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Abstract

The integration of electric vehicles (EVs) and the power system has been becoming an
increasingly important field of research, due to the rapid EV penetration and the evolve-
ment in vehicle-to-grid (V2G) techniques in the past decade. Under appropriate manage-
ment of EV charging and discharging, the current grid capacity can satisfy the energy
requirements of a considerable number of EVs and EVs could help enhance grid reliability
and stability through ancillary service provision.

In this thesis, we investigate the operational strategies of commercial EV fleets under the
V2G context where energy price signals are utilized to incentivize EV owners to time-shift
charging schedule and discharging EVs during peak hours. We propose and formulate a new
EV routing problem with time windows under time-variant electricity prices (EVRPTW-
TP), considering practical constraints of commercial EV fleets providing logistic services
and optimizing over its overall electricity cost. In order to solve the EVRPTW-TP, we
then formulate a Lagrangian relaxation as well as a variable neighborhood search and
tabu search hybrid (VNS/TS) heuristic to approximate the optimal solution from below
and above respectively. Our numerical experiments on small instances suggest that both
algorithms are able to provide high quality bounds to the EVRPTW-TP. The VNS/TS
heuristic outperforms CPLEX in terms of solution quality and efficiency on instances of
10 or more customers. In addition, we utilize the VNS/TS heuristic to study a use case
of an EV fleet providing grocery delivery service in the Kitchener and Waterloo (KW)
region in Ontario, Canada. Insights about the impacts of energy pricing scheme, service
time slot design as well as fleet size are presented. Finally, as the first step towards
implementing advanced machine learning techniques to solve the EVRPTW-TP, we develop
a reinforcement learning (RL) model for the electric vehicle routing problem with time
windows (EVRPTW) and provide computational results to assess the performance of the
RL model.
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Chapter 1

Introduction

These days, sustainability is becoming an increasingly important factor to consider in in-
dustrial production. In the transportation sector, endeavors have been taken by regulators
around the world to facilitate vehicle electrification for its ability to mitigate greenhouse
gas (GHG) emission, promote sustainable ways of electricity generation, and reduce partic-
ulate matter pollution thus to benefit human health [14, , |. For instance, in 2019,
Transport Canada announced an investment of 300 million Canadian dollars to a new fed-
eral zero-emission vehicle (ZEV) purchase incentive program [21]. At the company level,
driven by the potential brand benefits of employing new green technologies, the growing
demands for green products [09, 31], and the plummet of electric battery cost, market
players, such as UPS, FedEx and Walmart, have deployed their own electric vehicle fleets
to provide services [125]. As a consequence, the past decade has seen rapid expansion of
electric vehicle adoption [51]. According to Statistics Canada [20], the number of new mo-
tor vehicle registration for battery electric vehicle (BEV), hybrid electric vehicle (HEV),
and plug-in hybrid electric vehicle (PHEV) has increased from 25,163 in 2014 to 69,010 in
2018. As projected by Canada Energy Board [!1], electric vehicles will account for over
60% of the new motor vehicle registration in Canada by 2040 assuming a global shift to
low-carbon economy.

The penetration of electric vehicles (EV) has significant impacts on the power system.
Previous studies have shown that, without proper management, the EVs could represent a
sizable fraction of total demand [119, 3], increase the demand differences between off-peak
and peak hours, and thus increase ramp requirements [120], which will potentially affect the
power networks’ stability and reliability. However, with controlled charging, the existing
power system infrastructure can actually satisfy the energy requirements of a considerable
number of EVs [95, 68, 78]. In doing so, the need for installing new capacity, which is



expensive, time-consuming and harmful to the environment [31], can be eliminated [120].
The authors of [60] take a further step as they develop the concept of vehicle-to-grid (V2G)
proposing that electric vehicle can be potentially incorporated in to the power system
as a reliable and cost-effective distributed power source and storage. Following studies,
for example, [61] [62] and [I11], reveal that, through time-shifting charging schedule and
discharging to the grid during peak hours, EV fleet connected to the electric grid can
assist to level out peaks in overall electricity consumption, thus alleviate the grid pressure.
In addition, V2G can also support the utilization of intermittent renewable energy and
generate profits for the grid and EV owners if certain business models are applied.

Although V2G represents an enticing idea with purported benefits, it nonetheless re-
mains in the pilot stages of development [109]. Previous studies, see for example [19] and
[106], mainly focus on the centralized architecture where a central controller is introduced
to manage the ancillary service provision of a large group of EVs. They have shown that
the aggregation is necessary because the battery capacity for a single EV is so small that
its impact on the grid is negligible and communicating with each EV separately is ex-
pensive and of low efficiency. However, in practice, centralized control may reduce the
profits earned by EV owners, requires a considerable amount of investment for construct-
ing new communication infrastructures [941] and is lack of flexibility to incorporate EVs’
other business operations such as routing and scheduling. In this scenario, especially in
the infant stages of V2G deployment where there is a dearth of communication infras-
tructure, decentralized approaches that utilize price signals to incentivize EV owners to
time-shift charging/discharging become a more realistic option [55, , 19]. In particular,
cooperating with commercial EV fleet owned by logistics or e-commerce companies which
naturally aggregate a large number of EVs might form an ideal first step towards V2G
implementation. As key components in commercial EV fleet operation, efficient routing
and charging/discharging scheduling techniques in V2G contexts are necessary for the suc-
cessful integration of commercial EV fleets and the power system. However, only a limited
number of studies, such as the ones presented in [2, 50, , , ], have been conducted
in this field. To the best of our knowledge, no previous study is able to jointly optimize the
routing and charging/discharging for an EV fleet as a whole in bidirectional V2G context.

In this research, we consider a delivery service system that operates a fleet of EVs
to service customers. We propose the electric vehicle routing problem with time window
constraints under time-variant electricity prices (EVRPTW-TP), which 1) considers the
practical constraints of commercial EV fleet and logistic services; 2) enables EVs to charge
and discharge their batteries at time-of-use prices through the planning horizon and 3)
directly optimizes over the monetary cost of operations. As an extension of the electric
vechile routing problem with time windows (EVRPTW) proposed by [103] which is NP-



hard, the complexity of the proposed problem is even higher as an additional operation,
discharge, is enabled, partial recharge/discharge is allowed, and time-variant electricity
prices are taken into consideration. In order to efficiently solve the EVRPTW-TP, we
develop a Tabu Search and Variable Neighborhood Search hybrid heuristic (T'S/VNS) that
can generate quality feasible solutions efficiently. Moreover, we formulate a Lagrangian
Relaxation and a sub-gradient heuristic to obtain lower bounds to the EVRPTW-TP. The
upper and lower bounds are evaluated based on the widely-used instances developed by
[103] and are compared with the CPLEX over small instances. In addition, inspired by
the recent applications of deep reinforcement learning in solving combinatorial problems,
see for instance [, 65, 72, 85], we solve the EVRTW employing a reinforcement learning
framework which can be extended for EVRPTW-TP in the future. Finally, we apply the
proposed model to a use case of an EV fleet performing grocery delivery in the Kitchener-
Waterloo (KW) region in Ontario, Canada. Managerial insights are drawn from the case
study about the reactions of EV fleet to the changes in electricity price, time slots design
as well as fleet size.

The contributions of this research are three-fold. First, to the best of our knowledge,
this is the first study investigating the joint optimization of routing and charge/discharge
scheduling for multiple EVs under time-variant electricity price. The proposed model is
able to provide operational decision making support to commercial EV fleet operators
in order to lower overall charging costs, or even make profits through ancillary service
provision in near-term bidirectional V2G context. Moreover, the proposed model offers
some important implications for policy makers. The numerical experiments can assist the
power system regulators to better understand the energy markets, predict and estimate
the market reaction to energy price adjustment. The managerial insights extracted can
help the policy makers create more efficient energy pricing schemes as well as better energy
policies to maximize the environmental and economic benefits to different stakeholders in
the transportation and energy markets. Further, this research joins two fields of studies,
i.e. operations research and reinforcement learning, and leverages to help solve complex
optimization problems.

The thesis is organized as follows. In Chapter 2, we review the related work, followed
by the description of the proposed problem in Chapter 3. The Lagrangian relaxation of
EVRPTW-TP and the sub-gradient heuristic for solving it are elaborated in Chapter 4.
We introduce the VNS/TS heuristic for EVRPTW-TP in Chapter 5. Chapter 6 evaluates
the lower and upper bounds generated in previous sections agianst the state of art solvers.
We present the case study in Chapter 7, and introduce the deep reinforcement learning
model for the EVRPTW in Chapter 8. Finally, we conclude the thesis with Chapter 9.



Chapter 2

Literature Review

This research primarily contributes to the energy and transportation literature on bidirec-
tional V2G, and the operations research literature on EV routing and charging/discharging
scheduling. In this chapter, we first review the V2G literature focusing on describing its
concept and implementation architecture in Section 2.1. Since the EV routing problems
are, in general, extensions of the vehicle routing problems, most formulations and solution
methods for the former problem are originated from those for the latter problem, we re-
view literature for the vehicle routing problem in Section 2.2 before we delve into electric
vehicle routing problems in Section 2.3. Finally, we review the existing research work at
the interface of electric vehicle routing and V2G in Section 2.4

2.1 Vehicle to Grid

Most of the literature in energy and transportation community on V2G focused on design-
ing conceptual V2G implementation framework and performing simulations to investigate
the feasibility, reliability, economics and social/environmental implications of the proposed
system. Considerable research efforts were made on exploiting EVs to assist intermittent

renewable energy storage and integration [31, 7], provide ancillary services center on peak
shaving [123] and frequency regulation [51, 63]. In the meanwhile, topics related to EV
battery degradation were intensively investigated [108, 10, |, while there is a limited

work from the perspectives of business model application and economic analysis [16, 47, 86].
In this literature, two types of V2G contexts are considered: 1) bi-directional V2G where
charging and discharging are both enabled; 2) uni-directional V2G where EVs support grid
operations only through time-shifting charging schedules and are not able to inject energy
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back to the grid. For a comprehensive review about the landscape of the V2G research
and the future research agenda, we refer readers to [55] and [109].

The vast majority of previous related research considers the centralized approaches
where a central controller is able to manage the charging and discharging of all connected
EVs so as to make sizable impacts on the grid and to perform efficient communication. The
central controller here could be the grid operator that aims to minimize the overall system
cost [50] or total energy consumption [101]. Yet in most previous studies, researchers
consider introducing an intermediary, for example a garage or charging facility operator,
to coordinate the charging and discharging of a large number of EVs to meet the service
commitments to the grid while also achieving targeted charge levels for the contracted
EVs [9]. As a large purchaser, the intermediate aggregator may be able to purchase energy,
batteries and services at low prices [01, 62]. It, thus, has the capability to provide economic
incentives to attract personal EV owners to participate in the program.

Nevertheless, relying on centralized control has several drawbacks. First, previous
studies did not systematically explore the business models of V2G. The estimated economic
benefits to EV owners vary significantly among different models [109]. Although several
papers showed that V2G could bring major financial savings to EV owners under certain
assumptions [60, 8], there were many more cases, for example [16, 122], where the incentive
for drivers to participate is not sufficient. The authors of [94] point out that the aggregative
architecture is able to provide more reliable frequency regulation service for the grid by
contracting with a larger number of EVs than required, which, to some extent, reduces
the revenue collected by individual EV owners. Second, current centralized frameworks
generally assume that the travel patterns and future driving profiles of individual EVs are
known in advance. However, in practice, this setting may be faced with privacy issues [55].
In addition, the central controller only takes care of the charging and discharging, jointly
optimizing commercial fleet operations, such as routing, and fleet charging/discharging
is very difficult under such architectures. Finally, the large-scale implementation of the
centralized architecture requires communication infrastructure that is not readily available,
making its application even harder in the near future [941]. In fact, investing in a centralized
control technique may not be required until very high penetrations of EVs becomes a reality

[96]-

There is a recent but limited body of work on employing de-centralized approaches to
realize the V2G concept. Hu et al. in [55] classify the de-centralized control strategies
into two groups, transactive control and price control. Under transactive control, the
grid operator and the EV owners iteratively update their price and power schedule until
equilibriums are achieved. This way, the EV charging schedule is a result of the information
exchange between the grid operator and the EVs. While under price control, EV schedule is



purely the decision of EV owners given the electricity price signals. To name a few examples
considering transactive control. Karfopoulos et al. [59] develop a multi-agent system and
perform simulation of a realistic urban distribution network to compare the performance of
uncoupled and weak-coupled transactive control strategies and a centralized approach. The
weak-coupled transactive control strategy is shown to outperform its uncoupled counterpart
in terms of effectiveness of ”valley filling”, maximization of load factor and minimization
of energy losses, and have comparable performance as the centralized strategy yet with
significantly lower computational cost. Richardson et al. [96] propose a local control
strategy that could be implemented by EV owners without global information about the
grid so as to maximize their own charging rate with respect to some voltage and loading
constraints. The simulation suggests that the proposed methods could drive similar amount
of energy to the EVs within a certain time period compared to a centralized approach, but
requires wider safety margins for the system parameters. Rotering and Ilic [97] construct a
dynamic programming algorithm to control the charging and frequency regulation service
provision under price control, they show that performing smart charging and providing grid
support could substantially improve EV economics. Other research, such as [129] and [104]
investigate the impact of time-of-use electricity prices on the distribution network with EV
penetration and the design of electricity pricing schemes based on customer behaviors.

Our research differs from and extends this literature in a few substantive ways. First, the
proposed model in this research considers the charging/discharging strategy for commercial
EV fleets under price control in the context of bidirectional V2G, which has not been
explored by previous studies. Moreover, in addition to scheduling charging/discharging
for an EV fleet, we simultaneously optimize its routing for logistic services, making the
proposed model of great practical values for commercial EV fleets.

2.2 Vehicle Routing Problem

2.2.1 Problem Variants

The vehicle routing problem (VRP) was first proposed by Dantzig and Ramsor [30] in
1959 as a generalization of the well-known travelling salesman problem (TSP), and were
extensively studied in the subsequent 60 years. In general, given a set of geographically
scattered customers each associated with a demand, a depot and the travelling distance
between them, the VRP seeks to assign customers to the vehicles in such manner that
the demand at each customer is satisfied while the total distance travelled by the fleet is
minimized. The route of each vehicle should originate and terminate both at the depot. In



the gasoline distribution problem proposed by the original paper [30], the cargo capacity
of a single vehicle is assumed to be much smaller than the total customer demands. Such
a problem is later classified as the capacitated VRP (CVRP).

The VRP model were broadly applied in supply chain management and transportation.
In order to take into account realistic constraints and objectives, numerous variants of
the classical VRP were developed and investigated considering customer characteristics,
service quality, system stochasticity, fleet heterogenity, environmental and energy issues etc.
Among these variants, the one that is the most closely related to the proposed problem is
the VRP with time windows (VRPTW) [98] where an additional set of constraints about
the time intervals in which individual customers should be visited is introduced. Russell and
Urban [100] further propose the VRP with soft time window (VRPSTW) by allowing the
time window constraints to be violated at the price of some penalties. Of interest is also a
more recent group of problems, the green VRP (GVRP) which deals with the environmental
issues associated with the VRP. Due to the recent development of efficient optimization
and computing techniques, researchers and practitioners placed greater attentions on the
rich VRP (RVRP) that reflects most of attributes of a real-life vehicle-routing distribution
system [18]. For comprehensive reviews about the evolution of the VRP and its major
variants, we refer readers to the published survey papers [27, 35, 15, 73, 18, 79] and books

[117, 46].

2.2.2 Solution Methods

The classic VRP and its variants were shown to be NP-hard. Considerable research efforts
were made to solve these problems in the past decades. In general, the solution approaches
could be classified into four categories: the exact methods, the classical heuristics, the
meta-heuristics and reinforcement learning based approaches. Given the extremely large
number of related papers, it is difficult to review these methods comprehensively. Instead,
we outline the bigger picture through introducing the main existing ideas, analyzing their
strengths and limitations, and discussing how they form the pathway towards the solution
methods for the proposed problem.

Problem Formulation and Exact Methods

In terms of mathematical formulation, the classical VRP is originally formulated as a node
pairing problem where a set of binary decision variables x;; are used to represent if node ¢
and node j are paired to form a route [30]. This formulation is later extended by Laporte



and Nobert [77], with an additional constraint on the fleet size, as the widely-implemented
two-index vehicle flow formulation. In contrast, a limited body of literature, see [10] and
[15] for instance, implement the three-index formulation utilizing binary variables x;;
tracking if edge (i, j) is travelled by each vehicle separately. The three-index formulation,
though in general employs a greater number of decision variables thus requires longer
solution time, has led to several decomposition-based solution methods such as [58] and
[11]. In addition, the set-partitioning formulation [6] has also been successfully applied to
solve the VRP and its variations.

As an important variants of the classical VRP, VRPTW is in general easier to solve than
VRP since the time windows offer tighter constraints for the problem. Acknowledging that
the solution methods for VRPTW are in many aspects inherited from the work done for
the TSP, Kallehauge [57] categorizes the formulations for VRPTW into: arc formulation,
arc-node formulation, spanning tree formulation and path formulation. Among them,
path formulation is usually utilized in the context of column generation, see for example
[33], which were shown to have great performance in solving VRPTW. Moreover, with the
help of Lagrangian relaxation and constrained shortest spanning tree as well as constrained
shortest paths, lots of algorithms such as the ones presented in [39] and [71] were developed
to obtain lower bounds to VRPTW to support branch-and-bound methods.

we refer to [76] and [57] for systematic reviews about the VRP and VRPTW formula-
tions. Based on these formulations, exact methods, such as branch-and-bound algorithms
supported by lower bound generators [24], and column generation algorithms based on the
set-partitioning formulation [3], have been developed to solve the problems. However, due
to the computational complexity, exact methods can only solve VRP instances of less than
100 customers within reasonable time, which is insufficient for real-world applications.

Classical Heuristic Methods

Consequently, there is a growing body of research on applying heuristics and meta-heuristics
to approximate the optimal solution to the VRP. The classical heuristics could be cat-
egorized into constructive heuristics, improvement heuristics and two-phase heuristics.
As their names suggest, the constructive heuristics often build routes from scratch, the
improvement heuristics iteratively generate improved solution based on available ones,
whereas the two-phase heuristics decompose the problem into two sub-problems, customer
assignment and route generation, and solve them sequentially.

The most famous construction heuristic for the VRP is the saving heuristic first
proposed by Clarke and Wright [25]. They initialize the solution assuming allocating



one vehicle to each customer is possible. In each subsequent iteration, two routes, one
starts with node y and another ends with node z, are merged such that the biggest saving
doy +d.o — d., is achieved and the vehicle cargo capacity is not violated (note that node
0 is the depot and d, ; represents the distance between nodes 7 and j). The procedure is
repeated until no more links are possible, followed by solving a TSP for each vehicle at
final allocation to streamline the routes. Following studies make modifications to improve
the original saving heuristic. For instance, Golden et al. [15] change the saving calculation
formula to dy,+d. o —"d.,. The parameter v is employed to leverage the emphases on the
newly added edge between vertices z and y and on their relative positions to the central
depot. Altinkemer and Gavish [1] propose to perform the route merging through solving
a maximum cost weighted matching problem. Solomon [105] extends the algorithm to the
VRPTW, yet the solutions generated are far from the optimal.

Another well-known group of construction heuristics is the insertion-based algorithm
put forward by Gillett and Miller [43]. In the sweep algorithm they develop, routes are
sequentially constructed through inserting un-routed customers to the current routes with-
out violating distance and cargo constraints. Solomon [105], again, applies this idea to the
VRPTW considering both geographical and temporal information when determining the
order and the position of insertion. However, the sequential approaches are performed in
a greedy and myopic manner such that the last route generated is usually of poor quality.
In order to overcome this intrinsic weakness, Potvin and Rousseau [92] design a parallel
insertion heuristic to build routes simultaneously for the VRPTW. A regret measure is de-
veloped to select the next un-routed customer for insertion. Moreover, the work of Russel
[99] also showcase the idea of parallel construction. The main difference between [99] and
[92] lies in the processes of routes initialization, order of insertion and the post processing
of un-routed customers.

The aforementioned construction algorithms could assist to find good feasible solutions
quickly, whereas further improvement could still be realized through fine-tuning the current
solution. To this end, a variety of improvement heuristics have been developed. The
basic idea here is, given an available solution S (possibly generated from a construction
heuristic), one explores its neighborhood, namely N(S), defined by applying a neighbor-
hood operator to S for a better solution. If a solution, say S, which is better than S was
found in N(S), we move to S* and, again, explore N(S'). Such a procedure is repeated
until no improvement could be made. The final solution is a locally, if not globally, optimal
solution in the solution space defined by the neighborhood operator. One good example is
shown in [92]. Based on the solution they obtain using the parallel insertion heuristic, they
iteratively apply an interchange operator deleting 3 4+ L customers from and re-inserting
them to the routes (here L is a pre-determined parameter). Other commonly implemented



operators include relocate operator, exchange operator, A-opt operator etc., which are re-
viewed in [30, 76]. It is worth noting that, in practice, the choice of neighborhood operator
should leverage the trade-off between computational tractability and the thoroughness of
search. For instance, for the interchange operator used by [92], the size of neighborhood
grows exponentially with L, thus they restrict L to 0,1 and 2.

