
On the Effectiveness of Incremental
Fact Extraction & Analysis

by

Davood Anbarnam

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2020

c© Davood Anbarnam 2020



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Today’s software projects can be huge. They often consist of millions of lines of code,
have multiple teams working on them and are constantly evolving. It is no surprise then
that developers sometimes seek the help of advanced diagnostic tooling, such as static
analysis tools, to aid the development process, with many modern Integrated Development
Environments (IDEs) such as Eclipse and Visual Studio providing such functionality out-of-
the-box. Fact Extraction is one such static analysis technique that extracts a base model
of the underlying software containing properties of the system entities (e.g., variables,
functions, files/classes) and their relationships, and stores them in the form of a database
of facts (factbase). This base model can then be queried and analysed by developers
to reveal higher-level design information, such as dataflow between various modules of a
software system.

Currently, approaches to building system models scale fairly well to large single systems;
factbases can be created using time and resources comparable to that of the compilation
process. However, software systems evolve over time, and these analyses need to be redone
as the source code changes. While incremental compilation techniques have the potential
to greatly reduce the time taken to rebuild the systems themselves, as yet there has been
little research into tools that support incremental analysis of changing artifacts to pro-
duce revised factbases. This thesis proposes an extraction and analysis framework that is
more amenable to creating models from changing artifacts: an Incremental Extraction and
Analysis Framework. In particular, we focus on how changes at the file level — i.e., modi-
fications to source files as well as the addition and removal of source files — can impact a
previously extracted model and analysis.

We evaluate our proposed framework by performing a case study on a build of the Linux
Kernel. First, we compare two approaches to extracting a revised factbase from a new
version of the build: one that uses a traditional approach and one that uses our proposed
incremental extraction techniques. Then, we compare two approaches to analysing revised
factbases: one that uses an incremental approach and one that does not. We found that
significant performance improvements can be made in extracting a revised factbase when
using an incremental approach, with extraction times being reduced by at least 50%, while
re-analysing a revised factbase using an incremental approach grows linearly in terms of
the number affected facts in the best case and follows an S -shaped growth in the worst
case. We found that the cause for the observed exponential growth could be traced to a
subset of facts, rather than being the result of a gradual increase of an analysis’ search
space.
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Chapter 1

Introduction

Successful software projects often span multiple teams and locations, consist of millions
of lines of code and become increasingly complex as they age and evolve [30]. The Linux
Kernel, for example, grew from 176,250 lines of code in its 1.0.0 release in 1994 [5] to
15 million lines of code with over 1,300 individual contributors in 2011 [4], and then to
19 million lines of code with around 14,000 contributors in 2015 [3]. These challenges
make it increasingly difficult for developers to produce reliable, robust and correct pieces
of software, sometimes leading to costly failures. Japan’s Hitomi satellite experienced a
software failure that caused it to spin out of control five weeks after launch, $USD 286M
being lost in the process [46]. In 2015 it was discovered that an integer overflow could
potentially cause a Boeing 787’s electrical system to completely shut off [6], while in 2019
a technical fault was causing Lime e-scooters in Auckland to suddenly break at high speeds
[1].

One technique that can be used to mitigate such failures is static analysis, a family of
automated approaches that leverage source code artifacts to help verify properties of the
software system without having to execute it. For instance, medical device manufactures
are now leveraging static analysis tools to help verify their safety-critical products against
errors such as buffer overflow [2], while Google uses its in-house tool Error Prone1, an
extension of the javac compiler, to help detect common Java bugs at compile-time [41].
For example, an EqualsWrongThing2 error is detected when different pairs of class fields
or class getters are compared in a class’ equals implementation. At the most basic level,
a study by Prause et al. found that 60% of interviewed developers involved in European

1https://github.com/google/error-prone
2https://errorprone.info/bugpattern/EqualsWrongThing

1

https://github.com/google/error-prone
https://errorprone.info/bugpattern/EqualsWrongThing


research projects used their IDE’s built-in static analyzers [36]. Our work focuses on a
specific type of static analysis: Fact Extraction and Analysis.

Fact Extraction is the process of extracting a model from a given set of software design
artifacts such as source code artifacts. The extracted model contains the properties of
software system’s entities, such as variables, functions, classes, etc., and their relationships.
This model is represented as a database of facts (factbase), each fact being a piece of
information that was extracted from a source code artifact. For example, we can extract
all direct function calls from the code snippet in Figure 1.1, resulting in the extracted model
shown in Figure 1.2a. The model of the system we extract depends to some degree on how
we intend to use it. The model in Figure 1.2a, for example, would not be particularly useful
if we are interested in dataflow through variables. Accordingly, we can extract all direct
variable writes from the code snippet in Figure 1.1, which would result in the extracted
model shown in Figure 1.2b.
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void	foo(){
		bar();
}

void	bar(){
		baz();
}

void	baz(){
		int	x	=	1;
		int	y	=	x;
		int	z	=	y;
}

Figure 1.1: Example Code Snippet to Extract Facts from

callfoo() bar() baz()call

(a) Direct Function Calls extracted from Figure 1.1

varWritebaz()::x baz()::y baz()::z
varWrite

(b) Direct Variable Writes extracted from Figure 1.1

Figure 1.2: Facts Extracted from Code Snippet in Figure 1.1

Having extracted a factbase from source code artifacts, we can then query/analyse
it for higher level facts; that is, we perform a Fact Analysis on the extracted facts. For
example, we can query the factbase in Figure 1.2a to find all possible indirect calls between
the functions foo(), bar() and baz(), or we can analyse the factbase in Figure 1.2b to
find all possible indirect variable writes between the variables baz()::x, baz()::y and
baz()::z. The results of these queries can then be saved for future use.

3



Like any other static analysis technique, Fact Extraction and Analysis can be useful
to developers only if it is practical for them to use in their day-to-day tasks. A key factor
in earning developer buy-in is how easily it can be integrated into a developer’s existing
workflow [28]. As pointed out by Cadowski et al. [41] and Johnson et al. [28], developers
will refrain from using static analysis techniques if they feel it would disrupt their general
workflows, even if it does improve the overall quality of the software. With numerous
projects taking an Agile approach to software development [8], where developers work
incrementally in short sprints, subsequent analyses should be able to fit within this Agile
model. It is precisely this area where current Fact Extraction & Analysis approaches can
be improved upon.

Our goal in this thesis is to improve the general practicality of the Fact Extraction and
Analysis framework by making it more change friendly, which we hope will make it easier
to integrate into the developer workflow. In particular, we focus on changes at the source
file level — i.e., modifications to source files, addition of new source files and removal of
source files — and how they impact a previously extracted model and analysis. We first
present an approach that modifies an established Fact Extraction and Analysis toolchain
[35]. We then evaluate our approach using our proposed toolchain by performing a case
study on the Linux Kernel, using our findings to evaluate the effectiveness of our approach
and to map out areas of improvement and future work.

1.1 Thesis Contributions

This thesis presents three major contributions:

• An approach for incrementally updating previously-extracted System Factbases, build-
ing upon the Separate Fact Extraction pipeline to account for changes to source files.

• An approach for incrementally updating a set of analysis results using a strategy that
is similar to a Rete network. We introduce the notion of Meta Facts to allow for such
a strategy.

• A case study that evaluates the effectiveness and feasibility of our proposed ap-
proaches. The case study was conducted on the Linux kernel source code by mod-
ifying an existing extraction and analysis pipeline to incorporate our incremental
approaches. We compared the batch and incremental approaches to updating pre-
viously extracted factbases, and the batch and incremental approaches to updating

4



a previous set of analysis results. Overall we found that our Incremental Extraction
achieved improvements of 50%-65% in extraction time, while we found our Incre-
mental Analysis to be highly sensitive to subsets of facts in the presence of transitive
closure, scaling linearly in the best case and in the worst case following an S -shaped
growth as a result.

1.2 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we discuss relevant back-
ground knowledge on Fact Extraction and Analysis and its use in the literature. As well,
we discuss related work on factbase representations, incremental model extraction and
incremental analysis techniques. Chapter 3 describes our approaches to incrementally up-
dating a System Factbase and incrementally updating analysis results, where we introduce
the notion of Meta Facts. We evaluate these approaches through a case study in Chapter
4, presenting our methodology for the case study, major findings and limitations. Finally
in Chapter 5, we summarize the work completed in this thesis and suggest areas of future
work.

5



Chapter 2

Background & Related Work

In this chapter, we give an overview of a typical Fact Extraction and Analysis framework
in current use, including previous source code analyses that have leveraged this framework,
and existing techniques for updating a previously extracted model and analysis. We start
by exploring this framework in Section 2.1 and outline how we represent a factbase in Sec-
tion 2.2, presenting alternative representations and tools that have been previously used.
We discuss how our chosen representation has been used for source code analysis in Section
2.3, while Section 2.4 explores other analyses that have been carried out through Fact Ex-
traction. In Section 2.5, we describe previous approaches to updating an extracted source
code model, while we describe how current techniques in Incremental View Maintenance
of relational and graph data can be applied to update analysis results in Section 2.6.

2.1 Fact Extraction as Compilation

Fact Extraction & Analysis has two phases: the extraction process and the analysis process.
The former can be thought of as a model extraction process, where a parser is used to ex-
tract relevant source code information into an internal representation (IR), most commonly
a graph, while the latter can be viewed as state-space exploration [11]. In this sense, the
extraction process closely follows the well-established compiler pipeline architecture [31]:
the Front End parses a given source file, producing a model of the code in an intermediate
representation (IR), and then the Back End transforms the IR model into a collection of
“facts” about the source code, rather than machine code. We can call this collection of
facts a local factbase.

