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Abstract 

 With widespread investments from the transportation sectors, the electrification of a 

significant portion of the transportation market appears to be on the horizon. However, the range 

and price of these vehicles remains a challenge and hinders the full market penetration of electric 

vehicles into the world markets. Although economies of scale can decrease the price of electric 

vehicles, at the core of the problem is the rising price of cobalt and the limited energy density of 

lithium ion batteries.   

Next-generation battery technologies that rely on sulfur-based cathode have great potential 

in terms of cheap raw materials and higher energy density. Such a technology is perfect for 

increasing the range and decreasing the cost of electric vehicles. Lithium-sulfur battery (the most 

common configuration of a sulfur-based cathode) has many technical challenges that hinder it 

practical application. The combination of the notorious polysulfide shuttle effect, electron 

insulating nature of reactants/products and volume expansion of active material, has rendered the 

cyclability of lithium sulfur batteries very poor. Indeed, much progress have been achieved in the 

recent years, but the low areal loadings and high electrolyte contents (relaxed testing conditions) 

used for these cells are too low to be of any practical significance. Lithium-sulfur batteries operated 

at strict conditions have challenges that are amplified when compared to their relaxed testing 

conditions (low loading/high electrolyte content) counterparts. Adding onto the problems of the 

cathode, the decades-long task of resolving the challenges associated to Li metal anode also 

remains to be solved. Together, these challenges have prevented any significant commercial 

application of a sulfur-based cathode.   

 In this thesis, we look to study, explore and enhance the performance of sulfur-based 

cathode tested at strict conditions (sulfur areal loading of ≥4 mg cm-2
 and electrolyte to sulfur ratio 
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of ≤8 µL mg-1
s). Two class of sulfur-based cathodes will be presented to bypass and resolve the 

problems associated with strict conditions testing, successfully achieving significantly enhanced 

performance. The first class will be presented in Chapter 3 and 4. Chapter 3 will be the 

investigation of a specific carbon material with hollow structures and a porous shell with the 

objective of surpassing commercial carbon material in terms of performance at first relaxed testing 

conditions. An emulsion-based polymerization technique was used to simultaneously create large 

macropores in the form of hollow structure and mesopores on the shell. Significant performance 

improvements were observed in terms of rate performance and cycle life. In Chapter 4, this 

material was tested at strict conditions through further development by employing an aerosol based 

agglomeration technique. We found enhanced performance at strict conditions, but the 

performance was still not ideal. Noting from the research trends in literature, we decided that the 

use of Li metal is quite detrimental to the performance of sulfur-based batteries. Therefore, our 

subsequent work focused on a second class of sulfur batteries, that is, the Li2S cathode. This unique 

configuration of a sulfur-based cathode bypasses the need of using a metallic Li metal as the Li 

can now be sourced at the cathode. However, Li-ion extraction (charging) from the commercially 

available Li2S is difficult and requires inefficient electrochemical activation. Chapter 5 and 6 will 

be focus on the identification and application of electrode additive to activate commercially 

available Li2S. These techniques have a large emphasis on ease of implementation and 

functionality at strict testing conditions. The first material is Li3PS4, which was found to function 

down to 10 wt.% in the electrode composition. The second is Na2S, which was found to function 

at an exceptionally low 1 wt.% in the electrode composition. Notably, both of these techniques do 

not require sophisticated material synthesis techniques and take readily commercially available 

material to achieve exceptional performance at strict conditions. 
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Chapter 7 presents a summary of the findings in this thesis. Overall, this thesis 

demonstrated two different sulfur-based cathodes which can successfully function at low 

electrolyte to sulfur ratios and high sulfur areal loadings. A brief discussion will be given on 

potential future research directions of sulfur-based batteries and areas that require further 

improvements. 
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Chapter 1: Introduction 

Batteries are becoming more and more intertwined with the core operations of society. 

From electric vehicles (EV) to grid storage and even to novelty items such as smartwatches, 

modern applications for batteries are endless. One of the most common modern-day battery 

technologies is the lithium-ion battery (LIB).  Many automotive companies are trying to develop 

commercially viable electric/ hybrid vehicles in response to concerns regarding climate change. If 

the electricity that is utilized in these vehicles are generated from a clean source (solar, wind, 

hydro, geothermal and nuclear), this change in transportation technology can serve to significantly 

reduce our release of greenhouse gas to the atmosphere. Unfortunately, the high price of EVs and 

their comparatively shorter driving range limits their practical application. Tesla’s effort in bring 

electric vehicles to market has received significant attention from the consumer market and 

acquired over 400,000 pre-orders on their unreleased Model 3 ($35,000 USD) hinting at its 

popularity and potential to finally be able to break out of its niche transportation market. 

Additionally, Tesla has committed itself to create fast charging stations reasonably spaced 

throughout the United States of America and even placed in overseas countries such as China.  It 

is important to realize that a boost in infrastructural support for EVs is only half of the problem at 

hand. Significantly more time is required to recharge/refuel for EVs when compared to internal 

combustion engine-based vehicles. When coupled with the typically lower total driving range and 

relative scarcity of recharging stations, consumers have brought forward the concern of range 

anxiety. Arguably, following this initial introduction of battery based EVs into the consumer 

market, nearly all other well-known automakers have begun to invest heavily into similar 

technologies with recent product lines that features hybrids to full EVs vehicles. 
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1.1 Lithium-ion batteries 

Section 1.1 of Chapter 1 has been partially adopted and modified with permission from 

Advanced Materials  

M. Li, J. Lu, Z. Chen, and K. Amine, 30 years of Lithium-Ion Batteries, Advanced Materials, 

2018, 30, 1800561. 

Batteries have been an energy storage device used by mankind for centuries. The earliest 

form of the battery could be dated back to a 2000-year old clay jar with copper cylinders and iron 

rods found in Baghdad. Modern cells can be categorized into two different configurations: primary 

and secondary. Secondary batteries are rechargeable whereas the primary cells are not. The 

rechargeability of secondary batteries stems from the reversible nature of the redox reactions that 

occurs at each electrode of the cell. Planté developed the lead acid battery which was the first 

secondary battery in the year of 1859. Over the years, many other technologies have emerged such 

as nickel metal hydride (NiMH) which has gained substantial commercial popularity. NiMH 

batteries have been vastly implemented in the early electric vehicle markets, such as the Toyota 

Prius. However, other technologies such as the NiCd battery have been phased out due to its 

negative effects on the environment. Newer electronics such as smartphones, laptops, tablets and 

even electric vehicles all contain what is known as the lithium-ion battery (LIB). Being more 

compact and lightweight, the LIBs have grown to hold a major portion of the battery market.1 

1.1.1 Principle of operation of commercial Li-ion batteries 

 Like all electrochemical systems, a lithium ion battery (LIB) consists of a cathode and an 

anode. Commercially available LIBs consist of lithium metal oxide cathodes such as LiCoO2 

(LCO, for portable electronics) or the more contemporary LiNixMnyCozO2 (NMC, where x + y + 

z =1)/LiNi0.8Co0.15Al0.05O2 (NCA, for electric vehicles), and a graphite-based material for the 
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anode.2 Both electrodes operate under the principles of lithium intercalation. The basis of this 

technology dates back to work by Stanley Whittingham at Exxon in the late 1970s where reversible 

Li-ion intercalation was observed for TiS2 with intense commercial interest.3 The mechanism of 

energy storage in Li-ion batteries (LIB) lies in the Li-ion being transferred from the anode and 

intercalated into the layered lattice structure of the cathode material. During discharge, the battery 

operates as a Galvanic cell where electrons are transfer from the anode to the cathode, converting 

the difference in chemical potential into electric work.  After delivering the power to the electric 

load (vehicle, cell phone, etc.), to recharge, an external voltage is applied to induce the transfer of 

the Li+ from the low chemical potential cathode back to the higher chemical potential to recharge 

the battery (operating as an electrolytic cell). During operation, the Co and Ni typically serves as 

the redox center (cationic redox centers4,5) while the Mn or Al acted as thermal and cycle stabilizer. 

6 The voltage of charge is also of concerns because it controls the degree of delithiation in the 

lithium metal oxide, possibly inducing unwanted phase transformations if not controlled properly, 

leading to quick battery cycle degradation. In fact, at high enough charge voltages/state of charge, 

oxygen (anionic) redox begins to occur.7 The switch from a cationic redox center to an anionic 

redox center has been a topic of much discussion in the field of LIBs because it offers an avenue 

for activating additional energy density for next generation LIBs. However, its practical relevance 

has yet to be proven even when very exotic transition metal oxides are used in the cathode 

composition.8 If anionic redox is accessed in traditional NMC materials, it typically leads to 

irreversible and ultimately detrimental O2 gas evolution.  

In terms of material selection, LCO had initially a dominant presence in the market due to 

lack of an alternative. However, the use of NMC and NCA began to dominate the battery market 

as both academia and industry began to understand its properties and synthesis techniques. The 
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advantage of NMC and NCA lies in their lower Co content, which equates to a lower 

manufacturing cost. It is this difference in cost that has allowed LIBs application in EVs 

applications.9 

In addition to the electrode materials, an electrically insulating and Li+-permeable 

membrane separates the cathode from the anode. This membrane or so-called separator is crucial 

to ensure that the electron transfers via the external circuit and does not undergo internal cell short-

circuiting. However, this membrane cannot be too thick to reduce its impact on the specific and 

volumetric energy density. The separator is wetted by an organic-based electrolyte of low viscosity 

and high Li+ mobility at room temperature. If the mobility of Li+ is low, the experienced 

overpotential of the battery will be increased and could cause the cell to prematurely reach its cycle 

cut-off voltage resulting in loss in energy density. Typical salts used in the electrolyte includes 

LiPF6 for LIBs and LiTFSI for lithium sulfur batteries. Most important of all, the electrolyte must 

be stable in a relatively wide voltage window, and operating temperature to decrease the chance 

for a catastrophic failure of the cell. The operating voltage window of a battery system is limited 

by first the cathode and anode chemical potential and then the stability of the electrolyte. Anodic 

stability at the electrolyte/cathode interface is considered a relatively minor problem (albeit still a 

problem in some performance stressing conditions10) when compared to the initial problems 

associated with the cathodic electrolyte decomposition on the anode. It is very difficult to find an 

electrolyte composition that is stable against the highly reductive power of a lithiated graphite. The 

solution to this problem is the formation of a solid-electrolyte interphase (SEI) which is 

electronically insulating but Li-ion conductive and insoluble in the electrolyte. Accordingly, the 

first cycle of each freshly formed LIBs is known as the formation cycle, where the LIB is charged 

(shuttling Li-ions from the cathode to the graphite anode). Upon lithiation, the graphite will reduce 
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and decompose the electrolyte into the SEI, effectively passivating the anode from further 

decomposing the electrolyte. It is worth noting that the SEI has been known as one of the final 

enablers of the modern LIBs.9 

The traditional method to manufacture LIBs is to first formulate and then cast a battery 

slurry onto an aluminum (for cathode) or copper (for anode). The choice of current collector has 

been established based on the voltage window of these materials and their raw material cost. A 

crucial component of the slurry is the conductive additive. Because the active material (metal 

oxide) typically only have moderate electron conductive, it requires the use of conductive additive 

such as various types of carbon black to enhance the electrical conductivity of the cathode. 

Furthermore, the use of a binder is required to obtain a mechanically robust electrode with good 

adhesion between all electrode components throughout the slight volume variations during 

cycling. Typically, this binder is made of various polymers such as the water-soluble sodium 

carboxyl methylcellulose with styrene butadiene and the organic solvent-based polyvinylidene 

fluoride. The binder is required to have good surface interaction to ensure good adhesion between 

the active material, conductive additive and current collector. The viscosity and solid content of 

the slurry is of great importance when controlling the areal mass loading of the active material (in 

mg cm-2). Finally, the method of which the electrode is dried will affect its porosity. This typically 

includes the atmosphere, temperature and convection rate are optimized to obtain a certain desired 

electrode quality. 

1.2 Limitation of Li-ion batteries 

Current LIB technology has several disadvantages ranging from slow recharge and 

discharge rates to temperature sensitive cycling performance. However, the most important 

parameters for enabling a battery’s application in electric devices are the battery’s energy density. 
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How much energy the LIB can store on a given charge and, how long is required to recharge an 

electronic device reduces to a matter of the energy density of the battery. Unfortunately, the energy 

density of current LIB material is reaching its theoretical limit. Traditionally, the redox centers for 

LCO is the Co atom providing cationic redox capabilities. Current research trends have pushed 

towards oxygen redox (anionic redox) to achieve higher energy densities but have ultimately failed 

due to the sharp decline in cycle stability.  To put this into perspective, the theoretical practical 

gravimetric energy density taking into account all the cell components is ~250 Wh kg-1.11,12 The 

state of the art LIBs have an energy density of 210 Wh kg-1. 11 This indicates that only a mere 20% 

further improvement can theoretically be made if LCO is used. This limitation stems from the 

inherent ability of the metal oxide and graphite to uptake and accommodate Li+ into its crystal 

lattice. As the chemical formula of LCO suggests, only a ratio of one mole of Li-ion per one mole 

of CoO2. A calculation based on molar masses indicates that at least 13 grams of deadweight metal 

oxide exist for every gram of lithium in the battery indicating that the lithium only represents 7% 

of the total mass of the cathode’s active material. A more convenient representation would be to 

measure how much charge or specific capacity the cathode material can take, typically expressed 

in mAh g-1 to align with popular convention. The lithiation of the cobalt oxide  cathode material 

theoretically has a specific capacity of 274 mAh g-1.13  As such, one strategy to improve the energy 

density is to find a host for Li-ions which forms compounds with a higher Li-ion to deadweight 

host material ratio. Another is to utilize a material that has a higher voltage versus the anode 

(lithiated graphite). In the field of LIBs, the current most promising category of material are the 

anionic redox active materials. These mainly fall into two categories, Li-rich layered metal 

oxides14 and Li-rich disordered rock-salt15 both possessing possibilities in achieving significantly 

higher energy density, while also possessing detrimental problems.  Although some work has been 
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conducted to mediate these problems, they typically require very expensive transition metals such 

as Ru16 or Ir, 17 which are practically impossible.  

In contrast, another possible candidate of cathode material is sulfur, possessing 

substantially lower cost and higher capacity for Li-ions than any of the metal oxides. Sulfur-based 

batteries come in two major forms. The most common is a sulfur cathode paired with a metallic Li 

anode (known as a Li-S battery, LSB). The other is a Li2S base cathode (Li-source in the cathode) 

and a Li-metal free anode such as graphite, silicon. While in this thesis we did not investigate the 

full-cell performance of a Li2S-based cathode, the advantage of a Li-metal free anode is that Li 

metal batteries are exceptionally challenging to achieve commercially. While over the past few 

years there has been many contemporary efforts devoted to Li-metal anodes, its overall 

performance is still well below commercial levels, especially at low electrolyte content conditions. 

1.3 Sulfur-based batteries 

The emerging electronic markets and global warming concerns has pushed researchers to 

look for more ambitious battery concepts (anode and cathode selection) that has been previously 

abandoned due to engineering difficulties. The selection of better cathodes and anodes has been 

discussed by Liu et al.18 One of the most important criteria is the energy density which is the 

product of the electron capacity of the redox reaction and the voltage of that reaction. The 

calculation of the capacity of the redox reaction involves the stoichiometric calculation of the 

number of electron transfer per mass of lithium host. The capacity of various redox pairs can 

therefore be easily estimated if the redox reaction stoichiometries are known. 

The redox potential or voltage of a redox pair can be estimated from tabulated Gibbs free 

energy (after some calculations). It can also be roughly correlated to the ionization energy and 

electron affinity trends in the periodic table, where the more electronegative cathode material 
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(oxidizing power) of the chalcogen and halogen groups can serve to be decent cathode material. 

The alkali and alkali earth metals can be easily identified as the easiest groups to ionize, indicating 

its potential as anode active material. More complex chemicals such as metal oxides compounds 

also roughly follow the same trends. For example, metal oxides in the fourth period such as NiO2, 

CoO2, FeO2 are on average more oxidizing (better cathode i.e. higher lithiation/delithiation 

potentials) than those in the fifth period such as MoO2 and RuO2. Additionally, the metal oxides in 

the same period are more oxidizing the further right the metal elements are located on the periodic 

table. Sulfur, located in the chalcogen group, possesses a multiplateau discharge potential ranging 

from 2.3-2.1 V vs Li+/Li. Although this potential is lower than commercial metal oxide cathode 

materials (~3.9-4.35 V vs Li+/Li) due to the lack of the stronger oxidizing power of oxygen, the 

specific capacity for Li-ions of sulfur (~1675 mAh g-1) is significantly superior to commercial 

metal oxides ( due to the different lithium storage mechanism. Overall, sulfur is theoretically a 

vastly superior cathode material when compared to cathodes of commercial batteries with a 

theoretical energy density of 2500 Wh kg-1.19 

1.4 Principle of operation of lithium-sulfur batteries 

The operation of an LSB is fundamentally different from a modern-day intercalation 

chemistry based LIB and relies on the conversion reaction of S to and from Li2S. In an LSB, the 

sulfur is dissolved into the electrolyte during discharge upon reduction from its S8(S) form to 

polysulfides such as S8
-2, S6

2-, etc. A LIB, as stated previously, relies on intercalation of Li+ into 

the lattice of the metal oxide crystal structure with or without change in crystal phase. The 

reduction mechanism of sulfur is much more complex in nature compared to that of metal oxides 

and remains rather elusive and debated among the research community. The following equations 

illustrate a proposed reduction pathway: 
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Equation 1 

𝑆8 + 2𝑒− ↔ 𝑆8
2− 

Equation 2 

𝑆8
2− ↔ 𝑆6

2− +
1

4
𝑆8 

Equation 3 

𝑆6
2− ↔ 2𝑆3

.− 

Equation 4 

2𝑆3
.− + 4𝑒− ↔ 3𝑆2

2− 

Equation 5 

𝑆2
2− + 6𝑒− ↔ 4𝑆2− 

Equation 6 

𝑆2− + 2𝐿𝑖+ ↔ 𝐿𝑖2𝑆 

 

Overall:  
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Equation 7: Discharge Mechanism of Sulfur in a LSB 20 

𝑆8 + 16𝐿𝑖+ + 16𝑒− → 8𝐿𝑖2𝑆 

Like the LIB, the charge carriers (Li+) are exchanged back and forth between the cathode 

and the anode. In this case the product formed when discharged is lithium sulfide (Li2S), 

possessing a much higher lithium to dead weight material than CoO2. As a matter of fact, the 

specific capacity of sulfur for lithium is actually ~1675 mAh g-1 21 more than 5.6 times that of 

CoO2. Although specific capacity is a useful unit of measure of the duration of a discharge cycle, 

an electrical device requires energy which relates to the voltage of the battery. In terms of energy 

density (Wh kg-1) sulfur possesses 2500 Wh kg-1 if a lithium anode is used in a full cell. After all 

the other components of the battery such as current collector, separator and electrolyte are taken 

into consideration, the practical energy density is more along the lines of 700 Wh kg-1 , whereas 

commercially available LIB has only realized 210 Wh kg-1.11  In short, the LSB can potentially 

offer an impressive 3-fold increase in energy density.  

Sulfur exists at room temperature in its orthorhombic octet solid form. It is sparingly 

soluble in typical organic electrolyte (1,3 dioxolane and dimethoxyethane). While the discharge 

mechanism is still debated, one proposed mechanism is that upon accepting electrons, sulfur (S8 , 

solid)  is first reduced to S8
2- (soluble. Equation 1), which disproportionate to S6

2-(soluble, 

Equation 2).  Based on electron paramagnetic resonance spectroscopy22 and X-ray absorption near-

edge spectroscopy (XANES), 23  it was determined that S6
2- spontaneously forms S3

.- (soluble 

Equation 3) third-order polysulfide radicals. These radicals are further reduced to S2
2- (soluble, 

Equation 4) and finally to S2- (Equation 5), which precipitates as Li2S (Equation 6). The 

intermediate series of sulfur oligomers have been colloquially called lithium polysulfides (LiPS). 
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All the reactants, intermediates and products of this battery chemistry can undergo some form of 

disproportionation or comproportionation reaction throughout the course of cycling.  In fact, just 

the physical simple mixing of mostly insoluble solid Li2S and solid elemental S8 together inside 

of a polysulfide soluble-organic solvent will readily generate solvated LiPS24 (comproportionation 

reaction) with the comproportionation and disproportion reactions in equilibrium.25 

As the initial discharge reactant and final discharge products are insoluble, the operation 

of an LSB entails some form of “electro-stripping” and electrodeposition over the course of a 

single discharge. Similarly, upon charge the insoluble Li2S are dissolved and redeposited as sulfur 

at the end of the cycle. Unfortunately, LSB technology has yet to be used in mainstream electronic 

devices due to many technical challenges centered on the complex discharge/charge mechanism 

of sulfur. These challenges result in extremely poor cycle stability and poor practical capacity from 

sulfur nullifying all its benefits for secondary battery applications. 

1.4.1 Technical challenges 

The challenges of LSB can be described by three main points. The first is the 80% 

volumetric expansion of sulfur after lithiation. This is problematic because the volume expansion 

can lead to disconnection of lithiated sulfur (Li2S) from the circuit. Furthermore, a volumetric 

expansion would possibly lead to an overall macroscopic expansion of the whole battery resulting 

in packing problems. This expansion is not so much a concern at this point of the LSB research 

field because most sulfur cathode already possesses an excess amount of void space built into its 

architecture. These void spaces are not necessarily created for mitigating the effects of volumetric 

expansion but are created with the intention to allow more electrolyte to contact the sulfur, which 

leads to the discussion of the next two problems. The next two problems are significantly more 

detrimental to the performance than the first. The second problem stems from the fact that sulfur 
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is a very good electrical insulator, much better than its metal oxide cathode counterparts. This 

would commonly require some sort of conductive additive in the electrode to efficiently deliver 

electrons to the sulfur. In the case of LSB, the simple incorporation of conductive additive is 

usually insufficient to ensure good performance because of the third problem. The third problem 

is the dissolution of sulfur into the electrolyte during discharge. This works synergistically with 

the second problem (sulfur’s low electron conductivity). The dissolution/deposition of sulfur and 

Li2S upon cycling leads to the possibility of undesired redistribution of sulfur among its conductive 

matrix. This usually creates large agglomerates of sulfur throughout the battery. Regardless of 

what is used as a conductive additive, it must be homogenously dispersed within the cathode and 

maintain intimate contact with all the sulfur. If sulfur is redistributed and agglomerated during 

cycling, the homogeneity and intimacy of electrical contact would be compromised.  Adding to 

this, the dissolution of sulfur into the electrolyte changes the fundamental mechanism of the 

reaction. No longer are the Li+ simply entering and positioning itself in a crystal lattice structure 

of metal oxides, but the reduction and oxidation mechanism of LSB are a series of complicated 

redox reaction where the physical state of matter changes from solid to solvated salts in liquid. 

Reactions sites are dictated by not only the availability of Li+ and electrons (in the case of metal 

oxides) but also on the availability of solvated polysulfide anions (PS). PS species if not reduced 

quickly upon generation, has the possibility of diffusing away from reaction sites out of the 

cathode, losing its availability for future reduction. Moreover, the leakage of PS out of the cathode 

leads to consumption by unwanted side reactions. The first set of side reactions are the 

disproportionation of PS at different oxidation states and results in precipitation of solid S8 in 

potentially electronically inaccessible locations in the battery. The second set of reactions occur 

on the lithium anode. Once the PS escapes the cathode, it can further diffuse to the surface of anode 
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and directly complete a redox reaction on the anode circumventing the electron transfer across the 

external circuit. Simply put, PS can short circuit on the lithium anode resulting in poor capacity. 

Moreover, the products of these short circuit reactions are usually Li2S or Li2S2 both of which are 

sparingly soluble in typical LSB electrolyte and electrically insulating. This indicates that any PS 

that is short circuited on the anode will likely remain electrochemically inactive on the anode 

throughout the lifespan of the battery because it is extremely difficult to reactive reduced sulfur 

species on the surface of the Li anode. In a sense, sulfur disconnects itself from the circuit/battery 

over a few cycles and results in a quick decrease in battery capacity.  

Finally, the last problem is a low Coulombic efficiency. Because higher order PS can be 

short circuited/reduced directly on the lithium anode, it opposes the act of recharging. Specifically, 

during charging, higher PS are generated at the cathode. For example, sulfur at its -2 oxidation 

state, when charged is oxidized to -1, -2/3, -2/4, -2/6, -2/8 and then finally to 0 upon full charge. 

This complex oxidation reaction mechanism results in some mass transfer complications. Once the 

initial soluble -2/6 or S6 
2- polysulfide species are generated/charged from S4 

2- at the cathode, they 

will be allowed to diffuse to the anode (shuttle effect), discharging themselves once in contact with 

the anode and reduces/discharges back to its -2/4 or S4 
2- oxidation state. This re-discharged S4 

2- 

must be recharged once again at the cathode. This counterproductive self-discharge mechanism 

intrinsic of charging an LSB with a polysulfide soluble electrolyte is reflected in its poor 

Coulombic efficiency, creating cells which deliver significantly less amount of electrical energy 

than which was initially “stored” in them. Typical LIB cells have above 99% Coulombic 

efficiency, indicating for every 100 electrons that was stored in the battery, 99 can be extracted. In 

the case of LSB, without any effective mitigation strategy a Coulombic efficiency of 40% will be 

typically obtained.26 
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1.4.2 Literature review of LSB  

As stated in the previous section, LSB has many problems: poor practical capacity, poor 

cycle durability and low coulombic efficiency. These problems must be addressed before any 

commercialization of LSB can be made. Although known since the 1970s, research into LSB have 

been halted until recent years. Many groups around the globe have begun to solve these three 

problems since 2009. The pioneering work of Ji, Lee and Nazar has brought forward the use of 

porous carbon. After impregnation of sulfur into the pores, the wall of these pores can serve both 

as a conductive matrix while the complex pore network can increase the diffusion resistance of PS 

27. Ji et al has successfully prevented major S redistribution, PS shuttle and allow for LSB cell with 

significantly higher cycle stability. Boasting an initial discharge capacity of 1000 mAh g-1 (60% 

of theoretical) and remained relatively stable for 20 cycles. Since then, many concepts have been 

tested to overcome the problems with the LSB battery. These concepts typically fall into one of 

three categories, modification of the separator,28,29 electrolyte 30,31 and electrode material design. 

Modification of separator involves the application of Li+ selective film that hinders PS diffusion. 

Typical examples involve, graphene, porous carbon and lithiated Nafion coatings on the separator. 

Additive is used in electrolyte to limit the dissolution of sulfur. For example, researchers attempted 

to add PS into the electrolytes and due to the common-ion effect, the dissolution of new sulfur is 

hindered. Obviously, this is not a complete solution, as the PS additive would decrease the overall 

energy density of the cell. Researchers have also used ionic liquid as the electrolyte. The so-called 

tailor made solvents can be designed such that PSs are insoluble, Li+  conduction is sufficiently 

high while at the same time remain stable in the operating voltage of the cell. Modification of the 

cathode material usually incorporates the use of some porous network to house the sulfur. A high 

pore volume and high surface area material is usually used for accommodating the less dense 
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discharge products and efficient delivery of electrons to the insoluble redox reactant and products. 

Recent electrode material designs incorporated the use of graphene foams, 32,33  carbon nanotubes 

34 and various types of porous carbon35,36  as  conductive S housing. In attempts to mitigate the 

effects of the PS shuttle, researchers aim to increase tortuosity of the diffusion pathway with 

complex pore structures. Furthermore, sulfur housings usually have some PS adsorption 

mechanism which can further limit the PS diffusion out of the cathode.  Various other chemical 

species such as metal oxide, atomically doped carbon and polar functional groups have been 

introduced into the cathode to attract and retain PS 33,37,38. Cycle stability have been improved to 

the point where 1500 cycles can be achieved in the laboratory with capacities well over 70% of 

theoretical is achievable a low areal sulfur loading <2 mg cm-2. 

