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Abstract

Deep neural networks have been achieving state-of-the-art performance across a wide vari-

ety of applications, and due to their outstanding performance, they are being deployed in

safety and security critical systems. However, in recent years, deep neural networks have

been shown to be very vulnerable to optimally crafted input samples called adversarial

examples. Although the adversarial perturbations are imperceptible to humans, especially,

in the domain of computer vision, they have been very successful in fooling strong deep

models. The vulnerability of deep models to adversarial attacks limits their widespread

deployment for safety-critical applications. As a result, adversarial attack and defense

algorithms have drawn great attention in the literature.

Many defense algorithms have been proposed to overcome the threat of adversarial

attacks, and many of these algorithms use adversarial training (adding perturbations dur-

ing the training stage). Alongside other adversarial defense approaches being investigated,

there has been a very recent interest in improving adversarial robustness in deep neural net-

works through the introduction of perturbations during the training process. However, such

methods leverage fixed, pre-defined perturbations and require significant hyper-parameter

tuning that makes them very difficult to leverage in a general fashion.

In this work, we introduce Learn2Perturb, an end-to-end feature perturbation learning

approach for improving the adversarial robustness of deep neural networks. More specifi-

cally, we introduce novel perturbation-injection modules that are incorporated at each layer

to perturb the feature space and increase uncertainty in the network. This feature pertur-

bation is performed at both the training and the inference stages. Furthermore, inspired

by the Expectation-Maximization approach, an alternating back-propagation training al-

gorithm is introduced to train the network and noise parameters consecutively. Experimen-

tal results on CIFAR-10 and CIFAR-100 datasets show that the proposed Learn2Perturb

method can result in deep neural networks which are 4-7% more robust on l∞ FGSM and

PDG adversarial attacks and significantly outperforms the state-of-the-art against l2 C&W

attack and a wide range of well-known black-box attacks
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Chapter 1

Introduction

Deep Neural Networks (DNNs) have made significant progress in various Artificial In-

telligence (AI) and Machine Learning (ML) domains; they provide the state-of-the-art

performances in computer vision tasks such as object recognition [1, 2], object detection

[3], instance and semantic segmentation of images and videos [4, 5], pose estimation [6],

video and image generative models [7]. Moreover, these powerful models are utilized for

natural language processing; for text and audio recognition and translation [8, 9], sen-

timent analysis [10], voice and text synthesis [11, 12], and many other such tasks. ML

models and specially DNN models are the building blocks for many crucial and highly

security & safety sensitive systems like autonomous driving [13, 14], medical imaging [15],

authentication systems [16], and malware detection tools [17]. These systems must always

be prepared to defend against the adversaries who try to fool them and breach the system

security towards their malicious goals.

Recently, Szegedy et al. [18] showed that DNN models are very vulnerable to adversarial

perturbations. They generated very small perturbations that when added to input images

of a strong classifier, although imperceptible to human eyes, could fool the DNN model

with a high probability. These perturbed samples are called adversarial examples and

Figure 1.1 illustrates an example of such perturbations. As can be seen in Figure 1.1,

adversarial perturbations can be very effective even in very small magnitudes; in fact, these
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Figure 1.1: An adversarial example for an ImageNet classifier [23]. An imperceptible

small perturbation correlated with the gradients of the network is added to the input,

and ε controls the scale of this perturbation. The classifier (GoogLeNet) misclassifies the

adversarial sample with a very high confidence. Image from [23]

.

perturbations are much more effective than random perturbations that can be caused from

physical limitations or just added to the image. Since Szegedy et al. first fooled DNN

classifiers in 2013 [18], various works have shown that it is possible to fool almost every

DNN model; [19] and [20] attack object detection and semantic segmentation models, [21]

generates adversarial samples for speech-to-text generation models, and [22] proposes an

attack for natural language Recurrent Neural Networks (RNNs).

1.1 Problem Definition

The threat of adversarial attacks poses a great danger to DNN-based systems; especially,

recent works have shown that these attacks can happen in the physical world [24], and they

are transferable, which means they can attack a model even without having direct access

to it [25, 26]. Achieving DNN models that are robust against adversarial perturbations has

a great practical value. The goal of adversarial robustness is to provide security against

attacks that may cause real-life harm.

The challenge of adversarial robustness draws great attention to understanding the

phenomenon of adversarial examples [27, 23, 28]. In the last few years, many strong ad-

versarial algorithms have been proposed in the literature [25, 29]. Each of these algorithms
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craft optimized human-imperceptible perturbations to be added to the inputs of the deep

models. Our goal in this work is to improve the adversarial robustness of computer vision

deep models against the most powerful of these adversaries.

Numerous defense mechanisms have been proposed to boost the adversarial robustness

of DNNs. Some of the more recent and promising of these techniques take advantage of

network randomization, in which random perturbations are added to the inputs or within

the network. While these techniques have shown promising results, they lack a systematic

manner for injecting the perturbations. In our work, we propose a framework that learns

how to inject noise into the system and takes great advantage of randomization towards

training robust models.

This work explores the recent methods of enhancing the adversarial robustness of DNN

models, and after describing the current state-of-the-art techniques, we propose and explain

our Learn2Perturb [30] framework, a strong randomization-based defensive mechanism.

Furthermore, we provide a deeper dive into the realm of adversarial robustness and explore

the recent most effective attack and defense techniques.

1.2 Contribution

Our contributions can be folded as below:

• A highly efficient and stable end-to-end learning mechanism is introduced to learn

the perturbation-injection modules to improve the model robustness against ad-

versarial attacks. The proposed alternating back-propagation method inspired by

Expectation-Maximization (EM) concept trains the network and noise parameters in

a consecutive way gradually without any significant parameter-tuning effort.

• A new effective regularizer is introduced to help the network learning process which

smoothly improves the noise distributions. Combining this regularizer and PGD-
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adversarial training helps the proposed Learn2Perturb algorithm achieve state-of-

the-art performances.

• Exhaustive experiments are conducted for various white-box and black-box adversar-

ial attacks on CIFAR-10 and CIFAR-100 datasets, and new state-of-the-art robust-

ness performances are reported against these adversarial algorithms.

1.3 Thesis Structure

The thesis is organized into 5 chapters. Chapter 2 provides background on deep neural net-

works that are used in computer vision classification tasks, as well as thorough background

and discussion of the most recent works done on designing and analyzing adversarial attack

and defense algorithms. In Chapter 3 we introduce our proposed Learn2Perturb framework

and its components, then, we formally formulate its objective and learning process, and

finally, we discuss how to setup Learn2Perturb’s modules at the end of this chapter. The

results of evaluating Learn2Perturb and comparing it with the state-of-the-art techniques

are reported in Chapter 4; these results consist of evaluating competing defense methods

against a wide range of white-box and black-box adversaries on two well-known datasets

of CIFAR-10 and CIFAR-100. Lastly, the thesis is concluded in Chapter 5 and possible

future directions for this work follow the conclusions.

4



Chapter 2

Background

In this chapter, we provide a background of the concepts related to our proposed frame-

work and discuss the recent related works. To this end, Section 2.1 briefly describes the

deep models utilized for training image classifiers and formally defines these models, and

Sections 2.2 and 2.3 cover topics of adversarial attack algorithms and adversarial defense

mechanisms, respectively.

2.1 Deep Learning

Deep Neural Networks (DNNs) are a class of Machine Learning (ML) tools. Like many

other ML tools, DNNs are commonly trained on a (preferably fully annotated) dataset and

are applied for making predictions (generalization) on unseen test data. Especially, DNN

classifiers are very similar to Logistic Regression (LR) models in the sense that both types

of these models use entropy-based objective functions (commonly categorical cross-entropy)

and apply gradient descent for objective optimization and learning; however, the two have

the major differences that DNN models are usually deeper (having more layers) than LR

models (which only has 1 layer), and DNN models apply modules (such as Max-Pooling)

and activation functions (such as ReLU) which makes them highly non-linear functions (LR
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models are linear), thus, with having larger capacities (number of parameters and layers)

and learning non-linear functions, DNNs can be much more powerful than LR models (and

almost every other ML model); hence, they are a popular candidate for solving every ML

problem.

2.1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of DNN models that are frequently used

for computer vision problems. Nowadays, CNNs are the de facto tools for vision problems.

By applying the same shared convolution operations (kernels) over their gridlike inputs,

they manage to drastically reduce the number of network parameters, while equipping the

network with object-translation invariance at the same time. Object-translation invari-

ance is a key feature for common vision tasks (object recognition, object detection, and

segmentation), because it removes the dependence of the models on the position of objects

in images and videos. CNNs have shown incredible performances in different vision tasks,

such as object recognition/classification [1, 31], object detection [32, 33], object localiza-

tion [34, 35], semantic and instance segmentation [36, 37, 38], and image reconstruction

[39, 40]. Their success in these tasks has made them the most popular tool for critical

applications like autonomous driving [41, 14, 42], medical imaging [43, 44], robotics [45,

46], and video surveillance [47, 48]. Throughout this thesis, we use the following formal

definition for CNNs:

f(x) = l(n) (... l(2) (l(1) (x)) ...) (2.1)

where x is an input image, l(i) is the ith layer of the the network, for i = 1, 2, ...k. f(.)

shows the function represented by CNN.

2.1.2 CNN Architectures

Many different CNN architectures exist in the literature, and every day new task-specific

CNN architectures are being proposed. Some of the most well-known and widely used
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CNN architectures are AlexNet [1], LeNet [49], VGG [2], GoogLeNet [50], and ResNet

[31] from simplest (oldest) network to the most complex (newest) one [51]. ResNet and

its variants ResNext [52], and Wide-ResNet [53] are the most popular models in studying

the adversarial robustness. Especially, more recently, techniques applying Wide-ResNet

architecture have achieved tremendous success in adversarial settings [56, 54, 55].

2.2 Adversarial Attacks

Since the introduction of the adversarial examples to DNN models, academia and industry

have been very interested in understanding this intriguing phenomenon; they primarily

follow two goals: getting more insights into the way neural networks work and to achieve

models which are robust to these perturbations so they can be deployed in safety-critical

environments. Although numerous works [57, 58, 59] have tried to explain the way neural

networks operate and what makes them such excellent tools, they still remain pretty much

like black-box tools [60], which are fed inputs in different formats and they output cus-

tomized results. Specially, these hypotheses provide fragile explanations when adversarial

examples are present. Recent works of [23] and [27] propose the linearity hypothesis and

the manifold assumption, respectively. These are two of the more plausible hypotheses that

have been proposed to explain the phenomenon of adversarial examples. Many adversarial

attack and defense algorithms have been proposed based on such hypotheses [28, 61, 62].

