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Abstract

We present several methods for identifying time periods of interest (features) in a wide
range of data sets.

The gamma method is a computationally inexpensive, flexible feature identification
method which uses a comparison of time series to identify a rank-ordered set of features
in geophysically-sourced data sets. Many physical phenomena perturb multiple physical
variables nearly simultaneously, and so features are identified as time periods in which there
are local maxima of absolute deviation in all time series. Unlike other available methods,
this method allows the analyst to tune the method using their knowledge of the physical
context. The method is applied to a data set from a moored array of instruments deployed
in the coastal environment of Monterey Bay, California, and a data set from sensors placed
within the submerged Yax Chen Cave System in Tulum, Quintana Roo, Mexico. These
example data sets demonstrate that the method allows for the automated identification of
features which are worthy of further study. The gamma method appeared as [52].

The EOF error map method is a feature identification method for time-indexed model
output. The method is used as a diagnostic to quickly focus the attention on a subset of the
data before further analysis methods are applied. Mathematically, the infinity norm errors
of empirical orthogonal function (EOF) reconstructions are calculated for each time output.
The result is an EOF reconstruction error map which clearly identifies features as changes
in the error structure over time. The ubiquity of EOF-type methods in a wide range of
disciplines reduces barriers to comprehension and implementation of the method. We apply
the error map method to three different Computational Fluid Dynamics (CFD) data sets
as examples: the development of a spontaneous instability in a large amplitude internal
solitary wave, an internal wave interacting with a density profile change, and the collision
of two waves of different vertical mode. In all cases the EOF error map method identifies
relevant features which are worthy of further study. The EOF error map method appeared
as [51]. Together, the gamma and EOF error map methods allow feature identification in
an extremely wide variety of data sets.

While the associated methods papers required brevity and specificity, the thesis is
written from the perspective of the overarching research program. This thesis expands
the twenty pages or so of material in [52] and [51] to a detailed, over 100 page account
of how and why the methods were developed. It includes a much more comprehensive
framing of the general problem both methods solve, much more motivation, discussion,
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and mathematical background, an entire section on ensemble data sets, including another
method for feature identification, examples of the methods applied to full scale data sets,
and an appendix of related work. This is the definitive guide to our methodology and
results.

v



Acknowledgements

Thank you to Ryan K. Walter and Aaron Coutino for their assistance with the gamma
method. Thanks to Eduard Reinhardt for access to the cenote data sets and feedback on
the gamma method. We acknowledge S. Monismith (Stanford) and B. Woodson (University
of Georgia) for their help in the collection and original analysis of the Monterey Bay data
set ([65]). Thanks to Susan Allen (UBC) for suggestions. Thank you to Ben Storer and
Chelsi McNeill for assistance with gamma method tutorial codes. Thanks to Andrew
Grace for assistance in editing. Thank you to Ed Vrscay for his assistance, especially as it
relates to SSIM. We would also like to thank the University of Waterloo Water Institute
for facilitating travel. Thank you to NSERC for their continual support. Thank you to
Marek Stastna for his supervision, patience, and kindness. Finally, a special thanks to the
committee for their suggestions and support: Matt Scott, Mike Waite, Andrea Scott, and
Chris Essex.

vi



Dedication

To all who have supported me.

vii



Table of Contents

List of Figures xi

1 Introduction 1

1.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 The Gamma Method 6

2.1 Author’s Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 The Gamma Method . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 The Defining Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.3 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.4 Feature Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.5 Feature Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Monterey Bay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 Yax Chen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Discussion & Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

viii



3 Features in Time-Indexed Model Output 20

3.1 The Gamma Method Applied to CFD data . . . . . . . . . . . . . . . . . . 20

3.1.1 A Mode 2 Kelvin Wave . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Internal Seiche with Multiple Instability Types . . . . . . . . . . . . 25

3.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 The Need for Another Method . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 The EOF Error Map Method 32

4.1 Author’s Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Empirical Orthogonal Functions . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 EOF From Discrete Data: Covariance Matrix Method . . . . . . . . 35

4.3.2 A Constructed Example . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.3 EOF From Discrete Data: SVD Method . . . . . . . . . . . . . . . 44

4.3.4 Comparison of Covariance and SVD Methods . . . . . . . . . . . . 46

4.3.5 Truncated EOF Reconstructions . . . . . . . . . . . . . . . . . . . . 48

4.3.6 EOF Error Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.1 Spontaneous Instability . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.2 Dual Pycnocline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.3 Collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Ensemble Data Sets 68

5.1 EOFs and Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.1 EOF on a Static Data Set . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.2 Ordered Error Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 First Eigenvalue Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

ix



6 Extending the Data Pipeline 95

6.1 EOF on Large Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2.1 Cabbeling In a Stratified Shear Instability . . . . . . . . . . . . . . 96

6.2.2 Internal Seiche with Multiple Instability Types . . . . . . . . . . . . 103

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Conclusion 108

References 110

A Appendix 117

A.1 Gamma on CFD data: Zero Contours . . . . . . . . . . . . . . . . . . . . . 117

A.2 Perception in the Analysis Pipeline . . . . . . . . . . . . . . . . . . . . . . 122

A.2.1 The Monterey Bay Data Set . . . . . . . . . . . . . . . . . . . . . . 124

A.2.2 Compression by EOF . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.2.3 Singular Value Hard Thresholding . . . . . . . . . . . . . . . . . . . 126

A.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.2.5 An SSIM False Positive . . . . . . . . . . . . . . . . . . . . . . . . . 133

x



List of Figures

1.1 A three-dimensional density field is shown. A jet of water injected into the
side of a stratified fluid causes the formation of large vortices (in cream
white), and associated small scale filaments (in sand red). . . . . . . . . . 4

2.1 Figure 4A from [38]. The time axis is measured in days of August, 2011.
As Tropical Storm Irene passes the meteorological station there are clear
deviations from the background state of the physical variables. . . . . . . 8

2.2 The gamma method applied to the Monterey Bay data set. Panel a shows
the full density ρ (kg/m3) and panel b shows the full kinetic energy KE
(m2/s2). In both a and b the vertical axis is bin number. Panel c shows the
results of the gamma method using the defining set {ρ,KE}, and panel
d shows the results of using the gamma method using the defining set
{ρ,KEc}. All panels are aligned along the global time regime indicated
below panel d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 The gamma method applied to the Yax Chen data set. Panel a shows p̂,
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Chapter 1

Introduction

1.1 Preface

Very few theses are read by anyone outside the PhD defence process. Perhaps some lab or
family members will take interest, but generally the thesis is an exercise for the candidate,
and evidence for the committee. But evidence of what?

Applied Mathematics includes a wide variety of subdisciplines. Coming from a Pure
Mathematics undergraduate degree, I had expected to find Applied Mathematics to be as
applied as Pure Mathematics was pure. This is not the case. Some Applied Mathematics
is “applied” because it was inspired by a physical problem. Some is applied because
it could be applied in theory. I struggled to codify exactly what I meant by Applied
Mathematics, until one day while studying sabermetrics, I came upon an essay by Keith
Woolner entitled“Baseball’s Hilbert problems,” originally published in [27]. The article
discussed how their research program should be directed in order for it to be useful:

“To be relevant, sabermetrics must inform a decision.”

This is how I think about Applied Mathematics, and is the standard I applied to my own
research program. Ideally, I wanted my mathematics to inform decisions by
non-Mathematicians. As Woolner points out, “... in order to produce useful information,
you have to start with a relevant question that needs answering.” I needed a relevant
question from a non-Mathematician whose answer would inform their decisions.

I had not yet solidified this viewpoint in the first few months of my PhD. We knew that
we wanted to do some data analysis on common geophysical data sets. Ryan K. Walter
at Cal Poly San Luis Obispo provided a data set from Monterey Bay California, and we
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set about applying our fledgling techniques to this data set. This included a great deal of
mathematical due diligence, which helped form our own foundational understanding of
the subject. However, when we showed him our results, they were not very useful to him.
We asked him what he would want out of a data analysis method. He replied “Is there a
way to identify epochs within data sets?” To paraphrase,

“Is there a way to mathematically identify interesting times in a data set?”

Answering this question helps him detect what he’s interested in: physical events and
processes such as waves, storms, and the like.

I did not know it at the time, but this was the question I needed: a relevant question
from a non-Mathematician whose answer would inform decisions during data analysis.
The initial answer to Ryan’s question led to the gamma method, useful for many typical
data sets gathered from the field. A second method more useful on other common data
sets, such as those generated by computational models, was developed next. Together,
these two methods allow us to find interesting times in a wide variety of data sets,
including those gathered from fluid dynamics, but also many many more. These methods
have been effective in every context to which they have been applied. In essence, this
entire document is an extensive, detailed answer to Ryan’s original question, and one
that has been well-received and employed by non-Mathematicians to inform decisions. In
the Applied Mathematics sense just defined, this means the PhD has been an
overwhelming success.

1.2 Overview

Logistical support is tremendously undervalued. The end goal of an endeavour is often
the only part which is evident to the wider world. As a result, those who made the work
possible are invisible to most people, and so few aspire to support valuable work. There
is a perception that those who facilitate others are less valuable than those they support.
But who can work without food, sleep, a workspace, supplies, tools, companionship,
guidance, and an end goal of value? This is of course general, but in particular logistical
support is what makes academic endeavours possible. So while we may stand on the
shoulders of giants to make academic discoveries, we would have nowhere to stand at all
without the continual support of an enormous network of people who generally get no
credit for their part in our victories.

In this thesis, we undertake the task of supporting those who have more data than they
know what to do with. This is nearly every modern academic who is not themselves a
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data analyst. While former generations of scientists struggled to find data, our
generation’s challenge is to sort through the massive data sets that we have acquired.
The question is not “how can we get a data set?” but rather “which parts of this data set
are relevant?” Put another way, we might ask “of all the facts we know, which are the
most important?” We will see that the methods developed in this thesis to answer
questions of this type apply to an extremely wide range of data sets.

The methods we have written are extremely useful, but they will not be employed if they
are not understood. This thesis had to be written so that non-mathematicans can and
will read it. As a mathematics thesis it must also have the appropriate specificity and
rigour. To satisfy all requirements, we have adopted some presentation conventions we
will now outline. We are geophysical fluid dynamicists, and so we will use examples from
our field to illustrate our points, but the subject of this thesis is data analysis, not fluid
dynamics. This being the case, in every example we will introduce only enough context
as is required for the exposition of the data analysis. This will require a small amount of
specialist language, which will be defined in brackets or given a reference as appropriate.
Otherwise all physical details of the datasets which do not assist with the exposition of
the data analytic methods are omitted. This means that generally data sets are presented
in terms of grid points, time output number, and numeric field values, with units only
being provided for context where necessary. This makes the thesis much more accessible,
as we avoid unnecessary digressions and definitions. It should also be noted that every
Figure in the thesis was generated in our lab, and all data sets are ours, unless otherwise
referenced.

Before you employ these methods for yourself, you might be interested in why these
methods are useful to us. Figure 1.1 shows a single time output from one of our high
resolution simulations. At the time, we had not yet developed the methods outlined in
this thesis. As a result, in order to focus our analysis efforts we had to go through the
large, unwieldy data set manually. This required us to consider many different time
outputs, as well as spend a few days visualizing those outputs before we settled on this
time output. The methods presented here could have replaced all of that fumbling with a
mathematical choice of output for the price of a small amount of CPU time. After the
output was chosen, more time was spent tweaking the visualization, until the final image
was produced. This image was featured as part of a visualization showcase at the
High-Performance Computing Symposium in Edmonton in June of 2016, and was also
included in Compute Canada’s annual report as an example of research being enabled by
their systems. Knowing what we know now, we could have accomplished the same result
in a shorter time and in a more objective way.
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Figure 1.1: A three-dimensional density field is shown. A jet of water injected into the side
of a stratified fluid causes the formation of large vortices (in cream white), and associated
small scale filaments (in sand red).

As we will outline in section 4.2, many tools have been developed to study structures
such as those in Figure 1.1. To be clear, that is not the purpose of this thesis. Rather
than building tools to analyse particular physical phenomena in a narrow range of data
sets, we have instead built tools to find time periods of interest in a broad range of data
sets. We are not studying particular phenomena, we are finding time periods which are
worth a closer look. There are already an enormous number of existing analysis methods
for data sets as we will discuss in sections 2.2 and 4.2. However, we know of no other
methods for mathematically identifying time periods of interest aside from those we have
devised and presented here.

Time periods of interest will be referred to as “features” of the data set. This is a
deliberately vague term meant to convey the idea that something is happening in the data
set, but further study by the analyst is required. This definition requires that the data
set have a time dimension, which we will assume throughout this thesis unless otherwise
stated. The choice to focus on time-indexed data means we are no longer considering the
completely general problem of finding the important part in any data set at all. This is
still a fairly weak assumption, as many data sets are in this category, including the
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output of every dynamic model. As we will discuss, it may be possible to extend these
methods to data sets without a time dimension in certain contexts. However there are a
great many types of data sets and it is unlikely that a single analysis method (or two or
three) could be constructed which would work perfectly in every context imaginable.

That said, the following methods have been successful in every context to which they has
been applied.
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Chapter 2

The Gamma Method

2.1 Author’s Note

This chapter (2) originally appeared as [52]. The presentation here is slightly expanded
mostly to replace the terse language of publication with the more explanatory prose we
have adopted for the thesis.

2.2 Introduction

Geophysical researchers often study physical phenomena using instrument arrays
sampling the physical variables affected by those phenomena at multiple spatial
locations. This produces a data set consisting of vector time series. Features in the data
set are often identified by methods such as the visual inspection of plots, or other ad hoc
means. As the size and quality of geophysically-sourced time series data sets increase
these methods become labor-intensive. Automated methods of identifying a set of
features worthy of further study are needed.

There are an enormous variety of vector time series analysis techniques available.
Empirical Orthogonal Functions (EOF) [17]; more general dimension-reduction type
methods [43]; wavelet [63], Fourier, harmonic, and spectral analysis methods [10]; data
smashing [5]; similarity measure approaches [70]; data mining techniques [32]; and many
more methods of varying mathematical sophistication. However, generally, existing vector
time series analysis techniques are developed from a series of mathematical assumptions

6



and then applied to data sets in a purely mathematical sense, free of physical information
except for that encoded as parameters for the method. This abstraction is done both to
satisfy the demands of mathematical rigor and to make the method applicable in a wide
array of contexts. However, such methods apply in almost every context precisely
because they largely ignore changes due to context. In particular it can become very
difficult to combine the analyst’s knowledge of the physical context with the
interpretation of the method’s output.

Many methods depend on mathematical information which may be difficult to derive
from the known physical context. So for example, some methods require a choice of
statistical model in order to draw comparisons [25]. The results of the method depend on
the statistical model chosen, but in many geophysical contexts it is not at all clear which
model should be used. Moreover many statistical methods only apply to data assumed to
be of a certain mathematical form, such as ergodic, steady state, etc. In many
geophysical contexts it is not reasonable to adopt such assumptions on the form of the
data (see for example [41]). Nonparametric approaches such as [39] avoid mathematical
assumptions on the form of the underlying distribution, but still use mathematical tools
like cost functions whose effect on the physical interpretation of the method’s output can
be difficult to determine. Even if certain mathematical assumptions are appropriate in a
given context, not all researchers will have the background necessary to encode their
knowledge of the physical context in a statistical model. If the researcher does not know
what part of the method’s output is from the physics, and what part is from the
underlying mathematics, their confidence in deriving conclusions about the physics will
be severely limited. Finally, for practical purposes, more advanced data analysis methods
are often limited in their usefulness by the availability of user-friendly software (e.g., the
open and widely used package by [61]). The method we present ameliorates all the
concerns just listed, because it uses the researcher’s knowledge of the physical context
without requiring them to quantify it for use in a mathematical formalism.

One may rebut the concerns just outlined by pointing out that standard methods in
geosciences could be used because their physical interpretations have been made clear
over time through widespread use. However familiar methods are not well suited to
identifying features in vector time series caused by physical phenomena. For example
EOF-type methods ([17]) can process such data sets, but the focus here is on
identification of events whose time duration is much shorter than the total record. EOFs
are variance-maximizing, and while high total variance in a mode may be the result of an
event, it may also be the result of low variance over the entire record. Methods of this
type are therefore ill-suited for event detection. Similarly methods for comparing two
time series abound, e.g. correlation, covariance, or coherence [10]; [61], but when these
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methods are applied pairwise to a data set with more than two series there is a
combinatorial explosion of options: if there are k series, there are

(
k
2

)
= k(k − 1)/2 such

pairs. There are algorithms that address this issue [36] but the sophistication of the
mathematics ramps up quickly. The method presented here can be applied to any
number of time series simultaneously, subject only to memory constraints.

The purpose of this chapter is not to downplay the value of existing methods, but rather
to present a method for those researchers who would gladly trade some mathematical
sophistication for a clearer link with the known physical context and a lower
implementation cost. We present a physics-based, computationally inexpensive, flexible,
easily-implemented, and transparent method for the automated identification of features
caused by physical phenomena. We call this method ‘the gamma method,’ and it is
outlined in section 2.3. In section 2.4 the method is applied to a data set from the coastal
environment of Monterey Bay, Cailfornia (2.4.1), and a data set from the Yax Chen Cave
System, near Tulum, Mexico (2.4.2). Section 2.5 includes further discussion. The
publication includes tutorial codes for the gamma method written in MATLAB, R, and
python in the supplementary material.

2.3 Methods

2.3.1 The Gamma Method

Figure 2.1: Figure 4A from [38]. The time axis is measured in days of August, 2011. As
Tropical Storm Irene passes the meteorological station there are clear deviations from the
background state of the physical variables.
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Before details are presented we outline the gamma method in broad terms. We expect
that physical phenomena of interest will impact multiple physical quantities nearly
simultaneously. For example, Figure 2.1 reproduces Figure 4A of [38], which shows
deviations in wind speeds and air pressure as tropical storm Irene passes a meteorological
station. This is an example of the fact that the physical quantities impacted by an event
lead to deviations from the background state in the associated time series (wind speed
and pressure in this case).

To streamline the presentation we assume that the data has been controlled for quality
and filtered by whatever methods the discipline deems appropriate. Assume the data set
consists of time series {x1(t), x2(t), . . . , xk(t)} sampling multiple physical quantities with
sensors nearby one another, as they would be in a single instrument cluster such as the
one used in [38]. Note that time would actually be discrete here, as the time series are
formed by sampling at the sensor’s rate. We present in continuous time to avoid a second
index. We have now formulated the problem:

Problem Statement. Given a data set consisting of time series {x1(t), x2(t), . . . , xk(t)},
identify time periods (features) denoted {F1,F2, . . .} in which all xi(t) experience a
deviation from their respective trends.