Despite the large volume of publications, a relatively small portion of work has been 

performed at practically/commercially relevant conditions. One important metric for practicality 

is the energy density, which directly relates to the areal sulfur mass loading (in mgs cm-2). Recently 

Pope et al published an informative review,19 that describes the relationship between sulfur loading 

per area and battery energy density. This review states that most LSB studies report thin film LSB 

with forecasted full battery energy densities that are not even comparable to current LIB. Nearly 

9 years after the ground breaking work of Ji et al 27, recent works still mainly focusses on the 

material at 1-2 mg cm-2.19 Interestingly in the past years (2015-present) the volume of papers which 

discusses high loading LSB has increased.39,40 Some notable work by Professor Donghai Wang’s 

group 38,41,42 has achieved high sulfur loading electrodes up to 5 mg cm-2 and Professor Arumugam 

Manthiram’s group has achieved incredibly high sulfur loadings of up to 61.4 mg cm-2 with decent 

stability up to 100 cycles. The performance of LSB has improved dramatically in the lab setting 

throughout the years, but a commercially viable electrode is far from realization due to the new 
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emerging stability problems of high areal loading electrodes and lack of commercializing power 

of some of the electrode designs. 

1.5 Emerging problems of lithium-sulfur batteries tested at strict conditions 

LSBs as a system has been essentially “solved” when looking at low areal loading/high 

electrolyte content literatures 43 revealing cycle life on the order of thousands of cycles. However, 

recent reports of sulfur loading of >4 mg cm-2 reveal drastically decreased cyclability to only a 

couple hundreds of cycles.44 This decrease in stability is inherent to the increased areal sulfur mass 

in the cell. The increase in sulfur mass per unit area increases the total absolute required current of 

the battery to maintain an acceptable discharge time, which then imposes a higher current on the 

Li-metal anode, causing Li deposition problems.  

Moreover, the electrolyte to sulfur ratio in an LSB battery system is critical in determining 

the practical energy density of the final battery product. Typical electrolyte to sulfur ratios are 

range from 10-15μL mg-1,19 which at a electrolyte specific density of ~1.1 g ml-1, indicates that at 

15 μL mg-1 (16.5 mg electrolyte mg-1
sulfur), the mass of sulfur is only represents 5.7% of the combined 

electrolyte and sulfur mass with 94.3% of the mass as dead weight. Using this concept and 

considering other components of the cell, Hagen et al has  projected a maximum allowable 

electrolyte to sulfur ratio of 3-4 μL mg-145 for LSB technology to even compete with current LIB 

technologies. Even at this low electrolyte content the proportional of mass of the cell that is taken 

by the electrolyte is still 32.6%,45  As such, high electrolyte loading cells are to be avoided due to 

their impracticality. However, the use of high electrolyte content is beneficial for the fabrication 

and performance of the cell. For example, a higher electrolyte content can serve to ensure proper 

wetting of the electrode. Additionally, the higher electrolyte content can decrease the average 

concentration of the PS in the cells and subsequently the viscosity which can ensure good rate 
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performance of the cell.46 Whereas, at low electrolyte contents, severe problems with electrolyte 

wetting, electrolyte evaporation during cell assembly, poor rate performance and rapid “dry out” 

of cells due to the continuous SEI growth on the typically used Li-metal anode’s surface, 

significantly reduces the performance. Therefore, much of the works on LSB have incorporated 

excess amounts of electrolyte to enhance the performance of their cells. However, such high levels 

of electrolyte completely nullify the energy density potential for commercializing high loading 

sulfur-based batteries, thus making the electrolyte to sulfur ratio an extremely crucial parameter 

for any future high loading sulfur-based batteries work. The difficulty in achieving high 

performance sulfur-based batteries operated at what we will refer to as “strict conditions” i.e. high 

areal sulfur loading (≥4 mg cm-2) and low electrolyte (≤8 µL mg-1) content remains to be the key 

barriers against practical sulfur-based battery operation. Moving below <4µL mg-1 with a sulfur 

mass loading above 4 mg cm-2 will be denoted as “practically relevant conditions”. Achieving 

good cyclability at “strict conditions” will represent a significant step towards the 

commercialization of sulfur-based cathodes. Below is a more detailed description of the challenges 

with respect to both the cathode and the source of lithium-ions. 

1.5.1. Challenges of the Cathode  

 

The increase in current density causes the amplification of the shuttle effect by increasing 

the flux of PS out of the cathode. Subsequent self-disproportionation (self-redox) reactions that 

occur and the amplified redistribution of sulfur throughout the cathode severely reduces the 

cyclability of the cell. Due to the increase in the absolute mass of sulfur in the electrodes, more 

discharge and charged products are randomly deposited near the surface of the cathode and can 

cause severe restriction of lithium ion access to parts of and even to the entirety of the electrode. 

Thus, more careful control and even superior methods of retaining/containing PS inside of the 
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cathode’s localized architecture are required. Prevention of PS migration out of their localized 

hosts is therefore paramount to the success of high loading sulfur electrodes. Overall, the problem 

set associated with the cathode at high sulfur loadings can be viewed as an amplification of the 

low loading LSB cells.  

Additionally, in contrast to low areal loading and high electrolyte content cells, the wetting 

process of the electrode becomes nontrivial.47 The combined negative effect of a thicker electrode 

film (higher areal loading) and lower ratio of electrolyte content makes it very difficult for 

fabricating even functional coin cells with very modest performance metrics. 48-50 Specifically, the 

casting of high sulfur loading films at over 200 µm, often leads to crack and delamination from 

the current collector. This problem stems from the typical and necessarily high surface area 

possessed by the sulfur/carbon composite. High surface area is ideal for better contact with sulfur 

and reaction sites for polysulfide reduction/oxidation. However, the higher surface also makes it 

very difficult to achieve proper adhesion between particle and the polymer binder. Solution usually 

involve the use of micron-sized secondary particles, which reduces the “exposed” surface area.51 

1.5.2 Challenges of the Lithium Source:  

 

Section 1.5.2. of Chapter 1 has been partially adopted with permission from Advanced Materials  

M. Li, Z. Chen, T. Wu, J. Lu, Li2S- or S-Based Lithium-ion Batteries, Advanced Materials, 2018, 

30, 1801190. Copyright Wiley-VCH 2018. 

 

Higher current densities associated with a higher areal sulfur mass loading causes the 

severe stripping/plating of lithium metal from the lithium anode. At low current density, challenges 

associated with lithium anode are hidden due to minimal lithium material use and as such, lithium 
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anodes are ubiquitously used as both the counter and reference electrode in half cell configurations. 

However, at higher current densities the problem of using lithium metal as the anode becomes 

apparent. With an effective infinite volume change upon delithiation (stripping) and lithiation 

(plating) and dendritic lithium growth the concept of using a lithium anode has been commercially 

unsuccessful. Researchers have traced the phenomenon of dendrite formation to two mechanisms: 

tip growth mode, which is due to the mass transfer limited nature of lithium deposition and mossy 

lithium growth which is derived from the SEI formation on the lithium’s surface.52 Together, these 

two types of dendritic lithium growth will result in at least the total dry-out of the cell (due to 

electrolyte decomposition) and at worst, the internal short circuiting posing significant safety 

concerns.53  

Various mitigation strategies have been investigated by Professor Lynden Archer’s group 

54,55 and Professor Yi Cui’s group56 among others with promising results. Mitigation strategies 

usually falls into the category of a coating/membrane on the surface of the anode surface to limit 

the mossy lithium dendrites to reach the cathode (short circuit) and added tortuosity to hinder the 

tip growth mode.54 Another popular strategy is to design and direct the deposition of lithium 

through usage of nucleation sites placed inside of hollow carbon material. The performance of 

such a design offered stability at 1 mA cm-2 for up to 150 cycles.56 Work has also been performed 

on changing the electrolyte formulations, from ionic liquids57 to cationic shields with a lower redox 

potential than lithium such as Cs ions58 to reduce the electromigration of the anions and maintain 

a stable electric field across the anode’s surface. 

While the use of Li metal has been recently a very popular topic throughout the research 

community, its commercial relevancy is still of question.59 In a similar fashion as the development 

history of LSB, the lab-scale testing of LMB at commercially unrealistic conditions (high 
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electrolyte, large excess of Li metal in comparison to cathode capacity) has mostly dominated the 

literature. Only recently have a few groups been able to produce some modest performance at 

commercially relevant or even strict conditions.60-62 With that said it is desirable to look beyond 

Li metal as an anode for sulfur-based batteries. Other anodes such as Si and graphite are 

comparatively more stable than Li (at the expense of energy density). While maintaining a higher 

capacity and cheap sulfur-based cathodes, an alternative type of sulfur-based battery is revealed. 

With a Li-metal free anode, a Li-ion source must be introduced into the battery. Accordingly, one 

of the key methodologies to achieve a Li metal free sulfur-based battery is the use of Li2S as the 

lithium source.  

As a commonly overlooked and a quickly growing field,63-65  the use of Li2S holds the key 

benefit of using sulfur as the main redox center on the cathode while being able to not use a metallic 

Li anode. Compared to the large volume of LSB literature, research articles featuring Li metal free 

sulfur-based batteries are rather rare. To the best of our knowledge, there are only 16 published 

works that pairs a S based cathode with a non-Li metal anode.63,66-79 Of these works, ~1/3 can be 

classified as sulfur-based LIBs (S based, Li free cathode) that relied on various prelithiation 

methods to employ the Li-ion into the system.  Prelithiation can be a delicate process and greatly 

depends on the prelithiation cell setup. If the coin cell configuration is chosen, the researcher must 

decrimp the coin cell to retrieve the lithiated anode, which could damage the electrode, producing 

inconsistencies between cells. Other methods such as using a Swagelok cell or direct pressure 

contact with Li foil in electrolyte might be more suitable due to ease of electrode retrieval, but the 

lithiation process is hardly scalable. Additionally, any retrieval procedure of the lithiated anode 

must be performed in an inert environment to prevent reaction with air. Above all, commercial 

prelithiation of anodes such as Si or graphite will most likely be even more logistically 
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problematic. A widely considered alternative could be the use of the stabilized lithium metal 

powder (SLMP), but this type of powder can be quite dangerous. Designs of Si anodes would often 

include some form of nano-sized morphology to mitigate its volumetric expansion/contraction 

challenges80 which typically possesses large surfaces areas. The higher surface area of the anode 

would promote a quick and possibly dangerous lithiation reaction with SLMP. In fact, the most 

common application of SLMP in LIB literature is to provide a capacity compensation against the 

slight capacity loss from SEI formation.81,82 Therefore, the quantities of SLMP often used are much 

lower than the required amount envisioned in lithiating the entire anode. Furthermore, since the 

absolute capacities of sulfur-based lithium ion batteries are required to be significantly higher than 

that of commercial LIB (to compensate for sulfur lower discharge voltage plateau), it is likely that 

an uncontrolled lithiation of a high capacity anode with SLMP (technically a short circuit reaction) 

can lead to severe thermal runaways especially when brought to the commercial scale. Even under 

an inert atmosphere, a metal fire can still occur if the heat transfer is not properly managed. 

Alternatively, a more promising and scalable method is to introduce lithium into the cathode. 

Borrowing the idea from commercial lithium metal oxides, the use of Li2S as starting cathode 

material not only allows for circumventing the anode prelithiation problems but also offers a few 

unique advantages over the S electrode. 

The first and foremost most important benefit of using Li2S is its ability to eliminate the 

need for a Li metal anode. This crucial benefit directly eliminates much of the problems associated 

to the Li metal anode. The development of a viable cathode alternative that has a Li source (i.e. 

Li2S-based cathode) will be key in enabling alternative and more stable anodes such as silicon and 

graphite. Additionally, compared to Li2S, sulfur is highly volatile due to its naturally low surface 

tension and will easily sublimate at slightly elevated temperatures (70-80 oC) or partial vacuums,83 
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limiting synthesis options and material stability during storage.84 Even the typical drying process 

of the electrode laminates can be detrimental to electrochemical performance if not carefully 

controlled.85 Finally, it is well known that sulfur experiences a ~80% volume expansion upon 

being lithiated to Li2S. This could be detrimental in maintaining a mechanically robust electrode 

throughout the cycles. Intriguingly, this problem of volume expansion is often overshadowed by 

the much emphasized polysulfide shuttle effect. A common practice in LSB research is the lack of 

calendaring which allows for large electrode pore volumes. This conveniently helps to alleviate 

the problems associated with S volume expansion. Accordingly, work by Lv et al. have shown the 

negative effects on performance after calendaring to a certain thickness, especially for high areal 

loading cells.86 The lack of calendaring severely penalizes volumetric energy density estimates of 

the already intrinsically bulky sulfur material (density ≃ 2 g cm-3).87 Like the hidden symptoms of 

LSB’s Li-anode, it could be expected that the problems associated with volume expansion of sulfur 

to Li2S will most likely reveal itself as research into sulfur-based cathodes reach closer to 

commercial targets. If Li2S (Li2S-LIB) is used instead of sulfur (sulfur-LIB), concerns with volume 

expansion can be effectively mitigated. 

While the benefits are clear, the use of Li2S is far from trivial due to electrochemical 

inertness of commercial Li2S.64 The highly insulating nature (both ionically and electronically) of 

Li2S renders it extremely difficult to delithiate (i.e. extract Li-ions). Typical strategies include the 

decrease in Li2S particle size to reduce the effects of the conductivity limitations. These techniques 

typically require complex synthesis methodologies63,88-90 that introduce a large economic 

uncertainty if subjected to industrial scrutiny. An alternate and arguably superior strategy is the 

use of redox mediators, which are soluble species that can be oxidized by the cathode, diffuse to, 

and then chemically get reduced by Li2S (oxidation of Li2S/delithiation).90-93 We will focus on a 
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new class of Li2S activation technology that uses initially solid electrode additives that decomposes 

into redox mediators upon electrochemical activation to achieve cyclability at strict cycling 

conditions.  

1.5.3. Thesis objectives  

 

From our discussion on the challenges relating to operation at strict testing conditions, 

modification in terms of cathode design must be realized to achieve progress in sulfur-based 

batteries are achieve. In this thesis, the overarching goal is to achieve cyclability (200 cycles or 

cyclability with 60% retention) of sulfur-based electrode at “strict conditions,” which we define as 

high areal sulfur loading (> 4 mgS cm-2) and low electrolyte to sulfur ratios (<8µL  mg-1
s). Any 

cycling parameters at lower area sulfur loadings or higher electrolyte to sulfur ratios will be 

deemed as “relaxed conditions” Such cyclability at strict conditions would represent a significant 

improvement towards any commercial relevancy for sulfur-based cathode. To achieve this goal, 

two major strategies will be employed: 

 The first direction revolves around the lithium sulfur system, that is the starting material 

is elemental sulfur at oxidation state zero. The intended anode will be Li metal. Two strategies will 

be investigated, the modification of the cathode. For the cathode, the enhancement of electrolyte 

infiltration into the cathode structure, while limiting outwards diffusion of polysulfides. This will 

be achieved by the development of agglomerated hollow structures with graphene shielding and 

nitrogen doping to prevent dissolution.   

The second strategy is the efficient substitution of the elemental sulfur cathode with a Li2S-

based cathode. This will enable the use of other anodes other than metallic lithium. In this context, 
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the word, “efficient” pertains to achieving a lower activation energy, higher material utilization 

without significant  modifications of the Li2S cathode.  

1.5.3 Thesis layout 

 

This thesis explores sulfur-based Li battery systems with an emphasis on achieving 

performance at strict conditions. Specifically, this means battery cycling at high areal loading and 

low electrolyte content. There are 7 chapters in this thesis and the overall thesis workflow is shown 

in Figure 1-1. Chapter one introduces the thesis in terms of the challenges, current state-of-the-

art, and specific motivation for each research direction selected for this thesis work. Chapter two 

provides a brief background on the experimental techniques used to characterize and evaluate the 

materials and designs in this thesis. Chapter three will begin the sulfur cathode-based part of this 

thesis. Primary, this chapter will discuss about a new methodology we developed for synthesizing 

hollow carbon with a porous shell. This material significantly outperformed commercially 

available carbon black at low loading and high electrolyte content (i.e. relaxed conditions). 

Specifically, the rate performance was particularly impressive with high specific capacity at up to 

9C and appears to be promising for testing at strict conditions (of ≥4 mg cm-2
 and electrolyte to 

sulfur ratio of ≤8 µL mg-1
s).  Electrochemical testing will be presented with some detailed 

mechanistic information. Chapter four will bring the material developed in Chapter three, build 

upon its design through physical particle agglomeration and wrapping with reduced graphene 

oxide and present cycle life at record high sulfur loading and low electrolytes. Mechanism of 

failure will be investigated. Chapter five and six will present the work done on moving away from 

the well documented problems of using a metallic Li anode at strict testing conditions via the 

development of Li2S based cathodes i.e. changing source for Li-ions. We discuss the first ever 

implementation of what we named a solid-sourced redox mediator generator for high loading and 
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low electrolyte content electrodes. This technique is key towards achieving sulfur-based batteries 

at strict testing conditions. Specifically, Chapter five will discuss the first iteration where Li3PS4 

is used while Chapter six describes the use of Na2S, a newer more intrinsic redox mediator source 

that is more effective at lower proportions. The last chapter, Chapter seven will provide a summary 

and overview of the work presented in this thesis along with future direction of research to further 

advance the field. 

 

Figure 1- 1: Thesis workflow 
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Chapter 2: Characterization Techniques 

Physical and electrochemical characterization of the various material and LSB cells are 

important tools to allow for quantitative and qualitative comparison between samples. Physical 

characterization techniques such as dynamic light scattering, scanning electron microscopy, 

transmission electron microscopy, X-ray diffraction and thermogravimetric analysis are all used 

to determine specific traits of the materials. Electrochemical techniques such as galvanostatic 

discharge is used to emulate actual battery operating conditions, allowing us to gauge the 

performance of the developed sulfur-based batteries. Furthermore, other electrochemical 

technique such as electrochemical impedance spectroscopy can offer valuable insight into the 

nature of mass transfer in a cell. This is especially important when investigating high loading 

electrodes where diffusion of ions and electron conductance become a major problem. To follow 

is a brief description of each characterization methods used in the research presented in this thesis 

2.1 Scanning electron microscopy 

Scanning electron microscopy (SEM) utilizes electron beams to analyze the topological 

properties of a sample. Fired from an electron gun, the beam is passed through a condenser and 

focusing lens composed of electromagnetic fields. Once the beam contacts the sample a 

combination of three events occur. The electrons are reflected, absorbed and excite the electrons 

within the material. After measuring these signals with detectors, a signal is sent to the computer 

which creates a real-time image displaying the morphology of the sample. Typical SEMs operate 

under high vacuum (~10-5 mbar), although SEMs that can operate under low vacuum and even 

with different atmospheres exists i.e. atmospheric SEMs.  A Zeiss Leo FESEM 1530 scanning 

electron microscope (SEM) is used to characterize the morphology of the materials proposed in 
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this work. SEM will be used in this thesis to characterize the surface morphology of the designed 

sulfur host material.  

2.2 Transmission electron microscopy 

Transmission electron microscopy (TEM) enables high resolution images of 

nanostructured materials. Electrons are ejected from the electron gun (cathode) which is composed 

of a high voltage applied to a hairpin-shaped tungsten wire. The ground or the anode directs 

electron flow through a hole in the anode’s body and the electron is further passed through and 

focused by electromagnetic condenser lenses. A liquid nitrogen cooled anticontaminator rod is 

placed near the objective lens to condense and prevent drifting in of the sample’s image. Once the 

electron has passed through the sample, it is magnified by the projector lens and is projected onto 

a fluorescent screen of which the user can example their samples morphologies. Like SEM, TEM 

is also operated under high vacuum of usually 10-5 mmHg to prevent deflection and absorption 

by atmospheric gas molecules. 

2.3 X-ray diffraction 

X-ray diffraction is a technique that is used to characterize the crystal structure of samples. 

The basic concept is that electromagnetic waves such as X-rays, can be diffracted by the crystal 

structure to form an interference pattern as the wavelength of the X-rays correspond well with the 

d-spacings of crystalline materials. The intensities of these patterns can be detected and correlated 

to the structure and ordering of the atoms in the sample. Bragg’s law is used to relate the scattering 

angle to the lattice spacing and is given in the following widely known equation: 

Equation 8: Bragg’s Law 
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2𝑑 𝑠𝑖𝑛𝜃 = 𝑛𝜆 

 

 

 

where 𝑑 is the lattice spacing, 𝜃 is the incident angle of the X-ray, n is any whole integer and 𝜆 is 

the wavelength of the X-rays. Figure 2-1a depicts the experimental setup while the Figure 2-1b 

illustrates the spatial relationship between the lattice spacing and scattering angle. Lab-based XRD 

measurements were performed on a MiniFlex 600 Rigaku unit.  

 

 

Figure 2- 1: a) Illustration of typical X-ray diffraction set up94 and b) schematic of Bragg’s 

Law.95 

XRD will also be used to show the successful removal of silica template after HF etching. 

It is expected that the amorphous broad silica peak (2𝜃 =~20o) disappear after HF etching.  While 

slight peaks at ~42o and ~27o should be present representing the (100) and (002) plane of graphite, 

respectively. The purpose is to provide evidence of a thin film of sulfur as appose to sulfur 

a) b)
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agglomerates, which is to be expected due to the high surface area and pore volume of the nitrogen 

doped porous carbon. 

In addition to the benchtop XRD, high energy XRD (HEXRD) was performed at the 

Advanced Photon Source at Argonne National Laboratories. The synchrotron-sourced X-rays have 

significantly higher energy. Cu Kα-based lab XRD have a wavelength of 0.154 nm whereas the 

HEXRD from the 11 ID-C beamline has a much smaller wavelength of 0.01173 nm (high energy, 

hard X-rays). It should be noted that 2𝜃 between the two different X-ray sources will be different 

and can be converted to a comparable basis based on Bragg’s Law since d-spacing is purely 

dependent on the material. Additionally, the flux from a synchrotron source flux is also much 

higher, requiring a much lower sampling time. The key advantage of using a synchrotron-based 

radiation source is that it allows for in operando transmission-based sampling of the battery 

electrode in a coin-cell. This is because scattering cross section of elements typically decrease with 

increasing X-ray energy. However, though high energy X-rays are much more penetrative, the 

millimeters thick coin cell casing will still absorb/scatter a significant portion of the incident X-

rays, rendering the useful scattered X-rays intensity too low. Therefore, a special coin cell setup is 

used to ensure X-ray only interact with the sample of interest plus as little of background material 

as possible. Specifically, Figure 2-2a illustrate the special in operando coin cell design. The 

stainless-steel components of the cell are hole-bored to allow for X-ray passage. The hole sizes are 

about 2 mm in diameter. As the cells are air sensitive and the electrolyte are relatively volatile, the 

cell must be near-hermetically sealed. To achieve at decent seal of the cell, Kapton-tape is typically 

employed on each side of the caps. That is, for each cap (top and bottom) there are two layers of 

Kapton-tape (from inside and from outside) sealing the cells (as shown in Figure 2-2a). The beam 

first passes through two layers of Kapton polymer on the bottom cap (background scattering), Li 
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metal (background scattering), Celgard based separator (background scattering), electrode 

containing sample of interest and finally another two layers of Kapton polymer on the top cap 

before the beam exiting the coin cell. A digital image of the experimental setup can be found in 

Figure 2-2b. 
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Figure 2- 2: a) Schematic of coin cell used for operando X-ray diffraction studies and not to 

scale, Copyright © 2019, Springer Nature96 and b) digital picture of experimental setup with 

the backside of the coin cell visible where the X-rays will leave the sample.  

a)

b)
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2.4 Raman spectroscopy  

Raman spectroscopy is an inelastic scattering technique where the scattered photons have 

different kinetics energies than the incident photons. This difference in kinetic energy yields a 

change in wavelength and is known as Raman scattering, which can provide important information 

on the functional groups of the material of question. In contrast, for some absorption-based 

spectroscopy, the emitted electromagnetic waves from the samples after interaction are not 

measured. This means that the only measured value is the total absorbed intensity, which is a sum 

of both elastically and inelastically scattered radiation. Raman spectroscopy specifically 

differentiates and measures the inelastically scattering radiation, which amounts to a very small 

portion of the signal. This technique is considered complementary to an absorption-based 

spectroscopy (such as FTIR) because it measures the polarizability of bonds rather than the dipole 

moment. As such, bonds with symmetrical structures such as alkane, alkene, etc. are more easily 

detected by Raman scattering than FTIR. Additionally, in contrast to FTIR, Raman spectroscopy 

experiments typically only probes the samples with a single wavelength laser and the 

corresponding detector scans different wavelength of inelastically scattering light. It should be 

noted that more sophisticated Raman spectrometers can tune the incident laser in a continuous 

manner yielding, a full three-dimensional plot of incident wavelength, emitted wavelength and 

emitted photon intensity. In this thesis, all Raman spectroscopy was only tested with a 785 nm 

laser to probe the chemical species present in sulfur-based electrode over the course of cycling. 

 

2.5 Thermogravimetric analysis 

Thermogravimetric analysis (TGA) is a technique where the weight change of a sample is 

measured as a function of temperature. Samples can also be exposed to different atmospheres as 
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they are being heated during TGA.  For example, heating carbon in nitrogen gas does not result in 

any weight loss even at 900 Celsius but once the atmosphere is changed to air, carbon is readily 

oxidized into carbon dioxide. A typical TGA measures the sample weight with a precision balance 

while purging the heated region with the desired type of gas. The heating is done in a small furnace 

and the temperature is precisely measured with a temperature resistance probe in close vicinity to 

the sample holder. The sample holder is usually made up of an inert heat resistant material such as 

platinum and alumina. A platinum sample holder is used in this research study.  

The main purpose of TGA in this work is to determine the exact sulfur amount in the porous 

carbon/sulfur composite. Since sulfur boils at ~444 oC, a sharp decline in mass is to be expected 

near this temperature. If the atmosphere was chosen to be nitrogen, all the sulfur would vaporize 

leaving behind the porous carbon when this temperature is reached. The mass changed measured 

by the TGA will determine the accurate composition of the porous carbon/sulfur composite. This 

is imperative to obtain an accurate estimate of specific capacity. TGA was performed in this thesis 

on a TA instrument Q500.  

2.6 X-ray photoelectron spectroscopy 

X-ray photoelectron spectroscopy (XPS) is a method that provides information of the 

electronic structure of atoms and ionization energy of certain electrons of those elements. The 

sample is bombarded by X-rays and the resulting electrons ejected are captured by detectors. The 

basic concept XPS revolves around the conservation of energy. Since the wavelength of the X-ray 

is known prior to its interaction with the sample, the energy entering the system is known. Upon 

interacting with the atoms of the sample, electrons will be ejected from the sample with a certain 

amount of kinetic energy through the photoelectric effect. A simple energy balance determines 

how much energy is absorbed by the atom. This absorbed energy is called the binding energy or 
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the ionization energy of the atom. This provides valuable information of the orbitals from which 

these electrons are emitted and the nature of the chemical bonds. Furthermore, because different 

electron shells require drastically different ionization energies, electron configuration of the 

sample can be found and hence a fingerprint for the atom in the sample. XPS is also surface 

sensitive and cannot penetrate more than a few nanometers of the sample. The key disadvantage 

of XPS it the requirement of a vacuum or a partial vacuum, which limits some of its application. 

