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Abstract 

In agricultural watersheds across the world, decades of commercial fertilizer application and 

intensive livestock production have led to elevated stream nutrient levels and problems of 

eutrophication in both inland and coastal waters.  Despite widespread implementation of a range 

of strategies to reduce nutrient export to receiving water bodies, expected improvements in water 

quality have often not been observed. It is increasingly understood that long time lags to seeing 

reductions in stream nutrient concentrations can result from the existence of legacy nutrient 

stores within the landscape.  However, it is less understood how spatial heterogeneity in legacy 

nutrient dynamics might allow us to target implementation of appropriate management practices. 

In this thesis, we have explored the dominant controls of legacy nitrogen accumulation in a 

predominantly agricultural 6000-km2 mixed-landuse watershed. First, we synthesized a 216 year 

(1800 – 2016) nitrogen (N) mass balance trajectory at the subbasin scale accounting for inputs 

from population, agriculture, and atmospheric data, and output from crop production using a 

combination of census data, satellite imagery data, and existing model estimates. Using these 

data, we calculated the N surplus, defined as the difference between inputs to the soil surface 

from manure application, atmospheric deposition, fertilizer application, and biological N 

fixation, and outputs primarily from crop production. We then used the ELEMeNT-N model, 

with the estimates of the N mass balance components as the model inputs, to quantify legacy 

accumulation in the groundwater and soil in the study basin and 13 of its subbasins.  

Our results showed that from 1950, N surplus across the study site rose dramatically and 

plateaued in 1980. Agricultural inputs from fertilizer and biological nitrogen fixation were the 

dominant drivers of N surplus magnitude in all areas of the watershed. Model results revealed 
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that 40% of the N surplus to the watershed since 1940 is stored as legacy N, and that the 

proportion of N surplus that is stored as legacy vary across the watershed, ranging from 33% to 

69%. Where legacy tends to accumulate also varies across the watershed, ranging from 49% - 

72% stored in soil, and 28% - 51% stored in groundwater. Through correlation analysis, we 

found that soil N accumulation tends to occur where there is high agricultural N surplus, and 

groundwater N accumulation tends to occur where mean groundwater travel times are long. We 

also found that using the model calibrated mean groundwater travel times as an indication of lag 

times, we can identify the length of lag time in various regions in the watershed to help inform 

long-term management plans. Our modeling framework provides a way forward for the design of 

more targeted approaches to water quality management.   
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Chapter 1 Introduction 

1.1. Eutrophication and algal blooms 

The eutrophication of rivers, lakes, and coastal regions around the world have have been 

attributed to excess nutrient loading from human activities including urbanization, industrial 

processes, and agricultural activities (Carpenter et al., 1998; Heisler et al., 2008).  Nitrogen (N) 

and phosphorus (P) are two limiting nutrients in aquatic ecosystems that are released into the 

environment through wastewater treatment plant effluent discharges, atmospheric deposition of 

nitrogen in fossil fuel emissions, and nonpoint source pollution from fertilizer runoff and 

leaching into the groundwater (Boyer et al., 2002; Di and Cameron, 2002; Kleinman et al., 2011; 

Mekonnen and Hoekstra, 2018). Excess nutrient loading is often linked increased algal blooms, 

some of which can be toxic, and often leads to the formation of hypoxic ‘dead zones’ (Dodds, 

2006). Instances of harmful algae blooms (HABs) and algae-induced hypoxia in both freshwater 

and coastal waters have been documented all over the world, including Lake Taihu in China 

(Paerl et al., 2011), the Gulf of Mexico in North America (Turner et al., 2008), lakes and coastal 

waters in Denmark (Kronvang et al., 2005), and Lake Erie of the Laurentian Great Lakes 

(Watson et al., 2016). 

1.2. Water quality mitigation efforts appear to yield disappointing results 

Within the last 50 years, efforts have been made to mitigate the growth of algal blooms by 

upgrading wastewater treatment plants, which have led to to significantly reduced point-source 

phosphorus, and implementing atmospheric emission reduction policies, which have led to 

reduced nitrogen deposition (Lloret and Valiela, 2016; Maccoux et al., 2016).  The focus has 

now shifted to controlling nonpoint sources of nutrients by implementing agricultural best 



2 

 

management practices (BMPs), which have shown successful reduction of nutrient loss from the 

field (International Joint Commission, 1983; Kaika, 2003; Liu et al., 2017; Mitchell and 

Shrubsole, 1992; Zbieranowski and Aherne, 2011). Despite these advances, targets for 

watershed-scale nutrient reduction have not been met (Carpenter et al., 1998; Sharpley et al., 

2009; Sprague and Gronberg, 2012; Worrall et al., 2009). Reducing nonpoint source nutrient 

loading at the watershed-scale appears to be disconnected from field-scale success, and has been 

proven a challenging goal (Liu et al., 2017). Notably, there have been extensive efforts in the 

Mississippi and the Chesapeake Bay to reduce N loading for more than 20 years by wide 

implementation of BMPs, but neither reached their target loads (Van Meter et al., 2018). In 

Europe, only 31% of designated Nitrate Vulnerable Zones had improved water quality, and the 

rest either saw no significant water quality or even experienced increased nitrate loadings after 

12 to 15 years (Worrall et al., 2009). In the Maumee and Sandusky, two major tributaries of Lake 

Erie, there have been no significant long-term trends in reduced N concentrations despite 

decades of non-point source control measures being implemented (Choquette et al., 2019).  

1.3. Lag times and legacy responsible for disappointing water quality results 

These apparent failures in water quality improvement despite decades of efforts is increasingly 

attributed to watershed-scale lag times (Liu et al., 2017; Meals et al., 2010). Nutrient lag time is 

the time it takes for implementation of BMPs to translate into downstream water quality 

improvements, which can range between 5 to more than 50 years (Meals et al., 2010). Without 

consideration for lag times, expectations for water quality improvements are often given an 

unrealistically short timeline. Unmet expectations may lead to the false perception that BMPs are 

not effective and halt further funding and implementation (Meals et al., 2010). Lag times can 
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arise when N accumulated on the landscape are released into streams over sub-annual to decadal 

timeframes (Hamilton, 2012; Van Meter and Basu, 2017). Inorganic N can be stored in the 

unsaturated zone of the soil profile, and more importantly in groundwater, which can have 

residence times from days to decades depending on length of flow path and type of substrate 

(Hamilton, 2012). Van Meter and Basu (2015) conceptualized this store as the hydrologic legacy, 

which includes both N in groundwater and dissolved inorganic N in the unsaturated zone of the 

soil profile. Van Meter and Basu (2015) also conceptualized a biogeochemical lag time where N 

is accumulated in the root zone as an organic form, where it can mineralize over time and 

transfer to the hydrologic legacy. In contrast to the widely accepted hydrologic legacy, the 

biogeochemical legacy is still a topic under scrutiny, but an increasing number of studies are 

uncovering evidence for its significance in long-term watershed N dynamics (Sebilo et al., 2013; 

Van Meter et al., 2016). Thus, it is pertinent to quantify lag times and legacy stores to make 

informed plans and policies for mitigating the effects of eutrophication. 

1.4. Recent advances in lag time modelling   

Since lag times can often span timeframes greater than existing measured data, modelling tools 

can be used to make estimates (Bouraoui and Grizzetti, 2014). Traditional modelling frameworks 

however, do not consider lag times. Existing models for assessing changes in water quality in 

response to changes in N inputs can be categorized as empirical, conceptual, and process-based 

(Bouraoui and Grizzetti, 2014).  Empirical models, such as the Net Anthropogenic Nitrogen 

Input (NANI) based models, are the simplest of the models, and they draw statistical 

relationships between N inputs and outputs in stream N loading, while considering all physical 

processes as a black box. Traditional process-based models, such as the Soil Water Assessment 
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tool (SWAT), are the most complex, and are designed to predict the final reduction in stream 

concentration as a result of BMP implementation using physically based processes, but does not 

model the time it takes to reach those states (Ilampooranan et al., 2019). Finally, conceptual 

models, notably Geospatial Regression for European Nutrient Losses (GREEN) and MOdelling 

Nutrient Emissions in River Systems (MONERIS) are those of intermediate complexity, and 

may consider multiple nutrient transfer pathways and simplified representations of key nutrient 

processes, but are limited by the traditional framework of the lack of consideration for lag times 

(Bouraoui and Grizzetti, 2014; Van Meter et al., 2017). Without such estimations of lag times, 

policy makers are missing an important piece of information to make feasible long term plans 

that will effectively achieve final water quality targets. 

Recently, there have been attempts to adapt empirical and conceptual models to account for lag 

time, such as NANI (Hong et al., 2017) and MONERIS (Behrendt et al., 2000). However, they 

are unable to account for the different physical behaviours of both the hydrologic and 

biogeochemical legacy pools, and therefore model lag times explicitly (Behrendt et al., 2000; 

Hong et al., 2017). As a result, it is inadequate for predicting outputs under significantly different 

input regimes, and identify sources of uncertainty associated with modelled results (Chen et al., 

2018; Van Meter et al., 2017). The process-based model, SWAT, has also recently been adapted 

for modelling nutrient lag times, but its complexity and high parameterization may be restrictive 

for wide adoption in watersheds with less data (Chen et al., 2018; Ilampooranan et al., 2019).  

In 2015, Van Meter and Basu developed a framework for process-based modelling of Legacy N 

to quantify lag times. Their model ELEMeNT (Exploration of Long-Term Nutrient Trajectories) 

operated under this framework, and has since been used to estimate lag times and size of legacy 

stores for a number of watersheds (Van Meter et al., 2018, 2017). ELEMeNT operates by pairing 
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a long-term input trajectory of N with a source zone dynamic function coupled with a 

groundwater travel time distribution approach, to simulate N retention and transport in surface 

and subsurface pathways, to determine stream N loading trajectories at the watershed outlet. 

Using such approach, Van Meter et al., (2017) modelled N dynamics of the Mississippi 

watershed from 1800 to 2014, and found that 55% of the the current annual stream N loading 

was more than 10 years old, and in Van Meter et al., (2018), it would take between 7 to 25 years 

under various N reduction scenarios to achieve the 20% target in reduction of stream loading to 

the Gulf of Mexico.  

1.5. Eutrophication in the Lake Erie and need for dual nutrient controls 

Of the five Laurentian Great Lakes, Lake Erie experiences the most visible symptoms of 

eutrophication due to its high nutrient input from its basin and shallow bathymetry leading to 

warm waters (Ho et al., 2017). A record setting algal bloom event was recorded in 2015, with an 

area of over 2000 square kilometers (Ho et al., 2017). The event illuminated the increasing 

severity of eutrophication in the lake. The lake is important to the local economy. One study 

estimating the blooms cost the local economy $270 million per year, when considering the costs 

of finding substitute sources of drinking water, and losses in the tourism and recreation sector 

(Smith et al., 2019).  

Research in the 1960s and 70s found that excess nutrient loading, particularly for phosphorus (P) 

was the cause of eutrophication and algal blooms (Beeton and Edmondson, 1972; Davis, 1964). 

Efforts to reverse cultural eutrophication in Lake Erie sparked the development of the 1972 Great 

Lakes Water Quality Agreement (GLWQA) (International Joint Commission, 1970, 1965). The 
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GLWQA outlined the responsibilities of the U.S. and Canada to reduce nutrient input, 

particularly P, from watersheds within their respective borders. 

Activities stemming from the agreement focused on the aggressive elimination of point source P, 

primarily by upgrading wastewater treatment plants and eliminating P from detergents (Dolan, 

1993). As a result, the lake appeared to have recovered from eutrophication in the 1980s 

(Allinger and Reavie, 2013). However, massive algal blooms seemed to recur within a decade, 

despite continued efforts in restricting P inputs from both point and non-point sources 

(International Joint Commission, 1983; Richards et al., 2002).  

More recent findings on the ecology of Lake Erie suggest that only controlling phosphorus is no 

longer adequate, although this is a hotly debated topic (Paerl et al., 2016; Schindler et al., 2016; 

Watson et al., 2016). Proponents of P-only control argue that it is a cost-effective, feasible 

strategy to mitigate algal blooms due to eutrophication (Schindler et al., 2016). They cite long-

term whole-lake case-studies showing the success of P-only nutrient management (Dove and 

Chapra, 2015; Fastner et al., 2016; Schindler, 1974). The re-eutrophication of Lake Erie was also 

thought to be due to poor control of P from non-point sources and internal lake cycling, and not 

due to the lack of N control (Schindler et al., 2016). Contrary to the P-only control paradigm, a 

growing body of literature suggests that in some freshwater ecosystems, N must be reduced 

concurrently with P (Conley et al., 2009; Lewis and Wurtsbaugh, 2008; Paerl et al., 2016). Dual-

nutrient control of N and P considers specific characteristics of a freshwater aquatic ecosystem 

beyond assumed P limitation. They showed that N and P fertilization was more effective in 

stimulating algal growth in a spectrum of scales, from microcosm to whole-lake experiments, 

than fertilization of either nutrient alone (Elser et al., 2007; Fee, 1979; Paerl et al., 2016). 

Furthermore, high N-P ratios have been found to be a driver of HAB formation in the central 
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basin of Lake Erie (Chaffin et al., 2019; Gobler et al., 2016). Finally, controlling N in addition to 

P may have holistic effects on downstream waters which are vulnerable to increased N inputs 

(Paerl et al., 2016). This includes N-limited estuaries and coastal ecosystems, or ecosystems that 

have the right conditions for nitrate-induced P mobilization (Paerl et al., 2016; Smolders et al., 

2010). It is becoming clear that controlling the nitrogen (N) loading may be essential for the 

health of the lake as well.  

