
Making Renewable Energy
Certificates Efficient, Trustworthy,

and Private

by

Dimcho Zhelyazkov Karakashev

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2020

c© Dimcho Zhelyazkov Karakashev 2020

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Although renewable energy costs are declining rapidly, producers still rely on additional
incentives, such as Renewable Energy Certificates (RECs), when making an investment
decision. An REC is a proof that a certain amount of energy was generated from a re-
newable resource. It can be traded for cash in an REC market. Unfortunately, existing
mechanisms to ensure that RECs are trustworthy—not fraudulently generated and from
a universally-agreed renewable energy source—require periodic physical audits of the gen-
eration plant, which adds costly administrative overheads and locks out small producers.
Although prior work has attempted to address these issues, existing solutions lack privacy
and are vulnerable to tampering. In this work, we design, implement, and evaluate a system
that is efficient, trustworthy, and anonymous, thus opening the REC market to small-scale
energy producers. We describe two implementations based on a commercially-available
Azure Sphere microcontroller unit combined with a permissioned Blockchain, Hyperledger
Fabric, and a permissionless Blockchain, Algorand.

iii

Acknowledgements

I would like to thank my supervisors, Prof. Srinivasan Keshav and Prof. Sergey Gorbunov,
for their guidance and advice throughout my graduate research. Working with them has
profoundly affected how I approach and solve problems and how I communicate both
technically and non-technically. Their support and patience have been crucial catalyze
for my growth during my studies. Thank you to Costin Ograda-Bratu for his help with
hardware prototyping and Runbiao for developing a user interface to interact with the
system. I would also like to thank Prof. N. Asokan and Prof. Bernard Wong for their
valuable feedback on my thesis.

iv

Dedication

To my parents and my brother. Thank you for believing and supporting me throughout
my life. Thank you for all the encouragement and pieces of advice on how to deal with the
hurdles in life.

v

Table of Contents

List of Figures ix

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions and System Overview . 2

2 Background and Related Work 4

2.1 Background . 4

2.1.1 Blockchains . 4

2.1.2 Trusted Smart Meters Design . 6

2.1.3 Azure Sphere . 8

2.2 Related Work . 11

3 Preliminaries 13

3.1 Secure Hardware . 13

3.2 Remote Attestation . 14

3.3 Blockchain . 15

3.4 Signatures . 15

3.4.1 Stealth Addresses . 16

3.5 Ring Signatures . 17

4 Design 19

4.1 Desired System Properties . 19

4.1.1 Goals . 19

4.1.2 System sketch . 19

vi

4.1.3 Properties . 21

4.1.4 Threat Model . 21

4.2 Design . 23

4.2.1 Smart Meter . 23

4.2.2 Security Service . 25

4.2.3 Trading Platform . 25

4.2.4 Client Application . 28

4.3 User Registration . 30

5 Implementation 31

5.1 Smart Meter . 31

5.2 Trading Platform and Client Application 33

5.2.1 Implementation using Hyperledger Fabric 34

5.2.2 Implementation using Algorand . 42

6 Evaluation 49

6.1 Design . 49

6.1.1 Correctness . 49

6.1.2 Security . 50

6.1.3 Anonymity . 51

6.2 Implementation . 51

6.2.1 Correctness . 51

6.2.2 Security . 52

7 Future Work and Conclusions 55

7.1 Future Work . 55

7.2 Conclusions . 56

References 57

vii

APPENDICES 63

A Definitions 64

A.1 Security . 64

A.2 Anonymity . 65

B Cost 66

B.1 Azure Sphere . 66

B.2 Hyperledger Fabric . 66

B.3 Algorand . 67

viii

List of Figures

2.1 Azure Sphere Block Diagram . 10

4.1 High-Level System Architecture Diagram 20

4.2 Threat Model . 22

5.1 Hyperledger Fabric Implementation . 35

5.2 Hyperledger Fabric Configuration . 37

5.3 Client Web Interface . 38

5.4 Hyperledger Fabric Configuration . 42

5.5 Algorand Smart Meter Renewable Energy Generator Information Update . 44

5.6 Algorand Procedure for Creating New RECs 45

5.7 Algorand REC Trading . 48

ix

Chapter 1

Introduction

1.1 Motivation

In an effort to combat global warming, many countries provide incentives in the form
of policies for the reduction of greenhouse emissions [29]. Although those incentives are
diverse, one of the main foci is to promote renewable energy production. The addition of
green energy to the energy mix is important since the electricity and heat production sector
contributes about a quarter of the global greenhouse emissions [60]. Additionally, unlike
other sectors, electricity and heat production is amenable to emission reduction because
renewable energy sources have become a viable alternative to fossil fuels [61, 62].

In this work, we focus on quantity-forcing, a policy that incentivizes the deployment of
renewable energy by requiring either a specific amount or a portion of the total power to
be produced by renewable energy sources [39]. The policy in the USA and Canada is called
the Renewable Portfolio Standard (RPS), and it is a generation-based standard [39, 11].
It specifies not only the required portion of renewable energy by jurisdiction but also a
deadline for this to be achieved. The policy is associated with about half of the added
renewable energy generation in the USA [38].

To comply with quantity-forcing, electricity supply companies can purchase Renewable
Energy Certificates (RECs). RECs are tradeable certificates that are issued to a generator
when they produce a certain amount of renewable energy, usually 1 MWh. After their
creation, RECs can be exchanged for cash in an REC market. An REC purchaser, which
includes companies such as Microsoft, Goldman Sachs, GM, and eBay, can use it to prove
that their energy use has been offset by an equivalent amount of ’green’ generation or claim
to be ’100% green’ independent of their actual energy mix [31, 10]. An REC is retired when
it has been used to match energy consumption; retired RECs exit the system. RECs solve
the information asymmetry problem in that most electricity consumers cannot be sure that
their consumed energy is renewable, even if they are willing to pay more [46]. For these
reasons, in Europe alone, over 700 million certificates were issued in 2019 and this number
continues to increase every year [1].

1

Although RECs are an attractive mechanism for incentivizing renewable energy gener-
ation, their current implementation leaves much to be desired [46]. One problem is that
there are many REC systems that are different based on jurisdictions and, as a result, cause
substantial inconsistencies [57, 46]. For example, should electricity generation from wood
pellets derived from Amazonian rainforests be considered renewable? Recently AIB—the
organization that develops and promotes a standardized REC system in Europe— discov-
ered that Italy has been issuing RECs for a source that is considered renewable in Italy but
not in the rest of Europe [17]. A second problem is the double-spending and fraudulent
issue of certificates, especially in the voluntary market [57]. To address these two problems,
organizations such as Green-e [18] set uniform criteria for renewable generation and phys-
ically audit the energy source. However, this is onerous and expensive: a cost of at least
$4,500 for each annual audit. It also excludes small-scale energy producers, who cannot
afford these costs, from the market. Finally, the information in the REC leaks privacy,
especially for small-scale producers and traders who don’t want to reveal their trades and
level of market exposure.

1.2 Contributions and System Overview

In this thesis, we investigate how to improve the REC quantity-forcing policy. To ad-
dress the issues mentioned above, we show how to leverage secure, low-cost hardware,
blockchains, ring signatures, and stealth addresses to generate anonymous, trustworthy
RECs. At a high level, we rely on low-cost hardware that satisfies several requirements,
such as hardware root of trust, to create trustworthy RECs. These RECs are sent to a
blockchain so that their trustworthiness is maintained when traded by end-users. Addi-
tionally, a purchaser can use proofs based on remote attestation to ensure that the smart
meters are not compromised. To anonymize RECs, ring signatures hide the smart meter
that created the REC, and stealth address hide the blockchain owner of the REC.

Our contributions include:

• The design of a pragmatic blockchain-based system for low-overhead, trustworthy,
anonymous REC generation and trading.

• A detailed evaluation of our design to prove its security properties.

• A prototype implementation using commercially-available hardware and software.

2

The thesis is structured as follows. First, we discuss all the necessary background
and related work (Chapter 2). Then, we describe all the primitives used in our design
(Chapter 3). With this sufficient information, we clearly state our design goals and describe
our design (Chapter 4). Lastly, we describe our implementation (Chapter 5), evaluate our
work (Chapter 6), and conclude (Chapter 7).

3

Chapter 2

Background and Related Work
2.1 Background

In this chapter, we overview the technologies used in our implementation. First, we in-
troduce the Hyperledger Fabric and Algorand blockchains with a focus on transaction
processing and the parties involved. Although both blockchains are used as a black-box,
a description of how transactions are processed enhances the understanding of our secu-
rity assumptions and the required trust in the involved parties. Second, we summarize
the existing literature related to trusted smart meters designs and conclude that there are
no practical proposals for real-world resource-constrained devices. Since we address that
by choosing a commercially-available hardware Azure Sphere as a microcontroller for our
smart meter, we summarize the goals set by Microsoft when designing the microcontroller
unit and explain how they are satisfied.

2.1.1 Blockchains

Blockchains—ledgers with tamper-proof history in which users can read and write—are one
of the main building blocks in our systems. There are two types: permissioned blockchains
and permissionless blockchains. The former limits the party participation to only known
and approved beforehand users, while the latter does not impose limitations on user par-
ticipation. According to Androulaki et al. [37], permissioned blockchains are used when
parties have common goals but do not fully trust each other; for example, two companies
trading an asset. In contrast, permissionless blockchains are applicable to use cases in
which parties do not have any trust in each other. We now overview Hyperledger Fabric
and Algorand.

Hyperledger Fabric

Hyperledger Fabric [37] is a permissioned blockchain that provides a platform for dis-
tributed applications, also referred to as smart contracts or chaincodes. One of the system’s

4

main advantages is its modularity, which allows for balancing trade-offs such as throughput
and trust. Another advantage is that the system can support up to 20 000 tx/s [45], a
throughput permitting a wide variety of applications. Before describing the processing of
transactions, we describe the participants in the system.

There are three types of participants in Hyperledger Fabric. First, clients invoke chain-
code by submitting transaction proposals. The second type is peers, who are responsible
for maintaining the blockchain state and executing chaincode. Peers are separated into
groups called organizations; each node in the group fully trusts every participant in the
group. Lastly, ordering-service nodes implement a consensus protocol to order and group
transactions into blocks. All node types interact with a membership service provider that
enforces the permissioned aspect of the system.

Hyperledger Fabric processes transactions by executing, ordering, and validating them,
as opposed to ordering and executing them, an approach used by all blockchains before
Fabric. To execute a chaincode, a client submits a transaction proposal to a set of peers.
The proposal specifies information such as chaincode to be executed, arguments to the
chaincode, and identity of the client. Each transaction proposal is simulated in a Docker
container [16] using the current state of the blockchain and results in two sets. The read
set contains accessed keys and version numbers denoting the last time the key has been
updated, while the write set is a key-value set of updated values and keys. The endorser,
the peer executing the chaincode, returns to the client an endorsement containing these
two sets, metadata, and a signature. If the client receives enough endorsements to satisfy
an endorsement policy1, a transaction is created and sent to the ordering nodes.

Using a consensus protocol, nodes order transactions into blocks, which are then sent
to the peers. To accept the block and to be added to the add-only data structure, two
verifications are performed. The first ensures that each transaction satisfies the endorsing
policy of the chaincode. The second verification checks if there are any conflicts in the read
and write sets; in other words, the version of the keys used to execute the chaincode has
not changed. Only then does the peer add the block to its history, updating the locally-
maintained state using the write set, and when this completes the transaction is considered
processed.

1The policy is specified during the creation of the chaincode and determines the peers required to
execute the chaincode.

5

Algorand

Algorand [44] is a permissionless blockchain that provides security, scalability, and decen-
tralization. The system scales to hundreds of thousands of users, while transactions are
finalized in seconds instead of hours, an issue common to some blockchains such as Bitcoin.
To achieve such scalability, Algorand relies on a protocol based on proof of stake [23].

Algorand makes several assumptions to achieve its goal [44]. First, at least two-thirds of
the cryptocurrency is assumed to be owned by honest users. Second, the protocol requires
strong synchrony for liveness; that is, communication should be bounded by a specific
delay so that new transactions can be added [44]. A violation of the strong synchrony
assumption does not allow an adversary to change already added transactions as long as
the strong synchrony is violated only for a bounded amount of time. Lastly, users are
expected to have a somewhat synchronized clock to recover from potential forks. Now that
we have summarized Algorand’s assumptions, we describe how transactions are processed.

Algorand is split into two phases, where participants in Algorand’s protocol are referred
to as users, and they connect to peers of a gossip protocol. During the first phase, a user
is selected, and this selected user proposes a block. To determine if it is selected, each
user privately checks the output of a verifiable random function (VRF): the input is the
user’s private key and publicly available information. In case multiple users are selected,
the user with the highest priority, computed using the VRF output, is chosen for block
proposal. Although, with small probability, a malicious block proposer could be selected;
the adversary can, at most, add an empty block to the chain [44]. During the second
phase, committees achieve consensus on the approval of a proposed block via a Byzantine
agreement protocol. The committee members are also selected using a verifiable random
function, where each unit of the cryptocurrency in Algorand can be seen as a sub-user with
an equal probability of being selected. In other words, the more cryptocurrency users have,
the bigger their voting power during the voting phase, which is the basis of proof-of-stake
consensus.

2.1.2 Trusted Smart Meters Design

We now describe prior work on designing trusted smart meters.

Trusted Smart Meters Based on TPM

Lemay at al. [51] were perhaps the first to introduce the idea of combining smart meters
with trusted computing technology. They envisioned multiple vendors sharing the same

6

smart meter by deploying various applications; these applications were separated using
virtualization. Privacy concerns were addressed with network access control policies re-
stricting the amount of data each application can send to parties. Since smart meters send
information to parties with stake, application attestations using TPMs were attached to
the information. Unfortunately, the prototype was on a desktop computer and simulated
TPM functionality using Linux-IMA, an approach not suitable for resource-constrained
devices.

Zhao et al. [66] also recognized that trusted computing technology could enhance smart
meters to enforce expected behavior. They identified that previous proposals only used
TPM as a computing unit, while their scheme takes advantage of the TPM to verify the
smart meter’s configuration. In their work, the term trusted smart meter was coined as
a meter not only having access to a module with cryptographic capabilities but also con-
sistently behaving as expected. Attribute certificates were used to deal with configuration
management and privacy issues, while ring signatures hide the electricity usage reported
by the smart meter. Unfortunately, the level of abstraction in the attribute is not discussed
in this work. Similarly to our proposal, ring signatures were used for anonymizing meter
readings. However, their scheme does not address the need to demonstrate ownership of
the meter readings. Lastly, they prototype their proposal on a personal computer, an
implementation that is not straightforward to apply to resource-constrained devices.