XPS will be used in this thesis to quantify the degree and type of nitrogen doping in our 

carbon-based sulfur hosts in Chapter 3 and 4. The three type of nitrogen doping should be 

pyridinic, pyrrolic, and graphitic. Furthermore, XPS will be used to identify the presence of Na 

species on the surface of the Li anode during oxidation of a composite Li2S and Na2S cathode 

presented in Chapter 6. 

2.7 X-ray Absorption Spectroscopy 

X-ray absorption spectroscopy (XAS) where the samples are bombarded by X-rays at 

different energies. When the X-ray energy reaches the correct energy level to excite the electrons 

of a given atom, an X-ray absorption phenomenon would occur. The energy level at which 

absorption occurs are known as the absorption edges. The term “edge” implies a sudden and sharp 

rise in absorbed energy which is due to minimal energy required to excite the electron of the orbital 

structures of the given atoms. Electrons at different orbital of the atom have different terminology 

with respect to their absorption edges. Specifically, the K-edge refers to the energy required to 

excite the core 1s orbital electrons (principal quantum number n=1). While not measured in this 

thesis, the L1, L2 and L3 –edges, more common to transition metals, refers to the energy required 

to excite from the 2s, 2p1/2 and 2p3/2 respectively (n=2) and M-edge refers to the electrons in n=3. 

In the vicinity of each edge are three main areas of interest, pre-edge, rising-edge and extended X-
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ray absorption fine structure (EXAFS). EXAFS measures the backscattering radiation of 

neighboring atoms. EXAFS was not performed in this thesis. The pre-edge, rising-edge and a few 

EV post-edge constitute what is known as the X-ray absorption near-edge spectroscopy (XANES) 

technique. This technique provides information about the oxidation and some information on the 

bonding environment and will be used in this thesis. Together, XANES and EXAFS are 

colloquially known as X-ray absorption fine structure (XAFS). 

In terms of XANES, before the K-edge, there exist a pre-edges which occurs because there 

is a finite energy required to excite the core 1s electron to certain orbitals before to full vacuum. 

This gives rise to slightly convoluted edge rise. After the edge-step, the continued absorption is 

due to the interaction between the atom of interest and the neighboring atoms (bonding 

environment) via backscattering. This experiment is usually performed at synchrotron-based 

facilities due to the large range of X-ray radiation wavelength required to be swept while 

maintaining high photon intensity. However, benchtop systems are beginning to appear on the 

market. For this thesis, XAS was performed at beamline 9-bending magnet (BM) at the Advanced 

Photon Source (APS) at Argonne National Laboratory (ANL). BM beamlines operate by utilizing 

the photon release from the electron changing trajectory to complete each incremental turn inside 

the storage ring, this photon release is uncontrolled and yields a distribution of wavelengths. 

Broadband photons from synchrotrons are usually selected/filtered to specific wavelengths with a 

crystalline monochromator. At 9 BM, Si (111) and Si (220) monochromator are used. Mainly the 

S K-edge and P K-edge were investigated in this thesis. S K-edge position was calibrated with a 

Na2S2O3 and the P K-edge position was calibrated with P2O5. 
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2.8 Potentiostatic Electrochemical Impedance Spectroscopy 

Potentiostatic electrochemical impedance spectroscopy (EIS) is a very useful technique in 

the field of electrochemical engineering. It can provide insight into the mechanism of an 

electrochemical cell. EIS operates by treating the cell as a circuit of capacitors and resistors, the 

configuration of which is decided by the user.  By applying an AC voltage signal at different 

frequencies over a pre-set voltage range a corresponding alternating current (AC) can be obtained. 

The dependence of the impedance of an AC circuit on the frequency can be used to fit a proposed 

electric circuit model. In the case of lithium sulfur battery the circuit below has been used.97 Re is 

the ohmic loss from the electrolyte resistance, Rint/CPEint is the resistance between the conductive 

interface of sulfur and any conductive material, Rct/CPEdl is the charge transfer resistance 

interpreted as the charge transfer process at the interface between the electron conductor and 

electrolyte/electrochemical reaction kinetics, and CPEdiff is the lithium ion diffusion resistance.97-

99 Through fitting the model (impedance versus frequency function) to the data set obtained from 

experiments a value for each circuit element can be obtained.   

It should be noted that the interpretation and subsequent allocations of the mid frequency 

and high frequency semicircle on the Nyquist plot are often debated. Since the time constants for 

the physical transport properties between the electron conduction (Rs) and diffusion CPEdiff are 

very different, these physical phenomena are widely and confidently allocated to high frequency 

intercept and low frequency features (respectively). However, in the mid-high frequency regime, 

the time constant between different physical phenomena can become convoluted and highly 

dependent on the nature of the system. In the case of LSB, the allocation of Rint and Rct have been 

used for high and mid frequency respectively and vice versa throughout literature. To this end we 

would like to first clarify that there are indeed experimental supported way to allocate the Rint and 
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Rct for LSB. Work by Deng et al have shown that when varying temperature, only the mid 

frequency semi-circle is changed.97 Compared to the contact resistance, that is the conduction of 

electron between conductive and non-conductive surfaces, a chemical reaction is expected to be 

more susceptible to temperature variations. This provide strong evidence that the mid frequency 

semi-circle is highly correlated to charge transfer (reaction rates) and the high frequency semi-

circle is correlated to interfacial resistances. 

 

Figure 2- 3: Equivalent Circuit used for EIS 

In the context of this thesis, EIS measurements will be used to characterize the cell impedance 

over the course of cycling. Figure 3 depicts the equivalent circuit that will be used. Typically, 

experiments are run operando where the cell is cycled galvanostatically with intermittent EIS 

spectrums sampled at different states of charge/discharge.  Spectra were then fitted using the Zfit 

function developed by Jean-Luc Dellis, implemented in Matlab. Zfit calls the ‘fminsearch’ 

function of MATLAB with heavy reliance on the quality of initial guess. Initial guesses were based 

on the raw Nyquist plots where the size of the semi-circle and their intercepts. The distortion of 

the semi-circle either towards the Zim (more capacitive-like) or Zre (more inductor-like) were used 

to provide initial guesses for “n”. The admittance term, “Y” can then be estimated based on features 

(frequency position of impedance increase) of the Bode plots. The constant phase elements (CPE) 

were fitted using the following equation.  



38 

 

Equation 9 

𝐙𝐂𝐏𝐄 =
𝟏

𝒀𝒐𝛚𝐧
𝒆−

𝝅
𝟐

𝒏𝒊
 

Where ZCPE is the constant phase element impedance value, Yo is the admittance term, ω is the 

frequency, n is a constant term that is frequency independent that changes how capacitive or 

resistive the CPE is. i is the imaginary unit. 

2.9 Galvanostatic Discharge  

Batteries were evaluated with a coin cell. This technique entails a constant current 

discharge of the battery cells, followed by a constant current charge. The number of electrons 

transferred are counted from the start to the end of the cycle. The cycle ends when the voltage 

reaches a specific target voltage set by the user. In the case of LSB, typically fresh cells are first 

charged to 2.8 V vs Li+ /Li followed by discharge to 1.9 V vs Li+ /Li with a two-minute rest between 

charge and discharge. The current of discharge/charge is called the C-rate and is defined as the 

reciprocal of the discharge/charge time with units: hour-1. One important note is that the discharge 

time can be based on many different factors in the battery. Therefore, the discharge time can vary 

greatly between battery technologies. Due to this variation, the convention used in most LSB 

research studies is to base the C-rate on the theoretical discharge time of the active material. For 

example, theoretically, one gram of sulfur in a battery at a current of 1675 mA g-1 would be fully 

discharged in one hour, assuming a completely theoretical (100% efficient) use of sulfur. Therefore 

1675 mA g-1 would be called 1 C, an estimated 30-minute discharge (1675x2 mA g-1) would be 2 

C and a 10 hour discharge (1675/10 mA g-1) would be 0.1 C. However, since the real specific 

capacity obtained from these cells are typically much lower than theoretical, the real discharge 
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time are usually much lower. In the case of 1 C, it is predicted that discharge time should be 1 

hour, but it is common for the real observed discharge/charge times to be around 36 minutes due 

to a much lower deliverable specific capacity (~1000 mAh g-1).  Galvanostatic cycling will be used 

to emulate real operation of the LSB in attempt to evaluate its cycle life performance.  

Rate performance evaluation is done by ramping the C rates from an initially low rate (e.g. 

0.1C) to higher rates (e.g. 5C). This is followed by recovery to the initial slow rate to show 

reversibility.  This test will be used to determine the performance of the cell at different current 

densities, which again emulates real operation.  

2.10 Shuttle current measurement 

  The shuttle current will be measured by holding the cell Potentiostatic at 2.3V versus Li+ 

/Li and measuring the corresponding current response. This technique was first implemented by 

Moy et al100 and its versatility was demonstrated in our publication.46 The shuttle current is an 

attempt for the researcher to quantify and measure the rate of PS mass transfer out of the cathode 

and to the anode. When the PS species diffuse out of the cathode and reaches the anode, they will 

be reduced on the surface of lithium. As this occurs, a concentration gradient is generated from 

the anode to the cathode of the lower oxidation state PS and results in its diffusion back from the 

anode to the cathode. If a charging current (cathode receiving electron) is applied to the cell, then 

these lower oxidation state PS will be oxidized back to the its higher oxidation state counterparts. 

In the case of a potentiostatic experiment, the charging current can be described as the exact 

current or rate of which PS is reduced on the anode surface. This is possible only for higher order 

PS species i.e. S8
2- and S6

2- owing to the soluble nature of the reduction products of both the S8
2- 

and S6
2- species. CR 2016 type coin cells will be used for testing. 
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Chapter 3: Hollow porous carbon for stable lithium sulfur battery at 

relaxed testing conditions 
 

This chapter is reprinted in adopted form with permission from Advanced Functional Materials:  

M. Li, Y. Zhang, X. Wang, W. Ahn, G. Jiang, K. Feng, G. Lui, Z. Chen, Gas Pickering emulsion 

templated hollow carbon for high rate performance lithium sulfur batteries, Advanced Functional 

Materials, 2016, 26, 8408-8417, Copyright Wiley-VCH, 2016 

3. 1. Introduction 

 

 To enable strict cycling conditions LSB, first a baseline material must be identified. This 

material needs to at the very least, outperform the normal carbon-black/sulfur composites. Cycling 

of sulfur cathode with commercially available carbon black typically yield very poor cycle 

stability, specific capacity and Coulombic efficiency. In fact, cycling a lithium sulfur battery at 

relaxed conditions is still non-trivial. The soluble nature of polysulfide is still problematic if 

certain101 materials are not used. In this chapter, we discuss the use of a combined three-pronged 

technique to address the polysulfide shuttle effect. Firstly, N-doped carbon was used as the main 

host. N-doping can generate a dipole on the surface of carbon material. This dipole enhances 

polysulfide sorption characteristics of the N-doped carbon.37,102 Secondly, the carbon is porous 

with high surface area and pore volume allowing for high contact with sulfur (electrically 

insulating). Furthermore, the porous structure creates tortuosity that slows the diffusion of 

polysulfide out of the cathode particles. Up to this point, the material design focusses very much 

on a chemisorption- and physical confinement-based approach to limit the escape of polysulfide, 

which has been also been established by other groups103,104 including ours.105 The key contribution 
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here is that the porous carbon is arranged in a hollow structure. The impact of hollow carbon and 

its mechanism is the key contribution of this chapter.  

Throughout the many fields of science, hollow structured nanomaterials have proven to be 

quite useful. The advantages of a hollow morphology stem from its unique implications in mass 

transfer characteristics such as physical separation of the core from the bulk phase.106-108 

Recognizing these benefits, researchers have developed innovative application in fields such as 

drug deliver,109,110 waste water treatment,111,112 among many others. One particularly interesting 

application of hollow morphologies, is in energy storage,113,114 specifically, the field of lithium 

sulfur batteries. While LSB’s stability and energy density is crucial, a high rate performance should 

be considered to be equally important and put under more scrutiny in the scientific community. In 

the case of electric vehicles (EV), the rate capability of the battery can influence the recharge time, 

acceleration and regenerative braking efficiency. All these parameters directly affect the final user 

experience of the vehicle and can cause serious damage to the reputation of EVs if poorly 

implemented. Often researchers have achieved LSB with impressive cycle durability, coulombic 

efficiency and capacity, but do not fare well when subjected to higher rate performance tests. 

Indeed, a complex pore network will limit PS diffusion and provide enhanced durability, but the 

very same tortuous diffusion pathway out of the cathode will inevitably increase lithium ion 

diffusion resistance. When combined with the known electrolyte viscosity/resistance increase 

upon PS dissolution,115-117 it is understandable as to why the rate performance is poor. Recent 

research into the rate performance of LIS revolves around providing efficient lithium ion and 

electron mass transfer pathways118-121 or additional battery components such as an interlayer to 

provide additional surface area for faster PS reduction.122 Interestingly, hollow structures which 

have been previously used to successfully address the stability problems of LIS, commonly 
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demonstrates excellent rate performances.36,123-126 The distinct difference between hollow porous 

structures and regular porous carbon lies in the separation of the core electrolyte from the bulk 

electrolyte phases. The shell can act as a physical barrier to encapsulate PS, limiting dissolution of 

active sulfur material into the bulk electrolyte. More importantly, the hollow structures can serve 

as an PS reservoir127 to redirect some PS diffusion inwards. This mitigate the effects of the 

viscosity increase from PS dissolution. Accordingly, early work in hollow structures for LSB have 

demonstrated some of the highest rate performance of its time.36 In terms of LSB operated at strict 

testing conditions (high loading and low electrolyte content), carbon structures with macro 

porosities are crucial.  

Practical application of hollow structures is limited due to relatively complex synthesis 

procedures. Most hollow carbon structures requires the use of either chemical surfactants124,128,129 

with two separate liquid phases130,131 or hard templates,36,123 entailing complex and expensive 

synthesis processes. One solution can be the use of self-removing templates such as gas bubbles 

which requires no additional core template removal step. Regardless of the method used to 

template the core, to obtain a hollow structure with also a mesoporous shell requires the careful 

tuning of another set of templates in addition to the core template. We look to solve this problem 

by taking advantage of the nanoparticle positioning in a Pickering emulsion (PE). First discovered 

by S. Pickering in 1907,132 a PE is a unique type of emulsion system that is stabilized not by 

surfactants, but by particles.133-139 The stabilized emulsion droplet is therefore composed of a 

multi-layer nanoparticle shell of which, we conveniently used as pore templates for the shell.  

In this chapter, to the best of our knowledge we report for the first time the design and 

development of a CO2 PE templated micron sized hollow nitrogen doped porous carbon for high 

rate performance lithium sulfur battery. This novel synthesis technique demonstrates low material 
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cost and facile synthesis compared to other methodologies. The hollow morphology is achieved 

by first obtaining a CO2 in water PE and then utilizing the CO2 bubbles as a template for the hollow 

core through polymerization of melamine. Conveniently, no pre-made CO2 emulsion solution is 

required. By polymerizing the carbon precursor around the nanoparticles stabilized emulsion, a 

porous shell can be obtained. This procedure effectively unites the normally separate core 

templating and shell templating process, into one facile step. Through combination of the hollow 

structure, and nitrogen doping, superior rate performance is obtained.  

3.2.  Experimental method  

 

3.2.1. Material synthesis:  

A typical synthesis procedures is a modification and improvement upon that of previously 

published work.140 In short, melamine (12.6 g) was reacted with 37% formaldehyde solution (20 

ml) at 85oC at pH 9.5 (adjusted by 2M Na2CO3 ). Once the solution turned from white (MF 

dispersion) to clear (MF prepolymer solution), the solution was stirred at 1200 RPM for 15 

additional minutes. To follow, the solution was cooled to 40oC in ambient condition (~15 minutes). 

A 5 wt% Ludox AS 40 aqueous solution (120 g) was added into the solution and continued to be 

stirred at the same RPM for 20 minutes. 2M HCl was then added into the solution until the desired 

pH was reached and continued to be stirred for 15 minutes, In this step, the reaction between HCl 

and Na2CO3 generates CO2, which are then we believed to be emulsified by silica nanoparticles. 

Afterwards, agitation was halted, and the solution was allowed to polymerize under stagnant 

conditions at 40oC for 4 hours. The spherical hollow morphology was strongly dependent on the 

RPM and polymerization pH. To obtain the hollow morphology the RPM used throughout the 

synthesis was 1200 RPM and the polymerization pH of 5.5 was used. The reaction was conducted 

with a cylindrical ~2 inch Teflon coated metallic stir bar in a 500ml beaker covered by a watch 
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glass. Afterwards the polymer/silica composite was decanted and dried in an oven at 60oC for 24 

hours followed by an 180oC heat treatment for 24 hours. The obtained white powder was then 

carbonized at 900oC for 2 hours with a 5oC/min ramp rate under argon gas. The resulting powder 

was washed with an 8M NaOH solution at 80 oC for 2 days and rinsed with water. After filtering 

and drying, PEHPC was obtained. pH was measured with a Mettler Toledo S20 SevenEasy pH 

meter. The sample without silica was synthesized under the same exact conditions except the 

amount of 2M HCl was modified to compensate for the lack of basic Ludox additive, still reaching 

an endpoint of pH 5.5.  

PEHPC and sulfur composite was synthesized by mortaring together PEHPC and sulfur at 

a mass ratio of 30:70. The mixture was then transferred into a sealed, argon filled Teflon lined 

autoclave and heated to 155 oC for 12 hours. The same procedure was done to synthesize the Ketjen 

black 600 JD and sulfur composite. All chemicals were purchased from Sigma Aldrich. 

The blue balloon inflation experiment was performed by first adding 2M Na2CO3 (0.5 ml) 

into a 150ml glass bottle filled with water (100 ml) to increase the pH to 9.5. To follow, a correct 

amount of 2M HCl was added into the basic solution until the pH dropped to 5.5 (pre-determined 

with a Mettler Toledo S20 SevenEasy pH meter). Specifically, the acid solution was kept in the 

balloon and then the balloon was attached to the bottle. The addition of the acid entail simply 

turning the balloon to an upright orientation and the 2M HCl filled inside poured into the glass 

container via gravity. 

 For the experiment with silica, the concentration of silica was kept at 3% (i.e. 7.5 g of 40% 

wt silica suspension), matching that of material synthesis conditions. It is important to note that 

the silica suspension is alkaline, therefore the amount of 2M HCl added was adjusted accordingly 

to ensure the same amount of CO2 generation.      
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3.2.2. Physical characterization:  

 

Thermogravimetric analysis (TGA, TA instrument Q500) was conducted under nitrogen 

atmosphere to confirm the accurate sulfur loading. The protocol entailed a heating rate of 5 °C 

min-1 from 25 to 600 °C and maintained at 600 °C for 2 hours.  Nitrogen sorption (ASAP 2020 

micromeritics) was used to retrieve data which was analyzed using Brunauer-Emmett-Teller 

(BET) theory to calculate and in return, characterize the pore size distribution, surface area and 

pore volume of PEHPC. A Zeiss Leo FESEM 1530 scanning electron microscopy (SEM) was used 

to characterize the morphology of the material. A JEOL 2010F transmission electron microscope 

was used to further characterize the morphology of PEHPC. X-ray diffraction (MiniFlex 600 

Rigaku) experiments were performed to confirm removal of silica. X-ray photoelectron 

spectroscopy (XPS) was performed using a K-Alpha XPS spectrometer.  

3.2.3. Electrochemical characterization:  

 

A water-based slurry of 15% solid content was formed with the mass ratios of PEHPC/S: 

carbon nanotubes: sodium carboxymethyl cellulose as 85:5:10 respectively. The slurry was casted 

onto a carbon coated aluminum foil current collector (MTI) with a typical sulfur loading of 1.3 ± 

0.2 mgsulfur cm-2. All electrodes were dried at 70°C for 4 hours and transferred into an argon filled 

glovebox (Labstar MB10 compact, mBraun) with water and oxygen levels both under 1 PPM. The 

electrochemical performances were evaluated using a 2016 type coin cell with a 1,3-dioxolane and 

dimethoxyethane electrolyte at a 1:1 ratio with 1M LiTFSI with 0.2M lithium nitrate (pre-blended 

by BASF. Electrochemical testing station purchased from Neware was used to perform all cycling 

tests. The electrolyte to sulfur ratio was maintained at 17 µl mg-1
sulfur for both cycle life and rate 

performance tests. The testing conditions in this chapter are at the relaxed condition. The counter 
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electrode used was a lithium metal chip (Linyi Gelon LIB Co., Ltd), while Celgard 2500 was used 

as the separator. The coin cells were cycled from 2.8V to 1.6V vs Li/Li+ for rate performance test 

and 2.8V to 1.9V vs Li/Li+ for cycle life performance to avoid decomposition of LiNO3. 

Electrochemical impedance spectroscopy was performed on a Princeton VersaStat MC with 

frequency ranges from 100000 to 0.1 Hz with an amplitude of 50mV using the same 2016 type 

coin cells. The EIS circuit was fitted using the Zfiti function developed by Jean-Luc Dellis, 

implemented in Matlab. EIS cells were discharged at a constant current of 0.1C with EIS captures 

taken at once every 1200 seconds. Shuttle current measurement was performed in accordance to 

work done by Moy et al100. Briefly, the cells were first cycled 3 times (2.8V to 1.6V vs Li/Li+) at 

C/20 and then charged to 2.8V. After leaving at open circuit voltage for 10 minutes, the cells were 

held at 2.3V and the corresponding current was monitored. This experiment was performed using 

a Princeton VersaStat MC 
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3.3. Result and discussion 

 

3.3.1: Synthesis of nitrogen-doped hollow porous carbon 

 

Figure 3- 1: Illustration of proposed synthesis mechanism. Briefly, HCl is added into a basic 

(Na2CO3) melamine formaldehyde prepolymer solution with silica dispersed homogenously. 

The first purpose of the HCl is to initiate the polymerization and crosslinking of melamine 

formaldehyde monomers. The second purpose is to generate CO2 gas bubbles in situ inside 

the solution. At higher agitation rates, the silica nanoparticle diffuses to the surface of these 

CO2 bubble to form a silica stabilized CO2 Pickering emulsion in water. Subsequently, the 

melamine formaldehyde monomers begin to phase separate out of water and polymerize onto 

the silica covered CO2 bubbles. After the monomer is crosslinked, the hollow morphology is 

casted and solidified. After carbonization and silica removal a nitrogen doped hollow carbon 

with a porous shell is obtained. Sulfur is the loaded into the shell of the porous carbon. 
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To synthesize the hollow carbon, Na2CO3 is added to increase the pH to react melamine 

with formaldehyde. Subsequently, nanoparticles (silica) are dispersed into the prepolymer solution 

prior to gas bubble generation, priming the system for PE formation. 2M HCl is then added to the 

solution to lower the pH, for first the generation of CO2, and then the initiation of melamine 

formaldehyde (MF) polymerization. The proposed synthesis flow chart of the Pickering emulsion 

stabilized hollow porous carbon is presented in Figure 3-1. Once the pH is adjusted from 9.5 to 7, 

Na2CO3 reacts with HCl to an appreciable degree and generates CO2 gas. The CO2 gas bubbles are 

likely encapsulated by silica particles, forming a PE. When the pH is lowered to 5.5, the 

polymerization and crosslinking of MF begin to form a robust silica/MF composite shell around 

the CO2 bubbles. Upon curing, the hollow morphology is casted. To further explore and elucidate 

the synthesis mechanism, Figure 3-2a-c presents an experiment where 2M HCl is added into a 

solution of Na2CO3 (without MF at pH 9.5) until the pH is lowered to 5.5 with a balloon covering 

the solution. Immediately, the reaction between HCl and Na2CO3 generates CO2 and inflates the 

balloon. The degree of inflation provides an indication as to how much CO2 is released from the 

solution and how much is emulsified. Aligning with our expectations, a significant difference is 

found if certain experimental conditions are adjusted. Specifically, three different scenarios are 

investigated: without silica i.e. no emulsifying agent (Figure 3-2a), with silica but no agitation 

(Figure 3-2b) and with silica in addition to rigorous agitation (Figure 3-2c). In the case without 

silica (Figure 3-2a), the produced CO2 gas is captured by the blue balloon and inflates it. This is 

understandable as there are no emulsifying agents (silica) present to stabilize the CO2 bubbles. 

One might suggest MF to be an important or even the dominant CO2 emulsifying agent, implying 

the inflation of the balloon is causes by the absence of MF. If MF does indeed serve a more 

important role over silica in CO2 emulsification, then the absence of silica should have little effect 
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on the morphology. This is revealed not to be the case. Corroborating these observations, when 

the synthesis procedure is carried out without silica, the resulting SEM image of the morphology 

(Figure 3-2d) reveals no hollow morphology. Therefore, there exists a requirement of silica 

particles in the formation of hollow structure.  

 

Figure 3- 2:  Image of balloon inflated by generated CO2 at different time steps after HCl 

addition a) without silica at high agitation rate; b) with silica at 0 RPM; c) with silica at high 

RPM; d) SEM image of morphology without silica template; e) with silica at low RPM; f) 

with silica at high RPM. 

 In Figure 3-2b, prior to HCl addition, silica is added into the Na2CO3 solution. After 

dispersing the silica, 2M HCl is added without agitation. The generated CO2 once again inflates 

the blue balloon, indicating no CO2 emulsification. In Figure 3-2c, the same experiment is 
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performed, but this time with vigorous agitation while HCl is being added. The result is a limp 

blue balloon. The decreased inflation of the balloon indicates that the volume of CO2 is 

compressed. Gas bubbles are at higher pressures than its bulk phase to balance the surface tension 

inherent to its spherical geometry. The contrast between Figure 2b and c is interesting and indicates 

that if the solution is not agitated, even the presence of nanoparticles (silica) cannot form CO2 

emulsions. This illustrates an important relationship between the encapsulation of CO2 bubbles 

and the agitation rate, characteristic to bringing a system to a thermodynamically unstable state i.e. 

emulsion.141-143More importantly, this same relationship is found in the morphological results 

when applied to synthesis conditions. When the synthesis is carried out at low RPM (300RPM), 

almost no hollow spheres are found (Figure 3-2e), whereas at 1200 RPM, almost all MF/silica 

composites are in their hollow form (Figure 3-2f).  

 

Figure 3- 3: Morphology with NaOH as base, i.e. without CO2 generation 
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Additionally, NaOH is used to substitute Na2CO3 in synthesizing the MF prepolymer 

solution as another control experiment. This eliminates any possibility of CO2 formation and 

should yield no hollow structure. Aligning with our theory, the result reveals no spherical 

morphology (Figure 3-3).  

 

Figure 3- 4:  SEM image of sample with synthesis carried out at a) pH 4.5, b) pH 6.5 and c) 

pH 5.5  
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The particle’s morphology is also strongly dependent on the pH of the solution. When the 

pH value is held at 4.5 or 6.0 instead of 5.5, no hollow morphology is present, as seen in Figure 

3-4a-b. CO2 is widely known to be in equilibrium with carbonic acid when dissolved in water, 144  

and the equilibrium shifts depending on the pH. If the pH is too low, the equilibrium will shift 

towards CO2 and increase the rate of CO2 generation. At a sufficiently low pH, the high rate of 

CO2 generation can overcome the rate of emulsification, and result in the release of CO2 into the 

atmosphere. Without CO2 acting as the hollow core template, the resulting particles (Figure 3-4a) 

reveal no spherical morphology even at high RPM.  On the other hand, if the pH is too high, the 

equilibrium will shift towards the carbonic acid.  In this case, there are not enough CO2 bubbles 

which allows the polymerization of MF to exceed that of CO2 emulsification, resulting in formation 

of randomly seeded porous carbon particle without a hollow core. Again, the resulting SEM 

imaging of the morphology confirms no spherical morphology even at high RPM (Figure 3-4b). 