6



Much like the compilation of source code into an executable, there is a final linking step
in the extraction of a model from a set of source code. Where traditional compiler linking
collects and resolves dependencies between units of generated machine code into a final
executable, linking in a Fact Extraction sense collects and resolves dependencies between
generated local factbases into a final system factbase [47]. Let us consider Figures 2.1 and
2.2 as an example. We first extract factbases from the two source files in Figure 2.1 into
separate local factbases, which for simplicity we represent as a graph. The top factbase
has already had its symbols, namely its nodes, resolved, as functions foo() and bar() and
the variable globFlag are all declared within the source file. We can call edges between
resolved symbols resolved edges. On the other hand the bottom factbase contains virtual
symbols, owing to the extern declaration of the functions foo() and lie(), and these links
will have to be resolved during the linking step in Figure 2.2. We can call edges between
at least one unresolved symbol an unresolved edge. It is during this linking step that
we resolve foo(), meaning we resolve the edge between baz() and foo() and keep it in
the system factbase, but are unable to resolve lie(). Such a scenario typically arises when
the software system we are extracting from contains functionality from external libraries,
e.g., calls to system library functions; we can mark the edge between baz() and lie()

as unresolved and keep it in the system factbase, or we can exclude this edge entirely if
we consider library functionality to be out of the system factbase’s scope, which we do in
Figure 2.2.

7



int	globFlag;

void	foo(){
		bar();
}

void	bar(){
		globFlag	=	1;	
}

extern	void	foo();
extern	void	lie();

void	baz(){
		foo();
		lie();
}

callfoo() bar() globFlagwrite

call
baz()

foo()

lie()

call

Figure 2.1: Extraction of Local Factbases

callfoo() bar() globFlagwrite

call
baz()

foo()

lie()

callfoo() bar() globFlagwritecallbaz()

call

Figure 2.2: Linking Separately Extracted Local Factbases into a System Factbase

8



This modular approach makes the overall extraction process more memory and time-
efficient on large systems with many source files [15], allowing us to extract local factbases
in parallel in a manner analogous to separate compilation. We refer to this pipeline, shown
Figure 2.3, as the Separate Extraction Pipeline; we first extract separate local factbases
for each given source file during the Extract step, and link these factbases into the system
factbase, Sys, during the Link step. Once we have our factbase Sys extracted, we can
then perform analyses on Sys, such as dataflow or call flow analysis, in the Analysis step,
generating a set of derived facts Analysis(Sys) to supplement the extracted facts in Sys.

Sys

Analysis

Src Code

Extract

Extract
Link

Sys
+

Analysis(Sys)

Figure 2.3: Separate Extraction Pipeline

2.2 Factbases as Property Graphs

In this work, we interpret a system factbase as a property graph. A property graph is a
directed, labelled multigraph where each node and edge maintains a set of key-value pairs
called properties. Each node can have zero or more labels, while each edge can have at
most one label [7]. We provide an overview of alternative formats that have been used in
the context of fact extraction and analysis, and how they represent a system factbase using
the property graph model, below.

2.2.1 Tuple-Attribute Format

In the Tuple-Attribute (TA) format, coined by Holt [26], facts are represented as a set of or-
dered, binary relations between entities, each entity instance having a type/label and each
entity and relation instance having zero or more attributes as key-value pairs. Figure 2.4 il-
lustrates an example of such a factbase, where entries of the form $INSTANCE <EntityName>

9



<EntityType> denote entity declarations and entries of the form <RELATION> <SOURCE>

<DESTINATION> denote instances of specific relations. Hence, the entry $INSTANCE globFlag

cVariable denotes that globFlag is a variable, while the entry call foo() bar() is
an instance of the call relation that denotes that function foo() calls function bar().
Alternatively one could use the srcML format [14] to represent a system factbase in an
XML-like language, which would allow the use of XML tools like XPath to perform any
querying/analysis; or the Rigi Standard Format (RSF), which was an inspiration for the
TA format.

int	globFlag;

void	foo(){
		bar();
}

void	bar(){
		globFlag	=	1;
		int	localFlag	=	0;
}

$INSTANCE		globFlag											cVariable
$INSTANCE		bar()::localFlag			cVariable
$INSTANCE		foo()														cFunction
$INSTANCE		bar()														cFunction

call			foo()		bar()
write		bar()		globFlag
write		bar()		bar()::localFlag

Figure 2.4: An example of a TA factbase

2.2.2 Datalog

We can also represent a system factbase as a Datalog program. Datalog is a declarative,
relational query language that supports logical inference [22]. A Datalog program is made
up of a set of facts, referred to as an Extensional Database (EDB), and a set of inference
rules that operate on facts, referred to as an Intentional Database (IDB). The facts in an
EDB are defined as n-ary predicate expressions with only constants as their arguments,
while each inference rule in an IDB is defined as a Horn Clause of predicate expressions.
These rules are repeatedly applied to an EDB by an inference algorithm, generating new
facts that are added to the EDB until a fixed point is reach, i.e. no new facts are added to
the EDB. In the context of program analysis, we can interpret the predicates in an EDB
and IDB as n-ary relations. In this context, Datalog and TA are very similar; a choice
between the two is a matter of one’s preference for a particular syntax or available tooling.
One notable difference is that Datalog supports Incremental View Maintenance techniques
[33], while TA does not.

Figure 2.5 shows how we can represent a system factbase in Datalog, using the same code
snippet as in Figure 2.4. The EDB in this case consists of the same set of facts extracted in

10



Figure 2.4 in a slightly different syntax. The IDB consists of the indirectWrite rule, de-
fined as the composition of the call and write relation. After applying the inference algo-
rithm, the relation instances indirectWrite(foo(), globFlag) and indirectWrite(foo(),

bar()::localFlag) will have been added to the EDB.

int	globFlag;

void	foo(){
		bar();
}

void	bar(){
		globFlag	=	1;
		int	localFlag	=	0;
}

//	EDB
cVariable(globFlag)
cVariable(bar()::localFlag)
cFunction(foo())
cFunction(bar())

call(foo(),	bar())
write(bar(),	globFlag)
write(bar(),	bar()::localFlag)

//	IDB
indirectWrite(X,	Z)	:-	call(X,	Y),	write(Y,	Z)

Figure 2.5: An example of a Datalog factbase

2.3 Source Code Models as Property Graphs

The practice of extracting a queryable model from source code artifacts is not new. Recent
work in generating such models, however, are increasingly using the property graph model
[39], using a tool such as Neo4j. Yamaguchi et al. used the property graph model to
discover vulnerabilities in the Linux kernel [48]. To do so, they first modelled the code’s
Abstract Syntax Tree, Control Flow Graph and Dependency Graph as property graphs,
merging the separate representations into one code property graph. They then used graph
traversal algorithms to find paths that matched specific vulnerability patterns using Apache
Gremlin, detecting 18 new vulnerabilities.

Goonetilleke et al. developed a code comprehension tool, Frappe, on top of Neo4j that
maintained a versioned dependency graph of a system’s codebase, the main goal of the
project being to aid developers in the code review process [21]. This versioned graph
would allow developers to ask questions that could come up during code review, like which
version saw the introduction of a new function or which version saw the addition of a new
dependency, using graph traversal queries written in the Cypher query language [18].

Focusing on more niche systems, Prähofer et al. [37] used Static Analysis techniques
of Programmable Logic Controller (PLC) programs to extract their structural data and
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dependencies into the Neo4j Graph Database, creating an architectural view that users
could query using the Neo4j Web Interface to check for violations of design & architectural
constraints. Similarly, Thaller’s Gradient tool used a program’s static, structural data as
an index for data generated from dynamic analysis, allowing engineers to cross-reference
source code entities to their run-time behaviour [45].

2.4 Fact Extraction

The earliest use of Fact Extraction & Analysis can be traced back to Reverse Engineering,
specifically the recovery of system architectures. The concept itself was first introduced
by Schwanke [42] and later formalized by Murphy et al. as the Software Reflexion Model
[34], which detects disparities between the conceptual view of a system, as identified by
engineers, and the extracted view of a system’s source code. Following this approach, Holt
used the Fact Extraction & Analysis framework with the Relational Algebra tool Grok to
recover the Linux Kernel’s architecture [27].

Godfrey et al. developed a prototype system, Beagle, that uses the Fact Extraction
& Analysis framework to detect merges and splits of functions and files between different
versions of a software [20]. Beagle first extracts a factbase from a given version of a software
system and when fed with another version of the same system, the tool then performs an
origin analysis, annotating the previously extracted factbase with information about the
origin of extracted software entities, namely functions. They evalutaed their approach by
performing a case study on 11 pairs of successive versions of PostgreSQL, finding that
merging and splitting made up 12% of the total structural changes seen in PostgreSQL’s
evolution between the studied versions.

Muscedere et al. applied Fact Extraction & Analysis to help verify Automotive Soft-
ware by detecting potential Feature Interactions (FIs) [35], using an in-house extractor
Rex to build a factbase of software entities and a set of Grok analysis scripts to detect
potential Feature Interactions, each script detecting a specific type of Feature Interaction.
This lighter weight approach to detecting Feature Interactions was evaluated on the Au-
tonomoose project1, finding 1444 instances of possible Feature Interactions, of which 149
were confirmed by a domain expert to be likely true positives.