Zhang et al. [64] also used trusted computing to verify smart meter’s trustworthiness;
their proposal was based on attribute-based attestation—a method that convinces a ver-
ifier that the meter satisfies a specific property. Unlike Zhao et al. [66], the granularity
of the attributes was discussed; for example, they specified an attribute to be a guaran-
tee that smart meter uses a specific version of trusted OS. The first of the five parties
involved in the scheme is a trusted test agent. It generates a part of a secret key and
then seals the key to a specific trusted smart meter state. The smart meter generates the
other part of the key to create a complete key pair. Each electricity reading is encrypted
and sign using the complete key pair and then sent to a regional gateway. The getaway
verifies and forwards each reading to a control center. The control center decrypts the
readings and obtains fine-grained electricity usage information used to calculate an elec-
tricity bill. The bill is forwarded to a service provider that maintains a mapping between
smart meter pseudo-identities and real identities. Unfortunately, there is no discussion on
issues such as attribute certificates management, nor implementation is provided. Unlike
Zhang et al. [64], our work uses stealth addresses instead of pseudonyms to address the
need for ownership demonstration. Additionally, we provide an implementation of our
design.

7

Trusted Smart Meters Based on TEE

Supporting TPMs on resource-constrained devices has drawbacks [49] [52]. Some of the
main problems include the increase of the already price-sensitive cost, consuming too much
power, and unsuitability for mobile devices. As an alternative to TPMs, in this section,
we discuss designs based on TEEs.

Karopoulos et al. [49] used TEE to provide secure cryptographic key storage and en-
sure software integrity using remote attestation for a smart meter. Unfortunately, their
work made simplifications that could be hard to overcome in a real-world scenario. For
example, all devices are assumed to run the same firmware, including verifier and prover.
Additionally, privacy issues were not considered, and the implementation on Raspberry Pi
using Open-TEE 2 is not open-source, so it remains unclear in terms of security.

Paverd et al. [56] focused on securing smart meters by combining TEEs and TPMs.
They set security requirements such as enforcing device private keys to be only available
within a specific set of applications in a specific device. To achieve the requirements,
Paverd et al. [56] implement key initialization and TLS handshake as Piece of Application
Logic (PAL); PALs are applications executed in a separate environment that ensures in-
tegrity and confidentiality. To initialize keys, a PAL is given as input the measurement of
an application to be given access to the key. The measurement is performed by a Linux
Integrity Measurement Architecture, and it is passed to the PAL in a register. Then,
the PAL generates an asymmetric key pair that identifies the device and symmetric key
encrypting the device key pair. The symmetric key pair is sealed to the application mea-
surement application provided as input using the TPM, effectively restricting key access to
the specific TPM and application. Similarly, the PAL implementing the TLS handshake
has access to the device keys only if the measurements in the registers match. Besides the
fact that during key initialization, the measurement inputted to the PAL by IMA can be
tampered with, an implementation on a resource-constrained device is not shown. Unfor-
tunately, anonymity is not considered, and the use cases could be limited due to restricted
PAL functionality.

2.1.3 Azure Sphere

Now that we have shown that we have not found a practical trusted smart meter, we
describe the hardware we chose to implement a trusted smart meter.

2It is important to note that Open-TEE is open source: open-tee.github.com

8

Azure Sphere [28], shown in Figure 2.1, is a crossover microcontroller unit (MCU)
designed to provide strong security at a low cost. It can be viewed as a secure environment
for custom software execution. The custom software can be deployed on two different cores.
The first core is part of the Application Processor Subsystem that executes high-level C
code on ARM Cortex-A processor [58]. The second type of core is part of the I/O Processor
Subsystem that executes either bare-metal core or real-time operating system on ARM
Cortex-M [28]; the latter core is used for time-sensitive code. The device is tightly coupled
with Azure Cloud, which verifies the authenticity and health of each device and provides
a secure channel to push software updates. In this section, we first summarize the seven
properties required by Microsoft from each secure resource-constrained device. Then, we
explain how Azure Sphere achieves those properties. Lastly, we discuss terminology used
throughout this thesis related to software updates.

Hunt et al. [47] outline seven properties integral to the security of any low-cost device.
The first property, hardware root of trust, requires an unforgeable cryptographic key to
be inseparable from the hardware and protected from physical-side channel attacks. The
second property is a small trusted computing base (TCB); it requires that the software and
hardware trusted to provide a secure environment to be small. Resource-constrained de-
vices satisfy the defence-in-depth property only when there are multiple defenses for each
threat. To prevent a component vulnerability affecting the whole system, compartmen-
talization demands hardware to enforce separation between different compartments. The
certificate-based authentication property attempts to address common issues with default
or weak passwords by requiring devices to authenticate using certificates. A vulnerability
would almost inevitably be found in any device, so even compromised, resource-constrained
devices need to receive updates reliably; this is encapsulated in renewable security prop-
erty. Lastly, the failure reporting property is described by Hunt et al. [47] using an immune
system analogy; it allows system operators to identify device probing by attackers and po-
tential vulnerabilities such as software bugs.

Azure Sphere satisfies all properties set by Microsoft. First, the hardware root of trust
is satisfied by a subsystem called Pluton security subsystem. Its features [21] include a
dedicated Arm M4F Cortex, tightly coupled memory (TCM), read-only memory (ROM), e-
fuses, and Pluton engine; the engine includes hardware random number generator (HRNG),
among other features integral to the security [58]. Second, Azure Sphere’s TCB [28] is
limited to the Pluton security subsystem, its runtime, and software referred to as Security
Monitor (SM), where SM runs in the secure world of the application processor subsystem,
which, among other features, has an ARM A7 processor that supports Arm TrustZone.
Third, multiple software layers are provided to satisfy the defense-in-depth property. The
first and second levels are the security monitor and a custom Linux kernel developed

9

Figure 2.1: A block diagram of Azure Sphere [58]. It visualizes the subsystems in the
hardware, such as the Application Processor Subsystem, which runs high-level core appli-
cations, and the Cortex-M4F I/O Subsystem, which runs real-time core applications.

by Microsoft. The kernel runs in supervisor mode within ARM A7’s normal world and
provides functionality to upper levels, such as access to peripherals [28]. Another level of
software security is the software that provides OS services; it runs in user mode and handles
functionality such as authenticated communication with the cloud. Lastly, applications run
on the top layer and have access to the rest of the system via well-defined API, a partially

10

exposed POSIX standard [28]. Hunt et al. [47] explain how renewable security, certificate-
based authentication, and failure reporting properties are satisfied.

Now that we have described Azure Sphere’s security properties, we shift focus on in-
troducing the terminology used later in the thesis related to Azure Sphere application
updates.

Microsoft splits Azure Spheres into groups to ease the management of application up-
dates. At the highest level, Azure Sphere Tenant—a cloud entity representing and con-
trolled by a user or company—logically separates devices by owners. Lower-level groups
are referred to as products [14]; for example, a specific model of solar panels can be a
product. At the lowest level, devices are split into groups such as development, testing,
and production.

We use several terms associated with deploying a new application. First, Azure Spheres
are claimed by a user or company. The procedure associates a device with a specific Azure
Sphere Tenant [26], which can, for example, deploy new applications and observe the
healthiness of devices. Additionally, microcontrollers are always associated with exactly
one group, product, and tenant. To deploy an application, a user or company creates an
image package—a compiled binary and metadata. Then, the package is distributed to a
specific product and group via Azure Security Service.

2.2 Related Work

The work that is related to placing RECs on the blockchain can be divided into one that
focuses on creating a REC trading system or focuses on simulation-based analysis.

The goal of the first line of work, also in which our work fits in, is to design and
implement a REC system using blockchain. For example, Knirsch et al. [50] propose an off-
chain REC trading system in which transactions are stored on a distributed file system, and
the state is periodically locked by including a hash of the state in an Ethereum transaction;
an approach that resembles our Algorand implementation. Another work in the same
direction is based on Predix [48], an industrial IoT platform. A significant difference in our
work is that we do not assume that the smart meter hardware cannot be compromised.
With such an assumption, system operators need to regularly audit smart meters [50],
which introduces additional overhead and cost. We instead rely on remote attestation for
inexpensive verification. Furthermore, we do not require smart meters to process the off-
chain transactions or rely on third parties for the processing, which is essential since smart
meters have limited resources. Additionally, we enhance RECs with anonymity.

11

The focus in the second line of work is understating the effect of different approaches to
incentivizing the deployment of renewable energy sources. Zhao et al. [65] propose a new
consensus protocol that takes into account the amount of generated energy. Each period,
energy producers are ordered by the amount of generated energy. A random leader among
the top producers is chosen to propose a block on which at least two-thirds of the nodes
need to agree. An incentive scheme based on periodically computed coefficients for both
individuals and communities is developed to encourage renewable energy deployment. A
simulation of the protocol and incentive scheme shows improved effectiveness. In contrast
to their work, we build on already thoroughly studied consensus protocols. We have not
implemented an incentive scheme, but a similar approach could be adopted. However, it
would be challenging to compute the individual coefficients since, in our proposal, RECs
are enhanced with anonymity. Another work in the same direction is the simulation by
Castellanos et al. [41], and it attempts to determine the effectiveness of different price
strategies on RECs.

Outside of academia, several industrial projects have proposed placing RECs on a
blockchain. Perhaps the work closest to our own is the collaboration between Nasdaq
stock exchange and Filament Corp. Filament has developed secure hardware that serves
as a source of trust [32] and creates RECs that are then traded on Linq—Nasdaq’s
blockchain [53]. Although this design considers privacy issues and shares our goals, there is
very little known publicly about Filament’s hardware or Linq, so we are unable to contrast
the two approaches from a technical perspective.

Another similar work is the project between the Energy Origin (TEO) [35], a subsidiary
of the French multinational utility provider ENGIE, and Ledger. Ledger Origin [34] cryp-
tographically attests its security state to provide guarantees for meter readings. Then,
the meter readings are sent to Energy Web Chain [33], an open-source blockchain. Their
work initially announced in 2017 is concurrent with ours. An official working solution
was announced in 2020, but, as with Filament, no details are publicly known, making it
impossible to compare this work with ours.

Several other industry projects3 for efficiently generating RECs and placing them on a
blockchain, including Powerledger [22], automatically trust meters as a source of informa-
tion and do not consider privacy issues. Thus, our work goes beyond.

3To name a few: LO3 Energy, WePower, ImpactPPA, SolarCoin, Enervalis, Greeneum, Suncontract.

12

Chapter 3

Preliminaries
To design anonymous, end-to-end trusted RECs we draw upon techniques in the areas of
secure hardware, blockchains, and some specific security primitives. Broadly, we establish
trust in an REC by creating it on secure hardware and trading it on a blockchain. We
protect the anonymity of the REC creator using ring signatures and stealth addresses.
In this chapter, we informally define the techniques used in our system. We assume the
algorithm inputs are defined over finite space. Additionally, PPT stands for a probabilistic
polynomial-time algorithm.

3.1 Secure Hardware

RECs are created by smart meters that measure the energy produced by a renewable energy
source. To ensure that these meters are not tampered with, we need to ensure that the
hardware itself can be trusted and that the software executing on the hardware has been
verified by a trusted third party. As a result, we informally define minimal secure hardware
requirements. The minimal functionalities are two algorithms (SH.Load, SH.Exec), where:

1. Remote application deployment SH.Load(app): is used by users to remotely
instantiate a given application app. Meter managers 1 can securely deploy software,
patch security vulnerabilities, or introduce new functionality.

2. Trusted execution SH.Exec(APP , in): is used to execute an instantiated applica-
tion APP using an input in. The output of a software execution should include not
only an execution result but also a proof φ—created using remote attestation—that
guarantees the software on the device is not maliciously modified2. Additionally, the
execution of an application on the hardware is virtually black-box; it is separated
from the rest of the system.

1Meter managers are REC aggregators as described in Section 4.1.2
2With an additional cost, more complicated schemes [59] [36] can also capture the software behavior.

13

In addition to those two functionalities, we require the hardware satisfies the following
property:

Property 1. Hardware-based root of trust: device keys can only be accessed via hard-
ware APIs and cannot be separated from the device. Additionally, hardware protection
against physical side-channel attacks is crucial.

3.2 Remote Attestation

With remote attestation, a trusted verifier periodically checks the authenticity and security
state of a remote device [43], specifically the secure hardware. Francillon et al. [43] defines
remote attestation as a triple of algorithms (RA.Setup, RA.Att, RA.Vrfy), where:

1. Setup RA.Setup(1n): is a PPT algorithm with input a security parameter n and
output a key pair (pk, sk).

2. Attestation RA.Att(sk, s): is a deterministic algorithm with input a secret key sk
and a device state s and output an attestation token α.

3. Verification RA.Vrfy(pk, s, α): is a deterministic algorithm with output true only
if the authentication token α was created using the corresponding device state s and
private key sk, otherwise out is false.

Remark. Replay attacks are not considered in this definition. We alter the definition by
Francillon et al. [43] to use asymmetric key pair instead of symmetric key pair. This change
is introduced to enforce that only the secret key owner can generate valid attestation tokens.

Remark. The distinction between remote attestation and signatures are properties that
hardware with remote attestation needs to satisfy. As described by Francillon et al. [43],
the hardware needs to ensure that the attestation key is exclusive to the algorithm, the
attestation token does not reveal information about the key, and the attestation algorithm
should be immutable. Furthermore, the attestation should be uninterruptible and can only
be invoked from specified locations [43]. Francillon et al. [43] describe that, for example,
uninterruptible is not necessary for signature, but is essential for attestation.

Security: Similar to Definition 2 in [43], a remote attestation scheme is secure only if
adversary that is given access to an attestation oracle cannot produce a valid authentication
token for which the oracle has not been queried. The oracle allows the adversary to get
valid attestation tokens for any device state and secret key.

14

3.3 Blockchain

A blockchain is a publicly shared and highly duplicated ledger with an immutable his-
tory [54]. Users of a blockchain are represented by their public key and trade assets using
a currency that is maintained by the blockchain. Their interaction with the blockchain can
be described using four abstract APIs, as discussed next.

1. Address generation B.GenAddr(): is an algorithm that creates a blockchain ad-
dress (pk, sk).

2. Transaction creation B.CreateTX(pkrec, sksend, add info): is an algorithm that
creates a transaction for injection into the blockchain. A transaction contains infor-
mation such as the sender sksend of asset, the receiver pkrec, and input add info to a
smart contract.

3. Transaction submission B.SubmitTX(tx): is an algorithm that adds a transaction
to the ledger and returns the identifier txid of the transaction in the blockchain.

4. Transaction fetching B.FetchTX(txid): is used to fetch a transaction txid from
the blockchain along with a proof that the asset in the transaction has not been
double-spent.

In our implementation, we support two different blockchains, Hyperledger Fabric [37]
and Algorand [44] using this abstract API.

3.4 Signatures

For completeness, a signature scheme is a triple of algorithms (S.Gen, S.Sign, S.Vrf) such
that:

1. Key Generation S.Gen(1n): is a PPT algorithm with input a security parameter
and output a key pair (pk, sk).

2. Signing S.Sign(sk, m): is an algorithm with input a secret key sk and a message m
and output a signature σ.

15

3. Verify S.Vrf(pk, m, σ): is a deterministic algorithm with input a public key pk,
message m, and signature σ, and output either true if the signature is valid or false
otherwise.

Correctness: The scheme is correct if the signature of any message signed with a
secret key can always be verified using the corresponding public key. The statement is
valid for any message within the finite message space and any key pair generated by the
key generation algorithm.

