, we add SLinks CS and GS to
sink S with capacity 1, as shown by the dashed arrows in Fig. 4.2. This figure depicts the
transformed SN after removing the failed SNode and SLinks, replacing each bidirectional
SLink with two unidirectional SLinks, and estimating the capacity of these SLinks using

ruv
max {6, 5}

.

After augmenting and initializing the capacity and flow of each SLink in G, Alg. 9
proceeds with the steps of the Edmonds-Karp algorithm [56] for computing the maximum
flow from each l ∈ Li(ū) \ V f to S. We modify the Edmonds-Karp algorithm to compute
the set of augmenting paths P from each l to S so that the sum of flows carried along these
paths is the maximum. Each augmenting path P ∈ P will consume one unit of bandwidth
since we deliberately assign unit capacity to the pseudo SLinks incident to S. In addition,
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a path P ∈ P will contain an SNode from the set {f(v̄)|v̄ ∈ N (ū)}, since S can only be
reached through these SNodes. In the event that a new path P cancels the flow on any
bottleneck SLink (u, v) of any existing path Pi ∈ P , Alg. 9 updates both P and Pi to
exclude (u, v). Following these steps, the set of paths P from l to S is computed. However,
the VLink re-mapping requires substrate paths from l to any SNode in {f(v̄)|v̄ ∈ N (ū)}.
Hence, the algorithm identifies the path Pi that contains any SNode in {f(v̄)|v̄ ∈ N (ū)},
removes the SLink (f(v̄), S) from Pi, and indexes the modified Pi with the corresponding
VLink (ū, v̄). After modifying and indexing all the paths in Pl, the algorithm returns Pl.

To illustrate, we assume L1(a) = {B,E,H} in the example of Fig. 4.2. When l = E,
Alg. 9 computes the paths carrying the maximum flow from E to S through C and
G in the transformed SN of Fig. 4.2. If the augmenting path finding step in the al-
gorithm picks the shortest path {EB,BG,GS} as P1, the maximum flow is restricted
to 1 by the bottleneck SLink BG. Hence, the algorithm computes a new path P =
{EH,HI, IG,GB,BA,AC,CS} in the residual network as defined in the Edmonds-Karp
algorithm. Since P cancels the flow along the bottleneck SLink BG ∈ P1, Alg. 9 reorga-
nizes the segments of P with P1 to yield P = {{EB,BA,AC,CS}, {EH,HI, IG,GS}}.
Finally, the algorithm excludes CS and GS from the two paths and returns Pl[(a, b)] =
{EB,BA,AC} and Pl[(a, c)] = {EH,HI, IG}.

4.4.2 Recovery of Independent VLinks

As presented in § 4.3.5, the re-embedding of Independent VLinks in Ēf is a variant of the
NP-hard Multi-commodity Unsplittable Flow Problem. The heuristic described in § 4.4.1
is not applicable to this problem since both the endpoints of a VLink in Ēf are mapped
to some SNodes, and finding maximum paths may yield invalid paths between the wrong
pair of SNodes. Hence, we propose a greedy strategy (Alg. 10) based on computing the
minimum cost path. Similar to the recovery of adjacent VLinks, Alg. 10 first sorts the
VLinks in Ēf based on the recovery model, and Ē f represents this order. FRM sorts
the VLinks in increasing order of their bandwidth demands, whereas PRM sorts them in
decreasing order of their penalties. Such sorting orders help FRM (or, PRM) maximize (or,
minimize) the number of recoveries (or, the total incurred penalties). According to this
order, the algorithm computes alternate substrate path for each VLink in (x̄, ȳ) ∈ Ē f in
the subgraph induced by excluding the failed SNode and SLinks from G. For a particular
VLink (x̄, ȳ), the algorithm finds the minimum cost path from f(x̄) to f(ȳ) using the
procedure MCP , and adds it to the set P . The procedure MCP uses a modified version
of Dijkstra’s shortest path algorithm [53] to take into account SLink residual capacity and
VLink demand while computing the minimum cost path.

107



Algorithm 8: VNodes Recovery

1 function VNodes Recovery(G, Ḡ, V f , Ef , recovery −model)
2 if recovery −model = FRM then

3 Ḡ ← Sort Ḡi ∈ Ḡ in increasing order of
∑

∀(ū,v̄)∈Ēfi

biūv̄

4 else if recovery −model = PRM then

5 Ḡ ← Sort Ḡi ∈ Ḡ in decreasing order of
∑

∀(ū,v̄)∈Ēfi

πiūv̄

6 maxR ← 0
7 foreach Ḡi ∈ Ḡ do
8 ū← failed virtual node in Ḡi, bestū ← NIL
9 foreach l ∈ Li(ū) \ V f do

10 Pl ←Max− Paths(G, Ḡi, ū, l, Ēfi , V f , Ef )
11 if R(Pl) > maxR or (R(Pl) = maxR and C(Pl) ≤ C(M)) then
12 M ← Pl, bestū ← l

13 if bestū 6= NIL then
14 map ū to bestū
15 ∀(ū, v̄) ∈ Efi : map (ū, v̄) to M [(ū, v̄)]

108



Algorithm 9: Max-Paths

1 function Max-Paths(G, Ḡi, ū, l, Ēfi , V f , Ef)
2 V ← V \ V f ∪ {S}, E ← E \ Ef

3 ∀(ū, v̄) ∈ Ēfi :
4 E ← E \ Ef ∪ {(f(v̄), S)}
5 max bw ← max

∀(ū,v̄)∈Ēfi
{biūv̄}

6 ∀(u, v) ∈ E s.t. u = S or v = S :
7 flowuv ← 0, cuv ← 1
8 ∀(u, v) ∈ E s.t. ruv > 0 and u 6= S and v 6= S :
9 flowuv ← flowvu ← 0

10 cuv ← cvu ← b ruv
max bw

c
11 Gr ← G, P ← φ, Pl ← φ
12 while ∃ augmenting path P from l to S in Gr do
13 Cf (P )← min

∀(u,v)∈P
{cuv}

14 Augment Cf (P ) units flow in Gr along P
15 Update residual capacity in Gr along P
16 Remove links with residual capacity ≤ 0
17 foreach Pi ∈ P do
18 if P cancels the flow along (u, v) ∈ Pi then
19 τ ← Sub paths in Pi \ (u, v)
20 ν ← Sub paths in P \ (v, u)
21 P ← Path formed by segments in τ and ν
22 Pi ← Path formed by segments in τ and ν

23 P ← P ∪ P
24 ∀Pi ∈ P , ∀(ū, v̄) ∈ Ēfi :
25 Pi ← Path containing (f(v̄), S)
26 Pl[(ū, v̄)]← Pi \ (f(v̄), S)
27 return Pl
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Algorithm 10: VLinks-Recovery

1 function VLinks-Recovery(G, Ēf , V f , Ef , recovery −model)
2 P ← φ
3 V ← V \ V f , E ← E \ Ef

4 if recovery −model = FRM then
5 Ē f ← Sort (x̄, ȳ) ∈ Ēf in increasing order of bix̄ȳ
6 else if recovery −model = PRM then
7 Ē f ← Sort (x̄, ȳ) ∈ Ēf in decreasing order of πix̄ȳ
8 foreach (x̄, ȳ) ∈ Ē f do
9 P [(x̄, ȳ)]← MCP(G, f(x̄), f(ȳ), bix̄ȳ)

10 map (x̄, ȳ) to P [(x̄, ȳ)]

To illustrate, Fig. 4.2 depicts the recovery of Independent VLink de of VN Ḡ2, embedded
on SN G according to Fig. 4.1. Alg. 10 should find alternate substrate paths between B
and H for VLink de. The max flow based heuristic may return substrate path between
B and G (or, between H and C), and is thus inappropriate. Hence, Alg. 10 recovers de
through the minimum cost path {BG,GH} that has sufficient bandwidth to satisfy the
demand of de.

4.4.3 Running Time Analysis

The most expensive step in Alg. 8 is the computation of the maximum paths using Alg. 9.
The core part of Alg. 9 follows the steps of Edmonds-Karp Algorithm. If Edmonds-Karp
Algorithm computes augmenting paths using Breadth-first Search, it runs in O(|V ||E|2)
time. Since Alg. 9 is invoked |L(ū)| times for recovering a VN, and there are |V̄ f | number of
affected VNs, total running time yields O(|L(ū)||V̄ f ||V ||E|2). In contrast, Alg. 10 invokes
Dijkstra’s shortest path algorithm for each VLink in Ēf . Since Dijkstra’s shortest path
algorithm runs in O(|E|+ |V | log |V |) time, Alg. 10 requires O(|Ēf |(|E|+ |V | log |V |)) time.

4.5 Evaluation

In this section, we first present the compared approaches in § 4.5.1 followed by a description
of the evaluation metrics in § 4.5.2. Then, we describe the simulation setup in § 4.5.3 and
VN embedding data generation method in § 4.5.4. Finally, we present our evaluation
results found through extensive simulation in § 4.5.5.
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Table 4.2: Summary of Simulation Parameters

Scale Figure SNodes SLinks
VNodes
in a
VN

VLinks
in a
VN

VNs
SN Uti-
lization

VLink
BW

Total
Failed
VLinks

Small
Fig. 4.3,
4.6

50 90 5 8 10-32
20% -
75%

10% of
SLink

250 -
866

Scale Fig. 4.4 20-65
37-
118

5 8 8-19 53%
15% of
SLink

178 -
519

Large
Scale

Fig. 4.5,
4.7

1000 1798 3-15 2-30
93-
563

20% -
80%

10% of
SLink

4712 -
13546

4.5.1 Compared Algorithms

We first demonstrate the performance of FRM-based recovery by comparing Opt-ReNoVatE
and Fast-ReNoVatE with an implementation of dynamic recovery [25], called Dyn-Recovery.
For a fair comparison, we selected a related work that takes a similar approach as we did,
i.e., a reactive recovery scheme that is executed centrally with a global knowledge about
what are embedded on the substrate network. In addition, we exclude the last step of
re-embedding the entire VN from the implementation of Dyn-Recovery in the event of
resource inadequacy. Although we evaluate all three algorithms in small size networks,
we cannot evaluate Opt-ReNoVatE for large networks because of the inherent complexity
of ILP-solvers. Alternatively, we present Fast-ReNoVatE ’s baseline performance assuming
the SLinks of an SN have infinite bandwidth, and refer to it as Fast-ReNoVatE-INF. We
compare Fast-ReNoVatE with Fast-ReNoVatE-INF to demonstrate the impact of residual
bandwidth and the possible partitioning in a substrate network on the recovery from an
SNode failure. Finally, we analyze the impact of priority-based recovery through a rig-
orous comparison between the two proposed recovery models i.e., FRM and PRM. Since
these models are orthogonal to our solutions i.e., Opt-ReNoVatE and Fast-ReNoVatE,
we compare the two models on each of our solutions. We differentiate between the two
variants of Opt-ReNoVatE as Opt-ReNoVatE-FRM and Opt-ReNoVatE-PRM. Similarly,
Fast-ReNoVatE-FRM and Fast-ReNoVatE-PRM represent the variants of Fast-ReNoVatE
for FRM and PRM, respectively.
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4.5.2 Performance Metrics

Recovery Efficiency

The fraction of successfully recovered VLinks over all failed VLinks expressed in percentage.

Recovery Cost

The average cost of provisioning bandwidth along a substrate path times the cost of allo-
cating one unit bandwidth for re-embedding each failed VLink.

Execution Time

The time required for an algorithm to find the solution for all the VNs affected by an
SNode failure.

Normalized Penalty

Total incurred penalty normalized with the total number of VLinks that remain unrecov-
ered.