There are currently no official N reduction targets set, nor are there limits set for stream nitrate 

concentration by governing authorities in the province of Ontario, where the Canadian side of the 

Lake Erie basin lies (Ministry of Environment, and Energy (MOE), 1994).  However, there have 

been recommendations to set targets for stream nitrate concentrations for ecosystem health 

(Grand River Conservation Authority, 2013). In streams fed by groundwater, high stream nitrate 

concentrations may also indicate higher concentrations in groundwater (Tesoriero et al., 2009). 

Groundwater is a source of drinking water, which has nitrate limits of 10 mg/l. Thus, limiting 

nitrogen loss into groundwater and surface water as it not only has benefits for downstream 

ecosystems, but also in-situ benefits for the watershed ecosystem and its resources. 

1.6. Thesis Objectives  

The understanding of legacy nutrients in intensive agricultural watersheds is still in its early 

stages. In this thesis, we use the ELEMeNT model to better understand the drivers of N legacy 

accumulation and depletion along the river continuum by applying the model to multiple sub-

basins within a 6800 km2 highly agricultural watershed draining into Lake Erie. The objectives 

of the thesis are to (1) synthesize a long-term trajectory of N mass balance, (2) quantify the 

magnitude of legacy N stores, and (3) find what physical landscape characteristics drive N 
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accumulation and the associated lag times. The findings of the study will be used to provide 

recommendations for management strategies that minimize lag times and maximize water quality 

benefits through targeted implementation. 
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Chapter 2 ELEMeNT Modelling Framework 

2.1. Legacy nutrients and land-use change dynamics  

The ELEMeNT-N (Exploration of Long Term Nutrient Trajectories for Nitrogen) model has 

been used to model water quality across the land-aquatic continuum in various coastal 

watersheds in the U.S. (Van Meter et al., 2018, 2017, 2015). The model utilizes a coupled 

framework that links source-zone dynamics, describing the accumulation and depletion of soil 

organic nitrogen (SON) within the root zone, with a travel time model that describes transport 

and transformations along hydrologic pathways to the stream outlet (Figure 1).  

The model operates on the principle that N dynamics in the soil is a function of both current and 

past land use and land management trajectories (Van Meter et al., 2017). ELEMeNT considers 

the effect of current-year N inputs onto the landscape, as well as the role of legacy N stores on 

stream N fluxes, and this critical factor distinguishes it from other watershed models. To do this, 

each landscape unit in the ELEMeNT model is allowed to retain a memory of past land use and 

land management. For example, two landscape units may both be non-agricultural land at the 

current time, but one may have converted from cropland in 1950 and the other in 1970. These 

two units represent two different land use trajectories, with differing N legacies, and therefore 

differing contributions to the current year N fluxes through the watershed. The ELEMeNT 

framework is unlike common nutrient modelling approaches that do not explicitly consider long 

term changes in land use and management.  
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2.2. Travel time-based approach to modelling outlet N loading 

To quantify the nitrate-N loading trajectories at the watershed outlet following land use change, 

ELEMENT-N conceptualizes the landscape as a bundle of stream-tubes, each with a unique 

travel time to the watershed outlet, such that the landscape as a whole can be characterized by the 

travel time distribution f(τ) (McGuire and McDonnell, 2006; Van Meter et al., 2017). The N load 

[M/L2/T] at the watershed outlet is thus calculated by convoluting the N flux from each of the 

stream tubes as: 

 𝑀𝑜𝑢𝑡(𝑡) =  ∫ 𝐽𝑠(𝑡 − 𝜏)𝑓(𝜏)𝑒−𝛾𝜏𝑑𝜏 + (1 − 𝑘ℎ)𝑊(𝑡)
∞

0

 (1)  

where Mout(t) is the N loading at the outlet in year t [M/L2/T]; Js(t - τ) is the source function, 

which describes the flux of nitrate-N from the source zone to the groundwater (Section 

2.3)[M/L2/T]; f(τ) describes the chosen travel time distribution, such as the exponential or 

lognormal, where τ is the travel time [T]; γ is the first-order rate constant that describes N 

removal via denitrification along hydrologic pathways [T-1]; W(t) is domestic waste [M/L2/T]; 

and kh is the N removal rate constant from domestic waste via denitrification [T-1] (Section 2.5). 

It should be noted that wastewater N inputs, described by the second term in Equation (1), are 

considered to directly enter surface water, with negligible travel times to the catchment 

outlet. We assume that N transport through erosion of particulate N is negligible, due to the high 

solubility of N compounds. 
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Figure 1. Conceptual ELEMeNT-N framework for travel-time based approach to modelling  

The source zone (left box) is where N flows through soil organic matter which can accumulate 

and deplete as biogeochemical legacy. Here, Ns represents the annual N surplus described in 

Section 3.3,and h is the protection coefficient which allocates N surplus into the more mobile, 

active SON, and the more stable, protected SON pools. Mass depletion from the source zone 

occurs through leaching of mineralized N and enters the groundwater pool (middle box). The N 

is convoluted with the groundwater travel time distribution to describe the annual N loading at 

catchment outlet (right box). (Diagram source: Van Meter et al., 2017) 

2.3. Source zone dynamics 

The source zone represents the root zone where N cycles through SON where it can be 

mineralized into inorganic N. Leaching processes from the source zone transports inorganic N 

into the groundwater through the source function Js(t - τ). In this section, we describe how the 

source function is estimated from N inputs to the landscape over time, using watershed land use 

trajectories and associated biogeochemical processes. 



12 

 

2.3.1. Watershed Land Use Trajectories 

In ELEMeNT, the watershed is broken up into land use units indexed here as s. Each unit is 

assigned a distinct land use trajectory representing transitions in land use over time, t. ELEMeNT 

considers land use to be categorized as cropland, pastureland, and non-agricultural land. The land 

use trajectories for each unit is stored in a 2-D land use array, LU(s, t), developed using the 

following expression, 

  
 𝐿𝑈(𝑠, 𝑡) = {

1                          𝑠 ≤ 𝐴𝑐𝑟𝑜𝑝(𝑡)                                                 cropland

2      𝐴𝑐𝑟𝑜𝑝(𝑡) < 𝑠 ≤ [𝐴𝑐𝑟𝑜𝑝(𝑡) + 𝐴𝑝𝑎𝑠𝑡(𝑡)]                   pastureland

0                          𝑠 > [𝐴𝑐𝑟𝑜𝑝(𝑡) + 𝐴𝑝𝑎𝑠𝑡(𝑡)]           non-agricultural

  

 

 

(2)  

Where LU(s, t) is the land use array; s is the index of each unit; t is the modelled year; and Acrop 

and Apast are the watershed-scale percent areas of cropland and pastureland, respectively, based 

on land use trajectories. This expression assigns values to the land use array, where 1 represents 

cropland, 2 represents pastureland, and 0 represents non-agricultural land. The watershed-scale 

land use trajectories are generated based on databases created from satellite imagery and 

modelled historical estimates of crop and pastureland, described in detail in Section 3.5. 
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2.3.2. Estimation of the Source Function 

Each of the s land use units have a corresponding source zone function, Jls(s, t), to describe the 

mass flux of nitrate-N leaching from the unsaturated zone to the groundwater at any time t. The 

watershed-scale source function Js(t) used in Equation (1) can then be estimated as the sum of 

the fluxes across all land use units as: 

Where RES is the user defined resolution of land use units with recommended values ranging 

from 100 to 1000. 

The source function for each land use unit s, Jls(s, t), can be estimated as a function of the legacy 

mass residing in the source zone (Figure 2). The mass residing in the source zone is the sum of 

the mass in the soil organic matter, MSON(s, t), and the mass in the mineral pool, MS(s, t). The soil 

organic matter pool is made up of the sum of the active and protected SON pools, Ma(s, t) and 

Mp(s, t), respectively. 

 

 𝐽𝑠(𝑡) =  ∑ 𝐽𝑙𝑠(𝑠, 𝑡)

𝑅𝐸𝑆

𝑠=1

 (3)  
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Figure 2. The ELEMeNT Modelling Framework. (Source: Van Meter et al., 2017) 

Within this framework, we consider that all of the annual N surplus (Ns (i, t), kg/ha/t, i = 0, 1, 2 

for the three different land use studied) cycles through either the active or the protected SON 

pools, where it can be mineralized into nitrate-N. This pathway is consistent with isotope studies 

which indicate that the majority of nitrate-N leachate undergoes biogeochemical transformation 

in soil organic matter (Haag and Kaupenjohann, 2001; Spoelstra et al., 2001; Van Meter et al., 

2017). The active pool represents the more mobile forms of SON with faster reaction kinetics, 

while the protected pool represents the recalcitrant forms of N with slower kinetics. For each 

land use unit, the model allocates N surplus to the two SON pools using a protection coefficient, 

‘h’, which is differentiated for cultivated land (hc for LU = 1,2) and non-cultivated land (hnc for 

LU = 0). The protection coefficients represent physical protection mechanisms such as soil 

aggregation, which varies between land use types due to differences in land management and 
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tillage practices (Janssen, 1984; Six et al., 2002; Van Meter et al., 2017). Mineralization of SON 

is conceptualized as a first-order rate process via microbial activity. To address the differing 

metabolics of each SON pool, we define two mineralization coefficients: ka for the active SON 

pool and kp for the protected pool. The N dynamics for the SON pools across the distribution of 

land use trajectories can then be described by the following differential equations:  

𝑑𝑀𝑝(𝑠, 𝑡)

𝑑𝑡
= {

ℎ𝑁𝑠(𝐿𝑈(𝑠, 𝑡), 𝑡) − 𝑘𝑝𝑀𝑝(𝑠, 𝑡), 𝐿𝑈(𝑠, 𝑡) = 0, 2 𝑎𝑛𝑑 𝐿𝑈(𝑠, 𝑡 − 1) = 1

ℎ𝑁𝑠(𝐿𝑈(𝑠, 𝑡), 𝑡) − (𝑀𝑝(𝑠,𝑡) − 0.7𝑀𝑝𝑝𝑟𝑖𝑠𝑡
) , 𝐿𝑈(𝑠, 𝑡) = 1 𝑎𝑛𝑑 𝐿𝑈(𝑠, 𝑡 − 1) = 0, 2

 

𝑑𝑀𝑎(𝑠, 𝑡)

𝑑𝑡
= {

(1 − ℎ)𝑁𝑠(𝑠, 𝑡) − 𝑘𝑎𝑀𝑎(𝑠, 𝑡), 𝐿𝑈(𝑠, 𝑡) = 0, 2 𝑜𝑟 𝐿𝑈(𝑠, 𝑡) 𝑎𝑛𝑑 𝐿𝑈(𝑠, 𝑡 − 1) = 1

(1 − ℎ)𝑁𝑠(𝑠, 𝑡) + (𝑀𝑝(𝑠, 𝑡) − 0.7𝑀𝑝𝑝𝑟𝑖𝑠𝑡
) , 𝐿𝑈(𝑠, 𝑡) = 1 𝑎𝑛𝑑 𝐿𝑈(𝑠, 𝑡 − 1) = 0, 2

 

(4)  

(5)  

Where Ma(s, t) and Mp(s, t) are the active and protected SON pools, respectively [M/L2]; 

Mpprist  is the protected SON stocks under pristine land use conditions [M/L2]; Ns(LU(s, t),t) is 

the N surplus array, representing the land use specific Ns value for year t, as calculated in Section 

3.3. [M/L2]; LU(s, t) is the land use array, developed in Section 2.3.1; ka and kp are the 

mineralization rate constants for active and protected SON, respectively [T -1]; and h is the 

humification rate constant, also known as the protection coefficient [T -1]. The values of ka, kp, h, 

and Mpprist are determined through calibration, detailed in Section 3.8. 

Our framework addresses how changes between cultivated and non-cultivated land affect SON 

stocks. We consider the protected SON pool to remain intact via physical mechanisms such as 

soil aggregation. As such, the ploughing of non-cultivated land through land use conversion 

disturbs the physical protection mechanisms and mobilizes the protected SON stocks (Six et al., 

2002).  Thus, land use transitions from pastureland (LU = 2) or non-agricultural land (LU = 0) 

into cropland (LU = 1) releases SON from the protected pool and into the active pool in a step 

function. We assume the magnitude of the step transfer to be 70% of the SON content under 
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pristine conditions (Mpprist), based on empirical evidence of SON depletion of this magnitude on 

landscapes after initial cultivation (Beniston et al., 2014; Davidson and Ackerman, 1993; Van 

Meter et al., 2017; Whitmore et al., 1992). The mass transfer into the active SON pool subjects 

the N to faster mineralization via ka. Thus, under the modelling framework, active and protected 

SON stocks are partitioned both as a function of land use type and the cultivation of land, as 

governed by Equations (4) and (5). 

SON that is mineralized in the source zone exists as the mineral N pool, primarily in the form of 

nitrate-N. The loss of mineral N occurs through soil denitrification and groundwater leaching. 

The source zone mineral N dynamics and the source zone mass flux into the groundwater for 

every land use unit, s, are described by the following equations 

𝑑𝑀𝑠(𝑠, 𝑡)

𝑑𝑡
= 𝑘𝑎𝑀𝑎(𝑠, 𝑡) + 𝑘𝑝𝑀𝑝(𝑠, 𝑡) − 𝜆𝑀𝑠(𝑠, 𝑡) − 𝐽𝑙𝑠(𝑠, 𝑡) 

𝐽𝑙𝑠(𝑠, 𝑡) = {
𝑀𝑠(𝑠, 𝑡)

𝑄(𝑡)

𝑉𝑤
, 𝑄(𝑡) < 𝑉𝑤

𝑀𝑠(𝑠, 𝑡), 𝑄(𝑡) > 𝑉𝑤

 

(6)  

(7)  

Where Ms is the source zone mineral N pool [M/L2]; λ is the denitrification rate constant in the 

source zone [T-1], Jls(s, t) is the stream-tube scale source function describing the flux of mineral 

N to groundwater [M/L2], Q(t) is the annual stream discharge [L/T], and Vw is the volume of 

water in soil column [L]. 