To solve this problem, we proceed as follows. For each time series xi(t), form the
associated absolute deviation series

x̂i(t) = κi|xi(t)− µi(t)| (2.1)

where κi is a scaling constant and µi(t) is some trend chosen by the analyst as
appropriate to the physical context. Large values of x̂i correspond to large deviations
from the trend, and small values correspond to values of xi near the trend. Absolute
deviation rather than standard deviation is used to avoid accentuating outliers. The
absolute deviation series is still affected by outliers, but accentuates them less than the
corresponding standard deviation series. For an in-depth discussion see [22]. Features in
the data set are identified using the maxima of the time series

γ(t) = min
i
{x̂i(t)} = min

i
{κi|xi(t)− µi(t)|} (2.2)

at every time t (note that γ(t) ≥ 0). We will call the set of time series {xi} included in
the definition of γ(t) the ‘defining set’ of time series for γ(t). Notice also that by
construction of γ(t), any number of time series may be in the defining set, so this method
is not a pairwise comparison method.
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The key observation is this: because γ(t) is defined as the minimum curve, if it is
perturbed from zero, all curves are perturbed from zero. Therefore, if we wish to find
times where all time series are experiencing deviations from their respective trends, we
should look for deviations in γ(t). In particular, the maxima of γ(t) correspond to times
when all physical quantities sampled by the time series in the defining set are
experiencing large deviations from their respective trends. Following the reasoning above
we expect these deviations to be caused by some physical phenomenon. Although each
physical variable will not be perturbed at exactly the same time or for the same duration,
we expect some time overlap of deviations in affected fields. The gamma method
identifies such times (see the Figures in section 2.4). Time periods near these maxima are
defined as features of interest for further study. Arranging the maxima in descending
order produces a rank-ordered set of time extents as identified features {F1,F2, . . .},
where the ranking is essentially by size of overlap. See the accompanying tutorial codes
for a constructed example.

By construction this set of features is dependent on the choice of defining set, which
allows tuning of the method for specific phenomena. The analyst uses their knowledge of
the physical context to decide which time series to include in the defining set, an
appropriate trend, and how to synchronize the time series to one another. The chosen
time series must then be scaled so that they may be compared in γ(t). Finally, the
feature length must be chosen. We consider each step in turn.

2.3.2 The Defining Set

The defining set can be chosen any way the analyst sees fit. If the analyst is looking for a
specific physical phenomenon, only the fields whose deviations would be associated with
those events are included in the defining set. Alternatively the method may be applied to
various subsets of the available time series to identify features first, with the analyst
supplying physical explanations afterward.

The analyst may construct any time series they deem useful and include it in the defining
set. For example, suppose two thermistor chains are deployed in a small lake. The
thermistor chains each produce a vertical vector of temperature time series. If all
temperature time series are included in the defining set the corresponding γ(t) has
maxima when there is a temperature deviation at all sensors simultaneously. This choice
of defining set may identify periods of temperature change driven at the lake scale, such
as a deviation of temperature due to seasonal change. If instead the phenomenon of
interest is a cold water inflow, it may suffice to take the depth-averaged values at each
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chain and consider the difference of the two averaged time series as an indicator. Any
time series the analyst can think of, and whose deviation would serve as an indicator for
the given physical context and problem, may be included in the defining set. This would
include smoothed versions of existing time series which preserve the relevant deviations
[45], as well as time series produced from standard methods like EOF (i.e. amplitude
time series) and scale-averaged wavelets if the analyst deems it appropriate [64].

Once the defining set is chosen, a trend must be chosen for each time series. If the trend
is unknown, mathematical methods such as [67] may be used to identify it, but this is not
always necessary. The time mean µi(t) = 〈xi(t)〉t is a reasonable constant valued choice
in many applications. This is the choice we make for both data sets in section 2.4.

Finally, the defining set must be synchronized. Different sensors may have different
sampling rates, deployment duration, etc. The analyst uses their knowledge of the
instruments and physical context to arrange the time series from each sensor along some
global time regime. This global time regime t is the time on which γ = γ(t) depends.
Differences in sampling rate may be handled by interpolation or subsampling, differences
in duration by truncation to an appropriate overlapping time period, and so on. Once the
defining set has been chosen and synchronized, the scaling must be chosen.

2.3.3 Scaling

Equation 2.1 includes a scaling constant for each absolute deviation series for two
reasons. First, equation 2.2 defines γ(t) as the minimum of all absolute deviation time
series at every point in time. For this to make any physical sense every time series in the
defining set should be nondimensionalized because each of them are sampled from
physical quantities having possibly different units. Second, the choice of
nondimensionalization constant κi allows further tuning of the method. Scalings may be
chosen to increase the influence of some physical quantities on γ(t) while decreasing the
influence of others. Care must be taken here, because scaling a curve by a larger value of
κ increases the maxima of the corresponding curve, and decreases its effect on γ(t).
Therefore curves whose perturbations are considered more important in the given context
should be scaled down, not up. For the examples given in section 2.4 we have chosen to
scale each time series by their respective maximum values, which corresponds to the
assumption that all perturbations are equally important. In general, the choice of scaling
is another opportunity for the analyst to apply their knowledge of the context and tune
the gamma method to their purposes.
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2.3.4 Feature Length

Once the analyst has chosen the defining set, trend, synchronization, and scalings, the
final choice is feature length l. This parameter is simply an approximate length of time
that the physical phenomena of interest is expected to last. In our algorithm, we use a
windowing procedure, where maxima of gamma are identified, and features are defined as
the time window of length l whose midpoint is at the maxima. If the feature length is
unknown, then l may be set to be very short so that features identify maxima in gamma.
This is a parameter that can easily be tuned after the γ(t) curve is found.

2.3.5 Feature Identification

The work in previous sections allows us to write problem 2.3.1 as:

Mathematical Problem Statement. Given a defining set consisting of time series
{xi(t)}ki=1 synchronized along a global time regime, with respective scaling constants κi
and trends µi(t), form

γ(t) = min
i
{κi|xi(t)− µi(t)|}.

Identify rank-ordered features {F1,F2, . . . ,Fr} as time windows of length l centred at the
local maxima of γ(t).

We solve this problem iteratively, allowing overlapping features. Note that this means,
for example, that the top several maxima of γ(t) may all be included in the first feature.
In that case the second feature would not be centred at the second highest global
maximum, but rather at the highest maximum outside the first feature.

Problem 2.3.5 is solved using Algorithm 1. The rank-ordered identified features
{F1,F2, . . .} are generated by iteration on the the maxima of γ(t). MATLAB codes
implementing Algorithm 1 were used for all results presented in section 2.4. Tutorial
codes in MATLAB, R, and python are included in the supplementary material of the
publication.

2.4 Results

2.4.1 Monterey Bay

The first data set we will consider is from a moored array of instruments deployed in the
nearshore coastal environment of Monterey Bay, Cailfornia from July 7–21, 2011. The
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Algorithm 1 Identify Features

load, clean, and filter data
choose defining set with trends, synchronization, and scaling
choose feature length l, and number of features r
define γ(t)
for i = 1 to r do

find γ(t) maximum γ(ti)
set Fi to be the time extent of length l centered at ti
set γ(Fi) = 0 so a new feature is found in next iteration

end for
return {F1,F2, . . . ,Fr}

moored array measured density (derived from temperature and conductivity
measurements) and velocities throughout the water column. For a detailed analysis of this
data set see [65]. High-resolution measurements were collected near a persistent upwelling
front that forms between recently upwelled waters and warmer stratified waters that are
trapped inside the bay (termed an upwelling shadow front, Fig 1a of [65]). The front
propagates as a buoyant plume front past the instrument array with high kinetic energy
before breaking up into a combination of large amplitude internal waves and instabilities.

Both density ρ and kinetic energy KE = 1
2

(u2 + v2 + w2) (omitting ρ0) are useful for
identifying fronts, internal waves, and instabilities. The overlap of the time series of both
quantities has dimensions M ×N = 35× 19701 where M is the number of points in
depth z, binned 0.5 m apart, and N is the number of samples in time t, taken every
minute. Each of the vector-valued time series for ρ and KE are comprised of 35 time
series, for a total of 70 individual time series. The gamma method may be applied
directly to these 70 series, but a much simpler choice is appropriate in this context. The
large kinetic energy and density events of interest tend to induce changes in the whole
portion of the water column sampled by the data set. This makes the depth averaged
means ρ and KE good indicators. These are 2 time series of length N , and we take them
as our defining set. These time series are already synchronized because we expect fronts,
internal waves, and instabilities to cause deviations in ρ and KE nearly simultaneously.
We also scale each of the deviation series by their maximum values since we consider
both to be equally important. These choices then define γ(t). Based on known forcing
associated with local diurnal winds (cf. [65]), we define our feature length as a day.
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Figure 2.2: The gamma method applied to the Monterey Bay data set. Panel a shows the
full density ρ (kg/m3) and panel b shows the full kinetic energy KE (m2/s2). In both a and
b the vertical axis is bin number. Panel c shows the results of the gamma method using
the defining set {ρ,KE}, and panel d shows the results of using the gamma method using
the defining set {ρ,KEc}. All panels are aligned along the global time regime indicated
below panel d.

Figure 2.2 panel c shows the result of applying the gamma method. Panel c shows the
first five features Fi. Notice the most important feature, F1, corresponds to the frontal
crossing of July 17, a feature identified and studied extensively in [65]. In [65], this
particular event was identified based on a more complicated filtering and wavelet analysis
of the data set. Features F2 and F3 are large frontal crossing and internal wave events,
and F4 coincides with a large regional-scale upwelling event and delineates a difference in

14



forcing relative to earlier events (see discussion in [65]). The next most important feature
is F5. The density profile, along with the velocity data (not shown) indicates that this
feature is an across shore pulse of cold water (see [65] Figure 1 b for orientation of axes).
This is an example of a feature which may not have been identified by an analysis that
did not use the method.

Figure 2.2 panel d shows the result of applying the gamma method using ρ, and an
alternate choice of a second time series. Stratification stabilizes the water column. When
kinetic energy is high but stratification is weak, we expect more vertical mixing. To
capture this idea, we define the conditioned depth averaged kinetic energy, KEc as

KEc =
KE

|ρB − ρT |
(2.3)

where ρB is the density at the bottom sensor, and ρT is the density at the top sensor.
KEc is larger when the stratification is weak. The defining set is {ρ,KEc}, so that the
method is identifying times of density change with vertical mixing. Applying
normalization by the maximum as before defines γ(t), leading to the results shown in
Figure 2.2 panel d. Note that F1 is now the upwelling period from July 14th to 15th.
The large frontal crossing on July 17 is still identified as F2. This shows that important
features may persist under time series conditioning. The across shore pulse of cold water
is now identified as F3, because stratification is weak during this period. F4 is also a
newly identified feature that is likely driven by strong surface wind forcing, due its
confinement to the near-surface region. Finally, F5 identifies a time when KE is small,
but the stratification is weak and the water is cold: this is another weakly stratified cold
water pulse. Both cold water events F3 and F5 are not immediately clear from panels a
or b of Figure 2.2, because the eye is drawn to other events. In this way the gamma
method identifies features previously identified by analysts, but may also identify features
that analysts miss.

2.4.2 Yax Chen

For the second example, we apply the gamma method to a data set from the submerged
Yax Chen Cave System, in Tulum, Quintana Roo, Mexico. The Yax Chen Cave System is
part of the larger Ox Bel Ha Cave System. The data set consists of time series from
pressure (p), conductivity (s), and temperature (T ) sensors deployed within Yax Chen
from May 2016 to April 2018. The sensors were deployed as a follow up to the work
presented in [7] in order to observe the changes in the aquifer as a result of heavy rainfall
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events from hurricanes and tropical storms, which are common to the region. The sensors
were deployed 10 m downstream from a cenote (a sinkhole connecting the surface to the
submerged cave system) at a depth of 4 m. There was a single sensor for each physical
quantity, and the three sensors sampled simultaneously every 30 minutes, so the time
series are synchronized. Each time series has dimensions M ×N = 1× 33697 so there is
no need to reduce the spatial dimension in this case. Normalization is taken by the
respective maxima, and the feature length as one week.
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Figure 2.3: The gamma method applied to the Yax Chen data set. Panel a shows p̂, panel
b shows ŝ, and panel c shows T̂ . Panel d is γ(t) for the defining set {p, s, T}. Panel e is
γ(t) for the defining set {p, T}.

Figure 2.3 panel d summarizes the results of applying the gamma method using the
defining set of {p, s, T}. The early October 2017 event, corresponding to hurricane Nate1

is identified as F1. The late October event, corresponding to hurricane Philippe is
identified as F2. The mid August event corresponds to hurricane Earl, identified as F3.
The last two features F4 and F5 identify the time period from mid to late September in
which several storms, including hurricanes Irma and Jose could still have been affecting
changes in the parameters measured in Yax Chen. This choice of the defining set identifies
rainfall events large enough to affect pressure, salinity, and temperature in the cenote.

1All hurricane dates retrieved from the National Hurricane Center (https://www.nhc.noaa.gov/)
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Figure 2.3 panel e summarizes the results of applying the gamma method using the
defining set of {p, T}, i.e. without salinity. Since variations in salinity can only be due to
mixing with the underlying marine water, this choice of defining set allows for the
identification of events associated with longer trends, as opposed to turbulent mixing
events [7]. Features F1 (early January 2017) and F5 (mid November 2016) correspond to
large rain events that are not hurricane related. Early October 2017, F2, corresponds to
hurricane Nate. A hurricane’s primary expression in the cave network is via the turbulent
mixing between the meteoric lens and the underlying marine water mass, resulting in
variations in s, but s is not included in the defining set. This explains why hurricane
Nate is not identified as F1, and also why Hurricane Phillippe is not captured. Features
F3 and F4 (first half of July 2017) do not coincide with large rainfall events, and their
identification by the gamma method as features which merit further study is completely
new.

2.5 Discussion & Conclusions

Section 2.4.1 shows that the gamma method is able to automatically identify features of
interest previously identified in an ad hoc manner, while also identifying new significant
events. This means the gamma method can be applied to previously studied data sets
and may find new results. Section 2.4.2 shows that the gamma method may be applied as
soon as the physical context is known, to identify a set of features worthy of further
study. Both examples outline how the analyst uses their knowledge of the physical
context to choose the defining set, trend, scalings, synchronization, and feature length.
For the sake of presentation we have outlined a broad range of possible necessary steps
for choosing and synchronizing the defining set, but the practical application of the
gamma method to a particular data set needs only a few steps. In practice we have found
that taking the trend set to be the time mean and scaling by respective maxima serve as
good default choices.

The gamma method depends on the overlap of perturbed fields. For short-duration
features, or time series from sensors spaced far apart, it may be beneficial to time lag the
time series before applying this method. For example, using the example of two
thermistor chains in a lake from section 2.3.2, if the analyst is interested in temperature
changes due to inflow, water masses inducing the change in temperature may pass the
two thermistor chains separated by some time lag. In this case it may be preferable to
make the defining set to be all of the sensors, but with an appropriate time lag on time
series from one of the chains. If time lags are unknown but suspected, it may be possible
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to infer them by brute force application of the gamma method to a range of possible time
lags. Finding the time lag appropriate for a given time series is a highly field- and
application-dependent problem and so must be left to the analyst, or other methods.

If the knowledge of the physical context is incomplete, so that expected phenomena or
time lags for synchronization are unknown, a modified version of the method may still be
applied as follows. The defining set should include many, if not all, of the available time
series. Since the phenomena and time lags are unknown, it may be that a feature of
interest perturbs some but not all time series at a given time. The gamma method
presented above is inappropriate, because a single time series being unperturbed will
cause the method to miss the feature altogether. There is a simple fix for this: define γ(t)
not as the pointwise minimum of the deviation series (equation 2.2), but as some suitable
intermediary curve. For example if the method is applied to a defining set with 10 time
series, it is probably worth investigating features which result from the deviation of 8 of
them, so γ(t) could be taken as the third from minimum curve. Taking an intermediary
curve for γ(t) also ameliorates the problem of faulty or intermittent sensors. Note this
modification essentially ignores time series whose time lags cause them to be
unsynchronized with the rest of the data set. The level of the intermediary curve is
another parameter that may be swept. In general, the weaker the knowledge of the
analyst, the more parameters there are to sweep. This would also apply, for example, to
the scaling constants. The code runs on the order of seconds on modest hardware on all
data sets we have tried, and is easy to parallelize for larger data sets or large sweeps, as
necessary.

There are many other immediate possibile extensions of the gamma method. If positive
and negative deviations from the mean are not equally important, the definition of
gamma may be changed to a signed deviation instead. If the data is streaming rather
than complete, the method could be applied with a trend µ defined by an appropriate
recent window, resulting in an analogue of more sophisticated methods such as those
presented in [19]. Features could be chosen by looking for extended deviations of γ(t),
rather than maxima. The reader may have noticed any number of immediate
modifications that could be made to the method as it was presented.

Hurricane Nate’s identification over both choices of defining set in section 2.4.2 suggests
that the gamma method could be employed to identify important features by their
persistence across choices of defining set. Persistence over a parameter sweep is used as a
measure of a topological feature’s importance in topological data analysis (see section 2.4
of [6] for an intuitive explanation). The gamma method could be run multiple times to
sweep the choice of defining set as the parameter, yielding a final output of the most
frequent features across all choices of the defining set. These persistent features would
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then be candidates for closer study.

Clearly the gamma method is not as mathematically sophisticated as some other options.
It is not designed to outline spectral information, identify weak synchronous signals, or
automatically identify correct time shifts or choose the correct scaling. More
sophisticated methods such as [37] address all of these concerns. Nevertheless, even those
readers with the resources to confidently apply one of the many vector time series
methods available to yield results they are satisfied with may find the gamma method
useful as a diagnostic. In many cases we have found that the gamma method’s incredible
clarity and speed make it worth running before more sophisticated methods. For example
the gamma method may be used to define time periods in a data set on which other
methods are applied. Continuing the lake example, the method could be used to identify
features defining cold and warm time periods before applying conventional methods to
the data within those time periods. The results of the conventional methods may then be
compared and contrasted across different time periods. The advantage of this process is
that the time periods are defined mathematically, rather than by visual inspection.

In summary, the implementation of the gamma method to a given data set is
straightforward and computationally inexpensive. The method is flexible and transparent,
which allows it to be employed in a wide variety of contexts, and easily modified as
necessary. After the initial tuning of the choices for a given context and problem, the
method automates identification of a set of features which are worthy of further study.
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Chapter 3

Features in Time-Indexed Model
Output

Our initial problem was to identify features in time series data sets: data consisting of
multiple time series each sampling a different physical variable at a single location. This
is a common type of data set generated at an in situ instrument cluster. But what about
other types of data sets? For example those consisting of many time series all sampling
the same few physical variable at different locations. This type of data set is common in
Computational Fluid Dynamics (CFD), where the output of a model run is a data set
consisting of physical field values over many locations, at many times. CFD data is an
example of time-indexed model output. Typically each physical variable in the model
output is represented by many time series, one for each grid point, and far fewer time
outputs. So while in the time series data set case we have a few long time series, in the
time-indexed model output case we have many many shorter time series for each physical
variable in the data set. More generally the fields in time-indexed model output simply
consist of numerical values all having the same units. For the moment consider CFD data
sets as a concrete example.

3.1 The Gamma Method Applied to CFD data

There is nothing keeping the gamma method from being applied to CFD data sets, but it
must be done with care because the number of grid points in the simulation is often on
the order of 108 or more. If we think of each grid point as the location of a virtual sensor
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producing a time series of the given field at that location, that means the gamma method
is being applied to a defining set chosen from thousands of time series. Put another way
we are applying the gamma method to a time series data set with many more time series
than we would expect from even a large deployment of field sensors.

One way to apply the gamma method to time-indexed model output is to construct a
time series data set from it. This can be done using bulk measures of the domain to
collapse spatial information in order to get a more manageable number of time series.
Although they contain no spatial information, well chosen bulk measures can still identify
features.