4.5.3 Simulation Setup

We implement Opt-ReNoVatE using IBM ILOG CPLEX C++ library; and Fast-ReNoVatE
and Dyn-Recovery [25] using C++. We evaluate the algorithms on both small and large
scale networks as summarized in Table 4.2. For each problem instance in this table, we
generate 5 random SNs by taking the number of SNodes and link-to-node ratio as inputs,
and randomly creating SLinks between SNodes. Then, we generate a number of VNs for
each SN, and embed the VNs on the SN following the procedure described in § 4.5.4. We
select a random SNode and its one hop neighbor SNodes as the location constraint set of a
VNode. Afterwards, we simulate an SNode failure by removing each SNode in the SN one-
by-one and execute the recovery algorithms being evaluated on the affected VNs. Finally,
we measure the performance metrics of the compared algorithms by taking averages across
all SNode failures for all 5 similar problem instances. The simulations are performed on a
server with 2 Intel Xeon E5-2650 (8 cores @ 2.0GHz, each) processors and 256GB of RAM.
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4.5.4 VN Embedding Method

VN generation and embedding are done simultaneously to overcome the issue of creating
VNs that do not have feasible embeddings. The embedding of VNs on an SN is done in
a random but load-balanced manner to achieve uniform distribution of VNs across the
SN. Load balancing has been considered as one of the key criteria for VN embedding in
previous work [59]. Achieving higher utilization (beyond 70%) of SN requires a denser
embedding which is done by relaxing the load-balancing criteria. The embedding of a
VN starts by randomly selecting a source SNode that has free capacity for a VNode.
This forms the first VNode (source VNode) of the VN currently being embedded. For each
randomly assigned neighbor of this VNode, a random destination SNode within several hop
distances from the source SNode is selected as a candidate for embedding the subsequent
VNode (destination VNode). The source and destination VNodes are joined using a VLink
embedded on the shortest path between source and destination SNodes. If the path is not
found, the destination VNode is moved to a different destination SNode. If the embedding is
successful, the bandwidth demand of the VLink is generated and subtracted from the SLink
residual capacity along the embedding path. To evaluate PRM, the penalty associated
with the VLink is generated using a unform random distribution between 1 and the total
number of failed VLinks. In the case of FRM, the penalty of each VLink is set to 1
to enforce impartial recovery. These steps are repeated until all VNodes are embedded,
generating both the VN and its embedding on the SN, simultaneously.
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Figure 4.3: Small scale performance by varying SLink utilization

113



 65
 70
 75
 80
 85
 90
 95

 100

 20  30  40  50  60

R
ec

ov
er

y 
E

ffi
ci

en
cy

SN Size

Opt-ReNoVatE

Fast-ReNoVatE

Dyn-Recovery

(a) Recovery Performance

 12
 16
 20
 24
 28
 32
 36

 20  30  40  50  60R
ec

ov
er

y 
C

os
t (

x1
0^

3)

SN Size

Opt-ReNoVatE
Fast-ReNoVatE

Dyn-Recovery

(b) Cost Analysis

 0.1

 1

 10

 100

 1000

 10000

 20  30  40  50  60E
xe

cu
tio

n 
Ti

m
e 

(m
s)

SN Size

Opt-ReNoVatE

Fast-ReNoVatE

Dyn-Recovery

(c) Scalability Analysis

Figure 4.4: Small scale performance by varying SN size
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Figure 4.5: Performance of large scale testcases
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Figure 4.6: Impact of adding priority on Opt-ReNoVatE
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Figure 4.7: Impact of adding priority on Fast-ReNoVatE

4.5.5 Results

Small Scale Evaluations

In small scale settings, we evaluate Opt-ReNoVatE, Fast-ReNoVatE, and Dyn-Recovery
focusing on the following aspects: (i) by varying number of embedded VNs to achieve
different SLink utilizations in the same SN (Fig. 4.3) (ii) by varying SN sizes while keeping
the VN size and SLink utilization fixed (Fig. 4.4). We now present the impact of these
aspects on our performance metrics.
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Recovery Efficiency Fig. 4.3(a) shows that the recovery efficiencies of Opt-ReNoVatE,
Fast-ReNoVatE, and Dyn-Recovery decrease with the increase in SLink utilization. As
the utilization increases, more VNs are affected by the SNode failure, and less bandwidth
is left for recovery resulting in the gradual decrease in the number of recovered VLinks.
Further, the impact of utilization is more profound in the higher utilization cases due to
the lack of load balanced embedding. In the higher utilized cases, the recovery efficiencies
of Fast-ReNoVatE is ∼ 6% better than those of Dyn-Recovery and ∼ 3% worse than those
of Opt-ReNoVatE. The reason behind Fast-ReNoVatE ’s worse performance is that Fast-
ReNoVatE recovers adjacent VLinks and independent VLinks in one particular order. In
contrast, Opt-ReNoVatE recovers all the failed VLinks at once by exploring all possible
sequences resulting in the optimal solution. Fig. 4.4(a) compares the recovery efficiencies of
the three approaches for different SN sizes. As observed in the figure, recovery efficiencies
of all three approaches increase slightly with the increase in SN size. This is due to the
higher path diversity augmented by the higher number of SLinks in the larger SN. All
the three approaches utilize the path diversity in the SN to recover more failed VLinks
resulting in the increased recovery efficiencies.

Recovery Cost We show the recovery cost in Fig. 4.3(b) against different SLink utiliza-
tions. In higher utilization cases, more SLinks become saturated in terms of bandwidth,
and all the algorithms have to select longer substrate paths to recover resulting in increased
costs. Further, the costs of Opt-ReNoVatE are the least among the three, since it selects the
most suitable paths through exhaustive search. In contrast, Fast-ReNoVatE iterates over
all the affected VNs and the independent VLinks in a greedy manner, sometimes preferring
less suitable paths resulting in more costs than Opt-ReNoVatE. Finally, Dyn-Recovery does
not consider the cost of a path while recovering a VLink. It may select a longer path than
that selected by Fast-ReNoVatE leading to a much larger cost than Fast-ReNoVatE. On
average, Fast-ReNoVatE incurs ∼ 7% more cost than Opt-ReNoVatE and ∼ 20% less cost
than Dyn-Recovery. Fig. 4.4(b) presents the recovery cost against different SN sizes. This
figure shows that the recovery costs of all three approaches gradually increase with the
increase in SN size. This is due to the fact that the two end SNodes of a failed VLink are
embedded far apart from one another in a larger SN. Therefore, all the approaches recover
the failed VLinks using longer substrate paths leading to higher recovery costs. However,
the differences of recovery costs among the three approaches follow the same pattern as in
the SLink utilization cases.

Execution Time To demonstrate the scalability of the compared algorithms, we report
their execution times on different problem instances. Fig. 4.3(c) presents the execution
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times by varying utilization on a fixed SN, whereas Fig. 4.4(c) presents the execution
times in SNs with varying sizes while keeping the utilization fixed at ∼ 53%. Accord-
ing to Table 4.2, both problem size and the total number of failed VLinks increase with
the increase in utilization and SN size. Consequently, the execution times grow for all
the approaches, however, the increase is exponential for Opt-ReNoVatE. As it turns out,
Fast-ReNoVatE and Dyn-Recovery take less than 3ms and 2ms, respectively, in the largest
problem instances, whereas Opt-ReNoVatE takes ∼ 6s on the same problem instances. The
slightly higher execution times of Fast-ReNoVatE compared to Dyn-Recovery are due to
the extra iterations of Fast-ReNoVatE to avoid bottleneck SLinks to achieve higher recov-
ery efficiencies. Despite that, Fast-ReNoVatE is 400x−2000x faster than Opt-ReNoVatE
depending on problem instance. Finally, Opt-ReNoVatE could not scale to more than 65
SNode SNs as shown in Fig. 4.4(c).

Large Scale Evaluations

In large scale settings, we evaluate Fast-ReNoVatE, Dyn-Recovery, and Fast-ReNoVatE-
INF by varying SLink utilizations in the same SN(Fig. 4.5).

Recovery Efficiency Fig. 4.5(a) shows that the recovery efficiencies of Fast-ReNoVatE
are ∼ 6% better than those of Dyn-Recovery and ∼ 2.5% worse than those of Fast-
ReNoVatE-INF. Similar to the small scale results, recovery efficiencies of Fast-ReNoVatE
and Dyn-Recovery decrease with the increase in SLink utilization whereas recovery ef-
ficiencies remain almost the same for Fast-ReNoVatE-INF. The near constant recovery
efficiencies of Fast-ReNoVatE-INF confirms that the reason of failing to recover is the in-
sufficiency of bandwidth in SLinks. In other words, if there were adequate bandwidth in
the SLinks, Fast-ReNoVatE could recover ∼ 99% of the failed VLinks. The very small
percentage of un-recovered VLinks of Fast-ReNoVatE-INF is due to the partitioning in the
SN caused by the SNode failure. In these cases, it is not possible to recover a failed VLink
even if there is sufficient bandwidth.

Recovery Cost Fig. 4.5(b) shows the recovery cost in large networks. For the same
reasons discussed in the case of small scale networks, Dyn-Recovery incurs the largest
amount of cost, and the costs of Fast-ReNoVatE and Dyn-Recovery rise with the increase
in SLink utilization. In contrast, there is no effect of residual bandwidth in finding an
alternate path in Fast-ReNoVatE-INF, and it can select the minimum cost path resulting
in the least costs. This is true for Fast-ReNoVatE in very low utilized SNs. Further, the two
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end nodes of the failed VLink are embedded closely to each other in a highly utilized SN.
Hence, Fast-ReNoVatE-INF recovers the VLink with shorter path leading to the decrease
of costs with the increase in SLink utilization. The counterintuitive behavior of Fig. 4.5(b)
from SLink utilization of 70 to 80 is due to relaxing the load-balancing criteria as explained
in § 4.5.4. The denser embedding to achieve higher utilization maps the VNodes of a VN
closer to one another, thus requiring lower recovery cost than a sparser one.

Execution Time Fig. 4.5(c) shows that Fast-ReNoVatE has similar timing performance
to Dyn-Recovery, and both are able to find a solution in less than 30ms even in the highest
utilized SN.

Comparison between FRM and PRM

In this section, we compare FRM and PRM to demonstrate the impact of priority based
recovery on Opt-ReNoVatE and Fast-ReNoVatE, respectively. Additionally, evaluations
on Opt-ReNoVatE are done for small scale problem instances, whereas, Fast-ReNoVatE is
evaluated on large scale topologies.

Impact on Opt-ReNoVatE Fig. 4.6 presents normalized penalties for the two variants
of Opt-ReNoVatE i.e., Opt-ReNoVatE-FRM and Opt-ReNoVatE-PRM. Although Opt-
ReNoVatE-FRM and Opt-ReNoVatE-PRM employ two separate objective functions as
presented in § 4.3, their performances in terms of recovery efficiency are found similar.
Hence, we do not report those results. However, they recover different VLinks in the face
of resource inadequacy. This difference can be clearly observed in their corresponding
normalized penalties and recovery costs shown in Fig. 4.6(a) and Fig. 4.6(b), respectively.
As seen in Fig. 4.6(a), the normalized penalties incurred by Opt-ReNoVatE-FRM remain
always higher than those incurred by Opt-ReNoVatE-PRM. Even though both of them
recover the same number of VLinks, Opt-ReNoVatE-PRM prioritizes the failed VLinks
having higher penalties in order to minimize the total penalty. On the other hand, Opt-
ReNoVatE-FRM remains indifferent to the failed VLinks while recovery leading to the
higher normalized penalty. Furthermore, the normalized penalties increase with the in-
crease in SN utilizations for both models. This is due to the higher number of VLinks
being affected by an SNode failure and the lower residual capacities left for recovery in a
higher utilized SN. However, Opt-ReNoVatE-FRM suffers more than Opt-ReNoVatE-PRM
due to Opt-ReNoVatE-FRM ’s impartial treatment on the failed VLinks. In contrast, Opt-
ReNoVatE-PRM prioritizes the failed VLinks with higher penalties even though they incur
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higher recovery cost. This accounts for the slightly higher recovery costs incurred by Opt-
ReNoVatE-PRM as seen in Fig. 4.6(b).