In addition, Fisher and Jaikumar [10] consider the problem in a two-phase manner, i.e.
first assign customers to vehicles and then optimize the route for each vehicle by solving
a TSP separately. Although previous mentioned approaches, for example, the original
saving algorithm proposed by Clarke and Wright [25], employ similar ideas, this is the
first time the term two-phase heuristic has been used. The decomposition, to some
extent, reduces the problem’s complexity, yet, in the meanwhile, raises a new question —
how to combine the two phases of the approach? Fisher and Jaikumar [10] construct a
linear approximation for the optimal travel distance they could achieve in the second phase
when solving the assignment problem in the first phase. They also note other plausible
ways of approximation such as solving the problem iteratively with Benders decompostion.
Solomon [105] exploits this cluster-first and route-second idea to design the time-oriented
sweep heuristic for the VRPTW. This set of approaches is natural in that it follows the two
phases often applied by human dispatchers, and could be potentially beneficial for future
algorithmic improvement [76]. However, to the best of our knowledge, this research avenue
has not been well pursued.

As mentioned earlier, the classical heuristics for VRP can be extended to VRPTW by
taking into account time-related factors when constructing and improving the solutions.
A more comprehensive review could be found in survey paper [17].

Meta-heuristic Methods

Recently, meta-heuristic, a top-level general strategy which guides other heuristics to search
the feasible region, attracted attention for its capability of effectively finding quality solu-
tions to hard combinatorial problems [74]. The meta-heuristics can be classified into local
search and population search, yet a general tendency has been to move from algorithms
based on a single paradigm to hybrid methods that draw on several principals [76].

The family of local search meta-heuristics that were successfully applied to solve the
VRP includes, but not limited to, tabu search and simulated annealing search. The key
differences between them lie in the neighborhood structure and mechanism for escaping
from local optima.
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Tabu search clearly stands out as the best meta-heuristic for the VRP [26]. The basic
idea behind is to iteratively move to the best solution in the neighborhood even if it is
worse than the current best one. Through the searching process, we maintain a tabu list
that consists of edges that we temporarily exclude from considerations for a number of
iterations in order to prevent cycling. To name a few successful applications to the VRP,
the Taburoute by [12], the Taillard tabu search by [113], and the granular tabu search by
[118] are some of the best examples. In [12], Gendreau et al. deign a generalized insertion
routine to remove and re-insert customers in each tabu-search iteration. A continuous di-
versification term is added in the cost function to penalize the customers that are frequently
removed. The algorithm consists of two searching phases, i.e. solution improvement and
intensification. This is accomplished by applying the tabu-search process twice with differ-
ent sets of parameters. Cordeau et al. [27] adapt this method for the VRPTW, yet with a
post-optimization heuristic which is commonly adopted by tabu-search without intra-route
neighborhood operator. It is acknowledged that one weakness of the tabu-search is that,
in order to obtain high quality solutions, the searching process often need to be performed
for thousands of iterations. In order to address this issue, Taillard [113] proposes two cus-
tomer partition heuristics for the VRP. The routing problem for each cluster then could
be solved in parallel. Toth and Vigo [I115] tackle the problem by restricting the size of
the neighborhood. They derive a granular neighborhood by discarding a large quantity of
unpromising moves and actually exploring a small subset of the neighborhood containing
the most promising ones. This method result in drastic reduction in computing time yet
without considerably affecting solution quality.

The simulated annealing search (SA) explores the neighborhood in a different way. In-
stead of examing multiple neighbors, we randomly select one neighbor and move there if a
better solution was found, otherwise we accept the deteriorated solution with a probability
controlled by a temperature parameter that can be adjusted as the searching proceeds.
Osman [90] first realizes this idea for the VRP. He first initializes a solution with a -
interchange descent algorithm, and then conducts the SA enhanced by a tabu mechanism.
The idea is extended by Chiang and Russell [23] for the VRPTW. Three neighborhood
structure are developed and compared through numerical experiments. In order to accel-
erate the searching process, Czech et al. [28] develop a parallel computing scheme for the

SA.

With regard to population search, instead of maintaining only the best solution so
far as the local search algorithms do, it operates within a population of solutions. In
general, it iteratively applies generic operators to generate new solutions based on the
population and update the population periodically. To the best of our knowledge, all the
population search algorithms that were successfully applied to the VRP are hybridized
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with local search. Nagata and Braysy [$1] propose a genetic algorithm for the VRP. At
each iteration, children solutions are obtained by applying a crossover operator to parents
selected from the solution population. They then perform modifications for each child for
solution feasibility, followed by an improvement phase with local search. Various studies,
for example [32] and [93] exploit the same framework as [$4], while Thangiah et al. [115]
hybridize the population search and local search in a different way. They employ an
genetic algorithm to generate offspring solutions based on the ”good” solutions they find
during local search. These offspring solutions are then utilized as the starting points of the
second-round local search.

Deep Reinforcement Learning Approaches

In addition to the aforementioned methods, there is an emerging group of literature on
applying artificial intelligence techniques, more precisely, deep reinforcement learning (RL),
to solve difficult combinatorial problems. Previous related research can be divided into two
main branches by problem formulation: policy-based methods and value-based methods.

Policy-based methods seek to optimize over a policy model that can directly generate
the optimal action given the current state. Its applications in combinatorial optimization
originate from Vinyals et al. [I21]. Considering that solutions to some combinatorial
problems such as the TSP are permutations of the given nodes, they develop the pointer
network (PN) based on the sequence to sequence model originally constructed for machine
translation [112]. The PN consists of two separate long short-term memory newral networks
(LSTM), one to encode the sequence of input nodes and another one to produce (decode)
the output sequence. A content-based attention mechanism is introduced in between to
enable the information to flow from the encoder to the decoder. They train the PN in a
spervised manner with solutions generated by exact and heuristic algorithms. The model is
able to efficiently find near-optimal solutions to small TSP instances. However, in theory,
the model performance is constrained by the algorithms they use during training.

Bello et al. [3] then construct a RL framework employing the critic-arctic method to
train the PN for solving the TSP. In the RL framework, they regard the PN as an agent
making actions (determining the next node to visit) to solve the instances generated on the
fly. Each action taken by the agent is assigned a reward based on which they update the
parameters of PN so as to maximize the expected rewards the agent could obtain given any
instances. This way, training the PN does not require any solutions generated by existing
problem solvers. Therefore, it is possible for the model to outperform any other existing
methods. Nazari et al. [¢5] argue that it is difficult to generalize the PN to combinatorial
problems where system representations change over time. For example, in the VRP, every
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time we visit a customer, the customer’s demand will be zero afterwards. Since the LSTM
encoder intakes input nodes sequentially, we have to feed the updated node information to
the PN from scratch, which is computationally expensive. They point out that the order of
input nodes does not provide any useful information. They thus replace the encoder LSTM
with element-wise projections and apply the model to the VRP. More rencently, Kool, Hoof
and Welling [72] propose a new model for the TSP and VRP based on multi-head attentions
and train the model using RL with a greedy roll-out baseline.

On the other hand, value-based methods aim to find a value function that is able to
evaluate the potential actions given a system state. Decisions could then be made based
on the action evaluation. A successful application can be found in [65] where a graph-
embedding network is introduced to parametrize the policy and is trained using the fitted
Q-learning.

In general, though policy-based methods suffer from sample inefficiency thus gener-
ally requires longer training time in practice, they tend to more stably converge to good
behaviors comparing with value-based methods.

2.3 Electric Vehicle Routing Problem

The electric vehicle routing problems (EVRP) could be regarded as a special variant of the
green vehicle routing problem proposed by Erdogan and Miller-Hooks [37] in 2012 for alter-
native fuel vehicles (AFVs). To the best of our knowledge, it is the first research work that
takes into account the opportunity to extend vehicles’ distance limitation as a consequence
of actions taken while en route, i.e. visiting an en-route station/satellite facility to replen-
ish or unload. They formulate the problem as a classical VRP with additional constraints
for en-route replenishment. Schneider et al. (2014) [103] extend the framework specifi-
cally for electric vehicles, propose the electric vehicle routing problem with time windows
(EVRPTW). Instead of using constant replenishing time as in [37], they assume a linear
charging time associated with the EVs’ battery levels on arrival at the stations. While
both [37] and [103] employ the assumption that an EV can only fully recharge its battery
at the stations, Felipe et al. [33] consider partial charging stategies for EVs with multiple
types of charger, each with a different charging speed and unit cost. Keskin and Catay [(4]
propose a similar study yet for EVRPTW. Starting from Lin et al. [30], researchers started
to investigate the problem under more sophisticated modeling for EV battery. They de-
velop a general framework for the EVRP considering the impact of EV load and speed on
battery consumption, heterogeneous fleet, and topology of charging stations. Monotoya
et al. [83] employ a non-linear function to model the battery charging process. Pelletier
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et al. [91] incorporate the cost of battery degradation into the EVRP and formulate an
at-depot charge scheduling problem with considerations regarding time-dependent energy
prices, degradation cost and facility-related demand cost.

In terms of solution methods, due to the problem complexity, most of the existing
studies implement meta-heuristics. As far as we know, the only paper that considers exact
algorithm for the EVRP is the one done by Desaulniers et al. in 2016 [32]. A column
generation algorithm is proposed for four variants of the EVPTW [103] with respect to
full /partial recharge and the number of station visit(s) for a single route.

Given the intrinsic similarities between the VRP and EVRP, heuristic and meta-
heuristic algorithms reviewed in Section 2.2.2 could be adapted for the EVRP with specific
adjustments for the station nodes and charging schedule. For example, a construction
heuristic based on the Clarke-and-Wright saving heuristic [25] is proposed in [37]. If the
distance constraint is violated after merging two routes, a station will be inserted to the
position that results in a minimal distance increase. This heuristic is employed by the
following papers including [35] and [64]. When performing local search, Felipe et al. [33]
design a new neighborhood operator, namely recharge relocation, to relocate the station,
if exists, to its best location along the route without reordering the customers’ sequence.
Similar operators, namely station removal, station insertion [0] and StationReln [103],
are defined by other literature. For a hybrid electric vehicle routing problem, Abdallha
[1] formulate three Lagrangian relaxations and a tabu search heuristic that can efficiently
provide quality lower and upper bounds respectively. From the perspective of population
search, Abdulaal et al. [2] exploit a route-first, schedule-second idea. They first employ a
generic algorithm to generate customer sequences for vehicles, then, if needed, assign sta-
tions to routes with a Markov Decision Process. Finally, trust-region search is performed
to optimize the EV’s operational cost.

Summing up, since the proposed problem is much more complicated than the VRPs
proposed by most of the existing research, implementing meta-heuristic or artificial intelli-
gence methods are a more realistic option than using exact approaches. Specific attention
should be placed on the design of station-related neighborhood operator. Further, the
removal and insertion of station could have sizable impact on the time and battery level on
arrival at the rest nodes along the route [103]. Fast evaluation of this impact is paramount
for efficient implementation of a meta-heuristic.
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2.4 Electric Vehicle Routing in V2G Context

Limited research efforts were made to investigate the joint optimization of EV routing
and charging in V2G context. The authors in [119] and [128] study the problem for a
single EV. Trivino-Cabrera et al. [119] formulate a mixed integer programming problem
for a single EV providing energy delivery service between locations taking into account
battery degradation, time-dependent energy prices and the interaction between the EV
and the grid. The model is able to provide routing and charging/discharging schedule so
as to maximize the EV owner’s overall benefit. However, the EV is not responsible for any
customer services in this research. Under time-variant electricity prices, Yang et al. [128]
optimize over the monetary cost of one EV seeking to provide delivery /pickup services for a
series of customers in the context of uni-directional V2G where discharging is not enabled.

For an EV fleet as a whole, Yu et al. in [50] propose an autonomous electric vehicle
(AEV) logistics system for smart grid service provision in uni-directional V2G context.
The system can generate optimal routes for the AEV fleet to satisfy all the logistic re-
quests and strategically detour to store the power generated by intermittent sources. Three
objectives are taken into consideration, i.e. minimizing total driving distance, maximiz-
ing the amount of energy charged from renewable sources, and minimizing the amount
of time the AVs require for reaching final destinations. They formulate the problem as
a quadratic-constrained mixed integer linear programming. To accelerate the solution
process, they formulate a Lagrangian relaxation and a dual decomposition algorithm to
enable distributed computation. Tang et al. [I11] consider a set of EVs travelling from
their sources to destinations without en-route customers. EVs could detour to two types
of stations, one associated with renewable energy and located in suburb areas while the
other type are normal stations located in urban areas, for en-route charging and discharg-
ing. An optimization problem is formulated to provide routing and charging/discharging
decisions. From the perspective of an EV dispatcher, [2] investigates the routing and
charging/discharging schedule for an EV fleet to provide services to customers with time
window constraints. They consider continuous energy prices and optimize over a quadratic
objective function simultaneously considering charging cost, discharging reward as well as
battery degradation cost. Due to the complexity of the proposed model, it is difficult to
coordinate the optimization across EVs. They employ the idea of cluster-first and route-
second to enable parallel optimization of the routes for different EVs. However, they do
not specify the methods for assigning customers to EVs.
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Chapter 3

The EVRPTW-TP

3.1 Problem Description

We define the electric vehicle routing problem with time windows under dynamic electricity
prices (EVRPTW-TP) on a complete directed graph G(V, s .4, E) where V, ; ,q denotes the
set of all nodes, and FE is the set of all edges. The nodes can be partitioned into three
distinct categories: customer nodes, station nodes, and depot nodes. Let V. = {1,2,... N}
denote the set of N customers, each of them is associated with a demand d;, a service time
s;, and a time window |e;, ;] during which an EV should arrive at the node and start
providing services. Let V; = {N 4+ 1,..., N 4 S} be the set of S en-route stations. We
introduce two nodes which make up the depot set D = {0, N + .S + 1} to denote the same
depot for formulation purposes. Nodes 0 and N + S + 1 are the first and last nodes of
every EV route respectively. In the following discussion, to indicate a set that includes the
respective depot nodes, we subscript the set with ”0” (origin) and/or ”d” (destination).
Similarly, we subscript the set with ”¢” and ”s” to indicate the inclusion of customer and
station nodes respectively. For instance, Vg = V. U{N + S + 1}. Set E consists of edges
among customer, station, and depot nodes. Each edge, say (i, ), is assigned a distance
d;j. Assuming constant consumption rate g and constant travel speed v, we can infer the
travel time t;; = dTJ and energy consumption ¢;; = gd;; for each edge. Note that, under
the assumption of constant charging speed i, the energy consumption here is represented
as the time required to recharge the energy consumed along the edge, i.e. f;; = ac;;.

The commercial EV fleet consists of K homogeneous EVs, each has a load capacity
@, and a battery capacity C'. Similar to the time-energy transformation done for energy
consumption along edges, we define B = aC' which is the time required to fully recharge

16



the battery from 0. At the very beginning of the planning horizon, all the EVs are at
the depot (node 0) with a full battery. They then are allowed to leave the depot to serve
the customers during their time windows and visit en-route stations if scheduled. All EVs
should return to the depot (node N+ S+ 1) before the end of the planning horizon. During
each station/depot visit, an EV can either pay to charge its battery or make profits by
injecting energy back to the grid from its battery. The charging cost and discharging reward
vary according to time. We assume that EVs are allowed to perform either charging or
discharging during their station visits, but are not allowed to perform both of them during
one single visit. We make this assumption to avoid frequent switches between charging and
discharging which were shown to have detrimental effects on battery lifespan. We discretize
the planning horizon into |T'| consecutive periods, each of length § and is associated with
a charging rate P!, and discharging rate P!, Vt € T. In order to avoid a non-linear
formulation, we assume that once an EV starts charging/discharging its battery, it can
only do so for the whole period. For example, suppose § = 60, an EV arrives at a station
at time 110, it cannot start charging/discharging until time 120 when the 3¢ period starts.
An EV can stop charging/discharging only at the end of the following periods. The only
exception is that once the EV’s battery is fully charged the process will be automatically
terminated at anytime, yet the EV owner still need to pay for the whole charging period.
In addition, EVs would be fully charged during the night at the minimum charging rate
Pight. We seek to find K routes such that all the customer demands are satisfied and the
total net electricity related cost is minimized without violating time, cargo capacity and
battery capacity constraints. The notations are summarized in Table 3.1.

3.2 Mathematical Formulation

As discussed in Chapter 2, two-index, three-index and set partitioning formulations are
commonly implemented by previous studies on VRP. As an extension of the VRP, EVRP
can also be formulated in these manners. Set partitioning formulation is often associated
with column generation, see for example [32], for solving the problem exactly. Two-index
formulation, such as [103], generally requires less number of decision variables than three-
index formulation, thus is favored by most previous research. Given the complexity of
the proposed problem, it is difficult to solve it exactly. We formulate the problem in a
three-index manner such that we can decompose the problem more conveniently using a
way similar to [58] and [11], which will be explained in more detail in Chapter 4.

To formulate the problem we define the binary variable z;j; that takes a value of 1
if edge(i, j) is travelled by vehicle k and a value of 0 otherwise. The real non-negative
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Table 3.1: Summary of the Notation

Definition

V. The set of customer nodes

Vs The set of station nodes
V,a  The set of depot nodes

E The set of all edges

T The set of charging/discharging periods

N The number of customers

S The number of stations

K The number of EVs

) The length of each charging/discharging period

Q Cargo capacity of an EV

C Battery capacity

B The amount of time required to fully charge the battery
Q The reciprocal of the constant charging speed

g Energy Consumption rate with respect to distance traveled
v Constant traveling speed

d;;  Length of edge (i, )

ti;  Travel time along edge (3, j)

¢;;  Energy consumption along edge (3, j)

fij  The amount of time required to charge the energy consumed along edge (i, j)
e; Earliest service start time at node ¢
l; Latest service start time at node
S; Required service time at node ¢
i The demand at node i
P! The cost for charging during the #** period
Pi.  The reward for discharging during the " period
Pright  The unit cost of charging during the night
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Table 3.2: Summary of the Decision Variables

Variable Type Definition
Tijk Binary If edge (i,7) is travelled by vehicle k& (= 1) or not (= 0)
Yik Binary ~ Whether vehicle k charges (= 1) or discharges at node i (= 0)
Titk Binary If vehicle k charges at node ¢ during period ¢ (= 1) or not (= 0)
it Binary If vehicle k discharges at node ¢ during period t (= 1) or not (= 0)
Tik Continuous The arrival time of vehicle k at node ¢
bir Continuous The battery level of vehicle k on arrival at node ¢
Uik Continuous The remaining cargo of vehicle k on arrival at node i

variables 7;, refers to the time EV k arrives at node ¢, while b;, and w;, represents its
battery level and remaining cargo on arrival at node ¢, respectively. Note that the battery
level here indicates the amount of time required to charge the battery from 0 to the current
level. The binary variables r;, and d;;. indicate if EV k recharges and discharges its battery
at node ¢ during period ¢t (=1) or not (=0) respectively. The binary variable y;. takes a
value of 1 if EV k recharges its battery at node i and takes a value of 0 otherwise. Note
that the decision variables d, i and y;. are only associated with station and depot
nodes, while others are associated with all nodes. For the sake simplicity, we use subscript
d to denote the depot node N + S + 1. The type of definition of the decision variables are
summarized in Table 3.2.

We formulate the problem as a mixed-integer programming as follows and refer to it as
EVRPTW-TP.

