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Abstract

This thesis addresses various topics in the field of probability theory and statistics with applications in
quantitative risk management.

The first topic concerns matrix compatibility and attainability problems for measures of concordance.
We characterize a class of bivariate measures of concordance arising as Pearson’s correlations of random
variables transformed by a so-called concordance-inducing function. This class of transformed rank
correlations includes Spearman’s rho, Blomqvist’s beta and van der Waerden’s coefficient as special cases
by taking uniform, Bernoulli and normal distributions as concordance-inducing functions, respectively. For
multivariate random vectors, the correlation-based measures are extended as square matrices with entries
given by the bivariate measures. We study compatibility and attainability problems for such measures,
which ask whether a given square matrix can be realized as a matrix of pairwise measures of concordance
for some random vector, and how such a random vector can be constructed. Dimension reduction of
compatibility and attainability for block matrices is also studied.

The second topic of this thesis is estimating and comparing transformed rank correlation coefficients. We
propose a novel framework for comparing transformed rank correlations in terms of the asymptotic variance
of their canonical estimators. A general criterion derived from this framework is that concordance-inducing
functions with smaller variances of squared random variables are more preferable. In particular, we show
that Blomqvist’s beta attains the optimal asymptotic variance and Spearman’s rho outperforms van der
Waerden’s coefficient. We also find that the optimal bounds of the asymptotic variance are attained by
Kendall’s tau.

The third topic of this thesis is to efficiently estimate risk allocations, which is known to be challenging
due to their rare-event nature. We first focus on the problem of estimating Value-at-Risk (VaR) contributions
derived by the Euler principle, and propose a novel framework of their estimation by using Markov chain
Monte Carlo (MCMC) methods. We prove consistency and asymptotic normality of the proposed estimators
under certain assumptions on the underlying marginal and copula densities. The framework of estimating
VaR contributions with MCMC methods is then extended to the estimation of wider class of the systemic
risk measures and risk allocations whose jth component can be written as a risk measure of the jth
conditional marginal loss distribution given the so-called crisis event. Improved sample efficiency of our
MCMC estimators is expected since they consist of samples from the conditional loss distribution given the
rare event of interest whereas existing estimators are constructed by first simulating the unconditional loss
distribution and then extracting the samples satisfying the rare event condition. In a series of numerical
experiments, we demonstrate that biases and mean squared errors for our MCMC estimators are reduced
in comparison to existing estimators.

The last topic of this thesis is to investigate the conditional distribution of a loss random vector given
that the aggregate loss equals an exogenously provided capital. This conditional distribution serves as
a building block for calculating risk allocations such as such as VaR contributions. A superlevel set
of this conditional distribution can be interpreted as a set of severe and plausible stress scenarios the
given capital is supposed to cover. We show that various distributional properties of this conditional
distribution are inherited from those of the underlying joint loss distribution. Among these properties,
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we find that modality of the conditional distribution is an important feature in risk profile related to the
number of risky scenarios likely to occur in a stressed situation. Under unimodality, we study a novel risk
allocation method called maximum likelihood allocation (MLA), defined as the mode of the conditional
distribution given the total capital. Under multimodality, a single vector of allocations can be less sound.
To overcome this issue, we investigate the so-called multimodalty adjustment to increasing the soundness
of risk allocations. Properties of the conditional distribution, MLA and multimodality adjustment are
demonstrated in numerical experiments. In particular, we observe that negative dependence among losses
typically leads to multimodality, and thus to multiple risky scenarios and higher multimodality adjustment.
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Chapter 1

Introduction

1.1 Overview

This thesis addresses various topics in the field of probability theory, statistics and their applications in
quantitative risk management. This chapter serves as an introduction, four main chapters follow, and the
last chapter is devoted to conclusion.

Chapter 2 is dedicated to measures of concordance and related compatibility and attainability problems.
A review of measures of concordance is provided in Section 1.2. After motivating this topic in Section 2.1,
we characterize a class of bivariate measures of concordance arising from Pearson’s linear correlation
coefficient of transformed random variables (Section 2.2). Compatibility and attainability problems of
this class of measures of concordance are studied in Section 2.3. Dimension reduction of these problems
for block matrices is investigated in Section 2.4. Section 2.5 concludes with discussions on related open
problems.

Chapter 3 addresses the problem of estimating and comparing transformed rank correlation coefficients
defined in Chapter 2. After a brief introduction of the problem in Section 3.1, we introduce a framework for
comparing transformed rank correlations in terms of their asymptotic variances in Section 3.2. A general
criterion derived from this framework is that concordance-inducing functions with smaller variances of
squared random variables are more preferable. In particular, we show that Blomqvist’s beta attains the
optimal asymptotic variance and Spearman’s rho outperforms van der Waerden’s coefficient. In Section 3.3,
we compare transformed rank correlations and Kendall’s tau, and show that the optimal bounds of the
asymptotic variance are attained by Kendall’s tau. In Section 3.4, a simulation study is conducted to
compare asymptotic variances for various parametric copulas and concordance-inducing fuctions. Section 3.5
concludes this work with discussions about directions for future research.

Chapter 4 addresses the problem of estimating Value-at-Risk (VaR) contributions with Markov chain
Monte Carlo (MCMC) methods. Section 1.3 and 1.4 serve as preliminaries for briefly introducing the
problem of risk allocation and MCMC methods. An overview and key ideas of MCMC estimators are
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presented in Section 4.1. After reviewing existing estimators of VaR contributions in Section 4.2, we
propose MCMC (MH) estimators that utilize the Metropolis-Hastings (MH) algorithm for estimating
VaR contributions (Section 4.3). Consistency and asymptotic normality of MH estimators are studied in
Section 4.4. Numerical studies are conducted in Section 4.5. Finally, Section 4.6 concludes with potential
future work.

In Chapter 5, the framework of estimating VaR contributions with MCMC methods is extended to a
more general class of allocations called systemic risk allocations. After a brief introduction in Section 5.1,
the class of systemic risk allocations and their crude estimation methods are presented in Section 5.2. In
Section 5.3, we explain how advanced MCMC methods such as Hamiltonian Monte Carlo and Gibbs samplers
are utilized to estimate systemic risk allocations. Numerical experiments are conducted in Section 5.4 and
Section 5.5 concludes with remarks on further research.

In Chapter 6, we analyze dependence, tail behavior and multimodality of the conditional distribution of
a loss random vector given that the aggregate loss equals an exogenously provided capital. After a brief
introduction in Section 6.1, Section 6.2 provides motivations for studying this conditional distribution
from the viewpoint of scenario analysis and stress testing of risk allocations. Section 6.3 is devoted to the
investigation of the distributional properties of such conditional distributions, including dependence, tail
behaviors and unimodality. In Section 6.4, we propose a novel risk allocation method called the maximum
likelihood allocation and study its properties and related adjustment under multimodality. Section 6.5 is
dedicated to numerical experiments for demonstrating modality of the conditional distribution and for
comparing Euler and maximum likelihood allocations. Section 6.6 concludes with potential future work.

In the remainder of this chapter, we review basic concepts used in subsequent chapters. In Section 1.2,
we briefly review the axioms of measures of concordance proposed by Scarsini (1984). In Section 1.3, we
introduce the mathematical setting of the capital allocation problem and explain challenges when estimating
VaR contributions with existing estimators. A brief review of MCMC methods is provided in Section 1.4.
Throughout the thesis, we assume all appearing random variables to be defined on an atomless probability
space (Ω,F ,P). For a random vector X on (Ω,F ,P) with probability density function fX , denote by
supp(fX) or supp(X) the support of X, that is, supp(X) = {x : fX(x) > 0}. Furthermore let Md×d

+ ,
d ∈ N, denote the set of all positive definite d× d matrices. In addition, all numerical experiments are run
on a MacBook Air with 1.4 GHz Intel Core i5 processor and 4 GB 1600 MHz of DDR3 RAM.

1.2 Measures of concordance

Pearson’s linear correlation is a widely used measure of dependence, that is, a single number to quantify
the dependence between two random variables. However, as indicated by Embrechts et al. (2002), linear
correlation has a number of limitations as a measure of dependence and a measure of concordance (also
called a rank correlation) is known to be more suitable than linear correlation for quantifying the dependence
of two random variables independently of their marginal distributions. In this section, we define a measure
of concordance by seven axioms. We then briefly explain the notions of compatibility and attainability
which will be studied in Chapter 2.
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LetH be the set of all bivariate distributions with the same continuous margins, that is, limx→∞H(x, y) =
limx→∞H ′(x, y) and limy→∞H(x, y) = limy→∞H ′(x, y) for all x, y ∈ R and H,H ′ ∈ H. We call H ′ ∈ H
more concordant than H ∈ H, denoted by H � H ′, if H(x, y) ≤ H ′(x, y) for all (x, y) ∈ R2. A map
κ : H → R is called a measure of concordance if it satisfies the following seven axioms. Note that we write
(X,Y ) ∼ H when a random vector (X,Y ) has a bivariate distribution H ∈ H, and we identify κ(X,Y ) for
(X,Y ) ∼ H ∈ H with κ(H) for κ : H → R.

Definition 1.2.1 (Scarsini (1984)). A map κ : H → R is called a measure of concordance if it satisfies the
following seven axioms.

1. Domain: κ(X,Y ) is defined for any (X,Y ) ∼ H ∈ H.

2. Symmetry: κ(X,Y ) = κ(Y,X) for any (X,Y ) ∼ H ∈ H.

3. Coherence: If H � H ′ for H,H ′ ∈ H, then κ(H) ≤ κ(H ′).

4. Range: −1 ≤ κ(X,Y ) ≤ 1 for any (X,Y ) ∼ H ∈ H and the bounds are attainable.

5. Independence: κ(X,Y ) = 0 if X and Y are independent.

6. Change of sign: κ(X,−Y ) = −κ(X,Y ) for any (X,Y ) ∼ H ∈ H.

7. Continuity: Let (Xn, Yn) ∼ Hn ∈ H, n ∈ N, and (X,Y ) ∼ H ∈ H with Hn converging pointwise to
H as n→∞. Then limn→∞ κ(Xn, Yn) = κ(X,Y ).

Examples of measures of concordance include Spearman’s rho, Kendall’s tau, Gini’s gamma and
Blomqvist’s beta; see Example 2.2.3 and Remark 2.2.10 for their definitions.

For a d-dimensional random vector X = (X1, . . . , Xd), d ≥ 2, a bivariate measure of concordance κ can
be extended to a matrix of pairwise measures of concordance

κ(X) = ( κ(Xi, Xj) ) ∈ [−1, 1]d×d,

as an analog to correlation matrices. Compatibility concerns whether a given d× d matrix R is realizable
as a matrix of pairwise κ, that is, whether there exists a d-dimensional continuous random vector X such
that κ(X) = R. Provided that a given matrix R is κ-compatible, attainability concerns how to construct
X with κ(X) = R. It is well-known that a matrix R ∈ Rd×d is compatible with Pearson’s correlation
coefficient if it belongs to the so-called elliptope Pd, which is the set of positive semi-definite symmetric
[−1, 1]-valued matrices with main diagonal entries equal to one. Any R ∈ Pd is attainable since one can
construct a d-dimensional continuous random vector X such that ρ(X) = R by taking X ∼ Nd(0d, R).
The main topic of Chapter 2 is to solve the compatibility and the attainability problem for a wide class of
measures of concordance.

1.3 Capital allocation problem

In portfolio risk management, capital allocation is an essential step to measure the risk of each unit of a
portfolio by decomposing the total risk of the whole portfolio. Consider the aggregate loss S =

∑d
j=1Xj
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where d ≥ 2 is the size of the portfolio, and X1, . . . , Xd are random variables that represent the losses
incurred by exposures j = 1, 2, . . . , d within a fixed time period. Throughout the thesis, a positive value of
a loss random variable represents a financial loss, and a negative loss is interpreted as a profit. Let FX be
the joint cumulative distribution function (cdf) of X = (X1, . . . , Xd) with margins F1, . . . , Fd, and let FS
be the cdf of the total loss S. According to Sklar’s Theorem, FX can be written by

FX(x) = C(F1(x1), . . . , Fd(xd)), x = (x1, . . . , xd) ∈ Rd, (1.1)

where C is the copula of X; see Nelsen (2006). A d-dimensional copula is referred to as a d-copula in short.
When FX has a probability density function (pdf) fX with marginal densities f1, . . . , fd, the joint pdf fX
can be written by

fX(x) = c(F1(x1), . . . , Fd(xd))f1(x1) · · · fd(xd), x ∈ Rd, (1.2)

where c denotes the density of C. Similarly we denote by fS the pdf of FS .

Deriving allocated capitals is an important task in risk management. A standard procedure of determining
allocated capitals involves two steps. The first step is to compute the economic capital %(S) for a risk
measure %, which maps a loss random variable to a real number interpreted as capital buffer that is required
to cover the loss over a predetermined period of time. One widely used risk measure is Value-at-Risk (VaR).
For a random variable X ∼ F , VaR of X at confidence level p ∈ (0, 1) is defined by

VaRp(X) = inf{x ∈ R : F (x) ≥ p},

range Value-at-Risk (RVaR) at confidence levels 0 < p1 < p2 ≤ 1 is defined by

RVaRp1,p2(X) = 1
p2 − p1

∫ p2

p1

VaRq(X) dq,

and expected shortfall (ES) at confidence level p ∈ (0, 1) is defined by ESp(X) = RVaRp,1(X) provided
that E[|X|] < ∞. Note that ES is also known as C(onditional)VaR, T(ail)VaR, A(verage)VaR and
C(onditional)T(ail)E(expectation). The risk measures VaR, RVaR and ES are law-invariant in the sense
that they depend only on the distribution of X. Therefore, we sometimes write %(F ) instead of %(X) for
these risk measures.

The second step is to allocate the capital %(S) to the d individual exposures. The problem of capital
allocation is to determine the vector of allocated capitals (AC1, . . . ,ACd) ∈ Rd that satisfies the full
allocation property

%(S) =
d∑
j=1

ACj . (1.3)

The Euler principle, proposed in Tasche (1995), derives such allocated capitals by utilizing the well-known
Euler rule for a function λ 7→ %(λ>X):

%(λ>X) =
d∑
j=1

λj
∂%(λ>X)

∂λj
, λ ∈ Λ, (1.4)

where Λ ⊂ Rd\{0} is an open set such that 1d ∈ Λ, and % is a positive homogeneous risk measure, that
is, %(λX) = λ%(X) holds for λ > 0. The euler principle is economically justified, for example, in Denault
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(2001) and Tasche (1995, 2008), and the resulting allocated capital is also known as the Aumann-Shapley
value (Aumann and Shapley, 2015) for risk capital allocation problems; see, for example, Boonen et al.
(2020), Kalkbrener (2005), and Myers and Read (2001). By taking λ = 1d in Equation (1.4), the vector
(AC%1, . . . ,AC

%
d) with

AC%j = ∂%(λ>X)
∂λj

∣∣∣∣
λ=1d

, j = 1, 2, . . . , d,

satisfies the full allocation property (1.3) . In addition, this capital allocation satisfies the so-called RORAC
compatibility, which means that the profitability of each asset is consistently signaled via the ratio of its
return and allocated capital; see Tasche (2008) for details. Since VaR, RVaR and ES are all positive
homogeneous, the Euler principle is applicable and the derived allocated capitals, called the VaR, RVaR
and ES contributions, are given by

ACVaRp
j = ∂VaRp(λ>X)

∂λj

∣∣∣∣
λ=1d

= E[Xj | {S = VaRp(S)}], (1.5)

ACRVaRp1,p2
j = ∂RVaRp1,p2(λ>X)

∂λj

∣∣∣∣
λ=1d

= E[Xj | {VaRp1(S) ≤ S ≤ VaRp2(S)}], (1.6)

ACESp
j = ∂ESp(λ>X)

∂λj

∣∣∣∣
λ=1d

= E[Xj | {S ≥ VaRp(S)}], (1.7)

respectively; see Tasche (2001) and Fischer et al. (2018) for derivations.

Computing these risk contributions for a general loss random vector X is known to be challenging since
their analytical calculation is rarely possible, and their estimation requires rare-event simulation. Efficient
estimation of VaR contributions will be addressed in Chapter 4, and that of a more general class of risk
allocations including RVaR and ES contributions as special cases will be considered in Chapter 5. The
conditional distribution of X | {S = VaRp(S)} in the formula of VaR contributions (1.5) will be further
investigated in Chapter 6 due to its importance in scenario analysis and stress testing of risk allocations.

1.4 A brief introduction to MCMC

In this section we briefly review Markov chain Monte Carlo (MCMC) methods, especially the Metropolis-
Hastings (MH) algorithm, for simulating a distribution of interest by constructing a Markov chain whose
stationary distribution is the desired one. See, for example, Nummelin (2004) for the general theory of
Markov chains. By allowing Markovian-type dependence within the samples, MCMC methods allow one
to simulate a wide variety of distributions including the conditional distributions appearing in the risk
contributions (1.5), (1.6) and (1.7). MCMC methods will be extensively studied in Chapter 4 and Chapter 5
for efficient estimation of risk contributions.
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1.4.1 An overview of the MCMC theory

Let E ⊆ Rd be a set and E be a σ-algebra on E. A Markov chain is a sequence of E-valued random
variables (X(1),X(2), . . . ) satisfying the Markov property;

P(X(n+1) ∈ A | X(k) = x(k), k ≤ n) = P(X(n+1) ∈ A | X(n) = x(n)),

for all n ≥ 1, A ∈ E , and x(1), . . . ,x(n) ∈ E. A Markov chain is characterized by its stochastic kernel
K : E × E → [0, 1], given by x×A 7→ K(x, A) = P(X(n+1) ∈ A | X(n) = x). If there exists a probability
distribution π such that π(A) =

∫
E
π(dx)K(x, A) for any x ∈ E and A ∈ E , then π is called the stationary

distribution. Assuming K(x, ·) has a density k(x, ·), the detailed balance condition (also known as the
reversibility) with respect to π is given by

π(x)k(x,y) = π(y)k(y,x), x,y ∈ E, (1.8)

and is known as a sufficient condition for the corresponding kernel K to have the stationary distribution π;
see Chib and Greenberg (1995).

MCMC methods are widely used for simulating a distribution by generating a Markov chain with the
given distribution as stationary distribution π. For some distribution π and a π-measurable vector-valued
function h on E, assume that the quantity of interest is

π(h) =
∫
E

h(x)π(dx). (1.9)

The corresponding MCMC estimator of (1.9) is then given by

π̂N (h) = 1
N

N∑
n=1

h(X(n)), (1.10)

where (X(1), . . . ,X(N)) is a sample path from time 1 to N (we call it an N -path) of a Markov chain whose
stationary distribution is π. The distribution π is called the target distribution. Since it is determined
by the problem at hand, the problem is to find a stochastic kernel K such that it has the stationary
distribution π, and sample paths of its Markov chain can easily be generated.

One of the most popular stochastic kernels is the Metropolis-Hastings (MH) kernel defined by

K(x,dy) = k(x,y)dy + r(x)δx(dy),

where δx is the Dirac delta function, k(x,y) = q(x,y)α(x,y), q : E × E → R+ is a function called a
proposal density such that x 7→ q(x,y) is measurable for any y ∈ E, and y 7→ q(x,y) is a probability
density for any x ∈ E. Furthermore,

α(x,y) =

min
{
π(y)q(y,x)
π(x)q(x,y) , 1

}
, if π(x)q(x,y) > 0,

0, otherwise,

and r(x) = 1−
∫
E
k(x,y)dy. It can be shown that the MH kernel has stationary distribution π; see Tierney

(1994). Under the three conditions (i)–(iii) where
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(i) at least one vector x(0) ∈ supp(π) is known,

(ii) samples from q(x, ·) can be generated for any x ∈ E, and

(iii) the ratio π(y)/π(x) can be calculated for any x,y ∈ E,

one can generate an N -path of the desired Markov chain by the MH algorithm (Metropolis et al., 1953;
Hastings, 1970) given in Algorithm 1.

Algorithm 1 Metropolis-Hastings (MH) algorithm
Require: Random number generator of q(x, ·) for x ∈ E, x(0) ∈ supp(π) and the ratio π(y)/π(x) for
x,y ∈ E.

Input: Sample size N ∈ N, proposal density q, and initial value X(0) = x(0).

Output: Sample path X(1), . . . ,X(N) of the Markov chain.

for n = 0, . . . , N − 1 do

1) Generate the candidate X̃(n) ∼ q(X(n), ·).

2) Calculate the acceptance probability

αn = α(X(n), X̃(n)) = min
[
π(X̃(n))q(X̃(n),X(n))
π(X(n))q(X(n), X̃(n))

, 1
]
. (1.11)

3) Set X(n+1) = X̃(n) with probability αn and X(n+1) = X(n) with probability 1− αn.

end for

We call αn = α(X(n), X̃(n)) in (1.11) the acceptance probability in the nth iteration. The MH estimator
(1.10) is then computed based on the N -path (X(1), . . . ,X(N)) generated in Algorithm 1.

Under regularity conditions, the MCMC estimator π̂N (h) is consistent and asymptotically normal. The
MCMC estimator is said to be consistent if

lim
N→∞

π̂N (h) = π(h) a.s., (1.12)

for any π-integrable function h and any initial state X(0) = x(0) ∈ supp(π). Next, the central limit theorem
(CLT) holds if √

N{π̂N (h)− π(h)} d−→ Nd(0,Σh) as N →∞, (1.13)

where the asymptotic variance matrix is given by

Σh = Varπ[h(X(1))] + 2
∞∑
k=1

Covπ[h(X(1)),h(X(k+1))]. (1.14)
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Since the asymptotic variance (1.14) can rarely be computed in real situations, it needs to be estimated
from the sample path (X(1), . . . ,X(N)) generated in Algorithm 1. One popular estimator of Σh is the
so-called batch means estimator ; see Geyer (2011). For an N -path (X(1), . . . ,X(N)), the batch means
estimator Σ̂h,N is defined by

Σ̂h,N = LN
BN − 1

BN∑
b=1
{π̂N,b(h)− π̂N (h)}{π̂N,b(h)− π̂N (h)}>,

where LN and BN are positive integers satisfying N = LNBN , and

π̂N,b(h) = 1
LN

bLN−1∑
l=(b−1)LN

h(X(l)) for b = 1, 2, . . . , BN .

LN is called the batch length, and BN is the number of batches. Under regularity conditions, the batch
means estimator Σ̂h,N converges to Σh as N →∞; see Jones et al. (2006) and Vats et al. (2019). By using
asymptotic normality of π̂N (h) and consistency of Σ̂h,N , one can construct an approximate confidence
region of the true quantity π(h) based on an N -path of the Markov chain.

1.4.2 Choice of the proposal distribution

When implementing the MH algorithm, an appropriate choice of the proposal density q is necessary since
it affects the asymptotic variance (1.14). Since Σh can rarely be calculated explicitly in real situations, a
post-implementation review is usually conducted, that is, the goodness of the selected proposal distribution
is evaluated after performing the MH algorithm. In this section, we review two methods for evaluating a
selected proposal distribution. We also provide families of proposal distributions for later use.

In practice, there are two prevalent methods to evaluate the performance of the proposal distribution. One
is to inspect the autocorrelation plots of the marginal sample paths. For an N -path (X(1), . . . ,X(N)), vector-
valued measurable function h(X) = (h1(X), . . . , hd(X)), and the MH estimator π̂N (h) = (π̂N,1, . . . , π̂N,d),
the sample autocorrelations r̂j(k) = R̂j(k)/R̂j(0) are drawn against the lags k = 0, 1, 2, . . . , where

R̂j(k) = 1
N − k

N−k∑
n=1
{hj(X(n))− π̂N,j}{hj(X(n+k))− π̂N,j}, j = 1, 2, . . . , d.

The asymptotic variance Σh is expected to be small if the autocorrelation plots steadily decline to zero
as the lags increase. Another implicative quantity is the acceptance rate (ACR), which is the percentage
of times a candidate X̃ is accepted through the whole run. Since an appropriate ACR varies according
to the shape and dimension of the target distribution, there is no general standard on the range of ACR;
see Rosenthal et al. (2011) and references therein. Meanwhile, altering proposal distribution is generally
suggested when an extremely low or high ACR is observed. Figure 1.1 illustrates two typical situations
when such extreme ACRs are observed. The first situation, highlighted in red in Figure 1.1, represents the
case when the chain tends to be stuck at one point due to, for example, a too high variance of the proposal
distribution. The resulting estimator can then have very high variance. The second situation, highlighted
in blue, shows the case where the chain moves only around one mode of the target density and does not
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Figure 1.1: Two typical situations when an extremely low or high acceptance rate (ACR) of the Metropolis-
Hastings algorithm is observed. In the case highlighted in red, proposed candidates have very low values of
the target density and the chain tends to be stuck in one point. In the situation highlighted in blue, the
chain only moves around a single mode and does not traverse the entire support of the target distribution.

traverse the entire support of the target distribution. A falsely high ACR may lead to a high bias caused
by ignoring other modes.

Typically, proposal distribution q is selected from certain classes of distributions. To find an appropriate
q depending on the target distribution, the following classes of proposal distributions are often used due to
their simplicity. First, if the proposal function is of the form q(x,y) = f(y − x) for some density f , the
candidate X̃ is drawn according to

X̃ = X +Z, where Z ∼ f, (1.15)

and where X is the current state. This type of q is called the random walk proposal distribution. In
the case where f is symmetric around the origin, the acceptance probability (1.11) is written simply as
α(x,y) = min

[
π(y)
π(x) , 1

]
. Second, when q(x,y) = f(y) for some density f , then the candidate X is updated

by
X̃ = Z, where Z ∼ f. (1.16)

This q is called the independent proposal distribution. The random walk and independent proposal
distributions often fail to perform well when the target distribution π is heavy-tailed. To overcome this
problem, the mixed preconditioned Crank-Nicolson (MpCN) proposal distribution is proposed by Kamatani
et al. (2018). This proposal distribution updates the candidate according to

X̃ = µ+ ρ
1
2 (X − µ) + (1− ρ) 1

2Z−
1
2 ·W , (1.17)

where ρ ∈ (0, 1), Z follows the gamma distribution with shape parameter d/2 and scale parameter
||Σ− 1

2 (X − µ)||2/2, and W ∼ Nd(0,Σ) for some d-vector µ ∈ Rd and d × d matrix Σ ∈ Md×d
+ . Ideally,
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µ and Σ are set to be µ = E[X] and Σ = Cov[X], while in practice, they can be replaced by rough
estimates since moments of X are typically unknown. Note that the original MpCN proposed in Kamatani
et al. (2018) is the standardized version, that is, µ = 0 and Σ = Id, where Id is the identity matrix. The
acceptance probability (1.11) of the MpCN proposal distribution can be written as

α(X, X̃) =

 π(X̃)
π(X)

(
||Σ− 1

2 (X − µ)||
||Σ− 1

2 (X̃ − µ)||

)−d
, 1

 .
One of the key differences between this proposal distribution and the first two simple ones is that in the
MpCN, not only the mean but also the variance of the candidate changes with the current state X. Since
the MpCN proposal distribution admits larger jumps in the tail parts of π, a better acceptance rate can be
expected even when π is heavy-tailed.
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Chapter 2

Measures of concordance and their
compatibility

Measures of concordance have been widely used in insurance and risk management to summarize
non-linear dependence among risks modeled by random variables, that Pearson’s correlation coefficient
cannot capture. However, popular measures of concordance, such as Spearman’s rho and Blomqvist’s beta,
appear as classical correlations of transformed random variables. We characterize a whole class of such
concordance measures arising from correlations of transformed random variables, which includes Spearman’s
rho, Blomqvist’s beta and van der Waerden’s coefficient as special cases. Compatibility and attainability of
square matrices with entries given by such measures are studied, that is, whether a given square matrix of
such measures of concordance can be realized for some random vector and how such a random vector can
be constructed. Compatibility and attainability of block matrices and hierarchical matrices are also studied
due to their practical importance in insurance and risk management. In particular, a subclass of attainable
block Spearman’s rho matrices is proposed to compensate for the drawback that Spearman’s rho matrices
are in general not attainable for dimensions larger than four. Another result concerns a novel analytical
form of the Cholesky factor of block matrices which allows one, for example, to construct random vectors
with given block matrices of van der Waerden’s coefficients.

2.1 Introduction

Since the work of Embrechts et al. (2002), copulas have been widely adopted in insurance and risk
management to quantify dependence between continuously distributed random variables; see Genest et al.
(2009). To summarize the dependence captured by the copula by a single number, measures of concordance
are frequently used. For more than two random variables, multivariate measures of concordance exist but
are typically not unique extensions of their bivariate counterparts to higher dimensions; see Joe (1990),
(Jaworski et al., 2010, Chapter 10) and references therein. Similar to the notion of correlation, matrices of
(pairwise) measures of concordance have recently become of interest; see, for example, Embrechts et al.
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(2016) (motivated from an application in insurance practice) for the notion of tail dependence. For such
matrices of measures of concordance, we study their compatiblity and attainability. Compatibility concerns
whether a given square matrix can be realized as a matrix of measures of concordance of some random
vector, and attainability asks how to construct such a random vector. These notions are important in
insurance and risk management practice since the entries of matrices of pairwise measures of concordance
are often provided as estimates from real data (if available) or from expert opinion based on scenarios (if
no data is available or not directly usable to estimate the entries). A primary issue is then to determine
whether the given matrix is admissible as a matrix of pairwise measures of concordance and, if so, how an
appropriate model may be built on the assumption of admissibility of the given matrix; see Embrechts
et al. (2002) and (McNeil et al., 2015, Section 8.4) for a discussion on compatibility and attainability.

Note that compatibility is clear for Pearson’s correlation coefficient since a given [−1, 1]-valued symmetric
matrix P is compatible if and only if it is positive semi-definite and has diagonal entries equal to one. Also,
attainability is clear for Pearson’s correlation coefficient since any symmetric and positive semi-definite
matrix P with ones on the diagonal is attainable by X = AZ where Z is a random vector of independent
standard normal distributions and A is the Cholesky factor of P , that is, a lower triangular matrix with
non-negative diagonal entries and such that P = AA>.

Although compatibility and attainability of correlation matrices are thus trivial, the limitations of
Pearson’s correlation coefficient as a dependence measure are well known; see Embrechts et al. (2002).
Measures of concordance in the sense of Scarsini (1984) are a remedy for some of the pitfalls of the correlation
coefficient and are thus considered more suitable to summarize dependence between risks. Interestingly,
such measures can also arise as correlations. Spearman’s rho, Blomqvist’s beta and van der Waerden’s
coefficient are prominent examples of measures arising as correlations of transformed variables of ranks.

Block matrices of measures of concordance naturally emerge if the risks of interest are grouped based
on business line, industry, country, etc.; see, for example, Huang and Yang (2010). Hierarchical matrices
are important special cases of block matrices where a measure of concordance between two variables is
determined by an underlying hierarchical tree structure; see Hofert and Scherer (2011) for an application
to CDO pricing. Since such matrices are typically high-dimensional, it is practically important to reduce
the dimension to solve compatibility and attainability problems in this case.

In this chapter, we answer the following open questions, which naturally arise regarding compatibility
and attainability of transformed rank correlation coefficients:

1. Are there more concordance measures which arise as correlations, and if so, how can they be
characterized or constructed? (See Section 2.2)

2. What about the compatibility and attainability of matrices of such measures? (See Section 2.3)

3. Can compatibility and attainability be reduced to lower dimensional problems if a matrix has block
structure? (See Section 2.4)
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2.2 Correlation-based measures of concordance

We start by considering the bivariate case. To this end, let X1 ∼ F1 and X2 ∼ F2 be two continuously
distributed random variables with a unique copula C such that (U1, U2) = (F1(X1), F2(X2)) ∼ C. The
measures of concordance of (X1, X2) we consider are of the form

κg1,g2(X1, X2) = ρ
(
g1(F1(X1)), g2(F2(X2))

)
, (2.1)

where g1 : [0, 1]→ R and g2 : [0, 1]→ R are measurable functions, and ρ is Pearson’s correlation coefficient.
Since (2.1) depends only on the copula of (X1, X2), we also denote it by κg1,g2(C) = ρ(g1(U1), g2(U2)) for
(U1, U2) ∼ C. We are interested in conditions on g1 and g2 under which (2.1) is a measure of concordance
as defined in Definition 1.2.1 The following proposition provides a necessary condition on g1 and g2.

Proposition 2.2.1 (Monotonicity of g1 and g2). Suppose g1 : [0, 1]→ R and g2 : [0, 1]→ R are continuous
functions. If κg1,g2 defined in (2.1) is a measure of concordance, then g1 and g2 must be both increasing or
both decreasing, that is,

(g1(u′)− g1(u))(g2(v′)− g2(v)) ≥ 0,

for any 0 ≤ u < u′ ≤ 1 and 0 ≤ v < v′ ≤ 1.

Proof. For 0 ≤ u < u′ ≤ 1 and 0 ≤ v < v′ ≤ 1, there exists a sufficiently large N ∈ N and indices
i, i′, j, j′ ∈ {1, . . . , N} such that

i− 1
N

< u ≤ i

N
,

i′ − 1
N

< u′ ≤ i′

N
,

j − 1
N

< v ≤ j

N
,

j′ − 1
N

< v′ ≤ j′

N

with ( i−1
N , iN ] ∩ ( i

′−1
N , i

′

N ] = ∅ and ( j−1
N , jN ] ∩ ( j

′−1
N , j

′

N ] = ∅. Let

δ(x, y) =


0, (x, y) ∈ ( i−1

N , iN ]× ( j−1
N , jN ] ∪ ( i

′−1
N , i

′

N ]× ( j
′−1
N , j

′

N ],

2, (x, y) ∈ ( i−1
N , iN ]× ( j

′−1
N , j

′

N ] ∪ ( i
′−1
N , i

′

N ]× ( j−1
N , jN ],

1, otherwise,

and

δ̃(x, y) =


2, (x, y) ∈ ( i−1

N , iN ]× ( j−1
N , jN ] ∪ ( i

′−1
N , i

′

N ]× ( j
′−1
N , j

′

N ],

0, (x, y) ∈ ( i−1
N , iN ]× ( j

′−1
N , j

′

N ] ∪ ( i
′−1
N , i

′

N ]× ( j−1
N , jN ],

1, otherwise,

and let QN and Q̃N be checkerboard copulas having densities δ and δ̃, respectively; see Carley and Taylor
(2002). Then QN � Q̃N (in concordance order), since for any supermodular function ψ on (0, 1)2,∫

ψ dQ̃N −
∫
ψ dQN =

∫
ψ d(Q̃N −QN )

= 2
∫

(0,1/N)2
(ψ(i′ − 1 + s, j′ − 1 + t) + ψ(i− 1 + s, j − 1 + t)

− ψ(i′ − 1 + s, j − 1 + t)− ψ(i− 1 + s, j′ − 1 + t)) dsdt ≥ 0,

13



where the last inequality follows since the integrand is nonnegative for any (s, t) ∈ (0, 1/N)2 by supermodu-
larity of ψ. The inequality

∫
ψ dQ̃N −

∫
ψ dQN ≥ 0 for any supermodular function ψ implies QN � Q̃N ;

see Tchen et al. (1980) and Müller and Scarsini (2000). Since κg1,g2 is a measure of concordance, coherence
of κg1,g2 implies that κg1,g2(QN ) ≤ κg1,g2(Q̃N ), that is,

0 ≤ κg1,g2(Q̃N )− κg1,g2(QN ) =
∫

(0,1)2
g1(U1)g2(U2)d(Q̃N −QN )

= 2
∫

(0,1/N)2
(g1(i′ − 1 + s)g2(j′ − 1 + t) + g1(i− 1 + s)g2(j − 1 + t)

− g1(i′ − 1 + s)g2(j − 1 + t)− g1(i− 1 + s)g2(j′ − 1 + t)) dsdt;

see Scarsini (1984) for the coherence axiom of a measure of concordance. Since g1 and g2 are continuous,
apply the intermediate value theorem and let N →∞ to obtain that

g1(u′)g2(v′) + g1(u)g2(v)− g1(u′)g2(v)− g1(u)g2(v′) = (g1(u′)− g1(u))(g2(v′)− g2(v)) ≥ 0,

which shows that g1 and g2 are both increasing or both decreasing.

By Proposition 2.2.1, g1 and g2 must share the same type of monotonicity so that κg1,g2 is a measure of
concordance. Therefore, it is reasonable to assume that g1 and g2 are both increasing functions on [0, 1]
since, if both are decreasing, then κg1,g2 = κg̃1,g̃2 for the increasing functions g̃1 = 1− g1 and g̃2 = 1− g2

by invariance of the correlation coefficient under linear transformations. If we relax the assumption of
continuity of g1 and g2 to left-continuity, then g1 and g2 are quantiles of some distributions, say, G1 and
G2. Recall that for a distribution function G : R→ [0, 1], its quantile function is defined by

G−1(p) = inf{x ∈ R : G(x) ≥ p}, p ∈ (0, 1);

see Embrechts and Hofert (2013) for properties of G−1. By taking g1 = G−1
1 and g2 = G−1

2 , we now define
the (G1, G2)-transformed rank correlation coefficient as follows.

Definition 2.2.2 ((G1, G2)-transformed rank correlation coefficient). Let G1 and G2 be two distribution
functions with quantile functions G−1

1 and G−1
2 , respectively. For a random vector (X1, X2) with continuous

margins F1 and F2, the (G1, G2)-transformed rank correlation coefficient is defined by

κG1,G2(X1, X2) = ρ
(
G−1

1 (F1(X1)), G−1
2 (F2(X2))

)
. (2.2)

If G1 = G2 = G, κG,G is denoted by κG and referred to as G-transformed rank correlation coefficient.

Example 2.2.3 (Known special cases of κG1,G2).

1. If G is the distribution function of the standard uniform distribution Unif(0, 1), we obtain

κG(X1, X2) = ρ(F1(X1), F2(X2))

from (2.2). This is known as Spearman’s rho ρS; see Spearman (1904).
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2. If G is the distribution function of the symmetric Bernoulli distribution Bern(1/2), that is,

G(x) =


0, x < 0,

1/2, 0 ≤ x < 1,

1, x ≥ 1,

then G−1(p) = 1{1/2<p≤1} for p ∈ (0, 1). Therefore, since Uj = Fj(Xj) ∼ Unif(0, 1) for j = 1, 2,
κG1,G2 in (2.2) is the correlation coefficient of Bj = G−1

j (Fj(Xj)) ∼ Bern(1/2), j = 1, 2. If C denotes
the distribution function of (U1, U2) and G1 = G2 = G, then

κG(X1, X2) = E(B1B2)− E(B1)E(B2)√
Var(B1) Var(B2)

= P(U1 > 1/2, U2 > 1/2)− 1/4
1/4

= 4P(U1 > 1/2, U2 > 1/2)− 1 = 4(1− 1/2− 1/2 + C(1/2, 1/2))− 1

= 4C(1/2, 1/2)− 1

which equals Blomqvist’s beta β; see Blomqvist (1950). Note that Blomqvist’s beta is also known as
median correlation coefficient.

3. If G is the distribution function Φ of the standard normal distribution N(0, 1), then

κG(X1, X2) = ρ
(
Φ−1(F1(X1)),Φ−1(F2(X2))

)
which equals van der Waerden’s coefficient ζ; see, for example, Sidak et al. (1999). It is also known
as normal score correlation.

The first question in the introduction is natural: For which distributions G1, G2 does the G1, G2-
transformed rank correlation κG1,G2 lead to a measure of concordance in the sense of Scarsini (1984)?
Before answering it, consider the following example in the spirit of Embrechts et al. (2002); another example
of this type are the correlation bounds of Bernoulli random variables; see Example 2.2.7. Both examples
show that G1 and G2 cannot be chosen arbitrarily.

Example 2.2.4 (Log-normal G1, G2-functions). For j = 1, 2, let σj > 0 and Gj be the distribution
function of the log-normal distribution LN(0, σj). Since κG1,G2 is the correlation coefficient of the random
vector (G−1

1 (U1), G−1
2 (U2)) with (U1, U2) = (F1(X1), F2(X2)), its minimal and maximal values are attained

when (X1, X2) has copula C = W and C = M , respectively, where W (u1, u2) = max{u1 + u2 − 1, 0} is the
countermonotone and M(u1, u2) = min{u1, u2} is the comonotone copula. For different pairs of (σ1, σ2),
the minimal and maximal (G1, G2)-transformed rank correlation coefficients are shown in Figure 2.1 as
correlation coefficients of LN(0, σ1) and LN(0, σ2). The left-hand side of this figure shows that κG1,G2 = −1
is not attained for any σ1, σ2 > 0 and the right-hand side shows that κG1,G2 = 1 is not attained unless
σ1 = σ2. Consequently, if G1, G2 are taken to be log-normal distribution functions, κG1,G2 cannot be a
measure of concordance since the range axiom of Definition 1.2.1 is violated.

The main result of this section is the following, which provides necessary and sufficient conditions for a
transformed rank correlation coefficient to be a measure of concordance in the sense of Scarsini (1984).
Recall that two distributions are of the same type if one is a location-scale transform of the other.
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Figure 2.1: Minimal (left) and maximal (right) correlations attained by the (G1, G2)-transformed rank
correlation coefficient κG1,G2 where Gj is the distribution function of LN(0, σj), j = 1, 2.

Theorem 2.2.5 (Necessary and sufficient conditions for transformed rank correlations to be measures of
concordance). Let G1, G2 be distribution functions. The (G1, G2)-transformed rank correlation coefficient
κG1,G2 in (2.2) is a measure of concordance if and only if both G1 and G2 are of the same type as some
non-degenerate symmetric distribution G with finite second moment.

Proof. Let (X1, X2) ∼ H with copula C and continuous margins F1, F2. Then (U1, U2) = (F1(X1), F2(X2)) ∼
C so that (Y1, Y2) = (G−1

1 (U1), G−1
2 (U2)) has copula C and marginal distribution functions G1, G2. The

transformed rank correlation coefficient κG1,G2(X1, X2) in (2.2) can then be written as κG1,G2(X1, X2) =
ρ(Y1, Y2).

Consider necessity. If either of G1 and G2 is degenerate, then ρ(Y1, Y2) is not well-defined, which violates
the domain axiom of a measure of concordance. Therefore, G1 and G2 must be non-degenerate. Next, if
either of Var(Y1) and Var(Y2) is infinite, then ρ(Y1, Y2) is not defined, which also violates the domain axiom.
Thus, G1 and G2 must have finite second moments. For j = 1, 2, let µj = E(Yj) and σ2

j = Var(Yj) <∞. It
is known that ρ(Y1, Y2) = −1 if and only if Y2

d= − aY1 + b for some a, b ∈ R with a > 0 and ρ(Y1, Y2) = 1
if and only if Y2

d= cY1 + d for some c, d ∈ R with c > 0. Note that both distributional equalities must hold
simultaneously so that κG1,G2(X1, X2) = 1 when (X1, X2) is comonotone and κG1,G2(X1, X2) = −1 when
(X1, X2) is countermonotone. Since σ2

2 = a2σ2
1 = c2σ2

1 , a, c > 0 and σ1 6= 0, we have a = c. Furthermore, by
taking expectations, µ2 = −cµ1 +b and µ2 = cµ1 +d, which imply that µ1 = (b−d)/(2c) and µ2 = (b+d)/2.
Since Y2 − b

d= − cY1
d= d− Y2, adding constant (b − d)/2 to both hand sides yield Y2 − µ2

d= µ2 − Y2.
This implies that Y2 is symmetric about its mean µ2. Similarly, Y1 is shown to be symmetric about its mean
µ1. Finally, it follows from Y2

d= cY1 + d that G2(x) = G1((x − d)/c) and thus G−1
2 (u) = d + c G−1

1 (u),
which concludes the proof of necessity.

Now consider sufficiency. If G1 and G2 are of the same type as some distribution G, then κG1,G2(C) =
κG,G(C) = κG(C) for any copula C since correlation coefficient is invariant under positive linear transform;

16



see Embrechts et al. (2002). Therefore, it suffices to verify the seven axioms of a measure of concordance in
Scarsini (1984) for κG with G being a non-degenerate symmetric distribution with finite second moment.

1. Domain: Since G is non-degenerated with a finite second moment, ρ(Y1, Y2) is well-defined for all
continuously distributed X1, X2.

2. Symmetry: To show κG(X1, X2) = κG(X2, X1), it suffices to show

E(G−1(U1)G−1(U2)) = E(G−1(U2)G−1(U1))

for any C and (U1, U2) ∼ C, but this is obvious by exchangeability of product.

3. Coherence: Let C1, C2 be copulas such that C1 � C2, that is, C1(u1, u2) ≤ C2(u1, u2) for all
u1, u2 ∈ [0, 1]. Then κG(C1) ≤ κG(C2) follows immediately from the Hoeffding’s identity; see (McNeil
et al., 2015, Lemma 7.27).

4. Range: Since κG(X1, X2) = ρ(Y1, Y2), we have −1 ≤ κG(X1, X2) ≤ 1. Moreover, since G is
symmetric, we have Y1 − E[Y1] d= E[Y2]− Y2. Together with Y1

d= Y2, the bounds κG(X1, X2) = −1
and κG(X1, X2) = 1 are attainable when (X1, X2) are countermonotone and comonotone, respectively.

5. Independence: When X1, X2 are independent, so are Y1, Y2 and thus κG(X1, X2) = ρ(Y1, Y2) = 0.

6. Change of sign: Let F−X2 be the distribution of −X2. Then it holds that F−X2(−x2) = P(X2 >

x2) = 1 − F2(x2) and thus F−X2(−X2) = 1 − F2(X2) = 1 − U2. Symmetry of G implies that
G(y) = 1−G(2µ2 − y) for y ∈ R and thus G−1(1− p) = 2µ2 −G−1(p) for p ∈ (0, 1). Therefore,

κ(X1,−X2) = ρ
(
G−1(FX1(X1)), G−1(F−X2(−X2))

)
= ρ(G−1(U1), G−1(1− U2))

= ρ(G−1(U1), 2µ2 −G−1(U2)) = ρ(G−1(U1),−G−1(U2))

= −ρ(G−1
1 (U1), G−1

2 (U2)) = −κ(X1, X2)

by invariance and change of sign properties of correlation coefficient.

7. Continuity: Let (Xn1, Xn2) ∼ Hn, n ∈ N, and (X1, X2) ∼ H all have continuous margins with Hn

converging pointwise to H as n → ∞. Let Cn denote the copula of Hn, n ∈ N, and C the one of
H. Then limn→∞ Cn = C pointwise. Since κ(Xn1, Xn2) and κ(X1, X2) are correlation coefficients of
(Yn1, Yn2) and (Y1, Y2) having the same marginal distribution G and copulas Cn and C, respectively,
Hoeffding’s identity yields that

lim
n→∞

κ(Xn1, Xn2) = lim
n→∞

1
σ1σ2

∫
R2

(Cn(G(y1), G(y2))−G(y1)G(y2)) dλ2(y1, y2)

= 1
σ1σ2

∫
R2

(C(G(y1), G(y2))−G(y1)G(y2)) dλ2(y1, y2) = κ(X1, X2), (2.3)

for the Lebesgue measure λ2 on R2, where the second equality is justified by the bounded convergence
theorem since Cn(G(y1), G(y2))−G(y1)G(y2) and C(G(y1), G(y2))−G(y1)G(y2) are all uniformly
bounded.
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As seen in the proof of Theorem 2.2.5, if κG1,G2 is a measure of concordance, then it must be κG for some
distribution G which is of the same type as G1 and G2. In what follows, we thus focus on G-transformed
rank correlation coefficients for which we assume that G1 = G2.

Remark 2.2.6 (Connection to D4-invariant measures of concordance). From (2.3) it turns out that
(G1, G2)-transformed rank correlations κG1,G2 form a subclass of D4-invariant measures of concordance as
proposed by Edwards et al. (2005). A measure ν on (0, 1)2 is called D4-invariant if it is invariant under
transpositions (x, y) 7→ (y, x) and partial reflections (x, y) 7→ (1 − x, y). For such measures ν, Edwards
et al. (2005) show that the functional

C 7→

∫
(0,1)2(C −Π) dν∫
(0,1)2(M −Π) dν

(2.4)

is a measure of concordance, where M is the comonotone copula and Π is the independence copula. When
G1 and G2 are symmetric, the pushforward Lebesgue measure λG1,G2 is D4-invariant and the corresponding
measure (2.4) yields our (G1, G2)-transformed rank correlation (2.2). Consequently, the sufficiency part of
the proof of Theorem 2.2.5 also follows from (Edwards et al., 2005, Theorem 0.6).

According to Theorem 2.2.5, we call a distribution function G concordance-inducing if it is non-
degenerate, symmetric and has finite second moment. Examples of such distributions include normal,
Student t with degrees of freedom ν > 2, continuous and discrete uniform distributions, Laplace and logistic
distributions. The following example shows that Bernoulli distributions Bern(p) are concordance-inducing
if and only if they are symmetric, that is, p = 1/2.

Example 2.2.7 (Bernoulli G-function). For j = 1, 2, let pj ∈ [0, 1] and Gj be the distribution of
Yj ∼ Bern(pj). As discussed in Example 2.2.4, κG1,G2(X1, X2) = ρ(Y1, Y2) and its minimal and maximal
values are attained when C = W and C = M , respectively. Figure 2.2 illustrates the minimal (left-hand side)
and maximal (right-hand side) (G1, G2)-transformed rank correlation coefficients as correlations of Bern(p1)
and Bern(p2) for different pairs of (p1, p2). The left-hand side of the figure indicates that κG1,G2 = −1 if
p1 = 1− p2 and this is the only case when Y1 and −Y2 are of the same type. The right-hand side shows
that κG1,G2 = 1 if p1 = p2, and this is the only case when Y1 and Y2 have the same distribution. Since
κG1,G2 must attain −1 and 1 when C = W and C = M , respectively, κG1,G2 is a measure of concordance
only when p1 = p2 = 1/2. As a consequence, Bern(p) is concordance-inducing if and only if p = 1/2.

Note that due to the invariance of the correlation coefficient under strictly increasing linear transforms,
κG is invariant under location-scale transforms of Y ∼ G. Therefore, if G has bounded support, it may
be beneficial to standardize it so that its support is [0, 1]. Similarly, if G is supported on R, one can still
standardize G to have zero mean and unit variance without changing κG. Due to this property, one can see
that the quadrant correlation of Mosteller (2006) studied in Raymaekers and Rousseeuw (2019) coincides
with Blomqvist’s beta.

Uniqueness of G-function up to location-scale transformations follows direcltly from (Edwards et al.,
2004, Lemma 2.4) or (Edwards et al., 2005, Lemma 0.4).
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Figure 2.2: Minimal (left) and maximal (right) correlations attained by the (G1, G2)-transformed rank
correlation coefficient κG1,G2 where Gj is the distribution function of Bern(pj), j = 1, 2.

Proposition 2.2.8 (Uniqueness of G-functions). Let G and G′ be two continuous concordance-inducing
functions. If κG(C) = κG′(C) for all 2-copulas, then G and G′ are of the same type.

We end this section with a simple linear property of κG.

Proposition 2.2.9 (Linearity of κG). For n ∈ N, let C1, . . . , Cn be 2-copulas and α1, . . . , αn be non-
negative numbers such that α1 + · · ·+ αn = 1. Then

κG

( n∑
i=1

αiCi

)
=

n∑
i=1

αiκG(Ci).

Proof. As a mixture,
∑n
i=1 αiCi is a 2-copula from which the equation to prove is an immediate consequence

of Hoeffding’s identity.

Remark 2.2.10 (Degree of κG). For a general measure of concordance κ, Edwards and Taylor (2009)
defined the notion of a degree as the maximum degree of the polynomial t 7→ κ(tC1 + (1− t)C2), when it is
the case, over any two copulas C1 and C2. Proposition 2.2.9 shows that κG is a measure of concordance of
degree one in this sense. Also note that the class of G-transformed rank correlation coefficients is a strict
subclass of all measures of concordance of degree one since, for instance, Gini’s coefficient

γ(C) = 4
∫

[0,1]2
(M(u, v) +W (u, v)) dC(u, v)− 2, (2.5)

is of degree one but cannot be represented as (2.2). To see this, note that the G-transformed rank correlation
coefficient can be written as

kG(C) = 1
σ2

∫
[0,1]2

G−1(u)G−1(v) dC(u, v)−
(µ
σ

)2
, (2.6)
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where µ ∈ R and σ > 0 are the mean and standard deviation of G, respectively. Expression (2.6) implies
that the integrand with respect to the underlying copula C must be of product form G−1(u)G−1(v).
Since the integrand in (2.5) cannot be decomposed into such a product form in general, Gini’s γ is not a
G-transformed rank correlation coefficient. Furthermore, there is no G-function that makes κG Kendall’s
tau

τ(X1, X2) = 4
∫

[0,1]2
C(u, v) dC(u, v)− 1, (2.7)

since τ is a measure of concordance of degree two according to Edwards and Taylor (2009).

2.3 Matrices of transformed rank correlation coefficients and
their compatibility

Let X = (X1, . . . , Xd) be a random vector with continuous margins F1, . . . , Fd and copula C. We now
consider matrices of (pairwise) G-transformed rank correlation measures, that is, matrices P ∈ [−1, 1]d×d

with (i, j)th entry given by κG(Xi, Xj). As in Theorem 2.2.5, G is set to be a distribution function of a
non-degenerate, symmetric distribution with finite second moment. We call a given matrix P ∈ [−1, 1]d×d

κG-compatible if there exists a d-random vector X such that P = (κG(Xi, Xj)). In this section, we first
study this compatibility problem for the transformed rank correlation coefficient (2.2) in general and then
more specifically for Spearman’s rho, Blomqvist’s beta and van der Waerden’s coefficient. Note that an
obvious necessary condition for a given matrix P to be κG-compatible is that it is a [−1, 1]d×d symmetric,
positive semi-definite matrix with diagonal elements equal to 1.

2.3.1 A sufficient condition for compatibility of transformed rank correlation
coefficients

For a fixed concordance-inducing function G, denote by KG the set of all κG-compatible matrices. Since
κG(Xi, Xj) = ρ(Yi, Yj) with the notation as before, KG can be written as

KG = {ρ(Y ) | Y ∈ Fd(G, . . . , G)},

where Fd(G, . . . , G) denotes the set of all d-dimensional random vectors with all marginals equal to G. The
following corollary follows directly from Proposition 2.2.9.

Corollary 2.3.1 (Convexity of KG). KG is a convex set for any concordance-inducing function G.

Let

PB
d (1/2) = {ρ(B) : B = (B1, . . . , Bd), Bj ∼ Bern(1/2), j = 1, . . . , d}

be the set of all correlation matrices of d-dimensional random vectors whose marginals are symmetric
Bernoulli distributions. The following proposition provides a sufficient condition for a given matrix to be
κG-compatible.
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Proposition 2.3.2 (A sufficient condition for κG-compatibility). For a concordance-inducing function G,
it holds that PB

d (1/2) ⊆ KG, that is, a given matrix P ∈ [−1, 1]d×d is κG-compatible if it is a correlation
matrix of some random vector with Bern(1/2) margins.

Proof. Fix P ∈ PB
d (1/2). Then there exist B1, . . . , Bd ∼ Bern(1/2) such that ρ(B) = P for B =

(B1, . . . , Bd). For U ∼ Unif(0, 1) independent of B, define

Vj = BjU + (1−Bj)(1− U), j = 1, . . . , d.

Then Vj ∼ Unif(0, 1) and thus Yj = G−1(Vj) ∼ G, j = 1, . . . , d. Note that Yj = G−1(U) if Bj = 1 and
Yj = G−1(1− U) if Bj = 0. Furthermore, since G is concordance-inducing,

ρ(G−1(U), G−1(U)) = 1 and ρ(G−1(U), G−1(1− U)) = −1.

Consequently, for all i, j ∈ {1, . . . , d},

ρ(Yi, Yj) = ρ(G−1(U), G−1(U))P(Bi = Bj) + ρ(G−1(U), G−1(1− U))P(Bi 6= Bj)

= P(Bi = Bj)− P(Bi 6= Bj) = 2P(Bi = Bj)− 1.

Since

P(Bi = Bj) = P(Bi = 0, Bj = 0) + P(Bi = 1, Bj = 1)

= P(1−Bi = 1, 1−Bj = 1) + E(BiBj)

= E((1−Bi)(1−Bj)) + E(BiBj) = 2E(BiBj)

= ρ(Bi, Bj) + 1
2 ,

we obtain

ρ(Yi, Yj) = 2ρ(Bi, Bj) + 1
2 − 1 = ρ(Bi, Bj)

and thus P = ρ(B) = ρ(Y ) ∈ KG.