Datalog analyses, and more generally Datalog-like analyses, have predominantly fo-
cused on Pointer Analysis. Benton et al. developed the DIMPLE framework that extracted

1https://uwaterloo.ca/centre-automotive-research/watcar-autonomoose/

about-autonomoose
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a factbase from Java bytecode, which they call a DIMPLE IR, and allowed users to in-
teractively query the factbase through logic programming [9] (in their case Prolog). Lam
et al. [29] opted to use Binaray Decision Diagrams to represent a factbase in their bddb-
ddb system to perform Context-Sensitive Analysis, evaluating Datalog queries/analyses as
BDD programs, while Bravenboer et al. sought to improve performance times of context-
sensitive analysis by heavily optimizing a given Datalog program through their DOOP
program [12]. In contrast, Eichberg et al. used a Datalog factbase to enforce architectural-
level constraints placed on a software system, applying their approach to the BAT toolkit
[16].

2.5 Incremental Model Extraction

Chen’s C Information Abstraction System (CIA) was the first foray into incremental con-
struction of a program model [13]. Like Separate Fact Extraction, CIA constructs a system
model of a given program from constituent local models, leveraging Unix’s Make to recon-
struct local models and update the system model from source files that have been modified,
although the finer details of this approach are not elaborated on. CodeQuest [25] follows
a similar approach to updating a system model, using the auto-build feature in Eclipse to
first purge all previous facts extracted from compilation units that have been recompiled
or removed, and second adds the facts that have been newly extracted from compilation
units that have been recompiled (including new compilation units). Stein et al. [44] took
a slightly different approach to CodeQuest by using a Version Control System (VCS) to
identify affected compilation units rather than a build utility. Our work takes a more
finely-grained approach to updating a system model than the ones described; our goal is to
reduce the amount of unnecessary work, looking for changes at the fact-level rather than
the file-level, particularly in the case of modified source files.

2.6 Incremental Analysis

Incremental Analysis can be viewed as a form of Incremental View Maintenance (IVM)
[10]: the View V is a set of analysis results that were derived from an analysis query Q
and an underlying set of base facts B in the system factbase. IVM is a technique used to
update V to V ′ when B changes to B ′ using ∆B, rather than computing V ′ using Q and
B ′ from scratch. Let us consider the system factbase in Figure 2.4 as an example. In this
factbase, B is the set of facts:
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call foo() bar()

write bar() globFlag

write bar() bar()::localFlag

Suppose we want to carry out the following analysis indirectWrite: find all functions that
indirectly write to a variable by calling another function. Hence, our analysis query Q
would be the composition of the call and write relations. When we execute Q, V, the
results of the indirectWrite query will be the set of derived facts:

foo() globFlag

foo() bar()::localFlag

Now suppose our system factbase is updated with write bar() bar()::localFlag being
removed and write bar() bar()::x being added. B ′ is thus the set of facts:

call foo() bar()

write bar() globFlag

write bar() bar()::x

and ∆B is the set:

– write bar() bar()::localFlag

+ write bar() bar()::x

To derive V ′, which would be:

foo() globFlag

foo() bar()::x
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we can either execute Q on B ′ or use ∆B to update V incrementally.

Previous work has focused on IVM in the relational data model, with techniques largely
centered around using ∆B to construct relational expressions that carry out the update
from V to V ′ [38][23]. These expressions are constructed ‘from the ground up’; changes
seen to the base relations in Q are used to create an incremental version of the query ∆Q.
For example, suppose that Q is call ◦ write and that ∆B consists only of changes to the
write relation: writeadded and writeremoved. Using ∆B, we can construct a corresponding
∆Q to carry out the update: V ∪ (call ◦ writeadded) − (call ◦ writeremoved).

Since we interpret a system factbase as a property graph, however, we are more inter-
ested in IVM techniques for the property graph model, an area that is significantly less
mature than its relational counterpart. The work by Szárnyas looks to address this dispar-
ity [19]. Fundamentally his approach is based on evaluating a query using a Rete network
[17], which historically has been used in rules-based systems like Datalog. Changes to the
graph that are relevant to a query, namely ∆B, are detected at the leaves of the network
and propagated towards the root, each propagation step storing intermediate results. An
example of this approach for the query call ◦ write is shown in Figure 2.6, where our initial
set of base facts B is:

call foo() bar()

write bar() globFlag

write bar() bar()::localFlag

and our initial result set V is:

foo() globFlag

foo() bar()::localFlag

For simplicity, we have excluded any changes to the call relation.
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writeadded writeremoved
bar() bar()::x bar() bar()::localFlag

call o writeadded
foo() bar()::x

call o writeremoved
foo() bar()::localFlag

call o write
foo()
foo()

globFlag
bar()::x

foo() bar()::localFlag

Figure 2.6: Updating a Result Set by Propagating Intermediate Results

Our work uses a similar, less memory-intensive approach, the difference being that we
propagate expressions analogous to those seen in the relational model, which we call delta
queries, that are used to update analysis results rather than propagating the intermediate
results.

16



2.7 Summary

In this chapter, we described how a typical Fact Extraction and Analysis framework can
be used to analyse models of software systems extracted from source code artifacts using
a process similar to separate compilation. We then discussed alternative formats of repre-
senting these extracted software system models and how these formats have been used in
the literature. Finally, we reviewed related approaches to updating software system models
and approaches to updating analyses of software system models, the latter providing an
overview of Incremental View Maintenance techniques for relational and graph data.
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Chapter 3

Methodology

Separate Fact Extraction has been shown to scale well to large, industrial systems [35].
Using similar principles to the compilation process, we can create factbases using similar
time and resources. This approach, however, is not ideally suited to support the evolution-
ary nature of software systems; changes in source code necessitate re-extracting a factbase
from scratch and then redoing any analyses from scratch, regardless of the magnitude of
the changes.

In this chapter, we outline an approach for making fact extraction more amenable to
changes in the source code; we call this approach the Incremental Extraction and Analysis
Process (IEAP). We first review the typical pipeline process for creating a system model
from a set of source code files, which we call the Naive Extraction Process (NEP). The
NEP is used the first time a system model of a given software system is created, producing
intermediate artifacts along the way. Rather than apply the NEP every time a software
system evolves, we propose an alternative approach that uses these intermediate artifacts
and changes to source code files — namely modifications to source files, addition of new
source files and removal of source files — to update a previously extracted system factbase;
we elaborate on our approach to incremental extraction in Section 3.2. Next, we review
the typical procedure for producing a higher-level model from an extracted system model,
which we call the Naive Analysis Process (NAP). Similar to the NEP, the NAP can be
applied on successive versions of the system model. We then propose an alternative ap-
proach that uses the changes made to a system model as it evolves to update the results of
a previous analysis; we elaborate on our approach to incremental analysis in Section 3.4.
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3.1 The Naive Extraction Process (NEP)

Extract Linksrc1 src2

src3

src2.fbsrc1.fb

src3.fb

Sys

Figure 3.1: The Naive Extraction Process

As discussed earlier, the NEP in Figure 3.1 consists of two main phases:

1. Separate extraction — For each source code file in the software system srci, a fact
extractor is run on it to produce a preliminary, local factbase srci.fb containing the
program entities that are defined in that file, such as functions and global variables,
the relationships between such elements, such as function calls and variable writes,
and additional properties/attributes for the extracted entities and relationships.

2. Merging and linking — Once the factbases of all of the source code files have been
extracted, the individual fact bases are merged into a single factbase Sys that contains
all of the facts for the system. A kind of linking is performed to resolve relations
that span file boundaries, similar to how linkers perform linking on the object files of
a program to resolve references to common identifiers (contained in the object files).
Specifically, two types of resolutions among facts in disjoint factbases are performed:

Name resolution — For each node/entity V in an extracted edge/relation E,
we check that V has been extracted by the fact extractor. Nodes that are
not extracted typically correspond to library functionality that can be ignored
(e.g., calls to system libraries). If V has been extracted, then E is resolved
and therefore included in Sys. If E is unresolved at the end of the process of
linking all the local factbases, it is excluded from Sys.

Property resolution — We merge all extracted nodes/entities with the same
name/symbol V 1...V n into V Sys, combining the separate, local-level properties
into one system-level property using pre-defined merge rules (which are defined
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per-property). Similarly, we merge all resolved edges/relations with the same
name/symbol E 1...En into ESys, combining the separate, local-level properties
into one system-level property using pre-defined merge rules (which are defined
per-property).

The NEP can be used on subsequent versions of a software system, however this neces-
sitates reconstructing from scratch the individual factbases for any source code modules
that changed and linking from scratch all the individual factbases.

3.2 The Incremental Extraction Process (IEP)

The Incremental Extraction Process (IEP) attempts to take advantage of the knowledge
gains about a software system, i.e., which components have been added, modified, removed,
etc. and perform as little additional work as possible to produce a correctly updated system
model Sys ′ for the new version of the system. To explain how the IEP works, it is useful
to observe that source code artifacts in a new version of the system — henceforth, referred
to as files — can be partitioned into four categories:

An Unchanged file is present in both versions of the system, and is identical in both
versions.

A New file is present in the new version of the system, but not in the old version.

A Deleted file is present in the old version of the system, but not in the new version.

A Changed file is present in both versions of the system, but is not identical in both
versions.

We make the simplifying assumption that a file’s identity corresponds to the full path name
of the file within the source distribution directory hierarchy. If a file is renamed or moved
to a different directory, we assume the old file was Deleted and the new file is New.1 A file
is considered to be Unchanged if the Unix diff command produces no output when using
the old and new versions of the file as input.