However, when the pH is kept at 5.5, in between 4.5 and 6, the resulting morphology reveals the 

desired spherical morphology (Figure 3-4c). Therefore, the pH can be used to effectively tune the 

rate of CO2 release into the solution. From our experiments, perfect tuning can be defined as the 

pH at which the CO2 release rate matches the rate of CO2 emulsification.  

These experiments show that CO2, silica, correct pH tuning and a sufficiently high agitation 

rate are all required to form a hollow morphology. Furthermore, literatures have demonstrated that 

silica can form PEs.133,138  It should also be noted that a gas/water emulsion will quickly 

coalescence or phase separate due to differences in density if left stagnant and will cause the CO2 

to lose its function as a hollow-structure template. Because of the relative instability of gas 

emulsion systems,145-147carbon precursors that do not adhere strongly to the nanoparticle stabilized 

gas emulsion droplets, but are merely adsorbed onto the surface, cannot form hollow carbon 
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particles. This problem is circumvented in this work due to the polymerization of MF shortly after 

CO2 emulsion formation. Not only can the prepolymer solution act as an emulsion co-stabilizer,[23] 

but once the pH is lowered past 7, MF begins to polymerize appreciably, and crosslink around 

each individual silica particle on the emulsion droplet. This forms a denser, mechanically robust 

MF/silica composite which consolidates the positioning and preserves the hollow morphology of 

the PE. Ultimately, this new synthesis methodology creates a MF/silica composite as the shell of 

a hollow particle. This brings forward another important role of silica. In addition to being an 

emulsion stabilizer, silica also conveniently acts as a hard template to form mesopores throughout 

the shell.  

The benefits of this method lie in the use of gas bubbles as template for the hollow core. 

No prior preparation of a microbubble solution is required such as in Ref. 148 and no additional 

surfactants are required to facilitate the formation of this hollow morphology. This procedure is 

only a slight modification (change of reaction RPM and pH) of traditional hard templating porous 

carbon synthesis techniques, but effectively transforms a simple porous carbon particle into a 

porous carbon shell-hollow sphere. In this work, silica nanoparticles is selected as the CO2 

emulsion stabilizer due to its relatively low cost and commercial availability, but other 

nanoparticles can also be utilized depending on the application.149-151 The dual role of the 

nanoparticle in this system serves both as an emulsifying agent and a pore template. We believe 

this method can be carried over to many different combination of carbon source/pore template. 
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Figure 3- 5: a) TEM image of single PEHPC with silica; b) TEM image of shell of PEHPC 

indicating ~20 nm silica particle; c) TEM image of a single PEHPC revealing shell of ~60 nm 

d) TEM of shell of PEHPC revealing pores of ~20nm; e) SEM image of a single broken 

PEHPC revealing hollow core; f) Nitrogen sorption data and pore size distribution in inset, 

pore volume= 1.23 cm3
 g-1 and surface area= 550 m2g-1.  

After carbonization, the resulting hollow morphology is studied under TEM, Figure 3-5a 

depicts a single hollow carbon sphere prior to silica removal. Higher magnification TEM (Figure 

3-5b) at the edge of the particle reveals multiple layers of ~23 nm particles (silica) on the surface. 

This provides evidence that silica particles are on the surface of the gas bubble, confirming silica’s 

role as an emulsifying agent for CO2. After removal of silica, a ~60 nm thick porous shell remains. 

The pores on the shell are confirmed by Figure 3-5c-d, revealing pores sizes of ~23 nm which 

aligns with the size of the silica nanoparticle used. This confirms the high dispersion of silica on 
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the surface of the CO2 and throughout the MF composite and more importantly, confirms its 

function as a mesopores template. The hollow morphology is again shown through SEM imaging, 

Figure 3-5e depicts a single broken particle after silica removal, revealing a hollow core. The final 

material after silica etching will be referred to as Pickering emulsion hollow porous carbon 

(PEHPC). Nitrogen sorption experiment (Figure 3-5f) also confirms a broad peak at ~20 nm in 

the pore size distribution plot.  

 

3.3.2. Physical and electrochemical characterization 

 

 

Figure 3- 6: a) EELS mapping of nitrogen and carbon; b) XPS binding energy spectrum of 

PEHPC.  

 

Due to the use of melamine as carbon precursor, PEHPC possesses nitrogen doping. 

Electron energy loss spectroscopy (EELS) is employed to investigate distribution of nitrogen 

doping (Figure 3-6a). It is found that nitrogen is dispersed homogenously throughout the structure 

with very strong signals throughout. Finally, nitrogen doping in PEHPC is examined by XPS 

analysis (Figure 3-6b). The graphitic, pyridinic and pyrrolic form of nitrogen represents 12.5%, 
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39% and 48.5% of the total nitrogen content, respectively. It is important to note that the graphitic 

nitrogen has been shown through a few density function theory calculations 37,38,152,153 to possess 

the least amount of interaction with PS, while the pyridinic and pyrrolic have significantly higher 

affinity to adsorb PS via polar interactions. Therefore, to make the best use of nitrogen doping, the 

graphitic form should be minimized. Our material has the advantage of possessing a relatively low 

graphitic nitrogen content of 12.5% (relative to the other N-groups, while maintaining a high 

percentage of both pyrrolic and pyridinic nitrogen. The high nitrogen content of PEHPC (15 atomic 

%) is among some of the highest nitrogen doping content for hollow porous carbon structure.129,154-

161 

 

Figure 3- 7: a) X-ray diffraction spectrum of (from bottom to top) PEHPC with silica, 

PEHPEC without silica and PEHPC with sulfur loaded b) Thermogravimetric analysis of 
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PEHPC with ~70% sulfur loading. c) From left to right, STEM of PEHPC, energy dispersive 

spectroscopy mapping of carbon and sulfur of a broken PEHPC loaded with sulfur.  

To test this material as a sulfur host, sulfur was loaded into PEHPC via the well-known 

melt-diffusion method,162 where a mechanically blended mixture of sulfur and PEHPC is heated 

to 155oC (where the viscosity of sulfur is the lowest). This allows for the diffusion or sulfur into 

the pore of PEHPC through capillary action. X-ray diffraction of PEHPC before and after HF 

etching is shown in Figure 3-7a. Interestingly, after sulfur loading, no sharp sulfur peaks are found 

which is indicative of small sized sulfur particles. Thermogravimetric analysis confirms that about 

70 wt.% of the composite is sulfur (Figure 3-7b). Energy dispersive spectroscopy mapping (Figure 

3-7c) reveals that the sulfur is deposited mostly on the rim of the particle with minor signals 

stemming from the core of PEHPC. This is desirable because if the PEHPC is over saturated with 

sulfur, the electrical connection between the carbon and sulfur will be compromised, rendering a 

portion of the sulfur material inactive. 
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Figure 3- 8: Rate performance of a) PEHPC and KB; b) Cycling capacity and coulombic 

efficiency of PEHPC and KB at 0.5C; d) Illustration of PS diffusion mechanism of hollow 

structures; d) Time profile of the shuttle current of KB and PEHPC 

PEHPC demonstrates impressive capabilities as a sulfur host for LIS. Figure 3-8a indicates 

that at high discharge rates of 7C and even up to 9C, PEHPC loaded with sulfur delivers a capacity 

of ~670 mAh g-1
s and ~500 mAh g-1

s respectively. In contrast, the KB electrode is found to deliver 

a significantly lower, 335 mAh g-1 at only a rate of 5C. At higher rates such as 9C, the KB electrode 



59 

 

is only able to discharge 113 mAh g-1. The impressive performance of PEHPC can be due to a 

combination of three properties of PEHPC. First, nitrogen doping had been previously speculated 

to possess catalytic properties towards the reduction of PS.163 This can serve to lower the 

impedance in the cell, and allow for more reduction of polysulfide species. Secondly, owing to the 

micron sized nature of PEHPC, the interparticle spacing can allow for very efficient lithium ion 

mass transfer compared to smaller sized hollow carbon.40 Thirdly, due to the hollow core, PS 

diffusion is initially directed inwards due to a concentration gradient. An inward PS flux obtains a 

portion of the PS and decreases the amount of PS diffusion into the bulk electrolyte. One 

commonly overlooked problem of LSB is the corresponding increase in viscosity due to increases 

in PS concentration. The increase in viscosity is highest during the end of the 1st plateau, when all 

solid S8(s) has been reduced to its soluble S8
2-, S6

2- and S4
2- form.98 At this time, the lithium ion 

transfer will be significantly retarded and will cause the cell to prematurely reach the cut-off 

voltage, resulting in very poor rate performances. At high discharge rates, the increase in Li+ ion 

mass transfer resistance can drastically affect the ability of the cell to discharge. We believe in the 

case of PEHPC, some of the PS are redirected inwards, partially relieving the bulk electrolyte of 

PS and lowers the overall viscosity of the bulk electrolyte. The ability of PEHPC to discharge at 

9C can have significant implication in the rate performance aspects of electric vehicles.  

Additionally, PEHPC also exhibits exceptional cycle durability. Long galvanostatic 

cycling at 0.5 C (Figure 3-8b) reveals that PEHPC delivers 980 mAh g-1
sulfur and continues to 

retain a capacity of 720 mAh g-1
sulfur (73% retention) at the 300th cycle (0.088% capacity 

loss/cycle). This impressive cycle life is most likely due to the combined effect of the hollow 

structure in addition to the high nitrogen doping content (15 at%) of PEHPC, in alignment with 

previous studies.164 Additionally, most of the nitrogen groups in PEHPC are found to be in the 
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pyridinic and pyrrolic form. It has been theorized that the graphitic nitrogen can provide a 

permanent dipole on the carbon structure due to differences in electronegativity between N and C. 

However it has been shown that such dipole interactions with PS species are minimal when 

compared to the Lewis base-like characteristics of the lone pair in the pyridinic and pyrrolic 

nitrogen groups.37,102 Hence the large amount of pyrrolic and pyridinic nitrogen sites throughout 

PEHPC can be seen as a bin, of which can adsorb/hold PS and ultimately retard any diffusion of 

PS away from each PEHPC particle. The advantage of using PEHPC as a sulfur host is evident 

when comparing against KB. The cycling result indicates an initial cycle of ~900 mAh g-1
sulfur at 

0.5C, lower than that of PEHPC and quickly decreases to 320 mAh g-1 (36% retention) at the 150th 

cycle, representing a severe capacity loss of 0.43%/cycle. Owing to the effects of LiNO3, the 

coulombic efficiency of the KB electrode is still relatively high (>85%) over 150 cycles, indicating 

suppressed deposition of PS species on the lithium anode. However, the inability of the KB to 

locally retain PS can result in the redistribution of sulfur throughout the cathode. Once 

redistributed, the sulfur becomes electronically inaccessible and causes severe cycle degradation. 

Additionally, the Coulombic efficiency of PEHPC (93% at 300th cycle) is also significantly higher 

than that of KB (85% at 150th cycle). The higher coulombic efficiency further corroborates the fact 

that PEHPC is superior to KB in mitigating both the effects of the PS shuttle effect and in managing 

the redistribution of PS throughout the electrode. 

We theorized that the observed rate performance and cycle durability is most likely due to 

the hollow structure. The distinct difference between porous carbon and hollow porous carbon lies 

in the separation of the electrolyte compartments. Electrolyte can be categorized into two types: 

the bulk electrolyte, the portion that is outside of the core and in between the PEHPC particles, 

while the core electrolyte is the portion that resides at the core of PEHPC as shown in Figure 3-
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8c. The core electrolyte is an especially interesting feature of PEHPC and provides unique mass 

transfer dynamics. As PS molecules are generated in the shell, a corresponding concentration 

gradient (shown in orange) would be present both inwards and outwards. The outwards diffusion 

of PS will be obviously poor for PS retention, but the inwards diffusion will allow the void core 

to act as a PS concentration sink/PS reservoir. The inwards PS flux/diffusion works to deplete the 

PS in the porous shell, lowering its concentration. The shell with a now lowered outwards 

concentration gradient, generates a lowered outward flux (initially). Moreover, the PS in the core 

of any specific PEHPC particle can only be reduced/oxidized exclusively by that same PEHPC 

particle. Through the unique mass transfer mechanics of hollow structures and PS adsorption of 

nitrogen doping, PEHPC can achieve high rate performance and stable cycle life. To further 

investigate this phenomenon, measurement of the shuttle current (SC) is performed according to 

the work done by Moy et al.100 The SC is a quantification of the amount of PS diffusion from the 

cathode to the anode. In short, the shuttle current can be obtained by first charging the cells to 

2.8V, followed by holding the cell at a constant 2.3V, and then measuring the current response 

versus time. Initially, the current will be negative (discharging) because of the reduction of PS 

species that can thermodynamically be reduced at 2.3V. As time proceeds, the discharge current 

decreases due to depletion of all reducible species (at 2.3V) in the electrolyte and reaches zero. 

However, the current does not remain at zero because of the PS shuttle effect. Due to PS diffusion 

towards the anode, the lithium constantly short circuits/consumes PS species, resulting in the well-

known self-discharge phenomenon and lowers the voltage of the cell.165-167 In order to maintain 

the cell voltage at 2.3V, the current must change from negative (discharging) to positive 

(charging), oxidizing the lower order PS at the cathode to high order PS at a rate that matches the 

rate of PS diffusion away from the cathode/self-discharge. Therefore, the current time profile can 
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be viewed as the real time result of the ongoing competition for PS mass between cathode reduction 

and PS self-discharge. When all reducible species has been reduced and the system has reached 

steady state, the corresponding steady state current matches exactly that of the rate of PS diffusion 

i.e. the shuttle current.100 In the case of this work, the transient component of the SC time profile 

is more informative because it provides insight as to how exactly this steady state current is reached 

and sheds light on the PS mass transfer dynamics prior to consumption. Figure 3-8d reveals that 

at ~100 seconds, the transient component of PEHPC possesses a distinct decrease in the rate of 

change (inflection point) of the current. The inflection point indicates that some factor in the cell 

is suddenly providing PS for the cathode to discharge, slowing the onset of a positive/charging 

steady state current. This is intriguing, because in the case of a hollow morphology, the 

concentration profile in the core during SC measurement will also be time dependent. Initially, it 

will be lower than the shell (promoting an inward flux), but eventually, all PS in the shell will be 

depleted and the PS concentration in the core will be higher than the shell. We therefore attribute 

the inflection point to the reversal in PS flux resulting in PS diffusion from the core to the shell. 

The funneling of PS species from the core to the conductive shell allows for the cell to maintain a 

higher discharge current for an extended period. Once the core PS concentration is depleted, the 

current will then reach the steady state SC. One might argue that pores in KB can serve the same 

purpose, since the interparticle void space can function as PS mass sinks and should demonstrate 

the same SC time profile. This is experimentally shown to be not the case, because the KB SC 

time profile quickly reached steady state upon holding at 2.3V. This indicates a possible 

dependence of the shuttle current profile on the local void space size as oppose to the total 

magnitude of the void volume. The contrasting transient SC profile between PEHPC and KB 
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provides interesting evidence of the beneficial effects of hollow morphologies while at the same 

time provide valuable insight into the mass transfer mechanism involved. 

 

Figure 3- 9: a) First discharge voltage profile at 0.1C with squares indicating depth of 

discharge (DOD) at which EIS measurements were performed; b) Re, c) Rct and d) Rint at 

various DOD for PEHPC and KB 

Finally, if the PEHPC can indeed redirect the PS diffusion inwards then there should be 

some significant difference in the electrolyte resistance between PEHPC and KB electrodes. To 

confirm this theory, operando electrochemical impedance spectroscopy measurements (EIS) is 
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performed at various depth of discharge (DOD). A “snapshot” of various circuit parameters (Re, 

Rct, Rint shown in Figure 3-9b-d respectively) is revealed at different DOD. Specific fitted circuit 

parameters are presented in Table 3-1 (PEHPC) and Table 3-2 (KB). It should be noted that the 

n-value for the Warburg-like element was allowed to vary i.e. fitted.  

Table 3- 1: Fitted Equivalent Circuit Parameters for PEHPC. 

Voltage DOD% Re Yintx105 Nint Rint Yctx105 Nct Rct YWar x102 NWar 

3.000 0.00 3.19 1.24 0.78 42.93 191.01 0.61 10.91 2.22 0.83 

2.350 4.17 3.43 1.54 0.76 49.48 210.43 0.58 8.18 34.30 0.51 

2.332 8.33 3.83 1.24 0.78 41.07 62.77 0.62 14.15 34.87 0.75 

2.321 12.50 4.28 1.24 0.77 40.84 111.06 0.67 8.03 23.83 0.47 

2.307 16.67 4.56 0.93 0.80 33.96 68.95 0.65 10.51 17.61 0.40 

2.258 20.83 4.93 1.02 0.79 32.67 231.58 0.54 10.90 18.62 0.54 

2.171 25.00 5.18 0.99 0.79 28.14 258.53 0.57 7.44 16.92 0.50 

2.112 29.17 5.50 0.90 0.80 23.46 322.32 0.56 6.75 15.17 0.48 

2.109 33.33 5.32 0.93 0.80 24.64 361.87 0.50 9.01 19.19 0.58 

2.109 37.50 4.95 0.92 0.80 25.19 294.44 0.54 8.16 21.51 0.63 

2.119 41.67 4.74 0.74 0.82 22.76 197.98 0.57 7.95 20.81 0.60 

2.118 45.83 4.58 0.85 0.81 22.85 163.02 0.68 5.54 19.56 0.56 

2.126 50.00 4.37 0.56 0.85 19.47 141.51 0.59 8.18 19.48 0.60 

2.125 54.17 4.22 0.62 0.84 19.20 181.98 0.57 7.72 18.43 0.61 

2.119 58.33 4.06 1.76 0.75 22.80 257.22 0.77 3.31 16.36 0.59 

2.119 62.50 3.89 0.69 0.84 18.67 306.16 0.52 7.62 14.33 0.62 

2.110 66.67 3.87 1.85 0.76 17.94 191.58 0.52 7.39 11.31 0.58 

2.116 70.83 3.77 0.96 0.81 19.64 534.28 0.52 5.95 8.50 0.57 

2.097 75.00 3.68 0.78 0.83 18.93 156.59 0.63 5.41 6.50 0.55 

2.116 79.17 3.57 1.22 0.79 20.96 174.67 0.76 2.89 4.80 0.59 

2.062 83.33 3.58 0.67 0.84 18.08 116.72 0.64 6.09 3.95 0.69 

2.058 87.50 3.50 1.86 0.75 20.85 357.08 0.72 3.74 3.49 0.82 

1.819 91.67 3.40 1.03 0.81 18.12 288.51 0.67 4.11 4.40 0.76 

1.804 95.83 3.42 1.26 0.79 17.94 299.21 0.68 3.78 4.23 0.74 
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1.725 100.00 3.37 0.60 0.86 15.85 367.23 0.52 7.01 3.77 0.74 

 

Table 3- 2: Fitted Equivalent Circuit Parameters for KB. 

Voltage DOD% Re Yintx105 Nint Rint Yctx105 Nct Rct YWar x102 NWar 

2.57 0.00 6.43 2.04 0.91 1.06 138.86 0.80 3.64 0.239 0.18 

2.32 6.67 7.65 0.56 0.67 2.35 400.04 0.91 4.05 0.434 0.51 

2.29 13.33 10.47 0.48 0.77 3.19 190.73 0.91 5.36 0.261 0.42 

2.27 20.00 15.45 1.84 0.74 5.52 197.59 0.77 10.18 0.161 0.46 

2.22 26.67 18.15 0.69 0.50 14.66 448.00 0.84 10.01 0.127 0.52 

2.12 33.33 15.02 1.79 0.98 4.89 74.10 0.76 10.07 0.074 0.33 

2.07 40.00 12.53 2.04 0.61 11.73 320.03 0.74 11.95 0.080 0.48 

2.09 46.67 11.45 2.35 0.60 17.13 207.94 0.72 15.09 0.050 0.43 

2.09 53.33 10.83 2.51 0.62 21.85 124.24 0.72 14.36 0.036 0.43 

2.08 60.00 10.19 0.93 0.53 30.60 145.66 0.82 11.21 0.045 0.45 

2.08 66.67 9.80 3.85 0.56 37.67 111.34 0.70 14.04 0.035 0.49 

2.07 73.33 9.12 20.08 0.60 33.97 132.98 0.56 20.88 0.039 0.50 

2.05 80.00 8.24 1.33 0.50 46.09 141.27 0.81 10.44 0.049 0.54 

2.00 86.67 7.46 1.53 0.52 45.82 140.49 0.80 10.95 0.047 0.53 

1.91 93.33 7.08 1.87 0.81 22.88 55.26 0.77 14.43 0.025 0.28 

1.75 100.00 6.58 0.82 0.43 87.57 243.26 0.90 9.09 0.066 0.85 

 

Figure 3-9a indicates the DOD locations of EIS captures with black and red squares for 

both PEHPC cell and KB cell (respectively) during 1st discharge at 0.1C. The circuit that is used 

for fitting is shown in the bottom portion of Figure 3-5b, identical to the circuit in work by Yuan 

et al. 98 Re is normalized to the Re of a fresh cell, this is done to de-convolute any differences in 

electrical connection between KB and PEHPC. If the viscosity of the electrolyte is to be controlled, 
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there should be drastic difference between KB’s and PEHPC’s Re value throughout discharge. As 

seen in Figure 3-9c, Re initially increases for both KB and PEHPC due to the dissolution of PS, 

and as expected, decreases once the soluble PS converts to solid Li2S products. Aligning with our 

expectations, KB experiences a much higher increase in electrolyte resistance throughout 

discharge (~280% increase) when compared to PEHPC (~72% increase), indicating PEHPC can 

indeed limit PS dissolution into the bulk. The Rct for PEHPC is higher than that of KB from 0-

20% DOD. However, once 20% DOD is reached, KB’s Rct appears to increase while PEHPC 

decreases. This supports our speculation that the viscosity increases more for KB than for PEHPC. 

With a higher PS concentration, the Rct of KB increases as the charge transfer between polysulfide 

will likely be hampered by more paired polysulfide interactions. Whereas in the case of PEHPC, 

the effect of PS dissolution on Rct is insignificant. Instead, Rct is observed to decrease continuously 

throughout discharge for PEHPC.  

Rint value for PEHPC also starts at a much higher value than that of KB and remains higher 

from 0-50% DOD. This is most likely due to the higher electrical conductivity of commercial KB 

compared to our in-house-made carbon material. Interestingly, upon reaching 30% DOD in the 

KB electrode (corresponding to the beginning of the 2nd plateau), a sharp increase in Rint is 

observed. This is to be expected as the precipitation of Li2S occurs during the 2nd plateau.  At~50% 

DOD, the interfacial resistance for KB increases past PEHPC. This is most likely due to the 

inability of KB to retain PS in a localized region, resulting in random precipitation and 

agglomeration of Li2S throughout the electrode. These Li2S agglomerates greatly increase the 

interfacial transfer of electrons, whereas PEHPC is able to retain PS in the core, limiting 

redistribution. Hence, no increase in interfacial resistance is observed. By lowering viscosity of 

the bulk electrolyte and the corresponding resistance in the cell, PEHPC is able to deliver ~500 
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mAh g-1
sulfur at 9C. Both the nitrogen doping and partial redirection of PS diffusion ensures a much 

larger population of sulfur participated in the reduction reaction even at a high 9 C discharge rate.  

3.4. Conclusion 

 

A novel method was employed to synthesize a micron sized hollow carbon with a nitrogen 

doped porous shell using a Pickering emulsion. Melamine formaldehyde resin was used to 

polymerize and crosslink over the CO2 emulsion, consolidating and casting the delicate hollow 

morphology. The mechanism was revealed to be strongly dependent on the degree of agitation and 

the pH of the solution. PEHPC was used as a sulfur host for lithium sulfur battery and demonstrated 

impressive rate performance up to 9C (500 mAh g-1) and excellent cycle stability (~85% retention 

at 150 cycles), outperforming commercially available KB carbon black (113 mAh g-1 at 9C, 36% 

capacity retention at 0.5C and 150 cycles). A comparison to other works is presented in Table 3-

3.  

Table 3- 3: Rate performance comparison between PEHPC and some published works. 

Rate Performance Loading Electrolyte used  Citation Year 

 

 

            Sulfur host 

450 mAh g-1 @ 3C  N/A N/A 

Angew. Chem. 

Int. Ed. 2011, 50, 

5904 

2011 

Hollow carbon 

350 mAh g-1 @ 1C N/A N/A 

Angew. Chem. 

Int. Ed. 2012, 

124, 9730 

2012 

Double shell hollow 

carbon 

713 m Ah g-1 @ 10C 0.8-1.1 mg cm-2  100 µl per cell 
Nat. Commun. 

2014 , 5 , 3410 
2013 

Unstacked graphene 

430 mAh g-1 @ 3C 3.9 mg cm-2 N/A 

Adv. Energy 

Mater. 2015 , 5 , 

1402263 

2015 

Graphene wrapped double 

shelled, nitrogen doped, 

hollow carbon spheres 

656 mAh g-1@ 5C 2 mg cm-2 15 µl per cell 

Adv. Funct. 

Mater. 2016, 26, 

577 

2016 
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Hierarchical porous 

graphene 

500 mAh g-1 @ 9C 

& 

670 mAh g-1@7C 

1.3 mg cm-2 17 µl g-1
sulfur       This work 2016 

  

PEHPC 

 

To understand the superior performance of PEHPC, the shuttle current and EIS 

measurements were conducted. PEHPC revealed an interesting transient shuttle current profile 

when compared to the KB cells, providing a window into understanding the mass transfer 

dynamics of hollow structures for sulfur battery application. Electrochemical impedance 

spectroscopy revealed a drastic difference between the electrolyte, charge transfer and interfacial 

resistance of PEHPC and KB providing further evidence on the effects of a hollow nitrogen doped 

structure. We attributed these results to the inward diffusion of PS, which alleviated the viscosity 

increase experienced by the bulk electrolyte.  

In this chapter, we have developed hollow nitrogen-doped carbon with a porous shell for 

Li-S batteries. However, the performance is only tested at relaxed conditions. In the next chapter, 

we will discuss the performance of this material at strict conditions followed by its role as a key 

building block for Chapter 4 where it was spray-dried with graphene oxide, achieving good 

performance at strict testing conditions. The next chapter will investigate the further develop of 

this material for application in strict testing conditions (high sulfur areal loading and low 

electrolyte content). 
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Chapter 4: A Lithium–Sulfur Battery using a 2D Current Collector 

Architecture with a Large‐Sized Sulfur Host Operated under High 

Areal Loading and Low E/S Ratio 
 

This chapter is reprinted in adopted form with permission from Advanced Materials 

M. Li, Y. Zhang, Z. Bai, W. Liu, T. Liu, J. Gim, G. Jiang, Y. Yuan, D. Luo, R. Yassar, X. Wang, 

Z. Chen, J. Lu, A Lithium–Sulfur Battery using a 2D Current Collector Architecture with a 

Large‐Sized Sulfur Host Operated under High Areal Loading and Low E/S Ratio, Advanced 

Materials, 2018, 30, 1804271. Copyright Wiley-VCH 2018. 