The first and second terms on the right-hand side of Equation (6) represent the mass input to the 

source zone mineral N pool (Ms) from SON mineralization. The third term describes the N loss 

from Ms due to denitrification, λ as the first-order rate coefficient. The final term, Jls(s, t), 

describes the stream-tube scale loss of N to groundwater, detailed in Equation (7). Mineral N in 

the source zone is assumed to leach proportionally to the ratio of stream discharge Q(t) to 
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saturated soil water volume Vw. Note that under this scheme, if Q(t) exceeds Vw, the source zone 

mineral N pool is considered to be completely flushed into the groundwater. The volume of 

water in saturated soil Vw is calculated using an average soil porosity (n), field capacity (θ), and 

soil column volume depth of 1m. Soil properties were determined using data from Landscapes of 

Canada and is detailed in Section 3.7.  

2.4. Travel time distribution 

Under the ELEMeNT framework, mineral N that enters the groundwater from the source zone 

via leaching is considered to travel with groundwater flow as nitrate-N. The groundwater flow is 

modelled by stream-tubes, each with unique travel times sampled from a chosen distribution. In 

the current version of the model we assumed an exponential travel time distribution, though 

other forms of a travel time distribution, such as gamma and lognormal distribution, can also be 

considered. 

𝑓(𝜏) =
1

𝜇
𝑒

−
𝜏
𝜇 (8)  

Where f(τ) is the probability distribution function, τ is the travel time [T-1], and µ is the 

characteristic mean of the distribution, or mean travel time [T-1]. The distribution parameter, µ, is 

a calibrated parameter.  

2.5. Domestic wastewater input  

The last component of the nitrate-N mass flux trajectory in Equation (1) is domestic waste. The 

production of domestic waste is calculated using human population and N consumption rates as a 

proxy. The estimation of total waste production is described in detail in section 3.3.2. We assume 
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that all domestic waste routes through wastewater treatment plants (WWTPs) and enters streams 

as wastewater effluent. Thus, we consider denitrification in the WWTP and in-stream processes 

with an effective denitrification parameter, kh. The value of kh is determined through calibration. 

Since effluent from WWTPs is discharged directly into streams, ELEMeNT routes it directly to 

the outlet, bypassing the SON processes and groundwater travel.  
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Chapter 3 Methods and Data Sources 

3.1. Study Area 

The Grand River Watershed (GRW), located in southwestern Ontario, is the largest Canadian 

watershed draining into Lake Erie, with an area of approximately 6800 km2 (Grand River 

Conservation Authority, 2008). It is the 4th largest tributary contributing nutrients into Lake Erie, 

making it important to consider when reducing nutrient loads to Lake Erie (Maccoux et al., 

2016). The land use in the watershed has gone through dramatic changes over the last 200 years, 

and today, about 60% of the watershed is used for agriculture (Figure 5). The rest of the area is 

occupied by rapidly growing urban areas focusing around 3 main centres – Kitchener-Waterloo 

Region, City of Guelph, and City of Brantford. These 3 urban centres are located in the central, 

east, and southern part of the basin, shown in red in Figure 3b, where 90% of the watershed’s 

population reside. The watershed also constitutes 10 administrative regions, called counties. A 

First Nations Reserve is also situated in the watershed. It is home to the indigenous people of the 

Six Nations of the Grand River, who have a separate legislative and data reporting structure than 

the rest of the counties. To support its population, the watershed contains 30 wastewater 

treatment plants serving 85% of the nearly 1 million people (The Grand River Conservation 

Authority, 2008). River flows within the GRW are managed by 7 major dams and reservoirs 

along the Grand River and its tributaries (Grand River Conservation Authority, 2014). 

Land use and soil characteristics vary across the drainage basin, as shown in Figure 3. Its soils 

are formed through repeated glacial advances and retreats, leaving uneven deposits of tills, 

gravel, sand, and clay, lending to varying hydraulic characteristics. In the north and northwest, 

there are the Till Plains with extremely low hydraulic conductivity, high conductivity till 



20 

 

moraines and sands in the central basin, and a low conductivity clay plain in the south (0c). The 

dense installation of tile drains in the poorly drained regions allow for agriculture across the 

watershed (0 (a)). 

 

Figure 3. Spatial physical characteristics of the Grand River Watershed. Soil characteristics 

shown in (c) to (e) show depth-weighted averages of the first 100cm 

. 
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3.2. Model Domain 

Since the goal of our study was to quantify spatial patterns in nitrogen legacy stores across the 

landscape, we first identified streamflow and water quality stations that had adequate long-term 

data. Daily discharge data was obtained from the Canadian Hydrometric Database (National 

Hydrological Service, 2016), while water quality data was obtained from the Provincial Water 

Quality Monitoring Network (PWQMN) database (Ministry of Environment and Climate 

Change, 2016). PWQMN monitoring stations were selected based on the following criteria: (1) 

availability of at least 20 years of data, and (2) proximity to a MOE flow monitoring 

station.  Flow and water quality stations were paired if there was less than 10% difference in 

drainage areas of the two stations. The final accepted 14 basins had 35 to 51 years of paired 

discharge and stream concentration data, and a summary of paired flow and water quality 

stations is listed in Table 1. Of these 14 basins, we developed our model for 7 headwater 

subbasins, 6 downstream basins,  and the entire GRW (Table 1 and Figure 4). As shown in 

Figure 4b, we modeled 6 subbasins along the mainstem of the Grand River to quantify how 

processes and parameters change along the network. Unlike previous uses of ELEMeNT, which 

was applied to whole single watersheds, the application of ELEMeNT in this thesis is to model 

nested subbasins of a watershed  (Van Meter et al., 2018, 2017; Van Meter and Basu, 2015). As 

such, we must consider calculating input data on a finer scale, and nested basin effects.  
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Table 1. Subbasin Info 

Subbasin Name 
Flow 

Station ID 

Water Quality 

Station ID 

Basin Size 

(km2) 

Canagagigue Creek 2GA023 16018401602 113 

Conestogo River 2GA028 16018407702 566 

Whitemans Creek 2GB008 16018410602 395 

Nith, New Hamburg 2GA018 16018403202 542 

Nith, Canning 2GA010 16018400902 1105 

Eramosa River 2GA029 16018410202 228 

Speed, Armstrong 2GA040 16018409902 177 

Speed, Guelph 2GA015 16018403402 572 

Grand, Marsville 2GA014 16018406702 656 

Grand, Shand Dam 2GA016 16018403702 780 

Grand, West Montrose 2GA034 16018410302 1148 

Grand, Galt 2GA003 16018401002 3552 

Grand, Brantford 2GB001 16018402402 5200 

Grand, York 2GAC06 16018409202 6006 
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Figure 4. The Grand River Watershed Stream Network showing (a) mapped gauging 

station locations and (b) conceptual subbasin flow network. Colors of streams correspond with 

the colors of subbasin names in the flow chart.  
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3.3. Nitrogen Mass Balance 

ELEMeNT requires a multi-decadal trajectory of the historical inputs and outputs of N, and land 

use for each subbasin. This section outlines how the data for each of these components were 

collected and synthesized to run the model. The data sources and time spans they cover are 

summarized in Table 6. Annual N surplus values were calculated using a surface N balance 

approach (Parris, 1998) that estimates N surplus as the difference between N inputs (livestock 

manure, mineral fertilizer, biological nitrogen fixation, and atmospheric N deposition), and N 

outputs (crop production and livestock pasture consumption) at the soil surface. The surplus 

trajectories are calculated separately for cropland, pastureland and non-agricultural land using 

the following equations: 

𝑁𝑠(𝑐𝑟𝑜𝑝, 𝑡) = 𝑀𝐴𝑁𝑐𝑟𝑜𝑝 + 𝐹𝐸𝑅𝑇𝑐𝑟𝑜𝑝 + 𝐵𝑁𝐹𝑐𝑟𝑜𝑝 + 𝐷𝐸𝑃 − 𝐶𝑅𝑂𝑃 

𝑁𝑠(𝑝𝑎𝑠𝑡, 𝑡) = 𝑀𝐴𝑁𝑝𝑎𝑠𝑡 + 𝐵𝑁𝐹𝑝𝑎𝑠𝑡 + 𝐹𝐸𝑅𝑇𝑝𝑎𝑠𝑡 + 𝐷𝐸𝑃 − 𝐺𝑅𝐴𝑆𝑆 

𝑁𝑠(𝑜𝑡ℎ𝑒𝑟, 𝑡) = 𝐵𝑁𝐹𝑛𝑎𝑡 + 𝐷𝐸𝑃 

(9)  

(10)  

(11)  

Where, Ns is the N Surplus applied to cropland, pastureland, or non-agricultural land at the soil 

surface; MANcrop is the manure applied to cropland and MANpast is the manure directly deposited 

onto pastureland during grazing; FERT refers to the applied mineral fertilizer; BNF is the 

biological nitrogen fixation by crops and natural vegetation; DEP is atmospheric N deposition, 

CROP is the uptake by harvested crops; and GRASS is the pasture consumption by grazing 

livestock, all expressed as kg N/ha land use/year. 
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3.3.1. Livestock Manure Inputs 

Manure applied to the soil surface was calculated for crop and pasture land based on the 

methodology by Ruddy et al. (2006), who calculated manure production using county-level 

livestock population data and estimated N content of manure by livestock type. In this analysis, 

we collected data on 11 types of livestock, listed in Table 2. To estimate manure application to 

crop or pastureland, the population of each livestock type was collected from the Canadian 

Census of Agriculture, which had data every 10 years from 1901 to 1951, and every 5 years 

thereafter, at the county scale (Statistics Canada, 2016a). We also further divided the livestock 

into either unconfined or confined fractions based on Kellogg et al. (2000) and Smil (1999). 

Manure from unconfined livestock was considered to be directly applied onto pastureland. We 

assume that unconfined livestock graze on pastureland grasses during one-third of the year. The 

manure produced in confinement was assumed to be proportioned to cropland based on the 

fraction of cropland area in the subbasin. The remaining manure after cropland application is 

applied to pasture, provided it does not exceed the maximum recommended land application of 

200 kg N/ha/year (Van Meter et al., 2017). Loss due to volatilization into ammonia was also 

accounted for, and assumed to be 36% of the total mass of the manure (Smil, 1999).  

The manure N generated by each livestock species is calculated using the following equation, 

𝑀𝐴𝑁𝑎 = 𝑃𝑂𝑃𝑎 × 𝑁𝑒𝑥𝑐𝑟,𝑎 (12)  

Where POP is the livestock population [heads]; and Nexcr is the species specific N excretion rate 

(kg N/head/year).  

The livestock population of each species is based on census data of county scale livestock 

population. The N excretion rate for each species is summarized in the table below. 
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Table 2. N Content in manure by livestock type 

Livestock Type 

(heads) 

N excretion rate 

(kg N / head / year) 
Source 

Beef Cows 78.80 Hofmann et al., 2006 

Dairy Cows 122.00 Hofmann et al., 2006 

Heifers 52.20 Hofmann et al., 2006 

Steers 78.80 Hofmann et al., 2006 

Bulls 90.10 Hofmann et al., 2006 

Calves 25.30 Hofmann et al., 2006 

Swine 7.20 Hofmann et al., 2006 

Sheep and Lambs 7.00 Hofmann et al., 2006 

Chickens 0.42 Hofmann et al., 2006 

Turkeys 2.27 Hofmann et al., 2006 

Horses and Ponies 49.30 Hofmann et al., 2006 

3.3.2. N in Mineral Fertilizer 

The fertilizer component of the mass balance refers to the mineral N fertilizer applied to 

cropland or pastureland. To estimate the total amount of fertilizer applied to each of the 

subbasins, we used fertilizer sales data available at the provincial scale to calculate an average 

provincial application rate (Statistics Canada, 2016b). We assume that all fertilizer sold was 

applied onto the landscape within the year. The average application rate was multiplied by the 

county-level crop area collected from the Canadian Census of Agriculture to get the quantity of 

fertilizer applied in each county. To account for crop land that is unevenly distributed across a 

county, we used a crop scaling parameter, detailed in Section 3.3.6. This county-scale fertilizer 

data was then aggregated to subbasins and distributed to cropland and pastureland based on land 

use area fractions. Fertilizer sales data was available annually from 1951 to 2016 (Statistics 

Canada, 2016b). Mineral N fertilizer was applied on crop land only in minute amounts until 
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1945, when new technology allowed mineral N to be synthesized at an industrial scale. Thus our 

estimated N fertilizer trajectory starts in the year 1945, at the end of WWII and beginning of the 

popularization of the Haber-Bosch Process. Fertilizer application between 1945 and the first 

fertilizer sales data point was linearly interpolated. Despite having annual data starting from 

1966, we use only the fertilizer data in years where there is crop area data from the census. 

Fertilizer application between census years was linearly interpolated. We do this to avoid 

misrepresentation of the N surplus due to annual variations in fertilizer data where annual crop 

production data is unavailable. The application rate of fertilizer to pastureland was calculated as 

a fraction of the total subbasin fertilizer. The remaining fertilizer is considered to be applied to 

cropland.  

3.3.3. Biological N Fixation 

Biological N fixation (BNF) refers to the N converted from non-reactive atmospheric N into 

reactive forms of N in the soil (Galloway et al., 1995). In our analysis, we account for the BNF 

by cultivated crops and plants found on non-cultivated land. Major N-fixing crops in the GRW 

are beans, alfalfa, hay, and soybeans. Crop production is calculated in section 3.3.5 using data 

from the Canadian Census of Agricutlure (Statistics Canada, 2016a). The amount of N fixed by 

these crops were calculated using a yield-based approach (Haejin Han and J. David Allan, 2008), 

described in Equation 13.  