Impact on Fast-ReNoVatE Fig. 4.7 demonstrates the performances of the two vari-
ants of Fast-ReNoVatE i.e., Fast-ReNoVatE-FRM and Fast-ReNoVatE-PRM in terms of
our evaluation metrics. Fig. 4.7(a) shows the normalized penalties incurred by the two
models by varying SN utilizations in large scale topologies. The graph of Fig. 4.7(a) fol-
lows similar trend as we observe in the case of Opt-ReNoVatE in Fig. 4.6 and reinforces
the argument presented in the previous paragraph. However, the deviations between Fast-
ReNoVatE-FRM and Fast-ReNoVatE-PRM are less profound than those of the models of
Opt-ReNoVatE. The reason behind such difference is that Fast-ReNoVatE-PRM employs
priority on the VN level rather than on the VLink level as employed by Opt-ReNoVatE-
PRM. Unlike the models of Opt-ReNoVatE, Fast-ReNoVatE-FRM and Fast-ReNoVatE-
PRM show slight differences in terms of recovery efficiency and cost. Therefore, we present
those results in Fig. 4.7(b) and Fig. 4.7(c). According to these figures, the recovery effi-
ciencies (or, costs) of Fast-ReNoVatE-PRM are slightly lower (or, higher) than those of
Fast-ReNoVatE-FRM. This stems from the fact that Fast-ReNoVatE-PRM prioritizes the
VLinks with higher penalties despite being recovered in longer substrate paths. Such re-
covery increases the recovery cost and reduces the residual capacity of the SLinks leaving
less room for re-embedding some VLinks. This accounts for the higher recovery costs and
lower recovery efficiencies of Fast-ReNoVatE-PRM than those of Fast-ReNoVatE-FRM.

Impact on Execution Time Since FRM and PRM are orthogonal to our solutions Opt-
ReNoVatE and Fast-ReNoVatE, incorporating the models to our solutions does not bring
any significant change. Hence, the complexity of Opt-ReNoVatE presented in 4.3.5 and the
running time analysis of Fast-ReNoVatE presented in 4.4.3 remain the same irrespective of
the model being chosen. In our simulations, the execution times of Opt-ReNoVatE-PRM
and Fast-ReNoVatE-PRM are found similar to their FRM counterparts. Hence, we refrain
from reporting them in this chapter.

4.6 Conclusion

In this chapter, we have addressed the problem of generalized recovery of a batch of affected
VNs, resulting from a single substrate node failure. We have formulated the problem as
an Integer Linear Programming (ILP) model, Opt-ReNoVatE and presented an efficient
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heuristic algorithm, Fast-ReNoVatE, to tackle the computational complexity. We have
evaluated Fast-ReNoVatE, Opt-ReNoVatE, and a state-of-the-art solution, Dyn-Recovery in
both small and large scale networks. Evaluation results demonstrate that Fast-ReNoVatE
can recover ∼ 6% more VLinks than Dyn-Recovery and ∼ 3% less VLinks than Opt-
ReNoVatE in high utilization scenarios. In terms of scalability, Fast-ReNoVatE is several
orders of magnitude faster than Opt-ReNoVatE, and has comparable performance with
Dyn-Recovery. In large scale networks, we have compared Fast-ReNoVatE with Dyn-
Recovery and a baseline case of infinite bandwidth SN. These results demonstrate that
Fast-ReNoVatE is able to recover ∼ 99% of the failed VNs if the SN has adequate residual
capacity, and has similar timing performance to Dyn-Recovery. Furthermore, we have
investigated two variants of our recovery scheme, namely, fair recovery model (FRM) and
priority-based recovery model (PRM). Our evaluation results suggest that FRM-based
solutions fail to take into account variety of recovery requirements. In contrast, PRM-
based solutions can prioritize the affected VNs based on SLA requirements, impacts of
failure or profits, and adhere to that priority during recovery.
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Chapter 5

Reliable Slicing of Elastic Optical
Networks

Transport networks employing the latest advances in elastic optical networking will form
the backbone of the fifth-generation (5G) networks and beyond [68, 12, 28]. Transport-
network capacity must be easily partitionable to facilitate network slicing for 5G services
such as enhanced mobile broadband and ultra-reliable low latency communications [60].
Elastic Optical Networks (EONs) are an excellent choice for establishing transport network
slices, thanks to their ability to tailor network resources based on service requirements [73].

Network slices are usually provided in the form of virtual networks (VNs) (i.e., collection
of virtual nodes and virtual links (VLinks)). These VNs are anticipated to host services
operating at hundreds of Gbps line-rate. As a consequence, even a short-lived network
outage can cause a significant traffic disruption in these slices. However, ensuring reliability
of network slices is non-trivial as failures in a transport network, such as transponder
failure and fiber-cuts, are still the norm. A viable solution to ensure slice reliability is to
pre-provision dedicated backup paths for each path used to embed the VLinks, also known
as dedicated protection [95]. Dedicated backup paths can allow fast fail-over switching
within milliseconds [9], but they incur a significant resource overhead since they remain
idle during failure-free operations

In this chapter, we propose a VN embedding solution with dedicated protection that
incorporates two techniques to decrease the network-resource consumption: (i) bandwidth
squeezing, i.e., the opportunity to tune the amount of bandwidth guaranteed in case of
failures [136, 151, 42, 16]; and (ii) survivable multi-path provisioning [83, 93], i.e., VLink
demand splitting over multiple disjoint paths. Bandwidth squeezing is motivated by the
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fact that not all services require the full bandwidth to be operational, e.g., a file transfer
service can still be operational with reduced bandwidth during a failure. The extent
of bandwidth reduction is measured by bandwidth squeezing rate (BSR), which is the
percentage of original bandwidth made available after a failure. Survivable multi-path
provisioning allows us to exploit the fact that not all of the disjoint splits belonging to the
same VLink are jointly affected by a single substrate link failure. Therefore, the bandwidth
of the surviving paths after a failure can be reused to provide a given BSR. Note that, in
this chapter, we consider a single substrate link failure scenario, which is more common
than multiple simultaneous link failures [117].

The illustrative example in Fig. 5.1 demonstrates how the synergy of bandwidth squeez-
ing and survivable multi-path provisioning can reduce backup resources for dedicated pro-
tection. If we do not allow any splitting of a VLink demand (i.e., in our example, a
600Gbps demand is carried over a single primary path A-B-C), then we require 2× the
original bandwidth for providing a dedicated protection path (A-E-C), as illustrated in
Fig. 5.1(a). However, if we split the demand over three disjoint paths as in Fig. 5.1(b),
then any two of the three paths will be active after a single substrate link failure. In this
way 100% bandwidth will still be available after a failure, even though we are allocating
a total bandwidth that is only 1.5× the original demand. Bandwidth savings can even be
higher if we employ bandwidth squeezing, e.g., Fig. 5.1(c) shows how 66% BSR is ensured
without any additional backup bandwidth. However, the advantages of multi-path provi-
sioning depend on the availability of disjoint paths in the substrate network. For instance,
the lack of sufficient number of disjoint paths reduces the gain of multi-path provisioning
regardless of the extent of BSR as shown in Fig. 5.1(e) and Fig. 5.1(d).

In this chapter, we present our solutions for reliable slicing of 5G transport networks
based on VN embedding with dedicated protection over an EON. Our solutions leverage
EON’s capabilities in finer-grained spectrum allocation, adapting modulation format and
Forward Error Correction (FEC) overhead for rightsize resource allocation to the VNs.
We perform simulations using realistic network topologies, which provide valuable insight
into how different levels of BSR and path diversity in the substrate EON impact the
extent of backup resource savings for dedicated protection. We also analyze the steady
state behavior of our heuristic solution using a discrete event simulator. For instance, our
evaluation shows that by using multi-path provisioning it is possible to guarantee up to
40% of the requested bandwidth of a VN during failure (i.e., BSR ≤ 40%) while using as
low as 10% additional spectrum resources. Consequently, VN blocking ratio for BSR ≤
40% remains very similar to that of the case with no backup.

The rest of the chapter is organized as follows. We discuss the relevant research litera-
ture in § 5.1 and problem statement in § 5.2. Then, we formulate the optimal solution as
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Figure 5.1: Benefits of virtual link demand splitting and the impact of availability of
disjoint paths

an Integer Linear Program (ILP) in § 5.3 followed by a heuristic algorithm to solve large
problem instances in § 5.4. In § 5.5, we discuss the numerical evaluation of the proposed
approaches over realistic network instances. Finally, we present our concluding remarks in
§ 5.6.

5.1 Related Works

Reliability aspects of VN embedding [132] and, more generally, of traffic provisioning in
fixed-grid optical networks [134] have been extensively studied. Techniques to enhance reli-
ability [134] are typically categorized in two broad classes: protection and restoration. The
first class contains proactive approaches where backup paths are provisioned at the time a
VN or a traffic matrix is provisioned, which leads to faster recovery time. Backup paths
can be either dedicated [173, 48] or shared among multiple requests [132, 144, 71]. In con-
trast, restoration techniques provision backup resources after a failure has occurred [143].
Restoration alleviates the issue of keeping a large amount of backup resources idle during
regular operation, however it has significantly higher recovery time, not suitable for sup-
porting ultra-reliable communications in 5G networks [134, 35], and will not be considered
in this study. Similarly, shared protection could be used to reduce the amount of backup
resources of dedicated protection [111, 149, 172, 167, 30, 164, 175], but at the cost of longer
protections switching time [126, 75], hence in our study we focus on dedicated protection.
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In the following, we discuss the state-of-the-art research literature on VNE with dedicated
protection and the literature on backup resource optimization techniques for VNE.

5.1.1 VNE with Dedicated Protection

Optical backbone networks have traditionally had very strict requirement on failure recov-
ery time, typically in the order of few tens of milliseconds [134]. Such strict recovery time
will continue to be the norm in 5G transport networks as well [9]. Fast failover within such
short time can be achieved only through dedicated protection. Dedicated protection has its
origin from survivable WDM optical networks where lightpaths are established with a ded-
icated backup path for quick recovery from fiber cuts [134]. In the context of 5G transport
network slicing, dedicated protection can be in the form of providing dedicated protection
to each virtual link of a network slice or VN. The concept of dedicated protection can be
further extended to a whole VN topology as proposed in the research literature [165]. Ye
et al., address the dedicated VN topology protection problem by proposing a quadratic
integer program and a greedy heuristic [173]. Later, Chowdhury et al., modeled the VN
topology protection problem as a variation of graph partitioning problem and proposed an
ILP formulation to solve it optimally [48].

A weaker form of dedicated topology protection problem has been studied by Jiang et
al., [88]. The authors’ proposed a scheme that embeds the backup virtual nodes disjointly
from the primary virtual node embedding. However, the backup nodes can share substrate
nodes among themselves, in this way reducing the degree of survivability. Also, they do
not provision full bandwidth for the backup paths, rather, provision some backup paths in
advance that can be used by the virtual links during failure.

The classical routing and spectrum allocation problem in EON with dedicated path
protection has been addressed in [98, 99, 163]. However, the problem of reliable VNE over
EON has gained attention only recently. Some research works have addressed the VN em-
bedding problem over EON with dedicated path protection [170, 39, 180] while minimizing
spectrum occupation, number of regenerators [170, 39] or energy consumption [180]. These
works formulated the problem using a path-based ILP, where a disjoint backup path for
each of the usable primary paths is pre-computed. Furthermore, they assume the modula-
tion format is already selected for each bitrate (e.g., 100Gbps bitrate is provisioned using
only DP-QPSK modulation format), further limiting the solution space. In contrast, [96]
proposed a modulation-adaptive link-disjoint path selection model by considering a step
function based on realistic modulation formats in order to minimize the total number of
utilized spectrum slots for dedicated protection.
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Another protection technique for EONs is the use of p-cycles [169, 87, 41]. A p-cycle
is a pre-configured cycle that act as a backup path for a link in the working paths of
an EON. Unlike dedicated protection, backup p-cycles are needed for each EON link and
recovery is performed locally in each EON link instead of providing end-to-end protection.
As such backup spectrum requirement can be very high unless backup resources are shared
among multiple working paths that, in consequence, may exceed the recovery time required
by 5G transport network services. In this chapter, we consider multi-path provisioning,
bandwidth squeezing, and capture all the tunable transmission parameters made available
by EONs, which is not considered by the existing works in the literature.