K
min Z Z Z OlrinPre — din Pys] + Z Pright[B — bar, — Z O(ramk — da)]  (3.1)

k=11i€V; oq t€T k teT
st > Y wg=1, Vi€V, (3.2)
k jEVc,s,d
> ma=1, Vke{l,2,... K} (3.3)
ich,s,o
Z Tjik — Z $7ij:O> VZ.E‘/C,S,]CG{L2,...,K} (34)
jEVc,s,o jevc,s,d
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Tik + (tij + si) i — M(1 —2ix) < Tjg, Vi€ Viegod € Vesake{1,2,...,K} (3.5)

t0(Titk + digr) + tijig — M(1 — xijn) < Tjgy, Vi€ Vi, j€Vesat €T ke{l,2,...,K}

(3.6)
e < Ti Slz, Vi € ‘/;757061,/66 {1,2,,K} (37)

b= B, Vke{l,2... K} (3.8)

bjk < by — fijﬂﬁijk + M(l — mijk); Vi € V;,Vj € ‘/c,s,d7 ke {1, 2, Cey K} (39)

bjr < bik+z 5T‘itk—z Ok, — fisrin+ M (L—zi50), Vi€ Vio,j € Vesa bk €{1,2,..., K}

teT teT

(3.10)
> otk < B by, Vi€ Vi k€{1,2,..., K} (3.11)
teT
> Odiy < b, Vi€ Vi k €{1,2,... K} (3.12)
teT
> vk < |Tlyi, Vi € Vioask € {1,2,... K} (3.13)
teT
> dik STV = i), Vi€ Vi h €{1,2,.... K} (3.14)
teT
Tik—(t—l)(SSM(l—ditk—mtk), ViEVsd,tET,k‘e{l,Q,...,K} (315)
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Uk < Ui — 4 Tijk + M(l — Jlijk>, Vi € ‘/c,s,o,j € ‘/:;75761, ke {1, 2, . ,K} (316)

wr=Q, ke{l,2,... K} (3.17)

0<hyp<B Y ayw Vji€Vike{l2. K} (3.18)
1€Ve,s,0

Uik,  Tik > 07 Vi € ‘/c,s,oda k€ {17 2: B 7K} (319)

Tijp €{0,1}, Vie Vi ,0,Vj € Vesa ke {l1,2,..., K} (3.20)

yw € {0,1}, VieV,ke{1,2,... K} (3.21)

Titk dz’tk € {0, 1}, Vi € ‘/;,od7t S T, ke {1,2, ceey K} (322)

The objective function 3.1 minimizes the net cost, i.e. total charging cost minus total
discharging reward. The first term corresponds to the net cost during the planning horizon,
while the second term refers to the cost of fully charging all EVs at night. Constraints 3.2
ensure that every customer is served by exactly one EV. Constraints 3.3 enforce all the
EVs to return to the depot by the end of the planning horizon. Constraints 3.4 guarantee
that no route ends at a customer or a station node. Constraints 3.5 - 3.7 deal with the
arrival time of EVs at a given node. Constraints 3.5 ensure the time feasibility of edges
leaving customers and the depot, while Constraints 3.6 deal with the edges originated
from charging stations. Note that ¢§ is the time when the t** period ends. In Constraint
3.6, we assume an EV can leave the station right after its charging/discharging schedule
at the station has completed. Constraints 3.7 ensure that the time windows of all the
nodes are not violated. Constraints 3.8 - 3.10 consider EVs’ battery levels on arrival
at the nodes. Constraints 3.8 mean that every EV is fully charged before leaving the
depot. Constraints 3.9 ensure battery feasibility along edges leaving customers and the
depot, while Constraints 3.10 consider edges leaving stations. Constraints 3.11 - 3.15 deal
with EVs’ charging and discharging behaviors at stations and the depot. Constraints
3.11 mean that an EV battery cannot be recharged to a level that exceeds its capacity,
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while Constraints 3.12 state that an EV battery cannot be discharged to a level below 0.
Constraints 3.13 and 3.14 ensure an EV is allowed to discharge or recharge its battery at
station and depot nodes but is not allowed to do both in a single visit. In Constraints 3.15,
if 7, — (t—1)d > 0, it suggests that the EV has not arrived at station/depot ¢ by the start
of the " period. Therefore, d;; and r;; on the right-hand-side have to take a value of 0
implying that an EV is allowed to charge/discharge its battery only after its arrival at a
station/depot. If 7, — (£ — 1)d < 0, we can set discharging/recharging schedule at node i
for the t** period, d;; and r;; thus can be either 0 or 1. Constraints 3.16 guarantee that
the demands along an EV’s route are all satisfied, whereas Constraints 3.17 state that all
EVs are full at the start of the planning horizon. Constraints 3.18 - 3.22 define the ranges
of decision variables. The " M” in the aforementioned inequalities is a very large constant
number.
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Chapter 4

Lagrangian Relexation for the
EVRPTW-TP

The proposed EVRPTW-TP is an NP hard combinatorial problem. Thus, solving the
problem with commercial solving tools, such as CPLEX, requires extensive computational
efforts. Solving instances of over 10 customers using traditional MIP solvers is computa-
tionally expensive. Therefore, developing efficient solution algorithm is of great importance
for its real-world application.

For the EVRPTW-TP, all the constraints other than Constraints 3.2 are associated
with a sub-index k implying constraints for different EVs are separable. We can take
advantage of this special structure by relaxing Constraints 3.2 and then decomposing the
relaxed problem into a set of identical sub-problems (as the EV fleet is homogeneous) that
can be solved relatively quickly using CPLEX. The relaxed problem can assist to provide
lower bounds to the original problem which can help enhance the performance of branch-
and-bound and allows to evaluate the solution quality of the heuristics that will be detailed
in Chapter 5. In terms of the relaxation, previous studies, see for example [58] and [11],
have successfully applied Lagrangian relaxation to various VRP problems and have shown
it to be very effective and efficient. In this chapter, we exploit a Lagrangian relaxation
to decompose the EVRPTW-TP and employ a sub-gradient heuristic to approximate the
original problem.
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4.1 Lagrangian Relaxation

We construct the Lagrangian relaxation, as shown in Equation 4.1, by relaxing Constraints
3.2 and introducing a set of penalty parameters \’s to penalize the violations of Constraints
3.2 in the objective function. The feasible region of the EVRPTW-TP is a subset of that
of Problem 4.1, enabling Problem 4.1 to provide lower bounds to the original problem.
Through fine-tuning the values of A’s, we can obtain ”"the best” lower bound whose dis-
tance from the original optima, in theory, could be zero. The corresponding maximization
problem is the Lagrangian master problem as in Equation 4.2 where ) is a vector of penalty
parameters. As mentioned, the Lagrangian relaxation problem can be decomposed into a
set of identical sub-problems, each associated with an EV. The sub-problem is presented
in Equation 4.3. We note that the constraints as well as the decision variables of the
sub-problem are in the same formats as the original EVRPTW-TP yet without sub-index
k and Constraints 3.2.

Lagrangian Relaxation Problem

Zrr(N) = mm3 ) Z Z Z OlrinPre — din Py,

k ZEVS od tET

+ Z Pright|B — bay, — Z O(rae — da)] (4.1)
%

teT

DRYES 3P o

iGVc k jEVc,s,d

Lagrangian Master Problem

Ziv = I,I\lgﬂg{ ZLR(/\)

_ . (4.2)
= max KZsp(\) + Z i
ieVe
Lagrangian Sub-problem
Zsp(A) = s.t.(3.11%ifn(3.22) Z Z S[riaPl, — diPy) + Prigni| B — by — Z O(rar — dat)]
i€V, oq tET teT
DI
ieVe jEVQS’d
(4.3)
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In the sub-problem defined above, penalty parameters \’s only appear in the objective
function, implying that the feasible region defined by the constraints is fixed regardless of
the values of \’s. Each feasible solution to the sub-problem corresponds to a route and a
schedule that an EV could take. We define several parameters for each feasible solution
h € H where H is the feasible region of the Lagrangian sub-problem, as shown in Equations
4.4 - 4.7. We superscript the decision variables with h indicating their association with
solution h. The value of ¢ represents the net cost of the schedule implied by h, al is the
number of times node i is visited along the route in k. Additionally, w" is a N dimensional
vector whose " entry w? indicates the negative number of times node i is visited more
than once by the whole EV fleet.

= 3" N kP — AP+ PugulB = bl =Y 6(rk, — dly)] (4.4)
i€V, 0q tET teT
al =y (4.5)
jEVc,s,d
wh = (w?7 wgu s ’wjlif) (46)
wh =1— Ka” (4.7)

With these parameters, we can re-write the Lagrangian sub-problem and the Lagrangian
relaxation problem as in Equations 4.8 and 4.9 respectively. Further, we re-write the
Lagrangian master problem as in Equation 4.10.

S Al
Zsp(\) = min ¢ Z i (4.8)

1€V,

— mi h (1 _ h
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i€Ve
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4.2 Sub-gradient Heuristic

Solving the Lagrangian master problem defined in 4.10 is non-trivial as enumerating all
feasible solutions of the sub-problem requires an extensive amount of computations. To
overcome this issue, we utilize a sub-gradient heuristic to solve the Lagrangian master
problem iteratively. The basic idea is maintaining only a subset of all feasible solutions
and accumulate feasible solutions one after another as we move from one \ vector to another
one along its sub-gradient direction. The feasible solutions accumulated are then exploited
to approximate the sub-gradient at the subsequent A\ vectors. This type of sub-gradient
heuristics is initiated by Held and Karp in [52] and redefined and experimentally studied
in [53] where a way for choosing step size is presented. However, the choice of step size
in [53] largely relies on the choice of a parameter \; ()\; here is a constant parameter set
for iteration j in the original paper, and is different from the vector A\ we defined in this
thesis), thus is relatively difficult to implement. Instead, we employ the method developed
by Kallehauge et al. [5&] that incorporates the trust region defined by Griffith and Stewart
[18] in a non-linear programming context. In doing so, the width of the trust region,
equivalently the step size, is dynamically adjusted through the search process based on the
quality of sub-gradient approximation at a given iteration without parameter engineering.
More specifically, the sub-gradient heuristic is introduced as follows.

At the initialization phase, we randomly generate a vector A! and set the search starting
point ! to be equal to A'. We set a tolerance tol as a termination criteria, an initial trust
region width w!, and an iteration counter i is set to 1. We then solve the Lagrangian
sub-problem Zgp(u!') and Zpg(u'), and ¢; and w; are set based on its optimal solution.

At iteration ¢, we first solve the master problem presented in 4.11 which considers the
solutions we found up to iteration i and optimize the penalty factors p’s within the trust
region defined by the current penalty factors A’s and width w?. The local optimal solution
to the master problem is denoted as p'*! and its corresponding objective value Z%,, is
an estimation of Zyg(u ™). We thus can estimate the improvement in the lower bound

Acst = Z4 1 — Zrr(A\Y). If the estimated improvement is smaller than the tolerance tol, we
terminate the search process as the lower bound is already ”good enough”. In addition, it
is possible that the current best lower bound Zr(\?) is greater than a pre-defined large
value MR, then we claim that the instance is infeasible. For EVRPTW-TP, we set My as
three times the cost for fully charging the whole EV fleet at the highest charging rate, i.e.
Mpr = 3K P:Za’”% where P7%* indicates the highest charging rate throughout the planning

horizon, % is the number of periods required to fully charge an EV.
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-
Zyy =max 0
w0

st. 0 <Zpr(p)+ <wg,p—p!> Vg=1,2,...,i (4.11)

If the search process is still ”alive”, we solve the sub-problem Zgp(ut1') and compute
the corresponding Zp (™) as well as ¢;;1 and w;, ;. Then we evaluate the quality of the
(w1 —

ZLR Zrr(A

trust region by calculating a metric p = . We enlarge the region width by
50% if p > 1, divide the width by 1.1 if p is negaetlve and make no adjustments otherwise.
Further, if p > 0, we move to a new penalty vector by setting A" = p*! and take a
non-step, i.e. setting A*' = X\, otherwise. The search procedure is repeated until one
of the termination criteria is met, and the latest Z;r(\) at termination is the best lower
bound to the original EVRPTW-TP. In particular, the pseudo code of the sub-gradient
heuristic is summarized in Algorithm 1.

Algorithm 1 Sub-gradient Heuristic for Solving the Lagrangian Dual

1: tol,w', \! < Initialization()
2: ul — A
314+ 1
4: solve Zgp(u'), and compute Zpr(u'), ¢; and wy based on its optima
5: while True do
6: wtt ZE < Master(w', s ..o pt wy, L w;)
7 Agst Zi v — Zrr(A\Y) (estimate improvement)
8: if A,y < tol or ZLR()\l) > Mg then
9: break
10: else
11: solve Zgp(u'™), and calculate Zpr(p'™), cit1, and w; 44
12: p ZLR(NZ+1):ZLR(>‘Z)
13: if p=1 then w! = wi x 1.5
14: else if p < 0 then w'™! =w'/1.1
15: else W =
16:  if p > 0 then, move forward: \*! < ittt
17 else N1« X
18: 141+ 1
LB < Zp(\)
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Chapter 5

VNS/TS Hybrid Heuristic for
EVRPTW-TP

The Lagrangian relaxation introduced in the last chapter assists us to obtain quality lower
bounds to the original problem. However, we still do not have a feasible solution that can be
used to dispatch EVs in real-world operations. In this chapter, we focus on implementing
a meta-heuristic to generate feasible solutions of high quality.

As mentioned earlier, meta-heuristics for EV routing problems can be classified into
three main categories: annealing search, tabu search and population search. Due to the
presence of charging stations, constructing feasible offspring solutions from parent solutions
is not straight forward making population search algorithms, such as generic algorithms,
less desirable. Following the framework presented in [103] for the EVRPTW, we develop
a variable neighborhood search and tabu search hybrid (VNS/TS) meta-heuristic with an
annealing mechanism to solve the EVRPTW-TP.

5.1 The Framework

The overall framework of the VNS/TS heuristic is shown in Algorithm 2. The heuristic
consists of two components: a variable neighborhood search (VNS) components serves to
diversify the search process, and a tabu search (TS) component for local intensification.
Each function and component mentioned here are elaborated in the following sections.
First, we initialize a set of routes that visit each customer with a positive demand exactly
once. We then search the region defined by the EVRPTW-TP for at most 7,,s iterations.
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Specifically, in each VNS iteration, we first move to a random solution S  in the neigh-
borhood of the current best solution S. After that, we implement tabu search to find the
local optima S” starting from S for at most Mabu Steps. If the local optima satisfies the
acceptance criteria, we move from the current solution S to S”. If we do not find any
solutions better than the current best with respect to the generalized cost function for
Nearly consecutive VNS iterations, the early stop mechanism will be triggered, otherwise we
terminate after ny g iterations.

Algorithm 2 VNS/TS Heuristic For EVRPTW-TP
1. S =initialization()
2: counter <— 0
3: forv=1,2,..., 1, do
4: S" = Move2Neighbor(S)

5: for 7 =1,2,... Napy do
6: S = Tabu(Sl)

7 S" «— 5

8 if fuen(S) > fuen(S”) then
9: counter < 0

10: else

11: counter < counter + 1
12: if counter > neqry then
13: Break

14:  else if Accept(S,S") then S < S”

5.2 Initialization

We construct the initial solution with a sweep heuristic similar to [103]. The pseudo code
for the heuristic is presented in Algorithm 3. First, we sort the customers in an increasing
order of the angle between the depot, a randomly selected point and the customer. Then,
starting from the customer with the smallest angle, we insert the customers to the active
route at the position resulting in minimal increase in the traveling distance of the active
route. Once the battery or cargo constraints of the active route are violated, we activate
a new route if the number of routes used so far has not exceeded the given EV fleet size.
Otherwise, all the remaining customers are inserted into the last route. Finally, all the
constructed routes form the initial solution S = (R, R?, ..., R¥)
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Algorithm 3 Initialization

: Vo <= SortByAngle(V,)

1< 1

: R [0, N + S]

: for ¢in V. do

R' + insert(R', c)

if BattOrCargoVio(R') and i < K then
1< i+1
R' « [0, N + 5]

I AN

5.3 VNS Component

The neighborhood structure is defined by a cyclic-exchange operator. We first select NV,
routes from the current solution S to form an exchange cycle. For each of the selected
routes, namely R’, we generate a random number v; indicating the number of consecutive
nodes in R’ that form the exchange block, and then randomly pick the starting nodes of
the block. After that, the blocks are reversed and then transferred among the selected
routes forming a new solution S', feasible or infeasible, in the neighborhood of the current
solution. Figure 5.1 shows an example of the cyclic exchange operator where N, = 3, the
selected routes are R, R/ and R* with v; = 2, v; = 3, vy = 2. The three dash blocks on
the left form an exchange cycle. The blocks are reversed and transferred forming the three
new routes R, R¥" and R¥ on the right.

Figure 5.1: An Example of the Cyclic Exchange Operator

Based on S’, we then use the tabu search which is detailed in the next section to
find the local optima S”. Instead of accepting only S” that is better than the current
solution S, we also accept solution worse than the current solution with a probability of

Faen(S)—faen(S")

Temp to diversify the searching process. Here T'emp is the temperature

exp
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that is initially set to T'empg such that a solution with cost fgen(S”) that is K worse than
the current best solution will be accepted with a probability of 50%. The temperature
will decrease by a factor after each VNS ietration so that in the last 20% iterations, the
temperature is below 0.0001.

The VNS component will be performed at most nyyg times. The best solution we
found before the termination of the VNS component is the final solution we get for the
EVRPTW-TP.

5.4 Tabu Component

We consider four widely-used operators for the Tabu search. The operators are visualized
in Figure 5.2 where nodes in the same row are travelled by an EV before the operator is
applied, the dash arrows are edges to be removed, the stripped and shadowed nodes are the
nodes selected by the algorithm. New routes after the operator is applied are highlighted
in blue and orange. In particular, we introduce the four operators as follows.

e 2-opt*: Select two routes and remove one edge from each of them. Connect the first
part of the first route with the second part of the second route and vice versa.

e Exchange: Exchange the positions of two nodes. The two nodes could either be in
the same route or in different routes.

e Relocate: Select one route, remove one node from this route and reinsert this node
to another position. The new position could either be in the same route or in another
route.

e StationInRe: Perform insertion or removal of a station node.

In each tabu iteration, we exam all the possibilities of applying the aforementioned
operators to different parts of S’, and take the action that results in maximal decrease in
the generalized cost. We prohibit the reinsertion of removed edges for a specified number
of tabu iterations called tabu tenure. The tabu tenure for each deleted edge is randomly
selected from an interval [Upmin, Umaz]. We lift all the tabu restrictions once we find a new
best solution. The procedures are repeated until no improvement could be made or for at
most 7, iterations and the best solution we find before termination would be S "
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R

Exchange (inter — route) Exchange (intra — route)
Relocate(inter — route) Relocate (intra — route)
StationInRe (insert) StationinRe(remove)

Figure 5.2: Tabu Search Operators

5.5 Generalized Cost Function

The generalized cost function, which is used to evaluate the solution quality, is defined as
follows:

fgen(S) = felec(S) + Btwq)tw(s) + Bbatt@batt(s) + ﬂcargoq)cargo(s) (51)

Where S is a solution consisting of K routes (R', R%, ..., RE); Each route can be
represented by a sequence of nodes with the start and end being the two depot nodes
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respectively; fee.(S) is the net electricity related cost (mentioned as electricity cost for
simplicity) of the routes, i.e. charging cost minus discharging reward; ®;,,(S), ®pa(S) and
D argo(S) are the violations of the time window, battery and cargo constraints, B, Bpar
and Beargo are their corresponding penalty factors.

5.5.1 Violation Evaluation

In order to evaluate the violations and the electricity cost, we define the following variables
in Equations 5.2 - 5.6 for each node along a given route R of length n. Since the general-
ization cost of each route can be evaluated separately, we ignore the index differentiating
the routes for different EVs. We use r; to denote the i node along route R. We write the
travelling time ¢;; and energy consumption f;; along edge (7,7) in the forms of ¢[7, j] and
flé, j] respectively for clear presentation.

L [0, i=1
7F - L | 5.2
max {min (77, L, ) + $r,, +t[ricn,mil e}, Vi=2,3,....n

L min{Tfjrl —t[n,nﬂ],l”—ks”}, Vi=1,2,...,n—1 (5.3)
TS, i=n '
0, 1=0
EFS = T;Ii‘? -+ max {er — (TEl + Sr,_1 + t[?”l 1,7’1']) ,O} y if Ti—1 € ‘/c (54)
max {e,, (TEl + Sp_, +t[ric, Ty ) 0} otherwise
0, i1=n
T;BS = ﬂi‘? -+ max {ﬂil — t[?"i,ri+1] — lTi — Srys 0} s if Ti+1 € ‘/c (55)
max {17}, — t[rs, ris1] — b, — 5,0},  otherwise
0, ifi=0
F,=S Fiov+ flrica,ri], ifrii €V, (5.6)

flri_1,r], otherwise
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The value of TF is the earliest service start time at node r; without violating any time
window constraints before it. Similarly, T/ is the latest departure time from r; that will
not result in any time window violations after it. Note that, for the calculation of T}, we
assume the arrival time at previous nodes is no later than their corresponding latest service
start time for better evaluation of time window violations which is explained in detail later;
TFS is the forward cumulative slack time, i.e. the difference between earliest arrival time
and earliest service start time, from the last station/depot to r;; T/PS is the backward
cumulative slack time, i.e. the difference between the latest departure time and latest end
service time, from r; to the first station/depot afterwards; F; is the energy consumption

(in time of recharge) from the last station/depot to ;.
With these variables, we evaluate the violations and electricity cost as follows:
Cargo Capacity Violation

The cargo capacity violations of a route R and a solution S are computed as in Equations
5.7 and 5.8 respectively.