We consider a few examples. Both data sets were generated using a spectral collocation
method called SPINS [56].

3.1.1 A Mode 2 Kelvin Wave

Figure 3.1: The rotation modified mode 2 wave discussed in [9]. The enstrophy field, which
indicates energy dissipation, is shown. See text for details.

We first consider a data set from a simulation of a breaking Kelvin wave on the
laboratory scale. To form these waves mixed fluid is initially separated from a stratified
main portion of the tank by a barrier. The barrier is removed suddenly and various types
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of internal waves are free to form. The stratification is chosen so that the dominant waves
are mode-2 (some lines of constant density are displaced upwards while other are displace
downwards). Rotation of the domain biases the wave ampitude to one side of the tank
and leads to the generation of three-dimensional billows. The enstrophy field of the wave
as it travels along the wall is shown Figure 3.1. For a full background see [9].
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Figure 3.2: The data for maximum dissipation D, maximum horizontal velocity u, and
maximum x component of vorticity ωx. Note the different scalings for each quantity.

We extract the maximum viscous dissipation D as an indicator for activity at small
scales, maximum horizontal velocity u as an indicator of large scale currents, and
maximum x component of vorticity ωx as an indicator of three dimensionalization to get
a single time series for each physical quantity. Note in this case we were able to obtain
higher time resolution in these time series by exporting values more often than the full
field information, so that each of these time series was about 30000 outputs. These
choices made, we have constructed a time series data set (Figure 3.2) with three
dynamically relevant time series.
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Figure 3.3: The absolute deviation series D̂, û, and ω̂x with the gamma method results in
the bottom panel.

Figure 3.3 shows the results of applying the gamma method to this data set, where all
three time series are included in the defining set and the scaling is by the maxima of the
respective series. The length of the feature was chosen to be 500 outputs, as an educated
guess. The gamma method indicates an initial burst of instability just before that
depicted in Figure 2 a of [9]. That is, gamma identifies the transition point around 20 s,
as depicted in the middle panel of Figure 3.4. We also performed the gamma method with
the maxima of the three components of velocity as the defining set, and another with the
maxima of the three components of vorticity as the defining set, and derived similar
results (not shown). Perhaps more time in [9] should have been devoted to the onset.
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Figure 3.4: The evolution of the rotation modified mode 2 wave discussed in [9]. See text
for details.
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3.1.2 Internal Seiche with Multiple Instability Types

It is well known [31] that the diffusivity of salt is two magnitudes lower than the
diffusivity of heat (so that heat diffuses much more quickly). Thus in systems stratified
by variations in temperature and salinity (of which the ocean is a prominent example)
resolving thin features involving salinity gradients is a significant challenge to the
computational fluid dynamicist. While many idealized problems have been studied (salt
fingers [53], thermohaline staircases [44]) the features were typically isolated from larger
scale motions. We chose an internal seiche (standing wave) because it has a broad
literature, a relatively simple laboratory implementation, and because it provides large
scale currents that compete with any small scale instabilities that develop.

Figure 3.5: The evolution of the density field over the simulation every 15 outputs. Density
values go from blue to white to red as they increase.

Figure 3.5 shows the “side-view” of the evolution of the internal seiche (with axes
removed to keep the panels a reasonable size), while Figure 3.6 shows the detailed
development of the instability at time 45. The density field is shown as it is the most
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intuitive, but we are interested in the gamma method applied to velocity field diagnostics
since these will have the clearest traces of the seiche (primarily horizontal velocities) and
the instabilities (a mix of vertical and horizontal velocities).

Figure 3.6: The top right panel of Figure 3.5, the density field at output 45, showing the
development of the instability.
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Figure 3.7: The gamma method applied to the seiche data set. See text for details.

Figure 3.7 shows the results of applying the gamma method to this data set, using the
maximum horizontal velocity u and maximum vertical velocity w as the members of the
defining set. The top panel shows the raw velocity data and the second panel shows the
associated absolute deviation series resulting from scaling by the maxima of each series.
Panel three shows the results of the gamma method. We note that F1 identifies the
initial state, while Fi for i = 2, 3, 4, 5 are clustered around time 72. The gamma method
has indicated a time when the maximum velocities are simultaneously maximized, as
evident in the first panel of Figure 3.7. The reader may object, in this case, that we
might have used a kinetic energy series formed from the maxima series instead. However
that doesn’t really make sense as the maxima of the velocities need not occur at the same
point, and so forming the sum of their squares is not likely the kinetic energy at any grid
point in the simulation.
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Figure 3.8: The density field at output 72, as chosen by the gamma method.

Gamma chooses time 72, as depicted in Figure 3.8. As a tutorial example, this again
shows that the gamma method is identifying times of mathematical interest which may
not be directly evident from visualizations. While the velocities were used in the analysis,
flows are often visualized by their scalar fields, such as density or temperature. The
horizontal pycnocline at time 72 could be mistaken as an indication of a queiscent fluid.
Instead, in this case it is because the velocities are largest when all energy is kinetic
rather than potential, as when a swinging pendulum passes its lowest point. This is not a
time likely to be chosen by ad hoc means.

The bottom two panels of Figure 3.7 are included to further illustrate the usefulness of
having a mathematical way to choose times of interest. It appears the maximum salinity
S is somewhat under-resolved during the formation and development of the instability at
the pycnocline, as we might expect given the numerical difficulties discussed above.
However all series are well resolved during the features, and so we need not worry about
the temporally under-resolved salinity (unless of course it is so extreme as to invalidate
the rest of the simulation). This shows that the gamma method can assist in choosing
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when to rerun experiments.

The maximum temperature T is included to reinforce the point that every series included
in the defining set must be relevant to the phenomena of interest. As we are interested in
times of maximized flow, temperature is not particularly relevant. Indeed in this case it is
constant until after the features, and so its inclusion would have zeroed out the gamma
curve, and no features would have been identified at all.

3.1.3 Summary

In summary, well chosen bulk measures allows the application of the gamma method,
which once again serves as a diagnostic to identify features. For this reason we have
implemented the gamma method parallel to our numerical experiments in SPINS. It is
now standard practice for us to produce an associated time series data set consisting of
dynamically relevant bulk measure time series at a high time resolution, alongside the
relatively infrequent spatial time-indexed model output. The gamma method then runs
automatically at the end of the experiment.

3.2 The Need for Another Method

The gamma method is designed to be applied to time series data sets including
measurements from many physical fields. It is a way to cut through the clutter of a data
set which contains multiple time series to isolate times of interest. In contrast
time-indexed model output often consists of detailed spatial information of a few or even
one physical field. In these cases the data set consists of primarily spatial information,
and so to collapse this information using a bulk measure is to ignore almost all the
information arduously generated using precious clock time. If there is only one physical
field generated, a bulk measure time series data set consists of only one time series, and
the gamma method is trivial. So while the gamma method can always be used on
time-indexed model output by constructing a parallel time series data set, much of the
information present is ignored. It turns out that there is no straightforward way to apply
the gamma method to time-indexed model output in a way that takes into account the
spatial information present. To see why, consider the following example of a CFD data
set.

Figure 3.9 shows a few time outputs of 2D CFD data simulating an internal wave train in
a spatially varying wave guide. This is generated by the numerical equivalent of what
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Figure 3.9: An internal wave train propagates from left to right and encounters a sharp
change in the background density profile. The density field is shown, so that the density
change around 1500 is clear.

experimentalists refer to as a lock release: fluid of a set density is suddenly released from
behind a barrier and is allowed to freely form waves in the stratified tank. The particular
situation is set up so that a wave train of internal solitary waves with a trapped core
forms, propagates some distance and then encounters a sharp change in the background
density (a pycnocline). This change removes the near bottom stratification, while the
main wave guide remains unchanged. To the best of our knowledge, there is no a priori
theory for the wave evolution in this cases and we find that the change in the near
bottom wave guide leads to the destruction of the trapped core in the leading wave. This,
in turn, leads to a significant increase in short length scale activity and a loss of material
from the leading wave, and a significant perturbation to the second wave in the wave
train. In this case there is no readily apparent way to define a “base” flow, since even
prior to the collapse of the core, the disappearance of the near boundary wave guide
implies a core cannot persist [34]. Throughout the thesis this case will be referred to as
the “dual pycnocline” case.

The gamma method is designed to find interesting times. In Figure 3.9 it seems clear
that the breakdown of the lead wave at time t = 65 or perhaps the vortex shedding from
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the lead wave to the rear wave at t = 80 would be interesting here. The gamma method
is not well suited to finding these times as it is not designed to work with this level of
spatial information for a single field. The gamma method allows an analyst to use their
domain knowledge, and the less knowledge they have, the more parameters must be
swept. If little is known of the data set or its context, all choices of the defining set need
to be considered. This is practical for time series data sets but becomes impractical for
time-indexed model output because there are simply too many grid point time series in
the model output. In this case there are over 360 000 grid points in the simulation, and a
time series for each one, all sampling density fluctuations. As is clear in Figure 3.9 some
grid point time series, for instance along the top of the domain, would have a near
constant value throughout the simulation. The inclusion of even one constant time series
would lead to a zero gamma curve and the method would fail. Moreover even if all
constant grid points were avoided, the fluctuations of the time series at different grid
points would occur at different times because the wave train is moving. We could again
avoid this by taking a vertical strip of grid points somewhere in the domain, for example,
but then all the gamma method would show was when the wave train would pass that
strip. There is no a priori way to choose which grid points to include as time series in the
defining set in order to identify the small scale structures of the breakdown or shedding.
We did push the gamma method reasoning to its limit, applying it to this data set to find
interesting locations within each time output, to some moderate success as a visualization
method in stratified flow dynamics, but this extension is outside of this thesis’ main
themes. The interested reader can refer to Appendix section A.1 for these results. Clearly
another method for finding interesting times in time-indexed model output would be
useful. As with the gamma method we will proceed from first principles to construct one.
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Chapter 4

The EOF Error Map Method

4.1 Author’s Note

This chapter (4) originally appeared as [51], but the presentation here is greatly
expanded with the addition of sections 4.3.1, 4.3.2, 4.3.4, and 4.3.5. A small amount of
this content is re-organized material from [51], but most is completely new. As in section
2, there are other small differences throughout in order to help match the prose to the
rest of the thesis, and provide some additional explanation where required.

4.2 Introduction

We present a data-centric diagnostic for identifying time subsets of model output which
are worthy of further study. To minimize the cost of uptake and maximize the clarity of
the presentation we have built this diagnostic on Empirical Orthogonal Functions
(EOFs), which are used in an enormous variety of contexts (e.g. [28], [26], [4], [29], [17],
etc.) and have implementations in every commonly used software toolbox (e.g. Matlab,
R, Scipy). The method presented here can be applied to any data set for which an EOF
analysis would be appropriate, but we will focus on the application to CFD data sets.
The method is data driven, using a novel construction: a map of the EOF reconstruction
errors as a function of time and the number of modes in the reconstruction. The
interpretation of this EOF error map yields the identification of interesting times in each
field in the data set for the cost of one Singular Value Decomposition (SVD) and one
norm calculation per time output and choice of reconstruction.
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The mathematical ideas behind EOFs have a long history, originating with [42], and go
by many names, including Principal Component Analysis (PCA), Singular Value
Decomposition (SVD), and Principal Orthogonal Decomposition (POD), depending on
the community. These methods produce an orthogonal basis for the state space of a data
set, where the basis vectors (EOFs) are rank-ordered by the amount of variance of the
data they capture, as recorded in the eigenvalue for each basis vector. In particular, when
the data has units of velocity, the variance has units of energy, so the basis is rank
ordered by energy captured. Following the common parlance, we will use “energy” and
“variance” interchangeably. Since the use of all basis vectors fully reconstructs the data,
and the basis is rank-ordered by energy content, this representation can then be
truncated to provide a reduced order reconstruction of the data. This reconstruction
captures the most energy contained in the original data set per basis vector added, on
average [20]. Efficient reconstructions of data are often the goal in statistical analysis,
where EOF methods are referred to as PCA. For a review from this perspective see [1].

EOF methods are common in the atmospheric science, oceanography, and climate science
communities where there has been an attempt to relate individual EOFs either to
physical processes or to normal modes of the system being sampled. Such efforts have
had some success, for example in the study of the El Niño Southern Oscillation [72],
North Atlantic Oscillation [23], and the Arctic Oscillation [59]. The focus on the first, or
“leading”, EOF can be viewed as the study of a an EOF reconstruction (heavily)
truncated to include only the first mode. As mentioned, some large scale motions have
been captured this way, and correspondences have been drawn between physical processes
and the leading EOF. However EOFs form an orthogonal set, and thus adding
subsequent EOFs to the reconstruction, while simultaneously expecting those additional
modes to correspond to physical processes, is to assume that the physical processes or
normal modes in question are orthogonal. This is not true in general. Instead, a kind of
contamination occurs: [71] applied an EOF analysis to a constructed flow with multiple
dominant structures. They found that EOFs roughly corresponding to specific fluid
structures were contaminated by components of other structures (their Figures 3 and 6).
Several modifications to EOF methods have been developed to produce modes which may
have a more direct physical interpretation, but these methods often require a choice to be
made, and it is not often clear which choice is correct. We refer the reader to the review
by [17] of EOFs and their extensions for a history of these difficulties. In the error map
method we simply use the standard EOF, as it is the most widely used. Moreover, we
focus on the reconstruction perspective in order to build the EOF error map. This avoids
the difficulties of focusing on individual EOFs outlined above. In addition, the
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construction of the error map includes errors from every truncated reconstruction, so
there is no need to consider the problem of choosing a particular EOF to focus on.
Because it avoids focusing on either individual EOFs, or individual EOF reconstructions,
the EOF error map method is different from every previous EOF-based method.

There are, of course, a wide variety of existing data analysis methods for CFD data sets
which are not EOF-based, but none of them serve the same function as the EOF error
map method presented here. There are local, Eulerian (i.e., measurements at fixed
locations) methods to identify vortices based on the decomposition or invariants of the
velocity-gradient tensor: the Q-, ∆-, and λ2-criterions for example [30]. There are
Lagrangian methods (i.e., based on moving particles) to identify coherent structures (e.g.
transport barriers), such as those based on Finite Time Lyapunov Exponents [57], [58], or
graph theoretic methods [15], [11], [48]. For a comparison of multiple Lagrangian
methods applied to the same benchmark see [14]. There are a host of methods based on
the spectral properties of the Koopman operator [40], and its finite dimensional
approximation the Dynamic Mode Decomposition [49], which allow identification of
structures in fluid flows based on the frequency of the structure’s motion, such as the
flapping frequency of a jet [50]. There are many reduced order methods besides EOF,
including the related POD and Galerkin projection [46], [20]. For a review see [47]. In
fact, there are many more analysis methods available which can be used to study CFD
data sets. All of them make an a priori judgement on the field of interest (e.g. gradient
of the velocity field, inter-particle separation, etc) and proceed with an analysis on that
particular field in the data set. In contrast, the purpose of the EOF error map method is
to identify interesting time periods within every field in the model output without an
assumption on which variable is the most important. These features, in each field, then
become targets for further study using any method appropriate, including those just
mentioned.

Put another way, the EOF error map method is a diagnostic tool which is applied earlier
in the analysis pipeline than the standard methods just discussed. As such it is not a
competitor with those methods, but a way to facilitate their intelligent application. This
is particularly relevant to large, coupled models in fields such environmental fluid
mechanics involving biogeochemistry and climate modeling for which the CFD
component is only a small portion of the model. Even sophisticated mathematical tools
based exclusively on the fluid mechanics may miss an important event in one of the other
components of the model (e.g. an algal bloom in the coupled model of a bay). Thus for
large coupled models, we envision our method being applied as part of the model
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execution, so that every field in the model output would be accompanied by identified
features. Only the subsequent analysis would be discipline specific.

Error maps also carry a very low overhead. They are constructed directly from model
output immediately after the completion of a numerical experiment and the only extra
computational burden is the SVD and error map construction: there is no need to take
derivatives of fields, it is not necessary to have particle data, there is no necessity to tune
parameters in a graph theoretic clustering algorithm, etc. Error maps are used as a
diagnostic to quickly identify features which should be investigated further, by whatever
method is deemed useful for the particular application. This allows error maps to inform
decisions on where higher overhead methods should be applied. In summary, the EOF
error map is a low overhead method applied directly to model output as a way of
focusing the application of other methods.

4.3 Empirical Orthogonal Functions

4.3.1 EOF From Discrete Data: Covariance Matrix Method

Let us proceed from first principles (see [33] Chapter 15). Suppose the data set has M
grid points and N time outputs at times tj, j = 1, . . . , N . This is a sequence of snapshots
{x(t1),x(t2), . . . ,x(tN)} where each x(tj) ∈ RM . Centre by the time mean, and make the
resulting snapshots columns of a single matrix X. Then the jth column of X is

Xj = x(tj)− 〈x〉 (4.1)

where the angle brackets indicates the time mean. The matrix X is

(X)ij = xi(tj)− 〈xi〉 (4.2)

where i indexes the grid points, j indexes the time outputs, and 〈x〉i = 〈xi〉. Then X is
an M by N matrix whose entries are time mean-centred time series of measurements at
the grid points or sensor locations. We then form the covariance matrix

CX =
1

N − 1
XXT
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which is a symmetric M by M matrix with entries

CXij =
1

N − 1

N∑
k=1

(xi(tk)− 〈xi〉)(xj(tk)− 〈xj〉) (4.3)

which is exactly the covariance of the point xi with the point xj. Along the diagonal,
when i = j, this reduces to the variance of each xi. It is reasonable to assume that those
xi with high variance values are sampling significant dynamic events. Similarly it is
reasonable to assume that significant cross-covariance indicate a redundancy in the
collected data (see section 15.3 of [33] for additional comments on these ideas). This
indicates an opportunity for efficient lower-dimensional representation. Since CX is
symmetric and real, it is orthogonally diagonalizable with real, distinct eigenvectors. This
means we can both maximize variance and minimize cross covariance by writing

CX =
1

N − 1
UΛUT

where U is the matrix whose columns are an orthonormal set of eigenvectors of CX.
These columns are the M Empirical Orthogonal Functions φi which are also rank ordered
with corresponding eigenvalues λi. Here Λ is diagonal and without loss of generality is
rank ordered with the first eigenvalue being the largest: λ1 ≥ λ2 ≥ . . . ≥ λM ≥ 0. To see
why the eigenvalues are nonnegative, notice that for any column vector z we have

zTCXz =
1

N − 1
zTXXTz =

1

N − 1
(XTz)TXTz ≥ 0

so that CX is positive semidefinite. This is why the eigenvalues are nonnegative. We can
now work in the EOF variable

Y = UTX

where we find that

CY =
1

N − 1
YYT =

1

N − 1
Λ

Physically, this means we have transformed to a basis formed by the EOFs where
cross-covariances have been completely eliminated and the variances are rank ordered. So
then λi gives the variance of X along the EOF φi.