𝐵𝑁𝐹 = 𝑃𝑐𝑟𝑜𝑝 × 𝑁𝑐𝑟𝑜𝑝 (13)  
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Where BNFcrop is mass of N fixed by the crop [M]; Pcrop is the mass of crop produced, calculated 

in section 3.3.5 [M] as calculated in Section 3.3.5; and Ncrop is the mass fraction of N fixation 

[M/M], summarized in Table 3. 

Table 3. N Fixation rates 

Crop 
Fixation rate  

(kg N / kg crop / year) 
Reference 

Alfalfa 0.031 (Hong and Swaney, 2013) 

Beans 0.095 (Zhang, 2016) 

Hay, other 0.003 (Hong and Swaney, 2013) 

Soybeans 0.066 (Hong and Swaney, 2013) 

 

3.3.4. Atmospheric N Deposition 

Atmospheric N exists in oxidized (nitrates) and reduced (ammonia) forms, and can be deposited 

to land through wet and dry processes. We estimated the historical N deposition by using data 

from the National Atmospheric Chemistry (NAtChem) database from 1980 to 1995 (NAtChem, 

1995) with Hember's (2018) modelled N deposition (NACID-NDEP1) database that spans 1860 

to 2013. Since the NACID-NDEP1 database uses NAtChem data starting in 1990 and we had 

NAtChem data from 1980, we used NAtChem to calculate the deposition from 1980 to 1989 to 

enhance the detail of the NACID data during that timeframe. NAtChem station data was used to 

estimate wet deposition rate by area using an inverse distance function, aggregated at the county 

scale. We then used data spanning 1990 to 1995 from NACID-NDEP1 and NAtChem, 

aggregated at the county scale, to calculate an average dry-to-wet ratio. This ratio was used to 

estimate the total N deposition from both wet and dry processes for the period from 1980 to 

1989. We then use the 1980 N deposition rate to scale the NACID-NDEP1 database so that it is 
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consistent with local observations. Finally, we use the 2013 estimation for the years 2014 to 

2016.  

3.3.5. Crop and Pasture N Uptake 

Nitrogen is removed from cropland through harvested crops, and from pastureland through 

grazing livestock. Crop uptake is calculated using a yield based approach for all major field 

crops in the GRW summarized in Table 4, via the following equation, 

𝑈𝑃𝑇𝐴𝐾𝐸𝑐𝑟𝑜𝑝 =  𝑃𝑐𝑟𝑜𝑝 × 𝐷𝑀𝑐𝑟𝑜𝑝 ×  𝑁𝐶𝑐𝑟𝑜𝑝 (14)  

Where UPTAKEcrop is the mass of N uptake for a particular crop type [M], Pcrop is the harvested 

crop mass [M], DMcrop is the crop dry matter mass fraction [M/M], and NCcrop is the nitrogen 

content fraction [M/M]. 

The harvested mass, Pcrop, is calculated using data on crop specific cultivated areas from the 

Canadian Census of Agriculture (Statistics Canada, 2016a), which had data every 10 years from 

1901 to 1951, and every 5 years thereafter, and data on crop yield (Statistics Canada, 2017) for 

every census year. Crop types with areas of greater than 0.1% of the total county crop area were 

accounted for in the calculation. The total crop N uptake is the sum of uptake from all crop types.  

Table 4. Crop Parameters 

Crop Type 
Dry matter 

fraction 

N Content 

fraction 
Source 

Alfalfa 0.902 0.028 (Hong and Swaney, 2013) 

Barley 0.889 0.021 (Hong and Swaney, 2013) 

Beans 0.906 0.065 Assumed the same as soybeans 

Buckwheat 0.885 0.022 Assumed the same as wheat 
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Canola 0.906 0.035 (Hong et al., 2012) 

Corn for fodder 0.284 0.013 (Hong and Swaney, 2013) 

Corn for grain 0.867 0.016 (Hong and Swaney, 2013) 

Flaxseed 0.906 0.035 Assumed the same as sunflowers 

Hay (non-alfalfa) 0.867 0.013 (Hong and Swaney, 2013) 

Mixed grains 0.885 0.022 Assumed the same as wheat 

Oats 0.894 0.021 (Hong and Swaney, 2013) 

Other Crops 0.223 0.027 Average of all crops 

Peas 0.906 0.065 Assumed the same as soybeans 

Potatoes 0.223 0.016 (Hong and Swaney, 2013) 

Rye 0.881 0.022 (Hong and Swaney, 2013) 

Soybeans 0.906 0.065 (Hong and Swaney, 2013) 

Sugar beets 0.900 0.023 (Hong et al., 2012) 

Sunflowers 0.900 0.035 (Hong et al., 2012) 

Tobacco 1.000 0.03 (Hong et al., 2011) 

Triticale 0.885 0.022 Assumed the same as wheat 

Turnips 0.900 0.016 Assumed the same as potatoes 

Wheat 0.885 0.022 (Hong and Swaney, 2013) 

 

The N uptake from pastureland by unconfined livestock grazing on grasses is calculated on a 

per-head basis via the following equation,  

𝐺𝑅𝐴𝑆𝑆𝑎 =  𝑃𝑂𝑃𝑎 × 𝑁𝑐𝑜𝑛𝑠,𝑎 ×
1

3
 (15)  

Where GRASSa is the N uptake by the grazing livestock type from pastureland [M], POPa is the 

population of each grazing livestock type a [heads], and Ncons,a is the N consumption rate, 

summarized in Table 5. We assume that livestock grazes on pastureland grasses during one-third 

of the year. The total pastureland N uptake is the sum of grass consumption of all grazing 

livestock types.  
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Table 5. Livestock Consumption 

Livestock Type 

(heads) 

N Consumption  

(kg N / head / year) 
Source 

Beef Cows 102 Hofmann et al., 2006 

Dairy Cows 151 Hofmann et al., 2006 

Heifers 76 Hofmann et al., 2006 

Steers 104 Hofmann et al., 2006 

Sheep and Lambs 10.62 Hofmann et al., 2006 

Horses and Ponies 59.16 Hofmann et al., 2006 

 

3.3.6. Accounting for non-uniformly distributed crop areas within counties 

The mass balance calculations in small subbasins that contain parts of multiple counties may be 

particularly affected by non-uniform distribution of crops. To disaggregate county level data into 

a finer scale, we used the Annual Crop Inventory (ACI) database (Agriculture and Agri-Food 

Canada, 2016a), which contains 30x30m rasters of detailed crop areas for the years 2011 to 

2016. We used the ACI’s fine scale data in census years (2011 and 2016) to develop an average 

fraction of cropland from each county within a subbasin. This crop scaling fraction used to 

correct crop production and BNF calculations for each subbasin for all years.  
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Table 6. Data sources 

Input Data Type Data Data Source 
Spatial Resolution and 

extent 
Temporal Resolution Time span 

N surplus 

Fertilizer N Fertilizer (N) 
Table 32-10-0039-01: Fertilizer shipments to Canadian agriculture 

markets, by nutrient content and fertilizer year, cumulative data 
Provincial Annual 1951 - 2016 

Atmospheric N 

Deposition 

Atmospheric N deposition (wet) 
National Atmospheric Chemistry (NAtChem) Data archive and 

Analysis Facility 
Station point data Annual 1980 - 2011 

Atmospheric N deposition (total) 
North American Climate Integration Diagnostics - Nitrogen 

Deposition Ver. 1 (NACID NDEP-1) 

30m gridded,  

North America 
Annual 1860-2013 

Crop N Uptake 

Crop specific area Canadian Census of Agriculture County Census years  1911-2016 

Crop specific area (finer) Annual Crop Inventory 30m gridded, Canada Annual 2011 - 2016 

Crop specific yield 

Table 32-10-0359-01: Estimated areas, yield, production, average 

farm price and total farm value of principal field crops, in metric and 

imperial units 

Provincial  Annual 1908 - 2017 

Crop nutrient parameters 
NANI Accounting Toolbox, Version 3.1.0; Hong et al., 2011; Hong 

and Swaney, 2013 
N/A N/A N/A 

Biological N 

Fixation 
Crop Biological N Fixing rates Hong and Swaney, 2013; Zhang et al., 2016 N/A N/A N/A 

 Manure N Livestock Canadian Census of Agriculture County Census years 1901-2016 

Domestic waste N  Population 
Canadian Census of Agriculture County Census years 1901-2016 

Canadian Census Provincial Census years 1851-1976 

Land Use 
Historical crop and pastureland 

trajectory 

Historic Croplands Dataset 0.5 degree gridded, global Annual 1700 - 2007 

Land Use 1990, 2000 & 2010 30 metres gridded, Canada Decadal 1990 - 2010 

Measured stream data 
Stream flow Canadian Hydrometric Data Station point data Daily 1914 - 2016 

Nitrogen concentration  Provincial Water Quality Monitoring Network (PWQMN) Station point data Varies: Sub-annual 1965 - 2016 

Soil data Soil porosity, field capacity  Soil Landscapes of Canada (SLC) Ver. 3.2  

Varies - Vector polygons 

based on soil survey data 

with a scale of 1:1,000,000 

N/A N/A 
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3.4. Estimation of domestic wastewater production  

Domestic waste production was estimated using the Canadian Census of Population (Statistics 

Canada, 2016c).  As summarized in Table 6, county level data was used from 1901 to 2016. 

Prior to 1901, we used the provincial population to estimate county populations. A constant 

parameter of 5 kg per capita was applied (Hong et al., 2013).  

 

3.5. Estimation of Historical Land use trajectory 

To calculate the annual N surplus on cropland, pastureland, and non-agricultural land to as part 

of ELEMeNT-N’s function to retain landscape memory (section 2.3.1), we constructed a 

historical trajectory of land use that spanned from 1700 to 2016 for each of the subbasins. To do 

this, we used the Annual Crop Inventory (Agriculture and Agri-Food Canada, 2016a), which had 

data from 2011 to 2016, supplemented with the Historical Croplands Dataset developed by 

Ramankutty and Foley (1999) that contained modelled estimates of global cropland and 

pastureland area fractions for each year from 1700 to 2007, with a resolution of 0.5 degrees. To 

retain continuity between the two datasets, the Historical Croplands Dataset was scaled to the 

Annual Crop Inventory, using a scaling factor calculated from 2007 values from the Historical 

Croplands Dataset and 2011 values from the Annual Crop Inventory, since there was no change 

in cropland fraction from 1990 to 2010 (Agriculture and Agri-Food Canada, 2015). The resulting 

trajectory for the GRW is shown in Figure 5. 
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Figure 5.  Land use and human population trajectories for the GRW. Cropland and pastureland 

trajectories are from Canada Open Government’s Annual Crop Inventory, supplemented by 

historical modelled cropland data from Ramankutty and Foley (1999), aggregated to the 

watershed scale. 

3.6. Estimation of Flow-weighted concentrations 

To estimate annual stream N loads, we used a method called Weighted Regressions on Time, 

Discharge, and Season (WRTDS) using the EGRET software package (Hirsch and Cicco, 2015; 

Hirsch et al., 2010). Daily stream flow data was typically available, but concentration data 

generally had only 6 to 12 data points per year. WRTDS estimates daily concentration values 

using daily flow data and the available concentration data via the following equation: 
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ln(𝑐) = 𝛽0 + 𝛽1𝑡 + 𝛽2 ln(𝑄) + 𝛽3 sin(2𝜋𝑡) + 𝛽4 cos(2𝜋𝑡) + 𝜀 
(16)  

 

Where c is the concentration [M/L3]; β0 through β4 are fitted regression coefficients; Q [L3/T] is 

daily stream flow; t [T] is time, and ε is an error term.  

Error metrics of the WRTDS estimations for the 14 basins are summarized in below, 

Table 7. WRTDS Error Metrics 

Subbasin 
Flow 

Station 
ID 

Water Quality 
Station ID 

MBE MAE RMSE NSE 
PBIAS 

(%) 
Sample 
count 

Canagagigue 
Creek 

2GA023 16018401602 -0.021 1.218 1.755 0.570 -0.47 527 

Conestogo River 2GA028 16018407702 0.156 0.767 1.097 0.501 5.64 357 

Whitemans Creek 2GB008 16018410602 -0.041 0.651 1.051 0.461 -1.05 376 

Nith, New 
Hamburg 

2GA018 16018403202 -0.095 1.023 1.563 0.547 -3.10 439 

Nith, Canning 2GA010 16018400902 -0.074 0.645 1.062 0.653 -2.41 500 

Eramosa River 2GA029 16018410202 0.003 0.232 0.346 0.580 0.28 367 

Speed, Armstrong 2GA040 16018409902 0.009 0.252 0.350 0.659 0.66 301 

Speed, Guelph 2GA015 16018403402 0.075 0.258 0.438 0.548 6.45 387 

Grand, Marsville 2GA014 16018406702 0.003 0.216 0.397 0.624 0.52 379 

Grand, Shand 
Dam 

2GA016 16018403702 0.050 0.277 0.461 0.465 6.33 502 

Grand, West 
Montrose 

2GA034 16018410302 -0.014 0.497 0.747 0.531 -0.80 307 

Grand, Galt 2GA003 16018401002 -0.015 0.489 0.697 0.682 -0.54 544 

Grand, Brantford 2GB001 16018402402 0.025 0.515 0.773 0.639 0.86 471 

Grand, York 2GAC06 16018409202 -0.023 0.524 0.705 0.653 -0.79 324 

 

Using the estimated daily concentration, we calculated the flow-weighted mean concentration 

(FMC) analysis using the following equation: 

𝐹𝑊𝑀𝐶 =
∑ (𝑐𝑖𝑞𝑖)

𝑛
𝑖

∑ (𝑞𝑖)
𝑛
𝑖

 
(17)  
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Where i is the index of daily samples, n is the total number of samples, ci is the concentration in 

the i-th sample, ti is the time interval for i-th sample (1 day), and qi is the flow in the i-th sample. 

