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Abstract

The development of tools to measure and to model dependence in high-dimensional data
is of great interest in a wide range of applications including finance, risk management,
bioinformatics and environmental sciences. The copula framework, which allows us to
extricate the underlying dependence structure of any multivariate distribution from its
univariate marginals, has garnered growing popularity over the past few decades. Within
the broader context of this framework, we develop several novel statistical methods and
tools for analyzing, interpreting and modeling dependence.

In the first half of this thesis, we advance classical copula modeling by introducing
new dependence measures and parametric dependence models. To that end, we propose
a framework for quantifying dependence between random vectors. Using the notion of a
collapsing function, we summarize random vectors by single random variables, referred to
as collapsed random variables. In the context of this collapsing function framework, we
develop various tools to characterize the dependence between random vectors including
new measures of association computed from the collapsed random variables, asymptotic
results required to construct confidence intervals for these measures, collapsed copulas to
analytically summarize the dependence for certain collapsing functions and a graphical
assessment of independence between groups of random variables. We explore several suitable
collapsing functions in theoretical and empirical settings. To showcase tools derived from
our framework, we present data applications in bioinformatics and finance.

Furthermore, we contribute to the growing literature on parametric copula modeling
by generalizing the class of Archimax copulas (AXCs) to hierarchical Archimax copulas
(HAXCs). AXCs are typically used to model the dependence at non-extreme levels while
accounting for any asymptotic dependence between extremes. HAXCs then enhance the
flexibility of AXCs by their ability to model partial asymmetries. We explore two ways of
inducing hierarchies. Furthermore, we present various examples of HAXCs along with their
stochastic representations, which are used to establish corresponding sampling algorithms.

While the burgeoning research on the construction of parametric copulas has yielded
some powerful tools for modeling dependence, the flexibility of these models is already
limited in moderately high dimensions and they can often fail to adequately characterize
complex dependence structures that arise in real datasets. In the second half of this thesis,
we explore utilizing generative neural networks instead of parametric dependence models.
In particular, we investigate the use of a type of generative neural network known as the
generative moment matching network (GMMN) for two critical dependence modeling tasks.
First, we demonstrate how GMMNs can be utilized to generate quasi-random samples from



a large variety of multivariate distributions. These GMMN quasi-random samples can then
be used to obtain low-variance estimates of quantities of interest. Compared to classical
parametric copula methods for multivariate quasi-random sampling, GMMNs provide a more
flexible and universal approach. Moreover, we theoretically and numerically corroborate
the variance reduction capabilities of GMMN randomized quasi-Monte Carlo estimators.
Second, we propose a GMMN-GARCH approach for modeling dependent multivariate time
series, where ARMA-GARCH models are utilized to capture the temporal dependence
within each univariate marginal time series and GMMNSs are used to model the underlying
cross-sectional dependence. If the number of marginal time series is large, we embed an
intermediate dimension reduction step within our framework. The primary objective of our
proposed approach is to produce empirical predictive distributions (EPDs), also known as
probabilistic forecasts. In turn, these EPDs are also used to forecast certain risk measures,
such as value-at-risk. Furthermore, in the context of modeling yield curves and foreign
exchange rate returns, we show that the flexibility of our GMMN-GARCH models leads to
better EPDs and risk-measure forecasts, compared to classical copula-GARCH models.
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Chapter 1

Introduction

The advent of high-dimensional dependent data in a variety of applications including
finance, risk management, bioinformatics, hydrology and environmental sciences motivates
the need for statistical tools to measure and to model dependence. An important framework
prevalent in multivariate analysis for characterizing dependence is that of copulas. Copulas
are multivariate distribution functions with standard uniform univariate margins. For
a d-dimensional random vector X, Sklar’s Theorem (Sklar, 1959) allows us to tailor
multivariate distribution functions Fx with specific margins Fx,, ..., F'x, through copulas
C:10,1]¢ — [0, 1] via

Fx(z) = C(Fx,(21),..., Fx,(xq)), x=(z1,...,2q) € R

The key attractive feature of this decomposition is the ability to separately model
the margins and the dependence structure of X. Leveraging this key feature, one can
flexibly model multivariate data. Also arising from this copula framework is the notion
of dependence measures which solely depend on C, more formally known as measures
of concordance (Scarsini, 1984). Such measures provide us with a consistent method for
ranking dependencies.

In this thesis, we develop novel statistical methods for measuring and modeling de-
pendence using the copula framework. These methods are utilized in various key tasks
including detecting dependence, ranking of dependencies, modeling dependence structures
of extreme events, quasi-random sampling and multivariate time series modeling. In what
follows, we describe the primary contributions of this thesis in detail along with an outline
of the subsequent chapters.



1.1 Measuring association of random vectors

The problem of measuring association of random variables X and Y has been extensively
studied with axiomatic frameworks well established to characterize the desirable properties
that bivariate measures of association should exhibit. Measures of dependence were defined
using the list of properties first proposed in Rényi (1959) and later revised by Schweizer and
Wolff (1981). Scarsini (1984) then additionally proposed the concordance property which
ensured that bivariate measures of concordance satisfied a partial ordering on the set of
copulas. Moreover, concordance measures, by virtue of solely depending on the copula of
(X,Y), are invariant to strictly increasing transforms of X and Y. Prominent examples of
such concordance measures popular in the copula literature include Spearman’s rho and
Kendall’s tau. More recently, the notion of an equitable dependence measure, which extends
the invariance property established by concordance measures to include invariance under
non-monotone transforms of X and Y, was introduced by Reshef et al. (2011) and more
formally established by Kinney and Atwal (2014).

While there exists thorough research on bivariate measures of association, the extension
to random vectors remains somewhat of an open problem. There are some proposed
measures of association between random vectors in the literature, the more notable of which
include the kernel canonical correlation coefficient (Bach and Jordan, 2002), the distance
covariance coefficient (Székely et al.; 2007), the Hilbert Schmidt independence criterion

(Gretton et al., 2008) and multivariate extensions of Spearman’s rho and Kendall’s tau as
defined by Grothe et al. (2014).

In Chapter 2 of this thesis, we propose a general framework for measuring association
of random vectors which not only subsumes some of the existing measures discussed above
but also allows us to formulate various new measures. Using the notion of a collapsing
function, the random vectors are summarized by single random variables, referred to as
collapsed random variables. Measures of association computed from the collapsed random
variables are then used to measure dependence between random vectors. To this end, we
explore suitable collapsing functions and it is through the choice of this collapsing function
that certain existing and new measures of association between random vectors are obtained.
Additionally, we derive non-parametric estimators for the collapsed measures of association
along with their corresponding asymptotic properties.

Furthermore, we introduce the notion of a collapsed distribution function and a collapsed
copula. Collapsed copulas in particular provide us with the dependence structure between
collapsed random variables. Moreover for certain collapsing functions, we can directly
link the collapsed to the higher-dimensional copula. This investigation yields interesting



analytical results including a multivariate extension of the well-known Kendall distribution
function (Barbe et al., 1996).

Naturally each collapsing function considered has its own unique set of features, advan-
tages and disadvantages, which we explore in detail via discussions, theoretical analyses
and data applications. One such application is motivated by a problem in bioinformatics
which involves the ranking of a protein’s side chain pairs by dependence. In addition, we
considered an application in finance involving the dependence between S&P 500 business
sectors.

The contents of Chapter 2 along with the additional theoretical results, proofs and
examples presented in Appendix A have been published in:

Hofert, M., Oldford, W., Prasad, A., & Zhu, M. (2019), A framework for
measuring association of random vectors via collapsed random variables, Journal
of Multivariate Analysis, 172, 5-27 (Hofert et al., 2019).

1.2 Dependence modeling with hierarchical Archimax
copulas

Over the past few decades, there has been a burgeoning research interest in the construction
of parametric copula classes for dependence modeling. Elliptical and Archimedean copulas
are among the most well-known classes of copulas. Elliptical copulas typically arise from
extracting the implicit copula of elliptical distributions via Sklar’s Theorem. Some prominent
members of this class of copulas include the Gaussian and ¢t copulas. However, elliptical
copulas are radially symmetric which is a limitation in modeling dependence structures
with strong dependence in one of the two joint tails.

On the other hand, Archimedean copulas, which are explicit copulas constructed via
a generator function, can model radial asymmetries; see Genest and MacKay (1986) and
Nelsen (2006, Chapter 4). One drawback, however, is that members of this class of
copulas are exchangeable, that is, permutation symmetric in their arguments, which can be
restrictive, especially for higher dimensional dependence modeling, since all multivariate
margins of the same dimension are equal. To relax this restrictive assumption, the class
of nested Archimedean copulas (NACs), which are constructed by plugging Archimedean
copulas into each other at different levels, was introduced to model partial asymmetries in
the dependence structure. For further details regarding NACs see Joe (1997, p. 87) and
MecNeil (2008).



Motivated by applications in environmental sciences and risk management, there has
been growing interest in modeling the dependence structure of extreme events. For example,
characterizing the joint risk of flooding at multiple locations is of great significance for
disaster planning and development of suitable insurance products. A key statistical tool for
modeling such joint risks is that of multivariate extreme value distributions, which arise
as limiting distributions of properly scaled componentwise maxima of independent and
identically distributed random vectors, the underlying copulas of which are referred to as
extreme value copulas (EVCs). For further details regarding EVCs see Jaworski et al. (2010,
p. 128) and Segers (2012).

Capéraa et al. (2000) and Charpentier et al. (2014a) then generalized both the Ar-
chimedean and extreme value copula classes by proposing the class of Archimaz copulas
(AXCs). Hence AXCs can simultaneously model the dependence at non-extreme levels
while accounting for any asymptotic dependence between extremes. In Chapter 3 of this
thesis, we introduce a more flexible class of AXC copulas, known as hierarchical Archimaz
copulas (HAXCs), to account for partial asymmetries. HAXCs are hierarchical in the sense
that they possess an underlying tree structure to characterize the dependence and thus have
different pairwise margins depending on whether two variables belong to the same group,
cluster or business sector. We propose two ways of inducing such hierarchies. Various
examples of HAXCs are then discussed along with a general sampling algorithm which is
obtained by working with the stochastic representation.

We also provide some derivations involving densities of Archimax copulas and briefly
address the construction of nested Archimax copulas, which form a sub-class of HAXCs due
to certain sufficient nesting conditions, in Appendix B. This work has been published in:

Hofert, M., Huser, R., & Prasad, A. (2018), Hierarchical Archimax copulas,
Journal of Multivariate Analysis, 167, 195-211 (Hofert et al., 2018a).

1.3 Dependence modeling with generative neural net-
works

While the substantial research focus on the construction of parametric copula classes has
yielded some powerful tools for dependence modeling, the flexibility of these models is
already limited in moderately large dimensions and they can fail to provide an adequate fit
for complex dependence structures that arise in many data applications; see for example
Hofert and Oldford (2018). Moreover, using parametric copulas in applications requires
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model-specific algorithms for parameter estimation, goodness-of-fit assessment and finally
model selection from a large collection of copula classes. To address these problems, we
introduce generative neural networks (GNNs) for dependence modeling.

GNNs have enjoyed a meteoric rise to popularity in the past five years riding on the
coattails of the broader deep learning revolution. The primary objective of a GNN is to
learn the underlying distribution of a high-dimensional data set using neural networks and
consequently provide a fast sampling mechanism to generate samples from this distribution.
That is, given data points X1, ..., X, from F'x, a GNN aims to learn a deep neural network
mapping fp, such that, provided with a sample Z,,...,Z,, from an input distribution
Fz, we can generate a new sample f3(Z1),..., f3(Z,,) from Fx. Typical choices for Fy
are U(0, 1) or N(0, I;). For uniform input distribution, the resulting sampling procedure
is reminiscent of, at least in principle, the classical inverse transform method, where the
mapping f, we learn is, in a sense, the inverse Rosenblatt transform.

The explosion of research into GNNs has yielded a plethora of approaches for learning
the map f;. Among the most popular types of GNNs are generative adversarial networks
(GANs) (Goodfellow et al., 2014), variational autoencoders (VAEs) (Kingma and Welling,
2014), and generative moment matching networks (GMMNs) (Li et al., 2015). In this
thesis, we focus on utilizing GMMNs where the mazimum mean discrepancy (MMD)
loss function (Gretton et al., 2007) used to learn f; is specifically designed for learning
the entire distribution Fx. In contrast, GANs and VAEs, in their standard formulation,
are more geared towards ensuring that any single generated observation, typically an
image, is very realistic. While certain versions of GANs and VAEs have incorporated the
MMD loss function (see Li et al. (2017) and Zhao et al. (2017)), they typically require
more sophisticated and computationally expensive learning mechanisms in comparison to

GMMNs.

Although our objective is to model Fx, in practice it is often useful to leverage Sklar’s
Theorem to separate the modeling of F,, ..., Fx, from the modeling of C. Hence, we
typically instead focus on using GMMNSs to learn the underlying dependence structure C'. In
applications, this essentially translates to normalizing the dataset to [0, 1]¢ by removing the
marginal information, which also allows us to more efficiently learn the deep neural network
map f,. Dependence modeling remains the key challenging aspect of modeling multivariate
data. As mentioned earlier, there exists certain challenges in obtaining good parametric
copula fits for complex dependence structures already in moderately high dimensions. Hence
using parametric copulas could result in misspecified dependence models, which in certain
applications, would lead to severe underestimation of joint risks. GMMNs offer a more
universal and highly flexible approach for modeling dependence. Once we learn to generate
samples from C, it is not difficult to fit appropriate marginal distributions and use them to



generate samples from Fx.

In Chapters 4 and 5 of this thesis, we showcase the benefits of utilizing GMMNs for
dependence modeling in the contexts of quasi-random sampling and multivariate time series
modeling.

1.3.1 Quasi-random sampling for multivariate distributions

The basic idea behind quasi-random numbers is to replace pseudo-U(0, 1)¢ random numbers
with a low-discrepancy point set P,, = {vy,...,v,} to produce a more homogeneous
coverage of [0, 1]%; in applications a randomized point set P,, = {1, ..., Dy, } is used instead
to obtain unbiased estimators of quantities of interest. This idea is visualized for the
d = 2 case in Figure 1.1 which displays scatter plots of pseudo-random (left) and quasi-
random (right) samples from U(0,1)%. As can be observed from this figure, the generated
quasi-random sample has fewer gaps and clusters compared to the pseudo-random sample.
Consequently, with respect to a certain discrepancy measure, the empirical distribution of
the quasi-random sample is typically closer to the uniform distribution U(0,1)? than that
of the pseudo-random sample.
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Figure 1.1: Pseudo-random (left) and quasi-random samples (right) from U(0, 1)2.



We are interested in the natural extension of this concept to non-uniform multivariate
distributions F'x. Currently in the literature, the most comprehensive approach for generat-
ing quasi-random samples from multivariate distributions is via parametric copula models;
see Cambou et al. (2017). However, this approach is feasible for only a limited number of
parametric copulas where either a numerically tractable transformation of P, is attainable
via the conditional distribution method (based on inverse Rosenblatt transform) or a simple
stochastic representation exists from which one can construct a tractable transformation.
Additionally, in certain cases it can be tricky to ensure that these transformations preserve
the low-discrepancy of P,, and a careful manipulation of the model-specific sampling pro-
cedure is required. Moreover, there exists complex dependence structures in data which
cannot be adequately captured by available parametric copulas.

In Chapter 4 of this thesis, we propose a new approach for quasi-random sampling
from Fx with any underlying copula C', using GMMNs. This approach greatly extends
in two ways, the range of multivariate distributions for which we can readily construct
quasi-random samples. Firstly, we can generate quasi-random samples from F'x with any
underlying parametric copula C' by transforming a randomized point set P,, using the
neural network map f, obtained by training the GMMN on a pseudo-random sample from
C. Hence, in comparison to the current quasi-random sampling strategy for parametric
copulas, GMMNs provide a more universal approach. Secondly, in a similar manner,
we can generate quasi-random samples from empirical distributions Fx of real data sets
with underlying dependence structures C (empirical copulas) not adequately captured by
parametric copulas, thanks to the greater flexibility of GMMNs. We demonstrate that
GMMNs are capable of learning the dependence structures of numerous sophisticated
parametric copulas including nested Archimedean, Marshall-Olkin and mixture copulas
along with the complex dependence structures that arise when modeling multivariate
financial returns data. Moreover, we show that all corresponding GMMN quasi-random
samples essentially preserve the low discrepancy of P,, upon transformation.

The main application of quasi-random sampling is to approximate expectations of the
form p = E(¥(X)), where ¥ : RY — R is an integrable function, with variance reduction.
To this end, we utilize GMMN randomized quasi-Monte Carlo (RQMC) estimators that are
constructed based on quasi-random samples from Fx. In various settings, we theoretically
establish convergence rates for RQMC estimators under smoothness conditions on f, and W.
Furthermore, we numerically demonstrate that GMMN RQMC estimators achieve variance
reduction and improved convergence rates compared to MC estimators constructed based
on pseudo-random samples from Fx. We also present a real-data example inspired by
applications in finance and risk management that showcases the flexibility of GMMNs and
the variance reduction capabilities of our GMMN RQMC estimators for estimating various



quantities of interest .

To keep the main body of Chapter 4 concise, we relegated certain technical details,
proofs and numerical results to Appendix C. The research presented in Chapter 4 and
Appendix C is currently under revision.

Hofert, M., Prasad, A. and Zhu, M. (2018) Quasi-random sampling for multivari-
ate distributions via generative neural networks. arXiv preprint arXiv:1811.00683
(Hofert et al., 2018c).

1.3.2 Multivariate time series modeling

Conceptually, multivariate time series (MTS) aim at capturing two types of dependence
structures — the serial dependence within each univariate marginal time series and the
cross-sectional dependence between the individual time series. A popular approach for
modeling MTS data is to separate these two dependence modeling tasks.

There exists a wide variety of univariate time series models which capture different types
of temporal patterns. In finance and econometrics, generalized auto-regressive conditional
heteroscedasticity (GARCH) models (Bollerslev, 1986) are particularly popular due to their
ability to capture the volatility clustering effect that is often present in financial time series
data. Within the GARCH framework, the extension to MTS modeling is achieved by
modeling the corresponding joint innovations using a suitable multivariate distribution. To
this end, Jondeau and Rockinger (2006) and Patton (2006) introduced the copula-GARCH
approach where parametric copulas are used to characterize the cross-sectional dependence.
Over the past decade, the research on calibration of copula-GARCH models has grown in
tandem with the burgeoning literature on parametric copula classes.

In Chapter 5 of this thesis, we introduce the GMMN-GARCH framework, where
GMDMNSs are used in place of parametric copulas to model the cross-sectional dependence of
MTS data. For higher dimensional time series which are amenable to good approximations
by lower dimensional representations, we also incorporate a dimension reduction step in
our framework.

The primary objective of MTS modeling via GMMN-GARCH (or copula—-GARCH)
models is to construct empirical predictive distributions, also known as probabilistic forecasts.
Probabilistic forecasting is of great interest in a variety of applications including hydrology
(Krzysztofowicz, 2001), energy forecasting (Wan et al., 2013; Hong et al., 2016), finance
and quantitative risk management where the empirical predictive distribution is often



used to forecast risk measures such as Value-at-Risk (VaR) or expected shortfall (ES) via
simulation. We showcase the applicability and flexibility of our GMMN-GARCH framework
in forecasting yield curves and foreign exchange rates.

Note that since we borrow much of the same GMMN setup detailed in Chapter 4, the
relevant background materials is not repeated in Chapter 5. The work presented in this
chapter has been submitted for review.

Hofert, M., Prasad, A. and Zhu, M. (2020) Multivariate time-series modeling
with generative neural networks. arXiv preprint arXiv:2002.10645 (Hofert et al.,
2020).



Chapter 2

A framework for measuring
association of random vectors via
collapsed random variables

2.1 Introduction

While there are numerous well established methods to measure dependence between random
variables, the extension to random vectors poses a significant challenge. This challenge
arises from the lack of a unique axiomatic framework that states desirable properties a
measure of association between random vectors should exhibit. Moreover, there is no unique
extension of bivariate measures of association to arbitrary dimensions and the available
multivariate measures of association do not naturally capture dependence between more
than one random vector as is of interest for applications in areas such as bioinformatics,
finance, insurance or risk management.

Proposed solutions to this problem are rather difficult to find in the literature. A
classical methodology for summarizing linear dependence between random vectors is the
well known canonical correlation coefficient; see Hotelling (1936). A non-linear extension of
canonical correlation has been suggested through the use of kernel functions in Bach and
Jordan (2002) and Ghoraie et al. (2015a). A faster version of the kernel canonical correlation
method has been developed by adopting the idea of randomized kernels; see Lopez-Paz et al.
(2013). Székely et al. (2007) proposed a novel distance covariance coefficient, defined as a
weighted £2-norm between the joint characteristic function and the product of marginal
characteristic functions of the random vectors under consideration. In the context of copula
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modeling, Grothe et al. (2014) recently derived versions of Spearman’s rho and Kendall’s
tau between random vectors including corresponding estimation procedures. Our framework
will generalize their approach and allow us to derive a couple of interesting results as
by-products.

Note that there is neither an inherently correct nor a canonical way of measuring
dependence between random vectors. As a result, one can think of multiple ways of
quantifying such dependence. Approaches are primarily motivated by the purpose, for
example, detection or ranking of dependencies, or the dataset under investigation. In this
chapter, we subsume several such approaches under a general framework which allows us to
detect, quantify, visualize and check dependence between random vectors.

The chapter is organized as follows. In Section 2.2 we present a framework for measuring
dependence between random vectors. Furthermore, we discuss non-parametric estimators for
the measures of association arising from the framework and their corresponding asymptotic
properties. Section 2.3 develops the notion of a collapsed distribution function and a
collapsed copula. Moreover, analytical formulas of these collapsed distributions are presented
for a number of collapsing functions. Empirical examples from the areas of bioinformatics
and finance are covered in Section 2.4. In addition, a visual assessment of independence
between groups of random variables is introduced. Section 2.5 provides concluding remarks
for this chapter.

2.2 The framework

For introducing a framework for measuring dependence between random vectors, it suffices to
consider the case of two random vectors, a p-dimensional X = (X7, ..., X)) with continuous
marginal distribution functions Fx,, ..., Fx, and a ¢-dimensional Y = (Y7,...,Y;) with
continuous marginal distribution functions Fy,, ..., Fy,, defined on some probability space
with probability measure IP. Our target is to measure dependence between X and Y with
a measure of association

mapping to either [—1, 1] or [0, 1]; note that, depending on the context, various notions of
dependence are possible.

A natural first step is to establish the properties that x should satisfy. For bivariate
measures of association, that is, measures of association between two random variables X
and Y, one set of such properties is listed in Rényi (1959), with minor revisions later in
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Schweizer and Wolff (1981), and slightly modified in Embrechts et al. (2002); the resulting
measures of association were termed “measures of dependence”. Scarsini (1984) introduced
another set of properties, including a pointwise partial ordering on the set of copulas known
as concordance ordering; the resulting measures of association are thus called concordance
measures or also rank-correlation measures; see Embrechts et al. (2002) for their advantages
over the classical linear correlation coefficient. Prominent examples are Kendall’s tau and
Spearman’s rho. Another type of bivariate measure of association, focusing on the extremal
dependence in the joint tails of bivariate distributions, are the coefficients of tail dependence.

More recently, Reshef et al. (2011) described an ideal measure of association in the
bivariate case as the so-called “equitable dependence measure”, which extends the invariance
property of concordance measures to include invariance under non-monotone marginal
transforms. However, the maximal information coefficient (MIC) introduced in Reshef et al.
(2011), which empirically satisfies the equitability condition under various non-monotone
transformations, is purely data-driven and heuristic. As a result, the MIC measure does
not naturally fit into our probabilistic framework. Various versions of this equitability
condition have since been proposed including more mathematically formal definitions; see,
for example, Kinney and Atwal (2014). Hence, there is some consensus concerning an
“ideal” bivariate measure of association but our problem demands generalizations of these
properties to vector-based measures of association, which is non-trivial.

Grothe et al. (2014) recently approached this problem and listed properties of a con-
cordance measure that carry over from random variables X, Y to random vectors X,Y .
These include:

(P1) x(X,Y) € [-1,1];

(P2) x(X,Y) is invariant to permutations of the components of the random vectors X
and Y

(P3) independence of X and Y implies x(X,Y) = 0;

(P4) (Invariance Property) x(X,Y) is invariant to strictly increasing transformations of
the components of the random vectors X and Y (that is, x is copula-based);

(P5) (Concordance Ordering Property) if two (p + ¢)-dimensional copulas C; and Cy with
the same marginal copulas corresponding to the first p and the second ¢ dimensions
satisfy C; =< Cy (that is, Cj(u) < Cy(u) for all w € [0, 1]P9) and if, U; ~ C} and
Uy ~ Oy then x(U1) < x(Us). .
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Extending the invariance and concordance ordering properties to the vector case can be
done in many ways with (P4) and (P5) being just one set of possible generalizations.
In particular, (P5) focuses only on the dependence between X and Y to establish the
concordance ordering with equal p- and g-dimensional marginal dependence requirements.
The difficulty lies in hypothesizing invariance and concordance properties when the marginal
distributions Fx,,..., Flx, and Fy,,..., Fy, and the copulas Cx and Cy of X and Y can
all vary; generalizing the concept of equitable dependence faces similar difficulties.

Additionally, our framework subsumes measures of association y which map to [0, 1].

Thus we consider the following Rényi axiom Rényi (1959) as an alternative to property
(P1):

(P1) x(X,Y) €]0,1].

While Property (P1)" is just a special case of Property (P1), it is useful to particularly
identify measures of association y which map to [0, 1] (see later).

2.2.1 Collapsed random variables

The framework we suggest consists of collapsing the two random vectors X and Y to
single random variables Sx(X) and Sy (Y'), referred to as collapsed random variables.
The functions Sx and Sy map random vectors to random variables and are referred to as
collapsing functions; see also Grabisch et al. (2009) for a related notion known as aggregation
functions. For the sake of simplicity, we will restrict ourselves to using the same collapsing
function to collapse X and Y and will simply denote this function by S (even if p # ¢;
for example, S could simply be the sum over p components for X and the sum over ¢
components for Y'). We also assume that X and Y have continuous margins, to facilitate
development of theoretical results. The bivariate distribution function of (S(X), S(Y))
is called the collapsed distribution function in our framework and its copula, if unique, is
termed the collapsed copula. In later discussions of the collapsed distribution function and
copula, we will also assume that S(X) and S(Y') are continuously distributed random
variables.