These two hypotheses are explained in more detail in Section 2.2.2.

While the two goals of DNN explainability and robust models have large overlaps, the

bigger focus of the studies in this field has been on the robustness part. This is because the

threat of adversarial attacks has slowed down the adoption of DNNs for sensitive problems

such as autonomous driving, medical imaging, and fraud detection. Works such as [24] and

[63] indicate that this threat is not just an abstract concept, but the adversarial attacks

can take place in the physical world. Figure 2.1 shows an example of such adversarial

attacks in the real world and illustrates the danger this phenomenon can pose in safety
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Figure 2.1: The left image shows a traffic sign with real graffiti on it, and the right

image shows an adversarial Stop sign created in a similar fashion to the real one on the

left. While most humans might ignore this perturbation, the right sign can fool the Sign

detection system of an autonomous vehicle with a high probability [63]. Image from [63].

and security sensitive systems. Other works have shown that similar threats exist for vision

models segmenting pedestrians and road users [19], as well as, speech recognition systems

[64, 65].

In this section, first, we will formally define the adversarial examples in computer

vision, then, we will explain two popular hypotheses on why adversarial examples exist,

afterward, following [66, 51, 67] we will explain a formal systematic model for categorizing

and analyzing attack and defense algorithms within an adversarial setting, named threat

model. After these definitions, we will explore the more well-known adversarial attacks.

2.2.1 Adversarial Examples in Computer Vision

Given an image classification/recognition neural network model f, and clean input image

x, assuming that f predicts the true label of x (y) correctly, an adversarial sample x′ can

be created by adding minimal perturbation η to x, so that f(x′) 6= y:

8



min
x′
‖x′ − x‖p ≡ min

η
‖η‖p,

s.t. f(x) = y,

f(x′) = y′,

y 6= y′,

x′ ∈ [0, 1]m,

‖η‖p ≤ d

(2.2)

where ‖x′ − x||p calculates the distance between x and x′ (common options for p are 0, 1,

2, and ∞), and the last two parts of the equation restrict the scale of the perturbation,

especially, d is usually a small positive value which forces the adversarial perturbations to

be so small that they are imperceptible to human eyes.

2.2.2 Why Adversarial Examples Exist?

Adversarial examples are very surprising phenomena; the main question about them is that

why can DNNs surpassing the human-level performance be so easily fooled by very small

perturbations? while this question poses an open problem for which no definite answer has

been proposed, numerous works have tried to provide explanations for the phenomenon

of adversarial examples. Linearity of DNN models in higher dimensional space [23, 68,

26], inflexible models [69], flat decision boundaries [70, 71, 72], lack of generalization [73],

and more recently, the manifold assumption [74, 27] are just some of viewpoints that have

been proposed to explain the existence of adversarial samples. Each of these viewpoints

has been successful in explaining some aspects and scenarios of adversarial examples, and

while some have been more effective than others, none has yet been able to completely

explain every aspect of these examples. However, the linearity of deep models and the

manifold assumption have been more popular in the literature. Here, we will explain them

in more detail.
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Figure 2.2: At every iteration, DeepFool finds the vector r orthogonal to the decision

boundary and perturbs the image in that direction. Image from [76].

Linearity of Deep Models

Goodfellow et al. [23] suggested that DNN models are too linear in their high-dimensional

latent space; and as a result of their high dimension, small changes in their input space

can make significant changes in their latent space; although this is against the common

belief that DNNs are highly non-linear models, the linearity hypothesis can explain FGSM

(explained in Section 2.2.6) and related attacks very well [75].

DeepFool [76] is a very strong iterative adversarial attack which is designed according to

the linearity hypothesis. DeepFool starts with assuming that the target clean image resides

in a space where linear decision boundaries decide the label of this image; during each

iteration, the adversary computes a vector that when added to the image can supposedly

take the latent representation of the image beyond a decision boundary and change the

classification label. These iterative perturbations are then accumulated to form the final

adversarial perturbation added to the original clean image. Figure 2.2 illustrates how

DeepFool operates for a binary classifier: approximating the vector orthogonal to the

decision boundary and then adding perturbations until the sample crosses the decision

boundary.

10



Figure 2.3: Class boundaries can extend beyond the data manifold, tilting away from it.

Adversarial attacks force samples leave the data manifold and move toward crossing the

class boundaries [27]. Image from [27].

Manifold Assumption

In ML, the manifold hypothesis states that real-world high-dimensional data lie on a lower-

dimensional latent surface called manifold. The original data form a set of connected points

in their high-dimensional space which are possible to approximate using a manifold with

a smaller number of dimensions [77, 78]. Instead of approximations across all of Rn, ML

algorithms assume that the distribution of the data lies on a collection of manifolds (or

just one single manifold); and ML classifiers learn decision boundaries over each of these

manifolds.

Numerous works have tried to explain the existence of adversarial examples by form-

ing assumptions on the geometrical aspects of manifolds learned by DNNs, and how class

boundaries and data distributions interact with each other on these latent manifolds [74,

79, 80, 81]. Tanay and Griffin [27] challenged the linearity hypothesis proposed by Good-

fellow et al. [23], and instead proposed the boundary tilting perspective; this hypothesis is

illustrated in Figure 2.3. They claim that class boundaries (shown in red in the Figure)

lie close to the data manifolds (shown in black in the Figure); however, these boundaries

extend beyond the data manifold, tilting away from it. While random perturbations might

not be able to force a data sample to leave the manifold to make it to the other side of the

manifold (hence, changing the class label), adversarial perturbations can force a sample to

move in the direction of the class boundary and probably cross it.
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Following [27], many other works have worked on the idea that adversarial examples

leave the data manifold and are samples of different distributions than that of the clean

data [82, 81, 83]. This assumption has led to the design of some adversarial detection

algorithms [83, 84]; however, Carlini and Wagner [85] designed attacks that can bypass

these detection systems, and hence, question the idea of adversarial examples lying off

data manifold. Moreover, [74, 86] found adversarial samples that lie on the data manifold.

Nonetheless, the manifold assumption has been the basis of some novel defense mechanisms

[87, 88, 61].

In the recent work of [28], Stutz et al. showed that regular adversarial attacks do in-

deed leave the data manifold, and while they acknowledged the existence of on-manifold

adversarial attacks, they showed that on-manifold adversarial attacks are essentially gen-

eralization errors (regions of data manifold that the classifier has not been successful in

finding their class boundaries), and more importantly, the adversarial robustness and gen-

eralization are not necessarily at odds with each other, despite what previous works of [89]

and [55] believed. Figure 2.4 illustrates the off-manifold (regular) and on-manifold (gen-

eralization errors) adversarial examples for the MNIST [90] and EMNIST [91] datasets;

as seen in this Figure, regular adversarial examples tend to leave the data manifold in a

direction which is near orthogonal to the manifold.

2.2.3 Threat Model

If we take a deeper look at Equation (2.2), some questions about adversarial examples might

arise; questions like, what information does the adversary have about the target model?

how should the adversary decide the limit of distortions (d)? can the adversary change the

target model or poison the training data? should the attack be targeted (y′ being a specific

class) or just changing the label (y′ 6= y) is enough? and many other such questions. Due

to the existence of various possible setups for analyzing adversarial robustness, the security

and the performance of systems are measured according to the capabilities and the goals

of the adversary that targets the model and needs to be defended against. A typical threat
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Figure 2.4: Difference between on and off manifold adversarial examples; regular off-

manifold examples tend to have more noise-like effects and leave the data manifold, whereas

on-manifold adversarial examples tend to change even they way human perceives the image.

Image from [28].
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model has the following components:

• Attacker’s capability: what capabilities and information does the adversary have

with regards to the target model? In this context, capabilities show at which stage

the attack is performed, and information typically relates to the details of how the

model is trained and what properties it has. Poisoning attacks are those who can

inject adversarial samples during the training with the goal of affecting the model’s

performance on the test data. On the other hand, evasion attacks are the ones in

which the adversary is just able to modify input samples during the inference and

has no ability to change the way model works. Another factor is the amount and the

level of the information that the adversary has about the model. Knowledge about

the type of the model’s underlying architecture, number of parameters, the value

of parameters, gradients of a specific loss function with respect to the input data,

and other such information. As an example, an adversary which knows every detail

about the model (worst-case scenario for the defense), can be strictly more powerful

in fooling networks than one which sees the model only as a black-box entity that

can only be queried (giving inputs and receiving corresponding outputs).

• Adversarial goals: what is the goal of the adversary and what are they trying to

achieve by attacking a target model? the goal can vary a lot based on the service

that the target model delivers. For example, an adversary attacking an authentication

system might try to extract some information about the model or its training data.

Shokri et al. [92] proposed such a model to find the samples that are used during

the model’s training. Considering the capacity and the strength of DNN models, it

is quite possible that these models can memorize a lot of information about their

training data; hence, an adversary might try to use the model to extract the training

data from a set of given samples. Another adversarial goal can be targeting the

model’s integrity. This is especially very common when analyzing computer vision

models. Integrity refers to the different metrics that are usually used to report a

model’s performance; accuracy, precision, recall, F1 score, and area under the curve
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are examples of such metrics. The attacks targeting the model’s integrity simply

try to degrade its performance, making the model misclassifying the input samples.

Some attacks perform targeted perturbations; instead of simply fooling the target

model, these attacks focus on changing a sample’s predicted label into a specific

target class. Imagine the case of autonomous driving illustrated in Figure 2.1; what

would happen if the adversary could fool a street sign detection model to classify a

stop sign as a speed-limit sign?