5.1.2 Backup resource optimization techniques for VNE

To save network resources, a number of studies considered a alternate form of protection,
called bandwidth squeezing, where only a reduced bandwidth is guaranteed after a failure,
according to a given BSR [136, 151, 149, 42, 16, 66]. The advantages of using bandwidth
squeezing can be amplified when combined with virtual link demand splitting over multiple
disjoint substrate paths [136, 16, 137]. The latter is commonly known as survivable multi-
path provisioning [83, 137, 138, 66, 93]. Majority of the survivable multi-path approaches,
except [66], assume that all the paths used for embedding a virtual link are link disjoint,
and may not explore the complete solution space. In addition, the authors in [34] proposed
a scheme that consists in ensuring part of the minimum bitrate by protection as per BSR
and complementing the rest by restoration. In contrast to these existing works, our work
stands out by considering a VN topology embedding and by allowing splitting of a virtual
link demand not only over non-disjoint paths but also over multiple spectral segments on
the same path, significantly increasing the complexity of the problem as discussed in § 5.3
and 5.4.

5.2 Mathematical Model and Problem Statement

We first present a mathematical model of the inputs followed by a formal statement of
the problem. Without loss of generality, we assume the optical nodes to be colorless,
directionless, and contentionless [14].
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5.2.1 Substrate EON

The substrate EON (SN) is an undirected graph G = (V,E), where V and E are the
set of substrate optical nodes (SNodes) and substrate optical links (SLinks), respectively.
We assume the SLinks to be bi-directional, i.e., adjacent optical nodes are connected
by one optical fiber in each direction. The optical frequency spectrum on each SLink
e = (u, v) ∈ E is divided into equal-width frequency slots represented by the set S and
enumerated as 1, 2. . . |S|. P and Pkuv ⊂ P represent the set of all paths in G and the set
of k-shortest paths between nodes u, v ∈ V , respectively. The number of SLinks and the
physical length of a path p in kilometers are represented by |p| and len(p), respectively.
We use the binary variable δpe to denote the association between a path p ∈ P and an
SLink e ∈ E.

The following transmission parameters can be configured on a path p with length len(p)
to enable data transmission with different data-rates d ∈ D: baud-rate or symbol-rate, b,
modulation format, m, and FEC overhead, f , selected from the set of possible values B,
M, and F , respectively. We use a tuple t = (d, b,m, f) ∈ T = (D × B ×M × F) to
represent a transmission configuration that dictates the combination of b ∈ B, m ∈ M,
and f ∈ F yielding a data-rate d ∈ D. We use t(d), t(b), t(m), and t(f) to denote the data-
rate, baud-rate, modulation format, and FEC overhead of a configuration t ∈ T . A reach
table R, computed based on physical layer characteristics, specifies the maximum length
of a path (i.e., the reach rt) capable of retaining a satisfactory optical signal to noise ratio
when configured according to a transmission configuration t ∈ T . Finally, nt denotes the
number of slots required for a transmission configuration t ∈ T , which is dependent on the
parameters of t.

5.2.2 Virtual Network

The virtual network (VN) is represented by an undirected graph Ḡ = (V̄ , Ē), where V̄
and Ē are the set of virtual nodes (VNodes) and virtual links (VLinks), respectively.
The function τ : V̄ → V represents VNode to SNode mapping and is an input to our
problem (a common assumption for optical network virtualization [178]). Each virtual link
ē ∈ Ē has a bandwidth requirement β̄ē and a reliability requirement 0 < BSRē ≤ 100,
which indicates the percentage of original bandwidth that should be available after an
SLink fails. BSRē can also be used to realize a bandwidth profile with a maximum and
minimum demand similar to [73]. We allow VLinks to be mapped on multiple substrate
paths (SPaths) (similar to [127, 147]), each with a lower data-rate than β̄ē. Splitting β̄ē
over multiple SPaths is a feasible way to support higher data-rates (e.g., ≥ 400Gbps) that
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limit the number of usable paths due to their shorter reaches. However, we restrict the
number of VLink splits to maximum q (≥ 1). Such multi-path embedding is supported
by technologies such as Virtual Concatenation (VCAT) in Optical Transport Network
(OTN) [24] or bonding capabilities of FlexEthernet [8].

5.2.3 Problem Statement

Given an SN G, a reach table R, and a VN request Ḡ with given VNode mapping function
τ :

� Compute the link embedding function γ : Ē → χ : χ ⊂ P × T × S2 and 1 ≤
|χ| ≤ q, i.e., compute up to a maximum of q splits for each VLink ē ∈ Ē such
that 0.01 × BSRē × β̄ē bandwidth is available during an SLink failure and at least
β̄ē bandwidth is available during the rest of the time. For each split, γ should
select an SPath and an appropriate transmission configuration t ∈ T from the reach
table R, and allocate a contiguous segment of slots represented by the starting and
ending slot index on each SLink along the SPath. Note that the same SPath can
be used multiple times as the splits of a VLink following the reasoning in [147, 155].

χēi = (p, t, sb, st)|1 ≤ i ≤ q represents the i-th split, where χ
(p)
ēi and χ

(t)
ēi denote

the selected SPath and transmission configuration for the i-th split, respectively. In
addition, allocation of spectrum slots for the i-th split begins at index χ

(sb)
ēi and ends

at index χ
(st)
ēi along each SLink in the SPath χ

(p)
ēi .

� The total number of slots required to provision the VN is minimum according to the
following cost function:

∑
∀ē∈Ē

q∑
i=1

(χ
(st)
ēi − χ

(sb)
ēi + 1)× |χ(p)

ēi | (5.1)

Here, |χ(p)
ēi | is the number of SLinks on the SPath χ

(p)
ēi .

The above is subject to substrate resource constraints, and spectral contiguity (i.e., the
allocated slots of each split are always adjacent to each other) and continuity (i.e., the
same sequence of slots are allocated on each SLink along an SPath) constraints on the
lightpaths.
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5.2.4 Pre-computations

For each VLink ē ∈ Ē, we pre-compute Pkē , a set of k shortest paths between the pair of
SNodes where the VLink’s endpoints’ are mapped. For each SPath p ∈ Pkē , we pre-compute
the set of admissible transmission configurations, Tēp ⊂ T , such that each configuration
t ∈ Tēp results in a reach rt ≥ len(p) and has a data-rate t(d). Tē contains all the distinct
tuples suitable for ē and is defined as

⋃
∀p∈Pkē

Tēp.

5.3 Problem Formulation

We present a path-based ILP formulation for optimally solving our problem. Note that
some of the constraints, except the reliability constraints, have been presented in different
forms in different research works [166, 44, 147]. In the interest of completeness, we report
all the constraints in the following. Table 5.1 presents a glossary of key notation used in
the ILP formulation.

5.3.1 Decision Variables

We allow a VLink’s bandwidth demand to be satisfied by provisioning spectrum slots over
one or more SPaths where an SPath can be used more than once (up to a maximum of q)
as discussed in 5.2.3. To model the same SPath appearing more than once in a VLink’s
embedding, we assume each transmission configuration on an SPath can be instantiated
multiple times (up to a maximum of q times). The following variable represents VLink
mapping:

wēpti =


1 if ē ∈ Ē uses i-th instance of t ∈ Tēp

on path p ∈ Pkē
0 otherwise

Finally, the following decision variable creates the relationship between a mapped SPath
and the slots in its SLinks:

yēptis =


1 if ē ∈ Ē uses slot s ∈ S on path p ∈ Pkē

with the i-th instance of t ∈ Tēp
0 otherwise
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Table 5.1: Notation Table

Inputs & Pre-computations
G = (V,E) Substrate EON
Ḡ = (V̄ , Ē) Virtual Network (VN)

S The set of equal-width frequency slots
P Set of all paths in G

Pkuv ⊂ P k-shortest paths between u and v in G

D,B,M,F Set of all possible data-rates, baud-rates,
modulation formats, & FEC overhead levels

T = (D × B ×M×F) Set of all possible transmission configurations

t = (d, b,m, f) ∈ T
A transmission configuration i.e., a
baud-rate b, modulation format m,
and FEC overhead f yielding data-rate d

t(d) ∈ D, t(b) ∈ B, data-rate, baud-rate, modulation format,
t(m) ∈M, t(f) ∈ F and FEC overhead of transmission configuration t

R Reach table
rt ∈ R Achievable reach for configuration t
nt No. of slices required for configuration t
Pkē k candidate shortest paths for VLink ē ∈ Ē

T ēp ⊂ T Admissible transmission configurations on path p
for embedding VLink ē ∈ Ē

Decision Variables

wēpti
Indicates if ē ∈ Ē uses i-th instance of
transmission configuration t ∈ Tēp on p ∈ Pkē

yēptis

Indicates if ē ∈ Ē uses slot s ∈ S
on p ∈ Pkē with the i-th instance of
transmission configuration t ∈ Tēp
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5.3.2 Constraints

VLink Demand Constraints

We provision a VLink by splitting it across multiple (up to q) SPaths. Each of these
splits are then assigned a transmission configuration, resulting in provisioning a data-rate
along the split. Constraint (5.2) ensures that for each VLink ē ∈ Ē, the sum of data-rates
resulting from applying the selected transmission configuration on the selected splits is
equal or larger than the VLink’s demand. (5.3) enforces an upper limit on the number of
splits in order to keep splitting overhead within a operator defined threshold.

∀ē ∈ Ē :β̄ē ≤
∑
∀p∈Pkē

∑
∀t∈Tēp

q∑
i=1

(wēpti × t(d)) (5.2)

∀ē ∈ Ē :
∑
∀p∈Pkē

∑
∀t∈Tēp

q∑
i=1

wēpti ≤ q (5.3)

Slot Assignment and Spectral Contiguity constraints

We ensure by (5.4) that if a path p is selected with a specific transmission configuration t,
then the required number of slots nt to support the data-rate t(d) is allocated on the path.
Then, (5.5) ensures that each slot on an SLink is allocated to at most one path. Finally,
(5.6) enforces spectrum contiguity constraint [147], i.e., ensures the slots allocated on each
SLink of a path form a contiguous frequency spectrum.