Security: Given a public key and access to a signing oracle, the adversary cannot
create a valid signature of a message for which it has not queried the signing oracle. The
adversary can use the signing oracle to sign any message using any key pair.

3.4.1 Stealth Addresses

A stealth address for a signature scheme can be used to generate multiple stealth public
keys that are indistinguishable from fresh keys. It can be used to protect the anonymity
of the blockchain owner of newly created REC. That is, given the smart meter owner’s
public key for the blockchain, a smart meter can generate a one-time stealth address for
each transaction [42]. The owner of the secret key can link the transaction to her original
public key and spend it. For everyone else, the one-time address looks random. We define
stealth address as a triple of algorithms (SA.Gen, SA.GenAddr, SA.Vrfy) such that:

1. Key generation SA.Gen(1n): is a PPT algorithm with input a security parameter
and output a key pair (pk, sk).

2. Address generation SA.GenAddr(pk): is a PPT algorithm with input receiver’s
public key pk and output a stealth public key pknew and an auxiliary information
γ.

3. Address verification SA.Vrf(pknew, γ, sk): is an algorithm that verifies inputs:
stealth public key pknew, auxiliary information γ, and receiver’s secret sk. The
output is a stealth secret key sknew, such that stealth secret key and the stealth
public key form a valid key pair.

Correctness: The scheme is correct if any stealth public key generated using a public
key of a user can always be used in the address verification with the corresponding secret
key of the same user to determine the stealth secret key. The statement is only true for
key pairs generated by the key generation algorithm.

16

Security: The scheme is unforgeable (as the standard signature scheme), where the
adversary cannot create forgeries with respect to any public key for which he doesn’t have
the secret key.

Anonymity: A stealth address is anonymous if a stealth public key is indistinguishable
from a randomly chosen public key from the underlying signature scheme.

3.5 Ring Signatures

A ring signature allows a user to generate a signature for a ring of users. Given the
signature and the public keys of the users in the ring, anyone can verify that one of the
users in the ring indeed signed the message without learning who it was [40]. We reiterate
the ring signature definition by Bender et al. [40], which defines the scheme as a triple of
algorithms (RS.Gen, RS.Sign, RS.Vrfy):

1. Key generation RS.Gen(1n): is a PPT algorithm with input a security parameter
and output a key pair (pk, sk).

2. Signing RS.Sign(sk, R, m): is a PPT algorithm with input a secret key sk, arbi-
trary size set R of public keys, and message m. The output is a signature σ. The
requirements for the ring group R are:

(a) The key pair (sk, pk) used to signed the message is a valid key pair generated
by RS.Gen and pk ∈ R.

(b) Each public key pk in the set R of public keys is distinct.

3. Verification RS.Vrf(R, m, σ): is an algorithm with input a signature σ, a set R of
public keys, and a message m and output either true if the signature is valid or false
otherwise.

Correctness: The scheme is correct if the signature of any message signed by a party
in a ring group can always be verified using the ring group. The statement is valid for any
message in the finite message space and any ring size. The key pairs in the ring group are
generated using the key generation algorithm.

Security: Following Definition 7 [40], the scheme is secure if no adversary can create a
valid message signature for which a signing oracle has not been queried, and the ring group
used to sign the message does not have corrupted parties. The adversary is given access to

17

a signing oracle that can be used to sign any message using any ring group and corrupting
oracle that allows to adaptively corrupt secret keys of any parties, which is referred to as
a corrupted party.

Anonymity: Following Definition 4 [40], the scheme is anonymous if no adversary can
determine the party that signed a message, even if all keys in the ring group are compro-
mised after the signing, and the message and the ring group is chosen by an adversary that
has access to a signing oracle. The signing oracle can be used to sign any message using
any ring group.

18

Chapter 4

Design
In this chapter, we begin with a description of our system’s goals and the threat model.
We conclude the chapter with a description of our design.

4.1 Desired System Properties

In this section, we specify the goals of our system, sketch its design, state its desired
security and anonymity properties, and describe the threat model. A detailed design of
the system is presented in Section 4.2.

4.1.1 Goals

Our high-level goal is to design a system that allows RECs to be generated efficiently, to
be trusted by purchasers and regulators, and, when purchased, to hide the identity of the
REC creator. We would like these goals to be met despite the presence of an adversary
that may observe or modify messages.

4.1.2 System sketch

Our system comprises four main blocks (see Figure 4.1):

1. Smart meters measure renewable energy generation and create RECs. Each smart
meter has a small trusted computing base (TCB) where the hardware root of trust
resides. Software outside this TCB is not trusted. Smart meters are connected to a
renewable generator using a trusted link.

2. A blockchain stores RECs. We trust the blockchain to prevent tampering of RECs
stored in it and prevent double-selling of an REC.

19

Figure 4.1: A system architecture diagram for trading RECs. The green energy produced
by the solar panel is measured by the smart meter, while the security service verifies the
internal state and authenticity of the hardware. The microcontroller periodically sends
RECs to the trading platform, which at its core, is using a blockchain. End-users can
trade RECs by interacting with the client application functionality.

3. A trading platform receives RECs from smart meters and stores them on the blockchain
to be bought and sold.

4. Client applications interact with the trading platform to sell, purchase, and retire
RECs.

In addition, an external trusted security service periodically validates the correctness of
the application software running on the smart meter using remote attestation.

We envision that owners of renewable generators are customers of an aggregator. The
aggregator is responsible for installing authorized smart meters on customer premises,
linking smart meter identity to customer accounts. They also collect RECs from the
smart meter and use the trading platform to place these RECs on a blockchain, with the
ownership of the REC retained by the customer. When an REC is bought, the proceeds
are paid directly to the customer through their blockchain account. Purchasers of RECs
record a retirement of an REC on the blockchain (for instance, by sending them to a null
key). A retirement prevents further trading, so that the REC owner can use the REC
towards a claim such as being 100 percent green. 1

1REC aggregators would also be responsible to ensure that company has sufficient RECs to support its

20

4.1.3 Properties

We now expand on our goal in Section 4.1.1. More specifically, we explain what it means
for the system to be correct, secure, and anonymous.

Correctness: If operating correctly, the system should allow authorized, non-compromised
smart meters to create RECs. REC owners should be able to retire RECs or sell the non-
retired RECs they own. Finally, any blockchain end-user should be able to purchase any
non-retired REC owned by other users.

An adversary that attempts to violate the security of the system is allowed to access a
smart meter oracle, which can be used to produce RECs by a smart meter of choice.

Security: The system is secure if, for any REC in the system, there exists a unique
smart meter that created it and that the smart meter was previously verified by the plat-
form to be authorized and non-compromised.

Remark. See Appendix A.1 for the security experiment.

Anonymity: The system is anonymous if an adversary can determine the smart meter
that produced any REC with at most 1

k
plus negligible probability, where k is the size of

the ring group used to signed a REC, or the smart meter owner with at most a negligible
probability. The adversary is given access to a smart meter oracle and can control a set of
end-users and smart meters, except at least one other smart meter in the same ring group.

Remark. See Appendix A.2 for anonymity experiment. The idea is similar to a chosen-
plaintext attack; an adversary can obtain RECs via smart meter oracle and then try to
distinguish the output of smart meters in the same ring.

4.1.4 Threat Model

Threats to the integrity of our system, and hence a violation of the properties, come
from five sources. To begin with, the owner of a renewable energy source could attempt
hardware or software attacks to increase the value of the RECs produced by their smart
meter. The owner might also attempt to impersonate other participants to compromise
the system. Second, an external adversary who does not have access to the hardware
could attempt remote attacks on a smart meter or the blockchain. Third, end-users might
collude on the blockchain to double-spend RECs and increase their wealth. Fourth, the
trading platform could act as a passive adversary and attempt to identify the smart meter

claim and issue a certificate similar to Green-e [18].

21

Figure 4.2: The system diagram visualizes our threat model. All trusted elements such as
security service and connection between the solar panel and smart meter are in dark grey 3.
No other elements are trusted. There are anonymous links between the smart meter and the
trading platform and between the client application and the trading platform. Highlighted
in light grey is the blockchain denoting that the trust depends on the choice of blockchain.

or owner of a REC by observing newly created RECs or REC trades, but does not deviate
from the algorithms. Finally, an external passive adversary could try to learn about the
energy usage pattern of an energy producer by observing their REC generation pattern.
This energy usage information could reveal the lifestyle of small-scale energy producers
such as households with solar panels, depending on the granularity of the RECs.

We model these attacks in the form of an adversary who has complete control over some
number of smart meters, so can produce valid RECs from them. Moreover, the adversary
can attack any part of the blockchain or smart meters, or passively observe any transaction
on the blockchain. However, we assume that the adversary is computationally bounded so
that it cannot break the cryptographic primitives we use.

3Protecting the sensor’s input can be done using techniques such as sensor fusion—combining the data
of multiple sensors [63]. However, that would incur an additional cost.

22

4.2 Design

In this section, we elaborate on our system shown in Fig. 4.1. The algorithms in each
component are locally invoked using the convention Component.Algorithm(inputs), where
the inputs are local to the component. The exchanged messages between components
are denoted as (TYPE, params); each message specifies the type and parameters of the
message. When a message is received, the component uses the message type to determine
the appropriate algorithm to handle the message.

4.2.1 Smart Meter

We assume that smart meter hardware satisfies the requirements for secure hardware, as
described in Section 3.1. Specifically, a smart meter consists of secure hardware that runs
the REC-generator application. This application measures electrical signals (voltages and
currents) over a secure link to determine the amount of energy produced over time. It then
generates RECs and sends these to the trading platform to be placed into a blockchain.
The smart meter is also periodically audited using remote attestation. We now describe
the details of these processes.

• Initialization SM.Init(): The algorithm creates attestation key pair (pkAtt, skAtt)
and device key pair (pkSM , skSM).

Cryptographic Component (Software related to security)

• Remote attestation SM.Att(pkAtt, skAtt, pkSM , s): The algorithm uses the attesta-
tion key stored in the root of trust to periodically create attestation tokens and send
them to the security service. More formally, when the smart meter receives a mes-
sage (ATTEST), it generates an attestation token α using RA.Att(skAtt, s||pkSM),
where the device state s includes software on the device and memory that can con-
tain device configurations. If successful, the algorithm sends to the security service a
response (VERIFY, pkAtt, pkSM , s, α). Upon receiving a message (PROOF, φ), the
proof φ is stored internally and the algorithm outputs the proof φ. If a response is
not received, the algorithm outputs fail .

• Receive new application SM.NewApp(pkSS): Received applications are verified
to be signed by the security service and then instantiated using the secure hardware

23

functionality. More formally, when the smart meter receives a message (NEW APP, app),
it invokes S.Vrf(pkSS, new app, σnew app). If the verification does not fail, the appli-
cation new app is instantiated using SH.Load(new app).

Application
The application is responsible for two separate interactions with the trading platform:
renewable energy generator information update and REC generation. Algorithms are exe-
cuted using SH.Exec(APP , in), where in is supplied by the environment, while the output
of the execution is sent to the trading platform. The proof φ is the latest result from remote
attestation. The application has a buffer ring list that stores the anonymity set—a set of
public keys—for each REC produced by the smart meter.

• Information Update APP.Update(pkSM , skSM , in): The renewable energy gener-
ation information update algorithm periodically sends data to the trading platform
using the input in to facilitate REC origin tracking, such as GPS coordinates and
time since deployment. If a trading platform reply is received, the response, an
anonymity set, is stored internally. More formally, the algorithm outputs a message
(UPDATE, m, φ), where the message m is a tuple (in, σm) and the signature σm
is S.Sign(skSM , in). If the smart meter receives a trading platform response (UP-
DATE SUCC, L), the list L of smart meter public keys is stored in the internal
buffer ring list. In case a smart meter crashes, it needs to update its information to
recover the buffer. The algorithm outputs ring list, else outputs fail .

• Create a new REC APP.NewREC(pkSM , skSM , in, ring list, pkowner): The algo-
rithm periodically creates and sends RECs to the trading platform using a measure-
ment of the produced energy specified in the input in. Each REC has an owner set to
a blockchain address created using stealth addresses and signed using the set of iden-
tities in ring list. More formally, the output out is set to (NEW, REC, ring list),
where REC is a tuple (in, pkRECOwner, γ, σring). The owner address pkRECOwner and
the additional information γ are the result of SA.GenAddr(pkowner), while the ring
signature σring is computed using RS.Sign(skSM , ring list, (in, pkRECOwner, γ)). If all
steps are successful, the algorithm outputs (REC, ring list), otherwise output fail .

Since our design removes the need for expensive physical audits, RECs can be more
fine-grained than the typical 1 MWh required by most jurisdictions, which would help
small-scale energy producers.

24

4.2.2 Security Service

The security service is responsible for detecting smart meter tampering without the over-
head of physical third-party audits. It is also responsible for authorizing the users who
deploy new smart meter software where each software is signed using the secret key of the
security service. Examples of such a service are Azure Sphere Security Service [28] and
Intel Attestation Service [25].

• Initialization SS.Init(): The algorithm creates a security service key pair (pkSS,
skSS).

• Remote Attestation SS.Att(pkSS, skSS): The service periodically checks the secu-
rity state and authenticity of smart meters using standard remote attestation token
verification. If verification is successful, the token is signed using a secret key that
represents the security service. The signed token represents proof that the smart
meter can be trusted, and it has not been compromised. More formally, the se-
cure service initiates the procedure by sending (ATTEST) to a smart meter. Upon
receiving (VERIFY, pkAtt, pkSM , s, α), the algorithm first verifies the remote at-
testation token α. That is, the security service invokes RA.Vrf(pkAtt, s||pkSM , α),
where s is a smart meter state, and α is an attestation token. If the verification fails,
then the algorithm outputs fail . Otherwise, it sends back a message (PROOF, φ),
where the proof φ is a tuple (pkSM , s, α, σφ) and the signature σφ is the output
of S.Sign(skSS, (pkSM , s, α)).

• Deploy new application SS.NewApp(skSS, new app): The security service signs
and distributes the provided custom software new app to all smart meters. More
formally, the security service creates and sends a message (NEW APP, app) to all
devices, where app = (new app, σnew app) and σnew app = S.Sign(skSS, new app). We
consider user authorization and software management to be orthogonal issues to our
work.

4.2.3 Trading Platform

The trading platform, operated collectively by the aggregators and coordinated using a
blockchain, collects RECs from smart meters, places them on the blockchain, and allows
them to be traded. The trading platform also collects renewable energy generator infor-
mation used to determine ring groups, a set of geographically-close smart meters (this

25

is discussed in more detail below). At each aggregator, all smart meters that have been
able to successfully update their information are stored in a buffer meter list, while all
non-retired RECs are stored in buffer rec list. A snapshot of those buffers and the latest
processed block in the blockchain should be periodically stored in local stable storage to
allow fast recovery from a crash. The trading platform has access to a list auth keys of
authorized smart meter identities pkSM (see Section 4.3). This is discussed in greater detail
below.