Note that the construction Yj = G−1(BjU + (1 − Bj)(1 − U)), j = 1, . . . , d, used in the proof of
Proposition 2.3.2 was utilized by Huber and Maric (2015) for the purpose of generating a d-dimensional
distribution with given margins G and a correlation matrix P where P ∈ PB

d (1/2).

By Proposition 2.3.2, a given matrix is found to be κG-compatible if it belongs to PB
d (1/2). The

relationship between KG and PB
d (1/2) depends on the G-function. When G is a symmetric Bernoulli

distribution, it holds that KG = PB
d (1/2), whereas if G is the standard normal distribution function Φ,

then KG coincides with the set of all correlation matrices Pd, which is strictly larger than PB
d (1/2); see

Proposition 2.3.4 Part 4 for KΦ = Pd and Section 2.3.3 for PB
d (1/2) ⊂ Pd. As summarized by the following

corollary, PB
d (1/2) and Pd are the smallest and largest set of κG compatible matrices for general G.

Corollary 2.3.3 (Upper and lower bounds of KG). For any concordance-inducing function G, the set of
all κG-compatible matrices KG satisfies PB

d (1/2) ⊆ KG ⊆ Pd, and both bounds are attainable.
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Note that the uniqueness of G attaining the bounds fails and possibly depends on d. For example, when
d ≤ 9, both of G = Unif(0, 1) and Φ attain KG = Pd; see Proposition 2.3.4 Part 1, 2 and 4.

We have so far found that the set PB
d (1/2) plays important roles for κG-compatibility problem. Natural

questions regarding PB
d (1/2) are how to check a given matrix belongs to PB

d (1/2) and how large the set is
in comparison to the set of all correlation matrices Pd. These questions will be answered in Section 2.3.3.

2.3.2 Characterizations of specific measures of concordance

In this section, we study the three specific measures of concordance from Example 2.2.3, Spearman’s
rho, Blomqvist’s beta and van der Waerden’s coefficient, which are denoted by ρS, β and ζ, respectively.
To this end, let Sd, Bd and Wd be the set of d × d-matrices of Spearman’s rho, Blomqvist’s beta and
van der Waerden’s coefficients, respectively. As is done in the previous section, denote by Pd the set of
all d× d-correlation matrices, that is, the set of all symmetric, positive semi-definite matrices in [−1, 1]d

with diagonal elements one. It is well-known that Pd is a convex set for any d ≥ 1. Let PU
d and PB

d (p),
p ∈ (0, 1), be the set of all correlation matrices of d-dimensional random vectors whose marginals are all
Unif(0, 1) and all Bern(p), respectively. By Corollary 2.3.1, PU

d and PB
d (p) are also convex sets. We can

now characterize the sets Sd, Bd and Wd.

Proposition 2.3.4 (Characterizations of Sd, Bd and Wd).

1. PU
d = Pd for d ≤ 9, that is, the set of correlation matrices of random vectors with standard uniform

marginals coincides with the set of correlation matrices for d ≤ 9. For d ≥ 10, PU
d ⊆ Pd.

2. Sd = PU
d , that is, the set of Spearman’s rho matrices coincides with the set of correlation matrices of

random vectors with standard uniform marginals.

3. Bd = PB
d (1/2), that is, the set of Blomqvist’s beta matrices coincides with the set of correlation

matrices of random vectors with symmetric Bernoulli marginals.

4. Wd = Pd, that is, the set of van der Waerden’s matrices coincides with the set of all correlation
matrices.

Proof. Part 1 is from Devroye and Letac (2015), and Part 2 and Part 4 are direct consequences of the
definition of Spearman’s rho and van der Waerden’s coefficient. We thus have left to prove Part 3. Consider
“⊆”. Let (βij) ∈ Bd. Then there exists a d-dimensional random vector X such that β(Xi, Xj) = βij . By
Example 2.2.3 Part 2,

βij = ρ(G−1(Fi(Xi)), G−1(Fj(Xj))), i, j = 1, . . . , d,

where G is the distribution function of Bern(1/2). Since G−1(Fi(Xi)), G−1(Fj(Xj)) ∼ Bern(1/2), we obtain
that (βij) ∈ PB

d (1/2).

Now consider “⊇”. Let B = (B1, . . . , Bd) be a d-dimensional symmetric Bernoulli random vector with
correlation matrix ρ(B) = (ρij). Let C be any copula such that

P(B1 ≤ b1, . . . , Bd ≤ bd) = C(P(B1 ≤ b1), . . . ,P(Bd ≤ bd)).
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Since, for j = 1, . . . , d,

P(Bj ≤ bj) =


0, if bj < 0,

1/2, if 0 ≤ bj < 1,

1, if bj ≥ 1,

C is only uniquely determined in (1/2, . . . , 1/2) inside [0, 1]d. Furthermore, for any (j1, . . . , jd) ∈ {0, 1}d,
the following identity holds:

C((1/2)j1 , . . . , (1/2)jd) = P(B1 ≤ 1− j1, . . . , Bd ≤ 1− jd).

Let C be the survival function of C and U ∼ C, so 1−U ∼ C; in particular, the marginals F1, . . . , Fd of
U are Unif(0, 1). Let G(p) = 1{p>1/2} be the distribution function of the symmetric Bernoulli distribution.
Then

P(G−1(U1) ≤ 1− j1, . . . , G−1(Ud) ≤ 1− jd)

= P(1{U1>1/2} ≤ 1− j1, . . . ,1{Ud>1/2} ≤ 1− jd)

= P(1− U1 ≤ (1/2)j1 , . . . , 1− Ud ≤ (1/2)jd) = C((1/2)j1 , . . . , (1/2)jd)

= P(B1 ≤ 1− j1, . . . , Bd ≤ 1− jd), (j1, . . . , jd) ∈ {0, 1}d.

Therefore, we have that B = (B1, . . . , Bd)
d= (G−1(U1), . . . , G−1(Ud)). Consequently,

β(Ui, Uj) = ρ(G−1(Fi(Ui)), G−1(Fj(Uj))) = ρ(G−1(Ui), G−1(Uj)) = ρ(Bi, Bj) = ρij .

Since the random vector U attains (ρij) as its Blomqvist’s beta matrix, we have (ρij) ∈ Bd.

Concerning Proposition 2.3.4 Part 1, Devroye and Letac (2015) conjectured that the inclusion relationship
among PU

d and Pd is strict for d ≥ 10 . Later Wang et al. (2019) revealed that Pd is strictly larger than
PU
d for d ≥ 12. Although a complete characterization of PU

d is still unknown for d ≥ 10, it is known that
PU
d and Pd are not significantly different for any d ≥ 1 as explained in the following remark.

Remark 2.3.5 (Sd and Pd). Even for d ≥ 10, Sd and Pd cannot be largely different since a Gauss
copula with correlation parameter P = (ρij) ∈ Pd has Spearman’s rho matrix (ρS,ij) with ρS,ij =
(6/π) arcsin(ρij/2), or equivalently, ρij = 2 sin(πρS,ij/6). Since |ρS,ij − ρij | = |ρS,ij − 2 sin(πρS,ij/6)| ≤
0.0181, one can find an elementwise close Spearman’s rho matrix attained by a Gauss copula for every
correlation matrix P ∈ Pd.

The consequences of Proposition 2.3.4 related to the compatibility problem are as follows. First,
Proposition 2.3.4 Part 1 and 2 allow one to check that a given d× d-matrix for d ≤ 9 is ρS-compatible via
checking whether the matrix is a correlation matrix, for example, by trying to compute its Cholesky factor.
For d ≥ 10, a straightforward way to check ρS-compatibility is not available yet although the sufficient
condition in Proposition 2.3.2 is still valid. Second, Proposition 2.3.4 Part 3 states that the set of all
Blomqvist’s beta matrices are completely characterized by the set of correlation matrices of random vectors
with symmetric Bernoulli margins. In Section 2.3.3, we will discuss the problem of checking that a given
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matrix belongs to PB
d (1/2). Finally, Proposition 2.3.4 Part 4 says that the set of van der Waerden’s matrices

coincides with the set of all correlation matrices, and thus, checking ζ-compatibility is straightforward.
In terms of checking compatibility, this property of van der Waerden’s coefficient is an attractive feature
that ρS and β do not satisfy for any dimension d ≥ 1. Note that this property is not unique to van der
Waerden’s coefficient but holds for any elliptical distribution G with finite second moments; see (Joe, 1997,
Chapter 4).

2.3.3 Bern(1/2)-compatibility problem

As we have seen in Section 2.2 and 2.3 so far, Pd(1/2) plays important roles when studying matrix
compatibility problems since it coincides with Bd, the set of all Blomqvist’s beta matrices, and Pd(1/2) ⊆ KG,
the set of all κG-compatible matrices. If P ∈ Pd(1/2), we call P Bern(1/2)-compatible. In this section, we
address the membership testing problem for Pd(1/2), that is, a test whether a given matrix is Bern(1/2)-
compatible or not.

Huber and Maric (2017) presented a characterization of the set PB
d (1/2) which can be used for

membership testing as we now explain. For l = 1, . . . , 2d−1, let b(l) = (b1, . . . , bd) be the binary expansion
of l, that is,

b(l) = (b1, . . . , bd) if and only if l = 1 +
d∑
j=1

bj2d−j .

Note that b1 is equal to 0 for all l = 1, . . . , 2d−1. For each l, let πl be the d-dimensional distribution which
puts equal mass on b(l) = (b1, . . . , bd) and 1− b(l) = (1− b1, . . . , 1− bd). One can easily check that the
correlation matrix of X ∼ πl is given by

ρ(Xi, Xj) = 21{bi(l)=bj(l)} − 1, i, j = 1, . . . , d,

where bi(l) denotes the ith element of b(l). This leads to the following characterization of the set PB
d (1/2);

see Huber and Maric (2017).

Theorem 2.3.6 (Characterization of PB
d (1/2)). PB

d (1/2) is the convex hull of correlation matrices of the
two-point distributions π1, . . . , π2d−1 , that is,

PB
d (1/2) = conv{ρ(πl) : l = 1, . . . , 2d−1}

=
{ 2d−1∑

l=1
αlρ(πl) : α1, . . . , α2d−1 ≥ 0, α1 + · · ·+ α2d−1 = 1

}
,

where ρ(πl) is the correlation matrix of πl.

Remark 2.3.7 (Cut polytope and elliptope). By Theorem 2.3.6, PB
d (1/2) coincides with a set known as a

cut polytope, which is the collection of matrices cc> for all c ∈ {−1, 1}d. Moreover, its positive semi-definite
relaxation is known to be the elliptope Pd; see Laurent and Poljak (1995) and Tropp (2018).
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Example 2.3.8 (Cases d = 2 and d = 3). Write P = (ρij) ∈ PB
d (1/2). When d = 2, ρ12 = ρ21 and ρ12

can take any value from −1 to 1 since ρ12 = α(+1) + (1− α)(−1) = 2α− 1 for α ∈ [0, 1]. When d = 3, the
characterization in Theorem 2.3.6 reduces to

−1 ≤
∑

1≤i<j≤3
ρij ≤ 1 + 2 min

1≤i,j≤3
{ρij}. (2.8)

In terms of the triple (ρ12, ρ13, ρ23) of correlations, (2.8) forms a tetrahedron with vertices (1, 1, 1), (1, 0, 0),
(0, 1, 0) and (0, 0, 1). One can check that PB

d (1/2) is a strict subset of Pd for d ≥ 3. For instance, consider
a matrix of the form

P (ρ) =

1 ρ ρ

ρ 1 ρ

ρ ρ 1

 .

Then P (ρ) is a proper correlation matrix if and only if −1/2 ≤ ρ ≤ 1. On the other hand, the inequality in
(2.8) says that P (ρ) ∈ PB

d (1/2) if and only if −1/3 ≤ ρ ≤ 1. Therefore, if −1/2 ≤ ρ < −1/3, then P (ρ)
belongs to Pd but not to PB

3 (1/2).

The characterization in Theorem 2.3.6 provides a method to check that a given matrix is Bern(1/2)-
compatible.

Proposition 2.3.9 (Checking Bern(1/2)-compatibility). A given matrix P = (ρij) is Bern(1/2)-compatible
if and only if there exist α1, . . . , α2d−1 ≥ 0 such that the following 1 + d(d− 1)/2 equations hold

α1 + · · ·+ α2d−1 = 1,
2d−1∑
l=1

αl1{bi(l)=bj(l)} = ρij + 1
2 , 1 ≤ i < j ≤ d.

Equivalently, the following phase I linear program attains zero

min{z1 + · · ·+ z2d−1} subject to

Dα+ z = λ,

α, z ≥ 0,
(2.9)

where α = (α1, . . . , α2d−1) ∈ [0, 1]2d−1 , λ = (λ12, λ13, λ23, . . . , λd−1 d, 1) ∈ [0, 1]1+d(d−1)/2 for λij = (ρij +
1)/2 and

D =



1{b1(1)=b2(1)} 1{b1(2)=b2(2)} · · · 1{b1(2d−1)=b2(2d−1)}

1{b1(1)=b3(1)} 1{b1(2)=b3(2)} · · · 1{b1(2d−1)=b3(2d−1)}

1{b2(1)=b3(1)} 1{b2(2)=b3(2)} · · · 1{b2(2d−1)=b3(2d−1)}
...

...
...

...
1{bd−1(1)=bd(1)} 1{bd−1(2)=bd(2)} · · · 1{bd−1(2d−1)=bd(2d−1)}

1 1 · · · 1


∈ {0, 1}

(
1+ d(d−1)

2

)
×2d−1

.

Note that the set of constraints in (2.9) is always nonempty since (α, z) = (0,λ) is a feasible solution. The
phase I linear program can be solved, for example, with the R package lpSolve although it is computationally
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Algorithm 2 Simulating random vectors with Bern(1/2) marginals and given correlation matrix P .
Input: Correlation matrix P ∈ PB

d (1/2).

Output: Random vector B = (B1, . . . , Bd) with Bj ∼ Bern(1/2), j = 1, . . . , d and ρ(B) = P .

1) For P , solve (2.9) to find (α1, . . . , α2d−1).
2) Choose the index l with probability αl, l ∈ {1, . . . , 2d−1}.
3) Set B = b(l) or 1− b(l) with probability 1/2 each.

demanding for large d. This is to be expected since such problems are known to be NP-complete; see
Pitowsky (1991).

Once a (componentwise) non-negative vector α∗ such that Dα∗ = λ is obtained, the corresponding
symmetric Bernoulli random vector B with correlation matrix P = (ρij) can be simulated by the following
algorithm, which enables us to solve the attainability problem discussed in Section 2.3.4.

Example 2.3.10 (Numerical example for d = 3). Consider the two 3× 3 matrices

P1 =

 1 −0.95 0.5
−0.95 1 −0.4

0.5 −0.4 1

 , P2 =

 1 −0.9 0.5
−0.9 1 −0.4
0.5 −0.4 1

 ,

both of which can be shown to be positive definite, so correlation matrices. For d = 3, the numbers
l = 1, . . . , 2d−1 = 4 have the binary expansions b(1) = (0, 0, 0), b(2) = (0, 0, 1), b(3) = (0, 1, 0) and
b(4) = (0, 1, 1). The corresponding matrix D is then given by

D =


1 1 0 0
1 0 1 0
1 0 0 1
1 1 1 1

 .

For P1, λ1 = (λ1,12, λ1,13, λ1,23, 1) = (0.025, 0.750, 0.300, 1.000). Solving the phase I linear program with
the R package lpSolve yields the minimum 0.025 of the objective function z1 + z2 + z3 + z4, which does not
attain zero. Therefore, although P1 is a proper correlation matrix, it is not Bern(1/2)-compatible. For P2,
λ2 = (0.050, 0.750, 0.300, 1.000). By using lpSolve, the objective function is found to achieve zero, and we
thus numerically checked that P2 ∈ PB

d (1/2). These results can also be confirmed with the inequality in
(2.8).

One can thus check the compatibility of Blomqvist’s beta matrices (or, equivalently, correlation matrices
of random vectors with symmetric Bernoulli margins) by solving the phase I linear program (2.9) and by
checking whether the objective function attains zero. By the same procedure, the sufficient condition shown
in Proposition 2.3.2 can also be checked for general κG compatibility.
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2.3.4 Attainability of matrices of measures of concordance

We now consider the attainability problem. We call a κG-compatible matrix P ∈ [−1, 1]d×d κG-
attainable if one can construct a random vector X = (X1, . . . , Xd) such that κG(X) = P . The proof of
Proposition 2.3.2 already indicates such a construction principle for a d-dimensional random vector X such
that, for a given matrix P ∈ PB

d (1/2), one has κG(X) = P .

Corollary 2.3.11 (κG-attainability of P ∈ Bd = PB
d (1/2)). Let P ∈ PB

d (1/2) and the representation
P =

∑2d−1

l=1 αlρ(πl) according to Theorem 2.3.6 be given. Then P is κG-attainable by X = (X1, . . . , Xd)
defined by

Xj = BjU + (1−Bj)(1− U), j = 1, . . . , d, (2.10)

where U ∼ Unif(0, 1) and B = (B1, . . . , Bd) is constructed as in Algorithm 2.

Since Bd = PB
d (1/2), that is, the set of Blomqvist’s beta matrices coincide with the set of correlation

matrices of random vectors with symmetric Bernoulli marginals, all matrices P ∈ Bd can be attained by
(2.10).

Next, for matrices of pairwise van der Waerden’s coefficients ζ, any ζ-compatible matrix is attainable
by a multivariate normal distribution.

Corollary 2.3.12 (ζ-attainability of P ∈ Wd = Pd). Any matrix P ∈ Wd is attainable by the multivariate
normal distribution with covariance matrix P .

Finally, for Spearman’s rho, ρS-attainability is not completely solved for dimensions d ≥ 3. If P ∈
PB
d (1/2), P is ρS-attainable by Corollary 2.3.11 for d ≥ 3. If P /∈ PB

d (1/2), P is known to be ρS-attainable
only when d = 3 by the results in Hürlimann (2012), Hürlimann (2014) and Kurowicka and Cooke (2001),
where universal copulas are studied, that is, explicitly constructed copulas with given correlation matrices.
For d ≥ 4, such a universal copula is still unknown to the best of our knowledge. Accordingly, a general
ρS-compatible matrix P is not known to be attainable when d ≥ 4.

2.4 Compatibility and attainability for block matrices

In this section, we study the compatibility and attainability of block matrices P , that is, matrices
containing homogeneous blocks (so blocks of equal entries), possibly with ones on the diagonal. A special
case of block matrices are hierarchical matrices, which are introduced in Example 2.4.1. Block matrices
naturally appear when clustering algorithms are applied to matrices of measures of concordance or when
(rather) sparse, partially exchangeable hierarchical models are designed.

Although all the criteria introduced in Section 2.3 can be directly applied to block correlation matrices,
the corresponding computational effort can be large, especially when d is large. The comparably small
number of different entries in block or hierarchical matrices is especially attractive for high-dimensional
modeling and one expects more efficient ways to check compatibility and attainability for such matrices.
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Specifically, compatibility and attainability for Spearman’s rho matrices are in demand since, as discussed
in Section 2.3, there is no method available to check compatibility for d ≥ 10, and to check attainability for
d ≥ 4.

2.4.1 Definition and notations

We consider the following symmetric matrix in [−1, 1]d×d with diagonal entries equal to one:

P =


P11 · · · P1S
...

. . .
...

PS1 · · · PSS

 , for Ps1s2 =

(1− ρss)Ids + ρssJds , if s1 = s2 = s,

ρs1s2Jds1ds2 , if s1 6= s2,
(2.11)

where Ids denotes the ds × ds identity matrix, Jds1ds2 = 1ds11
>
ds2
∈ Rds1×ds2 (for 1ds = (1, . . . , 1) ∈ Rds) is

the ds1 × ds2 matrix of ones and Jds = Jdsds . We call a matrix of Form (2.11) a block homogeneous matrix.
For notational convenience, let

Γd(a, b) = aId + b(Jd − Id) = (a− b)Id + bJd

which is also known as the d-dimensional compound symmetry matrix. With this notation, the matrices on
the diagonal of P in (2.11) can be written as Pss = Γds(1, ρss).

A matrix of Form (2.11) appears, for example, as a correlation matrix of a random vector with
homogeneous correlations within blocks. Let X = (X1, . . . , Xd) be a d-dimensional random vector which
can be divided into S such blocks or groups

X = (X1, . . . ,XS) = (X11, . . . , X1d1 , . . . , XS1, . . . , XSdS ), (2.12)

where ds is the size of group s ∈ {1, . . . , S}. In financial and insurance applications, the groups are often
industry sectors, business sectors, regions, etc. If we consider the case where the correlation between two
random variables depends only on the groups they belong to, then the resulting correlation matrix of X is
block homogeneous of Form (2.11) where ρs1s2 represents the correlation coefficient within two (possibly
equal) groups s1 and s2.

We call a matrix P block homogeneous if it is a symmetric [−1, 1]d×d matrix with diagonal entries
equal to one, but not necessarily a correlation matrix since positive definiteness of P is not assumed. Note
that, for compound symmetry matrices, it is well-known that Γd(a, b) is positive definite if and only if
−a/(d− 1) < b < a. Therefore, Pss, s = 1, . . . , S, is positive definite if and only if −1/(ds − 1) < ρss < 1.
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Example 2.4.1 (Hierarchical matrices). Consider the block homogeneous matrix

P =



1 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1
0.4 1 0.4 0.4 0.1 0.1 0.1 0.1 0.1
0.4 0.4 1 0.4 0.1 0.1 0.1 0.1 0.1
0.4 0.4 0.4 1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 1 0.3 0.3 0.15 0.15
0.1 0.1 0.1 0.1 0.3 1 0.3 0.15 0.15
0.1 0.1 0.1 0.1 0.3 0.3 1 0.15 0.15
0.1 0.1 0.1 0.1 0.15 0.15 0.15 1 0.2
0.1 0.1 0.1 0.1 0.15 0.15 0.15 0.2 1


(2.13)

with S = 3, (d1, d2, d3) = (4, 3, 2), (ρ11, ρ22, ρ33, ρ12, ρ13, ρ23) = (0.4, 0.3, 0.2, 0.1, 0.1, 0.15). This matrix can
be described by a tree TP illustrated in Figure 2.3. For the tree TP , denote by vlm the mth node (counted

((1, 2, 3, 4), ((5, 6, 7), (8, 9))); 0.1

(1, 2, 3, 4); 0.4 ((5, 6, 7), (8, 9)); 0.15

(5, 6, 7); 0.3 (8, 9); 0.2

Level 0

Level 1

Level 2

Figure 2.3: Tree representation TP of the hierarchical correlation matrix P in (2.13).

from the left) at level l ∈ {0, 1, 2}. The leaves (that is, the terminal nodes) v11, v21 and v22 represent the
groups of variable indices (1, 2, 3, 4), (5, 6, 7) and (8, 9), respectively. Nodes v21 and v22 are connected by a
node v12, and v11 and v12 are connected by a node v01. To each vertex v = v01, v11, v12, v21, v22 (in the set
of vertices denoted by V = {v01, v11, v12, v21, v22}), a single number ρv = 0.4, 0.3, 0.2, 0.15, 0.1 is attached,
respectively. The vertex v01 at the lowest level is called root; if two nodes v and v′ are connected and v is at
lower level than v′, then v is a parent of v′ and v′ is a child of v. A node v is called descendant of another
node v′ if v′ is in the shortest path from v to the root of the tree; note that each single node is regarded as
a descendant of itself. Finally, for a pair of two nodes (v, v′), the lowest common ancestor is the node at
lowest level that has both v and v′ as descendants; when v = v′, the lowest common ancestor is v itself.

With these notions, the block matrix P is recovered from the tree TP by defining a matrix with diagonal
entries equal to 1 and the (i, j)-entry, for i 6= j, equal to the number attached to the descendant of (vi, vj)
where vi and vj are the leaves of groups of variable indices containing i and j, respectively. If a block
homogeneous correlation matrix P admits such a tree representation TP , we call P hierarchical matrix and
TP the corresponding hierarchical tree. The matrix (2.13) is thus a hierarchical matrix with corresponding
tree displayed in Figure 2.3.
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2.4.2 Positive (semi-)definiteness

By Corollary 2.3.3, positive (semi-)definiteness is a necessary condition for compatibility of matrices of
transformed rank correlation coefficients including Spearman’s rho, Blomqvist’s beta and van der Waerden’s
coefficient. In the case of van der Waerden’s coefficient, it is even sufficient for compatibility. If a matrix
is block homogeneous, it turns out to suffice to check positive semi-definiteness of an S × S matrix, see
Theorem 2.4.3 below. This result can lead to a significant reduction in the computational effort for checking
compatibility.

Definition 2.4.2 (Block average map). Let P be a block homogeneous matrix of form (2.11). The block
average map P 7→ φ(P ) for P = (ρij) ∈ Rd×d is defined by

φ(P ) =


ρ̃11 ρ12 · · · ρ1S

ρ21
. . . . . .

...
...

. . . . . . ρS−1S

ρS1 · · · ρS−1S ρ̃SS

 ∈ RS×S , ρ̃ss = 1 + (ds − 1)ρss
ds

, s = 1, . . . , S.

The block average map φ allows one to collapse block matrices (to “ordinary” matrices). IfX is a random
vector as in (2.12) with E(X) = 0 and Cov(X) = P where P is as in (2.11), then Y = (Y 1, . . . , Y S) defined
by the group averages Y s = 1

ds

∑ds
j=1Xsj has covariance matrix φ(P ), that is, Cov(Y ) = φ(P ). Huang and

Yang (2010); Roustant and Deville (2017) showed that it suffices to check positive (semi-)definiteness of the
matrix φ(P ) ∈ RS×S to obtain positive (semi-)definiteness of P ∈ Rd×d.

Theorem 2.4.3 (Characterization of positive (semi-)definiteness of block matrices). Let P ∈ Rd×d be a
block matrix as in (2.11). Then P is positive (semi-)definite if and only if φ(P ) is positive (semi-)definite.

Proof. See Huang and Yang (2010) and Roustant and Deville (2017).

Example 2.4.4 (Positive definiteness of a hierarchical matrix). Consider P as in (2.13), so S = 3, d = 9,
(d1, d2, d3) = (4, 3, 2) with block average map given by

φ(P ) =

(1 + (d1 − 1)ρ11)/d1 ρ12 ρ13

ρ21 (1 + (d2 − 1)ρ22)/d2 ρ23

ρ31 ρ32 (1 + (d3 − 1)ρ33)/d3


=


1+(4−1)0.4

4 0.1 0.1
0.1 1+(3−1)0.3

3 0.15
0.1 0.15 1+(2−1)0.2

2

 =

0.55 0.1 0.1
0.1 0.53 0.15
0.1 0.15 0.6

 .

One can easily check that φ(P ) is positive definite. By Theorem 2.4.3, P is thus positive definite.

2.4.3 Block Cholesky decomposition

The Cholesky decomposition of a positive definite (positive semi-definite) matrix P ∈ Pd is P = LL>

for a lower triangular matrix L with positive (non-negative) diagonal elements, which is called the Cholesky
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factor of P . Such a decomposition of P exists if and only if P is positive (semi-)definite and so can be used
to check the latter property computationally.

Cholesky decompositions are of utmost importance in various areas of statistics. In quantitative risk
management, they are frequently utilized to construct multivariate elliptical distributions. For example,
once the Cholesky factor L of P is computed, the d-dimensional random vector X = LZ for Z ∼ Nd(0, Id)
satisfies Cov(X) = LL> = P . This X thus attains a given matrix P of van der Waerden’s coefficients; see
Corollary 2.3.12. For building hierarchical dependence models after estimating groups of homogeneous
models or after applying clustering algorithms (which naturally lead to groups of variables), one often
considers block homogeneous correlation matrices or hierarchical matrices (see Example 2.4.1). We will now
turn to the question how Cholesky factors of such matrices look like and can be computed more efficiently
than in the classical way.

Proposition 2.4.5 (Cholesky factor of block matrices). For a d× d block homogeneous correlation matrix
P of form (2.11), its Cholesky factor L is of the form

L =


L11 O · · · O

L21 L22
. . . O

...
...

. . .
...

LS1 LS2 · · · LSS


where O = (0) represents a block of zeros and, for s = 1, . . . , S, the diagonal matrices are

Lss =



l̃ss,1 0 0 · · · 0

lss,1 l̃ss,2 0
...

lss,1 lss,2 l̃ss,3
. . .

...
...

...
...

. . . 0
lss,1 lss,2 lss,3 · · · l̃ss,ds


∈ Rds×ds

for some l̃ss,k, k = 1, . . . , S and lss,k, k = 1, . . . , S − 1, and the off-diagonal matrices are

Ls+m,s = (csm,11ds+m , . . . , csm,ds1ds+m) ∈ Rds+m×ds , m = 1, . . . , S − s

for some (csm,1, . . . , csm,ds).

The proof of Proposition 2.4.5 reduces to verify Algorithm 3 at the end of this chapter, which computes
the Cholesky factor of a given block homogeneous correlation matrix.

Proof of Algorithm 3 and Proposition 2.4.5. Consider the first iteration s = 1. Let

L11 =
√
P11, Ls1 = Ps1(L>11)−1, s = 2, . . . , dS .
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Since P11 = Γd1(1, ρ11) is a compound symmetry matrix, solving the equation L11L
>
11 = P11 yields that

L11 is of the form

L11 =



1 0 0 · · · 0

l11,1 l̃11,2 0
...

l11,1 l11,2 l̃11,3
. . .

...
...

...
...

. . . 0
l11,1 l11,2 l11,3 · · · l̃11,d1


∈ Rd1×d1 ,

where

l̃11,j =

√√√√1−
j−1∑
k=1

l211,k, and l11,j = 1
l̃11,j

(
ρ11 −

j−1∑
k=1

l211,k

)
, j = 1, . . . , d1.

Note that all off-diagonal components in the same column are equal. This set of equations can be solved
sequentially for j = 1, . . . , d1. For s = 2, . . . , dS , since Ps1 = ρs1Jdsd1 , Ls1 = ρs1Jdsd1(L>11)−1 can be
written as

Ls1 = (cs1,11ds , . . . , cs1,d11ds) ∈ Rds×d1 , s = 2, . . . , S,

where (cs1,1, . . . , cs1,d1) can be sequentially determined via

cs1,j l̃11,j +
j−1∑
k=1

cs1,kl11,k = ρs1, j = 1, . . . , d1.

Let P−(1:d1) be the submatrix of P obtained by removing the first d1 rows and columns. Let L−1 be the
Cholesky factor of

P (1) = P−(1:d1) − (P21, . . . , Pds1)>P−1
11 (P>21, . . . , P

>
dS1).

Then LL> = P for the lower triangle matrix

L =


L11 O · · · O

L21
... L−1

LS1

 .

We now show that P (1) is a block matrix with diagonal blocks equal to compound symmetric matrices
and off-diagonal blocks equal to constant matrices. Since

(P21, . . . , PS1)>P−1
11 (P>21, . . . , P

>
dS1)

= (ρ21Jd2d1 , . . . , ρS1JdSd1)>P−1
11 (ρ21J

>
d2d1

, . . . , ρS1J
>
dSd1

),

its (i, j)-block for i, j ∈ {1, . . . , S − 1} is given by

ρi+1,1ρj+1,1Jdi+1,d1P
−1
11 J

>
dj+1d1

= ρi+1,1ρj+1,11di+11
>
d1
P−1

11 1d11
>
dj+1

.
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Since P11 = Γd1(1, ρ11), we have that

P111d1 = (1 + (d1 − 1)ρ11)1d1 .

Moreover,

1>d1
P−1

11 P111d1 = 1>d1
1d1 = d1.

Putting these equalities together, we obtain that

1>d1
P−1

11 1d1 = d1

1 + (d1 − 1)ρ11
.

Therefore, the (i, j)-block of the second term of P−1 is given by

ρi+1,1ρj+1,1Jdi+1d1P
−1
11 J

>
dj+1d1

= d1ρi+1,1ρj+1,1

1 + (d1 − 1)ρ11
Jdi+1dj+1 .

Consequently, P (1) is a block matrix with (i, i)th block given by

Γdi+1(1, ρi+1,i+1) +
d1ρ

2
i+1,1

1 + (d1 − 1)ρ11
Jdi+1

= Γdi+1

(
1 +

d1ρ
2
i+1,1

1 + (d1 − 1)ρ11
, ρi+1,i+1 +

d1ρ
2
i+1,1

1 + (d1 − 1)ρ11

)
, i = 1, . . . , S − 1,

and with (i, j)th block given by

ρi+1,j+1Jdi+1,dj+1 + d1ρi+1,1ρj+1,1

1 + (d1 − 1)ρ11
Jdi+1,dj+1

=
(
ρi+1,j+1 + d1ρi+1,1ρj+1,1

1 + (d1 − 1)ρ11

)
Jdi+1dj+1 , i, j ∈ {1, . . . , S − 1}, i 6= j.

Since P (1) has the same structure as the initial matrix P , the same procedure can be applied to find a
Cholesky factor L−1 such that L−1L

>
−1 = P (1). By iteratively applying this procedure, we obtain the

Cholesky factor L of P .

Algorithm 3 uses only S(S + 1)/2 correlation coefficients and the block sizes d1, . . . , dS without the
need to consider the full d× d matrix P , which can lead to significant computational savings especially
when d is large and S is small. The following example covers the individual steps of Algorothm 3 with
concrete numbers.

Example 2.4.6 (Case of S = 3, (d1, d2, d3) = (4, 3, 2)). Consider the block homogeneous matrix (2.13).
As discussed in Example 2.4.4, the matrix P in (2.13) is positive definite, and thus has a Cholesky factor L.
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By applying Algorithm 3, the Cholesky factor L of P is obtained as

P =



1 0 0 0 0 0 0 0 0
0.4 0.92 0 0 0 0 0 0 0
0.4 0.26 0.88 0 0 0 0 0 0
0.4 0.26 0.2 0.86 0 0 0 0 0
0.1 0.07 0.05 0.04 0.99 0 0 0 0
0.1 0.07 0.05 0.04 0.28 0.95 0 0 0
0.1 0.07 0.05 0.04 0.28 0.21 0.93 0 0
0.1 0.07 0.05 0.04 0.13 0.1 0.08 0.97 0
0.1 0.07 0.05 0.04 0.13 0.1 0.08 0.15 0.96


.

In the first iteration s = 1 of Algorithm 3 with P (1) = P , the Cholesky factor of the square ma-
trix with entries from the first d1 = 4 columns is computed. By solving (2.16), P11 = Γd1(1, ρ11)
is decomposed into L11 of form (2.15), which is determined by (l̃11,1, l̃11,2, l̃11,3, l̃11,4, l11,1, l11,2, l11,3) =
(1.00, 0.92, 0.88, 0.88, 0.40, 0.26, 0.20). By solving (2.17), L21 and L31 are determined via (c11,1, . . . , c11,d1)
and (c12,1, . . . , c12,d1) by (c11,1, . . . , c11,4) = (c12,1, . . . , c12,4) = (0.1, 0.07, 0.05, 0.04). For iteration s = 2, the
submatrix P (2) is computed following Step 5) via (ρ(2)

1 , ρ
(2)
1,o, ρ

(2)
2 , ρ

(2)
2,o, ρ

(2)
12 ) = (0.98, 0.28, 0.98, 0.18, 0.13). By

solving (2.16) and (2.17), L22 and L32 are specified via (l̃22,1, l̃22,2, l̃22,3, l22,1, l22,1) = (0.99, 0.95, 0.93, 0.28, 0.21),
and (c21,1, c21,2) = (0.13, 0.10). Finally, the submatrix P (3) is given by P (3) = Γ2(0.95, 0.15). The Cholesky
factor L33 is then specified via (l̃33,1, l̃33,2, l33,1) = (0.97, 0.96, 0.15) by solving the equations in (2.16).

2.4.4 Attainability for block matrices

In this section, we study compatibility and attainability of measures of concordance for a block
homogeneous matrices of form (2.11). We expect that checking compatibility and attainability of a given
d× d block matrix can be reduced to check those of some S × S matrix for a block size S, which can be
much smaller than d.

For van der Waerden’s coefficient, we have already seen that Theorem 2.4.3 is available for checking
compatibility and that Proposition 2.4.5 is beneficial to attain a given ζ-compatible matrix. For Spearman’s
rho block matrices, we have the following result.

Proposition 2.4.7 (ρS-compatible subclass of block matrices). Let P be a d1 + · · ·+dS block homogeneous
correlation matrix of form (2.11). Let M = (msksl) be a S × S matrix with mss = 1, s = 1, . . . , S, and

msksl = dskdslρsk,sl
(1 + (dsk − 1)ρsksk)(1 + (dsl − 1)ρslsl)

, sk, sl ∈ {1, . . . , S}, sk 6= sl.

If M ∈ SS , then P is ρS-compatible. Moreover, if M is ρS-attainable, so is P .

Proof. Let λs = ρ̃ss = 1+(ds−1)ρss
ds

. Then positive definiteness of P requires −1/(ds − 1) < ρss < 1 and
thus it holds that λs ∈ (0, 1). Notice that

λs + (1− λs)
(
− 1
ds − 1

)
= ρss.
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If M ∈ SS , there exists an S-dimensional random vector U = (U1, . . . , US) with standard uniform margins
such that ρ(U) = M . For s ∈ {1, . . . , S}, there exists a ds-dimensional random vector Vs with Unif(0, 1)
margins such that its correlation matrix is Γ(1,−1/(ds − 1)) for s ∈ {1, . . . , S}; see Murdoch et al. (2001)
for a construction. Let V1, . . . ,VS be such random vectors independent of each other, and also independent
of U . For s ∈ {1, . . . , S}, let Bs ∼ Bern(λs) such that B1, . . . , BS are independent of each other, and
independent of U and V1, . . . ,VS . For s = 1, . . . , S, define a ds-dimensional random vector

Ws = BsUs1ds + (1−Bs)Vs. (2.18)

One can easily check that Ws has Unif(0, 1) marginals. Moreover, for s = 1, . . . , S,

ρ(Ws) = λsJds + (1− λs)Γds(1,−1/(ds − 1)) = Γds(1, ρss) = Pss,

and for s1 6= s2, i = 1, . . . , ds1 , j = 1, . . . , ds2 ,

ρ(Ws1i,Ws2j) = λs1λs2ρ(Us1 , Us2) = λs1λs2ms1s2 = ρs1s2 .

Therefore, (W>
1 , . . . ,W

>
S ) is a (d1 + · · · + dS)-dimensional random vector with correlation matrix P .

Since its marginal distributions are all Unif(0, 1), P is ρS-compatible by Proposition 2.3.4 Part 2. If M is
ρS-attainable by constructing U above, then P is ρS-attainable via construction (2.18).

If S ≤ 9, checking M ∈ SS can be reduced to checking its positive semi-definiteness by Proposition 2.3.4
Part 1 and Part 2. If S ≥ 10, a sufficient condition is available related to Bern(1/2)-compatibility by
Proposition 2.3.2. On attainability of P , M is ρS-attainable only for the sector size S = 3; see the discussion
of ρS-attainability in Section 2.3.4.

Example 2.4.8 (Case with d = 9 and S = 3). Let P be the block homogeneous correlation matrix defined
in (2.13). Since d ≤ 9, its compatibility can be verified by checking that P is positive semi-definite. In fact,
the corresponding matrix M in Proposition 2.4.7 of P is

M =

 1 0.341 0.303
0.341 1 0.469
0.303 0.469 1


and one can also check that M is positive definite by a simple calculation. Therefore, P is ρS-compatible
by Proposition 2.4.7. Since M is 3-dimensional, P is ρS-attainable; see the discussion in Section 2.3.4.
Therefore, even though P is 9 (> 3)-dimensional, it is ρS-attainable by construction (2.18).

When a given block homogeneous matrix P is a hierarchical matrix, then the following sufficient
condition is available for compatibility and attainability of any measure of concordance.

Proposition 2.4.9 (Compatible and attainable hierarchical matrices). For a general measure of concordance
κ, a d× d hierarchical matrix P is κ-compatible and κ-attainable (by a nested or hierarchical Archimedean
copula (HAC)) if, for the corresponding hierarchical tree, 0 ≤ ρv ≤ ρv′ holds for every pair of nodes (v, v′)
such that v is a parent of v′.
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Proof. Let ψθ : [0,∞] → [0, 1] be a one-parameter Archimedean generator with θ ∈ Θ = (θmin, θmax),
θmin ≤ θmax ≤ ∞ and let Cθ(u1, u2) = ψθ(ψ−1

θ (u1) + ψ−1
θ (u2)), u1, u2 ∈ [0, 1], be the corresponding

Archimedean copula family. Suppose {ψθ; θ ∈ Θ} satisfies the following conditions:

(1) (Complete monotonicity) (−1)k dk
dtkψθ(t) ≥ 0 for any θ ∈ Θ and k = 0, 1, . . . ;

(2) (Limiting copulas) Cθmin = limθ↓θmin Cθ is the independence copula and Cθmax = limθ↑θmax Cθ is the
comonotone copula;

(3) (Positive ordering) if θ, θ′ ∈ Θ such that θ ≤ θ′ then Cθ � Cθ′ ; and

(4) (Sufficient nesting condition) ψ−1
θ ◦ ψθ′ is completely monotone for θ, θ′ ∈ Θ if and only if θ ≤ θ′.

Examples of Archimedean copulas satisfying Conditions (1)–(4) are the Clayton and Gumbel copula families
with generators given by Laplace transforms of certain gamma and positive stable distributions, respectively;
see (Nelsen, 2006, Examples 4.12 and 4.14) and (Hofert, 2010, Tables 2.1 and 2.3). Note that Condition
(1) guarantees that the d-dimensional Archimedean copula Cθ(u1, . . . , ud) = ψθ(

∑d
j=1 ψ

−1
θ (uj)) is also a

d-copula for any d ≥ 2; see Kimberling (1974). Together with the continuity and coherence axioms of a
measure of concordance, Condition (2) and (3) imply that the map κ(θ) : θ 7→ κ(Cθ) is increasing and
continuous from Θ to [0, 1]. Therefore, for every pair of nodes (v, v′), there exist θv, θv′ ∈ Θ such that
θv ≤ θv′ and κ(θv) = ρv ≤ ρv′ = κ(θv′). For the hierarchical tree TP of a given hierarchical matrix P with
the corresponding collection of generators {ψθv ; v ∈ V}, Condition (4) thus ensures that there exists a
corresponding HAC; see McNeil (2008) and (Joe, 1997, pp. 87) for the sufficient nesting condition and Hofert
(2012) and Górecki et al. (2017) for the construction of HACs. By construction, the matrix of pairwise
measure of concordance κ is equal to P for this HAC. Thus, P is both κ-compatible and κ-attainable.

When a hierarchical matrix P satisfies the sufficient condition in Proposition 2.4.9, we call P a proper
hierarchical matrix. Note that componentwise non-negativity of P is necessary since complete monotonicity
(1) of ψθ implies that Π � Cθ; see (Hofert, 2010, Remark 2.3.2). For sampling from a HAC, see McNeil
(2008), Hofert (2011) or Hofert (2012).

Remark 2.4.10 (Positive definiteness of hierarchical matrices). In Proposition 2.4.9, positive definiteness
of P was not a necessary assumption. In fact, positive definiteness is impled by the condition 0 ≤ ρv ≤ ρv′
for any v and v′ such that v is a parent of v′ since Proposition 2.4.9 holds for any G-transformed rank
correlation coefficient and κG-compatible matrices are necessarily positive definite.

Example 2.4.11 (Attainability of hierarchical matrix (2.13) for general κ). By Proposition 2.4.9, the
hierarchical matrix P in (2.13) is κ-compatible and κ-attainable for any measure of concordance κ since P
is proper as can be easily checked from Figure 2.3. As an example of a model attaining P , let ψθ be the
generator of Gumbel copula and let CP be the corresponding HAC given, for each u ∈ [0, 1]9, by

CP (u1, . . . , u9) = Cv01

(
Cv11(u1, u2, u3, u4), Cv12(Cv21(u5, u6, u7), Cv22(u8, u9))

)
,

where the Gumbel copula Cv has parameter θv such that κ(Cv) = ρv is attained for every node v. For
example, if κ is Blomqvist’s beta β, one has β(θv) = β(Cv) = 4Cv(1/2, 1/2)− 1 = 22−21/θv − 1, θv ∈ [1,∞),
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which is continuous and increasing from 0 to limθv→∞ β(θv) = 1. Therefore, for each ρv = βv, v ∈ V, the
parameter θv is given by θv = 1/

(
log2(2− log2(1 + βv))

)
.

As another example, when κ is Kendall’s tau τ , it is known that τ(θv) = τ(Cθv) = (θv − 1)/θv for
θv ∈ [1,∞) and so θv = 1/(1− τv) where τv is the corresponding entry in P in (2.13) or Figure 2.3. Thus,
for example, τv01 = 0.1 implies that θv01 = 10/9. The same construction applies to κ being Spearman’s
rho or van der Waerden’s coefficient and the Cv being Clayton copulas, for example. Note that it may
sometimes be necessary to find θv such that κ(θv) = κv for a given κv numerically.

2.5 Conclusion and discussion

We introduced a new class of measures of concordance called transformed rank correlation coefficients,
whose members depend on functions G1 and G2. Spearman’s rho, Blomqvist’s beta and van der Waerden’s
coefficient are obtained as special cases. We provided necessary and sufficient conditions on G1 and G2

when transformed rank correlation coefficients are measures of concordance; see Theorem 2.2.5.

For matrices of (pairwise) transformed rank correlation coefficients, a sufficient condition for compatibility
and attainability was derived in terms of Bern(1/2)-compatibility; see Proposition 2.3.2 and Corollary 2.3.11
for compatibility and attainability, respectively. We also presented characterizations of the sets of compatible
Spearman’s rho, Blomqvist’s beta and van der Waerden’s matrices; see Proposition 2.3.4. This result
revealed that, among these measures of concordance, van der Waerden’s coefficient may be the most
convenient one in terms of checking compatibility and attainability since its compatible set coincides with
that of Pearson’s linear correlation coefficient.

We then studied compatible and attainable block matrices for which fast methods of checking positive
semi-definiteness and of calculating Cholesky factors were derived; see Theorem 2.4.3 and Algorithm 3,
respectively. For certain subclasses of block matrices, the problem of checking compatibility and attainability
can be reduced to lower dimensions; see Proposition 2.4.7 and Proposition 2.4.9.

Further research is required for compatibility of measures of concordance which cannot be represented
as transformed rank correlation coefficients, such as Kendall’s tau and Gini’s gamma. Another angle to take
for future research, which will be also addressed in Chapter 3, is a comparison among different transformed
rank correlation coefficients to obtain a clear answer on which measure is the best to be used from a
statistical point of view. In terms of block matrices, dimension reduction for checking compatibility of
transformed rank correlation coefficients is also an interesting problem for future research.
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Algorithm 3 Cholesky decomposition for block matrices
Input: A block correlation matrix P .

Output: The Cholesky decomposition L of P .

1) For s = 1, . . . , S, P (1) = P and P (s), s ≥ 2 of the form

P (s) =

 P
(s)
1,1 · · · P

(s)
1,S−s+1

...
. . .

...
P

(s)
S−s+1,1 · · · P

(s)
S−s+1,S−s+1

 , (2.14)

where, for s1, s2 ∈ {1, . . . , S − s+ 1},

P
(s)
s1,s2 =

{
Γds+t−1 (ρ(s)

t , ρ
(s)
t,o), if s1 = s2 = t ∈ {1, . . . , S − s+ 1},

ρ(s)
s1,s2Jds+s1−1ds+s2−1 , if s1 6= s2,

for some diagonal entries of diagonal blocks ρ(s)
t , off-diagonal entries of diagonal blocks ρ(s)

t,o, and entries of off-diagonal blocks
ρ(s)
s1,s2 , do the following.

2-1) Set

Lss =



l̃ss,1 0 0 · · · 0

lss,1 l̃ss,2 0
...

lss,1 lss,2 l̃ss,3
. . .

...
...

...
...

. . . 0
lss,1 lss,2 lss,3 · · · l̃ss,ds

 ∈ Rds×ds , (2.15)

where

l̃ss,j =

√√√√ρ
(s)
1 −

j−1∑
k=1

l2
ss,k

, and lss,j =
1

l̃ss,j

(
ρ

(s)
1,o −

j−1∑
k=1

l
2
ss,k

)
, j = 1, . . . , ds. (2.16)

2-2) If s < S, set, for m = 1, . . . , S − s,

Ls+m,s = (csm,11ds+m , . . . , csm,ds1ds+m ) ∈ Rds+m×ds ,

where (csm,1, . . . , csm,ds ) can be sequentially determined via

csm,j l̃ss,j +
j−1∑
k=1

csm,klss,k = ρ
(s)
m+1,1, j = 1, . . . , ds. (2.17)

2-3) If s < S, set P (s+ 1) to be of form (2.14) with

ρ
(s+1)
t = ρ

(s)
t+1 +

ds(ρ(s)
t+1,1)2

ρ
(s)
1 + (ds − 1)ρ(s)

1o

, ρ
(s+1)
t,o = ρ

(s)
t+1,o +

ds(ρ(s)
t+1,1)2

ρ
(s)
1 + (ds − 1)ρ(s)

1o

, t ∈ {1, . . . , S − s},

ρ
(s+1)
si,sj

= ρ
(s)
si+1,sj+1 +

dsρ
(s)
si+1,1ρ

(s)
sj+1,1

ρ
(s)
1 + (ds − 1)ρ(s)

1o

, s1, s2 ∈ {1, . . . , S − s}.

3) Return the Cholesky factor L whose (i, j)th block is Lij for i ≥ j and is O for i < j, i, j = 1, . . . , S.
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Chapter 3

Estimation and comparison of
correlation-based measures of
concordance

We address the problem of estimating and comparing transformed rank correlation coefficients defined
in Chapter 2. We propose a novel framework for comparing transformed rank correlations in terms of the
asymptotic variance of their canonical estimators. A general criterion derived from this framework is that
concordance-inducing functions with smaller variances of squared random variables are more preferable.
In particular, we show that Blomqvist’s beta attains the optimal asymptotic variance and Spearman’s
rho outperforms van der Waerden’s coefficient. We also find that the optimal bounds of the asymptotic
variance are attained by Kendall’s tau.

3.1 Introduction

In Chapter 2, we studied G-transformed rank correlation coefficient defined by

κG(C) = κG(U, V ) = ρ(G−1(U), G−1(V ))

for a copula C and (U, V ) ∼ C, where G is a distribution function called the concordance-inducing function
and G−1 is the generalized inverse of G; see Section 2.2 of Chapter 2. Thanks to this representation
via Pearson’s correlation, this class of measures of concordance has various appealing properties, such
as interpretability and ease of studying compatibility and attainability problems discussed in Chapter 2.
Another advantage of this class is its ease of estimation since one can estimate κG by the sample correlation
of pseudo-observations from C transformed by G−1 for a given G.

For a given class of transformed rank correlation coefficients, natural questions are which concordance-
inducing function is best to use and how to compare different measures of concordance. De Winter et al.
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(2016) compared Pearson’s linear correlation and Spearman’s rho by numerical experiments in terms of
bias, variance and robustness to outliers. Various measures of concordance were compared in terms of
their power in tests of independence; see, for example, Bhuchongkul (1964), Behnen (1971), Behnen (1972),
Luigi Conti and Nikitin (1999), Rödel and Kössler (2004) and Genest and Verret (2005).

We tackle the problem of comparing measures of concordance from the theoretical viewpoint of statistical
estimation of κG. In our proposed framework, a concordance-inducing function G is more preferable than
another one G′ if the largest (worst) or smallest (best) asymptotic variance of a canonical estimator κ̂G of
κG is smaller than that of G′ for a certain set of copulas D. Simply put, G is more preferable than G′ if
κ̂G tends to estimate κG more accurately than κ̂G′ estimates κG′ if the underlying copula belongs to D. A
general criterion derived from this framework is that concordance-inducing functions with smaller variance
VarG(X2) where X ∼ G is more preferable. Therefore, heavy-tailed concordance-inducing functions, such
as a Student t distribution function, are not recommended in comparison to normal ones. We also find
that Spearman’s rho, for which G is the uniform distribution, can be outperformed by rank correlations
transformed by Beta distributions. Moreover, under certain conditions on D, we prove that Blomqvist’s
beta attains the optimal worst and best asymptotic variances among all transformed rank correlation
coefficients, and Spearman’s rho is more preferable than van der Waerden’s coefficient. Considering the
drawback of Blomqvist’s beta that it only depends on the local value C(1/2, 1/2) of a copula C, we also
compare transformed rank correlations with Kendall’s tau. Based on the representation of Kendall’s tau in
terms of Pearson’s linear correlation coefficient, we find that Kendall’s tau also attains the optimal worst
and best asymptotic variances if estimators of these measures are compared without being standardized by
sample size. Since the correlation-representation of Kendall’s tau depends on two independent copies of
random vectors following C, Kendall’s tau is not optimal any more if the asymptotic variances of these
estimators are standardized by sample size. Finally, in a simulation study, we find that the choice of
concordance-inducing function G and the strength of dependence of the underlying copula C affect the
asymptotic variance of κ̂G more than the kinds of copulas.

This chapter is organized as follows. In Section 3.2 we introduce a framework for comparing G-
transformed rank correlations in terms of their asymptotic variances. A canonical estimator of a transformed
rank correlation is presented in Section 3.2.1. Section 3.2.2 addresses effects of location-scale transforms of
G on the asymptotic variance. The worst and best asymptotic variances among fundamental and Fréchet
copulas are provided in Section 3.2.3, and the optimality of Blomqvist’s beta is given in Section 3.2.4.
Transformed rank correlations and Kendall’s tau are compared in Section 3.3. In Section 3.4, a simulation
study is conducted to compare asymptotic variances for various parametric copulas and concordance-inducing
fuctions. Section 3.5 concludes this work with discussions about directions for future research.

3.2 Estimation of κG and their comparison

In this section, we propose a novel framework for comparing G-transformed rank correlations to
answer the question which concordance-inducing function is best to be used. In the proposed framework,
transformed correlations are compared in terms of the asymptotic variances of their canonical estimators,
and one concordance-inducing function G is considered better than another G′ if the largest (worst) or
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smallest (best) asymptotic variance of an estimator κ̂G of κG among a set of copulas D is smaller than that
of κG′ .

To this end, let C2 denote the set of all bivariate copulas, that is, all bivariate distributions functions
with standard uniform univariate marginal distributions. As defined in Section 1.2, we call C ′ ∈ C2 more
concordant than C ∈ C2, denoted by C � C ′, if C(u, v) ≤ C ′(u, v) for all (u, v) ∈ [0, 1]2. The survival
function of C is given by C̄(u, v) = P(U > u, V > v), (u, v) ∈ [0, 1] where (U, V ) ∼ C. For any map
κ : C2 → R, we identify κ(C) with κ(U, V ) for a random vector (U, V ) ∼ C defined on a fixed atomless
probability space (Ω,F ,P). The set of all concordance-inducing functions is denoted by G.

3.2.1 Canonical estimator of κG

Since κG is invariant under location-scale transforms of G, we first consider standardized concordance-
inducing functions G with mean zero and variance one. Effects of location-scale transforms of G to
estimators of κG will be discussed in Section 3.2.2. Assuming that an i.i.d. sample (Ui, Vi), i = 1, . . . , n,
n ∈ N, from C is available, we consider the following canonical estimator of κG:

κ̂G = 1
n

n∑
i=1

G−1(Ui)G−1(Vi).