∀ē ∈ Ē,∀p ∈ Pkē ,∀t ∈ Tēp, 1 ≤ i ≤ q :
∑
∀s∈S

yēptis = ntwēpti (5.4)

∀e ∈ E,∀s ∈ S :
∑
∀ē∈Ē

∑
∀p∈Pkē

∑
∀t∈Tēp

q∑
i=1

wēptiyēptisδpe ≤ 1 (5.5)

∀ē ∈ Ē,∀p ∈ Pkē ,∀t ∈ Tēp, 1 ≤ i ≤ q, 1 ≤ s ≤ |S| − 1 :

|S|∑
s′=s+2

yēptis′ ≤ |S| × (1− yēptis + yēpti(s+1)) (5.6)
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Survivability Constraints

We must ensure that for each single substrate link failure scenario, the sum of data-rates
of the unaffected splits of a VLink ē ∈ Ē is at least BSRē percentage of the original VLink
demand. This is enforced by (5.7) as follows:

∀ē ∈ Ē,∀e ∈ E : (
∑
∀p∈Pkē

∑
∀t∈Tēp

q∑
i=1

wēptit
(d))

−(
∑
∀p∈Pkē

∑
∀t∈Tēp

q∑
i=1

wēptit
(d)δpe) ≥ 0.01BSRēβ̄ē (5.7)

5.3.3 Objective Function

Our cost function minimizes the total number of spectrum slots required to embed all the
VLinks of a VN as shown in the first part of (5.8). However, to break ties among multiple
solutions with the same total number of slots, we use the second term with a fractional
weight ε in (5.8). This term minimizes the number of splits over all the VLinks since each
split requires a pair of transponders at the source and destination node of a lightpath. This
gives us the following objective function:

minimize(
∑
∀ē∈Ē

∑
∀p∈Pkē

∑
∀t∈Tēp

q∑
i=1

∑
∀s∈S

yēptis|p|+

ε
∑
∀ē∈Ē

∑
∀p∈Pkē

∑
∀t∈Tēp

q∑
i=1

wēpti)

(5.8)

5.3.4 Complexity of the ILP

The problem of VN embedding on EON with dedicated path protection and multi-path
provisioning is reducible to routing and spectrum allocation in EON, which is known to
be NP-hard [38]. This also makes the problem addressed in this chapter NP-hard. The
complexity of an ILP solution for optimally solving a problem will depend on the number
of variables and constraints in the formulation. In case of our formulation, it will require
enumerating O(|Ē|PT qS) variables while considering O(|S||E|+ |S||Ē|PT q) constraints.
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5.4 Heuristic Algorithm

Given the limited scalability of the ILP formulation, we develop a heuristic algorithm to
solve large instances of our problem. In this section, we first give an overview of the main
steps involved in reliable VN embedding for a given node mapping (§ 5.4.1). Then, we
discuss how we select the order of VLinks to be embedded for increasing the chances of
finding a feasible solution (§ 5.4.2). Finally, we discuss the embedding process of a single
VLink (§ 5.4.3).

5.4.1 Heuristic Solution for Reliable VN Embedding

Algorithm 11: Compute VN Embedding

1 function EmbedVN(G, Ḡ, τ)
2 Ē ← GetVLinkOrder(G, Ḡ)
3 foreach ē ∈ Ē in the sorted order do
4 Iē ←FindEmbedding(G, ē,P iē, Tē)
5 foreach e ∈ p|p ∈ Iē.P do
6 Perform slot assignment using Iē.S
7 χē.P ← Iē.P, χē.T ← Iē.TP
8 if χē = φ then
9 return < φ, φ >

10 return < τ : V̄ → V, γ : Ē → χ >

Alg. 11 takes as input a VN Ḡ, an EON G, and a node mapping function τ : V̄ → V .
One way of computing a cost efficient VLink mapping for a given VNode mapping is
to consider all |Ē|! possible orders for sequentially embedding VLinks. The lowest cost
mapping among all possible VLink orders then can be chosen as a cost effective solution
for the given VNode mapping. However, this brute-force approach is not scalable. Instead,
Alg. 11 considers only one sequential VLink order that is computed to converge to a solution
within a reasonable time. To increase the chances of finding a feasible VN embedding,
Alg. 11 invokes Alg. 12 that finds a good order of the VLinks (Ē) to embed. For each
VLink ē ∈ Ē in the computed order, Alg. 11 finds the embedding solution based on P iē by
invoking Alg. 13 (line 4). Alg. 11 then allocates spectrum slots on all SLinks present in
the solution and updates the VLink embedding χē accordingly. If no such solution for ē
can be found, the embedding of the VN is rejected.

132



5.4.2 Compute VLink Ordering

Algorithm 12: Find a VLink embedding order

1 function GetVLinkOrder(G, Ḡ)
2 Z = (N,A)← AuxGraph(Ḡ), O[1...n]← φ, i← n
3 while N 6= φ do
4 foreach nēi ∈ N do
5 Compute w(nēi) using (5.12)
6 nminēi

← nēi with minimum w(nēi)
7 O[i]← ēi corresponding to nminēi

8 N ← N − {nēi}
9 foreach (nminēi

, nēj) ∈ A do A← A \ {(nminēi
, nēj)}

10 i← i− 1

11 return O

Alg. 12 finds an order of VLinks, O, that increases the chances of finding a feasible
embedding for all the VLinks. Computing a feasible embedding of a VLink depends on
the availability of contiguous slots in the candidate SPaths of that VLink. If the candidate
SPaths Pkēi of a VLink ēi have many SLinks that are common with the candidate SPaths
of other VLinks that appear before ēi in a VLink order o, the slots of these SLinks (corre-
spondingly, SPaths) may be exhausted or fragmented in such a way that the embedding of
ēi becomes infeasible. Note that VLinks that come after ēi in o do not have any impact on
the embedding of ēi even though ēi and the VLinks after ēi have common SLinks in their
candidate SPath sets. Hence, effective commonality of ēi depends on o and is defined as
follows:

w(ēi)
o =

∑
ēj precedes ēi in o|ēi∈Ē, ēj∈Ē, ēi 6=ēj

w(ēi, ēj) (5.9)

where, w(ēi, ēj) is the commonality between two VLinks ēi and ēj irrespective of any order
and is defined as follows:

w(ēi, ēj) = |{(pēi , pēj) : (pēi , pēj) ∈ Pkēi × P
k
ēj
∧ pēi ∩ pēj 6= φ}| (5.10)

A high value of w(ēi, ēj) indicates more SPath pairs from the candidate SPath sets of ēi
and ēj have common SLinks. Using (5.9), we define the commonality index of o as follows:

wo = max
ēi∈Ē

w(ēi)
o (5.11)
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To increase the chances of finding a feasible embedding for all the VLinks, Alg. 12 finds
an order O that minimizes wo for all possible orders of Ē. To do so, Alg. 12 first constructs
an auxiliary graph Z = (N,A) based on a VN Ḡ and EON G (lines 2). The auxiliary
graph Z = (N,A) is a weighted undirected graph where N is the set of nodes and A is the
set of edges. There is a one-to-one correspondence between a node nēi ∈ N and a VLink
ēi ∈ Ē. Therefore, an order of the nodes in N corresponds to an order of the VLinks in Ē.
We include a weighted edge (nēi , nēj) ∈ A between two distinct nodes nēi ∈ N and nēj ∈ N
with weight w(ēi, ēj). Using (5.10), we define the weight of a node nēi ∈ N as follows:

w(nēi) =
∑

nēj |(nēi ,nēj )∈A

w(ēi, ēj) (5.12)

To compute a node order (or a corresponding VLink order) that minimizes wo, Alg. 12
iteratively computes w(nēi) using (5.12) for all the nodes in N . Then Alg. 12 chooses the
node nminēi

with the minimum weight w(nēi) and inserts the corresponding VLink to the
last empty spot in the VLink order O (line 15). Afterwards, the algorithm updates Z by
removing nminēi

and all of its incident edges. The updated auxiliary graph Z allows us to
use (5.12) to compute w(nēi) that corresponds to w(ēi)

O as updated Z now only have all
the nodes (and adjacent edges) that precede nminēi

in the node order, or equivalently ēmini

in O. Alg. 12 repeats this process until all the VLinks are added to O.

Theorem 1. Alg. 12 returns a VLink ordering with the minimum commonality index.

Proof. Suppose VLink ordering o which is generated by Alg. 12 does not have the minimum
commonality index, therefore, there exists a VLink ordering o∗ for which wo > wo

∗
. Let

ēo1, ē
o
2, ..., ē

o
¯|E| and ēo

∗
1 , ē

o∗
2 , ..., ē

o∗
¯|E| denote the VLink ordering o and o∗ respectively. Since

wo 6= wo
∗

there exists at least one index i for which ēoj and ēo
∗
j are not corresponding

to the same VLink. Let imax be the maximum index with this condition. Since both
VLink ordering o and o∗ contain all the VLinks, there should be an index j such that ēo

∗
j

corresponds to the same VLink as ēoimax . We create a new VLink ordering o∗1 by moving
the ēo

∗
j to the imaxth index in the o∗ VLink ordering (Fig. 5.2).
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Figure 5.2: Creating VLink ordering o∗1 from o∗

Lemma 1. The commonality index of VLink ordering o∗1 is less than or equal to the
commonality index of the VLink ordering o∗ (wo

∗
1 ≤ wo

∗
).
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Proof. We divide the proof of the lemma in two parts. At first, we prove i) the effective
commonality of all the VLinks (except ēo

∗
j ) in VLink ordering o∗1 is less than or equal to

the effective commonality of the same VLink in VLink ordering o∗, i.e. ∀ēi ∈ Ē − {ēo
∗
j } :

w(ēi)
o∗1 ≤ w(ēi)

o∗ . Then we prove ii) w(ēo
∗
j )o

∗
1 ≤ w(ēo

∗
imax)

o∗ , hence, for each VLink in VLink
ordering o∗1 there exists at least one VLink in VLink ordering o∗ such that its effective
commonality is greater or equal, i.e. ∀ēi ∈ Ē,∃ēj : w(ēi)

o∗1 ≤ w(ēj)
o∗ . From (5.11), the

commonality index of a VLink ordering is equal to the maximum effective commonality of
all VLinks in that ordering, therefore, wo

∗
1 ≤ wo

∗
.

To prove i), we divide VLinks into 3 groups (Fig. 5.3):

1. A = {ēo∗i |1 ≤ i < j} which includes all the VLinks that come before ēo
∗
j in both o∗

and o∗1.

2. B = {ēo∗i |j < i ≤ imax} which contains all the VLinks that come after ēo
∗
j in o∗, but

before ēo
∗
j in o∗1.

3. C = {ēo∗i |imax < i ≤ |Ē|} which includes the VLinks that come after ēo
∗
j in both o∗

and o∗1.
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Figure 5.3: Dividing the VLinks into 3 groups to check their commonality indexes

From (5.9), we know that the effective commonality of each VLink only depends on
the preceding VLinks. Hence, considering that the set of preceding VLinks is the same
∀ēi ∈ A ∪ C in ordering o∗ and o∗1, their effective commonalities are the same, i.e. ∀ēi ∈
A ∪ C : w(ēo

∗
i )o

∗
1 = w(ēo

∗
i )o

∗
. In addition, the set of preceding VLinks of ēi ∈ B in o∗1 is

the same as their set of preceding VLinks in o∗ minus ēo
∗
j . Therefore, ∀ēi ∈ B : w(ēi)

o∗1 =
w(ēi)

o∗ − w(ēi, ē
o∗
j ) ≤ w(ēi)

o∗ .

For proving ii), we need to show that w(ēo
∗
j )o

∗
1 ≤ w(ēo

∗
imax)

o∗ . Recall that Alg. 12, at
each iteration, finds the VLink with minimum weight and puts it at the first empty place
at the end of ordering (Line 4–7). Since the ordering o, which is generated by Alg. 12, is
identical to ordering o∗ from index imax + 1 to Ē, it means that VLink ēoj = ēo

∗
imax has the

minimum weight, therefore w(nēoj ) ≤ w(nēo∗imax
) at (n− imax + 2)-th step (to find the VLink

that should be at index imax). Since (5.12) computes the effective commonality of the all
the remaining VLinks assuming they will be at the last empty spots w(nēoj ) = w(ēo

∗
j )o

∗
1 and

w(nēo∗imax
) = w(ēo

∗
imax)

o∗ . So w(ēo
∗
j )o

∗
1 ≤ w(ēo

∗
imax)

o∗ .

By showing these two parts, we prove that wo
∗
1 ≤ wo

∗
.
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We start from VLink ordering o∗0 = o∗ and at ith step we generate o∗i from o∗i−1 using
the same approach to generate o∗1 from o∗. Since the maximum index for which o∗1 and o
are different decreases after each step, finally, after s ≤ |Ē| steps, o = o∗s. By 1 we know
that the commonality index does not increase after each step, i.e., wo

∗
i ≤ wo

∗
i−1 . Therefore

wo = wo
∗
s ≤ wo

∗
, which contradicts the initial assumption. This means that Alg. 12 returns

an ordering with the minimum commonality index.