• Smart Meter Update TP.Update(pkSS, auth keys): On receiving a renewable
generator information update from a smart meter, the trading platform verifies the
message by checking for a valid signature signed using an identity that is among a
list of authorized device identities. It also ensures that the smart meter itself can
be trusted by verifying the remote attestation proof in the message. If successful,
to protect the anonymity of energy producers, the trading platform selects a group
of smart meters that are geographically closely located4. Then it returns the same
ring group to every smart meter in the group when updating the information for the
renewable energy generator. More formally, when the message (UPDATE, m, φ) is
received, the algorithm verifies φ’s signature by invoking S.Vrf(pkSS, (pkSM , s, α), σφ)
and m’s signature using S.Vrf(pkSM , in, σm). A blockchain transaction txreg is
created using B.CreateTX(pkTP , skTP , (m, φ)) and sent to the blockchain using
B.SubmitTX(txreg). Finally, the algorithm uses the transaction identifier txid of the
sent transaction and adds the tuple (m, φ, txid) to the buffer meter list, determines
anonymity set L by selecting a set of keys from the buffer meter list, and sends back
a response (UPDATE SUCC, L). If any of the verifications fail or the smart meter
identity pkSM is not in the list of keys auth keys, the algorithm outputs fail ; else,
it outputs L.

• New REC TP.NewREC(meter list): On receiving a REC, the trading platform
verifies each received REC to have a valid ring signature using its ring group. Ad-
ditionally, each smart meter in the ring group is ensured to have valid information
update and attestation proof; otherwise, the REC may be created by a compromised
smart meter. If successful, the trading platform creates and publishes a blockchain
transaction that includes the REC and stores it in buffer rec list.

More formally, upon receiving the message (NEW, REC, ring list), the algorithm
verifies REC’s ring signature σring using RS.Vrf(ring list, (in, pkRECOwner, γ), σring).
Furthermore, the algorithm checks if every smart meter identity pkSM in the list ring list

4For simplicity, we assume that each end-user will have only one smart meter

26

is also present in the meter list with still valid security proof φ. If any of the verifi-
cations fail, output fail . Otherwise, a blockchain transaction txREC is created using
B.CreateTX(pkRECOwner, skTP , (REC, ring list)) and submitted to the blockchain
using B.SubmitTX(txREC). Lastly, the algorithm adds the tuple (REC, ring list, txid)
to rec list.

Interaction with Client Application

• Fetch RECs TP.Fetch(): When the algorithm receives a message (FETCH), it
returns a response (ALL RECS, rec list), where rec list is the buffer storing all
RECs.

• Verify REC TP.Vrf(): On receiving a request with a transaction identifier, the
algorithm fetches the corresponding blockchain transaction. It then creates a list
of smart meter identities and their attestation proofs for every smart meter in the
REC’s anonymity set. Lastly, the fetched blockchain transaction and the created list
is returned to the client application.

More formally, when a request (VRF, txid) is received, the algorithm fetches the
blockchain transaction tx and its proof φtx using B.FetchTX(txid). Using the lists rec list
andmeter list, the anonymity set of the REC is determine to create a new list ring and proof
with tuples (pkmeter, φ, txid). If any of the smart meters cannot be found or the
transaction cannot be fetched, the algorithm outputs fail ; otherwise, a response
(VRF REC, tx, φtx, ring and proof) is sent back to the client application.

• Retire REC TP.Retire(): The algorithm forwards a retire transaction to the blockchain,
which accepts the transaction if the REC owner is also the blockchain transaction
sender in the retire transaction, and the REC has not been retired. If successful,
the REC is removed from the internal list of RECs, and a response with the retire
transaction identifier is sent back. Formally, when a request (RETIRE, txretire) is
received, the algorithm uses B.SubmitTX(txretire) to submit the transaction to the
blockchain. If successful, the algorithm removes the REC from rec list and sends
back a response (RETIRE SUCC, txidretire) to the client application; otherwise, it
outputs fail .

• Sell REC TP.Sell(): The algorithm forwards a sell transaction to the blockchain,
which accepts the transaction if the REC owner is also the blockchain transaction
sender in the sell transaction, and the user-chosen buyer has sufficient balance. If suc-
cessful, the REC ownership is atomically swapped in the blockchain for the bid value,

27

and the REC ownership in the internal REC buffer is updated. More formally, upon
receiving a request (SELL, txsell), the algorithm uses B.SubmitTX(txsell) to submit
the transaction to the blockchain. If successful, the owner pkowner and the transac-
tion identifier txid of the REC are updated in the internal buffer rec list. Lastly, the
algorithm sends to the client application a response (SELL SUCC, txidsell).

• Bid REC TP.Bid(): The algorithm forwards the bid transaction in the request to
the blockchain and sends back the transaction identifier. More formally, when a
request (BID, txbid) is received, the algorithm invokes B.SubmitTX(txbid) and sends
back (BID SUCC, txidbid).

• Check Bid TP.CheckBid(): The algorithm checks if a bid has been successful. More
formally, when the request (CHECK BID, pkBid, txbid) is received, the algorithm
returns (CHECK BID SUCC), if there is a tuple in the internal buffer rec list that
has an owner property pkBid. If there isn’t, the algorithm outputs fail .

4.2.4 Client Application

The client application is the end-user interface to the system, and it allows the end-user
to verify, retire, sell, buy RECs. It also has buffers rec own and rec bid—which, as the
names suggest–store the RECs owned by the user and the RECs available for bidding. Our
design is blockchain-independent, and, therefore, when the blockchain is permissionless,
and the end-user has sufficient resources, the client application can directly interact with
the blockchain.

• Initialize CA.Init(): Each client generates (pkowner, skowner) address shared with the
smart meter, and a blockchain identity (pkBid, skBid) specifically to bid for RECs.

Interaction with Trading Platform

• Fetch RECs CA.Fetch(skowner): When invoked by the user, the algorithm requests
all non-retired RECs from the trading platform. The received list of RECs is split
into a list of RECs owned by the user and a list of RECs owned by other users. More
formally, the algorithm sends a (FETCH) request to the trading platform. When the
response (ALL RECS, rec list) is received, the algorithm determines which RECs are
owned by pkowner using stealth address verification SA.Vrf(pkRECOwner, γ, skowner).
For each successful REC verification in the rec list, the algorithm stores the tu-
ple (REC, skRECOwner, txid) in the buffer rec own, otherwise it stores the tuple

28

(REC, txid) in the buffer rec bid. If the response from the trading platform was
empty, the algorithm outputs fail ; otherwise, it outputs the tuple (rec owned, rec bid).

• Verify REC CA.Vrf(txid): The algorithm requests a REC blockchain transaction
specified by the user input. The response by the trading platform is verified to ensure
that the REC is not double-spent, it has not been tampered with, and the smart me-
ters in the REC anonymity set have valid proofs. More formally, the algorithm sends
a request (VRF, txid). When the response (VRF REC, tx, φtx, ring and proof)
is received, the algorithm first verifies the proof φtx to ensure that the transaction
is not double-spent. Following that, the ring signature validity is checked using
RS.Vrf(ring list, (in, pkRECOwner, γ), σring). Lastly, for each smart meter in the
list ring and proof , the proof φ and renewable generator information update trans-
action txid is verified to be valid to ensure that the smart meter is authorized. If any
of the verifications fail, the algorithm outputs fail .

• Retire REC CA.Retire(rec own, txid): The algorithm creates a blockchain trans-
action that retires a REC specified by the user, and the locally created transaction
is sent to the trading platform. More formally, the user-specified transaction identi-
fier txid and the buffer rec own are used to create a retire transaction txretire, the
result of B.CreateTX(null, skRECOwner, REC). Then, the algorithm sends a mes-
sage (RETIRE, txretire) to the trading platform. If no response is received, then
output fail .

• Sell REC CA.Sell(pkBid, rec own, txid): The algorithm creates a blockchain trans-
action that sells a REC to a user specified in the input. The newly created trans-
action has a receiver set to the blockchain address of the bidder, and it contains a
REC with an owner set to the same address. Lastly, the transaction is sent to the
trading platform. More formally, using the user provided blockchain address pkBid,
transaction identifier of the REC to sell txid, and buffer rec own, the algorithm cre-
ates a sell transaction txsell using B.CreateTX(pkBid, skRECOwner, REC). Then the
message (SELL, txsell) is sent to the trading platform. If no response is received, the
algorithm outputs fail . Otherwise, it uses the trading platform’s response to update
the new transaction identifier txid of the REC in rec own and then moves the REC
from list rec own to rec bid.

• Bid REC CA.Bid(pkRECOwner, skBid, amount): Using the user provided amount, a
blockchain bid transaction for the REC owned by the blockchain address pkRECOwner
is created and submitted to the trading platform. More formally, the algorithm
creates a bid transaction txbid using B.CreateTX(pkRECOwner, skBid, amount). The

29

transaction is then sent to the trading platform as a message (BID, txbid). Upon
receiving the response (BID SUCC, txidbid), the transaction identifier txidbid is in-
serted in the list rec bid; the REC tuple becomes (REC, (txidbid1 , .., txidbidn), txid).
If no response is received, then the algorithm outputs fail .

• Check Bid CA.CheckBid(pkBid, txidBid): Using the user provided transaction iden-
tifier txidbid, a request is sent to the trading platform to check if a bid has been
successful. More formally, the request (CHECK BID, pkBid, txbid) is sent. If a re-
sponse is received, a REC is moved from list rec bid to rec own, with an updated
public key and transaction identifier txid; otherwise, the algorithm outputs fail .

4.3 User Registration

A new user that owns a renewable energy source and wants to create and sell RECs needs to
submit a request to join the system. The owner first chooses a REC aggregator from a set
of REC aggregators available in a central place, where each aggregator operates a trading
platform that follows a common standard. The standard ensures compatibility between
REC aggregators so that end-users can buy any REC in the system. Using the client
application of the chosen REC aggregator, the owner creates a blockchain identity and
submits a request to join the market; the request has information sufficient to determine
eligibility according to the local jurisdiction.

If eligible, the REC aggregator deploys the smart meter. During the deployment, the
renewable energy source is confirmed to be eligible, a one time process as opposed to, for
example, an annual audit. Additionally, the smart meter is initialized with information
such as credentials for an internet connection and smart meter’s owner blockchain address,
and smart meter’s identity is added to the list auth keys of approved devices that can
create RECs. We note that we have not implemented a measurement against tampering
with the link between the smart meter and the renewable energy measurement source, such
as an invertor or sensor. Therefore, the link needs to be physically protected.

30

Chapter 5

Implementation
In this section, we present an implementation of the abstract design presented in Chapter 4.
Recall that our design left unspecified the hardware used to implement the smart meter as
well as the choice of the blockchain. We implement two versions of our design; both use
Azure Sphere [6] as the basis for the smart meter, which is integrated with Algorand [44]
and Hyperledger Fabric [37] as the choice of the blockchain. In the remainder of this section,
we justify our choice of components. Note that our implementation focuses only on REC
security, and our design for anonymity based on stealth addresses and ring signatures is
left for future work.

5.1 Smart Meter

For REC security, the smart meter needs to build on a platform that supports the re-
quirements outlined in Chapter 3. We find that the commercially available Azure Sphere
microprocessor control unit (MCU), unlike other MCUs such as Intel Galileo [19], Rasp-
berry Pi [24], and Arduino [2], satisfies the requirements in our design and, unlike previous
proposals described in Section 2.1.2, it is feasible for real-world implementation. This is
because the device provides a hardware root of trust via the Pluton security subsystem,
remote attestation implemented in silicon, and secure software deployment [55]. Addi-
tionally, the seven properties defined in Reference [47] are also fully met as described in
Section 2.1.3. Thus, this device provides a secure environment that allows for trusted
execution.

We do need to assume that the manufacturer correctly manufactures Azure Sphere and
loads security information such as software related to secure boot and Microsoft’s public
key at the time of manufacture. We also need to trust Microsoft1 for remote attestation,
maintaining software, and enforcing access control to application deployment. Lastly, the
software developer needs to be trusted for correctly implementing and distributing the
same Azure Sphere application.

1Microsoft and manufacturer are two separate entities.

31

It is important to emphasize that manufacturer is not trusted for generating and pro-
tecting the identity of Azure Sphere. The Pluton security engine uses its hardware random
number generator to internally generate an attestation key pair that uniquely identifies the
device [58]; the process cannot be controlled by the manufacturer.

During the addition of a new producer, as described in Section 4.3, the REC aggregator
needs to perform four configurations that require a physical USB connection. The first one
is to claim the Azure Sphere (see Section 2.1.3) attached to the solar panel. The second
configuration is setting up an internet connection. If wireless connection, staff members
need to provide credentials for an access point; if wired connection, staff members need to
load an additional piece of software signed by Microsoft to add support for Ethernet [12].
Third, Azure Sphere needs to be associated with an appropriate product and device group
(defined in Section 2.1.3) to receive software updates. Lastly, the device needs to be locked,
so that only cloud application can be executed; the procedure stores information in flash
to only trust applications signed by a particular Azure Sphere Tenant.

After the configuration is completed, the first interaction between Azure Sphere and
Azure Security Service is remote attestation [7]. The security service in the cloud sends a
challenge to the device, which then responds with the security subsystem’s measurement
of the executed code and a signature of the challenge and the measurement [55]. To sign
the response, Azure Sphere uses the attestation key pair. This simple challenge-response
protocol also prevents replay attacks and corresponds to SM.Att() and SS.Att() in our
design. If the response is accepted, the cloud issues an X.509 certificate that is valid for a
day. Any REC without a valid X.509 certificate is not trusted.2

After a successful remote attestation, each Azure Sphere continuously executes the ap-
plication distributed by the Azure Security Service. The application in our implementation
handles the renewable energy information update and REC production and is composed
of two sub-application.

The Real-Time Core Sub-Application is deployed on one of the ARM Cortex-
M real-time cores (See Section 2.1.3); it runs on bare metal, and it can continuously
measure the produced green energy via two channels on the ADC peripheral for voltage
and current. We rely on the real-time core guarantees for precise meter readings; that
is, the time between the discrete voltage and current measurements is guaranteed to be
consistent. Although we successfully use the ADC peripheral to calculate the solar panel’s
energy, we simulated the readings in our prototype, since our goal is to test the system’s

2Although not implemented in this work, the remote attestation measurements included in the X.509
certificate can potentially be used by end-users to verify information such as the exact kernel version
running on the device.

32

functionality; that is, we did not attach Azure Sphere to a real solar panel. The real-time
core does not have internet access by design; that is why readings are sent to the high-
level core via intercore communication. The final real-time core application is based on
Microsoft’s ADC and intercore communication3 examples with tweaks to fit our use case.

The High Level Sub-Application is written in C language, and it is deployed on
the high-level core. We implement two different versions of the application: one for the
trading platform based on Hyperledger Fabric and one for the trading platform based on
Algorand.

In the implementation for Hyperledger Fabric, the application receives meter readings
from the real-time core, formats them in a format expected by the trading platform, and
sends them to a cloud service called IoT Hub (the service is described in Section 5.2.1).
Similar to the real-time core application, the high-level application is based on Microsoft’s
examples with tweaks to fit our use case. It is important to note that during the Hy-
perledger Fabric implementation, Azure Sphere did not have an exposed API to access
the device certificate; that is, the proof of authenticity and security state was not directly
available. As a result, this application does not implement the renewable energy informa-
tion update algorithm described in our design. Instead, aggregators are trusted to add the
appropriate device identities to Hyperledger Fabric and continuously verify the security
state of the devices using Azure Cloud.