Writing the data in the transformed variable we now have

(Y)ij = (UTX)ij

= φi · (x(tj)− 〈x〉)
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where we’ve written the result in terms of the snapshots x(tj). Multiplying both sides on
the left by U yields the data set as a projection onto the EOF basis

(X)ij = xi(tj)− 〈xi〉
= (UY)ij

=
M∑
k=1

YkjUik

=
M∑
k=1

[φk · (x(tj)− 〈x〉)] (φk)i

where (φ)i is the ith entry of the kth EOF. Letting
[φk · (x(tj)− 〈x〉)] = (UTX)kj = ak(tj) (notice 〈ak〉 = 0) we can then write the snapshots
of the system as

x(tj) =
M∑
k=1

ak(tj)φk + 〈x〉 (4.4)

Since the vectors φi are orthogonal some call this the Proper Orthogonal Decomposition
(POD). Written this way it is clear that the signal can be thought of as a mean signal
with layers of corrections represented by the sum.

4.3.2 A Constructed Example

We now consider a few constructed examples for tutorial purposes. First consider a very
simple case, where the data is

x(tj) =

[
sin(2πtj)
sin(2πtj)

]
(4.5)

which is M = 2 points for tj = 0, 0.001, 0.002, . . . , 1 which is N = 1001 outputs. See
Figure 4.1 for a plot.
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Figure 4.1: The data for the simple sine wave case of equation 4.5, with the first component
in the top panel, and the second component in the bottom panel.

In this case 〈x〉 = 0 and we have from equation 4.14 that

x(tj) = a1(tj)φ1 + a2(tj)φ2

using the covariance method of section 4.3.1 to obtain the EOFs and coefficients shown in
Figure 4.2.
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Figure 4.2: The EOF (left) and coefficients (right) for the constructed data.

Note that in this simple case, with both spatial points in perfect correlation, we have
λ1 = 1 and all of the energy is captured in φ1. The shape of φ1 is simply a constant value
because the data is identical in both components. Since all of the energy is in φ1, λ2 = 0,
and the φ2 is irrelevant. This can be seen in the coefficients where a1(t) is a sine wave,
and a2(t) = 0. We see that the truncated reconstruction a1(t)φ1 is sufficient in Figure 4.3.
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Figure 4.3: The 1 EOF reconstruction with the original data. The first component is in the
top panel and the second component is in the bottom panel. Note that in this case because
λ1 = 1, the 1 EOF reconstruction is equal to the data (down to machine precision).

In the simple case of the perfect correlation of two spatial points λ1 = 1 and the 1 EOF
reconstruction is equal to the data down to machine precision. This makes sense because
the time coefficient tracks the change over time, but the change over time is in perfect
correlation. We now consider the case where the correlation is imperfect, taking the
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simple data set just used and perturbing the second component by a Gaussian

x(tj) =

 sin(2πtj)

sin(2πtj) + exp

(
−
[
tj−0.5
0.01

]2) (4.6)

which is M = 2 points for tj = 0, 0.001, 0.002, . . . , 1 which is N = 1001 outputs once
again. See Figure 4.4 for a plot.
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Figure 4.4: The data for equation 4.6, with the first component in the top panel, and the
second component in the bottom panel.

Clearly the correlation is no longer perfect. Moreover due to the perturbation 〈x〉 6= 0 in
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the second component, and we have from equation 4.14 that

x(tj) = a1(tj)φ1 + a2(tj)φ2 + 〈x〉

where now the EOFs and coefficients are those shown in Figure 4.5.

-1 -0.5 0 0.5 1

1

1.5

2

1
, 

1
 = 0.994

-1 -0.5 0 0.5 1

1

1.5

2

2
, 

2
 = 0.005999

0 0.5 1
-2

-1

0

1

2

Figure 4.5: The EOF (left) and coefficients (right) for the constructed data.

We see that unlike the perfectly correlated case, there is now a small amount of energy in
the second mode. The first coefficient a1(t) is no longer a sine wave but a sine wave
perturbed. This reveals an important point about EOF reconstructions. Consider the
following thought experiment. If we did not know what the closed form of the data was
but had rather gathered it in some way, looking at the graphs of the two components,
there is a clear separation of scales. If asked to write the data in two components we
would probably write

data = (long wave) + (local perturbation near t = 0.5 in component 2)

If we were then asked to approximate the data by removing one addend from the sum we
would almost certainly neglect the perturbation in the second component. Even without
knowing the closed form of the data it is clear to us that the data is basically a sine wave
in both components, with a perturbation in the second. We might hope, then, that the 1
mode EOF reconstruction would still be a sine wave, remaining unchanged from the
reconstruction depicted in the simple case of Figure 4.3, and that the second mode would
add in the perturbation. EOFs are not able to make such delineations. Instead the 1
mode EOF reconstruction attempts to capture the perturbation as well, as depicted in
Figure 4.6.
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Figure 4.6: The 1 EOF reconstruction with the original data. The first component is in
the top panel and the second component is in the bottom panel. Note that in this case the
2 EOF reconstruction would be equal to the data (up to machine precision).

EOF modes are selected by maximizing variance, and so do not necessarily result in a
clean separation of scales. For the 1 EOF reconstruction to maximize variance the short
scale perturbation cannot be ignored. In attempting to capture both scales in the first
EOF the first component of the 1 mode reconstruction takes too large a value during the
perturbation, and the second component takes too small a value during the perturbation.
This explains the shape of φ2 as depicted in Figure 4.5 because in the first component it
must correct a1(t)φ1 by subtraction, and in the second component it must correct a1(t)φ1

by addition. This correction only occurs during the perturbation and so a2(t) is still zero

43



outside the perturbation.

We see that the perturbation’s presence causes the first EOF to ‘split the difference’
between the components over the extent of the perturbation. So in fact the perturbation
in the second component contaminates the first component if we use a 1 EOF
approximation for the whole signal (see [71] for a discussion of contamination). This
example illustrates why one should be careful of assigning physical meaning to individual
EOFs. Moreover note that a1(t) and φ1 have the wrong scale separately: a1(t) reaches a
maximum of almost 1.5, and φ1 reaches a maximum of around 0.7. It is their product
which recovers the scale of the data. This is another reason we take the reconstruction
perspective.

4.3.3 EOF From Discrete Data: SVD Method

We now present the SVD method of finding EOFs. Again beginning with a data set
consisting of M grid points and N time outputs we have {x(t1),x(t2), . . . ,x(tN)} where
each x(tj) ∈ RM , and we define X as

(X)ij = xi(tj)− 〈xi〉 (4.7)

where i indexes the grid points, j indexes the time outputs, and 〈x〉i = 〈xi〉. Then X is
an M by N matrix whose entries are time mean-centred time series of measurements at
the grid points. Now instead of diagonalizing the associated covariance matrix, we
instead apply the SVD. When M ≥ N , as is common in time-indexed model output,
applying the SVD to X we obtain [24]

X = U

[
Σ
0

]
VT (4.8)

Where UM×M and VN×N are orthogonal matrices and ΣN×N = diag(σ1, . . . , σN). The
columns of U, {φ1, . . . , φN} ⊂ RM , are the orthonormal spatial EOF basis vectors
(modes), where the ith entry φik in the column vector φk corresponds to the ith grid
point of mode k. This basis corresponds to the singular values from Σ with

σ1 ≥ · · · ≥ σN ≥ 0. (4.9)

Carrying out the multiplication in Eq 4.8, we obtain [24]

X =
r∑

k=1

σkφkv
T
k (4.10)
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where r = rank(X). Written columnwise we have

x(tj) =
r∑

k=1

σkvjkφk + 〈x〉 (4.11)

with the time output indexed by j. By multiplying both sides of Eq 4.8 by UT we find
that

φk · (x(tj)− 〈x〉) = σkvjk, (4.12)

so that the projection of the centred data onto the EOF basis yields time-dependent
coefficients defined as

ak(tj) = σkvjk. (4.13)

Therefore the columns of V, {v1, . . . ,vN} ⊂ RN , are the unscaled coefficients
corresponding to each mode. The jth entry vjk in the column of vk corresponds to the
coefficient at time j for mode k. The rank ordering of the singular values (Eq 4.9)
becomes a rank ordering of the scaling of the ak. The data can then be written as

x(tj) =
r∑

k=1

ak(tj)φk + 〈x〉 (4.14)

So that we have recovered equation 4.4, but now with the specificity that we need not
sum all the way to M , but only to r. Note that there are methods of producing EOFs
which are dependent on time as well as space (see section 3.2 of [20]). The covariance and
SVD methods produces spatial EOFs and time dependent coefficients, which makes the
interpretation of the error maps presented in section 4.3.6 and A.2.4 completely
straightforward.

The submatrix of zeros in Eq 4.8 as well as the rank limited sum in Eq 4.14 both make it
clear that at most the first N modes φ1, . . . , φN are needed. This leads to the reduced
SVD [62], where U consists of only these columns and there is no submatrix of zeros with
Σ. We obtained this decomposition using MATLAB’s built in svds command with N
modes recovered to avoid the memory constraints of svd (see the accompanying code
here and the MATLAB documentation for details). See [24] and [62] for more details on
the SVD.
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4.3.4 Comparison of Covariance and SVD Methods

We have just discussed two methods of obtaining the EOF decomposition from discrete
data beginning in both cases with the snapshot matrix X. We then either form the
covariance matrix CX and proceed as in section 4.3.1, or find the SVD of X and proceed
as in section 4.3.3. In either case we arrive at equation 4.14, so that mathematically there
is no difference, but numerically we have found that using SVD is more robust than using
PCA, in agreement with [33]. This is consistent with [2] where Lemma 3.13 (pg 49) states
that the SVD of a matrix is well-conditioned with respect to perturbations of its entries.
So while CX is real and symmetric, and so diagonalizable in principle, in practice
machine precision errors may contaminate the eigenvectors. It may also be an issue with
how MATLAB finds eigenvectors in each of the different cases. For these reasons we
employ the SVD method in all codes, and throughout the thesis, but for completeness we
will now present the mathematical equivalence of the two methods to extract a few more
properties.

We have XM×N , so there are at most min{M,N} singular values. Following [24], If
N ≥M , as is common in time series data sets such as in situ field data,

X = U
[
Σ 0

]
VT

Where UM×M and VN×N are orthogonal matrices, and Σ = diag(σ1, . . . , σM) with
σ1 ≥ · · · ≥ σM ≥ 0. So in the field data context, we diagonalize the M ×M matrix
CX = 1

N−1XXT as follows (dropping the 1
N−1 factor):

XXT =
(
U
[
Σ 0

]
VT
) (

U
[
Σ 0

]
VT
)T

=
(
U
[
Σ 0

]
VT
)(

V

[
Σ
0

]
UT

)
= U

[
Σ 0

] [Σ
0

]
UT

= UΣ2
M×MUT

If instead M ≥ N , as is common in time-indexed model output, and as was assumed in
section 4.3.3, we have

X = U

[
Σ
0

]
VT
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Where UM×M and VN×N are orthogonal matrices, and Σ = diag(σ1, . . . , σN) with
σ1 ≥ · · · ≥ σN ≥ 0.

So for time-indexed model output, we diagonalize the XXT :

XXT =

(
U

[
Σ
0

]
VT

)(
U

[
Σ
0

]
VT

)T
=

(
U

[
Σ
0

]
VT

)(
V
[
Σ 0

]
UT
)

= U

[
Σ
0

] [
Σ 0

]
UT

= U

[
Σ2
N×N 0N×(M−N)

0(M−N)×N 0(M−N)×(M−N)

]
UT

Which shows that the covariance matrix formed from X still only have N = min{M,N}
non-zero eigenvalues, and that they match the squares of the singular values of X. Note
that the ‘proof’ of equality given by [33], pg 394, ignores this case. Following his abuse of
notation we will also write X = UΣVT and XXT = UΣ2UT with the understanding
that there may be some padding by zeros. Note that

XXT = UΣ2UT(
XXT

)
U = UΣ2

so that the columns of U are the eigenvectors of XXT. This justifies our use of the
notation U in both section 4.3.1 and section 4.3.3. Mathematically, we could have begun
with the SVD, and then using this last equation pointed out that this same U
diagonalizes XXT. This means that the relationship between the eigenvalues and
singular values is that λk = σ2

k, but when M ≥ N at least the last M −N of the λk are
zero: the nonzero eigenvalues match the squares of the nonzero singular values (see
Theorem 5.4 on page 34 of [62]).

Numerically, aside from the stability concerns mentioned, both methods produce the same
reconstructions. The ranking of eigenvalues defines the order of the eigenvectors φi in U.
We found that MATLAB codes using these methods would produce the same EOFs only
up to sign. As the covariance matrix is square, this is in keeping with Theorem 4.1 of [62],
which says that square matrices with distinct singular values have unique EOFs only up
to sign. In data sets we expect distinct singular values, and so this result tends to hold.
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This uniqueness up to sign is not relevant for the rest of the thesis for two reasons. First,
we will only be using the SVD method. Second our interest is only in reconstructions,
not the EOFs themselves, as was discussed in the introduction. Reconstructions are of
course the same for either method. Consider equation 4.14 once more. If one φk changes
sign, in order to maintain the reconstruction of the data ak(tj) = σkvjk must change sign
as well. Clearly the vjk change signs rather than the σk. So while the two methods
produce the same reconstructions and singular values, the signs of the sets of EOFs and
corresponding time coefficients may vary, but will always do so together.

The covariance diagonalization method of section 4.3.1 made the connection of EOFs to
the dynamics of the data set clear, but in practice the SVD method is the robust
numerical method we will employ. The SVD is used in all codes, and throughout the
thesis. See section 15.4 of [33] for more comparison of these two methods.

4.3.5 Truncated EOF Reconstructions

Equation 4.14 makes clear that the data can be thought of as a time mean vector signal
with layers of corrections provided by the EOFs. This representation recovers the data
completely, so that the error in the representation of the data set is at or near machine
precision. Notice that the rank ordering of the singular values (Eq 4.9) implies that each
consecutive mode added to the sum contributes less variance over time than the previous
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mode. To make this concrete, project the data at every time onto mode k and sum:

N∑
j=1

| (x(tj)− 〈x〉) · φk)φk|2

=
N∑
j=1

| (x(tj)− 〈x〉) · φk)|2|φk|2

=
N∑
j=1

|ak(tj)|2

=
N∑
j=1

|σkvjk|2

= σ2
k

(
N∑
j=1

|vjk|2
)

= σ2
k

(4.15)

where we’ve used the fact that U and V are orthogonal, along with Eqs 4.12 and 4.13.
We see that the sum over time of the contributions of φk is exactly the variance λk = σ2

k.
Note that this equation shows that the contribution λk from φk may be large either
because of moderate contributions over most of the simulation, or large contributions
over a short time, or some combination. The EOFs have been rank ordered by their total
contribution to the reconstruction summed over time, but not by their contribution at
any given time tj. This time information has been summed out. This is related to the
rank ordering of the singular values (Eq 4.9) providing a rank ordering in the scaling, but
not a rank ordering of the values a1(tj), . . . , ar(tj) at any specific time tj.

In order to approximate the original data set, we once again consider the SVD
decomposition

X = UΣVT

and write Σ as a sum of (possibly rectangular) diagonal matrices
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Σk = diag(0, . . . 0, σk, 0, . . . , 0), so that with rank(X) = r we have

X = UΣVT

X = U

(
r∑

k=1

Σk

)
VT

X =
r∑

k=1

UΣkV
T

X =
r∑

k=1

σkφkv
T
k

which is equation 4.10. This shows that the data X can be written as the sum of rank(X)
rank one matrices. This representation makes it clear that if the σi are small for some
i > D we can write

X ≈
D∑
k=1

σkφkv
T
k (4.16)

as a good approximation. We call this the truncated reconstruction with D modes, or the
D EOF reconstruction. Clearly we take D ∈ {1, . . . , r}. We consider only these
rank-ordered reconstructions of all modes up to and including D, for a total of
r ≤ min{M,N} reconstructions for a given data set. The D EOF reconstruction is
optimal in the sense that it is the best possible approximation among all matrices of rank
up to and including D: ∥∥∥∥∥X−

D∑
k=1

σkφkv
T
k

∥∥∥∥∥ = inf
B∈RM×N

rank(B)≤D

‖X−B‖

where here the norm is either the 2-norm or the Frobenius norm. For details on this
optimality see [62] chapter 5. Defining the coefficients as in equation 4.13 we can write
the columnwise version of the D EOF reconstruction 4.16 as

x(tj) ≈
D∑
k=1

ak(tj)uk + 〈x〉 (4.17)

which is a truncated version of equation 4.14.

The D-EOF reconstruction recovers as much of the original data as possible using D
EOF-weighted timeseries ak. For this reason truncated EOF reconstructions can be
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thought of as an energy or variance filter, because the D EOF reconstruction captures
E =

∑D
k=1 σ

2
k of the energy, and that omitted modes correspond to omitted energy or

variance contributions
∑r

k=D+1 σ
2
k. Whichever way one thinks of it, the resulting

truncated series represents a simplification of the original data. If D is chosen well, this
simplified data set can still capture everything of interest. However, what is of interest,
and what constitutes a ‘small’ singular value are not universally defined, and depend on
the application and the investigator. Perhaps the most intuitively clear test for defining
small is comparatively, as in ‘the elbow test’, as described by [1], where the eigenvalues
are plotted and only the modes with the largest eigenvalues are kept. Unfortunately this
can bias the representation towards large scale structures, since these tend to have the
most variance. Sometimes we are interested in the dynamics of small scales. Moreover
modes with low energy may still represent important dynamics [47]. This is the property
we exploit in section 4.3.6. Of course the elbow test cannot be applied at all if the
eigenvalues decrease at an approximately uniform rate: there is no elbow test without an
‘elbow.’ An alternative strategy for choosing D is to apply a norm to the error of the
reconstruction as compared to the raw data and choose a tolerance for error acceptable to
the application. In general, the convergence of the EOF reconstructions to the data tends
to make the error monotonically decrease as more modes are added. Therefore
application-specific heuristic mode selection techniques based on a chosen norm and
tolerance may suffice. There are more mathematically formal ways of choosing D, such as
[13], which we employed in the Appendix’s section A.2. However optimal choices such as
these depend on the underlying mathematical framework employed. In a given
application this choice of framework may be justified directly, or heuristically by its
continued success for the application. A choice of mathematical framework for general
application is difficult if not impossible to justify. Indeed, ad hoc choices lacking any
justification besides their continual success are preferable to sophisticated mathematical
methods which fail. In summary, it is not always clear how to pick D.

As an aside, we did consider the problem of picking D in heuristic terms, according to
the visualizations of the reconstructions. This led to some insight, but a negative result.
See section A.2 of the Appendix for details.

4.3.6 EOF Error Maps

With the background material clearly stated, we present the following novel construction.
We are interested in finding features within model output fields which are worthy of
further study. We will employ the SVD reconstructions just outlined to do so. As
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discussed in the introduction, individual EOFs do not generally relate to individual
physical processes. However, every process contributes some amount to the total variance
of the model output.

Consider the following thought experiment: rank order the (unknown) processes in the
dataset by variance contributed. Just as Eq 4.15 shows that the contribution of an EOF
to the reconstruction may be large either as a result of moderate contributions over a
long duration or large contributions over shorter durations, so too the rank ordering of
processes is the result of some combination of the size and duration of each process. We
expect large variance processes to include those with large scales and long duration. We
expect small variance processes to include those with short scales and short duration. In
between are medium variance processes with large scales and short duration, small scales
and long duration, or medium scales and duration. See Fig 4.7 for examples.
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Medium VarianceLarge Variance Small Variance

Figure 4.7: Examples of large, medium, and small variance processes over time. The
upper plot shows a large variance process which has a large scale and long duration, along
with a medium variance process with less variance, but equal duration. The bottom plot
shows a small variance process with a small scale and short duration, along with a medium
variance process with larger scale and duration.