The annual stream N loading was also calculated using the daily discharge and WRTDS 

concentration estimates.  

 

3.7. Parameter data: Soil  

We obtained data on current soil characteristics from the Soil Landscapes of Canada database of 

soil polygons (Agriculture and Agri-Food Canada, 2016b). The database contained data for 

different soil layers in the first 1m of the soil profile. We extracted current levels of soil organic 

carbon by calculating an area and depth weighted average for the GRW and each of its 

subbasins. To estimate soil organic nitrogen content, we used a carbon to nitrogen conversion 

factor of 14 (Cleveland and Liptzin, 2007). The current soil organic nitrogen estimation is used 

as a model calibration point, described in section (3.6.3). We also extracted other soil properties 

for analysis, including hydraulic conductivity and soil texture.  

3.8. Sensitivity Analysis and Model Calibration  

We conducted a sensitivity analysis to select model parameters for optimization. The model was 

calibrated using the optimization tool OSTRICH to optimize the simulation of (1) current levels 

of SON, and (2) N loading at the catchment outlet. We adopted a sequential calibration 

methodology for nested subbasins. In the following sections, we describe the methodology for 

data collection for parameter range estimation (3.8.1), sensitivity analysis (3.8.2), model output 

datasets for calibration (3.8.3), and sequential calibration methodology (3.8.3). 
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3.8.1. Parameter range estimation 

Ideally, all parameters used for calibration are constrained using observed data as they carry a 

considerable amount of uncertainty. Unfortunately, site-specific data was unavailable for most 

parameters. We first set reasonable parameter ranges centred around values informed by 

available data or previous studies to conduct a sensitivity analysis. Then we further constrained 

ranges of parameters that were found to be sensitive. The parameters that had data and previous 

studies to aid in determining a preliminary range were the pristine SON content (Ms), soil 

porosity (n), soil water content (s), and mean travel time (µ). For Ms estimates, we used data 

from Zinke et al.'s (1998) Global Organic Soil Carbon and Nitrogen database to inform a range 

for calibration. Zinke’s carbon estimates were converted to nitrogen using a carbon to nitrogen 

conversion factor of 14 (Cleveland and Liptzin, 2007). We extracted other soil parameters, 

porosity (n) and soil water content (s), from the Soil Landscapes of Canada database using the 

same methodology described in section (3.7) (Agriculture and Agri-Food Canada, 2016b). Note 

that field capacity, defined as soil water retention at -33 kPa, was used as a proxy for s. The 

upper limit for µ was set based on Van Meter and Basu's (2017) estimates of lag times in the 

GRW using cross-correlation analysis between annual NANI and annual FWMC of nitrate. 

Otherwise, ranges from Van Meter et al.'s (2017) calibration of ELEMeNT for the Mississippi 

River Basin were used for sensitivity analysis, which were determined based on literature review 

and knowledge of the watershed. The final sensitivity analysis parameter ranges are summarized 

in Appendix A. 
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3.8.2. Sensitivity Analysis 

We conducted a global parameter sensitivity analysis to identify model parameters that have the 

most significant influence on soil organic N (SON) content and stream N loading for the GRW at 

the Grand at York station (Mishra, 2009; Muleta and Nicklow, 2005; Van Meter et al., 2017). 

We used a stepwise regression analysis to test the sensitivity of all potential parameters for 

calibration simultaneously. We identified 10 parameters that we could potentially calibrate 

(Appendix A). We used the Latin Hypercube Sampling technique, a form of stratified Monte-

Carlo sampling, to generate the input variables of the analysis by randomly sampling each 

parameter across its respective range with uniform distribution (Muleta and Nicklow, 2005; Van 

Meter et al., 2017). The resulting input variables consisted of 1000 unique parameter sets. We 

ran model simulations using these parameter sets and extracted output variables consisting of the 

residual sum of squares values of (1) mean annual stream N loading, 1977 to 2016; and (2) 

median SON content, 1950 to 2016. The output variables were rank transformed to account for 

nonlinearities in the model (Iman and Conover, 1979; Van Meter et al., 2017). We carried out the 

stepwise analysis using these input-output pairs for the annual stream N loading and the SON 

content. Results of the stepwise regression analysis are shown in Table 10.  We chose the most 

sensitive parameters for calibration and fixed the values of the parameters that the model was not 

sensitive to by using best estimates, to minimize computation time. 

3.8.3. Model Calibration and Validation 

The sensitivity analysis was used to select model parameters for optimization. The model was 

calibrated to optimize the simulation of (1) current levels of SON, and (2) N loading at the 

catchment outlet. Median SON levels for the watersheds were calculated based on the Soil 
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Landscapes of Canada database of soil polygons (Agriculture and Agri-Food Canada, 2016b). 

Catchment N loading data for the 14 basins were calculated using the weighted regression on 

time, discharge and season method (WRTDS) (Hirsch et al., 2010) using the EGRET software 

package (Hirsch and Cicco, 2015). Three separate objective functions were used for model 

calibration: (1) maximizing the Kling-Gupta Efficiency (KGE) metric between the modelled and 

measured N loading (Gupta et al., 2009), (2) minimizing the percent bias (PBIAS) between the 

modelled and measured N loading and (3) minimizing the PBIAS between the modelled and 

measured SON levels:  

𝐾𝐺𝐸 = 1 − √(𝐶𝐶 − 1)2 + (
𝜎𝑠

𝜎𝑚
− 1)

2

+ (
𝜇𝑠

𝜇𝑚
+ 1)

2

 
(18)  

where CC is the Pearson correlation coefficient between the simulated and measured N loading 

time series; σs and σm are the standard deviation of the simulated and measured time series, 

respectively; and µs and µm and are the means of the simulated and measured time series, 

respectively, 

𝑃𝐵𝐼𝐴𝑆𝑁𝐿𝑜𝑎𝑑 =
∑𝑄𝑚 − 𝑄𝑠

∑𝑄𝑚
× 100 (19)  

 

where Qm and Qs are the annual measured and simulated N loadings, and 

 

𝑃𝐵𝐼𝐴𝑆𝑆𝑂𝑁 =
𝑆𝑂𝑁𝑚 − 𝑆𝑂𝑁𝑠

𝑆𝑂𝑁𝑠
× 100 (20)  
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where SONm and SONs are the measured and simulated SON content, respectively. Note that the 

SONm is not a time series but rather an estimate of the SON content in the year 2011 

(Agriculture and Agri-Food Canada, 2016b).  

We used OSTRICH, a model-independent optimization tool that has multi-objective 

optimization capabilities, for model calibration (Matott, 2017). Within the OSTRICH platform, 

the Pareto-Archived Dynamically Dimensioned Search (PA-DDS) algorithm was chosen for its 

multi-objective optimization capabilities, its simple implementation, and design to find 

acceptable solutions rather than globally optimal solutions (Asadzadeh and Tolson, 2013; Tolson 

and Shoemaker, 2007). The PA-DDS algorithm works by generating parameter sets (solutions) 

globally across the allowed parameter ranges at the beginning of the search, and dynamically and 

probabilistically focusing on perturbing fewer paramters as the iterations approaches the user 

specified maximum number of iterations. With each iteration, PA-DDS archives (retains) the set 

of non-dominated solutions, and generates a new canadidate solution by taking one of the non-

dominated solutions, and perturbing randomly selected parameters by a randomly sampled 

magnitude from a normal distribution with a mean of 0. If the candidate solution is dominating 

or non-dominated compared to the archived set solutions, it is archived and randomly perturbed 

in the next interation. If the new candidate solution is dominated however, another non-

dominated set is selected for perturbation in the same iteration (Asadzadeh and Tolson, 2013). 

Using the PA-DDS algorithm for model calibration, a large number of unique parameter sets that 

are optimized to our objective functions can be generated. 

The calibration time frame for annual stream loading was from 2000 – 2016, and the validation 

time frame was from 1965 to 1999. Exceptions were made for subbasins, particularly the Speed 

below Guelph, which did not have stream concentration data from 1997 to 2006. In this case, the 
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calibration timeframe was from 1990 to 2016, and the validation timeframe from 1965 - 1989. 

The modelled SON level in 2011 was calibrated to measured soil N levels. 

Each parameter in the headwater subbasins was given a range for constraining perturbation in 

OSTRICH’s calibration algorithm. When possible, the ranges were informed by data and given a 

stricter range if it was a sensitive parameter, such as for the pristine SON content (Ms). The final 

parameter ranges used for calibration are summarized in Table 8. We ran five separate 

OSTRICH runs of 200 iterations, with each run having a random initial value for each parameter, 

and each interation varying the parameter values across this range. Out of the 1000 parameter 

sets that were generated from OSTRICH, we selected for acceptable parameter sets if the 3 

model performance metrics used as calibration objective functions met the acceptance criteria. 

The acceptance criteria were: (1) KGE of stream N loading equalling or exceeding 0.5, (2) 

absolute PBIAS of stream N loading not exceeding 10%, (3) and absolute PBIAS of SON 

content not exceeding 25%. To account for nested subbasins, headwater basins were calibrated 

first, followed by downstream subbasins. The parameter calibration for the headwater basins 

were allowed to be varied by the full range listed in Table 8, and accepted parameter sets were 

retained, based on the acceptance criteria. The accepted parameter ranges of the upstream basins 

were then used for calibrating the downstream basins. This was done to ensure that a relationship 

along the river continuum is retained. 

 

Table 8. Calibration Ranges for parameters in headwater basins 

Parameter  Lower bound Upper bound Reference 

Ms 7250 8750 Zinke et al., 1998 

ka 0.09 0.17 Van Meter et al., 2017b 

λ 0.25 0.75 Van Meter et al., 2017b 
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hc 0.14 0.26 Van Meter et al., 2017b 

hnc 0.28 0.75 Van Meter et al., 2017b 

µ 3 34 Van Meter et al., 2017a,b 

γ 0.07 0.13 Van Meter et al., 2017b 

kh 0.56 0.85 Van Meter et al., 2017b 

 

3.9. Comparing calibrated travel times with watershed attributes 

Groundwater travel time distributions (TTD) have been estimated for watersheds using a GIS-

based approach using soil property data and Darcy’s Law (Schilling and Spooner, 2006). It is a 

relatively accessible method of estimating travel times, with comparable results to complex 

numerical models (Basu et al., 2012). We compared the calibrated µ with the mean travel time 

(TT) estimated from the GIS-based approach to explore relationships in the ELEMeNT-N 

parameters and observed landscape characteristics. 

We estimated mean TT using the GIS soil type methodology using the method described by 

Basu et al., (2012). A digital elevation map was used to calculate the slope gradient i, while soil 

porosity n, and hydraulic conductivity K, were extracted from the Soil Landscapes of Canada 

database (Agriculture and Agri-Food Canada, 2016b) (Section 3.7). The flow length L of each 

cell is the number of cells separating it and the nearest stream, multiplied by the cell width. A 

stream network was created using a 40.5 ha accumulation threshold. First, the landscape was 

divided into a 30x30m raster with gridded data for elevation, i, n, and K. Then, the travel time for 

each cell was calculated based on Darcy’s Law for saturated flow, expressed as the following 

equation: 
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𝑡 =
𝐿

𝑣
=

𝑛𝐿

𝐾𝑖
 

(21)  

 

Where t is cell travel time, L is flow path length, n is soil porosity, K is hydraulic conductivity, 

and i is the slope gradient calculated as the difference in elevation over distance. 

All GIS operations were done in QGIS 3. 

3.10. Uncertainty in input and output estimations  

It should be noted that for estimations in N surplus, annual stream loading, and model 

parameters, there are uncertainties associated with the values. In N surplus calculations, 

uncertainties arise from the values of the unit conversion parameters from the studies cited, as 

well as uncertainties in the census collection data. Past mass balance studies have characterized 

the uncertainty using monte carlo simulations to give these estimations an upper and lower 

boundary (Mishra, 2009; Van Meter et al., 2017). In this study, we have not performed 

uncertainty characterization of these parameters as it is not the focus of the thesis, but instead 

used the best estimates we have, though it would be beneficial to do an uncertainty analysis in 

the future. For measured stream loading, there are large uncertainties due to the low temporal 

resolution of stream concentration measurements used for loading calculation. We used WRTDS 

to mitigate this uncertainty, and although there are also uncertainties associated with the WRTDS 

outputs, its estimates of daily concentrations greatly minimize the uncertainties of average 

stream concentration at an annual scale. Finally, uncertainties associated with the model 

calibration parameters are characterized by using an acceptable range of parameters through the 

calibration method.  
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Chapter 4 Results and Discussion  

The following sections describe the results of applying ELEMeNT to subbasin scale catchments 

to explain the controls of legacy N behaviour across a heterogeneous landscape. We first 

examine the historical N surplus trajectory of the GRW and 13 of its subbasins (Section 4.1), and 

then examine its relationship with the flow-weighted N concentrations in the stream. We 

developed ELEMeNT for all 14 basins, and present sensitivity analyses and model calibration 

and validation results (Section 4.2 - 4.3). We also examine the variation in the calibrated 

parameter sets between subbasins that allows for ELEMeNT to capture the effects of landscape 

heterogeneity across the GRW (Section 4.4). Finally, we show the modelled trajectories of 

legacy pools, and reveal possible drivers of where legacy N accumulates in the landscape 

(Section 4.5).  