1The problem of moving and renaming files between consecutive versions of a system is called origin
analysis [20]; techniques such as code clone detection [40] can be used to recognize when this occurs. This
can help to further optimize the IEP, but we consider it to be beyond the scope of our current work.
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For each of these categories, there is a corresponding category of a file’s corresponding
local factbase: Unchanged, New, Deleted and Changed. A factbase’s name is constructed
using a file’s full path name. Thus a file that is renamed or moved to a different directory
causes the factbase associated with the old filename to be considered Deleted and the
factbase associated with the new filename to be considered New. In addition, we introduce
an additional artifact that is generated by both the NEP and the IEP: a factbase ‘list’.
Simply put, a factbase ‘list’ is a list of the names of the extracted local factbases that make
up the system factbase, sorted in alphabetical order. Using a merge-like routine, we can
then compare the old factbase ‘list’ to the new factbase ‘list’ and partition the factbases
into the four aforementioned categories:

A factbase srci.fb is Unchanged when the factbase is extracted from both versions of
the software system, and is identical in both versions.

A factbase srci.fb is New when the factbase is extracted from the new version of the
software system, but not from the old version.

A factbase srci.fb is Deleted when the factbase is extracted from the old version of
the software system, but not from the new version.

A factbase srci.fb is Changed when the factbase is extracted from both versions of
the software system, but is not identical in both versions.

21



The IEP is broken down into the three major steps shown in Figure 3.2:

Re-Extract — For each Changed or New file srci in the new version of the system,
we re-extract the local factbase srci.fb.new using an approach similar to incremental
compilation. We also generate the new factbase ‘list’ during this step. This process
is explained in more detail in Section 3.2.1.

Diff and Replace — We detect which facts should be added, modified or removed
from the system factbase Sys as a result of changes to the source code files, generating
a file-level δ for each factbase category:

– For each Unchanged factbase srci.fb, the resulting δ is null.

– For each New factbase srci.fb, the resulting δ, srci.fb.diff, contains only facts to
be added to Sys, marked by a ‘+’.

– For each Deleted factbase srci.fb, the resulting δ, srci.fb.diff, contains only facts
to be removed from Sys, marked by a ‘−’.

– For each Changed factbase srci.fb, the resulting δ, srci.fb.diff, contains facts to
be added to Sys, marked by a ‘+’, facts to be removed from Sys, marked by a
‘−’, and fact attributes/properties to be modified in Sys.

We call this collection of file-level δ’s a ∆. We also maintain any intermediate artifacts
by replacing older versions of Changed factbases with their newer versions, removing
Deleted factbases and replacing the old factbase ‘list’ with the new factbase ‘list’.
This process is explained in more detail in Section 3.2.2.

Update — We use our generated ∆ to update our previously extracted system fact-
base, progressively applying each file-level δ ∈ ∆ to produce the updated system
model Sys ′. This process is explained in more detail in Section 3.2.3.

Re-Extract Diff & Replace Updatesrc1 src2

src4

src2.fbsrc1.fb

src3.fb src4.fb.new

src1.fb.new

src1.fb
src2.fb
src3.fb

Old factbase 'list'

src1.fb
src2.fb
src4.fb

New factbase 'list'

src1.fb
src2.fb
src4.fb

New factbase 'list'

δ δ

src1.fb.diff src3.fb.diff

δ

src4.fb.diffsrc3

Sys
Sys'

Figure 3.2: The Incremental Extraction Process
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3.2.1 Re-Extracting

To minimize the number of source files we re-extract, we go through the following process.
For each given source file srci, we check to see if a corresponding factbase srci.fb exists. If
the factbase does not exist, then we extract it and add an entry to the new factbase ‘list’.
Otherwise, we re-extract iff any of the following Re-Extraction conditions are satisfied:

• the source file has been written to since it was last extracted

• the source file’s dependencies have changed since it was last extracted

• the source file’s compilation command has changed since it was last extracted. This
is applicable only when extracting from a built system

This information, namely a source file’s last write time, a source file’s dependency list and
a source file’s compilation command, is included in each local factbase srci.fb as metadata.

3.2.2 Diff & Replace

Following re-extraction, we need to know which local factbases have been added, removed
and modified as a result of source code changes and, accordingly, which facts have been
added, removed and modified. We do this by comparing the old factbase ‘list’ with the new
factbase ‘list’. Knowing that both lists are sorted alphabetically, we can detect whether a
factbase has been removed, added or modified.

If a local factbase has been removed in the new extraction (i.e., a factbase that is present
in the old factbase ‘list’ and absent in the new factbase ‘list’), then we use the contents of
the removed local factbase to generate a set of facts to be removed from the Sys factbase
(denoted by a ‘−’), which we store in a file-level δ. If a local factbase has been added in
the new extraction (i.e., a factbase that is absent in the old factbase ‘list’ and present in
the new factbase ‘list’), then we use the contents of the added local factbase to generate
a set of facts to be added to the Sys factbase (denoted by a ‘+’), which we store in a
file-level δ. If a local factbase has been modified (i.e., if there exists a newly extracted local
factbase that is not deemed as New, such as src1.fb.new in Figure 3.2), then we compare
the contents of the newly generated factbase with contents of the previous version of that
local factbase, both of which are sorted, generating a set of facts to be added, removed
and modified (at the attribute level) in the Sys factbase, which we store in a file-level δ.
The collection of generated file-level δ’s are collected in a ∆. For example in Figure 3.2,
∆ = {src1.fb.diff, src3.fb.diff, src4.fb.diff }. A write-up of this algorithm can be found in
Appendix A.1.
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3.2.3 Update

The instances property

Recall that the linking step of Separate Fact Extraction includes the merging of same-
named nodes (and edges) that appear disjoint in local factbases; when merging nodes (and
edges), their properties are either merged or overridden. Depending on the semantics of a
node’s or edge’s properties, tracing a system-level node or edge to its local-level constituents
can be quite cumbersome.

To avoid a similar complication in our Update procedure, we have introduced an in-
stances property for nodes and edges in the Sys factbase and in the local factbases. In
a Sys factbase, this property represents the number of local factbases that contain the
extracted node or edge, while in the local factbases, this counter represents the number of
times a node or edge was extracted from a source file. For example, if function foo() calls
bar() twice in two.c and once in one.c, then the fact call foo() bar() will have an
instances value of 2 in two.c.fb, 1 in one.c.fb and 3 in the Sys factbase.

Applying ∆

Once we know which facts have been added, removed and modified, we need to produce
a revised Sys factbase that includes these changes. We apply our update in two parts.
First, we iterate over each file-level δ ∈ ∆ and apply any node, edge or property removals.
Removing local factbase properties from the Sys factbase requires background knowledge
on the semantics of the properties. For example, the instances property is a counter;
hence, if an instances property is removed from a local factbase then our Update process
decrements the property’s value in Sys by the property’s value in the local factbase. If
the number of instances of an edge drops to zero, then the edge is removed from the Sys
factbase. If the number instances of a node drops to zero, then both the node and any
edges connecting to that node are removed from the Sys factbase. Other possible property
semantics include the condition property, which is a boolean expression denoting a fact’s
presence condition and is used when lifting analyses to software product lines [43], and
the filename property, which denotes the source file from which a fact was extracted. A
write-up of this algorithm can be found in Appendix A.2

Next, we iterate over each file-level δ ∈ ∆ a second time and apply any node, edge
or property additions and modifications. As with removing properties from Sys factbase,
adding or modifying properties in the Sys factbase based on added or modified properties
from a local factbase requires knowing the semantics of these properties. As well, we need
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to allow for the fact that new edges (relations) may refer to nodes that have not yet been
added. For example, a function call may be extracted from one file, and the called function
may be declared in another file. In such a case, our Update process creates virtual nodes
that serve as placeholders for nodes that are to be added. Should these placeholders not
be filled by the end of the Update process, then they are removed along with any outgoing
and incoming edges. We identify virtual nodes as nodes that do not have the instances
property. A write-up of this algorithm can be found in Appendix A.2

3.2.4 Creating Meta Facts

With a view to supporting Incremental Analyses, the IEP generates the changes made to
the Sys factbase during the Update step, partitioning it into two categories:

Dirty Facts — These are facts that have been modified or added by the IEP when
updating Sys to Sys ′, the term Dirty being borrowed from the notion of a dirty bit.
For each fact f Sys′

i that has been modified or added, a copy f Dirty
i of the fact is created

whose dirty attribute is set to true. Each Dirty Fact f Dirty
i is treated as a New fact

in the IAP, even if the fact was present in the old system model.

Removed Facts — These are facts that have been removed by the IEP when updating
Sys to Sys ′. For each fact f Sys

i that is removed, a copy f Removed
i of the fact is created

whose removed attribute is set to true.