5.4.3 Compute Embedding of a Single VLink

The embedding of a VLink computed by Alg. 13 consists of a multi-set of SPaths where
each SPath in the multi-set has an associated transmission configuration and spectrum
slot allocation. Recall from Fig. 5.1 that bandwidth requirement for dedicated protection
against single SLink failure for a VLink depends on BSR and the number of disjoint SPaths
used in the multi-set of SPaths of a solution. To exploit disjointness of the SPaths in the
candidate SPath set Pkē of a VLink ē, Alg. 13 first computes disjoint SPath groups from
the SPaths in Pkē . We define a disjoint SPath group Hē from Pkē as follows:

Hē = {δPkē |δPkē ⊆ Pkē and |δPkē | > 1 and

the SPaths in δPkē are link disjoint}
(5.13)

Note that two SPaths belonging to two different disjoint SPath groups H i
ē and Hj

ē may
share an SLink and an SPath can appear in multiple disjoint SPath groups. The set of
all disjoint SPath groups for a VLink ē is denoted by Hē. For instance, in Fig. 5.1(a),
Hp̄q = {{AB − BC,AD − DC}, {AB − BC,AE − EC}, {AD − DC,AE − EC}, {AB −
BC,AD − DC,AE − EC}}, and in Fig. 5.1(e), Hp̄q = {{AD − DC,AE − EC}, {AD −
DB −BC,AE − EC}}.

Alg. 13 needs to enumerate all non-empty subsets of Hē to find the optimal solution.
Such enumeration is not scalable as the number of subsets of Hē grows exponentially with
the size of Hē. Hence, Alg. 13 applies a heuristic to obtain a smaller set of disjoint SPath
groups Hē ⊆ Hē that includes the most probable SPaths to be used as the splits of ē. The
heuristic is motivated by the fact that longer SPaths allow only lower order modulation
formats with a higher FEC that may require a large number of spectrum slots. In addition,
longer SPaths often consist of more intermediate hops, thus increasing the total spectrum
usage as per (5.8). To exclude such longer SPaths, our heuristic should construct Hē with
those disjoint SPath groups whose average total distances are small. However, doing so
may bias the algorithm to include disjoint SPath groups with smaller number of SPaths for
keeping the average distance low, which can reduce the benefits of splitting over multiple
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disjoint paths. Alg. 13 circumvents this issue by considering disjoint SPath groups of all
sizes. From each set of disjoint SPath groups with size i, Alg. 13 selects the first σ disjoint
SPath groups ranked by the increasing average distance of the group (Line 6–9). The value
of σ is an input to Alg. 13 that can be used to keep the size of Hē small.

After computing Hē, Alg. 13 enumerates all non-empty subsets of Hē to assign data-
rates to each disjoint SPath group in the subset such that each group provides dedicated
protection as per BSR requirement for its data-rate. For each subset δHē ⊆ Hē, Alg. 13
selects |δHē| data-rates such that the sum of these data-rates equals to demand β̄ē (Line
10). These combinations of data-rates is represented by a multi-set DδHē = (D,m1), where
D is the set of all data-rates, and m1 : D → N is the number of times a data-rate in D
appears in DδHē . M(DδHē) represents all possible multi-sets of DδHē .

Since none of δHē and DδHē are ordered sets, Alg. 13 needs to enumerate all permuta-
tions of data-rates from DδHē to assign data-rates in DδHē to |δHē| SPath groups. To do
so, Alg. 13 generates all permutations of data-rates for each multi-set DδHē ∈ M(DδHē),
denoted by ζ(DδHē) (Line 12). For each of these permutations of data-rates DδHē ∈ ζ(DδHē),
Alg. 13 assigns a data-rate dHē from DδHē to a disjoint SPath group Hē ∈ δHē in the same
order (Line 15). For each disjoint SPath group Hē ∈ δHē with its assigned data-rate dHē ,
the algorithm computes the data-rate dpHē of an SPath p ∈ Hē using (5.14) that takes into
account the number of disjoint SPaths in Hē and BSRē of the VLink (Line 16). dpHē is
computed in a way such that the SPaths in Hē protect BSRē fraction of dHē under any
single SLink failure. However, when BSRē is low, protection requirement is not enough to
provide the assigned data-rate dHē . In this case, data-rate dpHē for an SPath is computed
by equally dividing dHē along each disjoint SPath in Hē. Note that each SPath in Hē will
have an equal data-rate dpHē .

dpHē = max(
dHē ×BSRē

100× (|Hē| − 1)
,
dHē
|Hē|

) (5.14)

Since an SPath p can appear in multiple disjoint SPath groups in δHē, a consolidation step
is introduced to compute the total data-rate assigned to p (denoted by dpδHē ) using (5.15)
(Line 17). Since the possible data-rates in the reach table are discrete values, the ceiling
function returns the nearest rounded up data-rate after the summation in (5.15).

dpδHē =

⌈ ∑
∀Hē∈δHē

dpHē

⌉
(5.15)

After the consolidation step, we get a set of distinct (not necessarily disjoint) SPaths
PδHē and their assigned data-rates for a particular δHē and DδHē . However, an SPath
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pδHē ∈ PδHē may split its assigned data-rate dpδHē into smaller data-rates either to ensure
spectrum contiguity or to minimize the number of slots. To enumerate these possibilities,
Alg. 13 generates the set of all possible multi-sets M(PδHē) out of the set PδHē (Line 18).
A multi-set PδHē ∈ M(PδHē) is defined as PδHē = (PδHē ,m2), where, m2 : PδHē → N is the
number of times an SPath in PδHē appears in PδHē . For each multi-set PδHē , Alg. 13 assigns
data-rates to each instance of SPath in PδHē . This is trivial for an SPath that appears
once in PδHē (m2(p) = 1). For an SPath with m2(p) > 1, Alg. 13 distributes the assigned
data-rate dpδHē into m2(p) splits by generating permutations of multi-sets of data-rates of
size m2(p) (Line 21–23). To get the set of all data-rate permutations M(DPδHē ) for PδHē ,
Alg. 13 considers all possible ways to combine the data-rate permutations of each distinct
SPath in PδHē (Line 24).

Once we have an SPath multi-set PδHē and its data-rate permutation DPδHē , Alg. 13
invokes MDP procedure to find feasible transmission configuration and spectrum slot allo-
cation with the least slot requirement (Line 26). MDP procedure is adapted from [147] that
first selects a transmission configuration to achieve a data-rate in DPδHē along an SPath in
PδHē and allocates the slots required by the transmission configuration using First-fit [38].
Among all the feasible solutions returned by MDP procedure, Alg. 13 selects the one that
minimizes (5.8).

Running Time Analysis

Alg. 13 explores all subsets of Hē yielding 2|Hē| possibilities. For each subset δHē ⊆ Hē,
Alg. 13 explores

(|D|+|δHē|−1
|δHē|

)
data-rate multi-sets. The number of permutations of a multiset

DδHē of cardinality |δHē| is given by |δHē|!
Πdj∈Dm1(dj)!

[29]. This results in (|D|+|δHē|−1)!
(|D|−1)!×Πdj∈Dm1(dj)!

enumerations. Then Alg. 13 enumeratesM(PδHē) multi-sets of SPaths based on an SPath

set PδHē , and this enumeration has an upper bound
(
q−1
q
2

)
=

Πq−1

j=d q2 e+1
j!

d q
2
e! . Assuming that

for each SPath p ∈ PδHē , Alg. 13 can have a data-rate multi-set Dp = (D,m3), where
m3 : D → N is the frequency of a data-rate in Dp, the number of data-rate permutations

in M(DPδHē ) is Π
|PδHē |
i=1

(|D|+m2(pi)−1)!
(|D|−1)!×Πdj∈Dm3(dj)!

. Since MDP’s time complexity is q!
Πpj∈PδHē

m2(pj)!

as per [147], the running time of Alg. 13 becomes 2|Hē| × (|D|+|δHē|−1)!
(|D|−1)!×Πdj∈Dm1(dj)!

×
Πq−1

j=d q2 e+1
j!

d q
2
e! ×

Π
|PδHē |
i=1

(|D|+m2(pi)−1)!
(|D|−1)!×Πdj∈Dm3(dj)!

× q!
Πpj∈PδHē

m2(pj)!
. As Alg. 13 keeps the size of Hē small, the running

time is dominated by the latter part. However, typical values of |D| and q are small and
we apply several pruning techniques to improve the running time.
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Algorithm 13: Find the embedding of a single VLink

1 function FindEmbedding(G, ē,Pkē , Tē, σ)
2 while A new Hē exists do
3 Compute a new disjoint path group Hē using (5.13)
4 Hē ← Hē ∪Hē

5 for i = 2 to max∀Hē∈Hē |Hē| do
6 Zi

ē ← {Hē|Hē ∈ Hē ∧ |Hē| = i}
7 Z iē ← First σ Hē ∈ Zi

ē with smallest avg. dist.
8 Hē ← Hē ∪ Z iē
9 foreach δHē ⊆ Hē do

10 M(DδHē)← All-Multi-Set(D, |δHē|) s.t.
∑

d∈DδHē
d = β̄ē

11 foreach DδHē ∈M(DδHē) do
12 ζ(DδHē)← All-Permutation(DδHē)
13 foreach DδHē ∈ ζ(DδHē) do
14 foreach Hē ∈ δHē do
15 dHē ← DδHē [index of Hē ∈ δHē]
16 Compute dpHē using (5.14)

17 Compute dpδHē using (5.15)

18 M(PδHē)← All-Multi-Set(PδHē , q)
19 foreach PδHē ∈M(PδHē) do
20 foreach p ∈ PδHē do
21 M(Dp)← All-Multi-Set(D,m2(p)) s.t.

∑
d∈Dp d = dpδHē

22 foreach Dp ∈M(Dp) do
23 ζ(Dp)← All-Permutation(Dp)

24 M(DPδHē )← ζ(Dp1)× ζ(Dp2)...× ζ(Dp|PδHē |
)

25 foreach DPδHē ∈M(DPδHē ) do
26 < n,P,T,S >← MDP(PδHē ,DPδHē )

27 Find Popt, Topt and Sopt that minimizes (5.8)
28 Iē ←< Popt,Topt, Sopt >
29 return Iē

5.5 Evaluation

We evaluate the proposed solutions through extensive simulations. § 5.5.1 describes the
simulation setup in detail and § 5.5.2 defines the performance metrics. Then we present
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our evaluation results focusing on the following three aspects. First, we perform micro-
benchmarks of our solutions and compare with the demand splitting model presented
in [66]), a recent work on survivable VNE over flexible grid optical networks. For the micro-
benchmark scenario, we consider each VN embedding request in isolation and assume that
the VN can always be embedded on the EON. Under these assumptions, we measure the
resource efficiency of our proposed solutions. Second, we analyze the performance of the
heuristic algorithm in both small and large scale settings considering each VN embedding
request in isolation. Finally, we perform steady state analysis of our heuristic solution.
The steady state analysis considers VN arrivals and departures over a period of time and
also considers the possibility of failing to embed a VN request on the EON. The steady
state analysis provides valuable insights into the number of accepted VNs and the EON
link utilization in a longer time frame.

5.5.1 Simulation Setup

Testbed

We implement the ILP formulation from § 5.3 using IBM ILOG CPLEX C++ libraries. We
compare the ILP’s solution with a C++ implementation of the heuristic presented in § 5.4.
Simulations are run on a machine with 8×10-core Intel Xeon E7-8870 2.40GHz processors
and 1TB RAM. We developed a discrete event simulator that simulates the arrival and
departure of VNs for the steady state scenario.