By the central limit theorem (CLT), κ̂G satisfies the following asymptotic normality:
√
n {κ̂G − κG(C)} d−→ N(0, σ2

G(C)), σ2
G(C) = Var(G−1(U)G−1(V )),

provided that Var(G−1(U)G−1(V )) < ∞. Writing X = G−1(U) and Y = G−1(V ) for (U, V ) ∼ C and
using that Var(XY ) = E[(XY )2]− E[XY ]2, Cov(X2, Y 2) = E[(XY )2]− E[X2]E[Y 2] = E[(XY )2]− 1 and
Cov(X,Y ) = E[XY ]− E[X]E[Y ] = E[XY ], we have that

σ2
G(C) = Var(XY ) = Cov(X2, Y 2) + 1− Cov(X,Y )2. (3.1)

Since Cov(X2, Y 2) = SD(X2)SD(Y 2)ρ(X2, Y 2) ≤ SD(X2)SD(Y 2) and Cov(X,Y )2 = ρ2(X,Y ) ≥ 0, a
sufficient condition for σ2

G(C) <∞ is that the fourth moment of G is finite. We consider the sets of optimal
concordance-inducing functions and the corresponding optimal bounds in terms of the worst and best
asymptotic variances of κ̂G, defined by

G∗(H,D) = arginf
G∈H

σ2
G(D), σ2

∗(H,D) = inf
G∈H

σ2
G(D),

G∗(H,D) = arginf
G∈H

σ2
G(D), σ2

∗(H,D) = inf
G∈H

σ2
G(D),

respectively, for H ⊆ G4 and D ⊆ C2, where

σ2
G(D) = inf

C∈D
σ2
G(C), σ2

G(D) = sup
C∈D

σ2
G(C)

and

G4 = {G ∈ G : EG[X] = 0, VarG(X) = 1 and EG[X4] <∞}
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with EG[X] and VarG(X) being the mean and variance of X ∼ G, respectively. The sets of attaining
G functions G∗(H,D) and G∗(H,D) are defined to be empty if the infima in σ2

G(D) and σ2
G(D) are not

attainable, respectively. Nevertheless, if H and D are closed in d∞, these infima are attainable and thus
G∗(H,D) and G∗(H,D) are non-empty; see Section 3.7.3 for details. Calculating the optimal worst and
best asymptotic variances σ2

∗(H,D) and σ2
∗(H,D) is not straightforward since neither C 7→ σ2

G(C) nor
G 7→ σ2

G(C) have simple linearity; see Section 3.7.2 for details. For simplicity of the discussion, we impose
the condition EG[X4] <∞ in G4 although concordance-inducing functions with EG[X4] =∞ are typically
not involved in determining optimal best and worst asymptotic variances. Although an ideal choice of H
is H = G4, other choices can also be of interest; for example, H = Gc4 where Gc4 is the set of continuous
concordance-inducing functions in G4, and H = Gb4 where Gb4 is the set of concordance-inducing functions in
G4 with bounded supports. Note that one-sided distributions such that esssup(G) =∞ and essinf(G) <∞,
or esssup(G) < ∞ and essinf(G) = −∞, cannot be concordance-inducing since they cannot be radially
symmetric. Therefore, the set Gb4 excludes concordance-inducing functions whose supports are R, and G4\Gb4
is a set of concordance-inducing functions in G4 with supports R. The sets of optimal concordance-inducing
functions G∗(H,D) and G∗(H,D) are considered as the best choices among the set of concordance-inducing
functions H ⊆ G4 to accurately estimate κG if one believes that D is the set of underlying copulas which
one wants to quantify and compare in terms of their concordance.

Remark 3.2.1 (Reflection invariance of σ2
G(C)). Let ν1, ν2 : C2 → C2 be partial reflections of copulas

defined by

ν1(C)(u, v) = v − C(1− u, v) and ν2(C)(u, v) = u− C(u, 1− v), C ∈ C2,

respectively, with their composition given by ν1 ◦ ν2(C)(u, v) = u + v − 1 + C(1 − u, 1 − v). For an
operator ϕ : C2 → C2, let Cϕ = ϕ(C). Then (1 − U, V ) ∼ Cν1 , (U, 1 − V ) ∼ Cν2 and (1 − U, 1 − V ) ∼
Cν1◦ν2 for (U, V ) ∼ C. By radial symmetry of G ∈ G, we have that G−1(1 − U) = −G−1(U) and
G−1(1− V ) = −G−1(V ). Therefore, σ2

G(C) is invariant under the reflections ν1, ν2, ν1 ◦ ν2 in the sense
that σ2

G(C) = σ2
G(Cν1) = σ2

G(Cν2) = σ2
G(Cν1◦ν2). This property follows intuitively since |κG(C)| is also

invariant under reflections, and thus one can estimate each of the quantities κG(C), κG(Cν1), κG(Cν2) and
κG(Cν1◦ν2) from any other.

Remark 3.2.2 (Asymptotic variance of Blomqvist’s beta). Schmid and Schmidt (2007) derived an
asymptotic variance of Blomqvist’s beta. Their asymptotic variance is in general different from ours since
we standardize the Bernoulli concordance-inducing function so that it has mean zero and variance one.
As they stated, one of the advantages of Blomqvist’s beta over other measures of concordance is that
Blomqvist’s beta admits an explicit form if the copula can be written explicitly. In fact, this advantage can
be passed on to a wider class of discrete concordance-inducing functions; see Section 3.6.1 for details.

3.2.2 Optimal location shift of G

Although κG is invariant under location-scale transforms of G, the asymptotic variance σ2
G(C) of its

canonical estimator κ̂G is not location invariant. To see this, let G0 ∈ G4 be a concordance-inducing function
with mean zero and variance one, and let Gµ,σ(x) = G0(x−µσ ) be the corresponding concordance-inducing
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function of the same type as G0 but with mean µ ∈ R and variance σ2 > 0. A canonical estimator of κGµ,σ
for known µ and σ is then given by

κ̂Gµ,σ = 1
n

n∑
i=1

G−1
µ,σ(Ui)G−1

µ,σ(Vi)
σ2 −

(µ
σ

)2
.

By the CLT, κ̂Gµ,σ is asymptotically normal with asymptotic variance given by

σ2
Gµ,σ (C) = Var

(
G−1
µ,σ(U)G−1

µ,σ(V )
σ2

)
.

Since G−1
µ,σ(U)/σ = G−1

µ/σ,1(U) and G−1
µ,σ(V )/σ = G−1

µ/σ,1(V ), one can assume that σ = 1 without changing
the asymptotic variance σ2

Gµ,σ
(C). Therefore, σ2

G(C) for G ∈ G4 is invariant under scale transforms of G.
On the other hand, σ2

G(C) changes under location transforms of G since shifting G−1 by µ ∈ R leads to
the asymptotic variance Var((X + µ)(Y + µ)) = Var(XY + µ(X + Y )) for X = G−1(U) and Y = G−1(V ),
and it is in general not equal to Var(XY ).

Since the canonical estimator κ̂Gµ,σ estimates the same quantity κG0 regardless of the mean µ and
variance σ2 of G, a natural choice of µ under σ = 1 is such that it minimizes the asymptotic variance
σ2
Gµ,1

(C). For a fixed concordance-inducing function G0 ∈ G4 with mean zero and variance one, denote by
Gµ(x) = G0(x− µ) the concordance-inducing function of the same type as G0 but with mean µ ∈ R. For
X = X0 + µ ∼ Gµ and Y = Y0 + µ ∼ Gµ with X0 = G−1

0 (U) and Y0 = G−1
0 (V ), the asymptotic variance

σ2
Gµ(C) = Var(XY ) = Var((X0 + µ)(Y0 + µ)) = Var(X0Y0 + µ(X0 + Y0))

= Var(X0Y0) + 2µCov(X0Y0, X0 + Y0) + µ2 Var(X0 + Y0)

is a quadratic function of µ ∈ R provided that Var(X0 + Y0) > 0, and thus is minimized when

µ = µ∗ = µ∗(G0, C) = −Cov(X0Y0, X0 + Y0)
Var(X0 + Y0) .

We call µ∗(G0, C) an optimal shift of G0 ∈ G4 under C ∈ C2. The degenerate case Var(X0 + Y0) = 0 occurs
if and only if ρ(X0, Y0) = −1, and it is also equivalent to C = W ; see Embrechts et al. (2002). In this case,
X0 + Y0

a.s.= 0 (“a.s.” stands for almost surely) and thus Var(XY ) = Var(X0Y0), that is, location transforms
of G0 do not change σ2

G0
(C). Provided Var(X0 + Y0) > 0, that is, C 6= W , the optimal asymptotic variance

is given by

σ2
Gµ∗

(C) = Var(X0Y0)− Cov(X0Y0, X0 + Y0)2

Var(X0 + Y0) . (3.2)

The following proposition states that µ∗ = 0 for a certain class of copulas.

Proposition 3.2.3 (Sufficient condition for µ∗ = 0). For a copula C ∈ C2 and a concordance-inducing
function G0 ∈ G4 with mean zero and variance one, µ∗(G0, C) = 0 holds if C is radially symmetric
C = Cν1◦ν2 , that is, (U, V ) d= (1− U, 1− V ) for (U, V ) ∼ C.

Proof. For X0 = G−1
0 (U) and Y0 = G−1

0 (V ) with (U, V ) ∼ C, we have that E[X0 +Y0] = E[X0] +E[Y0] = 0,
and thus Cov(X0Y0, X0 + Y0) = E[X0Y0(X0 + Y0)]− E[X0Y0]E[X0 + Y0] = E[X0Y0(X0 + Y0)]. Therefore,
it suffices to show that E[X0Y0(X0 + Y0)] = 0 when C is radially symmetric.
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For ϕ ∈ {ι, ν1, ν2, ν1 ◦ ν2} where ι : C2 → C2 is the identity ι(C) = C, denote (Uϕ, Vϕ) ∼ Cϕ. Since G0

is radially symmetric, we have that

(G−1
0 (U), G−1

0 (V )) d= (−G−1
0 (Uν1), G−1

0 (Vν1)) d= (G−1
0 (Uν2),−G−1

0 (Vν2))
d= (−G−1

0 (Uν1◦ν2),−G−1
0 (Vν1◦ν2)).

Moreover, when C is radially symmetric, we have that Cν1 = Cν2 . Therefore, (U, V ) d= (Uν1◦ν2 , Vν1◦ν2) and
(Uν1 , Vν1) d= (Uν2 , Vν2) for (U, V ) ∼ C. Together with the identity

1 = 1{U>1/2,V >1/2} + 1{U≤1/2,V >1/2} + 1{U>1/2,V≤1/2} + 1{U≤1/2,V≤1/2}

= 1{U>1/2,V >1/2} + 1{Uν1>1/2,Vν1>1/2} + 1{Uν2>1/2,Vν2>1/2} + 1{Uν1◦ν2>1/2,Vν1◦ν2>1/2},

we have that

E[X0Y0(X0 + Y0)] =
∑

ϕ∈{ι,ν1,ν2,ν1◦ν2}

E[1{Uϕ>1/2,Vϕ>1/2}G
−1
0 (U)G−1

0 (V )(G−1
0 (U) +G−1

0 (V ))]

= E[1{U>1/2,V >1/2}G
−1
0 (U)G−1

0 (V )(G−1
0 (U) +G−1

0 (V ))]

− E[1{Uν1◦ν2>1/2,Vν1◦ν2>1/2}G
−1
0 (Uν1◦ν2)G−1

0 (Vν1◦ν2)(G−1
0 (Uν1◦ν2) +G−1

0 (Vν1◦ν2))]

+ E[1{Uν1>1/2,Vν1>1/2}G
−1
0 (Uν1)G−1

0 (Vν1)(G−1
0 (Uν1)−G−1

0 (Vν1))]

− E[1{Uν2>1/2,Vν2>1/2}G
−1
0 (Uν2)G−1

0 (Vν2)(G−1
0 (Uν2)−G−1

0 (Vν2))]

= 0,

where the last equality comes from (U, V ) d= (Uν1◦ν2 , Vν1◦ν2) and (Uν1 , Vν1) d= (Uν2 , Vν2).

The conditions C = Cν1◦ν2 and Cν1 = Cν2 in Proposition 3.2.3 hold, for example, if C is M , W , Π,
a Gaussian copula, t copula or one of their mixtures. For these copulas, location shifts of G0 do not
change the asymptotic variance σ2

G0
(C), and thus σ2

G0
(C) is invariant under location-scale transforms of

G0. On the other hand, shifting G0 may improve σ2
G0

(C) if C is, for example, a Clayton or Gumbel copula.
Nevertheless, we will empirically observe in Section 3.4 that the reduction of the asymptotic variance
σ2
G0

(C) by the optimal shift µ∗ is typically ignorable compared with the first term Var(X0Y0) in (3.2).
Based on this observation, in this study we focus on the case µ = 0 and compare asymptotic variances of κ̂G
only for standardized concordance-inducing functions G with mean zero and variance one, and comparing
the asyptotic variance σ2

Gµ∗
(C) under the optimal shift is left for future research.

3.2.3 Asymptotic variance for fundamental and Fréchet copulas

In this section we investigate optimal concordance-inducing functions and the corresponding bounds of
the best and worst asymptotic variances when D ⊆ C2 is a set of fundamental copulas or their mixtures.

Proposition 3.2.4 (Optimal asymptotic variances for sets of fundamental copulas).

1. If D = {Π}, then σ2
∗(H, {Π}) = σ2

∗(H, {Π}) = 1 and G∗(H, {Π}) = G∗(H, {Π}) = H for any H ⊆ G4.
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2. Suppose D = {M}, {W} or {M,W}. Then, for H ⊆ G4,

σ2
∗(H,D) = σ2

∗(H,D) = inf
G∈H

VarG(X2),

G∗(H,D) = G∗(H,D) = arginf
G∈H

VarG(X2).

3. If D = {Π,M,W}, then, for H ⊆ G4,

σ2
∗(H, {Π,M,W}) = 1 ∧ inf

G∈H
VarG(X2),

σ2
∗(H, {Π,M,W}) = 1 ∨ inf

G∈H
VarG(X2).

4. Let HN, HUnif and HBern be singletons of normal, uniform and Bernoulli distributions with mean
zero and variance one, respectively. Then

σ2
∗(HBern, {M,W}) < σ2

∗(HUnif , {M,W}) < σ2
∗(HN, {M,W}),

σ2
∗(HBern, {M,W}) < σ2

∗(HUnif , {M,W}) < σ2
∗(HN, {M,W}),

σ2
∗(HBern, {Π,M,W}) < σ2

∗(HUnif , {Π,M,W}) < σ2
∗(HN, {Π,M,W}),

σ2
∗(HBern, {Π,M,W}) = σ2

∗(HUnif , {Π,M,W}) < σ2
∗(HN, {Π,M,W}).

Proof. Part 1). (X2, Y 2) and (X,Y ) are both independent random vectors when (U, V ) ∼ Π. Therefore,
Cov(X2, Y 2) = Cov(X,Y ) = 0 and thus σ2

G(Π) = 1 for all G ∈ H by (3.1), which gives G∗(H, {Π}) =
G∗(H, {Π}) = H and σ2

∗(H, {Π}) = σ2
∗(H, {Π}) = 1.

Part 2). When the copula of (X,Y ) is M or W , we have that Cov(X,Y ) = ±1, respectively. Moreover,
the copula of (X2, Y 2) is M since (X2, Y 2) d= (G−1(U)2, G−1(U)2) for U ∼ Unif(0, 1) when C = M , and
(X2, Y 2) d= (G−1(U)2, G−1(1− U)2) = (G−1(U)2, (−G−1(U))2) = (G−1(U)2, G−1(U)2) for U ∼ Unif(0, 1)
when C = W . Therefore, by (3.1), we have that

σ2
G(M) = ρ(X2, Y 2) VarG(X2) + 1− 12 = VarG(X2),

σ2
G(W ) = ρ(X2, Y 2) VarG(X2) + 1− (−1)2 = VarG(X2),

where ρ(X2, Y 2) is the maximal correlation coefficient attained by the copula M with the marginal
distributions X2 and Y 2, and ρ(X2, Y 2) = 1 since X2 and Y 2 are of the same type; see Embrechts et al.
(2002). Since σ2

G(M) = σ2
G(W ) = VarG(X2), we obtain the desired results.

Part 3). The results immediately follow from Part 1 and Part 2.
Part 4). By Part 2, we have that σ2

∗(HN, {M,W}) = Var(X2) = 2 for X ∼ N(0, 1), σ2
∗(HUnif , {M,W}) =

Var(12(U−0.5)2) = 0.8 for U ∼ Unif(0, 1) and σ2
∗(HBern, {M,W}) = Var((2B−1)2) = 0 for B ∼ Bern(1/2).

Together with Part 2 and Part 3 we have the desired inequalities.

Proposition 3.2.4 Part 1 implies that the choice of the function G does not affect the accuracy of
the estimation of κG when the underlying copula is the independence copula. Proposition 3.2.4 Part 2
shows that the optimal worst and best asymptotic variances are obtained as the variance of X2 where
X ∼ G ∈ G4 when the underlying copula is M or W . Proposition 3.2.4 Part 3 gives the optimal worst
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and best asymptotic variances when D is a set of fundamental copulas. Since a small variance of X2 for
X ∼ G is preferable in terms of best and worst asymptotic variances when the set of underlying copulas
is {M,W} or {Π,M,W}, heavy-tailed concordance-inducing functions, such as a Student t distribution
with degrees of freedom 4 < ν < ∞, are not recommendable choices. Finally, Proposition 3.2.4 Part 4
means that Blomqvist’s beta outperforms Spearman’s rho and van der Waerden’s coefficient, and van der
Waerden’s coefficient performs worst in terms of the optimal best and worst asymptotic variances when the
set of underlying copulas is {M,W} or {Π,M,W}.

We now consider a more general class of copulas defined as combinations of the fundamental copulas
M , Π and W . A bivariate Fréchet copula is defined by

CF
p = pMM + pΠΠ + pWW, p = (pM , pΠ, pW ) ∈ ∆3,

where ∆3 = {(p1, p2, p3) ∈ R3 : p1, p2, p3 ≥ 0, p1 + p2 + p3 = 1} is the standard unit simplex on R3. Denote
by CF = {CF

p : p ∈ ∆3} the set of all Fréchet copulas. In addition to applications in insurance and finance,
Fréchet copulas can be used to approximate bivariate copulas; see Yang et al. (2006). Moreover, for any
G ∈ G, the transformed rank correlation κG can take any value in [−1, 1] since, by Proposition 2.2.9,

κG(CF
p ) = pMκG(M) + pΠκG(Π) + pWκG(W ) = pM − pW ∈ [−1, 1]. (3.3)

The following proposition provides the worst and best asymptotic variances and their attainers when
D = CF.

Proposition 3.2.5 (Worst and best asymptotic variances for Fréchet copulas). For a concordance-inducing
function G ∈ G4, the worst and best asymptotic variances on CF are given by

σ2
G(CF) = 1 + VarG(X2) and σ2

G(CF) = 1 ∧VarG(X2)

with the sets of attaining copulas given by

CG(CF) = argsup
C∈CF

σ2
G(C) =


{
M+W

2
}

if VarG(X2) > 0,{
pM+W

2 + (1− p)Π : p ∈ [0, 1]
}

if VarG(X2) = 0,

and

CG(CF) = arginf
C∈CF

σ2
G(C) =


{M,W} if 0 ≤ VarG(X2) < 1,

{M,W,Π} if VarG(X2) = 1,

{Π} if 1 < VarG(X2),

respectively.

Proof. Fix G ∈ G4 and CF
p ∈ CF with p = (pM , pΠ, pW ) ∈ ∆3. For X = G−1(U) and Y = G−1(V ) with

(U, V ) ∼ CF
p , we have that Cov(X2, Y 2) = (pM + pW ) VarG(X2) and Cov(X,Y ) = pM − pW . Therefore,

by (3.1),

σ2
G(CF

p ) = (pM + pW )v + 1− (pM − pW )2 =: f(pM , pW ),
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where v = VarG(X2). Since the Hessian of f

H(pM , pW ) =
(

∂
∂p2
M

f(pM , pW ) ∂
∂pMpW

f(pM , pW )
∂

∂pW pM
f(pM , pW ) ∂

∂p2
W

f(pM , pW )

)
=
(
−2 2
2 −2

)
,

is nonpositive definite, f is a concave function. For (pM , pW ) ∈ R2 such that 0 ≤ pM , pW and pM +pW ≤ 1,
consider the reparametrization (p, 0) + r(−1, 1) = (p− r, r) where 0 ≤ r ≤ p ≤ 1. Then

f(p− r, r) = pv + 1− (p− r)2 − r2 + 2(p− r)r = −4
(
r − p

2

)2
+ pv + 1,

and thus f represents a parabolic cylinder. For a fixed p ∈ [0, 1], the function r 7→ f(p − r, r) has a
maximum f(p) = pv + 1 when r = p/2, and a minimum f(p) = −p2 + pv + 1 when r = 0 or r = p. Since
v ≥ 0, the maximum of f is given by v + 1 with the maximum attained by p = 1 when v > 0, and by any
p ∈ [0, 1] when v = 0. Therefore, we have that σ2

G(CF) = v + 1 = σ2
G(C) with C = M+W

2 when v > 0,
and with C = p

(
M+W

2
)

+ (1 − p)Π for any p ∈ [0, 1] when v = 0. For the minimum of f , notice that
the function f(p) = −p2 + pv + 1, 0 ≤ p ≤ 1, is a concave parabola, and thus the minimum of f(p) is
attained at p = 0 or p = 1. With f(0) = 1 and f(1) = v, the minimum of f and its attainers are given by
σ2
G(CF) = 1 ∧ v = σ2

G(C) with C = M or W when 0 ≤ v < 1, with C = M , W or Π when v = 1 and with
C = Π when v > 1.

Note that although (pM , pW ) = (1/2, 1/2) is the unique point attaining the maximum v + 1 of f
when v > 0, f takes the value v at the points (pM , pW ) = (1, 0) and (0, 1), and is greater than v on
{(pM , pW ) ∈ [0, 1]2 : pM + pW = 1}. Therefore, if VarG(X2) is sufficiently large, the asymptotic variance
σ2
G(C) takes large values in [VarG(X2),VarG(X2) + 1] if C = pM + (1− p)W for p ∈ [0, 1].

Proposition 3.2.5 immediately leads to the optimal worst and best asymptotic variances on D = CF by
the following corollary.

Corollary 3.2.6 (Optimal worst and best asymptotic variances for Fréchet copulas). For H ⊆ G4, the
optimal worst and best asymptotic variances are given by

σ2
∗(H, CF) = 1 + inf

G∈H
VarG(X2) and σ2

∗(H, CF) = 1 ∧ inf
G∈H

VarG(X2),

with the sets of attaining concorance inducing functions

G∗(H, CF) = arginf
G∈H

VarG(X2),

G∗(H, CF) =

arginfG∈HVarG(X2), when infG∈HVarG(X2) < 1,

H, when infG∈HVarG(X2) ≥ 1,

respectively.

Compared with the optimal worst and best asymptotic variances from Proposition 3.2.4 Part 3, the
lower bound σ2

∗(H,D) obtained in Proposition 3.2.6 remains unchanged but the upper bound σ2
∗(H,D)

increases since the attaining copulas p
(
M+W

2
)

+ (1 − p)Π, p ∈ [0, 1], are not included in the set D in
Proposition 3.2.4. Similar to the results obtained in Proposition 3.2.4, a small variance of X2 for X ∼ G is
preferable in terms of optimal worst and best asymptotic variances.
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Remark 3.2.7 (Restrictions of CF). For a concordance-inducing function G ∈ G4, consider the set of
Fréchet copulas such that its transformed rank correlation κG takes values in [k, k] for −1 ≤ k ≤ k ≤ 1,
that is,

CF
k,k

(G) = {C ∈ CF : k ≤ κG(C) ≤ k}.

By (3.3), the restriction k ≤ κG(C) ≤ k reduces to k ≤ pM − pW ≤ k and thus CF
k,k

(G) does not depend on
the choice of G. Consequently, the maximum and minimum of the asymptotic variance σ2

G(C) on CF
k,k

(G)
can be found by calculating max f(pM , pW ) and min f(pM , pW ) subject to 0 ≤ pM , pW , pM + pW ≤ 1 and
k ≤ pM − pW ≤ k. This maximum and minimum always exist since (pM , pW ) 7→ f(pM , pW ) is bounded,
concave and the feasible set is compact in R2.

3.2.4 Optimality of Blomqvist’s beta

In this section, we show that Blomqvist’s beta attains the optimal best and worst asymptotic variances
under mild conditions on D ∈ C2. The conditions are related to the following properties of copulas.

Definition 3.2.8 (Balancedness of copulas). A copula C ∈ C2 is called balanced if p(C) = 1/2 where
p(C) = C(1/2, 1/2) + C̄(1/2, 1/2), imbalanced if p(C) 6= 1/2, totally positively imbalanced (TPI) if p(C) = 1
and totally negatively imbalanced (TNI) if p(C) = 0.

It is straightforward to check that Π is balanced, M is TPI and W is TNI. The following proposition
provides the optimal bounds of the worst and best asymptotic variances of Blomqvist’s beta.

Proposition 3.2.9 (Asymptotic variance for Blomqvist’s beta). For any D ⊆ C2, we have that

0 ≤ σ2
∗(HBern,D) ≤ σ2

∗(HBern,D) = 1.

The upper bound σ2
∗(HBern,D) = 1 is attained if and only if D contains a balanced copula, and the lower

bound σ2
∗(HBern,D) = 0 is attained if and only if D contains a TPI or TNI copula.

Proof. For HBern = {GBern}, we have that G−1
Bern(u) = 21{u>1/2} − 1, u ∈ [0, 1]. Therefore, for (X,Y ) =

(G−1(U), G−1(V )) with (U, V ) ∼ C, we have that

XY =

1, if {U ≤ 1/2, V ≤ 1/2} ∪ {U > 1/2, V > 1/2},

−1, if {U > 1/2, V ≤ 1/2} ∪ {U ≤ 1/2, V > 1/2}.

Denoting p(C) = P ({U ≤ 1/2, V ≤ 1/2} ∪ {U > 1/2, V > 1/2}) = C(1/2, 1/2) + C̄(1/2, 1/2), the asymp-
totic variance of κGBern(C) is given by σ2

GBern
(C) = Var(XY ) = 4p(C)(1−p(C)), which attains its maximum

1 if and only if p(C) = 1/2 and attains its minimum 0 if and only if p(C) = 0 or 1. Therefore, the desired
results follow.
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Remark 3.2.10 (Explicit forms of σ2
GBern

(C)). Since C(1/2, 1/2) = C̄(1/2, 1/2) for any C ∈ C2, we have
that p(C) = C(1/2, 1/2) + C̄(1/2, 1/2) = 2C(1/2, 1/2). Together with κGBern(C) = 4C(1/2, 1/2)− 1, we
have that

σ2
GBern

(C) = 4p(C)(1− p(C)) = (1 + κGBern(C))(1− κGBern(C)) = 1− κ2
GBern

(C).

Therefore σ2
GBern

(C) admits an explicit form if κGBern(C) does. As an example, κGBern(C) = 2
π arcsin(ρ) when

C is an elliptical copula with correlation parameter ρ ∈ [−1, 1]. Therefore, σ2
GBern

(C) = 1− ( 2
π arcsin(ρ))2,

which coincides with the result derived in Schmid and Schmidt (2007, Proposition 9).

With the bounds obtained in Proposition 3.2.9, we can prove the following optimality of Blomqvist’s
beta.

Corollary 3.2.11 (Optimality of Blomqvist’s beta). Consider D ⊆ C2 and HBern ⊆ H for H ⊆ G4. If
Π ∈ D, then

σ2
∗(H,D) = 1 and HBern ⊆ G∗(H,D). (3.4)

If D includes at least one TPI or TNI copula, then

σ2
∗(H,D) = 0 and HBern ⊆ G∗(H,D). (3.5)

Proof. Since Π ∈ D is balanced, Proposition 3.2.4 Part 1 and Proposition 3.2.9 imply that

sup
C∈D

σ2
GBern

(C) = σ2
GBern

(Π) = 1 = σ2
G(Π) ≤ sup

C∈D
σ2
G(C)

for any G ∈ G4. Therefore, the desired results in (3.4) follow. If D includes at least one TPI or TNI copula
denoted by C∗, then Proposition 3.2.9 means that

inf
C∈D

σ2
GBern

(C) = σ2
GBern

(C∗) = 0 ≤ inf
C∈D

σ2
G(C)

for any G ∈ G4, and thus the results in (3.5) follow.

Corollary 3.2.11 states that Blomqvist’s beta attains the optimal worst asymptotic variance when Π ∈ D,
and it attains the optimal best asymptotic variance when some TPI or TNI copula is contained in D. These
conditions on D are mild and satisfied for typical choices of D, such as C2, C�2 = {C ∈ C2 : C � Π} or
C�2 = {C ∈ C2 : C � Π}. Therefore, Blomqvist’s beta is typically an optimal choice among transformed
rank correlations in terms of both the worst and best asymptotic variances.

In the remainder of this section, we discuss uniqueness of the optimality of Blomqvist’s beta, that is,
G∗(H,D) = HBern and G∗(H,D) = HBern.

We first consider the optimal worst asymptotic variance. For given H ⊆ G4 and D ⊆ C2, assume that
HBern ⊆ H and that D contains C∗ = (M +W )/2. For any G ∈ H and C ∈ D, (3.1) yields

σ2
G(C) = VarG(X2)ρ(X2, Y 2) + 1− ρ2(X,Y ) ≤ VarG(X2) + 1
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with equality if (and only if when VarG(X2) > 0) (X,Y ) = (G−1(U), G−1(V )) with (U, V ) ∼ C satisfies
ρ(X2, Y 2) = 1 and ρ(X,Y ) = 0. For any G ∈ H, the copula C∗ satisfies these conditions. To see this,
let (X∗, Y∗) = (G−1(U∗), G−1(V∗)) with (U∗, V∗) ∼ C∗. By Proposition 3.7.1 in Section 3.7.1, the copula
of (X2

∗ , Y
2
∗ ) is M and thus ρ(X2

∗ , Y
2
∗ ) attains the maximal correlation, which equals 1 since X2

∗
d= Y 2
∗ .

Therefore, we have that ρ(X2
∗ , Y

2
∗ ) = 1 and ρ(X∗, Y∗) = κG(C∗) = 0. The worst asymptotic variance is

then given by σ2
G(D) = VarG(X2) + 1 provided that C∗ ∈ D. Therefore, the optimal worst asymptotic

variance σ2
∗(D) = 1 is attained if and only if VarG(X2) = 0, which leads to G∗(H,D) = HBern.

We next consider the optimal best asymptotic variance. For given H ⊆ G4 and D ⊆ C2, assume that
HBern ⊆ H and that D contains at least one TPI or TNI copula. Then a given G ∈ H satisfies G ∈ G∗(H,D)
if and only if σ2

G(D) = σ2
GBern

(D) = 0. Therefore, the following equivalence holds:

G ∈ G∗(H,D) ⇔ there exists C ∈ D s.t. σ2
G(C) = 0

⇔ G−1(U)G−1(V ) a.s.= a for some a ∈ R and (U, V ) ∼ C ∈ D. (3.6)

The following proposition provides necessary conditions on a ∈ R, G ∈ H and C ∈ D under (3.6).

Proposition 3.2.12 (Necessary conditions on G ∈ G∗(H,D)). Let G ∈ H be a given concordance-inducing
function such that G ∈ G∗(H,D). Then C ∈ D and a ∈ R in (3.6) satisfy the following conditions.

(C1) If P(X = 0) > 0 for X ∼ G, then a = 0 and P(X = 0) ≥ 1/2.

(C2) If P(X = 0) = 0, then a 6= 0 and the copula C is either TPI or TNI with 0 < a ≤ 1 if C is TPI
and −1 ≤ a < 0 if C is TNI. Moreover, the distribution function G+(x) = 2G(x)− 1, x > 0 satisfies
EG+ [Z] ≥ |a|1/2, Z ∼ G+, and

G+(x) = 1−G+

(
|a|
x
−
)
, x > 0. (3.7)

In particular it holds that P(Z > |a|1/2) = P(Z < |a|1/2) for Z ∼ G+.

Proof. For G ∈ H and C ∈ D in (3.6), write (X,Y ) = (G−1(U), G−1(V )). Under (C1), we have that
P(XY = 0) > 0 and thus a ∈ R in (3.6) necessarily has to be a = 0. If XY a.s.= 0 holds, then X 6= 0 implies
that Y = 0. Together with X d= Y , we have that

P(X 6= 0) ≤ P(Y = 0) = P(X = 0),

which leads to the condition P(X = 0) > 1/2.

Next we consider (C2). Since

XY

> 0, if {U ≤ 1/2, V ≤ 1/2} ∪ {U > 1/2, V > 1/2},

< 0, if {U ≤ 1/2, V > 1/2} ∪ {U > 1/2, V ≤ 1/2},

we have that P(XY = 0) = 0 and thus a ∈ R in (3.6) necessarily has to be a 6= 0. Since P(XY > 0) =
p({U ≤ 1/2, V ≤ 1/2} ∪ {U > 1/2, V > 1/2}) = p(C) and P(XY < 0) = p({U ≤ 1/2, V > 1/2} ∪ {U >
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1/2, V ≤ 1/2}) = 1 − p(C), the product XY can never be a constant a.s. if 0 < p(C) < 1. Therefore,
p(C) = 0 or 1, and thus C is either TPI or TNI.

Assume that C is TPI. Then a > 0 since P(XY > 0) = 1. By the TPI assumption of C, we have that

X+ = X | {U > 1/2, V > 1/2} = X | {U > 1/2} ∼ G+,

Y+ = Y | {U > 1/2, V > 1/2} = Y | {V > 1/2} ∼ G+,

X− = X | {U ≤ 1/2, V ≤ 1/2} = X | {U ≤ 1/2} ∼ G−,

Y− = X | {U ≤ 1/2, V ≤ 1/2} = Y | {V ≤ 1/2} ∼ G−,

where

G+(x) =

2G(x)− 1, if x > 0,

0, if x ≤ 0,
and G−(x) =

1, if x > 0,

2G(x), if x ≤ 0.

In addition to the equalities X+
d= Y+ and X−

d= Y−, we have that X+
d= −X− and Y+

d= − Y− since

P(−X− ≤ x) = P(X− ≥ −x) = 1−G−((−x)−)

=

1− 1 = 0 if x < 0

1− 2G((−x)−) = 1− 2(1−G(x)) = 2G(x)− 1 if x ≥ 0

= G+(x)

by radial symmetry of G and the assumption P(X = 0) = 0. Moreover, since XY a.s.= a, it holds that

X+Y+ = XY | {U > 1/2, V > 1/2} a.s.= a,

X−Y− = XY | {U ≤ 1/2, V ≤ 1/2} a.s.= a.

Since X+Y+
a.s.= a and Y+ > 0 a.s., we have that X+

a.s.= a/Y+. Therefore, Jensen’s inequality implies that

E[X+] = E
[
a

Y+

]
= aE

[
1
Y+

]
≥ a

E[Y+] = a

E[X+] ,

which yields the mean condition E[X+] ≥
√
a.

Since X+
d= −X− and Var(X) = E[X2] = 1, we have that

1 = E[X2] = P
(
U >

1
2

)
E
[
X2

∣∣∣∣ U >
1
2

]
+ P

(
U ≤ 1

2

)
E
[
X2

∣∣∣∣ U ≤ 1
2

]
= 1

2E[X2
+] + 1

2E[X2
−] = E[X2

+],

and thus E[X2
+] = 1. Using X2

+
a.s.= (a/Y+)2 > 0 a.s. and Jensen’s inequality, we have that

1 = E[X2
+] = E

[(
a

Y+

)2
]
≥ a2

E[Y 2
+] = a2

E[X2
+] ,
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which yields −1 ≤ a ≤ 1. Together with a > 0, we have the inequalities 0 < a ≤ 1. Moreover, X+
a.s.= a/Y+

implies that, for x > 0,

G+(x) = P(X+ ≤ x) = P
(
a

Y+
≤ x

)
= 1− P

(
Y+ <

a

x

)
= 1−G+

(a
x
−
)
,

which leads to identity (3.7). The symmetry P(Z > a1/2) = P(Z < a1/2) for Z ∼ G+ is obtained as a
special case by taking x =

√
a > 0 in (3.7).

Next assume that C is TNI. Then a < 0 since P(XY < 0) = 1. By the TNI assumption, we have that

X+ = X | {U > 1/2, V ≤ 1/2} = X | {U > 1/2} ∼ G+,

Y+ = Y | {U ≤ 1/2, V > 1/2} = Y | {V > 1/2} ∼ G+,

X− = X | {U ≤ 1/2, V > 1/2} = X | {U ≤ 1/2} ∼ G−,

Y− = X | {U > 1/2, V ≤ 1/2} = Y | {V ≤ 1/2} ∼ G−.

As in the TPI case, it holds that X+
d= Y+, X−

d= Y−, X+
d= −X+ and Y+

d= − Y+. Moreover, XY a.s.= a

implies that

X+Y− = XY | {U > 1/2, V ≤ 1/2} a.s.= a,

X−Y+ = XY | {U ≤ 1/2, V > 1/2} a.s.= a.

From these equalities, all the necessary conditions derived in the TPI case hold sinceX+(−Y−) a.s.= (−X−)Y+
a.s.= −

a with −Y−, −X− ∼ G+ and −a > 0.

By Proposition 3.2.12, not any concordance-inducing function and copula can attain the optimal best
asymptotic variance σ2

G(C) = 0. The following examples show non-Bernoulli concordance-inducing functions
attaining this lower bound.

Example 3.2.13 (Non-Bernoulli concordance-inducing functions in G∗(G4,D)).

1. The case when P(X = 0) > 0: Let X ∼ G be an equally weighted mixture of 0 and Unif(−
√

6,
√

6).
Then E[X] = 0, Var(X) = 1 and E[X4] <∞, and thus G ∈ G4. The case falls under (C1) since P(X =
0) = 1/2. LetM(n, {Ji}, π, w) denote a shuffle-of-M with n being the number of connected components
in its support, {Ji} = {J1, . . . , Jn} being a finite partition of [0, 1] into n closed subintervals, π being
a permutation of {1, . . . , n} and w : {1, . . . , n} → {−1, 1} being a function indicating whether the
strip Ji × Jπ(i) is flipped (w(i) = 1) or not (w(i) = −1); see Nelsen (2006, Section 3.2.3). Consider
C1 = M(4,∪4

i=1[(i − 1)/4, i/4], {2, 1, 4, 3},14), C2 = M(4,∪4
i=1[(i − 1)/4, i/4], {3, 4, 1, 2},14) and

C3 = M(4,∪4
i=1[(i− 1)/4, i/4], {2, 4, 1, 3},14). Then C1 is TPI, C2 is TNI and C3 is neither TPI nor

TNI. Moreover, all these shuffle-of-Ms satisfy σ2
G(Ck) = 0 for k = 1, 2, 3 since G−1(U)G−1(V ) a.s.= 0

with (U, V ) ∼ Ck for k = 1, 2, 3.

2. The case when P(X = 0) = 0: Let X ∼ G be a discrete uniform distribution on the four points
{−a/b,−b, b, a/b} where a = 1/

√
2 and b =

√
1−
√

2/2 with b ≈ 0.541 and a/b ≈ 1.307. Then it
is straightforward to check that G ∈ G4. Define (X,Y ) = (G−1(U), G−1(V )) with (U, V ) ∼ C4 =
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M(4,∪4
i=1[(i−1)/4, i/4], {2, 1, 4, 3},−14). Then (X,Y ) = (−a/b,−b), (−b,−a/b), (b, a/b) and (a/b, b)

are equiprobable, and thus σ2
G(C4) = 0 since XY a.s.= a. This case belongs to (C2) since C4 is TPI,

0 < a ≤ 1 and EG+ [Z] ≈ 0.924 > 0.841 ≈
√
a.

To summarize the discussion on the uniqueness of the optimality of Blomqvist’s beta, the uniqueness
often holds in terms of the worst asymptotic variance whereas uniqueness is typically not fulfilled in terms of
the best asymptotic variance. Therefore the Bernoulli concordance-inducing function can be regarded as the
most desirable one in terms of the asymptotic variance since it is the unique element in G∗(H,D)∩G∗(H,D)
under certain assumptions on D.

3.3 Comparison of κG and Kendall’s tau

In Section 3.2.4, we showed that Blomqvist’s beta provides optimal best and worst asymptotic variances
under mild conditions on D ⊆ C2. However, one of the drawbacks of Blomqvist’s beta is that it depends
only on the local value C(1/2, 1/2) of the underlying copula C, which attributes to the fact that the
corresponding concordance-inducing function G is supported only on two points. In this section, we show
that Kendall’s tau, a popular measure of concordance, attains the same optimal worst and best asymptotic
variances as Blomqvist’s beta although Kendall’s tau is not a transformed rank correlation coefficient.

Kendall’s tau τ : C2 → R is defined by

τ(C) = 4
∫

[0,1]2
C(u, v) dC(u, v)− 1, (3.8)

and is a measure of concordance; see Scarsini (1984). Moreover, it is not a G-transformed rank correlation
since τ is not linear with respect to a mixture of copulas; see Remark 2.2.10. Since τ(C) = ρ(1{U≤Ũ},1{V≤Ṽ })
where (U, V ) ∼ C and (Ũ , Ṽ ) ∼ C are independent, Kendall’s tau admits the alternative representation

τ(C) = ρ(g(U, Ũ), g(V, Ṽ )), where g(l,m) =

1 if l ≤ m,

−1 if l > m,
(3.9)

by invariance of ρ under location-scale transforms. According to (3.9), we consider the estimator of τ(C)

τ̂ = 1
n

n∑
i=1

g(Ui, Ũi)g(Vi, Ṽi)

where (Ui, Vi) and (Ũi, Ṽi), i = 1, . . . , n, n ∈ N, are two i.i.d. samples from C. Note that we adopt the
estimator τ̂ which is different from the standard estimator defined based on all pairs of samples so that τ̂ is
a sum of i.i.d. samples. By the CLT, τ̂ satisfies the following asymptotic normality:

√
n {τ̂ − τ(C)} d−→ N(0, σ2

τ (C)), σ2
τ (C) = Var(g(U, Ũ)g(V, Ṽ )).

Similar to the case of G-transformed rank correlations, we consider the following best and worst asymptotic
variances among the set of copulas D ⊆ C2 defined by

σ2
τ (D) = inf

C∈D
σ2
τ (C) and σ2

τ (D) = sup
C∈D

σ2
τ (C),

respectively. The following proposition provides the best and worst asymptotic variances of Kendall’s tau.
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Proposition 3.3.1 (Best and worst asymptotic variances of Kendall’s tau).

1. The asymptotic variance of Kendall’s tau satisfies 0 ≤ σ2
τ (C) ≤ 1 for all C ∈ C2.

2. For a given C ∈ C2, the upper bound σ2
τ (C) = 1 is attained if and only if τ(C) = 0, which holds, for

example, when C = Π or C = (M+W )/2. More generally, σ2
τ (C) = 1 if C satisfies (U, 1−V ) d= (U, V )

or (1− U, V ) d= (U, V ) for (U, V ) ∼ C.

3. For a given C ∈ C2, the lower bound σ2
τ (C) = 0 is attained if and only if C = M or W , that is,

τ(C) = 1 or −1, respectively.

4. Suppose H ⊆ G4 and D ⊆ C2 satisfy HBern ⊆ H and Π ∈ D. Then σ2
τ (D) = σ2

∗(H,D) = 1.

5. Suppose H ⊆ G4 and D ⊆ C2 satisfy HBern ⊆ H, and M ∈ D or W ∈ D. Then σ2
τ (D) = σ2

∗(H,D) = 0.

Proof. Part 1). Writing X = g(U, Ũ) and Y = g(V, Ṽ ), we have that XY = 1 when {U ≤ Ũ , V ≤
Ṽ } ∪ {U > Ũ, V > Ṽ }, and XY = −1 when {U ≤ Ũ , V > Ṽ } ∪ {U > Ũ, V ≤ Ṽ }. Therefore,
σ2
τ (C) = Var(XY ) = 4pτ (C)(1− pτ (C)) where

pτ (C) = P({U ≤ Ũ , V ≤ Ṽ } ∪ {U > Ũ, V > Ṽ })

= P({U ≤ Ũ , V ≤ Ṽ }) + P({U > Ũ, V > Ṽ })

= 2
∫

[0,1]2
C(u, v) dC(u, v) = τ(C) + 1

2 ,

with the last equality implied by (3.8). Since 0 ≤ pτ (C) ≤ 1, we have that 0 ≤ σ2
τ (C) ≤ 1.

Part 2). The upper bound σ2
τ (C) = 1 is attained if and only if pτ (C) = 1/2, that is, τ(C) = 0.

When C satisfies (U, 1 − V ) d= (U, V ) or (1 − U, V ) d= (U, V ) for (U, V ) ∼ C, then the change of sign
axiom of measures of concordance in Definition 1.2.1 implies that τ(U, V ) = τ(U, 1 − V ) = −τ(U, V ) or
τ(U, V ) = τ(1− U, V ) = −τ(U, V ), either of which yields τ(U, V ) = 0. The copulas Π and (M +W )/2 are
examples of copulas satisfying (U, 1− V ) d= (U, V ) and (1− U, V ) d= (U, V ).
Part 3). The lower bound σ2

τ (C) = 0 is attained if and only if pτ (C) = 1 or 0, that is, τ(C) = 1 or
−1, respectively. By Embrechts et al. (2002, Theorem 3), τ(C) = 1 or −1 if and only of C = M or W ,
respectively.
Part 4). and Part 5). They are immediate consequences of Part 2, Part 3 and Corollary 3.2.11.

Remark 3.3.2 (Explicit forms of σ2
τ (C)). As seen in the proof of Proposition 3.3.1 Part 1, σ2

τ (C) can be
written as

σ2
τ (C) = 4pτ (C)(1− pτ (C)) = (1 + τ(C))(1− τ(C)) = 1− τ2(C),

for any C ∈ C2. Therefore, σ2
τ (C) admits an explicit form if τ(C) does. For example, τGBern(C) = 2

π arcsin(ρ)
when C is an elliptical copula with correlation parameter ρ ∈ [−1, 1]; see Hult and Lindskog (2002).
Therefore, σ2

τ (C) = 1− ( 2
π arcsin(ρ))2, which also equals σ2

GBern
(C) as derived in Remark 3.2.10.
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Proposition 3.3.1 Parts 1, 2, 3 imply that the asymptotic variance of Kendall’s tau has the same upper
and lower bounds as those of Blomqvist’s beta although different copulas may attain their bounds. By
Proposition 3.3.1 Parts 4 and 5, Kendall’s tau attains the optimal worst and best asymptotic variances of
transformed rank correlations which are also attained by Blomqvist’s beta as seen in Proposition 3.2.11.
Taking into account the drawback of Blomqvist’s beta that it depends only on the local value C(1/2, 1/2)
of a copula C, Kendall’s tau can be a good alternative of Blomqvist’s beta in terms of worst and best
asymptotic variances.

Copulas attaining the lower bound σ2
τ (D) = 0 are completely characterized by Proposition 3.3.1 Part 3.

Although a given copula C ∈ D attains the upper bound σ2
τ (D) = 1 if and only if τ(C) = 0 as seen in the

proof of Proposition 3.3.1 Part 2, no characterization of such copulas is known to the best of our knowledge.
The following proposition provides a characterization of copulas attaining the upper bound σ2

τ (D) = 1
when D is the set of Fréchet copulas.

Proposition 3.3.3 (Characterization of copulas attaining σ2
τ (CF)). A Fréchet copula C = CF

(pM ,pΠ,pW ) ∈ C
F

attains the worst asymptotic variance σ2
τ (CF) = 1 of Kendall’s tau if and only if pM = pW ∈ [0, 1/2].

Equivalently, C is of the form

C = p
M +W

2 + (1− p)Π, p ∈ [0, 1].

Proof. By Proposition 3.3.1 Part 2, a given copula C ∈ CF attains the upper bound σ2
τ (CF) = 1 if and only

if τ(C) = 0. For a Fréchet copula, we have that τ(CF(pM ,pΠ,pW )) = (pM − pW )(pM + pW + 2)/3; see Nelsen
(2006, Example 5.3). Therefore, τ(CF) = 0 holds if and only if pM = pW .

We now compare Kendall’s tau and G-transformed rank correlations when taking the sample size
into account. Since Representation (3.9) of Kendall’s tau in terms of Pearson’s correlation coefficient
depends on two independent copies of (U, V ) ∼ C, the estimator τ̂ of τ(C) requires 2n samples from C to
construct the estimator with an n-sum. Therefore, if the estimators τ̂ and κ̂G are compared based on their
actual variances (instead of their asymptotic variances) Var(τ̂) = σ2

τ (C)/n should be multiplied by 2 to be
compared with Var(κ̂G) = σ2

G(C)/n. Based on this discussion, suppose that σ2
τ (C) in Proposition 3.3.1 is

replaced by σ2?
τ (C) = 2σ2

τ (C). With this modification, optimality of Kendall’s tau in terms of the best
asymptotic variance (Proposition 3.3.1 Part 5) remains valid since σ2?

τ (D) = 2σ2
τ (D) = 0 = σ2

∗(G4,D). On
the other hand, optimality of Kendall’s tau in terms of the worst asymptotic variance (Proposition 3.3.1
Part 4) becomes invalid since σ2?

τ (D) = 2σ2
τ (D) = 2 > 1 = σ2

∗(G4,D).

Remark 3.3.4 (Alternative estimators of Kendall’s tau). One could compare an estimator of the G-
transformed rank correlation κ̂G with other estimators of Kendall’s tau, such as

τ̂z = 1
n

n∑
i=1

g(Ui, Ui+1)g(Vi, Vi+1)

where (Ui, Vi), i = 1, . . . , n+1, is an i.i.d. sample from C. Since Zn = XnYn ∈ {−1, 1} withXn = g(Ui, Ui+1)
and Yn = g(Vi, Vi+1) is a Markov chain with Zl and Zm being independent whenever |l −m| ≥ 2, the
Markov chain CLT yields

√
n
{
τ̂z − τ(C)

} d−→ N(0, σ2z
τ (C)) with

σ2z
τ (C) = Var(g(U1, U2)g(V1, V2)) + Cov(g(U1, U2)g(V1, V2), g(U2, U3)g(V2, V3)), (3.10)
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where (U1, V1), (U2, V2), (U3, V3) iid∼ C. Since n+ 1 samples are required to construct the estimator τ̂z,
the modification factor (n+ 1)/n is asymptotically 1 as n→∞, and thus we can directly compare σ2z

τ (C)
with the asymptotic variance σ2

G(C) of κ̂G. One can show that the covariance term in (3.10) equals zero
when C = M or W , and thus σ2z

τ (D) = 0 = σ2
∗(G4,D) if M ∈ D or W ∈ D. Therefore, the conclusion that

Kendall’s tau attains the best asymptotic variance remains valid for the estimator τ̂z. Although the upper
bound σ2z

τ (D) is not known, τ̂ cannot be more preferable than τ̂z since

σ2z
τ (C) ≤ Var(g(U1, U2)g(V1, V2)) + Var(g(U1, U2)g(V1, V2)) ≤ 1 + 1 = 2 = σ2?

τ (D).

3.4 Simulation study

In this section, we conduct a simulation study to compare the asymptotic variances σ2
G(C) for various

copulas C ∈ C2 and concordance-inducing functions G ∈ G4. For concordance-inducing functions, we
consider Bernoulli, uniform and normal distribution functions which correspond to Blomqvist’s beta,
Spearman’s rho and van der Waerden’s coefficient, respectively. For comparison, we also consider a Student
t distribution function t(ν) with ν = 10 degrees of freedom and a Beta distribution with shape parameters
(0.5, 0.5); note that both are radially symmetric, have finite fourth moments, and thus belong to G4.
The Beta(0.5, 0.5) concordance-inducing function has a different shape from the others since it puts an
increasing probability mass as locations farther away from the center. Kendall’s tau is also considered for
comparison. Besides standardized concordance-inducing functions (mean zero and variance one), we also
consider optimally shifted ones as introduced in Section 3.2.2. As underlying copulas, we consider Gaussian
CGa
ρ , Student t Ctρ,ν and Clayton copulas CCl

θ where ρ ∈ [−1, 1] is a correlation parameter, ν > 0 is the
degrees of freedom and θ ≥ −1 is a shape parameter. The experiment consists of the following three steps.

1. Set ρ = −0.99 + 1.98k/49 for k = 0, 1, . . . , 49, ν = 5 and θ = 2ρ/(1− ρ) (which yields τ(CCl
θ ) = ρ) in

C = CGa
ρ , Ctρ,ν and CCl

θ .

2. For each copula C in Step 1, simulate (U1, V1), . . . , (Un, Vn) iid∼ C with n = 105.

3. Based on the samples generated in Step 2, estimate σ2
G(C) and σ2

τ (C) by the sample variances
of G−1(Ui)G−1(Vi), i = 1, . . . , n and of g(Ui, Ui+n/2)g(Vi, Vi+n/2), i = 1, . . . , n/2, where G is a
standardized, and optimally shifted uniform, Beta(0.5, 0.5), normal, t(10) and symmetric Bernoulli
distribution function.

The estimates of σ2
G(C) and σ2

τ (C) computed in Step 3 are plotted in Figure 3.1. In the remainder of
this section, we discuss the observations from these plots.
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Figure 3.1: Estimates of asymptotic variances σ2
G(C) and σ2

τ (C) against correlation parameters ρ ∈
[−0.99, 0.99] of C = CGa

ρ (red), Ctρ,ν (blue) with ν = 5 and CCl
θ (green) with θ = 2ρ/(1 − ρ) for G-

transformed rank correlation coefficients κG (all except bottom-right) and Kendall’s tau τ (bottom-right).
The concordance-inducing function G is set to be standardized (solid lines) and optimally shifted (dotted
lines) uniform, Beta(0.5, 0.5), normal, t(10) and symmetric Bernoulli distribution. The black dotted lines
represent y = 1, VarG(X2) and VarG(X2) + 1 with VarGBern(X2) = 0, VarGU(X2) = 0.8, VarGN(X2) = 2,
VarGt(10)(X2) = 3, VarGBeta(0.5,0.5)(X2) = 0.5 and Varτ (X2) = VarGBern(X2) = 0.
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Symmetry, convexity and concavity. For all copulas C, the curves of σ2
G(C) and σ2

τ (C) against the
correlation parameter ρ were almost symmetric around ρ = 0, convex when VarG(X2) > 1 (which holds
if G is normal or t(10)), and concave when VarG(X2) < 1 (which holds if G is Bernoulli, uniform and
Beta(0.5, 0.5), and if Kendall’s tau is considered). For C = CGa

ρ and Ctρ,ν , the symmetry of the curves is a
consequence of the invariance of σ2

G(C) under partial reflections since

σ2
G(CGa

−ρ) = σ2
G(ν1(CGa

ρ )) = σ2
G(CGa

ρ ) and σ2
G(Ct−ρ,ν) = σ2

G(ν1(Ctρ,ν)) = σ2
G(Ctρ,ν)

for ρ ∈ [−1, 1] by Remark 3.2.1. This argument does not apply to Clayton copulas, and thus the curves
ρ 7→ σ2

G(CCl
2ρ/(1−ρ)) and ρ 7→ σ2

τ (CCl
2ρ/(1−ρ)) are nearly but not precisely symmetric.

Best and worst asymptotic variances. To see the best and worst asymptotic variances, the bounds 1 ∧
VarG(X2), 1∨VarG(X2) and 1+VarG(X2) derived in Proposition 3.2.4, Corollary 3.2.6 and Proposition 3.3.1
are plotted for each case of κG and Kendall’s tau with Varτ (X2) = VarGBern(X2). For all cases of C = CGa

ρ ,
Ctρ,ν and CCl

θ , the best (smallest) σ2
G(C) and σ2

τ (C) were roughly 1∧VarG(X2) and 1∧Varτ (X2) = 0 with the
lower bound σ2

G(C) = 1 attained at ρ = 0 when VarG(X2) > 1 (normal or t(10)), and σ2
G(C) = VarG(X2)

attained at ρ = ±1 when VarG(X2) < 1 (Bernoulli, uniform, Beta(0.5, 0.5) and Kendall). For all cases of
copulas, the worst (largest) σ2

G(C) and σ2
τ (C) were approximately 1 ∨ VarG(X2) and 1 ∨ Varτ (X2) = 1

although the curve was slightly above this value with C = Ctρ,ν since Ct0,ν 6= Π. The upper bound
σ2
G(C) = VarG(X2) was attained at ρ = ±1 when VarG(X2) > 1, and σ2

G(C) = 1 was attained at ρ = 0
when VarG(X2) < 1 and in the case of Kendall’s tau. Since we only consider specific classes of copulas, the
upper bound 1 + VarG(X2) derived in Corollary 3.2.6 was not attained except in the cases of Blomqvist’s
beta and Kendall’s tau where VarG(X2) = 0 and thus 1 + VarG(X2) = 1 ∨VarG(X2).

Choice of G, normal or Student t and uniform or Beta distributions. As seen for the best and worst
asymptotic variances, the variance VarG(X2) is an important quantity determining the maximum and
minimum of the asymptotic variance σ2

G(C). As theoretically indicated, concordance-inducing functions
with smaller VarG(X2) are more preferable in terms of the asymptotic variance of κ̂G. Therefore, the normal
concordance-inducing function is more preferable than the t(10) since VarGN(X2) = 2 < 3 = VarGt(10)(X2).
In fact, for all copulas considered, GN had a smaller asymptotic variance than Gt(10) even though t(10) is
already rather close to N(0, 1). Interestingly, the Beta(0.5, 0.5) concordance-inducing function typically
had smaller asymptotic variance than the uniform distribution since VarGBeta(0.5,0.5)(X2) = 0.5 < 0.8 =
VarGUnif (X2). Therefore, Beta concordance-inducing functions, possibly with different parameters, can be
good alternatives to Spearman’s rho.