4.1. Historical Trends of Nitrogen Sources and Sinks in the GRW 

4.1.1. Nitrogen Surplus and its Components 

We developed trajectories of N surplus and its components for the 14 subbasins in the GRW for 

the time period between 1800 and 2016. Figure 6a shows the trajectories beginning in the year 

1900, when significant changes to the N surplus trend occurred for the GRW and all its 

subbasins. The temporal pattern of the trajectories is similar across the subbasins, with N surplus 

< 10 kg/ha/yr until the 1950s, followed by a rising trend starting in the 1950s and peaking in the 

late 1980s, with magnitudes more than 7 times greater than those in the pre-1950s (Figure 6a, 

Table 7). From the late 1980s to the 2000s, N surplus declined by 9% to 25%. Interestingly, 

since the 2010s, the N surplus appears to be rising again. This is most likely caused by an 
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increase in fertilizer application that has been observed across Canada, including Ontario (Dorff 

and Beaulieu, 2014; Statistics Canada, 2016b) .  

 

Figure 6. N Surplus Trajectories: (a) Surplus trajectories of the GRW (Grand at York) and its 

13 subbasins, (b) Surplus component plot describing the contribution of inputs and outputs to the 

surplus 

Although the temporal patterns in the N surplus trajectories are similar between the subbasins, 

the magnitude of the N surplus varies significantly across the GRW (Figure 6a). The 1980s peak 

N surplus varies from a low of 43 kg/ha/year in the Marsville subbasin to a high of 69 kg/ha/year 

in the Canagagigue subbasin (Figure 6a). The lower N surplus in the Marsville subbasin can be 

attributed to its low proportion of agricultural area (48% agricultural land from 2006 – 2016 

(Agriculture and Agri-Food Canada, 2016a; Ramankutty and Foley, 2007)), while the higher N 

surplus in the Canagagigue subbasin can be attributed to its larger proportion of agricultural area 

(~71%). Marsville also has the highest density of wetlands in the GRW, accounting for 20% of 
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its area (Grand River Conservation Authority, 2016, 2008). The subbasins with the highest N 

surplus, Canagagigue Creek, Conestogo River, and the Nith subbasins, all had the highest 

proportions of agricultural land use in the GRW, averaging 71% to 76% in the last 10 years. 

These subbasins have greater N surplus than other less agriculturally developed subbasin, such as 

the Speed and Eramosa Rivers (41% to 55%). The Grand at York averages across these 

agriculturally intensive and non-intensive basins and thus shows an intermediate N surplus.  

 

Table 9. N surplus Peaks and Troughs using a 10-year moving average to identify 

peaks and troughs in N surplus 

 

1800 to 1950 

baseline  

(kg N/ha) 

Peak 

Magnitude Peak Year 

Peak to 

Baseline Ratio 

Canagagigue Creek 1.4 65.0 1988 45.3 

Conestogo River 1.4 55.9 1988 39.9 

Whitemans Creek 3.7 46.4 1999 12.5 

Nith, New Hamburg 1.5 63.5 1988 41.6 

Nith, Canning 2.3 61.3 1988 26.2 

Eramosa River 6.9 47.3 1984 6.9 

Speed, Armstrong 5.7 50.8 1988 8.9 

Speed, Guelph 6.3 48.4 1985 7.7 

Grand, Marsville 2.0 40.4 1984 20.6 

Grand, Shand Dam 1.8 40.9 1984 22.3 

Grand, West 

Montrose 2.8 45.5 1985 16.1 

Grand, Galt 4.7 54.2 1988 11.5 

Median 3.3 51.5 1988 14.6 

Min 1.4 40.4 1984 6.9 

Max 6.9 65.0 1999 45.3 
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The components of the N surplus trajectory for the entire GRW is shown in Figure 6 (b). 

Overall, N surplus in the current years is dominated by BNF, followed by manure, fertilizer, 

atmospheric deposition and human waste. This is in contrast to the pre-1950s N surplus, where 

manure is the largest N input, followed by BNF, while fertilizer contribution is relatively small. 

The post-WWII economic boom brought about rapid industrialization in the region, fueled by 

fossil fuels, and the widespread use of chemical N fertilizer (Duinen, 2008). There was also a 

shift towards growing N fixing crops like soybeans and alfalfa (Bowley, 2013). The domestic 

waste component also increased from previous decades due to the rapidly growing urban centres, 

though its relative magnitude is small at the watershed scale compared to other components. By 

the late 20th century, the N Surplus trend started to plateau. This is attributed to improved crop 

production efficiency as a result of advancements in fertilizer application methods and higher 

yielding crops (Figure 6 (b)) (Lassaletta et al., 2014).  

 The N surplus component trajectories for the subbasins generally follow the same trends as the 

GRW as a whole (Figure 7), though the extent of crop, pasture, and urban land vary across the 

subbasins. The higher N surpluses in the intensive agricultural subbasins, such as the 

Canagagigue, Conestogo, and Nith, are driven by higher fertilizer application rates combined 

with high BNF that arose from the dominance of N fixing cash crops such as soybean and alfalfa 

(Figure 7a, c). Trends in fertilizer N application (Figure 7a) are parallel to the observed trends 

in N surplus across all subbasins (Figure 6a), with a rising trend since the 1950s, peaking in the 

1980s, declining till 2000s, and then increasing after 2010 (Figure 7a). BNF also had a rapid 

growth phase in all subbasins in the 1950s, catalysed by stimulated demand for soybeans during 

WWII (Figure 7b) (Bowley, 2013). In the decades following the 1950s, BNF doubled in 30 
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years from 1970 to 2000, from 15 kg/ha/year to 29 kg/ha/year in the Eramosa River as the lower 

bound, and 23 to 49 kg/ha/year in the Canagagigue Creek as the upper bound. The rise in BNF 

rates can be attributed to increased soybean cultivation as the crop became more popular due to 

its high yield varieties and resilience to pests and disease (Bowley, 2013). There was a sharp 

drop in BNF in 2001 (Figure 7b), which was caused by a pan-Canadian drought (Wheaton et al., 

2008). The drought severely reduced yields of the GRW’s major crops that fix N, such as 

soybeans and hay (including alfalfa) (Wheaton et al., 2008). After the drought, BNF rates 

quickly recovered and reached higher rates than ever before, ranging from 30 to 60 kg/ha across 

the GRW. Crop production reflects much of the same trends seen in BNF, though  crop 

production started to increase earlier, in the 1940s (Figure 7c). The rising adoption of 

specialized crop farming, use of fertilizer, and continuously improving crop yields due to 

advancements in farming technology allowed crop production to stay on an upwards trend since 

(Bowley, 1996). It is evident that the 2001 drought that affected BNF also had a significant 

impact on overall crop production. It not only diminished soybeans and hay production, but also 

corn for grain, another major field crop (Statistics Canada, 2016a; Wheaton et al., 2008).  

Manure N application rates are relatively homogeneous with no trend across the subbasins, and 

averaging ~ 22 kg/ha/yr between 1900-1950 (Figure 7d). Application rates increased post 1950 

due to increasing demands for dairy products in the post-war economy (G. R. Smith, 2015). 

Between 1950-1976, manure production rates became heterogeneous across the GRW, with rates 

ranging from 22 to 42 kg/ha/year across the subbasins by 1976. After 1976, manure production 

rates decreased, or are relatively flat across most watersheds except Canagagigue Creek that had 

increased manure production. The Grand at Marsville, Shand Dam, and West Montrose had 8 to 

10 kg/ha/yr less manure production in 2016 than its peak in 1976, since dairy production became 
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more efficient per head of cow, and demand for dairy products dropped since the late 1970s (G. 

R. Smith, 2015).  

The atmospheric deposition pattern is uniform across the GRW, which rose steadily since the 

early 20th century and plateaued by the 1970s between 15 to 18 kg/ha/year due to increased 

industrial combustion processes (Figure 7e) (Hember, 2018). After 1990, there was a noticeable 

declining trend in atmospheric N deposition consistent with results attributed to reduction 

policies such as the Canada-US Air Quality Agreement (Zbieranowski and Aherne, 2011).  

Finally, domestic waste production has been steadily rising in all subbasins since the mid 19th 

century as a reflection of population growth (Figure 7f). While domestic waste production rates 

were relatively homogeneous across the GRW from 1900 – 1950 (mean = 1.25 kg N/ha/yr, 

standard deviation = 0.65 kg N/ha/yr), heterogeneity started emerging post 1950, as a function of 

spatial patterns of urban development. In the most recent decade from 2006 - 2016, domestic 

waste production had a mean of 5.5 kg N/ha/yr with a standard deviation of 3.4 kg N/ha/yr.  
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Figure 7. Components of the N surplus trajectory from 1900 to 2016 in each subbasin. 

The N surplus input components are (a) Fertilizer N, (b) BNF, (d) Manure N (e) Atmospheric 

Deposition, and (f) Domestic Waste. The output from the N surplus calculation is (c) Crop 

Production. 
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4.1.2. Temporal relationship between N surplus trajectories and stream N loads 

We further examined trends in N export from subbasins and their relationship with N surplus 

over time (Figure 8). As mentioned in Section 4.1, the N surplus for all the subbasins in the 

GRW rose from 1950 to 1980 and declined across the GRW until the late 2000s. The flow-

weighted mean concentrations (FWC) followed the increasing N surplus trends from the 1950s 

to 1980s. Afterwards, the concentration trends in the subbasins began to diverge, and can 

generally be categorized into 2 types of trends, (1) Category 1: FWC peaked sometime after N 

surplus peaked in 1980 and has been declining since then, (2) Category 2: FWC has been 

monotonically increasing over time (Figure 8).  

Category 1 is most dominant and include 11 of the 14 basins: the Canagagigue Creek, Conestogo 

River, Whitemans Creek, the Nith at New Hamburg and at Canning, Eramosa River, Speed at 

Armstrong and Guelph, Grand at Brantford, West Montrose, and Grand at York (Figure 8a-h, 

k,m,n). The rates of increase and decrease and the peak timing is variable across basins. Of 

these, the subbasins that show the greatest magnitude of decline after peak (Figure 8a-e) are the 

agriculture dominated basins in the West of the GRW, with agriculture accounting for 71% – 

76% of its land use in 2006 to 2016 (Agriculture and Agri-Food Canada, 2016a; Ramankutty and 

Foley, 2007). They are also the subbasins with the highest tile drainage density in the GRW, 

ranging from 27% - 55% due to the poorly drained till soils. The rising FWC limb is related to 

the increasing N surplus, and the disconnect between the timing of N surplus and FWC peaks is a 

reflection of time lags of the system. Interestingly, although the FWC at the Conestogo River fell 

from 2000 to 2010, it appears to be increasing again in the 2010s, following the slight increase of 

N surplus. The Eramosa, Speed River at Armstrong and below Guelph also belong to this first 

category (Figure 8g, h). However, the rising and falling limbs, and the peak at these subbasins 
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are much less pronounced. The Eramosa and the Speed at Armstrong flow into the Speed below 

Guelph, and these are two of the less agriculturally developed subbasins (47% - 55%). They have 

relatively low N surplus inputs, accompanied by low FWCs. The Speed has sandy soils (>50%, 

(Agriculture and Agri-Food Canada, 2016b)) and the Paris-Galt moraine that are credited with 

the good water quality of the subbasins (Loomer and Cooke, 2011). Finally, the Grand at 

Brantford, West Monrose and at York are the other subbasins that show a peak, followed by a 

declining FWC trend. These are more downstream stations along the Grand, and their signal is a 

function of the upstream subbasins that contribute to their N load. FWC in the Category 2 

subbasins, Grand at Marsville, Shand Dam, and Galt (Figure 8i, j, l), have been monotonically 

increasing over time. Marsville and Shand Dam are located in the Northern till plains, and have 

the highest wetland densities in the GRW (18.5% - 20% (Grand River Conservation Authority, 

2016)). In contrast to the first category, Category 2 subbasins have relatively low agricultural 

development (48 – 49%) and low tile drainage density (9%). There is also a major reservoir 

between the Marsville and Shand Dam subbasins. All of these factors lend to long lag times (Van 

Meter and Basu, 2017). 

The decoupling between N surplus and stream loading is related to the differences in land use 

development (e.g., tile drain installation, reservoir construction, and wastewater treatment plant 

operation) that determine whether current or legacy N is released to streams (Van Meter and 

Basu, 2017). To uncover the causes of this variability more explicitly, we used a modelling 

approach to find the spatially varying controls on N export across the watershed.    
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Figure 8. Surplus trajectory compared with flow-weighted mean concentration for 14 

modelled basins (a-n). The distance between peaks in watershed surplus and peaks in 

concentration is an indication of the lag time for N export in the subbasin.  
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4.2. Model Calibration and Validation 

The N surplus trajectories and its components were used as inputs into the ELEMeNT-N model 

to simulate N loading for the 14 subbasins of the GRW (Table 1). Sensitivity analysis for the 

Grand at York showed that the primary parameters affecting N loading at the catchment outlet 

were denitrification rate constants in soil and groundwater (γ and λ), and the mean travel time (µ) 

through the subsurface pathways (Table 10).   In contrast, the 1950 to 2016 median SON levels 

are primarily impacted by pristine nitrogen content (Ms), mineralization rate of active SON (ka), 

and protection coefficient of cultivated land (hc). This is similar to the ELEMeNT models 

developed for the Mississippi and Susquehanna basins in the US (Van Meter et al., 2017). The 

outputs extracted from the stepwise regression analysis is reported in Table 10. 