We wish to identify time periods of interest. This means short or medium duration, and
for the phenomenon to be of interest, probably medium to large scale. This means we are
looking for medium variance processes in the data set, but as we have discussed,
individual EOFs do not generally correspond to physical processes. Instead, the
contamination phenomenon described in [71] implies that as D increases the
approximations of multiple processes are simultaneously improved, and the higher the
variance of a process, the greater its priority. Every mode added increases the variance
represented rather than adding a process, but as variance represented increases more
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processes are approximated well. By convergence, some D approximates all processes of
interest. At the extreme end, if everything is of interest, D = N . Moreover the speed of
convergence, as indicated in the scree (a plot of the normalized eigenvalues, Fig 4.10),
shows that higher modes essentially represent “noise” (here the quotations are included
to indicate that we do not mean noise in the sense of stochastic processes). This means
that some low choice of D will tend to capture the large scales (as in the “elbow test”,
see [1]), while different choices of D near N are basically the same because the last modes
in the decomposition have very small coefficients. Intermediate choices of D will include
those that poorly approximate a variety of medium variance processes. These are exactly
the processes we seek, so the error of the reconstructions can be used to find them. In
particular, changes in the structure of the error over time serves as an indicator of their
presence.

To better understand why reconstruction error can be used to find features, consider Fig
4.8, which reconstructions for several choices of D during the breakdown of the leading
wave in the dual pycnocline data set first introduced in section 3.2. As D increases it is
clear that large variance processes are approximated first, followed by smaller and smaller
processes. As expected the EOF reconstruction effects multiple processes simultaneously.
A choice of D near 1 corresponds to capturing processes with large variance such as the
wave guide. Intermediate choices for D capture the large variance structures and some,
but not all of the medium variance structures. Short to medium duration processes of
interest such as the breakdown of the leading wave are poorly approximated for some
intermediate D values, but as D increases the breakdown is also well approximated.
Finally, a choice of D near N (N = 100 in this case) corresponds to an approximation
which misses only noise.
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Figure 4.8: Continually increasing choices of D at time output 80 in the density field
(the first 3 choices are the obvious elbow test choices). This time was chosen to look at
the breakdown of the wave, which is a medium variance event with a variety of scales of
structures. The top panel is the data, while pairs of reconstruction and reconstruction
error are in pairs below it for comparison, with D = 1, 4, 6, 25, 50 increasing downward.
As D increases the wave guide is approximated first, followed by lower variance structures
like the breakdown, and finally the fine details of of the breakdown. By D = 25 the large
variance wave guide is well approximated, but more modes are required to capture the fine
details of the breakdown. By D = 85 (not shown) there is almost no error anywhere.

While Fig 4.8 shows multiple choices for D at a single time, Fig 4.9 gives an example for
two different times and two different choices for D, in order to give some sense of the
change in error over time for a fixed D value. For a 25 mode reconstruction the infinity
norm error is greater during the shedding (bottom) than at time 20 (top). This is
because for this lower number of modes, the medium variance shedding event has not yet
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been fully captured. For an 85 mode reconstruction the reverse is true: the error is higher
during the early time. This is because for this higher number of modes, the medium
variance event has been almost fully captured, and now the very small variance
structures in the early times are left (note the change in error scale between the 25 mode
and 85 mode reconstructions). To summarize, then, we see that for a low number of
modes the error increases during the medium variance breakdown event. This is because
the larger variance background state and propagation processes have taken precedence in
the reconstruction. We also see that for a high number of modes the error goes down at
the time of the breakdown event. This is because there are so many modes in the
reconstruction that medium variance events like the breakdown have been well
approximated, and the processes that are left are virtually noise.
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Figure 4.9: Two examples of changes in error of reconstructions over time: the upper block
of panels is at time 20 and the lower block is at time 80. Similar to Fig 4.8, top panels in
each block are the data, while in pairs underneath we have D = 25, 85 reconstructions and
reconstruction errors. See text for details.

57



Together, Figures 4.8 and 4.9 show that the medium variance processes of interest are
poorly approximated for some intermediate values of D. Since these are the processes we
are interested in, we can look at the error of the reconstructions to identify when they
occur. When error is high for a short time, it can indicate the presence of dynamics
worthy of further study. Rather than attempt to determine a single intermediate choice
for D which will help identify times of interest, we simply calculate the error of the
reconstruction for every choice of D, and for all times. In order to collapse the error
information to a more manageable and interpretable size, we use a norm of the time slice
error, rather than a full error plot like those in Figures 4.8 and 4.9. Moreover if we use
the L2 norm at every time slice the error’s distribution is unknown, and may be spread
thin over the whole domain or concentrated in some way. To avoid this ambiguity we use
the infinity norm to make interpretation more straightforward. The error map εD(tj) of
an EOF reconstruction with D modes at time tj is given by

εD(tj) =

∣∣∣∣∣x(tj)−

(
D∑
k=1

ak(tj)φk + 〈x〉

)∣∣∣∣∣
∞

=

∣∣∣∣∣∣
min{M,N}∑

k=1

ak(tj)φk + 〈x〉 −

(
D∑
k=1

ak(tj)φk + 〈x〉

)∣∣∣∣∣∣
∞

=

∣∣∣∣∣∣
min{M,N}∑

k=1

ak(tj)φk −
D∑
k=1

ak(tj)φk

∣∣∣∣∣∣
∞

=

∣∣∣∣∣∣
min{M,N}∑
k=D+1

ak(tj)φk

∣∣∣∣∣∣
∞

(4.18)

for each tj. This is simply the infinity norm of the modes excluded from a reconstruction
with D modes at every time step. By construction εD(tj) is a function of both time and
the number of modes used in the reconstruction D. We call this function the error map
for the EOF reconstructions of the data set, or simply “the error map.” The number of
modes produced by an EOF analysis is min{M,N}. The error map is therefore of size
min{M,N} ×N . In the case of CFD data sets M > N , and so the error map has size
N ×N . In practice, forming the error map is computationally inexpensive, as N tends to
be small. The computations are simply an SVD decomposition, and one norm calculation
for every time output and for every choice of D. In many contexts it is standard practice
to perform an EOF analysis anyway, in which case the EOF error map is easily derived
from the existing reconstructions.
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4.4 Results

Although the method developed in this chapter may be applied to any time-indexed
model output for which an EOF analysis would be appropriate, we will consider concrete
examples from three qualitatively different simulations in stratified flow dynamics. It is
not necessary that the reader have training in fluid dynamics to understand the method
presented, but we provide background for each of the data sets for those who are
interested. In order to keep a consistent focus, and because the varying density is the
essential component of stratified flows, we will focus on the dynamics of density. As
discussed in the introduction, in practice the error map method would be used to identify
features in all variables within the data set. For expository purposes, we have elected to
present our method on one variable in multiple flows, rather than on multiple variables in
one flow.

All three data sets are from 2D simulations using a spectral collocation method (SPINS
[56]). Grid doubling/halving experiments were performed to ensure that the numerical
results were robust. The details of the physics of the dual pycnocline and collision cases
will be discussed in future publications, while the details of the spontaneous instability
case may be found in [69].

For reference, the normalized scree of the first thirty modes for all three data sets are
plotted in Fig 4.10. Note that these three scree are plotted together, but that the total
number of modes differs by case. The spontaneous instability data set has
M ×N = (3001× 156)× 131, so that N = 131 total modes, the dual pycnocline data set
has M ×N = (3001× 128)× 100 , so that N = 100, and the collision data set has has
M ×N = (3072× 81)× 150 so that N = 150. The fast convergence of the eigenvalues is
clear in each case. Clearly the spontaneous instability has the most variance in the first
few modes, while the dual pycnocline and collision cases have more variance in higher
modes.
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Figure 4.10: Each scree is a plot of the normalized eigenvalues as a function of mode
k = 1, . . . , 30, the k being the mode index from Eq 4.14. The sum in the normalization is
over all eigenvalues of the given dataset. See text for details.

We now discuss the error maps εD(tj) for each of the data sets under consideration.

4.4.1 Spontaneous Instability

The first data set is the spontaneous shear instability of a very large amplitude internal
solitary wave, studied in detail in [69], following previous related work [35], [12]. Here the
flow is initialized from a solution to the Dubreil–Jacotin–Long (DJL) equation, which is
formally equivalent to the stratified Euler equations [54]. The initial wave develops a
spontaneous instability at the rear of the wave. The instability grows and eventually
exits the wave. Detailed discussion, including the effects of three-dimensionalization can
be found in [69]. See the top four panels of Fig 4.11 for a visual representation of the
density field’s evolution in this case. The internal solitary wave serves as a “base” flow
with the spontaneous shear instability playing the part of a temporary perturbation.
This data set is thus close to classical hydrodynamic instability theory, for which a base
flow and a perturbation are specified analytically, but still requires a full integration of
the stratified Navier-Stokes equations for a full description since a purely analytical
treatment is not possible in this case. In what follows this case will be referred to as the
“spontaneous instability” case.

The bottom panel of Fig 4.11 shows the results of applying the error map method to the
spontaneous instability data set. For times less than t = 50 there is very little error due
to the stable background profile’s large variance. This means even a reconstruction with
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D = 1 has small error over this time period. This is consistent with the large first
eigenvalue (Fig 4.10). As the instability develops, we see error in the reconstructions for
small to intermediate values of D. This is due to the instability’s low variance (and
therefore priority) relative to the background profile, as discussed in section 4.3.6. This
error continues to the end of the simulation as the instability evolves. The error map
clearly indicates the presence of the instability as a time period of interest in the data
set, as indicated in the obvious change in the structure of the error over time.

Figure 4.11: A spontaneous shear instability forms and evolves, with time increasing from
the top to the bottom of the first four panels. The bottom panel is the error map with
time increasing left to right, and vertical axis of increasing D, with pairs of vertical green
lines indicating the times of the upper panels as time increases from left to right. See text
for details.

4.4.2 Dual Pycnocline

The second data set we examine is a simulation of an internal wave train in a spatially
varying wave guide, generated by what experimentalists refer to as a lock release: fluid of
a set density is suddenly released from behind a barrier and is allowed to freely form
waves in the stratified tank. We discussed this data set as a motivating example in section
3.2, and used it as an example in section 4.3.6. The simulation is set up so that a wave
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train of internal solitary waves with a trapped core forms, propagates some distance and
then encounters a sharp change in the background density (a pycnocline). This change
removes the near bottom stratification, while the main wave guide remains unchanged.
To the best of our knowledge, there is no a priori theory for the wave evolution in this
cases and we find that the change in the near bottom wave guide leads to the destruction
of the trapped core in the leading wave. This in turn leads to a significant increase in
short length scale activity and a loss of material from the leading wave, and a significant
perturbation to the second wave in the wave train. Unlike the spontaneous instability
data set, in this case there is no readily apparent way to define a “base” flow in this case
since even prior to the collapse of the core, the disappearance of the near boundary wave
guide implies a core cannot persist [34]. See the top four panels of Fig 4.12 for a visual
representation of the density field’s evolution in this case. The dynamics are considerably
more complex than the spontaneous instability dataset, and there is no obvious tie in
with classical stability theory. This case thus acts as a stress test for our analysis method.

The bottom panel of Fig 4.12 shows the results of applying the error map method to the
dual pycnocline data set. The clearest error structure is during the shedding event of the
leading wave beginning around t = 65, up until the leading wave leaves the domain
around t = 90. The change in structure of the error map with increasing D during this
time period corresponds to the rank ordering of processes by variance illustrated in Fig
4.8 at t = 80. Once again the error map clearly indicates a time period of interest
through the changes in the structure of the error over time.
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Figure 4.12: An internal wave train propagates from left to right and encounters a sharp
change in the background density profile. The bottom panel is the error map with time
increasing left to right, and vertical axis of increasing D, with pairs of vertical green lines
indicating the times of the upper panels as time increases from left to right. See text for
details.

The observant reader may have noticed the persistent error for low values of D in Fig
4.12 which was not present in Fig 4.11. The EOF modes are functions of space but not
time, so propagating structures require multiple modes. This is analogous to the way a
sequence of hand drawn stills can be used to create an animation, despite each picture
being a functions of space only. The propagation of the basic internal waves/gravity
current structure is an example of a medium scale process that lasts the duration of the
simulation, requiring a minimum amount of modes to even roughly approximate. This is
consistent with the scree in Fig 4.10, which shows that more variance is found in higher
modes than in the spontaneous instability case. As a result there is persistent error for
low choices of D even before the wave train encounters the density change around t = 35.
This is in sharp contrast to the spontaneous instability case there was almost no
propagation of the steady background state, and so even a one mode reconstruction had
low error. Similarly, the slight increase in error from t = 40 to t = 65 is due to the
instability in the lead wave induced by interaction with the density change. There are
more small scale processes present during this time, requiring more modes to
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approximate those processes well.

4.4.3 Collision

The third data set we examine involves the repeated collision of mode-1 (i.e. all lines of
constant density rise and fall together) and mode-2 (i.e. lines of constant density above a
given height rise, while those below fall, forming a lump-like wave) internal solitary waves
in a two pycnocline stratification. This simulation is constructed based on the
observations in [55] that suggest mode-mode collisions can irreversibly deform the higher
mode. By choosing a double pycnocline we ensure that the interaction takes place
without significant instability and three-dimensionalization. This allows us to confirm
that our analysis method is capable of capturing nonlinear phenomena loosely linked to
the concept of solitons, as opposed to turbulent transition. See the top four panels of Fig
4.13 for a visual representation of the density field’s evolution in this case. The dynamics
are complex, but compared to the spontaneous instability and dual pycnocline cases,
there are no instances of short scale instabilities, and no turbulence develops. In fact, the
complex pattern of constructive and destructive interference between the waves would
make an analysis method based on kinetic energy or vorticity very difficult to interpret.
This case thus acts as a different test for our analysis method, since the nonlinear effects
in this case involve soliton–like behaviour that becomes evident during collisions (both
wave–wave and wave–wall). In what follows this case will be referred to as the “collision”
case.

The bottom panel of Fig 4.13 shows the results of applying the error map method to the
collision data set. The waves are initialized so that the mode-2 wave is travelling
rightward and the mode-1 wave is travelling leftward. As discussed for the dual
pycnocline case, multiple modes are required for propagation, but in this case there is
propagation of two different waves at two different speeds. This double propagation
requires many modes, and again Fig 4.10 shows the variance in higher modes. The
smaller error anomalies correspond to reflections from the boundary: the mode-1 wave at
t = 55 and t = 111, and the mode-2 wave at t = 141. The large error anomaly from
t = 60 to t = 100 corresponds to the overtaking of the mode one wave by the mode two
wave. The clear error structure around t = 90 to t = 95 corresponds to the superposition
of the two waves. As in the other two cases, we again see that the error map clearly
indicates features in the data set.

64



Figure 4.13: The repeated collision of a mode-1 wave with a mode-2 wave. Initially
(top panel), the mode-2 wave propagates slowly from left to right, and the mode-1 wave
propagates quickly from right to left. At t = 55 the mode-1 reflects from the left wall, as
the mode-2 continues propagation to the right. At t = 75 the mode-1 wave has almost
overtaken the mode-2 wave as both propagate to the right. At t = 93 the two waves nearly
coincide. The bottom panel is the error map with time increasing left to right, and vertical
axis of increasing D, with pairs of vertical green lines indicating the times of the upper
panels as time increases from left to right. See text for details.

4.5 Discussion

The EOF error map identified time periods of interest in each of the three cases
presented in section A.2.4. The method was successful even though only one of the three
data sets had a classical “background–perturbation” split. And while the collision data
set featured a complex patterns of constructive and destructive interference, making the
kinetic energy and vorticity evolution very difficult to interpret, the error map method
was still successful. Note that these two dimensional data sets were chosen so that the
error map could be easily visualized alongside time outputs for expository purposes. The
error map method still identifies features even if the data set is so large that it is
otherwise difficult to visualize. Moreover, because the error map method collapses all
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non-time dimensions for a given reconstruction and time output, the method can be
applied to any time-indexed model output, provided an EOF decomposition is
appropriate and computationally feasible.

For very large data sets, there are alternatives to reduce the computational burden. In
particular it is clear that in many cases the full error map is unnecessary. For
completeness we included reconstruction of all possible D values in the Figures of section
A.2.4. Note that the error structures would have been clear with fewer modes than the
maximum. In particular, for half as many modes as the maximum we could have drawn
all of the same conclusions. This is unsurprising given the convergence of the eigenvalues
in all cases (Fig 4.10). Of course, given the steady increase in computational power, some
data sets will be too large to fit into memory. However even here, a rapidly developing
literature offers a way to compute the error map, albeit with an added burden of
increased computational time [68], [16]. We return to these concerns in section 6.

In the examples given here, error maps were calculated only for model output of
consistent physical units. Our code [56] outputs multiple physical fields, and we chose to
focus on only the density fields. As a result the EOF was carried out on a physical field
with only one type of physical unit. Care must be taken if the model output includes
data with different units. While multiple data types may be included together in an EOF
reconstruction, the non-uniform units cause differing weights of importance on the
different data types. Scalings may be chosen to attempt to correct this, but the more
types of units in a data set, the more relative scalings must be considered. Moreover
these scalings can have a profound effect on the resulting EOF reconstructions. All of
this is a general principle when carrying out an EOF analysis. In particular, for the error
map method, the relative scalings effect the reconstructions, and therefore the error maps
as well. This scaling problem is most easily solved by avoiding it altogether: simply carry
out a separate EOF analysis on each data type in the model output, as was done here.

The error map method has several possible extensions. For example, reconstructions from
using one of the many modifications of EOF (see [17]) could be employed or a different
norm chosen to measure the error. Although the focus here was on time-indexed model
output, a spatial dimension could also be used as the index. In that case the method
identifies spatial extents of interest, and the error map would be a function of the spatial
dimension and D. In general, any dimension of a data set may be used as an index for
the method, provided continuous subsets of that dimension have a useful interpretation.
Such extensions are possibilities for future work.
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The error map method also serves as a replacement for rough heuristics such as “the
elbow test” [1] for deciding how many modes to keep. Modes with low energy, which may
easily be removed by a standard elbow test, may still represent important dynamics [47].
In particular unstable modes start small but grow to be very important to the dynamics.
In order to avoid missing dynamically relevant modes, simply pick a value of D large
enough to avoid significant error structures in the map. This corresponds to picking the
lowest row in the error map which has no significant error at any time.

EOF error maps identify features in time-indexed model output in a way which addresses
the concerns of section 3.2. Thus far we have outlined the development of feature
identification methods for both time series data sets, and time-indexed model output.
This covers a wide variety of geophysically relevant data sets. We now consider another
class of data set.
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Chapter 5

Ensemble Data Sets

While previous sections have dealt with the analysis of time series data sets and
time-indexed model output, we now turn to the case of ensembles of time-indexed model
outputs. The gamma method is not really appropriate for these data sets for the same
reasons discussed in section 3.2. Since the gamma method is easily modified it is possible
that it could be applied to an ensemble data set, but we could think of no natural and
non-trivial application appropriate for inclusion here. Rather than contrive a data set for
the purpose of presenting an example, we will leave these explorations to future work, or
to those who find the need arising naturally in their work. In contrast, there is a great
deal to say regarding the application of EOF and the error map to ensemble data sets.
First a digression for perspective.