Similarity of Blomqvist’s beta and Kendall’s tau. The curves of asymptotic variances for Blomqvist’s
beta and Kendall’s tau are seemingly equal for all choices of C. Moreover, the curves for C = CGa

ρ and Ctρ,ν
overlap in the cases of Blomqvist’s beta and Kendall’s tau. These observations are verified for C = CGa

ρ

and Ctρ,ν since, in these cases, we have that

σ2
τ (C) = σ2

GBern
(C) = 1−

(
2
π

arcsin(ρ)
)2
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as seen in Remark 3.2.10 and 3.3.2. On the other hand, σ2
τ (CCl

θ ) and σ2
GBern

(CCl
θ ) are in general different

since σ2
τ (CCl

θ ) = 1− τ2(CCl
θ ) and σ2

GBern
(CCl

θ ) = 1− κ2
GBern

(CCl
θ ) but

τ(CCl
θ ) = θ

θ + 2 and κGBern(CCl
θ ) = 4(2θ+1 − 1)−1/θ − 1.

Strength of dependence and kind of copula. Compared with the choice of concordance-inducing function,
the strength of dependence ρ and the kind of C seem to be less influencial on the asymptotic variance
σ2
G(C). Furthermore, for any concordance-inducing function, the difference of σ2

G(C) among different
copulas C = CGa

ρ , Ctρ,ν and CCl
θ was typically smaller than difference of σ2

G(C) among different levels of
dependence ρ.

Effect of optimal shifts. When C = CGa
ρ or Ctρ,ν , the solid and dotted curves of asymptotic variances

overlap (and thus the dotted curves are not visible). When C = CCl
θ , the dotted curves do not coincide

with, but were close to the solid ones except in the Bernoulli (top left) and Kendall (bottom right) case
when two curves seem to overlap. These observations are consistent with Proposition 3.2.3 stating that
the asymptotic variance is not reduced by the optimal shift of G when C = CGa

ρ or Ctρ,ν . Even when the
copula is CCl

θ , only a small reduction of the asymptotic variance was observed when optimally shifting G.

In summary, when VarG(X2) < 1, the curve of σ2
G(C) is typically symmetric and concave, with the

maximum 1 being attained when ρ = 0 and the minimum VarG(X2) being attained when ρ = ±1. When
VarG(X2) > 1, the curve of σ2

G(C) is typically symmetric and convex with the maximum VarG(X2) attained
when ρ = ±1 and the minimum 1 attained when ρ = 0. The curves are not significantly different among
different choices of C when the strength of dependence remains the same. Compared with the kind of C,
the strength of dependence and the choice of G are more influencial on σ2

G(C). Normal and Beta(0.5, 0.5)
concordance-inducing functions are more preferable than t(10) and uniform distributions, respectively.
Moreover, Blomqvist’s beta and Kendall’s tau perform almost the same in terms of their asymptotic
variance. Finally, even when C does not satisfy the sufficient conditions of Proposition 3.2.3, the optimal
shift of G may not significantly reduce the asymptotic variance σ2

G(C).

3.5 Concluding remark

We addressed the question which measures of concordance to use in terms of best and worst asymptotic
variances of their canonical estimators. We proved that Blomqvist’s beta attains the optimal best and
worst asymptotic variances among all transformed rank correlation coefficients including Spearman’s rho
and van der Waerden’s coefficient. Considering the drawback of Blomqvist’s beta that it depends only
on the local value C(1/2, 1/2) of a copula C, we also compared transformed rank correlations with the
popular measure of concordance Kendall’s tau. Based on the representation of Kendall’s tau in terms
of Pearson’s linear correlation coefficient, we found that Kendall’s tau also attains the optimal best and
worst asymptotic variances if estimators of these measures are compared without being standardized by
sample size. Attributing to the fact that the correlation-representation of Kendall’s tau depends on two
independent copies from the underlying copula, the optimality of Kendall’s tau may be violated if the
asymptotic variances of these estimators are standardized by sample size. Through a simulation study, we

59



observed that the curve of the asymptotic variance of a G-transformed rank correlation against the strength
of dependence of the underlying copula was typically symmetric and parabolic. Moreover, convexity,
maximum and minimum of the asymptotic variance seemed to be determined by VarG(X2). The results of
the simulation study supported that concordance-inducing functions G with smaller VarG(X2) are more
preferable. Consequently, heavy-tailed concordance-inducing functions, such as Student t distributions
with small degrees of freedom, are not recommended in comparison to the normal distribution, and Beta
distributions can be good alternatives for uniform distributions (corresponding to Spearman’s rho).

Other than Kendall’s tau, there are still important measures of concordance which are not included
in the class of transformed rank correlations, such as Gini’s gamma. Studying a broader framework of
comparing these measures of concordance is a part of future research. Further investigation is also required
for parametric classes of concordance-inducing functions such as Beta(α, β) with α = β > 0. Given the
limitations of fundamental copulas in practice, another direction of future work is to investgate optimal
concordance-inducing functions under more practical choices of sets of underlying copulas, such as the set
of parametric copulas or balls of copulas around a given reference copula. A comparison of multivariate
measures of concordance, and of matrices of pairwise bivariate measures of concordance are also interesting
directions for future research. Finally, it is of interest whether and how the results in this chapter change if
all measures of concordance are compared in terms of their asymptotic variance without assuming that
marginal distributions are known (and thus only pseudo-samples from copulas are available), and/or if the
optimal location shift is applied to the concordance-inducing functions.

3.6 Miscellaneous results

Some miscellaneous results are collected in this section.

3.6.1 A class of discrete concordance-inducing functions

As stated in Schmid and Schmidt (2007), one of the advantages of Blomqvist’s beta is that it admits an
explicit form whenever the copula is given analytically. This advantage can be extended to a wider class of
discrete concordance-inducing functions. For m ∈ N, z = (z1, . . . , zm) ∈ Rm+ and p = (p0, p1, . . . , pm) ∈ Rm+
such that 0 < z1 < · · · < zm, p0 + 2

∑m
i=1 pi = 1 and

∑m
i=1 piz

2
i = 1/2, consider a discrete distribution

Gm,z,p supported on −zm, . . . ,−z1, 0, z1, . . . , zm with corresponding probabilities pm, . . . , p1, p0, p1, . . . , pm.
Then Gm,z,p is a concordance-inducing function with mean zero and variance one. As a special case,
Blomqvist’s beta arises when m = 1, z1 = 1 and (p0, p1) = (0, 1/2). Let p+ = p1 + · · · + pm, I−i =
[p+ −

∑i
j=1 pj , p+ −

∑i−1
j=1 pj ], I0 = [p+, p+ + p0] and Ii = [p+ + p0 +

∑i−1
j=1 pj , p+ + p0 +

∑i
j=1 pj ] for

i = 1, . . . ,m. Then

κGm,z,p(C) = E[G−1
m,z,p(U)G−1

m,z,p(V )] =
∑

(i,j)∈{−m,...,m}

zizjVC(Ii × Ij),
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and

σ2
Gm,z,p(C) = Var(XY ) = E[(XY )2]− (E[XY ])2

=
∑

(i,j)∈{−m,...,m}

z2
i z

2
jVC(Ii × Ij)−

 ∑
(i,j)∈{−m,...,m}

zizjVC(Ii × Ij)

2

,

where z−i = −zi for i = 1, . . . ,m and VC(A), A ⊆ [0, 1]2 is a volume of A measured by C. Therefore,
κGm,z,p(C) and σ2

Gm,z,p
(C) admit explicit forms if VC(Ii × Ij) can be written explicitly for all (i, j) ∈

{−m, . . . ,m}2.

3.7 Properties of (G,C) 7→ σ2
G(C)

In this section, we investigate the map (G,C) 7→ σ2
G(C) for C ∈ C2 and G ∈ G4. Since σ2

G(C) admits the
representation σ2

G(C) = Cov(X2, Y 2) + 1− Cov(X,Y )2 for (X,Y ) = (G−1(U), G−1(V )) and (U, V ) ∼ C,
we first study the joint distribution of (X2, Y 2) in Section 3.7.1. Linearity of C 7→ σ2

G(C) and continuity of
(G,C) 7→ σ2

G(C) are then investigated in Sections 3.7.2 and 3.7.3, respectively.

3.7.1 Joint distribution of (X2, Y 2)

We first study the marginal distributions and copula of (X2, Y 2) for (X,Y ) = (G−1(U), G−1(V )) and
(U, V ) ∼ C. First, by radial symmetry of G, the marginal distribution of X2 (and that of Y 2) is given by

G[2](x) = P(X2 ≤ x) = P(−
√
x ≤ X ≤

√
x) = G(

√
x)−G(−

√
x−)

= 2G(
√
x)− 1, x ≥ 0.

The following proposition describes the copula of (X2, Y 2) when G is continuous.

Proposition 3.7.1 (Copula of (X2, Y 2)). Let G ∈ Gc4 be a continuous concordance-inducing function. For
a copula C ∈ C2 and (X,Y ) = (G−1(U), G−1(V )) with (U, V ) ∼ C, the copula of (X2, Y 2) is given by

C [2](u, v) =
∑

ϕ∈{ι,ν1,ν2,ν1◦ν2}

C̄ϕ

(
1
2 ,

1
2

)
Cϕ,(1/2,1/2)

(
u+ 1

2 ,
v + 1

2

)
,

where Cϕ = ϕ(C) and Cϕ,(1/2,1/2)(u, v) = P (Uϕ ≤ u, Vϕ ≤ v | Uϕ > 1/2, Vϕ > 1/2) for (Uϕ, Vϕ) ∼ Cϕ.

Proof. By continuity of G, we have that X > 0 when U > 1/2 and X ≤ 0 when U ≤ 1/2. Therefore,

G[2](X2) = 2G(
√
X2)− 1 = 2G(|X|)− 1

=

2G(X)− 1 = 2U − 1, when U > 1/2,

2G(−X)− 1 = 2(1−G(X))− 1 = 1− 2U, when U ≤ 1/2.
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Using this relationship, we have that
C[2](u, v) = P(G[2](X2) ≤ u, G[2](Y 2) ≤ v)

= P
(

U >
1
2

, V >
1
2

)
P
(

2U − 1 ≤ u, 2V − 1 ≤ v

∣∣∣ U >
1
2

, V >
1
2

)
+ P
(

U ≤
1
2

, V >
1
2

)
P
(

1− 2U ≤ u, 2V − 1 ≤ v

∣∣∣ U ≤
1
2

, V >
1
2

)
+ P
(

U >
1
2

, V ≤
1
2

)
P
(

2U − 1 ≤ u, 1− 2V ≤ v

∣∣∣ U >
1
2

, V ≤
1
2

)
+ P
(

U ≤
1
2

, V ≤
1
2

)
P
(

1− 2U ≤ u, 1− 2U ≤ v

∣∣∣ U ≤
1
2

, V ≤
1
2

)
= P
(

U >
1
2

, V >
1
2

)
P
(

U ≤
u + 1

2
, V ≤

v + 1
2

∣∣∣ U >
1
2

, V >
1
2

)
+ P
(

1− U >
1
2

, V >
1
2

)
P
(

1− U ≤
u + 1

2
, V ≤

v + 1
2

∣∣∣ 1− U >
1
2

, V >
1
2

)
+ P
(

U >
1
2

, 1− V >
1
2

)
P
(

U ≤
u + 1

2
, 1− V ≤

v + 1
2

∣∣∣ U >
1
2

, 1− V >
1
2

)
+ P
(

1− U >
1
2

, 1− V >
1
2

)
P
(

1− U ≤
u + 1

2
, 1− V ≤

v + 1
2

∣∣∣ 1− U >
1
2

, 1− V >
1
2

)
,

=
∑

ϕ∈{ι,ν1,ν2,ν1◦ν2}

C̄ϕ

(1
2

,
1
2

)
Cϕ,(1/2,1/2)

(
u + 1

2
,

v + 1
2

)
.

As an application of Proposition 3.7.1, let (X,Y ) have a fundamental copula. Then the copula of
(X2, Y 2) is given by

C [2] =


1
4Π + 1

4Π + 1
4Π + 1

4Π = Π, when C = Π,
1
2M + 0 + 0 + 1

2M = M, when C = M,

0 + 1
2M + 1

2M + 0 = M, when C = W.

Next we study the copula C [2] when C is a convex combination of copulas.

Lemma 3.7.2 (Convex combination of C [2]). For a convex combination C̃p = pC + (1− p)C ′ of C and C ′

where p ∈ [0, 1] and C,C ′ ∈ C2, we have that

C̃ [2]
p = pC [2] + (1− p)C ′[2]

,

provided that the concordance-inducing function G ∈ Gc4 is continuous.

Proof. Consider a random vector (Ũ , Ṽ ) = B(U, V ) + (1−B)(U ′, V ′) ∼ C̃p where (U, V ) ∼ C, (U ′, V ′) ∼
C ′ and B ∼ Bern(p) are independent of each other. For (X,Y ) = (G−1(U), G−1(V )), (X ′, Y ′) =
(G−1(U ′), G−1(V ′)) and (X̃, Ỹ ) = (G−1(Ũ), G−1(Ṽ )) we have that

(X̃, Ỹ ) = (G−1(BU + (1−B)U ′), G−1(BV + (1−B)V ′))

= B(G−1(U), G−1(V )) + (1−B)(G−1(U ′), G−1(V ′))

= B(X,Y ) + (1−B)(X ′, Y ′),
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and thus (X̃2, Ỹ 2) = B(X2, Y 2) + (1 − B)(X ′2, Y ′2). Since X̃2 d= Ỹ 2 ∼ G[2], the copula of (X̃2, Ỹ 2) is
given by

C̃ [2]
p (u, v)

= P(G[2](BX2 + (1−B)X ′2) ≤ u, G[2](BY 2 + (1−B)Y ′2) ≤ v)

= P(B = 1)P(G[2](X2) ≤ u, G[2](Y 2) ≤ u) + P(B = 0)P(G[2](X ′2) ≤ u, G[2](Y ′2) ≤ u)

= pC [2](u, v) + (1− p)C ′[2](u, v).

3.7.2 Linearity of C 7→ σ2
G(C)

The map C 7→ σ2
G(C) = Cov(X2, Y 2) + 1− Cov(X,Y )2 is in general not linear with respect to convex

combinations of copulas since C 7→ Cov(X,Y )2 is quadratic. On the other hand, the map C 7→ Cov(X2, Y 2)
is linear by Lemma 3.7.2, and thus, C 7→ σ2

G(C) is linear on a restricted subset of C2 as shown by the
following proposition.

Proposition 3.7.3 (Linearity of C 7→ σ2
G(C)). For a continuous concordance-inducing function G ∈ Gc4

and a constant k ∈ [−1, 1], the map C 7→ σ2
G(C) is linear with respect to convex combinations of copulas

on CG(k) = {C ∈ C2 : κG(C) = k}.

Proof. For C̃p = pC + (1− p)C ′, C,C ′ ∈ C2 and (Ũ , Ṽ ) ∼ C̃p, we have that (X̃, Ỹ ) = (G−1(Ũ), G−1(Ṽ )) =
(G−1(BU+(1−B)U ′), G−1(BV+(1−B)V ′)) = B(X,Y )+(1−B)(X ′, Y ′) where (X,Y ) = (G−1(U), G−1(V ))
and (X ′, Y ′) = (G−1(U ′), G−1(V ′)) with (U, V ) ∼ C, (U ′, V ′) ∼ C ′ and B ∼ Bern(p) being indepen-
dent. From this representation, we have that Cov(X̃2, Ỹ 2) = pCov(X2, Y 2) + (1− p) Cov(X ′2, Y ′2) and
Cov(X̃, Ỹ ) = pCov(X,Y ) + (1 − p) Cov(X ′, Y ′). If C ∈ CG(k), then Cov(X,Y ) = κG(C) = k and
Cov(X ′, Y ′) = κG(C ′) = k. Therefore, we have that Cov(X̃, Ỹ ) = k and thus

σ2
G(C̃p) = Var(X̃Ỹ ) = Cov(X̃2, Ỹ 2) + 1− Cov(X̃, Ỹ )2

= pCov(X2, Y 2) + (1− p) Cov(X ′2, Y ′2) + 1− (pCov(X,Y ) + (1− p) Cov(X ′, Y ′))2

= p(Cov(X2, Y 2) + 1− k2) + (1− p)(Cov(X ′2, Y ′2) + 1− k2)

= pVar(XY ) + (1− p) Var(X ′Y ′) = pσ2
G(C) + (1− p)σ2

G(C ′),

which shows the desired property.

By Proposition 3.7.3, the supremum and infimum of σ2
G(CG(k)) and σ2

G(CG(k)) are attained by the
extremal points of CG(k).

3.7.3 Continuity of (G,C) 7→ σ2
G(C)

In this section we study continuity of the map (G,C) 7→ σ2
G(C), which is important in the discussion of

attainability of the suprema and infima in σ2
G(D), σ2

G(D), σ2
∗(H,D) and σ2

G(H,D) for H ⊆ G4 and D ⊆ C2.
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To this end, let the product space G4 × C2 be metrized by the uniform norm

d∞((G,C), (G′, C ′)) = d∞(G,G′) ∨ d∞(C,C ′)

= sup
x∈R
|G(x)−G′(x)| ∨ sup

(u,v)∈[0,1]2
|C(u, v)− C ′(u, v)|.

Then the following propositions show the continuity of the maps C 7→ σ2
G(C), G 7→ σ2

G(D) and G 7→ σ2
G(D).

Proposition 3.7.4 (Continuity of C 7→ σ2
G(C)). Suppose that D ⊆ C2 is a closed subset in (C2, d∞).

Then the map C 7→ σ2
G(C) is continuous on D for any G ∈ G4. Therefore, the supremum and infimum in

σ2
G(D) and σ2

G(D) are attainable and thus CG(D) = argsupC∈D σ2
G(C) and CG(D) = arginfC∈D σ2

G(C) are
non-empty provided that G ∈ G4 and that D ⊆ C2 is closed.

Proof. For a fixed G ∈ G4 and Cn ∈ D, n = 1, 2, . . . and C ∈ D such that limn→∞ Cn = C pointwise,
let (Un, Vn) ∼ Cn, (U, V ) ∼ C, (Xn, Yn) = (G−1(Un), G−1(Vn)), (X,Y ) = (G−1(U), G−1(V )), Hn(x, y) =
P(Xn ≤ x, Yn ≤ y), H [2]

n (x, y) = P(X2
n ≤ x, Y 2

n ≤ f), H(x, y) = P(X ≤ x, Y ≤ y) and H [2](x, y) = P(X2 ≤
x, Y 2 ≤ f) for (x, y) ∈ R2. Then the pointwise convergence of Cn → C implies Hn → H and H [2]

n → H [2]

pointwise, since H [2](x, y) = H(
√
x,
√
y)−H(−

√
x−,√y)−H(

√
x,−√y−)+H(−

√
x−,−√y−). Therefore,

by Hoeffding’s identity (McNeil et al., 2015, Lemma 7.27), we have that

lim
n→∞

Cov(X2
n, Y

2
n ) = lim

n→∞

∫∫
R2

(
H [2]
n (x, y)−G[2](x)G[2](y)

)
dxdy

=
∫∫

R2

(
H [2](x, y)−G[2](x)G[2](y)

)
dxdy

= Cov(X2, Y 2).

Interchanging the limit and the integral is justified by Lebesgue’s dominated convergence theorem since
the integrand H [2]

n (x, y)−G[2](x)G[2](y) is bounded above by M(G[2](x), G[2](y))−G[2](x)G[2](y), which
is integrable as ∫∫

R2

(
M(G[2](x), G[2](y))−G[2](x)G[2](y)

)
dxdy

is the maximal covariance between X2 ∼ G[2] and Y 2 ∼ G[2] over all copulas, and thus bounded above by
Var(X2) <∞ provided G ∈ G4. Similarly, it holds that limn→∞Cov(Xn, Yn) = Cov(X,Y ). Therefore,

lim
n→∞

σ2
G(Cn) = lim

n→∞

(
Cov(X2

n, Y
2
n ) + 1− Cov(Xn, Yn)2)

= Cov(X2, Y 2) + 1− Cov(X,Y )2 = σ2
G(C),

which completes the proof.

Proposition 3.7.5 (Continuity of G 7→ σ2
G(D) and G 7→ σ2

G(D)). Let H ⊆ Gb4 and D ⊆ C2 be closed
subsets in (Gb4 , d∞) and (C2, d∞), respectively. Then the maps G 7→ σ2

G(D) and G 7→ σ2
G(D) are continuous

on H. Therefore, the infima in σ2
∗(H,D) and σ2

∗(H,D) are attainable and thus G∗(H,D) and G∗(D) are
non-empty provided that H ⊆ Gb4 and D ⊆ C2 are closed.
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Proof. To show the continuity of G 7→ σ2
G(D) and G 7→ σ2

G(D), it suffices to show the continuity of
the maps (G,C) 7→ σ2

G(C) by Berge’s maximum theorem (Berge, 1997). Since |σ2
G(C) − σ2

G′(C ′)| ≤
|σ2
G(C)− σ2

G′(C)|+ |σ2
G′(C)− σ2

G′(C ′)| for C,C ′ ∈ D and G,G′ ∈ H, it suffices to show the continuity of
C 7→ σ2

G(C) for a fixed G ∈ H, and of G 7→ σ2
G(C) for a fixed C ∈ D. Continuity of C 7→ σ2

G(C) follows
from Proposition 3.7.4. Continuity of G 7→ σ2

G(C) follows similarly since the pointwise convergence of
Gn → G implies Hn → H and H

[2]
n → H [2] pointwise; see Nelsen (2006, Lemma 2.1.5). Interchanging

the limit and the integrals is verified by the bounded convergence theorem instead since the integrands
are bounded, and ranges of the integrals are bounded sets when G ∈ Gb4 . Therefore, the desired results
follow.
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Chapter 4

Estimation of VaR contributions with
MCMC

Determining risk contributions for the components of a portfolio based on a given economic capital is
an important task in financial risk management. Computing risk contributions according to the widely
used Euler allocation principle is in general difficult because of the rare-event simulations involved. In
this chapter, we address the problem of estimating risk contributions when the total risk is measured by
Value-at-Risk (VaR). Our proposed estimator for such VaR contributions is based on the Metropolis-Hasting
(MH) algorithm, which is one of the most prevalent Markov chain Monte Carlo (MCMC) methods. We
show consistency and asymptotic normality of our MH-based estimator of risk contributions. Numerical
experiments based on simulation and real-world data demonstrate that in various risk models, even those
having high-dimensional (≈ 500) inhomogeneous margins, our MH estimator has smaller bias and mean
squared error compared to existing estimators.

4.1 Introduction

Capital allocation is an important part of a risk analysis, where a given amount of capital is decomposed
into a sum of risk contributions of each unit’s exposure; see, for example, Dev (2004). The Euler principle is
one of the most well-known rules of risk allocation; see Section 1.3 for details. Calculating risk contributions
under the Euler principle poses theoretical and numerical difficulties, especially when the portfolio-wide
risk is measured by Value-at-Risk (VaR). Although a simple formula of VaR contributions is derived by
Tasche (2001), it can rarely be calculated analytically without a few exceptions; see in Tasche (2004). As
is seen in Fan et al. (2012) and Yamai and Yoshiba (2002), the crude Monte Carlo (MC) method is the
simplest method of computing risk contributions. However, the MC estimator suffers from unignorable bias
caused by sample inefficiency and by inevitable numerical modification; see Yamai and Yoshiba (2002) and
Section 4.2 of this thesis. To overcome such difficulties, several methods have been proposed in the literature.
For instance, Hallerbach (2003) and Tasche and Tibiletti (2004) derived approximations by regarding
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VaR contributions as best predictors of individual losses given the total loss. We call this estimator the
generalized regression (GR) estimator. Glasserman (2005) developed importance sampling (IS) estimators
with main focus being credit portfolios. The IS method generates samples from the so-called instrumental
distribution and then adjusts them so that the estimator is consistent. This process of adjustment typically
increases the variance of the estimator as a trade-off for enhancing effective sample size. Finding appropriate
instrumental distributions to reduce the variance often relies on knowledge of the distribution of the rare
events of interest. Finally, Tasche (2009) proposed the Nadaraya-Watson (NW) estimator, which is based
on the kernel estimation method. Despite its ease of calculation, it still requires importance sampling to
achieve an efficient estimation of risk contributions.

In this chapter, we propose a new method for estimating VaR contributions that utilizes the Markov
chain Monte Carlo (MCMC), especially the Metropolis-Hastings (MH) algorithm; see Section 1.4. Our
MH method requires to be able to evaluate the joint loss density. This is often the case when losses are
modelled separately by marginal distributions and a copula; see Yoshiba (2013) for various examples. For
such loss models, the IS method is not straightforward to apply, since, in general, there is no guidance
on the appropriate choice of the instrumental distribution. To the best of our knowledge, no numerically
stable estimator of VaR contributions is known uniformly for all risk models. We study the consistency and
asymptotic normality of our MH estimator, and provide practical guidelines for the efficient application
of the MCMC method to the problem of computing VaR contributions. The proposed method is then
carried out for various risk models based on simulations and real-world data. In numerical experiments, we
compare the performance of the MH estimator with other existing estimators.

The main difference between our MH and the crude MC methods is that in the former, samples are
generated directly from the joint loss distribution given a rare event of interest. In contrast, the MC method
generates samples from the unconditional loss distribution, which inevitably wastes a large portion of
samples; see Figure 4.1 for the illustration of this difference between MC and MCMC (MH). The right-hand
side figure of the MH samples also describes an underlying idea for simulating the conditional distribution of
interest, which is to update samples sequentially so that they lie in the rare event region. This feature of the
MH method significantly improves sample efficiency without the need for any computational modification
as is done in the MC method, which inevitably causes a bias. As a consequence, a small bias and variance
can be expected for the MH estimator compared with existing estimators.

This chapter is organized as follows. In Section 4.2 we review existing estimators of VaR contributions.
In Section 4.3, we propose the MH estimator which combines the MH method with the estimation of
VaR contributions. Consistency and asymptotic normality for the proposed estimator are studied in
Section 4.4. Next, in Section 4.5, numerical studies are conducted based on simulation and real-world
data. We demonstrate that for various risk models with marginal- and dependence-inhomogeneity and/or
high-dimensionality, the MH estimator has smaller bias and mean squared error (MSE) than those of
existing estimators. For applying our method to other risk models not presented in this chapter, practical
guidelines on the usage of the MH method are also provided. Concluding remarks and discussions are
given in Section 4.6. Readers are referred to Section 1.3 and Section 1.4 for notations and preliminaries
on the problem of capital allocation and MCMC methods. Since we focus on the problem of estimating
VaR contributions ACVaRp = (ACVaRp

1 , . . . ,ACVaRp
d ), we drop the superscript VaRp and write (1.5) as AC
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Figure 4.1: The difference between the Monte Carlo (MC, left) and Markov chain Monte Carlo (MCMC,
right) methods for estimating the VaR contributions (AC1,AC2,AC3)= E[(X1, X2, X3) | S = VaRp(S)],
where Xj , j = 1, 2, 3 are loss random variables, S = X1 +X2 +X3 is the total loss, and VaRp(S) is the Value-
at-Risk of S with confidence level p ∈ (0, 1). In the MCmethod, samples are generated from the unconditional
distribution of (X1, X2, X3); only a few samples close enough to the plane {(x1, x2, x3) | x1 + x2 + x3 =
VaRp(S)} are used to estimate the allocated capital. On the other hand, the MH method generates samples
directly from the conditional joint loss distribution given a rare event of interest, which is denoted by
f(X1,X2,X3)|{S=VaRp(S)}.

= (AC1, . . . ,ACd).

4.2 Existing estimators of VaR contributions

In this section, we review existing estimators of VaR contributions (1.5). Even when the joint density of
the portfolio loss vector fX is given explicitly, the analytical computation of ACj = E[Xj | S = VaRp(S)]
is not straightforward since it often requires the joint distribution of (Xj , S), which is in general difficult
to derive. A possible case when VaR/ES contributions can be explicitly derived is when X is modelled
by a distribution that is multivariate regularly varying (MRV). In this case, VaRp(λ>X) and ESp(λ>X)
asymptotically have explicit formulas as p → 1, and thus VaR and ES contributions can be explicitly
derived; see Kley et al. (2016). In spite of their potential appeals, we avert from these formulas since the
MRV assumption requires marginal tail-homogeneity. Moreover, these formulas depend on integrals with
respect to spectral measures, which is beset with other difficulties.

A possible numerical method to calculate VaR contributions is the crude MC method, in which the
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pseudo VaR contribution

ACδ = E[X | S ∈ [VaRp(S)− δ,VaRp(S) + δ] ], (4.1)

is computed for a sufficiently small bandwidth δ > 0. Since the probability P(S ∈ [VaRp(S)−δ,VaRp(S)+δ])
is positive, the right hand side of (4.1) can be written as

ACδ =
E[X1[S∈Aδ]]
P(S ∈ Aδ)

, where Aδ = [VaRp(S)− δ,VaRp(S) + δ].

This expression allows one to construct the estimator of the pseudo VaR contributions given by

ÂC
MC
δ,N =

∑N
n=1X

(n)1[S(n)∈Aδ]∑N
n=1 1[S(n)∈Aδ]

= 1
Mδ,N

N∑
n=1

X(n)1[S(n)∈Aδ], (4.2)

where N > 0 is the sample size, X(1), . . . ,X(N) are independent and identically distributed (i.i.d.) samples
from FX , S(n) = X

(n)
1 +· · ·+X(n)

d are i.i.d. samples from FS for n = 1, . . . , N , andMδ,N =
∑N
n=1 1[S(n)∈Aδ]

is the number of samples contained in Aδ. We call (4.2) the MC estimator. By setting δ and N sufficiently
small and large, respectively, one can expect that the MC estimator approximates the true VaR contributions.
Note that this method is available only when δ is positive, since P(S ∈ A0) = P(S = VaRp(S)) = 0 by
continuity of FS .

As long as i.i.d. samples from FX can be generated, one can estimate ACδ by constructing the
estimator (4.2). However, this estimator suffers from an inevitable bias caused by changing the condition
{S = VaRp(S)} to {S ∈ Aδ}. The bias of the MC estimator can be decomposed by

ÂC
MC
δ,N −AC = bδ(N) + b(δ),

where bδ(N) = ÂC
MC
δ,N −ACδ and b(δ) = ACδ −AC. The bandwidth δ should be taken as small as possible

to reduce b(δ). However, when δ is quite small, it is difficult to ensure a large enough sample size Mδ,N to
keep the first term bδ(N) small since E[Mδ,N ] = NP(S ∈ Aδ), and P(S ∈ Aδ) is typically much smaller
than 1− p.

To overcome this problem, several estimators have been proposed in the literature. One is the NW
kernel estimator proposed by Tasche (2009), which is defined by

ÂC
NW
φ,h,N =

∑N
n=1X

(n)φ
(
S(n)−VaRp(S)

∆

)
∑N
n=1 φ

(
S(n)−VaRp(S)

∆

) , (4.3)

where φ is a kernel density and ∆ > 0 is the bandwidth. Since this estimator can be interpreted as
a smoothing modification of the MC estimator (4.2) by the kernel φ, it shares the same bias trade-off
explained above. Furthermore, the bias and asymptotic standard deviation of the NW estimator (see,
for example, Hansen, 2009) cannot be computed easily because they require an evaluation of the total
loss density fS(s) at s = VaRp(S). Next, Hallerbach (2003) and Tasche and Tibiletti (2004) constructed
estimators by assuming a regression model among losses of the form

X = gβ(S) + ε,
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where gβ(s) : R → Rd is a function parameterized by β, and ε is an error random vector such that
E[ε | {S = VaRp(S)}] = 0. For an estimator β̂N of β, we call

ÂC
GR
gβ,N

= gβ̂N (VaRp(S)) (4.4)

the GR estimator. Although this estimator is intuitive and can easily be computed, it is in general difficult
to construct an appropriate model gβ and estimator β̂N of β, unless samples from FX|{S=VaRp(S)} are
available.

A notable exception is the case wherein X follows an elliptical distribution. In this case, the following
result holds:

E[X | {S = VaRp(S)}] = E[X] + Cov(X, S)
Var(S) (VaRp(S)− E[S]); (4.5)

see, for example, Vanduffel and Dhaene (2006) and McNeil et al. (2015, Corollary 8.43). The true VaR
contributions are then provided by setting gβ(s) = β0 + β1s, where

β0 = E[X]− Cov(X, S)
Var(S) E[S] and β1 = Cov(X, S)

Var(S) . (4.6)

Since these coefficients are the minimizers of E[ε2] = E[(X − β0 − β1S)2], the OLS estimators of (β0, β1)
are calculated based on the unconditional samples of X and S converges to the true parameters (4.6) as
N →∞.

4.3 The proposed method

As seen in Section 4.2, the essential problem in estimating VaR contributions is that the conditional
samples from FX|{S=VaRp(S)} are unavailable. To solve this problem, we propose a new estimator of VaR
contributions that utilizes MCMC method, especially the MH algorithm, to achieve an efficient estimation.
Investigation on the consistency and asymptotic normality of our MH-based estimator is provided in the
Section 4.4 for certain classes of risk models.

4.3.1 Assumptions and setup

We start by declaring assumptions under which our MH estimator is applicable.

Assumption 4.3.1 (Assumptions to apply MCMC methods). For applying the MH estimator, we assume
the following to hold:

(i) an explicit form of the joint loss density fX is given, and thus one can compute the quantity fX(x)
for any x ∈ Rd;

(ii) a generator of i.i.d. samples from the loss distribution FX is available; and

(iii) neither the explicit form of the total loss density fS nor the way to compute the quantity fS(VaRp(S))
is available.
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Note that Assumption 4.3.1 Part (ii) enables us to generate samples from FS by setting S(n) =
X

(n)
1 + · · ·+X

(n)
d where (X(n)

1 , . . . , X
(n)
d ) is the nth sample from FX . Assumption 4.3.1 Part (iii) implies

that, while fS can be derived from fX in the form of an integral, the integral is not straightforward to
calculate. Such a situation typically occurs when the joint loss density fX is specified through a copula
density c and marginal loss densities f1, . . . , fd. The resulting joint loss density fX is specified as in formula
(1.2).

As is mentioned in Section 4.2, computing VaR contributions involves two steps; the first is to estimate
VaRp(S) by v, and the second is to estimate VaR contributions AC = E[X | {S = v}]. The estimation of
VaRp(S) in the first step is often conducted with MC simulation. Based on i.i.d. samples (S(1), . . . , S(N))
from FS , VaRp(S) can be estimated, for example, by V̂aRp(S) = SdNpe, where dNpe is the smallest integer
greater than or equal to Np, and SdNpe is the dNpeth largest sample among the N samples. Since V̂aRp(S)
is a deterministic quantity, one can regard it as a constant v = V̂aRp(S).

In the second step, AC = E[X | {S = v}] is estimated. According to the crude MC method, VaR
contributions are estimated by (4.2). As explained in Section 4.2, the problem of this two-step procedure is
that the estimator of VaR contributions in the second step is typically biased. To address this issue, we
develop an MCMC (MH)-based estimator that achieves consistency and high sample efficiency.

4.3.2 The MH estimator of VaR contributions

We propose to estimate VaR contributions by sequentially updating samples so that all samples lie in
the set called the v-simplex:

Sv = {x ∈ Rd : x1 + · · ·+ xd = v}.

The updating rule is established so that the componentwise sum of each sample is preserved and the samples
are taken from the distribution FX|{S=v}. We start to describe the MH-based estimator by reformulating
the problem of computing VaR contributions. Since MH requires a density of the target distribution but
the d-dimensional density is not well-defined on the degenerated space Sv, we consider the first d′ losses
X ′ = (X1, . . . , Xd′) where d′ = d− 1. Throughout the thesis, the ′-notation is used to denote quantities
related to this non-degenerate distribution in d− 1 dimensions and should not be confused with matrix
transposition for which we will use the >-symbol. By the full allocation property (1.3), it holds that

E[X | {S = v}] = (E[X ′ | {S = v}], v − 1>d′E[X ′ | {S = v}]),

where S = X1 + · · · + Xd. Therefore, computation of VaR contributions AC = E[X | {S = v}] can be
reduced to estimating VaR contributions of the d′-subportfolio, denoted by AC′ = E[X ′ | {S = v}]. In our
method, this quantity AC′ is estimated by generating samples directly from FX′|{S=v}. The conditional
joint density of X ′ given {S = v} can be written as

fX′|{S=v}(x′) =
f(X′,S)(x′, v)

fS(v) = fX(x′, v − 1>d′x
′)

fS(v) , x′ ∈ Rd
′
,

where the last equation follows from a linear transformation (X ′, S) 7→X. At this point, sampling directly
from fX′|{S=v} is difficult since the total loss density fS(v) is not easy to evaluate in general.
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By taking E = Rd′ , h(x) = x, and π(x) = fX′|{S=v}(x) in the notation presented in Section 1.4, our
problem of estimating VaR contributions can be reduced to estimating π(h) = E[X ′ | {S = v}] in (1.9) by
MCMC. Even though it is challenging to compute fX′|{S=v}, we can compute the acceptance probability
(1.11) given by

α(x,y) = min
[
fX′|{S=v}(y)q(y,x)
fX′|{S=v}(x)q(x,y) , 1

]
= min

[
fX(y, v − 1>d′y)q(y,x)
fX(x, v − 1>d′x)q(x,y)

, 1
]
,

for any x,y by Assumption 4.3.1 Part (i). Note that the term fS(v) disappears by considering the ratio
fX′|{S=v}(y)/fX′|{S=v}(x). Therefore, under an appropriate choice of the proposal density q, Algorithm 1
(MH algorithm) allows one to generate an N -path of the Markov chain whose stationary distribution is
π(x) = fX′|{S=v}(x). Based on this sample path, we can then construct the MH estimator π̂N (h) defined
by (1.10).

The steps to compute the MH estimator of VaR contributions can thus be summarized as follows.

1. Estimate VaR as v = V̂aRp(S) by MC samples.

2. Fix the sample size N > 0, proposal distribution q, and initial value X(0) = x(0) ∈ supp(X ′|{S = v}).

3. Perform Algorithm 1 for the given N , q, and x(0) to generate an N -path (X ′(1), . . . ,X ′(N)).

4. Set

ÂC
MCMC
q,N = 1

N

N∑
n=1

X(n) where X(n) = (X ′(n), v − 1>d′X
′(n)), (4.7)

to estimate VaR contributions AC = E[X|{S = v}].

Note that this procedure can easily be extended to other choices of the function h, that is, one can
estimate E[h(X) | {S = v}] for general functions h by replacing (4.7) with 1

N

∑N
n=1 h(X(n)). Moreover,

under regularity conditions, consistency and asymptotic normality of the MH estimator (4.7) hold; see
Section 4.4 for more details.

4.4 Consistency and asymptotic normality

In this section, we derive conditions on the copula and marginal distributions under which the cor-
responding MH estimator of VaR contributions satisfies consistency (1.12) and the CLT (1.13) for some
choice of proposal distribution q. This study reveals which proposal distributions are appropriate for a
given risk model.

We classify loss distributions FX into two classes; one for which supp(X) = Rd+ = {x ∈ Rd : x ≥ 0}
and another for which supp(X) = Rd. The former corresponds to the case where we model pure losses,
and the latter to the case of profits and losses (P&L). Our result is mainly about the former case, and we
provide some examples for the latter case. It should be emphasized that the former case of pure losses
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includes a broad range of loss models. To demonstrate this, let cj = essinf(Xj), and set X̃j = Xj − cj ,
j = 1, . . . , d. If cj > −∞, then X̃j ≥ 0. For S̃ =

∑d
j=1 X̃j , the translation invariance of VaRp implies that

VaRp(S̃) = VaRp(S)−
d∑
j=1

cj .

Therefore, the allocated capital of X̃j is given by

ÃCj = E[X̃j | {S̃ = VaRp(S̃)}] = E

Xj − cj
∣∣∣∣
S −

d∑
j=1

cj = VaRp(S)−
d∑
j=1

cj




= E[Xj | {S = VaRp(S)}]− cj = ACj − cj .

Consequently, one can estimate (AC1, . . . ,ACd) by first estimating (ÃC1, . . . , ÃCd) based on the joint
distribution of (X̃1, . . . , X̃d) such that supp(X̃) = Rd+ and then subtracting (c1, . . . , cd) from ÃC. Therefore,
our result for the pure loss case includes the P&L case where the minima of the profits are bounded.

4.4.1 The case of pure losses

When supp(X) = Rd+, the conditional distribution FX′|{S=v} is supported on the v-simplex

Sv = {x ∈ Rd
′

+ : x1 + · · ·+ xd′ ≤ v}.

Because of the compactness of Sv, we can state simple conditions on the marginal loss densities and copula
density which lead to consistency and asymptotic normality of the MH estimator.

Theorem 4.4.1. Suppose that the joint distribution fX is supported on Rd+ and has marginal densities
f1, . . . , fd and a copula density c. Then, the consistency and asymptotic normality holds for the MH
estimator of VaR contributions if the following conditions (C1)− (C3) hold:

(C1) ε = infx,y∈Sv q(x,y) > 0,

(C2) fj(x) is positive and bounded above for any x ∈ [0, v] for j = 1, 2, . . . , d, and

(C3) c(u) is positive and bounded above for any u ∈ F1([0, v])× · · · × Fd([0, v]).

Proof. According to Theorem 23 in Roberts and Rosenthal (2004), the CLT holds if the Markov chain
is uniformly ergodic whenever E[||X ′||2 | {S = v}] <∞. Since X1, . . . , Xd ≥ 0, the moment condition is
satisfied by the inequality

E[XiXj | {S = v}] ≤ E[(X1 + · · ·+Xd)2 | {S = v}] = v2 <∞

for any i, j ∈ {1, 2, . . . , d}. Thus, it suffices to show that the Markov chain is uniformly ergodic. According
to Theorem 1.3 in Mengersen and Tweedie (1996), the Markov chain is uniformly ergodic if the minorization
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condition (Rosenthal, 1995) holds on the whole space Sv; that is, there exists a positive integer n, a positive
number δ > 0, and a probability measure ν such that

Kn(x, A) > δν(A), (4.8)

for any x ∈ Sv and A ∈ Bv = B(Rd′) ∩ Sv. Our target distribution can be written as

π(x) = fX(x)
fS(v) = c(F1(x1), . . . , Fd(xd))

fS(v) f1(x1) · · · fd(xd),

where (x1, . . . , xd−1) ∈ Sv and xd = v − 1>d x. Thus, by conditions (C2), (C3), and since Sv ⊂ [0, v]d′ , we
have that

l = inf
x∈Sv

π(x) > 0, u = sup
x∈Sv

π(x) <∞. (4.9)

Using (4.9) and condition (C1), the minorization condition can be checked as follows. For any x ∈ Sv,
define

Qx =
{
y ∈ Sv : π(y)

π(x)
q(y,x)
q(x,y) < 1

}
.

Then, for any A ∈ Bv, we have that

K(x, A) =
∫
A

{q(x,y)α(x,y) + r(x)δx(y)}dy

≥
∫
Qx

q(x,y) min
[
1, π(y)
π(x)

q(y,x)
q(x,y)

]
dy

+
∫
A\Qx

q(x,y) min
[
1, π(y)
π(x)

q(y,x)
q(x,y)

]
dy

=
∫
Qx

π(y)
π(x)q(y,x)dy +

∫
A\Qx

q(x,y)dy

≥ ε

u

∫
Qx

π(y)dy + ε

∫
A\Qx

π(y)
u

dy

= ε

u
π(A).

Therefore, the minorization condition holds for n = 1, δ = ε
u > 0, and ν = π. Consequently, the Markov

chain is uniformly ergodic, and thus the CLT holds. Since the minorization condition (4.8) holds, consistency
of π̂N (h) follows by Theorem 1 in Nummelin (2002).

An example of a risk model and proposal distribution is given by the following example.

Example 4.4.2. For j = 1, . . . , d, let Xj follow the Pareto distribution with probability density function
given by

fj(xj ;κj , γj) =
κjγ

κj
j

(xj + γj)κj+1 , κj , γj > 0 for xj > 0. (4.10)

Suppose X = (X1, . . . , Xd) has a survival Clayton copula with the density given by

c(u; θ) =
θdΓ( 1

θ + d)
Γ( 1

θ )


d∏
j=1

(1− uj)−θ−1




d∑
j=1

(1− uj)−θ − d+ 1


− 1
θ−d

, 0 < θ <∞. (4.11)
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Some simple calculations show that the marginal distributions (4.10) satisfies (C2) and the copula (4.11)
satisfies (C3) under the mild sufficient condition that 0 < θ < log(1− p)/ log(1− 1

d ). Therefore, with any
choice of proposal distribution q satisfying (C1), the corresponding MH estimator satisfies consistency and
asymptotic normality. A possible choice of q is the random walk proposal q(x,y) = f(y − x) with f being
the density of a multivariate normal distribution with mean zero. Since y − x ∈ [−v, v]d′ for x,y ∈ Sv,
f(y − x) is always positive.

It is worth noting that the condition (C3) is irrelevant to the copula on the upper tail part [F1(v), 1]×
· · · × [Fd(v), 1]. Therefore, (C3) holds even if a copula density explodes at the upper corner, which is
often the case with copulas having upper tail dependence. In fact, a more general result holds for survival
Archimedean copulas. A d-dimensional Archimedean copula with an Archimedean generator ψ is given by

Cψ(u) = ψ

 d∑
j=1

ψ−1(uj)

 , (4.12)

where ψ is a continuous and nonincreasing function ψ : [0,∞]→ [0, 1] satisfying ψ(0) = 1, and limt→∞ ψ(t) =
0, and is decreasing on [0, inf{t : ψ(t) = 0}]. The inverse ψ−1(u) is well-defined on u ∈ (0, 1] and ψ−1(0)
is defined by ψ−1(0) = inf{t : ψ(t) = 0}. Let ψ(j) be the jth derivative of ψ. An Archimedean generator
ψ defines a proper d-copula via (4.12) for any d ≥ 1 if and only if ψ is completely monotone, that is,
(−1)jψ(j) ≥ 0 on (0,∞) for all j = 0, 1, . . . ; see McNeil et al. (2009). We denote the class of completely
monotone generators as Ψ∞. According to Bernstein’s Theorem (see, for example, Feller, 2008), ψ ∈ Ψ∞
admits the Laplace–Stieltjes representation ψ(t) = E[e−tV ] for some positive random variable V > 0.

Theorem 4.4.3 (Sufficient condition of (C3) for survival Archimedean copulas). Let ψ ∈ Ψ∞ be a
completely monotone Archimedean generator. If E[V d] <∞ where V is such that ψ(t) = E[e−tV ], then the
survival Archimedean copula C̄ψ has a density satisfying the condition (C3) in Theorem 4.4.1; moreover,
C̄ψ has a zero lower tail dependence coefficient.

Proof. Denote ūj = Fj(v) < 1 and uj = 1 − ūj > 0. The density of the survival Archimedean copula is
given by

c̄ψ(u) = cψ(1− u) = ψ(d)

 d∑
j=1

ψ−1(1− uj)

 d∏
j=1

1
ψ(1)(ψ−1(1− uj))

= (−1)dψ(d) (t)
d∏
j=1

1
(−1)ψ(1)(tj)

, (4.13)

where tj = ψ−1(1 − uj) and t =
∑d
j=1 tj . When uj ∈ [0, Fj(v)], we have 0 < uj ≤ 1 − uj ≤ 1 and thus

tj = ψ−1(1− uj) ∈ [0, t̄j ] where t̄j = ψ−1(uj) <∞. Thus, 0 ≤ t =
∑d
j=1 tj <∞.

Since ψ ∈ Ψ∞, it is of the form ψ(t) = E[e−tV ] for some positive random variable V > 0. Therefore, on
0 ≤ t < ∞, we have 0 < (−1)jψ(j)(t) < ∞ for j = 1 and j = d since (−1)jψ(j)(t) = E[V je−tV ] > 0 and
E[V je−tV ] ≤ E[V j ] <∞ for j = 1 and j = d by assumption. Consequently, the density (4.13) is bounded
from below and above.
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When E[V d] <∞, the corresponding Archimedean copula has an upper tail dependence coefficient

λu(Cψ) = 2− 2 lim
t→0

1− ψ(2t)
1− ψ(t) = 2− 2 lim

t→0

ψ(1)(2t)
ψ(1)(t)

where the last equality comes from l’Hôpital’s rule. We also have

lim
t→0

ψ(1)(2t)
ψ(1)(t)

= lim
t→0

(−1)ψ(1)(2t)
(−1)ψ(1)(t)

= lim
t→0

E[V e−2tV ]
E[V e−tV ] = 1

since E[V e−2tV ] and E[V e−tV ] converge to E[V ] <∞ as t→ 0. Thus, for the survival Archimedean copula,
λl(C̄ψ) = λu(Cψ) = 0.

According to Theorem 4.4.3, the survival Clayton copula satisfies (C3) while the survival Gumbel copula
does not because it is known to have a positive lower tail dependence coefficient.

Remark 4.4.4 (Consistency and CLT for copulas with lower tail dependence). Condition (C3) does not
hold for elliptical copulas with lower tail dependence, such as a Student t copula with density

ct(u; ν, P ) =
Γ(ν+d

2 )Γ(ν2 )
|P | 12 Γ(ν+1

2 )d

(
1 + x>P−1x

ν

)− ν+d
2

Πd
j=1(1 + x2

j

ν )− ν+1
2

, ν > 0, (4.14)

where x = (t−1
ν (u1), . . . , t−1

ν (ud)) with tν being a cumulative distribution function of a univariate Student t
distribution with degrees of freedom ν. By carefully checking the proof of Theorem 4.4.1, the consistency
and asymptotic normality of π̂N (h) still hold under a weaker condition than (C2) and (C3);

q(y,x)
π(x) = q(y,x)fS(v)

c(F1(x1), . . . , Fd(xd))f1(x1) · · · fd(xd)
≥ L, x,y ∈ S̃v, (4.15)

for some positive constant L > 0, where S̃v = {x ∈ Rd : 1>d x = 1}. While it is not straightforward
to determine, one sufficient condition of (4.15) under (C1) is that π is bounded above on S̃v. Another
condition is that the proposal density q explodes faster than π. An example of such q can be an independent
proposal distribution q(x,y) = f(y) with f being the density of the Dirichlet distribution Dir(α1, . . . , αd)
for α1, . . . , αd < 1, which explodes to ∞ as x approaches to an axis. Therefore, by choosing such proposal
distributions, consistency and CLT can still hold even if a copula density explodes at the lower corner
u = 0.

4.4.2 The case of profits and losses

In contrast to the case of pure losses, showing asymptotic normality of the MH estimator is challenging
for the P&L case. Since the conditional density fX′|{S=v} is supported on the unbounded space Rd′ , a
careful study of its tail behavior is necessary. When the original loss random vector X follows an elliptical
distribution, the results of Kamatani (2017) can be applicable to justify the CLT of our MH estimator with
the MpCN proposal distribution; see Section 1.4. An example of a justification of the CLT for the case
where X follows the multivariate Student t distribution is provided below.
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Example 4.4.5 (Justification of CLT for multivariate Student t distributions). We demonstrate that the
MpCN proposal distribution (1.17) achieves the CLT of VaR contributions when the underlying loss model
is a multivariate Student t distribution tν(µ,Σ) with density

fX(x; ν,Σ) =
Γ(ν+d

2 )
|πνΣ| 12 Γ(ν2 )

(
1 + (x− µ)>Σ−1(x− µ)

ν

)− ν+d
2

. (4.16)

Let X ∼ tν(µ,Σ) for ν > 2, µ ∈ Rd, and Σ ∈ Md×d
+ whereMd×d

+ is the set of d× d positive definite
matrices. Throughout the discussion, we set µ = 0 for simplicity. Write

Σ−1 =
(

A1 a2

a>2 a3

)
=: A

for A1 ∈Md′×d′(R), a2 ∈ Rd′ , and a3 ∈ R. Then, it holds that(
x

v − 1>d′x

)>(
A1 a2

a>2 a3

)(
x

v − 1>d′x

)
= (x−w)>V (x−w) + η,

where V = A1−a21
>
d′−1d′a>2 +1d′1

>
d′ ∈M

d′×d′
+ ,w = V −1(vA31d′−va2) ∈ Rd′ , and η = v2a3−w>Vw ∈ R.

Using this identity, we have that

fX′|{S=v}(x) ∝ fX(x, v − 1>d′x)

∝
(

1 + (x−w)>W−1(x−w) + η

ν

)− ν+d
2

∝
(

1 + (x−w)>W−1(x−w)
ν + η

)− ν+d
2

, (4.17)

where W = V −1. Provided ν + η > 0, X ′|{S = v} follows a d′-dimensional elliptical distribution with
location parameter w, scale parameter W , and the density generator g : R+ → R+ given by

g(x) =
(

1 + x

ν + η

)− ν+d
2

.

This type of distribution is called a Pearson type VII distribution (Schmidt, 2002).

Consider the MH estimator where the target distribution π is fX′|{S=v} and the proposal distribution q
is MpCN (1.17). According to Theorem 25 in Roberts and Rosenthal (2004), the CLT holds if the Markov
chain is geometrically ergodic and E[||X ′||2 | {S = v}] <∞. According to Proposition 5 in Kamatani (2017),
the Markov chain with the MpCN proposal distribution is geometrically ergodic if E[||X ′||δ | {S = v}] <∞
for some δ > 0, π(x) is strictly positive and continuous, and it is symmetrically regularly varying, that is,

lim
r→∞

π(rx)
π(r1d′)

= λ(x), (4.18)

for some function λ : Rd′ → (0,∞) such that λ(x) = 1 for any x ∈ Sd
′−1
W , where Sd

′−1
W = {x ∈ Rd′ :

||W− 1
2x|| = ||W− 1

21d′ ||}. We will now show that the moment condition holds and the tail condition (4.18)
is also satisfied for π = fX′|{S=v}.
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Write R = ||X ′||. It can be shown that g is regularly varying (see, for example, Resnick, 2013) at ∞
with index α = −ν+d

2 ; that is,

lim
r→∞

g(rx)
g(r) = x−

ν+d
2 , x > 0. (4.19)

According to Proposition 3.7 in Schmidt (2002), fR|{S=v} is regularly varying with index −(ν + 1). Then,
according to Karamata’s Theorem (we refer to Resnick, 2013), FR|{S=v} is regularly varying with index −ν.
Therefore, E[Rδ | {S = v}] <∞ holds for any δ < ν; see Mikosch (1999). Thus, all the moment conditions
above are satisfied as long as ν > 2. In the elliptical case, the tail condition (4.18) is a direct consequence
of (4.19). Since (x−w)>W−1(x−w) > 0 for all x ∈ Rd′ , it holds that

lim
r→∞

fX′|{S=v}(rx)
fX′|{S=v}(r1d′)

=
(
||W− 1

2x||
||W− 1

21d′ ||

)−(ν+d)

, x ∈ Rd
′
.

Thus, by taking

λ(x) =
(
||W− 1

2x||
||W− 1

21d′ ||

)−(ν+d)

in (4.18), π = fX′|{S=v} is shown to be symmetrically regularly varying. Putting them together, we conclude
that the MH estimator with the MpCN proposal distribution satisfies the CLT when the underlying loss
vector follows a multivariate Student t distribution with ν > 2 and η > −ν. Note that in the numerical
experiments in Section 4.5, we set d = 3 and ν = 4. Since η + ν > 0, the CLT holds true.

4.5 Numerical experiments

In this section, we apply the MH estimator proposed in Section 4.3 to various risk models, and compare
its performance with other estimators of VaR contributions. Our simulations and empirical studies based
on real-world data show that the MH estimator has smaller bias and lower MSE compared with the other
estimators in many scenarios, including high-dimensional (d ≈ 500) cases. Based on these numerical
experiments, we provide practical guidelines on how to choose an appropriate proposal distribution of the
MH estimator given a risk model.

4.5.1 Simulation study

Description of the numerical comparison

We consider four risk models that are specified separately by marginal densities and copula density. We
adopt heavy-tailed marginal distributions and copulas with upper-tail dependence as they are often applied
in risk management. In all risk models, we set the size of the portfolio to d = 3. The models are:

(1) The loss random variables X1, X2 and X3 follow homogeneous Pareto distributions (4.10) for κ = 4
and γ = 3. The loss random vector (X1, X2, X3) has a d-dimensional survival Clayton copula (4.11)
with θ = 0.5.
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(2) The losses X1, X2 and X3 have the same marginal distributions as in case (1). Their copula is a
Student t copula (4.14) with ν = 4 degrees of freedom, and the dispersion matrix P given by

P =

 1 −0.5 0.3
−0.5 1 0.5
0.3 0.5 1

 . (4.20)

(3) The losses X1, X2, and X3 follow Student t distributions with ν = 4 degrees of freedom, location
parameter µ = 0, and scale parameter σ = 1. A copula of (X1, X2, X3) is a survival Clayton copula
(4.11) with θ = 0.5.