We interpret the notion of a collapsing function quite generally, the only requirement
being that a random vector is mapped to a single random variable. As we will see later,
a collapsing function for X does not necessarily have to be a p-variate function, it can
also be a 2p-variate function, in which case the collapsed random variable will denoted by
S(X,X"), where X' is an independent copy of X.
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Finally, we note that while our framework is restricted to one level of collapsing with
two groups of random variables, it can be extended for the purposes of modeling to several
groups of random variables and multiple hierarchical levels. Such hierarchical constructions
have been studied in the literature using certain collapsing functions. Examples include the
hierarchical Kendall copula in Brechmann (2014) and the hierarchical aggregation models
in Arbenz et al. (2012) and Coté and Genest (2015).

2.2.2 Collapsed measures of association

The two collapsed random variables, S(X) and S(Y), can be used to detect, quantify and
check dependence between X and Y using classical and well understood bivariate measures
of association. Any such measure will be referred to as collapsed measure of association in
our framework.

Remark 2.2.1

At this point, some remarks are in order. First, our approach of measuring dependence
between random vectors by measuring dependence between their collapsed random variables
is different from multivariate extensions of measures of association: The latter aim to
summarize dependence within a single random vector; see Schmid et al. (2010) and the
references therein for a comprehensive treatment. Second, it should be clear that measuring
association between collapsed random variables can only be a summary of the dependence
between the components of (X,Y ), and that the measures of association x we consider
will not generally uniquely determine the dependence of (X,Y); the same is well-known
for random variables (p = ¢ = 1). Even so, we will present results under which one can
explicitly determine the copula of (S(X), S(Y)) given that of (X,Y). O

Although there are various choices of collapsed measures of association, for ease of
illustration we will mainly focus on Pearson’s correlation coefficient p and consider

X(X,Y) = p{5(X),5(Y)}. (2.1)

This choice is less restrictive than it might appear. Spearman’s rho, Kendall’s tau and
Blomqvist’s beta all appear as special cases of (2.1) for appropriate collapsing functions
S. Spearman’s rho pg is simply Pearson’s correlation coefficient p of the probability-
integral-transformed random variables. That is, if Fig(x) denotes the distribution function
of the collapsed random variable S(X), the collapsing functions S(x) = Fsx){S(x)} and

S(y) = Fsvmy{S(y)} give
(X, Y) = p{8(X), 5(Y)} = ps{S(X), SV}
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For Kendall’s tau 7, the collapsing function is an example of a 2p-variate function. In
particular, one can show that if X and Y are continuously distributed random vectors
and (X’,Y”) is an independent copy of (X,Y’), then the collapsing function S(zx, ') =
1{S(x) < S(x')} leads to

X<X7Y) = p{S(X,X/), S(Yv Y/)} = T{S(X)v S<Y)} (2'2)

For Blomqvist’s beta 3, let S(x) = 1{S(z) < Fgx)(1/2)}, where Fg x) denotes the
quantile function of Fg(x), and note that

X(X,Y) = p{S(X),5(Y)} = B{S(X). S(Y)}.

Tail dependence is often expressed by A, the lower (or upper) coefficient of tail dependence
implied by the corresponding copula. Applied to the collapsed copula would give

X(X,Y) = MS(X),5(Y)}, (2.3)

which provides a measure of tail dependence between random vectors X, Y, within our
framework. Although there are multivariate notions of tail dependence (Jaworski et al., 2010,
Chapter 10), to the best of our knowledge no measure of tail dependence exists between
two random vectors X and Y. The simple and intuitive formulation above gives many such
measures, depending on the choice of collapsing functions. Moreover, this approach can be
straightforwardly extended to more than two random vectors by considering matrices; see
Embrechts et al. (2016).

In what follows, we will focus on cases where the collapsed measure of association is
Pearson’s correlation coefficient.

2.2.3 Choosing the collapsing function

There is no universal way to choose the collapsing function S for measuring dependence
between random vectors; the choice will largely depend on context, as we shall illustrate
later in the applications section. We start by introducing various options for S, summarized
in Table 2.1. While collapsing functions can be as sophisticated as deep neural networks
(Andrew et al., 2013), the focus in this chapter will be on the elementary summary functions
listed in Table 2.1. Note that the 2p-variate collapsing functions listed in Table 2.1 require
us to invoke an independent copy X' of the random vector X. Thus, unlike p-variate
collapsing functions, we need a pair of realizations, & and «’, from X to evaluate .S once.
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Type of S Collapsing function S

Weighted sum S(x) =
p-variate  Maximum (or minimum) S(x) = 1@?59{%} (or S(x) = 121]1%{%})
Probability integral transform S(x) = Fx(x)
Distance S(x,z') = D(x,x')
2p-variate Kernel similarity S(x,x') = K(x,2)
Multivariate rank S(x,x') = 1{x < z'}

Table 2.1: Examples of collapsing functions S of a random vector X (with realizations x
and «'); note that the inequality < &’ in the multivariate rank collapsing function is
understood componentwise.

Consequentially, to estimate x based on a sample of size n > 2, S is computed for all (’2‘)
pairs of multivariate observations.

The following sections consider each collapsing function listed in Table 2.1 in more
detail.

The weighted sum collapsing function

The weighted sum function is a classical choice of collapsing function. Its key feature is
the flexibility presented in the choice of weights. These weights can be chosen arbitrarily,
e.g., taken to be equal or optimally chosen with respect to some objective function. The
canonical correlation coefficient of Hotelling (1936) is a classical approach involving optimal
weights, where

X(X,Y) = sup plwyx X, wyY). (2.4)

wx €ERP, wy €RY

Note that by replacing X = (Xi,...,X,) with (Fx,(X1),..., Fx,(X})), (I{X1 < X{},...,
H{X, < Xp}), or (I{Xy < Fy (1/2)},...,1{X, < Fy, (1/2)}) and doing the same with
Y = (Y,...,Y,) in Equation (2.4), we can construct Spearman’s rho, Kendall’s tau, or
Blomqvist’s beta variants of canonical correlation, respectively. Another approach to
constructing rank-based versions of canonical correlation is given in Alfons et al. (2017). In
addition to the canonical correlation approach, hierarchical aggregation modeling techniques
such as in Arbenz et al. (2012) utilize the sum collapsing function.

Restricting the weights to sum to one would yield the weighted average collapsing
function. With equal weights we can ensure no random variable in the group is fully ignored.
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The application of interest can inform the choice of weights given the interpretation of
each random variable within a group. Alternatively, one could consider the m-largest (or
m-smallest) weighted average, that is, the average over the m largest (or m smallest) order
statistics per group of random variables. This can be of interest in the context of financial
risk management, where one needs to keep track of the m largest (or m smallest) losses in
two or more portfolios or asset classes.

Measures of association arising from the weighted sum collapsing function satisfy the
basic properties (P1) and (P3) listed in the introduction of Section 2.2. However, property
(P2) is only satisfied when we use equal weights. An exception is the canonical correlation
coefficient which satisfies property (P1)’ instead of (P1). Property (P4) is in general only
satisfied if we replace (Xi,...,X,) by (Fx,(X1),...,Fx,(X},)) in S. The key feature of
this collapsing function is the set of weight parameters which provides some flexibility,
can be readily adapted to certain optimization problems, and can be easily interpreted for
applications arising, for example, in finance and bioinformatics. While there is an easy way
to obtain invariance to marginal distributions as noted above, this comes at the expense of
interpretability as it pertains to the weights involved. Additionally, note that if a subset of
the weights is chosen to be zero without proper justification, the resulting measure y could
potentially be a misleading summary of the dependence between random vectors; see also
Remark 2.2.1 in this regard.

The maximum collapsing function

The componentwise maximum (or minimum) is a special case of the aforementioned extreme
weighted case, with 1-largest (or 1-smallest) weighted average as collapsing function, that
is,

S(x) = max{zy,...,x,} (or S(x) =min{xy,...,z,}).

This requires all dimensions of the random vector X to have a comparable interpretation.
It may be useful, for example, when quantifying dependence between market return data
grouped into sectors where dependence between different market sectors would be measured
through the best (or worst) performer in each sector.

Measures of association arising from the maximum or minimum collapsing functions also
satisfy the basic properties (P1)—(P3) listed in the introduction of Section 2.2. Property
(P4) is in general only satisfied if we replace (Xi,...,X,) by (Fx,(X1),...,Fx,(X,)) in
S. A key feature of the maximum collapsing function is its interpretability especially in
certain applications such as finance. Mathematically, we can directly link the collapsed and
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original distribution function or copula as described in Section 2.3.2 below. This allows
one to use the maximum collapsing function in hierarchical models. A drawback of the
maximum collapsing function arises when X; < X almost surely for some 7,5 € {1,...,p}.
In this case, the nature of dependence between random vectors captured by the maximum
collapsing function can be misleading since a subset of the random variables within the
group will be fully ignored.

The probability integral transform collapsing function

The probability integral transform (PIT) collapsing function bears some resemblance to the
multivariate extension of Spearman’s rho discussed in Grothe et al. (2014). However, the def-
inition of y within our framework and its estimation procedure differ. The PIT-transformed
collapsed random variable Fx(X) has distribution function Kx(t) = P{Fx(X) < t},
t € [0,1], known as the Kendall distribution. Since Fx (X ) = Cx{Fx,(X1),..., Fx,(Xp)} =
Cx(Uy,...,Up) for U = (Uy,...,U,) ~ Cx, Kx only depends on the copula Cx of X and
can thus be viewed as a summary of the dependence of the components of X in the form of
a p-variate function. Unfortunately, Kx itself is rarely analytically tractable for dimensions
of X larger than two. Notable exceptions are Archimedean copulas C'x with generators 1,
for which a calculation based on the stochastic representation and a connection with the
Poisson distribution function can be used to show that

=1 (k) f,,—1
Rxlt) = 5 O iy e o,y 2.5

P k!

see the proof of Proposition 2.3.5 for this approach or Barbe et al. (1996) for the first
appearance of this result.

Measures of association arising from the PIT collapsing function satisfy all five properties
(P1)—(P5). For property (P4), note that by Sklar’s Theorem, see Sklar (1959),

S(Xy,..., Xp) = Fx(X) = Cx{Fx,(X1),..., Fx,(X,)}

= S(Uy,...,U,),

where (Uy,...,U,) = (Fx,(X41),...,Fx,(X,)) ~ Cx. Therefore, the PIT as collapsing
function also does not depend on the univariate marginal distributions. Property (P5)
follows as a consequence of the resulting measure y being copula-based together with the
fact that this collapsing function naturally summarizes within-vector dependence. The
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satisfaction of (P5) is a notable advantage of this collapsing function. Additionally, the
measure x here is a multivariate extension of Spearman’s rho. Furthermore, using the PIT
collapsing function, we can link the collapsed and original distribution functions and copulas
more directly (see Section 2.3.3), thus allowing it to be used in hierarchical models; this was
investigated in the context of Kendall copulas in Brechmann (2014). A downside is that
the measures of association arising from the PIT collapsing function are not immediately
amenable to the general asymptotic analysis using the tools we present in Section 2.2.4.

The pairwise distance collapsing function

One can choose virtually any type of distance D, for example, Euclidean, Manhattan,
Canberra, and Minkowski as collapsing function S. Nested within our framework for this
choice of collapsing function is a partial connection with the distance correlation of Székely
et al. (2007). In particular, for the choice of Euclidean distance, we obtain a measure y
similar to that of the sample version of distance correlation. By default one can choose
the Euclidean distance collapsing function given its link to distance correlation. However,
numerical experiments have shown that it can sometimes be advantageous to choose the
Canberra distance to avoid issues related to large distances resulting from outliers in the
data. Beyond this, experimentation within the context of the data application objective is
required.

Measures of association arising from the distance collapsing function satisfy proper-
ties (P1)’, (P2) and (P3). As with all previous measures, property (P4) is in general
only satisfied if we replace (X1,...,X,) and (X{,..., X)) by (Fx,(X1),..., Fx,(X,)) and
(Fx, (X1), ..., Fix, (X)) in S. Measures y resulting from the distance collapsing functions
have the potential to detect various non-linear associations; see Székely et al. (2007) and
the numerical experiments in Lopez-Paz et al. (2013) and Simon and Tibshirani (2014)
for some corroboration in the context of distance correlations. In our framework, the
broader choice of distance collapsing functions can potentially be utilized to capture a
wider variety of non-linearities as needed. In particular, the differentiating advantage over
copula-based measures lies in the ability to detect non-monotone associations. From an
empirical perspective, the increased sample size in the collapsed space can be helpful for
smaller datasets. However, with this comes the added computational burden and memory
when dealing with larger datasets. The lack of interpretability, especially in the context of
collapsed distribution functions and copulas is a disadvantage of all distance collapsing func-
tions. Additionally, the inability to differentiate between positive and negative associations
between groups of random variables is a notable drawback of distance collapsing functions.
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The pairwise kernel collapsing function

One can choose any kernel function K, some of which are listed in Table 2.2.

Type of K Kernel function K(-;-) : R? x R» - R
Linear K(z;, x)) = =] =),
Polynomial (of order d) K (z;, x)) = (1 + =] x;)?
Gaussian K(x;, ) = exp[—{H:c,- - wkH%/(QUQ)ﬂ
von Mises K(x;, 1) = [T_1 exp{ri cos(zy — xpe) }

Table 2.2: Examples of kernel functions.

By default one can choose the Gaussian kernel which is widely used as a sort of universal
approximator; see Micchelli et al. (2006). For angular data, the von-Mises kernel based
on its corresponding multivariate distribution as given in Mardia et al. (2008) would be a
natural choice.

There are a few measures of association in the literature constructed with kernel similarity
functions but with different formulations. These include the Hilbert Schmidt independence
criterion of Gretton et al. (2008) and kernel canonical correlation coefficient of Bach and
Jordan (2002).

Measures of association arising from the kernel collapsing function satisfy properties
(P1)’, (P2) and (P3). Again, property (P4) is in general only satisfied if we replace
(X1,...,Xp) and (X],..., X)) by (Fx,(X1),..., Fx,(Xp)) and (Fx,(X]),..., Fx,(X])) in
S. Like the distance functions, the kernel collapsing functions can potentially detect various
non-linear and non-monotone associations. Furthermore, the augmented sample size in
the collapsed space is a benefit for smaller datasets and a computational burden for larger
datasets. A notable drawback of using the kernel collapsing function is its inability to
differentiate between positive and negative associations between groups of random variables.
Additionally, the collapsed measure of association, the collapsed copula and the collapsed
distribution function all lack interpretability.

The multivariate rank collapsing function

Using the multivariate rank collapsing function S(z,z’) = 1{x < 2’} to reduce multi-
dimensional random vectors to a single dimension yields a rank-based measure of asso-
ciation y. As usual, the inequality & < @’ is understood componentwise. The resulting
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measure of association was first introduced in Grothe et al. (2014) as one possible multi-
variate extension of Kendall’s tau. Analogously, a multivariate extension of Blomqvist’s
beta between random vectors can be obtained using S(x) = 1{x < Fx(1/2)}, where
Fx(1/2) = (Fx,(1/2), ..., Fx,(1/2)).

Measures of association arising from the rank collapsing function satisfy all five properties
(P1)—(P5) listed in the introduction of Section 2.2. As to property (P4), note that if
Fx,,..., Fx, are strictly increasing and continuous, the multivariate rank transform satisfies

S{(X1,.... X)), (XI,. . X)}=1{X, < X|... . X, <X}
= 1{Fx,(X1) < Fx,(X1),..., Fx,(X}) < Fx,(X,)}

= S{(Fx,(X1),.-, Fx,(X,)), (Fx,(X]),..., Fx, (X))}

and thus does not depend on the marginal distributions F,,...,Fx,. Property (P5)
follows as a consequence of the resulting measure y being copula-based, coupled with the
fact that this collapsing function summarizes within-vector dependence; see Grothe et al.
(2014) for further details. The satisfaction of (P5) is a notable feature of this collapsing
function. Moreover, this measure y represents a multivariate extension of Kendall’s tau.
One drawback in the context of our framework is the difficulty in interpreting the collapsed
distribution function and copula. It is also worth noting that the computational burden
for computing this measure x can be high; this is a 2p-variate collapsing function so
computations are of the same order as the distance and kernel collapsing functions, because
x must be estimated from (g) pairs of samples.

2.2.4 Estimation and asymptotic properties

In this section, we study estimators of y in Equation (2.1), and derive asymptotic results
which can be used to compute their standard errors. Also, see Appendix A.1.3, where we
study estimators of 7 in Equation (2.2).

Assume we have a random sample (X1,Y7),...,(X,,Y,) from Fxy. Furthermore let
(X', Y") be an independent copy of (X,Y’). An estimator x,, of x(X,Y) = p{S(X),S(Y)}
can be constructed by replacing p by the sample correlation coefficient. The following
section investigates some properties of this estimator for collapsing functions S with known
analytical forms. This excludes S that are stochastic and data-dependent such as the PIT
collapsing function; the estimation of the PIT collapsing function is treated separately in
Section 2.3.3.

We follow Grothe et al. (2014) and view x,, through the lens of U-statistics to derive its
asymptotic distribution.
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Proposition 2.2.2 (Asymptotic distribution of y,,)
Suppose x,(X,Y) is defined as the sample correlation coefficient between S(X) and S(Y).
Then, as n — oo,

Vi(xn — x) ~2 N(0,02),

where

o J(Vfsxalu) " E1(V fsxaln), if Sis a p-variate function,
X 4V foxlp) " S2(V fsxaly), if S is a 2p-variate function.

Here, V fs5x1], denotes the gradient vector of the function

e —ab
VeI

evaluated at the population mean p = (s, fly, o, Hyy, fay), Where p, = E{S(X)},
fy = BASOY), st = EAS(X?}, sy = EAS(Y)), 1y — B{S(X)S(Y)}. Further
more, Y; denotes the covariance matrix of (S(X),S(Y), S(X)?, S(Y)? S(X)S(Y)) and
Y5 denotes the covariance matrix of (E,/{S(X,X")}, E,.{S(Y,Y")}, E.{S(X,X")%},
E,{S(Y, Y/)2}7 ]E(X@Y’){S(Xﬁ X")S(Y.Y")}).

f(a’ b7 C) d7 6) =

Proof. See Appendix A.1.1. n

Remark 2.2.3 (Estimation of ¢7)

To estimate the asymptotic variance oi we adopt a plug-in approach as suggested by Grothe
et al. (2014). This procedure has two key ingredients as summarized below and it will
slightly differ between the two cases given in the proof of Proposition 2.2.2. Note moreover
that the notation below is also explained in the proof of Proposition 2.2.2 in Appendix A.1.1.
The two cases are those where S is a p-variate (Case 1) or a 2p-variate (Case 2) function.

1. Ina first step, evaluate the gradient vector V fsy1 at m® = (m{® mF) mE mk) m®),
k € {1,2} corresponding to the sample quantities in Case k. The analytical form of

the gradient vector evaluated at the appropriate values is given in Appendix A.1.2.

2. Now distinguish the two cases: In Case 1, estimate ¥; by the sample covariance matrix

Sna of (S(X3),S(Y4),S(X:)% S(Y )%, S(X)S(Y)), i € {1,...,n}. In Case 2,
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estimate ¥y by the sample covariance matrix X, o of (gx(Xi), 9y (Y3), 922 (X)s 9y (YY),
Gy (X4, Yi)), ie{l,...,n}, where

1 n 1 n
gx(Xi):n_le(Xian)a gy<Yi):n_1ZS<Yian):
T i
1 n 1 "
Goo(Xi) = 1 Z S(XZ>XJ)2> Gy (Y) S(Y, Yj)27
n—1:4= n — 1]—
J#i J#

=1

2
The quantities g., g, Guz,s Gyy guy €stimate the conditional expectations E, {S(X, X"},
E,{S(Y.Y")}, Ex{S(X, X))}, E, {S(Y,Y')?}, Ex+{S(X,X")S(Y,Y")}, re-

spectively, and can be motivated using the jackknife methodology as Grothe et al.
(2014) identified.

3. Then, 0721»( = (Vf’m(1))TZn71(Vf‘m<1)) in Case 1 and JTQL’X = 4(Vf‘m<2))TEn’2(Vf’m(2))
in Case 2.

2.3 Collapsed distribution functions and their copulas

While we can always compute and visualize realizations from the empirical collapsed copula
— for 2p-variate functions this requires using all (g) pairs of observations — deriving an
analytical form of the collapsed distribution function or collapsed copula in terms of the
joint distribution of Z = (X,Y’) may be challenging. As an example, consider S to be the
sum, in which case the marginal distributions of (S(X), S(Y')) are generally not analytically
tractable even if X and Y are vectors of independent components so that S(X) and S(Y)

are convolutions.

There are two scenarios under which one may be able to derive explicit results. First,
when X and Y have a specific dependence structure, as in the following subsection,
and second, when the collapsing functions are suitable, as in the subsections thereafter.
Most notably, an example of the latter scenario will yield a multivariate extension of the
well-known Kendall distribution.
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2.3.1 General collapsing functions

The following result uses the concept of strong-comonotonicity of Puccetti and Scarsini
(2010), according to which (X,Y) is called s-comonotone if X = (Fx, (U),..., Fx (U))
and Y = (Fy, (U),..., Fy, (U)) for U ~ U(0,1). An immediate extension of this result
leads to the notion of strong-countermonotonicity: We call (X,Y") s-countermonotone if
X = (Fx,(U),... ,F)}p(U)) and Y = (Fy. (1 -0U),... ,F;q(l —U)) for U ~ U(0,1).

Proposition 2.3.1 (Independence, s-comonotonicity, s-countermonotonicity)
Let X ~ F'x be a p-dimensional and Y ~ Fy be a ¢g-dimensional random vector, both with
continuously distributed margins.

1. If X and Y are independent, then Cy(x) sv)(u,v) = uwv for u,v € [0,1].

2. 1f (X, Y) is s-comonotone and g(u) = S{(Fy, (u),..., Fx (u))} and h(u) = S{(Fy; (),
. ,ng(u))} are strictly increasing functions, then Cyg(x) s(v)(u,v) = min(u,v) and
thus the collapsed copula is the upper Fréchet—Hoeffding bound.

3. If (X,Y) is s-countermonotone and g(u) = S{(Fg1 (u),..., Fx, (u))} and h(u) =
S{(F{1 (w),..., Iy, (u))} are strictly increasing functions, then Cg(x) sv)(u,v) =
max(u+ v — 1,0) and thus the collapsed copula is the lower Fréchet—Hoeffding bound.

Proof.

1. By the Grouping Lemma (see (Resnick, 2014, Lemma 4.4.1) and (Durrett, 2004,
Theorem 2.1.6)), which states that measurable functions of independent random
variables are independent, S(X) and S(Y') are independent and so Cg(x) s(y) is the
independence copula.

2. For U ~ U(0,1), we have that $(X) = S{(Fx,(U),..., Fx, (U)} = g(U) and
S(Y) = S{(FQ (U), ,F;q(U))} = h(U), so both collapsed random variables are

1
increasing functions of the same U ~ U(0,1). Therefore, they are comonotone and

thus their copula equals the upper Fréchet—Hoeffding bound.
3. For U ~ U(0,1), we have that S(X) = S{(Fx,(U),...,Fx, (U))} = g(U) and
S(Y) = S{(F;l(l —U),..., Fy (1- U))} = h(1—=U), so S(X) is a strictly increasing

and S(Y) is a strictly decreasing function of U. Therefore, they are countermonotone
and thus their copula equals the lower Fréchet—Hoeffding bound.
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]

Note that the upper Fréchet—Hoeffding bound may also appear if (X,Y’) is not s-
comonotone. For arandom vector U with U(0, 1) margins and X = (F'y, (U1), ..., Fx (Up)) =
Y, one has that (S(X),S(Y)) = (S(X),S(X)) and thus that the collapsed copula is
the upper Fréchet—Hoeffding bound. Any concordance measure of the collapsed random
variables would therefore be 1.

The following examples show that many collapsing functions fall under the setup of
Proposition 2.3.1 Parts 2 and 3 and thus that s-comontonicity and s-countermonotonicity im-
ply that the collapsed copulas are the upper and lower Fréchet—Hoeffding bound, respectively.

Example 2.3.2 (Strict monotonicity of g, i for various collapsing functions)

1. Let S be the maximum collapsing function and let Fx,,..., Fx,, Fy,,..., Fy, be
continuous, so that Fy ..., Fx , Fy,, ..., Fy are strictly increasing. Then g(u) =
S{(Fg, (w). . Fi, (u))} = ma <y (F ()} am A) = S{(Fy w), . By )} =
maxi<p<qi Fy, (1)}, which are strictly increasing in w.

2. Let S be the PIT collapsing function and let the diagonals of C'x and Cy be
strictly increasing. Then, by Sklar’s Theorem, g(u) = S{(F)}1 (u),..., ng(u))} =
Fx{Fyx,(u),.... Fx (W} = Cx(u,...,u) and h(u) = S{(Fy,(u),..., Fy,(u)} =
Fy{Fy,(u),..., Fy (u)} = Cy(u,...,u), which are strictly increasing in u.

3. Let S be the weighted sum collapsing function S with non-negative weights w and

let Fix,,...,Fx,, Fy,,..., Fy, be continuous, so that Fiy ,... Fx, Fy,, ..., Fy, are
strictly increasing. Then g(u) = S{(F)}1 (u),.. .,F)}p(u))} = Yj wikF,(u) and
h(u) = S{(F}?1 (w), ..., Fy, (u))} = Yi—1 wpFy, (u), which are strictly increasing in u.

2.3.2 Maximum collapsing function

We now focus on the maximum collapsing function. An appealing property allows us to
derive the collapsed distribution function and collapsed copula explicitly given that we
know the joint distribution function of Z = (X,Y").

Proposition 2.3.3 (The collapsed distribution and its copula for the maximum collaps-
ing function)
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Let Xy,...,X,,Y1,...,Y, be continuously distributed random variables with distribution
functions Fx,,..., Fx,, Fy,,..., Fy,, respectively. Furthermore, let Fix y denote the dis-
tribution function of (X,Y) and consider the maximum collapsing function S. Then the
collapsed distribution function Figxysy)) is Fisx)soyy(@,y) = Fxy(z,...,2,y,...,y)
with corresponding collapsed copula

CS(X Y)(u U) FX7Y{F5T(X)<U)7'--7F,5?(X)(u)7F,5?(Y)(U)7'~~7F§(Y)(U>}a u,v € [071]7

where Fg y(u) and Fgy)(v) denote the quantile functions of the distribution functions
Fsx)(z) = Fxy(z,...,2,00,...,00) and Fsry)(y) = Fxy(0o,...,00,y,...,y), respec-
tively.