We detail the second implementation of the application along with the description of
the trading platform based on Algorand in Section 5.2.2.

5.2 Trading Platform and Client Application

We now describe two implementations of the trading platform and client application com-
ponents. Although the one based on Hyperledger Fabric provides REC security, boot-
strapping a permissioned blockchain could be troublesome for REC aggregators. As a
result, we describe a second implementation based on already bootstrapped permissionless
blockchain, Algorand; the second implementation also decreases the trust in the aggrega-
tors.

3Both can be found on a GitHub repository: https://github.com/Azure/azure-sphere-
samples/tree/master/Samples/

33

5.2.1 Implementation using Hyperledger Fabric

As shown in Figure 5.1, each Azure Sphere publishes RECs to Hyperledger Fabric via Azure
Cloud. We envision several aggregators to maintain the blockchain, and the chaincode to be
open-source and correctly implement the trading logic. Therefore, end-users trust several
aggregators to not collude and alter the chaincode. Additionally, end-users trust Microsoft
and the aggregator—which maintains the cloud service—to not tamper with the cloud
service configurations specified in this section.

Since, during development, Azure Sphere did not have an exposed API that can be used
to access the X.509 client certificates, it is necessary to use Azure Cloud as a workaround.
More specifically, we use the cloud to ensure that each Azure Sphere is authentic and in
a secure state. A side benefit is the added availability and safety of cloud services. In
case the component between Azure Cloud and blockchain becomes unavailable, the cloud
services will retain RECs anywhere between a day to a week, depending on service plan
and settings.

To facilitate communication between Azure Cloud and Hyperledger Fabric, we intro-
duce a component, which we refer to as HL Connector. Only HL Connector has access
to the blockchain; in Section 5.2.1, however, we explain how this component would be re-
moved in a real-world deployment. In the following section, we describe the cloud services
used in the implementation and their purpose.

Azure Cloud

Device Provisioning Service

The device provisioning service (DPS) [4] enrolls without human intervention Azure Spheres
to IoT Hub—a service described in the next section. Additionally, the process involves ver-
ification of X.509 client certificate issued based on remote attestation. If the verification
is successful, DPS registers the device with the IoT Hub and returns to the Azure Sphere
information it needs to connect to IoT Hub. In Figure 5.1, this process corresponds to
step 2 and 3. The verification of X.509 certificate is the main reason this service was used,
and it is the workaround to the client application not having direct access to the X.509
certificate on Azure Sphere.

34

Figure 5.1: The figure visualizes a Hyperledger Fabric implementation of the high-level
design. Steps 1 through 9 chronologically show the information flow. The first three
steps establish the authenticity and security of Azure Sphere, while the highlighted in bold
steps 4 through 8 show the continuous REC production. Lastly, in dashed squares we
differentiate Azure Cloud services.

IoT Hub

IoT Hub is a service in Azure Cloud that provides hubs for secure, low-latency, and highly
reliable communication between IoT devices and cloud [5]. Microsoft explains that the hub
allows different types of communication, such as device-to-cloud messages and request-reply
methods.

Although several underlying protocols can be chosen in the service, we use MQTT [20]—
a pub/sub messaging protocol commonly used for IoT devices. Furthermore, each Azure
Sphere is given only DeviceConnect permissions to the service, a configuration that permits
Azure Spheres to only send device-to-cloud messages. No other permissions are given to
the smart meters. For example, the ability to change the identity registry—a place where
all device information is stored—is only accessible to the aggregators. Lastly, IoT Hub
is also configured to allow HL Connector application connections. More specifically, the
application is issued a SaS token, and it is only allowed to receive IoT Hub messages.

35

Azure Function

Azure Function [3] is an environment for running small pieces of code called functions.
These functions are triggered by external events; in our case, the events are new messages
in IoT Hub. The function in our implementation creates and signs RECs, where the
signature guarantees that the REC is created from a smart meter connected IoT Hub and,
therefore, has a valid client certificate, and it is not compromised.

The function in our system is an algorithm that sends RECs to HL Connector, and it is
shown in Algorithm 1. The inputs to the algorithm are IoT Hub messages–telemetry sent
by Azure Sphere—and context that contains information such as Azure Sphere identifiers
and time when telemetry was sent. Each IoT Hub message is signed using a key pair that
is stored in Azure Key Vault (this service is described in Section 5.2.1) and represents
the aggregator. The signature is ensured to pass malleability check, a measurement that
prevents the ability to modify a REC without a private key and without invalidating its
signature [9]. The signature’s non-repudiation properties are used to testify that Azure
Cloud has verified each telemetry to originate from a device that is authentic and in a
secure state. Lastly, the REC is sent to the HL Connector via IoT Hub.

Algorithm 1 Function signing readings on Azure Function

1: function singTelemetry(context, messages)
2: for each message in the messages do
3: RECMessage ← create REC(context.timestamp, context.smartMeter, message)
4: while true do
5: RECsignature ← sign with KeyVault(RECMessage)
6: if check signature malleability(RECsignature) then
7: break
8: REC ← create REC(RECMessage, RECsignature)
9: send IoTHub message(HLClientID, REC)

Key Vault

Azure Key Vault service is used for key generation and key management. According to
Microsoft [27], the service uses nCipher hardware security modules (HSM) that are designed
in a way that Microsoft does not have access to the keys in the modules. Using the HSM,
we generate a P-256 ECC key pair; the private key does not leave the hardware boundary.
Additionally, the access to the key pair is restricted using Azure Active Directory and

36

limited to Azure Function. That is, Azure Function is the only identity that is able to
query for the public key or sign with the private key of the generated key pair.

Hyperledger Fabric

Figure 5.2: The figure visualizes the Hyperledger Fabric set up that is used to test
functionality of our REC trading platform implementation.

We configure Hyperledger Fabric to test the correctness of the secure REC trading func-
tionality, as shown in Figure 5.2. In particular, our chaincode environment is configured as
two organizations, which correspond to two aggregators, and two peers per organization,
which operate as docker containers. The aggregator installs and instantiates the chain-
code on the peers via TLS, with a chaincode endorsement policy of at least one peer per
organization.

Now that we have covered the basic blockchain configurations, we discuss the HL Con-
nector and then focus on a description of the Hyperledger Fabric chaincode that implements
the REC trading logic.

HL Connector

HL Connector is a Node.JS application that facilitates the interaction with Hyperledger
Fabric. It is the only component with access to Hyperldeger Fabric and can invoke and
query the chaincode algorithms. We had to introduce HL Connector because the net-
work used to run the blockchain did not easily permit direct external connections. The
component has two responsibilities.

37

The first one is to expose chaincode functionality to a client application. In this im-
plementation, the client application is a web application that was developed by an under-
graduate student, and it provides a user-friendly web interface. Figure 5.3 demonstrates
some of the functionality.

The second responsibility is to relay RECs from IoT Hub to Hyperledger Fabric. Each
IoT Hub message triggers an event handler in HL Connector that forwards the REC by
invoking a chaincode algorithm (see Algorithm 3).

In a real-world deployment, however, HL Connector would be removed from the system.
Instead, the function in Azure Function would have its own wallet and user credentials that
can be used to directly invoke or query Hyperledger Fabric. Each client application would
also need to have its own wallet and user credentials as well. Those credentials would
be issued by Fabric’s membership service maintained by the aggregator using Fabric’s
Attribute-Based Access Control to enforce permissions.4

It is important to note that although HL Connector has access to IoT Hub, the appli-
cation is not allowed to trigger Azure Function and create RECs out of thin air.

Figure 5.3: Web application used by end-users to trade RECs. The cancel button is
equivalent to what we refer to as retiring a REC.

4How ABAC can be used: https://hyperledger-fabric-ca.readthedocs.io/en/latest/users-guide.html

38

Hyperledger Fabric Chaincode

In this section, we describe the chaincode that implements the REC trading logic. We begin
by providing additional information about the chaincode environment. Then, we describe
the objects that are manipulated by the chaincode. Lastly, we detail each algorithm in the
chaincode.

Hyperledger Fabric peers are configured to store the blockchain state, which includes
RECs and their owners, in couchDB. When interacting with couchDB, the chaincode uses
only simple queries such as GetState and PutState. The former retrieves data from a
single key, and the latter stores data into a single key. Although Hyperledger Fabric and
couchDB support more complex queries that might optimize the chaincode, these queries
do not guarantee the stability of the result [13], which is why we opted to stick with the
simpler queries.

Five objects are manipulated in the chaincode. The first one represents an end-user
and has properties such as first name, current balance, bids and listings made by the user,
and smart meters owned by the user. The second object, which we refer to as producing
unit, represents a smart meter. It has properties that store information such as owner,
capacity, time since deployment, and GPS locations; these properties mimic a similar
project by Energy Web Foundation.5 Each REC is also an object; we refer to it as a coin
and specifies the owner and amount of energy it represents. A coin listing object is created
to sell a coin; it stores information such as minimum price and current bids. Lastly, each
bid is represented as an object.

Before new RECs can be added to the blockchain, the chaincode needs the public key
of the aggregator. This is handled by an initialization algorithm, which is always the first
algorithm invoked after a chaincode is installed and instantiated. The algorithm submits
a TLS request to Azure Function; the response, the public key of the aggregator, is then
stored in the blockchain state.

Algorithm 2 is only used by aggregators to add end-users and their smart meters. Before
adding a new user and producing unit to the blockchain state, the algorithm verifies that
another user does not already own the smart meter; that is, each smart meter can be
associate with at most one user.

Algorithm 3 creates coins using RECs produced by the smart meter. As already men-
tioned, HL Connector invokes this algorithm for every received IoT Hub message. Before
storing a new coin to the blockchain state, the algorithm verifies the validity of the signature
of the REC using the public key of the aggregator.

5The project can be found: https://github.com/energywebfoundation/ew-helper-demo

39

Algorithm 2 A chaincode algorithm creating users in the system

1: function createUser(userInfo)
2: user ← create a user using userInfo
3: producingUnit ← create a producing unit using userInfo
4: for each user in the blockchain state do
5: if a smart meter identifier in userInfo matches an identifier in user then
6: Throw an error
7: Store user and producingUnit

Algorithm 3 A chaincode algorithm creating a new REC

1: function newREC(REC)
2: pubKey ← get the aggregator public key
3: producingUnit ← get the producing unit object referenced in the REC
4: if the signature of REC cannot be verified using pubKey then
5: Throw an error
6: Create a Coin using REC
7: Store the Coin and update producingUnit

Algorithm 4—the first exposed to the client application algorithm—can be used to list
an REC (i.e., coin) for sale. It updates the user object with a reference to the new listing.

Algorithm 4 A chaincode algorithm creating a new coin listing

1: function newCoinListing(listingInfo)
2: listing ← create a listing using listingInfo
3: REC ← get the REC referenced by listing
4: producingUnit ← get the producing unit referenced by REC
5: user ← get the user referenced by producingUnit
6: Store listing and update user and REC

End-users use Algorithm 5 to submit a bid for an active listing. Before storing the
bid on the blockchain, the balance of the user is verified to be sufficient for the bid. For
a successful bid, the user balance is decremented using the bid value; that is, the user
effectively is staking the value for the bid.

Algorithm 6 is used by end-users to end a listing. First, the highest bid in the listing is
determined. Then, all users with unsuccessful bids are updated by returning their stake,
and the balance of the old REC owner is increased with the value of the successful bid.

40

Algorithm 5 A chaincode algorithm creating a bid

1: function newBid(bidInfo)
2: bid ← create a bid using bidInfo
3: user ← get the user referenced in the bidInfo
4: listing ← get the listing referenced in the bidInfo
5: if user.balance - bid.value < 0 then
6: Throw an error
7: user.balance ← user.balance - bid.value
8: Store bid and update listing and user

Lastly, the objects of the user with the highest bid and its producing unit are updated
to maintain reference the newly transferred REC, while the old REC is updated to reflect
that it has been bought. The listing is updated to disallow any additional bids.

Algorithm 6 A chaincode algorithm ending a coin listing

1: function endCoinListing(listingInfo)
2: listing ← get the listing object referenced in listingInfo
3: succBid ← determine the highest bid listing
4: for each bid in listing do
5: if bid != succBid then
6: user ← get user object referenced by bid
7: Update bid and return bid.value to the user

8: succBidUser ← get user object referenced by succBid
9: producingUnitSuccUser ← get the producing unit object referenced by succBidUser

10: REC ← get the REC object referenced by the listing
11: originalOwner ← get the user object referenced by the REC
12: Update originalOwner, succBidUser, producingUnitSuccUser, bid, REC, and listing

The rest of the algorithms in the chaincode do not change the blockchain state and are
not described in this thesis since they are not important to the implementation. Those
algorithms facilitate the interaction with the client application. Some examples include
fetching listings from a specific user and fetching all coins owned by a user.

41

Figure 5.4: System diagram of the implementation using Algorand.

5.2.2 Implementation using Algorand

We build a second implementation, as shown in Figure 5.4, of the trading platform and
client application on top of Algorand, which we choose due to its high throughput of 1,000
transactions per second [44].

In this second implementation, we make several improvements to the implementation
based on Hyperledger Fabric. The burden of bootstrapping the system is removed from
REC aggregators since Algorand is already bootstrapped. End-users—that is, sellers,
buyers, or even auditors—can directly access the proof of authenticity and security state
to decide if a device can be trusted. The proof was not available to the end-users in the
implementation using Hyperledger Fabric, because Azure Sphere’s functionality was limited
during the development, and the proof was verified using Device Provisioning Service.
Additionally, REC aggregators need no longer be trusted to maintain cloud services.

An important difference in Algorand implementation is that the trading logic is imple-
mented in the client application, instead of handled by a smart contract; that is, Algorand
is only used as a platform to record exchanged messages and provide tamper-proof history
because Algorand did not support smart contracts at the time of development. However,
recently, Algorand 2.0 has been released, and it can be used to implement an Algorand
smart contract that can be made responsible for the trading logic.

End-users trust REC aggregators only for availability. REC aggregators are expected
to maintain middleware that allows new smart meters to update their renewable energy

42

provenance information. Without being able to update this information with an aggregator,
a smart meter cannot produce RECs. Additionally, end-users rely on aggregators to store
the client certificates of the smart meters; if a client certificate is not available, an end-user
can choose not to trust a REC.

The rest of this section is structured as follows. First, we describe the smart meter
renewable generator information update. Following that, we show how RECs are created,
and then we conclude with a description of end-user trading.

Renewable Energy Information Update

Figure 5.5 shows the renewable energy information update process between Azure Sphere
and middleware, which is the first interaction between the smart meter and the trading
platform.