2.2.4 Black-box vs. White-box Attacks

Based on the task, the adversary might have some level of knowledge about the target

model. Information like the model’s baseline architecture, access to the model’s parameters

and their values, and the gradients of the loss function with respect to the input samples

can give a big advantage to the adversary. The scale of the adversary’s knowledge of the

model is indeed one of the most important factors in designing both adversarial attacks

and defenses. Adversarial attacks are divided into two categories of black-box [94, 26,

95, 93, 96, 97, 98, 99, 100, 101, 102] and white-box [18, 23, 24, 103, 29, 104, 105, 76,

25] attacks based on the level of information available to the attacker. Black-box attacks

usually perform queries on the model, and they have partial information regarding the

data and the structure of the targeted model [106, 93]. On the other hand, white-box

attacks have a better understanding of the model that they attack; therefore, they are

more powerful than black-box attacks [75, 18]. This understanding might vary between

different white-box attack algorithms; nonetheless, gradients of the model’s loss function

with respect to the input data is the most common information utilized to modify input

samples and generate adversarial examples. First-order white-box adversaries are the most

common attacking algorithms which only use the first order of gradients [29, 25, 76, 18]

to craft the adversarial perturbation. Both categories of black-box and white-box attacks

are being extensively investigated in academia and industry. Black-box attacks provide a

more practical point of view [107], while white-box attacks consider the worst-case scenario
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challenging the security-sensitive systems [108].

2.2.5 The Threat Model Applied in Computer Vision

A prevalent threat model in studying the robustness of computer vision classifier models

which is adopted throughout this thesis as well is:

1. Adversarial capabilities: The attack can only be done during the inference phase

(evasion attack). This is a more realistic and practical assumption for the adversary.

Therefore, the attack can only change the input data during the testing stage.

2. Adversarial goal: Compromising the integrity of the model is the most common

goal. Especially, when attacking a classification model, most of the adversaries focus

on degrading the classification accuracy. This is the adversarial goal that I will

investigate throughout this work.

3. Adversary’s knowledge: Examples and explanations of both black-box and white-

box attacks are provided in this work. Moreover, adversaries of both types are used to

analyze the performance of my framework, Learn2Perturb (which will be thoroughly

discussed in the following sections and chapters).

2.2.6 White-box Attacks

The gradients of the loss function with respect to the input data are very common in-

formation used by adversarial attack algorithms. In this type of approach, the proposed

algorithms try to maximize the loss value of the network by crafting the minimum per-

turbations into input data. It is worth noting that, all the white-box attacks explained

here (i.e. FGSM, PGD, and C&W) are first-order adversaries, which means they only use

the first-order gradients of the cost function with respect to input for adversarial sample

generation.
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Fast Gradient Sign Method (FGSM)

FGSM is a very simple yet very effective white-box attack [23]. For a DNN parametrized

with W (i.e., where the network is encoded as fW (x)) and loss function L, for any input

x, the FGSM attack computes the adversarial example x′ as:

x′ = x+ ε · sign
(
∇xL

(
fW (x), x

))
(2.3)

where ε determines the attack strength and sign(·) returns the sign tensor for a given tensor.

Using this gradient ascent step, FGSM tries to locally maximize the loss function L. Since

it is a one-step attack it is very fast to calculate. Goodfellow et al. [23] proposed FGSM

and they claimed that the linearity of DNN models is the reason FGSM can so easily fool

these models. Although FGSM can be quite successful against models that are trained with

no consideration of adversarial robustness, since they are single-step, compared to other

attacks, FGSM attacks are easier to defend. On the other hand, the fact that they use only

one iteration makes them more transferable; the transferability of the adversarial attacks

is explained in Section 2.2.7. Figure 2.5 illustrates how the FGSM attack abstractly works

according to the linearity hypothesis. FGSM chooses a very effective direction which can

cross the decision boundaries of the classifier.

Projected Gradient Descent (PGD)

The FGSM approach is extended by PGD [25, 109] where for a number of k iterations,

PGD produces xt+1 = boundlp(FGSM(xt), x0), in which x0 is the original input and

0 ≤ t ≤ k − 1. Using projection, the boundlp(x
′, x) simply ensures that x′ is within a

specified lp range of the original input x.

Madry et al. [25] illustrated that different PGD attack restarts, each with a random

initialization for input within the l∞–ball around x, find different local maxima with very

similar loss values. Based on this finding, they claimed that PGD is a universal first-order

adversary. Which means no other first-order adversary can outperform PGD’s strength.
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Figure 2.5: The black arrows are a set of vectors orthogonal to the decision boundaries

of the classifier and are aligned with the gradient vector; these vectors form a space of

potential adversarial examples [26]. Image from [26].

C&W Attack

Carlini and Wagner [29], proposed C&W which is another strong first-order attack algo-

rithm that finds perturbation δ added to input x by solving the optimization problem

formulated as:

min
δ

[
||δ||p + c · g(x+ δ)

]
s.t. x+ δ ∈ [0, 1]m (2.4)

where p shows the norm distance, and c is a constant balancing the gradient of the two

terms involved in (2.4), and during the optimization is usually found by using binary search.

g(·) encodes the objective function driving the perturbed sample to be misclassified, such

that g(x+δ) ≥ 0 if and only if f(x+δ) 6= f(x), which means adversarial attack is successful.

Carlini and Wagner [29] suggested 7 different options for g(.); a very effective function of

these suggestions considering x′ = x+ δ is

g(x′) = max
[

max
i 6=t

(Z (x′)i),−κ
]

(2.5)

where Z(x′) returns the softmax vector for the sample x′, and t denotes the index of the

true label of x. κ, the attack confidence, is a constant controlling how adversarial the
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attack is; the bigger the κ’s magnitude, the attacker must create stronger perturbations

to fool the model. In the experiments, we will show that κ plays an important role for

evaluating the robustness of defense methods that involve randomization.

Lastly, in Equation (2.4), the term x+δ ∈ [0, 1]m ensures that the adversarial examples

are valid images. The initial version of the C&W attack uses the box-constrained L-BFGS

as the optimizer to solve this objective function. However, in a later version they slighly

change the optimization function, so that optimizers with no box-constraint support can

be used as well; δ optimization is done via a change of variable

δ =
1

2
( tanh(ω) + 1)− x (2.6)

Since −1 ≤ tanh(ω) ≤ 1, it follows that 0 ≤ x + δ ≤ 1; therefore, the crafted sample

would automatically be a valid image. As a result of this change, the new C&W objective

function would be

min
ω

[∣∣∣∣∣∣1
2

( tanh(ω) + 1)− x
∣∣∣∣∣∣
p

+ c · g
(1

2
( tanh(ω) + 1)

)]
. (2.7)

Carlini and Wagner considered values of 0, 2, and ∞ for p. However, the l2 version of

this attack is a very well-formed optimization function, and C&W is most effective when

p = 2; therefore, following literature, we will use the l2 C&W attack as well. Finally, due

to the way g(.) is formulated (in Equation (2.5)), C&W can inherently be used as a very

effective targeted attack, in which the adversarial example is classified as a specific target

class; targeted attacks can strictly be more dangerous than non-targeted ones. Figure 2.6

illustrates examples of the targeted l2 attack on the CIFAR-10 dataset [110]; as can be

seen, with imperceptible perturbations, C&W is able to change the label of every sample

in this Figure to any other label in the dataset.

2.2.7 Black-box Attacks

Black-box attacks can only access a model via queries; sending inputs and receiving cor-

responding outputs to estimate the inner working of the network. To fool a network,
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Figure 2.6: Targeted l2 C&W attack on every possible source & target pair of the CIFAR-

10 classes [29]. One image from each class of the CIFAR-10 dataset is selected; rows show

the true label of the adversarial images, whereas columns show the predicted labels. Using

imperceptible perturbations, C&W can change the label of each of these images into any

other class. Image from [29].
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the well-known black-box attacks either use surrogate networks [106, 93] or estimate the

gradients [98, 94] via multiple queries to the targeted network.

Transferability

The phenomenon of adversarial example transferability has drawn a lot of attention in

the recent years; transferability refers to the fact that in many cases adversarial examples

generated for a model can fool another independently trained neural network [93, 106]. As

a result of this phenomenon, neural networks can be attacked even when there is no direct

access to them; this poses many practical threats to the neural networks deployed in the

real world [25].

Tramer et al. [26] claimed that due to the high dimensionality of neural network, the

subspace of their different classifiers can intersect, and the adversarial examples span a

contiguous high dimension space; as a result, adversarial examples of a model can transfer

to another. Papernot et al. [97] found that adversarial examples generated for a DNN can

fool other DNNs with different baseline architectures; moreover, they can even fool other

types of ML classifiers even the ones that are not differentiable, e.g. K-Nearest Neigh-

bors (KNN) and decision trees. Furthermore, they experimentally show that transferable

attacks are possible even when the two models have non-overlapping training data.

Different variations for transferable attacks are possible; in the surrogate network ap-

proach, a new network mimicking the behavior of the target model [93] is trained. Attackers

perform queries on the target model and generate a synthetic dataset with the query in-

puts and associated outputs. Having this dataset, a surrogate network is trained. Recent

works [96, 93] showed that adversarial examples fooling the surrogate model can also fool

the target model with a high success rate. A simpler variant is when the surrogate model

has access to the same training data as the interested network. Adversarial examples

fooling the substituted network are usually transferred to (and fool) the target model as

well. The latter method is the one we will follow for our evaluations when we conduct our

experiments.
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One-Pixel Attack

While all of the adversarial attacks have to deal with the perceptiveness problem, which

means they should create adversarial perturbations that are imperceptible to human eyes,

one-pixel attack [94] avoids this problem by generating adversarial examples under the

extreme constraint of only modifying the value of one pixel. The one-pixel attack finds the

optimized solution e(x∗) in

maximize
e(x∗)

fadv(x+ e(x)) s.t. ||e(x)||0 ≤ d (2.8)

where in the case of one pixel attack d is 1, and what this formulation does is to maximize

the loss of the network by perturbing at most d pixels. Su et al. applied Differential

Evolution (DE) [111] to find the optimal solution. DE is a member of the Evolutionary

Algorithms (EAs). Optimization function of Equation (2.8) is solved iteratively; in each

iteration, a population of candidates is generated, in which each candidate contains at

most d perturbed pixels and each perturbation is encoded by a tuple of 5 elements; (x, y)

coordinates and the RGB values of the perturbed pixel. Creating the next generation of

the pixels follows the usual EA formula

xi (g + 1) = xr1 (g) + F (xr2 (g)− xr3 (g) ) s.t. r1 6= r2 6= r3 (2.9)

where xi is an element of the candidate solution in the previous population (g) of the DE

algorithm, ri is a random number, and F is the scale parameter which Sue et al. set to be

0.5.