5.1 EOFs and Averaging

As numericists we are primarily concerned with the discrete setting, and so the preceding
sections, especially those in 4.3, developed the basic ideas of EOFs in the discrete
context. Alternatively the theory can be developed on continuous functions. Historically,
much of this theory was developed in the continuous setting, and it will be instructive for
us to consider this viewpoint before returning to the data sets we will focus on for the
rest of the section.

The main difference between the discrete and continuous derivations of the EOF is in the
modelling assumptions. The continuous derivation proceeds through ensemble averaging.
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Chapter 3 of [20] presents EOF (there called POD) as the solution to a variational
problem. Namely choose φ satisfying

min
φ

〈∣∣∣∣x− x · φ
|φ|2

φ

∣∣∣∣2
〉

where x is the process and the average is taken across realizations of this process. This
expression says that the mean square difference (rms error) of x from its projection (the
vector rejection) should be as small as possible. Through some calculation of variations
this leads to an eigenvalue problem with an operator whose eigenfunction-eigenvalue pairs
correspond to the EOF-eigenvalue pairs.

Assuming a continuous field rather than discrete data means the analysis takes place on
an infinite dimensional space. This leads to many technical concerns. For example, if the
data are continuous, the integral operator in question must be compact for the algorithm
to be possible. The reward for carrying out the analysis at this level of generality
includes some interesting results, one of which confirms the intuition that if the
eigenvalues decay fast enough then the dynamics should be on an attractor that can be
approximated well. The primary goal of [20] is the construction of a simple model for
coherent structures in a boundary layer. In their case EOFs are used as a target space for
Galerkin projection of modified Navier-Stokes equations, and the continuous formulation
serves them well. For a review of the nuances of calculating EOFs for continuous rather
than discrete input, see chapter 3 of [20].

We chose the discrete derivation (section 4.3.1), which has its own concerns. It assumes
that high variance for a given coordinate indicates significant dynamics, and that large
cross correlation indicates redundancy. Redundancy is then reduced by diagonalization
which concentrates variance along orthogonal directions. An implicit assumption made in
this algorithm is that the mean and variance are enough to characterize the dynamics,
but in fact only normal distributions have this property. It is also assumed that that
ensemble members are sufficient in number and density to trust the resulting values of
both mean and variance we obtain. These concerns pale in comparison with all the
technical difficulties introduced by the continuous formulation which we have just
outlined. Moreover the discrete derivation is the most practical framework to apply to
the discrete data sets we wish to analyze. At this time we have no intention of developing
analytic models, as we will always be performing EOF analysis on discrete data, either
from CFD or the field. Besides, the discretization of the continuous problem reduces to
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the SVD, as outlined in section 3.4.2 of [20]. Except for the digression in this
introduction, we only consider the discrete case throughout the thesis.

One aspect of the continuous derivation raises an interesting point. If the formulation
depends on an averaging operator, which averaging operator should be used? According
to the continuous perspective, applying an EOF analysis as we have done so far in the
discrete formulation can be thought of as treating the spatial domain as a stationary
stochastic process x with snapshots x(tj) acting as ensemble members, and the average
taken across time. So thus far we have been averaging over time, which matches our work
in section 4.3.5. One can imagine a scenario where x has one mean over a given time
period, and then undergoes a sudden transition to another state with a different mean,
over a small number of timesteps, so requiring stationarity seems reasonable. This is the
view presented in section 3.2 of [20]. Note also that this view requires that we know, or
can reasonably assume, that x is stationary before we even look at the data. How, then,
could this method be applied to a dataset measuring a process about which we were
ignorant?

An alternate strategy, if x is not known to be stationary, is to run multiple experiments,
and average across the ensemble of experiments instead of across time snapshots of a
single experiment. This raises further concerns. For example, what if data from only one
experiment is available, as would be the case for in situ data sets? One option is to
construct an ensemble by assuming that the underlying process is ergodic, breaking the
single available record up into shorter separate experiments to form the ensemble
members. However ergodicity is another strong assumption, albeit a commonly made
one. If a set of multiple experiments is available, averaging across this ensemble results in
EOFs which are functions of both space and time. This complication makes
reconstructions less easily interpreted.

Of course many data sets have no time index at all. We will call these static data sets.
EOF analyses are often carried out on static data sets under the name of Principal
Component Analysis (PCA). In order to form the EOF error map for a static data set it
is again required that some index in the data set serve as the parameter along which the
rest of the data set is aligned. As such it is not difficult to apply the EOF error map
method to a static data set so long as some dimension in the data can serve as an index.
In this case features are defined with respect to this index, rather than time. For a general
static data set, it is not clear that a meaningful choice of global indexing parameter would
exist. Nevertheless the method could still be suitable for some data sets. For example it
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would be straightforward to take a single output from a large three dimensional CFD
simulation as a static data set. In the case of a gravity current with a lobe-cleft
instability, the across-wave direction could serve as the parameter in this case, and we
would expect the error map to show the locations of large lobes or clefts in that direction.
This is a reasonable application, and indeed similar applications would be possible
whenever symmetries in a simulation align with indices of the associated data set.

Clearly there are many thorny details to consider, and we will avoid them all. Following
the spirit of our previous methods, we adopt a direct and easily interpreted approach. We
have an ensemble of data sets under consideration, and will consider static data sets
formed by taking the same time output from all experiments. This can be interpreted as
the final result for the same experiment run several times. Data sets of this type have a
strong relation to experimental fluid dynamics in particular, which justifies our interest in
this choice. Our analysis method will be to simply average across the ensemble index i, in
the same way we have been averaging across time in our previous data sets. That is, we
continue from the discrete perspective, but target an ensemble of experimental results as
the data set of interest.
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5.1.1 EOF on a Static Data Set

Figure 5.1: This is the density field of realization 1 of the ensemble over the 15 s run, with
one panel per second increasing left to right and top to bottom. Density values go from
blue to white to red as they increase.

To form the static data set, we used an experiment which can be thought of as a more
energetic version of the seiche (standing wave) in a box experiment depicted in Figure 3.5
of section 3.1.2. We ran a two dimensional DNS simulation of a stratified fluid in a 128
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wide by 512 tall domain. The initial conditions were nearly the same in every case, being
a lightly stratified fluid with a large initial perturbation of the pycnocline. These
conditions differed by a small amount of noise in each simulation. These experiments can
be thought of as the experiment depicted in Figure 3.5, but with a taller and narrower
domain, a weaker stratification, and a broader pycnocline initialized with a perturbation
far from equilibrium. This results in dynamics dominated by the the kinetic energy of the
perturbation, checked only by the weak restoring force from the stratification. The
experiment was run 100 times, and the density field was chosen as the focus for analysis.
Figure 5.1 shows the evolution of the density field of realization 1. After several periods
of the seiche, the ensemble was formed by taking the density field at time 5 s from each
experiment as the realizations of the experiment’s result. We show a few ensemble
members in figure 5.2. This is our static data set.

Figure 5.2: These are three realizations (1, 4, and 26 from left to right) out of the 100 in
the ensemble at 5 s. Note the plume in the top left of realization 4. No other realization
has this structure. Note also that the left panel of this Figure and the top right of Figure
5.1 are the same image.

As we are trying to extend the EOF error map method from dynamic to static data sets,
we will compare data sets of section 4.4, and especially the dual pycnocline data set of
section 4.4.2 with the static data set just constructed. Before we apply the EOF error
map method, it is worth discussing the results of a traditional EOF analysis in this case.
As we take the reconstructionist view throughout this thesis generally, we have not yet
done this. As we will see, the error map results require some interpretation, and this
traditional deconstruction of the data set into scree, modes, and coefficients facilitates
this discussion. To that end, consider the normalized scree plot in the top panel of Figure
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5.3. Recall that each of the data sets in section 4.4 has at least 100 EOF modes, and the
top panel of Figure 5.3 only shows the first 30 of each, because the normalized
eigenvalues are nearly zero by that index. In contrast, the scree of the static data set
depicted in the top panel of Figure 5.4 depicts all 100 normalized eigenvalues. Note the
difference in the yaxis scaling. The static data set has an almost flat scree in comparison
to the dynamic cases. The first eigenvalue is much smaller, and later eigenvalues are
much larger, with even the 99th normalized eigenvalue still about 0.003%. In contrast the
99th eigenvalue for the dual pycnocline data set is around 6.36× 10−6%. Note the 100th
eigenvalue indicates convergence of the reconstruction to the original data set, up to
numerical precision. So we can see that the static data set scree has much slower
convergence than the dynamic data set cases.
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Figure 5.3: The scree and coefficient plots for the data sets from section 4.4. The top panel
is Figure 4.10, repeated for ease of comparison with Figure 5.4. Each scree is a plot of the
normalized eigenvalues as a function of mode k = 1, . . . , 30, the k being the mode index
from Eq 4.14. The sum in the normalization is over all eigenvalues of the given dataset.
The bottom three panels are coefficient plots for a1, a10, and a20 for these three data sets
as indicated by the color matching the legend in the top panel.
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Figure 5.4: The scree (top) and coefficient plots (bottom) for the static data set. Compare
with Figure5.3.

We now consider the coefficients of the EOF decomposition. The bottom three panels of
Figure 5.3 show the first, tenth, and twentieth coefficients of the spontaneous instability,
dual pycnocline and collision data sets, in that order from top to bottom. The rank
ordering of the scaling of the coefficients is clear, as is the smooth character of their
change over time t. In contrast, the bottom panel of 5.4 shows the first, tenth, and
twentieth coefficients from the static data set. Notice that the scaling differences are not
as clear because the eigenvalues are so similar. More importantly notice that the
coefficients do not change smoothly over the ensemble member index i. So while the
coefficients from the dynamic data sets change smoothly over the index of time, the
coefficients from the static data set have no such smooth change over the ensemble index.
This is unsurprising because each ensemble member in the dynamic data sets is a small
continuous deformation of the previous one, while in the static data set each ensemble
member is the end state of a different experiment, and no such smooth property should
be expected in general.
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Figure 5.5: The first three EOFs of the dual pycnocline data set of section 4.4.2.

Figure 5.6: The first three EOFs of the static ensemble data set.

Finally, we consider the first three modes of the dual pycnocline data set and of the static
data set. Notice in Figure 5.5 the first three modes again have a continuous physical
character, and feature large scales. In particular modes two and three look like
deformations of sin(x) cos(y). In contrast, the first three modes of the static data set look
‘stochastic’ in nature, and feature extensive small scale structure. Once again this is due
to the lack of similarity between ensemble members compared to the dynamic case.

The traditional EOF analysis being complete, we consider the reconstructions, as that is
our focus and the basis for the error map. Figures 5.7 and 5.8 show the first ensemble
member on the left, along with the reconstruction on the right with increasing number of
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modes top to bottom. Clearly even with 50 of the 100 modes the reconstruction is quite
poor. This is due to the slow convergence of the eigenvalues. With 50 modes only about
77% of the variance is represented. This is in stark contrast to the dual pycnocline data
set, where as was seen in Figure 4.8 with 50 modes 99.6% of the variance was
represented. In fact even the reconstruction with 90 modes has noticeable artefacts in the
reconstruction for the static data set. This shows that the fast convergence of the
eigenvalues is an important part of satisfactory truncated reconstructions.
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Figure 5.7: EOF Reconstructions of Realization 1. Left is realization 1, and right is a
reconstruction with 1, 25, and 50 modes running top to bottom.
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Figure 5.8: EOF Reconstructions of Realization 1. Left is realization 1, and right is
a reconstruction with 75, 90, and 100 modes running top to bottom. The 100 mode
reconstruction includes all modes, and so is accurate to the original data set up to numerical
precision, but even at 90 modes there are still clear artefacts in the reconstruction.
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In summary, we have seen that the differences across the ensemble produces very
different results than that of a static data set. This is because the ensemble members
have only a qualitative similarity, which yields slow convergence of the eigenvalues. This
means that the reconstructions on which the error map depends require many modes to
be satisfactory. Even though the ensemble members are different final states of numerical
experiments with nearly identical initial conditions, the small differences in the numerics
of the runs led to members different enough that there was no efficient truncated
reconstruction. However each member in the ensemble looks qualitatively very similar. In
contrast, most members of the dynamic data sets are shifted and deformed versions of
other recent time outputs. As a result the EOF is able to capture some general trends,
the convergence of the eigenvalues is swift, and the reconstructions are efficient.

Perhaps the most important point to take away from this section, is that mentioned in
the discussion of Figure 5.2. Only one of the 100 realizations had a prominent plume
nearing the top boundary as in the middle panel of that Figure. This raises questions of
what happens if we were to run a single simulation and get this plume. One can imagine
writing a paper: “Unstable vertical transport in weakly stratified fluids” or the like,
including a detailed analysis of the dynamics. However without running an ensemble of
simulations the rarity of this event would be difficult if not impossible to discuss. It could
be argued that a sufficiently robust analysis of the dynamics could be enough, but no
matter how convincing the argument, the ensemble of simulations immediately provides
evidence. Furthermore many theoretical frameworks are built on ensembles [8], but
numerical experiments using those frameworks are typically only carried out once. This is
the case because of the natural constraint of clock time. Generally, a researcher would
rather have a very high resolution run, than 10 or 100 low resolution runs which took the
same time. Nevertheless the problem remains: if a large run yields a rare case, how likely
is it to be recognized as rare. Indeed we would expect this rarity to be apparent, and
indeed defined, only over an ensemble of experiments. Almost nobody does this. This
may be a source of the lack of reproducibility of some results.
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5.1.2 Ordered Error Maps
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Figure 5.9: The error map results for the ensemble data set.

Figure 5.9 shows the EOF error map for the static data set used in section 5.1.1. It is
clear that while it is mathematically immediate to apply the EOF error map method to
static data sets, the interpretation of the error map requires further consideration.

82



20

40

60

80

100

20

40

60

80

100

1 20 40 60 80 100

20

40

60

80

100

1 20 40 60 80 100 1 20 40 60 80 100 1 20 40 60 80 100 1 20 40 60 80 100

Figure 5.10: These are the error maps for every ensemble increasing in time 1 s left to right
and top to bottom. Note the large errors in the maps for ensembles at 3 and 4 seconds.
This is due to the large scale nature of the seiches at this time. While they are similar
to each other, as shown by the scree, the small differences of the large scales lead to large
reconstruction errors. The eigenvalue series of Figure 5.17 shows that the scree is flatter
at time 5, corresponding to more differences across the ensemble, but less reconstruction
error.

Figure 5.10 shows that the error maps for static data sets formed at other times are just
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as difficult to interpret, which shows that it was not just the selection of the ensemble at
5 s which caused the problem, but the lack of a physically meaningful ordering. For
dynamic data sets time provides an ordering of the outputs. The error map for a dynamic
data set depicts error change over time as a way to identify time periods of interest. In an
ensemble such as the ones we’ve constructed, there is no clear ordering. As a result the
index i simply enumerates the order we chose, and there is no meaning to a ‘period’ over
some sub-range of i which forms a feature. This makes it impossible to interpret the error
map for static data sets of this type in the same way as we would for dynamic data sets.

This is not a mathematical problem, but a problem of interpretation only. The
covariance matrix from equation 4.3 will have the same entries if the times tk are
re-ordered. Put another way, the covariance matrix is unchanged if a time-indexed set of
vectors is put in any order, not just that of increasing time. In a static data set, the
vectors have no natural ordering, but any order may be chosen without effecting the
covariance matrix. This means that the EOFs of the covariance matrix are also
unchanged by re-ordering, and we may chose any order without concern that it will
change the result of the EOF analysis. Since the index i enumerates the order we
happened to chose, and this ordering does not change the resulting EOF analysis, it does
not effect the reconstructions or their error. Therefore the columns in the error map can
be re-ordered in any way without losing information. This is in stark contrast to the
dynamic case, where the time-ordering is essential.
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Figure 5.11: This is the same as Figure 5.10, except that each error map has been ordered
by total reconstruction error over D. See text for details.

While there is no clear ordering on a static data set, the error map can be used to
construct one. To form a new ordering we need a criterion. An obvious choice is by total
error across all reconstructions. Mathematically, this corresponds to summing the errors
along each column of the error map. The results of this procedure are depicted in Figure
5.11. In each panel the realization on the left of each error map is the one with the least
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total reconstruction error over all values of D, and the one on the right has the most
error. One could interpret this to say that the realization having the least reconstruction
error is the most representative of the ensemble, and that having the most reconstruction
error is the least representative of the data set. We see that most of the ensembles have
low enough error that the ordering is not useful. As seen in Figure 5.1 times 2 through 5
have significant error caused by variations in stirring and mixing across the ensembles.
The ordered error maps show that only times 3 and 4 have significant differences in error
across the ensemble, while the error across the ensembles in outputs 2 and 5 are relatively
flat.

We will consider an example from the static data set taken across the ensemble at time 3
s. Figure 5.12 shows the evolution of realization 30, which had the least error in the
ensemble at 3 s. Figure 5.13 depicts the evolution of realization 4, which had the second
least error at that time, and Figure 5.14 depicts the evolution of realization 28, which
had the third least error at that time. Comparison of these Figures at time 3 shows
strong similarities. Finally, Figure 5.15 depicts the evolution of realization 59, which had
the most reconstruction error at time 3 s. There are clear differences between this
realization and realizations 30, 4, and 28 at time 3 s. The entire evolution for each
realization was included for a broader comparison, but we remind the reader that the
ranking was according to reconstruction error only at the 3 s ensemble.
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Figure 5.12: This is the density field of the 30th realization over the 15 s run, with one
panel per second increasing left to right and top to bottom. The top middle panel therefore
corresponds to time 3 s. This realization had the lowest error at 3 s.
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Figure 5.13: This is the density field of the 4th realization over the 15 s run, with one
panel per second increasing left to right and top to bottom. While realization 30 had the
lowest error at 3 s, realization 4 had the second lowest at 3 s. The entire run is included
for comparison, but the comparison at 3 s shows clear similarities to realization 30.
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Figure 5.14: This is the density field of the 28th realization over the 15 s run, with one
panel per second increasing left to right and top to bottom. Realization 28 had the third
lowest error at 3 s. The entire run is included for comparison, but the comparison at 3 s
shows clear similarities to realizations 30 and 4.
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Figure 5.15: This is the density field of the 59th realization over the 15 s run, with one
panel per second increasing left to right and top to bottom. While realization 30 had the
lowest error at 3 s, realization 59 had the most error at 3 s. The entire run is included
for comparison, but the comparison at 3 s shows clear differences between this run and
realizations 30, 4, and 28.

It seems clear, then, that ordering by total reconstruction error is an ordering of how
representative a realization is of the ensemble, with the most representative realization
having the least error and the least representative realization having the most error. As
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the EOF analysis is performed on the perturbation from the mean, in this way an
ensemble is ordered by it’s distance from the mean. This gives a way to identify both
realizations which should be studied as being representative of the underlying processes,
and those which are in some sense outliers.