Once a day, the application in Azure Sphere creates and submits an information update
message to the middleware of the aggregator. The interaction facilitates REC origin tracing
since the information in the message includes GPS location. Additionally, the message is
signed with a SECP256K1 ECC device key pair that is generated by the application. This
key pair is generated using wolfSSL library [30] and Azure Sphere’s hardware random
number generator. 6 The smart meter sends the message to the middleware via HTTPS
POST request along with the X.509 client certificate issued by Azure Cloud.

The middleware verifies the information update request before it is added to Algorand.
The X.509 certificate and its chain of certificates are validated to ensure that the smart
meter is not compromised. Additionally, the signature of the information update is verified
using the device public key of the smart meter; the middleware looks up the device public
key using a device identifier included in the information update and a locally stored list of
authorized smart meters. The presence of the smart meter in the list guarantees that the
smart meters is attached to solar panels, which is verified during registration described in
Section 4.3.

After successful verification of the information, the middleware sends the message to
Algorand. The middleware hashes the X.509 client certificate and adds the hash to the
original message. Ideally, the X.509 certificate would be directly included in the transac-
tion, but that is not possible since the maximum supported payload size in an Algorand
transaction is one kilobyte, which is less than the size of the certificate. Following that,

6The device key pair is not created in the implementation using Hyperledger Fabric, because we trust
the cloud service, which also authenticates each Azure Sphere and, therefore, checks the smart meter
identity.

43

the middleware signs the modified message using a key pair of the REC aggregator. The
signature is seen as approval that a particular Azure Sphere can generate RECs. Lastly,
the middleware constructs and submits an Algorand transaction that includes the modi-
fied information update message. A response that includes the update message transaction
identifier and device owner Algorand address is sent back to Azure Sphere; the owner ad-
dress is mapped to the smart meter by the REC aggregator during the deployment of
Azure Sphere as described in Section 4.3.

Figure 5.5: The figure shows the renewable energy information update process. The steps
in the figure are in chronological order from top to bottom, and the sequence of exchanged
massages is numbered.

Creating RECs

In our implementation and shown in Figure 5.6, Azure Sphere creates RECs in intervals
that can be as fine-grained as, for example, 15-minutes. The REC includes the amount of
produced green energy, Algorand address of the smart meter owner, and transaction iden-
tifier of the latest device information update transaction. Additionally, the REC is signed

44

with the device private key and sent along with the client certificate to the middleware via
HTTPS POST.

Similar to the information update process, before accepting the REC, the X.509 cer-
tificate of the device and REC signature are verified. Additionally, the update information
transaction is fetched and ensured that it is signed by an aggregator, otherwise, the smart
meter is not authorized to create RECs. This is to ensure that invalid RECs are not
added to the Algorand in vain. Lastly, the middleware creates and sends a transaction to
Algorand. The transaction carries the REC as a payload in the note field.

Figure 5.6: The figure shows the process that creates new RECs. The steps in the figure
are in chronological order from top to bottom, and the sequence of exchanged massages is
numbered.

Trading RECs

End-users interact with a Node.JS application to trade RECs. Unless specified otherwise,
the application locally creates Algorand transactions with payloads in the note field shown
in Figure 5.7.

45

The application allows REC owners to sell or retire RECs. End-users are presented
with the list of RECs they own, which is created based on a query to the middleware.
If the owner wants to retire a REC, the application creates and publishes to Algorand a
retire transaction that specifies the transaction identifier of the user-chosen REC.

If the owner wants to sell a REC, the application creates and sends to Algorand a
transaction that lists a single user-chosen REC for sale; the transaction includes input
such as minimum price and the length of the listing. The duration of the listing is specified
in the last round field of the Algorand transaction. This would prevent the transaction
from being published in Algorand if the block number has passed the number specified in
the last round field.

After waiting sufficient time, the owner can check the available bids for the REC via
a query to the middleware. If satisfied, the end-user selects a bid that is used by the
application to create and send a propose settle Algorand transaction; the transaction has
information such as final price and transaction identifier of the user-chosen bid. Similar
to the listing, it also specifies how long the offer is valid via the last round field of the
Algorand transaction.

REC aggregators monitor Algorand and verify and approve retire transactions so that
end-users can use the RECs for claims, such as being ’100%’ green. When an aggregator
detects a retire transaction, it fetches the corresponding REC and information update
transaction, which are then used for several verifications. First, the owner of the REC—
specified as a property in the REC—is checked to match the sender of the retire transaction;
that is, end-user can only retire the RECs they own. Then, the aggregator verifies the
signature in the REC using the device public key in the information update transaction,
which guarantees that the REC originates from a specific device. Lastly, the information
update transaction is ensured to be signed by an REC aggregator, or otherwise, the device
would not be authorized to create RECs. If all verifications are successful, the REC
aggregator creates and sends an approve retire transaction to Algorand. The transaction
authorizes the end-user to make green energy claims using the REC.

End-users interested in buying RECs also interact with the application. Similarly
to selling REC, the application queries the middleware for all available REC listings in
Algorand.

If the end-user decides to bid for a REC, the application verifies the validity of the
REC before creating a bid transaction. All relevant to the REC listing information is
gathered by the application via a request to the middleware. This includes the REC,
the information update transaction referenced in the REC, and the Azure Sphere’s client
certificate referenced in the information update transaction. The application verifies that

46

the listing transaction sender matches the REC owner. Then, the REC signature is verified
using the device public key in the information update transaction, and the information
update transaction is verified to be signed by a REC aggregator; otherwise, the smart
meter has not created the REC or has not been authorized to create the REC. Lastly, the
client certificate and its chain are checked to be valid to ensure that the smart meter is not
compromised. If all verifications are successful, the end-user can be sure that any bidding
would be for a legitimate REC. After the end-user specifies a bidding price for the REC,
the application creates a bid transaction.

The application also allows an end-user to check if their bid was successful and trans-
fer funds to the original REC owner. After the end-user specifies the bid of interest, the
application sends a request to the middleware to scan Algorand for propose settle trans-
actions with the user-specified bid. If such a transaction is found, the middleware returns
the propose settle transaction and the corresponding listing. Then, the application checks
if the propose settle transaction sender matches the listing transaction sender and if the
propose settle is for the bid specified by the end-user. These verifications prevent tricking
buyers into paying for a REC without being selected by the REC owner. If all verifications
are successful and the end-user approves the conditions in the propose settle transaction,
the application creates a settle transaction that transfers the amount of cryptocurrency
specified in the propose settle transaction from bidder’s address to the REC owner’s ad-
dress. The last round field of the settle Algorand transaction is set to the last round of the
propose settle transaction to prevent publishing the agreement after the propose settle has
expired.

Similarly to retiring RECs, REC aggregators continuously monitor Algorand for settle
transactions. If such a transaction is detected, the aggregators repeat all the validations
that the application does during the buying process. Additionally, the middleware verifies
that the settle transaction transfers a sufficient amount of cryptocurrency, and the settle
transaction sender matches the bid transaction sender. If successful, the energy company
sends an approve settle transaction, which, similar to the approve retire transaction, in-
dicates that the REC can be used for green energy claims and cannot be used for future
trading. Once a REC is sold, it is also considered retired under the buyer’s address.

47

Client Application(Seller) Middlware Client Application(Buyer)

Mlisting ←

type:listing

minPrice:int

validUntil:int

prevTx:str

1 : Mlisting 2 : Mbid Mbid ←

type:bid

bid:int

validUntil:int

prevTx:str

MpSettle ←

type:pSettle

finalPrice:int

validUntil:int

prevTx:str

3 : MpSettle 4 : Msettle Msettle ←
type:settle

prevTx:str

type:apprSettle

to:str

cert:str

prevTx:str

Figure 5.7: The figure shows how RECs are traded in Algorand. The sequence of exchanged
messages is numbered.

48

Chapter 6

Evaluation
In this chapter, we evaluate the correctness, security and anonymity of the design presented
in Chapter 4 and the implementations in Chapter 5.

Remark. Both implementations incur only a small monetary cost (see Appendix B), an
important factor for real-world adoption.

6.1 Design

We now evaluate the properties of the design.

6.1.1 Correctness

Assuming that the trading platform, smart meter, client application, blockchain, and ring
signature are correctly implemented, the design is correct as described in Section 4.1.3.

A system that operates correctly should allow any authorized, non-compromised smart
meter to create RECs. Also, every REC owner should be able to retire or sell the non-
retired RECs they own, and end-users should be able to purchase any non-retired RECs
owned by other users.

In our design, smart meters can use an algorithm in the trading platform to add new
RECs to the blockchain. The algorithm checks each REC for a valid ring signature signed
using a ring group of authorized, non-compromised smart meters, which any smart meter
with successful information update can create. This is because during the information
update the trading platform returns a ring group determined using only a list of smart
meter that have previous successful information updates; during the information update,
the device key of the smart meter is ensured to be part of a list of authorized smart meters
created during registration (See Section 4.3) and smart meter’s remote attestation proof is
ensured to be valid. Therefore, any authorized, non-compromised smart meter can create
RECs.

49

REC owners interact with the client application to trade RECs in our design. The
application queries for all RECs and uses stealth addresses to determine the private key
for each REC that is owned by the user of the client application. Using this private key,
the application can locally create REC retire or sell blockchain transactions that succeed if
the REC has not been previously retired. Additionally, end-users use the client application
to locally create bid transactions that, if selected, allow the user to purchase the REC.

6.1.2 Security

Assuming that link between the smart meter and solar panel is secure and remote attes-
tation, secure hardware, ring signatures, and blockchain are correctly implemented and
satisfy the defined properties, the system is secure as described in Section 4.1.3.

A secure system should not contain a forged REC. If a REC is forged, then either smart
meter that created the REC must have been compromised or unauthorized, or the REC
must have been tampered or double-spend.

In our design, an adversary attempting to create a REC using a compromised smart
meter needs to forge the attestation proof; otherwise, the trading platform won’t accept
the REC because each smart meter in the REC ring group is verified to have a valid proof.
However, hardware that correctly implements remote attestation always produces a proof
that correctly captures the state and software on the smart meter [43]. Additionally, the
attestation key used during the interaction is part of the hardware root of trust; that is, it
is restricted to be only used by the remote attestation in the hardware, and it cannot leave
the device. Therefore, the interaction cannot be forged, and compromised smart meter
cannot create a REC.

An adversary attempting to create a REC using an unauthorized smart meter needs
a compromised device key pair. In our design, the key pair would allow the adversary
to create a REC with a ring signature that would be accepted by the trading platform.
However, each key in the ring group is checked by the trading platform to be among a list
of authorized keys that is physically verified by the REC aggregator to belong to a smart
meter connected to a solar panel, as discussed in Section 4.3.

In our design, attempting to tamper or double-spend a REC is impossible since RECs
are signed, and any tampering with the REC will invalidate its signature. Additionally,
we rely on the blockchain to prevent double-spending.

50

6.1.3 Anonymity

Assuming that there exists an anonymous connection between the smart meter and the
trading platform and the stealth address and ring signature are correctly implemented and
satisfy the defined properties, the system is anonymous as described in Section 4.1.3.

An REC cannot be attributed to a specific smart meter or a specific owner of a smart
meter. Two possible sources could reveal the smart meter that created the REC or the
smart meter owner in our design.

The first possible source is the REC signature. However, since each REC is signed
using a ring signature, no adversary can determine the signer of a REC per definition.
The most an adversary can learn is that the smart meter is one of the parties in the ring
group, where each smart meter in the group will receive the same group of identities that
are geographically closely located since we assume that the trading platform is at most a
passive adversary.

The second possible source is the information in the REC. In our design, the REC
includes the owner blockchain address of the REC that is generated using stealth addresses.
Since any derived stealth address is indistinguishable from a randomly sampled address,
the REC does not reveal any information about the REC owner.

Remark. The amount of information revealed about a REC through transaction history is
dependent on the blockchain used for the implementation. However, we note that each REC
is considered an indivisible and non-mergeable asset, where each asset is traded separately.
Therefore, a passive adversary that only observes the blockchain transactions cannot link
two RECs to the same smart meter or end-user address that owns the smart meter.

6.2 Implementation

We now evaluate the correctness and security properties of the implementations. As pre-
viously mentioned, the implementations do not provide anonymity.

6.2.1 Correctness

Both implementations of the design allow authorized, non-compromised smart meters to
create RECs and end-users to trade RECs. In the design, the former is provided via the

51

information update and creation of new RECs algorithms, while the client application
provides the latter.

The implementation based on Algorand instantiates the design algorithms for informa-
tion update and creation of new RECs, with the exception that standard signatures instead
of ring signatures are used. The algorithms are exposed to Azure Sphere by a middleware
maintained by a REC aggregator and, therefore, authorized, non-compromised smart meter
can create RECs. Additionally, the client application locally creates Algorand transactions
that are added to the blockchain and approved by REC aggregators to allow end-users to
trade RECs.

In the implementation based on Hyperldeger Fabric, the information update algorithm
is not directly implemented, due to the limitations of Azure Sphere during development.
Instead, REC aggregators consider any Azure Sphere authorized after it has been claimed
during registration, as described in Section 5.1. Any claimed device that is not compro-
mised is enrolled in IoT Hub by Device Provisioning Service, which would allow the Azure
Sphere to send telemetry using IoT Hub. The telemetry is used in Azure Function to cre-
ate, sign using standard signatures, and send RECs to Hyperledger Fabric, and, therefore,
authorized, non-compromised smart meters can create RECs. The client application is
a web application that submits requests to an HL connector to create blockchain trans-
actions. However, as mentioned in Section 5.2.1, the client application in the real-world
implementation would be issued user credentials to create the blockchain transactions lo-
cally.

6.2.2 Security

A secure system should not have a forged REC. As mentioned during the evaluation of the
design, there are three possible sources of forged RECs. The first one is a compromised
smart meter. To prevent that the commercially-available MCU—the basis of the smart
meter—has protections to guarantee that the device starts and maintains a secure state.
The second possible source of forged RECs is an unauthorized smart meter. Besides that
the smart meter is physically verified upon registration of a new energy producer, Azure
Sphere protects the device key pair from an adversary who has a goal to extract it and forge
RECs. The last possible source of forged REC is double-spending in the blockchain. While
both implementations rely on the blockchain assumptions to prevent double-spending, the
Algorand implementation makes use of specific Algorand functionality because the trading
is off-chain.

Our chosen commercially-available MCU implements several protections to prevent

52

compromise of the smart meter. The secure boot [55]—that is, the only software that the
device can load is software signed by Microsoft—implemented in Azure Sphere guarantees
that the device begins its operation in a secure state. Additionally, we rely on Microsoft’s
silicon mitigations against attacks such as rollback [58]—an attack that restores a previous
vulnerable state in the device—and physical-side channel attacks to maintain the secure
state. The periodic remote attestation between Azure Sphere and Azure Cloud guarantees
that any tampering with Azure Sphere’s state will be detected. As already mentioned in
Section 5.1, Microsoft issues X.509 certificate only if Azure Sphere successfully completes
the remote attestation interaction.

In our implementations, the verification of the remote attestation proof is done via
verification of the X.509 client certificate sent by the smart meter. In the implementation
based on Hyperledger Fabric, the verification of the certificate is done by the Device Pro-
visioning Service in Azure Cloud, as described in Section 5.2.1. If DPS cannot successfully
verify the X.509 certificate, Azure Sphere is not allowed to send telemetry via IoT hub,
and, therefore, cannot create RECs.