We call this collection of Dirty and Removed facts Meta Facts ; these Meta Facts constitute
the changes to the software system factbase ∆Sys. Consider Figure 3.3 as an example.
When Sys.fb is updated to Sys ′.fb in Figure 3.3a, the fact call foo() bar() is modified,
the fact call foo() new() is added, and the fact write bar() globFlag is removed.
Accordingly, the IEP generates the following Dirty Facts in Figure 3.3b:

call foo() bar() { dirty=true instances=2 }

call foo() new() { dirty=true instances=1 }

and this Removed Fact :

write bar() globFlag { removed=true }
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Sys'.fb

new()	cFunction

bar()	cFunction

foo()	cFunction

globFlag	cVariable

call	foo()	bar()	{	instances=2	}

call	foo()	new()	{	instances=1	}

bar()	cFunction

foo()	cFunction

globFlag	cVariable

call	foo()	bar()	{	instances=1	}

write	bar()	globFlag	{	instances=1	}

Sys.fb

Incremental Update

(a) Incrementally Updating Factbases

write	bar()	globFlag	{	removed=true	}

call	foo()	bar()	{	dirty=true	instances=2	}

call	foo()	new()	{	dirty=true	instances=1	}

(b) Meta Facts generated for the Incremental Update

Figure 3.3: Generating Meta Facts during an Incremental Update
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3.3 The Naive Analysis Process (NAP)

The Naive Analysis Process (NAP) in Figure 3.4 consists of only one phase: Analysis.
During this phase, we apply analyses to the extracted system model Sys to produce a set
of analysis results called Analysis(Sys). Such analyses may involve excluding facts that are
not relevant to the problem at hand, inferring higher-level facts about the system, such as
dependencies between components of the software system, or finding interesting patterns or
smells (e.g., feature interaction hotspots). Together, Analysis(Sys) and Sys form a richer
factbase of derived and extracted facts, respectively. The NAP must be used to produce
the first set of analysis results from the first Sys model. When the Sys model evolves, we
could use the NAP to re-generate up-to-date Analysis(Sys) results, however this is a lot of
rework every time the software changes.

Sys

Analysis

Sys
+

Analysis(Sys)

Figure 3.4: The Naive Analysis Process

3.4 The Incremental Analysis Process (IAP)

The Incremental Analysis Process (IAP) aims to use the changes to a software system
factbase, referred to as ∆Sys, to correctly update the results from a previous Analysis(Sys),
rather than perform the analysis from scratch on Sys ′. As described in Section 3.2.4, this
∆Sys is generated during the Update step of the IEP as Meta Facts.

The IAP is broken down into three steps, as depicted in Figure 3.5:

Detect Meta Facts — For each binary relation Ri in an analysis query Analysis, we
identify the relevant subset of Meta Facts f Meta

1 ...f Meta
j that are instances of Ri. This

process is explained in more detail in Section 3.4.1.

Propagate Meta Facts — For each identified Meta Fact f Meta
j , we generate an ex-

pression Q j, which we call a delta query, using the syntactic structure of an analysis
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query Analysis. Conceptually, if f Meta
j is a Dirty Fact then Q j is an additive delta

query, which we denote as Q+
j ; it represents the set of additions to be made to Anal-

ysis(Sys) due to f Meta
j . Likewise, if f Meta

j is a Removed Fact then Q j is a removal
delta query, which we denote as Q−j ; it represents the set of removals to be made
Analysis(Sys) due to f Meta

j . This process is explained in more detail in Section 3.4.2.

Update Analysis(Sys) — We evaluate our set of delta queries Q1...Qk to generate
facts that are added to Analysis(Sys) and identify facts that are removed from Anal-
ysis(Sys). These delta queries are performed on the updated system model Sys ′.
This process is explained in more detail in Section 3.4.3.

Analysis(Sys)

R1
R2
R3
R4

Rn

...

Detect Meta Facts Propagate Meta Facts Update Analysis(Sys)

f1Meta

f2Meta

f3Meta

f4Meta

fkMeta
...

Q1+

Q2-

Q3+

Q4-

Qk+

...

Analysis(Sys)

Analysis(Sys')

Sys'

Figure 3.5: The Incremental Analysis Process

3.4.1 Detecting Meta Facts

The first step in the IAP is to identify facts that are relevant to a particular analysis query
and have either been removed or added. For example, suppose the analysis query call ◦
write was executed on Sys.fb in Figure 3.3a. When Sys.fb is updated to Sys ′.fb, the IAP
must identify:

• The removed fact write bar() globFlag

• The added fact call foo() new()

Our approach does this by mapping the relations used in the analysis query to relevant
Meta Facts. For the analysis query call ◦ write, the IAP identifies from the set of Meta
Facts in Figure 3.3b, which in this case happens to be the entire set of Meta Facts :
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• The Removed Fact write bar() globFlag

• The Dirty Fact call foo() new()

• The Dirty Fact call foo() bar()

Note that the identified Dirty Fact call foo() bar() is redundant in the context of the
analysis query call ◦ write, as the fact call foo() bar() was not added to Sys′.fb, the
consequence being a negative impact on performance. Identifying redundant Meta Facts
can be avoided if a history of facts with respect to a given analysis is maintained, however
we consider it to be beyond the scope of our current work.

3.4.2 Propagating Meta Facts

Once we determine which facts relevant to an analysis have been added and removed, we
need to perform some inference to determine how Analysis(Sys) should be updated based
on these changes. To achieve this, the third step of the IAP propagates the detected
changes in a manner that is similar to a Rete network [17], generating delta queries that
it uses to:

• yield a set of analysis results to be added to Analysis(Sys)

• yield a set of analysis results to be removed from Analysis(Sys)

Suppose you want to run the analysis: A =̂ call ./ write ./ varWrite, where:

The call relation represents the set of all ordered pairs (a,b) where a and b are
functions and a directly calls b

The write relation represents the set of all ordered pairs (b,c) where b is a function,
c is a variable and b directly writes to c through an assignment

The varWrite relation represents the set of all ordered pairs (c,d) where c and d are
variables and c writes its value to d through an assignment

A therefore identifies functions that affect the value of a variable assignment through a
function call. We can represent this query as a tree, where the leaves are the call, write
and varWrite relations and the inner nodes are the join (./) operators, including the root.
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We can then use the leaves to detect relevant Meta Facts. Consider the example in Figure
3.6a, where the leaf node call was used to find a Meta Fact stating that the call from x

to y is dirty. We interpret dirty facts as being additions, and so the call from x to y is
considered to be a new fact to be added. This change is propagated up one level to Figure
3.6b, generating the delta query on the left side of the Figure. At this stage, this delta
query represents the set of intermediate results to be added to Analysis(Sys) based on the
call from x to y being added. When the change is propagated further to the root in Figure
3.6c, the final delta query on the left represents the set of all new additions that should be
made to Analysis(Sys) based on the call from x to y being added. Propagating detected
removals follows the same procedure, the only difference being that the pattern at the root
now represents the set of all possible facts to be removed from Analysis(Sys).
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Figure 3.6: Propagating a Dirty Fact
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3.4.3 Updating Analysis(Sys)

Propagate Meta Facts Removal Phase

f1Meta

f2Meta

f3Meta

f4Meta

fkMeta

...

Q1+

Q2-

Q3+

Q4-

Qj-

...

Analysis(Sys)

Intermediate Analysis(Sys)

Addition Phase

Analysis(Sys')

Qm+

...
Sys'

Sys'

Analysis(Sys)

R1
R2
R3
R4

Rn

...

Detect Meta Facts

Figure 3.7: The Update stage of the IAP

The final step in the IAP updates Analysis(Sys) by evaluating our generated delta queries
on the updated system factbase Sys ′. This approach is split in two stages, as shown in
Figure 3.7: the removal phase and the addition phase.

The Removal Phase

During the removal phase, we need to remove results from Analysis(Sys) that can no
longer be derived in the new system factbase Sys ′. The first step to identifying such
results is to evaluate our generated set of removal delta queries Q−2 ...Q

−
j . These queries are

incremental versions of the original analysis query Analysis that look for analysis paths
that include their respective fact that was removed from Sys and is absent from Sys ′

(fRemoved
2 ...fRemoved

j ). Since these queries inherently derive analysis results from facts that
have already been removed from Sys ′, evaluating Q−2 ...Q

−
j on Sys ′ alone yields the empty

set. Accordingly, the IAP creates for each of the removed facts fRemoved
2 ...fRemoved

j dummy
copies of the nodes and edges, producing the factbase Sys ′+Sysdummy. Executing Q−2 ...Q

−
j
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on Sys ′+Sysdummy now yields an initial set of facts Removed initial to be removed from
Analysis(Sys), which the IAP does in parallel for added efficiency.

Having identified an initial set of facts Removed initial to remove from Analysis(Sys), the
IAP removes all dummy nodes and edges from Sys ′+Sysdummy, producing Sys ′. A result
in Removed initial could still possibly be derived from Sys ′, however, as the removal delta
queries look for analysis paths that include removed facts. It is possible that the same
analysis result can be derived from an analysis of Sys ′ that does not include the removed
facts. Hence, to prevent over-deleting from Analysis(Sys ′), we need to check if each result in
Removed initial can be derived from Sys ′. The IAP does this by executing a localised version
of the analysis query Analysis on Sys ′, where the localised query looks for an analysis path
that includes the analysis result. For example, if foo() bar() is in Removed initial for the
transitive closure of the call relation, the IAP would check if foo() transitively reaches
bar() through the call relation in Sys ′. All elements in Removed initial that can be derived
from Sys ′ are purged from Removed initial by the IAP, since their inclusion would constitute
an over-deletion. Once the purge is complete, the IAP removes any remaining elements in
Removed initial from Analysis(Sys).

The Addition Phase

The addition phase is relatively simpler than the removal phase. The IAP need simply
execute our additive delta queries Q+

1 ...Q
+
m, producing a set of results to be unioned with

the Analysis(Sys). For added efficiency, these queries can be executed in parallel.
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3.5 Implementing the IEAP

Having defined our Incremental Extraction and Analysis Process (IEAP), we put it into
practice by modifying the extraction and analysis toolchain laid out in [35], which followed
the Naive Extraction and Analysis Process. We chose Neo4j 3.5.62 as our backend rather
than TA/Grok, which was used in the original toolchain, as we wanted the IEAP to be
applicable with an industrial-scale graph database system. We implemented the IEP by
first modifying the toolchain’s fact extractor Rex 3 to:

1. Generate factbase ‘lists’

2. Generate file-level δ’s for local factbases

This allowed Rex to carry out the Re-Extract and Diff and Replace stages of the IEP. We
implemented the IEP’s Update procedure as a separate program using Neo4j’s Native Java
API4, completing our implementation of the IEP. Similarly, we developed a prototype
of the IAP using Neo4j drivers for C5. All of our analyses are executed using APOC’s
subgraphNodes() function in the pathExpander library6.