Table 10. Parameter sensitivity results for mean stream N loading (1977 – 2016) and median 

SON content (1950 – 2016) 

 Parameters 

Mean stream N load (1977 – 2016, 

available years) 
Median SON (1950 - 2016) 

Step 

Number 

absolute 

SRC 
p-value 

Step 

Number 

absolute 

SRC 
p-value 

Ms - 0.000 0.602 1 1.000 0.000 

ka 6 0.036 <0.000 2 0.024 0.000 

n - 0.000 0.082 - <0.000 0.640 

s - 0.000 0.333 - <0.000 0.208 

λ 3 0.474 <0.000 - <0.000 0.483 

hc 5 0.057 <0.000 4 0.008 0.000 

hnc 7 0.033 <0.000 3 0.019 0.000 

µ 2 0.528 <0.000 - <0.000 0.169 

γ 1 0.587 <0.000 - <0.000 0.840 

kh 4 0.270 <0.000 - <0.000 0.775 
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The modelled and measured time trajectories of N loads for GRW and its 13 subbasins are 

shown in Figure 9. The model was calibrated from 2000 to 2016 and validated from 1965 to 

1999, except the Speed below Guelph. Parameter sets were accepted during the calibration 

period if they met the criteria for KGE ≥ 0.5 for modelled stream N loading, PBIAS ≤ 10% for 

stream N loading, and PBIAS ≤ 25% for SON content. This resulted between 512 to 811 

parameter sets for each subbasin. The best parameter set for each subbasin was then chosen 

based on the highest calibrated stream N loading KGE from within the accepted parameter sets. 

We found the best parameter set to range between KGE of 0.67 to 0.95 (Table 11), where 1 

indicates a perfect model reproduction of measured loads, and -0.41 indicates that the model 

predicts as well as the mean of the observed loads (Knoben et al., 2019). These parameter sets 

were then run over the validation time frame, and the KGE for the validation timeframe for the 

best runs ranged from 0.57 to 0.89 across the 14 basins. The calibration PBIAS of the best 

chosen parameter sets ranged from 0.2% to 10%, while the PBIAS of the validation time period 

was larger and ranged from -24% to 39%. Of the nine subbasins that had PBIAS values > 10% in 

the validation timeframe, three basins were under-predicted  (Figure 9g, h)  while six of them 

were over-predicted (16% to 39%). One of the reasons for poorer prediction in the validation 

time frame arises from non-stationarity in the parameter space. We assume the model parameters 

to be constant in time, however, parameters like the mean travel time can vary over decadal time 

frames due to land management practices like installation of tile drains. In the next paragraph, 

we explore how this alters our model predictions in the validation time period.  

Subbasins that were over-predicted in the validation timeframe with PBIASs exceeding 20% 

included Conestogo River, Grand at Marsville, Shand Dam, West Montrose, and Galt. Over-

prediction in these basins, however, was not consistent across the calibration/validation 
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timeframes. Specifically, the over-predicting subbasins appear to consistently over-predict prior 

to a specific change point (Figure 9b, i-l). We hypothesized that the over-prediction indicated 

that calibrating to the 2000 – 2016 timeframe did not capture the different hydrologic conditions 

of the early timeframe due to the recent increase in tile drainage. Increasing tile drain density 

over the years would contribute to shortening the mean travel time. Thus, using the later period’s 

mean travel time to the earlier period was contributing to an under-estimation of travel time in 

the earlier period -- shorter travel times indicate lower denitrification and greater N loads, and 

thus, the over-prediction. 

Table 11. Error metrics of median model output trajectory for all modelled subbasins 

 Stream N Loading 
SON 

content 

 KGE NSE PBIAS PBIAS 

 Calibration Validation Calibration Validation Calibration Validation 
Calibration 

(2011) 

Canagagigue Creek 0.67 0.73 0.81 0.79 6% -13% 6% 

Conestogo River 0.84 0.65 0.81 0.66 8% 23% 17% 

Whitemans Creek 0.95 0.77 0.91 0.62 0% 16% 4% 

Nith, New Hamburg 0.95 0.84 0.92 0.83 1% 6% 3% 

Nith, Canning 0.91 0.89 0.85 0.96 4% 4% 3% 

Eramosa River 0.94 0.86 0.88 0.70 1% -4% 3% 

Speed, Armstrong 0.93 0.57 0.47 0.23 2% -24% 0% 

Speed, Guelph 0.81 0.71 0.69 0.31 9% -22% 3% 

Grand, Marsville 0.83 0.57 0.70 -0.54 6% 39% 19% 

Grand, Shand Dam 0.86 0.70 0.73 0.45 3% 21% 20% 

Grand, West 
Montrose 

0.85 0.67 0.86 -0.32 10% 26% 13% 

Grand, Galt 0.84 0.71 0.67 0.71 2% 23% < 0.0% 

Grand, Brantford 0.91 0.88 0.83 0.89 2% 9% 5% 

Grand, York 0.85 0.81 0.88 0.93 9% 3% 10% 
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Figure 9. Modelled and measured stream loading for 14 modelled basins (a-n) 
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Unfortunately, the tile drain density map that is available is a current dataset, and there is no 

information on how this has evolved over the years. To address this issue, we followed the work 

of Foufoula-Georgiou et al. (2015) to define Land-Cover Transition (LCT) as the point in time at 

which the area under row crops exceeded that of hay and small grains. It has been argued that 

conversion of small grains to row crops is accompanied by extensive tile drain installation, given 

the different soil moisture requirements of the two crop types (Bajgain et al., 2015; Hobbs and 

Muendel, 1983; Oosterhuis et al., 1990). The area of corn exceeded that of hay and small grains 

at different points in time within these five watersheds (Appendix B). We used OSTRICH to 

calibrate for µ value in the time period before the LCT, using the best calibrated parameter set 

for all other parameters. The calibrated µ in the pre-LCT time period were longer, representative 

of less tile drainage, and resulted in a better model fit (Table 12, Figure 13).   

Table 12. Comparison of model performance metrics on stream N loading employing a 

temporally varying µ in the pre-LCT timeframe 

 
µ  

(years) 
KGE  NSE  

PBIAS  

(%) 

 
Preliminary 

Calibrated µ 
pre-LCT µ 

Preliminary 

Calibrated µ 
pre-LCT µ 

Preliminary 

Calibrated µ 
pre-LCT µ 

Preliminary 

Calibrated µ 
pre-LCT µ 

Conestogo 

River 
5.8 11.7 0.62 0.79 0.28 0.90 33% 1% 

Grand, 

Marsville 
23.3 33.4 0.57 0.85 -0.54 0.79 39% 8% 

Grand,  

Shand Dam 
14.8 20.4 0.54 0.60 0.22 0.48 24% 4% 

Grand, 

West 

Montrose 

11.8 16.2 0.64 0.79 -0.59 0.51 25% 7% 

Grand,  

Galt 
5.1 7.5 0.62 0.65 0.52 0.74 29% 14% 
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Figure 10. Examples of Land-Cover Transition in (a) an early developed subbasin and (b) 

a late developed subbasin 

 

4.3. Modelled stream N loading trajectories  

The ELEMeNT framework allows us to estimate the long-term, historical N loadings from each 

modelled subbasin in a landscape that is continuously evolving in a non-uniform way. The model 

outputs give an estimation of the baseline stream N loading in the period prior to monitoring 

efforts for N constituents. The modelled NO3
--N loading trajectories from 1940 to 2016 for all of 

the subbasins in the GRW is shown in Figure 9. The baseline loading for all subbasins can be 

seen in the period before 1945, where the loading trend is flat. According to the model, the 10-

year mean baseline average from 1935 to 1945 ranges from 0.9 kg/ha/year (Eramosa River) to 

3.5 kg/ha/year (Canagagigue Near Elmira). Higher baseline N surplus magnitudes occurred in 

subbasins that were first developed for agriculture by European settlers. After this period, almost 

all of the subbasins experienced an increasing trend in stream N fluxes until they peaked in 2005 
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or 2010, with the exception of Shand Dam, which peaked earliest in 1995. The beginning of the 

rising trend in the loading corresponds with the rise in N surplus components, including N 

fertilizer use, manure production, and BNF, but the peak loading is later than that of the N 

surplus (Figure 6 &Figure 7).  

Table 13. 10-Year Moving Average Peaks of Modelled Stream N Load Trajectories 

 
1935-1945 
baseline 

(kg N/ha) 

10-year 
moving 
average 

peak 
year 

10-year 
moving 
average 

peak  
(kg N/ha) 

10-year 
moving average 
peak : baseline 

ratio 

Canagagigue Creek 3.5 2009 25.4 7.3 

Conestogo River 2.2 2005 19.1 8.5 

Whitemans Creek 3.1 2005 18.0 5.8 

Nith, New Hamburg 2.6 2005 21.5 8.3 

Nith, Canning 2.4 2005 18.0 7.5 

Eramosa River 0.9 2010 5.3 5.8 

Speed, Armstrong 1.2 2010 7.3 6.3 

Speed, Guelph 0.9 2010 5.6 6.0 

Grand, Marsville 1.5 2010 7.5 5.0 

Grand, Shand Dam 1.2 1995 7.0 5.7 

Grand, West Montrose 1.9 2005 11.6 6.3 

Grand, Galt 2.6 2005 16.4 6.2 

Grand, Brantford 2.7 2010 17.3 6.4 

Grand, York 2.9 2010 16.9 5.9 
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4.4. Spatiotemporal Patterns in the Calibrated Travel Time 

The disconnect between the very similar N surplus trajectories, and the very different stream N 

loading trajectories across the various subbasins in the GRW, can be attributed to landscape 

heterogeneity that might be natural or management-driven. 

 

4.4.1. Spatial patterns in the Mean Travel Time  

The calibrated mean of our exponential travel time distribution (µ) varied across the GRW 

(Figure 11), from 5 years at the Canagagigue Creek and 6 years at Whitemans Creek to 15 years 

at the Grand River at Shand Dam and 31 years at the Eramosa River. We explored the 

relationship between µ and % silt and clay in the watershed (Figure 12a), the saturated hydraulic 

conductivity (Figure 12b), and the GIS derived mean travel time (Figure 12c). Against 

conventional wisdom, there appeared to be a negative correlation between µ and % clay, and a 

positive relationship between µ and the saturated hydraulic conductivity, indicating that travel 

times are shorter in less permeable, clayey soils (Figure 12a). Indeed, we found a negative 

correlation between the GIS estimated travel time based on Darcy’s Law, and the calibrated µ 

(Figure 12c). We hypothesized that this occurs due to human management and alteration of the 

natural landscape, where regions with high clay content and low hydraulic conductivities 

(Figure 12b) are also areas that are heavily tile drained. This led to a decoupling of the 

relationship of a subbasin’s effective travel time and the groundwater travel time estimated based 

on Darcy’s Law. We tested our hypothesis by comparing the calibrated µ of the 7 headwater 

basins with the extent of tile drainage (Figure 12d). The strong, negative correlation of µ and 

fractional tile drained area (R2 = 0.75, p = 0.01) proves that indeed travel times are lowered in 

regions with tile drains. The relationship indicates that the calibration was able to capture the 
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behaviour of effective hydrological flow in modelled subbasins. The presence of tile drains can 

alter the travel time of a subbasin by short-circuiting subsurface flow where travel times are 

longer (Schilling et al., 2012). 

 

Figure 11. Calibrated mean travel time of modelled subbasins 
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Figure 12. Correlation analysis of calibrated mean travel time (µ) with landscape 

characteristics showing (a) percent clay vs µ, (b) hydraulic conductivity vs µ, (c) GIS Travel 

time vs µ, and (d) tiled area fraction vs µ. 

4.4.2. Temporal Patterns in the Mean Travel Time 

The strong dependence of the calibrated µ on the % tile-drained area highlights the strong 

management controls on nitrogen legacies and time lags. However, it also raises a question on 

the validity of the use of a single travel-time distribution over the years. Tile drain density has 

changed over time, and this is likely to contribute to a decrease in the mean travel time in these 

watersheds. To explore this effect, we re-calibrated the µ in the earlier time period by keeping 

everything else constant, but allowing only the µ to vary. We found that indeed pre-LCT µ were 

longer than post-LCT µ, indicating that increase in tile drainge in these subbasins has contributed 

to a short-circuiting of flow pathways. We then wanted to see the effect of such short-circuiting 
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on stream N loads. To do this, we ran the model in the later time period, but with the pre-LCT 

travel times. We found that indeed N loads in the stream has increased between 5% for the larger 

basins like the Grand at Brantford, to 26% for smaller subbasins like the Grand at Marsville. It is 

known that the effect of tile drains is more dominant at smaller scales. 

 

Figure 13. Comparison of modelled µ and loading in (a) pre- and (b) post-Land Cover 

Transition (LCT) 

 

4.5. Nitrogen Fluxes and Stores along the River Continuum 

4.5.1. The Fate of the Missing N 

Over the last 76 years (1940 to 2016) across the GRW the cumulative N surplus amounted to 

2875 kg/ha (Figure 14). This N surplus can leave the system as stream N fluxes, landscape 

denitrification (soil and groundwater), and WWTP denitrification, or accumulate within the 

system as soil organic N or within the groundwater system. These pools and fluxes are 

impossible to assess without using a modelling framework like ELEMENT. Across the GRW, 

we find that only 26% (10 kg/ha/yr over the timeframe) of the cumulative N surplus was 

exported from the watershed through the stream, while denitrification in WWTPs, soil, and 
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groundwater accounted for 30% (11 kg/ha/yr) of the N surplus. This leaves 44% of the N surplus 

stored on the landscape as legacy N since 1940 (17 kg/ha/yr) (Figure 14a). Of this, majority 

(55%) is stored in the soil, while 45% is stored in the groundwater (Figure 14a). 