Proof. Since Fig(x),s(v)) (%, y) = P{max(Xy,...,X,) <z, max(Yy,...,Y,) <y} =P(X; <

L Xp <Y <y, Y, <y = Fxyl(x,...,2,y,...,y) with margins Fgx)(z) =
Fxy(z,...,z,00, o0) and Fgyy(y) = Fx y(0o,...,00,¥,...,y), Sklar’'s Theorem im-
plies that the collapsed copula Cg(x),s(y) 1s given as stated O

Deriving the collapsed copula in special cases can provide a concrete understanding of
the way in which the maximum collapsing function summarizes dependence between X
and Y. We present one example below; another one is given in Appendix A.2.

Example 2.3.4 (Meta nested Archimedean copula model and the maximum collapsing
function)

Let Z = (X,Y) ~ Fxy(@,y) = Co|Ci{Fx, (z1), -, Fx, ()}, Co{ Fyy (1), - -, Fy, () }],
where X; ~ Fx,, j € {1,...,p}, and Y}, ~ Fy,, k € {1,..., ¢}, are continuously distributed.
Let Cy, Cy,Cy be Archimedean copulas with generators ¢, ¥, ¥y satisfying the sufficient
nesting condition; see Hofert (2012) or McNeil (2008) for more details. Furthermore,
consider the maximum collapsing function S.

1. If Fx, is equal to F'x for all j € {1,...,p} and Fy, is equal to Fy for all j € {1,...,q},
then

R
>
2

Fsxy(x) = Ca{Fx(x), ..., Fx(x)} = ¢ |ty {Fx(2)}],
Fsy(y) = Co{ Fr (). ... Fr ()} = [0 {Fy (0)}],

with corresponding quantile functions

Fyx)(u) = Fx [ {er () /p}],  Foo(v) = Fy [¢a{ty ' (v) /g}].

g2
=
z
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Proposition 2.3.3 implies that the collapsed copula equals
Cs(X)ﬁ(Y)(’LL, U) = FX,Y{FST(X (u), Ce 7F§(X)(u)7 FbT(Y)(U% Ce ,Fs_(n(v)}
= GolC{ P (P [ ot @)/p)). - B (F [on o7 ) /03] },

Co{ B (Fy [wa07" ) /)] ) Y(F; [vofw @)/a})) |
= Co(Ca [ {v7" (w)/p}, . ,wl{w;%u)/p}},

Co ¢ {ty ' (v)/a}s -, dafuy (v) /a} )
= Co(u,v), wu,v€0,1].

This is an intuitive result, as any two random variables (X, Y}) have marginal copula
Cp under this model as do the group maxima as long as the marginal distributions are
equal per group. This implies that any collapsed measure of concordance is precisely
the one corresponding to the copula Cj in this case.

. In the general case where the margins of X and Y are not all equal, we know that

S(X) ~ Fyx)(z) = ]P{max( j) <z} <P(X; <w)=Fx,(z), je{l,...,p},

S(Y) ~ Fs)(y) = P{max (V) <y} <PV <y) = Fy(y), ke{l,....q},

1<k<q

and thus that

Fyxy(u) 2 Fx,(u), g ef{l..opy, Fyyy(v) 2 Fy(v), ke{l,....q}

We thus obtain the following lower bound for Cg(x) s(v)

Csx),s00) (1, v) = Fx y{Fgx) (), .-, Fgx) (), Fgy)(v), - Fgyy (v) }
= Co(C1[Fx, {Fgx)(W)}, - Fx, {Fy x) (w)}]
Co| Py {Fgiy ()}, -, Fye {Fg) (0)}])
> Co(Ch | Fx, {F, (u)},. FX,,{F (W)},
Ca [Fyl{Fﬁ(w} LBy {Fy, (0)}])

= Co{Ci(u,...,u), Co(v,...,v)}, wu,veE0,1].
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2.3.3 PIT collapsing function

For the PIT collapsing function, the collapsed distribution function and copula have notable
terminology and notation following from the copula literature. In that spirit, we will present
them as extensions of the Kendall distribution and adopt the same notation.

Definition

Let U ~ Cx and V ~ (Cy for the copulas Cx and Cy of X and Y, respectively. For
t1,t2 € [0, 1], define the multivariate (or joint) Kendall distribution by

KX7y(t1,t2) — ]P{Fx(X> S tl, Fy(Y) S tQ} — P{Ox(U) S tl, Cy(V) S tQ}

It is straightforward to define higher-dimensional Kendall distributions having univariate
Kendall distributions as margins. The copula of Kx y (¢, t2), if uniquely determined, follows
from Sklar’s Theorem via

CK(Ul,UQ) = KX,Y{K;((’U/l), K;—(Ug)}, Uy, U S [O, 1], (26)

where Ky and Ky denote the quantile functions of the marginal Kendall distributions K x
and Ky, respectively. We call Cx the Kendall copula. Kendall copulas have previously
appeared in Brechmann (2014) as hierarchical Kendall copulas without explicitly investigat-
ing the notion of joint Kendall distributions; the latter naturally appear in our framework
for measuring dependence between random vectors.

Properties

We now briefly discuss some basic properties of multivariate Kendall distributions and
Kendall copulas (as before, we focus on the bivariate case); see also Appendix A.3 where
several measures of association y(X,Y’) are expressed in terms of the multivariate Kendall
distribution.

Asin (2.5), where an analytical formula for univariate Kendall distributions for Archime-
dean copulas is given, an explicit form can be given for multivariate Kendall distributions.

Proposition 2.3.5 (Multivariate Kendall distribution in the Archimedean case)
Let (X,Y) be a (p + ¢g)-dimensional random vector with Archimedean copula C' with
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completely monotone generator ¢. Then, for all ¢;,t, € [0, 1],

(r—1)(g—-1) n m—n
ny<t1,t2) ZO {Z{w (tl>} {w ( )} }(_1)m¢(m){w—1(tl)+w—1(t2)} (27)

o (m —n)!

Proof. Let V ~ Fy, where Fy is the Laplace-Stieltjes inverse of ¢ and let Eyq,. .., Eyp, Eo,
., By, ™ Exp(1). Furthermore, let

o= (o(E0).o(B2)) ana v = (B2 o(B))

Note that (U, V') ~ C and that U ~ Cx and V ~ Cy, where Cx, Cy are (also) Archime-

dean copulas with generator ©). As a result, (X,Y") allows for the stochastic representation
(X,Y) = (Fx,(Un), ..., F)}p(Ulp), Fy. (Uz), . .. ,F;q(UQq)).
Thus

Kxy(ti,t2) = P{Fx(X) <t1, Fy(Y) <t} =P{Cx(U) < t1, Cy(V) < t5}
= IP{EH +---+ Elp > Vi/)il(tl), Eoy+---+ EQq > V’Lﬂil(tg)}

= /OOO IP{EH —+ -+ Elp > U¢_1(t1), Egl 4+ -4 qu > U¢_1(t2)} dFv(U)
= /OOO IP{EH + -4 Elp > U@/J_l(tl)} P{Ezl —+ -4 qu > U’Qb_l(tg)}dFv(U)

= /O Fooifop—1)1 (P — 1) Fpoifuyp—1(t2)} (¢ — 1) dFy ()

B /ooo exp{—vep~? }Z - (o tl)} exp{—vy~! }Z {W ()} dFy(v)

) (p—D(g-1)r m n m—n
:/ eXp[—U{@/}_l(tl)—f—@/}_l(tg)}} Z [Z{w (tl)} {dj ( )} :|UmdFv(U)

m=0 n=0 (m_n)'

(p

)(q—1) n m—n
> [ W I oy 4ty

2 (m —n)!

where we used the fact that the survival function of an Erlang distribution can be expressed
as the distribution function Fp,; of a Poisson distribution. O

Note that (2.5) follows from (2.7) as a special case. Moreover, it is straightforward to
extend (2.7) to higher dimensions. In this case, each random vector in the construction
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corresponds to a single dimension of the multivariate Kendall distribution. As a special case,
when each such random vector consists of only a single random variable, the multivariate
Kendall distribution equals the copula of these random variables.

Figures 2.1 and 2.2 display scatter plots of n = 1000 independent observations of the
bivariate Gumbel and Clayton Kendall copulas. The parameter of the underlying Gumbel
and Clayton generator are chosen such that Kendall’s tau equals 0.5. The different plots
depict how varying dimensions p,q impact the dependence structure between the two
random vectors. This difference manifests itself in the form of asymmetry (lower vs upper
tails) and the strength of dependence (comparing the case (p,q) = (2,2) to (p,q) = (50, 50)).
Concerning the latter, one can give a heuristic argument. With the notation as before, note
that Cx(U) = 1 (pE../V) and Cy (V) = 1(qFE,./V), where, almost surely by the Strong
Law of Large Numbers, F;. = i1 Ey/p— 1 and Ey. = XY%_, Eo./q — 1. Therefore, for
large p and ¢, Cx (U) = ¢(p/V) and Cy (V') = 1(q/V') which are increasing functions of the
same random variable V' and thus their copula approximates the upper Fréchet—Hoeffding
bound. Finally, we note the asymmetry in Figures 2.1 and 2.2 in the pull of the realizations
towards the diagonal representing perfect dependence, which is stronger below the diagonal
if p > ¢ and above the diagonal if p < q.

Note that besides Example 2.3.2 Part 2, the PIT collapsing function S also leads
to the collapsed copula being the upper Fréchet—Hoeffding bound under the notion of
m-comonotonicity of Puccetti and Scarsini (2010). If p = ¢, X = (F, (1), ..., Fx, (Up))
and Y = (Fy, (Uh), ..., Fy, (Uy)) for U ~ C for some copula C, then, by Sklar’s Theorem,
S(X)=Fx(X)=C(U,...,U,) and S(Y) = Fy(Y) = C(U,...,U,), so the collapsed
random variables are comonotone and thus the collapsed copula is the upper Fréchet—
Hoeffding bound.

Nonparametric estimators of univariate Kendall distributions based on a random sample
(X, Y,),i€{l,...,n}, can be constructed as follows. Let

1 & 1 &
W, = (Wi, Wip) = ( X, <X}, — > 1Y, < Yz‘}>,
n—1i3 n—1i5
leti ki
where, as usual, the inequalities are understood componentwise. Similar to Barbe et al.

(1996) and Genest and Rivest (1993) in the univariate case, one can use the empirical
distribution function

1

K,(t) = K,(t;,t2) = Zﬂ{w <t}=-— Zﬂ{wﬂgtl,%gtg}, t=(t1,t2) € 0,17,
i:l

3 \

in the multivariate case as a nonparametric estimator of Kx y (¢1,%2).
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Figure 2.1: n = 1000 independent observations from different Gumbel Kendall copulas
(with Gumbel parameter chosen such that Kendall’s tau of the underlying generator equals
0.5) corresponding to the joint Kendall distribution function as specified in (2.7). Note
the dimensions of the two sectors are varied with p € {2,10,50} and ¢ € {2,10,50}, thus
leading to nine different variations.
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Figure 2.2: n = 1000 independent observations from different Clayton Kendall copulas
(with Clayton parameter chosen such that Kendall’s tau of the underlying generator equals
0.5) corresponding to the joint Kendall distribution function as specified in (2.7). Note
the dimensions of the two sectors are varied with p € {2,10,50} and ¢ € {2,10,50}, thus
leading to nine different variations.
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Estimation for the PIT collapsing function

We now discuss the construction of an estimator for x(X,Y) = p{Fx(X), Fy(Y)}. To
begin with, let W) = Fx(X) and Wy = Fy(Y'). As in Barbe et al. (1996), we consider the
pseudo-observations

1 1 .
Wﬂ_rZIL{Xk<X} Wzg_niZIL{Yk<Y} ief{l,...,n},
i =5

where the inequalities are understood componentwise. As before, an estimator for the
measure of association x(X,Y’) can simply be constructed via the sample correlation
coefficient, that is, x,(X,Y) = p,(Wi1, Wi2). As this particular estimator does not fit in
the U-statistic framework, it is harder to derive asymptotic normality with an expression for
the asymptotic variance for this collapsing function. One can construct bootstrap confidence
intervals provided that convergence in distribution is established for y,,. However, this
asymptotic result remains to be found.

Based on the pseudo-observations defined above, one can also estimate x(X,Y) =
ps{Fx(X), Fy (Y)} by xn(X,Y) = po{ o x (Wir), Ky (Wiz)}, where

K, x(t) = Z Wi <ti}, Kuy(ts) = Z I{Wip <ta}, ti,t2 €[0,1].

j 1

2.4 Applications

In practice, the choice of collapsing functions will depend on the context. The weighted
sum/average collapsing function is often the most obvious and interpretable choice. Another
strong contender is the distance collapsing function, which is related to the distance
correlation of Székely et al. (2007) for which there exist well established theoretical results.
In this section we present two applications to illustrate how our framework can be applied
in practice.

2.4.1 Protein data: An application from bioinformatics
Proteins are complex molecules composed of sequences of amino acid residues of which

there are 20 different types. All share a generic structure, R-CH(NH,)-COOH, where the
component labelled “R”; also known as a side chain, identifies the specific type of amino acid.
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In bioinformatics, scientists are interested in understanding how conformational changes at
different side chains may be coupled together (Ghoraie et al., 2015a). For example, if two
residues are far apart in the sequence but their side chains tend to change conformation
together, it may be an indication that they are close in 3D. In turn, this may shed light on
the all-important underlying protein folding process.

The conformation of a side chain can be characterized by a set of dihedral angles. To
understand this, picture a side chain as a sequence of atoms spanning off the backbone of
the protein. The angle between planes formed by atoms 1-3 and atoms 2—4 in the sequence
is referred to as the first dihedral angle, and so on. Typically, there are zero to four such
dihedral angles depending on the size of the underlying amino acid.

Thus, let X = (Xy,...,X,),0<p<4,and Y = (¥1,...,Y,), 0 < g <4, represent the
dihedral angles of two side chains, respectively. We need a measure of association between
the two random vectors X and Y. To quantify their dependence, Ghoraie et al. (2015b)
applied the Graphical LASSO (GLASSO) developed by Friedman et al. (2008), while
Ghoraie et al. (2015a) used “kernelized partial canonical correlation analysis” (KPCCA).
Here, we apply our framework of collapsing functions.

Analysis

We report results using various collapsing functions — in particular, the weighted average,
the pairwise distance, the pairwise kernel, and the PIT.

For the weighted average, we consider putting more weight on the first few dihedral angles.
This is because dihedral angles closer to the backbone of the protein are more restricted in
their motion, so changes in their conformations contain much more biological information
than those further away. In particular, we consider the extreme case w = (1,0, ...,0), that
is, full weight on the first dimension, which results in the bivariate measure of association
p(X1,Y1). For the pairwise distance, we include only the Euclidean distance because,
after experimenting with other distance functions, there was little to no difference for this
application.

For the pairwise kernel, we follow Ghoraie et al. (2015a) and use a multivariate von-Mises
kernel,

P

K(z;,xz;) = H exp{kqcos(zy — xj1)},

t=1

where x;, ¢; € R? are two different conformations of a given side chain. We simply use
the same concentration parameters as adopted and justified by Ghoraie et al. (2015a), so
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k1 =8, ko = 8, k3 = 4 and k4 = 2. These choices were made because atoms farther away
from the backbone have more freedom of motion.

Finally, the PIT is a general-purpose choice of collapsing function that can capture both
positive and negative association. However, for the purpose of ranking dependencies we are
only interested in the strength of dependence, so we use |x(X,Y)| as the ranking criteria.

We use the same dataset as Ghoraie et al. (2015a) which allows for a direct comparison
of the results. Altogether, Ghoraie et al. (2015a) studied eight different types of proteins
from three different families (Ras, Rho and Rab). Each protein has a varying number of
residues approximately in the range of 160-190. Through a specific procedure explained in
Ghoraie et al. (2015a), roughly 16,000-18,000 sample conformations for these proteins were
generated.

Note that working with the pairwise distance and kernel collapsing functions is compu-
tationally prohibitive. For each protein we have up to 18,000 sample conformations which
would have resulted in (18’300> samples in the collapsed space. We thus consider ten random
subsets of size 5000 without replacement from the original dataset and compute the relevant
evaluation criteria as an average across the subsets.

The objective is to rank all pairs of residues in a protein according to various mea-
sures of association, and to verify whether “known couplings” appear in the top-ranked
pairs. Following Ghoraie et al. (2015a), “known couplings” were based on the Contact
Rearrangement Network (CRN) method from Daily et al. (2008). The receiver-operating
characteristic (ROC) curve — in particular, the area under the ROC curve (AUC) — is used
as a summarizing evaluation criterion to determine how well the rankings produced by
different measures agree with the CRN method’s results; the AUC is well-known to have
the interpretation of being the probability that an algorithm ranks a true signal ahead of a
false one (Hanley and McNeil, 1982).

Results and discussion

We compare the resulting AUC values from the chosen collapsing functions with results
from KPCCA Ghoraie et al. (2015a) and GLASSO Ghoraie et al. (2015b).

From Table 2.3, we see that measures of association resulting from all collapsing functions
have AUC values much greater than 50%, so they are all significantly better than detecting
allosteric couplings at random. Particularly, the distance collapsing function yielded the best
allosteric coupling detection amongst measures of association arising from our framework.
For three proteins 1G16, 1IKAO, and 1XTQ, measures of association resulting from the
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Protein H-Ras RhoA Rap2A Rheb Sec4 Cdc42 Racl Ypt7p

PBD ID 4Q21 1FTN 1KAO 1XTQ 1G16 1ANO 1HH4(A) 1KY3
KPCCA 80 75 69 70 68 68 67 72
Distance 7 73 72 71 69 66 64 64
Weighted Average — 78 74 72 65 71 66 67 59
GLASSO 78 72 68 71 68 68 59 67
Kernel 73 71 69 71 68 69 65 64
PIT 74 68 70 71 68 61 59 57

Table 2.3: AUC with respect to CRN, where the AUC values are in percent. The rows and
columns are organized in decreasing order of row and column means. Note that the “PDB
ID” is a unique identifier of the inactive state of the protein; see Berman et al. (2006).

distance collapsing function yielded better results compared to KPCCA and GLASSO.
Furthermore, simple yet meaningful collapsing functions, such as the weighted average
with w = (1,0, ...,0), often yielded comparable and for 1G16 and 1KAO superior results
to KPCCA and GLASSO. This is an interesting observation, given that this particular
collapsing function is considerably faster and easier to understand than the mathematically
sophisticated KPCCA or GLASSO methods and the computationally cumbersome distance
collapsing function.

2.4.2 S&P 500: An application from finance

Numerous problems in finance and risk management require the study of dependence
between random vectors or groups of random variables. In this section, we explore such a
problem by investigating dependence between S&P 500 business sectors. As we are dealing
with time series data, this problem can be viewed both through the lens of static and
dynamic dependence. Fixing a time period, we can assess whether the business sectors are
independent by visualizing the dependence between them. Additionally, we can compute
time-varying measures of association to dynamically capture dependence between business
sectors.

S&P 500 constituent data

For the static case, we consider the 465 available constituent time series from the S&P 500
in the time period from 2007-01-01 to 2009-12-31 (756 trading days); see the R package
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grmdata of Hofert and Hornik (2016). For the dynamic case, we consider 461 of these
constituent time series after accounting for missing data. We use the ten Global Industry
Classification Standard (GICS) sectors as business sectors. Nine of the ten GICS sectors
have Exchange Traded Funds (ETFs) which track the performance of each business sector;
they are also known as sector Standard and Poor’s Depository Receipt (SPDR) ETFs. We
use a bivariate measure of association between any two sector ETFs as a market-determined
benchmark for comparison.

To pre-process the dataset, we work with negative log-returns for each constituent and
fit ARMA(1,1)-GARCH(1,1) models to each time series. We then extract the corresponding
standardized residuals to investigate dependence between the component series; see Patton
(2006) for this procedure. The same pre-processing is applied to each of the nine ETF time
series.

A snapshot of S&P 500 sector dependence

Before thinking about modeling dependence, one should test the hypothesis H, that all
random variables are independent. Note that the hypothesis H, . that the collapsed random
variables are independent is a subset of Hy. If H. is rejected, so is Hy. The following
algorithm, which easily extends to more than two groups of random variables, provides a
simple graphical assessment of H_.

Algorithm 2.4.1 (Graphical assessment of independence for two groups of random
variables)

Let (X;,Y;), i € {1,...,n}, be a random sample from (X,Y’) and assume S(X) and
S(Y') are continuously distributed. To visually check independence of X and Y based on
(Xiin)7 1€ {]_7 < ,n}, do:

1. Compute the collapsed variables S;; = S(X;) and S;2 = S(Y;), i € {1,...,k}, where
k = n for p-variate functions and k = (g) for 2p-variate functions.

2. Compute the pseudo-observations Uy,;; = R;;j/(k+ 1), i € {1,...,k}, j € {1,2},
where, for each j € {1,2}, R;; denotes the rank of S;; among Sy, ..., Sk;.

3. Plot the pseudo-observations (Uy1,Uki2), @ € {1,...,k}. The less the visualized
samples resemble realizations from U(0,1)?, the greater the evidence against H . and
thus 7‘[0.

An interesting question is whether our visual assessment of independence is independent
of the marginal distributions of the p 4+ ¢ components of (X,Y"). This certainly depends on
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the collapsing function. In general, it does not matter for an assessment of independence,
but for better interpretability one could of course build pseudo-observations of the given
data from (X,Y") before applying Algorithm 2.4.1; note that in this case, one would apply
pseudo-observations at two levels, to the original variables and to the collapsed variables.

Following Algorithm 2.4.1, we can perform an assessment of independence between
business sectors. In particular, we use Euclidean distance, equally-weighted average,
maximum, and PIT collapsing functions. We also visualize the dependence between
all 36 ETF sector pairs for comparison. There are only 36 ETF sector pairs since the
Telecommunications sector does not have an ETF.

Figure 2.3 illustrates this graphical assessment of independence with four zenplots,
one for each choice of collapsing function. Zenplots are zigzag expanded navigation plots
where adjacent bivariate plots share the same variable. This leads to more flexible plot
layouts which are less wasteful concerning space than scatter-plot matrices. If necessary,
the bivariate plots can also be ordered according to some measure from “most” to “least”
important; see Hofert and Oldford (2017) for more details. As can be clearly detected from
the chosen collapsing functions, the business sectors cannot be assumed to be independent.
To facilitate the comparison of the collapsed variables with the benchmark, Figure 2.4 also
shows the pairwise dependence structures between the nine sector ETFs.

The four zenplots in Figure 2.3 can be interpreted as realizations from the underlying
and unknown collapsed copula. Realizations from the Euclidean distance collapsed copula
are denser in comparison to realizations from the other three collapsing functions because
there are (736> realizations as opposed to just 756. In particular, due to the nature of the
distance function, it is difficult to interpret features of the dependence structure between
business sectors, such as tail dependence, asymmetry and shape in the context of the original
variables portrayed in the corresponding zenplot. As a result, for applications in finance,
the distance collapsing function should only be used for a quick graphical assessments of
independence.

Since the weighted average collapsing function is most natural for return data, the
interpretations of tail dependence and asymmetry translate well from the bivariate case.
We naturally see the similarity in the dependence structures between the weighted average
collapsing function and the benchmark ETFs in Figure 2.4. Furthermore, since the PIT
collapsing function leads to realizations from the Kendall copula, it also yields an attractive
interpretation of the dependence structure depicted in its corresponding zenplot. For
instance, as noted in Example A.3.4, the tail dependence coefficients in this case can be
interpreted as natural multivariate extensions of bivariate tail dependence. Owing to the
justification of these two collapsing functions and interpretability, one could potentially fit
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Figure 2.3: Zenplots displaying all pairs of pseudo-observations for the 10 GICS sectors of
the 465-dimensional S&P 500 data based on the Euclidean distance (top left), weighted
average (top right), PIT (bottom left), and maximum (bottom right) collapsing functions.
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Figure 2.4: Zenplot displaying all pairs of pseudo-observations for the nine GICS Sector
ETFs.
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Figure 2.5: Scatter plots displaying pseudo-observations of maximum, PIT, Euclidean
distance, and average collapsed measures of association between the nine GICS sectors
versus measures of association between the corresponding nine GICS Sector ETFs.

a copula model directly to the collapsed variables to model a notion of dependence between
groups of random variables, but this framework will in general not offer an analytically
tractable link back to the original random variables.

The maximum collapsing function appears to capture a weaker form of dependence
compared to the other collapsing functions and the benchmark. This is to be expected as
this collapsing function describes a notion of dependence between the worst performers only.
In particular, it describes this notation in a plural sense in that the constituent chosen as
the maximum can change daily in each business sector over the time period considered.

To check which collapsing functions best capture dependence with respect to the
benchmark, Figure 2.5 shows scatter plots of pseudo-observations of collapsed measures
of association between nine GICS sectors versus measures of association between the
corresponding GICS sector ETFs. In particular, in increasing order of concordance between
the collapsed and ETF measures of association, we have the maximum, PIT, distance,
and average collapsing functions. We can clearly infer that the measures of association
arising from the distance and average collapsing functions match the dependencies between
the sector ETFs more closely. Since ETFs which are tradeable securities are marketed
as weighted averages of sector constituents, the measures of association arising from the
average collapsing function match the sector ETF dependencies most naturally. The notable
observation from this check is the ability of the Euclidean distance collapsing function to
match the ETF dependencies closely.
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Dynamic S&P 500 sector dependence

We will now capture the dynamic dependence between these sectors using a moving window.
In particular, we investigate how between-sector dependencies changed over time from 2006-
01-01 to 2015-12-31. Using a 150-day moving window, Figure 2.6 depicts the time-varying
dependence as captured by the distance, average, maximum, and PIT collapsing functions
for each of four randomly chosen pairs of business sectors. Also included for comparison
with the benchmark is the measure of association between ETFs for each pair. While the
measures of association resulting from different collapsing functions lie on different scales,
they all capture the same shifts in dependence not only with respect to each other but
also with respect to the market-determined ETF dependence series. This indicates the
suitability of any of these collapsing functions to the task of detecting dependence and
the shifts in the strength of dependence over time. Furthermore, ETFs are marketed as
weighted averages of sector constituents, but are tradeable securities in their own right
and thus exposed to market forces. Such a construction of ETFs explains why the average
collapsing function would most closely track the dependence between ETFs despite the use
of equal weights in our collapsing function and despite the influence that market forces
might have on the dependence between sector E'TFs.

Figure 2.7 shows the time-varying dependence as captured by the distance, average, and
maximum collapsing functions with their corresponding confidence intervals constructed
using Proposition 2.2.2 and Remark 2.2.3. Shown in the background are all pairwise
bivariate time-varying measures of association between individual constituents of the two
sectors. This juxtaposition highlights that the measures of association between collapsed
random variables capture fairly similar shifts in strength of dependence over time compared
with all the pairwise measures of association between the sectors. Furthermore, one can see
that the width of confidence intervals for the various collapsed measures of association is
well within the width of the background band representing all the bivariate dependence
series between individual constituents from each sector. This provides further intuitive
corroboration that the collapsing functions capture time-varying dependence between groups
of random variables at least when compared to a series of matrices of pairwise measures of
association.