 

4.1. Introduction 

 

In Chapter 3, we discussed a strategy to mitigate the problems of LSB tested at relaxed 

conditions (low areal sulfur loading and high electrolyte content). However, at these relaxed 

conditions, the mass of the dead-weight materials (current collector and electrolyte) significantly 

reduces the energy density of the overall battery. This effectively renders the initial energy-density 

benefits of a sulfur-based cathode useless. To make sulfur-based cathode commercially 

competitive, cells must be tested at strict conditions (high areal loading and low electrolyte to 

sulfur ratio). Unfortunately, directly testing the hollow carbon material developed in Chapter 3 at 

strict conditions did not yield favorable results. As shown in Figure 4-1a-b, at a strict testing 

conditions of 4 mgs cm-2 sulfur areal mass loading and electrolyte content of 7µL mgs
-1, the cell 

did not run properly with severe capacity fade only after 5 cycles. Furthermore, a large 

overpotential is also observed at around 300 mAh g-1, which could be related to a combination of 

high polysulfide concentration (as discussed in the operando EIS experiments presented in Chapter 



70 

 

3) and also nucleation of Li2S.168  Interestingly, the initial discharge capacity is still very high 

(1200 mAh g-1). This indicates that the mass transfer limitation of increasing the sulfur loading by 

2.7 times did not impede the Li-ion transfer at 0.05C, which could be traced back to the high rate 

performance offered by the HPC shown in Chapter 3. However, the low cycle retention is an 

indication of a lack of polysulfide retention. Therefore, in this chapter, we further enhanced this 

material via additional confinement of polysulfide and further increase of electrode pore volume 

for cycling at strict conditions.  

 

 

Figure 4- 1a) Galvanostatic cycling data of HPC at 0.05C for 5 cycles and then 0.1C @ 4 mg 

cm-2 and 7 µL mg-1 and b) the corresponding voltage profile of the first 5 cycles at 0.05C. 

With more and more researchers beginning to realize the importance of these parameters, 

recent trends in literature reveal a large emphasis on the electrolyte to sulfur ratio (E/S) due to its 

large impact on the overall energy density of the LSB cell.48,169,170 As a benchmark, Hagen et al45 

among others171 have noted that even with an extremely low E/S of 3, the projected energy density 

would just match that of the current lithium ion battery (LIB) technologies. As the performance of 

LSB drastically decreases with decreasing electrolyte volumes, there are almost no published 
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reports reaching E/S levels below 3. One of the key challenges in achieving low E/S ratio lies in 

enhancing the electrode’s ability to access the electrolyte. This is a major factor influencing the 

observed excellent performance of the many backless freestanding electrodes (BFE).47,172-175 BFE 

electrodes have at least double the pore openings (front and back) to access the electrolyte residing 

in the various free space of the coin cell while traditional 2-D blade casted electrode only have one 

opening. In addition to scalability issues such as electrode manufacturing, in-plane electron 

transfer, and electrodes to tab welding procedure,176 the advantages of the BFE designs over the 

2-D electrode might not carry over to the other battery cell configurations (pouch cell, cylindrical) 

where excess void spaces are mostly eliminated from the vacuum sealing process. 

 

Figure 4- 2:  Schematic of a) low porosity electrode with non-hollow material and b) high 

porosity electrode with micron sized hollow material. 

Increase Electrode Void Space

a) b)

Interparticle Void for 

Electrolyte Infiltration

Intraparticle Void for 

Electrolyte Infiltration
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While the 2-D electrode configuration is likely commercially imperative, their single sided 

nature, along with the typically used purely microporous/mesoporous sulfur hosts will form an 

overall porous structure with low void space for electrolyte (illustrated in Figure 4-2a). As a result, 

2-D current collectors have a much smaller presences in the overall field of high loading sulfur 

electrodes, especially at strict conditions.19 However, if the microporous/mesoporous sulfur hosts 

were made with large intrinsic voids, as envisioned in Figure 4-2b, the intrinsic macroporous void 

space can act as an extra electrolyte reservoir for enhancing electrolyte accessibility. In this way, 

some of the main benefits of BFEs can be transferred to the 2-D electrode configuration and is the 

key design strategy of this chapter.  

Because the term macro-porosity is commonly associated with bulkiness, fluffiness and 

ultimately impracticality (in the context of battery specific/volumetric energy density), this might 

be pre-emptively dismissed as an invalid strategy towards lean E/S, as the large void spaces will 

be expected to demand a high E/S. Upon closer inspection, often reported electrolyte ratios of >10 

E/S are theoretically impossible to reside inside of the cathode and separator (the only porous non-

casing components of the cell). Listed in Table 4-1 (shown below) are the calculated theoretical 

upper limit for E/S ratios of a few publications with reported electrode thickness. These values 

were calculated based on the following equation:  

Equation 10: Theoretical E/S ratio equation.  

𝐸/𝑆 𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙(𝜇𝐿 𝑚𝑔𝑠
−1) =

[𝑉𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 + 𝑉𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟](µ𝐿)

𝑚𝑠 (𝑚𝑔)
 

In this equation, Velectrode represents the total volume of the electrode assuming the entirety of the 

electrode is void space, Vseparator represent the total volume of the commercial Celgard separator as 
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provided by the manufacturer and ms represents the absolute mass of sulfur in the electrode. It 

should be noted that based on this equation, the theoretical upper E/S ratio is still quite a 

conservative estimate as it does not include the space taken by the solid material in the electrode. 

That is, this equation assumes the electrode volume is entirely void space.  

This simple calculation of theoretical E/S ratio indicates that the performance 

enhancements observed by many works with a high E/S ratio are only physically achievable due 

to the extra void space in the coin cell, which are not available in the pouch/cylindrical cell 

configurations. However, when the electrolyte content is decreased, the wetting of the electrode 

becomes nontrivial and the accessibility of the extra void space in the coin cell casing might not 

be accessible anymore. 

 

Table 4- 1: Calculated theoretical E/S ratio comparison with literature 

Publication Title 

 

Areal S loading 

[mg cm-2] 

Electrode Thickness 

[µm] 

Thickness of 

Separator 

(Celgard 2340) 

[µm] 

Void % of 

separator  

[%] 

Theoretical E/S 

[µL mg-1] 

High Energy Density 

Lithium-Sulfur Batteries: 

Challenges of Thick Sulfur 

Cathodes40 

3.5 80 38 45 2.77 

Long-Life and High-Areal 

Capacity Li-S Batteries 

Enabled by a Light-Weight 

Polar Host with Intrinsic 

Polysulfide Adsorption177 

5 150 38 45 3.34 

A Comprehensive 

Approach toward Stable 

Lithium-Sulfur Batteries 

with High Volumetric 

Energy Density170 

5.1 215 38 45 4.55 

A High-Volumetric-

Capacity Cathode Based on 

Interconnected Close-

Packed N-Doped Porous 

Carbon Nanospheres for 

5 50 38 45 1.34 
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Long-Life Lithium–Sulfur 

Batteries178 

Cathode materials based on 

carbon nanotubes for high-

energy-density lithium–

sulfur batteries179 

3.72 215 38 45 6.23 

Compact high volumetric 

and areal capacity lithium 

sulfur batteries through rock 

salt induced nano-

architectured sulfur hosts51 

4 109 38 45 3.15 

Foldable interpenetrated 

metal-organic 

frameworks/carbon 

nanotubes thin film for 

lithium–sulfur batteries180 

11.33 80 38 45 0.86 

Strings of Porous Carbon 

Polyhedrons as Self-

Standing Cathode Host for 

High-Energy-Density 

Lithium-Sulfur Batteries44 

8 79 38 45 1.20 

      

This work 8 239 25 

(Celgard 2500) 

55 

 (Celgard 2500) 

3.16 

      

To this end, we increase the porosity of the electrode. The material developed in Chapter 3 

serves as an ideal starting point as it possesses large internal voids. Its large-sized hollow 

macroporous-sized diameters (i.e. intrinsic macropores) can replicate the main beneficial features 

of 3-D current collector designs. This type of material poses as a particularly attractive sulfur host 

material for the 2D electrode configuration under lean E/S. The large intrinsic internal voids should 

be excellent for providing local electrolyte reservoirs that can serve to lower the electrolyte 

viscosity, which would be ideal for low electrolyte-high loading sulfur electrodes. However, most 

particle sizes (<1 µm) are relatively small which would create small interparticle pores (poor 

“bulk” electrolyte Li-ion transfer), voiding any advantages gained from its hollow nature at higher 

areal sulfur loadings. Furthermore, it is well known that it is difficult to achieve robust high loading 

electrode when using a cathode active composite that has high surface area.86 To solve these 

problems, there are numerous work in the LIB and LSB fields investigating techniques to produce 
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secondary particles with the same advantages of nanosized morphologies while mitigating the 

disadvantages (reduced exposed surface area). These techniques can be considered quite mature 

in the field of 2D-electrode based high areal S loading LSB.86,105,181,182 In this chapter, we build 

upon our developed hollow N-doped carbon with a porous shell and spray-dry them with graphene 

oxide to produce an agglomerate hollow N-doped carbon structure wrapped with reduced graphene 

oxide. 

4.2. Experimental methods 

 

4.2.1. Material: 

1:1 v/v 1,3 dioxolane (DOL) and dimethoxyethane (DME) with 1M LiTFSI and 0.2M LiNO3 was 

purchased pre-blended from BASF.  All other chemicals were purchased from Sigma Aldrich. 

 

4.2.2. Synthesis of Micron Size Hollow Carbon 

The synthesis is similar to our previously reported work (as presented in Chapter 3).46 Briefly, 12.6 

g of melamine, 50 mL of water, 32.5 g of 40% formalin solution with 4 mL of 2M Na2CO3 was 

heated to 75 Celsius in a 400 mL beaker covered with a watch glass and under 900 RPM agitation 

with a 2 inch cylindrical Teflon coated magnetic stir bar. Once the solution became clear, the 

solution was stirred for an addition 2.5 minutes. To follow, 120 mL of 5% Ludox AS40 at room 

temperature was quickly added into the solution and the temperature set point was changed to 40oC 

and stirred for 25 minutes. The pH was then lowered to 4.7 with 2M HCl and stirred for 1 minutes. 

The agitation was then halted, and the solution was allowed to precipitate for 2.5 hours. The top 

layer was decanted, and the remaining white slurry product was vacuum dried at 40oC over two 

days and then cured at 180oC under argon. The product was then carbonized at 900oC for 2 hours 

with a ramp speed for 5 oC/min. The obtained black powder was then washed in 10% hydrofluoric 

acid for 1 day and then carefully washed to pH 6-7 with water.  
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4.2.3. Synthesis of sulfur and HPC composite  

 

HPC was mechanically milled with sulfur to achieve a theoretical sulfur loading of 75%. The 

powder was then transferred into a Teflon lined autoclave under argon gas and heated to 155 oC 

for 12 hours. The resulting powder is HPC/S75. 

4.2.4. Synthesis of graphene oxide 

 

Graphite of 2-10 µm mesh was converted to graphene oxide through a modified Hummer’s 

method,183 washed to pH 5-6 and then freeze dried. 

4.2.5. Synthesis of Sprayed Dried Graphene-N-doped Porous Hollow Carbon 

 

300 mg of graphene oxide was dispersed in 60 mL of pure water. Separately, 1.5 g of HPC/S75 

was dispersed in 100 mL of water via sonication for 4 hours. The two dispersions were then mixed 

with a magnetic stir bar for 2 hours. The resulting final dispersion was then dried through a spray 

dryer at 200 oC with a nozzle pressure of 0.1 MPa and a fan speed of 100 Hz. The collected product 

was then transferred into an argon filled autoclave and heated to 230 oC for 16 hours for the 

reduction of graphene oxide. The final product is known as SDHPC.  

 

4.2.6. Electrochemical Characterization 

 

All electrodes were fabricated in a similar fashion. Active material composite, carbon nanotube 

and LA 133 binder were mixed at 90:5:5 mass ratio with a 25% solid slurry content (water based) 

and casted onto commercial C-coated Al foil (MTI) with a doctor blade. The electrodes were 

punched into 16 mm diameter disc and dried at 65 oC for 4 hours and transferred into an Ar filled 

glove box (Labstar MB10 compact, mBraun) with water and O2 content below 0.5 ppm. The 

electrochemical performances were evaluated using a 2016 type coin cell.  Electrochemical cycling 



77 

 

tests were performed with a Neware battery testing station. Lithium metal chip from Linyi Gelon 

LIB Co., Ltd was used as the counter electrode and reference electrode for all tests (600 µm thick) . 

The separator used was Celgard 2500. For coin cell assembly, the electrolyte to sulfur ratio was 

tested at 7 and 2.8 µL mg-1. The coin cells were cycled from 2.8 V to 1.9 V vs Li/Li+ was used for 

testing of the cell with 7 µL mg-1 electrolyte content and 2.8 V to 1.0 V vs Li/Li+ for the 2.8 µL 

mg-1. Shuttle current was performed accordingly to Moy et al,184 after cycling the cells at 0.1C for 

3 cycles and then finally discharging to 2.2 V, held at open circuit voltage for 10 minutes before 

holding potentiostatic at 2.2 V where the current response was recorded. Potentiostatic 

electrochemical impedance spectroscopy was conducted on a 1400 CellTest System from 

Solartron analytical tested from 100000-0.01 Hz with a 10 mV amplitude. After each galvanostatic 

discharge step, for the 2.5 mg cm-2 cells, the impedance was immediately taken without rest while 

the 8 mg cm-2 cells were allowed to rest 5 minutes before the impedance measurements were 

collected (to reduce noise at the cost of state-of-system accuracy). Impedance circuit fitting was 

performed using the Zfit function developed by Jean-Luc Dellis, implemented in Matlab. The 8 

mg cm-2 electrode was 262 µm thick including the current collector (23 µm) with a theoretical E/S 

ratio of about 3.16 (details shown in Table 4-1). The diameter of the electrodes was 1.6 cm (2.01 

cm2).  Each electrode had an absolute sulfur mass of 16 mg. 112 and 45 µL of electrolyte were 

added with a micropipette for 8 mg cm-2
 cells tested at 7 and 2.8 µL mg-1

S respectively. 

4.2.7. Physical Characterization 

Electrolyte absorption measurements were performed by drop casting the droplet of electrolyte 

and monitoring the wetting process with a 30 fps camera and back light. The time resolved height 

of electrolyte droplet was manually measured using Image J software. A Zeiss Leo field-emission 

scanning electron microscope 1530 was used to characterize the morphology of the material. A 

JEOL 2010F transmission electron microscope was used to further characterize the morphology. 
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TGA (TA instrument Q500) was conducted under nitrogen atmosphere with a heating rate of 5 °C 

min-1. In Situ X-ray diffraction experiment was conducted at the Advanced Photon Source at 

Argonne National Laboratory (11-ID-C beamline) The X-ray beam size was 0.2mm X 0.2 mm, 

and the X-ray wavelength was 0.1173 Å. Home-made coin cells were discharged at 0.05 C rate 

from 2.8 V to 1.2 V using a MACCOR cycler as shown in Chapter 2: Figure 2-2b . During the cell 

cycling, the XRD patterns were collected every 12 minutes, using a Perkin-Elmer 2D X-ray 

detector. The 2D diffraction patterns were then converted into 1D patterns of 2θ versus intensity 

using Fit2D software distant-calibrated using a CeO2 standard. 
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4.3. Results and discussion 

4.3.1. Synthesis and characterization of material 

 

Figure 4- 3: a) Schematic of the synthesis process of SDHPC, b) TGA curves of graphene 

oxide ramping to 200 and 250oC followed by holding isothermal for 2 hours, c) TGA curves 

of SDHPC after heat treatment, d) low & e) high magnification SEM images and f) low & g) 

high magnification TEM image of SDHPC after spray drying and 230C heat treatment. 
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Our chosen agglomeration technique, spray drying,185,186 (shown in Figure 4-3a) is widely 

used in many different industries due to its high throughput production capabilities.  Specifically 

in this work, we first synthesized hollow porous carbons (HPC) with a large core,46 loaded sulfur  

via the melt diffusion method and spray dried with graphene oxide at 200oC (nozzle temperature) 

forming what we define as spray dried hollow porous carbon (SDHPC). The large droplet size of 

the atomized feed solution ensures the formation of secondary particles while the graphene oxide 

acts as structural support.  

 After heat treatment in an Ar filled autoclaved at 230oC for 12 hours (GO reduction), the 

final SDHPC electrode material is obtained. To estimate the sulfur content in SDHPC, the mass 

change in GO must be first accounted for. Thermal gravimetric analysis (TGA) of GO in N2 reveals 

that the stabilized mass percent did not vary appreciably between 200-250oC (Figure 4-3b) 

indicating that the mass of SDHPC should have stabilized during the 12 hours 230oC heat treatment 

in alignment with literature.187 Accordingly, TGA of SDHPC after heat treatment only shows a 

single inflection (single peak in the rate of weight % change, Figure 4-3c) with a plateau starting 

at ~30 wt% at around 250oC suggesting a sulfur loading of ~70%. This is in good alignment with 

the theoretical 68% calculated based on a HPC75S to GO mass ratio of 5:1 (spray-dryer feed) with 

a 50% mass retention of GO after the 230oC heat treatment. The morphology of SDHPC is shown 

under scanning electron microscopy (SEM) in Figure 4-3d & e respectively, indicating the 

successful wrapping of graphene and the agglomeration of HPC into larger particles (SDHPC). 

The broad particle size distribution is due to the centrifugal-based collection mechanism of the 

spray dryer’s cyclone 188,189 and could aid in the performance of the cell as shown in previous 

work.105,190   
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Figure 4- 4: a) TEM image of SDHPC and b) EDS map of C, N, O, and S of SDHPC 

Moreover, transmission electron microscopy (TEM, Figure 4-4f) indicates that the 

graphene is wrapped throughout the structure of the secondary particle, providing an electron-

conducting pathway. At higher magnifications (Figure 4-4g), the graphene is shown encapsulating 

the HPC primary particles. More importantly, the large intrinsic ~500 nm voids of the hollow 

structures can be clearly found intact throughout the large secondary particle. Energy-dispersive 

X-ray spectroscopy mapping of C, N, O, and S (Figure 4-5a-b, Supporting Information) further 

indicates that there is indeed large internal void throughout SDHPC and sulfur mostly resides in 

the wall of these voids. The existence of these internal voids is the most beneficial difference 

between SDHPC and other reported spray dried sulfur composites. These voids will serve as 

guaranteed intrinsic void spaces (shown in Figure 4-1b) throughout the electrode to provide 

electrolyte accessibility to sulfur even at a low electrolyte ratios. 
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4.3.2. Physical and electrochemical characterization of material in electrode 

 

Figure 4- 5: a) Image sequence of the injection and absorption of 4 µL of electrolyte into 

SDHPC and HPC electrodes, b) corresponding droplet height versus time profile and c) 

shuttle current measurement of both SDHPC and HPC. d) Discharge and e) charge EIS 
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spectra of SDHPC electrode at different DOD, f) equivalent circuit model used for fitting 

impedance data. Fitted values of g) series resistance plotted versus DOD. Note that 0-100% 

DOD represents discharge while 100-200% DOD represent charge.  

To confirm the infiltration of electrolyte into the voids, an electrolyte absorption test is 

performed. The test entailed the micro-pipetting of precisely 4 µL of electrolyte (0.2 M LiNO3 and 

1M LiTFSI in 1,3 dioxolane and dimethoxyethane at 1:1 v/v) onto a circular 15 mm diameter 

electrode (HPC and SDHPC, Figure 4-5a). The event was filmed and the time difference between 

initial contact and final absorption of the droplet is defined as the absorption time. By measuring 

the height of the droplet over time, a time resolved absorption profile of the electrolyte could be 

observed. The larger particle size of SDHPC should create larger interparticle pores,86,105,181,182 

which are expected to decrease electrolyte wetting time.191 Interestingly, it was found that the total 

wetting time of SDHPC (larger interparticle pores) was ~31 s whereas HPC (smaller interparticle 

pores) only took ~23s, indicating that HPC absorbed the electrolyte slightly quicker. This result 

offers us with valuable insight into the pore structure of the SDHPC electrode. Both absorption 

process appears to proceed in a two-step manner (Figure 4-5b). It is well known that liquid 

(electrolyte) infiltration into a porous media (electrode) of the electrode depends on the apparent 

contact angle between the electrolyte and the particles, characteristic of electrode pore network 

and the pressure differential.191 The initial rapid drop (labeled Phase 1) is followed by a slower 

plateaued infiltration region (label Phase 2) for both samples. The initial quick absorption profile 

is due to the pressure head produced by the height of the droplet. As the droplet is absorbed, the 

pressure head (a component of the driving force responsible for infiltration) will decrease to the 

point where it is slowed by the smaller pores in the electrode. During this slowing process, the 

height of the droplet will possess a more plateaued time profile. There are two distinct difference 
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between SDHPC and HPC. Firstly, the initial decrease in height for SDHPC was much more than 

HPC, this is most likely due to the larger interparticle pores of the electrode.86,105 Secondly, the 

slope of the plateau for SDHPC is noticeably lower than that of HPC. We believe the smaller slope 

of SDHPC is evidence of the wrapping of HPC with rGO and the infiltration of electrolyte into 

agglomerated hollow structures of SDHPC. With an increased sulfur loading, the PS retention 

capability of the host must be enhanced compared to the lower loadings. From the delayed 

infiltration of electrolyte into SDHPC, we note that it could imply a tortuous liquid pathway into 

SDHPC. As such, this could be beneficial in limiting the outwards diffusion of PS. Indeed, from 

our shuttle current measurements (Figure 4-5c), SDHPC possessed a significantly lower steady 

state current signal (0.747 µA g-1) compared to HPC (1.68 µA g-1) at the same areal loading (2.5 

mg cm-2). To further demonstrate the ability of SDHPC to limit PS outwards diffusion, we 

performed in situ electrochemical impedance spectroscopy (EIS) experiments on both HPC and 

SDHPC (2.5 mg cm-2) as a function of state of charge/discharge (DOD, 0-100% represents 

discharge while 100-200% represents charge). According to the Nyquist plot for both discharge 

and charge of SDHPC shown in Figure 4-5d & e respectively, there appears to be a drastic change 

in cell impedance throughout discharge and charge. After fitting to a circuit model (Figure 4-

5f),46,63,97,192 the series resistance versus DOD is shown in Figure 4-5g. All fitted values are 

presented in Table 4-2 (SDHPC) and Table 4-3 (HPC), it should be noted that the n-value of the 

lowest frequency value or “Warburg-like” was also fitted and was not held at 0.5. 

Table 4- 2: Fitted Equivalent Circuit Values for ElS for SDHPC at 2.5 mg cm-2 & 7µL mg-1   

Voltage 
DOC/ 

DOD 
Re Rint Yint Nint Rct Yct Nint Ywar 

       

NWar 
     Fval 
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2.4621 0 7.4 123 5.75E-06 0.793 38.6 0.113 0.936 0.0275 0.5 0.462 

2.2365 20 11.7 155 7.62E-06 0.761 49.0 0.174 0.611 0.0281 0.5 0.885 

2.1158 40 11.2 145 6.62E-06 0.774 54.1 0.105 0.432 0.0107 0.5 0.232 

2.1251 60 9.8 126 6.05E-06 0.787 16.9 0.026 0.253 0.0034 0.5 0.259 

2.1079 80 9.7 120 5.91E-06 0.787 19.3 0.015 0.269 0.0018 0.5 0.462 

2.1029 100 9.9 122 5.31E-06 0.794 36.2 0.016 0.317 0.0022 0.5 0.446 

2.1944 120 9.6 141 8.68E-06 0.752 36.9 0.165 0.641 0.0182 0.5 0.471 

2.2409 140 10.4 157 8.37E-06 0.756 48.5 0.288 0.815 0.0171 0.5 0.534 

2.3193 160 10.5 152 4.98E-06 0.802 24.8 0.149 0.499 0.0051 0.5 0.466 

2.3723 20 8.9 139 5.83E-06 0.788 14.2 0.133 0.390 0.0112 0.5 0.481 

 

Table 4- 3: Fitted Equivalent Circuit Values for ElS for HPC at 2.5 mg cm-2 & 7µL mg-1   

Voltage 
DOC/ 

DOD 
Re Rint Yint Nint Rct Yct Nint YWar  NWar    Fval 

3.2165 0 7.7 133 1.19E-05 0.744 32.4 0.020 0.849 0.0046 0.5 0.637 

2.3169 16.7 12.7 44 7.17E-06 0.770 17.8 0.186 0.461 0.0051 0.5 0.232 

2.1973 33.4 18.9 48 8.38E-06 0.736 19.1 0.204 0.653 0.0079 0.5 0.472 

2.1449 50 14.7 41 6.22E-06 0.778 20.6 0.054 0.272 0.0058 0.5 0.233 



86 

 

2.1385 66.7 13.2 41 5.96E-06 0.788 20.6 0.029 0.250 0.0037 0.5 0.212 

2.1352 83.4 12.3 43 7.82E-06 0.769 31.9 0.021 0.300 0.0036 0.5 0.258 

2.1258 100 11.5 39 7.75E-06 0.780 20.9 0.014 0.318 0.0020 0.5 0.303 

2.1169 114.28 11.0 42 1.27E-05 0.743 4.6 0.011 0.301 0.0014 0.5 0.447 

2.1931 128.56 10.7 35 1.37E-05 0.742 16.2 0.121 0.451 0.0036 0.5 0.312 

2.2121 142.84 11.2 34 9.52E-06 0.779 19.6 0.263 0.627 0.0032 0.5 0.178 

2.2362 157.12 11.9 36 9.62E-06 0.777 20.4 0.317 0.663 0.0035 0.5 0.172 

2.2903 171.4 13.3 39 3.71E-05 0.647 18.3 0.423 0.656 0.0040 0.5 0.924 

2.3286 185.68 9.2 37 4.22E-06 0.843 19.9 0.665 0.694 0.0024 0.5 0.261 

2.3596 200 11.9 35 5.22E-06 0.825 22.5 0.990 0.809 0.0021 0.5 0.361 

 

The series resistance is found to increase until 25-30% DOD followed by a steady decrease 

into the end of discharge. During charge, the series resistance steadily increases again, peaking at 

around ~160 DOD followed by a decrease until the end of charge which is corroborated by 

literature.46,97,99 Interestingly, throughout discharge and charge, the series resistance of HPC was 

higher than SDHPC. For LSB, changes in the series resistance are usually attributed to the 

resistance of the electrolyte, and increases with increasing polysulfide concentration.98,193 

Therefore, our results suggest that SDHPC is able to limit the polysulfide concentration in the bulk 

electrolyte more effectively than HPC, which corroborates well with the electrolyte absorption and 

shuttle current measurements 
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Figure 4- 6: a) Rate performance of SDHPC at 2.5 mg cm-2 with 7 µL mg-1 of electrolyte, b-

d) specific capacity with Coulombic efficiency versus cycle life of SDHPC at 5, 6 and 8 mg 

cm-2 respectively and e-g) charge/discharge profiles of SDHPC at 5, 6 and 8 mg cm-2 

respectively. Note that 5 and 6 mg cm-2 cells were cycled at 0.05C for four activation cycles 
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before cycling at 0.1 C for the cycle life measurements while the 8 mg cm-2 cell was cycled at 

0.05C.  

The combined benefits of the macroporous internal electrode structure in addition to the 

high PS limiting capabilities of SDHPC is reflected in its electrochemical performances. Figure 

4-5a shows the rate performance of this SDHPC from 0.1 C to 5 C, demonstrating exceptional 

electrochemical activity with a discharge capacity of ~500 mAh g-1 at 5 C even at an appreciable 

sulfur loading (2.5 mg cm-2). SDHPC is found to be able to recover the majority of its original 0.1 

C capacity in addition stable cycling until the 100th cycles at 1 C.  Figure 4-6b-c displays the cycle 

stability of electrodes at 5 mg cm-2 and 6 mg cm-2 with 7 µL mg-1 of electrolyte at 0.05 C for the 

first 5 cycles followed by 0.1 C. Figure 4-6d presents the cycle stability of 8 mg cm-2 electrodes 

also with 7 µL mg-1 of electrolyte but cycled at 0.05 C. The corresponding voltage profiles for the 

5, 6 and 8 mg cm-2 cells is shown in Figure 4-6e-g respectively. Both cells achieved a first cycle 

discharge of about ~1200 mAh g-1.  