The EOF error map was developed for use on data sets indexed by time. It is therefore
not surprising that it required modification for use on static data sets. In particular our
application of the EOF error map method to static data sets has been hindered by the
lack of a natural ordering of the data sets. Ordering by total reconstruction error was our
solution to this problem, and the ordered error maps are more useful than the unordered
error maps because sub-ranges of i have meaning: sub-ranges with no significant change
in the error structure correspond to similarly representative realizations. This is an
ensemble data set version of a feature. This principle can be seen in the static data set at
time 3, where the first few realizations correspond to similar error in the ordered error
map, and similar structures in the Figures just discussed. We would need more testing to
conclude anything general with confidence, but one can imagine a scenario where the
error structure indicates a bifurcation or other significant event. Depending on context it
is possible that other criteria would be useful. Perhaps the error of a particular
reconstruction, rather than the sum. Perhaps an iterated model where certain sub-ranges
of i are kept, and the EOF run again on the members of this subset. This is a definite
direction for future work

It should be noted that for some reason realization 30 had the smallest summed
reconstruction error not just at 3 s, but in fact in 9 of the 15 time outputs: times
t = 2, 3, 5, 6, 7, 8, 9, 10, 12. By extension of the least error at every time, this makes this
realization in some sense representative of the ensembles over time as well. This could be
a useful metric for ensembles of experiments, but there is no reason to think that there
will always be a realization which has this property. This is another avenue for future
work.
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5.2 First Eigenvalue Series
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Figure 5.16: The normalized scree for ensemble data sets formed at 1 to 15 s, in order
from left to right and top to bottom. This makes the top right panel the same scree as
that in the top panel of Figure 5.4. Note that this time is associated with the slowest
convergence of the eigenvalues.
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Having discussed EOF and error maps on static data sets, we now consider the full
ensemble of 100 experiments over 15 different time outputs. We again derive a method
for identifying times of interest. Note that in Figure 5.11 time 5 has the flattest error
map, while still having significant error at all times. Compare with Figure 5.16, which
shows the normalized scree results from the static data sets formed by taking the
realizations at 1 through 15 s inclusive. Our choice of 5 s in section 5.1.1 was the special
case of the ensemble with the most slowly converging scree of the 15 choices. Note that
for early and late times the normalized first eigenvalue is similar to the dynamic data sets
whose scree are plotted in the top panel of Figure 5.3, indicating much more agreement
across the ensemble. The reason for this is that each experiment starts as a seiche, then
breaks down, and then settles to an available potential energy (APE) minimum. Near the
beginning of the experiment all realizations represent a very similar seiche, and near the
end all realizations represent a similar relatively quiescent and stable configuration. It is
the details of the turbulent transition which causes the considerable difference across the
ensemble and the relatively flat scree. Out of the 15 times, this transition is most
prominent at 5 s. Put another way, the large scale physical similarity across the ensemble
at early and late times yields better convergence than the small scale differences during
the turbulent breakdown. The differences between realizations are small, as in the
dynamic data set case. In the dynamic case the differences are small because the
evolution of the process leads to small differences between time outputs. In the early and
late time static cases the differences are small because the physics is better determined
outside of turbulent times.

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

Figure 5.17: The first eigenvalue of each panel of Figure 5.16 as a line plot. We call this a
first eigenvalue series. Note that the minimum occurs at t = 5, which is why we took this
ensemble to form the static data set studied in section 5.1.1.
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These observations suggest the following algorithm for finding interesting times in
ensembles of experiments. Note that by normalization, the first eigenvalue serves as a
proxy for the entire normalized scree. A lower first eigenvalue corresponds to slower
convergence and more disagreement between realizations. A higher first eigenvalue
corresponds to faster convergence and more agreement between realizations. We can
therefore take the first eigenvalue from each scree in Figure 5.16 to form a series, and the
minima of that series indicates a time of disagreement across the ensemble. Formally,
given a set of L experiments of size M ×N (M corresponding to number of grid points, N
corresponding to number of time steps) with M > L. Take the ensemble of grid points M
across the L experiments so that the SVD is performed on the resulting M ×L matrix, at
every time tj,  = 1, . . . , N . Extract the EOF scree and normalize. Save the first
normalized eigenvalue at each time tj to form the time series λ(tj). Then minima of λ(tj)
correspond to times of disagreement across the ensembles. The result of this algorithm
applied to the 15 ensembles under consideration is depicted in Figure 5.17. This first
eigenvalue test justifies our choice of the ensemble at 5 s when forming the static data set.

5.3 Discussion

In this chapter we continued the extension of feature identification methods to ensemble
data sets. We saw that the unordered nature of these data sets led to problems of
interpretation, most notably in what was meant by a feature in this case. The imposition
of an order by total error solved this. Features are sub-ranges with no significant change
in the error structure. These correspond to similarly representative realizations.
Moreover individual realizations are ranked by how representative they are of the
ensemble. In this way the ordered error maps for static data sets give meaning to single
ensemble members in a way that error maps on dynamic data sets do not.

Our static data sets were constructed from single time outputs of a set of dynamic
experiments. The first eigenvalue series served as yet another feature identification
method in the dynamic ensemble data set case. Along with the gamma, error map, and
ordered error map methods, we now have feature identification methods for an enormous
range of data sets.
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Chapter 6

Extending the Data Pipeline

For the most part, our data sets have been small enough to visualize in a few panels of a
single figure. In this sense previous examples of the application of our methods have been
at tutorial scales. This has meant that visualization has preceded analysis in every case.
Now that the methods have been established in our minds through previous sections, we
will apply them to full size data sets. Both methods show their practical worth in being
applied before the visualization as a way of focusing further analysis efforts, including any
visualization. In this way the methods serve as a primary method to identify features,
rather than as confirmation after visualization. As mentioned, SPINS [56] outputs high
resolution bulk measure time series. The gamma method scales without difficulty, and
can be applied to any data set SPINS may produce. It is less straightforward to apply
the error map method. We outline this problem and our solution now.

6.1 EOF on Large Data Sets

The data sets in sections 2 and 4 were small enough that built in MATLAB functions
were always sufficient to perform the calculations in RAM. This is not always the case.
Data from DNS of fluid dynamics problems is large by design. In fact, according to the
categorizations of [18] listed in their Table 1 (which in turn is quoted from [21] and then
extended), our large runs belong in the ‘monster’ data category (∼ 1012 bytes). For
example, a SPINS run of 10243 and N = 100 time outputs produces four scalar fields:
density and the three components of velocity. Each number stored is 8 bytes. Therefore
the total number of bytes is

10243 · 100 · 4 · 8 ≈ 3.4× 1012
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Using these numbers M = 4 · 10243 and computing EOFs as described in sections 4.3.1
requires diagonalizing the M ×M dense matrix CX of equation 4.3. Alternately, we may
compute the SVD as discussed in section 4.3.3 on a large and dense M ×N matrix X.
Both methods are extremely resource intensive, and tend to exceed available RAM.
Fortunately, MATLAB’s svds command has an option to supply your own multiplication
operation. We constructed an operation which writes the matrix rows and columns to
file, and then reads in only what is needed for a given calculation. This is more time
consuming, but makes the calculations possible. It is a simple matter to then construct
the error map.

6.2 Results

6.2.1 Cabbeling In a Stratified Shear Instability

The first example is a simulation of stratified shear instability on the lab scale, in the
cold water regime. Cold water is interesting because the density is a non-monotonic
function of temperature, so that there is a temperature at which maximum density
occurs (around 4 degree Centigrade for pure water). This is why ice floats. We are
interested in shear instability in this setting because when water is cold it is possible to
mix two parcels of fluid that have different temperatures, but the same density, so that
when mixed the resulting parcels will have a larger density than either of the two had at
the outset. This phenomenon is called “cabbeling” [3]. It is challenging to model
numerically due to the small scale associated with instability onset. In our simulation
that dimensions of the rectangular tank are (0.256, 0.064, 0.128) m with (512, 128, 256)
grid points, implying a resolution of 0.5 mm in all directions. Outputs are 5 s apart, and
the simulation is stopped after 48 outputs. The simulation is initialized with a
temperature transition so that the density maximum occurs in a thin region near
mid-tank. A shear layer with flow in the x, or along tank, direction is collocated with the
temperature transition, and instability is triggered by white noise in the velocity field.
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Figure 6.1: The initial state of the simulation. From left to right, the temperature, density
perturbation, and velocity perturbation profiles.

Figure 6.1 shows the initial state of the simulation. The mid-depth density maximum
combined with the noisy shear velocity profile induce competing Kelvin-Helmholtz and
Rayleigh-Taylor instabilities.
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Figure 6.2: The gamma method results using kinetic energy, enstrophy, maximum viscous
dissipation, and maximum vertical velocity for the defining set. Rather than choose a
feature length we simply used the maxima in this case.

Figure 6.2 shows the results of the gamma method applied to the data set using the
defining set of kinetic energy, enstrophy, maximum viscous dissipation, and maximum
vertical velocity. In this case we do not have a clear choice for feature length, and so
following the advice of section 2.3.4, we will simply investigate particular maxima of the
gamma curve. Clearly outputs 17, 18, and 21 are good choices to consider.
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Figure 6.3: Outputs 17, 18, 21 of the temperature field from top to bottom, as chosen by
the gamma method depicted in Figure 6.2. On the left we have slices at y = 10, and on
the right slices at y = 30.

Figure 6.3 shows the outputs chosen by the gamma method at two different y locations.
The gamma method has identified times where the two instabilities are causing mixing,
but the structures are still large scale.
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Figure 6.4: The error map for temperature field of the cabbeling data set.

Figure 6.4 shows the error map for the temperature field of the data set. Outputs 12, 23,
and 47 were chosen as indicators of early, mid, and long time behaviour.
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Figure 6.5: Outputs 12, 23, 47 of the temperature field from top to bottom, as indicated
by the error map in Figure 6.4. On the left we have slices at y = 10, and on the right slices
at y = 30.

Figure 6.5 shows slices at y = 10 and y = 30 for some times selected by looking at the
error map. The large error structure around times 10 to 12 indicates the onset of the
Kelvin-Helmholtz instability, while the end time behaviour is that of a Rayleigh-Taylor
instability. These are indicated in the top and bottom rows of the Figure respectively. In
between, around output 23 in the middle row of the Figure, both are occurring. We see
that the error map clearly indicates these times of interest.

Note that the gamma results of 17, 18 and 21 are clustered within the major feature in
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the error map centred at time 23. We see that there is good agreement between the two
methods.

Figure 6.6: Time outputs 10, 14, 18, 22, 26, 30, 34, 38, 42 in order left to right and top
to bottom. This is the temperature field with the most dense water at the mid depth.

Finally, as confirmation of our work, we show the evolution of the x-z temperature field
at y = 10, as depicted in Figure 6.6. This confirms our intuition of what the error map
was outlining: the development of Kelvin-Helmholtz instability followed by a period of
intense mixing and cabbeling, which in turn drives further mixing. A “standard” shear
instability lifecycle would not have the cabbeling driven production of dense water and
hence the instability would “mix out” much earlier. The error map’s butterfly shape
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shows that the fully three-dimensionalized, cabbeling driven portion of the instability
evolution produces a substantial amount of small scale features, which require a larger
number of EOF modes to represent accurately.

6.2.2 Internal Seiche with Multiple Instability Types

This experiment is another of the runs in the parameter space exploration of the
situation depicted in Figure 3.5 of section 3.1.2. The model tank is (1.024, 0.128) m with
a grid of (6144, 768), for a resolution of 0.167 mm2. There are 300 outputs 1 s apart. The
early portion of the evolution consists of an internal seiche, and hence the error map is
only computed for the second half of the simulation, or outputs 150-300.
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Figure 6.7: The Gamma Method on kinetic energy, enstrophy, max dissipation, and max
vertical velocity. Maxima 127, 208, 247 were chosen.
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Figure 6.8: The gamma method showed maxima at 127, 208, and 247, and the temperature
fields of these outputs are arranged from top to bottom.

Figure 6.7 shows the gamma method for this data set, and Figure 6.8 shows the outputs
chosen by the gamma method. The top panel (output 127) depicts the onset of the
double diffusive instability. The middle panel (output 208) depicts a time of propagating
double diffusive instabilities. The bottom panel (output 247) shows the breakdown into
small scale structures.
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Figure 6.9: The error map on the salinity field for the last 150 outputs of the simulation,
corresponding to the last half of the outputs in Figure 6.7. Only 30 modes were used, to
reduce total computation time.

Figure 6.9 shows the error map for this data set. It was performed only on the final 150
outputs, as we expected more dynamics in the second half of the simulation. Moreover
we chose to include only 30 modes to reduce computation time. These are the kind of
choices which can be made in a particular context. We see several times of interest. We
chose outputs 58, 82, and 145 in the last 150 outputs, corresponding to outputs 208, 232,
and 295.
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Figure 6.10: Temperature fields of outputs 208, 232, 295 as selected by the error map
method. See text for details.

Figure 6.10 shows the outputs chosen using the error map of Figure 6.9. The top panel
shows output 208, which was the second feature identified by the Gamma method of
Figure 6.7, and depicted in the middle panel of Figure 6.8. This is the propagating
double diffusive instability. The middle and bottom panels show the subsequent
breakdown of this instability into finer structure.

It is interesting to note that the propagating, coherent, doubly diffusive instability of
output 208 was chosen by both methods. A doubly confirmed time such as this is of
primary interest.
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6.3 Summary

Both the Gamma and EOF error map methods allow us to identify features. While the
Gamma method runs in seconds, the error map in these cases took less than 12 hours.
Future work would include improvements in this area, although the simplest fix is to
move to a solid state hard drive to speed up multiplication. Currently 12 hours is
sufficient for our needs, as the gamma method results are available immediately, and the
error map results can be ready the following day.
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Chapter 7

Conclusion

We began with the problem of finding interesting times in data sets. This problem was
originally posed in the context of time series data sets collected from an in situ
instrument cluster. A simultaneous perturbation argument led to the gamma method,
which has proven to be effective on every time series data set to which it has been
applied. We then considered the problem of finding interesting times in time-indexed
model output. In this case we found that the gamma method was not suitable for
application directly to the data set, but could still be applied to good effect using a time
series data set constructed from the model output. This requires some expertise, but no
more than the gamma method already requires of the intended user.

The EOF error map method was developed in order to take full advantage of the spatial
information present in time-indexed model output. This method has proven to be
effective in finding time periods of interest in every time-indexed model output data set
to which it has been applied. Some especially large data sets required additional coding
and runtime to get around resident memory limitations, but even in these cases the
implementation is straightforward using built in MATLAB toolboxes.

Emboldened by our continual success on data sets with a time index, we next considered
the problem of applying both methods to data sets without a time index. We concluded
that the flexible nature of the gamma method would almost certainly have a valid
application in static data sets, but that it would be too context dependent to say
anything general here. In the case of the EOF error map method, we derived the ordered
EOF error maps as a way of measuring how ensemble members represented the whole
ensemble.
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Our static data set was single time outputs of a set of dynamic data sets. We developed
the first eigenvalue series for identifying time periods of interest in ensembles of
time-indexed model output. As ensembles of dynamic data sets are not the norm, we
have less experience in the application of this method. However the initial results are
promising, and we view this as a prime candidate for future work.

We have made every attempt to relate every aspect of this thesis to the original problem
of finding interesting times in data sets. As we have just discussed, this led to methods
which solved this problem in time series data sets, time-indexed model output, and
ensembles of time-indexed model output. Moreover we developed an analogous method
for static data sets. We have thoroughly answered the original question.
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Appendix A

Appendix

A.1 Gamma on CFD data: Zero Contours

In section 3.2 we saw that the gamma method was not well suited to finding features in
time-indexed model output in a way that considered spatial information. The best option
available for the gamma method in these contexts is to construct a time series data set
from the model output and apply gamma to the time series data sets as it was designed
to do. Essentially a strategy of ignoring spatial information to find features in time.
Another strategy is to ignore the time information to find features in space. To see how
this would work, again consider the dual pycnocline data set introduced in section 3.1,
and in Figure 3.9. This data set actually contains not just density, but horizontal velocity
u and vertical velocity w. The density perturbations of Figure 3.9, along with the
velocity perturbation fields are shown in the top three panels of Figures A.1, A.2, A.3,
and A.4, mirroring the time outputs in Figure 3.9.
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Figure A.1: The zero contour gamma method applied to the Dual Pycnocline case. Time
output 1, corresponding to the top panel of Figure 3.9. From top to bottom the panels are
density ρ, horizontal velocity u, vertical velocity w, zero contours for all three data sets (ρ
in green, u in red, w in blue), the gamma field, and the visual gradient of the gamma field.
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Figure A.2: The zero contour gamma method applied to the Dual Pycnocline case. Time
output 65, corresponding to the second panel of Figure 3.9. From top to bottom the panels
are density ρ, horizontal velocity u, vertical velocity w, zero contours for all three data sets
(ρ in green, u in red, w in blue), the gamma field, and the visual gradient of the gamma
field.
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Figure A.3: The zero contour gamma method applied to the Dual Pycnocline case. Time
output 80, corresponding to the third panel of Figure 3.9. From top to bottom the panels
are density ρ, horizontal velocity u, vertical velocity w, zero contours for all three data sets
(ρ in green, u in red, w in blue), the gamma field, and the visual gradient of the gamma
field.
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Figure A.4: The zero contour gamma method applied to the Dual Pycnocline case. Time
output 100, corresponding to the bottom panel of Figure 3.9. From top to bottom the
panels are density ρ, horizontal velocity u, vertical velocity w, zero contours for all three
data sets (ρ in green, u in red, w in blue), the gamma field, and the visual gradient of the
gamma field.

We are now looking for interesting locations within each time output. We apply the spirit
of the gamma method, using our domain knowledge to guide our progress. We know that
shear plays an important role in stratified flow dynamics. As these are perturbation
fields, the zero contour for the density field marks the midpoint of the waveguide and the
zero contours of the velocity fields mark locations where shear may develop. The zero
contours are therefore related to locations of interest, because they identify either
locations of propagation or instability development. These zero contours are plotted in
the 4th panels of Figures A.1, A.2, A.3, and A.4.

Unfortunately this visualization is poor, as it draws the eye to zero contours of w which
are not as important as the image makes it seem. This is because the zero contours are
not sufficient conditions for dynamics, and so a zero contour in a nearly zero field is not
interesting, but is highlighted anyway. However multiple zero contours nearby one
another indicate regions of possible shear and propagation, and so should be considered.
To find these we use all three fields in an analogue to the gamma method. We apply the
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gamma method to the slice, using the three physical fields as the defining set with no
de-trending as we ignore time information, and scaling by the maximum of each
respective field. This produces what we’ll call the gamma field at each time. It is simply
the minimum of the absolute value of the three scaled physical perturbation fields in the
data set at each time. The gamma field is presented in the 5th panels of each of Figures
A.1, A.2, A.3, and A.4.

One final improvement on this visualization is to highlight the zero contour clusters. As
an image, clusters of zero contours are characterized by rapid changes of color values in
space. MATLAB’s imgradient function from the image processing toolbox can be used
to highlight such areas. The bottom panel in each figure is the magnitude of the image
gradient of the gamma field. It clearly shows the small scale structure in the gamma
field, as that is where there is a concentration of zero contours from one of the three
physical fields. This omits dynamically uninteresting zero contours, while identifying
spatial features. If you look closely you can also see the sharp change in density near the
middle of the domain.

Clearly we had to go pretty far afield from our original method to find a way to apply the
gamma method in a way that considered spatial information. So much so that we had to
abandon the original problem of finding interesting times in the interest of finding
interesting locations. The extension of the gamma method to zero contours within fluid
dynamics data sets changes its function to a visualization tool within that specific
context. It is a valid criticism of this extension to say that looking at each of the three
fields also clearly identifies where the features are, and so there is little need for the
gamma method. However it is also true that the gamma field gives a way to look at all
three physical fields at once, through the lens of the identification of important dynamics.
While it has this value, we still regard it as an aesthetically pleasing dead end.