(4) The loss random vector (X1, X2, X3) follows a multivariate Student t distribution (4.16) with ν = 4,
µ = 0 and Σ = P where P is defined as in (4.20).

Models (1) and (2) consider pure losses, and Models (3) and (4) consider P&L. In all models, marginal
distributions have variances of 2 and heavy tails with tail indices 5. Models (1) and (3) possess upper tail
dependence with tail coefficients λU = 0.025; see Joe (2014) for formulas for the tail coefficients. Models
(2) and (4) have upper, lower, and upper-lower tail dependence with tail coefficients λU1,2 = λL1,2 = 0.012,
λU1,3 = λL1,3 = 0.162, λU2,3 = λL2,3 = 0.253, λUL1,2 = λLU1,2 = 0.253, λUL1,3 = λLU1,3 = 0.029, and λUL2,3 = λLU2,3 = 0.012.
As inferred by the dispersion matrix (4.20), the first and second losses are negatively dependent, while
other pairs of losses are positively dependent.

For each risk model, we compute several estimators of VaR contributions AC = E[X | {S = VaRp(S)}]
for a confidence level p = 0.999 with VaRp(S) replaced by its Monte Carlo estimate v = SbNpc. The
estimators we compare are the MC estimator (4.2), NW estimator (4.3) (Tasche, 2009), GR estimator (4.4)
(Hallerbach, 2003; Tasche and Tibiletti, 2004), and our MH estimator.

For all estimators, we fix the sample size as N = 106. Other parameters of the estimators are determined
as follows. First, for the MC estimator, we set δ > 0 such that the MC sample size Mδ,N is around 103.
For a fixed δ, asymptotic normality holds; see, for example, Glasserman (2013). We report the estimate of
ÂC

MC
δ,N and its approximated standard error for j = 1, 2, 3. Second, for the NW estimator, we choose the

kernel density φ to be the standard normal density. We use the bandwidth ∆ = 1.06σ̂SN−1/5 according to
Silverman’s rule of thumb (Pagan and Ullah, 1999). Although asymptotic normality holds for the NW
estimator, its asymptotic variance can hardly be computed because it requires the evaluation of fS(v).
Therefore, we report only the estimate of ÂC

NW
φ,h,N . Third, for the GR estimator, we choose gβ(s) = β0 +β1s,

and its coefficients are estimated by

β̂N,1 =
∑N
n=1(X(n) − X̄N )(S(n) − S̄N )∑N

n=1(S(n) − S̄N )2
, β̂N,0 = X̄N − β̂N,1S̄N ,

where X̄N = 1
N

∑N
n=1X

(n) and S̄N = 1
N

∑N
n=1 S

(n). Under regularity conditions, asymptotic normality
holds and thus we report the estimate of ÂC

GR
gβ,N

and its approximated standard error. Finally, for the MH
estimator, we choose different proposal distributions depending on risk models (1)–(4). For each risk model,
we choose (1) a random walk proposal q(x,y) = f(y − x) with f ∼ Nd(0, Σ̂v), where Σ̂v = S2

MC ; (2) an
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independent proposal q(x,y) = f(y), where f is the density of the Dirichlet distribution with parameters
(0.323, 0.448, 0.892), which are estimated by the maximum likelihood method from pseudo-samples generated
by MC; and (3) and (4) the MpCN proposal with ρ = 0.8 (a default choice in Kamatani et al., 2018),
µ = (ÂC

GR
gβ,N

′, v−1>d′ÂC
GR
gβ,N

′), and Σ = S2
MC where S2

MC is the estimated variance based on the generated
MC samples. In the MH Algorithm, we set the initial values as x(0) = (v/3, v/3, v/3). We estimate the
asymptotic variances of the MH estimators by the batch means estimators Σ̂N . Following Jones et al.
(2006), we choose LN = bN 1

2 c = 103 and BN = bN/LNc = bN 1
2 c = 103. We report the estimate of

ÂC
MCMC
q,N and its approximated standard error Σ̂(j,j)

N /
√
N for j = 1, 2, 3.

Results and discussion

Due to the simplicity of the MC, NW and GR estimators, they were calculated quickly for all risk models.
On the other hand, MH estimators took (1) 2.324, (2) 1.425, (3) 3.828, and (4) 3.698 minutes to generate an
N -path and to compute the estimators. As mentioned in Section 1.4, the validity of the proposal selection
can be inspected by autocorrelation plots and acceptance rates (ACR). Figure 4.2 (v)–(viii) shows the
autocorrelation plots of the Markov chains generated by the MH algorithm. The acceptance rate of the
MH algorithm in each risk model was (1) 0.566, (2) 0.222, (3) 0.604, and (4) 0.767. In Figure 4.2 (v)–(viii),
we can observe that the autocorrelation plots steadily decline below 0.1 by lag h around 100 for all risk
models. Together with the observations that the ACRs are moderate, we can state that the choices of the
proposal distributions above are appropriate for all risk models.

Before showing the results of the estimation, let us check the shapes of the conditional distributions
FX′|{S=v} by plotting the N -path generated by the MH algorithm. Figure 4.2 (i)–(iv) shows the contour
plots of the generated Markov chains. According to these plots, the features of the conditional distribution
FX′|{S=v} in each risk model can be summarized as follows:

(1) Pareto + survival Clayton: The contour plot in Figure 4.2 (i) shows that FX′|{S=v} has a unique
mode. The density steadily decays as it moves away from the mode. In addition, the contour plot
seems symmetric with respect to the diagonal line y = x.

(2) Pareto + t copula: Unlike case (1), FX′|{S=v} seems to possess two distinct modes close to the axes.
High probabilities are concentrated around the edges of the simplex. Moreover, the contour plot in
Figure 4.2 (ii) is asymmetric at the diagonal line y = x.

(3) Student t + survival Clayton: Although the conditional loss random vector X ′ | {S = v} can take
negative values, it is supported mostly on the bounded simplex as in case (1). The contour plot
in Figure 4.2 (iii) seems unimodal and symmetric around the diagonal. The tails of FX′|{S=v} are
obviously light.

(4) Student t + t copula: In this case, the conditional distribution FX′|{S=v} can be shown to be a
Pearson type VII distribution (4.17). From the contour plot in Figure 4.2 (iv), we can observe elliptical
symmetry and tail-heaviness. Unlike case (3), the loss vector X ′ | {S = v} can take large negative
values beyond the bounded simplex.
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The estimation results are summarized in Table 4.1. For the Models (1)–(4), we report estimates of
VaR contributions, their approximated standard errors, biases, and root MSEs (RMSEs) of the estimators
MC, NW, GR and MH.

In the first risk model, true VaR contributions are obtained by equally allocating the total VaR since
the marginal distributions are homogeneous and the copula is exchangeable. We observed that the MC and
NW estimators have relatively large biases in comparison to those of the other estimators. Compared with
the MH estimator, the GR estimator still suffers from some inevitable bias although its standard error is
quite small. The MC estimator has a relatively large standard error due to sample inefficiency. Overall, the
MH estimator outperforms all other estimators in terms of the RMSE.

The second risk model does not allow us to analytically calculate the true VaR contributions. Therefore,
the true VaR contributions are computed by Monte Carlo integration, which still works with enough
accuracy for the three dimensions considered here. We can observe that existing estimators suffer from
biases possibly caused by asymmetry and multi-modality of the conditional distribution FX′|{S=v}. In
particular, the GR estimator has relatively large bias and RMSE in contrast to the good performance in
the first risk model. On the other hand, the MH estimator maintains lower bias and RMSE compared to
the other estimators.

In the third risk model, the true VaR contributions are given by equal allocations for the same reason
as in case (1). Because of the symmetry and unimodality of the conditional distribution FX′|{S=v}, all
estimators retain small biases and RMSEs. Together with the results in cases (1) and (2), one can state
that the GR estimator performs well as long as FX′|{S=v} is symmetric and unimodal. Additionally, the
MH estimator reduces bias and RMSE compared with those of MC and NW estimators.

The final risk model provides the true VaR contributions via the formula presented in (4.5). In
such an elliptical case, the GR estimator provides quite an accurate estimate. Although the conditional
distribution FX′|{S=v} is heavy-tailed as seen in Figure 4.2 (iv), the MH estimator retains high performance
in comparison to the MC and NW estimators. The bias of the MH estimator is significantly improved
compared with the MC and NW estimators. Moreover, the standard error and RMSE of the MH estimator
are lower than those of the MC estimator.

Throughout the numerical study, the MH estimator provided a small bias and RMSE regardless of the
shape of the conditional distribution FX′|{S=v}. In the case when FX′|{S=v} is unimodal and symmetric,
the GR estimator also performed well. On the other hand, at least in our numerical experiment, the MC
and NW estimators had relatively larger biases and RMSEs compared with the MH and GR estimators.

81



Fi
gu

re
4.
2:

C
on

to
ur

pl
ot
s
(i)

–(
iv
)
an

d
au

to
co
rr
el
at
io
n
pl
ot
s
(v
)–
(v
iii
)
of

M
ar
ko
v
ch
ai
ns

ge
ne

ra
te
d
by

th
e
M
H

al
go
rit

hm
fo
r
fo
ur

di
ffe

re
nt

ris
k
m
od

el
s:

(i)
an

d
(v
)
Pa

re
to

+
su
rv
iv
al

C
la
yt
on

;(
ii)

an
d
(v
i)
Pa

re
to

+
t
co
pu

la
;(
iii
)
an

d
(v
ii)

St
ud

en
t
t
+

su
rv
iv
al

C
la
yt
on

;a
nd

(v
i)

an
d
(v
iii
)
St
ud

en
t
t
+
t
co
pu

la
.
T
he

re
d
lin

es
re
pr
es
en
t
th
e
ed

ge
s
of

th
e
v
-s
im

pl
ex
,w

he
re
v
is

th
e
es
tim

at
e
of

Va
R
p
(S

).
T
he

do
tt
ed

bl
ac
k

lin
es

in
Pl
ot
s
(v
i)–

(v
iii
)
re
pr
es
en
t
y

=
0.

1.
W

he
n
dr
aw

in
g
th
e
co
nt
ou

r
pl
ot
s,

we
us
ed

ev
er
y
10

0t
h
su
bs
am

pl
e
of

th
e
or
ig
in
al

M
ar
ko
v
ch
ai
ns

to
re
du

ce
th
e
de

pe
nd

en
ce

am
on

g
th
e
sa
m
pl
es
.

82



Table 4.1: Estimates (biases) and standard errors (root mean squared errors;
RMSEs) of the four different estimators of VaR contributions under the four
considered risk models†. The best result in each risk model is highlighted in bold
font.

Estimate of AC (Bias): Standard error (
√

MSE):

Estimator MC NW GR MH MC GR MH

(1) Pareto + survival Clayton: True AC = (10.708, 10.708, 10.708)

AC1 10.575 11.744 10.745 10.708 0.173 0.008 0.019
(-0.133) (1.036) (0.037) (0.000) (0.218) (0.038) (0.019)

AC2 10.138 10.547 10.635 10.724 0.169 0.008 0.020
(-0.571) (-0.161) (-0.074) (0.016) (0.595) (0.074) (0.025)

AC3 10.389 9.813 10.745 10.693 0.178 0.008 0.018
(-0.320) (-0.896) (0.037) (-0.016) (0.366) (0.038) (0.024)

(2) Pareto + t copula: True AC = (7.198, 8.908, 12.206)

AC1 6.835 8.162 7.697 7.339 0.238 0.010 0.041
(-0.362) (0.964) (0.499) (-0.121) (0.433) (0.499) (0.132)

AC2 8.785 8.355 8.740 8.765 0.223 0.010 0.028
(-0.122) (-0.553) (-0.167) (-0.023) (0.255) (0.168) (0.046)

AC3 11.913 11.781 11.875 12.208 0.134 0.006 0.024
(-0.293) (-0.426) (-0.332) (0.144) (0.322) (0.332) (0.148)

(3) Student t + survival Clayton: True AC = (5.647, 5.647, 5.647)

AC1 5.592 5.693 5.662 5.617 0.081 0.006 0.018
(-0.055) (0.046) (0.015) (-0.029) (0.098) (0.016) (0.034)

AC2 5.410 5.722 5.642 5.665 0.079 0.006 0.019
(-0.236) (0.076) (-0.005) (0.018) (0.249) (0.007) (0.026)

AC3 5.473 5.517 5.636 5.658 0.082 0.006 0.018
(-0.173) (-0.130) (-0.011) (0.011) (0.192) (0.012) (0.021)

(4) Student t + t copula: True AC = (2.996, 3.745, 6.741)

AC1 2.821 3.065 2.997 2.940 0.117 0.007 0.036
(-0.176) (0.069) (0.001) (-0.056) (0.211) (0.007) (0.067)

AC2 3.772 3.560 3.742 3.792 0.109 0.006 0.033
(0.027) (-0.185) (-0.004) (0.047) (0.112) (0.007) (0.057)

AC3 6.564 6.852 6.745 6.751 0.043 0.002 0.011
(-0.178) (0.110) (0.003) (0.010) (0.183) (0.004) (0.015)

† The estimate is computed for the Monte Carlo (MC), Nadaraya-Watson (NW ), generalized

regression (GR), and Metropolis-Hastings (MH) estimators. The standard error is computed

in all cases except for the NW estimator. The sample size is N = 106 for all methods.
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4.5.2 Empirical study

The numerical study is now extended to a high-dimensional case with real-world data. We used the
dataset stockdata in the R-package huge, which consists of stock market data of closing prices from all
stocks in the S&P 500 for all the days the market was open in the period of January 1, 2003 to January 1,
2008 (five years). During the time period, there remained d = 452 stocks in the S&P 500. The sample size
is T = 1258. We transformed the data into the log-ratio of prices at time t to the price at time t− 1, so
log-returns.

Most stylized facts on stock returns listed in Chapter 3 of McNeil et al. (2015) are observable in the
data. For example, return series are unimodal, leptokurtic, and heavy-tailed with little serial correlation
and volatility clusters. Moreover, the d return series are mutually dependent. Taking these observations
into account, we adopted a copula-GARCH model with skew-t white noise (ST-GARCH; see, for example,
Jondeau and Rockinger, 2006; Huang et al., 2009). In the model, d marginal time series are modelled by
GARCH(1, 1) and the underlying white noise processes follow skew-t distributions with an inhomogeneous
degree of freedom νj > 0 and skewness parameter γj > 0; that is, within a fixed time period {1, . . . , T} the
jth return series (X1,j , . . . , XT,j) follows

Xt,j = µj + σt,jZt,j , σ2
t,j = ωj + αjX

2
t−1,j + βjσ

2
t−1,j , Zt,j

iid∼ ST(νj , γj)

for t = 2, . . . , T, j = 1, . . . , d, where ωj > 0, αj , βj ≥ 0, αj + βj < 1, and Zt,j follows a skew-t distribution
ST(νj , γj) with density given by

fj(xj ; νj , γj) = 2
γ + 1

γ

{
t(xj , νj)1[xj≥0] + t(γjxj , νj)1[xj<0]

}
, (4.21)

where t(x, ν) is the density of a Student t distribution with ν > 0 degrees of freedom and skewness parameter
γ > 0 with γ = 1 meaning symmetric; see Fernández and Steel (1998) for more details. The copula among
Zt = (Zt,1, . . . , Zt,d) is assumed to be a Student t copula with parameters ν and P independent of time t.

We estimated the parameters of the marginal ST-GARCH(1,1) models and the t copula based on the
copula approach. First, we fitted the ST-GARCH(1,1) models with the maximum likelihood method to the
marginal time series. Then, to obtain pseudo-samples from the copula of Z, distributional transforms were
applied componentwise to the d-dimensional white noise process extracted from the ST-GARCH models.
We finally fit the t copula to them with the method-of-moment using Kendall’s tau for the dispersion
matrix P and the maximum likelihood method for the degree of freedom ν; see Demarta and McNeil (2005)
for more details. The results of the estimation are summarized in Figure 4.3. From (B1) and (B5), we
observe that the estimates of means and omegas are almost 0. From (B3), most of the marginal white noise
distributions are symmetrical but some are skewed. From (B4), their degrees of freedom range from two to
ten, that is, the tail-heaviness of the return series is inhomogeneous over the d assets considered. Finally,
(B8) shows that the pairwise correlations among the return series are typically from 0.2 to 0.4, and some
have strong positive correlations.

Our goal in this study is to compute the conditional VaR contributions at time T +1 given the history Ft.
Under the model described above, the marginal distribution of the jth return at time T + 1 is XT+1,j|FT ∼
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Figure 4.3: Boxplots of d estimates of each parameter (B1) µj , (B2) σT+1,j , (B3) γj , (B4) νj , (B5) ωj ,
(B6) αj , (B7) βj , and (B8) ρj1,j2 for j = 1, . . . , d and j1, j2 ∈ {1, . . . , d} of the ST-GARCH(1,1) models
Xt,j = µj +σt,jZt,j , σ2

t,j = ωj +αjX2
t−1,j +βjσ2

t−1,j , where Zt,j ∼ ST(νj , γj), independently and identically
for t = 1, . . . , T + 1, j = 1, . . . , d, with a t copula with parameters ν and P . The estimate of the degrees of
freedom of the t copula was ν̂ = 89.039.

ST(µj , σ2
t+1,j , νj , γj), that is, a skew t distribution with density fj(xj−µjσt+1,j

; νj , γj) with fj(·; νj , γj) defined
in (4.21). Their copula is a Student t copula with parameters ν and P . Based on this multivariate model,
conditional VaR contributions at time T + 1 given the history Ft are estimated by the same procedure as
in Section 4.5.1.

We estimated the conditional VaR contributions (ACT+1
1 , . . . ,ACT+1

d ) with confidence level p = 0.999
by using the MC, NW, GR and MH estimators. For MC, N = 105 samples were generated and the total
VaR was estimated as the Npth largest sample among them. The run time of the MC simulation was 2.690
minutes. The MC estimates of VaR contributions were then computed as sample means of the conditional
samples whose sums were in the set Aδ = [v − δ, v + δ]. The bandwidth was set to be δ = 4.8 so that
there were Mδ,N = 733 conditional MC samples. Estimates of standard errors were also computed based
on these samples. NW, GR and MH estimators were computed analogously to the previous simulation
study in Section 4.5.1. For the MH estimator, the MpCN proposal distribution was chosen since the target
distribution was expected to be heavy-tailed and elliptical to some extent. The length of the sample path
was chosen to be N = 104, and the run time of the MH algorithm was 5.487 minutes. We inspected
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Figure 4.4: Monte Carlo (MC; blue), Nadaraya-Watson (NW; green), Generalized regression (GR; red),
and Metropolis-Hastings (MH; black) estimates of conditional VaR contributions at time T + 1 given FT
plotted with standardized marginal value-at-risks (gray) and the homogeneously allocated capitals (dotted
black line). The colored dotted lines represent the 95% confidence upper or lower bounds of the MC, GR,
or MH estimates. The black dashed line is the equal allocation over all the assets.

the autocorrelation plots and ACR to check the validity of the proposal distribution. We observed that
all autocorrelations decreased below 0.1 if lags were larger than 40. Together with the ACR 0.983, we
concluded that the choice of q was appropriate.

Figure 4.4 shows the MC, NW, GR and MH estimates of the conditional VaR contributions (ACT+1
1 , . . . ,

ACT+1
d ) of returns at time T + 1 given the history FT plotted with the homogeneously allocated capitals

VaRp(S | FT )/d and the standardized marginal VaRs, which is also called the proportional allocations in
Dhaene et al. (2012), defined by VaRp(XT+1,j | FT )∆p(XT+1 | FT ), where ∆p(XT+1 | FT ) is the so-called
superadditivity ratio defined by

∆p(XT+1 | FT ) = VaRp(S | FT )∑d
j=1 VaRp(XT+1,j | FT )

.

For the MC, GR and MH estimators, the 95% confidence upper and lower bounds are also plotted. On the
x-axis, the 452 assets are rearranged in increasing order of the MH estimates.

Compared with the dashed line representing the equal allocation, all the estimated allocated capitals
show inhomogeneity among assets. Overall, the estimated VaR contributions are less volatile than the
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standardized marginal VaRs, which could be because of the diversification effect. We can also observe
that the MH estimates and GR estimates almost coincide for all d assets. The confidence intervals of both
estimators are much tighter than those of the MC estimator. NW estimates fluctuate around the line of
the MH and GR estimates. On the other hand, the MC estimates deviate from these lines, which indicates
that the MC estimator contains inevitable bias. In summary, although the true ACs are unknown, the
GR and MH estimators retain stable performance compared with the MC and NW estimators even if the
dimension d is large and marginal distributions are inhomogeneous.

4.5.3 Advantages and disadvantages of the MH estimator

We now summarize the advantages and disadvantages of the MH estimator compared with the other
estimators. The first advantage is that the MH estimator is consistent whereas this is not always true for
the other estimators. As explained in Section 4.2, the MC, NW, and GR estimators have biases which
cannot be easily eliminated. In fact, we observed in Table 4.1 that unignorable biases of the MC, NW, and
GR estimators sometimes remain even when their standard errors are sufficiently small. In contrast, the MH
estimator provides more accurate estimates of VaR contributions as N →∞ due to its consistency. Since
the CLT also holds, confidence intervals for the true VaR contributions are also available. Secondly, the MH
estimator has great sample efficiency compared with the MC estimator. While samples are generated from
FX and most are discarded in the MC method, no samples are wasted in the MH method since it directly
simulates from FX|{S=v}. Consequently, the MH estimator can achieve low standard errors. Finally, the MH
estimator can maintain high performance even when the conditional distribution FX′|{S=v} is multimodal
or heavy-tailed. As discussed in Section 4.5.1, the performance of the GR estimator highly depends on
the shape of FX′|{S=v}. On the other hand, for the MH estimator, the shape of FX′|{S=v} can be directly
captured through the proposal distribution q. By choosing an appropriate proposal distribution q according
to the shape of FX′|{S=v}, the MH estimator can attain great performance. This advantage, however,
can be seen as a disadvantage from the viewpoint of the simplicity of estimation. In general, estimation
with MH requires two steps: the first is to choose a family of proposal distributions, and the second is to
determine its parameters. The second step of parameter estimation can be based on the MC samples falling
into the set Aδ; these samples are regarded as the pseudo samples from FX|{S=v}. Meanwhile, the first
step is not so straightforward. We will discuss this issue in Section 4.5.4 below. Another disadvantage of
the MH estimator is that it typically requires a longer run time than other existing estimators. Since MH
requires N times simulation from the proposal distribution and evaluation of the acceptance probability
(1.11), a careful implementation and proposal selection are necessary to save computational time.

4.5.4 Guidelines for the choice of proposal distribution

A significant drawback of the MH estimator is that the choice of an appropriate proposal distribution
q is not as simple as the parameter selections of other existing estimators. An instruction for selecting
a proposal distribution is necessary since it highly affects the performance of the MH estimator. In this
section, we first investigate the symptoms caused by an inappropriate choice of q. Then, we consider how
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to overcome these problems based on the numerical experiments provided above. Practical guidelines for
choosing an appropriate proposal distribution are also provided.

An inappropriate choice of q is largely classified into two cases. One is that a proposal distribution q
often generates a candidate of which the probability measured by π is quite small. This case occurs, for
example, when q does not fully capture the shape of π. In such a case, the Markov chain moves quite
slowly and this yields a high asymptotic standard error of the MH estimator. This situation results in quite
a low acceptance rate and high autocorrelations. Another case is when q generates only some parts of the
whole support of π. This case occurs, for example, when π has distinct local modes and the variance of q is
so small that the chain cannot pass between ridges. In such a case, an estimate can be significantly biased,
although the acceptance rate and autocorrelation plots are seemingly perfect. This situation results in a
distorted plot of MCMC samples whose shapes are completely different from the target distribution π.

How can we detect and avoid such situations? First, as mentioned in Section 1.4.2, it is indispensable
to inspect the autocorrelation plots and ACR to prevent the first situation. Additionally, to avoid the
second situation, we recommend plotting the generated Markov chain and comparing the samples with
the plots of the MC samples whose componentwise sums belong to Aδ = [v − δ, v + δ]. Since such MC
samples follow the distribution FX|{S∈Aδ}, one can detect the distortion of the generated Markov chain by
comparing the two scatter plots of FX|{S=v} and FX|{S∈Aδ}. As an example from our simulation study in
Section 4.5.1, Figure 4.5 shows scatter plots of the MC samples whose sums belong to [v− δ, v + δ] overlaid
with scatter plots of the MH samples. From this figure, we can see that the shapes of the scatter plots of
the MH samples bear striking resemblance with those of the MC samples for all risk models. If some part of
the support of π is covered by the MC samples but not by the MH samples, the choice of q is questionable.

Finally, through numerical experiments we found that dependence information of the underlying risk
model can be helpful for the selection of q. When the copula C of the underlying risk model only has
positive dependence for all pairs of loss variables, then the conditional distribution FX|{S=v} is likely to be
unimodal and light-tailed since positive dependence among X1, . . . , Xd prevents them from being diversified
under the constraint {X1 + · · ·+Xd = v}. In Models (1) and (3) in Section 4.5.1, where the copula C has
only positive dependence, the contour plots in Figures 4.2 (i) and (iii) show that FX′|{S=v} is unimodal and
light-tailed. These features facilitate the estimation with MH since simple proposal distributions such as
the random walk proposal (1.15) and the independent proposal (1.16) can perform well. Conversely, when
C has negative dependence, FX′|{S=v} tends to be multimodal or heavy-tailed since negative dependence
allows each component of X to take extreme values under {X1 + · · ·+ Xd = v}. In Models (2) and (4)
in Section 4.5.1, where C has negative dependence, Figure 4.2 (ii) indicates that FX′|{S=v} is bimodal,
and the contour plot in Figure 4.5 (d) shows that FX′|{S=v} is heavy-tailed. In such cases, a careful
proposal selection is required for achieving an efficient MH estimator. When the losses X1, . . . , Xd are
all nonnegative, then FX′|{S=v} is supported on the bounded simplex Sv. Therefore, one can cover the
whole support of FX′|{S=v} by choosing q as the independent proposal with the distribution defined on
the simplex. The uniform distribution on Sv can be the safest choice. It is also possible to choose other
distributions that share the same features of FX′|{S=v} observed in the MC samples. For instance, since
bimodality is observed in the contour plot in Figure 4.5 (b), we choose q as the independent proposal
distribution with f being the Dirichlet distribution on Sv, which can possess two distinct modes around
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the edges of the simplex. When X is Rd-valued and negatively dependent, obtaining efficient MCMC
algorithm is challenging since the target distribution FX′|{S=v} is likely to be multimodal or heavy-tailed.
As a special case, when FX is not far away from an elliptical distribution, then FX′|{S=v} is likely to be
elliptical again. In such a case, even if it is heavy-tailed, the MpCN proposal distribution (1.17) is known
to perform well, which is also demonstrated by the simulation study of the risk model (4) in Section 4.5.1
and by the empirical study in Section 4.5.2.

The discussions about choosing an appropriate proposal distribution can be summarized in terms of a
flowchart; Figure 4.6. Together with these guidelines, the whole procedure of our MH estimator of VaR
contributions presented in this chapter can be summarized as follows.

1. Generate X1, . . . ,XM
iid∼ FX by MC.

2. Based on the samples generated in Step 1, estimate VaR by v = V̂aRp(S).

3. For a bandwidth δ > 0, extract subsamples such that 1>dXm ∈ [v − δ, v + δ] for m = 1, . . . ,M .

4. Choose a family of proposal distributions according to the guideline in Figure 4.6.

5. Based on the pseudo-samples extracted in Step 3, determine the parameters of the proposal distribu-
tion q.

6. For a sample size N > 0, proposal density q and the initial value X(0) = x(0), run Algorithm 1 to
generate an N -path (X(1), . . . ,X(N)) of a Markov chain whose stationary distribution is fX|{S=v}.

7. To check the validity of the proposal distribution q, compute the acceptance rate, draw the autocorre-
lation plots, and compare the scatter plots of the MC and MH samples.

8. If the proposal selection is verified in Step 7, compute the MH estimator of VaR contributions (4.7)
based on the sample path generated in Step 6. Otherwise, go to Step 4 and choose another proposal
distribution.

4.6 Concluding remarks

Computing VaR contributions for a risk model specified by a joint density is in general a difficult task.
To this end, we propose the MH estimator of VaR contributions. Its sample efficiency is significantly
improved since the MH method generates samples directly from the conditional density given the sum
constraint. Moreover, since the MH estimator can capture the features of the risk model more directly
than the existing estimators, it can maintain high performance even when the underlying loss distribution
is multimodal or heavy-tailed. By the general theory of Markov chains, the MH estimator is consistent and
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asymptotically normal. Through simulation and empirical studies based on real-world data, the performance
of the MH estimator was compared to those of other existing estimators for various risk models. The
numerical results demonstrated that in most risk models, the MH estimator had smaller bias and RMSE
compared with the other estimators considered even when the dimension of the portfolio was high, such as
d ≈ 500.

Potential future research includes a theoretical study of the conditional joint distribution of X | {S = v}.
Our main interest here is in the influence of the underlying copula of a risk model on the tail behavior and
multimodality of the density fX|{S=v}, which will be partially answered in Chapter 6. We believe that
revealing such relationships can provide more promising guidelines for the proposal selection of the MH
estimator.
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Figure 4.5: Scatter plots of the Monte Carlo (MC; black) and Metropolis-Hastings (MH; blue) samples for
different risk models: (a) Pareto + survival Clayton, (b) Pareto + t copula, (c) Student t + survival Clayton,
(d) Student t + t copula. The red lines represent the edges of the v-simplex, where v is the estimate of
VaRp(S). We plot the MC samples generated from FX such that their sums belong to Aδ = [v − δ, v + δ].
In the four risk models, the values of δ are (1) 4.8, (2) 3.9, (3) 2.2, and (4) 1.7. When drawing the scatter
plots of the MH samples, we only used every 100th sample points among the original sample paths of
Markov chains.
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Are the loss random variables
(X1, . . . , Xd) positively depen-
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The conditional distribution
FX|{S=v} is likely to be unimodal
and light-tailed. Thus, simple
proposal distributions such as the
random walk and independent
proposals can work well.
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Are the losses all nonnegative,
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bounded, that is, there exist
cj = essinf(Xj) > −∞ such that
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Figure 4.6: Flowchart for choosing the proposal distribution of the Metropolis-Hastings (MH) estimator of
value-at-risk contributions.
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Chapter 5

Markov Chain Monte Carlo methods
for estimating systemic risk
allocations

In this chapter, we extend the framework of estimating VaR contributions with MCMC methods
presented in Chapter 4 to a more general class of systemic risk measures and risk allocations. We consider a
class of allocations whose jth component can be written as some risk measure of the jth conditional marginal
loss distribution given the so-called crisis event. By considering a crisis event as an intersection of linear
constraints, this class of allocations covers, for example, conditional Value-at-Risk (CoVaR), conditional
expected shortfall (CoES), VaR contributions, and range VaR (RVaR) contributions as special cases. For
this class of allocations, analytical calculations are rarely available, and numerical computations based on
Monte Carlo (MC) methods often provide inefficient estimates due to the rare-event character of the crisis
event. We propose an MCMC estimator constructed from a sample path of a Markov chain whose stationary
distribution is the conditional distribution given the crisis event. Efficient constructions of Markov chains,
such as Hamiltonian Monte Carlo and Gibbs sampler, are suggested and studied depending on the crisis
event and the underlying loss distribution. The efficiency of the MCMC estimators is demonstrated in a
series of numerical experiments.

5.1 Introduction

In portfolio risk management, risk allocation is an essential step to quantify the risk of each unit of a
portfolio by decomposing the total risk of the whole portfolio. One of the most prevalent rules to determine
risk allocations is the Euler princple For the popular risk measures VaR, RVaR, and ES, Euler allocations
take the form of conditional expectations of the underlying loss random vector given a certain rare event
on the total loss of the portfolio; see Section 1.3 for details. We call this rare event the crisis event.

93



The decomposition of risks is also required in the context of systemic risk measurement. Systemic risk
is the risk of financial distress of an entire economy as a result of the failure of individual components
of the financial system. To quantify such risks, various systemic risk measures have been proposed in
the literature, such as conditional VaR (CoVaR) (Adrian and Brunnermeier (2016)), conditional expected
shortfall (CoES) (Mainik and Schaanning (2014)) and marginal expected shortfall (MES) (Acharya et al.
(2017)). These three measures quantify the risk of individuals by taking the VaR, ES and expectation
of the individual loss, respectively, under some stressed scenario, that is, given the crisis event. Chen
et al. (2013), Hoffmann et al. (2016) and Kromer et al. (2016) proposed an axiomatic characterization of
systemic risk measures, where the risk of the aggregated loss in a financial system is first measured and
then decomposed into the individual economic entities. Due to the similarity of risk allocations with the
derivation of systemic risk measures, we refer to both of them as systemic risk allocations. In fact, MES
coincides with the Euler allocation of ES, and other Euler allocations can be regarded as special cases of
systemic risk measures considered in Gourieroux and Monfort (2013).

Calculating systemic risk allocations given an unconditional joint loss distribution is in general challenging
since analytical calculations often require to know the joint distribution of the marginal loss and the
aggregated loss. Furthermore, MC estimation suffers from the rare-event character of the crisis event. For
computing CoVaR, CoES and MES, Mainik and Schaanning (2014), Bernardi et al. (2017) and Jaworski
(2017) derived formulas based on the copula of the marginal and the aggregated loss; Asimit and Li (2018)
derived asymptotic formulas based on extreme value theory; and Girardi and Ergün (2013) estimated
CoVaR under a multivariate GARCH model. Vernic (2006), Chiragiev and Landsman (2007), Dhaene et al.
(2008) and Furman and Landsman (2008) calculated Euler allocations for specific joint distributions. Asimit
et al. (2011) derived asymptotic formulas for risk allocations. Furman and Zitikis (2009) and Furman et al.
(2018) calculated weighted allocations, which include Euler allocations as special cases, under a Stein-type
assumption. Concerning the numerical computation of Euler allocations, Glasserman (2005), Glasserman
and Li (2005) and Kalkbrener et al. (2004) considered importance sampling methods, and Siller (2013)
proposed the Fourier transform Monte Carlo method, all specifically for credit portfolios. For general
copula-based dependence models, analytical calculations of systemic risk allocations are rarely available,
and an estimation method is, to the best of our knowledge, only addressed in Targino et al. (2015), where
sequential Monte Carlo (SMC) samplers are applied.

We address the problem of estimating systemic risk allocations under general copula-based dependent
risks in the case where the copula between the marginal losses and the aggregated loss are not necessarily
available. We consider a general class of systemic risk allocations in the form of risk measures of a conditional
loss distribution given a crisis event, which includes CoVaR, CoES, MES and Euler allocations as special
cases. In our proposed method, the conditional loss distribution, called the target distribution π, is simulated
by a Markov chain whose stationary distribution is the desired distribution π by sequentially updating the
sample path based on the available information from π. While this MCMC method resembles the SMC in
Targino et al. (2015), the latter requires a more complicated implementation involving the choice of forward
and backward kernels, resampling and move steps, and even MCMC in the move steps. Our suggested
approach directly constructs a single sophisticated Markov chain depending on the target distribution of
interest. Applications of MCMC to estimating risk allocations have been studied in Chapter 4, specifically
for VaR contributions. This chapter explores and demonstrates the applicability of MCMC methods to a
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more general class of systemic risk allocations.

Almost all MCMC methods used in practice are of the Metropolis-Hastings (MH) type; see Section 1.4.
serial correlation, which adversarially affects the efficiency of the As discussed in Chapter 4, an efficient
MCMC of MH type is such that the proposal distribution generates a candidate which exhibits low
correlation with the current state with sufficiently large acceptance probability. The main difficulty in
constructing such an efficient MCMC estimator for systemic risk allocations is that the support of the target
distribution π is subject to the constraints determined by the crisis event. For such target distributions,
simple MCMC methods such as random walk MH are not efficient since a candidate is immediately rejected
if it violates the constraints; see Section 5.3.1 for details.

To tackle this problem, we consider two specific MCMC methods, Hamiltonian Monte Carlo (HMC)
(Duane et al. (1987)) and the Gibbs sampler (GS) (Geman and Geman (1984) and Gelfand and Smith
(1990)). In the HMC method, a candidate is generated according to the so-called Hamiltonian dynamics,
which leads to a high acceptance probability and low correlation with the current state by accurately
simulating the dynamics of sufficiently long length; see Neal et al. (2011) and Betancourt (2017) for an
introduction to HMC. Moreover, the HMC candidates always belong to the crisis event by reflecting the
dynamics when the chain hits the boundary of the constraints; see Ruján (1997), Pakman and Paninski
(2014), Afshar and Domke (2015), Yi and Doshi-Velez (2017) and Chevallier et al. (2018) for this reflection
property of the HMC method. An alternative method to handle the constraints is the GS, in which the
chain is updated in each component. Since all the components except the updated one remain fixed, a
componentwise update is typically subject to weaker constraints. As long as such componentwise updates
are feasible, the GS candidates belong to the crisis event, and the acceptance probability is always 1; see
Geweke (1991), Gelfand et al. (1992) and Rodriguez-Yam et al. (2004) for the application of the GS to
constrained target distributions, and see Gudmundsson and Hult (2014) and Targino et al. (2015) for
applications to estimating risk contributions.

Our findings include efficient MCMC estimators of systemic risk allocations achieved via HMC with
reflection and GSs. We assume that the unconditional joint loss density is known, possibly through its
marginal densities and copula density. Depending on the supports of the marginal loss distributions and
the crisis event, different MCMC methods are applicable. We find that if the marginal loss distributions are
one-sided, that is, the supports are bounded from the left, then the crisis event is typically a bounded set
and HMC shows good performance. On the other hand, if the marginal losses are two-sided, that is, they
have both right and left tails, the crisis event is often unbounded and the GSs perform better, provided
that random number generators of the conditional copulas are available. Based on the samples generated
by the MC method, we propose heuristics to determine the parameters of the HMC and GS methods, for
which no manual interaction is required. Since, in the MCMC method, the conditional loss distribution
of interest is directly simulated in contrast to MC where rejection is applied based on the unconditional
loss distribution, the MCMC method in general outperforms the MC method in terms of the sample size
and thus the standard error. This advantage of MCMC becomes more pronounced as the probability of
the crisis event becomes smaller. We demonstrate this efficiency of the MCMC estimators of systemic risk
allocations by a series of numerical experiments.

This chapter is organized as follows. The general framework of the estimation problem of systemic risk
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allocations is introduced in Section 5.2. Our class of systemic risk allocations is proposed in Section 5.2.1
and their estimation via the MC method is presented in Section 5.2.2. Section 5.3 is devoted to MCMC
methods for estimating systemic risk allocations. In Section 5.3.1 we formulate our problem of estimating
systemic risk allocations in terms of MCMC. HMC and GS for constrained target distributions are then
investigated in Sections 5.3.2 and 5.3.3, respectively. In Section 5.4 numerical experiments are conducted
including simulation and empirical studies, and a detailed comparison of MC and our introduced MCMC
methods. Section 5.5 concludes with practical guidance and limitations of the presented MCMC methods.
Readers are referred to Section 1.3 and Section 1.4 for notations and preliminaries concerning the problem
of capital allocation and MCMC methods.

5.2 Systemic risk allocations and their estimation

In this section, we define a broad class of systemic risk allocations including Euler allocations, CoVaR
and CoES as special cases. Then we describe the MC method to estimate systemic risk allocations.

5.2.1 A class of systemic risk allocations

An allocation A = (A1, . . . , Ad) is a map from a random vector X to (A1(X), . . . , Ad(X)) ∈ Rd. The
sum

∑d
j=1Aj(X) can be understood as the capital required to cover the total loss of the portfolio or the

economy. The jth component Aj(X), j = 1, . . . , d is then the contribution of the jth loss to the total
capital

∑d
j=1Aj(X). In this chapter, we consider the following class of allocations

A%1,...,%d,C = (A%1,C
1 , . . . , A%d,Cd ), A

%j ,C
j (X) = %j(Xj | {X ∈ C}),

where %j is a map from a random variable to R called the jth marginal risk measure for j = 1, . . . , d, and
C ⊆ Rd is a set called the crisis event. The conditioning set {X ∈ C} is simply written as C if there is no
confusion. As we now explain, this class of allocations covers well-known allocations as special cases.

We now define various crisis events and marginal risk measures. A typical form of the crisis event is an
intersection of a set of linear constraints

C =
M⋂
m=1

{
h>mx ≥ vm

}
, hm ∈ Rd, vm ∈ R, m = 1, . . . ,M, M ∈ N. (5.1)

Several important special cases of the crisis event of Form (5.1) can be provided.

Definition 5.2.1 (VaR, RVaR and ES crisis events). For S =
∑d
j=1Xj , the VaR, RVaR and ES crisis

events are defined by

CVaR
p = {x ∈ Rd | 1>d x = VaRp(S)}, p ∈ (0, 1),

CRVaR
p1,p2

= {x ∈ Rd | VaRp1(S) ≤ 1>d x ≤ VaRp2(S)}, 0 < p1 < p2 ≤ 1,

CES
p = {x ∈ Rd | VaRp(S) ≤ 1>d x}, 0 < p < 1, p ∈ (0, 1),

respectively, where 1d is the d-dimensional vector of ones.
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Definition 5.2.2 (Risk contributions and conditional risk measures). For j ∈ {1, . . . , d}, we call A%j ,Cj of

1. risk contribution type if %j = E;

2. CoVaR type if %j = VaRpj for pj ∈ (0, 1);

3. CoRVaR type if %j = RVaRpj,1,pj,2 for 0 < pj,1 < pj,2 ≤ 1; and

4. CoES type if %j = ESpj for pj ∈ (0, 1).

The following examples show that A%j ,Cj coincides with popular allocations for specific choices of marginal
risk measure and crisis event.

Example 5.2.3 (Special cases of A%1,...,%d,C).

(1) Risk contributions: If the crisis event is chosen to be CVaR
p , CRVaR

p1,p2
or CES

p , the allocations of the risk
contribution type %j = E reduce to the VaR, RVaR or ES contributions defined by

VaRp(X, S) = E[X | {S = VaRp(S)}],

RVaRp1,p2(X, S) = E[X | {VaRp1(S) ≤ S ≤ VaRp2(S)}],

ESp(X, S) = E[X | {S ≥ VaRp(S)}],

respectively; see (1.5), (1.6) and (1.7). The ES contributions are also called the marginal expected
shortfall (MES) and used as a systemic risk measure; see Acharya et al. (2017).

(2) Conditional risk measures: CoVaR and CoES are systemic risk measures defined by

CoVaR=
p1,p2

(Xj , S) = VaRp2(Xj | {S = VaRp1(S)}),

CoVaRp1,p2(Xj , S) = VaRp2(Xj | {S ≥ VaRp1(S)}),

CoES=
p1,p2

(Xj , S) = ESp2(Xj | {S = VaRp1(S)}),

CoESp1,p2(Xj , S) = ESp2(Xj | {S ≥ VaRp1(S)}),

for p1, p2 ∈ (0, 1); see Mainik and Schaanning (2014) and Bernardi et al. (2017). Our CoVaR and
CoES type allocations with crisis events C = CVaRp or CESp coincide with those defined in the displayed
equations.

Remark 5.2.4 (Weighted allocations). For a measurable function w : Rd → R+ = [0,∞), Furman
and Zitikis (2008) proposed the weighted allocation %w(X) with the weight function w being defined
by %w(X) = E[Xw(X)]/E[w(X)]. By taking an indicator function as weight function w(x) = 1{x∈C}

and provided that P(X ∈ C) > 0, weighted allocation coincides with the risk contribution type systemic
allocation AE,...,E,C .
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5.2.2 Monte Carlo estimation of systemic risk allocations

Even if the joint distribution FX of the loss random vector X is known, the conditional distribution of
X given X ∈ C, denoted by FX|C , is typically too complicated to analytically calculate the systemic risk
allocations A%1,...,%d,C . An alternative approach is to numerically estimate them by the MC method as is
done in Yamai and Yoshiba (2002) and Fan et al. (2012). To this end, assume that one can generate i.i.d.
samples from FX . If P(X ∈ C) > 0, the MC estimator of A%j ,Cj , j = 1, . . . , d is constructed as follows:

(MC1) Sample from X: For a sample size N ∈ N, generate X(1), . . . ,X(N) ind.∼ FX .

(MC2) Estimate the crisis event: If the crisis event C contains unknown quantities, replace them with their
estimates based on X(1), . . . ,X(N). Denote by Ĉ the estimated crisis event.

(MC3) Sample from the conditional distribution of X given Ĉ: Among X(1), . . . ,X(N), determine X̃(n) such
that X̃(n) ∈ Ĉ for all n = 1, . . . , N .

(MC4) Construct the MC estimator : The MC estimate of A%j ,Cj is %j(F̂X̃) where F̂X̃ is the empirical cdf
(ecdf) of the X̃(n)’s.

For an example of (MC2), if the crisis event is CRVaR
p1,p2

= {x ∈ Rd | VaRp1(S) ≤ 1>d x ≤ VaRp2(S)},
then VaRp1(S) and VaRp2(S) are unknown parameters, and thus they are replaced by VaRp1(F̂S) and
VaRp2(F̂S), where F̂S is the ecdf of the total loss S(n) = X

(n)
1 + · · ·+X

(n)
d for n = 1, . . . , N . By the law of

large numbers (LLN) and the central limit theorem (CLT), the MC estimator of A%1,...,%d,C is consistent, and
approximate confidence intervals of the true allocations can be constructed based on asymptotic normality;
see Glasserman (2005).

As we discussed in Section 4.2 of Chapter 4, MC cannot handle VaR crisis events if S admits a pdf
since P(X ∈ CVaR

p ) = P(S = VaRp(S)) = 0 and thus no subsample is picked in (MC3) above. A possible
remedy (although the resulting estimator suffers from an inevitable bias) is to replace CVaR

p with CRVaR
p−δ,p+δ

for sufficiently small δ > 0 so that P(S ∈ CRVaR
p−δ,p+δ) = 2δ > 0.

The main advantage of MC for estimating systemic risk allocations A%1,...,%d,C is that only a random
number generator for FX is required for implementing the method. Furthermore, MC is applicable for
any choice of the crisis event C as long as P(X ∈ C) > 0. Moreover, the main computational load is
simulating FX in (MC1) above, which is typically not demanding. The disadvantage of the MC method is
its inefficiency concerning the rare-event characteristics of %1, . . . , %d and C. To see this, consider the case
where C = CRVaR

p1,p2
and %j = RVaRp1,p2 for p1 = 0.95 and p2 = 0.975. If the MC sample size is N = 105,

there are N × (p2−p1) = 2500 expected subsamples resulting from (MC3). To estimate RVaRp1,p2 in (MC4)
based on this subsample, only 2500 × (p2 − p1) = 62.5 samples contribute to computing the estimate,
which is in general not enough for statistical inference. This effect of sample size reduction is relaxed if ES
and/or the ES crisis events are considered, but is more problematic for the VaR crisis event since there is a
trade-off concerning reducing bias and MC error when choosing δ; see Section 4.2 in Chapter 4.
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5.3 MCMC estimation of systemic risk allocations

To overcome the drawback of the MC method for estimating systemic risk allocations, we introduce
MCMC methods which simulate a given distribution by constructing a Markov chain whose stationary
distribution is FX|C. In this section, we study how to construct an efficient MCMC estimator for the
different choices of crisis events.

5.3.1 MCMC formulation for estimating systemic risk allocations

Numerous choices of proposal densities q are possible to construct an MH kernel. In this section, we
consider how to construct an efficient MCMC method for estimating systemic risk allocations A%1,...,%d,C

depending on the choice of the crisis event C. Our goal is to simulate the conditional distribution X | C
directly by constructing a Markov chain whose stationary distribution is

π(x) = fX|{X∈C}(x) = fX(x)
P(X ∈ C)1{x∈C}, x ∈ E ⊆ Rd, (5.2)

provided P(X ∈ C) > 0. Samples from this distribution can directly be used to estimate systemic risk
allocations with crisis event C and arbitrary marginal risk measures %1, . . . , %d. Other potential applications
are outlined in Remark 5.3.1.

Remark 5.3.1 (Gini shortfall allocation). Samples from the conditional distribution FX|CES
p

can be used
to estimate, for example, the tail-Gini coefficient TGinip(Xj , S) = 4

1−p Cov(Xj , FS(S) | S ≥ VaRp(S)) for
p ∈ (0, 1), and the Gini shortfall allocation (Furman et al. (2017)) GSp(Xj , S) = E[Xj | S ≥ VaRp(S)] +
λ · TGinip(Xj , S), λ ∈ R+ more efficiently than by applying the MC method. Another application is
to estimate risk allocations derived by optimization given a constant economic capital; see Laeven and
Goovaerts (2004) and Dhaene et al. (2012).

We now construct a MH algorithm with target distribution (5.2). To this end, we assume that

(A1) the ratio fX(y)/fX(x) can be evaluated for any x,y ∈ C, and that

(A2) the support of fX is Rd or Rd+.

Regarding (A1), the normalization constant of fX and the probability P(X ∈ C) are not necessary to be
known since they cancel out in the numerator and the denominator of π(y)/π(x). In (A2), the loss random
vector X refers to the profit and loss (P&L) if supp(X) = Rd and to pure losses if supp(X) = Rd+. Note
that the case supp(X) = [c1,∞]× · · · × [cd,∞], c1, . . . , cd ∈ R, is essentially included in the case of pure
losses as long as the marginal risk measures %1, . . . , %d are law invariant and translation invariant, and the
crisis event is the set of linear constraints of Form (5.1). To see this, define X̃j = Xj − cj , j = 1, . . . , d,
X̃ = (X̃1, . . . , X̃d) and c = (c1, . . . , cd). Then supp(X̃) = Rd+ and X | {X ∈ C} d= X̃ | {X̃ ∈ C̃}+ c where
C̃ is the set of linear constraints with parameters h̃m = hm and ṽm = vm − h>mc. By law invariance and
translation invariance of %1, . . . , %d,

%j(Xj | {X ∈ C}) = cj + %j(X̃j | {X̃ ∈ C̃}), j = 1, . . . , d.
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Therefore, the problem of estimating A%1,...,%d,C(X) reduces to that of estimating A%1,...,%d,C̃(X̃) for the
shifted loss random vector X̃ (such that supp(X) = Rd+) and the modified crisis event of the same form.

For the P&L case, the RVaR and ES crisis events are the set of linear constraints of Form (5.1) with the
number of constraintsM = 2 and 1, respectively. In the case of pure losses, additional d constraints e>j,dx ≥ 0,
j = 1, . . . , d are imposed where ej,d is the jth d-dimensional unit vector. Therefore, the RVaR and ES crisis
events are of Form (5.1) withM = d+2 and d+1, respectively. For the VaR crisis event, P(X ∈ C) = 0 and
thus (5.2) cannot be defined properly. In this case, the allocation A%1,...,%d,CVaR depends on the conditional
joint distributionX | CVaR

p but is completely determined by its first d′ = d−1 variables (X1, . . . , Xd′) | CVaR
p

since Xd | CVaR
p

d= (VaRp(S)−
∑d′

j=1Xj) | CVaR
p

d= VaRp(S)−
∑d′

j=1Xj | CVaR
p . Estimating systemic risk

allocations under the VaR crisis event can thus be achieved by simulating the target distribution

πVaRp(x′) = fX′|{S=VaRp(S)}(x) =
f(X′,S)(x′,VaRp(S))

fS(VaRp(S))

= fX(x′,VaRp(S)− 1>d′x
′)

fS(VaRp(S)) 1{VaRp(S)−1>
d′
x′∈supp(fd)}, x′ ∈ Rd

′
, (5.3)

where X ′ = (X1, . . . , Xd′) and the last equation is derived from the linear transformation (X ′, S) 7→ X

with unit Jacobian. Note that other transformations are also possible; see Betancourt (2012). Under
Assumption (A1), the ratio πVaRp(y)/πVaRp(x) can be evaluated and fS(VaRp(S)) is not required to be
known. In the case of pure losses, the target distribution πVaRp is subject to d linear constraints e>j,d′x′ ≥ 0,
j = 1, . . . , d′, and 1>d′x

′ ≥ VaRp(S) where the first d′ constraints come from the non-negativity of the
losses and the last one is from the indicator in (5.3). Therefore, the crisis event CVaR for (X1, . . . , Xd′) is
of Form (5.1). In the case of P&L, supp(fd) = R and VaRp(S)− 1>d′x

′ ∈ supp(fd) holds for any x′ ∈ Rd′ .
Therefore, the target distribution (5.3) is free from any constraints and the problem reduces to constructing
an MCMC method with target distribution π(x′) ∝ fX(x′,VaRp(S)− 1>d′x

′), x′ ∈ Rd′ . In this chapter the
P&L case with VaR crisis event is not investigated further since our focus is the simulation of constrained
target distributions; see Chapter 4 for MCMC estimation in the P&L case.

MCMC methods to simulate constrained target distributions require careful design of the proposal
density q. A simple MCMC method is Metropolis-Hastings with rejection in which the support of the
proposal density q may not coincide with that of the target distribution, which is the crisis event C, and a
candidate is immediately rejected when it violates the constraints. This construction of MCMC is often
inefficient due to a low acceptance probability especially around the bondary of C. An efficient MCMC
method in this case can be expected only when the probability mass of π is concentrated near the center
of C. In the following sections, we introduce two alternative MCMC methods for the constrained target
distributions FX|C of interest, the HMC method and the GS. Each of them is applicable and can be efficient
for different choices of the crisis event and underlying loss distribution functions FX .

5.3.2 Estimation with Hamiltonian Monte Carlo

We find that if the HMC method is applicable, it is typically the most preferable method to simulate
constrained target distributions because of its efficiency and ease of handling constraints. In Section 5.3.2,
we briefly present the HMC method with reflection for constructing a Markov chain supported on the
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Algorithm 4 Leapfrog method for Hamiltonian dynamics
Input: Current states (x(0),p(0)), stepsize ε > 0, gradients ∇U and ∇K.

Output: Updated position (x(ε),p(ε)).

1) Set p
(
ε
2
)

= p(0)− ε
2∇U(x(0)).

2) Set x(ε) = x(0) + ε∇K(p
(
ε
2
)
).

3) Set p(ε) = p(ε/2) + ε
2∇U(x(ε)).

constrained space. In Section 5.3.2 we propose a heuristic for determining the parameters of the HMC
method based on MC presamples.

Hamiltonian Monte Carlo with reflection

For the possibly unnormalized target density π, consider the potential energy U(x), kinetic energy K(p)
and the Hamiltonian H(x,p) defined by

U(x) = − log π(x), K(p) = − log fK(p) and H(x,p) = U(x) +K(p),

with position variable x ∈ E, momentum variable p ∈ Rd and kinetic energy density fK(p) such that
fK(−p) = fK(p). In this chapter, the kinetic energy distribution FK is set to be the multivariate standard
normal with K(p) = 1

2p
>p and ∇K(p) = p; other choices of FK are discussed in Remark 5.3.3. In the

HMC method, a Markov chain augmented on the state space E × Rd with the stationary distribution
π(x)fK(p) is constructed and the desired samples from π are obtained as the first |E|-dimensional margins.
A process (x(t),p(t)), t ∈ R on E ×Rd is said to follow the Hamiltonian dynamics if it follows the ordinary
differential equation (ODE)

d
dtx(t) = ∇K(p), d

dtp(t) = −∇U(x). (5.4)

Through the Hamiltonian dynamics, the Hamiltonian H is preserved, that is, dH(x(t),p(t))/dt = 0;
moreover, the volume is also preserved in the sense that the map (x(0),p(0)) 7→ (x(t),p(t)) has a unit
Jacobian for any t ∈ R; see Neal et al. (2011). Therefore, the value of the joint target density π · fK remains
unchanged by the Hamiltonian dynamics, that is,

π(x(0))fK(p(0)) = exp(−H(x(0),p(0))) = exp(−H(x(t),p(t))) = π(x(t))fK(p(t)), t ≥ 0.

In practice, the dynamics (5.4) are discretized for simulation by, for example, the so-called leapfrog method
summarized in Algorithm 4; see Leimkuhler and Reich (2004) for other discretization methods. Note that
the evaluation of ∇U does not require the normalization constant of π to be known since ∇U = −(∇π)/π.
By repeating the leapfrog method T times with stepsize ε, the Hamiltonian dynamics are approximately
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Algorithm 5 Hamiltonian Monte Carlo to simulate π
Require: Random number generator of FK , x(0) ∈ supp(π), π(y)/π(x), x,y ∈ E and fK(p′)/fK(p),
p,p′ ∈ Rd.