2.5 Discussion

There is no universal notion of a “best” collapsing function. All reasonable collapsing
functions we investigated tend to capture dependence between random vectors in a similar
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Figure 2.6: Time-varying measure of association for various collapsing functions and the
ETFs between a few selected pairs of business sectors. The four pairs of sectors arbitrarily
selected are as follows: Consumer Discretionary vs. Consumer Staples (top left), Energy

vs. Industrials (top right), Health Care vs. Industrials (bottom left), and Industrials vs
Materials (bottom right).
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against a backdrop of all pairwise time-varying measures between assets in the two business
sectors considered. On the left panel we present the plots for Consumer Discretionary vs.
Energy sectors and on the right panel we present the plots for Energy vs. Health Care
sectors. 44



fashion. As we outlined in detail in Section 2.2.3, there are notable properties, advantages,
and disadvantages for each collapsing function. From our protein data application, we
found that the Euclidean distance and the weighted-average collapsing functions yielded
competitive results in the ranking task. Moreover, the special case of the weighted average
function was linked with a particular biological meaning thus offering some interpretability
and insight for scientists in the field. From our finance example and particularly in the
static dependence context, we saw that the equally-weighted average and Euclidean distance
collapsing functions most closely matched the ETF dependence between S&P 500 sectors.
The weighted average function is a natural choice in the context of finance and its tracking
of the benchmark dependence was further evident in the dynamic context of our finance
example. The other salient observation extracted from the two data applications is the
usefulness of the general purpose Euclidean distance collapsing function in measuring
dependence between random vectors. While it lacks interpretability and adaptability in
terms of the collapsed distribution functions and copulas, it is closely related to the distance
correlation of Székely et al. (2007) and appears to be a competitive metric for measuring
and ranking dependencies.
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Chapter 3

Hierarchical Archimax copulas

3.1 Introduction

The class of Archimax copulas, see Capéraa et al. (2000) and Charpentier et al. (2014a),
generalizes Archimedean copulas to incorporate a stable tail dependence function as known
from extreme-value copulas. As special cases, Archimax copulas can be Archimedean or
extreme-value copulas and thus extend both of these classes of copulas. They provide a link
between dependence structures arising in multivariate extremes and Archimedean copulas,
which have intuitive and computationally appealing properties. One feature of Archimedean
copulas is that they can be nested in the sense that one can (under assumptions detailed
later) plug Archimedean copulas into each other and still obtain proper copulas. Such a
construction is hierarchical in the sense that certain multivariate margins are exchangeable,
yet the copula overall is not; this additional flexibility to allow for (partial) asymmetry
over an exchangeable model is typically used to model components belonging to different
groups, clusters or business sectors. In this work, we raise the following natural question
(see Sections 3.2 and 3.3):

How can hierarchical Archimax copulas be constructed?

Since we work with stochastic representations, sampling is also covered. Constructing
nested Archimax copulas is largely an open problem which we discuss in Appendix B.2.
Moreover, to fill a gap in the literature, we present a general formula for the density and its
evaluation of Archimax copulas; see Appendix B.1.

In what follows, we assume the reader to be familiar with the basics of Archimedean
copulas (ACs) and extreme-value copulas (EVCs); see, for example, McNeil and Neslehova
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(2009) for the former (from which we also adopt the notation) and (Jaworski et al., 2010,
Chapter 6) for the latter.

3.2 Hierarchical extreme-value copulas via hierarchi-
cal stable tail dependence functions

3.2.1 Connection between d-norms and stable tail dependence
functions

A copula C'is an extreme-value copula if and only if it is maz-stable, that is, if
Clu)=Cu/™, ... u™™ meN, u=(u,..., uy) €[0,1%

see, for example, Jaworski et al. (2010, Theorem 6.2.1). An extreme-value copula C' can be
characterized in terms of its stable tail dependence function ¢ : [0,00)? — [0, 00) via

C(u) = exp{—l(—Inuy,...,—Inug)}, wu<€0,1]% (3.1)

see, for example, Beirlant et al. (2004, Section 8.2) and Jaworski et al. (2010, Chapter 6). A
characterization of stable tail dependence functions ¢ is given in Charpentier et al. (2014a)
and Ressel (2013). (being homogeneous of order 1, being 1 when evaluated at the unit
vectors in R¢ and being fully d-max decreasing).

Sampling from EVCs is usually quite challenging and time-consuming for the most
popular models. Examples which are comparably easy to sample are Gumbel and nested
Gumbel copulas, the only Archimedean and nested Archimedean EVCs, respectively, where
a stochastic representation is available; see Nelsen (2006, Theorem 4.5.2).

o The Gumbel (or logistic) copula C' with parameter a € (0, 1] and stable tail dependence
function ((z) = (z1/" + -+ z/*)*, & € [0,00), can be sampled using the algorithm
of Marshall and Olkin (1988). It utilizes the stochastic representation

o (o(5)s(8) -

where () = exp(—t®) is a Gumbel generator, F, ..., E; ~ Exp(1), independently

of the frailty V ~ PS(a) = S(a, 1, cos”/*(ar/2), Lia=1}; 1); see (Nolan, 2017, p. 8)
for the parameterization of this a-stable distribution.
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o Nested Gumbel copulas, see Tawn (1990), can also be sampled based on a stochastic
representation corresponding to the nesting structure; see McNeil (2008). The main
idea is to replace the single frailty V' by a sequence of dependent frailties (all a-stable
for different «), nested in a specific way; see Section 3.3.

For more complicated EVCs, Schlather (2002), Dicker and Mikosch (2015) and Dombry
et al. (2016) have proposed approximate or exact simulation schemes based on the following

stochastic representation of max-stable processes; see de Haan (1984), Penrose (1992) and
Schlather (2002).

Theorem 3.2.1 (Spectral representation of max-stable processes)

Let {W;(s)}2; be independent copies of the random process W (s), s € S C RY, such that
W(s)>0and E{W(s)} =1, s € S. Furthermore, let {P;}3°, be points of a Poisson point
process on [0, c0) with intensity =2 dz. Then

Z(s) = sup{ PWi(s)} (3.3)

i>1

is a max-stable random process with unit Fréchet margins and

U(zy,...,xq4) = E(max{z;W(s;)}), z1,...,24 >0, (3.4)

1<j<d
is the associated stable tail dependence function of the random vector (Z(s;), ..., Z(sq)) for
fixed s1,...,84. Therefore, if a process Z(s) can be expressed as in (3.3), the distribution

function of the random vector (Z(s1),...,2(sq)) is P{Z(s1) < 1,...,Z(8q) < x4} =
exp{—L(1/z1,...,1/xq)}, thatis, (Z(s1),...,Z(sq)) has EVC C with stable tail dependence
function ¢ and unit Fréchet margins exp(—1/z;), j € {1,...,d}.

For completeness, Algorithm 3.2.2 below describes the traditional approach for simulating
max-stable processes constructed using (3.3). This algorithm goes back to Schlather (2002)
and provides approximate simulations by truncating the supremum to a finite number of
processes in (3.3). When the random process W (s) is bounded almost surely, a stopping
criterion may be designed to optimally select the number of Poisson points N to perform
exact simulation. For more general exact sampling schemes, we refer to Dicker and Mikosch
(2015) and Dombry et al. (2016).

Algorithm 3.2.2 (Approximate sampling of max-stable processes based on (3.3))

1. Simulate N Poisson points {F;}Y, in decreasing order as P, = 1/Y%_, By, i €
{1,..., N}, where E}, ~ Exp(1), k € {1,...,N}.
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2. Simulate N independent copies {W;(s)}Y, of the process W(s) at a finite set of
locations s € {sy,..., 84}

3. For each location s € {sy,..., 84}, set Z(s) = maxi<;<y{E;Wi(s)}.

By choosing the spatial domain S in (3.3) to be finite and replacing W (s;), ..., W(s4) by
non-negative random variables Wy, ..., Wy with E(W;) =1, j € {1,...,d}, thus replacing
the random process W(s) by the non-negative random vector W = (W, ..., W,), this
representation also provides a characterization of, and sampling algorithms for, (finite-
dimensional) EVCs; from here on we will adopt this “vector case” for W and accordingly
for Z.

We now turn to the link between max-stable random vectors (Z1,. .., Z;) and d-norms
as recently described in Aulbach et al. (2015). A norm ||-||4 on R is called a d-norm if there
exists a random vector W = (Wy,..., W,) with W; > 0 and E(W;) =1, j € {1,...,d},
such that

lella = E(max {|z;[W;}) = B(|z2Wl), @=(21,...,7a) € R, (3.5)

where |||« denotes the supremum norm and W is understood componentwise. In this
case, W is called generator of ||-||s. One can compare (3.4) and (3.5) to identify the
correspondence

() = |[zlla = E(JaW]), @ € [0,00)", (3.6)

between d-norms and stable tail dependence functions on [0, 00)?. Specifying a generator
W thus defines a stable tail dependence function which in turn characterizes an EVC. The
link (3.6) with d-norms provides us with a useful method for constructing and sampling
EVCs which can also be exploited for constructing hierarchical EVCs (HEVCs).

We now provide a few examples of d-norm generators for well known copulas which can
serve as building blocks for HEVCs (and, see Section 3.3, hierarchical Archimax copulas).

Example 3.2.3

L. If W = (1,...,1) with probability one, then |x|s = lrgaél]a:ﬂ. This character-
SIS

izes comonotonicity, that is, the upper Fréchet—Hoeffding bound with stable tail
dependence function ¢(x) = max{zy,...,z4}.

2. If W is a random permutation of (d,0,...,0) € R? | then ||z||q = dZ?:1 |z;|/d =
Z?:1 |z;|. This characterizes independence with the stable tail dependence function
ﬁ(a:) =T+ + 24
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3. If W = (W,,...,Wy) is such that for some 0 < a < 1, T'(1 — a)W; % exp(—z~/%),
x € [0,00), where I" denotes the gamma function, a straightforward computation shows

that |z]lq = (X%, |2;//*)*. This implies that £(z) = (X9, #}/*)* and thus that

the max-stable dependence structure is the Gumbel (logistic) copula with parameter
a e (0,1).

4. If W is such that for some 60 > 0, W; = I'(1 + 1/0)W} with W7 " exp(—a?),
x € [0,00), then the stable tail dependence function can be calculated to be

= v (s

0£IC{1,....d} jeJ

and thus the max-stable dependence structure is the negative logistic copula with
parameter 6 > 0; see, for example, Dombry et al. (2016).

5. W = (Wh,...,Wy) ~ (V2rmax{0,e1},...,v2m max{0,e4}), where (e1,...,84) ~
N4(0, P) with correlation matrix P, a Schlather model results; see Schlather (2002).

6. f W = (Wy,...,Wy) ~ (max{0,e1}"/cy,,...,max{0,e4}"/c,), where (e1,...,eq4) ~
N4(0, P) with correlation matrix P, v > 0, and ¢, = 2*/27'T'{(v +1)/2} /1/7, then the
extremal t model of Opitz (2013) results; for v = 1, the Schlather model is obtained
as a special case. The stable tail dependence function ¢(x) of the extremal ¢ model in
dimension d is given by

P ;=P ;P
v—+1

@) = Y ajta (v 41, Py, Na-sfz) ), @)

J=1

where t4(v, p, ¥)(2) denotes the d-variate Student ¢ distribution function with v
degrees of freedom, location vector g and dispersion matrix Y evaluated at x as
in (McNeil et al., 2015, Example 6.7), P_; _; (respectively, P_;;, P;_;) denotes the
submatrix obtained by removing the jth row and the jth column (respectively, jth
row, jth column) from P and x_; = (z1,...,%j-1,Tjt1,. .., Ta)-

7. UW = (Wy,...,Wy) ~ (exp(e; — 01/2),...,exp(eq — 03/2)), where (g1,...,&4) ~
N4(0, %) for a covariance matrix ¥ with diagonal entries ¥;; = o7, j € {1,...,d},
and corresponding correlation matrix P (such that ¥;; = ;0,5 1,7 € {1,....,d}),
a Brown-Resnick model results; see Kabluchko et al. (2009). This model can also
be obtained as a certain limit of the extremal ¢ model when the degrees of freedom
v — o0; see Nikoloulopoulos et al. (2009). The Brown—Resnick model is characterized
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by the Hiisler—Reiss copula; see Hiisler and Reiss (1989). Its stable tail dependence
function ¢(x) is available in any dimension d, see Huser and Davison (2013) and
Nikoloulopoulos et al. (2009), and given by

Ux) = 2;941(0,%5)(n;), (3.8)

Jj=1

where ®4(u,3)(x) denotes the d-variate normal distribution function with mean
vector p and covariance matrix ¥ evaluated at x, ¥; is the (d — 1) x (d — 1) covariance
matrix with entries

27@7 if k:2€{17ad}\{j}>
Xjik = . )
Yij + Vik — Yk, if k #4,

where v;; = 07 + 0]2 — 030 P, and n; is the (d — 1)-dimensional vector with 7th entry
vij — In(x;/x;).

W = (Wh,...,Wy) ~ H for a distribution function H with margins Fy,..., F; on
[0,00) such that E(W;) =1, j € {1,...,d}, then, by Sklar’s Theorem, if C' denotes
the copula of H, one can derive the general form of ¢ via (3.6). If U ~ C, then the

stochastic representation W = (Fy (Uy), ..., F; (Uy)) can be used to see that, for all
x > 0,

Galy) = P(max {|z;|W;} <y) = PW1 <y/a,..., Wa < y/za)

=P{Ui < Fi(y/z1), ..., Us < Fy(y/za)} = C{F(y/21), .., Fa(y/z4) }-

Applying the chain rule for differentiating this expression with respect to y leads to
the density

9a(y) = ;Dj C{Fi(y/z1), ... Faly/za)} fi(y/ ;) ]},

where D; C'(u) denotes the partial derivatives of C' with respect to the jth argument
evaluated at u. By (3.6) and the substitution z; = y/x;, we thus have that, for all
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tw) = [ vt dy = [ D, CURG/m). .. Fal/za)} /) dy
= Z_: T /OOO 2 D C{F1(zm)/1), - - -, Falzjw;/xa) } f5(2) dz;

= Z ij[Zj Dj C{Fl(ijj/l‘l), - ,Fd(Zjl'j/fL‘d)}],

where Zy ~ Fy,...,Z4 ~ Fy are independent. This formula resembles (3.7) and (3.8).
If required, it can be evaluated by Monte Carlo, for example. Note that it only poses
a restriction on the marginal distributions (being non-negative and scalable to have
mean 1), not the dependence of the components of W.

3.2.2 Hierarchical stable tail dependence functions

Let us now turn to a construction method for HEVCs by exploiting the link between d-norm
generators and stable tail dependence functions established in Section 3.2.1. The idea is
to build stable tail dependence functions with a hierarchical structure at the level of the
associated d-norm generator. Although our approach is similar in spirit to Lee and Joe

2017) who recently proposed factor extreme-value copula models, the two constructions
differ.

By analogy with the construction of nested Archimedean copulas (outlined in Section 3.3)
we define hierarchical d-norm generators W = (W3, ..., Wy) in terms of a tree structure
with d leaves. Under this framework, each component W;, j € {1,...,d}, is obtained as a
measurable, non-negative function g; of intermediate variables {W} }rcanc(;), lying on the
tree nodes along the path from the seed W at the root of the tree to the jth leaf represented
by the variable W; itself. In other words, the variable W; may be expressed in terms of
its ancestor variables identified by the index set Anc(j), some of which may be shared
with other variables Wy, k # j, thus inducing dependence between the components of the
vector W. To fix ideas, consider the tree represented in Figure 3.1. In this case, one has,
for example, Wy = go(Wir, W5, W5y) and W7 = g7(Wy, Wi, Wy, Wihs). To define a valid
d-norm generator, we need to assume that this system of variables and the corresponding
functions g; are such that E(WW;) =1 for each j € {1,...,d}. However, there is no further
restriction on the dependence structure of these latent variables, which yields a very general
framework.
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Figure 3.1: Tree representation of a hierarchical d-norm generator with d = 7 for the
construction of a HEVC.

The inherent hierarchical structure of the d-norm generator defined in this way carries
over to the EVC derived from (3.4). Such hierarchical d-norm generators yield HEVCs.

We now describe several example models of HEVCs constructed using this general
framework. We first consider the well known nested Gumbel copula and show that it arises
as HEVCs in our framework; see McFadden (1978), Stephenson (2003) and Tawn (1990)
for early references. Nested Gumbel (or logistic) copulas have been applied in a variety of
applications, such as Hofert and Scherer (2011) in the realm of pricing collateralized debt
obligations or Vettori et al. (2017) where they are used to group various air pollutants into
clusters with homogeneous extremal dependence strength.

Example 3.2.4 (Nested Gumbel copulas with two nesting levels)
For 0 < aq,...,as < ap < 1, consider independent random variables organized in S groups:

Root:  Wj =1,
Level 1:  W: ™ PS(as/ag), se{l,...,S},
Level 2. W, Woexp(—z7Ve), x>0, se{l,....S}, je{l,....d}.
As outlined above, the leaves of the tree correspond to the d-norm generator W =
(W1,...,Wg), with W, = (W, ..., W), s€{l,...,5}, with d = %, d,, where
WisWg;
F(l — Oz())’

It can be verified that, indeed, Wy; > 0 and E(Wj;) =1 for all s and j. Then, the stable
tail dependence function corresponding to the d-norm generator W is given by

Ux) = Lag{la, (T1), - - >€as(w3)}a (3.10)

Wsj:gsj(ngws*vwg): 86{17"'78}7 je{l""7d8}‘ (39)
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where * = (xy,...,x5), s = (Ts1,..-,%sa.), s € {1,...,5}, and lo(xy,...,24) =
(Z?Zl le-/ “)* is the stable tail dependence function of a Gumbel copula with parameter a.

Proof. 1t directly follows from (3.6) that

((x) = E(max { max {z,;W,}}), = €[0,00)"

1<s<8 "1<)<ds
By (3.9) and with Y, = max;<.<s{maxi<j<a {7;W;**W;}}, one obtains that

1

(1 _ Oéo) E(Yw)

1 *QUs *
)= st )

1

_ F(l_%)/o‘”lp(ym >y)dy, e 0,00)

Conditioning on W7, s € {1,...,S}, we obtain that

P(Y, <y) = PAWS < /(g W2), s€{l,....8}, j€{l,...,d}}

i ol ) ] - e (2) )

7=1

where the last equality holding since W, ..., W are independent. Since W ~ PS(as/ap),
this leads to

=Moo {£(2) ) e 4 [E{E} )

With t = Y5 {S% (x 1/a9)}a5/a0 the substitution z = y~!/*0¢, and integration by parts,
the stable tail dependence function is thus

) = I‘(liao) /000{1 B eXp(_yiﬁt)} dy = F(ltioao) /000{1 —exp(—2)}apz 1 dz
a0 o0 ao ds B 37; a0
= F(lt—ao)/o z " exp(—z)dz = F(lt_%)r(l — ap) =t :{ Z(Zﬁ}) }

= an{ém(ml), - ,fas(.’lfs)},

which is the stable tail dependence function of a nested Gumbel copula constructed by
nesting on the level of the d-norms. O]

54



The construction underlying Example 3.2.4 may easily be generalized to trees with
arbitrary nesting levels using the same line of proof. The construction, extending Stephenson
(2003), is outlined in the following example.

Example 3.2.5 (Nested Gumbel copulas with arbitrary nesting levels)

To construct a nested Gumbel copula with arbitrary nesting levels, we mimic the construction
with two nesting levels in Example 3.2.4. Let p; be the path starting from the root of the
tree and leading to the jth leaf representing the d-norm generator component W;. We can
write the corresponding node variables along this path as Wy, W;j(l), ];kj(2)7 ce W;j( L) W;
where L, denotes the number of intermediate variables (or levels) between W and Wj.
Assume that all latent variables W;j(k), jge{l,....d}, k € {1,...,L;}, are mutually
independent within and across paths, and that

Root: Wy =1,
Level 1. W, ) ~ PS(ay;1)/ ),
Level k: W;J(k:) ~ pS(apj(k)/apj(k—l))v k€ {27 T 7LJ - 1}7
Level Lz Wy ()~ exp(—x_l/%j“f”), x>0,
where, for each path p;, the parameters of the positive a-stable variables on this path are

ordered as 0 < apz;—1) < -+ < 1) < ap < 1. We can then construct the component
W; of the d-norm generator via

Wyt
Wy = gi(Wg, Wi gy s Wiy ) = —2 pitlic) nil) ey, d)
J g]( 0> "Wpi(1) ) pj(Lj)) F(l—Oéo) y J {a > }

By recursively conditioning on the variables along each path, one can show that the resulting
d-norm generator corresponds to the nested Gumbel copula based on the same tree structure
and that its stable tail dependence function can be obtained by applying (3.10) recursively
at each nesting level of the tree.

The construction principle for hierarchical d-norm generators also allows us to construct
the following two HEVCs.

Example 3.2.6 (Hierarchical Hiisler—Reiss copula)
For simplicity, consider the two-level case
Root: Wi =1,
Level 1. (W7,...,W{) ~ Ng(0,3%),
Level 2:  (Wg,..., Wy ) ~Ng(0,%), se{l,...,S},
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where the vectors (W7,..., W3) and (W},..., W5 ), s € {1,...,S}, are independent. Fur-

S
thermore, assume that the covariance matrix ¥y may be expressed in terms of the variances

03?2 ..., 0% and the correlation matrix Py via g = Cov(W;, W}) = 070} Py ix. Similarly,
denote by o7,...,0% and P, the respective quantities for the vector (Wi,..., W2 ),

s € {1,...,5}. Writing the d-norm generator as W = (Wy,..., Wy), with W, =
(W1, oo, Waa,), s € {1,...,S5}, as in Example 3.2.4, we define the components by

Wy =exp{(W. + W) — (622 +02)/2}, se{l,....,S}, je{l,....d}. (3.11)

It is immediate from Part 7 of Example 3.2.3 and by writing e5; = W + W} that the
resulting extreme-value distribution has the Hiisler-Reiss copula as underlying dependence
structure. It is characterized by an overall dispersion matrix > whose entries are given by
E075181 + E51,j1j2 = 0-:12 + U;kljlo-:ljzpshjljzu 81 = 52 (Same groups),

*

% .
20,5150 = 04,04, F0.6159, s1 # so (different groups).

COV(€S1j1’ 652]‘2) - {

Hence, in this case, the underlying hierarchical d-norm generator results in a hierarchical
structure of the covariance matrix 3 and the corresponding stable tail dependence function
is of the same form. It is straightforward to verify that this hierarchical structure allows
to model stronger dependence within groups than between groups. This simple two-level
example can easily be generalized to trees with arbitrary nesting levels, and it could be
interesting for spatial modeling, where different homogeneous regions exhibit different
extreme-value behaviors.

Example 3.2.7 (Hierarchical extremal ¢ and Schlather copula)
Example 3.2.6 can be adapted to a hierarchical extremal ¢t model by replacing (3.11) by

W = max{0, (W + W) /(02 + ) e, s € {L,....5}, j € {L....d},

where v > 0 is the degree of freedom and ¢, is the same constant appearing in Part 6 of
Example 3.2.3. For v = 1, we obtain a hierarchical Schlather model.

3.3 Hierarchical Archimax copulas

3.3.1 Archimax copulas

Let W be the set of all (Archimedean) generators, that is, all ¥ : [0, 00) — [0, 1] which are
continuous, decreasing, strictly decreasing on [0,inf{t : ¢(¢) = 0}] and satisfying ¢(0) = 1

o6



and ¥ (00) = limy_, 1(t) = 0. According to Capéraa et al. (2000) and Charpentier et al.
(2014a), a copula is an Archimax copula (AXC) if it admits the form

Clu) = [({v™" (w), ..., v (wa)}], we (0,17, (3.12)

for an Archimedean generator 1) € ¥ and a stable tail dependence function ¢; note that
the form (3.12) in d dimensions was originally conjectured in Mesiar and Jagr (2013). In
what follows, we focus on the case where v is completely monotone. Since ¥(0) = 1,
Bernstein’s Theorem, see Bernstein (1928) or (Feller, 1971, p. 439), implies that ¢ is the
Laplace—Stieltjes transform of a distribution function F' on the positive real line, that is,
Y(t) = LS[F(t) = [° exp(—tz)dF(z), t € [0,00), in this case. A stochastic representation
for U ~ C'is given by

o (o8)oalB) - () o5 e o

where (Ey,...,Ey) = (—InYy,...,—InY}) (which has Exp(1) margins) for Y = (Y,...,
Yy) ~ D for a d-dimensional EVC D with stable tail dependence function ¢ and V ~ F' =
LS '[3] is the frailty in the construction (which is independent of Y'). Note that, as a
special case, if D is the independence copula, in other words /(x) = 2?21 xj, then C' in
(3.12) is Archimedean. Moreover, if ¢ (t) = exp(—t), t > 0, then C' in (3.12) is an EVC with
stable tail dependence function ¢ (compare with (3.1)) and U =Y, so C = D. Although
not relevant for the remainder of this chapter, but important for statistical applications,
let us mention that, if it exists, the density of an AXC allows for a rather explicit form
(derived in Proposition B.1.1) which makes computing the logarithmic density numerically
feasible (see Proposition B.1.5).

3.3.2 Two ways of inducing hierarchies

There are two immediate ways to introduce a hierarchical structure on Archimax copulas
following from (3.13), thus leading to hierarchical Archimaz copulas (HAXCs): At the level
of the EVC D through its stable tail dependence function (via d-norms) and at the level of
the frailty V' by using a sequence of dependent frailties instead of a single V. Since the
former was addressed in Section 3.2, we now focus on the latter.