 

Figure 14. Fate of Missing N since 1940 showing (a) Cumulative N fluxes and stores in the 

GRW (at York) and (b) in 14 modelled basins 

 

The proportions of these fluxes and stores vary across the GRW (Figure 14b). We find that in 

subwatersheds across the GRW 9% to 36% of the cumulative N surplus is exported from the 

watershed through the stream, while denitrification in WWTPs, soil, and groundwater accounted 

for 21% to 32% of the N surplus. This leaves 37% - 69% of the N surplus stored on the 

landscape as legacy N since 1940 (Figure 14b), 49% to 68% of this is stored in the soil, while 

32% to 51% is stored in the groundwater (Figure 14b). Higher proportion of stream N load is 

apparent in the heavily tile drained and agricultural watersheds like the Canagagigue Creek, 

Conestogo River, Whitemans Creek, and the Nith basins, while watersheds with significant 

wetland coverage (Grand at Marsville, wetland coverage = 20%) have a lower proportion of 
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stream N load. The latter group of watersheds also have a much higher proportion of SON and 

groundwater N accumulation than the tile drained watersheds. 

The effect of reservoirs is apparent when examining three stations: (1) Grand at Marsville and 

below Shand Dam, that are upstream and downstream of the Belwood reservoir, and (2) Speed, 

Guelph that is downstream of the Guelph Lake. In the Grand at Marsville and Grand at Shand 

Dam pair, the proportion of N exported from the downstream station is lower than the N 

exported from the upstream station (Figure 14b). Also, the downstream station has higher 

proportions of denitrification flux than the upstream one. The higher denitrification flux and 

lower stream N load can be attributed to dam effects. The Speed, Guelph does not have an 

analogous upstream station, but the effect of reservoir denitrification is apparent in the higher 

proportion of the denitrification flux (Figure 14b). Both the Shand Dam and Guelph Dam 

reservoirs can develop anoxic conditions in the hypolimnion, particularly during warm 

temperatures, allowing denitrification to occur (Baets, 2016; Mackie et al., 1983).  

It is also notable that the Speed and Eramosa Rivers have large proportions of their N lost to 

denitrification compared to other subbasins. These subbasins are some of the least developed, 

with only 3% of the area covered by tile drainage in the Eramosa to 8% in the Speed at Guelph, 

41% to 47% of the land used for agriculture, have one of the lowest N surpluses, and no major 

wastewater treatment plant discharging upstream of the subbasin outlets. As a result, the Speed 

and Eramosa Rivers have some of the best water quality in the GRW with low stream N 

concentrations (Loomer and Cooke, 2011). The high proportion of N loss through denitrification 

can be attributed to the subbasin’s high forest cover and resulting SOC due to reforestation 

efforts in the 1950s (Grand River Conservation Authority, 2008; Mitchell and Shrubsole, 1992).  
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Next, we examined the variability in the magnitude of groundwater N accumulation and SON 

content of each subbasin across the GRW (Figure 15). The box plots show the modelled ranges 

of the magnitudes of the biogeochemical and hydrologic legacy accumulated from 1900 to 2016 

in each subbasin. The median estimates of the SON accumulation in the different tributaries of 

the GRW vary from 760 kg/ha to 950 kg/ha, and groundwater accumulation ranges between 320 

kg NO3
--N/ha to 675 kg NO3

--N/ha. Estimates for groundwater accumulation have a wider 

confidence interval than that of SON, with the largest confidence interval occurring in the Speed 

at Armstrong, with a range of 250 to 950 kg NO3
--N/ha. This wide confidence interval 

demonstrates the high uncertainty of groundwater estimates and that the availability of 

groundwater data is important for tightening this range of uncertainty. 

 

Figure 15. Area normalized nitrogen legacy magnitudes since 1940 in 14 modelled 

basins showing (a) SON, and (b) groundwater N  
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We hypothesized that under the dramatic N surplus regime shift as the result of the rise of 

agriculture after 1900, N surplus became a stronger driver of N dynamics in the watershed. It 

appears however, that in (Figure 15), the subbasins with high tile drainage and agricultural 

activity such as Canagagigue Creek, Conestogo River, Whitemans Creek, and the Nith basins do 

not have the highest legacy accumulation. To expand our analysis into SON accumulation, we 

analyzed the accumulation of active SON in particular. We found that there was a significant 

relationship between net magnitude of active SON and N surplus, indicating that the surplus is 

contributing to the build-up of active SON (Figure 16a).  

 

Figure 16. Drivers of (a) active SON and (b) groundwater N accumulation 

On the other hand, groundwater accumulation does not appear to be driven by N surplus (R2 = 

0.08 , p = 0.547). Groundwater N accumulation is instead driven by the calibrated mean travel 

time parameter, µ (Figure 16b). Interestingly, although µ is strongly correlated with intensive 

agricultural landscapes with soil texture and tile drainage (Figure 12a,d), there is no relationship 

between groundwater N accumulation and either characteristic individually (R2 = 0.42, p = 
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0.114; R2 = 0.42, p = 0.115). As SON and groundwater N accumulation have different controls, 

the result is a patchwork of the type and magnitude of legacy across the GRW (Figure 17). 

 

Figure 17. Map of legacy accumulation in the 7 headwater basins since 1900, showing (a) 

SON and (b) groundwater N 
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Chapter 5 Conclusion 

5.1. Summary 

The objectives of the thesis were to create a long-term mass balance trajectory of N for the GRW 

at the subbasin scale, use a process based model, ELEMENT, to quantify legacy stores and 

accumulation trajectories over the last 200 years, and to find drivers of legacy accumulation and 

their associated lag times. We used as a case study, the Grand River Watershed, a 6800 km2 

agriculturally-dominated watershed, and developed models for 7 headwater subbasins, and 7 

more subbasins along the main stem.  

We found that the N surplus across the GRW dramatically increased after 1950 and peaked in 

1980 ranging from 39 kg/ha to 58 kg/ha. This growth in N surplus was primarily due to high 

rates of BNF from soybeans and hay cultivation. Across the watershed, high yielding crops and 

better fertilizer use efficiency led to a steady decline in the peak until the 2010s, illustrating that 

improvements in N management are effective in reducing N surplus. The flow-weighted N 

concentration increased with increase in N surplus, but showed a lagged response in the peak 

behavior.  

We found that the calibrated mean travel time can range widely across the GRW, from 5 to 31 

years, and strongly depends on the presence of tile drainage. Regions with greater density of tile 

drainage show shorter travel times. The stores of legacy N in the watershed has been steadily 

accumulating since 1950. On the other hand, the size of the biogeochemical legacy in the form of 

SON is significantly and positively correlated to the cumulative surplus and current fraction of 

cropland.   
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5.2. Implications and Future Work 

Our findings have significant implications with respect to watershed management to minimize 

lag times and reach water quality targets for nutrients, specifically nitrogen, in agricultural 

watersheds. First, we must consider the effects of biogeochemical legacy and groundwater N 

accumulation have on stream water quality in the long-term. Targets designed to reduce stream 

loading by reducing N at the source do not account for the slow release of N from SON, and the 

long travel times of N in groundwater to the stream. Depending on physical characteristics of the 

watershed, the lag time between implementation of nutrient management practices and visible 

improvements in stream water quality can span decades under the most rigorous N reduction 

scenarios (Ilampooranan et al., 2019; Van Meter et al., 2018). In the GRW alone, mean travel 

times can be up to 31 years (Eramosa River). Thus, we recommend that lag times due to legacy 

be considered when designing water quality targets to ensure they are feasible. 

Second, we can tailor management practices to local legacy problems. Currently, agricultural 

best management practices are often applied in a blanketed or ‘one-size-fits-all’ approach. 

Without acute understanding of specific nutrient problems in a region, BMP adoption may not 

achieve desired outcomes. By identifying the location and the dominant type of legacy 

accumulating, we can prioritize the adoption of more effective nutrient management practices. 

For example, in a subbasin such as the Canagagigue with high N surplus, and high SON 

accumulation, cover crops could effectively reduce stream N loading by minimizing leaching to 

groundwater. In contrast, in an area with long mean travel times, such as the Eramosa River, 

leached N can build up groundwater N. In this case, reducing the N surplus by improving N 

uptake efficiency and waiting for the N to be flushed out of the system would be the long term 

choice. However, in the short term it might be necessary to construct wetlands that can intercept 
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groundwater N and improve water quality faster. Thus, we recommend that the appropriate BMP 

is implemented where benefits offer good returns of investment, and develop long-term plans 

that are prepared for reasonable lag times to observable improvements in stream water quality. 

Finally, we can optimize management resources further by prioritizing subbasins with the 

shortest time lags for best management practice implementation. This strategy would 

theoretically lead to the fastest and greatest improvement in stream water quality (Van Meter and 

Basu, 2015). By prioritizing subbasins that have elevated levels of active SON and short 

groundwater travel times, such as in Nith at New Hamburg and Canagagigue Creek, we may be 

able to achieve some short term water quality targets (Van Meter and Basu, 2015). Having 

measurable success in management efforts can boost morale and encourage continued funding 

for long term water quality improvements. Such targeting strategies would theoretically result in 

the fastest and greatest response in stream N loading, and offer evidence for continuing long-

term nutrient management plans needed for sustained water quality improvements.  

While we made estimates of legacy accumulation in soil and groundwater pools, and identified 

some drivers, there is more work to be done to refine our findings. First fo all, we currently do 

not have any data to validate legacy accumulation. It may be possible to validate these estimates 

should data become available. Future work could involve obtaining well nitrate data, and deep 

soil core data to validate and refine accumulation estimates should such datasets become 

available. We have also suggested the practical implications of our findings for targeted nutrient 

management policies. To support the viablility of the recommendations, we will need to simulate 

future scenarios of targeted BMP implementation strategies to quantify potential short and long-

term improvements in water quality. Finally, this thesis was focused on nitrogen legacy, but 

ELEMeNT has been developed to model phosphorus dynamics at the watershed scale as well 
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(Van Meter et al., in-review). We can run ELEMeNT for phosphorus at the subbasin scale for the 

GRW to explore similarities and differences of drivers of legacy P accumulation, and reveal any 

dual-nutrient benefits of targeted management strategies.  
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Appendix A Parameter Ranges for Sensivity Analysis 

Parameter  Lower bound Upper bound Reference 

Ms 4000 12000 Zinke et al., 1998 

ka 0.09 0.17 Van Meter et al., 2017 

λ 0.25 0.75 Van Meter et al., 2017 

hc 0.14 0.26 Van Meter et al., 2017 

hnc 0.28 0.75 Van Meter et al., 2017 

µ 3 27 Van Meter et al., 2017 

γ 0.07 0.13 Van Meter et al., 2017 

kh 0.56 1 (Van Meter et al., 2017) 

 

 

Appendix B Land Cover Transition (LCT) Year in all subbasins 

 
soy exceed Hay + 

small grains 
corn exceed Hay + 

Small Grains 
Row crops 
exceeding 

Small grains 

Canagagigue Creek Never 2001 1975 

Conestogo River Never Never 1990 

Whitemans Creek 1998 1970 1967 

Nith, New Hamburg Never 1981 1974 

Nith, Canning Never 1975 1972 

Eramosa River 1999 1979 1989 

Speed, Armstrong 2014 2002 1990 

Speed, Guelph 2002 1998 1990 

Grand, Marsville 2016 Never 1998 

Grand, Shand Dam 2016 Never 1998 

Grand, West Montrose 2017 Never 1994 

Grand, Galt 2016 2011 1989 

Grand, Brantford 2016 1979 1975 

Grand, York 2013 1977 1975 
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Appendix C Best run parameter values for all subbasins 

Parameter Description 
Canagagigue 

Creek 

Conestogo 

River 

Whitemans 

Creek 

Nith, 

New 

Hamburg 

Nith, 

Canning 

Eramosa 

River 

Speed, 

Armstrong 

Ms 
Initial Nitrogen content in 

soil (kg/ha) 
8632 7918 8517 8088 7947 7928 7752 

ka 
Mineralization rate of 

active pool (yr-1) 
0.13 0.16 0.16 0.14 0.15 0.14 0.12 

λ 
denitrification rate constant 

(soil) (yr-1) 
0.25 0.25 0.25 0.25 0.25 0.42 0.27 

hc 
cultivated humification 

coefficient 
0.14 0.14 0.24 0.14 0.17 0.17 0.19 

hnc 
non-cultivated 

humification coefficient  
0.28 0.63 0.35 0.56 0.60 0.38 0.64 

µ mean travel time (yrs) 5.9 5.8 6.20 9.7 11.2 30.8 29.2 

γ 
denitrification rate constant 

(groundwater) (yr-1) 
0.07 0.07 0.07 0.07 0.07 0.11 0.13 

kh 
denitrification rate constant 
(wastewater) (yr-1) 

0.63 0.85 0.84 0.85 0.85 0.83 0.85 

 

Parameter Description 
Speed, 
Guelph 

Grand, 
Marsville 

Grand, 
Shand 
Dam 

Grand, 
West 

Montrose 

Grand, 
Galt 

Grand, 
Brantford 

Grand, 
York 

Ms 
Initial Nitrogen content in 

soil (kg/ha) 7950 8750 8125 8592 8274 8146 7498 

ka 
Mineralization rate of active 

pool (yr-1) 0.17 0.09 0.09 0.11 0.09 0.14 0.09 

λ 
denitrification rate constant 

(soil) (yr-1) 0.36 0.25 0.36 0.25 0.32 0.25 0.25 

hc 
cultivated humification 
coefficient 0.17 0.26 0.21 0.23 0.23 0.16 0.14 

hnc 
non-cultivated humification 
coefficient  0.64 0.37 0.67 0.35 0.44 0.42 0.32 

µ mean travel time (yrs) 24.4 23.27 14.80 11.79 5.14 10.52 9.43 

γ 
denitrification rate constant 

(groundwater) (yr-1) 0.12 0.07 0.10 0.07 0.11 0.07 0.07 

kh 
denitrification rate constant 

(wastewater) (yr-1) 0.85 0.85 0.85 0.84 0.77 0.84 0.80 

 