In the implementation based on Algorand, the middleware verifies the X.509 certifi-
cate’s validity during the generator information update. Without an information update
signed by an aggregator, the smart meter cannot create RECs that are considered valid.
Additionally, an end-user can request the X.509 certificate of the smart meter from an ag-
gregator that possesses it; then, the user needs to ensure that the received X.509 certificate
has a hash that matches the information update transaction, and verify the certificate and
its chain. Therefore, end-users do not need to trust the aggregators.

Now that we have explained how smart meters are ensured to be not compromised,
we describe how Azure Sphere protects the device key pair. In our implementation based
on Algorand, the application in Azure Sphere generates its key pair using wolfSSL [30]
and Azure Sphere’s hardware random number generator. The generated private key does
not leave the application, and it is used to sing the information update message sent to
the trading platform. As a consequence, we need to trust that the software developer
has correctly implemented the Azure Sphere application. An adversary attempting to
obtaining the device key pair needs to compromise the smart meter application, which
would be detected by remote attestation. Additionally, the smart meter application state
is isolated by Azure Sphere. This is done using hardware since the device satisfies the
compartmentalization property in Azure Sphere described in Section 2.1.3 via a memory
management unit that isolates the state of the application in the ARM Cortex-A. Thus,
the key is secure against a passive observer and active tampering attacks.

To prevent double-spending, in both implementations, we need to assume that the

53

underlying consensus protocol assumptions are not violated. However, in the implementa-
tion based on Hyperledger Fabric, we also trust that the logic in the chaincode correctly
implements the algorithms described in Section 5.2.1, while in implementation based on
Algorand, the blockchain is used only for the exchange of messages and the correctness
and security are enforced off-chain.

Since the trading platform logic is enforced off-chain in Algorand, we discuss in more
detail the possibility of double-spending while selling or retiring a REC, which needs to be
approved by a REC aggregator.

REC aggregators parse all transactions and keep a state of the non-retired RECs.
When an owner submits a request for retiring an already retired REC, a REC aggregator
is expected to deny the request. However, in this implementation, the aggregator could
also misbehave and approve a second retirement of a REC. In such case, external auditors
are expected to detect the misbehavior and, therefore, the aggregator will be penalized.
We note that the external auditor could be anyone, including end-users with sufficient
resources.

Similarly to retiring RECs, REC aggregators would be penalized if they misbehave
when approving the selling of a REC. However, it is important to mention that a REC
owner can also create multiple proposals for settling. In such case, the buyer needs to
ensure that the proposal is valid, and the seller has not sent a second proposal for other
end-user. A proposal is considered valid if it is active. A proposal becomes active when
it is published on the blockchain, and it expires as specified in the last round field of
the Algorand transaction. Only the earliest non-expired proposal is considered valid. If
there are two proposals published at the same time, both are considered invalid. It is the
responsibility of the client application of the end-user to keep track of the validity of the
propose settles, or in our implementation, this has been offset to the middleware.

Remark. The settle transaction has the same last round field as the proposal for settling,
and, therefore, if the transaction is intercepted and attempted to be published later, it will
fail.

We reiterate that our implementation could be enhanced with Algorand 2.0—not avail-
able during our implementation—by implementing the trading logic in smart contracts.

54

Chapter 7

Future Work and Conclusions

7.1 Future Work

In future work, we could focus on adding functionality to our implementations. First, we
currently do not implement ring signatures and stealth addresses. Second, we currently do
not protect the anonymity of the REC purchaser. This could be solved by creating multiple
unrelated blockchain accounts. Then, a purchaser could use off-chain zero-knowledge proofs
to convince a third party that the RECs retired on these accounts belonged to the purchaser
or that a purchaser is ’100%’ green. Third, we could improve the user experience. Since
each REC is currently traded individually, a trading agent could be built to trade on
behalf of the user according to some predefined parameters. Another option is to issue
RECs according to an amount of produced energy, such as 1 kWh, instead of in 15-
minute intervals; this could allow a seller to list RECs in bulk. Lastly, our implementation
based on Algorand could be improved by implementing the trading logic using the newly
introduced smart contracts and assets in Algorand 2.0, which were not available at the
time of development.

Additionally, our work would greatly benefit from improvements not specific to our im-
plementations. For example, an important issue is reducing the price volatility, a problem
common to permissionless blockchains; that is, an increase in the transaction fees might
significantly reduce the end-user profit. Furthermore, incentives can be added to stimulate
certain behavior. For example, geographical regions that do not have sufficient green en-
ergy projects can be stimulated by increasing the producer profits in that region. Another
possible direction for improvement can attempt to implement a measurement that removes
the trust that the link between the smart meter and the sensor measuring renewable energy
is secure.

55

7.2 Conclusions

In this work, we design a system for trading of anonymous RECs that prevents fraud,
helps detect inconsistencies via increased transparency, enhanced RECs with anonymity,
and reduces the burden for the end-user by eliminating admin overhead. We clearly define
the goals, such as security and anonymity, for our system. For security—that is, only
authorized non-compromised smart meters can produce RECs, and no REC can be double-
spent—we rely on secure hardware and blockchain. The former guarantees that the smart
meter is not tampered with, while the latter addresses concerns with double-spending.
Additionally, for anonymity—that is, a specific REC cannot be attributed to the smart
meter that created the REC nor its owner—we use ring signatures to hide the smart meter
that creates the RECs, and stealth addresses to protect the smart meter owner.

Our implementations demonstrate the feasibility of end-to-end trust for RECs and
indeed, for any physical quantity that can be reliably measured by secure hardware. In
both, the smart meter is instantiated using Azure Sphere, a commercially-available MCU
that provides the security features required for secure REC production. We implement the
trading functionality on a permissioned blockchain, Hypereledger Fabric, and to ease the
burden of bootstrap the blockchain, Algorand. Additionally, in the latter implementation,
the end-users—that is, REC sellers, REC buyers, or even auditors—can directly check that
the smart meter that creates a REC is not compromised. During our evaluation, we show
how our implementations provide secure REC trading, while anonymity is only described
for our system.

56

References
[1] Activity statistics | AIB. https://www.aib-net.org/facts/market-information/

statistics/activity-statistics-all-aib-members. Last accessed on 2020-06-09.

[2] Arduino. https://www.arduino.cc/. Last accessed on 2020-06-09.

[3] Azure Functions documentation. https://docs.microsoft.com/en-us/azure/

azure-functions. Last accessed on 2020-04-13.

[4] Azure IoT Hub Device Provisioning Service. https://docs.microsoft.com/en-us/
azure/iot-dps/about-iot-dps. Last accessed on 2020-04-13.

[5] Azure IoT Hub documentation. https://docs.microsoft.com/en-us/azure/

iot-hub/. Last accessed on 2020-04-13.

[6] Azure Sphere. https://azure.microsoft.com/en-us/services/azure-sphere/.
Last accessed on 2020-06-09.

[7] Azure Sphere Device Authentication and Attestation Ser-
vice. https://azure.microsoft.com/en-ca/resources/

azure-sphere-device-authentication-and-attestation-service/. Last
accessed on 2020-04-12.

[8] Azure Sphere MT3620 development kit-US version. https://www.seeedstudio.

com/Azure-Sphere-MT3620-Development-Kit-US-Version.html. Last accessed on
2020-04-13.

[9] Bip-0062. https://github.com/bitcoin/bips/blob/master/bip-0062.

mediawiki. Last accessed on 2020-06-09.

[10] BMO Financial to offset 100% of electricity use with RECs.
https://www.smartenergydecisions.com/blog/2020/04/20/

bmo-financial-to-offset-100-of-electricity-use-with-recs. Last accessed
on 2020-06-02.

[11] Canada’s renewable power landscape 2016 – energy market analysis. https://www.

cer-rec.gc.ca/nrg/sttstc/lctrct/rprt/2016cndrnwblpwr/plcncntv-eng.html.
Last accessed on 2020-05-06.

57

https://www.aib-net.org/facts/market-information/statistics/activity-statistics-all-aib-members
https://www.aib-net.org/facts/market-information/statistics/activity-statistics-all-aib-members
https://www.arduino.cc/
https://docs.microsoft.com/en-us/azure/azure-functions
https://docs.microsoft.com/en-us/azure/azure-functions
https://docs.microsoft.com/en-us/azure/iot-dps/about-iot-dps
https://docs.microsoft.com/en-us/azure/iot-dps/about-iot-dps
https://docs.microsoft.com/en-us/azure/iot-hub/
https://docs.microsoft.com/en-us/azure/iot-hub/
https://azure.microsoft.com/en-us/services/azure-sphere/
https://azure.microsoft.com/en-ca/resources/azure-sphere-device-authentication-and-attestation-service/
https://azure.microsoft.com/en-ca/resources/azure-sphere-device-authentication-and-attestation-service/
https://www.seeedstudio.com/Azure-Sphere-MT3620-Development-Kit-US-Version.html
https://www.seeedstudio.com/Azure-Sphere-MT3620-Development-Kit-US-Version.html
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://www.smartenergydecisions.com/blog/2020/04/20/bmo-financial-to-offset-100-of-electricity-use-with-recs
https://www.smartenergydecisions.com/blog/2020/04/20/bmo-financial-to-offset-100-of-electricity-use-with-recs
https://www.cer-rec.gc.ca/nrg/sttstc/lctrct/rprt/2016cndrnwblpwr/plcncntv-eng.html
https://www.cer-rec.gc.ca/nrg/sttstc/lctrct/rprt/2016cndrnwblpwr/plcncntv-eng.html

[12] Connect Azure Sphere to Ethernet. https://docs.microsoft.com/en-us/

azure-sphere/network/connect-ethernet. Last accessed on 2020-07-17.

[13] CouchDB as the state database (Hyperledger Fabric documentation).
https://hyperledger-fabric.readthedocs.io/en/release-1.4/couchdb_

as_state_database.html. Last accessed on 2020-04-13.

[14] Deployment basics (for Azure Sphere Application). https://docs.microsoft.com/

en-ca/azure-sphere/deployment/deployment-concepts. Last accessed on 2020-
05-15.

[15] Documentation for MT3620 (Microsoft Azure Sphere MCU). https://www.

mediatek.com/products/azureSphere/mt3620. Last accessed on 2020-04-13.

[16] Empowering app development for developers. https://www.docker.com/. Last ac-
cessed on 2020-06-09.

[17] Guaranteeing the origin of european energy. https://www.aib-net.org/. Last ac-
cessed on 2020-06-09.

[18] How to join (Green-e). https://www.green-e.org/programs/energy/join. Last
accessed on 2020-05-09.

[19] Intel Galileo Gen2. https://www.arduino.cc/en/ArduinoCertified/

IntelGalileoGen2. Last accessed on 2020-06-09.

[20] MQTT. http://mqtt.org/. Last accessed on 2020-06-09.

[21] MT3620 support status. https://docs.microsoft.com/en-ca/azure-sphere/

hardware/mt3620-product-status. Last accessed on 2020-05-15.

[22] Power Ledger. https://www.powerledger.io/. Last accessed on 2020-06-09.

[23] Proof of Stake. https://en.bitcoin.it/wiki/Proof_of_Stake. Last accessed on
2020-06-09.

[24] Respberry Pi. https://www.raspberrypi.org/. Last accessed on 2020-06-09.

[25] Strengthen enclave trust with attestation. https://software.intel.

com/content/www/us/en/develop/topics/software-guard-extensions/

attestation-services.htmls. Last accessed on 2020-06-09.

58

https://docs.microsoft.com/en-us/azure-sphere/network/connect-ethernet
https://docs.microsoft.com/en-us/azure-sphere/network/connect-ethernet
https://hyperledger-fabric.readthedocs.io/en/release-1.4/couchdb_as_state_database.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/couchdb_as_state_database.html
https://docs.microsoft.com/en-ca/azure-sphere/deployment/deployment-concepts
https://docs.microsoft.com/en-ca/azure-sphere/deployment/deployment-concepts
https://www.mediatek.com/products/azureSphere/mt3620
https://www.mediatek.com/products/azureSphere/mt3620
https://www.docker.com/
https://www.aib-net.org/
https://www.green-e.org/programs/energy/join
https://www.arduino.cc/en/ArduinoCertified/IntelGalileoGen2
https://www.arduino.cc/en/ArduinoCertified/IntelGalileoGen2
http://mqtt.org/
https://docs.microsoft.com/en-ca/azure-sphere/hardware/mt3620-product-status
https://docs.microsoft.com/en-ca/azure-sphere/hardware/mt3620-product-status
https://www.powerledger.io/
https://en.bitcoin.it/wiki/Proof_of_Stake
https://www.raspberrypi.org/
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions/attestation-services.htmls
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions/attestation-services.htmls
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions/attestation-services.htmls

[26] Terminology (Azure Sphere). https://docs.microsoft.com/en-us/azure-sphere/
product-overview/terminology. Last accessed on 2020-05-15.

[27] What is Azure Key Vault? https://docs.microsoft.com/en-ca/azure/

key-vault/key-vault-overview#securely-store-secrets-and-keys. Last ac-
cessed on 2020-04-13.

[28] What is Azure Sphere? https://docs.microsoft.com/en-ca/azure-sphere/

product-overview/what-is-azure-sphere. Last accessed on 2020-05-13.

[29] What is the Paris Agreement? https://unfccc.int/process-and-meetings/

the-paris-agreement/what-is-the-paris-agreement. Last accessed on 2020-06-
09.

[30] wolfSSL. https://www.wolfssl.com/. Last accessed on 2020-06-09.

[31] The world’s most influential companies, committed to 100% renewable power. http:
//there100.org/. Last accessed on 2020-05-07.

[32] Filament unveils industry’s first blockchain hardware device in a USB form factor for
existing IoT devices plug and play, secure blockchain operations enable significantly
accelerated deployments... shorturl.at/eAU16, 2018. Last accessed on 2020-04-24.

[33] Energy web foundation onboards engie blockchain startup’s dApp. https://www.

ledgerinsights.com/energy-web-foundation-engie-blockchain-teo-dapp/,
2020. Last accessed on 2020-04-24.

[34] Ledger Origin. https://www.ledger.com/origin, 2020. Last accessed on 2020-04-24.

[35] TEO (The Energy Origin) proposes green energy transparency with
blockchain. https://innovation.engie.com/en/news/medias/new-energies/

teo-the-energy-origin-proposes-green-energy-transparency-with-blockchain/

13243, 2020. Last accessed on 2020-04-24.

[36] Tigist Abera, N Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman, Andrew
Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. C-flat: control-flow attestation for
embedded systems software. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 743–754, 2016.