Let D be a d-dimensional EVC with stable tail dependence function ¢ as before. The
stochastic representation (3.13) can be generalized by replacing the single frailty V' by
a sequence of dependent frailties. Their hierarchical structure and dependence is best
described in terms of a concrete example. To this end, consider Figure 3.2. The hierarchical
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Figure 3.2: Tree representation of hierarchical frailties for the construction of a HAXC.

frailties are shown as nodes and the corresponding (dependent) Exp(1) random variables as
leaves. The frailty at each level is drawn from a distribution on the positive real line which
depends on the frailty from one level before: First Vj ~ Fj is drawn; then, independently
of each other, Vi ~ Fp1(+; Vo) and Vg ~ Foa(+; Vo) are drawn (note that V; thus acts as a
parameter on the distributions Fy; of Vp; and Fyy of Vie); finally, Vag ~ Fos(+; Vi) is drawn.
This procedure can easily be generalized (level by level) to more hierarchical levels if so
desired. Similar to the Archimax case, if (F1, ..., E;) has EVC D and Exp(1) margins, one
considers

(ﬂE?EBEAiEﬁEﬁE?> (3.14)
Vo Vo' Vin " Voo Vas” Vas” Vas '

and the survival copula of this random vector is then the HAXC C'. For the latter step
one needs the marginal survival functions of this random vector which are typically not
known explicitly. However, they are known under the so-called sufficient nesting condition
which is based on certain Laplace-Stieltjes transforms involved and which is also utilized in
the construction of nested Archimedean copulas (NACs); see, for example, Hofert (2011),
(Joe, 1997, pp. 87) or McNeil (2008). To introduce these Laplace-Stieltjes transforms, it is
convenient to have the construction principle of NACs in mind. The NAC corresponding
to Figure 3.2 is given by Cyluy, C1{ua, us}, Co{uy, Cs(us, ug, uz)}], where Cy is generated
by the completely monotone generator vy, k € {0,1,2,3}. For this case, the sufficient
nesting condition requires the appearing nodes ¥, ' 0 1)1, ¥y * 0 ¢y and 5" 0 1h3 in NAC to
have completely monotone derivatives; see Hofert (2010) for examples and general results
when this holds. This implies that the functions 1y (t; v) = exp[—vi;, {(t)}], t € [0, 00),
v € (0,00), for (k,1) = (0,1), (k,I) = (0,2) and (k,l) = (2,3) are completely monotone
generators for every v; see (Feller, 1971, p. 441). As such, by Bernstein’s Theorem, they
correspond to distribution functions on the positive real line. The important part now is
that if the frailties Vj, Vo1, Vo2 and Vas are chosen level-by-level such that
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1. Vo ~ Fy = LS [to);
2. Vou| Vo ~ For = L8 [thor (-5 V)] and Voo | Vo ~ Foo = L8 [thea(- 5 Vo)]; and
3. Vas| Voo ~ Fog = L& thas (-5 Vi)

Then, by following along the lines as described in Hofert (2012), one can show that the
corresponding HAXC has the stochastic representation

o (fE) B () 2) () o) () o

By comparison with (3.14), we see that if the distribution functions Fy, Fo1, Fo, Fbs of
Vo ~ Fo, Vor ~ Fo1(5 Vo), Voo ~ Foa(+5 Vo), Vag ~ Fys(+; Vie) are chosen such that the
Laplace—Stieltjes transforms v, ¥, ¥, 15 (associated to Vo, Vo1, Voe, Vas via the structure
of a NAC) satisfy the sufficient nesting condition, then the marginal survival functions
of (3.14) are not only known, but they are equal to vy, ¥1, 99, 13 such that the resulting
HAXC has a stochastic representation (see (3.15)) similar to that of a HAXC with single
frailty (see (3.13)), just with different frailties.

Remark 3.3.1

1. Clearly, the stochastic representation of a HAXC based on hierarchical frailties as in
(3.15) immediately allows for a sampling algorithm. The hierarchical frailties involved
can easily be sampled in many cases, see Hofert (2010) or the R package copula of
Hofert et al. (2005) for details.

2. Note that the stochastic representation of a HAXC constructed with hierarchical
frailties equals that of a NAC, except for the fact that for the latter, the EVC D of
(Ej, ..., E7) is the independence copula.

3. The two types of constructing HAXCs presented here can also be mixed, one can use a
HEVC and hierarchical frailties. Interestingly, the two types of hierarchies introduced
this way do not have to coincide; see the following section for such an example.

All the figures shown in the following examples can be reproduced with the vignette
HAXC of the R package copula (version > 0.999.19).

Example 3.3.2 (ACs vs AXCs vs NACs vs (different) HAXCs)
Figure 3.3 shows scatter-plot matrices of five-dimensional copula samples of size 1000 from
the following models for U = (Uy,...,Us) ~ C.
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1. Top left: (Archimedean) Clayton copula with stochastic representation

o-()nlE) e

where V ~ I'(1/0,1) for 6 = 4/3 (the frailty is gamma distributed) and Ey, ..., E5 '~
Exp(1); see also (3.2). The copula parameter is chosen such that Kendall’s tau equals
0.4.

2. Top right: AXC based on Clayton’s family with gamma frailties recycled from
the top left plot and stochastic representation as in (3.16) where (Ey,..., E;) =
(—InYy,...,—InY;) for (Y1,...,Y5) having a Gumbel EVC (with parameter such
that Kendall’s tau equals 0.5); note that the margins of (Ej, ..., Ej) are again Exp(1)
(but its components are dependent in this case).

3. Middle left: NAC based on Clayton’s family with hierarchical frailties such that two
sectors of sizes 2 and 3 result, respectively, with parameters (6, 61, 65) chosen such
that Kendall’s tau equals 0.2 between the two sectors, 0.4 within the first sector and
0.6 within the second sector. A stochastic representation for this copula is given by

o (B} ) (BN () o(B) o

where Vy ~ I'(2) and

Vou | Vo ~ For = £87 [exp[=Vo{(1 +1)/" —1}]],

Vor | Vo ~ Fop = L8 [exp[=Vo{(1 + 1)%/% — 1}]]
are independent (see (Hofert, 2011, Theorem 3.6) for more details) and F, ..., F5 ~
Exp(1).

4. Middle right: HAXC based on Clayton’s family with hierarchical frailties recycled from
the middle left plot and stochastic representation as in (3.17) where (Ey, ..., E5) =
(—InYy,...,—1InYj;) for (Yy,...,Ys) having a Gumbel EVC (realizations recycled
from the top right plot). Note that the hierarchical structure is only induced by the
frailties in this case.

5. Bottom left: HAXC based on Clayton’s family with hierarchical frailties recycled
from the middle left plot and stochastic representation

v= (i)l wli) () ()
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where (En, Erg, Eay, oy, E23) = (— InYy, —InYis, —InYs, —InYs, —In st) for (Yn,
Y12, Ya1, Yoo, Ya3) having a nested Gumbel EVC (with sector sizes 2 and 3 and pa-
rameters such that Kendall’s tau equals 0.2 between the two sectors, 0.5 within the
first sector and 0.7 within the second sector). Note that the hierarchical structure is
induced both at the level of the frailties and at the level of the EVC in this case, and
that the hierarchical structure (sectors, sector dimensions) is the same.

. Bottom right: HAXC as in the bottom left plot (realizations recycled) with stochastic

representation

o (52 (32) ) o(22)

Note that the hierarchical structure for the frailties (sector sizes 3 and 2, respectively)
and for the nested Gumbel EVC (sector sizes 2 and 3, respectively) differ in this case.

Example 3.3.3 (EVCs vs HEVCs vs (different) HAXCs)

Similar to Figure 3.3, Figure 3.4 shows scatter-plot matrices of five-dimensional copula
samples of size 1000 from the following models for U = (Uy, ..., Us) ~ C; for simulating
from the extremal ¢ EVC, we use the R package mev of Belzile et al. (2017).

1.

Top left: Extremal ¢ EVC with v = 3.5 degrees of freedom and homogeneous
correlation matrix P with off-diagonal entries 0.7.

. Top right: Extremal t HEVC with two sectors of sizes 2 and 3, respectively, such that

the correlation matrix P has entries 0.2 for pairs belonging to different sectors, 0.5
for pairs belonging to the first sector and 0.7 for pairs belonging to the second sector.

Middle left: HAXC with single Clayton frailty (as in Example 3.3.2 Part 1) and
extremal ¢t HEVC recycled from the top right plot.

Middle right: HAXC with hierarchical Clayton frailties (as in Example 3.3.2 Part 3)
and extremal ¢ EVC recycled from the top left plot.

Bottom left: HAXC with hierarchical Clayton frailties (as in Example 3.3.2 Part 3)
and extremal t HEVC recycled from the top right plot. Note that there are two types
of hierarchies involved, at the level of the (hierarchical) frailties and at the level of the
(hierarchical) extremal ¢ EVC. Furthermore, the two hierarchical structures match.
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Figure 3.3: Scatter-plot matrices of five-dimensional copula samples of size 1000 of a Clayton
copula (top left), an AXC with Clayton frailties and Gumbel EVC (top right), a nested
Clayton copula (middle left), a HAXC with hierarchical Clayton frailties and Gumbel EVC
(middle right), a HAXC with hierarchical Clayton frailties and nested Gumbel EVC of the
same hierarchical structure (bottom left) and a HAXC with hierarchical Clayton frailties
and nested Gumbel EVC of different hierarchical structure (bottom right).
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6. Bottom right: HAXC as in the bottom left plot, but the hierarchical structures of the
frailties (sector sizes 3 and 2, respectively) and of the HEVC (sector sizes 2 and 3,
respectively) differ in this case.

Note that we can sample from a hierarchical Schlather model (special case of extremal ¢ for
v = 1), a hierarchical Brown—-Resnick model, and their corresponding HAXCs in a similar
fashion.

3.4 Conclusion

We extended the class of AXCs to HAXCs. Hierarchies can take place in two forms, either
separately or simultaneously. First, the EVC involved in the construction of AXCs can
have a hierarchical structure. To this end we presented a new approach for constructing
hierarchical stable tail dependence functions based on a connection between stable tail
dependence functions and d-norms. Second, a hierarchical structure can be imposed at the
level of frailties similarly as NACs arise from ACs. Even more flexible constructions can be
obtained by choosing a different hierarchical structure for the HEVC and the hierarchical
frailties in the construction. Since all presented constructions are based on stochastic
representations, sampling is immediate; see also the presented examples and vignette.

As a contribution to the literature on AXCs, we also derived a general formula for the
density of AXCs and the computation of the corresponding logarithmic density. Furthermore,
we briefly addressed the question when nested AXCs (NAXCs) can be constructed (either
through nested stable tail dependence functions alone or, additionally, through hierarchical
frailties). This is, in principle, possible, but as discussed in Appendix B.2, there is currently
only one family of examples known when all the assumptions involved are fulfilled. Further
research is thus required to find out whether this is the only possible case for which NAXCs
result.
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Figure 3.4: Scatter-plot matrices of five-dimensional copula samples of size 1000 of an
extremal t EVC (top left), a hierarchical extremal ¢ copula (a HEVC; top right), a HAXC
with single Clayton frailty and extremal ¢t HEVC (middle left), a HAXC with hierarchical
Clayton frailties and extremal ¢ EVC (middle right), a HAXC with hierarchical Clayton
frailties and extremal ¢ HEVC of the same hierarchical structure (bottom left) and a HAXC
with hierarchical Clayton frailties and extremal ¢ HEVC of different hierarchical structure

bottom right).
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Chapter 4

Quasi-random sampling for
multivariate distributions via
generative neural networks

4.1 Introduction

Let X = (Xy,...,X4) be a d-dimensional random vector with distribution function Fx and
continuous margins Fx, ..., Fx,. It is not a trivial task in general to generate quasi-random
samples X1, ..., X, from F, i.e., samples that mimic realizations from Fx but preserve
low-discrepancy in the sense of being locally more homogeneous with fewer “gaps” or
“clusters” (Cambou et al., 2017, Section 4.2).

By Sklar’s Theorem, we always have the decomposition
Fx(m) :C(FXI(ZEl)?...,FXd(I'd)), 33:<$1,...,Id) GRd, (41)

where C': [0,1]¢ — [0,1] is the unique underlying copula Nelsen (2006); Joe (2014). Since,
in distribution, X = Fx'(U) for U ~ C and Fx'(u) = (Fx/(u1), ..., Fx,(ug)), we shall
mostly focus on the problem of generating quasi-random samples Uy, ...,U,, from C rather
than X1,..., X, from Fx, as the latter are easily obtained from the former.

4.1.1 Existing difficulties

For the independence copula, C'(u) = uy - ... - ug, quasi-random samples can be obtained
simply by using randomized quasi-Monte Carlo (RQMC) point sets such as randomized
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Sobol” or generalized Halton sequences; see, for example, Lemieux (2009, Chapter 5).

Recently, Cambou et al. (2017) demonstrated that for a limited number of copulas
C' (normal, t or Clayton copulas), one can obtain quasi-random samples by transforming
RQMC point sets with the inverse Rosenblatt transform of C' (Rosenblatt, 1952); for
pseudo-random numbers this sampling method is known as the conditional distribution
method (CDM) — see, e.g., Embrechts et al. (2003) or (Hofert, 2010, p. 45). Cambou et al.
(2017) also showed that transformations to quasi-random copula samples may exist for
copulas with a sufficiently simple stochastic representation. For most copulas, the latter
is not the case and the CDM is numerically intractable. In other words, there exists no
universal and numerically tractable transformation from RQMC point sets to quasi-random
samples from copulas. For the majority of copula models, including grouped normal variance
mixture copulas, Archimax copulas, nested Archimedean copulas or extreme-value copulas,
we simply do not know how to generate quasi-random samples from them.

4.1.2 Our contribution

The main contribution of this chapter is to introduce a new approach for quasi-random
sampling from F'x with any underlying copula C, using generative neural networks. Even
when we do not know the distribution F'x, our approach can still provide quasi-random
samples from the corresponding empirical distribution Fy as long as we have a dataset
from Fx. This is especially useful when the dependence structure in the data cannot be
adequately captured by a readily available parametric copula; see Section 4.5 where we
present a real-data example to show how useful our approach can be in this case where no
adequate copula model is known in the first place.

Specifically, let fg denote a neural network (NN) parameterized by 6. We train fy so
that, given a p-dimensional input Z ~ Fz with independent components 71, ..., Z, from
known distributions Fy,,..., Fz , the trained NN can generate d-dimensional output from

the desired distribution, f3(Z) ~ Fx, where 6 denotes the parameter vector of the trained
NN. We can thus turn a uniform RQMC point set, {01, ...,?,}, into a quasi-random sample
from Fx by letting

Yi=foF N (0y), i=1,...,n, (4.2)

where Fi'(u) = (F; ' (w), . .. ,FZ_pl(up)).
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4.1.3 Assessment

The theoretical properties of quasi-randomness (or low-discrepancy) under dependence are
hard to assess; see Cambou et al. (2017) and Appendix C.1. In low-dimensional cases
(see Section 4.3.2), we use data visualization tools to assess the quality of the generated
quasi-random samples, such as contour plots (or level curves) showing that the empirical
copula of our GMMN quasi-random samples is closer to the true target copula than that of
GMMN pseudo-random samples. In higher-dimensional cases (see Section 4.3.3), we use a
Cramér-von-Mises goodness-of-fit statistic to make the same point.

Since the main application of quasi-random sampling is to obtain low-variance Monte-
Carlo estimates of

p=EW(X)) =E(V(F'(U)) for X ~Fx, U~C (4.3)

for an integrable ¥ : R? — R, we also assess our method in such a specific context. The
Monte Carlo estimator approximates this expectation by

e = LS w(rg ), (4.4

where U+, ..., U, = C. Using NN-generated quasi-random samples Y7, ..., Y, from (4.2),
we can approximate ]E(W(Fil(U))) by

n

N = 23 UY) = 3 (e By (0) (4.5

=1

Theoretically (Section 4.2.3 and Appendix C.1), we establish various guarantees that the
estimation error of (4.3) by (4.5) will be small as long as both f, and ¥ are sufficiently
smooth; we also establish the corresponding convergence rates. Empirically (Section 4.4),
we verify that (4.5) indeed has lower variance and converges faster than (4.4).

Although being the main focus in this chapter, let us stress that estimating expectations
such as (4.3) is not the only application of quasi-random sampling. For example, quasi-
random sampling is also useful for estimating quantiles of the distribution of a sum of
dependent random variables.

All results presented in this chapter (and more) are reproducible with the demos
GMMN_QMC_paper, GMMN_QMC_data and GMMN_QMC_timings as part of the new developed R
package gnn.

67



4.2 Quasi-random GMMN samples

4.2.1 Generative moment matching networks

In this chapter, we work with the multi-layer perceptron (MLP), which is regarded as the
quintessential neural network (NN). Let L be the number of (hidden) layers in the NN
and, for each [ = 0,...,L + 1, let d; be the dimension of layer [, that is, the number of
neurons in layer [. In this notation, layer [ = 0 refers to the input layer which consists of
the input z € RP for dy = p, and layer | = L + 1 refers to the output layer which consists
of the output y € R? for d;; = d. Layers [ = 1,..., L+ 1 can be described in terms of the
output a;_; € R%-1 of layer [ — 1 via

ayg =z € ]R,do,
a; = filai-1) = d(Wiay—1 + by) € R4, 1=1,...,L+1,

d
Yy =ap € R,

with weight matrices W; € R%*%-1_ bias vectors b; € R* and activation functions ¢;; note
that for vector inputs the activation function ¢; is understood to be applied componentwise.

Figure 4.1 visualizes this construction and the notation we use.

The NN fg : R? — R? can then be written as the composition

fo=frq10fro---0 fa0 fi,

with its (flattened) parameter vector given by @ = (Wy,... , Wyi1,by,...,bry1). To fit
0, we use the backpropagation algorithm (a stochastic gradient descent) based on a loss
function L£. Conceptually, £ computes a distance between the target output € R¢ and
the actual output y = y(z) € R? predicted by the NN; what is actually computed is a
sample version of £ based on a subsample (the so-called mini-batch), see Section 4.2.2.

The expressive power of NNs is primarily characterized by the universal approximation
theorem; see Goodfellow et al. (2016, Chapter 6). In particular, given suitable activation
functions, a single hidden layer NN with a finite number of neurons can approximate any
continuous function on a compact subset of the multidimensional Euclidean space; see
Nielsen (2015, Chapter 4) for a visual account of the validity of the universal approximation
theorem. Cybenko (1989) first proposed such universal approximation results for the sigmoid
activation function ¢;(x) = 1/(1 +e") and Hornik (1991, Theorem 1) then generalized the
results to include arbitrary bounded and non-constant activation functions. In recent years,
the rectified linear unit (ReLU) ¢;(x) = max{0, z} has become the most popular activation
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Input layer Hidden layer Output layer
(lzo,d():p) (lzl,dl) (lZQ,dQZd)

[¢1(W1,1‘ao +b11) = a1,1)

z1 = ao,1

C¢1(W1,2-ao +b12) = a1,2) [¢2(W2,1~a1 +b21) = a1 = yl)

22 = ap2

(¢2(W2,d2-a1 +bog,) = a2,4, = ydg)

Rdy = 40,dg

(¢1(W1,d1-ao +big,) = a1,d1)

Figure 4.1: Structure of a NN with input z = (z1,...,24,), L = 1 hidden layer with
output a; = fi(ag) = ¢1(Wiag + by) and output layer with output y = as = fa(a;) =
p2(Waay + by); note that in the figure, W, ;. denotes the jth row of W; and b, ; the jth row
of bl.
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function for efficiently training NNs. This unbounded activation function does not satisfy
the assumptions of the universal approximation theorem in Hornik (1991). However, there
have since been numerous theoretical investigations into the expressive power of NNs with
ReLU activation functions; see, for example, Pascanu et al. (2013), Montufar et al. (2014)
or Arora et al. (2016). In particular, for certain conditions on the number of layers and
neurons in the NN, Arora et al. (2016) provide a similar universal approximation theorem
for NNs with ReLLU activation functions.

Li et al. (2015) and Dziugaite et al. (2015) simultaneously introduced a type of gen-
erative neural network known as the generative moment matching network (GMMN) or
the Maximum Mean Discrepancy (MMD) net. GMMNSs are NNs fy of the above form
which utilize a (kernel) maximum mean discrepancy statistic as the loss function (see later).
Conceptually, they can be thought of as parametric maps of a given sample Z = (73, ..., Z,)
from an input distribution Fz to a sample X = (Xy,...,Xy) from the target distribution
Fx. As is standard in the literature, we assume independence among the components of
Z = (Zy,...,Z,). Typical choices for the distribution of the Z;’s are U(0, 1) or N(0,1). The
objective is then to generate samples from the target distribution via the trained GMMN
fs. The MMD nets introduced in Dziugaite et al. (2015) are almost identical to GMMNs
but with a slight difference in the training procedure; additionally, Dziugaite et al. (2015)
provided a theoretical framework for analyzing optimization algorithms with (kernel) MMD
loss functions.

4.2.2 Loss function and training of GMMNs

To learn fp (or, statistically speaking, to estimate the parameter vector 8) we assume that
we have ny, training data points X4,..., X, from X, either in the form of a pseudo-

) Ntrn

random sample from F'x or as real data. Based on a sample Z4,...,Z from the input

y 4 ngen

distribution, the GMMN generates the output sample Y7,...,Y, where Y; = fo(Z;),

Y Ngen

i=1,...,Ngen. Stacking Xy,..., X, into an ng, X d matrix X and likewise Y71,...,Y,

into an nge, X d matrix Y, we are thus interested in whether the two samples X and Y
come from the same distribution.

To this end, GMMNs utilize as loss function £ the mazimum mean discrepancy (MMD)
statistic from the kernel two-sample test introduced by Gretton et al. (2007). For a given
embedding function ¢ : R? — R?, the MMD measures the distance between two sample
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statistics, (1/num) i ¢(X o) and (1/ngen) S ¢(Ys,), in the embedded space RY via

MMD(X Y)
Ntrn Ngen
Z ' th Z ¥ Yt2
TNrn t1=1 gen to=1
MNtrn Mtrn Ntrn Tgen Ngen Mgen
Z ng th th Z ZSO Xt1 lftz Z ZSO Yt1 }ItQ)
ntrn t1=1t2=1 ntrnngen t1=1t2=1 gen t1=1t2=1

If we can choose ¢(-) to be a kind of “distributional embedding”, for example, in the sense
that the two statistics — (1/num) 5™ ©(Xy,) and (1/ngen) Zgge“l ©(Yy,) — contain all
empirical moments of X and Y, respectively, then the MMD criterion will have achieved
our desired purpose (of measuring whether the two samples have the same distribution).
Amazingly, such embedding does exist.

By the so-called “kernel trick”, known as early as Mercer (1909) but not widely un-
til support vector machines became popular almost a century later, the inner product
o(x;) "p(y,) can be computed in a reproducing kernel Hilbert space by K (x;,y,), where
K(-,-) : R* x RY — R denotes a kernel similarity function. Hence, for a given kernel
function K (-,-), the MMD statistic above is equivalent to

MMD(X, Y)
Mtrn Mtrn Ntrn Tgen TNgen Tgen
Z ZK Xt17Xt2 Z ZK thalftz Z ZK Yt1aYt2
M ti=1ty=1 NtrnMgen ¢ =1 t,=1 Mgen (121 (o1
(4.6)

If K(-,-) is chosen to be a so-called universal kernel function, such as a Gaussian or Laplace
kernel, then the associated implicit embedding ¢ : R? — R is indeed a “distributional
embedding” in the sense described above, and one can show that the MMD converges in
probability to 0 for 7y, Ngen — 00 if and only if Y = X in distribution; see Gretton et al.
(2007, 2012a).

Thus, to train the GMMN fy, we perform the optimization
mein MMD(X, (fo(Z)),

where the nge, X p matrix Z is obtained by stacking Z1,..., Z,,,,, and the NN transform
fo is understood to be applied row-wise. For the sake of convenience, we always simply
set Ngen = Ngrn While training the GMMN. However, note that after training we can still
generate an arbitrary number of samples from fj.
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Computing MMD(X,Y) in (4.6) requires one to evaluate the kernel for all (”"“) pairs

of observations, which is memory-prohibitive for even moderately large ny.,. As suggested
by Li et al. (2015), we thus adopt a mini-batch optimization procedure. Instead of directly
optimizing the MMD for the entire training dataset, we partition the data into batches
of size np,y and use the batches sequentially to update the parameters 8 of the GMMN
with the Adam optimizer of Kingma and Ba (2014). Rather than following the gradient at
each iterative step, the Adam optimizer essentially uses a “memory-sticking gradient”
a weighted combination of the current gradient and past gradients from earlier iterations.
After all the training data are exhausted, i.e., roughly after (n.,/npat)-many batches or
gradient steps, one epoch of the training of the GMMN is completed. The overall training
procedure is considered completed after nep, epochs. The training of the GMMN can thus
be summarized as follows:

Algorithm 4.2.1 (Training GMMNs)

1. Fix the number ncp, of epochs and the batch size 1 < np,y < nyy per epoch, where
Npat 1S assumed to divide ny,,. Initialize the epoch counter £k = 0 and the GMMN’s
parameter vector 8; we follow Glorot and Bengio (2010) and initialize the components

of @ as Wy ~ U(—/6/(d) + di_1),1/6/(di + dy_1))%*@-1 and by = O for | = 1, L+1.

2. For epoch k =1,...,nepo, do:

(a) Randomly partition the input distribution sample Z, ..., Z,,.. and training sam-
(b)

ple X4,...,X,,,, into corresponding N /Npat NON-overlapping batches Z3”, .. .,
Z® and ng), L XO =1, -y Ngen/Mbat, OF Size npy; each.

Mbat Nbat

(b) For batch b =1,..., ngn/Npat, do:
i. Compute the GMMN output Y< ) = fo (Zgb)) i=1,... Npa.
i. Compute the gradient 2 MMD(X®,Y®) from the samples X (stacking

x\ , X (b ) and Y®) (stacking Y<1 ,..., Y ) via automatic differenti-
ation.

Ttrn

iii. Take a gradient step to update @ with the Adam optimizer popularized by
Kingma and Ba (2014, Algorithm 1).

3. Return 6 = 0; the fitted GMMN is then fo-

4.2.3 Pseudo- and quasi-random sampling by GMMNs

The following algorithm describes how to obtain a pseudo-random sample of Y via the
trained GMMN f; from a pseudo-random sample Z ~ F.
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Algorithm 4.2.2 (Pseudo-random sampling by GMMN)

1. Fix the number nge, of samples to generate from Y.

2. Draw Z; '™ Fy, i = 1,..., Ngen, for example, via Z; = F;(U%), i = 1,...,Ngen,
where U, ..., U’ " U(0,1)".

Ngen
3. Return Y; = f5(Z;), i = 1, ..., ngen; to obtain a sample from C, return the pseudo-
observations of Y7,...,Y,, . (Genest et al., 1995).

) Ngen

To obtain quasi-random samples from Fx with underlying copula C, we replace
Lo U = U(0,1)P in Algorithm 4.2.2 by an RQMC point set P, = {1,...,¥n,,, },
where ©; ~ U(0,1)P, i =1,..., Ngen, to obtain the following algorithm; the randomization
is done to obtain unbiased QMC estimators and estimates of their variances. Note that
while individual RQMC points @; mimic U}, 9, ..., Dp,,, are dependent.