D 4rgo( R) = max {Z 4, — Q, O} (5.7)
i=1

(I)cargo(s) = Z (I)cargo(R) (58)

ReS

Time Window Violation

We calculate the time window violation for route R as in Equation 5.9. As mentioned, we
assume the arrival time at nodes before r; is no later than their latest service start time for
the calculation of time window violation at node r;. In doing so, we can avoid penalizing a
good customer sequence only because they occur after a time window violation [103]. The
time window violation for a solution .S is computed as in Equation 5.10.

®(R) = Zn:max {TF -1,,0} (5.9)



Battery Capacity Violation

The battery violations for a route R and a solution S are defined in Equations 5.11 and
5.12, respectively.

Opn(R) = > max{F, — B,0} (5.11)
Dpar(S) =D Ppau(R) (5.12)
ReS

5.5.2 Net Electricity Related Cost

In order to calculate the electricity cost of a given route, we need to determine the optimal
charging/discharging schedule associated with the route. To this end, we first infer the
possible charging/discharging time at each station and depot node along the route. And
then, since the schedule at a station/depot node can affect the possible staying time at
its subsequent nodes thus influence the subsequent schedules, we infer the interactions of
the schedules at different station and depot nodes. Finally, we construct an optimization
model based on the extracted information along with other problem constraints and solve
it to determine the final schedule.

The staying time at node r; € R can be easily represented as [TZE , Tﬂ . However, under
the discretized charging/discharging assumption, an EV can not start charging/discharging

E L
at r; until time 0 (%1, and it is not allowed to charge/discharge at node r; after time § LI; |

Therefore, the possible charging/discharging time at node r; € R is [5 [?1,&%@ Ac-

cordingly, we define the set of connected periods at r; as T; = { [TEEL ngﬁ +1,..., LTZ;'LJ }

To model the interaction between consecutive station/depot nodes, we define the mutual
exclusiveness of charging/discharging periods at different nodes. Suppose r; and r; (i <
j) are two consecutive station nodes along route R, their connected periods are T; =
{ti, 62,7} and T; = {t},13,... t;7} respectively. If the charging/discharging during
period ¥ € T; at node r; will makes it impossible for the EV to arrive at node r; before
the start of period 7"? € T}, we say periods ¢ for node r; and t;l- for node r; are mutually

exclusive. All such ¢ form the mutually exclusive set for ¢] at node r;, namely M.

More specifically, we use the forward slack time T/ to infer the mutually exclusive set
for t¥ € T; as in Equation 5.13. Recall the definition of the forward slack time, we claim
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that as long as the EV leaves node r; before T} + T, the schedule at r; will not be affected
by the schedule at r;. Hence, the mutually exclusive set is empty. On the other hand, if
the EV charges/discharges during period ¥ such that 6t¥ > TF + TjF S the arrival time at
node r; will be postponed by §t! — (Tf + TjF o ) Consequently, charging/discharging at r;
during periods that starts before T/ + 6t — (TF + T ) will be impossible.

0, if 67 < TF + T
P _ { J (5.13)

' {t1:6(t1 —1) <TF + 6t — (TF + T]®) } , otherwise

As simultaneously determine charge/discharging schedule at multiple nodes is very
complicated, we make the following assumptions which might sacrifice solution quality but
drastically enhance solution efficiency.

e Limited Station Visits: we assume there are at most two station nodes along a
route. This assumption is realistic because the main focus of commercial EV fleets is
satisfying logistic requests, whereas ancillary service provision is just a sideline. Vis-
iting stations over twice per day might affect an EV’s regular businesses. Moreover,
frequent charging/discharging can accelerate battery degradation which will result in
high battery replacement costs later.

e Simplified Schedule: each EV is allowed to perform either discharge or charge
at en-route station(s), but is prohibited to do both during a single visit. In addi-
tion, if an EV visits stations twice and requires en-route charging, we only consider
performing minimal charging ensuring the EV can successfully return to the depot.
This assumption excludes the possibility of over-charging at one station during off-
peak hours and discharging at another station later, but can largely accelerate the
solving process. Further, as mentioned, this assumption assists to avoid frequent
charging/discharging, which is beneficial to battery lifespan.

e Hierarchical Decision Making: for the case of two en-route station visits, instead
of jointly optimizing en-route and at-depot schedule, we solve these two problems
sequentially in the spirit of divide-and-conquer. We first schedule en-route charg-
ing/discharging and then determine at-depot schedule based on it. We calculate the
cost of the routes as the sum of en-route and at-depot costs as shown in Equation 5.14.
Under this assumption, the problem complexity is largely reduced, and we are still
able to find solutions of high quality according to preliminary manual investigations.

36



fel€C<T) = fdepot('r) + fenfroute(r) (514)

We define the electricity related cost of a solution S in Equation 5.15.

felec(S) - Z felec(R) (515)

ReS

In particular, for each of the routes, we consider the following three cases with respect
to the number of station nodes along the route.

No Station Node

If there is no station node along R, fen_route(R) = 0, we only consider the at-depot schedule.
Since the EV’s battery is fully charged at the beginning of the planning horizon and the
night charging price is the cheapest throughout a day, it is unreasonable to charge the
EV at the depot during the planning horizon. The pseudo code for scheduling at-depot
discharge is presented in Algorithm 4.

As mentioned earlier, given a route R of length n, we can infer the connected periods
at the two depot nodes (the first and the last node along R) Ty = {t},... t]"} and
T, = {tL,...,t™}. For each period t; € Tj, we infer its mutually exclusive set M.
Moreover, we calculate the total number of periods we can discharge without violating
battery constraints Q = | 2552 .

We then construct the following MIP problem named NoStat:

Y =Maz Y Phdi+ Y Phdf (5.16)
d tGTl kETn
sty di+ ) dEi<Q (5.17)
teTy keTy,
di+di <1, Vke MivteT (5.18)

Where di,Vt € Ty and d*,Vk € T,, are binary decision variables indicating if the EV
discharges during the associated time period at the two depot nodes (= 1) or not (= 0)
respectively. P%._ is the discharging reward rate at time period ¢. The objective function
5.16 seeks to maximize the discharging reward, Constraint 5.17 makes sure that the battery
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level is always positive, while Constraints 5.18 serve to describe the mutual exclusiveness
among periods.

Let d represents a vector of all decision variables in NoStat Problem. Since d =0 is a
feasible solution to the NoStat Problem and the feasible region of the problem is bounded,
there must exist an optimal solution, namely d*. We denote the corresponding optimal
value of the objective function as T*. The route’s electricity cost is then calculated as
the sum of discharge reward and the cost for fully recharge battery during the night as in
Equation 5.19 where sum(d*) means the summation of all entries in d*.

e B) = =X* 4 (2 sum(d")) x PLio™ (5.19)

Algorithm 4 Discharging Schedule for a Route with No Station Node
1: Ty, T, + ConnectedPeriod(TF, TE, TF, TF)
2: ()« L%J
3: if Q > 0 then
4: for ¢t} in T} do
infer mutually exclusive set M} C T,
T*, d* < NoStat()
feree(R) = =T* + (% + sum(d*)) x Pnisht
else

faee(R) = G x Pl

Solving the NoStat problem with traditional MIP solvers requires exponential time.
In order to accelerate the solving process, we reformulate the problem as a 0-1 knapsack
problem with mutually exclusive items (KPMEI). We regard each discharging period as
an item with the weight of 1 and the value of the associated discharging reward. Given a
knapsack of capacity €2, we seek to fill the knapsack with a subset of the items such that
the total weight does not exceed the knapsack capacity and the total value is maximized.
According to the mutual exclusiveness described by Equations 5.18, some pairs of items
can not be included in the collection simultaneously.

As shown in Algorithm 5, we decompose this problem into a sequence of classical
0-1 knapsack problems, i.e. 0-1 knapsack problem without mutually exclusive items, by
enumerating the last period that the EV could performs discharge at node ;. In particular,
suppose the last period at node 7y is t!, the possible discharging period at node 7, is T;,\ M!
(it is not hard to find that the mutually exclusive sets for periods before ¢/ at node r; are
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subsets of M{). Then, the problem become selecting € items from {#{,...,t }U (T, \ M),
which can be solved in polynomial time using the dynamic programming approach proposed
in [116]. We solve the classical knapsack problem for at most |77| times, then select the
highest value achieved as the optima of the original problem. In this way, the KPMEI can
be solved in very efficiently. We denote the highest reward achieved through solving the
classical 0-1 knapsack problems and the set of periods that the EV discharges with T* and
dis* respectively, the electricity cost can be computed as in Equation 5.20.

Fn . ni
Facpr(B) = =T+ (= + Jdis"]) x P (5.20)

Algorithm 5 Knapsack Approach for No Station Visit
1 Y* dis* < Knapsack(T,,2) (No item selected from 77)
2: for t| in T} do
30 T« {t,...,t1 U (T, \ M})

4 val, dis + Knapsack(T',Q)

5 if val > T* then

6: T* dis* < val,dis

T fdepot(R) = -1 + (% + |d28*|) X szlf?ht

Here we provide an example. Suppose T = 0, TF = 122, TF = 1070, TF = 1140,
TFS =100, F, = 130, and battery capacity B = 270, the number of the planning periods
|T| = 19, length of each period § = 60, the planning horizon is [0, 1140].

The EV can discharge the battery for Q = LB_Tf"J = 2 periods. As L%j = 2, the
L

connected period at node ry is 77 = {1,2}. Similarly, as [TT"} = 18, the connected period

at node 7, is T;, = {18,19}. For period 1 in Ty, since § < TS, M} = (). If we discharge
during period 2 at node r;, the earliest arrival time at node r, will be postponed by
20 —TFS = 20. Given that (18 —1)§ < T'F +20 = 1090 and (19 —1)d > 1090, the mutually
exclusive set for period 2 at node r; is M} = {18}. We then construct the following NoStat
Problem:

Y —mgx Pl + P+ PIS + Pl

st di 4 d? - dB 4 d0 <2 (5.21)
di+d® <1

The schedule can be easily determined by solving the following two sub-problems.
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e If period 2 is the last period at rq, select 2 periods from {1,2,19}

e If period 2 is not last period at r1, select 2 periods from {1, 18,19}

One Station Node

The pseudo code for the case of one station node is shown in Algorithm 6.

Algorithm 6 Charge/Discharge Schedule for a Route with One Station Node
k < the position of the station in the route, i.e. r, € Vj
A+~ F.+F,—B
Ty, Ty, T,, + ConnectedPeriod(TF, T, TE, T, TE, TL)
Check mutually exclusive periods for V¢! € T} and ‘v’ti c Ty
T*, d*, r* < SolveMIP(A)
if feasible then
fetee(r) = T+ (B2 4 sum(d*) — sum(r*)) x Prisht
else
fetec(r) <= Large Number

Suppose the station is the k* node along the route R. We first calculate A = Fj, +
F, — B, and (2 as in Equation 5.22. If A > 0, we have to recharge at the station to make
sure the EV have enough energy to complete the trip, otherwise we can either discharge
or charge at the station. Then, similar to the analysis done for "No Station Visit” we
infer the connected periods at the two depots node and the station, i.e. T1, T}, and T}. In
addition, for each period ¢\ € T} and ti € Ty, we infer their mutually exclusive sets M} at
node 7, and M ,ﬂ at node r, respectively.

21 A0
Q=2{ 9 (5.22)

—A
LTJ , otherwise

We then construct the OneStat Problem with respect to the value of A.

If A < 0, the problem is defined by Equations 5.23 - 5.30 where d’s, r’s and y are binary
decision variables. d} indicates if the EV discharges at node r; during period 7 (= 1) or
not (= 0). 7’s are defined in a similar way yet for recharging. y takes a value of 1 if the
EV discharges at node r; and takes 0 otherwise.
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T*=min ) P = > Prgds = > Pl — > Phd, (5.23)

jGTk €T J€Ty teTy

ddi+ ) 4> d-) r<Q (5.24)

€Ty JE€TY, teTn JETY
§Y M <F40Y df (5.25)

J€T}, €Ty
5(2d§+2dﬁ>+Fk+anB+5Zr,ﬁ (5.26)
€Ty JETy JETy
> < [Ty (5.27)
JET}

Y <ITH(1-y) (5.28)

JET
&+l +d <1, YjeM VieT (5.29)
rl+d4d <1, Vte M}, VjeT, (5.30)

The objective function 5.23 minimizes the electricity cost during the planning horizon.
Constraints 5.24 and 5.25 serve to make sure that the battery level will not be below zero or
exceed its capacity. Constraints 5.26 guarantee the EV has enough energy to complete the
trip. Constraints 5.27 and 5.28 ensure the EV will not perform both charge and discharge
during a single station visit. Constraints 5.29 and 5.30 describe the mutual exclusiveness
among periods.

If A > 0, we replace Constraint 5.24 by Constraint 5.31 to make sure the EV have
enough energy to complete the trip. In addition, we force di = 0,Vj € T} because en-route
recharging is necessary in this case. We note that for a similar reason described in the case
of ”No Station Visit”, the optimization model is feasible when A < 0. When A > 0, it is
possible for the OneStat Problem to be infeasible. If so, we assign a large cost to this route
as a penalty. Otherwise, the route’s cost is computed as in Equation 5.32 where T* is the
minima of the OneStat Problem, d* (a vector of decision variables d’s) and * (a vector of
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decision variables 7’s) are optimal solution to the problem, sum() is a function intakes a

vector and returns the summation of all of its entries.
D= QoA+ A+ d) =0
GET i€l JETy teT,

.+ F,

Jeree(R) = T7 + ( 5 % sum(d) — sum(r*)) x Pright

Two Station Nodes

The pseudo code for the case of two station nodes are shown in Algorithm 7.

(5.31)

(5.32)

Algorithm 7 Charge/Discharge Schedule for a Route with Two Station Nodes

k1, ko < the positions of the en-route stations, i.e. rg,, 7%, € Vs
Al <_Fk1 +Fk2+Fn—B
Calculate ) based on A,
Ty, , Ty, < ConnectedPeriod(TF, TL, TE  TE)
Infer mutually exclusive sets
if A; > 0 then
T*, r* <= Solve M I P(A)
fueo B) = 0" (F0a e —sum(r+) ) x Pt
else if Ay < 0 then
T*, d* < SolveMIP(A;)
Ay <+ Q — sum(d")
Update T?, T and £,
T**, d*™* < AtDepotSchedule(A,)

feree(R) = T* + T + (W + sum(d*) + sum(d**)> x Pright

— =
= O

—_ =

,_.
>

Suppose the positions of the two station visits on the route are k; and ky. We first
calculate Ay = Fy, + Fi, + F,, — B and 2 as in Equation 5.22. If A; > 0, the EV has to
recharge at en-route stations, otherwise we schedule discharge. Then, similar to what we
have done for the previous two cases, we infer the connected periods at the two stations,

Tk, and Tk,, and check if these periods are mutually exclusive or not.

We then construct the TwoStat Problem with respect to the value of A;.
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If A; > 0, the TwoStat problem is defined by Equations 5.33 - 5.37 where 7“; are binary
decision variable specifying if the EV charges its battery at node ry; during the period
i (= 1) or not (= 1). We note that, under the simplified schedule assumption, we only
consider performing minimum charge at the two stations such that the EV has enough
energy to complete the trip. No discharge will be scheduled at any station/depot nodes.

Y =min Y Plri, + Y Plri, (5.33)
" iETkl jGTk2

s.t. Z r, + Z TiQ =0 (5.34)

iETkl jET}€2
Foy+F—B<6 Y 1, <F, (5.35)

iETkl
Fo+Fy,~B<6Y v, <Fy+F,—0) i (5.36)

€Tk, 1€Ty,

r, i, <1, Vi€ M VieT, (5.37)

The objective function 5.33 seeks to minimize the en-route electricity cost. Constraints
5.34 make sure the EV has enough energy to complete the trip. Constraints 5.35 ensure
that the amount of energy we recharge at the first station won’t let the battery level
exceeds its capacity and will allow the EV to reach the next station. Constraints 5.36
serve in the same way for the second station. Constraints 5.37 describe if the periods at
the two stations are mutually exclusive or not.

When A; > 0, it is possible that the OneStat Problem is infeasible. In this case, we
assign a large number to the route’s cost as a penalty. Otherwise, suppose r* is the optimal
solution, we calculate the route’s cost as in Equation 5.38.

Fy, + Fy, + I,
0

feree(R) =T" + ( — sum(r*)) X Prneight (5.38)

Similar to the analysis done for the case of "No Station Node”, the TwoStat Problem
defined above can be regarded as a variant of the classical 0-1 knapsack problem as well.
Since the knapsack problem is usually constructed in a maximization manner, we re-write
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the objective function 5.33 as Equation 5.39 where P;ie =100 — P?, > 0. Then the problem
defined by Equations 5.39 and 5.34 - 5.37 can be regarded as selecting 2 items from sets
T, and Tj,, each associated with a weight of 1 and a value of P!, Vt € Ty, UT,, so as to

re’
[Hute 2

maximize the total value selected. Among them, at least Ly, = and at most

Uk, = L%J items should be from T}, , at least Ly,
Moreover, some items in the two sets are mutually exclusive.

- [ww items should be from Ty, .

T =max Y P, + > Plrd, (5.39)

The pseudo code for solving this problem is presented in Algorithm 8. Again, we
decompose the problem into a sequence of sub-problems by enumerating the last period
the EV can charge at station 7y, .

Algorithm 8 Knapsack Approach for Two Station Visit (Recharge)

1: T, re* < 0,0

% Ly, Ly, Uy,  [P5=], [atB) | T

3: for tf,cl in Ty, , do

4: infer the mutually exclusive set at ry,, i.e. M,il

5: T,;l,% iyt 1 T \ M,

6: if T, | > Ly, & |T},| > max(Ly,, 2 — Uy, ) then

7 valy, re; « Knapsack(T}, , Ly,)

8: valy, rey +— Knapsack (T,;2, max(Lyg,, 2 — Ukl))

9: valz, res « Knapsack (T}, \ re1) U (T, \ re2), Q — [reg| — |rel)
10: if valy +valy + valz > T & |req| + |rea| + |res| = Q then
11: T* re* < val; + vals + valz, re; Ures U res
12: if T > 0 then
13 Y* < 100[re*| — T
M fueelR) = 07 4 (P52t — jrev]) < prist
15: else
16: fetee(R) < Large Number

In each iteration, we first infer the possible charging period at nodes r;, and 7y, i.e.
T, and T}, based on the mutually exclusive relationship. If |7} | < Ly, we will not be able
to select Ly, items from T},, which renders the problem infeasible. For a similar reason,
the cardinality of set T}, should be greater than max (Lg,, 2 — U, ). And then, we select
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Ly, and max (Ly,, 2 — Uy, ) items from T} and Tj, respectively by solving two classical
knapsack problems. After that, we solve another classical knapsack problem to select
Q — |req| — |res| from the remaining periods where re; and res are the sets of periods we
selected from Ty, and T}, in the previous steps respectively. We note that, when applying
the dynamic programming approach to solve the knapsack problem, the algorithm might
select less than the required number of items. Hence, we have to check if exactly €2 items
are selected before we update the best schedule. Finally, after completing the search, the
set re, if not empty, is the optimal schedule for the EV, and we calculate the optimal
value of the original problem as T* < +100[re*| — T*. The electricity cost of the route is
calculated as in Equation 5.40.

F F F, .
felec(R> —T* + ( k1 + 5k2 + i |7“€*|> % P:?ght (54())

If Ay < 0, we only consider discharging at the two station nodes and the two depot
nodes. Using the hierarchical decision making assumption, we first determine the schedule
at stations based on which we set the at-depot schedule later. The TwoStat problem for
at-station schedule is defined as in Equations 5.41 - 5.43 where d’ here are decision variables
suggesting if the EV discharges its battery during period j at node r; (= 1) or not (= 0).
The objective function 5.41 seeks to maximize the total discharging reward. Constraints
5.42 guarantee the battery level of the EV will not go below zero while the last set of
Constraints 5.43 describe the mutual exclusiveness among periods.