The DE algorithm does not require the gradients of the network; instead, it only uses

the softmax values, which makes it a black-box attack, and it can be effective against non-

differential models (e.g. neural networks that are non-differential or other ML models like

decision trees) as well. By using the DE algorithm slowly changing the value of single

pixels, the one-pixel attack essentially estimates the gradient of the network with only

having the black-box access; therefore, this method is a gradient estimation technique that

does not need to train surrogates in order to fool the networks. Figure 2.7 shows some
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examples of applying the one-pixel attack on an ImageNet [1] classifier. As can be seen,

modifying the value of only one pixel on a large image (224 × 224 pixels) can fool the

ImageNet classifier with a high confidence.

2.3 Countermeasures For Adversarial Attacks

Adversarial defense mechanisms commonly consist of two groups of algorithms: detection

algorithms (reactive) [112, 113, 114, 84, 115, 116, 117], and the algorithms that train

neural networks in special ways or augment them with modules during training, so that,

DNNs would become robust against adversarial attacks (proactive) [118, 119, 120, 28,

121]. Although both sets of these algorithms use similar techniques and assumptions for

counteracting adversarial attacks, the ones that focus on improving the robustness of a

model are more popular and the majority of work in this field is done on equipping DNNs

with modules and techniques that would improve their self-defense strength.

It is possible to categorize the proactive robustness algorithms into two main classes:

1. Modifying the network’s training or the training data: methods such as ad-

versarial training [23, 25, 122, 123, 124], data compression [125], foveation mechanism

[126], and data randomization [127] that improve the robustness without changing

the network itself.

2. Network modification: methods that modify the networks by adding more lay-

ers or augmenting the model with new modules, or just changing the regular loss

function. Numerous algorithms fall in this category; deep contrastive networks [128],

gradient regularization/masking, feature denoising [129], defensive distillation [130,

131, 132], logit pairing technique [133], DeepCloak [134], and network randomiza-

tion [135, 136, 137] are just some of the more well-known techniques of this class of

defensive techniques.

23



Figure 2.7: One-pixel attack on the ImageNet dataset; the perturbed pixel in each image

is highlighted with a red circle, and original predictions with their confidence are in black,

whereas predictions for adversarial images are in blue [94]. Image from [94].
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In this section, we will discuss two of the most popular adversarial defense techniques

that have been the building blocks of many of the recent novel defense mechanisms, namely,

adversarial training and network randomization.

2.3.1 Adversarial Training

Adversarial training is considered as a very intuitive and brute-force yet very promising

solution to improve the robustness of DNN models against adversarial attacks. The idea

is simple; add the adversarial samples to the training data. The adversarial samples are

generated by using an adversary during the training. A useful feature of adversarial training

is that it is possible to combine it with other techniques; therefore, almost every powerful

defensive technique incorporates its idea with adversarial training [54, 55, 138]. Adversarial

training formally solves the following min-max problem:

arg min
W

[
arg max
||δ||p≤ε

L
(
f(X + δ;W ), T

)]
(2.10)

where (X,T ) ∈ D (training data), W encodes the network parameters, and δ is perturba-

tion with the constraint that ||δ||p ≤ ε. The inner maximization is done by an adversary

which maximizes the loss function L for the (X,T ) pair; while the outer maximization can

be the regular categorical cross-entropy loss minimization which helps the network learn

from the training samples. To simply put, during the adversarial training, the adversary

tries to craft the strongest perturbations while the model learns to cope with these per-

turbations. Adversarial training was first proposed in the seminal work of [23]; in which

the authors first introduced the FGSM adversary, and then used this adversary during the

training to help train robust models. However, since FGSM is not a very strong adversary,

adversarial training with FGSM cannot train models with guaranteed robustness against

other types of adversarial attacks. To overcome this problem, Madry et al. proposed PGD

adversarial training [25].
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Guaranteed First-order Robustness

Projected Gradient Descent (PGD) [25] is a strong adversarial attack algorithm, which

makes it a good adversary to use during adversarial training. This is the idea of PGD

adversarial training. Madry et al. [25] illustrated that adversarial training using Projected

Gradient Descent (PGD) for generating on-the-fly adversarial samples during training can

lead to trained models which provide robustness guarantees against all first-order adver-

saries. They experimentally showed that the adversarial examples in a l∞ ball distance

around the original sample with many random starts in the ball generated with PGD, all

have approximately the same loss value when are fed to the network as input. Due to

this fact, they provide the guarantee that as long as the attack algorithm is a first-order

adversary, the local maxima of the loss value would not be significantly better than those

found by PGD. Therefore, PGD is the universal first-order adversary, which means no

other first-order adversary can have better performance than that of PGD, so robustness

against PGD means guaranteed robustness.

2.3.2 Network Randomization

Another approach for training robust models in the recent years has been applying reg-

ularization techniques during training (and in some cases during inference as well) [139].

To do so, either new loss functions are proposed with added or embedded regularization

terms (i.e., adversarial generalization) [140, 141, 142] or the network is augmented with

new modules [143, 144, 145, 146] for regularization purposes making the network more

robust at the end.

Network regularization with randomization approaches has recently proved to be an ef-

ficient tool for improving DNN robustness. A random noise generator as an extra module

is embedded in the network architecture adding random noise to the input or the output of

layers. Although the noise distribution usually follows a Gaussian distribution for its sim-

plicity, it is possible to use different noise distributions. This noise augmentation technique
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adds more uncertainty in the network and makes the adversarial attack optimization harder

which improves the robustness of the model. More recently, works of [147] and [148] have

theoretically proven that network randomization can result in certified robustness against

all adversaries, which makes network randomization a very powerful tool for improving

adversarial robustness. Parametric Noise Injection (PNI) [143], and Adversarial Bayesian

Neural Network (Adv-BNN) [146] are two of the recent state-of-the-art adversarial defense

mechanisms that take advantage of both network randomization and adversarial training.

These two methods have similar characteristics to our proposed Learn2Perturb framework,

and in our experiments, we compare the performance of Learn2Perturb to those of PNI and

Adv-BNN; therefore, in the remainder of this section, we will explain these two methods.

Parametric Noise Injection

In the PNI [143] method, Gaussian noise is added to the tensors of different layers of the

network. For a tensor v which can be the weights, the biases, or the layer activations of

each layer the noise is injected in this way:

ṽl,i = vl,i + αl . ηl,i ; ηl,i ≈ N (0, σ2
l ) (2.11)

where vl,i shows the i-th element of the tensor v at layer l, αl is a constant coefficient, and

σl shows the standard deviation parameter corresponding to the tensor v. σl controls the

amount of the injected noise and is learned during the training. ṽl is the final value of the

tensor v after injecting ηl. Figure 2.8 visualizes this process in the PNI technique; a noise

tensor with the same size as the clean tensor is sampled from a Gaussian distribution, and

then, this noise is added to the clean tensor to create the noisy output.

Since the noise injection parameters in the PNI method are trained with the network

gradients, during the training once the network starts to stabilize, gradients of the network

force the noise injection parameters converge to zero. To overcome this issue, they take

advantage of PGD adversarial training. In addition to helping with the convergence-to-zero

problem, PGD adversarial training boosts the robustness of PNI against the adversarial
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Figure 2.8: PNI injects trainable Gaussian noise to different tensors of a neural network.

The noise is parameterized and its parameters can be learned during the training. The

noise is injected during the inference stage as well [143]. Image from [143].

algorithms. However, even with the PGD adversarial training, noise parameters eventually

converge to zero.

Adv-BNN

In the Adv-BNN method [146], the ideas of Bayesian Neural Network (BNN) and PGD

adversarial training are combined together. Figure 2.9 illustrates the idea of BNNs; given

the random variables (x, y) from the training data, a Bayesian network tries to find the

latent distribution of the network variables, w. Since finding p (w |x, y) = p (x,y |w) p(w)
p (x,y)

is intractable, they approximate it by using a parametric distribution qθ (w), and they

estimate θ minimizing KL( qθ (w) || p (w |x, y) ). This means that, a BNN model learns a

distribution parameterized with θ for the network parameters, w. This is usually a Gaussian

distribution which yields w ∼ N (µθ, σθ). Therefore, in order to learn the distribution of

w, Adv-BNN solves the following optimization function

L(µ, σ) = −KL( qµ,σ (w) || p (w) ) +
∑

(x,y)∈D

min
||xadv−x||≤ε

Ew∼qµ,σ log p(y|xadv, w) (2.12)

where µ and σ are the parameters indicating a Gaussian distribution, and xadv is the

adversarial samples generated with the PGD adversary during the training.
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Figure 2.9: Illustration of how BNN works for a toy example neural network. Given the

observable (x,y) random variables, the posterior distributions of the network weights are

learned. Image from [146].

Adv-BNN training is a lot more computationally expensive than other adversarial ro-

bustness techniques. During the inference, for each feed-forward operation, the network

needs to sample the weights of the network from their Gaussian distribution; this puts a

lot of computational load on the inference step as well. Another drawback of Adv-BNN

is that if the trained model has a small capacity then it will not have a good clean data

performance; however, for very large models, Adv-BNN can train models that have both

high clean data accuracy and a good level of robustness.
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Chapter 3

Methodology

In this work, we propose a new framework called Learn2Perturb for improving the ad-

versarial robustness of a deep neural network through end-to-end feature perturbation

learning. Although it has been illustrated both theoretically and practically [136, 148]

that randomization techniques can improve the robustness of deep neural networks, there

is still not an effective way to select the distribution of the noise in the neural networks. In

Learn2Perturb, trainable perturbation-injection modules are integrated into a deep neu-

ral network with the goal of injecting customized perturbations into the feature space

at different parts of the network to increase the uncertainty of its inner workings within

an optimal manner. We formulate the joint problem of learning the model parameters

and the perturbation distributions of the perturbation-injection modules in an end-to-

end learning framework via an alternating back-propagation approach [149]. As shown

in Figure 3.1, the proposed alternating back-propagation strategy for the joint learning

of the network parameters and the perturbation-injection modules is inspired from the

Expectation-Maximization (EM) technique; and it comprises of two key alternating steps:

i) Perturbation-injected network training: the network parameters are trained by

gradient descent while the proposed perturbation-injection modules add layer-wise noise

to the feature maps (different locations in the network). Noise injection parameters are
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Figure 3.1: Overview of Learn2Perturb: During training, an alternating back-propagation

strategy is introduced where the following two steps are performed in an alternating man-

ner: i) the network parameters are updated in the presence of feature perturbation injection

to improve adversarial robustness, and ii) the parameters of the perturbation injection

modules are updated to strengthen perturbation capabilities against the improved net-

work. The learned perturbation injection modules can be added to some or all tensors in

the network to inject perturbations in feature space for two-prong adversarial robustness:

i) improve robustness during training when training under perturbation injection, and ii)

increase network uncertainty through interference-time perturbation injection to make it

difficult to learn an adversarial attack.

fixed during this step. ii) Perturbation-injection module training: the parameters

of the perturbation-injection modules are updated via gradient descent and based on the

regularization term added to the network loss function, while network parameters are fixed.