Algorithm 4.2.3 (Quasi-random sampling by GMMN)
1. Fix the number nge, of samples to generate from Y.

2. Compute an RQMC point set ﬁngcn = {?1,...,0p,,} (for example, a randomized
Sobol’ or a generalized Halton sequence) and Z; = F;'(9;), i = 1,. .., Ngen.

3. Return Y; = f5(Z;), i = 1, ..., ngen; to obtain a sample from C, return the pseudo-
observations of Y7,...,Y,

) Ngen *

As mentioned in the introduction, Cambou et al. (2017) presented transformations
to convert Pngen to samples which mimic samples from C' but locally provide a more
homogeneous coverage. Unfortunately, these transformations are only available for a few
specific cases of C' and their numerical evaluation in a fast and robust way is even more
challenging. We can avoid these problems by first training a GMMN on pseudo-random
samples from F'x with any copula C. Then, the trained GMMN f, can be used to generate
quasi-random samples from Fx as in Algorithm 4.2.3. Alternatively, quasi-random samples
which follow the same empirical distribution as any given dataset can be obtained by
training a GMMN on the given dataset itself. An additional advantage is that GMMNs
provide a sufficiently smooth map from the RQMC point set to the target distribution
which helps preserve the low-discrepancy of the point set upon transformation and hence
guarantees the improved performance of RQMC estimators compared to the MC estimator
(see Section 4.4 and Appendix C.1).
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With the mapping F; ' (u) = (F;'(u1), . .. ,Fz_pl (up)) to the input distribution and the
trained GMMN f; at hand, define a transform

Q(u>:féOFZ_1(u)’ uc (Ovl)p'

Based on the RQMC point set Pngen = {01,...,p,., } of size nge,, we can then obtain
quasi-random samples by

K:q(f)ﬂj izla"'vngen7

(compare with (4.2)) and define a GMMN RQMC' estimator of (4.3) by

Ngen Ngen Ngen

Y = S (Y = - 3w LS (). @)

ngen i=1 ngen =1 ngen i=1

We thus have the approximations
E(¥(X)) ~ E(2(Y)) = i, (4.8)

The error in the first approximation is small if the GMMN is trained well and the error in
the second approximation is small if the unbiased estimator u N has a small variance. The
primary bottleneck in this setup is the error in the first approx1mat10n which is determined
by the size ny., of the training dataset and, in particular, by the batch size ny,; which is the
major factor determining training efficiency of the GMMN we found in all our numerical
studies. Given a sufficiently large ny,; and, by extension, ny.,, the GMMN is trained well,
which renders the first approximation error in (4.8) negligible. However, in practice the
batch size ny,; is constrained by the quadratically increasing memory demands to compute
the MMD loss function of the GMMN. For a theoretical result regarding this approximation
error, see Dziugaite et al. (2015) where a bound on the error between optimizing a sample
version and a population version of MMD(X,Y') was investigated. Finally, let us note that
the task of GMMN training and generation are separate steps which ensures that, once
trained, generating quasi-random GMMN samples is comparably fast; see Appendix C.2.

The error in the second approximation in (4.8) is small if the composite function ¥ o g is
sufficiently smooth. The transform ¢ is sufficiently smooth for GMMNs f, constructed using
standard activation functions and commonly used input distributions; see the discussion
following Corollary C.1.4. Given a sufficiently smooth ¥, we can establish a rate of
convergence O(n,J (log ngen)?~") for the variance (and O( ge?;l/ 2(log ngen)P~1/2) for the

approximation error) of the GMMN RQMC estimator ungen constructed by scrambling a
digital net to obtain {¥,...,?,,.,}; see Appendix C.1.4. With a stronger assumption on
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the behavior of the composite function ¥ o ¢, we can show that the Koksma—Hlawka bound
on the error between the (non-randomized) GMMN QMC estimator ng%n S U(g(v;)) and

E(¥(Y)) is satisfied which in turn implies a rate of convergence O(ng;, (10g ngen)?) for the
(non-randomized) GMMN QMC estimator; see Appendix C.1.2. If the Koksma-Hlawka
bound holds, we can also establish a rate of convergence O(n 2 (10g ngen)*) for the variance
of GMMN RQMC estimators constructed using the digital shift method as randomization
technique; see Appendix C.1.4.

4.3 GMMN pseudo- and quasi-random samples for
copula models

In this section we assess the quality of pseudo-random samples and quasi-random samples
generated from GMMNs. In both cases we train GMMNs on pseudo-random samples
U,...,U,,, ~ C from the respective copula C'. We start by addressing key implementation
details and hyperparameters of Algorithm 4.2.1 that we used in all examples thereafter. By
utilizing this algorithm to train fy for a wide variety of copula families, we then investigate
the quality of the samples Y7,...,Y, once generated by Algorithm 4.2.2 and once by

Algorithm 4.2.3.

4.3.1 GMMN architecture, choice of kernel and training setup

We find a single hidden layer architecture (L = 1) to be sufficient for all the examples we
considered. This is because, in this chapter, we largely consider the cases of d € {2, ...,10}.
Learning an entire distribution nonparametrically for d > 10 would most likely require
L > 1, but it would also require a much larger sample size ni,,, and become much more
challenging computationally for GMMNs — recall from Section 4.2.2 that the loss function
requires (";“) evaluations. After experimentation, we fix d; = 300, ¢; to be ReLU (it
offers computational efficiency via non-expensive and non-vanishing gradients) and ¢» to

be sigmoid (to obtain outputs in [0, 1]%).

To avoid the need of fine-tuning the bandwidth parameter, we follow Li et al. (2015)
and use a mixture of Gaussian kernels with different bandwidth parameters as our kernel
function for the MMD statistic in (4.6); specifically,

Nkrn

K(z,y) =) K(z,y;0:), (4.9)

i=1
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where ny,, denotes the number of mixture components and K(x,y;0) = exp(—|x —
y||3/(20?)) is the Gaussian kernel with bandwidth parameter o > 0. After experimentation,
we fix ny, = 6 and choose (071, .. .,06) = (0.001,0.01,0.15,0.25,0.50, 0.75); note that copula
samples are in [0, 1]%.

Unless otherwise specified, we use the following setup across all examples. We use
Ny = 60000 training data points and find this to be sufficiently large to obtain reliable fj,.
As dimension of the input distribution Fz, we choose p = d, that is, the GMMN fj is set to
be a d-to-d transformation. For Fz, we choose Z ~ N(0, I;), where I; denotes the identity
matrix in R%¢, so Z consists of independent standard normal random variables; this choice
worked better than U(0,1)? in practice despite the fact that N(0, I;) does not satisfy the
assumptions of Proposition C.1.1. We choose a batch size of ny,; = 5000 in Algorithm 4.2.1;
this decision is motivated from a practical trade-off that a small ny,; will lead to poor
estimates of the population MMD loss function but a large ny,; will incur quadratically
growing memory requirements due to (4.6). As the number of epochs we choose 7y, = 300
which is generally sufficient in our experiments to obtain accurate results. The tuning
parameters of the Adam optimizer is set to the default values reported in Kingma and Ba
(2014).

All results in this section, Section 4.4 and Appendix C.1.4 are reproducible with the
demo GMMN_QMC_paper of the R package gnn. Our implementation utilizes the R packages
keras and tensorflow which serve as R interfaces to the corresponding namesake Python
libraries. Furthermore, all GMMN training is carried out on one NVIDIA Tesla P100 GPU.
To generate the RQMC point set in Algorithm 4.2.3, we use scrambled nets (Owen, 1995);
see also Appendix C.1.3. Specifically, we use the implementation sobol(, randomize =
"Owen") from the R package qrng. Finally, our choice of R as programming language for
this work was motivated by the fact that contributed packages providing functionality for
copula modeling and quasi-random number generation — two of the three major fields of
research (besides deep learning) this work touches upon — exist in R.

4.3.2 Visual assessments of GMMN samples

In this section we primarily focus on the bivariate case but include an example involving
a trivariate copula; for higher-dimensional copulas, see Sections 4.3.3 and 4.4. For all
one-parameter copulas considered, the single parameter will be chosen such that Kendall’s
tau, denoted by 7, is equal to 0.25 (weak dependence), 0.50 (moderate dependence) or 0.75
(strong dependence); clearly, this only applies to copula families where there is a one-to-one
mapping between the copula parameter and 7.
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t, Archimedean copulas and their associated mixtures

First, we consider Student ¢ copulas, Archimedean copulas, and their mixtures.

Student ¢ copulas are prominent members of the elliptical class of copulas and are
given by C(u) = t, p(t; (u1),...,t, (uq)), u € [0,1]%, where t, p denotes the distribution
function of the d-dimensional ¢ distribution with v degrees of freedom, location vector 0 and
correlation matrix P, and ¢! denotes the quantile function of the univariate ¢ distribution
with v degrees of freedom. For all ¢ copulas considered in this work, we fix ¥ = 4. Student
t copulas have explicit inverse Rosenblatt transforms, so one can utilize the CDM for
generating quasi-random samples from them Cambou et al. (2017).

Archimedean copulas are copulas of the form

C(u) = ¢(¢_1(u1) +eoet ¢_1(ud))7 RS [O’ 1]d7

for an Archimedean generator ¢ which is a continuous, decreasing function ¢ : [0, oo] — [0, 1]
that satisfies ¥(0) = 1, ¢(00) = limy,oo ¥ (f) = 0 and that is strictly decreasing on
[0,inf ¢ : ¢(t) = 0]. Examples of Archimedean generators include ¢ (t) = (1 4 )~/% (for
0 > 0) and ¢g(t) = exp(—t*?) (for & > 1), generating Clayton and Gumbel copulas,
respectively. While the inverse Rosenblatt transform and thus the CDM is available
analytically for Clayton copulas, this is not the case for Gumbel copulas; in Appendix C.2
we used numerical root finding to include the latter case for the purpose of timings only.

We additionally consider equally-weighted two-component mixture copulas in which
one component is a 90-degree-rotated ¢4 copula with 7 = 0.50 and the other component is
either a Clayton copula (7 = 0.50) or a Gumbel copula (7 = 0.50). The two mixture copula
models are referred to as Clayton-¢(90) and Gumbel-£(90) copulas, respectively.

The top rows of Figures 4.2—-4.4 display contour plots of true ¢, Clayton and Gumbel
copulas respectively, with 7 = 0.25 (left), 0.50 (middle) and 0.75 (right) along with contours
of empirical copulas based on GMMN pseudo-random and GMMN quasi-random samples
corresponding to each true copula C. The top row of Figure 4.5 displays similar plots
for Clayton-t(90) (left) and Gumbel-¢(90) (right) copulas. In each plot, across all figures
described above, we observe that the contour of the empirical copula based on GMMN
pseudo-random samples is visually fairly similar to the contour of C, thus indicating that
the 11 GMMNs have been trained sufficiently well. We also see that the contours of the
empirical copulas based on GMMN quasi-random samples better approximate the contours
of C' than the contours of the empirical copulas based on the corresponding pseudo-random
samples. This observation indicates that, at least visually, the 11 GMMN transforms
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(corresponding to each C') have preserved the low-discrepancy of the input RQMC point
sets.

The bottom rows of Figures 4.2-4.5 display Rosenblatt transformed GMMN quasi-
random samples, corresponding to each of the 11 true copulas C' under consideration.
The Rosenblatt transform for a bivariate copula C' maps (Uy,Us) ~ C to (Ry, Ry) =
(Ur, Co;1(Uy | Ur)), where Cyy1(uz | uy) denotes the conditional distribution function of Us
given U; = u; under C. We exploit the fact that (Ry, Ry) ~ U(0,1)* if and only if
(U1, Uy) ~ C. Moreover, Rosenblatt-transforming the GMMN quasi-random samples should
yield a more homogeneous coverage of [0, 1]2. From each of the scatter plots in Figures 4.2—
4.5, we observe no significant departure from U(0, 1)?, thus indicating that the GMMNs
have learned sufficient approximations to the corresponding true copulas C. Furthermore,
the lack of gaps or clusters in the scatter plots provides some visual confirmation of the
low-discrepancy of the Rosenblatt-transformed GMMN quasi-random samples.

Nested Archimedean, Marshall-Olkin and mixture copulas

Next, we consider more complex copulas such as nested Archimedean copulas and Marshall—
Olkin copulas. We also re-consider the two mixture copulas introduced in the previous
section along with an additional mixture copula. To better showcase the complexity of
these dependence structures, we use scatter plots instead of contour plots to display copula
and GMMN-generated samples. We omit the plots containing the Rosenblatt transformed
samples since they are harder to obtain for the copulas we investigate in this section.

Nested Archimedean copulas (NACs) are Archimedean copulas with arguments possibly
replaced by other NACs; see McNeil (2008) or Hofert (2012). In particular, this class of
copulas allows us to construct asymmetric extensions of Archimedean copulas. Important
to note here is that NACs are copulas for which there is no known (tractable) CDM. To
demonstrate the ability of GMMNs to capture such dependence structures, we consider
the simplest three-dimensional copula for visualization and investigate higher-dimensional
NACs in Sections 4.3.3 and 4.4. The three-dimensional NAC we consider here is

C(u) = Co(Cy(ur,ug),uz), u €0, 1]3, (4.10)

where () is a Clayton copula with Kendall’s tau 79 = 0.25 and (] is a Clayton copula with
Kendall’s tau 71 = 0.50. In Sections 4.3.3 and 4.4, we will present examples of five- and
ten-dimensional NACs.

Bivariate Marshall-Olkin copulas are of the form

C(uy, up) = minfu; ™ “ug, uguy 2}, uy,up € [0, 1],
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Figure 4.2: Top row contains contour plots of true ¢, copulas with 7 = 0.25 (left), 0.50
(middle) and 0.75 (right) along with the corresponding contour plots of empirical copulas

based on GMMN pseudo-random and GMMN quasi-random samples (respectively, GMMN

PRS and GMMN QRS), both of size ng, = 1000. Bottom row contains Rosenblatt-

transformed GMMN QRS corresponding to the same three ¢4 copulas.
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Figure 4.3: Top row contains contour plots of true Clayton copulas with 7 = 0.25 (left), 0.50
(middle) and 0.75 (right) along with the corresponding contour plots of empirical copulas
based on GMMN PRS and GMMN QRS, both of size ng, = 1000. Bottom row contains
Rosenblatt-transformed GMMN QRS corresponding to the same three Clayton copulas.
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Figure 4.4: Top row contains contour plots of true Gumbel copulas with 7 = 0.25 (left), 0.50
(middle) and 0.75 (right) along with the corresponding contour plots of empirical copulas
based on GMMN PRS and GMMN QRS, both of size ng, = 1000. Bottom row contains

Rosenblatt-transformed GMMN QRS corresponding to the same three Gumbel copulas.
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Figure 4.5: Top row contains contour plots of true Clayton-£(90) (left) and Gumbel-£(90)
(right) mixture copulas along with the corresponding contour plots of empirical copulas
based on GMMN PRS and GMMN QRS, both of size ng, = 1000. Bottom row contains
Rosenblatt-transformed GMMN QRS corresponding to the same two mixture copulas.
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where aq, as € [0, 1]. A notable feature of Marshall-Olkin copulas is that they have both
an absolutely continuous component and a singular component. In particular, the singular
component is determined by all points which satisfy uj* = u$?. Accurately capturing this
singular component may present a different challenge for GMMNs, which is why we included
this copula despite the fact that there also exists a CDM for this copula; see Cambou et al.
(2017). As an example for visual assessment, we consider a Marshall-Olkin copula with
a1 = 0.75 and ay = 0.60.

We also consider three mixture models, all of which are equally weighted two-component
mixture copulas with one component being a 90-degree-rotated t, copula with 7 = 0.50.
The first two models are the Clayton-¢(90) and Gumbel-£(90) mixture copulas as previously
introduced. The second component in the third model is a Marshall-Olkin copula with
parameters a; = 0.75 and ay = 0.60. We refer to this third model as the MO-£(90) copula.

Figures 4.6-4.8 display pseudo-random samples (left column) from a (2,1)-nested
Clayton copula as in (4.10), a MO copula, and the three mixture copulas, respectively,
along with GMMN pseudo-random samples (middle column) and GMMN quasi-random
samples (right column) corresponding to each copula C. The similarity between the GMMN
pseudo-random samples in the middle column and the pseudo-random samples in the left
column indicate that the copulas C' were learned sufficiently well by their corresponding
GMMNSs. Note that in the case of the nested Clayton copula, we can only comment on how
well the bivariate margins of the copula C were learned. From the right columns, we can
mainly observe that the GMMN quasi-random samples contain less gaps and clusters when
compared with the corresponding pseudo-random and GMMN pseudo-random samples. The
fact that GMMNs were capable of learning the main features of the MO copulas and the
MO-t(90) mixture copulas, including the singular components, is particularly noteworthy
given how challenging it seems to be to learn a Lebesgue null set from a finite amount of
samples.

4.3.3 Assessment of GMMN samples by the Cramér-von Mises
statistic

After a purely visual inspection of the generated samples, we now assess the quality of
GMMN pseudo-random and GMMN quasi-random samples more formally with the help of
a goodness-of-fit statistic. Since bivariate copulas have been investigated in detail in the
previous section, we focus on higher-dimensional copulas in this section.
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Figure 4.6: Pseudo-random samples (PRS; left), GMMN pseudo-random samples (GMMN
PRS; middle) and GMMN quasi-random samples (GMMN QRS; right), all of size nge, =
1000, from a (2,1)-nested Clayton copula as in (4.10) with 7o = 0.25 and 7, = 0.50.
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Figure 4.7: PRS (left), GMMN PRS (middle) and GMMN QRS (right), all of size ngen, =
1000, from a Marshall-Olkin copula with a; = 0.75 and ay = 0.60 (Kendall’s tau equals
0.5).
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Specifically, we use the Cramér—von Mises statistic (Genest et al., 2009),

St = [, Mo o () = C(w)*ACo ()

where the empirical copula

1 Ngen R R
C'ngen(u) = o Z ]I{U’Ll S Uty n oy Uid S U/d}, (NS [O, 1]d, (411)
gen =1

is the empirical distribution function of the pseudo-observations. For nge, = 1000 and each
copula C', we compute B = 100 realizations of S, ., three times — once for the case where
[7,-, i =1,...,Ngen, are pseudo-observations of the true underlying copula (as benchmark),
once for GMMN pseudo-random samples and once for GMMN quasi-random samples. We
then use box plots to depict the distribution of S, in each case. Figure 4.9 displays these
box plots for ¢4 (top row), Clayton (middle row) and Gumbel copulas (bottom row) of
dimensions d = 5 (left column), d = 10 (right column) and 7 = 0.50. Similarly, Figure 4.10
displays such box plots for d-dimensional nested Clayton (left column) and nested Gumbel
copulas (right column) for d = 3 (top row), d = 5 (middle row) and d = 10 (bottom
row). The three-dimensional NACs have a structure as given by (4.10) with 75 = 0.25
and 71 = 0.50; the five-dimensional NACs have structure Co(C(uy, uz), Ca(us, ug, us)) with
corresponding 7o = 0.25, 7y = 0.50 and 75 = 0.75; and the ten-dimensional NACs have
structure Co(Cy(uq, . .., us), Co(ug, - . ., u1p)) with corresponding 79 = 0.25, 7, = 0.50 and
Ty = 0.75.

We can observe from both figures that the distributions of S,,,,, for pseudo-random
samples from C' and from the GMMN are similar, with slightly higher S,,., values for
the GMMN pseudo-random samples, especially for d = 10. Additionally, we can observe
that the distribution of S, ., based on the GMMN quasi-random samples is closer to zero
than that of the GMMN pseudo-random samples. This provides some evidence that the
low-discrepancy of input RQMC points set has been preserved under the respective (trained)

GMMN transforms.

We also see that S, ., values based on the GMMN quasi-random samples are clearly
lower than S, values based on the copula pseudo-random samples, with the exception of

some copulas for d = 10 where the distributions of .S, are more similar.

gen

4.4 Convergence analysis of the RQMC estimator

In this section we numerically investigate the variance-reduction properties of the GMMN
RQMC estimator ﬂg’jﬂ in (4.7) for two functions ¥ and transforms ¢ = fz0® ! corresponding
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Figure 4.9: Box plots based on B = 100 realization of S,,,, computed from (i) a pseudo-
random sample (PRS) of C' (denoted by Copula PRS), (ii) a GMMN pseudo-random sample
(denoted by GMMN PRS) and (iii) a GMMN quasi-random sample (denoted by GMMN
QRS) — all of size nge, = 1000 — for a ¢4 (top row), Clayton (middle row) and Gumbel
copulas (bottom row) with 7 = 0.5 as well as d = 5 (left column) and d = 10 (right column).
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Figure 4.10: As Figure 4.9 but for nested Clayton (left column) and nested Gumbel copulas

5 (middle row) and d = 10 (bottom row).
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to different copulas C'. We compare ﬂggﬂ with estimators based on standard copula pseudo-
random and, where available, copula quasi-random samples. For the latter, we follow
Cambou et al. (2017) but note that quasi-random sampling procedures are only available
for some of the copulas we consider here; for others, the procedures are either too slow (e.g.,
for Gumbel copulas; see Appendix C.2) or not known at all (e.g., for nested Clayton or
Gumbel copulas).

We consider two different types of functions W. The first is a test function primarily
used in the QMC literature to test the performance of ﬂggl\jn in terms of its ability to
preserve the low-discrepancy of P, en- The second function ¥ is motivated from a practical
application in risk management. For both functions, standard deviation estimates will be
computed to compare convergence rates, based on B = 25 randomized point sets ]-Z’ngen
for each of nge, € {2'°,2'95 ... 218} to help roughly gauge the convergence rate for all
estimators. Furthermore, regression coefficients o (obtained by regressing the logarithm of
the standard deviation on the logarithm of n,e,) are computed and displayed to allow for
an easy comparison of the corresponding convergence rates O(n,y) with the theoretical
convergence rate O(ngy;”) of the Monte Carlo estimator’s standard deviation. For RQMC
estimators one can expect a to be larger than 0.5, but with an upper bound of 1.5 — ¢,
where ¢ increases with dimension d; see Theorem C.1.3 for further details.

4.4.1 A test function

The test function we consider is the Sobol” g function (Radovi¢ et al., 1996) based on the
Rosenblatt transform and is given by

H\4R 2|47
14+

)

where Ry = U; and, for j =2,...,dand if U ~ C,
R; = Cjp,..j—1(Uj |Uj_y, ..., Ur)

denotes the conditional distribution function of U; given Uy, ..., U;_;.

Figure 4.11 shows plots of standard deviation estimates for estimating E(W,(U)) for ¢4
copulas (top row), Clayton (middle row) and Gumbel copulas (bottom row) in dimensions
d = 2 (left column), d = 5 (middle column) and d = 10 (right column). For the ¢4 and
Clayton copulas we numerically compare the efficiency of the GMMN RQMC estimator
(with legend label “GMMN QRS”) with the copula RQMC estimator based on the CDM
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Figure 4.11: Standard deviation estimates based on B = 25 replications for estimating
E(V,(U)), the expectation of the Sobol” g function, via MC based on a pseudo-random
sample (PRS), via the copula RQMC estimator (whenever available; rows 1-2 only) and
via the GMMN RQMC estimator. Note that each row has d € {2,5,10}.
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method (with legend label “Copula QRS”) and the MC estimator (with legend label
“Copula PRS”). For the Gumbel copula, however, the CDM approach (“Copula QRS”)
is computationally not feasible; see Section 4.3.2 and Appendix C.2. The legend of each
plot also provides the regression coefficient o which indicates the convergence rate of each
estimator.

From Figure 4.11, we observe that the GMMN RQMC estimator clearly outperforms
the MC estimator. Naturally, so does the copula RQMC estimator for the copulas for
which it is available. On the one hand, the rate of convergence of the GMMN RQMC
estimator decreases with increasing copula dimensions; see also the decreasing regression
coefficients @ when moving from the two- to the ten-dimensional case. As a result, the
copula RQMC estimator (when available) outperforms the GMMN RQMC estimator for
five and ten dimensional copulas. On the other hand, the GMMN RQMC estimator still
outperforms the MC estimator.

4.4.2 An example from risk management practice

Consider modeling the dependence of d risk-factor changes (for example, logarithmic returns)
of a portfolio; see McNeil et al. (2015, Chapters 2, 6 and 7). We now demonstrate the
efficiency of our GMMN RQMC estimator by considering the expected shortfall of the
aggregate loss, a popular risk measure in quantitative risk management practice.

Specifically, if X = (X,...,X;) denotes a random vector of risk-factor changes with
N(0,1) margins, the aggregate loss is S = Z?;l X;. The expected shortfall ESy g9 at level
0.99 of S is given by
B 1
1 -0.99 Jo.og

where F5' denotes the quantile function of S. As done previously, various copulas will be
used to model the dependence between the components of X.

ESo.99(5) Fg'(u)du=B(S|S > Fg'(0.99)) = E(¥,(X)),

Figure 4.12 shows plots of standard deviation estimates for estimating E(W4(X)). The
first three rows contain results for the same copula models as considered in Section 4.4.1.
The fourth row contains results for nested Gumbel copula models with dimension d = 3
(left column), d = 5 (middle column) and d = 10 (right column). The specific hierarchical
structures and parameterization have been described earlier in Section 4.3.3; note that
there is no quasi-random sampling procedure known for these copulas. We can observe
from the plots that the GMMN RQMC estimator outperforms the MC estimator. Similar
as before, we see a decrease in the convergence rate of the GMMN RQMC estimator as the
copula dimension increases, although it still outperforms the MC estimator.
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4.5 A financial data example

In this section, we present real-data examples to show how our method can be useful
in practice. To this end, we consider applications from finance and risk management.
Such applications often involve the modeling of dependent multivariate return data in
order to estimate various quantities p of interest. In this context, utilizing GMMNs for
dependence modeling can yield two key advantages. Firstly, GMMNs are highly flexible and
hence can model dependence structures not adequately captured by prominent parametric
copula models; see, e.g., Hofert and Oldford (2018) for the latter point. Secondly, as
demonstrated in Sections 4.3 and 4.4, one can readily generate GMMN quasi-random
samples to achieve variance reduction when estimating p; this is especially advantageous as
oftentimes oversimplified parametric models are chosen just so that this can be achieved. In
this section, we model asset portfolios consisting of S&P 500 constituents to showcase these
advantages. All results are reproducible with the demo GMMN_QMC_data of the R package
gnn.