 
5 μm
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Figure 4- 7: SEM image of the corroded Li anode after cycling at high sulfur content at low 

electrolyte levels (same cell of Figure 4-6c) 

While the 5 mg cm-2 cells were able to maintain relatively stable cycling upwards of 280 

cycles, the 6 mg cm-2 experienced a significant decrease in capacity at about the 105th cycle but 

remained stable afterwards upwards of 200 cycles. We believe the sudden drop in capacity is 

related to the serious corrosion of the Li anode (post cycling SEM shown in Figure 4-7). It should 

be noted that no sudden drop in capacity is observed for the 8 mg cm-2 cell, which is most likely 

due to the lower current density’s effect on the anode.194  In terms of 2-D blade casted electrode, 

at this areal loading and lean electrolyte conditions, this performance is quite exceptional in terms 

of both capacity and cyclability compared to works published at the time of publication of this 

work.40,105,170,177,182,195 

When the E/S ratio is further lowered to 2.8 µL mg-1, it is found that the cell was able to 

cycle at a C-rate of 0.025. The voltage profile (Figure 4-8a) reveals a very high discharge 

overpotential, dropping to nearly ~1.4 V on the 1st cycle and ~1.75 V on the 2nd discharge process. 

However, if the C-rate is increased to 0.05 C the cell cannot discharge (voltage profile shown in 

Figure 4-8c). This is often attributed to the enormous increase in overpotential from either 

electrolyte viscosity (highly concentration polysulfide solution) or deposition kinetics. Work 

presented by Fan et al, have also reported similar results at lean electrolyte conditions.196 The cycle 

life decreased rapidly compared to its excess electrolyte counterpart. This has been an intriguing 

phenomenon throughout the literature. Although the cycle performance is only for 20 cycles 

(Figure 4-8b), we have demonstrated here a material and design that can be cycled at a 

commercially viable electrolyte content. When compared to other high loading works, an 

electrolyte content of 2.8 µL mg-1 for an 8 mg cm-2 2-D blade-cased electrode has, to the best of 
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our knowledge, never been published. Furthermore, the composite content is >90% in the slurry 

formulation with very low binder content (5%) and a S content of ~70% in SDHPC, indicating 

that the,   total sulfur content in the electrode is well over 60%. 

 

Figure 4- 8: a) Charge/discharge voltage profile and b) cycling performance at 0.025 C of 

SDHPC. c) Voltage profile of 8 mg cm-2 electrode with 2.8 µL mg-1 at 0.05 and 0.01C. 

Impedance data plotted as a function of specific capacity of SDHPC discharged at 0.05C and 

0.01 C: d) series resistance, e) charge transfer resistance, f) interfacial resistance. g)  In Situ 
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XRD contour plot of the first plateau followed by the onset of a large overpotential to 1.2 V 

(λ = 0.1173 Å) and h) various peak height plotted versus discharge capacity. 

Unfortunately, a discharge rate of 0.025 C is hardly practical and poses a serious question 

as to why there is such a high overpotential. Surprisingly, there has been little work done on 

understanding why high loading sulfur cathode have difficulty in discharging under lean 

electrolyte content. To understand the cause and mechanism of the observed large overpotential 

prior to the 2nd plateau, we once again performed in situ EIS on a fresh 8 mg cm-2
 electrode (2.8 

µL mg-1) discharged under two different current densities (1st at 0.05C then at 0.01C). Specifically, 

the cell was first discharged at 0.05C, where the voltage quickly reaches the cut off limits (Figure 

4-8c) with the details of the overpotential build-up recorded by EIS. After charging back to 2.8V, 

the same cell was discharged at a significantly decreased current density (0.01C) which allowed 

the cell to enter readily into the 2nd plateau region without obstruction of an overpotential dip 

(Figure 4-5c). The results were fitted according to circuit diagram validated by Deng et al (same 

as the one used in Figure 4-5f).97 The fitted values are presented in Table 4-4. 

Table 4- 4: Fitted Equivalent Circuit Values for ElS for SDHPC at 8 mg cm-2 & 2.8 µL mg-1   

0.01C Discharge Current         

Voltage 
Specific 

Capacity 
Re Rint Yint Nint Rct Yct Nint YWar  NWar Fval 

2.89 18.4 47 89 3E-06 0.726 65.7 1E-02 0.460 2E-03 0.5 0.24 

2.31 37.7 49 75 2E-06 0.802 70.1 4E-02 0.481 1E-03 0.5 0.19 

2.28 56 57 66 3E-06 0.791 78.9 5E-02 0.507 1E-03 0.5 0.23 
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2.27 75 78 71 6E-07 0.899 108.5 3E-02 0.478 8E-04 0.5 0.47 

2.24 93.5 98 110 3E-06 0.734 171.9 2E-02 0.550 7E-04 0.5 0.15 

2.18 112 109 136 9E-06 0.627 200.7 2E-02 0.574 6E-04 0.5 0.44 

2.16 130 106 171 1E-05 0.580 214.9 7E-03 0.293 2E-04 0.5 0.20 

2.16 150 123 204 3E-05 0.490 178.7 4E-03 0.208 8E-05 0.5 0.28 

            

0.05C Discharge Current         

Voltage 
Specific 

Capacity 
Re Rint Yint Nint Rct Yct Nint YWar  NWar Fval 

2.9166 0 39 62 9E-06 0.65 16 6E-03 0.32 7E-03 0.5 0.98 

2.3 18.4 29 86 3E-04 0.37 16 3E-02 0.42 3E-02 0.5 2.56 

2.27 37.7 38 74 5E-04 0.33 23 7E-02 0.55 1E-02 0.5 2.64 

2.25 56 50 49 6E-06 0.71 65 9E-02 0.63 2E-03 0.5 0.41 

2.23 75 62 51 3E-06 0.76 33 2E-02 0.16 1E-03 0.5 2.00 

2.2 93.5 78 89 1E-05 0.60 132 1E-01 0.72 2E-03 0.5 0.20 

2.18 112 105 160 8E-06 0.60 198 6E-02 0.68 2E-03 0.5 0.13 

2.12 130 140 298 5E-06 0.58 226 2E-02 0.39 1E-03 0.5 0.42 

2.06 150 176 461 2E-06 0.65 184 4E-03 0.22 3E-04 0.5 0.52 
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Figure 4- 9: Nyquist plot 0.05 and 0.01C for the a) 8th and b) 9th fitted and experimental 

impedance spectrum. Attention should be drawn in the large increase in the first semi-circle 

(high frequency semi-circle) at 0.05C, and the only slight change in the second semi-circle 

(mid frequency regime).  

 In general, the fitted circuit parameters (experimental spectrums can be found in Figure 

4-9) remained quite similar between the two currents during the initial stages of discharge with 

variation only occurring near the end of the first plateau (onset of the large overpotential). It should 

be expected that when increasing the current density, the PS concentration should be much higher 

locally (most likely completely saturated) due to the increased rate of PS generation over PS 

diffusion. Although our results indicate (Figure 4-8d) that the series resistance of 0.01 C discharge 

was lower than the 0.05 C, the overall difference was not large. A similar observation is found for 

the charge transfer resistance (mid frequency semi-circle,97 Figure 4-8e). Interestingly, the 

interfacial resistance (high frequency semi-circle, Figure 4-8f with Nyquist plots shown in Figure 

4-9a-b) is found to increase drastically prior to the onset of the large overpotential for the higher 

current discharge. This indicates that of the three circuit elements, only interfacial resistance 

appears to change significantly near the high overpotential region of the discharge voltage profile. 

200 400 600 800 1000 1200
20

40

60

80

100

120

140

160

180
Z

Im
 8th Fit (0.05C)

 8th Exp (0.05C)

 8th Fit (0.01C)

 8th Exp (0.01C

ZReal

0 200 400 600 800 1000 1200
20

40

60

80

100

120

140

160

180

200

220

 9th Fit (0.05C)

 9th Exp(0.05C)

 9th Fit (0.01C)

 9th Exp (0.01C)

Z
IM

ZReal

a) b)



94 

 

Interfacial resistance is associated to the contact resistance between electron conductors within the 

electrode.97,197,198  It is unclear whether solely S8, Li2S or even solid-state PS199 is responsible for 

the large overpotential. While one might argue that the lack of capacity in the 2nd plateau should 

eliminate appreciable Li2S seeding, Li2S can still form due to disproportionation reaction or direct 

reduction of PS onto Li (increasing interfacial resistance on Li). To differentiate between Li2S, S 

and solid-state PS, we performed in situ XRD in an attempt to monitor the crystal phase changes 

during the large overpotential (Figure 4-8g). Throughout the discharge of the first plateau and 

ending with a large overpotential, there are strong sulfur XRD signals with no indication of Li2S 

peaks. Upon closer inspection of the 2θ=1.960, 2.016, 1.758 and 1.670 peak heights (Figure 4-

8h), we concluded that there is only a minor decrease in peak intensity with slight oscillations 

throughout cycling.  This is in stark contrast with other reports, where a steady decrease in the 

sulfur diffraction pattern was observed prior to the end of the 1st plateau where the peaks 

completely disappear.200,201 Due to the lack of any observable Li2S peaks, we suspect that the 

increase in interfacial resistance is not due to the deposition of Li2S. As for the case of solid-state 

polysulfide, a recent publication has shown that the XRD patterns of polysulfides can be detected 

even if they were just adsorbed onto a silica surface,201 and another work presenting 

electrochemical data that leads to a similar conclusion.202 However, no such observation was made 

in this work, possibly excluding the existence of solid-state polysulfide. Therefore, we believe the 

high interfacial resistance is largely related to sulfur precipitation (S8) and most likely not related 

to solid-state polysulfide or Li2S.  

Low E/S promotes solid sulfur precipitation through disproportionation reaction of 

concentrated high order PS. The constant regeneration of elemental sulfur deposits on already 

present sulfur location buffers the XRD sulfur signal, resulting in a relatively constant value. The 
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disproportionation reaction most likely distributed sulfur locally throughout the SDHPC composite 

causing the observed increase in interfacial resistance. This phenomenon might be inherent to 2-

D current collector designs. In contrast to the BFE designs,173 2-D current collectors are not 

composed of long ranged continuous conductive networks and will inevitably create multiple 

contact points between conductors. However, due to the need for large internal macropores, the 

number of these contact points are quite low simply due to the larger particle sizes. Due to the 

relatively fewer contact points between the large macroporous carbons within SDHPC and 

between SDHPC, we believe our material and 2-D current collector designs in general are more 

susceptible to interfacial resistance increases. Although we have shown that a macroporous 2-D 

electrodes can achieve some cyclability at extremely low electrolyte content, its performance is 

still inferior to that of BFEs and therefore is not a complete solution. While this might be 

discouraging for 2-D electrode researchers, we would like also note the enormous turnkey 

advantage of 2-D electrodes over BFEs when time comes for prototyping (not in the scope of this 

thesis).176 

4.4. Conclusion 

 

In this chapter, we have presented a high areal loading lithium sulfur battery (>60 wt.% S 

in electrode) operated under lean electrolyte content (7 and 2.8 µL mg-1), well into the strict 

condition regime. By designing a large sized sulfur host with large intrinsic macropores 

encapsulated within its structure, we have enabled the stable cycling of a blade-casted electrodes 

of 5, 6 and 8 mg cm-2. Even at 2.8 µL mg-1, the 8 mg cm-2 electrodes demonstrated relatively stable 

cycling for up to 20 cycles. Furthermore, our in situ EIS and XRD analysis revealed intriguing 

properties pertaining to the mechanism of lean electrolyte operation and has for the first time 

identified that the interfacial resistance is the key impedance responsible for the electrodes to 
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successfully entering into the 2nd discharge plateau for high loading/lean electrolyte cells. In terms 

of performance, this work significantly outperformed a large majority of the work of Li-S batteries 

operated at high loading and low electrolyte content. Table 4-6 displays just how effective our 

design strategies was in comparison to other works. 

Table 4- 5: Performance comparison between SDHPC and other similar work. 

Literature Title 

 

3D or 2D 

electrode? 

Journal Name/Year Areal Capacity 

[mAh cm-2] 

Areal S-

loading 

[mg cm-2] 

%S in 

electrode 

[%] 

E/S 

[µL mg-1] 

Rate 

[C-rate] 

Cycle Life 

[#cycle] 

High Energy Density 

Lithium-Sulfur 

Batteries: Challenges 

of Thick Sulfur 

Cathodes40 

2D Advanced Energy 

Materials/2015 

3.5 3.5 64 N/A 0.1C 100 

Long-Life and High-

Areal Capacity Li-S 

Batteries Enabled by a 

Light-Weight Polar 

Host with Intrinsic 

Polysulfide 

Adsorption177 

  2D ACS Nano/2016 3.5 5 60 N/A 0.2C 50 

A Comprehensive 

Approach toward 

Stable Lithium-Sulfur 

Batteries with High 

Volumetric Energy 

Density170 

3D Advanced Energy 

Materials/2016 

14.7 14.9 65.45 3.5 0.05C 50 

A High-Volumetric-

Capacity Cathode 

Based on 

Interconnected Close-

Packed N-Doped 

Porous Carbon 

Nanospheres for 

Long-Life Lithium–

Sulfur Batteries178 

2D Advanced Energy 

Materials/2017 

~6.5 5 59.5 6 0.2C 200 

Cathode materials 

based on carbon 

nanotubes for high-

energy-density 

lithium–sulfur 

batteries179 

2D Carbon/2014 3.21 3.72 49 N/A 0.2C 100 

Compact high 

volumetric and areal 

capacity lithium sulfur 

batteries through rock 

salt induced nano-

architectured sulfur 

hosts51 

2D Journal of Materials 

Chemistry A/2017 

5.4 4 60.9 4 0.1C 100 
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Foldable 

interpenetrated metal-

organic 

frameworks/carbon 

nanotubes thin film for 

lithium–sulfur 

batteries180 

3D Nature 

Communications/2017 

~6.9 11.33 70 50 0.2C 50 

Strings of Porous 

Carbon Polyhedrons 

as Self-Standing 

Cathode Host for 

High-Energy-Density 

Lithium-Sulfur 

Batteries44 

3D Angewandte 

Chemie/2017 

6.23 8 63 N/A N/A 50 

Stringed “tube on 

cube” nanohybrids as 

compact cathode 

matrix for high-

loading and lean-

electrolyte lithium–

sulfur batteries175 

3D Energy & 

Environmental Science 

/2018 

~4.8 5.1 N/A 6 0.2C 300 

Rational Design of 

Statically and 

Dynamically Stable 

Lithium–Sulfur 

Batteries with High 

Sulfur Loading and 

Low 

Electrolyte/Sulfur 

Ratio173 

3D Advanced 

Materials/2018 

~41.4 46 70 5 0.1C 25 

TiS2−Polysulfide 

Hybrid Cathode with 

High 

Sulfur Loading and 

Low Electrolyte 

Consumption for 

Lithium−Sulfur 

Batteries174 

3D ACS Energy 

Letters/2018 

10 12 65 5 0.2C 200 

Designing Lithium-

Sulfur Cells with 

Practically 

Necessary 

Parameters203 

3D Joule/2018 31 57.6 75 4.2 0.1C  200 

Addressing 

Passivation in 

Lithium–Sulfur 

Battery  Under Lean 

Electrolyte Condition49 

2D Advanced Functional 

Materials/2018 

~2.76-3.68 3-4 64 5 0.1C 100 

   6 5 63 7 0.05 

then 

0.1C 

280 

This work 2D Advanced Materials/ 

2018 

7.2 6 63 7 0.05 

then 

0.1C 

200 

   9.6 8 63 7 0.05 

then 

0.1C 

150 
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   10 8 63 2.8 0.025 C 20 

 

Operating at strict conditions appears to have been only partially mitigated by the design 

of SDHPC. Further design could incorporate stronger polysulfide adsorption capabilities and 

higher tortuosity. From our data, it appears that the lithium anode is an overarching problem in 

LSB that needs to be addressed. Many reports have been made on the problems and mitigation 

strategies of LMB.53 However at strict conditions, the performance is very poor and in fact only a 

slightly superior/similar to the performance presented here but with commercially available (and 

ideally more stable/reliable) cathodes such as LiCoO2.
62,204 Based on these research trends and our 

own data, we believe that it would be attractive to substitute the Li metal with another anode and 

eliminate the problem at the source. 
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Chapter 5: Li2S sulfide cathode electrochemical activation via redox 

mediator generators 
 

This chapter is reprinted in adopted form from a manuscript that has been published, with 

permission from Nature Communications under the Creative Commons Attribution 4.0 

International License 

M. Li, Z. Bai, Y. Li, L. Ma, A. Dai, X. Wang, D. Luo, T. Wu, P. Liu, L. Yang, K. Amine, Z. 

Chen, J. Lu, Electrochemically primed functional redox mediator generator from the 

decomposition of solid state electrolyte, 2019, 10, 1890.  

5.1. Introduction 

 

 Metallic Li as an anode has been well established as a very challenging system to achieve 

good cyclability.205 Since Li-S battery is in fact a Li metal battery, its commercialization is not 

only hindered by the challenges of the sulfur (oxidation state of zero, S8) cathode, but also the 

challenging task of solving the Li metal anode, which is often overlooked. Recent work in the Li 

metal battery field have begun to appreciate the severity and complexity of the problem.60 From 

these literature sources, it is clear that even if the problems of the cathode were to be solved, the 

Li metal anode for Li-S will likely become a new key bottleneck. Therefore, a natural solution is 

to enable alternative anodes possible for sulfur-based battery systems, effectively removing the 

associated problems of a Li metal anode cycled at strict testing conditions. With the Li metal 

removed, this type of battery will no longer be a Li-S battery but will be a Li-ion sulfur-based 

battery. Specifically, in sulfur-based, battery chemistries (with Li-ions as the main charge carrier), 

there two major subgroups configuration64: 
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1. Lithium-sulfur battery: Lithium-anode/S8-cathode  

2. Sulfur-based Li-ion battery:  

a. Pre-lithiated Non-Li-metal anode/S8-cathode 

b. Non-Li-metal anode/pre-lithiated sulfur (Li2S)-cathode 

Without a Li metal as the anode, Li-ion must be sourced at either the alternative anode (Si, graphite, 

etc.64) or the cathode prior to the cell assembly. In this chapter, we chose Li2S as the Li-ion source 

over prelithiating an anode material due to a few main reasons.  

Firstly, there are many 3 main problems associated with prelithiating an anode: 1) 

Prelithiation, that is, the act of lithiating an electrode either chemically or electrochemically is non-

trivial for many anode materials. As described in Chapter 1, chemical prelithiation typically 

involve mixing of what is known as stabilized lithium metal powder (SLMP). SLMP are polymer-

wrapped Li-metal nanoparticles that are employed in powdered form over the un-lithiated anode. 

When pressure is applied (during the end of cell assembly), the SLMP are broken, exposing 

reactive Li nanoparticles surface area, which readily react (lithiate) with anode material.206 

However, this method offer no control over the rate of lithiation, which is critical to preventing the 

stress generation involved in the lithiation-induced volume expansion of many delicately designed 

high energy anode candidate (Si, Ge, etc.)53 2) Electrochemical prelithiation of anodes will require 

assembly of some sort of initial Li metal/Li-free anode “Lithiation cell”. Li can then be controllably 

inserted into the anode based on current control. While this method yields more desirable stress 

management of high energy density anodes, the lithiated anode will have to be extracted from the 

“Lithiation cell” before assembly into the true usable cell with a sulfur-base cathode. Practically, 

this is very unlikely. 3) The electrochemical potential and as such the chemical potential of a 

lithiated non-lithium metal anode will be akin to that of metallic lithium. Therefore, lithiated 
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anodes will hold logistical problems (compared to Li2S) during manufacturing as it will be nearly 

as prone to spontaneous oxidation as metallic lithium.  

Secondly, there are 2 main benefits of using Li2S over S8 as starting cathode material: 1) 

S8 is prone to sublimation (at temperature as low as 70oC with a medium vacuum) due to its low 

intermolecular force, rendering it very difficult to completely dry a S8-based electrode from its 

slurry state (removal of NMP-solvent). Furthermore, most S8 hosts are required to possess some 

dipole throughout its surface area to promote adsorption of polysulfides (as described in Chapter 

3), rendering them rather hygroscopic in nature. Together, the stray solvent and water molecule 

will react with any lithiated anode and will cause compromise cell performance in terms of 

Coulombic efficiency, cycle life and capacity 2) Li2S can mitigate the volume expansion concerns 

of the S8 electrodes. 

With a specific Li-ion capacity of over 1100 mAh g-1, Li2S has drawn much recent attention 

in the research. While the benefits towards both achieving higher performance sulfur-based 

cathode and replacing Li metal as an anode are clear,64 Li2S presents a very high initial charge-

activation barrier, which stems from the strong ionic bonds within its crystal, low Li-ion and 

electron transport properties and the nucleation barrier of forming solvated polysulfide species.75 

Such a hurdle (often reaching >4.0 V vs Li+/Li) typically results in low specific capacity and 

electrolyte decomposition leading to poor cycle stability. Strategies used to solve these problems 

typically fall into two categories: carefully designed nano-sized Li2S composite material 63,65 or 

electrolyte additive in the form of pre-solvated redox mediators.75,207 While both of these strategies 

have shown significant progress in reducing the charge overpotential and achieving good overall 

performance, they also introduce significant disadvantages. Novel Li2S composite materials 

typically require exotic synthesis environments composing of high temperatures or toxicity, while 
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soluble redox mediators often introduced pre-solvated into the electrolyte will contribute to severe 

internal shuttling and inevitably depend on the volume of electrolyte used. Moreover, the 

commonly used excess amounts of high oxidation state polysulfides as redox mediators will result 

in an overall low amount of starting Li-ion from the cathode (for a full cell Li2S-based LIB). An 

ideal solution to these challenges is the use of an initially dormant redox mediator that remains 

inactive during the electrolyte wetting process, effective at low mass ratios, separate from the 

electrolyte to decouple from the effect of electrolyte volume, and only activates when the first 

charge is initiated. 

The class of sulfide-type solid electrolyte (STSSE) materials have gained significant 

interest among the solid state electrolyte community.208-211 Their tendency to possess higher Li-

ion conduction and possibilities of low temperature synthesis when compared to the next leading 

solid electrolyte material (garnet-type),212 makes them one of the most promising candidate for 

solid-state batteries.213 Recent research into the STSSE have placed a spotlight on the 

electrochemical stability of STSEE. Thermodynamically, STSSE are known to be unstable at the 

voltage range of interest for both cathode and anode electrodes.214,215 Specifically, the nature of 

the interface layer (i.e. the degree and type of passivation) between the STSSE and active material 

strongly dictates the longevity of a solid state cell.216,217 With so much knowledge gained on the 

decomposition process of STSSE, it is timely to examine cross-field applications of this 

phenomenon. Some of the thermodynamically predicted oxidation decomposition products 

(particularly in the case of redox active products215,218,219) of P and S containing STSSE can be 

useful for liquid battery systems where redox mediators are needed.220 Furthermore, as these 

products are only produced when the STSSE is oxidized, it can present itself as an in situ generator 
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of chemical species that can be “switched-on” at specific oxidation voltages.  A highly applicable 

area for these functional redox mediators is the sulfur-based battery chemistries.221,222  

In this chapter, we demonstrate that the oxidative decomposition of solid Li3PS4 (LPS), a 

solid-state electrolyte material, can be leveraged as an electrochemically “switched-on” redox 

mediator generator for lowering the 1st charge overpotential of commercial Li2S. Crucially, the 

observed enhancements in performance was achieved with only the direct simple mixing of LPS 

into the slurry formulation at 10 wt. %. This is the first reported use of a solid material as a redox 

mediator source. We have shown that this material will not dissolve into the electrolyte unless 

activated and as such, less dependent on the volume of electrolyte used. 

5.2 Experimental methods 

5.2.1. Materials 

 

 All chemicals and molecular sieves (0.3 nm, rod shapes of 1/16 inch) were purchased from Sigma 

Aldrich. Molecular sieves were activated under vacuum at 120oC for 48 hours before use. 1,3 

dioxolane (DOL) and dimethoxyethane (DME) was first dried with molecular sieves for 2 days. 

Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and LiNO3 was dried in a vacuum oven at 

~120oC overnight prior to electrolyte mixing. All other chemicals were used as received if not 

otherwise stated. 

5.2.2. Synthesis of Materials.  

The synthesis of Li3PS4 (LPS) powder was conducted in a glove box with Ar atmosphere. High 

purity precursors of Li2S (99.98%) (Aldrich) and P2S5 (99%) (Aldrich) were used as received, and 

anhydrous THF solvent (99.9%) (Aldrich) was pre-treated with molecular sieves to remove 

residual water before use. Li2S (0.244 g) and P2S5 (0.394 g) powders were mixed in the dried-THF 
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solution under stirring for 24 hours. The prepared solution was pre-dried in the furnace for 24 

hours at 140 ℃ and then further dried in the vacuum oven for 24 hours at 140 ℃. The β-Li3PS4 

phase of our sample was confirmed by Raman spectroscopy (Figure 1a),223 X-ray diffraction 

(Figure 1b-c)209 and X-ray photoelectron spectroscopy (Figure 1d-e).224 Various amount of Li2S 

and S were mixed at a constant relative ratio (always forming Li2S8) at various absolute amounts 

in a solution consisting of DOL/DME at 1 v/v at ~50 oC overnight, forming a dark colored solution 

of Li2S8 at different concentrations.  

 

Figure 5- 1: Physical characterization of as-synthesized Li3PS4 a) Raman spectrum, b) X-ray 

diffraction of as-synthesized Li3PS4 protected with glass based air-tight sample holder, c) X-

ray diffraction of the protective film without any samples, X-ray photoelectron spectroscopy 

at d) S 2p and e) P 2p of synthesized Li3PS4. 
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5.2.3. Electrochemical Characterization 

First polyvinylidene fluoride (PVDF, dried in vacuum oven at 60oC overnight) in N-Methyl-2-

pyrrolidone solution (NMP, dried with molecular sieves for two days and measured to be at ~5.1 

ppm H2O by Karl Fischer titration) was mixed with solid LPS, Li2S and finally Super C45 carbon 

black (C45, from Timical) with a final solid content of ~15%. Typical ratios of Li2S: LPS: C45: 

PVDF were 70:10:10:10 (10% LPS), 70:1:19:10 (1% LPS) and 60:10:20:10 (10% LPS with 60% 

Li2S). For the control sample without LPS, the slurry composition was 60: 25: 15: for Li2S: C45: 

PVDF respectively. All slurries were hand-mixed thoroughly in a mortar and pestle and blade 

casted to the desired thickness on an Al current collector. The electrode laminates were dried in a 

vacuum oven at 60oC overnight and punched into 16 mm diameter disks. The entire electrode 

fabrication process was conducted inside of an Ar-filled glove box with H2O at <0.6 ppm and O2 

<0.5 ppm. CR2032 type coin cells were used for all electrochemical measurements with a Li chip 

as the counter and reference electrode. For ex situ X-ray absorption spectroscopy experiment, 0.5 

LiNO3 in DME/DOL (1:1 v/v) was used as electrolyte to prevent signal convolution from the sulfur 

present in LiTFSI. For the LiPS baseline experiments, 30 µL of 1M LiTFSI + 0.5 LiNO3 in 

DME/DOL (1:1 v/v) electrolyte was first injected onto the side anode and the separator followed 

by the injection of 10µL of electrolyte pre-blended with predetermined amount/concentration of 

LiPS directly onto the cathode. This was done to ensure the proper contact of polysulfide with Li2S 

and limit anode corrosion prior to 1st charge (providing the cells with the best chance for better 

higher performance). For all other electrochemical test, 1 M LiTFSI + 0.5 M LiNO3 in DME/DOL 

(1:1 v/v) was used as the electrolyte. An 18 mm diameter 2320 Celgard membrane was used as the 

separator in all experiments. All galvanostatic cycling and rate performance tests were conducted 

with a Neware battery testing station. A 1400 CellTest System from Solartron was used to conduct 
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cyclic voltammetry and electrochemical impedance spectroscopy (EIS). EIS was conducted at 40 

minute constant current intervals followed by a 5 minute rest time prior to the EIS data collection.  