The effect of using such a training strategy is that in step (i), the model minimizes

the loss function of the classification problem when noise is being injected into multiple

layers, and the model learns how to classify despite the injected perturbations. And in step

(ii), the noise parameters are updated with a combination of network gradients and the

regularization term applied to these parameters. The goal of this step is to let the network

react to the noise injections via gradient descent and pose a bigger challenge to the network

via a smooth increase of noise based on the regularizer. The trained perturbation-injection

modules perturb the feature layers of the model in the inference phase as well.
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3.1 Perturbation-Injection Distribution

Given the observable variables X, W as the input and the set of weights in the neural

network, respectively, the goal is to model the neural network as a probabilistic model

such that the output of the model, Y , is a random variable rather than a deterministic

function. A probabilistic output is more robust against adversarial perturbation. As such,

Y can be formulated as:

Y ∼ P (X;W, θ) (3.1)

where W and θ show the set of network and noise parameters, respectively, and X is the

input fed into the network. The output Y is a random variable parameterized with W and

the set of independent parameters, θ.

For a given layer l of the neural network, the perturbation-injection modules can be

used to achieve the following probability model for the layer’s final activations:

Pl(Xl;Wl, θl) ≈ fl(Xl,Wl) +Q(θl) (3.2)

where fl(Xl,Wl) represents the activation of layer l with weights Wl, Xl as its input,

and Q(θl) is a random variable from the Gaussian noise distribution with θl as its standard

deviation. While Q(·) can be any exponential distribution, we choose Gaussian distribution

because of its simplicity and effectiveness, which can be formulated as follows:

Q(θl) ≈ θl · N (0, 1) (3.3)

The parameter θl scales the magnitude of the output from the normal distribution en-

coding the standard deviation of the distribution Q(·). Substituting the right hand-side

of Q(·) defined in Equation (3.3) into Equation (3.2) enforces Pl(·) to follow a Gaussian

distribution:

Pl(Xl;Wl, θl) ≈ N
(
fl(Xl,Wl), θl

)
(3.4)
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This new probabilistic formulation of layer activations can be extended to the whole net-

work, so instead of a deterministic output Y , network outputs P (X;W, θ) ≈ N
(
f(X,W ), θ

)
,

with W and θ showing the parameters of all layers.

Having this new formulation for a deep neural network, a proper training process to

effectively learn both sets of these parameters is highly desired. To this end, we propose

a new training mechanism to learn both network parameters and perturbation-injection

modules in an alternating back-propagation approach.

3.2 Alternating Back-Propagation

The proposed neural network structure comprises of two sets of parameters, W and θ,

being trained given training samples (X,T ) as the input and the ground truth output

to the network. However, these two sets of parameters are in conflict with each other

and try to push the learning process in two opposite directions. Having the probabilistic

representation P (·), W is mapping the input X to output T based on the mean of the

distribution P (·), f(X,W ); while, the set of θ improves the generalization of the model by

including perturbations into the training mechanism.

The proposed alternating back-propagation framework decouples the learning process

associated with network parameters W and perturbation-injection distributions θ to ef-

fectively update both sets of parameters. To this end, the network parameters and

perturbation-injection modules are updated in a consecutive manner.

The training process of the proposed Learn2Perturb is done within two main steps:

• Perturbation-injected network training ; the parameters of the network, W , are up-

dated via gradient descent to decrease the network loss in the presence of perturba-

tions, caused by the currently fixed perturbation-injection distribution, Q|θ.

• Perturbation-injection distribution training ; the parameters of the perturbation-injection

distribution, θ, are updated given the set of parameters W are fixed to improve the
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generalization of the network and as a result, improve its robustness against adver-

sarial perturbation.

These two steps are performed consecutively; however, the number of iterations for each

step before moving to the next step can be determined based on the application.

Algorithm 1: Alternating back-propagation of the Learn2Perturb framework

Input : Training set D = {(xi, ti), i = 1, . . . , n}
Number of training epochs, I

θmin, the lower bound for θ

θ0, initial values for θ

Learning rate, lr, and constant γ

Output : Learned parameters W

Learned noise distributions Q(θ)

for t← 1 to I do
Perturbation-injected training: update W based on the loss function L(·)
Eq. (3.5) while θ is fixed

W t ← W t−1 − lr · ∇WL
(
P (X;W t−1, θt−1), T

)
Perturbation-injection module training:

update θ based on Eq. (3.5) while W is fixed

θt ← θt−1 − lr · ∇θL
(
P (X;W t−1, θt−1), T

)
− γ · ∇θg(θt−1)

Values of θt smaller than θmin are projected to θmin
end

Utilizing a generic loss function in the training of the network when the perturbation-

injection modules are embedded forces the noise parameters to converge to zero and even-

tually removes the effect of the perturbation-injection distributions by making them very

small. In other words, the neural network with generic loss tends to learn P (·) as a Dirac

distribution where the Q(·) is close to zero. As such, a new regularization term is de-

signed and added to the loss function to prevent the aforementioned problem; the new loss

34



function can be formulated as:

arg min
W,θ

[
L
(
P (X;W, θ), T

)
+ γ · g(θ)

]
(3.5)

where L(·) is the classification loss function (i.e., usually cross entropy) such that the set

of parameters W need to be tuned to generate the associated output of the input X. The

function g(θ) is the regularizer enforcing smooth increase in the parameters θ = {θl,j}l=1:K
j=1:Ml

,

where θl,j shows the jth noise parameter in the lth layer, corresponding to an element of

the output feature map. K and Ml represent the number of layers and noise parameters

per layer, respectively. γ is the hyper-parameter balancing the two terms in the opti-

mization. Independent distributions are learnt for perturbation-injection models in each

layer. The regularizer function should be enforced with an annealing characteristic where

the perturbation-injection distributions are gradually improved and converged thus the

parameters W can be trained effectively. As such the regularization function is formulated

as below:

g(θ) = −θ
1/2

τ
(3.6)

where τ is the output of a harmonic series given the current epoch value in the training

process. Using a harmonic series to determine τ , gradually decreases the effect of the

regularizer function in the loss and lets the neural network converge. While the squared

root of θ makes the equation easier to take the derivative, it also provides a slower rate

of change for larger values of θ which helps the network to converge to a steady state

smoothly. We formulate τ as below:

τ(t) =
t∑
i=s

1

i− s− 1
(3.7)

where t shows the current epoch, while s shows the first epoch number from which noise

is being added to the network.

As seen in Algorithm 1, first, the perturbation-injection distributions Q and network

parameters W are initialized. Then the model parameters W are updated based on the
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classification loss L(·), and this loss function is minimized in the presence of perturbation-

injection modules. Then, the perturbation-injection distributions Q are updated by per-

forming the “perturbation-injection module training” step.

One of the main advantages of this approach is that since the learning process of these

two sets of parameters is decoupled, the training process can be easily performed without

a significant manual hyper-parameter tweaking compared to other randomized state-of-

the-art approaches. Moreover, the proposed method can help the model to converge faster

as the perturbation-injection distributions are continuously improved during the training

process.

3.3 Adding PGD Adversarial Training to Our Ran-

domization Technique

We take advantage of adversarial training technique which adds on-the-fly adversarial

examples into the training data, to improve the model’s robustness more effectively against

perturbations. As such, PGD adversarial technique is incorporated in the training to

provide stronger guarantee bounds against all first-order adversaries optimizing in l∞ space.

Adding PGD adversarial training to the alternative back-propagation technique can be

formulated as:

arg min
W,θ

[
arg max
||δ||∞≤ε

L
(
P (X + δ;W, θ), T

)]
(3.8)

where W encodes the network parameters and θ shows the perturbation-injection parame-

ters. In this formulation only adversarially generated samples are used in the training step

for the outer minimization, following the original work introduced in [25].

Finally, in order to balance between the adversarial robustness and clean data accu-

racy [143, 55], we formulate the adversarial training as follow:

arg min
W,θ

[
α · L

(
P (X;W, θ), T

)
+ β · arg max

||δ||∞≤ε
L
(
P (X + δ;W, θ), T

)]
(3.9)
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where the first term shows the loss associated to the clean data and α is the weight for

the clean data loss term, while the second shows the loss associated with the adversarially

generated data with weight β. The models trained with the proposed Learn2Perturb

algorithm use α = β = 0.5. Equation (3.9) helps gain adversarial robustness, while

maintaining a reasonably high clean data accuracy.

Equation (3.9) shows the main objective function of our Learn2Perturb framework

which is optimized by using gradient descent.

3.4 Model Setup, Training, and Inference

Perturbation-injection distributions are added to the network in different locations and

specifically after each convolution operation to create a new network model based on the

Learn2Perturb framework. As shown in Figure 3.1, these modules generate the pertur-

bations with the same size as the feature activation maps of that specific layer. Each

perturbation-injection distribution follows independent distribution and therefore, the gen-

erated perturbation value for each feature is drawn independently.

In the training phase, the model parameters and the perturbation-injection distri-

butions are trained in an iterative and consecutive manner and based on the proposed

alternating back-propagation approach. It is worth to mention that the model parame-

ters are trained for 20 epochs before activating the perturbation distributions to help the

network parameters converge to a good initial point. After 20 epochs, the alternating

back-propagation is applied to train both model parameters and perturbation-injection

distributions.

The perturbation-injection distributions are applied in the inference step, as well.

Adding randomization during inference will introduce a dynamic nature into the inference

process and as a result, it makes it harder for the adversaries to find optimal adversarial

examples to fool the network.
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Chapter 4

Experimental results

In this chapter, exhaustive experimental results are conducted to evaluate the robustness

and the efficiency of our proposed framework against a large set of adversarial attack

algorithms; furthermore, we provide experiments comparing our framework with differ-

ent state-of-the-art approaches including PGD adversarial training [25] (also denoted as

Vanilla model), Parametric Noise Injection (PNI) [143], Adversarial Bayesian Neural Net-

work (Adv-BNN) [146], Random Self-Ensemble (RSE) [145] and PixelDP (DP) [144]. Ex-

perimental results indicate that our Learn2Perturb technique outperforms other methods

by a large margin.