T" = Max > Pidi, + Y PlLdl, (5.41)

’iETkl jeTkQ

st Y i+ Y d,<Q (5.42)

i€Ty, €Tk,

W dl <1, Vie M \VieT, (5.43)

It is obvious that the TwoStat Problem here has the same structure as the NoStat
Problem, thus can be solved efficiently using Algorithm 5. Suppose dis] and dis} are the
at-station schedules at nodes 7y, and 7, we obtain through solving the problem, it is
possible that |dist| + |dis;| < 2, suggesting that the EV could make additional profits by
discharging remaining energy at the depot. We then set the at-depot schedule by solving
the NoStat Problem again, yet some adjustments should be made. We assume the two
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stations along the route are all customers with 0 demand, and update the earliest arrival
time at node r,, latest departure time at node r1, and forward slack time at node r, as in
Equations 5.44 - 5.46 respectively.

Fr TP + max [max(dis3)d — Tj5 — T,°,0], if |dis3| >0 (5.44)
" TP 4 max [max(dis})d — T, — T, — T®,0], otherwise '
~ Ty — max [T — (min(dis}) — 1)6 — T,°°,0], if |disj| > 0
Ty = L I 1 BS  ,BS . (5.45)
Ty — max [T); — (min(disy) — 1)6 — t5° — ¢7°,0], otherwise

TFS = th8 + 1.7 + 1, ° — max [0, max(dis})d — ;¢ | — max [0, max(disy)d — T, (5.46)

where max(dis}),and min(dis}),i € {1,2} are the latest and earliest periods in set
disf. If disf = (0, we set max(dis;) = min(dis;) = 0. We then use the updated variables to
solve the NoStat Problem. We denote the optimal at-depot schedule as dis™ and its cost
as YT'. Then, we calculate the cost for route R as in Equation 5.47.

Fy, + Fy, + F,
)

feree(R) =T + T+ ( + |disy| + |disy| + |dz’s**]> X P,Z?ght (5.47)
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Chapter 6

Computational Results

In this chapter, we evaluate the lower and upper bounds generated using the algorithms
we developed in the previous two chapters.

6.1 Test Instances

As the EVRPTW-TP has not been investigated by previous research, there is no bench-
mark data set readily available. Therefore, we construct test instances based on the ones
developed by [103] for the EVRPTW. The EVRPTW benchmark data set was constructed
based on the instances proposed by [105], it consists of one set of large instances, each
with 100 customers and 21 stations, and one set of small instances, each with 5, 10, or 15
customers and no more than 6 stations. Given the complexity of the EVRPTW-TP, we
only consider the small instances in this research. In the subsequent discussion, we refer
to the small instances in EVRPTW data set as the Schneider instances for simplicity.

The Schneider instances can be classified into 3 categories by geographical distribution
of the customer nodes. In the first column of Table 6.2, the instances start with "R” are
random instances where customers are uniformly distributed, those start with "C” are
clustered instances in which customers are clustered into small groups, the customer dis-
tribution of the "RC” instances is the mixture of random and clustered distributions. The
locations of the stations are randomly selected by [103]. We directly use the geographical
coordinates and demand information provided by the Schneider instances and calculate
distances, travel time and energy consumption among nodes based on them. EV specifica-
tions also come from the Schneider instances. The EV fleet is homogeneous, each with a
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cargo capacity Q = 200, a battery capacity B = 270, and a constant energy consumption
rate g = 1. EVs’ travelling speed v is set to a constant value of 1, and EVs are charged at
a constant speed such that o = 3.39. For the sake of simplicity, we assume the discharging
speed is the same as the charging speed.

For time-related parameters, adjustments are made to fit the EVRPTW-TP settings.
Since fully charging an EV requires B = 270 minutes (4.5 hours), we set the planning
horizon as 5am — 12am, i.e. [0,1140] in minutes, such that EV operators have enough time
to recharge their fleets at night. The length of planning horizon in the Schneider instances
ranges from 230 to 3390. For instances with a planning horizon of length L > 1140,
we scale the time windows by multiplying them with a factor 11’:—40. Moreover, the time
windows in the Schneider instances are relatively tight, and even tighter after scaling. The
EVs, thus, do not have much flexibility detouring to perform ”unnecessary” charge and
discharge, which is what we want to incentivize the EV owners to do in this research. To
this end, we relax the time windows to three periods of time: morning (5am — 12pm),
afternoon (12pm — 6pm), and evening (6pm — 12am). If a time window covers a subset
of the period, then EV could visit the corresponding node during the whole period. For
example, a time window [320, 500] is relaxed to [0,780] because it covers subsets of both
the morning ([0, 420]) and afternoon periods ([420,780]). In addition, we set service time
at each node to be 0 to further enhance the EVs’ flexibility. This can be easily generalized
in the use case that we will introduce in Chapter 7.

For charging and discharging, we set the length of each period as one hour, i.e. § = 60.
According to the data presented in [120], less than 10% of the charging sessions at public
EV stations in urban areas are shorter than 60 minutes. Hence, we assume that setting
the minimum charging/discharging time to 60 minutes here will not influence the EV’s
operational flexibility in a significant way. The charging cost and discharging reward rates
associated are based on the real time-of-use hydro rate in Ontario, Canada [13] in effect
between May 1, 2019 and October 31, 2019 as shown in column ”Charging Cost” in Table
6.1. The unit is cents per KWh. Since the charging power is not specified in the Schneider
instances, we set the cost of charging for a whole period as the per KWh rate without a
unit, which is proportional to the actual cost under the assumption of constant charging
power. Similarly, we set the discharging reward rates with no unit. We note that the
reward rate presented in Table 6.1 are not the actual rates as they are chosen such that the
EVs could make profits by discharging at peak hours (11:00 AM - 5:00 PM) and recharge
the battery later. In addition, the reward rates also economically benefit the grid because
the discharging reward they pay is lower than the corresponding market price. The time-
of-use prices we set here is just for evaluation purposes, a more comprehensive numerical
study as well as insights about the electricity pricing scheme are presented in Chapter 7.
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Table 6.1: Time-of-Use Electricity Prices

From To Charging Cost Discharging Reward
12:00 AM  7:00 AM 6.5 6.5
7:00 AM  11:00 AM 94 8.0
11:00 AM  5:00 PM 13.4 10.0
5:00 PM  7:00 PM 9.4 8.0
7:00 PM  12:00 AM 6.5 6.5

Finally, we note that it is possible for the proposed EVRPTW-TP to be infeasible
on the instances we construct. The reason is that the minimal staying time at each en-
route station is 60 minutes due to the discrete charging/discharging assumption, while EVs
are allowed to charge for however long time in the EVRPTW. If an instance is found to
be infeasible, we increase the number of EVs by one until the instance becomes feasible.
In particular, we add one EV for instances ”C103-5”, 7C206-5", "RC108-5", 7 (C202-10",
"R102-10”7, "R203-10”, "RC201-10" and "RC202-15".

6.2 Experimental Setting

All the tests are performed on a workstation running Ubuntu 18.04.4, equipped with 40
CPU processors clocked at 2.20 GHZ and 64 GB of RAM. For CPLEX, we use version
12.8.0.0 and we parallelize the computation in 32 threads. We set the time limit as 7200
seconds and (after-compression) memory limit of 40 GB. The time limit is set to 7200
seconds because, in practice, we need to solve this operational problem at night in order to
operate the fleet in the following day. We assume that solving the problem within 2 hours
allows the operator to schedule relevant issues before the start of the planning horizon. In
addition, since the value of big "M” has significant impact on the performance of CPLEX,
we should set it to a value that makes the constraints as tight as possible. Based on the
given instances, we set the value of "M” to 1141 for all the time-related constraints, to 271
for all the battery-level-related constraints, and to 201 for all the cargo-related constraints.

With regards to the Lagrangian relaxation, we set the initial penalty factors \’s as 1.0,
the width of trust region w! = 3 at the very beginning. We chose the tolerance tol = 0.5.
Similarly, we parrallelize all the sub-problems in 32 threads but set no time and memory
limit because sub-problems are supposed to be solved to optimality, otherwise the lower
bound we obtain might be unreasonable.
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For the VNS/TS hybrid heuristic, we set all the penalty parameters Buy, Spatts Beargo
to 10, the number of tabu iterations per round 74, = 30, and vary the number of VNS
iterations 7,,s and early stop criteria 7., with respect to the number of customers in-
cluded. For instances of 5, 10 and 15 customers, we set 7,,s to 10, 20 and 30 respectively.
We set 7eqriy = 10 for instances of over 10 customers and 7eqr,, = 5 otherwise. For the
cyclic operator, we set N, equal to 2 when the fleet consists of 3 EVs or less and set N, to
3 otherwise. The length of each exchange block is randomly selected from {1,2,3}. The
upper and lower bounds of the tabu tenure are v,,, = 5 and v,,,, = 15. The & for the
annealing mechanism is set to 0.5.

6.3 Model Performance

The performance of CPLEX, the Lagrangian relaxation and the VNS/TS heuristic is pre-
sented in Table 6.2. The bounds achieved by the three algorithms are presented in the ” UB”
and "LB” columns, while the "Time” columns document the solving time in seconds. In
the ”Gap” columns, we present the gap between the upper bounds obtained implementing
the corresponding algorithm and the lower bound generated by the Lagrangian relaxation.
We do not use the gap reported by CPLEX since those gaps are generally greater than the
gap we reported. For the heuristic, we have an additional column ”Best Iter” to record
the VNS iteration during which the best solution was found.

For instances with 5 customers, all three algorithms can solve the problem in reasonable
time. CPLEX outperforms the VNS/TS heuristic and the Lagrangian relaxation in terms
of solving time for most of these instances. The efficiency of the heuristic is comparable
with that of CPLEX, while the Lagrangian relaxation is obviously more time-consuming.
With regard to bound quality, the Lagrangian relaxation achieves a 0.00% gap for every
instance except "RC105-5” where the gap is 0.21%. The VNS/TS heuristic achieves a zero
gap for 8 out of 12 instances. All the gaps of the heuristic are below 5%. Both algorithms
are shown to be very effective.

When it comes to instances with 10 customers, the performance of the CPLEX worsen
significantly. It can solve only 6 out of the 12 instances to optimality within the time and
memory limits. Memory usage becomes a big concern as the memory limit is violated in 6
instances. For instances that the CPLEX is able to find the optimal solutions, the solving
time on average is 3789.11 seconds, which is significantly higher than the average solving
time of the heuristic on the same set of instances of 91.41 seconds. The VNS/TS heuristic
outperforms CPLEX in all of the instances here in terms of both quality and efficiency. The
Lagrangian relaxation is still able to generate bounds of high quality. In instances solvable
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Table 6.2: Performance of CPLEX, Lagrangian relaxation, and VNS/TS heuristic

Instance Cplex Lagrangian Heuristic
Name K UB Time Gap LB Time UB Time  best iter Gap
C101-5 2 82.61 3.27 0.00% 82.61 4.63 82.61 13.34 2 0.00%
C103-5 2 50.49 1.26 0.00% 50.49 3.06 50.49 9.36 3 0.00%
C206-5 2 87.19 76.41 0.00% 87.19 91.47 87.19  22.64 5 0.00%
C208-5 1 63.26 1.03 0.00% 63.26 19.25 63.26 4.34 1 0.00%
R104-5 2 40.35 64.06 0.00% 40.35 30.50 40.35  13.23 3 0.00%
R105-5 2 45.93 33.81 0.00% 45.93 44.89 4593  15.07 3 0.00%
R202-5 1 52.86 3.58 0.00% 52.86 35.45 53.09 5.67 1 0.44%
R203-5 1 71.56 6.05 0.00% 71.56 87.17 72.47 7.11 2 1.27%
RC105-5 2 82.22 121.62  0.21% 82.05 99.07 84.21  25.07 3 2.64%
RC108-5 2 101.96 38.18 0.00% 101.96 8.75 101.96  18.56 1 0.00%
RC204-5 1 70.61 7.41 0.00% 70.61 96.11 73.51 8.12 1 4.11%
RC208-5 1 69.55 1.80 0.00% 69.55 9.88 69.55 5.94 2 0.00%
C101-10 3 164.03(*)  3527.81 28.74% 127.41  5641.83 131.15  144.73 2 2.94%
C104-10 2 113.90(=)  7200.00  0.00% 113.90  27800.64 113.90 113.95 15 0.00%
C202-10 2 89.65(*)  3529.64  2.35% 87.59  14071.45 89.65  89.30 2 2.35%
C205-10 2 90.03 4693.57  0.00% 90.03 503.84 90.03  82.63 1 0.00%
R102-10 4 81.22(*)  2910.64 - - - 57.66  110.57 2 -
R103-10 2 54.75(=)  7200.00  3.66% 52.82  23548.13 54.75  124.55 12 3.66%
R201-10 1 105.02 2741.33 - - - 105.02  18.56 9 -
R203-10 2 82.75 1515.83 - - - 83.49  163.54 7 -
RC102-10 4 165.67(*)  2383.08 14.68% 144.47  3684.50 144.47  168.12 4 0.00%
RC108-10 3 153.99*)  2776.38  8.63% 141.76  1708.13 142.48  113.62 1 0.51%
RC201-10 2 125.40(%) 529507  0.00% 125.40  3362.22 125.40  98.32 6 0.00%
RC205-10 2 161.15 1288.87  0.00% 161.15  814.86 162.36  71.43 2 0.75%
C103-15 3 * 1443.57 - - - 108.22  367.32 1 -
C106-15 3 111.94)  2638.52 - - - 96.21  465.78 12 -
C202-15 2 - 7200.00 - - - 151.83  652.23 21 -
C208-15 2 - 7200.00 - - - 118.58  277.66 2 -
R102-15 5 - 7200.00 - - - 65.17  172.19 2 -
R105-15 4 90.28(=)  7200.00 - - - 75.63  769.23 22 -
R202-15 2 * 1096.87 - - - 145.99  337.82 3 -
RC103-15 4 * 1755.29 - - - 126.20  699.84 11 -
RC108-15 3 * 1953.75 - - - 147.52  768.09 23 -
RC202-15 3 * 1824.96 - - - 143.80  471.38 3 -
RC204-15 2 * 934.20 - - - 142.20  332.50 2 -

Instances that violate the memory and time limits

are labeled with % and — respectively

using the Lagrangian relaxation, the gap between the lower bound obtained and the best
solution found by the heuristic is no more than 3.66%. However, as the sub-problems
become difficult to solve in instances with 10 customers even when there is only one EV,
we are not able to obtain reasonable lower bound for 3 out of the 12 instances.

For instances with 15 customers, both CPLEX and the Lagrangian relaxation suffer
in terms of memory and computational time. CPLEX finds feasible solutions that are far
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away from the optima for only 2 out of the 11 instances, while the VNS/TS heuristic is
able to solve all the instances within 483.09 seconds on average.

The results clearly show the VNS /TS heuristic’s ability to find "high quality” solutions
within reasonable time for these instances. In the real-world settings where logistic de-
mands and price information are given one day ahead, the heuristic has the capability to
solve instances of larger sizes. We further discuss the heuristic’s performance on a realistic
use case in Chapter 7.
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Chapter 7

Use Case and Analysis

In this study, with the solution methods we developed in the previous chapters, we apply
the EVRPTW-TP model to a realistic use case that we construct for an EV fleet provid-
ing online grocery delivery services, which attracted great attention amid the COVID-19
pandemic, in the Kitchener-Waterloo (KW) region in Ontario, Canada. Through computa-
tional experiment, we investigate the impact of electricity pricing schemes, time windows,
and fleet size on the fleet’s routing and charging/discharging behaviors based on which we
provide some critical managerial insights.

7.1 Use Case Settings

Online Grocery Delivery

We consider a local grocery store that uses EVs to provide online grocery delivery services.
This business model has been increasingly popular in recent years [ 10], especially dur-
ing the COVID-19 pandemic when people are performing social distancing and avoiding
going to public areas such as supermarkets and local stores. In the KW region, retail
giants, such as Walmart, Zehrs, and T&T Supermarket, as well as local small businesses
are all providing such services. Customers could browse available items and place orders
online, service providers would then perform touch-free delivery during the time slot that
customers booked. Due to the considerable demand during the COVID-19 crisis, orders
usually have to be placed at least one day ahead for free delivery. Customers could, of
course, pay additional fees for same-day delivery, but this is not the choice that the major-
ity of people would make. In this study, we only take into account regular orders, i.e. the
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orders made one day before their deliveries, such that routing and charging/discharging
could be scheduled before the start of the planning horizon.

EV Fleet Specifications

Due to the complexity of the EVRPTW-TP, we only consider a small fleet consists of 3 EVs
in the majority of our discussion and vary the fleet size to investigate that impact on fleet
operations in Section 7.4. This fleet can provide delivery service for around 30 customers
in the designated area, which reflects the real situations that local small businesses are
faced with. The EVs in the fleet are homogeneous, i.e. with identical range, cargo capacity
etc. We consider employing an economic EV model with a range of 150 kilometers, a 32.4
kWh battery, and a cargo capacity of 200. In practice, especially in urban areas, the travel
time between locations are less affected by EV horsepower than by external factors such
as traffic conditions, weather and so on. Therefore, we directly use the travel time along
the shortest path between locations estimated by Google Maps. The planning horizon is
set as bam - 12am.

Customers, Stations and the Depot

The geographical locations of the customers, stations and the depot are presented as blue,
red and green dots as shown in Figure 7.1 respectively. All the customers are real con-
dos/apartments randomly selected. In the majority of our discussion, we consider the
3-periods setting, i.e. partitioning the planning horizon into morning (5am - 12pm), after-
noon (12pm - 6pm) and evening (6pm - 12am). We also consider the 2-hours setting where
the planning horizon is divided into consecutive time slots lasting 2 hours each and the
no time window setting. We make comparisons among different time window settings in
Section 7.3. No matter which setting we apply, the time slot for each customer is randomly
generated. The service time at each customer is set as a constant 10 minutes which is short
because there is no waiting time for touch-free delivery.

Regarding the stations, according to the data presented by ChargeHub [22], there are
over 130 EV charging stations in the designated area among which approximately 89%
are level-2 stations and others are level-3 stations. The supply power of a normal level-2
charger is 240V AC/30A. One hour of charge using level-2 stations add 30 kilometers of
range for the EV model we employ, i.e. B = 270, a = 1.8, while level-3 stations use a 480
Volt system and can add over 100 kilometers of range per hour [39]. In this study, we only
take into account the level-2 stations for its economics and compatibility with most EV
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models. We only select 7 from the existing level-2 stations for which reasons are two-fold.
First, including too many stations will make our proposed model unsolvable with currently
available tools. However, in order to reflect the geograophical distribution of the level-2
stations, the 7 stations are selected such that EVs could easily access charging/discharging
services from anywhere in the area. Second, to the best of our knowledge, no station in
the designated area is enabled for EV discharge. It is more realistic to deploy only a small
number of stations with such capabilities at the pilot stage. We set a station located at a
large parking lot in uptown Waterloo as the depot. All of the stations and the depot are
open 24/7.

Electricity Rate

The Ontario Energy Board [12] sets two types of electricity rates: 1) time-of-use (TOU)
rates where the rate depends on when customers use electricity and 2) tired rates where
customers use a certain amount of electricity at a lower rate and pay a higher rate when
the amount exceeds the limit. The TOU scheme is applied to most residential and small
business customers while the tired scheme is adopted by a very small number of customers.
In this study, we apply the TOU rates in Ontario, Canada for the majority of the analysis
and compare different electricity pricing schemes in Section 7.2. With regard to discharging
reward, currently, the province of Ontario does not have such a discharging reward plan.
We set the reward rate in a way to ensure that it is profitable for the EV owners to provide
ancillary services for the grid. In most of the senarios that we consider, the reward rates
are set to be slightly lower than the electricity rates during the same time period. We
compare different electricity pricing schemes in detail in Section 7.2.

7.2 Electricity Pricing Scheme

As shown in Table 7.1, we consider four electricity pricing schemes including two dynamic
schemes (A and B), one static scheme (C) in bidirectional V2G context and one dynamic
scheme (D) in unidirectional V2G context. The electricity price periods are defined by the
Ontario Energy Board [12] as shown in Figure 7.2.

In scheme A, the charging rates are the real hydro rates in effect between May 1,
2018 and Nov 1, 2019. The reward rates are set between the charging rate in the same
period and the the charging rate in a period when the grid pressure is relatively lower.
For instance, given the on-peak charging rate 13.40¢/kWh and the mid-peak charging
rate 9.40¢/kWh, the on-peak reward rate is set as 10.0¢/kWh. This way, the EVs could
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Figure 7.1: Selected Customers and Stations
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Table 7.1: Electricity Prices
On-Peak (¢/kWh) Mid-Peak (¢/kWh) Off-Peak (¢/kWh)

Scheme Charge Discharge Charge Discharge Charge Discharge

A 13.40 10.00 9.40 8.00 6.50 6.50
B 13.40 13.40 9.40 9.40 6.50 6.50
C 9.40 8.00 9.40 8.00 6.50 6.50
D 13.40 0.00 9.40 0.00 6.50 0.00

make profits by discharging in a on-peak (mid-peak) period and re-charging its battery in
mid-peak (off-peak) periods. On the other hand, in a competitive energy market [130], we
believe, the original electricity price can well represent the overall cost of energy generation
and grid operation. Setting the reward rate slightly lower than the same-period charging
rate makes the scheme also economically attractive to the grid operator. Scheme B where
reward rates are equal to the same-period hydro rate is the dynamic electricity pricing
scheme commonly implemented by previous research, see, for example, [61], [27] and [66].
Scheme C is a static pricing scheme where charging and discharging rates are constant
values throughout the planning horizon. This is the case in Ontario starting from May
30, 2020 as one of the policy efforts made to support the gradual reopening of the local
economy. We note that, instead of setting constant charging and discharging rates for the
whole day, we set them to a low value during off-peak hours so that it’s profitable for the
EVs to provide the ancillary services. Scheme D is the case without discharging reward.