4.5.1 Portfolios of S&P 500 constituents

We consider daily adjusted closing prices of 10 constituent time series from the S&P 500
in the time period from 1995-01-01 to 2015-12-31. The selected constituents include three
stocks from the information technology sector — Intel Corp. (INTC), Oracle Corp. (ORCL)
and International Business Machines Corp. (IBM); three stocks from the financial sector
— Capital One Financial Corp. (COF), JPMorgan Chase & Co. (JPM) and American
International Group Inc (AIG); and four stocks from the industrial sector — 3M Company
(MMM), Boeing Company (BA), General Electric (GE) and Caterpillar Inc. (CAT). We
also investigate sub-portfolios of stocks with dimensions d = 5 (consisting of INTC, ORCL,
IBM, COF and AIG) and d = 3 (consisting of INTC, IBM and AIG). The data are obtained
from the R package qrmdata.

To account for marginal temporal dependencies, we follow the copula-GARCH approach
(Jondeau and Rockinger, 2006; Patton, 2006) and model each marginal time series of log-
returns by an ARMA(1, 1)-GARCH(1, 1) model with standardized ¢ innovation distributions
(deGARCHing). We then extract the marginal standardized residuals (i.e., the realizations
of the standardized ¢ innovations) and compute, for each of the three portfolios, their
pseudo-observations for the purpose of modeling the cross-sectional dependence among the
corresponding portfolio’s log-return series.
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4.5.2 Assessing the fit of the dependence models

As models for the pseudo-observations of each of the three portfolios we use prominent
parametric copulas (Gumbel, Clayton, exchangeable normal, unstructured normal, ex-
changeable ¢ and unstructured ¢) and GMMNs of the same architecture and with the same
training setup as detailed in Section 4.3.1. The rather small number of training data points
(ngm = 5287) allows us to use npay = Ny here and hence directly train with the entire
dataset. All parametric copulas are fitted using the maximum pseudo-likelihood method;
see (Hofert et al., 2018b, Section 4.1.2).

To evaluate the fit of a dependence model, we use a Cramér-von-Mises type test statistic
introduced by Rémillard and Scaillet (2009) to assess the equality of two empirical copulas.
This statistic is defined as

1 T\ ?
Sntrnyngcn = ( + ) <Cngcn (u) - Cntrn (u)> du7
[0,1]¢

ngen Ntrn

where C,,,.. (u) and C,,,, (u) are the empirical copulas, defined according to (4.11), of the
Ngen Samples generated from the fitted dependence model and the ny,, pseudo-observations
used to fit the dependence model, respectively. For how S, is evaluated, see Rémillard

and Scaillet (2009, Section 2).

trn,Mgen

For each of the three portfolios and each of the seven dependence models considered,
we compute B realizations of Sy, n.. based on ng, = 10000 pseudo-random samples
generated from the fitted dependence model under consideration and the ny, = 5287
pseudo-observations of each portfolio considered. Figure 4.13 displays box plots depicting
the distribution of Sy, n,.. for each portfolio and dependence model. Across all three
portfolios, we can observe that the distribution of S, ... based on the GMMN models is
concentrated closer to zero than those of each fitted parametric copula. In fact, the difference
in distributions of Sy, n,., realizations between GMMN models and the best parametric
copula model (a t-copula with unstructured correlation matrix) is most noticeable for
d = 10, where an adequate fit becomes more challenging for the parametric copulas. For
each of the three portfolios, a GMMN provides the best fit. Hence, we use these fitted
GMMNs to model the underlying dependence structure for the three portfolios in each of

three applications considered next.

4.5.3 Assessing the variance reduction effect

In three applications we study the variance reduction effect of our GMMN RQMC estimator
ﬂggn computed from quasi-random samples in comparison to the GMMN MC estimator
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Figure 4.13: Box plots based on B = 100 realizations of S, n,.. computed for portfolios of
dimensions d = 3 (left), d =5 (middle) and d = 10 (right) and for each fitted dependence
model using a pseudo-random sample of size nge, = 10000 from each corresponding fitted

model.

ﬂggl\i;MC computed from pseudo-random samples.

Our first application concerns the estimation of the expected shortfall g = ESjg9(.5)
for $ = Y7, X; as in Section 4.4.2, where the margins of X = (Xi,...,X,) are now
the fitted standardized t distributions as obtained by deGARCHing and the dependence
structure is the previously fitted GMMN. This is a classical task in risk management
practice according to the Basel guidelines. As a second application we consider a capital
allocation problem which concerns estimating how to allocate an amount of risk capital
(e.g., computed as ESjge(S)) to each of d business lines. Without loss of generality,
we consider one business line, the first, and estimate the expected shortfall contribution
p=AC090 = E(X;|S > F5'(0.99)) according to the Euler principle; see McNeil et al.
(2015, Section 8.5). Our third application comes from finance and concerns the estimation
of the expected payoff © = E(exp(—r(T — t))max{(Z?zl Sr;) — K,0}) of a European
basket call option, where r denotes the continuously compounded annual risk-free interest
rate, t denotes the current time point, 7" the maturity in years and K the strike price.
We assume a Black-Scholes framework for the marginal stock prices (St1,...,S7.4) at
maturity T, so Sp; ~ LN(log(Sy;) + (r — 03 /2)(T —t), 02(T —t)), where Sy ; denotes the
last available stock price of the jth constituent (i.e., the close price on 2015-12-31) and o
denotes the volatility of the jth constituent (estimated by the standard deviation of its
log-returns over the time period from 2014-01-01 to 2015-12-31). The dependence structure
of (St1,...,S57,4) is modeled by the previously fitted GMMN. Furthermore, we choose t = 0
to be the last available point in the data period considered (i.e., 2015-12-31), 7" =1 and
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r = 0.01. The strike prices K are chosen about 0.5% higher than the average stock price of
all stocks in the respective portfolio at ¢ = 0.

For each of the three portfolios and for each of the three expectations p considered, we
compute B = 200 realizations of the GMMN MC estimator ﬂ}jg;lMC and the GMMN RQMC
estimator /]Sgljn, using ngen = 10° samples for both estimators. Figure 4.14 displays box
plots of these realizations of iy "M (with x-axis label “GMMN PRS”) and of fin~ ~(with
x-axis label “GMMN QRS”) for ESg g9 (left column), ACy g.g9 (middle column), the expected
payoff of the basket call option (right column) and for the portfolio in dimension d = 3 (top
row), d = 5 (middle row) and d = 10 (bottom row). Additionally, to quantify the variance

reduction effect of iy~ over fin™MC, we report in the secondary y-axis of each box plot
NN, MC

Ngen

Ngen

the estimated variance reduction factor (VRF) — namely, the sample variance of fi
over the sample variance of ﬂgi\iﬂ — and the corresponding improvement in percentages.

From Figure 4.14, we observe that ﬂljgl\in is able to reduce the variance in all considered
applications and across all dimensions. While variance reduction is diminished in higher
dimensions (d = 10), the GMMN RQMC estimator is still immensely useful in estimating
expectations p for three reasons. Firstly, as demonstrated in the previous section, GMMNs
best fit the underlying dependence structure of the data. Secondly, unlike many parametric
copulas, we can generate quasi-random samples independently of the type of dependence
structure observed in the data. Finally, we can generate GMMN quasi-random samples at
no additional cost over GMMN pseudo-random samples; see also Appendix C.2.

4.6 Discussion

This work has been inspired by the simple question of how to obtain quasi-random samples
for a large variety of multivariate distributions. Until recently, this was only possible
for a few multivariate distributions with specific underlying copulas. In general, for the
vast majority of multivariate distributions, obtaining quasi-random samples is a hard
problem (Cambou et al., 2017). Our approach based on GMMNs provides a first universal
method for doing so. It depends on first learning a generator f, such that, given Z (with
independent components from some known distribution such as the standard uniform or
standard normal), f3(Z) follows the targeted multivariate distribution. Conditional on
this first step being successful, we can then replace Z with F;'(9;), i =1,...,Ngen, where
{©1,...,0n,,} is an RQMC point set, to generate quasi-random samples from X.

It is generally difficult to assess the low-discrepancy property of non-uniform quasi-
random samples. To evaluate the quality of our GMMN quasi-random samples, we used
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visualization tools (Section 4.3.2), goodness-of-fit statistics (Section 4.3.3), and investigated
variance reduction effects (Section 4.4) when estimating p = E(W (X)) for a test function
and for expected shortfall. As dependence structures among the components of X, we
included various known copulas, some of which allowed for quasi-random sampling which
allowed us to statistically assess the performance of our GMMN quasi-random samples.
However, we emphasize that the key feature of our method is that, given a sufficiently
large dataset with dependence structure not well described by any known parametric
copula model for which quasi-random sampling is available, we are now able to generate
quasi-random samples from its empirical distribution. We demonstrated this with a real
dataset in Section 4.5. Not only does a GMMN provide the best fitting model in this
application, allowing us to avoid the tedious and often computationally challenging search
that is typically required in classical copula modeling for an adequate dependence model,
we also obtain, at no additional cost, quasi-random samples from this GMMN — a whole
other challenge in classical copula modeling. This universality and computability is an
attractive feature of GMMNs for multivariate modeling.

However, this does not mean that the problem of quasi-random sampling for multivariate
distributions is completely solved. In high dimensions learning an entire distribution is a
hard problem, and so is learning the generator f;. At a superficial level, the literature on
generative NNs — and the many headlines covering them — may give the impression that
such NNs are now capable of generating samples from very high-dimensional distributions.
This, of course, is not true; see, for example, Arjovsky et al. (2017), Tolstikhin et al. (2017),
or Arora et al. (2018). In particular, while available evidence is convincing that any specific
generated sample f;(Z1), typically an image, can be very realistic in the sense that it looks
just like a typical training sample, this is not the same as saying that the entire collection
of generated samples {f3(Z1), f3(Z>), ...} will have the same distribution as the training
sample. The latter is a much harder problem to solve. Unlike widely cited generative NNs
such as variational autoencoders and generative adversarial networks, GMMNs are capable
of learning entire distributions, because they rely on the MMD-criterion as the loss function
rather than, for example, the mean squared error which does not measure the discrepancy
between entire distributions. Even so, this still does not mean GMMNs are practical for
very high dimensions yet, simply because the fundamental curse of dimensionality cannot
be avoided easily. At the moment, it is simply not realistic to hope that one can learn an
entire distribution in high dimensions from a training sample of only moderate size.

Going forward there are two primary impediments to quasi-random sampling from
higher-dimensional copulas and distributions. Firstly, the problem of distribution learning
via generative NNs remains a challenging task. We may also consider using other goodness-
of-fit statistics for multivariate distributions rather than the MMD as the loss function
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(provided that the statistic is differentiable in order to train a generative NN). Secondly,
we discovered from our empirical investigation in Section 4.4 that the convergence rates
of GMMN RQMC estimators decrease with increasing dimension. Preserving the low-

discrepancy of RQMC point sets upon transformations in high dimensions remains an open
problem in this regard.
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Chapter 5

Multivariate time-series modeling
with generative neural networks

5.1 Introduction

The task of modeling multivariate time series (MTS) arises in a variety of applications
in finance, economics and quantitative risk management. In many situations, a suitable
model arises from breaking down this task into two key components: the modeling of
serial dependence within each univariate time series and the modeling of cross-sectional
dependence between the individual time series. There is a plethora of literature on univariate
time series modeling with a wide range of models that are tailor-made for capturing various
types of serial patterns such as seasonality, volatility clustering or regime switching. In
the realm of financial econometrics, the class of generalized auto-regressive conditional
heteroscedasticity (GARCH) models (Bollerslev, 1986) is a popular choice. GARCH-type
models are designed to account for stylized facts (such as volatility clustering) that are
often present in financial return series data; see McNeil et al. (2015, Chapter 3).

There have been numerous approaches proposed for extending univariate time series
modeling approaches to the multivariate case. Within the broad GARCH framework,
Bollerslev (1990) initially introduced a multivariate model characterized by the distributional
assumption of multivariate normality with a constant conditional correlation structure.
Dynamic conditional correlation (DCC)-GARCH models were then introduced by Engle
(2002) and Tse and Tsui (2002). DCC-GARCH models relax the conditional correlation
assumption but still utilize multivariate normal distributions to model the cross-sectional
dependence between the univariate time series. Leveraging Sklar’s Theorem (Sklar, 1959),
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Jondeau and Rockinger (2006) and Patton (2006) presented a flexible family of multivariate
GARCH models where the assumption of multivariate normality has been relaxed to allow
for any copula of the joint innovation distribution. This popular modeling approach for
MTS data is known as the copula—GARCH approach; see Patton (2012) for a brief overview
in the context of finance and econometrics. It allows us to flexibly model joint innovation
distributions with copulas, thereby decomposing the M'TS modeling task into modeling of
the (univariate) marginal time series and their cross-sectional dependence. There have been
various research papers investigating the calibration of copula-GARCH models, for example
the more recent work of Aas (2016), Almeida et al. (2016) or Oh and Patton (2017).

While there is a growing collection of copula models used to characterize complex depen-
dence structures, most models are rather limited already in moderately large dimensions
and often do not provide an adequate fit to given data (see, for example, Hofert and Oldford
(2018)) or require sophisticated, model-specific algorithms for parameter estimation and
model selection. In this chapter, we propose a framework for MTS modeling in which a
classical copula model to account for cross-sectional dependence is replaced by a generative
moment matching network (GMMN). In comparison to classical copulas, GMMNs can
capture a large variety of complex dependence structures. For high-dimensional time series
data, we incorporate principal component analysis (PCA) as an intermediate step to reduce
the dimensionality. Our primary goal is to construct empirical predictive distributions, also
known as probabilistic forecasts, rather than point forecasts. Additionally, these empirical
predictive distributions can be utilized to further forecast various quantities of interest (e.g.,
quantiles) via simulation.

The chapter is organized as follows. In Section 5.2, we outline our framework for
modeling MTS data. In particular, we focus on the novel integration of GMMNs within this
framework. In Section 5.3, we showcase our GMMN-based multivariate time series models
in applications to yield curve and exchange rate data. Section 5.4 provides concluding
remarks. All results in this chapter can be reproduced with the demo GMMN_MTS_paper in
the R package gnn (version 0.0-3).

5.2 A framework for multivariate time series model-

ing
Let (X)iez denote a d-dimensional time series of interest, where X, = (X;1,..., X¢q).
Furthermore, consider a stretch of 7 realizations from (X;);ez denoted by X;4,..., X,. In

applications in finance (risk management), these are often log-returns (negative log-returns)
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of d asset prices; see Section 5.3 for more details and the pre-processing steps applied to
each empirical dataset we consider.

Our suggested framework for modeling X1, ..., X, consists of three primary compo-
nents:

1. marginal time series modeling — while many possibilities can be considered, we focus
on ARMA-GARCH models;

2. dimension reduction — again, many tools are available, but we simply utilize PCA;
and

3. dependence modeling — here, the typical approach is to choose a parametric copula,
but we introduce the use of GMMNs, the main contribution of this chapter.

While Step 1 and Step 3 are essential, the dimension reduction component in Step 2 is
optional and typically only used for high-dimensional time series which are amenable to
good approximations by lower-dimensional representations.

5.2.1 Marginal time series modeling

The ARMA-GARCH models in Step 1 are ARMA models with GARCH errors; see McNeil
et al. (2015, Section 4.2.3). These ARMA(py;, ¢1;)-GARCH(ps;, ¢2j) models have the form

Xtj =ty + 01245,

Pb1j q1j
e =i+ (X — ) + O v Xecry — i),
k=1 =1
p2j q2;
or; = wi+ > n(Xemky — i)’ + > Bioi i,
k=1 =1

where, for each component j =1,...,d, one has 1; € R, w; > 0, and aj, B;; > 0 for all £, 1.
Some additional conditions on the coefficients @i, v;i, o and j; are necessary to ensure
that all ARMA- and GARCH-processes are respectively causal and covariance stationary;
for example see McNeil et al. (2015, Section 4.1.2-4.2.2).

For each j = 1,...,d, the innovations Z,; in the definition of the ARMA-GARCH
model are independent and identically distributed (iid) random variables with E(Z; ;) = 0
and Var(Z, ;) = 1; their realizations after fitting marginal ARMA (py;, ¢1;)-GARCH(py;, ¢25)

102



models are known as standardized residuals and denoted by Ztm t=1,...,7tandj=1,...,d.
In financial time series applications, common choices of innovation distributions include the
standard normal, the scaled ¢t and the skewed ¢ distribution.

Fitting the marginal time series models is typically done by fitting low-order models with
likelihood-based methods and selecting the most adequate fit using the AIC/BIC model
selection criterion among the candidate models. A popular broad-brush approach is to fit a
GARCHC(1, 1) model for financial return series — specifically, an ARMA(0,0)-GARCH(1,1)
model in our context — and continue the modeling based on the standardized residuals
Z1jy ..., Zrj; see McNeil et al. (2015, Chapter 4) or Hofert et al. (2018b, Section 6.2.3).
This procedure is also referred to as deGARCHing. With the help of model diagnostic tools

— for example, plots of the autocorrelation function (ACF) of Zm, cee Zm and that of their
squared values, Ljung—Box tests or assessment of the innovation distribution through Q-Q
plots — one can then assess the adequacy of each marginal time series model. In what
follows we use fi; ; and 67 ; to denote the estimated conditional mean and variance models
for the jth margmal time series with corresponding chosen orders pij, Gi;, P2;, G2; and fitted

parameters gb]k, Yjls @]k, le

Having accounted for the marginal serial dependence in this way, the subsequent
analysis in our modeling framework will operate on the standardized residuals Z, =
(Zm, ce an), t =1,...,7, which are themselves realizations of the innovation random
variables, Z1, ..., Z ., assumed to be iid in the copula-GARCH approach.

Before we continue, we emphasize once again that any other adequate marginal time
series modeling approach can be applied in our framework as long as the model’s residuals
can be considered to be iid from continuous marginal distributions. Our choice of ARMA-
GARCH models is motivated only from the fact that these are the most popular marginal
time series models used in practice.

5.2.2 Dimension reduction

Two popular dimension-reduction techniques for multivariate financial time series are factor
models and PCA; see McNeil et al. (2015, Chapter 6) and the references therein for a
brief summary. An approach that is perhaps less discussed in the financial econometrics
literature involves using autoencoder neural networks for dimension reduction in which two
separate neural network mappings are learned to and from the lower dimensional space; see
Hinton and Salakhutdinov (2006). As dimension reduction is not our main contribution in
this chapter, we simply utilize PCA in what follows.
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Note that PCA is often applied to the original MTS data X, in the literature; see,
e.g., Alexander (2000) for an investigation of the so-called orthogonal GARCH model.
Apart from reducing the burden of marginal time series modeling, there is no strong reason
why PCA should be applied to potentially non-stationary data. If dimension reduction is
necessary, we find it statistically more sound to apply PCA to the standardized residuals
Z, after first accounting for any serial dependence in the marginal time series.

Let 3 denote the sample covariance matrix of the standardized residuals 7z nt=1,...,71.
The result from PCA is the matrix [' € R?*? whose columns consist of the eigenvectors
of ﬁ, sorted according to decreasing eigenvalues 5\1 > 0> S\d > 0. For the purposes of
dimension reduction, Zt, t=1,...,7, are transformed to fft = f‘fmzt, where f‘.71:k e Rdéxk
represent the first £ columns of [ for some 1 < k <d. As a result, the sample covariance
matrix of Y; is (approximately) diagonal, and the components of Y; are (approximately)
uncorrelated. The jth component series Y;;, ¢ = 1,...,7, forms realizations of the jth
principal component, and the first & principal component series account for Z§:1 5\j / Z;l:l 5\]-
of the total variance.

As dimension reduction is an optional component in our modeling framework, the
next step involves dependence modeling of either the standardized residuals Z Tyevns Z. or
their principal components f’l, e ,YT. To unify the notation going forward, we define a
d*-dimensional time series f’t = YTZ“ where T = f.,m if dimension reduction is employed
and Y = I, (the identity matrix in R9?) otherwise; consequently, d* = k in the former case
and d* = d in the latter. Furthermore, we treat Y7, ..., Y, as realizations from Y, where,
naturally, Y; = Y Z, with T = I'. 1. if dimension reduction is used and T = I; otherwise.

5.2.3 Dependence modeling

The final task in our framework involves the modeling of the iid series Yi,...,Y,. To
account for cross-sectional dependence, we model the joint distribution function H of Y;
using Sklar’s Theorem as

H(y) = C(Fi(y1),..., Fo(ya)), ye€R”,

where Fj, j = 1,...,d*, are the margins of H and C : [0,1]%" — [0,1] is the copula of
(Yiq,..., Y q) for each t.

Following a classical copula modeling approach, one first builds the pseudo-observations
Uj=R;/(T+1),t=1...,7,j=1,...,d* where R;; denotes the rank of Y; ; among
571,]- ..., Y; ;. The pseudo-observations are viewed as realizations from C' based on which
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one would fit candidate copula models; see, for example, McNeil et al. (2015, Section 7.5.1)
or Hofert et al. (2018b, Section 4.1.2). Note that by considering (non-parametric) pseudo-
observations (even in the case when we do not apply a dimension reduction technique and
thus know the (fitted) marginal innovation distributions), we reduce the risk of misspecifying
one of the margins affecting the estimation of the copula C'; see Genest and Segers (2010)
for a theoretical justification of this approach. Therefore, going forward, we will use
the pseudo-observations U, = ((A]tyl, cee ﬁt,d*), t=1,...,7, to model the cross-sectional
dependence structure of Y,.

Dependence modeling with parametric copulas

A traditional approach for modeling the cross-sectional dependence described by U+, ..., U,
involves the fitting of parametric copula models, their goodness-of-fit assessment and finally,
model selection. There are numerous families of copula models to consider depending on
prominent features of the dependence structure present in U, such as (a)symmetries or a
concentration of points in the lower/upper tail of the joint distribution (or pairs of such)
which hints at an adequate model possessing tail dependence.

A problem with this approach is that it is often hard to find an adequate copula model for
given real-life data, especially in higher dimensions where typically some pairwise dependen-
cies contradict the corresponding model-implied marginal copulas; see, for example, Hofert
and Oldford (2018). Another problem is that certain copula models are computationally
expensive to fit and test for goodness-of-fit. In Section 5.3, we investigate whether (the
much more flexible) GMMNs can outperform prominent elliptical and Archimedean copulas
in the context of our framework. In what follows we thus shall denote by Cpum 2 (generic)
parametric copula model fitted to the pseudo-observations U Tyevns U,.

Dependence modeling with GMMINs

We propose to utilize generative neural networks (in particular, GMMNs) for modeling
the cross-sectional dependence structure of the pseudo-observations Ul, cee U,. In our
framework, a generative neural network fg with parameters 0 learns the distribution of the
pseudo-observations. Let Cxx denote the empirical copula based on a sample generated
from a trained GMMN f;.

As introduced in Sections 4.2.1 and 4.2.2, we work with GMMNs constructed using feed-

forward neural networks. In the context of our MTS modeling framework, let U,... U,
denote the training data. Then, given a sample Vi,...,V,  from a p-dimensional input
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distribution with independent components Fy, the GMMN generates an output sample
u,....U where U, = fp(V;), t = 1,...,ngen. For notational convenience, let us stack

i Ngen)

U, ...,U, into an 7 X d* matrix U and likewise U, ..., U into an nge, X d* matrix U.

) Ngen

To train the GMMN fy, we thus perform the optimization

A

min MMD(U, (fo(V)),

where the MMD statistic is computed as defined in (4.6), the ng., X p matrix V' is obtained
by stacking Vi,...,V, .., and the NN transform fy is understood to be applied row-wise.
As discussed in Section 4.3.1, we work with a mixture of n,,, Gaussian kernels with different
bandwidth parameters as our kernel function for the MMD statistic. Furthermore, we
always simply set nge, = 7 when training the GMMN for sake of convenience. For details
regarding the training procedure, see Algorithm 4.2.1. The resulting trained GMMN is

denoted by f;.

5.2.4 Simulating paths of dependent multivariate time series

After utilizing our framework for modeling multivariate time series, a typical next step is to
simulate paths from the fitted /trained multivariate model. With these simulated paths we
immediately obtain empirical predictive distributions at future time points. Additionally,
we can forecast quantities of interest such as (confidence) intervals or risk-measures (for
example value-at-risk or expected shortfall) based on the simulated paths. Some of these
quantities will be discussed further in Section 5.3. In this section, we focus on how to
simulate the required paths in our framework.

To fix ideas, suppose we are interested in future time points, 7 + 1,7 + 2,...,T.
Furthermore, let h < T — 7 denote the simulation horizon. Then, for every t =7,...,T —h,
once all realizations up to and including time ¢ — namely, the entire sequence (Xg)s<t —
become available, we can simulate multiple paths,

o () o) < (D) \ny
{Xt+1>Xt+27"'7Xt+h i:tlha

going forward for a total of h time periods.

A key component for simulating these paths is the generation of samples from the
estimated dependence model. For fitted parametric copulas C’pM, one typically uses a
model-specific stochastic representation to sample U,; see, for example, Hofert et al. (2018b,
Chapter 3). Sampling from the fitted GMMN f, (with corresponding empirical copula
C’NN) can be done as follows.
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Algorithm 5.2.1 (GMMN sampling)

1. Fix the number nge, of samples to generate from C’NN.

2. Draw V,....V,

Ngen

® Fy from the input distribution.

3. Return Uy = f3(Vs), s =1,..., Ngen.

Since copulas have U(0, 1) margins, we typically equip Algorithm 5.2.1 with a post-
processing step by returning the pseudo-observations based on Uy, ..., U to remove any
residual marginal non-uniformity from the GMMN samples.

Ngen

For any given t = 7,...,T — h, we can now utilize Algorithm 5.2.1 along with the

ﬁtted marginal time series models in our framework in order to simulate multiple paths

{XHl, X;ZQ, . t+h}npth with a fixed simulation horizon h, as outlined in Algorithm 5.2.2

below.

Algorithm 5.2.2 (Simulating paths of dependent multivariate time series via GMMNs)
1. Fix the number of sample paths n,, and the simulation horizon h.
2. Fort=r,...,T — h do:

(a) Generate Ugi), i=1,...,npm, sS=t+1,...,t+ h, from the fitted GMMN Cxn
via Algorithm 5.2.1.