[37] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Chris-
tidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov

59

https://docs.microsoft.com/en-us/azure-sphere/product-overview/terminology
https://docs.microsoft.com/en-us/azure-sphere/product-overview/terminology
https://docs.microsoft.com/en-ca/azure/key-vault/key-vault-overview#securely-store-secrets-and-keys
https://docs.microsoft.com/en-ca/azure/key-vault/key-vault-overview#securely-store-secrets-and-keys
https://docs.microsoft.com/en-ca/azure-sphere/product-overview/what-is-azure-sphere
https://docs.microsoft.com/en-ca/azure-sphere/product-overview/what-is-azure-sphere
https://unfccc.int/process-and-meetings/the-paris-agreement/what-is-the-paris-agreement
https://unfccc.int/process-and-meetings/the-paris-agreement/what-is-the-paris-agreement
https://www.wolfssl.com/
http://there100.org/
http://there100.org/
shorturl.at/eAU16
https://www.ledgerinsights.com/energy-web-foundation-engie-blockchain-teo-dapp/
https://www.ledgerinsights.com/energy-web-foundation-engie-blockchain-teo-dapp/
https://www.ledger.com/origin
https://innovation.engie.com/en/news/medias/new-energies/teo-the-energy-origin-proposes-green-energy-transparency-with-blockchain/13243
https://innovation.engie.com/en/news/medias/new-energies/teo-the-energy-origin-proposes-green-energy-transparency-with-blockchain/13243
https://innovation.engie.com/en/news/medias/new-energies/teo-the-energy-origin-proposes-green-energy-transparency-with-blockchain/13243

Manevich, et al. Hyperledger fabric: A distributed operating system for permissioned
blockchains. In Proceedings of the Thirteenth EuroSys Conference, pages 1–15, 2018.

[38] Galen L. Barbose. U.S. Renewables Portfolio Standards: 2019 Annual Status Update.
Technical report, July 2019.

[39] Fred Beck and Eric Martinot. Renewable energy policies and barriers. 2016.

[40] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger
definitions, and constructions without random oracles. In Theory of Cryptography
Conference, pages 60–79. Springer, 2006.

[41] J. A. F. Castellanos, D. Coll-Mayor, and J. A. Notholt. Cryptocurrency as guarantees
of origin: Simulating a green certificate market with the ethereum blockchain. In
2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE),
pages 367–372, August 2017.

[42] Nicolas T Courtois and Rebekah Mercer. Stealth address and key management tech-
niques in blockchain systems. ICISSP, 2017:559–566, 2017.

[43] A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik. A minimalist approach to
remote attestation. In 2014 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 1–6. IEEE, March 2014.

[44] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
Algorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the
26th Symposium on Operating Systems Principles, pages 51–68, 2017.

[45] Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Keshav. Fastfab-
ric: Scaling hyperledger fabric to 20,000 transactions per second. arXiv preprint
arXiv:1901.00910, 2019.

[46] Daan Hulshof, Catrinus Jepma, and Machiel Mulder. Performance of markets for
european renewable energy certificates. Energy Policy, 128:697 – 710, 2019.

[47] Galen Hunt, George Letey, and Ed Nightingale. The seven properties of highly secure
devices. Technical Report MSR-TR-2017-16, March 2017.

[48] F Imbault, M Swiatek, R De Beaufort, and R Plana. The green blockchain: Manag-
ing decentralized energy production and consumption. In 2017 IEEE International
Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and

60

Commercial Power Systems Europe (EEEIC/I&CPS Europe), pages 1–5. IEEE, June
2017.

[49] Georgios Karopoulos, Christos Xenakis, Stefano Tennina, and Stefanos Evangelopou-
los. Towards trusted metering in the smart grid. In 2017 IEEE 22nd International
Workshop on Computer Aided Modeling and Design of Communication Links and
Networks (CAMAD), pages 1–5. IEEE, June 2017.

[50] Fabian Knirsch, Clemens Brunner, Andreas Unterweger, and Dominik Engel. Decen-
tralized and permission-less green energy certificates with gecko. Energy Informatics,
3(1):1–17, 2020.

[51] Michael LeMay, George Gross, Carl A Gunter, and Sanjam Garg. Unified architecture
for large-scale attested metering. In 40th Annual Hawaii International Conference on
System Sciences (HICSS’07), pages 115–115. IEEE, January 2007.

[52] Michael LeMay and Carl A. Gunter. Cumulative attestation kernels for embedded
systems. In Michael Backes and Peng Ning, editors, Computer Security – ESORICS
2009, pages 655–670. Springer Berlin Heidelberg, May 2009.

[53] Michael del Castillo. Nasdaq explores how blockchain could fuel solar energy mar-
ket. https://www.coindesk.com/nasdaq-blockchain-solar-power-market, 2016.
Last accessed on 2020-04-24.

[54] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report,
Manubot, 2019.

[55] Ed Nightingale. Anatomy of a secured MCU. https://azure.microsoft.com/

en-ca/blog/anatomy-of-a-secured-mcu, 2018. Last accessed on 2020-05-15.

[56] Andrew J. Paverd and Andrew P. Martin. Hardware security for device authentication
in the smart grid. In Jorge Cuellar, editor, Smart Grid Security, pages 72–84. Springer
Berlin Heidelberg, 2013.

[57] Richard Martin. How corporations buy their way to
green. https://www.technologyreview.com/s/541701/

how-corporations-buy-their-way-to-green/, 2015. Last accessed on 2020-
05-07.

[58] D. Stiles. The hardware security behind Azure Sphere. IEEE Micro, 39(2):20–28,
March 2019.

61

https://www.coindesk.com/nasdaq-blockchain-solar-power-market
https://azure.microsoft.com/en-ca/blog/anatomy-of-a-secured-mcu
https://azure.microsoft.com/en-ca/blog/anatomy-of-a-secured-mcu
https://www.technologyreview.com/s/541701/how-corporations-buy-their-way-to-green/
https://www.technologyreview.com/s/541701/how-corporations-buy-their-way-to-green/

[59] Zhichuang Sun, Bo Feng, Long Lu, and Somesh Jha. OAT: Attesting operation in-
tegrity of embedded devices. In 2020 IEEE Symposium on Security and Privacy (SP),
pages 1433–1449. IEEE, 2020.

[60] United States Environment Protection Agency. Greenhouse gas emissions,
Global Greenhouse Gas Emissions Data. https://www.epa.gov/ghgemissions/

global-greenhouse-gas-emissions-data#Sector, Last accessed on 2020-05-06.

[61] U.S. Department of Energy. New solar opportunities for a new decade. https:

//www.energy.gov/eere/solar/sunshot-2030. Last accessed on 2020-05-06.

[62] U.S. Department of Energy. Photovoltaic (PV) pricing trends: historical, recent, and
near-term projections. https://www.nrel.gov/docs/fy13osti/56776.pdf. Last ac-
cessed on 2020-05-06.

[63] Chen Yan, Hocheol Shin, Connor Bolton, Wenyuan Xu, Yongdae Kim, and Kevin Fu.
SoK: A Minimalist Approach to Formalizing Analog Sensor Security. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 480–495, 2020.

[64] Shaomin Zhang, Tengfei Zheng, and Baoyi Wang. A privacy protection scheme for
smart meter that can verify terminal’s trustworthiness. International Journal of Elec-
trical Power & Energy Systems, 108:117 – 124, June 2019.

[65] Fangyuan Zhao, Xin Guo, and Wai Kin Victor Chan. Individual green certificates on
blockchain: A simulation approach. Sustainability, 12(9):3942, 2020.

[66] J. Zhao, J. Liu, Z. Qin, and K. Ren. Privacy protection scheme based on remote
anonymous attestation for trusted smart meters. IEEE Transactions on Smart Grid,
9(4):3313–3320, July 2018.

62

https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data#Sector
https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data#Sector
https://www.energy.gov/eere/solar/sunshot-2030
https://www.energy.gov/eere/solar/sunshot-2030
https://www.nrel.gov/docs/fy13osti/56776.pdf

APPENDICES

63

Appendix A

Definitions
We note that the adversary, has access to an oracle SmartMeter.REC(in, pkowner, s, pkSM)
that can be used to create RECs. Each REC is created based on the measured green energy
in, the public key of the owner, the specified device state, and the smart meter of choice.
The output is the REC and the ring group used to create the REC. We use · to denote an
input that can be specified by the adversary. We assume that the adversary controls an
arbitrary set of end-users Uadv, which is a subset of all end users, and an arbitrary set of
smart meters Ladv, which is a subset of all smart meters.

A.1 Security

Definition A.1.1. Security: The system is secure, if for every PPT adversary A, Exper-
iment 7 and Experiment 8 output success with at most negligible probability for any n ∈
N.

Experiment 7 Non-authorized or compromised smart meter creating a REC

1: All components run their initialization algorithms.
2: The adversary queries the oracle SmartMeter.REC(·, ·, sappr, ·) polynomial number of

times q to get a list of RECs [(REC1, ring list1),...,(RECq, ring listq)].
3: (RECadv, ring listadv, txidadv) ← A(1n, auth keys, Ladv, Uadv), where the RECadv is

for a non-approved device state or a smart meter not in set of smart meters Ladv, and
not previously queried using the oracle.

Remark. Adversary can view the RECs in step 2 using CA.Fetch().

4: Output of the experiment is success, if CA.Vrfy(txidadv) is successful.

64

Experiment 8 Double-spending RECs

1: All components run their initialization algorithms.
2: Every user can arbitrary interact with any client application algorithms to trade RECs.

During the interaction, any newly produced valid REC is added to rec list, while any
retired REC is moved from rec list to rec retired.

3: The adversary queries the oracle SmartMeter.REC(·, ·, sappr, ·) polynomial number of
times q to get a list of RECs [(REC1, ring list1),...,(RECq, ring listq)].

4: Output of the experiment is success, if at any point of time |rec list ∪ rec retired|
is bigger then the number of times the oracle SmartMeter.REC is queried.

A.2 Anonymity

Definition A.2.1. Anonymity: The REC production is anonymous, if for every PPT
adversary A, Experiment 9 succeeds with at most negligible probability and Experiment 10
succeeds with 1

k
plus a negligible probability, where k is the size of a ring group. The

definition should be valid for any n ∈ N and set of authorized devices auth keys.

Experiment 9 Determining smart meter owner

1: All components run their initialization algorithms.
2: (pkowner0 , ..., pkownerq) ← A(1n, auth keys, Ladv, Uadv), where the set has polynomial

number q of public keys and none of the keys are part of the set Uadv.
3: Let, b′ be a random number between 0 and q.
4: The challenger invokes the oracle SmartMeter.REC(·, pkownerb′ , sappr, auth keys[1]).
5: b ← A(1n, auth keys[1], Ladv, Uadv).
6: If b = b′, then output success.

Experiment 10 Determining the smart meter

1: All components run their initialization algorithms.
2: list meters ← A(pkSS, auth keys, Uadv), where list meters consist of indexes of all

smart meters in the same ring.
3: Let b′ be a random number between 0 and k.
4: The challenger invokes the oracle SmartMeter.REC(·, pkowner1 , sappr, list meters[b′])
5: b ← A(1n, pkowner1 , Ladv, Uadv).
6: If b = b′, then output success.

65

Appendix B

Cost

B.1 Azure Sphere

We now estimate the cost to add an Azure Sphere to a solar panel. Although in our
implementation, we used SEEED Azure Sphere development kit [8] that currently costs
about 85 USD, a custom PCB will be designed for real-world deployment, which will
significantly reduce the price. Currently, Azure Sphere microcontroller costs about 11
USD, while the current sensor we used costs about 3.8 USD. According to MediaTek [15],
Azure Sphere is packaged in 12 mm by 12 mm, which sets the minimum PCB dimensions.
Using this information, we believe that the total cost to add Azure Sphere to a solar panel
could be reduced to approximately 16 USD.

B.2 Hyperledger Fabric

We now estimate the incurred cost to maintain Hyperledger Fabric. In our prototype,
Hyperledger Fabric peers were deployed on a local machine, but we use Azure Cloud to
make our estimation since it provides similar service. According to Azure Cloud, each
peer that has two vCPUs and 8 GiB of memory cost 105 USD per month. Additionally,
since Hyperledger Fabric throughput supports up to 20 000 tx/s [45], we estimate that
Fabric will support at most 18 000 000 smart meters when RECs are created in 15-minute
intervals. Therefore, using the default Hyperledger Fabric settings on Azure Cloud of one
peer and one ordered, the very minimal Hyperledger Fabric monthly cost per solar panel
is less than ten thousands of a cent.

Additionally, the Hyperledger Fabric makes use of several cloud services that also incur
a cost. IoT Hub, one of the services we use, costs about 2500 USD per month for 300 000 000
messages per day.1 If each solar panel sends about 96 messages per day, each IoT Hub

1The estimations in this section were calculated using: https://azure.microsoft.com/en-
ca/pricing/calculator/

66

would be able to handle about 3 125 000 solar panels. However, we will need at least
six IoT Hubs so that all 18 000 000 solar panels supported by Hyperledger Fabric would
have available communication channels; this will cost about 15 000 USD per month in
total. Furthermore, Azure Function will cost about 53.60 USD per month for a workload
of 300 000 000 messages where each execution takes less than 100 ms or 324 USD per
month for all six IoT hubs. Lastly, the Key Vault costs 0.03 USD per 10 000 operations.
Therefore, the cloud service will cost in total 16 224 USD per month or less than a thousand
of a cent per solar panel.

B.3 Algorand

We now estimate the monthly cost related to REC production. Since in our implementa-
tion RECs are produced in 15-minute intervals, each smart meter would send about 2880
Algorand transactions each month. Additionally, each solar panel has to update informa-
tion daily, which adds roughly 30 transactions per month. Therefore, REC production
requires approximately 2910 transactions.

REC trading involves several transactions. Every time an end-user want to retire a
REC, the client application needs to create a retire transaction, and the energy company
needs to approve the retired transaction; that is, retiring a REC involves two transactions.
Every time an end-user want to sell a REC, the seller needs to create two transactions,
the buyer needs to create two transactions, and the energy company needs to approve the
whole process; that is, retiring a REC involves five transactions.

At the time of the writing, the incurred cost in Algorand is very small. We use the
minimum transaction fee of 1000 micro Algo to give an approximation, which at the current
price of about 0.2 USD per Algo2 equals to 0.0002 USD. The monthly operation cost of a
smart meter to produce RECs is about half a dollar, while the cost to retire a REC and
to sell a REC are about a thousand of a cent.

2According to https://coinmarketcap.com/currencies/algorand/

67

	List of Figures
	Introduction
	Motivation
	Contributions and System Overview

	Background and Related Work
	Background
	Blockchains
	Trusted Smart Meters Design
	Azure Sphere

	Related Work

	Preliminaries
	Secure Hardware
	Remote Attestation
	Blockchain
	Signatures
	Stealth Addresses

	Ring Signatures

	Design
	Desired System Properties
	Goals
	System sketch
	Properties
	Threat Model

	Design
	Smart Meter
	Security Service
	Trading Platform
	Client Application

	User Registration

	Implementation
	Smart Meter
	Trading Platform and Client Application
	Implementation using Hyperledger Fabric
	Implementation using Algorand

	Evaluation
	Design
	Correctness
	Security
	Anonymity

	Implementation
	Correctness
	Security

	Future Work and Conclusions
	Future Work
	Conclusions

	References
	APPENDICES
	Definitions
	Security
	Anonymity

	Cost
	Azure Sphere
	Hyperledger Fabric
	Algorand