5.2.4. Physical and Chemical Characterization 

 

X-ray absorption spectroscopy experiments (operated under fluorescence mode) were conducted 

at the 9-BM of the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). Cells 

were charged to their respective state of charge (electrolyte only containing 0.5 M LiNO3 and 

without LiTFSI, to prevent signal convolution from the sulfur atoms in the TFSI anion) and quickly 

decrimped in an Ar filled glove box. The harvested electrodes were dried without rinsing and 

sealed with a Kapton film-based sample holder to prevent air contamination. The X-ray absorption 

spectroscopy experiment was conducted under He atmosphere. P2O5 and Na2S2O3 were used as 

the calibration sample for the P and S K-edge respectively. Using different segments of the same 

harvested electrodes, Raman spectroscopy was performed on a Renishaw In-Via Raman 

spectrometer with a 785 nm wavelength laser. Samples were sealed in and measured through a 

polyethylene bag. X-ray diffraction was performed at the 11 ID-C (λ=0.01173 nm) of the APS at 

ANL. Samples were sealed in Kapton tape to prevent air contamination. To prevent electrolyte 

leakage/evaporation, electrodes submerged in electrolyte were sealed in a coin cell with holes 

bored through the center of the top and bottom coin cell cap and covered with Kapton to allow for 

X-ray penetration (nearly identical to the operando coin cells used in Chapter 4. 

5.3. Results and discussion 

5.3.1. Disadvantage of pre-solvated redox mediator: Lithium polysulfide. 
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Figure 5- 2: Effectiveness of Li2S8 as Li2S activation agent at various operating condition a) 

1st charge voltage profile of 60% Comm-Li2S loaded with varying amounts of Li2S8 in the 

electrolyte. Specific capacity is normalized to the total sulfur mass in both solid Li2S and 

solvated Li2S8 mixture. Arrows indicate the theoretical delithiation capacity associated with 

each ratio of Li2S8:Li2S. b) 1st charge voltage profile of pure 60% Comm-Li2S electrode at 

0.05 and 0.025 C. c) 1st charge voltage profile of commercial Li2S at 30% Li2S8 and 40, 10 

and 7 µL mg-1 electrolyte to equivalent S content at 0.05, 0.025 and 0.025C respectively.   

 Electrolytes preloaded with soluble redox mediators have been widely used as Li2S activators 

throughout literature.75,92,207 Taking lithium polysulfide (LiPS) as the representative additive, it is 

clear that the use of Li2S8 as redox mediator is only applicable when significant amounts of Li2S8 

are added (Figure 1a, arrows indicates the theoretical amount of Li-ion that is extractable from 

each specific ratio of Li2S to Li2S8). This in direct conflict with achieving high sulfur areal loading 

and low electrolyte content. For a 60% commercial Li2S electrode, it was found that the ratio of 

Li2S8 to Li2S must be raised to a relatively high (30-60 wt %) to achieve significant improvements 

to the charge voltage profile. It should be noted that this is not the result of a decreased current 

density (normalized to loaded Li2S mass) as experiments at half the current still maintains a very 
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high charge voltage (Figure 1b). It is important to remember that one of the most advantageous 

aspect of using Li2S over S is its ability to serve as a source of Li-ions i.e. pairing with a Li-ion 

free anode and eliminating the need of using Li-metal. It is then foreseeable that the use of 

significant amounts of LiPS to activate Li2S will result in a delithiated cathode with excess 

amounts of sulfur that cannot be lithiated in the subsequent cycle. Additionally, every sample with 

soluble polysulfide species experienced higher than theoretical charge specific capacity 

(theoretical indicated by arrow heads) likely suggesting shuttling.184 This is particularly evident in 

cells (LiPS: Li2S= 30:70) cycled at decreased current density (Figure 1c), yielding a 1st charge 

capacity of well over 2500 mAh g-1 normalized to the sulfur content even with 0.5 M LiNO3. 

Finally, and most importantly, changes to the electrolyte to sulfur ratio also dramatically influences 

the chargeability of the electrode. When the total electrolyte content was tuned down to ~7 µL mg-

1
Li2S (10 µL mg-1

S, maintaining a constant LiPS: Li2S ratio), there is a dramatic decrease in specific 

capacity and increase in charge potential. Therefore, a Li2S based LIB that utilizes polysulfide in 

amounts such that it serves as an efficient Li2S activator at “strict” testing conditions such as low 

electrolyte conditions, will be unlikely.  
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5.3.2. Electrochemical properties of LPS and its application in commercial Li2S cathodes.  

 

Figure 5- 3: Electrochemical Data of LPS Cycled in Liquid Ether Based Electrolyte a) Cyclic 

voltammetry of LPS with an initial anodic sweep (blue) and subsequent cycling in black, b) 

galvanostatic charge/discharge of LPS with LiNO3 in electrolyte and c) 1st charge of LPS 

with and without LiNO3 in electrolyte suggesting shuttling.  

The specific LPS solid electrolyte composition have drawn a lot of interest due to its high 

ionic conductivity at room temperature and ease of synthesis.209,225 The stability of LPS has been 

a topic of great concern in the field of solid electrolyte.226-228 It is often considered that the 

electrochemical decomposition of LPS complicates its application as a solid-state Li-ion 

conductor. Due to its redox activity at a potential window similar to that of Li2S,215 it would be 

interesting to revisit the stability of LPS but in a liquid electrolyte setting. With a similar but 

slightly higher oxidation voltage than Li2S, it could be a perfect source of redox mediators for Li2S 

activation. However, this is only true of the decomposition products of LPS is redox active and 

reversible. Figure 5-3a displays the cyclic voltammograms of LPS in common 1,3 

dioxolane/dimethoxymethane based Li-S electrolyte. A pronounced anodic peak is found at ~2.7 
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V and then at ~3.4 V during its initial delithiation sweep (in blue). The following cathodic and 

subsequent anodic sweep (in black) further demonstrated its redox activity in Li-S electrolyte. 

Corroborating this data, constant current delithiation of LPS at 0.1 mA mg-1 produces a sloped 

plateau from ~2.7-3.1 V (Figure 5-3b) followed by another plateau at ~3.2 V and 3.6- 4.0 V. While 

these results are intriguing and produced apparently more pronounced voltage profiles from 

traditional solid-states studies of LPS,229 the most important phenomenon of LPS oxidative 

decomposition can only be revealed when charged without LiNO3 present in the electrolyte. Cells 

charged with LiNO3 yielded ~250 mAh g-1
LPS whereas cells without LiNO3 (commonly used to 

prevent shuttling230) required more than 430 mAh g-1 (Figure 5-3 c) with a prolonged ~2.7-3.1 V 

sloped plateau. Furthermore, post cycling imaging (scanning electron microscopy, Figure 5-4 a) 

and elemental analysis (energy dispersive spectroscopy, Figure 5-4 b) of the cycled Li metal 

counter electrode revealed a surface layer composed of both phosphorus and sulfur. Taken 

together, this provides strong evidence that the longer voltage plateau of the cell charged without 

LiNO3 is due to shuttling of a soluble redox active species that are generated by LPS upon 

oxidative decomposition.  
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Figure 5- 4: Analysis of post cycling Li metal anode a) Scanning electron microscope image 

of cycled Li metal anode and b) the corresponding electron dispersive spectroscopy spectrum 

of the line-scan indicated in a). 

 With the generation of redox active species starting at 2.7 V (close to, but higher than the 

oxidation potential of Li2S), LPS is an good candidate as a solid-sourced redox mediator generator 

that can be electrochemically “switch-on,” dissolving into the electrolyte in parallel to Li2S 

charging. We now demonstrate here that these decomposition products can be leveraged to 

enhance the electrochemical performance of cathodes based on even commercial micron-sized 

Li2S (Comm-Li2S) powder. By simply blending bulk LPS into the slurry formulation of Comm-

Li2S electrode, significant enhancements in the electrochemical properties were achieved.  XRD 

of the casted and dried electrode (Figure 5-5a-b) indicates that the Li2S is very much crystalline, 

producing pronounced diffraction peaks. Furthermore, the small peaks at the lower 2θ, persisted 

even while submerged in electrolyte (1M LiTFSI + 0.5 LiNO3 in DME/DOL (1:1 v/v)), indicating 

that LPS does not dissolve into anhydrous electrolyte formulations. However, it should be noted 

that the crystal structure of Li3PS4 changed after electrode fabrication as the XRD peaks have 

changed.  
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Figure  5- 5: Synchrotron high energy X-ray diffraction (λ=0.01173 nm) study of Li3PS4 at 

various stage of testing a) from 2θ = 1 to 9 and b)  2θ = 0.1 to 2.7 of as-synthesized LPS, 

Li2S+LPS electrode (scraped off from Al current collector) and Li2S+Li3PS4 electrode 

scraped off from current collector and submerged in electrolyte for 2 hours and remained 

submerged during XRD testing.  

Figure 5-6a displays the cyclic voltammetry of fresh Comm-Li2S electrode prepared with 

1 and 10 wt. % LPS. Compared to the pure Comm-Li2S, the charge overpotential was observed to 

decrease with increasing LPS ratio. Even at a minimal LPS ratio of 1 wt. %, an initial anodic peak 
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was found at 3.5 V with a subsequent peak at 3.8 V which is lower than the ~4.0 required to obtain 

an oxidative peak for the pure Comm-Li2S electrode. At 0.05 C, the charge voltage of Comm-Li2S 

was dramatically decreased (Figure 5-6b) even with an increased Li2S content.  It is also worth 

mentioning that there appears to be a double activation peak as shown in Figure 5-6c. We believe 

the first is the initial “switching-on” process of LPS (which we will explain in the following part 

of this chapter) followed by its activation (2nd peak) of the bulk Li2S assisted by the oxidation 

products of LPS. After the initial activation process, there is an initial plateau followed by a sloped 

second plateau and a third plateau at the higher voltage region. The segregation of these plateaus 

is likely related to the different activation processes of Li2S with LPS. For example, the initial 

plateau could be due to the higher concentration of redox mediators while the second sloped 

plateau could be an indication of a gradual decline in redox mediator concentration.  

 

 Figure 5- 6: First charge electrochemical properties of LPS blended into commercial Li2S 

as an electrochemically “switched-on” redox mediator generator. a) Cyclic voltammetry of 

various combination of LPS and Li2S-Comm, inset shows the subsequent cathodic→anodic 

sweep cycle after the initial anodic activation sweep, b) 1st charge voltage profile of electrode 

using 10% LPS with 70% Li2S-Comm at C/20 with c) magnified view showing double peak.  
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5.3.4. The role of LPS in Li2S activation.  

 

Figure 5- 7: Electrochemical Impedance Spectroscopy Study. Voltage profile of 

electrochemical impedance spectroscopy (EIS) experiment of a) the Li2S-Comm electrode 

and b) the 70% Li2S-Comm blended with 10% LPS electrode. c-d) Corresponding Nyquist 

plot of the Li2S-Comm electrode and f-h) 70% Li2S-Comm blended with 10% LPS electrode 

at different axis ranges. The color legend is labeled in volts. i) Example of experimental and 

simulated Nyquist plot j) interfacial resistance (high frequency semicircle) and k) plot of 

charge transfer resistance (mid frequency semicircle) of Comm-Li2S (black) and with LPS 

(red). 

 

Electrochemical impedance spectroscopy (EIS) reveals substantial differences between 

electrode with and without LPS. Figure 5-7a-b shows the voltage profile during the operando EIS 

experiment of Comm-Li2S at 60% in black and Comm-Li2S at 70% with 10% LPS in red, 
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respectively. It should be noted that the voltage profile of the EIS process varies from the pure 

galvanostatic charge process likely due to the dynamic nature of soluble species created. Although 

EIS processes have been considered mostly non-invasive in most studies, this result reveals a clear 

reduction in effectiveness in LPS’s activation of Li2S. Furthermore, there also appears to be an 

apparent requirement of the pure Comm-Li2S cells to reinitiate its activation process with a sharp 

peak after each EIS data collection session (Figure 5-7a). This shows that the activation process of 

Li2S is very time dependent likely with concurrent processes competing for polysulfide (out-of-

cathode diffusion and anode corrosion).231 

 

Figure 5- 8: Example of experimental and simulated electrochemical impedance 

spectroscopy plots a) magnitude and b) phase bode plot of Li2S 60% commercial electrode 

with simulated and experimental data points in red and black respectively. c-d) 

Experimental EIS spectrums of Comm-Li2S electrodes and f-h) of Comm-Li2S electrodes 

blended with 10% Li3PS4 at different axis ranges. Unit of color legend is in volts. 
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Regardless, important differences in impedance are still observed. The Nyquist plot of the 

collected EIS data of pure Li2S-Comm electrode is shown in Figure 5-7c-e and of the 70% Li2S-

Comm blended with 10% LPS electrode in Figure 5-7f-h. As the impedance features of this 

material varies significantly with frequency, different axis range/magnifications are shown for 

clarity.   Consistently throughout the 1st charge, a small semi-circle was found at the high frequency 

range followed by a very large mid frequency semi-circle which we allocated to interfacial and 

charge transfer resistance respectively according to previous temperature based studies.97 Based 

on this, all Nyquist plots were fitted as shown in Figure 5-7i (corresponding representative 

simulated and experimental Bode plot can be found in Figure 5-8a-b respectively. Each 

impedance spectrum was fitted to the circuit shown in inset of Figure 2i.46,63,192,232 Initially, the 

interfacial resistance appeared to be higher for the cells with LPS (Figure 5-7j). This could be 

attributed to the higher ratio of non-conductive material (LPS and Li2S) to carbon as the Li2S 

content is 70% in the electrode containing LPS whereas the electrode without LPS has only 60%. 

Interestingly after the initial activation process, the interfacial resistance of the LPS containing 

electrode dropped drastically from ~105 Ω to ~10 Ω. This is in contrast to the pure 60% Li2S 

electrode where it exhibited only a modest decrease throughout the course of charge. Additionally, 

the charge transfer resistance (mid frequency semi-circle) initially started higher once again for 

the LPS containing electrode but was exceeded by the pure Li2S electrode near the end of the 

charge period (~650 mAh g-1) as shown in Figure 5-7k. This is intriguing because the enormous 

charge transfer resistance of the LPS containing electrode is not reflected in the charging voltage 

profile. This contradiction can be explain the dynamic nature of the Li2S activation process. As 

the impedance spectroscopy was taken at potentiostatic conditions after a rest period (i.e. spectrum 

collection voltage is close to OCV at each specific state of charge), the resulting current response 
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oscillates around near 0 mA. This suggest that there is a very strong dependence of the charge 

voltage on the presence of an applied current. It is further intriguing that for the pure Li2S electrode, 

after each rest period and subsequent EIS spectrum analysis, there is a reactivation process 

indicating a depletion of polysulfide from the previous current-halt period (rest time and EIS 

analysis). This is not present in the first ~400 mAh g-1 of charge for the electrodes with LPS. 

Accordingly, the contradiction between the higher charge voltage and lower apparent impedance 

of the LPS containing electrode is likely due to good charge transfer kinetics of polysulfide and its 

role in the comproportionation reaction with Li2S.233 However, because there is a constant need of 

the pure Comm-Li2S electrode to generate polysulfide species that are quickly consumed (by other 

polysulfide competing processes231). This creates a situation where the polysulfides cannot 

properly react with the remaining Li2S and as such, the voltage remains high. Whereas in the case 

of the LPS containing electrode, the lack of an activation process after each EIS analysis indicates 

significantly higher amounts of soluble mediators that are generated with longer lifetime, serving 

a more prolonged role in mediating the charge process of the bulk Li2S particles.  
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Figure 5- 9: Ex situ X-ray Absorption Near Edge Spectroscopy study of LPS containing Li2S 

electrodes at various voltage throughout the first charge. a) Voltage profile of the 1st charge 

(0.05 C) of 70% Li2S-Comm+10%LPS where the circles indicates the specific 

capacity/voltage at which each Ex situ XAS measurement was conducted. b) S K-edge of 

electrode taken at different state of charge with spectra of homemade Li2S4 solution, 

commercial P2S5 and commercial S8 as reference. c) Magnified S K-edge of electrode opened 

at: fresh and ~2.46 V. d) P K-edge of electrodes taken at different state of charged in addition 

to commercial P2S5 as reference. e) Overlay of P K-edge at OCV and ~2.43 with the arrow 

indicating the increase in near edge features and f) ~2.46 V and 4.0 V displaying highly 

similar features at the beginning (~2.46 V) and end of charge (4.0 V). 
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In an attempt to clarify the mechanism of LPS on the charging process of Li2S, ex situ XANES 

was conducted. As indicated on Figure 5-9a, 6 spectra were measured at different state of charges. 

Specifically, cells were disassembled and analyzed at open circuit voltage (OCV= ~2.42 V), ~2.43 

V, ~2.46 V, ~2.91 V, ~3.62 V and 4.0 V. Overall, the S K-edge was found to change considerably 

over the course of the first charge (Figure 5-9b). From OCV to ~2.46 V, the overall characteristics 

of the S K-edge remained relatively the same where the convex shape of the Li2S align well with 

literature.234 However, in the magnified view (Figure 5-9c), it can be seen that the polysulfide 

shoulder (~2468 eV, matching our polysulfide standard measurement) increases from the fresh 

cell at OCV (Figure 8c, black curve) to the cell at ~2.46 V (Figure 5-9c, blue). Interestingly, the 

polysulfide species were not detected at the lower state of charge of ~2.43 V (Figure 5-9c, dark 

blue), whereas a change in the P K-edge was detected early in the charge process (~2.43 V, Figure 

5-9d-e). This strongly suggests that the initial activation process of Li2S is not due to the formation 

of polysulfide234  At higher voltages (~3.62 V), the spectrum largely resembles that of the sulfur 

standard sample (Figure 5-9b) where the convex shape of Li2S changes to concave at ~2474 eV as 

previously reported.234 In fact, the convex shape of Li2S cannot be found even at ~2.91 V, 

suggesting that a large majority of it has been consumed i.e. likely successfully charged.  
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Figure 5- 10: Normalized Raman spectrum of Commercial S standard powder and 

Li3PS4+Li2S electrodes charged to different voltages.  

This is also seen in the ex situ Raman spectroscopy (Figure 5-10) of the same electrodes where 

the peak at ~365 cm-1 (likely Li2S) shifts to 354 cm-1 from ~2.43 V to ~2.46 V whereupon it 

completely disappears at voltages above ~2.46 V.  At 4.0 V, the spectrum further evolves into a 

shape different to that of the S8 standard sample. The origin of this pattern is however unclear but 

we believe it might be some phosphorus based sulfur species superimposed by elemental sulfur 
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signals as theoretically predicted by the high voltage decomposition of Li3PS4.
215 Surprisingly, the 

P K-edge of the sample at 4.0 V did not exhibit features similar to the P2S5 standard (Figure 5-9d). 

This is also seen in the Raman data where the originally formed ~246.5 cm-1 at the ~3.62 V 

transforms into a double peak centered at ~241 and 264 cm-1 at 4.0 V (Figure 5-10), not present in 

the commercial orthorhombic sulfur sample.235 It is worth noting that P2S5 is one of the 

thermodynamically predicted oxidation products of LPS at high voltage.215 

It is important to point out the difference between our XANES data and other previous reports 

on the delithiation of LPS in a solid-state  configuration.229 While the initial P K-edge features of 

our original OCV samples are near identical (Figure 5-9e) to literature, the XANES feature differed 

quite drastically upon delithiation in our work. In the more conventionally tested solid-state 

configuration, the P K-edge was reported to remain mostly constant throughout delithiation with 

only decrease in the edge-peak height coupled with a general increase of the broad peaks at higher 

energy levels. Interestingly, an analogous process of decreasing the synthesis molar ratio of 

Li2S:P2S5 (LPS, molar equivalent of 75 Li2S: 25 P2S5) i.e. decreasing the proportion of Li, have 

also been reported to yield a similar decrease in peak height.236  In contrast to these works, the P 

K-edges in this work (Figure 5-9d) exhibited a complete edge shift towards a higher energy level 

of electrodes harvested from OCV to ~2.91 V and then an edge shift back to a lower energy level 

from ~2.91 V to 4.0 V, in addition to significant changes in the spectrum’s shape at the near edge. 

Only in the initial stage of charging did the P K-edge exhibits a slight increase in the near edge 

features and decrease in edge height (Figure 5-9e) similar to the aforementioned literature. The 

spectrum taken at ~2.46 V already reveals a major change in shape, suggesting changes to the 

bonding environment of P have occurred.  
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Figure 5- 11: Comparison of P K-edge spectrum of ex situ cell taken at ~2.91 V and the P2O5 

standard sample. 
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Subsequent sample measurements at higher charge voltages continued to produce pronounced 

changes to both the edge position and shape. The peak features at ~2151 and ~2167 eV might be 

related P2O5 present in the sample as shown in the comparison with commercial P2O5 experimental 

data (Figure 5-11). As both peaks are consistently present among all the P K-edge spectrum, one 

might claim it is due to air contamination during measurement. However, the complete dominance 

of these higher energy peaks at ~3.17 V and its shift back towards lower energy levels for spectra 

taken at ~3.62 V and ~4.0 V might indicate that this is not solely due to air contamination. 

Conversely, we believe the peak at ~3.17 V is related to the voltage and charging process of Li2S 

with LPS. Since chemical reactions between Li3PS4 and S8 have been reported in literature, where 

the physical mixing of LPS with S8 have yielded Li polysulfidophosphates.237 We propose that the 

higher energy levels observed from electrodes harvested at ~2.91 to ~3.62 V is due to some 

bonding of P with long-chained S species. With more sulfur species attached to each P atom, the 

electron density should shift away from P, subsequently increasing the excitation energy required 

for the P 1s core level. It should be noted that this is only our interpretation of our data and another 

chemical process could be occurring. Regardless of the true chemical interaction mechanism of 

LPS, even more interesting is that at the end of charge i.e. spectrum taken at 4.0 V, the XANES 

almost reverts completely back to the features of at ~2.46 V (Figure 5-9f). This suggests that the 

decomposed LPS performed a catalytic role. Because it does not revert to the same form as the 

spectrum taken at OCV or ~2.43V, we believe the observed edge shifts toward a higher energy 

level for electrodes harvested from OCV to ~2.43 V could be an indication of an initial priming 

(“switching-on”) process of the LPS.  
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5.3.5. Proposed Mechanism.  

 

Figure 5- 12: Schematic of proposed Li2S activation mechanism. Step 1: LPS is delithiated 

generated soluble redox active P,S-based species. Step 2: These species diffuse to the surface 

of bulk Li2S where it (Step 3) reacts via comproportionation. Step 4: The delithiated LPS 

form some of reversible compound with polysulfide. Step 5: The LPS-polysulfide compound 

is then used to further comproportionation with Li2S.   

From our experiments, it appears that overall, the LPS initially delithiated, i.e. “switched-on”, 

producing soluble redox active products and activating Li2S as shown in Step 1 of the schematic 

drawn on Figure 5-12. The soluble redox active products then migrated to the bulk crystalline 

Li2S (Step 2) where it helped generate polysulfide species (Step 3). This is also supported by the 

double activation peak shown in Figure 5-6c. To follow, we believe the P from the delithiated LPS 

bonded with sulfur based species (likely high ordered polysulfides, Step 4), stabilizing the 

polysulfides for subsequent use in comproportionation reactions with the remaining Li2S particles 
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(Step 5). When taken together with the differences in the EIS voltage profiles, we believe some of 

the formed delithiated LPS-polysulfide is likely to offer a longer redox-active lifetime over the 

typical polysulfide species as there is no need for the reactivation of any species after each EIS 

data collection period. At higher voltages, the long chained polysulfide species detach from the 

LPS via the oxidation of high order polysulfide to elemental S8 (Figure 5-7b at ~3.62 and 4.0 V), 

where the P K-edge begins to shift back to the lower energy level and finally back to the same 

edge energy level and features as the ~2.46 V spectrum at the end of charge (Figure 5-9e). This 

indicates some form of catalytic role of the LPS generated species in the charging process of Li2S. 

5.3.6. Electrochemical performance at strict conditions 

 

Figure 5- 13: Electrochemical performance with LPS added as an electrochemically 

“switched-on” redox mediator generator a) Cycle performance of 70% Li2S-10% LPS at, 4 
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mg cm-2 (4 µL mg-1) and 6 mg cm-2 (7 µL mg-1), b) cycle performance and c) charging voltage  

profile of 70% Li2S-10% LPS electrode at 1.5 mg cm-2 at various electrolyte content  (4-2 µL 

mg-1), and d-f) discharge voltage profile of 70% Li2S-10% LPS electrode at 1.5 mg cm-2 at 4, 

3 and 2 µL mg-1 respectively. 

Half-cell cycling performance of LPS containing electrodes exhibited reasonably good 

performance at strict conditions (low electrolyte ratio and high mass loadings )especially for an 

electrode mainly based on only commercial bulk Li2S. Figure 5-13a shows the cycle stability of 

70% Li2S -10% LPS electrode at various mass loading and Figure 5-13b shows the cycle stability 

at various electrolyte content. With decreasing electrolyte content from 4 to 2 µL mgLi2S
-1 (5.72 to 

2.86 µL mgLi2S
-1) an obvious and expected increase in charge potential is observed (Figure 5-13c) 

with corresponding decreases in the discharge potential and capacity as shown in Figure 5-13d-f. 

Cells at particularity low electrolyte content (3-2  µL mgLi2S) required lower current density (0.025 

C) to achieve discharge.  



127 

 

 

Figure 5- 14: Electrochemical properties of commercial Li2S without Li3PS4 a) 1st charge 

voltage profile of 60% Comm-Li2S at 4-2 µL mg-1 at 1.5 mg cm-2 and b) enlarged figure to 

show initial activation process. 

 

We would also like to emphasize the particularly high Li2S content in the electrode (70%) 

in comparison to other works of elaborate material structural design.238 239,240 In contrast, pure 

Comm-Li2S cells even with 60% Li2S were only able to charge when activated past 4.0 V  (0.025C) 

at such low electrolyte ratios as shown in Figure 5-14a-b.  Furthermore, as demonstrated in Figure 

5-1b, polysulfide-based activators demonstrate a similar problem, with significant increases in 

voltage and simultaneous decrease in charge capacity. This demonstrate the importance of our 

solid-sourced redox mediator as a direction for future research. It is expected that with 

enhancements in the field of anode protection or separator/interlayer engineering231,241 beginning 

to build traction, the performance can be significantly enhanced in subsequent work. Furthermore, 

future research into the direction of solid-sourced redox mediators based on other well-established 

solid-state electrolyte systems242-244 coupled with a deeper mechanistic understanding via in situ 
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experiments245,246 will likely further increase the performance. Future improvements in capacity, 

reduction in 1st charge potential (related to the oxidative decomposition potential of the specific 

STSSE) while offering additional decoupling from the effects of low electrolyte content can be 

expected. 

5.4. Conclusion 

 

In summary, we have demonstrated here a method to leverage the commonly known oxidative 

decomposition of P, S based solid state electrolyte material in Li2S batteries. As an 

electrochemically “switched-on” redox mediator generator, we have introduced the first ever solid-

sourced redox mediator for the activation of commercial bulk Li2S without the need for ball milling 

or high energy treatment for electrode fabrication. By simply hand mortaring Li2S with LPS, 

substantial decrease in the charging potential is observed. Results from electrochemical impedance 

spectroscopy and X-ray absorption spectroscopy indicates a disappearance in LPS material during 

the beginning of charge, followed by the formation of high resistance material likely to be sulfur. 