The results of the numerical studies are shown in Table 7.2. The first two columns
present the daily total distance traveled and the total electricity cost of the fleet, while
the last two columns document the number of hours that the fleet performs charge and
discharge during the planning horizon. Note that for the ”Cost” column, a negative number
means the fleet make positive profits during the day. For the dynamic schemes, we consider
both the summer and winter rates, while, for schemes C and D, the TOU prices are identical
in summer and winter.

The first insight is that the bidirectional V2G programs are economically attractive to
EV owners. In the unidirectional V2G setting (scheme D), the grocery store is supposed
to pay $2.02 each day for charging which is 52% higher than the cost they have to pay
when discharging is enabled and priced in a static manner (scheme C). If the dynamic
prices are applied (schemes A, B) the fleet does not need to pay for its energy consumption
anymore. Further, in the most optimistic case (scheme B in winter), the fleet could earn
around $2.80 per day for providing ancillary services for the grid. The potential gains for
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Table 7.2: Overall Electricity Cost and Charging/Discharging Hours under Pricing Schemes
Scheme Distance (km) Electricity Cost (¢) Charging (hr) Discharging (hr)

A (summer) 154.89 -9.36 2 9
A (winter) 148.60 11814 2 9
B (summer) 187.29 -233.86 3 10
B (winter) 180.75 -279.72 5 12
C 148.24 132.55 0 8
D 143.88 202.03 0 0

the fleet might look negligible in a daily basis, however, the annual difference could be up
to $1205 assuming 250 business days in a year. The potential savings and profits could be
even higher for companies who own EV fleets of larger sizes.

In addition, though not surprising at all, we observe that electricity prices have great
impacts on fleet operations. In particular, since the reward rate in scheme B is much higher
than that in scheme A, EVs are more willing to over-discharge amid peak hours and detour
to recharge their batteries later. The travelling distance under scheme B is, on average,
32 kilometers longer than that under scheme A. EVs spend 1 - 3 more hours to perform
discharge under scheme B than under scheme A. Moreover, the overall electricity cost varies
significantly between these two cases. An important observation here is that price is a very
powerful information signal that can assist to conduct effective communication between
commercial EV fleets and the grid. Though this is beyond the scope of this research,
we could definitely incorporate the analytical framework we develop in this thesis with
the domain knowledge in energy and logistic systems to investigate the electricity pricing
strategies in bidirectional V2G context.

Further, for schemes A and B, the total electricity cost is lower in winter than in
summer. Taking scheme B as an example, in Figure 7.3, each blue line depicts one EV’s
battery level through a day while its charging/discharging behaviors are highlighted in
red. The green dash lines in Figure 7.3 present the discharging reward rates through a
day. In summer, in order to perform discharging during peak hours (11am - 5pm), at least
one EV has to detour at the middle of the day because, some customers should be served
before 12pm, i.e. the end of the morning period. However, in the winter setting, on-peak
periods are 7Tam - 11am and 5pm - 7pm. All the EVs could stay at the depot before 11am
to perform discharge and leave for service provision after that. As a consequence, the
traveling distance in winter is shorter than in summer for both schemes. One takeaway for
EV operators here is that they could also adjust their time slot settings with respect to
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the season. For instance, in this case, cancelling the morning service period could, in some
way, decrease the overall electricity cost. The real adjustments in practice may not be this
extreme, but one should definitely take into account the price and TOU period changes
between seasons when designing service time slots.
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Figure 7.3: EVs’ Battery Levels through a Day (K = 3, left: summer, right: winter)

7.3 The Impact of Time Window

As mentioned earlier, we take into account 3 time window settings which, from the tightest
to the loosest, are the 2-hours setting, 3-periods setting and the case of no time window.
Among them, the 2-hours setting is currently employed by most grocery delivery service
providers. Its relatively restrictive time slots allow customers to know the time that they
would be served more precisely, therefore, reduce their waiting times and enhance user’s
experience. However, under the 2-hours setting, the EV fleet’s flexibility in routing and
scheduling would be lower compared with that under the other two settings.

In particular, the results presented in Table 7.3 and Figure 7.4 reflect the trade-off
between timely service and operational flexibility. Under the 2-hours setting, customers
who are geographically close might book time slots that are very far away from each other.
In this case, an EV cannot always wait at a customer’s location until the beginning of the
time slot for the nearest customer. Instead, it would travel to a customer who is relatively
distant but with a time slot starting earlier, leaving the nearest customer to another EV.
However, when 3-period time window is applies, with a higher probability, the EV would be
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Table 7.3: Overall Electricity Cost under Time Window Settings
Season  TW Setting Distance (km) Electricity Cost (¢) Charging (hr) Discharging (hr)

2-hours 229.19 184.90 0 6

Summer  3-periods 154.89 -9.36 2 9
no-tw 131.81 -117.36 4 12

2-hours 212.78 164.09 2 7

Winter 3-periods 148.60 -18.14 2 9
no-tw 135.95 -111.53 4 12

able to serve the customers in an order based on their geographical locations. As presented
in Figure 7.4, two EVs have to travel to Cambridge under the 2-periods setting, while only
one has to do so under the other two settings. Thanks to the increased flexibility, the total
travelling distance is reduced from over 210 kilometers for the 2-hours setting to around
150 kilometers for the 3-period setting and could even be as low as 131.81 kilometers for the
case of no time window constraints. The reduction in travelling distance from ”3-periods”
to "no-tw” is marginal comparing with that from ”2-hours” to ”3-periods”.

With regards to ancillary service provision, the fleet, of course, have the greatest flex-
ibility in scheduling discharging under the "no-tw” setting. In both winter and summer
cases, it is able to discharge for 12 hours in total during the planning horizon. Under
the ”3-period” setting, the fleet could perform 9 hours of discharging, while this number
decreases to 6 in summer and 7 in winter when the 2-hours setting is applies. As a con-
sequence, as presented in Table 7.3, the fleet is supposed to pay around $1.70 each day
under the 2-hours setting, while the fleet could break even in the case of ”3-periods” and
make a daily profits over $1.10 under "no-tw”. The $2.80 difference could partially, if not
fully, represent the price of "timely service”.

7.4 The Impact of EV Fleet Size

In this section, we consider the impact of EV fleet size on overall electricity cost under
two restrictive time window settings, i.e. the 3-periods time window and the 2-hours
time window as defined in Section 7.3. According to instance setup, the customers in our
case could not be fully satisfied by less than 3 EVs which renders the problem infeasible.
Therefore, starting from the fleet size of 3, we increase the number of EVs by 1 at a time
and document the corresponding electricity cost in Table 7.4. Intuitively, increasing fleet
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size will bring additional operational flexibility yet higher fixed cost in the meanwhile. As
a consequence, routes could be streamlined so as to reduce the overall travelling distance
and spare more time as well as battery capacity for ancillary service provision. However,
given the high acquisition cost of the EVs, deploying an EV solely for ancillary service
provision is obviously not economical for the fleet owner. In particular, Figure 7.5 depicts
the battery levels of such an EV in summer and winter respectively. In summer, the EV
discharges its battery under the on-peak rate for 4 hours and recharges under the off-peak
rate at night, bringing a profit of 100.8¢. Similarly in winter, the EV makes a profit of
109.44¢ by discharging for 6 hours under on-peak rates and recharging for 2 and 4 hours
under mid-peak and off-peak rates respectively. If adding one EV brings the fleet a profit
no greater than 100.8¢ in summer or 109.44¢ in winter, it suggests that the newly added
EV is working as a static battery storage. In this case, we should not consider adding any
EVs to the fleet anymore.

The overall electricity cost (in cents) under different fleet sizes and time window settings
are shown in Table 7.4 and visualized in Figure 7.6. Under the 2-hours time window setting
(the red lines), increasing fleet size from 3 to 4 leads to over twice as large as the cost
reduction results from the increase from 4 to 5 which, in fact, satisfies the termination
condition for both summer and winter cases. The daily profits associated with adding
one EV to the original fleet (from 3 to 4) are $2.53 and $2.55 for summer and winter
cases respectively. As for the 3-periods cases (blue lines), the termination condition is met
when the fleet size comes to 6 in summer and 5 in winter. However, the profits linked to
the additional EVs are all very marginal. As clearly shown in Figure 7.6, the blue dash
line segment from 4 to 6 appear to be nearly straight, suggesting the corresponding cost
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Table 7.4: Overall Electricity Cost of EV fleets of Different Sizes
Number of EVs

TW Season 3 4 5 6

Summer 184.90 -67.75 -168.55 -
Winter 164.09 -91.15 -199.30 -

Summer -9.36 -150.05 -265.97 -366.77
Winter -18.14 -186.98 -296.42 -

2-hours

3-periods

reduction is very close to the termination thresholds as shown by the line segment from 5
to 6.

2001 A == 3.periods summer L] | 2H, summer
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Figure 7.6: Electricity Cost under Different Figure 7.7: Overall Travelling Distance un-
Fleet Sizes der Different Fleet Sizes

We also visualize the travelling distance for the fleet of different sizes and for each EV in
Figure 7.7. Each bar consists of several sub-bars highlighted in different colors representing
the travelling distance of each EV in the fleet. The sub-bars from the bottom to the top
correspond to the longest and shortest distances travelled by a single EV in the fleet. As
clearly shown, for all the four cases, when the fleet size is 3, the fleets’ overall travelling
distance is the highest, and the travelling distance is almost evenly allocated to EVs in a
fleet. As fleet size increases, the overall travelling distance decreases and the variations in
the distance travelled by a single EV increases. For the two ”2-hours” time window cases
(red and blue bars), increasing fleet size from 3 to 4 results in relatively large reduction
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in overall travelling distance, while for other cases, the distance reductions are marginal.
This observation suggests that the newly added EVs assist to reduce overall electricity cost
mainly through grid ancillary service provision instead of through streamlining the routes.

The analysis done in this section answers the question if we need to enlarge the EV
fleet or not and If so, how many additional EVs we need. Under the 3-periods setting,
it is obvious that the additional EVs will play a role very similar, if not identical, to a
battery storage without mobility. Hence, it is not economical to expand the EV fleet in
this case. As for the 2-hours time window setting, one additional EV will bring the fleet
operator more flexibility to deal with the relatively restrictive time windows. Nevertheless,
the daily profits of around $2.54, which is equivalent to an annual profits of $635 assuming
250 business days through a year, is clearly insufficient to cover the acquisition cost of the
EV. Therefore, the best strategy is to maintain the current fleet size.
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Chapter 8

Reinforcement Learning for the
EVRPTW

Motivated by the recent successful applications of deep reinforcement learning (RL) in
solving combinatorial optimization problems such as the travelling salesman problem (TSP)
and the vehicle routing problem (VRP), we conduct some preliminary analysis to explore
the possibility of employing deep reinforcement learning to solve EVRPTW-TP. In this
chapter, as the first step towards solving EVRPTW-TP, we follow the a framework similar
to that developed by [85] to solve the EVRPTW where discharging and partial charging is
not allowed and the objective is to minimize the total distance travelled by the fleet.

8.1 Reinforcement Learning Model

In a general RL framework, we regard the model we construct for solving the target problem
as an agent. Based on the given problem, we define an environment where the agent takes a
sequence of actions to tackle the problem. Each time an action is made, the agent receives
a reward signal specifying the quality of the action it just made and the state of the
environment might change as a consequence of the action. Through solving a considerable
number of instances of the target problem with the agent, we adjust the parameters in the
proposed model (train the agent) based on its performance such that the agent is able to
receive high overall reward (generate high quality solution) when faced with instances of
the target problem.
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8.1.1 The MDP Formulation

We implement a Markov Decision Process (MDP) formulation based on the framework
developed by Nazari et al [35]. In general, given a combinatorial problem whose solutions
are permutations of the nodes defined by the problem, the agent applies a stochastic policy
7 to generate (decode) a solution to the problem sequentially, i.e. one node at a time.

We parameterize the policy with a deep learning model. At each decoding step, the
model intakes information about the current system state and output a pointer indicating
the next node to add to the solution. Some transition rules are then applied to update
the state of the system based on the current system state as well as the newest pointer.
This procedure is repeated until certain termination criteria is met. In particular, for the
EVRPTW where each customer, station and the depot represents a node in the system,
we define the environment and the actions as follows.

We use the local information at each node along with global information to describe
the state of the whole environment. In particular, we assign an information vector X! to
each node 7 representing the local information associated with node ¢ at the decoding step
t. Vector X! is set to X! = (x;,2i,¢€;,1;,¢') where z; and z; represent the geographical
coordinate of node 4, e; and [; represent the corresponding time window, and ¢! is the
remaining demand at node i at decoding step t. The first four entries are static through
the decoding process, while the last one is initialized as the demand at node i, i.e. ¢; as
defined in Chapter 3, and is set to 0 once node ¢ has been visited by an EV. Information
vectors for all of the nodes form a set X* = {X[|[i =0,1,..., N + S}. We note that the
service time at each node is not taken into consideration here because we regard it as a
constant to simplify the problem in this chapter.

Besides, these nodes share a global vector G* = {7, 0", ev’} that consists of global
information of the whole system. The values of 7¢, ' and ev’ indicating the time, battery
level of the active EV and the number of EV(s) available at the start of decoding step ¢
respectively. We note that the remaining cargo of the active EV is also an important global
variable, however, we do not consider it as one of the model inputs because the presence
of the masking scheme that is detailed in Subsection 8.1.2.

Moreover, we denote the pointer that generated at step ¢ with 3¢, the set of pointers
up to step t with Y* = {y’|i = 1,2,...,t}, and the decoding step at termination with ¢ .
In EVRPTW, ¢’ is the node our EV is going to visit at step ¢, and Y is the trajectory
of the fleet up to step ¢. The routes for different EVs are separated by depot visit(s). For
example, given a trajectory Y = {0,3,2,0,4,1,0}, we need two EVs to complete the trip,
one travels along 0 — 3 — 2 — 0, the other travels along 0 -4 — 1 — 0.
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At each decoding step ¢, we exploit a stochastic policy 7 to determine y**! (next node to
visit) based on X', G* (current system condition) and Y; (the EV trajectory up to step t).
In particular, we estimate the probability P (y'*' =4 X' G, Y"),Vi € {0,1,...,N + S}.
And then, '™ could be selected in either a greedy or stochastic manner, or, alternatively,
using the beam search. After that, the transition functions defined in 8.1 - 8.4 are applied
to update the system state.

max(Tt, eyt) + Syt + t[yt, ytH] , if y' is a customer

= 47t tly, g ] + re(Bh) | if s a station (8.1)

tly', "1 , otherwise

where t[y’, y'™!] represents the travel time from y' to y'™, re(b!) is the time required to
fully charge the EV battery from the battery level b*, and s, is the service time at node
y' which is a constant in this thesis.

(8.2)

i+l — b — f[yt, ytH] ,if 4 is a customer
| B - flyt, ] , otherwise

where f[y,y'™1] is the energy consumption from ' to y**!, B is the battery capacity.

ev' — 1, if y' is the depot
ev'tt = ’ 8.3
ev' | otherwise (8:3)
0,y =i
dtt=3"" 8.4
‘ d. , otherwise (8.4)

8.1.2 Proposed Model

We use a neural network to parameterize the policy 7, i.e. to estimate P (y'™! = i| X, G*, Y?),
Vi € {0,1,...,N 4+ S}. The model structure is illustrated in Figure 8.1. The proposed
model consists of three components: the embedding, the attention mechanism and the
LSTM decoder, which is very similar to the framework proposed in [35]. The differences
mainly lie in the embedding components where a set of global variables 7¢, b* along with
ev! and an additional graph embedding layer are employed.
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Figure 8.1: The Proposed Model Structure

Embedding

At decoding step t, the problem inputs X! and G! are mapped into a high dimensional
vector space. We denote the embedded model inputs with Xt and Gt. More speciﬁcally,
for node 1, its geographical coordinate (z;,z;), time window (e;,/;) and demand q; are
embedded to loc;, tw; and ¢! respectively. The embedded vectors are of the same dimension,
say £. The embedding layers for location, time window and demand are different but are
shared among nodes. Besides, we have three embedding layers for global variables 7¢, b!
and ev’, and one additional layer for the hidden state of the LSTM decoder ht, mapplng
them to ¢-dimensional vectors 7y, bt, ev, and ht respectively.

In the classical VRP that [35] investigates, only local information at each node, i.e.
location and remaining demand, are of interest. Given that the problem is defined on a
complete graph where inter-nodes relationship is of lower importance, directly feeding these
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embedded vectors to the attention model could generate decoding sequence of high quality.
However, in the EVRPTW, global information as previously mentioned has significant
influences on solution quality and feasibility. Therefore, combining the local information
at different nodes and the global information is highly significant.

To this end, we employ the Structure2Vec tool [29], which has been successfully applied
by [65] to tackle combinatorial problems over graphs. The graph embedding layer intakes
all the aforementioned embedded vectors and computes a -dimensional vector j! for each

node ¢. In particular, we initialize a vector for node ¢ as p,go) = loc;, and then update
ugk), Vk =1,2,...,p recursively using Equation 8.5.

ugk) = relu{&ll;t + Oy7t + Oze0t + O,hF + 95qu + Ogtw;+
b S WVl ST relulfou(i, )]} (8:5)
je‘/c,s,ud jevc,s,od
where V. ,q is the set of all nodes, w(i,j) represents the weight on edge (i,j). For
EVRPTW, w(i, 5) is defined as the distance among edge (i, 7), Vi, j.

After p steps of recursion, the network will generate a £&-dimensional vector ,ugp ) for node

i and we let p! equal to MEP ). At each recursion step, the global information and location
information are aggregated by the first 6 terms of Equation 8.5. Moreover, the information
at different nodes and edges propagates among each other via the last two summation
terms. The final embedded vectors p! contains both local and global information, thus
could better represent the complicated context of the graph.

The Attention Mechanism

Similar to [85], we utilize the context-based attention mechanism proposed by [5]. We first
calculate a context vector ¢! specifying the state of the whole graph as a weighted sum of

t t t .
Moy Hgy - - 7/JJM+N'
M+N

¢ = Z aiiiu?, (86)

1=0

where the weight of node 7 is computed as

al = softmaz (v') (8.7)
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vl = Wtanh (W) (8.8)

Then, based on the context vector ¢! and embedded embedded vectors of all the nodes,
we estimate the probability of visiting each node at the next step as

pi= Py = i|X', G, V") = softmaz(') (8.9)
gt = Wytanh (We[pt; c]) - (8.10)

In 8.6 - 8.10, W,,, W, W, and W, are trainable variables, and [;] means concatenating
the two vectors on the left and right of the ; symbol.

In order to accelerate the training process and ensure solution feasibility, we design
several masking schemes to exclude infeasible routes. In particular, suppose that the EV
is currently at node i at decoding step ¢, if node j,Vj # ¢ satisfies one of the following
conditions, we assign a very large negative number to the corresponding v§ and g§ such
that the calculated weight aj- and probability p§ will be very close to 0.

e There is no remaining demand at customer node j, or the remaining demand is
greater than the cargo capacity available.

e Current battery level b can not support the EV to travel to node j, and to travel
back to the depot from node j.

e The earliest arrival time at node j is later than [;.

e Given the current time 7¢, the travelling time from node 7 to node j and the recharging
time at node 7, if node j is a station, will result in violations of the planning horizon
constraint, i.e. fail to return to the depot before the end of planning horizon.

e We mask all the nodes except the depot node if the EV is currently at the depot and
there is no remaining cargo at any customer nodes.

The LSTM Decoder
Similar to [85] and previous literature including [5] and [112], we use the Recurrent Neural

Network (RNN), more specifically LSTM, to model the decoder network. At decoding step
t, The LSTM intakes the embedded location vector of the EV’s current position loc,: as
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well as the hidden state from the preceding decoding step h'~! and output a hidden state
h! maintaining information about the trajectory up to step ¢, i.e. Y?. The hidden state
h' is then embedded to At which is fed to the attention model as introduced earlier in this
section.