Input: Sample size N ∈ N, kinetic energy density fK , target density π, gradients of the potential and
kinetic energies ∇U and ∇K, stepsize ε > 0, integration time T ∈ N and initial position X(0) = x(0).

Output: Sample path X(1), . . . ,X(N) of the Markov chain.

for n = 0, . . . , N − 1 do

1) Generate p(n) ∼ FK .

2) Set (X̃(n), p̃(n)) = (X(n),p(n)).

3) for t = 1, . . . , T ,

(X̃(n+t/T ), p̃(n+t/T )) = Leapfrog(X̃(n+(t−1)/T ), p̃(n+(t−1)/T ), ε,∇U,∇K).

end for

4) p̃(n+1) = −p(n+1).

5) Calculate pn = min
{
π(X̃(n+1))fK(p̃(n+1))
π(X(n))fK(p(n)) , 1

}
.

6) Set X(n+1) = 1{U≤pn}X̃
(n+1) + 1{U>pn}X

(n) for U ∼ U(0, 1).

end for

simulated with length Tε. Due to the discretization error the Hamiltonian is not exactly preserved while it is
expected to be almost preserved for ε small enough. The discretization errorH(x(Tε),p(Tε))−H(x(0),p(0))
is called the Hamiltonian error.

All the steps of the HMC method are described in Algorithm 5. In Step 1), the momentum variable is
first updated from p(0) to p where p follows the kinetic energy distribution FK so that the value of the
Hamiltonian H = − log(π · fK) changes. In Step 3), the current state (x(0),p) is moved along the level
curve of H(x(0),p) by simulating the Hamiltonian dynamics. By flipping the momentum in Step 4), the
HMC method is shown to be reversible w.r.t. π (c.f. (1.8)) and thus to have the stationary distribution π;
see Neal et al. (2011) for details. Furthermore, by the conservation property of the Hamiltonian dynamics,
the acceptance probability in Step 5) is expected to be close to 1. Moreover, by taking T sufficiently
large, the candidate X̃(n+1) is expected to be sufficiently decorrelated from the current position X(n).
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Consequently, the resulting Markov chain is expected to be efficient.

The remaining challenge for applying the HMC method to our problem of estimating systemic risk
allocations is how to handle the constraint C. As we have seen in Sections 5.2.1 and 5.3.1, C is assumed to
be an intersection of linear constraints with parameters (hm, vm), m = 1, . . . ,M , describing hyperplanes.
Following the ordinary leapfrog method, a candidate is immediately rejected when the trajectory of the
Hamiltonian dynamics penetrates one of these hyperplanes. To avoid it, we modify the leapfrog method
according to the reflection technique introduced in Afshar and Domke (2015) and Chevallier et al. (2018).
Let (h, v) be the hyperplane which the trajectory of the Hamiltonian dynamics hit at (x(t),p(t)). At this
time, (x(t),p(t)) is immediately replaced by (x(t),pr(t)) where pr(t) is the reflected momentum defined by

pr(t) = p‖(t)− p⊥(t),

where p‖(t) and p⊥(t) are such that p(t) = p‖(t)+p⊥(t) and p‖(t) and p⊥(t) are parallel and perpendicular
to the hyperplane (h, v), respectively. Afshar and Domke (2015) and Chevallier et al. (2018) showed that
the map (x(t),p(t)) 7→ (x(t),pr(t)) preserves the volume and the Hamiltonian, and that this modified
HMC method has the stationary distribution π. As long as the initial position x(0) belongs to C, the
trajectory of the HMC method never violates the constraint C. The algorithm of this HMC method with
reflection is obtained by replacing the Leapfrog function call in Step 3) of Algorithm 5 by Algorithm 6
in the end of this chapter. Accordingly, the parameters of the hyperplanes need to be passed as input to
Algorithm 5. In Step 3-1) of Algorithm 6 the time tm at which the trajectory hits the boundary (hm, vm)
is computed. If 0 < tm < 1 for some m ∈ {1, . . . ,M}, the chain hits the boundary during the dynamics
with length ε. At the smallest time tm∗ among such hitting times, the chain reflects from (x∗,p) to (x∗r ,pr)
against the corresponding boundary (hm∗ , vm∗) as described in Step 3-2-1) of Algorithm 6. The remaining
length of the dynamics is (1− tm∗)εtemp and Step 3) is repeated until the remaining length becomes zero.
The trajectory is reflected when it hits a hyperplane and the Markov chain moves within the constrained
space with probability one.

Remark 5.3.2 (Roll-back HMC). Yi and Doshi-Velez (2017) proposed roll-back HMC (RBHMC), in which
the indicator function 1{x∈C} in the target distribution (5.2) is replaced by a smooth sigmoid function so
that the Hamiltonian dynamics naturally move back inwards when the trajectory violates the constraints.
HMC with reflection presented in Section 5.3.2 requires to check M boundary conditions at every iteration
of the Hamiltonian dynamics. In our problem the number M linearly increases with the dimension d in
the case of pure losses, which leads to a linear increase in the computational cost. The RBHMC method
avoids such explicit boundary checks, and thus can reduce the computational cost of the HMC method
with constrained target distributions. Despite saving computational time, we observed that the RBHMC
method requires a careful choice of the stepsize ε > 0 and the smoothness parameter of the sigmoid function
involved, and we could not find any guidance on how to choose them to guarantee a stable performance.

Choice of parameters for HMC

HMC requires as input two parameters, the stepsize ε and the integration time T . As we now explain,
neither of them should be chosen too large nor too small. Since the stepsize ε controls the accuracy of
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the simulation of the Hamiltonian dynamics, ε needs to be small enough to approximately conserve the
Hamiltonian; otherwise the acceptance probability can be much smaller than 1. On the other hand, a too
small ε requires the integration time T to be large for the trajectory to reach far, which is computationally
costly. Next, the integration time T needs to be large enough to decorrelate the candidate state with the
current state. Meanwhile, the trajectory of the Hamiltonian dynamics may make a U-turn and come back
to the starting point if the integration time T is too long; see Neal et al. (2011) for an illustration of this
phenomenon.

A notable characteristic of our problem of estimating systemic risk allocations is that the MC sample
from the target distribution π is available but its sample size may not be sufficient for statistical inference,
and, in the case of the VaR crisis event, the samples only approximately follow the target distribution. We
utilize the information of this MC presample to build a heuristic for determining the parameters (ε, T ); see
Algorithm 7 in the end of this chapter. In this heuristic, the initial stepsize is set to be ε = cεd

−1/4 for
some constant cε > 0, say, cε = 1. This scale was derived in Beskos et al. (2010) and Beskos et al. (2013)
under certain assumptions on the target distribution. We determine ε through the relationship with the
acceptance probability. In Step 2-2-2-1) of Algorithm 7, multiple trajectories are simulated starting from
each MC presample with the current stepsize ε. In the next Step 2-2-2-2), we monitor the acceptance
probability and the distance between the starting and ending points while extending the trajectories. Based
on the asymptotic optimal acceptance probability 0.65 (c.f. Gupta et al., 1990; Betancourt et al., 2014) as
d→∞, we set the target acceptance probability as

α = 1 + (d− 1)× 0.65
d

∈ (0.65, 1].

The stepsize is gradually decreased in Step 2-1) of Algorithm 7 until the minimum acceptance probability
calculated in Step 2-3) exceeds α. To prevent the trajectory from a U-turn, in Step 2-2-2-3) each trajectory
is immediately stopped when the distance begins to decrease. The resulting integration time is set to be
the average of these turning points as seen in Step 3). Note that other terminating conditions of extending
trajectories are possible; see Hoffman and Gelman (2014) and Betancourt (2016).

At the end of this section, we briefly revisit the choice of the kinetic energy distribution FK , which is
taken to be multivariate standard normal throughout this work. As discussed in Neal et al. (2011), applying
the HMC method with target distribution π and kinetic energy distribution N(0,Σ−1) is equivalent to
applying HMC with the standardized target distribution x → π(Lx) and FK = N(0, Id) where L is the
Cholesky factor of Σ such that Σ = LL>. By taking Σ to be the covariance matrix of π, the standardized
target distribution becomes uncorrelated with unit variances. In our problem, the sample covariance
matrix Σ̂ = L̂L̂> calculated based on the MC presample is used alternatively. The new target distribution
π̃(y) = π(L̂y)|L̂| where |L̂| denotes the Jacobian of L̂, is almost uncorrelated with unit variances, and thus
the standard normal kinetic energy fits well; see Livingstone et al. (2019b). If the crisis event consists of
the set of linear constraints (hm, vm), m = 1, . . . ,M , then the standardized target density is also subject
to the set of linear constraints (L̂>hm, vm), m = 1, . . . ,M . Since the ratio fX(L̂y)/fX(L̂x) can still be
evaluated under Assumption (A1), we conclude that the problem remains unchanged after standardization.

Theoretical results of the HMC method with normal kinetic energy are available only when C is bounded
(Cances et al., 2007; Chevallier et al., 2018), or when C is unbounded and the tail of π is roughly as light as
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that of the normal distribution (Livingstone et al., 2019a; Durmus et al., 2017). Boundedness of C holds
for VaR and RVaR crisis events with pure losses; see Section 4.4 in Chapter 4. As is discussed in this
chapter, convergence results of MCMC estimators are accessible when the density of the underlying joint
loss distribution is bounded from above on C, which is typically the case when the underlying copula does
not admit lower tail dependence. For other cases where C is unbounded or the density explodes on C, no
convergence results are available. Potential remedies for the HMC method to deal with heavy-tailed target
distributions are discussed in Remark 5.3.3.

Remark 5.3.3 (Riemannian manifold HMC). Livingstone et al. (2019b) indicated that non-normal kinetic
energy distributions can potentially deal with heavy-tailed target distributions. In fact, the kinetic energy
distribution FK can even be dependent on the position variable x. For example, when FK(·|x) = N(0, G(x))
for a positive definite matrix G(x) > 0 and x ∈ E, the resulting HMC method is known as Riemannian
manifold HMC (RMHMC) since this case is equivalent to applying HMC on the Riemannian manifold with
metric G(x); see Girolami and Calderhead (2011). Difficulties in implementing RMHMC are in the choice
of metric G and in the simulation of the Hamiltonian dynamics. Due to the complexity of the Hamiltonian
dynamics, simple discretization schemes such as the leapfrog method are not applicable, and the trajectory
is updated implicitly by solving some system of equations; see Girolami and Calderhead (2011). Various
choices of the metric G are studied in Betancourt (2013), Lan et al. (2014) and Livingstone and Girolami
(2014) for different purposes. Simulation of RMHMC is studied, for example, in Byrne and Girolami (2013).

5.3.3 Estimation with Gibbs sampler

As discussed in Section 5.3.2, applying HMC methods to heavy-tailed target distributions on unbounded
crisis events is not theoretically supported. To deal with this case, we introduce the GS in this section.

Gibbs samplers for estimating systemic risk allocations

The GS is a special case of the MH method in which the proposal density q is completely determined
by the target density π via

qGS(x,y) =
∑

i=(i1,...,id)∈Id

piπ(yi1 |x−i1)π(yi2 |yi1 ,x−(i1,i2)) · · ·π(yid |y−id), (5.5)

where x−(j1,...,jl) is the (d − l)-dimensional vector that excludes the components j1, . . . , jl from x,
π(xj |x−j) = πj|−j(xj |x−j) is the conditional density of the jth variable of π given all the other components,
Id ⊆ {1, . . . , d}d is the so-called index set and (pi ∈ [0, 1], i ∈ Id) is the index probability distribution
such that

∑
i∈Id pi = 1. For this choice of q, the acceptance probability is always equal to 1; see Johnson

(2009). The GS is called deterministic scan (DSGS) if Id = {(1, . . . , d)} and p(1,...,d) = 1. When the
index set is the set of permutations of (1, . . . , d), the GS is called random permulation (RPGS). Finally,
the random scan GS (RSGS) has the proposal (5.5) with Id = {1, . . . , d}d and p(i1,...,id) = pi1 · · · pid with
probabilities (p1, . . . , pd) ∈ (0, 1)d such that

∑d
j=1 pj = 1. These three GSs can be shown to have π as

stationary distribution; see Johnson (2009).
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Provided that the full conditional distributions πj|−j , j = 1, . . . , d can be simulated, the proposal
distribution (5.5) can be simulated by first selecting an index i ∈ Id with probability pi and then replacing
the jth component of the current state with a sample from πj|−j sequentially for j = i1, . . . , id. The main
advantage of the GS is that the tails of π are naturally incorporated via full conditional distributions,
and thus the MCMC method is expected to be efficient even if π is heavy-tailed. On the other hand,
the applicability of the GS is limited to target distributions such that πj|−j is available. Moreover, fast
simulation methods of πj|−j , j = 1, . . . , d, are required since the computational time linearly increases w.r.t.
the dimension d.

In our problem of estimating systemic risk allocations, we find that the GS is applicable when the crisis
event is of the form

C = {x ∈ Rd or Rd+ | v1 ≤ h>x ≤ v2}, v1, v2 ∈ R ∪ {±∞}, h = (h1, . . . , hd) ∈ Rd\{0d}. (5.6)

The RVaR crisis event is obviously a special case of (5.6), and the ES crisis event is included as a limiting
case for v2 →∞. Furthermore, the full conditional copulas of the underlying joint loss distribution and
their inverses are required to be known as we now explain. Consider the target density π = fX|{v1≤h>X≤v2}.
For its jth full conditional density πj|−j(xj |x−j), notice that

{v1 ≤ h>X ≤ v2, X−j = x−j} =
{
v1 − h>−jx−j

hj
≤ Xj ≤

v2 − h>−jx−j
hj

, X−j = x−j

}

and thus, for vi,j(x−j) = (vi − h>−jx−j)/hj , i = 1, 2, we obtain the cdf of πj|−j as

FXj |{v1≤h>X≤v2, X−j=x−j}(xj) =
FXj |{X−j=x−j}(xj)− FXj |{X−j=x−j}(v1,j(x−j))

FXj |{X−j=x−j}(v2,j(x−j))− FXj |{X−j=x−j}(v1,j(x−j))
(5.7)

for v1,j(x−j) ≤ xj ≤ v2,j(x−j). Denoting the denominator of (5.7) by ∆j(x−j), we obtain the quantile
function

F−1
Xj |{v1≤h>X≤v2, X−j=x−j}(u) = F−1

Xj |{X−j=x−j}
(
∆j(x−j) · u+ FXj |{X−j=x−j}(v1,j(x−j))

)
.

Therefore, if FXj |{X−j=x−j} and its quantile function are available, one can simulate the full conditional
target densities πj|−j with the inversion method; see Devroye (1985). Availability of FXj |{X−j=x−j} and its
inverse typically depends on the copula ofX. By Sklar’s Theorem (1.1), the jth full conditional distribution
of FX can be written as

FXj |{X−j=x−j}(xj) = Cj|−j(Fj(xj) | F−j(x−j)),

where F(j1,...,jl)(x(j1,...,jl)) = (Fj1(xj1), . . . , Fjl(xjl)), −(j1, . . . , jl) = {1, . . . , d}\(j1, . . . , jl) and Cj|−j is the
jth full conditional copula defined by

Cj|−j(uj |u−j) = P(Uj ≤ uj | U−j = u−j) = D−jC(u)
D−jC(u1, . . . , uj−1, 1, uj+1, . . . , ud)

,

where D denotes the operator of partial derivatives with respect to the components given as subscripts and
U ∼ C. Assuming the full conditional copula Cj|−j and its inverse C−1

j|−j are available, one can simulate
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X̃j ∼ πj|−j via

U ∼ U(0, 1),

Ũ = U + (1− U)Cj|−j(Fj(v1(x−j) | F−j(x−j)),

X̃j = F−1
j ◦ C−1

j|−j(Ũ | F−j(x−j)).

Examples of copulas for which the full conditional distributions and their inverses are available include
normal, Student t, and Clayton copulas; see Cambou et al. (2017). In this case the GS is also applicable to
the corresponding survival (π-rotated) copula Ĉ since

Ĉj|−j(u) = 1− Cj|−j(1− uj |1d′ − u−j), Ĉ−1
j|−j(u) = 1− C−1

j|−j(1− uj |1d′ − u−j), j = 1, . . . , d,

by the relationship Ũ = 1 − U ∼ Ĉ for U ∼ C. In a similar way, one can also obtain full conditional
copulas and their inverses for other rotated copulas; see Hofert et al. (2018, Section 3.4.1) for rotated
copulas.

In the end, we remark that even if the full conditional distributions and their inverses are not available,
πj|−j can be simulated by, for example, the acceptance-rejection method or even the MH algorithm; see
Remark 5.3.4.

Remark 5.3.4 (Metropolized Gibbs samplers). Müller (1992) introduced the Metropolized Gibbs sampler
(MGS) in which the proposal density q in the MH kernel is set to be q = fY |{v1≤h>Y ≤v2} where Y has the
same marginal distributions as X but a different copula Cq for which Cqj|−j and C

q,−1
j|−j are available so that

the GS can be applied to simulate this proposal. This method can be used when the inversion method is
not feasible since Cj|−j or C−1

j|−j are not available. Following the MH algorithm, the candidate is accepted
with the acceptance probability (1.11), which can be simply written as

α(x, x̃) = min
{
c(F (x̃))cq(F (x))
c(F (x))cq(F (x̃)) , 1

}
,

where c and cq denote the densities of C and Cq, respectively.

As an example of the MGS, suppose C is the Gumbel copula, for which the full conditional distributions
cannot be inverted analytically. One could then choose the survival Clayton copula as the proposal copula
Cq above. For this choice of copula, qj|−j is available by the inversion method as discussed in Section 5.3.3.
Furthermore, the acceptance probability is expected to be high especially on the upper tail part because
the upper threshold copula of C defined as P(U > v | U > u), v ∈ [u,1], u ∈ [0, 1]d, U ∼ C is known
to converge to that of a survival Clayton copula when lim uj →∞, j = 1, . . . , d; see Juri and Wüthrich
(2002), Juri and Wüthrich (2003), Charpentier and Segers (2007) and Larsson and Nešlehová (2011).

Choice of parameters for GS

As discussed in Section 5.3.2, we use information from the MC presamples to determine the parameters
of the Gibbs kernel (5.5). Note that standardization of the variables as applied in the HMC method in
Section 5.3.2 is not available for the GS since the latter changes the underlying joint losss distribution,
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and since the copula after rotating variables is in general not accessible except for in the elliptical case;
see Christen et al. (2017). Among the presented variants of GSs, we adopt RSGS since determining d
probabilities (p1, . . . , pd) is relatively easy whereas RPGS requires d! probabilities to be determined. To
this end, we consider the RSGS with the parameters (p1, . . . , pd) determined by a heuristic described in
Algorithm 8.

The RSGS kernel is simulated in Step 3) and 5) of Algorithm 8 in the end of this chapter. To determine
the selection probabilities p1, . . . , pd, consider a one step update of the RSGS from X(n) to X(n+1) with
X(n) ∼ π and the one step kernel

KRSGS(x,y) =
d∑
j=1

pjπj|−j(yj |x−j)1{y−j=x−j}.

Liu et al. (1995, Lemma 3) implies that

Cov(X(n)
j , X

(n+1)
j ) =

d∑
i=1

piE[E[Xj |X−i]] =
d∑
i=1

pi{m(2)
j − E[Var(Xj | X−i)]}

∝ −
d∑
i=1

piE[Var(Xj | X−i)]),

where m(k)
j is the kth moment of πj .

For the objective function
∑d
j=1 Cov(X(n)

j , X
(n+1)
j ), its minimizer (p∗1, . . . , p∗d) under the constraint∑d

j=1 pj = 1 satisfies

p∗j ∝ E[Var(Xj |X−j)]. (5.8)

While this optimizer can be computed based on the MC presamples, we observed that its stable estimation is
as computationally demanding as estimating the risk allocations themselves. Alternatively, we calculate (5.8)
under the assumption that π follows an elliptical distribution. Under this assumption, (5.8) is given by

pj ∝ Σj,j − Σj,−jΣ−1
−j,−jΣ−j,j

where Σ is the covariance matrix of π and ΣJ1,J2 , J1, J2 ⊆ {1, . . . , d}, is the submatrix of Σ with indices in
J1 × J2. As seen in Step 2) of Algorithm 8, Σ is replaced by its estimate based on the MC presamples.

As is shown in Christen et al. (2017), Gibbs samplers require a large number of iterations to lower the
serial correlation when the target distribution has strong dependence. To reduce serial correlations we
take every T th sample in Step 5-2), where T ∈ N is called the thinning interval of times. Note that we
use the same notation T as that of the integration time in HMC since they both represent a repetition
time of some single step. Based on the preliminary run with length Npre in Step 3) in Algorithm 8, T is
determined as the smallest lag h such that the marginal autocorrelations with lag h are all smaller than
the target autocorrelation ρ; see Step 4) in Algorithm 8.
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5.4 Numerical experiments

In this section, we demonstrate the performance of the MCMC methods for estimating systemic risk
allocations by a series of numerical experiments. We first conduct a simulation study in which true
allocations or their partial information are available. Then we perform an empirical study to demonstrate
that our MCMC methods are applicable to a more practical setup. Finally, we make more detailed
comparisons between the MC and MCMC methods in various setups.

5.4.1 Simulation study

In this simulation study, we compare the estimates and standard errors of the MC and MCMC methods
under the low-dimensional risk models described in Section 5.4.1. The results and discussions are summarized
in Section 5.4.1.

Model description

We consider the following three-dimensional loss distributions:

(M1) generalized Pareto distributions (GPDs) with parameters (ξj , βj) = (0.3, 1) and survival Clayton
copula with parameter θ = 2 so that Kendall’s tau equals τ = θ/(θ + 2) = 0.5;

(M2) multivariate Student t distribution with ν = 5 degrees of freedom, location vector 0 and dispersion
matrix Σ = (ρi,j) where ρj,j = 1 and ρi,j = |i− j|/d for i, j = 1, . . . , d, i 6= j.

Since the marginals are homogeneous and the copula is exchangeable, the systemic risk allocations under
the loss distribution (M1) are all equal provided that the crisis event is invariant under the permutation of
the variables. For the loss distribution (M2), by ellipticality of the joint distribution, analytical formulas of
risk contribution type systemic risk allocations are available; see McNeil et al. (2015, Corollary 8.43). The
parameters of the distributions (M1) and (M2) take into account the stylized facts that the loss distribution
is heavy-tailed and extreme losses are positively dependent.

We consider the VaR, RVaR and ES crisis events with confidence levels pVaR = 0.99, (pRVaR
1 , pRVaR

2 ) =
(0.975, 0.99) and pES = 0.99, respectively. For each crisis event, the risk contribution, VaR, RVaR and ES
type systemic risk allocations are estimated by the MC and MCMC methods, where the parameters of the
marginal risk measures VaR, RVaR and ES are set to be pVaR = 0.99, (pRVaR

1 , pRVaR
2 ) = (0.975, 0.99) and

pES = 0.99, respectively.

We first conduct the MC simulation for the distributions (M1) and (M2). For the VaR crisis event,
the modified event Cmod = {VaRp−δ(S) ≤ 1>d x ≤ VaRp+δ(S)} with δ = 0.001 is used to ensure that
P(X ∈ Cmod) > 0. Based on these MC presamples, the Markov chains are constructed as described in
Sections 5.3.2 and 5.3.3. For the MCMC method, (M1) is the case of pure losses and (M2) is the P&L case.
Therefore, the HMC method is applied to the distribution (M1) for the VaR and RVaR crisis events, the
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GS is applied to (M1) for the ES crisis event and the GS is applied to the distribution (M2) for the RVaR
and ES crisis events. The target distribution of (M2) with VaR constraint is free from constraints and was
already investigated in Chapter 4; we thus omit this case and consider the five remaining cases.

Note that 99.8% of the MC samples from the unconditional distribution are discarded because of the
VaR crisis event and a further 97.5% of them are wasted to estimate the RVaR contributions. Therefore,
1/(0.002 × 0.025) = 105/5 = 20, 000 MC samples are required to obtain one expected MC sample from
the conditional distribution. Taking this into account, the sample size of the MC estimator is set to be
NMC = 105. The sample size of the MCMC estimators is free from such constraints and thus is chosen to
be NMCMC = 104. Initial values x0 for the MCMC methods are taken as the mean vector calculated from
the MC samples. Biases are computed only for the contribution type allocations in the distribution (M2)
since the true values are available in this case. For all the five cases, the MC and the MCMC standard
errors are computed according to Glasserman (2013, Chapter 1) for MC, and Jones et al. (2006) for MCMC.
Asymptotic variances of the MCMC estimators are estimated by the batch means estimator with batch
length LN = dN 1

2 e = 100 and batch size BN = dN/LNe = 100. The results are summarized in Tables 5.1
and 5.2.

Results and discussion

Since fast random number generators are available for the joint loss distributions (M1) and (M2), the
MC estimators are computed almost instantly. On the other hand, the MCMC methods cost around 1.5
minutes for simulating the N = 104 MCMC samples as reported in Tables 5.1 and 5.2. For the HMC
method, the main computational cost consists of calculating gradients N ×T times for the leapfrog method,
and calculating the ratio of target densities N times in the acceptance/rejection step, where N is the
length of the sample path and T is the integration time. For the GS, simulating an N -sample path requires
N × T × d random numbers from the full conditional distributions where T here is the thinning interval of
times. Therefore, the computational time of the GS linearly increases w.r.t. the dimension d, which can
become prohibitive for the GS in high dimensions. To save computational time, MCMC methods in general
require careful implementations of calculating the gradients and the ratio of the target densities for HMC,
and of simulating the full conditional distributions for the GS.

Next, we inspect the performance of the HMC and GS methods. We observed that autocorrelations
of all sample paths steadily decreased below 0.1 if lags are larger than 15. Together with the high ACRs,
we conclude that the Markov chains can be considered to be converged. According to the heuristic in
Algorithm 7, the stepsize and the integration time for the HMC method are selected to be (ε, T ) = (0.210, 12)
in Case (I) and (ε, T ) = (0.095, 13) in Case (II). As indicated by the small Hamiltonian errors in Figure 5.1,
the acceptance rates in both cases are quite close to 1.

For the GS, the thinning interval of times T and the selection probability p are determined as T = 12
and p = (0.221, 0.362, 0.416) in Case (III), T = 10 and p = (0.330, 0.348, 0.321) in Case (IV) and T = 4
and p = (0.241, 0.503, 0.255) in Case (V). For biases of the estimators, observe that in all cases ((I) to
(V)), the estimates of the MC method and the MCMC method are close to each other. In Cases (I), (II)
and (III), the true allocations are the homogeneous allocations whereas their exact values are not known.
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MC HMC

Estimator A%,C1 (X) A%,C2 (X) A%,C3 (X) A%,C1 (X) A%,C2 (X) A%,C3 (X)

(I) GPD + survival Clayton with VaR crisis event: {S = VaR0.99(S)}

E[X | CVaR] 9.581 9.400 9.829 9.593 9.599 9.619
Standard error 0.126 0.118 0.120 0.007 0.009 0.009

RVaR0.975,0.99(X | CVaR) 12.986 12.919 13.630 13.298 13.204 13.338
Standard error 0.229 0.131 0.086 0.061 0.049 0.060

VaR0.99(X | CVaR) 13.592 13.235 13.796 13.742 13.565 13.768
Standard error 0.647 0.333 0.270 0.088 0.070 0.070

ES0.99(X | CVaR) 14.775 13.955 14.568 14.461 14.227 14.427
Standard error 0.660 0.498 0.605 0.192 0.176 0.172

(II) GPD + Survival Clayton with RVaR crisis event: {VaR0.975(S) ≤ S ≤ VaR0.99(S)}

E[X | CRVaR] 7.873 7.780 7.816 7.812 7.802 7.780
Standard error 0.046 0.046 0.046 0.012 0.012 0.011

RVaR0.975,0.99(X | CRVaR) 11.790 11.908 11.680 11.686 11.696 11.646
Standard error 0.047 0.057 0.043 0.053 0.055 0.058

RVaR0.99(X | CVaR) 12.207 12.382 12.087 12.102 12.053 12.044
Standard error 0.183 0.197 0.182 0.074 0.069 0.069

ES0.99(X | CRVaR) 13.079 13.102 13.059 12.859 12.791 12.713
Standard error 0.182 0.173 0.188 0.231 0.218 0.187

Table 5.1: Estimates and standard errors of the MC and HMC estimators of risk contributions, RVaR, VaR
and ES type systemic risk allocations under (I) the VaR crisis event and (II) the RVaR crisis event for the
loss distribution (M1). The sample size of the MC method is NMC = 105 and that of the HMC method is
NMCMC = 104. The acceptance rate (ACR), stepsize ε, integration time T and run time are ACR = 0.996,
ε = 0.210, T = 12 and run time = 1.277 mins in Case (I), and ACR = 0.984, ε = 0.095, T = 13 and run
time = 1.649 mins in Case (II).
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MC GS

Estimator A%,C1 (X) A%,C2 (X) A%,C3 (X) A%,C1 (X) A%,C2 (X) A%,C3 (X)

(III) GPD + survival Clayton with ES crisis event: {VaR0.99(S) ≤ S}

E[X | CES] 15.657 15.806 15.721 15.209 15.175 15.190
Standard error 0.434 0.475 0.395 0.257 0.258 0.261

RVaR0.975,0.99(X | CES) 41.626 41.026 45.939 45.506 45.008 45.253
Standard error 1.211 1.065 1.615 1.031 1.133 1.256

VaR0.99(X | CES) 49.689 48.818 57.488 55.033 54.746 54.783
Standard error 4.901 4.388 4.973 8.079 5.630 3.803

ES0.99(X | CES) 104.761 109.835 97.944 71.874 72.588 70.420
Standard error 23.005 27.895 17.908 4.832 4.584 4.313

(IV) Multivariate t with RVaR crisis event: {VaR0.975(S) ≤ S ≤ VaR0.99(S)}

E[X | CRVaR] 2.456 1.934 2.476 2.394 2.060 2.435
Bias 0.019 −0.097 0.038 −0.043 0.029 −0.002
Standard error 0.026 0.036 0.027 0.014 0.023 0.019

RVaR0.975,0.99(X | CRVaR) 4.670 4.998 4.893 4.602 5.188 4.748
Standard error 0.037 0.042 0.031 0.032 0.070 0.048

RVaR0.99(X | CVaR) 5.217 5.397 5.240 4.878 5.717 5.092
Standard error 0.238 0.157 0.145 0.049 0.174 0.100

ES0.99(X | CRVaR) 5.929 5.977 5.946 5.446 6.517 6.063
Standard error 0.204 0.179 0.199 0.156 0.248 0.344

(V) Multivariate t with ES crisis event: {S ≥ VaR0.99(S)}

E[X | CES] 3.758 3.099 3.770 3.735 3.126 3.738
Bias 0.017 −0.018 0.029 −0.005 0.009 −0.003
Standard error 0.055 0.072 0.060 0.031 0.027 0.030

RVaR0.975,0.99(X | CES) 8.516 8.489 9.051 8.586 8.317 8.739
Standard error 0.089 0.167 0.161 0.144 0.156 0.158

VaR0.99(X | CES) 9.256 9.754 10.327 9.454 9.517 9.890
Standard error 0.517 0.680 0.698 0.248 0.293 0.327

ES0.99(X | CES) 11.129 12.520 12.946 11.857 12.469 12.375
Standard error 0.595 1.321 0.826 0.785 0.948 0.835

Table 5.2: Estimates and standard errors of the MC and the GS estimators of risk contributions, VaR,
RVaR and ES type systemic risk allocations under (III) distribution (M1) and the ES crisis event, (IV)
distribution (M2) and the RVaR crisis event, and (V) distribution (M2) and ES crisis event. The sample
size of the MC method is NMC = 105 and that of the GS is NMCMC = 104. The thinning interval of times
T , selection probability p and run time are T = 12, p = (0.221, 0.362, 0.416) and run time = 107.880
secs in Case (III), T = 10, p = (0.330, 0.348, 0.321) and run time = 56.982 secs in Case (IV) and T = 4,
p = (0.241, 0.503, 0.255) and run time = 22.408 secs in Case (V).

112



0 2000 6000 10000

-0
.4

0.
0

0.
2

0.
4

VaR crisis event

Iteration

H
am

ilt
on

ia
n 

er
ro

r

0 2000 6000 10000
-0
.4

0.
0

0.
2

0.
4

RVaR crisis event

Iteration

H
am

ilt
on

ia
n 

er
ro

r

Figure 5.1: Hamiltonian errors of the HMC methods for estimating systemic risk allocations with VaR
(left) and RVaR (right) crisis events for the loss distribution (M1). The stepsize and the integration time
are set to be (ε, T ) = (0.210, 12) in Case (I) and (ε, T ) = (0.095, 13) in Case (II).

From the estimates in Tables 5.1 and 5.2, the MCMC estimates are on average more equally allocated
compared to those of the MC method especially in Case (III) where heavy-tailedness may lead to quite
slow convergence rates of the MC method. Therefore, lower biases of the MCMC estimators are obtained
compared to those of the MC estimators. In the case of risk contributions in Case (IV) and (V), exact
biases are computed based on ellipticality, and they show that the GS estimator has a smaller bias than
the one of the MC estimator.

Although the MC sample size is 10 times larger than that of the MCMC method, the standard error
of the latter is in most cases smaller than the MC standard error. This improvement becomes more
pronounced as the probability of the crisis event becomes smaller. The largest improvement is observed in
Case (I) with VaR crisis event and the smallest one is in Cases (III) and (V) with ES crisis event. MCMC
estimates of the risk contribution type allocations have consistently smaller standard errors than the MC
ones. For the RVaR, VaR and ES type allocations, the improvement of standard error varies according to
the loss models and the crisis event. A notable improvement is observed for ES type allocation in Case (III)
although a stable statistical inference is challenging due to the heavy-tailedness of the target distribution.

Overall, the simulation study shows that the MCMC estimators outperform the MC estimators due
to the increased effective sample size and their insusceptibility to the probability of the crisis event. The
MCMC estimators are especially recommended when the probability of the crisis event is too small for the
MC method to simulate sufficiently many samples for a meaningful statistical analysis.
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Remark 5.4.1 (Joint loss distributions with negative dependence in the tail). In the above simulation
study, we only considered joint loss distributions with positive dependence. Under the existence of
positive dependence, the target density fX|{vp≤S≤vp} puts more probability mass around its mean, and the
probability decays as the evaluation point moves away from the mean since positive dependence among
X1, . . . , Xd prevents the components from going in opposite directions (i.e., one component increases and
another one decreases) under the sum constraint. This phenomenon leads to the target distributions being
more centered and elliptical, which in turn facilitates efficient moves of Markov chains. Although it may not
be realistic, joint loss distributions with negative dependence in the tail are also possible. In this case, the
target distribution has more variance, heavy tails and is even multimodal since two components can move
in opposite directions under the sum constraint. For such cases, constructing efficient MCMC methods
becomes more challenging; see Lan et al. (2014) for a remedy for multimodal target distributions with
Riemannian manifold HMC.

5.4.2 Empirical Study

In this section, we illustrate our suggested MCMC methods for estimating risk allocations from insurance
company indemnity claims. The dataset consists of 1500 liability claims provided by Insurance Services
Office. Each claim contains an indemnity payment X1 and an allocated loss adjustment expense (ALAE)
X2; see Hogg and Klugman (2009) for a description. The joint distribution of losses and expenses is studied,
for example in Frees and Valdez (1998) and Klugman and Parsa (1999). Based on Frees and Valdez (1998),
we adopt the following parametric model:

(M3) univariate marginals are X1 ∼ Par(λ1, θ1) and X2 ∼ Par(λ2, θ2) with (λ1, θ1) = (14, 036, 1.122) and
(λ2, θ2) = (14, 219, 2.118), and the copula is the survival Clayton copula with parameter θ = 0.512
(which corresponds to Spearman’s rho ρS = 0.310).

Note that in the loss distribution (M3) the Gumbel copula used in Frees and Valdez (1998) is replaced
by the survival Clayton copula since both of them have the same type of tail dependence and the latter
possesses more computationally tractable derivatives. The parameter of the survival Clayton copula is
determined so that it reaches the same Spearman’s rho observed in Frees and Valdez (1998). Figure 5.2
illustrates the data and samples from the distribution (M3). Our goal is to calculate the VaR, RVaR and ES
type allocations with VaR, RVaR and ES crisis events for the same confidence levels as in Section 5.4.1. We
apply the HMC method to all three crisis events since, due to the infinite and finite variances of X1 and X2,
respectively, the optimal selection probability of the second variable calculated in Step 2) of Algorithm 8 is
quite close to 0, and thus the GS did not perform well. The simulated HMC samples are illustrated in
Figure 5.2. The results of estimating the systemic risk allocations are summarized in Table 5.3.

The HMC samples shown in Figure 5.2 indicate that the conditional distributions of interest are
successfully simulated from the desired regions. As displayed in Figure 5.3, the Hamiltonian errors of all
three HMC methods are sufficiently small, which leads to the high ACRs of 0.997, 0.986 and 0.995 as listed
in Table 5.3. We also observed that autocorrelations of all sample paths steadily decreased below 0.1 if lags
are larger than 80. Together with the high ACRs, we conclude that the Markov chains can be considered
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Figure 5.2: Plots of N = 1500 MCMC samples (green) with VaR (left), RVaR (center) and ES (right)
crisis events. All plots include the data and the MC samples with sample size N = 1500 in black and
blue dots, respectively. The red lines represent x1 + x2 = V̂aRp1(S) and x1 + x2 = V̂aRp2(S) where
V̂aRp1(S) = 4.102× 104 and V̂aRp2(S) = 9.117× 104 are the MC estimates of VaRp1(S) and VaRp2(S),
respectively, for p1 = 0.975 and p2 = 0.99.

to be converged. Due to the heavy-tailedness of the target distribution in the case of the ES crisis event,
the stepsize is very small and the integration time is very large compared to the former two cases of the
VaR and RVaR crisis events. As a result, the HMC algorithm in this case has a long run time.

The estimates of the MC and HMC methods are close in all cases except Case (III). In Case (III), the
HMC estimates are smaller than the MC ones in almost all cases. Based on the much smaller standard
errors of HMC, one could infer that the MC estimates are likely overestimating the allocations due to a
small number of extremely large losses, although the corresponding conditional distribution is extremely
heavy-tailed and thus no estimation method might be reliable. In terms of the standard error, the estimation
of systemic risk allocations by the HMC method is improved in Cases (I) and (III) compared to those
of the MC method; the MC standard errors are slightly smaller than those of HMC in Case (II). All
results considered, we conclude from this empirical study that the MCMC estimators outperform the MC
estimators in terms of standard error. On the other hand, as indicated by the theory of HMC with normal
kinetic energy, the HMC method is not recommended for heavy-tailed target distributions due to a long
computational time caused by a small stepsize and large integration time determined by Algorithm 8.

5.4.3 Detailed comparison of MCMC with MC

In the previous numerical experiments, we fixed the dimensions of the portfolios and confidence levels
of the crisis events. Comparing the MC and MCMC methods after balancing against computational time
might be more reasonable although one should keep in mind that run time depends on various external
factors, such as the implementation, hardware, workload, programming language or compiler options (and
our implementation was not optimized for any of these factors). In this section, we compare the MC and
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MC HMC

Estimator A%,C1 (X) A%,C2 (X) A%,C1 (X) A%,C2 (X)

(I) VaR crisis event: {S = VaR0.99(S)}

E[X | CVaR] 842 465.497 73 553.738 844 819.901 71 199.334
Standard error 7994.573 7254.567 6306.836 6306.836

RVaR0.975,0.99(X | CVaR) 989 245.360 443 181.466 915 098.833 428 249.307
Standard error 307.858 24 105.163 72.568 20 482.914

VaR0.99(X | CVaR) 989 765.514 500 663.072 915 534.362 615 801.118
Standard error 4670.966 54 576.957 669.853 96 600.963

ES0.99(X | CVaR) 990 839.359 590 093.887 915 767.076 761 038.843
Standard error 679.055 75 024.692 47.744 31 211.908

(II) RVaR crisis event: {VaR0.975(S) ≤ S ≤ VaR0.99(S)}

E[X | CRVaR] 528 455.729 60 441.368 527 612.751 60 211.561
Standard error 3978.477 2119.461 4032.475 2995.992

RVaR0.975,0.99(X | CRVaR) 846 956.570 349 871.745 854 461.670 370 931.946
Standard error 1866.133 6285.523 2570.997 9766.697

VaR0.99(X | CRVaR) 865 603.369 413 767.829 871 533.550 437 344.509
Standard error 5995.341 29 105.059 12 780.741 21 142.135

ES0.99(X | CRVaR) 882 464.968 504 962.099 885 406.811 529 034.580
Standard error 3061.110 17 346.207 3134.144 23 617.278

(III) ES crisis event: {S ≥ VaR0.99(S)}

E[X | CES] 8 663 863.925 137 671.653 2 934 205.458 140 035.782
Standard error 3 265 049.590 10 120.557 165 794.772 14 601.958

RVaR0.975,0.99(X | CES) 35 238 914.131 907 669.462 17 432 351.450 589 309.196
Standard error 2 892 208.689 31 983.660 443 288.649 3471.641

VaR0.99(X | CES) 56 612 082.905 1 131 248.055 20 578 728.307 615 572.940
Standard error 1 353 975.612 119 460.411 1 364 899.752 12 691.776

ES0.99(X | CES) 503 537 848.192 2 331 984.181 25 393 466.446 649 486.810
Standard error 268 007 317.199 468 491.127 1 138 243.137 7497.200

Table 5.3: Estimates and standard errors of the MC and HMC estimators of RVaR, VaR and ES type
systemic risk allocations under the loss distribution (M3) with the (I) VaR crisis event, (II) RVaR crisis
event and (III) ES crisis event. The MC sample size is NMC = 105 and that of the HMC method is
NMCMC = 104. The acceptance rate (ACR), stepsize ε, integration time T and run time are ACR = 0.997,
ε = 0.015, T = 34 and run time = 2.007 mins in Case (I), ACR = 0.986, ε = 0.026, T = 39 and run time
= 2.689 mins in Case (II), ACR = 0.995, ε = 5.132× 10−5, T = 838 and run time = 44.831 mins in Case
(III).
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Figure 5.3: Hamiltonian errors of the HMC methods for estimating systemic risk allocations with VaR,
RVaR and ES crisis events for the loss distribution (M3). The stepsize and the integration time are chosen
as (ε, T ) = (0.015, 34), (ε, T ) = (0.026, 39) and (ε, T ) = (5.132× 10−5, 838), respectively.

MCMC methods with different dimensions, confidence levels, and parameters of the HMC methods in
terms of bias, standard error and the mean squared error (MSE), adjusted by run time.

In this experiment, we fix the sample size of the MC and MCMC methods as NMC = NMCMC = 104. In
addition, we assume X ∼ tν(0, P ), i.e., the joint loss follows the multivariate Student t distribution with
ν = 6 degrees of freedom, location vector 0 and dispersion matrix P , which is the correlation matrix with
all off-diagonal entries equal to 1/12. We let the dimension d of the loss portfolio vary, and consider only
risk contribution type systemic risk allocations under VaR, RVaR and ES crisis events as true values of
these allocations are available to compare against; see McNeil et al. (2015, Corollary 8.43). If b and σ
denote the bias and standard deviation of the MC or MCMC estimator and S the run time, then (under
the assumption that run time linearly increasing by sample size) we define the time-adjusted MSEs by

MSEMC = b2MC + σ2
MC

SMCMC
SMC

×NMCMC
and MSEMCMC = b2MCMC + σ2

MCMC
NMCMC

.

We can then compare the MC and MCMC estimators in terms of bias, standard error and time-adjusted
MSE under the following three scenarios:

(A) VaR0.99, RVaR0.95,0.99 and ES0.99 contributions are estimated by the MC, HMC and GS methods for
dimensions d ∈ {4, 6, 8, 10}. Note that the GS is applied only to RVaR and ES contributions, not to
VaR contributions (same in the other scenarios).

(B) For d = 5, VaRpVaR , RVaRpRVaR
1 ,pRVaR

2
and ESpES contributions are estimated by the MC, HMC and
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GS methods for confidence levels

pVaR ∈ {0.9, 0.99, 0.999, 0.9999},

(pRVaR
1 , pRVaR

2 ) ∈ {(0.9, 0.9999), (0.9, 0.99), (0.99, 0.999), (0.999, 0.9999)}, and

pES ∈ {0.9, 0.99, 0.999, 0.9999}.

(C) For d = 5, VaR0.9, RVaR0.9,0.99 and ES0.9 contributions are estimated by the MC and HMC methods
with the parameters (εopt, εopt) (determined by Algorithm 7) and

(ε, T ) ∈
{

(10εopt, 2Topt),
(

10εopt,
Topt

2

)
,
(εopt

10 , 2Topt
)
,

(
εopt
10 ,

Topt
2

)}
.

In the MC method, the modified VaR contribution E[X | CRVaR
p−δ,p+δ] with δ = 0.01 is computed. Moreover,

if the size of the conditional sample for estimating RVaR and ES contributions is less than 100, then the
lower confidence level of the crisis event is subtracted by 0.01 so that at least 100 MC presamples are
guaranteed. For the sample paths of the MCMC methods, ACR, ACP, and Hamiltonian errors for the
HMC methods were inspected and the convergences of the chains were checked as in Section 6.5.2 and 6.5.1.

The results of the comparisons of (A), (B) and (C) are summarized in Figure 5.4, 5.5 and 5.6. In
Figure 5.4, the performance of the MC, HMC and GS estimators is roughly similar across dimensions from
4 to 10. For all crisis events, the HMC and GS estimators outperform MC in terms of bias, standard error
and time-adjusted MSE. From (A5) and (A8), standard errors of the GS estimators are slightly higher
than those of the HMC ones, which result in slightly improved performance of the HMC estimator over the
GS in terms of MSE. In Figure 5.5, bias, standard error and MSE of the MC estimator tend to increase
as the probability of the conditioning set decreases. This is simply because the size of the conditional
samples in the MC method decreases proportional to the probability of the crisis event. On the other
hand, the HMC and GS estimators provide a stably better performance than MC since no sample size
reduction occurs. As seen in (B4) to (B9) in the cases of RVaR0.999,0.9999 and ES0.9999, however, if the
probability of the conditioning event is too small and/or the distribution of the MC presample is too
different from the original conditional distribution of interest, then the parameters of the HMC method
determined by Algorithm 7 can be entirely different from optimal, which leads to a poor performance of
the HMC method as we will see in the next scenario (C). In Figure 5.6, the HMC method with optimally
determined parameters from Algorithm 7 is compared to non-optimal parameter choices. First, the optimal
HMC estimator outperforms MC in terms of bias, standard error and time-adjusted MSE. On the other
hand, from the plots in Figure 5.6 we see that some of the non-optimal HMC estimators are significantly
worse than MC. Therefore, a careful choice of the parameters of the HMC method is required to obtain an
improved performance of the HMC method in comparison to MC.

5.5 Conclusion, limitations and future work

Efficient calculation of systemic risk allocations is a challenging task, especially when the crisis event
has a small probability. To solve this problem for models where a joint loss density is available, we proposed
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MCMC estimators where a Markov chain is constructed with the conditional loss distribution given the
crisis event as the target distribution. By using HMC and GS, efficient simulation methods from the
constrained target distribution are obtained and the resulting MCMC estimator is expected to have a
smaller standard error compared to that of the MC estimator. Sample efficiency is significantly improved
since the MCMC estimator is computed from samples generated directly from the conditional distribution
of interest. Another advantage of the MCMC method is that its performance is less sensitive to the
probability of the crisis event, and thus to the confidence levels of the underlying risk measures. We also
proposed a heuristic for determining the parameters of the HMC method based on the MC presamples.
Numerical experiments demonstrated that our MCMC estimators are more efficient than MC in terms
of bias, standard error and time-adjusted MSE. Stability of the MCMC estimation with respect to the
probability of the crisis event and efficiency of the optimal parameter choice of the HMC method are also
investigated in the experiments.

Based on the results in this chapter, our MCMC estimators can be recommended when the probability
of the crisis event is too small for MC to simulate sufficiently many samples for a statistical analysis and/or
when unbiased systemic risk allocations under the VaR crisis event are required. The MCMC methods are
likely to perform well when the dimension of the portfolio is less than or around 10, losses are bounded
from the left and the crisis event is of VaR or RVaR type; otherwise heavy-tailedness and computational
time can become challenging. First, a theoretical convergence result of the HMC method is typically not
available when the target distribution is unbounded and heavy-tailed, which is the case when the losses
are unbounded and/or the crisis event is of ES type; see the case of the ES crisis event in the empirical
study in Section 6.5.1. Second, both of the HMC and GS methods suffer from high-dimensional target
distributions since the algorithms contain parts of steps where the computational cost linearly increases
in the dimension. We observed that, in this case, although the MCMC estimator typically improves bias
and standard error compared to MC, the improvement vanishes in terms of time-adjusted MSE due to
the long computational time of the MCMC method. Finally, multimodality of joint loss distributions
and/or the target distribution is also an undesirable feature since full conditional distributions and their
inverses (which are required to implement the GS) are typically unavailable in the former case, and the
latter case prevents the HMC method from efficiently exploring the entire support of the target distribution.
Potential remedies for heavy-tailed and/or high-dimensional target distributions are the HMC method with
a non-normal kinetic energy distribution and roll-back HMC. Further investigation of HMC methods and
faster methods for determining the HMC parameters are left for future work.
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Figure 5.4: Bias (left), standard error (middle) and time-adjusted mean squared error (right) of the
MC, HMC and GS estimators of risk contribution type systemic risk allocations under VaR0.99 (top),
RVaR0.95,0.99 (middle) and ES0.99 (bottom) crisis events. The underlying loss distribution is tν(µ, P ) where
ν = 6, µ = 0 and P = 1/12 · 1d1>d + diagd(11/12) for portfolio dimensions d ∈ {4, 6, 8, 10}. Note that the
GS method is applied only to RVaR and ES contributions.
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Figure 5.5: Bias (left), standard error (middle) and time-adjusted mean squared error (right) of the
MC, HMC and GS estimators of risk contribution type systemic risk allocations with the underlying loss
distribution tν(µ, P ) where ν = 6, µ = 0, P = 1/12 · 1d1>d + diagd(11/12) and d = 5. The crisis event
is taken differently as VaRpVaR (top), RVaRpRVaR

1 ,pRVaR
2

(middle) and ESpES (bottom) for confidence levels
pVaR ∈ {0.9, 0.99, 0.999, 0.9999}, (pRVaR

1 , pRVaR
2 ) ∈ {(0.9, 0.9999), (0.9, 0.99), (0.99, 0.999), (0.999, 0.9999)}

and pES ∈ {0.9, 0.99, 0.999, 0.9999}. Note that the GS method is applied only to RVaR and ES contributions.
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Figure 5.6: Bias (left), standard error (middle) and time-adjusted mean squared error (right) of the MC and
HMC estimators of risk contribution type systemic risk allocations under VaR0.9, RVaR0.9,0.99 and ES0.9

crisis events. The underlying loss distribution is tν(µ, P ) where ν = 6, µ = 0, P = 1/12·1d1>d +diagd(11/12)
and d = 5. The parameters of the HMC method are taken as (εopt, εopt) determined by Algorithm 7 and
(ε, T ) ∈ {(10εopt, 2Topt), (10εopt, Topt/2), (εopt/10, 2Topt), (εopt/10, Topt/2)}. In the labels of the x-axes,
each of the five cases (εopt, εopt), (10εopt, 2Topt), (10εopt, Topt/2), (εopt/10, 2Topt) and (εopt/10, Topt/2) is
denoted by HMC.opt, HMC.mm, HMC.md, HMC.dm and HMC.dd, respectively.
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Algorithm 6 Leapfrog method with boundary reflection
Input: Current state (x(0),p(0)), stepsize ε > 0, gradients ∇U and ∇K, and constraints (hm, vm),
m = 1, . . . ,M .

Output: Updated state (x(ε),p(ε)) .

1) Update p(ε/2) = p(0) + ε/2∇U(x(0)).

2) Set (x,p) = (x(0),p(ε/2)), εtemp = ε.

3) while εtemp > 0

3-1) Compute

x∗ = x+ εtemp∇K(p),

tm = (vm − h>mx)/(εh>mp), m = 1, . . . ,M.

3-2) if tm ∈ [0, 1] for any m = 1, . . . ,M ,

3-2-1) Set

m∗ = argmin{tm | 0 ≤ tm ≤ 1, m = 1, . . . ,M},

x∗r = x∗ − 2h
>
m∗x

∗ − vm∗
h>m∗hm∗

hm∗ ,

pr = x∗ − x− tm∗εp
ε(1− tm∗)

.

3-2-2) Set (x,p) = (x∗r ,pr) and εtemp = (1− tm∗)εtemp.

else

3-2-3) Set (x,p) = (x∗,p) and εtemp = 0.

end if

end while

4) Set x(ε) = x and p(ε) = p+ ε
2∇U(x).
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Algorithm 7 Heuristic for determining the stepsize ε and integration time T
Input: MC presample X(0)

1 , . . . ,X
(0)
N0

, gradients ∇U and ∇K, target acceptance probability α, initial
constant cε > 0 and the maximum integration time Tmax (cε = 1 and Tmax = 1000 are set as default
values).

Output: Stepsize ε and integration time T .

1) Set αmin = 0 and ε = cεd
−1/4.

2) while αmin < α

2-1) Set ε = ε/2.

2-2) for n = 1, . . . , N0

2-2-1) Generate p(0)
n ∼ FK .

2-2-2) for t = 1, . . . , Tmax

2-2-2-1) Set Z(t)
n = Leapfrog(Z(t−1)

n , ε,∇U,∇K) for Z(t−1)
n = (X(t−1)

n ,p
(t−1)
n ).

2-2-2-2) Calculate

αn,t = α(Z(t−1)
n ,Z(t)

n ) and ∆t = ||X(t)
n −X(0)

n || − ||X(t−1)
n −X(0)

n ||.

2-2-2-3) if ∆t < 0 and ∆t−1 > 0, break and set T ∗n = t− 1.

end for

end for

2-3) Compute αmin = min(αn,t | t = 1, 2, . . . , T ∗n , n = 1, . . . , N0)

end while

3) Set T = b 1
N0

∑N0
n=1 T

∗
nc.
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Algorithm 8 Random scan Gibbs sampler (RSGS) with heuristic to determine (p1, . . . , pd)
Require: Random number generator of πj|−j and x(0) ∈ supp(π).

Input: MC presample X̃(0)
1 , . . . , X̃

(0)
N0

, sample size N ∈ N, initial state x(0), sample size of the pre-run
Npre and the target autocorrelation ρ (Npre = 100 and ρ = 0.15 are set as default values).

Output: N sample path X(1), . . . ,X(N) of the Markov chain.

1) Compute the sample covariance matrix Σ̂ based on X̃(0)
1 , . . . , X̃

(0)
N0

.

2) Set pj ∝ Σ̂j,j − Σ̂j,−jΣ̂−1
−j,−jΣ̂−j,j and X(0) = X

(0)
pre = x(0).

3) for n = 1, . . . , Npre

3-1) Generate J = j with probability pj .

3-2) Update X(n)
pre,J ∼ πJ|−J(·|X(n−1)

pre ) and X(n)
pre,−J = X

(n−1)
pre,−J .

end for

4) Set

T = argminh∈N0

{
estimated autocorrelations of X(1)

pre, . . . ,X
(Npre)
pre with lag h ≤ ρ

}
.

5) for n = 1, . . . , N , t = 1, . . . , T

5-1) Generate J = j with probability pj .

5-2) Update X(n−1+t/T )
J ∼ πJ|−J(·|X(n−1+(t−1)/T )) and X(n−1+t/T )

−J = X
(n−1+(t−1)/T )
−J .

end for
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Chapter 6

Modality for scenario analysis and
maximum likelihood allocation

We analyze dependence, tail behavior and multimodality of the conditional distribution of a loss random
vector given that the aggregate loss equals an exogenously provided capital. This conditional distribution
serves as a building block for calculating risk allocations such as the Euler capital allocation of Value-at-Risk.
A superlevel set of this conditional distribution can be interpreted as a set of severe and plausible stress
scenarios the given capital is supposed to cover. We show that various distributional properties of this
conditional distribution are inherited from those of the underlying joint loss distribution. Among these
properties, we find that modality of the conditional distribution is an important feature in risk profile
related to the number of risky scenarios likely to occur in a stressed situation. Under unimodality, we study
a novel risk allocation method called maximum likelihood allocation (MLA), defined as the mode of the
conditional distribution given the total capital. Under multimodality, a single vector of allocations can be
less sound. To overcome this issue, we investigate the so-called multimodalty adjustment to increasing
the soundness of risk allocations. Properties of the conditional distribution, MLA and multimodality
adjustment are demonstrated in numerical experiments. In particular, we observe that negative dependence
among losses typically leads to multimodality, and thus to multiple risky scenarios and higher multimodality
adjustment.