A.2 Perception in the Analysis Pipeline

A few years ago, [60] introduced perceptually uniform colormaps to the oceanographic
community, of which we are a part. As they put it “In a perceptually uniform colormap,
any step in the map is perceived by the viewer to be the same size as any equally sized
step elsewhere in the colormap.” This prevents artificial gradients, and also ensures that
every gradient is represented. These are color maps that neither preferentially exaggerate
nor obscure the underlying data. Thyng et al’s paper [60] includes several examples of
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perceptually uniform colormaps from their cmocean package outperforming standard
colormaps (e.g. MATLAB’s jet colormap), in a variety of oceanographic contexts.

As impressive as they are, perceptually uniform color maps are not widely used. This led
to a great deal of discussion on how perception relates to common practices. For instance,
data sets are often compressed or filtered before they are visualized. How much of a
perceptual difference do these processes make on the final visualization when compared
to the original data? As we will see in section A.2.2, D-EOF reconstructions can be
thought of as a compressed version of the original data set. As discussed in section 4.3.5
reconstructions can also be thought of as a variance filtered version of the original data.
We decided to use EOF as an example of both compression and filtering methods, and
set out to examine their induced perceptual change using D as a parameter.

We needed a way to quantify the perceptual differences between the visualizations of raw
and processed data. We chose the Structural Similarity (SSIM) index of [66], which is
able to quantify the perceptual differences between the grayscale visualization of the raw
data and the corresponding processed data. This is accomplished by comparing the two
images through the use of a structure function based on correlation. This structure
function is supported by a variance normalization and a luminance centering operation
[66]. Each component is based on a known aspect of the human visual system, which
makes the SSIM a grayscale image quality metric which quantifies error based on how
visible that error is to the human eye, rather than on an exclusively mathematical basis.
Figure 2 of [66] (where SSIM was introduced) gives the example of several degraded
images having nearly identical mean-square error (MSE) with the original image, but
varying widely in perceptual quality. This example shows that standard mathematical
metrics can fail to distinguish between perceptually different images. To quantify
perceptual changes caused by filter and compression method selection, we employ the
Structural Similarity (SSIM) index. The grayscale image of the raw data acts as the
reference image, and grayscale images of the EOF reconstructions as reduced quality
images of the reference. The method produces an SSIM map the same size as the images
it is applied to, where the values in the map are 1 if there is perceptual local agreement,
and is lower the less local perceptual agreement there is. In our implementation, the
MATLAB function mat2gray was used to create grayscale images of the raw data and
each reconstruction for SSIM analysis. To ensure the grayscale maps takes the same
values across images, the minimum and maximum over all reconstructions and data
values were taken as the bounds for mat2gray. The MATLAB ssim command was then
used to obtain the SSIM maps, along with the mean SSIM (MSSIM) value.

It is unfortunate that SSIM only applies to grayscale images, but the SSIM is based on
the assumption that the human visual system is highly adapted for extracting structural
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information, and grayscale is sufficient for this purpose. Moreover this is understandable
from a mathematical viewpoint, as every pixel in a grayscale image can be represented by
a single real number, but every pixel in a colour image requires three real numbers. SSIM
has been very successful, and so has the advantage of being well established and
implemented in MATLAB. This severely reduces the barrier to entry for anyone who
would wish to replicate our work.

A.2.1 The Monterey Bay Data Set

We used this data set as an example of the gamma method in section 2.4.1. In this
section we will consider a subset of this data set, whose oceanographic features are
described in detail in [65]. Briefly, the source of this data set is a combined moored array
of instruments and an acoustic Doppler current profiler (ADCP) deployed in Monterey
Bay, Cailfornia between the 7th and 22nd of July, 2011. The array was deployed where
the California Current and its associated upwelling of cold water interacts with warm
water found within Monterey Bay that is shielded form offshore winds. For this reason
this region is referred to as the ‘upwelling shadow.’ The dynamics at this location yield
episodes of highly energetic fronts that move past the instrument array, and subsequently
break up into a combination of large amplitude internal waves and instabilities. These
waves and instabilities also propagate past the measurement array. Walter et al. [65]
carry out their analysis at two timescales. The longer term record is split into two time
periods with wave activity and one in which the larger scale upwelling precludes wave
activity. On a shorter timescale, they detail a frontal crossing on 17 July, 2011 (their
Figure 5) in which large-amplitude internal waves in the presence of background shear
were too large to be described by all existing internal wave theories. This was unique in
the literature up to that time. Since the coastal environment in Monterey Bay is believed
to be representative of other geographical locations (e.g. the Peru-Chile current system)
and other eastern boundary current upwelling systems around the world, it is important
to quantitatively characterize the observed features. This is especially true since existing
theories of internal waves have proven inadequate.

Since the focus of this section is on methodology, we will consider only the detailed
measurements of the normalized kinetic energy (1

2
(u2 + v2 + w2)) during the previously

detailed frontal crossing of 17 July, 2011. This corresponds to the gamma method F1 of
Figure 2.2 panel c. While the front is associated with water that is up to 5 degrees
warmer than that found offshore, all the features of motion necessary for analysis can be
identified in the kinetic energy field. It is this field and time period which will serve as
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the data set example throughout this section.

The dimensions of the data set during this period are 35× 1301. Because this section is
about images, the axis labels in all of the image Figures (A.5, A.6, A.7, and A.8) are
simply pixel number. We refer the reader to [65] for a discussion of the physical
dimensions of this data set.

A.2.2 Compression by EOF

The size of the raw data is just the dimension of the associated data matrix X, namely
MN = 35× 1301 ≈ 4.5× 104 for the Monterey Bay data set. The size of the
reconstruction using D modes is

(size of D coefficients) + (size of D EOFs) (A.1)

= DN +DM (A.2)

= D(N +M) (A.3)

Setting D = M shows that keeping all EOF information results in M2 more data than
the original signal. For compression

D <
MN

N +M
=

M

1 + M
N

(A.4)

In the Monterey Bay data set M = 35� 1301 = N , so that M
N
� 1. It is common for

geophysically sourced data sets to have M � N (i.e. many more points in time than in
space). In this case if D ≤M − 1 the EOF reconstruction compresses the raw data. We
will see in section A.2.4 that in general there is no need to take this many modes, so that
an EOF reconstruction nearly always compresses the raw geophysically sourced data sets.
The amount of compression is given by

D(M +N)

MN
=

D
M

1+M
N

≈ D

M
(A.5)

So when the raw data has M � N , the EOF reconstruction with D modes is
approximately D/M % of the original data’s size. By symmetry when N �M the
approximation is D/N %. Either way we see that EOF reconstructions can be thought of
as compressed versions of the original data set.
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A.2.3 Singular Value Hard Thresholding

The SSIM index quantifies perceptual error. Since EOF reconstructions converge to the
data, how large does D have to be before the analyst cannot tell the difference between
the visualizations of the D EOF representation and the data? The EOF basis is
constructed so that each EOF added to the representation adds less variance than the
previous one. We would expect that at some point the added EOF makes very little
difference to the perception of the resulting visualization of that truncated EOF
representation. That is, we expect that there is a D < M for which there is very little
perceptual error. Writing equation 4.17 is roughly equivalent to stating that the
important part of the data is a matrix whose rank is (much) lower than the size of the
raw data matrix. The raw data matrix may then be thought of as the ‘true’ data with
some added noise. For a given data set, it may be that both the rank of the matrix to be
recovered, and the nature of the noise, are unknown. In a certain asymptotic framework,
and assuming white noise, [13] outline a choice of D which is asymptotic MSE optimal,
without knowledge of the rank. Their formulation is from the SVD perspective, and they
call the truncated version of equation 4.10 ‘Singular Value Hard Thresholding’ (SVHT)
because it corresponds to setting all singular values greater than some cutoff called the
‘hard threshold’ to zero. Their method for choosing this hard threshold is called ‘Optimal
SVHT.’ We used their code to choose D by optimal SVHT throughout this work. Note
their code requires M ≤ N for the raw data matrix. It is often the case for geophysically
sourced data, as it is for the Monterey Bay data set described in section A.2.1, that
M � N . The reader is referred to [13] for the details on this method.

As we discussed in section 4.3.5, while mathematical choices must be made in order to
make mathematical progress, it is the repeated success of the mathematical results in a
given application which makes them of practical worth. In our examples, optimal SVHT
produces a reconstruction whose visualization is nearly indistinguishable from that of the
raw data. In this way optimal SVHT answers the question at the beginning of the
previous paragraph, as we will show in section A.2.4. Pursuant to our discussion in
section 4.3.5, this is a case where a static choice for D can be made mathematically, and
where the underlying choice of mathematical framework is justified heuristically by
continued success in the applications. As a rough guide [13] table IV and equation 4
shows that the hard threshold when M � N is approximately 1.5 times the median
unnormalized EOF singular value. While this choice for D is an approximation of a result
based on their asymptotic framework, it is also clear that such a result may have
developed heuristically in a given application. In either case the justification is continued
success.
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A.2.4 Results

Let us consider some examples of the perceptual difference between this Monterey bay
data set and EOF-filtered or compressed versions of it. We consider a few different values
of D as examples.

Figure A.5: The results for the optimal SVHT 13 EOF reconstruction. The z and x axes
display the pixel numbers. From top to bottom the panels are: data (a), 13 EOF optimal
SVHT reconstruction (b), SSIM map of the data against the reconstruction (c), and the
pointwise error of the data against the reconstruction (d). The panels a-c are in grayscale,
and panel d uses cmocean balance. See the text for details.

If D is chosen using optimal SVHT the result is Figure A.5. Panel a displays the
mat2gray image of the full data set, equivalent to a D = 35 mode reconstruction. The
mat2gray image of the optimal SVHT reconstruction is displayed in panel b. Note that
both panel a and panel b’s colorbars have the same bounds, namely the minimum and
maximum values over all EOF reconstructions. These same colorbar bounds are
employed in panels a and b of Figures A.6 and A.7 as well as all panels of Figure A.8, so
that comparisons between figures can be easily made. Panels a and b of Figure A.5 look
nearly identical, as the nearly white SSIM plot of panel c shows that most values are near
1. The SSIM maps colorbar bounds are zero to one in all panel cs in all three of Figures
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A.5, A.6 and A.7 for cross Figure comparison. Finally, panel d displays the pointwise
error, meaning the data of panel a minus the data of panel b yields panel d. The
maximum error is of order 10−3 in this case. Note that the colorbar maximum of the
pointwise error for all of Figures A.5, A.6, and A.7 are set to be the maximum absolute
pointwise error of the 1 EOF reconstruction against the raw data. This scaling was
chosen as we expect the 1 EOF reconstruction to have the largest pointwise error (see
Figure A.6). For symmetry, the negative of this value was taken as the minimum of the
colorbars for pointwise error in all three figures.

Figure A.5 clearly shows that an optimal SVHT reconstruction is nearly perceptually
identical to the full data set using mat2gray. We found this to be the case over a variety
of choices of subsets of the full data. In this way the optimal SVHT reconstruction acts
as a kind of baseline for low perceptual error reconstructions in our example, as this
choice of D tends to produce a reconstruction almost indistinguishable from the raw
data. The pointwise error shows a small amount of error which the reader will struggle to
detect in the reconstruction of panel b, although the SSIM plot details where to look.
Note in this case D/M = 13/35 ≈ 0.37, so that the EOF reconstruction is only 37% the
size of the raw data, using the calculation from section A.2.2. This reconstruction
captures approximately 99.9% of the variance. The MSSIM is 0.98 to two decimal places.
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Figure A.6: The results for the 1 EOF reconstruction. The z and x axes display the pixel
numbers. From top to bottom the panels are: data (a), 1 EOF reconstruction (b), SSIM
map of the data against the reconstruction (c), and the pointwise error of the data against
the reconstruction (d). The panels a-c are in grayscale, and panel d uses cmocean balance.
See the text for details.

While optimal SVHT provides a nearly perceptually identical reconstruction, the 1 mode
reconstruction has the most perceieved differences from the raw data among all choices of
D. Figure A.6 has the same panels as Figure A.5, but using the 1 mode reconstruction
with corresponding SSIM and pointwise error maps. The maximum error is of order 10−2,
worse than the optimal SVHT reconstruction. Unlike the optimal SVHT reconstruction,
both the SSIM map (panel c) and pointwise error (panel d) have clear errors. The SSIM
highlights the areas the eye notices as errors, while the pointwise error makes the
mathematical structure of the error explicit. Clearly the 1 mode reconstruction misses a
great deal of detail in the raw data, but still catches the first frontal crossing near the
beginning of the record, as discussed in section A.2.1. If the application in question was
only dependent on large changes in kinetic energy, perhaps this reconstruction would still
be sufficient. This reconstruction takes up less than 3% of the space taken by the original
data, and captures approximately 89.6% of the variance. The MSSIM is 0.72 to two
decimal places.
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Figure A.7: The results for the 3 EOF reconstruction. The z and x axes display the pixel
numbers. From top to bottom the panels are: data (a), 3 EOF reconstruction (b), SSIM
map of the data against the reconstruction (c), and the pointwise error of the data against
the reconstruction (d). The panels a-c are in grayscale, and panel d uses cmocean balance.
See the text for details.

The reconstructions with D as 1 or as defined by optimal SVHT are two extreme cases.
If some, but not all, of the features in the raw data are important, some intermediate
value for D may be appropriate. If the presence of small scale structure, but not it’s
exact form, is important, the elbow test choice of D = 3 yields Figure A.7. The
maximum error is again of order 10−2, like the 1 EOF reconstruction case. It is clear that
the reconstruction is missing details, but is an improvement over the 1 EOF
reconstruction. The SSIM map (panel c) indicates that the data and reconstruction are
closer than the reconstruction of D = 1, but less close than the choice of D by optimal
SVHT, as expected. The SSIM map once more indicates the locations of perceptual
error, and the pointwise error (panel d) outlines the mathematical error’s structure. This
reconstruction takes up less than 9% of the space taken by the original data, and
captures approximately 98.3% of the variance. The MSSIM is 0.87 to two decimal places.
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Figure A.8: The results for the 3 EOF reconstruction displayed using MATLAB’s imagesc
and 3 example colormaps. The z and x axes display the pixel numbers. The top two panels
use cmocean gray: panel a is the raw data and panel a’ is the 3 EOF reconstruction. The
middle two panels use MATLAB’s jet: panel b is the raw data and panel b’ is the 3 EOF
reconstruction. The bottom two panels use cmocean thermal: panel c is the raw data and
panel c’ is the 3 EOF reconstruction. See the text for details.

Let us assume that the 3 mode reconstruction is acceptable to the analyst in question.
Figure A.8 gives three possible examples of their subsequent colormap choice. The six
panels are paired with the raw data above the 3 EOF recontruction for each colormap.
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From top to bottom, the colormaps are cmocean gray, MATLAB’s jet, and cmocean
thermal. The artificial gradients of jet, as illustrated in Figure 1e and 3 of [60], again
manifest in the jet panels (b and b’) of Figure A.8, making the perceptual difference
between raw data and reconstruction more pronounced than in the perceptually uniform
choices of the cmocean maps. Nevertheless all three examples show that the method
presented here allows the tuning of the perceptual impact of data processing on the final
perception of the visualization.

In summary choosing D by SVHT results in a near perfect visualization of the raw data,
and choosing D by perceived feature degradation as quantified by SSIM allows tuning of
the reconstruction to the desired application. Mode selection by optimal SVHT removes
noise as defined by that framework, so it is perhaps expected that the visualizations of
the optimal SVHT reconstruction would be nearly indistinguishable as measured by
SSIM. EOF reconstructions using less modes than that prescribed by optimal SVHT have
more perceived differences from the original data, with this effect getting more
pronounced as D → 1.
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A.2.5 An SSIM False Positive

Figure A.9: The layout of this Figure and of Figure A.10 follow that of Figures A.5,
A.6, and A.7 above. Clearly the extensive structure of the left side of the SSIM map is
unwarranted.

Unfortunately, there is more to say on SSIM. On continued testing, we eventually found
the example given in Figure A.9 which is an upwelling event corresponding to the gamma
method F1 of Figure 2.2 panel d. In this case there is no perceptual difference in the
leftmost 200 pixels or so of the 1 mode reconstruction, but the SSIM map shows a great
deal of difference in this area. This is a case where the SSIM map fails to act as a
perceptual norm, and instead gives a false positive.
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Figure A.10: The top two panels have been aggressively c-axised to make the source of the
SSIM false positive evident. The bottom two panels are the same as those of Figure A.9

The source of the problem is evident in Figure A.10, where we have aggressively c-axised
the top two panels. As outlined in section III C of [66], SSIM is a local measure. In this
case it seems that the local small scale structure in the data causes the SSIM false
positive. We had been using default values for MATLAB’s ssim function. The formula
for SSIM includes regularization constants: see equations 6, 9, and 10 of [66]. MATLAB
allows you to set these constants, which are quadratic functions of a dynamic range
variable by default. We explored the results of modifying dynamic range, and found that
a value 500 times the default, corresponding to very large regularization constants,
eliminated the false positive in the SSIM map. See Figure A.11. However these very large
regularization constants also over-regularized the SSIM maps of higher mode
reconstructions, washing out almost all detail. Removing the false positive had also made
most of our SSIM maps useless. Perhaps there is some perfect choice of constants which
would allow both the removal of the false positive and the retention of meaningful SSIM
maps across a large range of D, but at this point we reconsider our approach. While we
have found a choice of regularization constants which could avoid this particular false
positive, it is not possible to say that there is a choice of constants which could avoid all
false positives, or do so in a way which would avoid over-regularizing the SSIM maps of
too many reconstructions. This means that anyone following the ideas presented here
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would have to manually check the SSIM maps for all reconstructions to ensure there are
no false positives. Even a single false positive requires different regularization constants
to be chosen, and the entire algorithm to be re-run, so that all SSIM maps are with
reference to the same set of constants. As we saw, this can introduce another problem,
where choosing regularization constants which remove a false positive for one
reconstruction can make the SSIM maps for other reconstructions featureless. All of this
is cumbersome, and unlikely to be employed even if it can be made to work.

Figure A.11: The same situation as depicted in Figures A.9 and A.10, but with dynamic
range set to 500 times its default value in the MATLAB implementation. This corresponds
to much larger regularization constants than the default. Note the very narrow range of
values for the SSIM map.

Our intention was to construct a method for measuring the perceptual effect of processing
methods on visualizations of data sets. Until we encountered this false positive SSIM was
a reasonable candidate to quantify perceptual differences: it was well-established in the
literature, used in practice, and implemented in a variety of toolboxes. The work
presented here showed promise. We were willing to look past the grayscale requirement,
but the false positives are impossible to ignore, as they compromise the entire enterprise.
At this point we decided that if the SSIM maps cannot be trusted, some other method of
quantifying perceptual difference must be employed. This took us beyond standard
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methods and implementations, and into a position where we would have to find or derive
new methods, and write implementations. We were not convinced that such an enormous
detour would be worth the significant effort. Instead we focused on feature identification.
Nevertheless this appendix serves as an additional example of EOF in action. In
particular it further illuminates the discussion on choosing D we began in section 4.3.5.
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