SN characteristic

We use Nobel Germany (17 nodes and 26 links) and Germany50 (50 nodes and 88 links)
networks from SNDlib repository [7] as the EONs for small and large scale simulations,
respectively. We pre-compute k = 25 and k = 20 shortest paths between all pairs of
SNodes as inputs to our simulation for Nobel Germany and Germany50 SN, respectively.
Each SLink in the EON has spectrum bandwidth of 600GHz and 4THz for small and large
scale simulations, respectively [4]. We also vary the Link-to-Node Ratio (LNR) of Nobel
Germany SN by adding or removing some links in the original topology (original LNR is
1.53). This is done to show the impact of different levels of SN densities on the performance
metrics. For steady state analysis, we use Nobel Germany topology as the EON and set
4THz spectrum bandwidth on each SLink.
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VN generation

We synthetically generate VNs with different properties. For the small-scale scenario, we
restrict VN sizes to 4 VNodes and 5 VLinks to limit the ILP’s complexity. For the large-
scale scenario, we generate VNs with 20 VNodes and 30 VLinks. We set VLink demands
to multiples of 100Gbps, ranging between 100Gbps and 1Tbps, following the granularity of
commercial transponders. Node mapping of VNodes to SNodes is randomly chosen. In our
simulations, we vary BSR from 0% to 100% with 20%-point increments. Here, BSR = 0
means no protection and BSR = 100% provides full dedicated protection. We generate
5 and 20 different VNs with similar total bandwidth demands for small- and large-scale
simulations, respectively, and take the mean of the performance metrics over those VNs.

For the steady state analysis, we simulate VN arrival and departure scenarios with
different arrival rates. The VN arrival rate of each scenario follows a Poisson distribution.
We vary the mean of the Poisson distribution between 4 – 12 VNs per 100 time units. VN
life time in all the scenarios is exponentially distributed with a mean of 100 time units. We
generate each arrived VN with random connectivity between VNodes. We keep the number
of VNodes of each arrived VN at 4, and chose the LNR of the VN randomly between 1
and 3.5. VLink demands are chosen in the same way as in the micro-benchmark scenario.

To demonstrate the impact of different BSR requirements on the blocking ratio and at
the same time to simulate the behavior of different VN characteristics and requirements,
we generate BSR of each VN using a Binomial distribution. For each arrival rate, we
generate 5 simulation scenarios, each with a different Binomial distribution of BSRs. For
these 5 scenarios, we set the mean of the Binomial distribution to 0, 20, 40, 60, and 80%-
points, respectively. We run the simulation for 10000 simulated time units and exclude
measurements from the first 1000 time units to capture the steady state performance. For
each problem instance with a fixed arrival rate and mean BSR, we generate 5 random
simulation scenarios and report the mean performance metrics to gain statistical confi-
dence. These parameters have been chosen in accordance with those used in the network
virtualization literature (e.g., [44, 50, 142]).

5.5.2 Compared Variants

In our evaluation, we quantify the impact of the two key flexibilities introduced by EONs,
namely, adaptability in transponder configuration (i.e., variable FEC and modulation)
and in spectrum allocation. In doing so, we compare the variants listed in Table 5.2. Fix-
RT considers fixed-grid spectrum allocation with only one tuple for modulation format,
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Table 5.2: Compared Variants

Variant
Transponder
Flexibility

Flexible Spectrum
Allocation

Fix-RT No No
Fix-AT Yes No
Flex-AT Yes Yes

FEC overhead, and reach for each fixed-grid data rate in R and serves as the baseline
for our evaluation. In contrast, the other two variants, Fix-AT and Flex-AT, exploit
a transponder’s capability to choose from a variety of modulation formats and/or FEC
overheads for each data rate in R, leading to different reaches. These two variants differ
in terms of spectrum slot allocation granularity (i.e., 50GHz and 12.5GHz for fixed-grid
and flex-grid, respectively) and the total number of possible data rates (i.e., 100G, 200G,
400G for fixed-grid and 100G, 150G, 200G, 250G, 300G, 400G, 500G, 600G, and 800G for
flex-grid). Spectrum occupation and data rates of each variant are chosen based on current
industry standards [4]. We set q = 8 to keep the number of used transponders reasonable.

5.5.3 Performance Metrics

Spectrum slot Usage (SSU) The total number of spectrum slots required to embed a
VN. This metric is computed using only the first term of (5.8).

Protection overhead Ratio between total bandwidth allocated of a VLink (on all differ-
ent splits) and the actual bandwidth demand of the VLink. It is a measure of the required
extra bandwidth for providing protection.

Max. no. of disjoint paths Average of the maximum number of disjoint SPaths used
to embed a VLink.

Max. no. of splits Average of the maximum number of splits used to embed a VLink.

Cost ratio The ratio of costs obtained by two different approaches for solving the same
problem instance, where cost is computed using (5.8).
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Figure 5.4: Impact of varying BSR on performance metrics in Nobel Germany EON
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Execution time The time required for an algorithm to find a VN embedding.

Blocking ratio The fraction of VN requests that could not be embedded on the EON
over all the VN requests in a simulation.

Link utilization The ratio between the number of slots used in an SLink and the total
number of slots in the SLink at any instance of time.
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Figure 5.5: Analysis of our reliability model using the Nobel Germany EON

5.5.4 Micro-benchmark results

Small-scale results with ILP formulation

Fig. 5.4 presents the impact of varying BSR on all performance metrics, and for all the
compared variants, in Nobel Germany SN. Specifically, Fig. 5.4(a) shows that SSU is
the highest for the baseline variant, Fix-RT, since it does not allow any flexibility in
tuning transmission parameters or spectrum allocation. In contrast, Fix-AT uses 30% less
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spectrum resources on average compared to Fix-RT by only using tunable transponders
with coarse-grained spectrum allocation. By combining flexible spectrum allocation with
transponder tunability, Flex-AT saves on average 57% and 27% spectrum compared to Fix-
RT and Fix-AT, respectively. Lastly, Fix-RT was infeasible for some problem instances
at BSR > 80 due to its inflexibility in transmission configuration tuning and spectrum
allocation.

Fig. 5.4(a) also shows that SSU increases for increasing BSR in all considered cases.
However, SSU rises very slowly (remaining within 10% of the originally requested band-
width) when BSR ≤ 40%, while it steeply increases for BSR > 40%. 10% additional
bandwidth is due to the lack of fine-grained data rates that results in a small amount
of over-provisioning (e.g., 350Gbps is needed for BSR=40% and demand=800Gbps, as
320Gbps is not a valid data rate). This can be explained by observing how the protec-
tion overhead (see plot in Fig. 5.4(b)) behaves for BSR up to 40%. This behavior of the
protection overhead for BSR ≤ 40% confirms the intuition, as shown in Fig. 5.1, that low
BSR can be guaranteed with low or no additional bandwidth if at least two disjoint SPaths
can be used to map the splits of a VLink. In contrast, for BSR > 40%, more than two
disjoint SPaths are needed for each VLink to reduce protection overhead. However, in our
SN (Nobel Germany), either more than two disjoint SPaths do not exist for some pairs of
SNodes, or the third and higher order disjoint SPaths become too long due to the sparse
connectivity of the SN. Since long SPaths can support only low modulation formats, and
thus require high number of spectrum slots, they are very unlikely to be selected in the
optimal solution. This can be verified in Fig. 5.4(c), where it can be seen that the max.
no. of disjoint SPaths used to embed a VLink is slightly larger than two for BSR > 40%,
thus increasing protection overhead and, eventually, SSU.

Fig. 5.4(d) shows that the max. no. of splits of a VLink is always larger than the max.
no. of disjoint SPaths of a VLink, implying that there are multiple splits on the same
SPath. Note also that Fig. 5.4(d) shows that Flex-AT uses the highest number of splits to
minimize the SSU as shown in Fig. 5.4(a). This is due to Flex-AT ’s smaller granularity in
spectrum allocation that allows to use shorter SPaths even if the spectrum resources on
these SPaths are fragmented.

To demonstrate how SN connectivity impacts spectral efficiency, Fig. 5.5(a) shows SSU
for Flex-AT with different BSR requirements by varying LNR of Nobel Germany SN.
Fig. 5.5 shows that SSUs decrease with increasing SN LNR even for the no protection case
(0% BSR). This stems from the fact that an SN with a larger LNR reduces the lengths
and the number of intermediate hops of the SPaths between the same pair of SNodes, thus
facilitating the use of more spectrum efficient transmission configurations along fewer hops.
However, the gain in spectrum saving by increasing SN LNR is much higher for high BSR
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requirements. The additional gain is due to the use of three or more disjoint SPaths for
mapping a VLink, thanks to the higher path diversity of a densely connected SN.

Finally, Fig. 5.5(b) demonstrates the benefit of our splitting model that enables Flex-
AT to save 3%–4% SSU compared to a case in which splitting is allowed over different
SPaths, but not over the same SPath on different spectrum segments (Flex-AT-NoSplit-
onSamePath, e.g., the splitting model of [66]). Note that NoSplit-onSamePath model ren-
ders problem instances with high BSR in Fix-RT and Fix-AT cases infeasible as spectrum
fragmentation prohibits only one split per feasible SPath to occupy the required spectrum.
In contrast, our model finds solutions in those cases by increasing number of splits per
SPath even in fragmented situations as shown in Fig. 5.4(a) and Fig. 5.4(d). It is worth
noting that our splitting model does not require any additional hardware investment, so the
savings (∼ 4%) by our splitting model shown in Fig. 5.5(b) are achieved at no additional
cost.
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Figure 5.7: Execution Time

Performance of the Heuristic Algorithm

As our cost function (5.8) is dominated by SSU, the cost ratio between heuristic and
ILP gives a measure of how much additional resources are allocated by the heuristic. We
present the cumulative distribution function (CDF) of cost ratios in Fig. 5.6(a). Over all,
the heuristic incurs 12%, 9%, and 7% additional cost on average compared to the ILP for
Fix-RT, Fix-AT, and Flex-AT, respectively, while executing 2 or 3 orders of magnitude
faster. Fig. 5.6(b) shows SSU incurred by the heuristic algorithm in Germany50 SN.
Fig. 5.6(b) confirms the conclusions observed in Fig. 5.4, but with much larger and higher
number of VNs, a bigger SN, and full 4THz spectrum resources on SLinks and by repeating
our simulations over a much higher number of instances to achieve statistical confidence.

Scalability of the heuristic

We demonstrate the scalability of our heuristic algorithm compared to that of the ILP-
based optimal solution by comparing their execution time in Fig. 5.7. Fig. 5.7(a) shows the
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Figure 5.8: Blocking ratio (Nobel Germany EON)

execution times of the ILP and heuristic algorithm on the small scale scenario. When we
consider flex-grid spectrum allocation and flexible transponders, the ILP can take several
hours to embed a VN with dedicated backup resources. With the increase in BSR, the
solution space becomes larger hence the increase in execution time for ILP-Flex-AT. Com-
pared to the ILP based solutions, the heuristic finds a solution several orders of magnitude
faster. For the large scale scenario, the heuristic is able to find solutions in less than a
minute (Fig. 5.7(b)) for the largest VN in our simulation. Again there is an increasing
trend in execution time with increasing BSR for Flex-AT due to larger solution space.
In contrast, the ILP fails to solve even a single problem instance in large scale scenario,
limiting its scalability to only small scale problem instances.

5.5.5 Steady state analysis

Blocking Ratio

Fig. 5.8 presents average blocking ratio for increasing arrival rate and different BSR consid-
ering both fixed- (Fig. 5.8(a)) and flex-grid (Fig. 5.8(b)) spectrum allocation using flexible
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transponders. The results on blocking ratio reaffirms our previous finding that BSR less
than 40% incurs very little protection overhead for the VNs. As a result, we see nearly
identical blocking ratio for BSR 20% and BSR 0% (i.e., no protection baseline scenario) in
case of both fixed- and flex-grid EONs. Indeed, flex-grid EON has finer-grained resource
allocation capabilities, resulting in significantly less blocking ratio for the same load levels
compared to fixed-grid spectrum allocation. With increasing BSR, especially beyond BSR
40%, the protection overhead significantly increases for the same VN request, hence, the
increasing gap between different BSRs in Fig. 5.8(a) and Fig. 5.8(b).