3.6 Summary

In this chapter, we introduced the Incremental Extraction and Analysis Process (IEAP),
a modification of the Separate Extraction framework. As a software system evolves, the
IEAP leverages changes to source code files to update previously extracted system models
of the software system and previous analyses/post-processes of the system model. We also
outline an implementation of the IEAP using an existing extraction and analysis toolchain,
noting the modifications made to the toolchain to incorporate the IEAP.

2https://neo4j.com
3https://git.uwaterloo.ca/swag/Rex: Rex-incremental branch
4https://git.uwaterloo.ca/swag/incremental-factbase-updater
5https://git.uwaterloo.ca/swag/incremental-fact-analyser
6https://neo4j.com/docs/labs/apoc/current/graph-querying/path-expander
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Chapter 4

Case Study

In this chapter, we discuss a case study we performed using an industrial-scale open source
system (the Linux Kernel) as the target. In parituclar, we examined three aspects of our
proposed approach:

1. We compared the speed and accuracy of the IEP against the NEP,

2. We compared the speed and accuracy of the IAP against the NAP,

3. We identified sources of bottlenecks in the IAP.

We now describe our results in detail.

4.1 The Linux Kernel as the Target System

We wanted to evaluate the effectiveness of our incremental processes on an industrial-scale
software system. We selected the Linux Kernel as the target system: it is open source and
thus available to be used as a target; it is a large, long-lived and industrially successful
system that is in very wide use; and it is written in the C language, which our toolset
supports. Table 4.2 shows the size of the system per version, which was computed using
the cloc utility, and the size of the extracted factbases per version. In summary, our
corpus had medians of 200,063 SLOC1, 432 source files, 115,856 nodes, and 243,296 edges.

1The raw size of the Linux kernel is over 15M SLOC; we are using an “allNoConfig” option with minimal
add-ons, and the size of this subset is about 200,000 KSLOC
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The nodes consisted of the following program elements: variables, functions, enumerations.
The edges consisted of the relations in Table 4.1 below.

Table 4.1: Extracted Relations from Linux Corpus

Relation Meaning
call function1 function2 function1 calls function2
write function variable function assigns data to

variable
read variable function function reads data from

variable
varWrite variable1 variable2 variable1 assigns its data to

variable2
contain entity1 entity2 entity1 contains entity2 ;

e.g., a function contains a
local variable

varInfFunc variable function variable is used in a control-
flow statement that affects
whether function is called
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Table 4.2: Linux Corpus

Version
Source Size Factbase Size

# of Src Files SLOC # of Nodes # of Edges
v4.0 416 177,261 94,881 201,233
v4.1 417 181,046 96,398 204,526
v4.2 421 183,995 98,835 208,519
v4.3 424 185,455 100,037 211,038
v4.4 426 186,358 102,373 213,741
v4.5 426 188,299 103,934 216,642
v4.6 428 190,958 105,612 220,576
v4.7 429 191,966 106,284 222,086
v4.8 430 194,804 108,484 226,557
v4.9 432 196,736 110,222 231,302
v4.10 430 196,279 110,412 230,857
v4.11 431 197,260 112,099 234,847
v4.12 432 198,777 112,687 236,464
v4.13 431 200,063 115,856 243,296
v4.14 431 201,572 116,059 245,367
v4.15 435 203,569 116,860 247,444
v4.16 436 205,009 117,835 249,250
v4.17 438 207,103 119,580 252,666
v4.18 438 207,071 120,546 253,825
v4.19 438 208,139 121,556 256,000
v4.20 441 210,281 122,132 256,560
v5.0 443 211,292 123,182 258,607
v5.1 444 214,311 124,847 262,358
v5.2 445 216,878 126,415 266,095
v5.3 447 219,333 128,763 269,166
v5.4 448 221,300 129,921 271,667
v5.5 449 221,825 130,417 272,514

37



4.1.1 Setup

Building & Extracting ‘allNoConfig’ Linux

To run an extraction on a particular release of Linux, we checked out the release from its
GitHub repository2 using its release tag. We then compiled the release into an ‘allNoCon-
fig’ build by selecting “no” to all the configuration options. Since Rex uses compilation
databases in its extraction, we used the BEAR tool3 to generate a compilation database
per build. Each compilation database contains the path names of all the source code files
that make up a build with their respective compiler flags.

Updating Extractions

To apply the NEP, we ran Rex in a batch-extraction mode on each of the Linux releases,
generating for each release two CSV files4: nodes.csv, which contained all the extracted
nodes/entities and their properties/attributes, and edges.csv, which contained all the ex-
tracted edges/relationships and their properties/attributes. We recorded the time taken
to produce these CSV files per release, but did not record the time taken to bulk import
the CSVs into Neo4j using the neo4j-admin import tooling as we felt that the extraction
was complete once the up-to-date versions of the CSVs had been produced.

To apply the IEP, we ran Rex in its incremental-extraction mode on the sequence of
Linux releases followed by our implementation of the IEP’s Update procedure, applying the
results of the first incremental extraction (version 4.1) to the results of the batch extraction
of version 4.0 (after importing the generated CSVs into Neo4j), and thereafter applying
the results of an incremental extraction of a version vi to the factbase associated with the
previous version vi−1. We recorded the time it took for Rex to run in its incremental-
extraction mode and the time taken by our Incremental Update procedure.

4.1.2 System Specifications

All experiments were performed on a machine running Ubuntu 16.04 LTS with an Intel
Core i7-6770HQ 2.60 GHz CPU and 16GB RAM.

2https://github.com/torvalds/linux
3https://github.com/rizsotto/Bear
4A Comma-Separated Values (CSV) file is a text file in which values are separated by commas
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4.1.3 Results

Figure 4.1 shows a high-level comparison of the speed of an Incremental Extraction with
the speed of a Batch Extraction for successive versions of our target system. On initial
viewing, we can see that the Incremental Extraction is at least 50% quicker than the
Batch Extraction in all the updates, ranging from 54% to 65%. We validated the factabses
produced when the two approaches (batch and incremental extraction) are applied to the
same Linux update, finding that they were identical.
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Figure 4.1: Incremental Extraction Compared With Batch Extraction

Both the Incremental and Batch Extraction use the same ‘compile’ step, where we
follow a similar approach to Unix’s Make utility to ensure we only re-extract facts from
files that have changed since the last extraction (See Section 3.2.1), generating the same
local factbases. Hence the only real gain that can be made is during the ‘link’ step. The
magnitude of this gain is shown in Figure 4.2 where we can see a significant improvement
in the ‘link’ step.
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Figure 4.2: Incremental Updated Compared With Batch Link

While this improvement is encouraging, it is highly sensitive to the size of the collection
of file-level δ’s generated by the IEP, referred to as ∆. To that end, we explored how our
Incremental Update scales with respect to the size of ∆, approximating this size by counting
the number of facts (edges) and entities (nodes) in each partition of the file-level δ’s in
Algorithms 2 and 3. The correlation between the Incremental Update time and the size
of ∆ is shown in Figure 4.3, which on initial viewing seems to be linear. We measured
the strength of this linearity using the Pearson correlation coefficient r, obtaining a value
of 0.924. This indicates a strong, positive linear correlation between the time taken by
our Incremental Update procedure and the size of ∆, which suggests that our Incremental
Update procedure scales linearly with respect to the size of a ∆.
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4.2 Comparing the IAP to the NAP

Now that we have compared the IEP with the NEP, we compare the next part of the
pipeline: the analyses.

4.2.1 Setup

First we extracted a System Factbase of an allNoConfig build of Linux v5.0, linux.fb, and
ran an analysis query on the factbase, creating a result set Analysis(linux.fb). We then ran
an Incremental Extraction on an allNoConfig build of Linux v5.1 without performing an
Incremental Update, generating only the collection of file-level δ’s, ∆. We then selected
increasingly larger subsets of ∆ to create a variety of updated linux.fb ′, each reflecting a
larger increment of the initial linux.fb than the previous update. Each subset ∆n of ∆
consisted of the n smallest file-level δ’s in ∆, meaning that each subset ∆n is a superset of
the previous subset ∆n−1. Finally, we applied both the IAP (Incremental Analysis) and the
NAP (Batch Analysis) to perform three distinct queries on each of the updated linux.fb ′

factbases, collecting performance data. Note that our Batch Analysis times include the
time taken to remove the initial result set Analysis(linux.fb).

The Analysis queries we used were:

call+ (4.1)

call ./ (write ∪ varWrite)+ (4.2)

call ./ write ./ varWrite (4.3)

where:

The call relation represents the set of all ordered pairs (a, b) where a and b are
functions and a directly calls b

The write relation represents the set of all ordered pairs (b, c) where b is a function,
c is a variable and b directly write to c through an assignment

The varWrite relation represents the set of all ordered pairs (c, d) where c and d are
variables and c writes its value to d through an assignment

The ‘+’ operator represents transitive closure
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The ‘./’ operator represents the natural join operation

Hence, Query 4.1 is just the transitive closure of the call relation, finding the set of all
possible tuples (a, b) where a and b are functions and a either directly or indirectly calls b.
Query 4.2 looks for all possible triples (a, b, c) where a is a function that calls a function
b, and b assigns a value that directly or indirectly affects the value assigned to a variable
c. Finally, Query 4.3 looks for all possible quadruples (a, b, c, d) where a is a function that
calls a function b, and b assigns a value to a variable c, and the value of c is used in an
assignment expression to variable d.