8.2 Training Method

We implement a policy gradient method similar to [25] and [3] to train the proposed
model. To this end, we use 6 to denote all the trainable parameters in the model, and
define a loss function as in Equation 8.11 representing the expected total reward of the
trajectory sampled using the policy pamaterized by 0, i.e. 7. We minimize L(#) using the
REINFORCE gradient estimator with greedy rollout baseline BL similar to [72], as shown
in Equation 8.12. At each training step, given a batch of instances generated on the fly,
we can estimate the gradient by sampling trajectories for the instances with 7% and taking
average of the terms inside the expectation symbol in Equation 8.12.

L(0) = Eypyy) [r(Y)] (8.11)

VoL = Ey.p,rvix0) {[r(Y) — BL(X")] VologPs(Y|X°)}, (8.12)

where X° is a given instance, Y is the trajectory sampled using policy 7, r(Y") is the
total reward of trajectory Y, BL(X") is the reward achieved by the baseline policy 75
on instance X°, and Py(Y|X?) is the probability that trajectory Y is generated by policy
7% given instance X°.

We define the reward of trajectory Y = {3°,4*,..., 4"} as given in Equation 8.13. The
first term represents the negative total distance travelled by the EV fleet. In the training
process, it is possible that the model will generate trajectory that requires more than the
given EVs, we use the second term to penalize the excessive usage of EVs. Moreover, if the
depot is located very close to a station, the model might achieve low travelling distance
by constantly moving between this station and the depot. In order to prevent this ”trick”,
we introduce the third term to penalize every station visit, which is plausible because we
only visit charging station when necessary under the EVRPTW setting.

t/
r(Y) = Z (' yt) + Be max{—ev' |0} + ByarStat(Y), (8.13)
=1
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where v(y*~!, ") is the negative distance between nodes y*~* and 3; ev” is the number
of EV(s) remained (note that this could be of a negative value); Stat(Y") is the number of
station visit(s) along trajectory Y'; S, and Bgq are two pre-determined constants.

With regard to Py(Y|X?), we use the probability chain rule proposed in [112] to de-
compose the probability as shown in Equation 8.14. Terms P(y'*!| X* G*, Y") on the right
hand side could be obtained from the model at each decoding step.

t'—1
PY|X%) =[] P/ 1X", G (8.14)

t=0

Regarding the baseline policy, for the first A training steps, we simply use the mean
reward of the whole batch, after which we use the rollout baseline proposed by [72]. More
specifically, we initialize the baseline policy 75L as the policy we have at the beginning
of the A" steps. And then, after the A" step, we compare the current model with the
baseline model every ( training steps. If the current model is significantly greater than the
baseline model on a separated test set according to a single-side paired t-test (o = 5%),
then we update the baseline and generate a new test set to avoid overfitting, otherwise we
keep the baseline and the test set.

The pseudo code of the training algorithm is summarized in Algorithm 9. At each train-
ing step, we generate N random instances and perform simulation on them to approximate
the gradient as in Equation 8.12. In each instance, the nodes are uniformly distributed
among a region [0, 1] x [0,1]. We use a way similar to [105] to generate the time window
for each customer. The center of a time window is uniformly distributed among [0, 1] while
the length is normally distributed with mean 0.2 and standard deviation 0.05. We use the
Adam optimizer [07] to update the parameters 6 and update the baseline policy if certain
conditions are met. For the EVRPTW, the termination condition is that the EV has come
back to the depot and there is no remaining demand at any customer nodes.

8.3 Numerical Experiment

8.3.1 Experimental Settings
We perform all the tests in this section using a Macbook Pro (2018) running Mac OS
10.13.6 with 4 CPU processors at 2.3 GHZ and 16 GB of RAM. The RL model is realized

using the Tensorflow 2.2.0. The codes are implemented in Python.
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Algorithm 9 REINFORCE with Rollout Baseline
1: initialize the actor network with random weights 6, test instance set S.
2: fori=1,2,... do
3: Generate N random instances X = {X, Ay, ..., Xy}

4 forn=1,...,N do

5 initialize decoding step counter ¢,, <— 0

6 repeat

T: choose yi» ™ according to the distribution Py(ylr X, Gin Yin)
8 observe new state Xnt! Gintl ytntl

9 t,+—t,+1

10: until termination condition is satisfied

11: compute reward r(Y,)

12: if i < A then BL(X,) + avg [r(Y{"), r(Y3?),...,r(Y3M)]

13: else

14: BL(X,) « 7Bl (Xx,)

15 df £ 300 S (Vi) = BL(X,)] Vo log P(Y;i|X,.,6)

16: 0 < Adam(6,d6)

17: if i = A then Initialize baseline policy 75~

18: else if 7 mod ( = 0 then

19: if OneSideTTest(n%(S),nPL(S)) < a then
20: 7Bl ¢« 7f
21: Update test set S

For the RL model, we adapt most hyper-parameters from the work done by [25]. We

use seven 1-dimensional convolution layers for the embedding of location, time window,
remaining demand, LSTM hidden state, current time, battery level and the number of
available EVs respectively. All this information is embedded to a 128-dimensional vector
space. We utilize a LSTM with a state size of 128. For the Adam optimizer, the initial
step size is set to 0.001, and the batch size is N' = 128. To stablize the training, we clip the
gradients such that their norms are no more than 2.0. With regard to the rollout baseline,
we set A to 1000 and evaluate the baseline model every 100 training steps after that. In
the reward function, the penalty factors for depot and station visits are set to 1.0 and 0.5
respectively. All the trainable variables are initialized with the Xavier initialization [14].
We train the model for 10000 steps which takes approximately 90 hours.

When training the model, we sample the trajectories in a stochastic manner to diversify
the possible circumstances encountered by the RL model. In particular, at each training
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step, the model outputs the probabilities of visiting different nodes and we select the next
node to visit according to this probability distribution. When testing, we consider three
different ways to generate solutions. First, we sample the route for a given instance in
a stochastic manner for several times and select the best solution. Second, we select the
nodes in a greedy manner, i.e. to select the node with the highest probability at each step.
Finally, we use the beam search (BS) which simultaneously maintain more than one routes
and seek to find a route with the highest overall probability.

8.3.2 Computational Results

The performance of the RL model, CPLEX and the VNS/TS heuristic developed by Schnei-
der et al. [103] is presented in Tables 8.1 and 8.2. We apply these approaches to six different
scenarios whose names indicate the numbers of customers, stations, and available EVs. For
example, ”C5-S2-EV2” means the task of 5 customers, 2 stations and 2 EVs. For each
scenario, we solve 100 instances created in the same way as we produce the RL’s training
data and report the mean total distance travelled by the EV fleet and the gap from the
minimal distance achieved by these algorithms in Table 8.1. The average solution time over
the test set in seconds is recorded in Table 8.2. We only report the results for algorithms
that can successfully solve an instance in 15 minutes. For stochastic implementation of
the RL, we perform simulations for 100 times, while for the beam search, we maintain 3
channels simultaneously.

As shown, the stochastic implementation, though more time-consuming, achieves the
lowest travelling distance among the three implementation methods for the RL. However,
its optimality gaps are 7.29% and 11.93% for scenarios ”C5-S2-EV2” and ”C10-S3-EV3”
respectively, while the performance of the VNS/TS heuristic is considered the state of the
art for both scenarios. When it comes to scenarios with 20 or more customers, similar to the
results reported in [103], CPLEX is not able to solve the problem within reasonable time.
The VNS/TS heuristic outperforms the RL model in terms of solution quality on scenarios
7(C20-S3-EV3” and ”"C30-S4-EV4”, yet spends 7-10 times the solution time utilized by the
RL model. The gaps between the distances accomplished by the VNS /TS heuristic and the
RL model are 17.16% and 26.19% respectively for these two scenarios. Regarding scenarios
with 40 or more customers, the RL model is the only algorithm that is able to solve the
EVRPTW within 15 minutes. In fact, even the most time-consuming RL implementation
requires less than 3 minutes.

To conclude the chapter, we note that the RL model developed in this thesis is able to
solve the EVRPTW fairly efficiently. Although it takes over 3 days to train the model, we
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Table 8.1: Comparisons of Average Total Travel Distance of the 5 Approaches
CPLEX VNS/TS RL(stochastic) RL(Greedy) RL(Beam)

Instance Distance Gap Distance Gap Distance Gap Distance Gap Distance Gap

C5-S2-EV2 2.47 0.00% 2.48 0.40% 2.65 7.29% 2.85 15.38% 2.95 19.43%
C10-S3-EV3 3.52 0.00% 3.55 0.85% 3.94 11.93% 4.46 26.70% 4.63 31.53%
- - 5.42 0.00% 6.35 17.16% 7.47 37.82% 7.43 37.08%

C20-S3-EV3

C30-S4-EV4 - - 6.91 0.00% 8.72 26.19% 9.74 40.96% 9.84 42.40%
C40-S5-EV5 - - - - 11.36 0.00% 12.76 12.32% 12.49 9.95%.
C50-S6-EV6 - - - - 13.98 0.00% 15.34 9.73% 14.94 6.87%

Table 8.2: Comparisons of Average Solution Time of the 5 Approaches
Instance CPLEX VNS/TS RL(stochastic) RL(Greedy) RL(Beam)

C5-S2-EV2 0.08 1.76 4.81 0.46 0.53
C10-S3-EV3 67.65 14.03 11.08 0.91 0.94
C20-S3-EV3 - 212.26 30.09 1.76 2.03
C30-S4-EV4 - 633.52 59.59 2.50 2.85
C40-S5-EV5 - - 87.48 2.84 3.77
C50-S6-EV6 - - 166.41 4.58 5.7

can utilize the model to solve any instance once the training is completed. With regard to
solution quality, the performance of the proposed model is still relatively far away from the
state of the art. At this stage, we regard it as a relatively good feasible solution generator
rather than an optimal solution finder, which is helpful especially for instances of very

large sizes.
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Chapter 9

Conclusion and Future Work

In this thesis, we develop an optimization approach for operating a commercial EV fleet
under bidirectional V2G context. In particular, we propose a new optimization problem,
namely electric vehicle routing problem under time-variant electricity prices (EVRPTW-
TVEP), considering practical constraints including customer service time window as well
as vehicle cargo and battery capacities. The model jointly optimizes the fleet’s route
and charge/discharge schedule over the associated monetary cost, which reflects a realistic
operational objective.

However, the proposed problem is so complicated that even powerful commercial MIP
solvers, such as CPLEX, can only solve instances of 10 customers to optimality within
2 hours. To solve relatively larger instances, we formulate a Lagrangian relaxation and a
variable neighborhood search and tabu search hybrid (VNS/TS) heuristic to generate lower
and upper bounds to the optimal solution respectively. Our computational experiments
show that both algorithms are able to provide good quality bounds for instances of less than
10 customers. The Lagrangian relaxation is relatively computationally expensive because
the derived sub-problem is still too complex to solve with CPLEX. On the other hand,
the VNS/TS heuristic is fairly powerful. It is able to generate close-to-optimal solutions
for 10-customers instances with less than 5% of the time spent by CPLEX. Further, the
VNS/TS heuristic is able to solve instances of 15 customers, which cannot be solved with
any readily available tools, in less than 13 minutes.

In addition, we utilize the VNS/TS heuristic to study a case of a local grocery store
providing online grocery delivery in the KW region in Ontario, Canada with a small EV
fleet. Implications about the economical benefits for the V2G implementation, the elec-
tricity pricing, service time slot design and fleet size are drawn from the case study. First,
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participating in the proposed V2G program can bring the fleet an annual benefit per EV
of $279 — $402 comparing with a constant electricity price and no discharge setting. The
potential profit is able to cover the fleet’s energy consumption cost even in the worst case.
Moreover, our numerical results show that electricity prices have significant impact on
fleet operations. Adjusting service hours with respect to the changes in time-of-use period
between summer and winter might be able to provide additional profits for the fleet. Addi-
tionally, the design of service time slot influences the operational flexibility in a substantial
way. Under the tight setting where each time slot lasts 2 hours, the fleet can only discharge
for 6 — 7 hours per day while that number can go up to 12 when no time window is applied.
Besides, the travelling distance of the first case is 57% — 75% higher than the latter one.
Regarding the fleet size, we find that, in general, employing additional EV(s) enhances the
fleet’s operational flexibility. However, it is not worthwhile to enlarge the fleet in this case
considering the high acquisition cost of EVs.

Furthermore, as the first step towards utilizing advanced machine learning algorithms
to solve the proposed problem, we develop a deep reinforcement learning (RL) model to
solve the EVRPTW. The RL model manages to obtain feasible solutions fairly efficiently.
However, there is still rooms for improvement in solution quality.

We highlight a few potential research directions for future work. Firstly, previous re-
search has shown that frequent charging and discharging has negative impacts on EV
battery’s lifespan. However, we do not take into account the cost associated with battery
degradation through the thesis. To provide more reliable and realistic operational strate-
gies, future research could incorporate the model with the battery wear cost. Secondly,
to reduce the model complexity, we employ a linear charging/discharging function and a
discretized charging/discharging schedule. Research efforts could be made to adopt more
sophisticated modeling of charging/discharging processes and continuous energy prices.
Additionally, it is fruitful to extend the proposed model to a robust optimization version
to incorporate the uncertainties in energy prices, and customer demands. Nevertheless,
more powerful solution algorithms should be developed before we delve into robust op-
timization. To be more specific, improvements could be made on the charge/discharge
optimization given a route, especially for the case of one station visit along a route. Fur-
ther, advanced techniques such as deep reinforcement learning is worth exploring as well.
The Lagrangian relaxation and the VNS/TS heuristic introduced in this thesis could be
employed in a branch-and-price approach to solve the proposed problem exactly. Finally,
it is also interesting to investigate the variants of the proposed problem considering a
heterogeneous fleet, time-dependant travelling cost, periodic routing and so on.

7



References

1]

2]

Tarek Abdallah. The plug-in hybrid electric vehicle routing problem with time win-
dows. Master’s thesis, University of Waterloo, 2013.

Ahmed Abdulaal, Mehmet H Cintuglu, Shihab Asfour, and Osama A Mohammed.
Solving the multivariant ev routing problem incorporating v2g and g2v options. IEEE
Transactions on Transportation Electrification, 3(1):238-248, 2016.

Yogesh Agarwal, Kamlesh Mathur, and Harvey M Salkin. A set-partitioning-based
exact algorithm for the vehicle routing problem. Networks, 19(7):731-749, 1989.

Kemal Altinkemer and Bezalel Gavish. Parallel savings based heuristics for the
delivery problem. Operations Research, 39(3):456-469, 1991.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,
2014.

Michel L Balinski and Richard E Quandt. On an integer program for a delivery
problem. Operations research, 12(2):300-304, 1964.

C Battistelli, L Baringo, and AJ Conejo. Optimal energy management of small
electric energy systems including v2g facilities and renewable energy sources. Electric
Power Systems Research, 92:50-59, 2012.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio.
Neural combinatorial optimization with reinforcement learning. arXiv preprint
arXw:1611.09940, 2016.

Ricardo J Bessa and Manuel A Matos. Economic and technical management of an
aggregation agent for electric vehicles: a literature survey. European transactions on
electrical power, 22(3):334-350, 2012.

78



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Justin DK Bishop, Colin J Axon, David Bonilla, Martino Tran, David Banister, and
Malcolm D McCulloch. Evaluating the impact of v2g services on the degradation of
batteries in phev and ev. Applied energy, 111:206-218, 2013.

National Energy Board. Canada’s energy future. Technical report, National Energy
Board, 2018.

Ontario Energy Board. Electricity rates. Available at: https://www.oeb.ca/
rates-and-your-bill/electricity-rates. Accessed: 2020-06-02.

Ontario Energy Board.  Historical electricity rates.  https://www.oeb.ca/
rates-and-your-bill/electricity-rates/historical-electricity-rates.

Accessed: 2019-06-12.

Albert G Boulanger, Andrew C Chu, Suzanne Maxx, and David L. Waltz. Vehicle
electrification: Status and issues. Proceedings of the IEEE, 99(6):1116-1138, 2011.

Kris Braekers, Katrien Ramaekers, and Inneke Van Nieuwenhuyse. The vehicle rout-
ing problem: State of the art classification and review. Computers € Industrial
Engineering, 99:300-313, 2016.

Tobias Brandt, Sebastian Wagner, and Dirk Neumann. Evaluating a business model
for vehicle-grid integration: Evidence from germany. 7Transportation Research Part
D: Transport and Environment, 50:488-504, 2017.

Olli Braysy and Michel Gendreau. Vehicle routing problem with time windows, part
i: Route construction and local search algorithms. Transportation science, 39(1):104—
118, 2005.

Jose Caceres-Cruz, Pol Arias, Daniel Guimarans, Daniel Riera, and Angel A Juan.
Rich vehicle routing problem: Survey. ACM Computing Surveys (CSUR), 47(2):1-28,
2014.

Duncan S Callaway and Ian A Hiskens. Achieving controllability of electric loads.
Proceedings of the IEEFE, 99(1):184-199, 2010.

Statistics Canada. Table 20-10-0021-01 new motor vehicle registrations. DOIL: https:
//doi.org/10.25318/2010002101-eng.

Transport Canada. Zero-emission vehicles. Available at: https://www.tc.gc.ca/
en/services/road/innovative-technologies/zero-emission-vehicles.html.

79


https://www.oeb.ca/rates-and-your-bill/electricity-rates
https://www.oeb.ca/rates-and-your-bill/electricity-rates
https://www.oeb.ca/rates-and-your-bill/electricity-rates/historical-electricity-rates
https://www.oeb.ca/rates-and-your-bill/electricity-rates/historical-electricity-rates
https://doi.org/10.25318/2010002101-eng
https://doi.org/10.25318/2010002101-eng
https://www.tc.gc.ca/en/services/road/innovative-technologies/zero-emission-vehicles.html
https://www.tc.gc.ca/en/services/road/innovative-technologies/zero-emission-vehicles.html

[22]

23]

[24]

[25]

[26]

[27]

ChargeHub. Charge your ev in kitchener. Available at: https://chargehub.com/
en/countries/canada/ontario/kitchener.html?city_id=2397. Access on 2020-
06-01.

Wen-Chyuan Chiang and Robert A Russell. Simulated annealing metaheuristics for

the vehicle routing problem with time windows. Annals of Operations Research,
63(1):3-27, 1996.

Nicos Christofides, Aristide Mingozzi, and Paolo Toth. Exact algorithms for the ve-
hicle routing problem, based on spanning tree and shortest path relaxations. Math-
ematical programming, 20(1):255-282, 198]1.

Geoff Clarke and John W Wright. Scheduling of vehicles from a central depot to a
number of delivery points. Operations research, 12(4):568-581, 1964.

Jean-Francois Cordeau, Michel Gendreau, Gilbert Laporte, Jean-Yves Potvin, and
Frédéric Semet. A guide to vehicle routing heuristics. Journal of the Operational
Research society, 53(5):512-522, 2002.

Jean-Francgois Cordeau, Gilbert Laporte, Martin WP Savelsbergh, and Daniele Vigo.
Vehicle routing. Handbooks in operations research and management science, 14:367—
428, 2007.

Zbigniew J Czech and Piotr Czarnas. Parallel simulated annealing for the vehicle
routing problem with time windows. In Proceedings 10th Euromicro workshop on
parallel, distributed and network-based processing, pages 376-383. IEEE, 2002.

Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable

models for structured data. In International conference on machine learning, pages
2702-2711, 2016.

George B Dantzig and John H Ramser. The truck dispatching problem. Management
science, 6(1):80-91, 1959.

Rommert Dekker, Jacqueline Bloemhof, and Ioannis Mallidis. Operations research for
green logistics—an overview of aspects, issues, contributions and challenges. Furopean
Journal of Operational Research, 219(3):671-679, 2012.

Guy Desaulniers, Fausto Errico, Stefan Irnich, and Michael Schneider. Exact algo-

rithms for electric vehicle-routing problems with time windows. Operations Research,
64(6):1388-1405, 2016.

80


https://chargehub.com/en/countries/canada/ontario/kitchener.html?city_id=2397
https://chargehub.com/en/countries/canada/ontario/kitchener.html?city_id=2397

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Martin Desrochers, Jacques Desrosiers, and Marius Solomon. A new optimization
algorithm for the vehicle routing problem with time windows. Operations research,
40(2):342-354, 1992.

Kevin J Dyke, Nigel Schofield, and Mike Barnes. The impact of transport elec-
trification on electrical networks. IEEE Transactions on Industrial Electronics,
57(12):3917-3926, 2010.

Burak Eksioglu, Arif Volkan Vural, and Arnold Reisman. The vehicle routing prob-
lem: A taxonomic review. Computers € Industrial Engineering, 57(4):1472-1483,
2009.