4.1 Experimental Setup

In order to encourage the reproducible experimental results, in this section, we provide

a detailed explanation of the experimental setup and environment of the reported exper-

iments. Pytorch version 1.2 was used for developing all experiments, and our codes are

available at https://github.com/Ahmadreza-Jeddi/Learn2Perturb.

38

https://github.com/Ahmadreza-Jeddi/Learn2Perturb


4.1.1 Baseline Architecture

We use ResNet based architectures [150] as the baseline for our experiments; The classical

ResNet architecture (i.e., ResNet-V1 and its variations) and the new ResNet architecture

(i.e., ResNet-V2) are used for evaluation. The main difference between the two architec-

tures is the number of stages and the number of blocks in each stage. Moreover, average

pooling is utilized for down-sampling in ResNet-V1 architecture while the ResNet-V2 uses

1 × 1 CNN layers for this purpose. Following the observation made by Madry et al. [25],

the capacity of networks alone can help to increase the robustness of the models against

adversarial attacks. As such, we compare Learn2Perturb and competing state-of-the-art

methods for various networks with different capacities.

The ResNet [150] architecture has been selected as the baseline network followed by

the state-of-the-art methods and the fast convergence property of this architecture. The

effect of network depth is evaluated by examining the competing methods via ResNet-

V1(32), (44), (56) as well as ResNet-V1(20) where (x) shows the depth of the network.

Moreover, the effect of network width is examined similar to the work done by Zagoruyko

and Komodakis [53]. To increase the width of the network (i.e, experiment performed on

ResNet-V1(20)), the number of input and output channels of each layer is increased by a

constant multiplier, ×1.5, ×2, and ×4 which widens the ResNet architecture. However,

we do not follow the exact approach of [53] in which they applied dropout layers in the

network; instead, we just increase the width of the basic convolution at each layer by

increasing the number of input/output channels.

We also consider a ResNet-V2(18), which has a very large capacity compared to ResNet-

V1 architecture. Not only the number of channels have increased in this architecture but

also it uses 1× 1 convolutions to perform the down-sampling at each residual block.
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4.1.2 Datasets

For the evaluation purpose, the CIFAR-10 and CIFAR-100 datasets [110] are utilized for

training and evaluating the networks. Both of these datasets contain 50,000 training data

and 10,000 test data of natural color images of 32× 32. While CIFAR-10 has 10 different

class with 6000 images per class, CIFAR-100 has 100 classes with 600 images per class.

4.1.3 Attack Algorithms

Different white-box and black-box attacks are utilized to evaluate the proposed Learn2Perturb

along with state-of-the-art methods. The competing algorithms are evaluated via white-

box attacks including FGSM [18], PGD [109] and C&W attacks [29]. One-Pixel attack [94],

and Transferability attack [97] are utilized as the black-box attacks to evaluate the com-

peting methods.

4.1.4 Training and Inference Parameters

Followed by the experimental setup proposed in [143], data normalization is done via adding

a non-trainable layer at the beginning of the network and the adversarial perturbations are

directly added to the original input data, before normalization being applied. Both adver-

sarial training and robustness testing setup follow the same configurations as introduced

in [25] and [143]. Adversarial training with PGD and testing robustness against PGD are

both done in 7 iterations with the maximum l∞ = 8/255 (i.e., ε) and step sizes of 0.01 for

each iteration. FGSM attack also uses the same 8/255 limit for perturbation. For C&W

attack, we use ADAM [151] optimizer with learning rate 5e−4. Maximum number of itera-

tions is 1000, and for the constant c in (2.4) we choose the range 1e−3 to 1e10; furthermore

to find the value of c, binary search with up to 9 steps is performed. The confidence, κ,

parameter of C&W attack, which turns out to have a big effect while evaluating defense

approaches involving randomization, takes values ranging from 0 to 5.
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The proposed Learn2Perturb, No defense, and Vanilla methods use the same setup

for gradient descent optimizer. SGD optimizer with momentum of 0.9 with Nesterov

momentum and weight decay of 1e−4 is used for the training of those methods. The noise

injection parameters have weight decay equal to 0. We use the batch size of 128, and 350

epochs to train the model. The initial learning rate is 0.1, then changes to 0.01 and 0.001

at epochs 150 and 250, respectively.

For the parameter γ in Equation (3.5), we choose value 10−4 for all of our experiments.

4.2 Analyzing Learn2Perturb

In this section, we first experimentally show that Learn2Perturb is an excellent technique

for introducing randomization into neural networks, and then, we introduce a weaker vari-

ant of Learn2Perturb (Learn2Perturb-R) and evaluate both the original Learn2Perturb

and this variant on the CIFAR-10 dataset. More experiments and comparisons with state-

of-the-art techniques are covered in the next two sections.

4.2.1 Behaviour of Noise Distributions in Learn2Perturb vs. PNI

As our first experiment, we decide to compare the noise injection ability of our Learn2Perturb

method to the similar work of PNI [143]. As stated in Section 2.3.2, the trained noise pa-

rameters by the PNI approach fluctuate during the training due to their objective function.

The min-max optimization applied in PNI causes the training to enforce noise parameters

to converge to zero as the number of training epochs increases.

This issue has been addressed in the proposed Learn2Perturb algorithm by introducing

a new regularization term in the loss function. As a result, there is a trade-off between train-

ing proper perturbation-injection distribution and modeling accuracy during the training

step. This trade-off would let the perturbation modules to learn properly and eventually
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converge to a steady state. To this end, a harmonic series term is introduced in the pro-

posed regularization term (Equation (3.6)) which decreases the effect of regularization as

the number of training epochs increases and helps the perturbation-injection modules to

converge.

Figure 4.1 shows the behaviour of noise distributions in both PNI and Learn2Perturb

algorithms during the training. As seen, the proposed Learn2Perturb algorithm manages to

smoothly increase the magnitude of injected noise, until finally, noise parameters converge

to a steady state. However, in the case of PNI, the noise distributions are forced to zero,

due to the way the loss function is formulated.

4.2.2 Reduced Learn2Perturb

We also evaluate a variation of the proposed Learn2Perturb framework (i.e. Learn2Perturb-

R) where we analyze a different approach in performing the two steps of “perturbation-

injected network training” and “perturbation-injection module training”. In this variation,

the perturbation-injection modules are only updated using the regularizer function g(θ),

and network gradients are not used to update θ parameters.

To evaluate Learn2Perturb and Learn2Perturb-R, here, the two techniques are com-

pared with Vanilla (models that trained using only PGD adversarial training), and no-

defense (models trained with no knowledge of adversarial samples, the common training)

models as two common reference points. The comparisons are done on three different

ResNet architectures. Table 4.1 shows the effectiveness of the proposed Learn2Perturb

method in improving the robustness of different network architectures. Results demon-

strate that the proposed perturbation-injection modules improve the network’s robustness.

As seen, the proposed perturbation-injection modules can provide robust performance on

both ‘ResNet-V1’ (with both 20 and 56 layers) and ‘ResNet-V2’ (18 layers) architectures

against both FGSM and PGD attacks which illustrates the effectiveness of the proposed

module in providing more robust networks.
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Figure 4.1: Evolution of mean over noise perturbation parameters through training epochs

for ResNet-V2. As seen, while the magnitude of noise distributions are increasing in the

Learn2Perturb algorithm, they converge to zero in the PNI method. The network with

larger noise distributions faces larger uncertainty and learns to deal with such perturba-

tions. Larger noise also makes it hard for an adversary to craft optimized adversarial

perturbations; this is because randomization affects network gradient as well.
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Moreover, as it can be seen in Table 4.1, taking advantage of both network gradient

and the regularizer performs better than when we only take the regulizer into account.

One reason to justify this outcome is allowing the gradient of loss function L(·) to up-

date perturbation-injection modules in Learn2Perturb. This would let the loss function

to react to perturbations when they cannot tolerate the injected noise and updates the

perturbation-injection noise modules more frequently. Nonetheless, the results in Table 4.1

show that Learn2Perturb-R still outperforms other the Vanilla method in adversarial ro-

bustness, though it provides slightly lower accuracy on clean data.

Additionally, it can be seen in Table 4.1 that clean data accuracy of a model might be at

odds with its robustness. This further indicates the findings of Zhang et al. [55]; adversarial

examples come from a different distribution than that of the clean data, therefore, there

might be a trade-off between the two goals of the adversarial robustness and clean data

accuracy. Recently, the works of [56] and [152] show that increasing the size of data and

hence exposing network to a larger distribution during training can enhance both these

goals.

4.3 CIFAR-10 Robustness Comparison

In this section, to further illustrate the effectiveness of the proposed Learn2Perturb frame-

work, we compare the performance of Learn2Perturb with PNI [143] and Adv-BNN [146]

as two state-of-the-art randomization approaches to improve on the CIFAR-10 dataset.

4.3.1 Evaluating Competing Models Against l∞ PGD and FGSM

Table 4.2 reports comparison results against PGD and FGSM adversaries for different

network architectures varying in network depth and width. We examine the effect of

different network depths including ResNet-V1(20), ResNet-V1(32), ResNet-V1(44) and

ResNet-V1(56) along with the effect of network width in Table 4.2 by increasing the number

44



Table 4.1: Evaluating the accuracy of the proposed Learn2Perturb and its variant

(Learn2Perturb-R) and comparing them with the adversarial training algorithm (Vanilla)

and a model with no defense. All the baselines are ResNets. V1 refers to ResNet-V1 and

V2 refers to ResNet-V2. (x) indicates the depth of the models. C, P, and F denote Clean

data accuracy, PGD accuracy, and FGSM accuracy, repectively. For the evaluations that

contain randomness, we have only reported the mean of their results.

No defense Vanilla[25] Learn2Perturb-R Learn2Perturb

Model C P F C P F C P F C P F

V1(20) 92.10 0.0 14.10 83.80 39.1 46.60 81.15 50.23 55.89 83.62 51.13 58.41

V1(56) 93.30 0.0 24.20 86.50 40.1 48.80 82.35 53.30 58.71 84.82 54.84 61.53

V2(18) 95.20 0.0 43.10 85.46 43.9 52.50 82.46 53.33 59.09 85.30 56.06 62.43
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of filters in ResNet-V1(20) which results to ResNet-V1(20)[1.5×], ResNet-V1(20)[2×] and

ResNet-V1(20)[4×]. As can be seen in this Table, while the competing methods do not

provide consistent performance for different capacities of the network (increasing depth or

width), the proposed framework provides consistent robustness through different network

capacities. Furthermore, not only learn2Perturb significantly outperforms other methods

against adversaries, but it also manages to maintain a competitive performance on clean

data (data with no adversarial perturbations).