We chose Query 4.1 to see how well the IAP performs for a Query with a large search-
space, while we chose Queries 4.2 and 4.3 to see how well the IAP performs for queries
with increasingly smaller search spaces. Queries 4.1 and 4.2 both use transitive closure,
which can expand an analysis’ search space, and hence computation, exponentially. Query
4.3, in this respect, was chosen to contrast the IAP’s performance with a query that does
not use transitive closure, but is simultaneously non-trivial.

4.2.2 System Specifications

All experiments involving Queries 4.2 and 4.3 were performed on a machine running Ubuntu
16.04 LTS with an Intel Core i7-6770HQ 2.60 GHz CPU and 16GB RAM, while all exper-
iments involving Query 4.1 were performed on a machine running Ubuntu 18.04 LTS with
an Intel Xeon e5-1620 3.60 GHz CPU and 64GB RAM.

4.2.3 Results

Figures 4.4, 4.5 and 4.6 compare the speeds of an Incremental Analysis against the speeds
of a Batch Analysis, when applied to increasing sizes of ∆. On initial viewing, we can see
that an Incremental Analysis executes quicker than a Batch Analysis in the case of smaller
∆’s. However for larger ∆’s, the Incremental Analysis performs much worse than a Batch
Analysis. We validated that when our Incremental and Batch analyses are performed on
the same subset of ∆ (used to produce an updated linux.fb ′), they produce the same results
Analysis(linux.fb ′).
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To better understand this degradation in performance, we investigated the correlation
between the execution time for an Incremental Analysis and the number of affected facts
it has to process. In the cases of Queries 4.3 and 4.2, the number of affected facts is the
number of call, varWrite or write relations that are either dirty or have been removed,
while for Query 4.1 the number of affected facts is the number of call relations that are
either dirty or have been removed. Intuitively, an Incremental Analysis (IAP) ought to
scale linearly with respect to the number of affected facts, which is shown to be true for
Queries 4.3 and 4.2 in Figure 4.9 and 4.8 respectively, however Figure 4.7 shows an S -
shaped growth for Query 4.1; IAP initially scales linearly before growing exponentially,
after which it stabilizes.
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Figure 4.7: Incremental Analysis Growth for Query 4.1
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Figure 4.8: Incremental Analysis Growth for Query 4.2
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Figure 4.9: Incremental Analysis Growth for Query 4.3

Our next step was to investigate the source of this exponential growth. First, we wanted
to see if the underlying explosions in computation time could be narrowed down to a file-
level δ by measuring how δ’s in ∆ affect the number of derived facts to be added to the result
set and the number of derived facts that could potentially be removed. These measurements
are shown in Figures 4.10 and 4.12 and 4.14, where we can see sudden explosions in both
the number of facts to be added and to be deleted when certain δ’s are added to the subsets
of ∆. To confirm that these δ’s are the cause of the explosions, we measured how each
individual δ ∈ ∆ affected the number of derived facts to be added to the result set and the
number of derived facts that could potentially be removed. These measurements are shown
in Figures 4.11, 4.13 and 4.15, where the right-skewed distributions in Figures 4.11a, 4.11b,
4.13a, 4.13b, 4.15a and 4.15b indicate that these δ’s have a significantly larger impact on
the number of derived facts to be added to the result set and the number of derived facts
that could potentially be removed.
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We tried to narrow down the cause of these explosions further to a tractable subset
of facts. In particular, we studied the following explosions: the first jump in the number
of additions made in Figure 4.12, the jump in the number of additions made from less
than 400,000 to around 600,000 in Figure 4.10, the jump in the number of additions made
from around 600,000 to around 1,000,000 in Figure 4.10, the jump in the number of initial
removals from less than 200,000 to around 400,000 in Figure 4.10 and the first jump in the
number of additions made in Figure 4.14.
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Figure 4.10: Explosions of Derived Changes to Analysis(linux.fb) as subsets of ∆ increase
(Query 4.1)
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Figure 4.12: Explosions of Derived Changes to Analysis(linux.fb) as subsets of ∆ increase
(Query 4.2)
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Figure 4.13: Derived Changes to to Analysis(linux.fb) per δ ∈ ∆ (Query 4.2)
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Figure 4.14: Explosions of Derived Changes to Analysis(linux.fb) as subsets of ∆ increase
(Query 4.3)

54



0 5000 10000 15000 20000 25000 30000 35000 40000
Additions Made

0

20

40

60

80

100

120

140

160

N
u
m

b
e
r 

o
f 
δ'

s

(a) Derived Additions to Analysis(linux.fb) per δ ∈ ∆ (Query 4.3)

0 100 200 300 400 500 600 700 800 900
Initial Removals

0

50

100

150

200

250

300

350

N
u
m

b
e
r 

o
f 
δ'

s

(b) Derived Removals to Analysis(linux.fb) per δ ∈ ∆ (Query 4.3)

Figure 4.15: Derived Changes to to Analysis(linux.fb) per δ ∈ ∆ (Query 4.3)
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For each δ that caused these jumps, we manually identified a subset of facts as the
potential cause. Such facts were ‘centroids’ of an analysis; they had relatively higher fan-in
and fan-out, resulting in numbers of derived facts being added or removed that were at least
double and sometimes orders of magnitudes larger than ‘non-centroids’. With the potential
causes identified, we then re-ran an Incremental Analysis with these facts excluded to
verify that our identified transitive explosions are reduced in their absence, which Figures
4.16, 4.17 and 4.18 illustrate. Thus, the exponential growth in an Incremental Analysis’
computation time can be traced to individual facts.
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Figure 4.16: Reduced Explosions of Derived Changes to Analysis(linux.fb) as subsets of
∆ increase (Query 4.1)
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Figure 4.17: Reduced Explosions of Derived Changes to Analysis(linux.fb) as subsets of
∆ increase (Query 4.2)
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Figure 4.18: Reduced Explosions of Derived Changes to Analysis(linux.fb) as subsets of
∆ increase (Query 4.3)

4.3 Threats to Validity

The major threat to validity for this study is that our results and conclusions are based on
data generated from one software project. It may be possible that our findings are specific
to the project corpus. Ideally, our results could be replicated on a variety of software
projects in a variety of application domains and languages, lending support to this study’s
generalizability.

Another threat to validity concerns the manual analysis done in breaking down δ. Al-
though we were able to identify facts that caused the transitive explosions we investigated,
some were still left unexplored. As a matter of completeness, we could conduct a similar
manual analysis on these jumps.

Finally, our comparison of the IAP and the NAP was performed using two Linux
versions rather than a sequence of Linux versions. It may be the case that our findings are
specific to these two particular versions. To mitigate this threat, a comparison between
IAP and the NAP could be done with respect to the same series of Linux versions as the
comparison between the IEP and NEP.
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4.4 Summary

In this chapter, we discussed a case study that we performed using the Linux Kernel to
compare the speed and accuracy of the IEP and IAP against the NEP and the NAP,
respectively. To compare the IEP against the NEP, we applied both processes to update
extracted factbases of ‘allNoConfig’ builds of the Linux Kernel from versions 4.0 to 5.5. To
compare the IAP against the NAP, we applied both processes to update an existing set of
analysis results using increasing subsets of ∆ for three different analysis queries. Overall,
we found the IEP to be 54-65% quicker than the NEP, the IEP scaling linearly with respect
to the size of an input ∆. In contrast, the results of the IAP were mixed. While the IAP
was quicker than the NAP for smaller ∆′s, it was highly sensitive to ‘centroids’ of facts
that tended to expand an analysis’ search space exponentially, resulting in exponential
increases in computation time. Accordingly, we found that the IAP scaled linearly with
respect to the number of affected facts in the best case, and followed an S -shaped growth
in the worst case.
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Chapter 5

Conclusions

Our work presents three major contributions:

• A framework for incrementally updating previously extracted System Factbases. This
framework builds upon the Separate Fact Extraction pipeline to account for the
following changes: modifications to source files, removal of source files and addition
of source files.

• A framework for incrementally updating a set of analysis results. This framework
is in many ways similar to a Rete network, allowing analyses to be updated only
when their underlying base facts have been written to or removed. We introduce the
notion of Meta Facts to represent such changes.

• A case study that evaluates the effectiveness and feasibility of our proposed frame-
works. The case study was conducted on ‘allNoConfig’ builds of the Linux kernel,
consisting of roughly 200,000 SLOC, by modifying an existing extraction & analysis
pipeline to incorporate our incremental approaches. We compared the batch and
incremental approaches to updating previously extracted factbases, and the batch
and incremental approaches to updating a previous set of analysis results. Further,
we investigated the sources of bottlenecks in our Incremental Analyses.

Overall, we found that our approach to incrementally updating a previously extracted
factbase is 54%-65% quicker than a batch update, with both updates producing identical
factbases. The results of our Incremental Analysis (IAP), on the other hand, was mixed.
While IAP was quicker than a batch analysis for smaller ∆’s, it was highly sensitive to
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‘centroids’ of an analysis; facts with relatively higher fan-in and fan-out tended to expand
the search space exponentially, resulting in exponential increases in computation time, with
the effect of these ‘centroids’ being magnified by transitive closure. This means that IAP
scales linearly with respect to the number of affected facts in the best case, and in the
worst case experiences an S -shaped growth.