Nasser A El-Sherbeny. Vehicle routing with time windows: An overview of ex-
act, heuristic and metaheuristic methods. Journal of King Saud University-Science,
22(3):123-131, 2010.

Sevgi Erdogan and Elise Miller-Hooks. A green vehicle routing problem. Transporta-
tion Research Part E: Logistics and Transportation Review, 48(1):100-114, 2012.

Angel Felipe, M Teresa Ortuno, Giovanni Righini, and Gregorio Tirado. A heuristic
approach for the green vehicle routing problem with multiple technologies and partial

recharges. Transportation Research Part E: Logistics and Transportation Review,
71:111-128, 2014.

Marshall L. Fisher. Optimal solution of vehicle routing problems using minimum
k-trees. Operations research, 42(4):626-642, 1994.

Marshall L Fisher and Ramchandran Jaikumar. A generalized assignment heuristic
for vehicle routing. Networks, 11(2):109-124, 1981.

Marshall L Fisher, Kurt O Jornsten, and Oli BG Madsen. Vehicle routing with time
windows: Two optimization algorithms. Operations research, 45(3):488-492, 1997.

Michel Gendreau, Alain Hertz, and Gilbert Laporte. A tabu search heuristic for the
vehicle routing problem. Management science, 40(10):1276-1290, 1994.

Billy E Gillett and Leland R Miller. A heuristic algorithm for the vehicle-dispatch
problem. Operations research, 22(2):340-349, 1974.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international conference
on artificial intelligence and statistics, pages 249-256, 2010.

81



[45]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Bruce L Golden, Thomas L. Magnanti, and Hien Q Nguyen. Implementing vehicle
routing algorithms. Technical report, MASSACHUSETTS INST OF TECH CAM-
BRIDGE OPERATIONS RESEARCH CENTER, 1975.

Bruce L Golden, Subramanian Raghavan, and Edward A Wasil. The vehicle routing
problem: latest advances and new challenges, volume 43. Springer Science & Business
Media, 2008.

Rebecca Gough, Charles Dickerson, Paul Rowley, and Chris Walsh. Vehicle-to-grid
feasibility: A techno-economic analysis of ev-based energy storage. Applied energy,
192:12-23, 2017.

Ro E Griffith and RA Stewart. A nonlinear programming technique for the optimiza-
tion of continuous processing systems. Management science, 7(4):379-392, 1961.

Christophe Guille and George Gross. A conceptual framework for the vehicle-to-grid
(v2g) implementation. Energy policy, 37(11):4379-4390, 2009.

G Haddadian, N Khalili, M Khodayar, and M Shahidehpour. Optimal scheduling of
distributed battery storage for enhancing the security and the economics of electric

power systems with emission constraints. FElectric Power Systems Research, 124:152—
159, 2015.

Sekyung Han, Soohee Han, and Kaoru Sezaki. Estimation of achievable power ca-
pacity from plug-in electric vehicles for v2g frequency regulation: Case studies for
market participation. IEEE Transactions on Smart Grid, 2(4):632-641, 2011.

Michael Held and Richard M Karp. The traveling-salesman problem and minimum
spanning trees. Operations Research, 18(6):1138-1162, 1970.

Michael Held, Philip Wolfe, and Harlan P Crowder. Validation of subgradient opti-
mization. Mathematical programming, 6(1):62-88, 1974.

Patrick Hertzke, Nicolai Miiller, Patrick Schaufuss, Stephanie
Schenk, and Ting Wu. Expanding  electric-vehicle  adoption
despite  early  growing  pains. Available  at: https://www.
mckinsey.com/industries/automotive-and-assembly/our-insights/
expanding-electric-vehicle-adoption-despite-early-growing-pains.

Junjie Hu, Hugo Morais, Tiago Sousa, and Morten Lind. Electric vehicle fleet man-
agement in smart grids: A review of services, optimization and control aspects.
Renewable and Sustainable Energy Reviews, 56:1207-1226, 2016.

82


https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/expanding-electric-vehicle-adoption-despite-early-growing-pains
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/expanding-electric-vehicle-adoption-despite-early-growing-pains
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/expanding-electric-vehicle-adoption-despite-early-growing-pains

[56]

[57]

[58]

[59]

[60]

JQ James and Albert YS Lam. Autonomous vehicle logistic system: Joint routing

and charging strategy. IEFEE Transactions on Intelligent Transportation Systems,
19(7):2175-2187, 2017.

Brian Kallehauge. Formulations and exact algorithms for the vehicle routing problem
with time windows. Computers €& Operations Research, 35(7):2307-2330, 2008.

Brian Kallehauge, Jesper Larsen, and Oli BG Madsen. Lagrangian duality applied to
the vehicle routing problem with time windows. Computers & Operations Research,
33(5):1464-1487, 2006.

Evangelos L Karfopoulos and Nikos D Hatziargyriou. A multi-agent system for
controlled charging of a large population of electric vehicles. IEEE Transactions on
Power Systems, 28(2):1196-1204, 2012.

Willett Kempton and Steven E Letendre. Electric vehicles as a new power source
for electric utilities. Transportation Research Part D: Transport and Environment,

2(3):157-175, 1997.

Willett Kempton and Jasna Tomi¢. Vehicle-to-grid power fundamentals: Calculating
capacity and net revenue. Journal of power sources, 144(1):268-279, 2005.

Willett Kempton and Jasna Tomié. Vehicle-to-grid power implementation: From

stabilizing the grid to supporting large-scale renewable energy. Journal of power
sources, 144(1):280-294, 2005.

Willett Kempton, Victor Udo, Ken Huber, Kevin Komara, Steve Letendre, Scott
Baker, Doug Brunner, and Nat Pearre. A test of vehicle-to-grid (v2g) for energy
storage and frequency regulation in the pjm system. Results from an Industry-
University Research Partnership, 32, 2008.

Merve Keskin and Biilent Catay. Partial recharge strategies for the electric vehicle
routing problem with time windows. Transportation Research Part C: Emerging
Technologies, 65:111-127, 2016.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning com-
binatorial optimization algorithms over graphs. In Advances in Neural Information
Processing Systems, pages 6348-6358, 2017.

Mahdi Kiaee, Andrew Cruden, and Suleiman Sharkh. Estimation of cost savings
from participation of electric vehicles in vehicle to grid (v2g) schemes. Journal of
Modern Power Systems and Clean Energy, 3(2):249-258, 2015.

83



[67] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiw:1412.6980, 2014.

[68] Michael Kintner-Meyer, Kevin Schneider, and Robert Pratt. Impacts assessment
of plug-in hybrid vehicles on electric utilities and regional us power grids, part 1:
Technical analysis. Pacific Northwest National Laboratory, 1, 2007.

[69] Paul R Kleindorfer, Kalyan Singhal, and Luk N Van Wassenhove. Sustainable oper-
ations management. Production and operations management, 14(4):482-492, 2005.

[70] Niklas Kohl and Oli BG Madsen. An optimization algorithm for the vehicle routing
problem with time windows based on lagrangian relaxation. Operations research,
45(3):395-406, 1997.

[71] Antoon WJ Kolen, AHG Rinnooy Kan, and Harry WJM Trienekens. Vehicle routing
with time windows. Operations Research, 35(2):266-273, 1987.

[72] Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing
problems! arXiw preprint arXiv:1803.08475, 2018.

[73] Suresh Nanda Kumar and Ramasamy Panneerselvam. A survey on the vehicle routing
problem and its variants. Intelligent Information Management, 4(3):66-74, 2012.

[74] Jari Kyto6joki, Teemu Nuortio, Olli Braysy, and Michel Gendreau. An efficient vari-
able neighborhood search heuristic for very large scale vehicle routing problems.
Computers € operations research, 34(9):2743-2757, 2007.

[75] Gilbert Laporte. The vehicle routing problem: An overview of exact and approximate
algorithms. Furopean journal of operational research, 59(3):345-358, 1992.

[76] Gilbert Laporte. Fifty years of vehicle routing. Transportation science, 43(4):408—
416, 20009.

[77] Gilbert Laporte and Yves Nobert. A branch and bound algorithm for the capacitated
vehicle routing problem. Operations-Research-Spektrum, 5(2):77-85, 1983.

[78] Steven Letendre, Richard Watts, Michael Cross, et al. Plug-in hybrid vehicles and
the vermont grid: a scoping analysis. Technical report, University of Vermont. Trans-
portation Research Center, 2008.

84



[79]

[80]

[81]

[82]

[83]

[87]

[38]

Canhong Lin, King Lun Choy, George TS Ho, Sai Ho Chung, and HY Lam. Sur-
vey of green vehicle routing problem: past and future trends. Fxpert systems with
applications, 41(4):1118-1138, 2014.

Jane Lin, Wei Zhou, and Ouri Wolfson. Electric vehicle routing problem. Trans-
portation Research Procedia, 12(Supplement C):508-521, 2016.

Henrik Lund and Willett Kempton. Integration of renewable energy into the trans-
port and electricity sectors through v2g. Energy policy, 36(9):3578-3587, 2008.

David Mester and Olli Bréaysy. Active guided evolution strategies for large-scale
vehicle routing problems with time windows. Computers & Operations Research,
32(6):1593-1614, 2005.

Alejandro Montoya, Christelle Guéret, Jorge E Mendoza, and Juan G Villegas. The
electric vehicle routing problem with nonlinear charging function. Transportation
Research Part B: Methodological, 103:87-110, 2017.

Yuichi Nagata and Olli Briaysy. Edge assembly-based memetic algorithm for the
capacitated vehicle routing problem. Networks: An International Journal, 54(4):205—
215, 2009.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takac. Re-
inforcement learning for solving the vehicle routing problem. In Advances in Neural
Information Processing Systems, pages 9839-9849, 2018.

Eva Niesten and Floortje Alkemade. How is value created and captured in smart
grids? a review of the literature and an analysis of pilot projects. Renewable and
Sustainable Energy Reviews, 53:629-638, 2016.

Lance Noel and Regina McCormack. A cost benefit analysis of a v2g-capable electric
school bus compared to a traditional diesel school bus. Applied Energy, 126:246-255,
2014.

Mehdi Noori, Yang Zhao, Nuri C Onat, Stephanie Gardner, and Omer Tatari. Light-
duty electric vehicles to improve the integrity of the electricity grid through vehicle-
to-grid technology: Analysis of regional net revenue and emissions savings. Applied
Energy, 168:146-158, 2016.

Ontario Ministry of Transportation. Charging electric vehicles. Avail-
able at: http://www.mto.gov.on.ca/english/vehicles/electric/
charging-electric-vehicle.shtml.

85


http://www.mto.gov.on.ca/english/vehicles/electric/charging-electric-vehicle.shtml
http://www.mto.gov.on.ca/english/vehicles/electric/charging-electric-vehicle.shtml

[90]

[91]

[92]

[93]

[94]

[95]

[96]

Ibrahim Hassan Osman. Metastrategy simulated annealing and tabu search algo-
rithms for the vehicle routing problem. Annals of operations research, 41(4):421-451,
1993.

Samuel Pelletier, Ola Jabali, and Gilbert Laporte. Charge scheduling for electric
freight vehicles. Transportation Research Part B: Methodological, 115:246-269, 2018.

Jean-Yves Potvin and Jean-Marc Rousseau. A parallel route building algorithm for
the vehicle routing and scheduling problem with time windows. European Journal of
Operational Research, 66(3):331-340, 1993.

Christian Prins. A simple and effective evolutionary algorithm for the vehicle routing
problem. Computers & Operations Research, 31(12):1985-2002, 2004.

Casey Quinn, Daniel Zimmerle, and Thomas H Bradley. The effect of communication
architecture on the availability, reliability, and economics of plug-in hybrid electric
vehicle-to-grid ancillary services. Journal of Power Sources, 195(5):1500-1509, 2010.

Ghazal Razeghi and Scott Samuelsen. Impacts of plug-in electric vehicles in a bal-
ancing area. Applied Energy, 183:1142-1156, 2016.

Peter Richardson, Damian Flynn, and Andrew Keane. Local versus centralized charg-
ing strategies for electric vehicles in low voltage distribution systems. IEEE Trans-
actions on Smart Grid, 3(2):1020-1028, 2012.

Niklas Rotering and Marija Ilic. Optimal charge control of plug-in hybrid electric
vehicles in deregulated electricity markets. IEEE Transactions on Power Systems,
26(3):1021-1029, 2010.

Robert A Russell. An effective heuristic for the m-tour traveling salesman problem
with some side conditions. Operations Research, 25(3):517-524, 1977.

Robert A Russell. Hybrid heuristics for the vehicle routing problem with time win-
dows. Transportation science, 29(2):156-166, 1995.

Robert A Russell and Timothy L Urban. Vehicle routing with soft time windows and
erlang travel times. Journal of the Operational Research Society, 59(9):1220-1228,
2008.

Jyri Salpakari, Topi Rasku, Juuso Lindgren, and Peter D Lund. Flexibility of electric
vehicles and space heating in net zero energy houses: an optimal control model with
thermal dynamics and battery degradation. Applied energy, 190:800-812, 2017.

86



[102]

[103]

[104]

[105]

[106]

107]

108

[109]

[110]

[111]

112]

Tomés Gémez San Roman, Ilan Momber, Michel Rivier Abbad, and Alvaro Sanchez
Miralles. Regulatory framework and business models for charging plug-in elec-
tric vehicles: Infrastructure, agents, and commercial relationships. FEnergy policy,
39(10):6360-6375, 2011.

Michael Schneider, Andreas Stenger, and Dominik Goeke. The electric vehicle-
routing problem with time windows and recharging stations. Transportation Science,
48(4):500-520, 2014.

Shengnan Shao, Tianshu Zhang, Manisa Pipattanasomporn, and Saifur Rahman.
Impact of tou rates on distribution load shapes in a smart grid with phev penetration.
In IEEE PES T&D 2010, pages 1-6. IEEE, 2010.

Marius M Solomon. Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations research, 35(2):254-265, 1987.

Eric Sortomme and Mohamed A El-Sharkawi. Optimal charging strategies for uni-
directional vehicle-to-grid. IEEE Transactions on Smart Grid, 2(1):131-138, 2010.

Benjamin K Sovacool. A transition to plug-in hybrid electric vehicles (phevs): why
public health professionals must care, 2010.

Benjamin K Sovacool and Richard F Hirsh. Beyond batteries: An examination of the
benefits and barriers to plug-in hybrid electric vehicles (phevs) and a vehicle-to-grid
(v2g) transition. Energy Policy, 37(3):1095-1103, 2009.

Benjamin K Sovacool, Lance Noel, Jonn Axsen, and Willett Kempton. The neglected
social dimensions to a vehicle-to-grid (v2g) transition: a critical and systematic re-
view. Environmental Research Letters, 13(1):013001, 2018.

Sabah Mikha Steven Begley, Eric Marohn and Aaron Rettaliata. Digital disruption at
the grocery store. Available at: https://www.mckinsey.com/industries/retail/
our-insights/digital-disruption-at-the-grocery-store.

Olle Sundstrom and Carl Binding. Flexible charging optimization for electric vehicles
considering distribution grid constraints. I[EEE Transactions on Smart Grid, 3(1):26—
37, 2011.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages 3104—

3112, 2014.

87


https://www.mckinsey.com/industries/retail/our-insights/digital-disruption-at-the-grocery-store
https://www.mckinsey.com/industries/retail/our-insights/digital-disruption-at-the-grocery-store

[113]

[114]

[115]

[116]

[117]
[118]

[119]

[120]

[121]

[122]

[123]

Eric Taillard. Parallel iterative search methods for vehicle routing problems. Net-
works, 23(8):661-673, 1993.

Wanrong Tang, Suzhi Bi, Ying Jun Zhang, and Xiaojun Yuan. Joint routing and
charging scheduling optimizations for smart-grid enabled electric vehicle networks. In
2017 IEEE 85th Vehicular Technology Conference (VTC Spring), pages 1-5. IEEE,
2017.

Sam R Thangiah, Ibrahim H Osman, and Tong Sun. Hybrid genetic algorithm,
simulated annealing and tabu search methods for vehicle routing problems with time

windows. Computer Science Department, Slippery Rock University, Technical Report
SRU CpSc-TR-94-27, 69, 1994.

Paolo Toth. Dynamic programming algorithms for the zero-one knapsack problem.
Computing, 25(1):29-45, 1980.

Paolo Toth and Daniele Vigo. The vehicle routing problem. STAM, 2002.

Paolo Toth and Daniele Vigo. The granular tabu search and its application to the
vehicle-routing problem. Informs Journal on computing, 15(4):333-346, 2003.

Alicia Trivino-Cabrera, José A Aguado, and Sebastidn de la Torre. Joint routing and
scheduling for electric vehicles in smart grids with v2g. Energy, 175:113-122, 2019.

José Villar, Cristian A Diaz, Jose Arnau, and Fco Alberto Campos. Impact of plug-
in-electric vehicles penetration on electricity demand, prices and thermal generation
dispatch. In 2012 9th International Conference on the European Energy Market,
pages 1-8. IEEE, 2012.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances
in neural information processing systems, pages 2692-2700, 2015.

Lu Wang, Suleiman Sharkh, and Andy Chipperfield. Optimal coordination of
vehicle-to-grid batteries and renewable generators in a distribution system. Energy,
113:1250-1264, 2016.

Zhenpo Wang and Shuo Wang. Grid power peak shaving and valley filling using
vehicle-to-grid systems. [EEE Transactions on power delivery, 28(3):1822-1829,
2013.

38



[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

Rashid A Waraich, Matthias D Galus, Christoph Dobler, Michael Balmer, Goran
Andersson, and Kay W Axhausen. Plug-in hybrid electric vehicles and smart grids:

Investigations based on a microsimulation. Transportation Research Part C: Emerg-
ing Technologies, 28:74-86, 2013.

Andrew Winston. Inside ups’s electric vehicle strategy. Available at: https://www.
ups.com/us/es/services/knowledge-center/article.page?kid=ac91£520.

Rick Wolbertus, Maarten Kroesen, Robert van den Hoed, and Caspar Chorus. Fully
charged: An empirical study into the factors that influence connection times at ev-
charging stations. Energy Policy, 123:1-7, 2018.

Ye Wu, Zhengdong Yang, Bohong Lin, Huan Liu, Renjie Wang, Boya Zhou, and
Jiming Hao. Energy consumption and co2 emission impacts of vehicle electrification
in three developed regions of china. Energy Policy, 48:537-550, 2012.

Hongming Yang, Songping Yang, Yan Xu, Erbao Cao, Mingyong Lai, and Zhaoyang
Dong. Electric vehicle route optimization considering time-of-use electricity price by
learnable partheno-genetic algorithm. [EEE Transactions on smart grid, 6(2):657—
666, 2015.

Rongshan Yu, Wenxian Yang, and Susanto Rahardja. A statistical demand-price
model with its application in optimal real-time price. IEFEE Transactions on Smart
Grid, 3(4):1734-1742, 2012.

Hamidreza Zareipour, Claudio A Canizares, and Kankar Bhattacharya. The opera-
tion of ontario’s competitive electricity market: overview, experiences, and lessons.
IEEE Transactions on Power Systems, 22(4):1782-1793, 2007.

Chengke Zhou, Kejun Qian, Malcolm Allan, and Wenjun Zhou. Modeling of the cost
of ev battery wear due to v2g application in power systems. IEEE Transactions on
Energy Conversion, 26(4):1041-1050, 2011.

89


https://www.ups.com/us/es/services/knowledge-center/article.page?kid=ac91f520
https://www.ups.com/us/es/services/knowledge-center/article.page?kid=ac91f520

	List of Figures
	List of Tables
	Introduction
	Literature Review
	Vehicle to Grid
	Vehicle Routing Problem
	Problem Variants
	Solution Methods

	Electric Vehicle Routing Problem
	Electric Vehicle Routing in V2G Context

	The EVRPTW-TP
	Problem Description
	Mathematical Formulation

	Lagrangian Relexation for the EVRPTW-TP
	Lagrangian Relaxation
	Sub-gradient Heuristic

	VNS/TS Hybrid Heuristic for EVRPTW-TP
	The Framework
	Initialization
	VNS Component
	Tabu Component
	Generalized Cost Function
	Violation Evaluation
	Net Electricity Related Cost


	Computational Results
	Test Instances
	Experimental Setting
	Model Performance

	Use Case and Analysis
	Use Case Settings
	Electricity Pricing Scheme
	The Impact of Time Window
	The Impact of EV Fleet Size

	Reinforcement Learning for the EVRPTW
	Reinforcement Learning Model
	The MDP Formulation
	Proposed Model

	Training Method
	Numerical Experiment
	Experimental Settings
	Computational Results


	Conclusion and Future Work
	References