The reported results in Table 4.2 show that while PNI provides minor boosting in

network accuracy on clean data, the proposed Learn2Perturb method performs with much

higher accuracy when the input data is perturbed with adversarial noise. The main reason

for this phenomenon is the fact that PNI reaches a very low level of noise perturbation

during the training as the loss function tries to remove the effect of perturbation by making

the noise parameters to zero. The results demonstrate that the proposed Learn2Perturb

algorithm outperforms the PNI method by 4-7% on both FGSM and PGD adversarial

attacks. The proposed method is also compared with Adv-BNN [146]. Results show that

while Adv-BNN can provide robust networks in some cases compared to PNI, it is not

scalable when the network width is increased and the performance of the networks drop

drastically. This further indicates one of the drawbacks of Bayesian approaches; they need

to be carefully designed for each network architecture, and the setup for one architecture

might not work for another one; this causes major scalability problems.

We also analyze the effectiveness of the proposed method in dealing with different

adversarial noise levels. To this end, the ResNet-V2(18) architecture is utilized for all

competing methods. The network architectures are designed and trained via four different

competing methods, and the trained networks are examined with both FGSM and PGD

attacks but with a ranging variation of ε values.

Figure 4.2 demonstrates the robustness of four competing methods in dealing with

the FGSM adversarial attack. As seen, while increasing ε decreases the robustness of

all trained networks, the network designed and trained by the proposed Learn2Perturb
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Table 4.2: The effect of network capacity on the accuracy of the proposed method and

other state-of-the-art algorithms. The proposed Learn2Perturb is compared with Paramet-

ric Noise Injection (PNI) method [143] and Adv-BNN [146]. Results shows the effectiveness

of the proposed Learn2Perturb algorithm in training robust neural network models. To

have a fair comparison, we evaluated methods on different network sizes and capacities.

Result are reported by standard deviation because of the randomness involved in these

methods. All the baselines are ResNets. V1 refers to ResNet-V1 and V2 refers to ResNet-

V2. (x) indicates the depth of the models. C, P, and F denote Clean data accuracy, PGD

accuracy, and FGSM accuracy, repectively.

PNI [143] Adv-BNN [146] Learn2Perturb

Model C P F C P F C P F

V1(20) 84.90±0.1 45.90±0.1 54.50±0.4 65.76±5.92 44.95±1.21 51.58±1.49 83.62±0.02 51.13±0.08 58.41±0.07

V1(32) 85.90±0.1 43.50±0.3 51.50±0.1 62.95±5.63 50.42±0.06 50.29±2.70 84.19±0.06 52.62±0.06 59.94±0.11

V1(44) 84.70±0.2 48.50±0.2 55.80±0.1 76.87±0.24 51.33±0.03 58.55±0.49 85.61±0.01 53.24±0.03 61.32±0.13

V1(56) 86.80±0.2 46.30±0.3 53.90±0.1 77.20±0.02 51.16±0.13 57.88±0.02 84.82±0.04 54.75±0.07 61.53±0.04

V1(20)[1.5×] 86.00±0.1 46.70±0.2 54.50±0.2 65.58±0.42 28.07±1.11 36.11±1.29 85.40±0.08 53.32±0.02 61.10±0.06

V1(20)[2×] 86.20±0.1 46.10±0.2 54.60±0.2 79.03±0.04 53.46±0.06 58.30±0.14 85.89±0.10 54.29±0.02 61.61±0.05

V1(20)[4×] 87.70±0.1 49.10±0.3 57.00±0.2 82.31±0.03 52.61±0.12 59.01±0.04 86.09±0.05 55.75±0.07 61.32±0.02

V2(18) 87.21±0.0 49.42±0.01 58.06±0.02 82.15±0.06 53.62±0.06 60.04±0.01 85.30±0.09 56.06±0.08 62.43±0.06
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Table 4.3: Comparison results of the accuracy of the proposed Learn2Perturb and state-of-

the-art methods in providing a robust network model. Some of the numbers are extracted

from [143]. The reported results are either based on the maximum accuracy achieved in

the literature or our own results if we achieved higher level of accuracy.
Defense Method Model Clean PGD

RSE [145] ResNext 87.5 40

DP [144] 28-10 wide ResNet 87 25

Adv-BNN [146] ResNet-V1(56) 77.20 54.62±0.06
PGD adv. training [25] ResNet-V1(20) [4×] 87 46.1±0.1
PNI [143] ResNet-V1(20) [4×] 87.7±0.1 49.1±0.3
Learn2Perturb ResNet-V2(18) 85.3±0.1 56.3±0.1

approach outperforms other methods through all variations of adversarial noise values

(ε’s).

To confirm the results shown in Figure 4.2, a similar experiment is conducted to examine

the robustness of the trained networks against PGD attack. Figure 4.3 shows this version.

While the PGD attack is more powerful in fooling the networks, results show that the

network designed and trained by the proposed Learn2Perturb framework still outperforms

other state-of-the-art approaches.

In order to compare Learn2Perturb with a wider range of defensive techniques, Ta-

ble 4.3 shows the best reported results of the recent state-of-the-art approaches. The

proposed Learn2Perturb method outperforms other state-the-art methods and provides a

more robust network with better performance when dealing with PGD attack.

4.3.2 Evaluation of Competing Models Against L2 C&W Attack

It has been shown that there is no guarantee that methods robust against l∞ attacks

would provide the same level of robustness against l2 attacks [136]. Araujo et al. [136]

experimentally illustrated that randomization during the training of a model trained with
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Figure 4.2: Analyzing the effectiveness of the proposed method compared to state-of-the-

art algorithms on different ε values for FGSM attack for the task of image classification on

CIFAR-10 dataset.
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Figure 4.3: Evaluating the robustness of the proposed Learn2Perturb compared with other

state-of-the-art methods through different ε based on PGD attack.
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Table 4.4: Comparison results of the accuracy of the proposed Learn2Perturb and com-

peting methods on C&W [29] attack.
Confidence No defense Vanilla PNI Adv-BNN Learn2Perturb

κ = 0.0 0.0 0.0 66.9 78.9 83.6

κ = 0.1 0.0 0.0 66.1 78.1 84.0

κ = 1.0 0.0 0.0 34.0 65.1 76.4

κ = 2.0 0.0 0.0 16.0 49.1 66.5

κ = 5.0 0.0 0.0 0.8 16.0 34.8

an l∞ adversary (e.g. PGD) can improve the robustness against l2 attacks as well. In

this work, we further validate this finding. In order to provide more powerful l2 attacks

challenging the effect of randomization, we apply C&W attacks with different confidence

values, κ. The parameter κ enforces the f(·) in (2.4) to be ≤ −κ rather than simply ≤ 0.

As seen in Table 4.4, for bigger values of κ the success rate of the C&W attack increases;

nonetheless, our proposed method outperforms the other competing methods with a big

margin for all values of κ.

4.3.3 Expectation Over Transformation (EOT)

Athalye et. al [153] showed that many of the defense algorithms that take advantage of

injecting randomization to network’s interior layers or applying random transformations

on the input before feeding it to the network achieve robustness through false stochastic

gradients. They further stated that these methods obfuscate the gradients that attackers

utilize to perform iterative attacking optimizations. As such, they proposed the EOT attack

(originally introduced in [154]) to evaluate these types of defense mechanisms. They showed

that the false gradients cannot protect the network when the attack uses the gradients

which are the expectation over a series of transformations.

Since our Learn2Perturb algorithm and other competing methods involve randomiza-

tion, the tested algorithms in this study are evaluated via the EOT attack method as well.
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To do so, followed by [148], at every iteration of PGD attack, the gradient is achieved

as the expectation calculated from a Monte Carlo method with 80 simulations of different

transformations. Results show that the network trained via PNI can provide 48.65% robust-

ness compared to Adv-BNN which provides 51.19% robustness for the CIFAR-10 dataset

against this attack. The experimental result illustrates that the proposed Learn2Perturb

approach can produce a model that achieves 53.34% robustness and outperforms the other

two state-of-the-art algorithms.

It is worth mentioning that the experimental results showed that neither the proposed

Learn2Perturb method nor the other competing approaches studied in this work suffer

from obfuscated gradients. Furthermore, the proposed Learn2Perturb method successfully

passes the five metrics introduced in [153], and thus further illustrates that Learn2Perturb

is not subjected to obfuscated gradients.

4.4 CIFAR-10 Robustness Against Black-Box Attacks

In this section, the robustness of the proposed method and the competing algorithms

against black-box attacks are evaluated. Two different attacks including few-pixel at-

tack [94] and transferability attack [97] are used to evaluate the competing methods.

4.4.1 Few-Pixel Attack

For the few pixel attack, we use a population size of 400 and maximum iteration steps of

75 for the differential evolution algorithm. The attack strength is controlled by the number

of pixels that are allowed to be modified. In this comparison, we consider the {1,2,3}-pixel

attacks.

Table 4.5 shows the comparison results of the competing methods against few-pixel

attack. Two different network architectures (ResNet-V1(20) and ResNet-V2(18)) are used
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Table 4.5: Few-pixel attack; the accuracy of the competing methods are evaluated via few-

pixel [94] attack base on two network architectures of ResNet-V1(20) and ResNet-V2(18).

{1,2,3} pixels are changed in the test samples to perturbed the images.

Network Attack Strength No defense Vanilla PNI Adv-BNN Learn2Perturb

ResNet-V1(20)

1-pixel 21.45 65.20 67.40 58.40 70.15

2-pixel 2.55 48.35 61.75 56.20 63.90

3-pixel 1.10 36.40 58.10 55.70 61.85

ResNet-V2(18)

1-pixel 23.44 56.10 50.90 68.60 64.45

2-pixel 3.20 33.20 39.00 64.55 60.05

3-pixel 0.95 23.95 35.40 59.70 53.90

to evaluate the competing algorithms. As seen, the proposed Learn2Perturb method out-

performs other state-of-the-art methods when the baseline network architecture is ResNet-

V1(20). However, Adv-BNN provides better performance when the baseline network ar-

chitectures are ResNet-V2(18), while the proposed Learn2Perturb algorithm provides com-

parable performance for this baseline.