6.1 Introduction

Risk allocation concerns the quantification of the risk of each unit of a portfolio. For a d-dimensional
portfolio of risks or losses (typically risk-factor changes) represented by an Rd-valued random vector
X = (X1, . . . , Xd), d ∈ N, the overall loss S = X1 + · · ·+Xd is quantified as a total capital K ∈ R and
typically determined as K = %(S) for a risk measure ρ. The Euler principle, one of the most well-known
rules of risk allocation, is applicable when the total capital is determined by a risk measure via K = %(S);
see Section 1.3. However, as pointed out by Asimit et al. (2019), the total capital in practice may not always
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coincide with the risk measure itself but includes various adjustments such as stress scenarios and liquidity
adjustments. In such cases, the capital does not possess the original meaning as a risk measure and the
formula under the Euler principle is not available. In addition, there are situations when the total capital
is given exogenously as a constant; see Laeven and Goovaerts (2004). For the case when the total capital
is regarded as a constant, various allocation methods have been proposed in the literature. One of the
main streams found, for example, in Laeven and Goovaerts (2004) and Dhaene et al. (2012), is to derive an
allocation as a minimizer of some loss function over a set of allocations Kd(K) = {x ∈ Rd : x1+· · ·+xd = K}.
Another method is to find a confidence level for which the corresponding risk measure coincides with K,
and then allocate K by regarding it as measured by a risk measure. For example, if Value-at-Risk (VaR) or
Expected Shortfall (ES) are chosen as risk measures, confidence levels pVaR, pES ∈ (0, 1) are first found
such that K = VaRpVaR(S) or, respectively, K = ESpES(S) hold. After performing this procedure, the
Euler principle becomes applicable to K and the resulting risk allocation of K allocates E[Xj | {S = K}]
or, respectively, E[Xj | {S ≥ VaRpES(S)}] to the jth risk Xj ; see Section 6.2.1 for details.

Although these methods often provide plausible risk allocations, they sometimes ignore important
distributional properties of X related to the soundness of risk allocations and to risky scenarios expected to
be covered by the allocated capitals. As we will see in Section 6.2.2, all these allocation methods provide the
homogeneous allocation (K/d, . . . ,K/d) when X is exchangeable in the sense that X d= (Xπ(1), . . . , Xπ(d))
for any permutation (π(1), . . . , π(d)) of {1, . . . , d}. This homogeneous allocation can be sound when the
conditional distribution of X in a stressed situation is unimodal with the mode (K/d, . . . ,K/d) since
this homogeneous allocation covers the risky scenario most likely to occur in a stressed situation. On
the other hand, the same allocation (K/d, . . . ,K/d) arises when the conditional distribution in a stressed
situation is multimodal and (K/d, . . . ,K/d) is supposed to cover multiple risky scenarios on average. In
this multimodal case, the homogeneous allocation is less sound than in the former unimodal case without
identifying the multiple risky scenarios hidden in a single vector of (K/d, . . . ,K/d). Consequently, the
soundness of risk allocation can depend on the distributional properties of the conditional distribution of
X in a stressed situation.

In this chapter, we focus on the conditional distribution of X given {S = K}. Since X | {S = K}
takes values in Kd(K), this random vector can be a building block for deriving a risk allocation. For
example, the Euler allocation (1.5) arises when K = VaRp(S) for some p ∈ (0, 1) and the expectation
of X | {S = K} is considered. In Section 6.2.2 we show that a superlevel set of X | {S = K} can be
regarded as a set of severe and plausible stress scenarios the given capital K is supposed to cover. Based
on the motivation provided there, we investigate distributional properties of X | {S = K} in Section 6.3.
We show that dependence, tail behavior and unimodality of X | {S = K} are typically inherited from
those of the underlying unconditional loss X, respectively. In addition, we demonstrate by simulation that
negative dependence among X typically leads to multimodality of X | {S = K}; see Section 6.5.2. These
observations can be useful to detect the hidden risk of multimodality in risk allocation. Furthermore, the
properties of X | {S = K} studied in this chapter are of potential importance in simulation and statistical
inference of X | {S = K} using Markov chain Monte Carlo (MCMC) methods for efficiently simulating the
distribution of interest; see Remark 6.2.1 and Section 6.5.3.

We also propose a novel risk allocation method termed maximum likelihood allocation (MLA), which
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is defined as the mode of X | {S = K} under unimodality. Besides the mean (which leads to the Euler
allocation of VaR), the mode is also an important summary statistics of X | {S = K}. It can be interpreted
as the risky scenario most likely to occur in the stressed situation {S = K}. By searching for the global
mode of X | {S = K}, possibly multiple local modes can be detected. As explained in Section 6.2.2,
this procedure of detecting multimodality is beneficial for evaluating the soundness of risk allocations, for
discovering hidden multiple scenarios likely to occur in the stressed situation {S = K} and for constructing
more flexible risk allocations by weighting important scenarios. Definitions and required assumptions on
MLA are provided in Section 6.4.1. In Section 6.4.2, we investigate properties of MLA expected to hold
for a risk allocation. In Section 6.4.4 we introduce the so-called multimodality adjustment to increase the
soundness of risk allocations under multimodality. MLA and multimodality-adjusted allocated capitals
are estimated and compared with the Euler allocation in numerical experiments based on real data in
Section 6.5.1 and based on simulated data in Section 6.5.2. Concluding remarks are given in Section 6.6.

6.2 Preliminaries

6.2.1 Notation and setup

We consider the case when the capital is an exogenously given constant K ∈ R. The set of all possible
allocations is denoted by

Kd(K) := {x ∈ Rd : x1 + · · ·+ xd = K}.

If K = %(S) for a risk measure %, the Euler principle determines the jth allocated capital as presented in
Section 1.3. Our proposed risk allocation introduced in Section 6.4 is based on the conditional distribution

FX|{S=K}(x) = P(X ≤ x | {S = K}), x ∈ Rd, (6.1)

where X and S are as defined in Section 1.3. The conditional distribution (6.1) is degenerate and its
first d′ = d − 1 components X ′ | {S = K} = (X1, . . . , Xd′) | {S = K} determine the last one via
Xd | {S = K} = K − (X1 + · · · + Xd′) | {S = K}. Therefore, it suffices to consider the d′-dimensional
marginal distribution FX′|{S=K}. Assuming that X and (X ′, S) admit densities, X ′ | {S = K} also has a
density and is given by

fX′|{S=K}(x′) =
f(X′,S)(x′,K)

fS(K) = fX(x′,K − 1>d′x
′)

fS(K) , x′ ∈ Rd
′
, (6.2)

where the last equality follows from an affine transformation (X ′, S) 7→X with unit Jacobian.

6.2.2 A motivating example

The distribution of X | {S = K} is a primary subject in this chapter. In this section, we provide a
motivating example for investigating this distribution from the viewpoint of risk alloation.
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Figure 6.1: Scatter plots (black dots) of (a) (X1, Y1) and (b) (X2, Y2) such that all of X1, Y1, X2 and Y2 are
identically Pareto distributed with shape parameter 3 and scale parameter 5, and (X1, Y1) and (X2, Y2) have
Student t copulas Ctν,ρ1

and Ctν,ρ2
, respectively, where ν = 5 is the degrees of freedom, and ρ1 = 0.8 and

ρ2 = −0.8 are the correlation parameters. The red line indicates x+ y = K for K = 35. Histograms (blue)
of the conditional distributions of (a) (X1, Y1) and (b) (X2, Y2) on the (approximate) set of allocations
{(x, y) ∈ R2 : K − δ < x+ y < K + δ}, δ = 0.5, are drawn on Kd(K) = {(x, y) ∈ R2 : x+ y = K}.

To this end, consider two bivariate risks (a) (X1, Y1) and (b) (X2, Y2) such that all of X1, Y1, X2 and Y2

are identically Pareto distributed with shape parameter 3 and scale parameter 5, and (X1, Y1) and (X2, Y2)
have Student t copulas Ctν,ρ1

and Ctν,ρ2
, respectively, where ν = 5 is the degrees of freedom parameter

and ρ1 = 0.8 and ρ2 = −0.8 are the correlation parameters. Suppose that the exogenously given total
capital equals K = 35. By exchangeability of the risk models (a) and (b), most allocation rules provide the
homogeneous allocation (K/2,K/2) = (17.5, 17.5) in both cases (a) and (b). For instance, if K is regarded
as VaR or ES at some confidence levels and is allocated according to the Euler principle, then both VaR
and ES contributions lead to homogeneous allocations. As we see in Figure 6.1, however, the conditional
distributions of (X1, Y1) and of (X2, Y2) on the set of allocations Kd(K) differ substantially. Positive
dependence among X1 and Y1 prevents the two random variables from moving in opposite directions under
the constraint X1 + Y1 = K, which results in unimodality of the conditional distribution on Kd(K). On the
other hand, negative dependence among X2 and Y2 allows them to move in opposite directions, which leads
to bimodality of the conditional distribution. From the viewpoint of risk management, the homogeneous
allocation (K/2,K/2) seems to be a more sound capital allocation in Case (a) because it covers the most
likely risky scenario. In Case (b), the two risky scenarios around the corners (K, 0) and (0,K) occur equally
likely and the allocation (K/2,K/2) can be understood as an average of these scenarios. However, the
likelihood around (K/2,K/2) is quite small and a single vector of the equal allocation (K/2,K/2) obscures
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the two distinct risky scenarios. Consequently, the soundness of the allocated capital depends on the
modality of the conditional loss distribution, and multiple risky scenarios can be hidden in a single vector
resulting from capital allocation.

Inspecting modes of X | {S = K} can also be regarded as a stress test of risk allocations. Breuer et al.
(2009) requires stress scenarios to be severe and plausible. Define the scenario set with a level of plausibility
t > 0 by Lt(X) = {x ∈ Rd : fX(x) ≥ t} where fX is the density function of X. Among the scenario set
Lt(X), the set Lt(X) ∩ Kd(K) can be regarded as a set of most severe scenarios the given total capital K
can cover. Using the convention fX|{S=K}(x) = fX(x)1{1>

d
x=K}/fS(K), x ∈ Rd, the set Lt(X) ∩ Kd(K)

leads to the superlevel set of X | {S = K} since

Lt(X) ∩ Kd(K) = {x ∈ Rd : fX(x)1{1>
d
x=K} ≥ t}

= {x ∈ Rd : fX|{S=K}(x) ≥ t/fS(K)} = Lt/fS(K)(X | {S = K}).

Throughout the chapter, the superlevel set of X | {S = K} is treated as a set of stress scenarios. In
particular, the mode of X | {S = K} is the most severe and plausible scenario that K can cover since
it attains the highest level of plausibility among the stress scenarios. Unimodality of X | {S = K} (see
Definition 6.3.12 for its formal definition) implies that there exists one representative stress scenario the
total capital K can cover, and thus the mode is a sound allocation covering the risky scenario most likely
to occur. On the other hand, multimodality of X | {S = K} (again see Definition 6.3.12) means that there
are multiple distinct stress scenarios that are severe and plausible, and thus it may not be sufficient to only
focus on a single scenario without identifying the other ones.

Remark 6.2.1 (Simulation of X | {S = K} with MCMC methods). Another motivation for investigating
distributional properties of X | {S = K} is to be able to efficiently simulate this conditional distribution.
This is a challenging task since there are no general and tractable sampling methods known forX | {S = K}.
Although samples fromX satisfying the constraint {S = K} can be regarded as samples fromX | {S = K},
the probability P(S = K) is zero, and thus such samples virtually never exist when S admits a density. As
done in Chapters 4 and 5, a potential remedy of this problem is to modify the conditioning set {S = K} to
{K − δ < S < K + δ} for a small δ > 0 so that P (K − δ < S < K + δ) > 0. However, this modification
distorts the distribution of X | {S = K} and the resulting estimates of risk allocations are biased. To
overcome this issue, we considered MCMC methods for exact simulation from X | {S = K} in Chapters 4
and 5. Although MCMC methods improve sample efficiency and the resulting estimates are unbiased, their
performance highly depends on distributional properties of X | {S = K}, in particular on its modality
and heavy-tailedness. From this viewpoint, investigating properties of X | {S = K} is important for
constructing efficient MCMC methods for simulating X | {S = K}.

6.3 Properties of the conditional distribution given a constant
sum

In Section 6.2.2, the conditional distribution of X given a constant sum {S = K} turned out to play
important roles in stress testing of risk allocations. With this motivation, we study the support, dependence,
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tail behavior and modality of X | {S = K} in this section. As introduced in Section 6.2.1, we consider
the d′-dimensional random vector X ′ | {S = K} for d′ = d− 1 to avoid the degeneracy of the conditional
distribution X | {S = K}.

6.3.1 Support of the conditional distribution

We start with the support of fX′|{S=K}. By Equation (6.2),

supp(X ′ | {S = K}) = {x′ ∈ Rd
′

: fX′|{S=K}(x′) > 0} = {x′ ∈ Rd
′

: fX(x′,K − 1>d′x
′) > 0}.

If X1, . . . , Xd are supported on Rd, we have supp(X ′ | {S = K}) = Rd′ . Another typical case is when
X1, . . . , Xd are bounded from below, that is, there exists l1, . . . , ld > −∞ such that Xj ≥ lj P-a.s. for
j = 1, . . . , d. In this case, supp(X) = (l1,∞)× · · · × (ld,∞) and thus the support of fX′|{S=K} is given by

supp(X ′ | {S = K}) =
{
x′ ∈ Rd

′
: x1 > l1, . . . , xd′ > ld′ ,

d′∑
j=1

x′j < K − ld
}
. (6.3)

If l1 = · · · = ld′ = 0, that is, when X models the nonnegative part of losses, the closure of (6.3) is
known as the K-simplex. Since the set in (6.3) is bounded, simulation of X ′ | {S = K} can be more
straightforward than in the former case when supp(X ′ | {S = K}) = Rd′ . For instance, an independent
Metropolis-Hastings (MH) algorithm can be applied by first generating a sample y′ uniformly on the set
in (6.3) (which is a location-shifted simplex and thus uniform sampling from this set can be achieved by
simulating a specific Dirichlet distribution) and then replacing the current state x′ with the new state y′

with probability α(x′,y′) = fX′|{S=K}(y′)/fX′|{S=K}(x′) = fX(y′,K − 1>d′y
′)/fX(x′,K − 1>d′x

′).

6.3.2 The conditional distribution in the elliptical case

Elliptical distributions are important exceptions for which the distribution of X ′ | {S = K} can
be derived explicitly. For applications of elliptical distributions to risk management, see, for example,
Landsman and Valdez (2003), Dhaene et al. (2008) or Chapter 6 of McNeil et al. (2015). The characteristic
function of a random vector X is given by φX(t) = E[exp(it>X)], t ∈ Rd. If a function ψ(t) : [0,∞)→ R
is such that ψ(t>t) is a d-dimensional characteristic function, then ψ is called a characteristic generator ; see
Fang (2018) for details. Let Ψd denote the class of all characteristic generators. A d-dimensional random
vector X is said to have an elliptical distribution, denoted by X ∼ Ed(µ,Σ, ψ), if its characteristic function
can be expressed as

φX(t) = exp(it>µ) ψ
(

1
2t
>Σt

)
for a location vector µ ∈ Rd, dispersion matrix Σ ∈Md×d

+ and a characteristic generator ψ ∈ Ψd. When
an elliptical distribution X ∼ Ed(µ,Σ, ψ) admits a density function, it is of the form

fX(x) = cd√
|Σ|

g

(
1
2(x− µ)>Σ−1(x− µ); d

)
, x ∈ Rd,
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for some normalizing constant cd > 0 and a density generator g(·; d) satisfying∫ ∞
0

td/2−1g(t; d) dt <∞;

see Fang (2018). We omit the second argument and write g(·) = g(· ; d) when it can be neglected.

In the following proposition we derive the distribution of X ′ | {S = K} provided that X ∼ Ed(µ,Σ, ψ).

Proposition 6.3.1 (Ellipticality of X ′ | {S = K}). Suppose X ∼ Ed(µ,Σ, ψ). Then X ′ | {S = K}
follows an elliptical distribution Ed′(µK ,ΣK , ψK) for some characteristic generator ψK ∈ Ψd′ and

µK = µ′ + K − µS
σ2
S

(Σ1d)′ and ΣK = Σ′ − 1
σ2
S

(Σ1d)′(Σ1d)′>, (6.4)

where µ′ and (Σ1d)′ are the first d′-components of µ and (Σ1d), respectively, Σ′ is the principal submatrix
of Σ deleting the dth row and column, µS = 1>d µ and σ2

S = 1>d Σ1d. Furthermore, if X admits a density
with density generator g, then X ′ | {S = K} admits a density with density generator

gK(t) = g(t+ ∆K) where ∆K = 1
2

(
K − µS
σS

)2
. (6.5)

Proof. Notice that (X ′, S) = AX ∼ Ed(Aµ, AΣA>, ψ) where A =
(
Id 0d

1>d 1

)
∈ Rd×d. Therefore, the

conditional distribution X ′ | {S = K} also follows an elliptical distribution with the location parameter
µK and the dispersion parameter ΣK as specified in (6.4). The corresponding characteristic generator ψK
can be specified through Theorem 2.18 of Fang (2018). If X admits a density with density generator g,
then

fX′|{S=K}(x′) =
f(X′,S)(x′,K)

fS(K) ∝ gd

1
2(x′ − µ′,K − µS)>

(
Σ′ (Σ1d)′

(Σ1d)′> σ2
S

)−1

(x′ − µ′,K − µS)

 .

The quadratic term reduces to

(x′ − µ′,K − µS)>
(

Σ′ (Σ1d)′

(Σ1d)′> σ2
S

)−1

(x′ − µ′,K − µS) = (x′ − µK)>Σ−1
K (x′ − µK) + (K − µS)2

σ2
S

.

Therefore, we have that

fX′|{S=K}(x′) ∝ g
(

1
2(x′ − µK)>Σ−1

K (x′ − µK) + ∆K

)
= gK

(
1
2(x′ − µK)>Σ−1

K (x′ − µK)
)
,

where ∆K = (K − µS)2/(2σ2
S) and gK(t) = g(t+ ∆K) as specified in (6.5).

As seen in the proof, the characteristic generator ψK of X ′ | {S = K} is in general different from that
of X. By Proposition 6.3.1, ellipticality is preserved under conditioning {S = K} and thus a change of the
shape of the distribution as observed in Figure 6.1 (b) does not occur when X is elliptical. The capital K
is typically much larger than the mean of the total loss µS in practice. By (6.5), the density generator gK
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is thus typically the tail part of the generator g. Moreover, the location vector µK typically increases in
proportion to the sum of covariances (Σ1d)′. As a consequence, more (less) capital is assigned to losses
which are positively (negatively) correlated with the other losses. On the other hand, the dispersion matrix
ΣK decreases in proportion to the term (Σ1d)′(Σ1d)′> and the reduction depends on the variance of the
sum.

Example 6.3.2 (Student t distribution). A d-dimensional Student t distribution tν(µ,Σ) is an elliptical
distribution Ed(µ,Σ, ψ) with density generator

g(t; d) =
(

1 + t

ν

)− d+ν
2

, t ≥ 0, (6.6)

where ν ≥ 1 is the degrees of freedom parameter. It is known, for example, from Roth (2012) and Ding
(2016) that the conditional distribution of the Student t distribution is again Student t. We can check
this closedness property with Proposition 6.3.1. By (6.5), the random variable X ′ | {S = K} follows an
elliptical distribution Ed′(µK ,ΣK , gK) with density generator (up to a constant) given by

gK(t) =
(

1 + t

ν + ∆K

)− d+ν
2

,

for which the corresponding distribution is known as the Pearson type VII distribution; see Schmidt (2002).
In fact, this distribution reduces to a d′-dimensional Student t distribution since

gK(t) =
(

1 + t

ν + ∆K

)− d+ν
2

∝
(

1 + ν + 1
ν + ∆K

t

ν + 1

)− d′+ν+1
2

,

and the multiplier (ν + 1)/(ν + ∆K) can be absorbed by redefining the dispersion matrix as Σ̃K =
(ν+ ∆K)ΣK/(ν+ 1) for (ν+ ∆K)/(ν+ 1) > 0. Consequently, X ′ | {S = K} has distribution tν+1(µK , Σ̃K).
Since the degrees of freedom of X ′ | {S = K} increases by 1, X ′ | {S = K} has slightly lighter tails than
X.

6.3.3 Dependence and stochastic order

The dependence structure of X ′ | {S = K} is typically described in terms of the dependence among Xj

and S for j = 1, . . . , d′. For instance, when X ∼ Ed(µ,Σ, ψ), Proposition 6.3.1 yields

Cov[Xi, Xj | {S = K}] = (ΣK)i,j = Cov[Xi, Xj ]−
1
σ2
S

(Σ1d)i(Σ1d)j

= Cov[Xi, Xj ]−
1
σ2
S

Cov[Xi, S] Cov[Xj , S]

= σiσj(ρXi,Xj − ρXi,S ρXj ,S),

where σ2
j = Var(Xj) and ρXi,Xj is the correlation coefficient of (Xi, Xj). In this section we study the

dependence, especially the total positivity and its related order of X ′ | {S = K} for a general distribution
beyond the elliptical case. To this end, define the following concepts.
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Definition 6.3.3 (Multivariate total positivity of order 2). Suppose random vectors X and Y have
densities fX and fY , respectively.

1. X is said to be multivariate totally positively ordered of order 2 (MTP2) if

fX(x)fX(y) ≤ fX(x ∧ y)fX(x ∨ y), for all x, y ∈ Rd.

2. X is said to be multivariate reverse rule of order 2 (MRR2) if

fX(x)fX(y) ≥ fX(x ∧ y)fX(x ∨ y), for all x, y ∈ Rd.

3. Y is said to be larger than X in TP2-order, denoted as X ≤tp Y if

fX(x)fY (y) ≤ fX(x ∧ y)fY (x ∨ y), for all x, y ∈ Rd.

For examples and implied dependence properties of MTP2, MRR2 and TP2 ordered distributions, see
Karlin and Rinott (1980a) and Karlin and Rinott (1980b). The following proposition states that the MTP2,
MRR2 and TP2 order of X ′ | {1>dX = K} and Y ′ | {1>d Y = K} are inherited from those of (X ′,1>dX)
and (Y ′,1>d Y ).

Proposition 6.3.4 (MTP2, MRR2 and TP2 order of X ′ | {S = K}). Suppose (X ′, S) and (Y ′, T ) with
S = 1>dX and T = 1>d Y have densities f(X′,S) and f(Y ′,T ), respectively.

1. If (X ′, S) is MTP2 (MRR2) then X ′ | {S = K} is MTP2 (MRR2).

2. If (X ′, S) ≤tp (Y ′, T ) then X ′ | {S = K} ≤tp Y ′ | {T = K}.

Proof. By (6.2) we have, for x′, y′ ∈ Rd′ , that

fX′|{S=K}(x′)fX′|{S=K}(y′) =
f(X′,S)(x′,K)f(X′,S )(y′,K)

f2
S(K)

≤
f(X′,S)(x′ ∧ y′,K ∧K)f(X′,S)(x′ ∨ y′,K ∨K)

f2
S(K)

= fX′|{S=K}(x′ ∧ y′)fX′|{S=K}(x′ ∨ y′),

which proves the first part on MTP2. The MRR2 and TP2 parts are shown in a similar manner.

The properties of MTP2 (MRR2) and TP2 order have various implications. For example, whenX ′ | {S =
K} is MTP2, then X ′ | {S = K} is positively associated in the sense that Cov[g(Xi), h(Xj) | {S = K}] ≥ 0
for all increasing functions g : R → R and h : R → R. If X ′ | {S = K} ≤tp Y ′ | {T = K}, then
X ′ | {S = K} ≤st Y | {T = K}, that is, E[h(X ′) | {S = K}] ≤ E[h(Y ′) | {T = K}] for all bounded
and increasing functions h : Rd′ → R. The readers are referred to Müller and Stoyan (2002) for more
implications of the MTP2, MRR2 and TP2 order.

Next, we consider the special but important case when X1, . . . , Xd are perfectly positively dependent,
that is, when X is a comonotone random vector X d= (F−1

1 (U), . . . , F−1
d (U)) for some U ∼ Unif(0, 1). We

treat this special case separately since a comonotone random vector does not admit a density. The following
proposition states that X | {S = K} is degenerate when X is comonotone.
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Proposition 6.3.5 (X ′ | {S = K} under comonotonicity). Suppose X is a comonotone random vector
with continuous and strictly increasing margins F1, . . . , Fd. Then

X | {S = K} = (F−1
1 (u∗), . . . , F−1

d (u∗)) P-a.s.,

where u∗ ∈ [0, 1] is the unique solution to
∑d
j=1 F

−1
j (u) = K as an equation of u ∈ [0, 1].

Proof. When X has continuous and strictly increasing margins F1, . . . , Fd, then the quantile functions
F−1
j , j = 1, . . . , d, are continuous and strictly increasing, and thus the equation

∑d
j=1 F

−1
j (u) = K has a

unique solution u∗. Therefore,

P
( d⋃

j=1
{Xj 6= F−1

j (u∗)}
∣∣∣∣{S = K

})
= P

( d⋃
j=1

{
F−1
j (U) 6= F−1

j (u∗)
} ∣∣∣∣{ d∑

j=1
F−1
j (U) = K

})
= 0.

This result can be understood as an extreme case where positive dependence (comonotonicity) implies
unimodality of X | {S = K} (taking on one point (F−1

1 (u∗), . . . , F−1
d (u∗)) with probability 1). When X

has negative dependence, a wider variety of distributions, possibly multimodal ones, arise as X | {S = K}
compared with the positive dependent case; see the following example for the case that negative dependence
of X implies multimodality of X | {S = K}.

Example 6.3.6 (X | {S = K} under extreme negative dependence). Let K > 0 and X ∼ F for a
continuous distribution function F supported on [0,∞) such that X | {X ≤ K} is radially symmetric
about K/2 in the sense that (X −K/2) | {X ≤ K} d= (K/2−X) | {X ≤ K}. For U ∼ Unif(0, 1) define
(X1, X2) by

X1 = F−1(U)1{U≤F (K)} + F−1(U)1{U>F (K)} = F−1(U),

X2 = (K − F−1(U))1{U≤F (K)} + F−1(U)1{U>F (K)}.

Then P(X1 ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x) for all x ≥ 0. Moreover, the conditional radial
symmetry of F implies that P(K − F−1(U) ≤ x, U ≤ F (K)) = P(F−1(U) ≤ x, U ≤ F (K)) and thus that

P(X2 ≤ x) = P(X2 ≤ x, U ≤ F (K)) + P(X2 ≤ x, U > F (K))

= P(K − F−1(U) ≤ x, U ≤ F (K)) + P(F−1(U) ≤ x, U > F (K))

= P(F−1(U) ≤ x, U ≤ F (K)) + P(F−1(U) ≤ x, U > F (K))

= P(F−1(U) ≤ x) = F (x), x ≥ 0.

Therefore, X1 ∼ F and X2 ∼ F . The dependence structure of (X1, X2) is a combination of positive and
negative dependence. The body part {X1 ≤ K} of X1 and the tail part {X2 > K} of X2 are mutually
exclusive in the sense that P(X1 ≤ K, X2 > K) = 0. Similarly P(X1 > K, X2 ≤ K) = 0. In the tail part,
X1 and X2 are comonotone in the sense that (X1, X2) = (F−1(U), F−1(U)) on {U > F (K)}. In the body
part, X1 and X2 are countermonotone in the sense that (X1, X2) = (F−1(U),K−F−1(U)) on {U ≤ F (K)}.
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Since X1 + X2 = F−1(U) + K − F−1(U) = K on {U ≤ F (K)} and X1 + X2 = 2F−1(U) > 2K > K on
{U > F (K)}, we have that

{X1 +X2 = K} = {X1 +X2 = K, U ≤ F (K)} ∪ {X1 +X2 = K, U > F (K)} = {U ≤ F (K)}

and thus that

(X1, X2) | {X1 +X2 = K} = (X1, X2) | {U ≤ F (K)} = (F−1(U),K − F−1(U)) | {U ≤ F (K)}.

Consequently, (X1, X2) | {S = K} has homogeneous marginal distribution FX|{X≤K} and a countermono-
tone copula W . Therefore, multimodality of X | {S = K} appears when, for example, X ∼ F has a
bimodal distribution on the body part {X ≤ K}.

Remark 6.3.7 (Extension with complete mixability). Example 6.3.6 for constructing (X1, X2) based on
countermonotonicity can be extended to the multivariate case. Let K > 0 and X ∼ F for a continuous
distribution function F supported on [0,∞) such that the conditional distribution FX|{X≤K} is d-completely
mixable with center K for d ≥ 3, that is, there exists a d-dimensional random vector Y = (Y1, . . . , Yd)
called the d-complete mix such that Yj ∼ FX|{X≤K}, j = 1, . . . , d, and Y1 + · · · + Yd = K a.s. Such a
random vector exists, for example, when FX|{X≤K} admits a decreasing density with E[Y1] = K/d; see
Wang and Wang (2011, Corollary 2.9.). Define X = (X1, . . . , Xd) by Xj = Yj1{U≤F (K)} + Zj1{U>F (K)}

for Y = (Y1, . . . , Yd) being the d-complete mix of FX|{X≤K}, U ∼ Unif(0, 1), Zj ∼ FX|{X>K}, j = 1, . . . , d
and Y , U and Z1, . . . , Zd are independent of each other. Then one can check that Xj ∼ F . Moreover,
{X1 + · · ·+Xd = K} = {U ≤ F (K)} since

S = X1 + · · ·+Xd = K1{U≤F (K)} + (Z1 + · · ·+ Zd)1{U>F (K)},

and Z1 + · · · + Zd > dK > K. Consequently, X | {X1 + · · · + Xd = K} = X | {U ≤ F (K)} = Y a.s.
and thus X | {S = K} is the d-complete mix of X | {X ≤ K}. To construct a multimodal X | {S = K}
one can choose Y as an equally weighted mixture of three Dirichlet distributions Dir(α, α, β), Dir(α, β, α)
and Dir(β, α, α) for 0 < α < β. This mixture is a 3-complete mix since it has homogeneous marginal
distributions and a constant sum. Moreover, Y has three distinct modes when, for example, α = 2 and
β = 10, and thus X ′ | {S = K} is multimodal.

6.3.4 Tail behavior of the conditional distribution

We now study the tail behavior of X ′ | {S = K} through its density. Since boundedness of X from
below leads to a bounded support of X ′ | {S = K} as shown in Section 6.3.1, we focus on the case when
X is supported on Rd. In this case, the support of X ′ | {S = K} is Rd′ and thus there are 2d′ orthants to
be considered. Hereafter we consider tail behavior only in the first orthant {x′ ∈ Rd′ : x1, . . . , xd′ > 0}
since tails on the other orthants can be discussed similarly. We study the following limiting behaviors of
the ratio of densities.

Definition 6.3.8 (Multivariate regular and rapid variation of a density). LetX be a d-dimensional random
vector X with a density fX .
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1. X is called multivariate regularly varying with limit function λ : R2d → R+ (at ∞ and on the first
orthant), denoted by MRV(λ) if

lim
t→∞

fX(ty)
fX(tx) =: λ(x,y) > 0 for any x,y ∈ Rd+, (6.7)

provided the limit function λ exists.

2. X is called multivariate rapidly varying (at ∞ and on the first orthant), denoted by MRV(∞) if,

lim
t→∞

fX(stx)
fX(tx) =

0, s > 1,

∞, 0 < s < 1,
for any s > 0, x ∈ Rd+.

Note that we adopt the definition of regular variation of densities for its potential application to MCMC
methods where the ratio of target densities fX′|{S=K}(y′)/fX′|{S=K}(x′) at any two points x′, y′ ∈ Rd′ is
of interest; see Section 6.5.3. Taking x = 1d in (6.7) leads to the standard definition of regular variation
introduced, for example, in Resnick (2007). Regular variation is typically described in terms of probability
measures or survival functions, and these concepts of variations are connected to regular variation of
densities through Resnick (2007, Theorem 6.4.).

The following proposition states that one can find a limit function for X ′ | {S = K} based on that of
X through the auxiliary random vector X̃ = (X ′,K −Xd).

Proposition 6.3.9 (Multivariate regular and rapid variation of X ′ | {S = K}).

1. Assume that X̃ = (X ′,K −Xd) is MRV(λ̃). Then X ′ | {S = K} is MRV(λ′) with limit function

λ′(x′,y′) = λ̃((x′,1>d′x′), (y′,1>d′y′)), x′,y′ ∈ Rd
′

+ .

2. If X̃ is MRV(∞), then X ′ | {S = K} is MRV(∞).

Proof. Let X̃ = (X ′,K−Xd). Since the density of X̃ is written as fX̃(x1, . . . , xd) = fX(x1, . . . , xd′ ,K−xd),
we have, by (6.2), that

fX′|{S=K}(x′) = fX(x′,K − 1>d′x
′)

fS(K) = fX̃(x′,1>d′x′)
fS(K) , x′ ∈ Rd

′

+ .

Therefore, if X̃ has a limit function λ̃, then the density of X ′ | {S = K} satisfies

lim
t→∞

fX′|{S=K}(ty′)
fX′|{S=K}(tx′)

= lim
t→∞

fX̃(ty′, t1>d′y′)
fX̃(tx′, t1>d′x′)

= λ̃((x′,1>d′x′), (y′,1>d′y′)) =: λ′(x′,y′),

for any x′, y′ ∈ Rd′+ since (x′,1>d′x′), (y′,1>d′y′) ∈ Rd+. Similarly, if X̃ is MRV(∞), then

lim
t→∞

fX′|{S=K}(stx′)
fX′|{S=K}(tx′)

= lim
t→∞

fX̃(stx′, st1>d′x′)
fX̃(tx′, t1>d′x′)

=

0, s > 1,

∞, 0 < s < 1,

for any s > 0 and x′ ∈ Rd′+ .
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The sufficient conditions in Proposition 6.3.9 are more straightforward to check than those in Proposi-
tion 6.3.4 since X̃ does not depend on the sum S, and the joint distribution of X̃ can be specified through its
marginal distributions and copula. The margins of X̃ are F̃j = Fj , j = 1, . . . , d′, and F̃d(xd) = F̄d(K − xd),
and the copula C̃ of X̃ is the distribution function of (U1, . . . , Ud′ , 1− Ud) where U ∼ C is the copula of
X. This enables one to find a limit function for X̃; see Li (2013), Li and Wu (2013), Li and Hua (2015)
and Joe and Li (2019).

As the following proposition shows, in the elliptical case the limit function is determined by the density
generator g.

Proposition 6.3.10 (Multivariate regular and rapid variations for elliptical distribution). Assume X ∼
Ed(µ,Σ, ψ) admits a density with density generator g continuous on R+.

1. If g is regularly varying in the sense that

lim
t→∞

g(tu)
g(ts) = λg(s, u), s, u > 0,

then X ′ | {S = K} is MRV(λK) with

λK(x′,y′) = λg(x′
>Σ−1

K x
′, y′

>Σ−1
K y

′), x′, y′ ∈ Rd
′
.

2. If g is rapidly varying in the sense that

lim
t→∞

g(st)
g(t) =

0, s > 1,

∞, 0 < s < 1,

then X ′ | {S = K} is MRV(∞).

Proof. Proposition 6.3.1 yields that X ′ | {S = K} follows a d′-dimensional elliptical distribution with
location vector µK , dispersion matrix ΣK and density generator gK . If g is regularly varying, then

lim
t→∞

fX′|{S=K}(ty′)
fX′|{S=K}(tx′)

= lim
t→∞

gK
( 1

2 (ty′ − µK)>Σ−1
K (ty′ − µK)

)
gK
( 1

2 (tx′ − µK)>Σ−1
K (tx′ − µK)

)
= lim
t→∞

g
( 1

2 t
2(y′ − µK/t)>Σ−1

K (y′ − µK/t) + ∆K

)
g
( 1

2 t
2(x′ − µK/t)>Σ−1

K (x′ − µK/t) + ∆K

)
= lim
t→∞

g( 1
2 t

2y′
>Σ−1

K y
′)

g( 1
2 t

2x′>Σ−1
K x

′)
= λg(x′

>Σ−1
K x

′, y′
>Σ−1

K y
′) = λK(x′,y′),

for any x′, y′ ∈ Rd′ , where the third equality comes from continuity of g and the fourth equality holds
since x′>Σ−1

K x
′, y′

>Σ−1
K y

′ > 0. Therefore, X ′ | {S = K} is MRV(λK). For the rapidly varying case,

lim
t→∞

fX′|{S=K}(stx′)
fX′|{S=K}(tx′)

= lim
t→∞

g( 1
2 t

2s2x′
>Σ−1

K x
′)

g( 1
2 t

2x′>Σ−1
K x

′)
=

0, s > 1,

∞, 0 < s < 1,

for any s > 0 and x′, y′ ∈ Rd′ since s > 1 if and only if s2 > 1 and 0 < s < 1 if and only if 0 < s2 < 1 for
s > 0. Therefore, X ′ | {S = K} is rapidly varying.
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Example 6.3.11 (Normal and Student t distributions). The multivariate Normal distribution has a rapidly
varying density generator g(t) = exp(−t), and thus its corresponding conditional distribution X ′ | {S = K}
is also rapidly varying by Proposition 6.3.10 Part 2. Next, suppose X follows a d-dimensional Student
t distribution with degrees of freedom ν ≥ 1. Its density generator (6.6) is regularly varying with limit
function

lim
t→∞

g(tu)
g(ts) =

(u
s

)− ν+d
2
, u, s > 0.

Consequently, by Proposition 6.3.10 Part 1, X ′ | {S = K} is regularly varying with the limit function

lim
t→∞

fX′|{S=K}(ty′)
fX′|{S=K}(tx′)

=
(
||Σ−

1
2

K y′||

||Σ−
1
2

K x′||

)−(ν+d)

, x′,y′ ∈ Rd
′

+ ,

where || · || is an Euclidean norm on Rd′ .

6.3.5 Unimodality of the conditional distributions

Next we study the modality of X ′ | {S = K}. Among various definitions of unimodality considered in
the literature, we adopt those defined based on the superlevel set

Lt(f) = {x ∈ Rd : f(x) ≥ t}, t ∈ (0, max{f(x) : x ∈ R}],

where f is a density on Rd which is assumed to be bounded for simplicity so that max{f(x) : x ∈ R} exists.
By definition, Lt(f) is a decreasing set, that is, Lt′(f) ⊆ Lt(f) for 0 < t ≤ t′. We also write Lt(X) for
Lt(f) if X has density f . A set A ⊆ Rd is called star-shaped about x0 ∈ A if, for any y ∈ A, the line
segment from x0 to y is in A.

Definition 6.3.12 (Concepts of unimodality). For a bounded density function f on Rd, we call M(f) =
Lt∗(f) the mode set for t∗ = max{f(x) : x ∈ Rd}. If Lt∗(f) = {m} then we call m ∈ Rd the mode of f .
Furthermore, f is said to be weakly unimodal if Lt(f) is connected, star unimodal about the center x0 ∈ Rd

if Lt(f) is star-shaped about x0 and convex unimodal if Lt(f) is convex, for all 0 < t ≤ t∗. Finally, f is
said to be multimodal if Lt(f) is not connected for some 0 < t ≤ t∗.

From Definition 6.3.12, convex unimodality implies star unimodality and star unimodality implies
weak unimodality. Other notions of unimodality, such as block unimodality, linear unimodality, monotone
unimodality, α-unimodality, orthounimodality and Khinchin’s unimodality are not introduced in this chapter
due to their intractability for our purpose; see Dharmadhikari and Joag-Dev (1988) for a comprehensive
discussion on unimodality. Defining notions of unimodality in terms of the shape of the superlevel set Lt(f)
fits our purpose in several ways. As mentioned in Section 6.2.2, Lt(X) can be understood as a plausible
scenario set with t > 0 being the level of plausibility. In addition, Lt(X | {S = K}) can be regarded as a set
of severe and plausible stress scenarios the total capital K is supposed to cover. From these interpretations,
we believe that unimodality should describe tractability of these superlevel sets, such as connectivity and
convexity. The superlevel set Lt(f) is also important when f is simulated with MCMC methods since the
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ratio of levels of f is a primary quantity of interest for such methods. MCMC methods are required to
be specifically designed when Lt(f) is not connected since in this case a Markov chain needs to traverse
distinct regions to simulate samples from the entire space.

Note that uniqueness of the maximum of a density f , that is, the mode set of f being a singleton Lt∗(f) =
{m} for m ∈ Rd, is an important but different concept of unimodality from those in Definition 6.3.12. The
notions of unimodality in Definition 6.3.12 concern the overall shape of a density through its superlevel sets
whereas uniqueness of the maximum of f is a purely analytical property of the derivative of f . In addition,
uniqueness of the maximum is not an appropriate concept of unimodality when the relationship between
X and X ′ | {S = K} is of interest. In fact, uniqueness of the maximum of fX′|{S=K} is equivalent to that
of fX on the restricted domain Kd(K) via (6.2), and thus the uniqueness of the maximum of fX on the
entire support Rd does not provide any information on the shape of fX on Kd(K) unless the mode of fX
on Rd is in Kd(K).

The following proposition reveals relationships between unimodality of X and that of X ′ | {S = K}.

Proposition 6.3.13 (Unimodality of X ′ | {S = K}).

1. Suppose X ∼ Ed(µ,Σ, ψ) admits a density with density generator g. If g is decreasing on R+, then
fX′|{S=K} is convex unimodal. Furthermore, if the equation g(t) = ∆K of t ∈ R+ has a unique
solution t∗K , then fX′|{S=K} has the mode m = µK .

2. If X is convex unimodal, then X ′ | {S = K} is convex unimodal.

Proof. 1. By Proposition 6.3.1, X ′ | {S = K} follows a d′-dimensional elliptical distribution with
location vector µK , dispersion matrix ΣK and density generator gK . Furthermore, gK is decreasing
if g is. Therefore, for 0 < s ≤ cKt∗K/

√
|ΣK |,

Ls(X ′ | {S = K}) =
{
x′ ∈ Rd

′
: gK

(
1
2(x′ − µK)>Σ−1

K (x′ − µK)
)
≥
s
√
|ΣK |
cK

}

=
{
x′ ∈ Rd

′
: 0 ≤ (x′ − µK)>Σ−1

K (x′ − µK) ≤ 2
{
g−1

(
s
√
|ΣK |
cK

)
−∆K

}}
,

which is a convex set with ellipsoid as surface. Moreover, when s∗ = cKt
∗
K/
√
|ΣK |, we have

Ls∗(X ′ | {S = K}) =
{
x′ ∈ Rd

′
: (x′ − µK)>Σ−1

K (x′ − µK) = 0
}

= {µK}

and thus X ′ | {S = K} has a mode µK .

2. For t > 0 and x′ ∈ Rd′ , we have the equivalence relation:

x′ ∈ Lt(X ′ | {S = K}) if and only if (x′,K − 1>d′x
′) ∈ LtfS(K)(X) (6.8)

since fX′|{S=K}(x′) = fX(x′,K − 1>d′x
′)/fS(K) and thus

Lt(X ′ | {S = K}) = {x′ ∈ Rd
′

: fX′|{S=K}(x′) ≥ t} = {x′ ∈ Rd
′

: fX(x′,K − 1>d′x
′) ≥ tfS(K)}.
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Suppose x′, y′ ∈ Lt(X ′ | {S = K}). By (6.8), we have that (x′,K − 1>d′x
′), (y′,K − 1>d′y

′) ∈
LtfS(K)(X). Since X is convex unimodal, LtfS(K)(X) is a convex set. Therefore, we have, for
θ ∈ (0, 1), that

θ(x′,K − 1d′x
′) + (1− θ)(y′,K − 1>d′y

′) = (θx′ + (1− θ)y′, θ(K − 1>d′x
′) + (1− θ)(K − 1>d′y

′)

= (θx′ + (1− θ)y′, K − 1>d′(θx′ + (1− θ)y′)) ∈ LtfS(K)(X),

which implies that θx′ + (1− θ)y′ ∈ Lt(X ′ | S = K) by (6.8).

Unlike convex unimodality, neither weak unimodality nor star unimodality of X imply any of the
unimodality concepts introduced in Definition 6.3.12 for X ′ | {S = K}. To provide a counterexample, we
introduce the following class of distributions.

Definition 6.3.14 (Homothetic density). A d-dimensional random vector X is said to have a homothetic
density, denoted by X ∼ H(µ, D, r), with a location parameter µ ∈ Rd, shape set D ⊆ Rd and a scaling
function r : R+ → R+ if X − µ admits a density fD satisfying

Lt(fD) = r(t)D = {sx : 0 ≤ s ≤ r(t), x ∈ D}

for some continuous and decreasing function r and a bounded and star-shaped (around 0) set D ∈ Rd such
that ∫ ∞

0
Lebd (r(t)D) dt = 1, (6.9)

where Lebd denotes the Lebesgue measure on Rd.

Note that Condition (6.9) is required to ensure that
∫
Rd fD(x) dx = 1. To see this, we have∫

Rd
fD(x) dx =

∫
Rd

∫ fD(x)

0
dtdx =

∫
Rd

∫ ∞
0

1{x∈Lt(fD)} dtdx

=
∫ ∞

0
Lebd (Lt(fD)) dt =

∫ ∞
0

Lebd (r(t)D) dt = 1.

Homothetic distributions arise partly from lp-spherical distributions (Osiewalski, 1993) where the
superlevel sets are determined as balls in the lp-norm, and from a further generalized class of distributions
called the v-spherical distributions (Fernandez et al., 1995). Examples of homothetic distributions include
skew-normal distributions and rotund-exponential distributions; see Balkema and Nolde (2010). It is
straightforward to check that X ∼ H(0d, D, r) is star unimodal about x0 ∈ Rd if D is star-shaped about
x0, and convex unimodal if D is convex.

Suppose X ∼ H(0d, D, r) for a convex set D. Then X is convex unimodal and so is X ′ | {S = K} by
Proposition 6.3.13. For this homothetic distribution, the superlevel set of X ′ | {S = K} embedded in Rd
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has the following representation

{x ∈ Rd : x′ ∈ Lt(X ′ | S = K), xd = K − 1>d′x
′}

= {x ∈ Rd : fX|{S=K}(x′) ≥ t, xd = K − 1>d′x
′}

= {x ∈ Rd : f(x) ≥ tfS(K)} ∩ Kd(K)

= r(tfS(K))D ∩ Kd(K) = {sx : x ∈ D, 0 ≤ s ≤ r(tfS(K))} ∩ Kd(K)

=
{

K

1>d x
x : x ∈ D, 0 ≤ K

1>d x
≤ r(tfS(K))

}

=

 K

1>d x
x : x ∈

⋃
k≥K/r(tfS(K))

D ∩ Kd(k)

 ,

that is, the superlevel set Lt(X ′ | {S = K}) embedded in Rd is a collection of the projected points of
x ∈ D intersected with the upper half space {x ∈ Rd : 1>d x ≥ K/r(tfS(K))} onto Kd(K).

The following example shows that neither weak unimodality nor star unimodality of X imply any of
the unimodality concepts introduced in Definition 6.3.12 for X ′ | {S = K}.

Example 6.3.15. Consider X ∈ H(02, D, r) where D = ([−2, 2] × [−1, 1]) ∪ ([−1, 1] × [−2, 2]) and
r(t) = 1

2
√

3 exp(−t/2). D is star-shaped (and thus connected) around (0, 0) and r is a decreasing function.
Furthermore, the pair of (D, r) satisfies Condition (6.9) since∫ ∞

0
Leb2 (r(t)D) dt = Leb2 (D)

∫ ∞
0

r2(t) dt = 12
∫ ∞

0

1
12 exp(−t) dt = 1.

Suppose that the total capital is given by K = 1/3. For t = −2 log(
√

3/3) ≈ 1.098, we have r(t) = 1/6 and
thus Lt(fD) = D/6 = ([−1/3, 1/3]× [−1/6, 1/6]) ∪ ([−1/6, 1/6]× [−1/3, 1/3]). Therefore, Lt(X ′ | {S =
K}) = [0, 1/6] ∪ [1/3, 1/2], which is neither star-shaped nor even connected.

Next we study marginal properties of unimodality. In general, even if X is convex unimodal, it does
not imply any unimodality for its marginal distributions; see Balkema and Nolde (2010, Example A.3.)
for a counterexample. The following example shows that marginal unimodality also does not imply joint
unimodality.

Example 6.3.16 (Marginal unimodality does not imply joint unimodality). Consider the following bivariate
density

f(u, v) = 9
41
{

(u,v)∈
⋃3
i=1

[(i−1)/3,i/3]2
} + 9

41{(u,v)∈[1/3,2/3]2}, (u, v) ∈ [0, 1],

which has the convex unimodal marginal densities

f1(u) = f2(u) = 3
41{u∈[0,1]} + 3

41{u∈[1/3,2/3]}, u ∈ [0, 1].

However, L9/4(f) = [0, 1/3]2 ∪ [1/3, 2/3]2 ∪ [2/3, 1]2 is neither convex nor star-shaped.

Joint unimodality implies marginal unimodality for certain classes of distributions. As is shown in
Balkema and Nolde (2010), lp-spherical distributions form a subclass of homothetic densities for which
unimodality is preserved under marginalization. This property also holds for the class of s-concave densities,
which is also closed under the operation X 7→X ′ | {S = K}; see Section 6.3.6.
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6.3.6 Modality and s-concave densities

As we saw in Section 6.3.5, neither joint unimodality nor marginal unimodality imply the other .
However, unimodality is preserved under marginalization for some specific class of densities, so-called
s-concave densities. In this section we briefly introduce the connection between unimodality and s-concavity
of the conditional distribution given a constant sum.

Definition 6.3.17 (s-concavity). For s ∈ R, a density f on Rd is called s-concave on a convex set A ⊆ Rd

if

f(θx+ (1− θ)y) ≥Ms(f(x), f(y); θ), x,y ∈ A, θ ∈ (0, 1),

where Ms is called the generalized mean defined, by continuity, as

Ms(a, b; θ) =



{θas + (1− θ)bs}1/s, 0 < s <∞ or (−∞ < s < 0 and ab 6= 0),

0, −∞ < s < 0 and ab = 0,

aθb1−θ, s = 0,

a ∧ b, s = −∞,

a ∨ b, s = +∞,

for s ∈ R, a, b ≥ 0 and θ ∈ (0, 1).

Definition 6.3.17 of s-concavity is based on densities and can be extended to a measure-based definition
for distributions that do not admit a density; see Dharmadhikari and Joag-Dev (1988). For s = −∞,
s-concavity is also known as quasi-concavity and 0-concavity is also known as log-concavity. By definition,
for 0 < s < ∞, f is s-concave if and only if fs is a concave function. As shown in Dharmadhikari and
Joag-Dev (1988), the function s 7→ Ms(a, b; θ) is increasing for fixed (a, b; θ). From this we have that
t-concavity of f implies s-concavity for s < t. Examples of s-concave densities include the skew-normal
distribution (Balkema and Nolde, 2010), Wishart distribution, Dirichlet distribution with certain range
of parameters (Dharmadhikari and Joag-Dev, 1988) and the uniform distribution on a convex set in Rd

(Norkin and Roenko, 1991).

Convex unimodality (Definition 6.3.12) is related to s-concavity since a density f is convex unimodal
if and only if it is −∞-concave (Dharmadhikari and Joag-Dev, 1988). Therefore, f is convex unimodal
if it is s-concave for some s ∈ R. Furthermore, it is straightforward to show that X ′ | {S = K} has an
s-concave density if X has. As shown in Dharmadhikari and Joag-Dev (1988) and Saumard and Wellner
(2014), s-concavity is preserved under marginalization, convolution and weak-limit for certain ranges of
s ∈ R. Therefore, convex unimodality can also be preserved under these operations if the density fX of X
is s-concave.
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6.4 Maximum likelihood allocation and multimodality adjust-
ment

In this section we investigate how the modality of X | {S = K} is incorporated in risk management.
Under unimodality, the mode of X | {S = K} is regarded as the most likely stress scenario covered by the
given total capital K. This mode is defined to be a maximum likelihood allocation in Section 6.4.1, and its
properties are studied in Section 6.4.2. Under multimodality of X | {S = K}, a single vector of allocations
may not be reliable as seen in Section 6.2.2. To overcome this issue, in Section 6.4.4 we consider how to
utilize knowledge on multimodality of X | {S = K} to increase the soundness of risk allocations.

6.4.1 Definition and assumptions

For notational convenience we denote by Ud(K) the set of all d-dimensional random vectors X such
that X and (X ′, S) admit density functions, and x 7→ fX(x)1{x∈Kd(K)} has a unique maximum. For
X ∈ Ud(K), X ′ | {S = K} admits a density through (6.2), and fX′|{S=K} has a unique maximum attained
by the mode of X ′ | {S = K}. By Proposition 6.3.13, elliptical random vectors with continuous and
decreasing density generators form a subclass of Ud(K). Although some exchangeable random vectors
possessing negative dependence, such as Model (b) in Section 6.2.2, may not be included in Ud(K), we
believe that most loss models used in risk management practice are contained in Ud(K). As explained in
Section 6.3.5, uniqueness of the mode of X ′ | {S = K} and its unimodality are different concepts, and
thus the class Ud(K) contains multimodal random vectors in the sense that the density fX′|{S=K} has
multiple local maximizers (we call them the local modes of X ′ | {S = K}). Nevertheless, in this section we
primarily consider the MLA to be applied to the unimodal distributions, and we solely focus on the unique
global maximizer of fX′|{S=K} (not on local ones). As we emphasized in Section 6.2.2, multimodal case
should be treat with care, and this case will be further considered in Section 6.4.4. As we will demonstrate
in Section 6.5.2, multimodality can be detected by searching for the modes of fX′|{S=K}.

In the following we define the unique mode of X ′ | {S = K} as a risk allocation of K.

Definition 6.4.1 (Maximum likelihood allocation). For K > 0 and X ∈ Ud(K), the maximum likelihood
allocation (MLA) on a set K ⊆ Kd(K) is defined by

KM[X;K] = argmax{fX(x) : x ∈ K},

provided the function x 7→ fX(x)1{x∈K} has a unique maximum. When K = Kd(K), we call it the
maximum likelihood allocation.

By (6.2), MLA of K on K can be equivalently formulated as

KM[X;K] = argmax{fX′|{S=K}(x′) : (x′,K − 1>d′x
′) ∈ K}.

By definition, MLA on K ⊆ Kd(K) is an allocation of K in the sense that it satisfies the full allocation
property 1>dKM[X;K] = K. We mainly study the case when K = Kd(K). However, as we will see in
Sections 6.4.2 and 6.5.3, the set K can be taken so that KM[X;K] satisfies some desirable properties for a
risk allocation principle.
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6.4.2 Properties of MLA

We now investigate properties of MLA as a risk allocation principle; for desirable properties of risk
allocation in the case when the capital K is exogenously given as a constant, see Maume-Deschamps
et al. (2016). By construction, KM[X;K] always satisfies the full allocation property (1.3). The following
proposition summarizes other desirable properties of MLA.

Proposition 6.4.2 (Properties of MLA). Suppose K > 0 and X ∈ Ud(K).

1. Translation invariance: KM[X + c; Kd(K + 1>d c)] = KM[X;Kd(K)] + c for c ∈ Rd.

2. Positive homogeneity: KM[cX;Kd(cK)] = cKM[X;Kd(K)] for c > 0.

3. Symmetry: For (i, j) ∈ {1, . . . , d}, i 6= j, let X̃ be a d-dimensional random vector such that X̃j = Xi,
X̃i = Xj and X̃k = Xk, k ∈ {1, . . . , d}\{i, j}. If X

d= X̃, then KM[X;Kd(K)]i = KM[X;Kd(K)]j ,
where KM[X;Kd(K)]l is the lth component of KM[X;Kd(K)] for l = 1, . . . , d.

4. Continuity: SupposeXn, X ∈ Ud(K) have densities fn and f for n = 1, 2, . . . , respectively. If fn is uni-
formly continuous and bounded for n = 1, 2, . . . , and Xn →X weakly, then limn→∞KM[Xn;Kd(K)]
= KM[X;Kd(K)].

Proof. 1. Translation invariance: Let X̃ = X + c, S̃ = S + 1>d c and K̃ = K + 1>d c. Since fX+c(x) =
fX(x− c), we have that

fX̃′|{S̃=K̃}(x̃
′) =

f(X̃,S̃)(x̃′, K̃)
fS̃(K̃)

=
f(X′,S)(x̃′ − c′,K)

fS(K) = fX′|{S=K}(x̃′ − c′).