Substrate Link Utilization

 0
 10
 20
 30
 40
 50
 60
 70
 80

4 6 8 10 12

Li
nk

 U
til

iz
at

io
n 

(%
)

Arrival Rate

BSR-0
BSR-20

BSR-40
BSR-60

BSR-80

(a) Link utilization - Fix-AT

 0
 10
 20
 30
 40
 50
 60
 70
 80

4 6 8 10 12

Li
nk

 U
til

iz
at

io
n 

(%
)

Arrival Rate

BSR-0
BSR-20

BSR-40
BSR-60

BSR-80

(b) Link utilization - Flex-AT

Figure 5.9: Substrate Link Utilization (Nobel Germany EON)

Fig. 5.9 presents the average utilization of the substrate links during the course of sim-
ulation with 5th and 95th percentile errorbars. For a given load, i.e., arrival rate, we see
that link utilization does not significantly vary across different BSRs. From the first look,
this result is counter-intuitive and does not seem to agree with the result from Fig. 5.8.
One would expect a high blocking ratio resulting from the substrate links becoming satu-
rated. In other words, link utilization for BSR 80% was expected to be significantly higher
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compared to BSR 0%. However, even though a higher BSR results in lesser number of
admitted VNs, it also results in higher protection overhead for the embedded VNs. As a
consequence, for the same arrival rate with different BSR requirements, the higher BSR
requirement will end up using more number of spectrum slots in the substrate links. This
results in similar level of spectrum occupancy even with lower number of VNs admitted
due to higher BSR requirement.

5.6 Conclusion

This chapter addresses a fundamental problem for the slicing of 5G transport networks, i.e.,
reliable VN embedding with dedicated protection in an EON. To reduce resource overbuild
of dedicated protection, we exploit bandwidth squeezing and VLink demand splitting over
multiple SPaths, while leveraging the flexibility offered by an EON. Our novel splitting
model not only provides the opportunity to split a VLink demand across multiple SPaths
but also across multiple spectrum segments of an SPath. We present an ILP formulation
to solve the problem optimally, and a heuristic solution to address the computational
complexity of the ILP. Our simulations on realistic network topologies show that bandwidth
squeezing and demand splitting allow to significantly reduce spectrum usage for providing
dedicated protection, especially in the case of fully-flexible EON. Our evaluation also shows
that the opportunity to have multiple splits over the same path allows to save additional
spectrum compared to a model that does not allow splitting on the same path, and our
proposed heuristic performs close to the optimal solution. For instance, multiple splits
enable us to guarantee a BSR 40% with only 10% additional spectrum resources. This
translates into similar VN blocking ratio up to 40% BSR. Our discrete event simulation
also shows that similar spectrum occupancy is achieved on EON links irrespective of BSR
requirement for a given VN arrival rate. However, spectrum occupancy increases with the
increase in VN arrival rate.
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Chapter 6

Conclusion and Future Research

6.1 Thesis Summary

As infrastructure providers are rolling out virtual networks as services, they are facing a
number of challenges. One of the major challenges is to ensure virtual network survivability
against failures in large physical infrastructures. Existing virtual network survivability lit-
erature fails to address the complexity and scale of the problem, resulting in over-simplified
and hence impractical solutions. In this dissertation, we focused on the problem of Surviv-
able Virtual Network Embedding (SVNE) with bandwidth and reliability guarantees for
transport networks. We introduced four different survivability models to realize the vision
of managing failures at the virtual network level as opposed to the physical network level.
The contributions of the thesis are summarized below.

In chapter 2, we solved the CoViNE problem by ensuring VN connectivity in the
presence of multiple substrate link failures. Specifically, we presented an ILP formula-
tion, CoViNE-opt, that jointly solves the three sub-problems of CoViNE, namely, VN
augmentation, computation of disjointness constraints, and VN embedding. To address
the intractability of CoViNE-opt, we presented two sequential solutions CoViNE-ILP and
CoViNE-fast. In contrast to the state-of-the-art, our solutions are general in their abil-
ity to handle multiple substrate link failures for arbitrary VN topologies. Our evaluation
results demonstrated that CoViNE-ILP very closely approximates CoViNE-opt, and can
be used as a baseline to compare heuristic algorithms. In contrast, CoViNE-fast scales
to large topologies at the cost of provisioning about 16% additional resources compared
to CoViNE-ILP, while executing several orders of magnitude faster for the same problem
instances. Evaluation results also show that CoViNE for single and double link failure
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scenarios require on average ∼ 24% and ∼ 66% extra resources than a VN embedding
strategy that does not guarantee any connectivity. We also shown that VN connectivity
can be leveraged to restore higher priority traffic in the presence of multiple substrate link
failures.

Chapter 3 presented a new variant of the SVNE problem that requires a VN to be
augmented with sufficient spare backup capacity and embedded on the physical network
to ensure survivability against multiple substrate link failures. For this joint optimization
problem, we have formulated the optimal solution as a QIP and transformed the QIP into
an ILP, called Opt-ILP. We presented simplified ILP formulations to solve special cases
of the joint optimization problem and mathematically analyzed the impact of physical
network connectivity on the level of spare capacity sharing. We also proposed a heuristic
algorithm to tackle the computational complexity of the ILP formulations. The heuristic
algorithm provides a generic framework to survive multiple link failures and optimizes
spare capacity for single and double link failure scenarios. Simulation results show that ILP
formulations for the two special cases can provide upper and approximately lower bounds of
the solution range. Moreover, the heuristic allocates ∼21% additional resources compared
to the approximated lower bound, while executing several orders of magnitude faster.
Large scale simulations of the heuristic algorithm shows that protection against double
link failures comes at the cost of nearly two times the resources incurred by protection
against single link failures. A quantitative comparison between the SVNE with VN level
protection and the traditional SVNE with SN level protection reveals that the former can
save ∼33% resources on average, compared to those required by the later.

In chapter 4, we addressed the problem of generalized recovery of a batch of affected
VNs, resulting from a single substrate node failure. We formulated the problem as an
ILP, Opt-ReNoVatE and presented an efficient heuristic algorithm, Fast-ReNoVatE, to
tackle computational complexity. We have evaluated Fast-ReNoVatE, Opt-ReNoVatE, and
a state-of-the-art solution, Dyn-Recovery in both small and large scale networks. Evalua-
tion results demonstrate that Fast-ReNoVatE can recover ∼ 6% more VLinks than Dyn-
Recovery and ∼ 3% less VLinks than Opt-ReNoVatE in high utilization scenarios. In terms
of scalability, Fast-ReNoVatE is several orders of magnitude faster than Opt-ReNoVatE,
and has comparable performance with Dyn-Recovery. In large scale networks, we have
compared Fast-ReNoVatE with Dyn-Recovery and a baseline case of infinite bandwidth
SN. The results demonstrated that Fast-ReNoVatE is able to recover ∼ 99% of the failed
VNs if the SN has adequate residual capacity, and has similar timing performance to Dyn-
Recovery. Furthermore, we investigated two variants of our recovery scheme, namely, fair
recovery model (FRM) and priority-based recovery model (PRM). Our evaluation results
suggest that FRM-based solutions fail to take into account variety of recovery require-
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ments. In contrast, PRM-based solutions can prioritize the affected VNs based on SLA
requirements, impacts of failure or profits, and adhere to that priority during recovery.

Chapter 5 discussed a fundamental problem for the slicing of 5G transport networks,
i.e., reliable VN embedding with dedicated protection in an EON. To reduce resource over-
build of dedicated protection, we exploit bandwidth squeezing and VLink demand splitting
over multiple SPaths, while leveraging the flexibility offered by an EON. Our novel split-
ting model not only provides the opportunity to split a VLink demand across multiple
SPaths but also across multiple spectrum segments of an SPath. We presented an ILP
formulation to solve the problem optimally, and a heuristic solution to address the compu-
tational complexity of the ILP. Our simulations on realistic network topologies showed that
bandwidth squeezing and demand splitting allow to significantly reduce spectrum usage for
providing dedicated protection, especially in the case of fully-flexible EON. Our evaluation
also showed that the opportunity to have multiple splits over the same path allows to save
additional spectrum compared to a model that does not allow splitting on the same path,
and our proposed heuristic performs close to the optimal solution. For instance, multiple
splits enable us to guarantee a BSR of 40% with only 10% additional spectrum resources.
This translates into similar VN blocking ratio up to 40% BSR. Our discrete event simu-
lation also showed that similar spectrum occupancy is achieved on EON links irrespective
of BSR requirement for a given VN arrival rate. However, spectrum occupancy increases
with the increase in VN arrival rate.

In this dissertation, we have addressed four key research challenges in survivable net-
work virtualization and proposed efficient solutions to solve them. We have also demon-
strated the superiority of our proposed solutions through extensive simulations using real-
istic scenarios. However, there are issues that need further explorations. The next section
presents some of these future research directions.

6.2 Future Research Directions

Survivability in 5G Network Slices. A 5G network slice spans multiple network seg-
ments, each of which can have different technological and physical constraints. For instance,
the access network may be deployed as a passive optical network, which has limited band-
width and scalability, to minimize cost and energy [101]. In contrast, the core transport
network may not have any issues in terms of the capacity or scalability, thanks to elastic
optical technologies [90]. However, the core transport may have higher cost and energy
footprint due to long geographical distances and more complex optical devices. Similar
trade-offs exist between edge and central DCs in terms of processing capacity, cost, and
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energy consumption. Therefore, it will be impractical to provision a slice with a homo-
geneous survivability model for all network segments. A potential research direction is to
develop mechanisms that translate a slice reliability requirement into sub-requirements for
each segment the slice spans and select appropriate survivability mechanism (e.g., dedi-
cated protection with BSR, CoViNE, and ReNoVatE ) for each segment. Such survivability
decisions can be guided by predictive models for network equipments’ failure and availabil-
ity estimation with temporal and spatial considerations.

Adaptive Survivability. While an initial survivability model is effective for certain
period of time, the initial model and its resource allocation may become obsolete later
due to failure occurrences and network technology evolution [73]. For example, a network
slice with dedicated backup protection can suffer if a primary resource fails first, followed
by a failure in its backup route before the primary resource is repaired. To avoid such
situations, the InP must continuously monitor its network elements and take proactive
actions when observing any performance degradation (also called soft failure) or early
detection of malfunction. In addition, the InP can estimate the likelihood of failures of the
elements of a physical network and adapt the initial survivability model accordingly. An
example of such adaptation can be to proactively migrate the slice away from the faulty
element. An interesting research direction in this regard is to develop predictive models
to infer future failure events based on current network state and any alarm that may
have generated due to the malfunction. Another challenge is to schedule the survivability
adaptation in a way that causes minimal to no disruption to existing traffic in the network
slice.

Fast Failure Repair. Even with predictive models and adaptive survivability some
failures, such as fiber cuts and device burns are inevitable. Ability of an InP to quickly
repair a failure is crucial to keep the network operational. Failure repair involves three
steps: failure detection, localization, and identification. The goal of failure detection is to
trigger an alert after the failure has occured. Once detected, the failed element (e.g., the
node or link responsible for the failure) must be localized in the network to narrow down
the cause of failure. Even after localization, it might still be complex to understand the
exact cause of the failure (e.g., inside a network node, the degradation can be due to mis-
configuration or malfunction). To speed up the failure repair process, all the three steps
of failure repair should be automated. An interesting avenue of research will be to develop
models and algorithms for automated failure detection, localization, and identification in
live networks. These models will decrease the mean time to repair of failure events, thus
improving the availability of a network slice.
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