4.4.2 Transferability Attack

As the most practical attack and threat to DNN models, transferability attack refers to

cases where adversarial samples of a model can fool another DNN or general ML model as

well. Here, we evaluate the robustness of the competing models against the transferable

adversarial samples. Table 4.6 demonstrates the results for this comparison. Results again

show that the proposed Learn2Perturb method provides robust predictions against this

attack as well; while our results are not significantly better than the competing models,

Table 4.6 indicates that samples transfered from other methods have a smaller success rate

in fooling Learn2Perturb than that of the PGD attack.
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Table 4.6: Comparing the robustness of models against transferability attack; the compet-

ing methods are attacked within the context of Transferability where the perturbed images

utilized to evaluate the robustness of the model are generated by another method. The

‘Source Model’ is the model which the perturbed samples are generated from to attack

each competing algorithm.

Vanilla PNI Adv-BNN Learn2Perturb

Network Source Model FGSM PGD FGSM PGD FGSM PGD FGSM PGD

Resnet20 - V1

Vanilla – – 60.32±0.05 58.27±0.01 49.22±0.90 48.63±3.10 58.86±0.03 56.75 ± 0.01

PNI 66.31±0.02 63.04±0.01 – – 51.12±1.22 49.59±0.83 63.26±0.10 59.31 ± 0.06

Adv-BNN 74.38±0.16 72.02±0.02 73.05±0.12 70.26±0.05 – – 72.48±0.05 69.25 ± 0.06

Learn2Perturb 70.66±0.01 67.32±0.01 68.46±0.03 64.77±0.01 54.16±2.36 52.23±1.52 – –

Resnet18 - V2

Vanilla – – 69.52±0.02 68.01±0.02 67.20±0.04 65.88±0.03 67.32±0.04 65.58 ± 0.04

PNI 69.56±0.01 67.09±0.02 – – 67.63±0.03 64.87±0.04 67.63±0.05 64.61 ± 0.01

Adv-BNN 73.66±0.01 71.23±0.01 74.02±0.03 71.51±0.02 – – 71.67±0.09 68.75 ± 0.04

Learn2Perturb 73.49±0.01 70.44±0.00 73.89±0.04 70.61±0.01 70.22±0.04 67.33±0.04 – –
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4.5 CIFAR-100 Robustness Comparison

A detailed analysis of the experimental results for the CIFAR-100 dataset is provided as fol-

lows. The CIFAR-100 dataset [110] is very similar to the CIFAR-10 dataset, however, the

image samples are categorized into 100 class labels. All the models involving PGD adver-

sarial training are trained with ε = 8
255

during training. Figures 4.4 and 4.5 demonstrate

the performance comparison of the proposed Learn2Perturb with other state-of-the-art

methods on CIFAR-100 dataset based on FGSM and PGD attacks.

As seen, the proposed Learn2Perturb method outperforms other competing algorithms

for epsilons up to 8
255

; however for bigger epsilon values it provides comparable performance

with Adv-BNN, which has the best result. It is worth mentioning that for the models that

have smaller capacity (in terms of the number of network parameters), Adv-BNN lacks

the ability to converge to a stable well-performing model; moreover, its training is highly

computationally expensive, which makes it a less practical technique.
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Figure 4.4: FGSM attack on CIFAR-100 with different epsilons for the l∞ ball on ResNet-

V2(18).
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Figure 4.5: PGD attack on CIFAR-100 with different epsilons for the l∞ ball on ResNet-

V2(18).
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Chapter 5

Conclusion

In this thesis, we explored the concept of adversarial examples and the effects that these

examples can have on real-life systems. We provided explanations of some of the more

plausible hypotheses on why adversarial examples exist. We also reviewed the common,

strongest white-box and black-box adversarial attack algorithms that are used to evalu-

ate and compare our proposed framework with the competing state-of-the-art methods.

Finally, after describing some of the adversarial defense mechanisms and their strengths

and weaknesses, we introduced our Learn2Perturb framework, an end-to-end feature per-

turbation learning approach for improving adversarial robustness of deep neural networks.

Experimental results provided in Chapter 4 showed that Learn2Perturb can significantly

boost the adversarial robustness of the DNN models.

5.1 Thesis Contribution Insights

We introduced a new algorithm for improving the adversarial robustness of computer vi-

sion models. Parameterized perturbation injection modules were introduced to increase

uncertainty during both training and inference to make it harder to craft successful adver-

sarial examples. Moreover, a novel alternating back-propagation approach was introduced

58



to learn both network parameters and perturbation-injection module parameters in an al-

ternating fashion. To overcome the problem of noise parameters converging to zero a new

regularization term was added to the objective function that the network tries to minimize

in order to learn a robust generalized model (refer to Equation (3.5)).

The goal of this regularization term is to first stop noise distribution from converging

to zero and then, smoothly increase the magnitude of the injected noise so that more

uncertainty is introduced during both training and inference. Figure 4.1 compares our

noise injection technique with the PNI [143] method; as can be seen in this Figure, we are

able to inject better customized noise to the network.

Experimental results on both different black-box and white-box attacks demonstrated

the efficacy of the proposed Learn2Perturb algorithm, which outperformed the state-of-

the-art methods in improving robustness against different adversarial attacks. On the

CIFAR-10 dataset for different network capacities, we improve the l∞ FGSM and PGD

robustness by 4− 7% while maintaining high clean data accuracy. For the l2 C&W attack,

we constantly outperform competing methods by a large margin for different values of

κ (C&W attack confidence). This further indicates the finding of Araujo et al. [136]

that using randomization during adversarial training with an l∞ adversary can improve

the robustness against l2 attacks. We also show that our model is very robust against

black-box few-pixel and transferable attacks. Similarly, on the CIFAR-100 dataset, we

outperform the state-of-the-art robustness against the FGSM and PGD adversaries.

5.2 Future Work

Although our Learn2Perturb framework succeeds in learning models that have either better

or comparable adversarial robustness compared to state-of-the-art approaches, it has some

limitations as well. The major limitation of Learn2Perturb is that even though it has a

comparable clean-data accuracy (performance on data with no adversarial perturbations)

to other methods, the reduction of this accuracy due to the adversarial training during
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the learning process might deprive real-world applications of the complete benefit of the

neural networks. In future work, we will focus on addressing this problem and designing

adversarially robust models with no loss in clean data generalization.

To address the abovementioned generalization problem and train more robust models,

future work involves combining the Learn2Perturb framework with some of the recent ideas

that have been proposed in the field of adversarial robustness. Especially, two lines of work

have shown great success in this field; first are the ones that work on the sample complexity

of adversarial examples believing that adversarial robustness and better generalization

require more training data than simple standard training. The second line of work focuses

more on designing better adversarial training and regularization techniques. These two

lines of work and how we believe Learn2Perturb can take advantage of them are explained

in the remainder of this section.

5.2.1 More Training Data Can Improve Robustness

In their recent work, Schmidt et al. [152] experimentally showed that the PGD adversarial

training on CIFAR-10 dataset tends to highly overfit on the training data; based on this

observation they claimed that adversarial robustness requires a larger sample complexity,

and then, they theoretically proved that adding more training data can help improve the

adversarial robustness. Following Schmidt et al. [152], the very recent works of [56] and

[155] showed that even using unlabeled data can increase the adversarial robustness and

the generalization of the classification models.

A direction for us is to study a defense mechanism that has larger training data and

takes advantage of randomization. Carmon et al. [56] augmented the CIFAR-10 dataset

with 500K unlabeled data which are achieved by applying semi-supervised techniques on

the 80 Million Tiny Images dataset [156]. Moreover, they showed that adding these unla-

beled data during the training of CIFAR-10 classifiers can improve the robustness of these

models by almost 10%. Recently, Yalniz et al. [157] augmented the ImageNet dataset by

using semi-supervised techniques on the YFCC-100M dataset [158]. Since the augmented
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unlabeled data might not have the same quality as the original training data, the main

focus of the training is still on the original dataset; however, the augmented dataset is

utilized as well though less frequent than the original one, so that the model is exposed to

a larger input distribution.

Augmenting the training data by applying semi-supervised techniques on unlabeled

data may not always be a viable option, since in some cases the overall amount of the data

(labeled or unlabeled) is small. Moreover, augmenting the training data means that the

training process would be more computationally expensive. Nonetheless, this technique is

simple to implement, and it has been shown to be very effective for training robust models.

We believe that increasing the size of the actual training data together with randomization

can help train models that are more robust to out-of-distribution samples. Therefore,

designing better semi-supervised models for extracting relevant unlabeled data and more

efficient sampling techniques over these unlabeled data would help our Learn2Perturb

framework.

5.2.2 Advanced Adversarial Training Techniques

Although the PGD adversarial training [25] is a very effective method which yields guaran-

teed first-order robustness, simply generating adversarial examples for every training sam-

ple, independent from others, cannot achieve high levels of certified robustness. Therefore,

some recent works have tried to improve PGD adversarial training. Instead of maximiz-

ing the network loss with respect to the input sample (as it is done in PGD adversarial

training), for each clean sample, Zhang et al. [55] generated a duplicate and iteratively

maximized the l2 distance between the softmax vectors of the two samples. In a more re-

cent work, instead of independently generating adversarial examples for each image, Zhang

et al. [54] generated adversarial samples for groups of images, and they achieve a very high

performance on CIFAR-10 (73% adversarial robustness).

Works like [55] and [54] indicate that the relationships among different training sam-

ples or even among different classes can have a big impact on the robustness of the trained
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model. We have conducted a set of experiments that further validate these findings; fur-

thermore, we notice that the classification of some of the classes in a dataset might be

harder than other classes; for example, in the CIFAR-10 dataset the two classes of cat and

dog are often misclassified as one another. This is even more intensified when the model

is under adversarial attack. Since the simple adversarial training generates adversarial

samples with no consideration of these relations, it seems that this method is not sufficient

to find robust decision boundaries between those kind of classes.

Designing new better adversarial training methods like the ones of [54] and [55] com-

bined with randomization techniques can help find more robust decision boundaries, which

would promote both the generalization and the adversarial robustness of neural networks.

Since it is easy to combine randomization techniques with other methods, we believe

that we can take advantage of the recent adversarial training techniques and extend the

Learn2Perturb idea to further improve the adversarial robustness.
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