Furthermore, we believe there exist some bonding between the P and polysulfide species leading 

to the creation of redox active species that have a longer life time during operation, allowing more 

opportunity for comproportionating with Li2S. Good cycle performance was also demonstrated at 

low electrolyte content and reasonable Li2S mass loading with electrodes at 70% Li2S. 

However, the activation of Li2S at low electrolyte (3-2 µL mg-1
Li2S) did not yield desirable 

voltage characteristics. Most of the charging profile was above 3.6 V vs Li+/Li, which might cause 

electrolyte decomposition. In the next chapter, to further decrease the charge overpotential, we 

continued with the concept of a redox mediator generator but instead looked towards Na2S. 

 

 



129 

 

Chapter 6: Na2S as redox mediator generator for activating bulk Li2S 
 

This chapter includes content from the following draft in preparation 

M. Li, J. Shi, Q. Li, X. Bi, S. Son, D. Luo, I. Bloom, K. Amine, Z. Chen, J. Lu, In situ 

polysulfide injector for the activation of bulk lithium sulfide. (2020) In preparation 

 

6.1. Introduction 

 

As mentioned in the previous Chapter, Li2S sulfide as an alternative Li-ion source for 

sulfur-based batteries have received considerable attention in the past years.247,248 While LPS was 

an insightful initial step towards Li2S cycled at strict conditions, it is very much a foreign chemical 

with the fate of its phosphorus-based oxidation product unknown after first charge. This can lead 

to further complication later in development. Moreover, as LPS is only effective down to 10 wt.% 

with 60 wt.% Li2S, its application is still limited as it compromises capacity. In Chapter 6, we look 

to apply a solid-sourced redox mediator generator that functions at lower proportions and has redox 

mediating species that are more native to sulfur-based electrochemistry. That is, a polysulfide 

generator at lower voltages. To properly select this material, we return to discuss the charge process 

of bulk Li2S. 

Fundamentally, the 1st charge mechanism of bulk-Li2S involves the delithiation of its outer 

particle surfaces and the subsequent generation/nucleation of high order polysulfide species. 75,249 

It has been identified that these polysulfide species likely perform comproportionation reactions 

with the remaining Li2S, essentially acting as redox mediators (RM). Accordingly, the use of pre-

solvated polysulfide solution and foreign RMs was demonstrated to decouple the poor bulk 

conductivity (both ionic and electronic) of Li2S from its delithiation process.92,250 However, adding 
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pre-solvated RM will not only complicate the electrolyte formulating process, but also the 

mandates a certain RM concentration. The concentration of the RM will determine its effectiveness 

in Li2S activation. Unfortunately, because pre-solvated RMs are homogenous in nature, the 

majority of the added RMs are essentially useless as they are spatially much too far from the bulk 

Li2S to be functional. The use and effectiveness of pre-solvated RMs are limited when tested under 

strict electrolyte conditions.251  

In this chapter, we propose the use of commercial Na2S as an in situ electrochemical 

polysulfide injector. As shown in Figure 6-1, this entity injects polysulfide species at a reduced 

voltage during the charge process and facilitates the low charging of bulk Li2S. By taking 

advantage of the naturally lower thermodynamic redox potential of Na2S (Na2S at <1.5 V vs 

Na+/Na252 against Li2S at 2.1 V vs Li+/Li). We demonstrate that the direct bulk mixing of Na2S (at 

1-3 wt. % in electrode) into a 70 wt. % commercial bulk-Li2S can serve as an efficient solid-

sourced redox mediator generator.  

 

Figure 6- 1: Proposed mechanism of in situ electrochemical polysulfides injection 
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6.2. Experimental methods 

 

6.2.1. Materials: 

All chemicals and molecular sieves (0.3 nm, rod shapes of 1/16 inch) were purchased from 

Sigma Aldrich. Molecular sieves were activated under vacuum at 120oC for 48 hours before use. 

1,3 dioxolane (DOL) and dimethoxyethane (DME) was first dried with molecular sieves for 2 

days. Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and LiNO3 was dried in a vacuum 

oven at ~120oC overnight prior to electrolyte mixing. All other chemicals were used as received if 

not otherwise stated. 

6.2.2. Electrochemical characterization: 

First polyvinylidene fluoride (PVDF, dried in vacuum oven at 60oC) in N-Methyl-2-

pyrrolidone (NMP, dried with molecular sieves for two days) solution was mixed with solid Na2S, 

Li2S, mesoporous carbon (MC) from Sigma Aldrich (SKU: 699632) and finally C45 carbon black 

(purchased from Timcal) with a final solid content of ~15%. The purchased Na2S came in large 

centimeter-sized particles, which were dry-grinded with a mortar and pestle prior to slurry 

formulation. The slurry ratio was Li2S: Na2S: C45: MC: PVDF were 70: x: 2(20-x)/3: (20-x)/3:10 

where x =1 or 3. For the control sample without Na2S, the slurry composition was 70: 40/3: 20/3: 

10: for Li2S: C45: MC: PVDF respectively. The mass ratio of C45: MC was kept at 2:1. The solid 

mixture of Li2S, Na2S, C45 and MC were thoroughly hand-grinded with a mortar and pestle 

without any solvent. This powdered mixture was then added to an appropriate amount of PVDF 

dissolved NMP and further mixed with a planetary mixer and blade casted on carbon paper (areal 

mass of carbon paper is ~5.5 mg cm-2, similar to that of a 20 µm Al foil at ~5.4 mg cm-2). Al 

current collector was used for in situ XRD. The electrode laminate was dried in a vacuum oven 

inside of the same glove box at 60oC overnight and cut in 14 mm discs. The entire electrode 

fabrication process was conducted inside in an Ar-filled glove box with H2O at ~0.6 ppm and 
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O2<0.5 ppm. CR2032 type coin cells were used for all electrochemical measurements with a Li 

chip as the counter and reference electrode. For all other electrochemical test, 1 M LiTFSI + 0.5 

M LiNO3 in DME/DOL (1:1 v/v) was used as the electrolyte. Two pieces of 18 mm diameter 2320 

Celgard membrane was used as the separators in all experiments. All galvanostatic cycling and 

rate performance tests were conducted with a Neware battery testing station. A 1400 CellTest 

System from Solartron was used to conduct cyclic voltammetry.  

6.2.3. Physical and chemical characterization: 

 

Cells with equal mass loadings were charged to their respective state of charge and quickly 

decrimped in an Ar filled glove box. The harvested electrodes were then submerged in 1 mL of 

fresh electrolyte as the rinsing solution. UV-Vis spectroscopy was then performed on the rinsing 

solution after overnight soaking. In situ X-ray diffraction was conducted at the 11 ID-C beamline 

at the Advanced Photon Source at Argonne National Laboratories. The wavelength of the beam 

was 0.1173 Å. 2θ experimentally based on a wavelength of 0.1173 Å was converted to Cu Kα-

based 2θ via Bragg’s Law for the reader’s convenience. A Hitachi S-4700 Scanning Electron 

Microscope (SEM) was used for SEM imaging with a Bruker XFlash 6160 for Energy dispersive 

spectroscopy. Li-anode with deposited Na species were decrimped, not rinsed to prevent any 

mechanical or solvation-based removal of Na-species and transferred from the Ar glove box into 

a seal contained. This container was then transferred into an Ar purged glovebag attached to the 

SEM to reduce air contamination of samples. Similarly, X-ray photoelectron spectroscopy was 

conducted without rinsing the samples to avoid removing any Na polysulfide species. A XPS 

loading chamber was directly fitted and connected to the glove box via transfer chamber. Using 

this specialized equipment, the coin cells could be decrimped and loaded into the XPS all in an 

inert Ar atmosphere without exposure to ambient atmosphere. 
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6.3. Results and discussion 

 

6.3.1. Confirmation of polysulfide generation in charging bulk Na2S 
 

 

Figure 6- 2: a) Charging profile of commercial Na2S electrode with specific capacity at which 

cells were decrimped for rinsing labeled with color circles b) UV-Vis absorption spectrum of 

baseline blank electrolyte relative to quartz sample holder and rinsing solution of Na2S 

electrode charged to 80, 180 and 280 mAh g-1 with the blank electrolyte solution as 

background.  

Like Li2S, Na2S is difficult to oxidize and will yield large overpotentials due to its poor 

ionic and electron conducitivity.253,254 While it is unclear, the 1st charge mechanism of Na2S is 

likely to be very similar to that of Bulk-Li2S, producing high order polysulfide after its initial 

charge overpotential spike. With the overpotential experienced by Na2S, the practical potential 

required for Na polysulfide generation from Na2S aligns naturally near the equilibrium charging 

potential of Li2S. Therefore, even with a large overpotential stemming from its poor ionic and 

electron conductivity, Na2S will generate polysulfide anions at voltages much lower than that of 
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bulk Li2S and produce polysulfides spatially close to Li2S. To take advantage of the lower 

practical-charging voltage of Na2S, we must first demonstrate that Na2S does indeed charge in a 

similar fashion as Li2S even in a Li+-based electrolyte. In a typical Li2S electrode, the initial 

overpotential peak is associated to the initial formation of high order polysulfides. Based on this 

understanding, we charged a Na2S electrode just past its initial overpotential peak with a specific 

capacity of only 80,180 and 280 mAh g-1
Na2S (Figure 6-2a). The Na2S electrode cells at various 

state of charge were then extracted from the coin cell and submerged in a fresh electrolyte solution 

to solvate any generated polysulfides. It should be noted that under an ideal sequential charging 

mechanism (that is, the highest oxidization of any S charges from an oxidation state of -2 to -1 and 

eventually to 0, in that order) a specific capacity of 80, 180 or even 280 mAh g-1
Na2S is not enough 

to charge Na2S to even Na2S2 (based on a theoretical specific capacity of 687 mAh g-1
Na2S), let 

alone polysulfides. Yet, the Na2S-electrode rinsing solutions exhibited a slight yellow-orange 

discoloration. Confirmed by our UV-Vis absorption spectroscopy (Figure 6-2b), there is a clear 

indication that there exist a distribution of polysulfide species in these rinsing solution from 300-

600 nm.255,256 In fact, the further the cell is charged from 80 to 280 mAh g-1, the greater the 

concentration and corresponding absorbance of S6
2- (350 nm25), S4

2- (420 nm25,257), and S3
- (~617 

nm25) rinsed off from the ex situ electrodes. Taken together, this confirms that the charging 

mechanism of Na2S is likely to be similar, if not identical to that of bulk Li2S.63,258 That is, the 

charging of Na2S does not occur in a sequential (in terms of oxidation state) manner, but does 

indeed form polysulfides early in the charging process as redox mediators to assist subsequent 

charging of the Na2S particles.  

6.3.2. Effect of Na2S on the 1st charge of Li2S 
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Figure 6- 3 Linear sweep voltammetry of Li2S electrode a) without Na2S (percentage refers 

to proportion of active material), b) Na2S electrode without Li2S (percentage refers to 

proportion of active material) and c) a blend of Na2S and Li2S (percentage refers to 

proportion in electrode). Schematic illustrating the overlap in the practical charging voltage 

of Na2S and the equilibrium Li2S charge voltage. e) 1st charge profile of Na2S, Bulk-Li2S, 1% 

and 3% Na2S + 70% Li2S at 0.05C. f) Expanded view of 1st activation peaks.  
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The most important and convenient difference between Na2S versus Li2S oxidation is its 

naturally lower voltage versus lithium. Linear sweep voltammetry (LSV) data of a Li2S electrode 

(70 wt. % Li2S in slurry formulation, herein denoted as Bulk-Li2S) indicates that the potential 

required to activate the Bulk-Li2S without any additives is about 3.5-3.8 V as shown in Figure 6-

3a. This is well above the thermodynamic potential of 2.1-2.3 V. Similarly, the charging potential 

of a Na2S electrode (herein denoted as Na2S) requires a charging potential of about 2.25-2.5 V vs 

Li+/Li (Figure 6-3b) to activate, which is significantly higher than the equilibrium potential of 1.5 

V vs Na+/Na (~1.8 V vs Li+/Li) for Na2S.  

 

Figure 6- 4: Synchrotron high energy X-ray diffraction pattern of 1% Na2S + 70% Li2S 

electrode at with a) Li2S pattern labelled and with b) Na2S labelled. Because the mass fraction 

of Na2S was so low, the materials was scrapped off from the current collector and pack into 

a thicker sample to obtain observable Na2S diffraction pattern. Data collected at λ=0.01173 

nm and converted to 0.1504 nm. 
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By simply blending 1-3 wt. % Na2S into a 70 wt. % Li2S electrode slurry formulation (Na2S 

maintained its crystal structure as shown from X-ray diffraction pattern, as shown in Figure 6-4a-

b), a LSV profile similar to that of pure Na2S is observed (Figure 6-3c). Specifically, the oxidation 

peak was reduced from 3.5-3.8 V to about ~2.42 V with smaller peaks at ~3.28 and ~3.7 V. The 

LSV of Na2S indicates that the practical activation potential of Na2S (and as such the production 

of polysulfides) occurs at a voltage that well overlaps the equilibrium potential of Li2S. This 

convenient phenomenon (as depicted on Figure 6-3d) allows for the observed decreased LSV 

oxidation peak of the 3%Na2S+70%Li2S electrode. Perhaps more practically relevant is the impact 

of this bulk mixing on the galvanostatic charging (Figure 6-3e). It is clear that even without any 

modifications to the electrode or material, Na2S produces an initial charging overpotential peak of 

~2.5 V vs Li+/Li. Though this is significantly higher than the thermodynamic potential of Na2S, it 

is still substantially lower than the practical bulk-Li2S (high wt. %) activation process which occurs 

around 3.6 V vs Li+/Li. Corroborating well with the LSV, the incorporation of Na2S at only 1 and 

3 wt.% (with a full desodiation capacity of only ~27.5 mAh g-1
Na2S+Li2S) resulted in a significant 

drop in the Galvanostatic charging potential and effectively decreased the energy required to 

activate Li2S. Figure 6-3f reveals that there is still an initial oxidation peak for both 1% and 3% 

Na2S containing electrodes. This is followed by a second minor oxidation peak likely due to the 

Li2S as observed in our previous work.251  Interestingly, the peak potential of the blended system 

dropped below that of pure Na2S. This could be due to some synergistic effect where the Na2S-

sourced polysulfides activated Li2S, generating more polysulfides in a more efficient manner.  
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Figure 6- 5: SEM of reference/counter electrode of coin cell after 1st charge of Na2S+Li2S 

working electrode at a) low magnification, b) high magnification. c) Energy dispersive 

spectroscopy spectrum and d) Na elemental mapping of (b). X-ray photoelectron 
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spectroscopy of reference/counter electrode of d) Na 1s and e) S 2p at different state of 1st 

charge (0.05C). 

Interestingly, SEM of the counter/reference electrode (Li metal, Figure 6-5a-b) shows 

deposited Li metal. This is to be expected with or without Na2S. However, the energy dispersive 

spectroscopy (EDS) analysis (Figure 6-5c) reveals significant amount of Na signal on the anode. 

EDS-elemental mapping of Na also reveals quite a uniform distribution of Na over the deposited 

Li metal, which indicates at least the dissolution of Na2S into Na-ions into the electrode. Whether 

Na was deposited in its metallic form on the counter electrode is unclear. XPS of the 

counter/reference electrode was conducted at different state of 1st charge (of the Na2S+Li2S 

cathode) in an attempt to identify the nature of the Na atoms. Unfortunately, from the XPS spectra 

(shown on Figure 6-5d) of Na 1s, it is very difficult to confidently determine any proportion of 

elemental Na or oxidized Na. It is worth pointing out that the signal of Na 1s increases with 

increasing charging time. Even more interesting is the overall absence of polysulfide/Li2S signal 

usually present at a binding energy of <164 eV as shown in Figure 6-5e.259 All of the observed S 

2p signal originate from the sulfur in LiTFSI electrolyte salt. 
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6.3.3. Operando X-ray diffraction study  

 

Figure 6- 6:a, e) First charge voltage profile of Li2S electrode without Na2S and with 1wt% 

Na2S respectively. Corresponding operando X-ray diffraction from b, f) 2θ =15-100, c, g) 2θ 

=25-35 and d, h) 2θ =57-60 of electrode without and with Na2S respectively.  

Operando X-ray diffraction (XRD) revealed that the electrode without Na2S (Figure 6-6a) 

exhibited a high 1st charge voltage (>3.6 V). Diffraction peaks corresponding to Li2S persisted well 

towards 800 mAh g-1
Li2S as shown in Figure 6-6b-c. No elemental sulfur peaks were found even 

well into the charge process (Figure 6-6d). Interestingly, the 1 wt.% Na2S containing electrode 
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exhibited quite different diffraction pattern profile as a function of state of charge. With the 

decreased voltage profile shown in Figure 6-5e, the diffraction in Figure 6-6f clearly reveals that 

the Li2S peaks disappears after ~520 mAh g-1
Li2S. More importantly, the diffraction peak at 27o 

(111) decreases and vanishes at ~450 mAh g-1
Li2S followed by the disappearance of the ~31.3o 

(200) peak at ~600 mAh g-1
Li2S (Figure 6-6g). The exact reason for the different rate of 

disappearance between the 111 and 200 diffraction peaks remains to be unclear. This observation 

is in contrast to our pure Li2S baseline electrode and previous operando XRD literature of Li2S 

cells.260,261 As the oxidation of Li2S is ultimately a dissolution process, it is reasonable to assume 

there is some resemblance to other dissolution systems.262 We believe this is indicative that the 

reaction between polysulfide and Li2S has a directional preference, where certain facets (111) are 

more reactive than others (200). Extrapolating from our observation, the quicker loss of the (111) 

plane suggests higher reactivity of the vertex-atom of each Li2S grain. Once these vertex-atoms 

are cleaved, more vertex-atoms of the crystal grains will be exposed. Each set of newly exposed 

vertex-atoms represents a unit cell’s (111) plane, resulting in the directional loss of the cubic 

structure.  This could be related to the relatively low overpotential offered by the Na2S-generated 

polysulfide, enabling oxidation at a lower voltage i.e. milder reaction driving force, and ultimately 

the more selective charging of vertex-atoms over the less exposed edge-atoms. Near the end of 

charge, elemental sulfur diffraction peaks were found to appear at around a charge capacity of 580 

mAh g-1
Li2S for the electrode tested with 1 wt.% Na2S as shown in Figure 6-6h. In contrast, no 

sulfur peak can be observed in the electrode without Na2S.  
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6.3.4. Electrochemical performance at strict conditions 

  

Figure 6- 7: Cycling performance and corresponding charge/discharge voltage profiles of 

1% Na2S + 70% Li2S at a-b) 2 mgLi2S cm-2/8 μL mg-1
Li2S (1st charge at 0.05C and then cycled 

at 0.1C). c-d) 3 mgLi2S cm-2/3 μL mg-1
Li2S (1st charge at 0.05C and then cycled at 0.05C) and 

e-f) 6.5 mgLi2S cm-2/4 μL mg-1
Li2S (1st charge at 0.05 C and then cycled at 0.1C). 

The cycling performance and charge/discharge voltage profiles of the 1% Na2S +70% Li2S 

electrodes at 2 mgLi2S cm-2 and 8 μL mg-1
Li2S and 3 μL mg-1

Li2S are shown in Figure 6-7a-b and 

Figure 6-7c-d respectively. At these strict conditions, a high initial discharge of ~700 mAh g-1
Li2S 
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(converting to about 1000 mAh g-1
S) was achieved at 8 μL mg-1

Li2S. After 200 cycles, the capacity 

dropped to about 490 mAh g-1
Li2S. With the electrolyte tuned down to 3 μL mg-1

Li2S (lean electrolyte 

conditions), the first discharge decreased to about 580 mAh g-1
Li2S (829.4 mAh g-1

S) and 

maintained stable cycling up to 100 cycles (~450 mAh g-1
Li2S). Figure 6-7e-f shows the cycling 

and charge/discharge voltage profile for cells ran at 6.5 mgLi2S cm-2 and 4 μL mg-1
Li2S. Notably, the 

impact of increasing mass loading on the overpotential is less than that of decreasing the electrolyte 

content to 3 μL mg-1
Li2S. It is important to note the lack of overall cell engineering in obtaining 

these performances, demonstrating the effectiveness of using Na2S as a low-content electrode 

additive. 

6.4. Conclusion 

Overall, we have shown that just 1 wt% of commercial Na2S can in situ inject polysulfide 

into the system at significantly lowered voltages (in comparison to bulk Li2S) for activating 

commercially available Li2S. In contrast to pre-solvated polysulfide in the electrolyte, this source 

of polysulfide will remain dormant unless electrochemically activated. When compared to the last 

iteration of the use of a redox mediator generator, that is, Li3PS4 (Chapter 5), we found that Na2S 

exhibited superior electrochemical characteristics. This include lower first charge potential even 

at decrease electrolyte conditions (3 µL mg-1
Li2S) and increased Li2S loading of 3 mgLi2S cm-2 

versus 1.5 mgLi2S cm-2 of the Li3PS4 electrodes. Notably this was achieved also without significant 

modification to the battery and in fact required even less amounts of additive, decreasing from 10 

wt.% of Li3PS4 to only 1 wt.% of Na2S. More importantly, future work in material engineering 

composites of Na2S and Li2S will likely yield electrodes with higher performance metrics with less 

restrictions on particle size control. 

 



144 

 

Chapter 7: Conclusion and future work 
 

7.1. Summary of Conclusions 

 

 The objectives of this thesis are to deliver methods that can enable cyclability in sulfur-

based cathode at strict conditions (high areal sulfur loadings and low electrolyte to sulfur ratios). 

This goal is critical as only by testing at operating conditions that emulate real-world application 

can the field of sulfur-based cathode move closer to commercialization. The hypothesis is that by 

developing macroporous carbon structures, we will be able to facilitate electrolyte infiltration and 

offer a more efficient distribution of electrolyte, while the development of advanced Li2S-based 

cathodes offers an alternative strategy through the replacement of the arguably more problematic 

Li metal anode. 

Specifically, in Chapter 3, we present the development of a hollow carbon structure with 

porous shells. This material has a large void at its core (~500-1000nm) and demonstrated excellent 

rate performance and cycle stability. This material was first developed at relaxed testing conditions 

(low area sulfur loading and high electrolyte content). In Chapter 4, this material was further 

developed by spray draying with graphene oxide and heated treated to yield a reduced graphene 

oxide wrapped agglomerated hollow carbons particles. Exceptional performance was observed at 

strict conditions. An extremely low electrolyte content of 2.8 µL mg-1
S was achieved through this 

design. Furthermore, operando electrochemical impedance spectroscopy and operando X-ray 

diffraction revealed that sulfur is likely passivating certain conductive components of the cathode, 

preventing further discharge at strict conditions.  

Chapter 5 present our second major direction in solving the problems of strict condition 

cycling. As the problem of a Li metallic is arguably more problematic than even the sulfur-cathode, 
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this thesis looked to switch the Li-ion source from the Li metal to the prelithiated Li2S. Although 

Li2S has many promising advantages such as serving as an Li-ion source, higher thermal stability 

(advantageous for electrolyte drying) and Li2S is already volumetrically expanded allowing for 

electrode designs that contract rather than expand first, micron-sized commercial Li2S 

unfortunately is also very difficult to electrochemically activate.  

To solve this problem, redox mediators have been employed throughout literature, as they 

can alleviate the dependency of the Li2S oxidation process on Li2S’s ionic and electronic 

conductivity. Chapter 5 revealed that the direct use of redox mediator cannot function at strict 

testing conditions. An introduction of the first every reported use of what we call a solid-sourced 

redox mediator generator was then presented. This class of electrode additive remains solid and 

only produces redox mediators that is only generated at the appropriate voltage. Li3PS4 was 

presented to demonstrate the efficacy of this strategy with exceptional reduction in charge 

overpotential and increased specific capacity at strict testing conditions. Chapter 6 present Na2S 

as another solid-sourced redox mediator generator. This additive was able to achieve sufficient 

activation of Li2S at lower overpotentials with lower weight proportion in the electrode. 

Furthermore, the generator redox mediators are polysulfide species and can serve as active material 

in later cycles.  

Together, both research directions presented in this thesis (sulfur host engineering and 

Li2S-activiating additive) were able to achieve cyclability at low electrolyte content and high sulfur 

loading. The electrolyte content (<8 µL mg-1
s) and sulfur loading (>4 mgs cm-2) targets have been 

met.  
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7.2. Future Works  

 

The current research into Li-S batteries have met a very severe roadblock that must be 

resolved before the field can move any further. The lack of acceptable performance metrics at high 

loading and low electrolyte content remains to be the most difficult problem to be resolved. 

Although this work has demonstrated improved performance at these strict testing conditions, they 

are still far from any commercial benchmark. Based on the conclusions of this thesis, 

recommended future research directions are as follows: 

1. Spray drying is a promising technique to further the performance of Li-S operated 

at strict conditions. Future work might include inclusion of additional materials 

with stronger polysulfide adsorption capabilities such as various metal oxides and 

sulfide. The recent trends in defect engineering of these metal chalcogenides i.e. 

anion deficient metal chalcogenide with enhanced electronic conductivities will 

likely be enhanced in performance (at strict conditions) if spray dried. 

2. Performance enhancement any materials at low electrolyte conditions should be 

benefit from the inclusion of macropores. As such, the development of a 

macroporous framework with anion deficient metal chalcogenides materials will 

also likely benefit performance at strict conditions. 

3. Based on this work and reports in literature, it appears that further significant 

progress will be unlikely unless a deeper fundamental understanding of the problem 

can be made. Therefore, future works should include advanced characterization 

techniques that probe exactly the difference in cycling mechanism between low and 

high electrolyte content. Such work has been seldom performed in the literature. 

Specifically, operando-based techniques such as X-ray diffraction, X-ray 
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adsorption, Raman, UV-VIS, Small angle X-ray scattering among others, will likely 

begin to play a very large if not pivotal role in any further development of Li-S 

batteries.  However, this is rather difficult due to the dynamic nature of polysulfide 

reduction, likely requiring relatively high temporal resolution.  

4. Anode pairing with the developed Li2S cathode is a crucial next step. Future work 

should include performance testing of anode such as Si, graphite, or metal oxides 

in a full cell prototype. Optimization in the electrolyte composition and engineering 

of the anode would be crucial.  

5. While the work presented on decreasing the 1st charge overpotential of Li2S has 

demonstrated that complex cell engineering is not necessarily required. Future 

work might include integration of solid-sourced redox mediator generated 

identified in this thesis into other material design.  

6. Lastly, because Li2S is less dense than sulfur, the volume expansion-associated 

problems of sulfur lithiation might be mitigated. Specifically, this property is 

advantageous because it allows for the calendaring of Li2S electrode without having 

to take into the account the volume required for the transformation of S to Li2S. 

This advantage of Li2S should not be overlooked and might in the end, be a critical 

determining factor to the packing of the electrode when sulfur-based systems reach 

closer to commercial levels. Similar importance can be rationalized for the 

currently more popular solid-state battery systems. 

7. Negative and positive capacity pairing (N/P ratio) should be carefully measured in 

any future work of sulfur-based battery systems. This metric in addition to the strict 

conditions defined in this thesis is very key towards achieving high energy density. 
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Currently throughout literature and admittedly also in this thesis, lithium metal used 

has areal-capacities significantly beyond any significant commercial significance. 

Even with the cycling at strict conditions, the energy density of sulfur-based cells 

will be very low due to the extremely high excess of lithium metal. Therefore, a 

major future direction is to further improve performance at high sulfur loading, low 

electrolyte to sulfur ratio and decrease the N/P ratio to below 3.  
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