5.1 Future Work

Currently, the IAP is limited to relational operators, specifically union, composition, nat-
ural join, transitive closure and inversion. The logical next step is to add support for
node/entity and property/attribute operators, such as filtering and selection. The most
interesting area of future work, however, surrounds the ‘centroids’ in a δ. It may be worth
studying them to understand how they relate to their underlying source-code entities. We
could then leverage this information to predict when an Incremental Analysis ought to out-
perform a Batch Analysis. For example, it may be the case that our Incremental Analysis
is better suited to certain types of software projects.

Another path we could take is to look into mitigating the effects of ‘centroids’ on
Incremental Analyses. This could be done by creating summaries of these ‘centroids’ to
prevent an Incremental Analysis from having to re-explore their search space. In theory,
we could expand this concept to the entire factbase for a similar effect. Alternatively, a
hybrid of Batch and Incremental Analysis using these summaries may reap the benefits of
both, the Batch Analysis only being applied when detected changes involve a ‘centroid’.
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[19] Gábor Szárnyas. Query, Analysis, and Benchmarking Techniques for Evolving Prop-
erty Graphs of Software Systems. PhD thesis.

[20] Michael W. Godfrey and Lijie Zou. Using origin analysis to detect merging and split-
ting of source code entities. IEEE Transactions on Software Engineering, 31(2):166–
181, feb 2005.

63



[21] Oshini Goonetilleke, David Meibusch, and Ben Barham. Graph data management of
evolving dependency graphs for multi-versioned codebases. In Proceedings - 2017
IEEE International Conference on Software Maintenance and Evolution, ICSME
2017, pages 574–583. Institute of Electrical and Electronics Engineers Inc., nov 2017.

[22] Sergio Greco and Cristian Molinaro. Datalog and Logic Databases. Synthesis Lectures
on Data Management, 7(2):1–169, nov 2015.

[23] Timothy Griffin and Leonid Libkin. Incremental maintenance of views with duplicates.
In Proceedings of the 1995 ACM SIGMOD international conference on Management
of data - SIGMOD ’95, pages 328–339, New York, New York, USA, 1995. Association
for Computing Machinery (ACM).

[24] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining Views
Incrementally. ACM SIGMOD Record, 22(2):157–166, jan 1993.

[25] Elnar Hajiyev, Mathieu Verbaere, and Oege De Moor. CodeQuest: Scalable source
code queries with datalog. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume
4067 LNCS, pages 2–27. Springer Verlag, 2006.

[26] Ric Holt. TA: The Tuple Attribute Language, 1997.

[27] Richard C. Holt. Structural manipulations of software architecture using Tarski re-
lational algebra. In Reverse Engineering - Working Conference Proceedings, pages
210–219. IEEE Comp Soc, 1998.

[28] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why
don’t software developers use static analysis tools to find bugs? In Proceedings -
International Conference on Software Engineering, pages 672–681, 2013.

[29] Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Martin, Dzintars
Avots, Michael Carbin, and Christopher Unkel. Context-sensitive program analysis
as database queries. In Proceedings of the Twenty-Fourth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS ’05, page 1–12, New
York, NY, USA, 2005. Association for Computing Machinery.

[30] M. M. Lehman. On understanding laws, evolution, and conservation in the large-
program life cycle. The Journal of Systems and Software, 1(C):213–221, jan 1979.

64



[31] Yuan Lin. Completeness of Fact Extractors and a New Approach to Extraction with
Emphasis on the Refers-to Relation. PhD thesis, aug 2008.

[32] Yuan Lin and Richard C. Holt. Formalizing Fact Extraction. Electronic Notes in
Theoretical Computer Science, 94:93–102, may 2004.

[33] Boris Motik, Yavor Nenov, Robert Piro, and Ian Horrocks. Maintenance of datalog
materialisations revisited. Artificial Intelligence, 269:76 – 136, 2019.

[34] Gail C. Murphy, David Notkin, and Kevin Sullivan. Software reflexion models: Bridg-
ing the gap between source and high-level models. In Proceedings of the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering, volume 20, pages
18–27. ACM, oct 1995.

[35] Bryan J. Muscedere, Robert Hackman, Davood Anbarnam, Joanne M. Atlee, Ian J.
Davis, and Michael W. Godfrey. Detecting Feature-Interaction Symptoms in Automo-
tive Software using Lightweight Analysis. In SANER 2019 - Proceedings of the 2019
IEEE 26th International Conference on Software Analysis, Evolution, and Reengi-
neering, pages 175–185. Institute of Electrical and Electronics Engineers Inc., mar
2019.
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Appendix A

Algorithms used in IEP

A.1 Diff & Replace

Algorithm 1 below is used in the IEP’s Diff and Replace process, where:

fbold and fbnew are strings that represent a factbase’s filename

fbStreamold and fbStreamnew are input streams

generateDiff(fbold, fbnew) — Compares the contents of the factbases with filenames
fbold and fbnew using a merge-like routine, producing a file-level δ containing facts
that are in fbnew but not in fbold, prefixed with a ‘+’, facts that are in fbold but not
in fbnew, prefixed with a ‘-’. Facts that are in both fbold and fbnew are compared at
the attribute level, with the differences being added to δ.

rename(oldName, newName) renames the file oldName to newName

remove(filename) removes a file with name filename

inputStream(filename) creates an input stream to the file with name filename

nextLine(istream) reads the next line in an input stream istream

:
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Algorithm 1 Diff and Replace

1: procedure Diff and Replace(fbListold, fbListnew,∆)
2: fbStreamold ← inputStream(fbListold)
3: fbStreamnew ← inputStream(fbListnew)
4: fbold ← nextLine(fbStreamold)
5: fbnew ← nextLine(fbStreamnew)
6: ∆← ∅
7: while !fbStreamold.eof() and !fbStreamnew.eof() do
8: if fbold < fbnew then
9: δ ← generateDiff(fbold, ∅)

10: ∆← ∆ ∪ δ
11: remove(fbold)
12: fbold ← nextLine(fbStreamold)
13: else if fbold > fbnew then
14: δ ← generateDiff(∅, fbnew + “.new”)
15: ∆← ∆ ∪ δ
16: rename(fbnew + “.new”, fbnew)
17: fbnew ← nextLine(fbStreamnew)
18: else if exists(fbnew + “.new”) then
19: δ ← generateDiff(fbold, fbnew + “.new”)
20: ∆← ∆ ∪ δ
21: remove(fbold)
22: rename(fbnew + “.new”, fbnew)
23: fbnew ← nextLine(fbStreamnew)
24: fbold ← nextLine(fbStreamold)
25: end if
26: end while
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27: while !fbStreamold.eof() do
28: δ ← generateDiff(fbold, ∅)
29: ∆← ∆ ∪ δ
30: remove(fbold)
31: fbold ← nextLine(fbStreamold)
32: end while
33: while !fbStreamnew.eof() do
34: δ ← generateDiff(∅, fbnew + “.new”)
35: ∆← ∆ ∪ δ
36: rename(fbnew + “.new”, fbnew)
37: fbnew ← nextLine(fbStreamnew)
38: end while
39: remove(fbListold)
40: rename(fbListnew, fbListold)
41: end procedure
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A.2 Update

The following algorithms are used in the Update step of the IEP.

Applying Removals

Algorithm 2 Applying Removals

1: procedure apply removals(∆, V , E)
2: for all δ ∈ ∆ do
3: for all (edge, property) ∈ δ[′edgePropertyRemoved′] do
4: if edge ∈ E then
5: removeProperty(edge, property)
6: end if
7: end for
8: for all edge ∈ δ[′edgeRemoved′] do
9: if edge ∈ E and edge[′instances′] = 0 then

10: E ← E \ {edge}
11: end if
12: end for
13: for all (node, property) ∈ δ[′nodePropertyRemoved′] do
14: if node ∈ V then
15: removeProperty(node, property)
16: end if
17: end for
18: for all node ∈ δ[′nodeRemoved′] do
19: if node ∈ V and node[′instances′] = 0 then
20: E ← E \ edges(node)
21: V ← V \ {node}
22: end if
23: end for
24: end for
25: end procedure
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Applying Additions and Mods

Algorithm 3 Applying Additions And Mods

1: procedure apply add and mod(∆, V , E)
2: for all δ ∈ ∆ do
3: V ← V ∪ δ[′nodeAdded′]
4: for all (node, property) ∈ δ[′nodePropertyAdded′] do
5: if node ∈ V then
6: addProperty(node, property)
7: end if
8: end for
9: for all (node, property) ∈ δ[′nodePropertyMod′] do

10: if node ∈ V then
11: modifyProperty(node, property)
12: end if
13: end for
14: for all edge ∈ δ[′edgeAdded′] do
15: if edge.src /∈ V then
16: V ← V ∪ edge.srcvirtual
17: end if
18: if edge.dst /∈ V then
19: V ← V ∪ edge.dstvirtual
20: end if
21: E ← E ∪ edge
22: end for
23: for all (edge, property) ∈ δ[′edgePropertyAdded′] do
24: if edge ∈ E then
25: addProperty(edge, property)
26: end if
27: end for
28: for all (edge, property) ∈ δ[′edgePropertyMod′] do
29: if edge ∈ E then
30: modifyProperty(edge, property)
31: end if
32: end for
33: end for
34: removeVirtualNodes(V , E)
35: end procedure
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