Therefore, uniqueness of the maximizer of fX′|{S=K} implies that of fX̃′|{S̃=K̃}, and these maximizers
are related via KM[X + c; Kd(K + 1>d c)] = KM[X;Kd(K)] + c.

2. Positive homogeneity: Let X̃ = cX, S̃ = cS and K̃ = cK. Since fcX(x) = fX(x/c), we have that

fX̃′|{S̃=K̃}(x̃
′) =

f(X̃,S̃)(x̃′, K̃)
fS̃(K̃)

=
f(X′,S)(x̃′/c,K)

fS(K) = fX′|{S=K}(x̃′/c).

As seen in the case of translation invariance, this equality implies that X̃ ∈ Ud(K̃) andKM[X;Kd(cK)] =
cKM[X;Kd(K)].

3. Symmetry: Without loss of generality, consider i = 1 and j = 2. Let X̃ = (X2, X1,X−(1,2))
and S̃ = 1>d X̃, where x−(1,2) is a shorthand for (x3, . . . , xd) for x ∈ Rd. Then fX̃(x) = fX(x̃)
for x = (x1, x2,x−(1,2)) ∈ Rd and x̃ = (x2, x1,x−(1,2)) ∈ Rd. Moreover, when X d= X̃, we have
X̃ ∈ Ud(K) and fX = fX̃ . Consequently, we have that

fX′|{S=K}(x′) = fX(x′,K − 1>d′x
′)

fS(K) = fX̃(x′,K − 1>d′x
′)

fS(K) = fX(x̃′,K − 1>d′ x̃
′)

fS(K) = fX′|{S=K}(x̃′),

(6.10)
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where the third equation holds since 1>d′x′ = 1>d′ x̃
′. Now supposeKM[X;Kd(K)]1 6= KM[X;Kd(K)]2.

Then two distinct vectorsKM[X;Kd(K)] and (KM[X;Kd(K)]2, KM[X;Kd(K)]1,KM[X;Kd(K)]−(1,2))
attain the maximum of fX′|{S=K} by (6.10). Since KM[X;Kd(K)] is obtained by the unique maxi-
mizer of fX′|{S=K}(x′), this leads to a contradiction.

4. Continuity: When fn is uniformly continuous and bounded for n = 1, 2, . . . , the sequence (fn) is
asymptotically uniformly equicontinuous and bounded in the sense introduced in Sweeting et al.
(1986). Together with the assumption that Xn → X weakly, Theorem 2 of Sweeting et al. (1986)
implies that fn → f pointwise and uniformly in Rd for the uniformly continuous density f of X.
Define gn(x′) = fn(x′,K − 1>d′x

′) for n = 1, 2, . . . and g(x′) = f(x′,K − 1>d′x
′), x′ ∈ Rd′ . By (6.2)

and since Xn, X ∈ Ud(K), the maximizers of gn and g are uniquely determined. Denote them as
x∗n = argmax

x∈Rd′
gn(x) and x∗ = argmax

x∈Rd′
g(x). By definition of x∗n, we have that

gn(x∗n) ≥ gn(x) for any x ∈ Rd
′
.

Since gn converges uniformly to g, it holds that

g(lim sup
n→∞

x∗n) ≥ g(x) and g(lim inf
n→∞

x∗n) ≥ g(x) for any x ∈ Rd
′
.

If lim supn→∞ x∗n > lim infn→∞ x∗n, then two points attain the maximum of g, which contradicts the
uniqueness of the maximizer of g. As a consequence, lim supn→∞ x∗n = lim infn→∞ x∗n = limn→∞ x

∗
n =

x∗ and thus limn→∞KM[Xn;Kd(K)] = KM[X;Kd(K)].

Translation invariance states that a sure loss c ∈ Rd requires the same amount of risk allocation and
the rest of the total capital is allocated to the random loss X. Positive homogeneity means that, for a
proportion c > 0, 100c% of the loss X requires 100c% of the total capital K and the resulting MLA of cX
is 100c% of the allocation derived based on X and K. Symmetry implies that, if exchanging two marginal
losses does not change the distribution of the joint loss, then equal amounts of capitals are allocated to
them. Finally, continuity ensures that if MLA is calculated based on an estimated model fn of f , then this
estimate of MLA is close to the true MLA as long as fn correctly estimates f . Note that the assumptions
that Xn, n = 1, 2, . . . , and X belong to Ud(K) are esssential so that the MLAs of Xn, n = 1, 2, . . . , and
X are well-defined.

Next we cover properties that need to be considered separately.

1. RORAC compatibility and core compatibility:

RORAC compatibility and core compatibility are important properties of risk allocations since either of
them characterizes Euler allocation; see Tasche (1995) and Denault (2001). However, the definitions
of these properties are not meaningful when K is exogenously given as a constant. Moreover, similar
constraints as in core compatibility can be additionally imposed on Kd(K) so that the resulting MLA
satisfies desirable core properties; see Section 6.5.3 for details.
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2. Riskless asset:

The riskless asset condition requires the sure loss Xj = cj a.s. for cj ∈ R to be covered by the
amount of allocated capital cj . This property needs to be considered separately since in this case
X does not admit a density. Suppose that Xj = cj ∈ R a.s. for j ∈ I ⊆ {1, . . . , d} and that
X−I = (Xj , j ∈ {1, . . . , d}\I) admits a density fX−I . Since

(XI ,X−I) | {S = K} d= (c,X−I) | {1>|−I|X−I = K − 1>|I|c}
d= (c,X−I | {1>|−I|X−I = K − 1>|I|c}),

(6.11)

any realization x of X | {S = K} satisfies xI = c and the likelihood of x is quantified through
the density fX−I |{1>|−I|X−I=K−1>|I|c}

(x−I). According to this discussion, a natural extension of the
definition of MLA to such a random vector X is

KM[X;Kd(K)]I = c, KM[X;Kd(K)]−I = KM[X−I ;K|−I|(K − 1>|I|c)], (6.12)

which is compatible with the riskless asset property.

3. Allocation under comonotonicity:

Suppose X is a comonotone random vector with continuous margins F1, . . . , Fd. By Proposi-
tion 6.3.5 X | {S = K} = (F−1

1 (u∗), . . . , F−1
d (u∗)) a.s., where u∗ ∈ [0, 1] is the unique solution of∑d

j=1 F
−1
j (u) = K. According to the extended definition (6.12) we have that

KM(X;Kd(K)) = (F−1
1 (u∗), . . . , F−1

d (u∗)).

Fallacies in risk allocations

In this section we introduce two properties which intuitively hold but in general do not for the Euler
and maximum likelihood allocations. For a d-dimensional random vector X and a real number K ∈ R, an
allocation principle K maps (X,K) to K(X;K) ∈ Rd such that 1>dK(X;K) = K.

1. Invariance under independence:

For two integers d, d̃ ≥ 2, consider a d-dimensional random vector X with S = 1>dX and a d̃-
dimensional random vector X̃ with S̃ = 1>

d̃
X̃. For K, K̃ > 0, we call a risk allocation invariant

under independence if

K((X, X̃);K + K̃) = (K(X;K),K(X̃; K̃))

provided that X and X̃ are independent of each other. This property means that risk allocation
problems of multiple portfolios independent of each other can be considered separately. Unfortunately,
this property does not hold for MLA since

f(X,X̃)|{S+S̃=K+K̃}((x, x̃)) =
f(X,X̃)(x, x̃)1{1>

d
x+1>

d̃
x̃=K+K̃}

fS+S̃(K + K̃)
=
fX(x)fX̃(x̃)1{1>

d
x+1>

d̃
x̃=K+K̃}

fS+S̃(K + K̃)

∝ fX(x)fX̃(x̃)1{⋃
{(k,k̃)∈R2, k+k̃=K+K̃}

{1>
d
x=k}∩{1d̃x̃=k̃}} (6.13)
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and

fX|{S=K}(x)fX̃|{S̃=K̃}(x̃) ∝ fX(x)1{1>
d
x=K}fX̃(x̃)1{1d̃x̃=K̃} (6.14)

are in general not equal (up to a constant). For example, let d = d′ and X and X̃ be two independent
and identically distributed standard normal distributions. Then the maximum of (6.13) is attained
at (K + K̃)12d/2d whereas that of (6.14) is attained at (K1d/d, K̃1d/d). The two vectors are not
equal unless K = K̃. In this example, the Euler allocations provide the same allocated capitals as
MLA, and thus invariance under independence does not hold for Euler allocation either.

2. Additivity under convolution:

Consider two independent d-dimensional random vectors X and X̃ with S = 1>dX and S̃ = 1>d X̃.
For K, K̃ > 0, we call an allocation K additive under convolution if

K(X + X̃;K + K̃) = K(X;K) +K(X̃; K̃),

which means that risk allocations of the sum of independent portfolios are calculated as the sum
of the allocations of each portfolios. This property neither holds for Euler allocation, nor for MLA.
For example, let X ∼ Nd(µ,Σ) and X̃ ∼ Nd(µ̃, Σ̃) be two independent normal random vectors for
µ, µ̃ ∈ Rd and Σ, Σ̃ ∈Md×d

+ . By Proposition 6.3.1, Equation (6.4), and Proposition 6.3.13, Part 1,
we have that

KM(X;Kd(K)) = µ′ + K − µS
σ2
S

(Σ1d)′ and KM(X̃;Kd(K̃)) = µ̃′ + K̃ − µS̃
σ2
S̃

(Σ̃1d)′.

Similarly, since X + X̃ ∼ Nd(µ+ µ̃,Σ + Σ̃), we have that σ2
S+S̃ = σ2

S + σ2
S̃
and that

KM(X + X̃;Kd(K + K̃)) = µ′ + µ̃′ + K + K̃ − (µS + µS̃)
σ2
S + σ2

S̃

((Σ + Σ̃)1d)′

= µ′ + µ̃′ +
(

σ2
S

σ2
S + σ2

S̃

K − µS
σ2
S

+
σ2
S̃

σ2
S + σ2

S̃

K̃ − µS̃
σ2
S̃

)
((Σ + Σ̃)1d)′,

which is not equal to KM(X;Kd(K)) +KM(X̃;Kd(K̃)) unless, for instance, Σ = Σ̃. Since Euler
and maximum likelihood allocations coincide under ellipticality, the same statement holds for Euler
allocations.

6.4.3 Discussion on MLA

We now discuss how suitable MLA is as a risk allocation principle and compare Euler and maxi-
mum likelihood allocations. Here we define Euler allocation by E[X | {S = K}], which are the VaR
contributions (1.5) with K = VaRp(S) for some confidence level p ∈ (0, 1). As shown in Proposi-
tion 6.4.2, MLA possesses properties naturally required as an allocation such as translation invari-
ance, positive homogeneity and riskless asset. Euler allocation also satisfies these properties since
E[X + c | {1>d (X + c) = K + 1>d c}] = E[X | {1>dX = K}] + c for c ∈ Rd (translation invariance),
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E[cX | {1>d (cX) = cK}] = cE[X | {1>dX = K}] for c > 0 (positive homogeneity) and the riskless asset
property holds by taking expectation on the both sides of the first equality in (6.11). Note that by
Proposition 6.3.1 and Proposition 6.3.13 Part 1, Euler and maximum likelihood allocations coincide when
X is elliptically distributed. Therefore, the economic justifications of Euler allocation, such as RORAC
compatibility and core-compatibility, also holds for MLA when X is elliptical. Moreover, through the
process of estimating MLA, one can detect multimodality of X ′ | {S = K} and discover hidden risky
scenarios based on which one can evaluate the soundness of risk allocations. On the other hand, the main
disadvantage of MLA compared with Euler allocation is that estimating modes becomes more difficult than
estimating a mean as the dimension of the portfolio becomes larger. Furthermore, MLA is not well-defined
for distributions whose argmax{fX(x) : x ∈ Kd(K)} is not a single point. Summarizing these aspects, we
believe that MLA and the procedure for searching for (local) modes of X ′ | {S = K} are best suited for
discovering hidden multiple scenarios likely to occur in the stressed situation {S = K}, for assessing the
soundness of risk allocations in stress testing applications, and eventually for constructing more sound risk
allocations based on the multiple scenarios as we will consider in Section 6.4.4.

6.4.4 Multimodality adjustment of risk allocations

Although MLA is investigated in Sections 6.4.1 and 6.4.2, MLA itself does not overcome the issue
of multimodality. In this section, we discuss how to utilize local modes of X | {S = K} discovered in
the process of estimating MLAs, and introduce the so-called multimodality adjustment to increase the
soundness of capital allocations under multimodality.

To this end, suppose that M ∈ N number of scenarios K1, . . . ,KM ∈ Kd(K) are found with correspond-
ing probability weights w1, . . . , wM ∈ [0, 1] such that

∑M
m=1 wm = 1. Then multimodality adjustment is

defined as follows.

Definition 6.4.3 (Multimodality adjustment of risk allocations). Let M ∈ N be the number of scenarios,
X = {K1, . . . ,KM} be the set of scenarios where Km 6= Km′ for any m, m′ ∈ {1, . . . ,M} such that
m 6= m′, and w = (w1, . . . , wM ) be the associated probability weights such that

∑M
m=1 wm = 1. Then the

multimodality-adjusted allocated capital is defined by

Kw,X ,Λ = K̄w,X +
M∑
m=1

wmλm ◦ (Km − K̄w,X )+, (6.15)

where K̄w,X =
∑M
m=1 wmKm is the baseline allocation, Λ = (λ1, . . . ,λM ) ∈ Rd×M+ is the matrix of multi-

modality loading parameters, x ◦ y = (x1y1, . . . , xdyd) for x, y ∈ Rd and x+ = (max(x1, 0), . . . ,max(xd, 0))
for x ∈ Rd. We call the second term

∑M
m=1 wmλm ◦ (Km−K̄w,X )+ of (6.15) the multimodality adjustment.

The multimodality-adjusted allocated capital (6.15) consists of the baseline allocation and the additional
loading to cover instability due to the existence of multiple scenarios. The probability weight wm typically
represents the likelihood of the scenarioKm to occur, and thus a reasonable choice is wm ∝ fX(Km)/fS(K).
Experts’ assessments on the impact of the loss Km to the portfolio X can also be incorporated. The
baseline allocation is understood as an allocated capital before adjustment of multimodality. Therefore,
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K̄w,X in (6.15) can be replaced by Euler allocation if, for example, its economic justification, such as
RORAC compatibility and core-compatibility, is regarded as important. To explain the multimodality
adjustment, suppose that the scenario {X = Km} occurs with probability wm. Under this scenario, the
portfolio incurs the loss (or profit) Km− K̄w,X . When λm = 1d, the actual amount of loss (Km− K̄w,X )+

contributes to the average
∑M
m=1 wmλm ◦ (Km − K̄w,X )+. However, this choice of λm is too conservative

and smaller values of λm are typically more reasonable since both Km and K̄w,X sum up to K and
thus losses of some units imply profits of others. Therefore, losses of some units can be compensated by
the profits of other units, and the multimodality loading parameter λm can be determined by such risk
mitigation or a corresponding insurance contract.

One of the advantages of the multimodality-adjusted allocated capital over MLA is that Kw,X ,Λ is
well-defined even if the global mode of X | {S = K} is not unique whereas MLA is not well-defined in this
case. Next, we will verify that Kw,X ,Λ measures the risk of multimodality from various viewpoints. First, if
M = 1, then Kw,X ,Λ = K̄w,X and thus the multimodality adjustment is zero. Second, suppose that M ≥ 2
and wm > 0 for m = 1, . . . ,M . Then Kw,X ,Λ = K̄w,X if and only if λj,m = 0 for all j = 1, . . . , d and
m = 1, . . . ,M such that Km,j > K̄w,X ,j . Therefore, under multimodality, the multimodality adjustment is
zero if and only if losses of some units of the portfolio are completely compensated by profits of others.
Finally, Kw,X ,Λ is increasing with respect to the variability of the set of scenarios, which can be understood
as a degree of multimodality. To see this, suppose that λ1 = · · · = λM = λ for some λ ∈ Rd+, and denote
by Y the discrete random vector taking points K1, . . . ,KM with probabilities w1, . . . , wM . Then the
multimodality-adjusted allocated capital (6.15) is written by

Kw,X ,Λ = E[Y ] + λ ◦ E[(Y − E[Y ])+]. (6.16)

Variability of the set of scenarios can then be compared by the so-called convex order of Y1, . . . , Yd. For
two R-valued random variables Y and Y ′, Y ′ is said to be larger than Y in the convex order, denoted
as Y ≤cx Y

′, if E[φ(Y )] ≤ E[φ(Y ′)] for all convex functions φ : R → R provided the expectations exist;
see Shaked and Shanthikumar (2007) for a comprehensive reference. Roughly speaking, convex order
compares the variability of random variables and Y ′ shows more variability than Y if Y ≤cx Y

′; for instance,
Y ≤cx Y

′ implies E[Y ] = E[Y ′], Var(Y ) ≤ Var(Y ′), ess.inf(Y ′) ≤ ess.inf(Y ), ess.sup(Y ) ≤ ess.sup(Y ′)
and E[(Y − a)+] ≤ E[(Y ′ − a)+] for all a ∈ R. Therefore, for two sets of scenarios X and X ′ with
associated probabilities w and w′, if one shows more variation (multimodal) than the other in the
sense that the corresponding discrete random variables satisfy Yj ≤cx Y

′
j for some j ∈ {1, . . . , d}, then

(Kw,X ,Λ)j ≤ (Kw′,X ′,Λ)j holds as desired.

Remark 6.4.4 (Multimodality adjustment for general sets of scenarios). Representation (6.16) bears
structural resemblance to Gini shortfall allocations introduced in Furman et al. (2017), and indicates a
possible extension of the multimodality adjustment to the case when the set of scenarios is not a discrete
set. For instance, by taking X = {x ∈ Rd : 1>d x ≥ VaRp(S)} and w(x) = fX|{S≥VaRp(S)}(x), (6.16) can
be interpreted as multimodality-adjusted Euler allocations of Expected shortfall since (6.16) yields

Kw,X ,Λ = ESp(Xj ;S) + λ ◦ E[(X − ESp(Xj ;S)+ | {S ≥ VaRp(S)}],

where ESp(Xj ;S) = E[X | {S ≥ VaRp(S)}] is the Euler allocation of K = ESp(S) as derived in (1.7).
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Next we study properties of Kw,X ,Λ considered for MLA in Section 6.4.2. To clarify the relation-
ship between Kw,X ,Λ, the total capital K and the loss distribution of X, define Kw,X ,Λ[X;Kd(K)]
and K̄w,X [X;Kd(K)] to be the multimodality-adjusted allocated capitals (6.15) and their first term∑M
m=1 wmKm, respectively, with X being the set of local modes K1, . . . ,KM of x 7→ fX(x)1{x∈Kd(K)}

(assumed to be a discrete set) and with wm ∝ fX(Km). To this end, we adopt the following definition of
local modes.

Definition 6.4.5 (Local modes). For an R+-valued function f on Rd, x ∈ Rd is called a local mode of f if
there exists ε > 0 such that

f(x) ≥ f(y) for all y ∈ Nε(x), (6.17)

where Nε(x) = {z ∈ Rd : ||z − x|| < ε}. If (6.17) holds for any ε > 0, then x is called a global mode of f .

Properties of Kw,X ,Λ[X;Kd(K)] are then summarized as follows.

1. Translation invariance: We show that Kw,X ,Λ is translation invariant in the sense that

Kw,X ,Λ[X + c;Kd(K + 1>d c)] = Kw,X ,Λ[X;Kd(K)] + c for c ∈ Rd.

To show this, notice that local modes of x 7→ fX+c(x)1{x∈Kd(K+1>
d
c)} are given by Km + c,

m = 1, . . . ,M , if Km, m = 1, . . . ,M , are the local modes of x 7→ fX(x)1{x∈Kd(K)}. Since wm =
fX(Km) = fX+c(Km + c), the probability weight assigned to the mth scenario does not change from
(X,Kd(K)) to (X + c,Kd(K+1>d c)) for all m = 1, . . . ,M . Therefore, K̄w,X [X + c;Kd(K+1>d c)] =
K̄w,X [X;Kd(K)] + c and thus

Kw,X ,Λ[X + c;Kd(K + 1>d c)] = K̄w,X [X + c;Kd(K + 1>d c)]

+
M∑
m=1

wmλm ◦ (Km + c− K̄w,X [X + c;Kd(K + 1>d c)])+

= K̄w,X [X;Kd(K)] + c+
M∑
m=1

wmλm ◦ (Km − K̄w,X [X;Kd(K)])+

= Kw,X ,Λ[X;Kd(K)] + c,

which shows translation invariance.

2. Positive homogeneity: Multimodality-adjusted allocated capitals are positive homogeneous in the
sense that

Kw,X ,Λ[cX;Kd(cK)] = cKw,X ,Λ[X;Kd(K)] for c > 0.

This can be checked similarly as translation invariance. The local modes of x 7→ fcX(x)1{x∈Kd(cK)} are
given by cKm, m = 1, . . . ,M , if Km, m = 1, . . . ,M , are the local modes of x 7→ fX(x)1{x∈Kd(K)},
and the probability weight assigned to the mth scenario does not change from (X,Kd(K)) to
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(cX,Kd(cK)) since wm = fX(Km) = fcX(cKm) for allm = 1, . . . ,M . Therefore, K̄w,X [cX;Kd(cK)] =
cK̄w,X [X;Kd(K)] and thus

Kw,X ,Λ[cX;Kd(cK)] = K̄w,X [cX;Kd(cK)]

+
M∑
m=1

wmλm ◦ (cKm − K̄w,X [cX;Kd(cK)])+

= cK̄w,X [X;Kd(K)] + c

M∑
m=1

wmλm ◦ (Km − K̄w,X [X;Kd(K)])+

= cKw,X ,Λ[X;Kd(K)],

which shows positive homogeneity.

3. Riskless asset: Multimodality-adjusted allocated capitals satisfy the riskless asset property in the
following sense. Suppose that Xj = cj ∈ R a.s. for j ∈ I ⊆ {1, . . . , d} and that X−I = (Xj , j ∈
{1, . . . , d}\I) admits a density fX−I . As we discussed in Section 6.4.2, any realization x of X | {S =
K} satisfies xI = c where c = (cj ; j ∈ I), and the likelihood of x is quantified through the density
fX−I |{1>|−I|X−I=K−1>|I|c}

(x−I). Therefore, reasonable choices of the scenarios K1, . . . ,KM ∈ Kd(K)
are such that (Km)I = c and (Km)−I are local modes of X−I | {1>|−I|X−I = K − 1>|I|c}. In this
case, we have that (K̄w,X )I = c and that(

M∑
m=1

wmλm ◦ (Km − K̄w,X )+

)
I

=
M∑
m=1

wm(λm)I ◦ (c− c)+ = 0|I|.

Therefore, it holds that Kw,X ,Λ[X;Kd(K)]I = c if XI = c a.s.

4. Symmetry: For a reasonable choice of Λ, the multimodality-adjusted allocated capitals satisfy the
symmetry property, that is, Kw,X ,Λ[X;Kd(K)]i = Kw,X ,Λ[X;Kd(K)]j for i, j ∈ {1, . . . , d}, i 6= j,
such that X d= X̃ where X̃ is a d-dimensional random vector satisfying X̃j = Xi, X̃i = Xj and
X̃k = Xk for all k ∈ {1, . . . , d}\{i, j}. For any x ∈ Rd, denote by x̃ a d-dimensional vector
such that x̃j = xi, x̃i = xj and x̃k = xk for all k ∈ {1, . . . , d}\{i, j}. To show the symmetry,
suppose that K ∈ Kd(K) is a local mode of x 7→ fX(x)1{x∈Kd(K)}. Then, under X d= X̃, x̃
is also a local mode of x 7→ fX(x)1{x∈Kd(K)} since fX(y) = fX(ỹ) for any y ∈ Rd. Hence x̃
satisfies (6.17) for some ε > 0. Therefore, any element Km = (Km,1, . . . ,Km,d) in X satisfies either
(1) Km,i = Km,j or (2) there exists a unique elementKm′ ∈ X such that Km,i 6= Km,j , Km′,i 6= Km′,j ,
Km′,i = Km,j , Km,i = Km′,j and Km,k = Km′,k for all k ∈ {1, . . . , d}\{i, j}. For such a pair (m,m′),
it holds that wm = wm′ since wm ∝ fX(Km) and wm′ ∝ fX(Km′) = fX′(Km) = fX(Km)
as X d= X̃. Therefore, if λm = λm′ holds for all pairs of (m,m′) in Case (2), it holds that
Kw,X ,Λ[X;Kd(K)]i = Kw,X ,Λ[X;Kd(K)]j .

The continuity property limn→∞Kw,X ,Λ[Xn;Kd(K)] = Kw,X ,Λ[X;Kd(K)] for a given Xn and X
such that Xn converges to X weakly may not be straightforward to verify since a limit of multimodal
distributions can be unimodal, and more generally, the number of scenarios may change in n.
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We end this section with a remark on the case when multiple measures or models are considered as
different scenarios and how to incorporate these scenarios into multimodality-adjusted allocated capitals.

Remark 6.4.6 (Multimodality adjustment for different measures). A single model of a risk may not be
sufficient to manage the risk due to changes of an economic situation or due to model uncertainty. For a
further risk evaluation, it may be useful to consider multiple measures Q1, . . . ,QS where Qs is a probability
measure on (Ω,A) and FQs

X is the distribution function of X under Qs for s = 1, . . . , S. These multiple
measures can be incorporated into the scenario analysis by, for example, considering the (componentwise)
maximum of the multimodality-adjusted allocated capitals KQs

w,X ,Λ(X;Kd(K)) calculated based on FQs
X for

s = 1, . . . , S, or considering their mixture with respect to probabilities q1, . . . , qS where qs is associated to
the scenario Qs determined, for example, proportionally to the sample size available for the distribution
FQs
X .

6.5 Numerical experiments

In this section we conduct an empirical and a simulation study to compute Euler and maximum
likelihood allocations, and compare them for various models. Simulation of the conditional distribution
given a constant sum is in general challenging. Throughout this section, we adopt the (crude) Monte
Carlo (MC) method to simulate X ′ | {S = K} according to which unconditional samples from X are first
generated and those falling in the region Kd(K, δ) = {x ∈ Rd : K − δ < 1>d x < K + δ} for a sufficiently
small δ > 0 are then extracted. The extracted samples are standardized via KXj/

∑d
j=1Xj so that

their componentwise sum equals K. Finally the standardized samples are used as pseudo-samples from
X ′ | {S = K}. See Section 4.2 for the potential bias caused by this method, and Chapter 4 and Chapter 5
for more sophisticated simulation approaches of X ′ | {S = K} based on MCMC methods.

6.5.1 Empirical study

In this section we estimate the proposed MLA nonparametrically for real financial data. We consider
daily log-returns of the stock indices FTSE Xt,1, S&P 500 Xt,2 and DJI Xt,3 from January 2, 1990 to
March 25, 2004, which contains 3713 days and thus T = 3712 log-returns. We consider two portfolios
(a) Xpos

t = (Xt,1, Xt,2, Xt,3) and (b) Xneg
t = (Xt,1,−Xt,2, Xt,3). For each portfolio, we aim at allocating

the capital K = 1 based on the conditional loss distribution at time T + 1 given the history up to and
including time T . Taking into account the stylized facts of stock returns listed in Chapter 3 of McNeil
et al. (2015) (such as unimodality, heavy-tailedness and volatility clusters), we adopted a copula-GARCH
model with marginal skew-t innovations (ST-GARCH; see, for example, Jondeau and Rockinger (2006) and
Huang et al. (2009)). We utilize a GARCH(1, 1) model with skew-t innovations with degrees of freedom
νj > 0 and skewness parameter γj > 0 for the jth marginal time series. That is, within a fixed time period
{1, . . . , T + 1} the jth return series (X1,j , . . . , XT+1,j) follows

Xt,j = µj + σt,jZt,j , σ2
t,j = ωj + αjX

2
t−1,j + βjσ

2
t−1,j , Zt,j

iid∼ ST(νj , γj), j = 1, . . . , d,
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Table 6.1: Maximum likelihood estimates and estimated standard errors of the ST-GARCH(1,1) model.
µj ωj αj βj γj νj

X
pos/neg
t,1 0.053 0.006 0.052 0.943 0.969 6.414

SE 0.013 0.002 0.008 0.008 0.021 0.663

Xpos
t,2 0.050 0.003 0.049 0.950 0.983 6.265

SE 0.013 0.001 0.007 0.007 0.021 0.659

Xneg
t,2 -0.050 0.003 0.049 0.950 1.018 6.265

SE 0.013 0.001 0.007 0.007 0.022 0.659

X
pos/neg
t,3 0.031 0.011 0.071 0.920 0.966 10.000

SE 0.014 0.003 0.009 0.010 0.023 1.309

where ωj > 0, αj , βj ≥ 0, αj + βj < 1, and Zt,j follows a skew-t distribution ST(νj , γj) with density given
by

fj(xj ; νj , γj) = 2
γj + 1

γj

{
t(xj , νj)1[xj≥0] + t(γjxj , νj)1[xj<0]

}
, (6.18)

where t(x, ν) is the density function of a Student t distribution with degrees of freedom ν > 0 and a
skewness parameter γ > 0 with γ = 1 leading to the standard symmetric case. The copula among the
stationary process Zt = (Zt,1, . . . , Zt,d), denoted as C, is estimated nonparametrically. Under this model,
the joint distribution of the returns XT+1|FT = (XT+1,1|FT , . . . , XT+1,d|FT ) has marginal distributions
ST(µj , σ2

t+1,j , νj , γj), j = 1, . . . , d, and a copula C, where ST(µj , σ2
t+1,j , νj , γj) is a skew-t distribution with

density fj(xj−µjσt+1,j
; νj , γj) with fj(·; νj , γj) defined in (6.18). Parameters of the ST-GARCH(1,1) models are

estimated with the maximum likelihood method; the results are summarized in Table 6.1.

For each case of (a) and (b), we take K = 1 and estimate the Euler allocation and MLA by a resampling
method. After extracting the marginal standardized residuals, we build their pseudo-observations as a
pseudo-sample from C. We then generate samples of size N = 3712 by resampling with replacement.
The samples from C are then marginally transformed by skew-t distributions with parameters speci-
fied as in Table 6.1. From these samples of XT+1|FT , we extract the subsamples falling in the region
Kd(K, δ) =

{
x ∈ R3 : K − δ <

∑3
j=1 xj < K + δ

}
where δ = 0.3. These samples are then standardized

via KXt,j/
∑d
j=1Xt,j to add up to K. Scatter plots of the first two components of these data are shown in

Figure 6.2.

The 3712 data points lead to 354 and 558 samples fromXpos
T+1|FT andXneg

T+1|FT on Kd(K, δ), respectively.
Based on these conditional samples, we estimate the Euler allocation E[X | {S = K}] and the MLA, that
is, the mode of fX|{S=K} provided it is unique. The (possibly multiple) modes were estimated by the
function kms (kernel mean shift clustering, proposed by Fukunaga and Hostetler, 1975) of the R package ks;
see Carreira-Perpinán (2015) and Chen et al. (2016) for details and for other methods of estimating modes.
For the computational times required to calculate the allocations, computing MLAs took 0.353 seconds in
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Figure 6.2: Scatter plots (black dots) of the first two components of (a) Xpos
t = (Xt,1, Xt,2, Xt,3) and (b)

Xneg
t = (Xt,1,−Xt,2, Xt,3) for daily log-returns of the stock indices FTSE Xt,1, S&P 500 Xt,2 and DJI

Xt,3 falling in the region Kd(K, δ) =
{
x ∈ R3 : K − δ <

∑3
j=1 xj < K + δ

}
where δ = 0.3 and K = 1. The

dotted lines represent the line x+ y = K. The red dot represents the Euler allocation E[X ′ | {S = K}]
and the blue dot represents the maximum likelihood allocation, the mode of fX′|{S=K}.

Case (a) and 0.431 seconds in Case (b) whereas, in both cases, the Euler allocations were computed almost
instantly. As was expected from the ellipticality of the scatter plots in Figure 6.2, the unique mode was
discovered in each case. The first two components of the two allocations are pointed out in Figure 6.2.

Next, we estimate the standard errors of the Euler and maximum likelihood allocations using the
bootstrap method. We compute the Euler allocation, MLA and their standard errors based on the B = 100
number of samples of size N = 3712 resampled from the original data with replacement. The results are
summarized in Table 6.2.

In Figure 6.2 we can observe that compared with Case (a) the distribution in Case (b) is more spread
out and losses take larger absolute values. If the samples are regarded as stressed scenarios, the scenario set
in Case (b) contains a wider variety of scenarios than in Case (a) since both positive and negative losses
can appear in Case (b) whereas most realizations are positive in Case (a). Nevertheless, as is observed
from Table 6.2, in both cases the Euler allocation and the MLA are close to each other also in terms of
standard errors. This observation does not conflict with the stylized fact that the joint log-returns nearly
follow an elliptical distribution, and thus the mean (Euler allocation) of X | {S = K} coincides with its
mode; see Proposition 6.3.1 and Proposition 6.3.13 Part 1.
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Table 6.2: Bootstrap estimates and estimated standard errors of the Euler allocation and MLA of
Xpos = (X1, X2, X3) and Xneg = (X1,−X2, X3) for daily log-returns of the stock indices FTSE X1, S&P
500 X2 and DJI X3. The subsample size is N = 3712 and the bootstrap sample size is B = 100.

Estimator Standard error

X1 X2 X3 X1 X2 X3

E[Xpos | {S = K}] 0.378 0.338 0.285 0.019 0.022 0.038
KM[Xpos;Kd(K)] 0.367 0.365 0.268 0.019 0.024 0.041

E[Xneg | {S = K}] 0.345 −0.248 0.903 0.037 0.039 0.015
KM[Xneg;Kd(K)] 0.371 −0.280 0.909 0.040 0.039 0.013

6.5.2 Simulation study

A potential drawback of the nonparametric estimation of Euler and maximum likelihood allocations is
that the sample size is often not sufficient for statistical estimation due to the sum constraint. To avoid this
issue, one can first fit a parametric model based on the unconditional samples, and then take subsamples of
simulated samples from the fitted parametric model to estimate Euler and maximum likelihood allocations.
In this section, we consider four models, referred to as (M1), (M2), (M3) and (M4), respectively, with
d = 3 and having the same marginal distributions X1 ∼ Par(2.5, 5), X2 ∼ Par(2.75, 5) and X3 ∼ Par(3, 5)
(where Par(θ, λ) denotes the Pareto distribution with shape parameter θ > 0 and scale parameter λ > 0)
but different t copulas with degrees of freedom ν = 5 and dispersion matrices

P1 =

 1 0.8 0.5
0.8 1 0.8
0.5 0.8 1

 , P2 =

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

 ,

P3 =

 1 0 0.5
0 1 0

0.5 0 1

 , P4 =

 1 −0.5 0.5
−0.5 1 −0.5
0.5 −0.5 1

 , (6.19)

respectively. For these parametric models, we first simulate N = 106 samples from the unconditional
distribution and then extract subsamples falling in the region Kd(K, δ) with K = 40 and δ = 1. These
samples from X ′ | {S = K} are shown in Figure 6.3. The red point in the figure represents the Euler
allocation and the blue points are the (local) modes, which are estimated similarly as in Section 6.5.1.

The computational times required for calculating MLAs were (in seconds) (M1) 18.964, (M2) 11.726,
(M3) 15.946, and (M4) 22.762. On the other hand, the Euler allocations, which are simply sample means,
were computed almost instantly for all the cases. Compared with the results in Section 6.5.1, we observe
that the computational time required to calculate MLA increases more rapidly than the Euler allocation
does as the sample size increases.

In Figure 6.3 we can observe that the conditional distribution is more concentrated under positive
dependence (Model (M1) and (M2)) and it is more dispersed under negative dependence (Model (M4)).
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Figure 6.3: Scatter plots (black dots) of the first two components of the four models (M1), (M2), (M3)
and (M4) falling in the region Kd(K, δ) with K = 40 and δ = 1. All the four models have the same
marginal distributions X1 ∼ Par(2.5, 5), X2 ∼ Par(2.75, 5) and X3 ∼ Par(3, 5) but different t copulas with
parameters provided in (6.19). The red lines represent x + y = K. The red dot represents the Euler
allocation E[X ′ | {S = K}] and the blue dots represent the (local) modes of fX′|{S=K}.

157



Table 6.3: Estimates and estimated standard errors of the Euler allocation and MLA of the four models
(M1), (M2), (M3) and (M4) all having the same marginal distributions X1 ∼ Par(2.5, 5), X2 ∼ Par(2.75, 5)
and X3 ∼ Par(3, 5) but different t copulas with parameters provided in (6.19). Estimates and estimated
standard errors are computed based on 100 replications, each of which utilizing 500 conditional samples
falling in the region Kd(K, δ) with K = 40 and δ = 1.

Estimator Standard error

X1 X2 X3 X1 X2 X3

(M1) Pareto + t copula: strong positive dependence

E[X | {S = K}] 15.549 13.889 10.562 0.336 0.157 0.288
KM[X;Kd(K)] 15.849 14.434 9.718 0.482 0.213 0.356

(M2) Pareto + t copula: positive dependence

E[X | {S = K}] 16.228 13.042 10.562 0.399 0.355 0.288
KM[X;Kd(K)] 17.689 12.481 9.830 0.759 0.663 0.475

(M3) Pareto + t copula: independence

E[X | {S = K}] 17.479 11.368 10.562 0.517 0.530 0.288
KM,1[X;Kd(K)] 25.678 3.107 11.215 1.185 0.278 1.205
KM,2[X;Kd(K)] 2.639 35.275 2.086 0.973 1.306 0.424

(M4) Pareto + t copula: negative dependence

E[X | {S = K}] 19.062 9.272 10.562 0.556 0.614 0.288
KM,1[X;Kd(K)] 28.353 0.684 10.962 2.125 1.646 2.154
KM,2[X;Kd(K)] 0.710 38.385 0.905 1.719 3.537 2.705

Regarding the samples as stress scenarios, the sets in Model (M3) and (M4) are more worrisome than
those of Model (M1) and (M2) since the former contain two distinct scenarios, one around the first axis
and one around the upper-left corner of the plot region, both of which are likely to occur in the stressed
situation {S = K}. Unimodality of the conditional distribution in Model (M1) and (M2) leads to closer
Euler allocation and MLA. For Model (M1) and (M2), the choice of Euler allocation and MLA does not
significantly change the resulting allocation. On the other hand, for Model (M3) and (M4), the conditional
distributions are multimodal, and thus more careful decision making is required.

To investigate the standard errors of the estimators, we compute the estimates of Euler allocation and
(local) modes of fX′|{S=K} 100 times for each model. For each repetition, we simulate samples from X so
that there are 500 samples in the region Kd(K, δ). The estimates and standard errors are computed based
on the 100 replications and the results are summarized in Table 6.3. We can again see that for Models
(M1) and (M2) the two allocations are close. On the other hand, for Models (M3) and (M4) where the
conditional distributions are multimodal, the standard errors of the (local) modes are higher than those of
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the Euler allocation.

In the end, we compute the multimodality-adjusted allocated capitals (6.15) in (M3) and (M4). In
each case, the parameters are specified as M = 2, X = {K1,K2} and w = (w1, w2) with wm ∝ fX(Km),
where K1 = KM,1[X;Kd(K)] = (26.726, 2.114, 11.158) and K2 = KM,2[X;Kd(K)] = (1.505, 37.203, 1.291)
in (M3), and K1 = (28.589, 0.432, 10.978) and K2 = (0.326, 39.314, 0.358) in (M4). In both (M3) and (M4),
the first and third units incur losses when {X = K1} occurs, and the second unit incurs a large loss when
{X = K2} happens. The probability weights of the scenarios are given by w = (0.509, 0.490) in (M3) and
w = (0.272, 0.727) in (M4). The two scenarios K1 and K2 are almost likely to occur in (M3), and the
second scenario K2 is more likely to occur in (M4). Based on w and X , the baseline allocations Kw,X

are given by (14.357, 19.323, 6.319) in (M3) and (8.038, 28.705, 3.256) in (M4). As seen in Table 6.3, these
allocations are not quite close to the Euler allocations since Kw,X is calculated based only on the two
points K1 and K2 in Kd(K).

We consider two cases when Kw,X or Euler allocations are used as baseline allocations. If Kw,X are the
baseline allocations, the average loss w1(K1−Kw,X )+ +w2(K2−Kw,X )+ in the multimodality adjustment
is given by (6.303, 11.204, 0.000) in (M3) and (5.607, 22.742, 0.000) in (M4). If Euler allocation is used as a
baseline allocation, the average loss is given by (4.873, 9.828, 0.000) in (M3) and (2.618, 14.775, 0.428) in
(M4). In all cases, the average loss incurred in the second unit is larger than those in the first and third units
since the second unit incurs a large loss when the second scenario {X = K2} occurs. Moreover, in (M4),
the probability that this scenario occurs is higher than that of the first scenario {X = K1}. Therefore, the
scenario analysis of searching for the modes of X | {S = K} reveals that higher multimodality adjustment
should be applied to X2 and then to X1 to increase the soundness of risk allocations under multimodality.

6.5.3 Simulation of the conditional distribution with MCMC

In Sections 6.2.2, 6.5.1 and 6.5.2, the constraint {S = K} was replaced by {K − δ < S < K + δ} for
a small δ > 0 so that P(K − δ < S < K + δ) > 0. However, this modification distorts the conditional
distribution X | {S = K} and the resulting estimates of risk allocations suffer from inevitable biases. To
overcome this issue, MCMC methods were introduced in Chapters 4 and 5. In this section, we utilize these
MCMC methods and compute the Euler allocation and MLA on the restricted set of allocations called the
(atomic) core defined by

KC
d (K; r) = {x ∈ Rd : 1>d x = K, λ>x ≤ r(λ), λ ∈ {0, 1}d} ⊆ Kd(K),

where r : {0, 1}d → R is called a participation profile function typically determined as r(λ) = %(λ>X) for
a d-dimensional loss random vector X. We call an element of KC

d (K; r) a core allocation. As explained in
Denault (2001), core allocations possess an important property as risk allocations, that is, any subportfolio
of X = (X1, . . . , Xd) of the form (λ1X1, . . . , λdXd) gains benefit of capital reduction from managing risk as
a portfolio X. In fact, for a participation profile λ = (λ1, . . . , λd) where λj ∈ {0, 1} represents the presence
(λj = 1) or the absence (λj = 0) of the jth entity, the total amount of capital required to cover the loss
λ>X is λ>x for an allocation x ∈ Kd(K). The value r(λ) = %(λ>X) is interpreted as a stand-alone capital
that would have been required if the total loss λ>X had been managed individually. Therefore, under the
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core allocation x ∈ KC
d (K; r), the subportfolio (λ1X1, . . . , λdXd) gains benefit of capital reduction by λ>x

in comparison to r(λ).

Given K, r and the joint loss X, we are interested in calculating the core-compatible versions of Euler
allocation E[X | {X ∈ KC

d (K; r)}], MLAKM[X;KC
d (K; r)] and local modes of fX|{X∈KC

d
(K;r)} if they exist.

However, generating a large number of samples fromX ′ | {X ∈ KC
d (K; r)} is computationally involved since

an unconditional sampleX is first filtered by the conditionX ∈ {x ∈ Rd : K−δ < 1>d x < K+δ} = Kd(K, δ)
for a small δ > 0, and then filtered again by the core condition λ>X ≤ r(λ) for all possible λ ∈ {0, 1}d.
To overcome the issue, we utilize the Hamiltonian Monte Carlo (HMC) method with reflection to directly
simulate fX′|{X∈KC

d
(K;r)}. Note that the support of X ′ | {X ∈ KC

d (K; r)} is a projection of KC
d (K; r) onto

Rd′ , which is an intersection of hyperplanes {x′ ∈ Rd′ : λ>(x′,K − 1>d′x
′) ≤ r(λ)} for λ ∈ {0, 1}d. In the

HMC method, a candidate is proposed according to the so-called Hamiltonian dynamics, and the chain
reflects at the boundaries {x′ ∈ Rd′ : λ>(x′,K − 1>d′x

′) = r(λ)}, λ ∈ {0, 1}d so that it does not violate the
support constraint; see Section 5.3.2.

For a numerical experiment, let X ∼ tν(0d, P ) with d = 3, ν = 5 and P = (ρij) being a correlation
matrix with ρ12 = ρ23 = 1/3 and ρ13 = 2/3. For p = 0.99, we set r(λ) = VaRp(λ>X) for λ ∈ {0, 1}3

and K = r(13). For δ = 0.001, we first generate NMC = 106 samples from X and estimate K and
(r(λ),λ ∈ {0, 1}3) from these samples. Then we extract samples of X falling in the region

KC
d (K, δ; r) = Kd(K, δ) ∩ {x ∈ Rd : λ>x ≤ r(λ), λ ∈ {0, 1}3\{13}}.

Figure 6.4 (a) shows the first two components of the MC samples from X and the conditional samples
falling in KC

d (K, δ; r). Among the NMC = 106 samples, 2000 samples were contained in Kd(K, δ) and only
189 samples fell in KC

d (K, δ; r). Therefore, this crude simulation method is not efficient since 99.98% of the
unconditional samples are discarded.

Instead, we conduct an MCMC simulation to generate NMCMC = 104 samples directly from X | {X ∈
KC
d (K; r)}. Hyperparameters of the HMC method are estimated based on the 189 MC samples; see

Section 5.3.2 in Chapter 5. The resulting stepsize and integration time are ε = 0.105 and T = 24,
respectively. It took 49.534 seconds to simulate a Markov chain with length NMCMC = 104. The
resulting acceptance rate was 0.866 and serial correlations were below 0.03 at lag 1. Based on these
inspections we conclude that the MCMC method performed correctly. The first 3000 MCMC samples of
X ′ | {X ∈ KC

d (K; r)} are plotted in Figure 6.4 (b).

By Proposition 6.3.1, X ′ | {X ∈ Kd(K)} still follows a multivariate Student t distribution, and thus the
mode of this conditional distribution is uniquely determined by KM[X;Kd(K)] = E[X | {X ∈ Kd(K)}]
by Part 1 of Proposition 6.3.13. Moreover, when this point is contained in the core KC

d (K; r), we have
KM[X;Kd(K)] = KM[X;KC

d (K; r)] since the distributions ofX | {X ∈ Kd(K)} andX | {X ∈ KC
d (K; r)}

share the same mode. We check these observations numerically by calculating the corresponding estimates.

Table 6.4 summarizes the MC and MCMC estimates and standard errors of the Euler and maximum
likelihood allocations on Kd(K) and those on the atomic core KC

d (K; r). MC estimates are calculated based
on the samples in Figure 6.4 (a) and MCMC estimates are computed based on the samples in Figure 6.4 (b).
As expected by theory, the MC estimates of KM[X;Kd(K)] and E[X | {X ∈ Kd(K)}] were close to each
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Figure 6.4: Scatter plots of (a) MC samples from X ′ | {X ∈ Kd(K, δ)} (black) and X ′ | {X ∈ KC
d (K, δ; r)}

(blue), and of (b) MCMC samples fromX ′ | {X ∈ KC
d (K; r)} (black) whereX ∼ tν(0d, P ) with d = 3, ν = 5

and P = (ρi,j) being a correlation matrix with ρ1,2 = ρ2,3 = 1/3 and ρ1,3 = 2/3, r(λ) = VaRp(λ>X) with
p = 0.99 for λ ∈ {0, 1}3, K = r(13) and δ = 0.001. Red lines indicate {x′ ∈ R2 : λ>(x′,K−1>2 x

′) = r(λ)}
for λ ∈ {0, 1}3.

other. We can also observe that the MC and MCMC estimates are close to each other for all the estimators.
The standard errors of the MCMC estimator of E[X | {X ∈ KC

d (K; r)}] were smaller than those of the
MC estimator because of sample efficiency. Provided that K̂MC

M [X;Kd(K)] belongs to the core KC
d (K; r),

we expect an estimate of KM[X;KC
d (K; r)] to be close to K̂MC

M [X;Kd(K)]. Although this was the case for
both of the MC and MCMC estimates of KM[X;KC

d (K; r)], the MCMC estimate was slightly closer to
K̂MC

M [X;Kd(K)] than the MC estimate. Consequently, the MCMC estimator of KM[X;KC
d (K; r)] is less

biased than the MC estimator.

6.6 Conclusion

Motivated from scenario analysis of risk allocations, we investigated properties of the conditional
distribution of X given the constant sum constraint {S = K} and introduced the novel risk allocation
method called maximum likelihood allocation (MLA). The superlevel set of X | {S = K} can be regarded
as a set of stress (severe and plausible) scenarios, and the modality of X | {S = K} can be interpreted as a
number of distinct risky scenarios, which turned out to be an important feature in risk profile related to
the soundness of risk allocations. We then studied properties of X | {S = K}, for example, dependence
(Proposition 6.3.4 and Proposition 6.3.5), tail behavior (Proposition 6.3.9 and Proposition 6.3.10) and
modality (Proposition 6.3.13), most of which are inherited from those of the unconditional loss X. We
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Table 6.4: Monte Carlo (superscript “MC”) and Markov chain Monte Carlo (superscript “MCMC”) estimates
and standard errors of the Euler and maximum likelihood allocations on Kd(K) and those on the atomic
core KC

d (K; r). The MC sample size of the unconditional sample X is NMC = 106 and the sample size of
the conditional sample X | {X ∈ KC

d (K; r)} in the MCMC method is NMCMC = 104.

Estimator Standard error

X1 X2 X3 X1 X2 X3

ÊMC[X | {X ∈ Kd(K)}] 2.865 2.310 2.846 0.026 0.034 0.026
K̂MC

M [X;Kd(K)] 2.861 2.366 2.793 – – –

ÊMC[X | {X ∈ KC
d (K; r)}] 2.852 2.267 2.903 0.016 0.019 0.016

K̂MC
M [X;KC

d (K; r)] 2.838 2.262 2.920 – – –

ÊMCMC[X | {X ∈ KC
d (K; r)}] 2.876 2.269 2.877 0.002 0.003 0.002

K̂MCMC
M [X;KC

d (K; r)] 2.866 2.283 2.871 – – –

also investigated how to incorporate the knowledge on the modality of X | {S = K} for more sound risk
management. Under unimodality, we defined MLA as a mode of X | {S = K}, and studied its properties
as a risk allocation, such as translation invariance and positive homogeneity (Proposition 6.4.2). Under
multimodality, we considered the so-called multimodality adjustment to increase the soundness of risk
allocations based on the multiple modes. Euler allocation and MLA were then compared in numerical
experiments. Through these experiments, we demonstrated that Euler allocation and MLA lead to close
values and X | {S = K} is typically unimodal when X possesses positive dependence. On the other
hand, when the losses are negatively dependent, multimodality is likely to occur and the two allocation
principles result in distinct values. For such a case, searching for the modes of X | {S = K} is beneficial
for discovering risky scenarios which cannot be captured by a single vector of risk allocation, and to inspect
the soundness of risk allocations. The detected (local) modes can also be useful to increase the soundness
of risk allocations by applying the multimodality adjustment.

Although we empirically observed the relationship between multimodality of X | {S = K} and negative
dependence among X, this relationship requires further theoretical investigation. Another aspect of future
research is to study more distributional properties, such as tail dependence and measures of concordance, of
X | {S = K} especially without assuming the existence of a density. Unlike Euler allocations, estimation
of MLAs is not a straightforward problem in general but various methods are known for estimating modes
of multivariate distributions and for selections of hyperparameters. For applying the MLA principle in
practice, efficient estimation methods of the modes of multivariate loss distributions in high dimensions
need to be explored further. An economic justification of the MLA principle is also an interesting direction
for future research. In addition, extension of the multimodality adjustment to general sets of scenarios
is also an interesting direction of future work since multimodality adjustment proposed in this chapter
relies on the assumption that the set of modes is discrete. In the end, efficient simulation approaches of
X | {S = K} may need to rely on MCMC methods as introduced in Section 6.5.3, and further investigation
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is required to assess in how far the distributional properties proven in this chapter carry over to MCMC
methods since the performance of MCMC methods typically depends on tail-heaviness and modality of the
target distribution.
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Chapter 7

Conclusion

In this thesis, we addressed various topics in the areas of probability theory, statistics and their
applications to quantitative risk management.

In Chapter 2, we introduced a new class of measures of concordance arising from Pearson’s linear
correlation of transformed random variables. We provided necessary and sufficient conditions on the
transformations for which the transformed rank correlation coefficients are measures of concordance. For
matrices of pairwise transformed rank correlation coefficients, compatibility and attainability problems were
investigated. We derived upper and lower bounds of the compatible sets of transformed rank correlations,
and provide an algorithm to simulate compatible matrices when a given matrix is Bern(1/2)-compatible.
We then studied dimension reduction of the compatibility and attainability problems for block matrices
and hierarchical matrices.

In Chapter 3, we addressed the question which measures of concordance to use in terms of best and
worst asymptotic variances of their canonical estimators. We proved that Blomqvist’s beta attains the
optimal best and worst asymptotic variances among all transformed rank correlation coefficients including
Spearman’s rho and van der Waerden’s coefficient. Moeover, We found that Kendall’s tau also attains the
optimal best and worst asymptotic variances if estimators of these measures are compared without being
standardized by sample size. The results of the simulation study supported that concordance-inducing
functions G with smaller VarG(X2), where X ∼ G, are more preferable. Consequently, heavy-tailed
concordance-inducing functions, such as Student t distributions with small degrees of freedom, are not
recommended in comparison to the normal distribution, and Beta distributions can be good alternatives
for uniform distributions (corresponding to Spearman’s rho).

In Chapter 4, we proposed an Metropolis Hastings (MH) estimator of Value-at-Risk (VaR) contributions
to achieve efficient computation of VaR contributions especially for a risk model specified by a joint density.
Sample efficiency of the MH estimator is significantly improved since the MH method generates samples
directly from the conditional density given the sum constraint. By the general theory of Markov chains,
the MH estimator is consistent and asymptotically normal. Through simulation and empirical studies, bias
and mean squared error (MSE) of the MH estimator were compared with those of other existing estimators.
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The numerical experiments demonstrated that in most risk models, the MH estimator had smaller bias and
MSE compared with other existing estimators even when the dimension of the portfolio was high, such as
d ≈ 500.

The framework of estimating VaR contributions with Markov Chain Monte Carlo (MCMC) methods was
then extended to a more general class of systemic risk allocations in Chapter 5. By using Hamiltonian Monte
Carlo (HMC) and Gibbs Sampler (GS), efficient simulation methods of the constrained target distributions
are obtained. Sample efficiency is significantly improved since the MCMC estimator is computed from
samples generated directly from the conditional distribution of interest. We also proposed a heuristic for
determining the parameters of the HMC method based on the Monte Carlo (MC) presamples. Numerical
experiments demonstrated that our MCMC estimators are more efficient than MC in terms of bias, standard
error and time-adjusted MSE. Stability of the MCMC estimation with respect to the probability of the
crisis event and efficiency of the optimal parameter choice of the HMC method were also investigated in
the experiments.

In Chapter 6, we investigated properties of the conditional distribution of X given the constant sum
constraint {S = K} and introduced the novel risk allocation method called maximum likelihood allocation
(MLA). The superlevel set ofX | {S = K} can be regarded as a set of stress (severe and plausible) scenarios,
and the modality of X | {S = K} can be interpreted as a number of distinct risky scenarios, which turned
out to be an important feature in risk profile related to the soundness of risk allocations. We then studied
properties of X | {S = K}, for example, dependence (Proposition 6.3.4 and Proposition 6.3.5), tail behavior
(Proposition 6.3.9 and Proposition 6.3.10) and modality (Proposition 6.3.13), most of which are inherited
from those of the unconditional loss X. We also investigated how to incorporate the knowledge on the
modality of X | {S = K} for more sound risk management. Under unimodality, we defined MLA as a
mode of X | {S = K}, and studied its properties as a risk allocation, such as translation invariance and
positive homogeneity (Proposition 6.4.2). Under multimodality, we considered the so-called multimodality
adjustment to increase the soundness of risk allocations based on the multiple modes. Euler allocation and
MLA were then compared in numerical experiments. Through these experiments, we demonstrated that
Euler allocation and MLA lead to close values and X | {S = K} is typically unimodal when X possesses
positive dependence. On the other hand, when the losses are negatively dependent, multimodality is likely
to occur and the two allocation principles result in distinct values. For such a case, searching for the modes
of X | {S = K} is beneficial for discovering risky scenarios which cannot be captured by a single vector of
risk allocation, and to inspect the soundness of risk allocations. The detected (local) modes can also be
useful to increase the soundness of risk allocations by applying the multimodality adjustment.
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