(b) For every U in Step 2a, construct Y{) = (ﬁ’fl(US(’?), ey Fdil(Uﬁid*)). If no
dimension reduction is utilized, the marginals F = 1,...,d", are the fitted
parametric innovation distributions selected as part of the ARMA GARCH model

setup; otherwise, they are the empirical distribution functions of Y, o ,Ym,

g=1,....d"

(c) For every Y in Step 2b, construct samples from the fitted innovation dis-
tributions via the transform Z® = TY®. (Note that Y € R? whereas
Z e RY)

(d) For each j = ,d, compute 02(]), ﬂsj and XS]7 fori = 1,...,nyn and
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s=t+1,...,t+ h, via

P2j G42;
~9(7) ~ N (1 ~ (7 A A0(1)
62 =+ Y ap(X, — i)+ Buo,
k=1 =1
(i) o) & o (9)
flsj = ilj + > i (X s — M) + Z’%l(Xs—l,j —fig’14),
k=1 =1
o-(1) _ ~(9) ~ 200 (4)
Xoj=hs;+055 2

s?j s?]’

o (i Ao) A NONE :
where, for s < t, set XS(Z) = X, 02, =062, and ,ug = fisjforalli=1,... npn.

(e) Return XS) = ( AS{,...,XS;),z’:1,...,npth, s=t+1,...,t+h.

)

Note that Step 2a in Algorithm 5.2.2 can be replaced by sampling from the fitted
parametric copula Cpy to obtain the classically applied approach for sampling paths in the
copula—~GARCH framework.

While Algorithm 5.2.2 describes how to simulate paths of multivariate time series for
any simulation horizon h, we will focus on one-period-ahead (h = 1) empirical predictive
distributions henceforth.

5.2.5 Assessing the quality of predictions of dependent multivari-
ate time series models

In this section, we discuss the metrics we will use in all numerical investigations in this
chapter to assess and compare various MTS models. Of particular interest is the comparison
of GMMN-GARCH and copula-GARCH models. In practice, to assess the out-of-sample
performance of our models, realizations of time series will naturally be divided into separate
training and test datasets. To that end, suppose that we have realizations (X) 7 from
the test period T = {7+ 1,...,T} that have been set aside (i.e., not used for training) as a
separate test set.

Assessing the quality of dependence models in the test period
We can use the MMD statistic to measure how close the empirical distributions of a fitted

GMMN Cyy and a fitted parametric copula Cpy match the cross-sectional dependence
structure of the test set, (X¢)e7. This cross-sectional dependence structure can be extracted
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using the fitted (marginal) ARMA-GARCH models and the fitted PCA models (if dimension
reduction is applied), as described in the following algorithm.

Algorithm 5.2.3 (Extracting underlying dependence structure of the test data set)

1. Compute 6§j, fir,; and Zt,j forteT and j=1,...,d via

D2j G2;
&zj =w+ Z OA‘jk<Xt—k7j - ﬂt—k,j>2 + Z le&t{l,ja
k=1 =1
P1j R 41
fieg =05+ > (X — ) + > Au(Xery — fle—i),
k=1 =1
. X, —
Zyj = M
Ut,j

2. Obtain a sample from the underlying empirical stationary distribution via the trans-
foorm Y, = Y'Z, t € T. (Note that Z, € R? whereas Y; € R?".)

3. Return the pseudo-observations U, = ([Aftvl, - [A]nd*) of f’t, forteT.

Let us stack the pseudo-observations U ALy U obtained from the test dataset via
Algorithm 5.2.3 into an (7' — 7) X d* matrix U. Similarly, let U denote an Ngen X d* matrix
consisting of a sample generated from either Cxx or OPM, where we choose nge, =1 — 7
(other choices are possible). We can then compute one realization of the MMD statistic
MMD(U, U) as defined in (4.6). In our analysis in Section 5.3, we use an average MMD

statistic based on n,, repeated samples U®) € [0, 1]"en*4" = 1,... nyep, given by
AMMD = ST MMD(U, U®). (5.1)
Mrep =1

For the MMD statistic, we use a mixture of n,., = 5 Gaussian kernels with bandwidth
parameters o = (0.1,0.3,0.5,0.7,0.9). These bandwidth parameters are purposefully chosen
to be different from the bandwidth parameters o used in Section 5.3 below for the GMMN
training procedure, to allow for a fairer out-of-sample assessment.

Assessing the quality of an empirical predictive distribution

While there exist numerous metrics to assess univariate or multivariate point forecasts,
there are only a handful of metrics that can be utilized to evaluate the quality of dependent
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multivariate empirical predictive distributions. We now present two such metrics we will
use across all numerical examples.

Firstly, we use a version of the mean squared error (MSE) metric deﬁned via the Euclidean

norm to assess how well the empirical predictive distribution {X =1,...,Npth}
concentrates around each true value X, in the test set, so for t € T. To obtain a single
numerical value, we work with an average MSE metric computed over the entire test period

t € T, defined by

1 T Npth (7, )
AMSE = —— X, - X2 5.2
= 2, (e I X 52

Secondly, we use the variogram score introduced by Scheuerer and Hamill (2015), which,
in our context, assesses if the empirical predictive distribution is biased for the distance
between any two component samples. For a single numeric summary, we work with an
average variogram score (of order p) over the entire test period t € T,

. 1 T d d ) 1 Meth 0 ) 2
AVSP = ﬁ Z Z Z |Xt,J1 Xt,]2| - T Z |th1 ,]2| . (53)
1

t=r+1 \ j1=1jo=1 pth ;—

As numerically demonstrated by Scheuerer and Hamill (2015), by focusing on pairwise
distances between component samples, this metric discriminates well between various
dependence structures. Scheuerer and Hamill (2015) stated that a typical choice of the
variogram order might be p = 0.5, but they also note in their concluding remarks that
smaller values of p could potentially yield more discriminative metrics when dealing with
non-Gaussian data which is why we choose to work with p = 0.25.

5.3 Applications

In this section, we demonstrate the flexibility of our GMMN-GARCH models when compared
to copula—GARCH models. To that end, we focus on modeling multivariate yield curve
and exchange rate time series.

Before delving into the two financial econometrics applications, we will first detail the
selection and setup of component models within our framework that will be utilized for all
examples in this section. Specifically, we will describe the choice of marginal time series
models, the implementation details for GMMN models, and the choice of parametric copula
models used for comparison.
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Furthermore, note that all examples considered in this section were implemented in
R and can be reproduced using the demo GMMN_MTS_paper in the R package gnn. As
in Chapter 4, the R packages keras and tensorflow were used as R interfaces to the
corresponding namesake Python libraries. All GMMN training was carried out on a single
NVIDIA Tesla P100 GPU with 12GB RAM.

5.3.1 Multivariate time series modeling: setup and implementa-
tion details

Marginal models

For modeling the marginal time series, we take a broad-brush approach and choose
to fit ARMA(1,1)-GARCH(1,1) models with scaled ¢ innovation distributions Fj(z;) =

ty,(zj\/vi/(v; = 2)), 5 =1,...,d, to each component sample. As mentioned earlier, these
models are popular choices for modeling univariate financial time series. To fit them, we use

the fit_ARMA_GARCH(, solver="hybrid") function from the R package qrmtools which
relies on the ugarchfit () function from the R package rugarch (Ghalanos, 2019).

Dependence models: GMMN architecture and training setup

Taking into consideration that we are working with relatively small number of realizations of
time series data in both applications, we find that a single hidden layer architecture (L = 1)
provides sufficient flexibility. Given the single hidden layer, we experiment with three NN
architectures with d; = 100 (GMMN model 1), d; = 300 (GMMN model 2) and d; = 600
(GMMN model 3), respectively, for all examples in this section. As in Chapter 4, we fix ¢;
to be ReLU since it offers computational efficiency via non-expensive and non-vanishing
gradients and ¢, to be sigmoid given that our target output lies in [0, 1]¢".

As mentioned earlier in Section 5.2.3, we utilize a mixture of Gaussian kernels for
the MMD statistic in (4.6). Following the setup in Section 4.3.1, we fix ny, = 6 and
choose (o1, ...,06) = (0.001,0.01,0.15,0.25,0.50,0.75) as the bandwidth parameters. This
hyperparameter setting is specifically suited for copula samples or pseudo-observations as
they lie in [0,1]?". Furthermore, as we demonstrated in Chapter 4, GMMNs trained with
this particular specification of the loss function are capable of learning a wide variety of
complex dependence structures.

We choose the dimension of the input distribution Fy to be p = d*. As a result we
obtain a natural d*-to-d* GMMN transform fy. Following common practice, we select
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V ~ N(0,I;), where Iz denotes the identity matrix in R4 *¢". Hence V consists of
independent standard normal random variables. Since we are working with a modest
number of training data points in each of the data sets considered, we opt for a batch
optimization procedure presented as a special case (npy = 7) of Algorithm 4.2.1. For the
number of epochs, we choose ne,, = 1000 which ensures a sufficiently long training period
to obtain accurate results. The tuning parameters of the Adam optimizer is set to the
default values reported in Kingma and Ba (2014).

Dependence models: parametric copulas

For comparison with GMMN-GARCH models, we also present results for a number of
different parametric copula models Cpy;. These include Gumbel copulas, normal copulas with
exchangeable correlation matrices and ¢ copulas with exchangeable and with unstructured
correlation matrices. We fit these copulas using the maximum pseudo-likelihood method via
the function fitCopula(, method="mpl") from the R package copula. We can generate
samples from the fitted copulas using the rCopula() function from the same R package.
We also produce results for the independence copula which serves as a simple benchmark
model.

5.3.2 Yield curve modeling

Analyzing and modeling zero-coupon bond (ZCB) yield curves, also referred to as the term
structure of interest rates, is a critical task in various financial and economic applications.
While early research in this area is often solely focused on constructing models of yield
curves based on economic theory, the seminal work by Diebold and Li (2006) focused on
the critical task of yield curve forecasting.

The primary approach showcased in Diebold and i (2006) was the embedding of
autoregressive models within the parametric structure of the three factor Nelson—Siegel
model (Nelson and Siegel, 1987) which intuitively characterizes the level, slope and curvature
of the yield curve. Since then various approaches for forecasting yield curves have been
investigated; see Diebold and Rudebusch (2013) for an overview and Caldeira et al. (2016)
for a recently proposed forecast combination approach. Most models proposed and reviewed
in the literature are particularly designed towards constructing point forecasts for yield
curves. Such point forecasts are typically useful in bond portfolio optimization and in
the pricing of certain financial assets. Alternatively, distributional forecasts of ZCB yield
curves could potentially be helpful in risk management applications, derivative pricing (via
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simulation) and economic scenario generation. To that end, in this section, we consider
modeling US and Canadian ZCB yield curves using MTS models. We then utilize our fitted
GMMN-GARCH models to obtain empirical predictive distributions of these ZCB yield

curves.

Modeling US and Canadian ZCB data

For US treasury ZCB data, we consider a 30-dimensional yield curve constructed from ZCBs
with times to maturity ranging from 1 to 30 years in annual increments. For Canadian
ZCB data, we consider a 120-dimensional yield curve constructed from ZCBs with times to
maturity ranging from 0.25 to 30 years in quarterly increments. Refer to the R package
qrmdata for further details about these data. In particular, we consider these multivariate
time series in the time period from 1995-01-01 to 2015-12-31 (2015-08-31 for the Canadian
data), treating data from 1995-01-01 to 2014-12-31 as the training set and the remainder as
the test set.

As a pre-processing step, we begin by applying a simple difference transform to the
original time series. We then take the transformed series to be the series X; that we work
with.

Following our framework, we first model the marginal time series using the ARMA—
GARCH model setup described in Section 5.3.1 with p; =0, j = 1,...,d. Since these data
are relatively high-dimensional (d = 30 for the US data and d = 120 for the Canadian
data), we apply PCA to the standardized residuals Z, for dimension reduction. Yield
curves are indeed amenable to good approximations via lower dimensional representations;
various dimension reduction techniques such as factor models have been incorporated by
various yield curve models (Diebold and Li, 2006). We choose the number of top principal
components k to construct the lower dimensional representation for each dataset as follows.
We select the smallest & > 3 such that the first k& principal components account for at least
95% of the total variance in the standardized residuals Z,. For the US data, this choice is
k = 3; for the Canadian data, it is k = 4.

Assessment

We evaluate the performance of our models on the test set using the metrics discussed in
Section 5.2.5. First, we compute the AMMD metric (5.1) using n,, = 100 replications
to assess the quality of the dependence models in the test period. Then, to assess if
capturing the underlying cross-sectional dependence structure well translates to better
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one-day-ahead empirical predictive distributions, we compute the AMSE metric (5.2) and
the AVS? metric (5.3) using nye, = 1000 simulated paths.

Figure 5.1 displays scatter plots of AMSE (left) and AVS®?® (right) versus AMMD for
the US (top) and Canadian (bottom) data. For both datasets, samples generated from the
three GMMN models (see Section 5.3.1) more closely match the underlying cross-sectional
dependence structure in their corresponding test sets than those generated from the four
parametric copulas and the independence copula (see Section 5.3.1). Moreover, across the
entire spectrum of GMMN-GARCH and copula-GARCH models being studied, it is also
clear that better dependence modeling (as measured by the AMMD metric) does indeed
translate into better one-day-ahead empirical predictive distributions (as measured by the
AMSE and AVS"™® metrics). Specifically, all GMMN models clearly outperform the best
copula model, i.e., a t-copula with unstructured correlation matrix, in all three metrics —
although among the GMMN models themselves there is not a single best one.

5.3.3 Exchange rate modeling

The modeling and analysis of foreign exchange rate dependence is an important task in risk
management applications involving a global portfolio of financial assets. As such, dependent
multivariate time series of exchange rates have been previously studied in the copula
literature; for example see Patton (2006) or Dias and Embrechts (2010). In this section,
we consider modeling foreign exchange rate data with respect to the US dollar (USD) and
Pound sterling (GBP) using MTS models. We then utilize our fitted GMMN-GARCH
and copula—-GARCH models to obtain empirical predictive distributions and Value-at-Risk
(VaR) forecasts for portfolios of exchange rate assets.

Modeling USD and GBP exchange rate data

For the USD exchange rate data, we consider the daily exchange rates of Canadian dollar
(CAD), Pound sterling (GBP), Euro (EUR), Swiss Franc (CHF) and Japanese yen (JPY)
with respect to the USD. For the GBP exchange rate data, we consider the daily exchange
rates of CAD, USD, EUR, CHF, JPY and the Chinese Yuan (CNY) with respect to the
GBP. For further details regarding both the USD and GBP exchange rate data, see the
R package qrmdata. In particular, we consider these multivariate time series in the time
period from 2000-01-01 to 2015-12-31, treating data up to 2014-12-31 as the training set
and the remainder as the test set. Due to the fixed peg of the CNY against the USD,
particularly prior to August 2005, we do not include it in the USD dataset.
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Figure 5.1: Model assessments for US (top) and Canadian (bottom) ZCB yield curve data.
Scatter plots of AMSE (left) and AVS®# (right) computed based on n,, = 1000 simulated
paths versus AMMD computed based on 7, = 100 realizations. All models incorporate
PCA with k£ = 3 (US) and k£ = 4 (Canadian) principal components.
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To begin with, we apply the log-returns transformation to the nominal exchange rates
and work with the resulting return series for modeling. Following our framework, we start
by modeling the marginal time series using the ARMA-GARCH specification as detailed in
Section 5.3.1. Since these datasets are relatively low-dimensional (d = 5 for the USD data
and d = 6 for the GBP data), we do not incorporate any dimension reduction step in this
analysis.

Assessment

Following the setup in Section 5.3.2, we evaluate the performance of our models with the
AMMD, AMSE and AVS”# metrics on the test set. Figure 5.2 displays scatter plots of
AMSE (left) and AVS"™# (right) versus AMMD for the USD (top) and GBP (bottom) data.
We can draw the same conclusions from this figure as those from Figure 5.1. In addition,
here we also observe that the independence copula performs noticeably worse than all
other models, whether capturing the dependence structure of the innovation distribution or
making probabilistic forecasts.

Forecasting daily portfolio VaR

As demonstrated in the previous section, GMMN-GARCH models produce better one-
day-ahead empirical predictive distributions when compared with various copula-GARCH
models. We can utilize these one-day-ahead empirical predictive distributions to extract

forecasts of various quantities of interest in risk management. One such popular quantity is
the Value-at-Risk (VaR) of a portfolio.

To begin with, consider the portfolio aggregate return S; = Z?Zl X;; at time t. Then,
the (theoretical) VaR at confidence level a and time ¢ is given by VaR.(S:) = Fg'(a)
where Fg, ! denotes the quantile function of S;. In practice, we can compute the empirical a-
quantile of S; from its empirical predictive distribution, {S‘t(z) = ;.‘:1 X t(? ti=1,..., Npth }-
We denote the corresponding forecast by \ZL\RQ(S}). Thus, for each MTS model, we compute
daily forecasts VaRq(S;) for every ¢ € T in the test period. To assess the quality of these
forecasts, we can compute the frequency with which S; actually exceeds the daily forecast
VaRa(gt) over the entire test period 7. We expect this frequency to be a. Hence, we can
evaluate our VaR forecasts by measuring the (absolute) error between the actual and the
expected exceedance frequency, or simply the VaR exceedance absolute error, defined by

1 T
VEAR, = |a — —— - t—Z;l L, cvaia (S0} (5.4)
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Figure 5.2: Model assessments for USD (top) and GBP (bottom) exchange rate data.
Scatter plots of AMSE (left) and AVS®# (right) computed based on n,, = 1000 simulated
paths versus AMMD computed based on n,., = 100 realizations.
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Figure 5.3 displays scatter plots of VEAR g5 versus AMMD for the USD (left) and GBP
(right) exchange rates data. For both datasets, the three GMMN-GARCH models produce
better daily forecasts of VaRg o5(S;) than the five copula-GARCH models do. Again, there
exists a clear general trend that fitted dependence models which more closely match the
underlying dependence structures of the test datasets tend to yield better daily forecasts.
Particularly, assuming independence amongst the exchange rate returns leads to notably
poorer forecasts.
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Figure 5.3: VaR forecast assessments for USD (left) and GBP (right) exchange rate data.
Scatter plots of VEARg g5 computed based on n,y, = 1000 simulated paths versus AMMD
computed based on 1., = 100 realizations.

5.4 Conclusion

We introduced generative moment matching networks (GMMNs) for modeling the depen-
dence in MTS data. First, ARMA-GARCH models are used to marginally model serial
dependence. Second, for high-dimensional MTS data, a dimension reduction method can
be applied. Last, the cross-sectional dependence is modeled by a GMMN. In the popular
copula-GARCH approach, the latter step typically requires us to find a parametric copula
model which fits the given data well. This can already be a challenging task in moderately
large dimensions. By contrast, GMMNs are highly flexible and easy to simulate from, which
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is a major advantage of our GMMN-GARCH approach. The primary objective of fitting
these MTS models is to produce empirical predictive distributions, with which we can then
forecast various quantities of interest in risk management such as VaR or expected shortfall.

To showcase the flexibility of our GMMN-GARCH framework, we considered modeling
ZCB yield curves and foreign exchange rate returns. Across all the examples considered,
we demonstrated that fairly simple GMMNs were able to better capture the underlying
cross-sectional dependence than many well-known parametric copulas. Consequentially, we
observed that the corresponding GMMN-GARCH models yielded superior one-period-ahead
empirical predictive distributions. Additionally, for exchange rate data, we demonstrated
that GMMN-GARCH models produced more accurate daily portfolio VaR forecasts as well.
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Chapter 6

Summary and Future Research

6.1 Summary

In this thesis, we made several contributions to dependence modeling and its associated
application areas. Broadly speaking, our contributions to the literature spanned three
categories — dependence measures, dependence modeling with parametric copulas and
dependence modeling with generative neural networks.

Firstly, in Chapter 2, we proposed a framework for measuring association of random
vectors using collapsing functions. This framework yielded various tools to characterize
the dependence between random vectors including numerous new measures of association
along with the corresponding asymptotic results required to construct confidence intervals
for these measures, collapsed copulas to analytically summarize the dependence between
random vectors under certain setups and a graphical assessment of independence between
groups of random variables. We showcased the applicability of these tools to detect and
rank dependencies between random vectors in bioinformatics and finance applications. The
key takeaway from our theoretical and empirical investigations is that there is no universal
notion of a best collapsing function. Consequently, different collapsing functions were useful
in different contexts and applications.

Secondly, in Chapter 3, we introduced a new class of flexible parametric copulas, the
hierarchical Archimax copulas (HAXCs). Two ways of inducing hierarchies for AXCs
were investigated — one at the level of EVCs and the other at the level of ACs. To that
end, we presented a novel approach for constructing hierarchical EVCs which involved the
connection between stable tail dependence functions and d-norms. We additionally imposed
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hierarchical dependence structures at the level of frailties in the same vein as NACs were
constructed from ACs. Since all of our methods of constructing HAXCs were based on
stochastic representations, sampling algorithms were easy to formulate. Various examples
of HAXCs were then presented along with their associated stochastic representations.

Thirdly, in Chapters 4 and 5, we investigated the use of generative neural networks for
dependence modeling tasks. This investigation formed the second half of the thesis and
involved two different application areas, quasi-random sampling and time series modeling.
In both projects, we opted to work with a type of generative model known as the generative
moment matching network (GMMN). In Chapter 4, we demonstrated how GMMNs can be
utilized to generate quasi-random samples from a large variety of multivariate distributions.
Utilizing GMMNs yielded a more flezible and universal approach for multivariate (dependent)
quasi-random sampling compared to classical parametric copula methods. Furthermore,
we showcased the benefits of utilizing GMMN quasi-random samples to approximate
expectations of the form p = E(V(X)) by theoretically establishing convergence rates for
the corresponding GMMN RQMC estimators and numerically demonstrating the variance
reduction effects achieved by these RQMC estimators. Finance and risk management
applications where the objective was to approximate quantities of interest y involving asset
portfolios were then used to demonstrate the ability of GMMNs to more accurately capture
complex dependence structures in real data compared to parametric copulas in addition
to the variance reduction capabilities of GMMN RQMC estimators when estimating .
In Chapter 5, we proposed a GMMN-GARCH framework for multivariate time series
(MTS) modeling with the primary goal of constructing empirical predictive distributions
(EPDs), also known as probabilistic forecasts. These EPDs are useful in forecasting risk
measures, e.g., VaR. The flexibility of our GMMN-GARCH models to produce superior
EPDs and VaR forecasts compared to well-known copula—GARCH models was showcased
in the context of modeling ZCB yield curves and foreign exchange rate returns.

6.2 Future research

In this section, we discuss future research directions that involve both direct extensions
of our work in Chapters 2-5 and potential ways to combine research topics across these
chapters.
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Extensions of the collapsing function framework

Firstly, while we focused on using collapsed measures of association for ranking dependencies
in our numerical investigations, we could also utilize these measures to formulate tests
of independence between random vectors. To this end, we could adapt the asymptotic
results derived for various collapsing functions to develop asymptotic tests of independence.
Additionally, we could create corresponding permutation tests of independence for the
various collapsed measures considered. There exists some literature on this research topic,
most notably the statistical tests based on the distance covariance coefficient (Székely
et al., 2007), Hilbert Schmidt independence criterion (Gretton et al., 2008) and Cramér—von
Mises functionals (Kojadinovic and Holmes, 2009). In addition, Josse and Holmes (2016)
conducted a survey of various existing tests of independence between random vectors.
Therefore, it would be interesting to compare the various asymptotic and permutation tests
derived from our collapsing function framework, with existing tests in the literature, using
simulation exercises and real data applications. Ideally, we would be searching for collapsed
measures of association which yield tests with great statistical power and which are capable
of detecting a wide range of complex non-linear dependencies.

Secondly, we could further investigate collapsed distribution functions Fx) s¢y) and
collapsed copulas Cg(x),s(v). In Chapter 2, we primarily focused on deriving analytical
forms for Fg(x)sy) and Cgx)sy) in terms of the joint distribution of (X,Y’) under
certain setups, e.g., maximum and PIT collapsing functions. An interesting and challenging
open problem would be to extend this analytical exercise to other collapsing functions
such as the weighted sum collapsing function. Furthermore, we could construct a new
type of hierarchical model which utilizes the collapsed copula Cgx) sy) as a sufficient
lower-dimensional proxy for the dependence structure between X and Y, while modeling
the dependence structures within X and within Y using higher dimensional copulas Cx
and Cy. In practice, such a modeling effort would typically extend beyond the two groups
of random variables and the one level of collapsing. While there exists some research in this
direction for the PIT collapsing function (Brechmann, 2014) and the sum collapsing function
(Arbenz et al., 2012; Coté and Genest, 2015), extensions to other collapsing functions remain
an open problem. In particular, it would be useful to develop sampling algorithms and
estimation procedures for such hierarchical dependence models.

Sampling protein conformations via generative neural networks

In Chapter 2, we discussed an application from bioinformatics that involved generating
protein side chain conformations. Each protein has approximately between 160-190 residues,

122



which have side chains whose conformations are characterized by sets of dihedral angles,
with lengths ranging between zero to four. In our work, we used the protein side chain
conformations that were generated by Ghoraie et al. (2015a) using fast side-chain prediction
(SCP) algorithms. These specialized algorithms were used as an efficient alternative to the
popular Rosetta modeling suite (Kaufmann et al., 2010), which utilizes a knowledge-guided
Metropolis Monte Carlo sampling algorithm. Even so, as Ghoraie et al. (2015a) noted,
the efficient SCP approach still took approximately one second to generate one sample
conformation; a marked improvement over the 40 seconds taken by the Rosetta modeling
suite procedure.

As an interesting future research project, we could investigate the use of generative neural
networks for sampling protein side-chain conformations. Once trained on a moderately-sized
dataset of protein side-chain conformations obtained from either the SCP algorithm or the
Rosetta modeling suite, the fitted NN would be capable of generating millions of novel
conformations very efficiently. Naturally, due to the complex nature of the problem, we
would have to explore more sophisticated NN architectures than those presented in this
thesis. Also, we would potentially have to incorporate certain problem-specific constraints
within the NN architecture and/or the loss function used to train the generative model, in
order to ensure that the generated protein conformations are realistic, in a biological sense.

Fitting hierarchical Archimax copulas

In Chapter 3, we mainly discussed how to construct and sample from HAXCs. Hence, our
proposed dependence models would currently be useful only in simulation studies. To utilize
this flexible class of copulas for modeling real data, we would need to develop parameter
estimation and model selection procedures. To this end, we have already derived some
preliminary results concerning the density of AXCs and its numerical treatment, which
could be useful in employing a maximum likelihood estimation procedure; see Appendix B.1.
As an alternative to the full likelihood approach, we could also utilize a composite (pairwise)
likelihood method (Varin et al., 2011) to achieve gains in efficiency at the expense of
using a misspecified model. To fit HAXCs, we would then need to couple these estimation
procedures for AXCs with appropriate tree structure selection techniques.

Very recently, Chatelain (2019) presented a fairly extensive treatment of inference
techniques for AXCs which considered parametric, semi-parametric and non-parametric
estimation procedures. Additionally, Chatelain (2019) also introduced the class of clustered
Archimax copulas (CAXCs), which offers an alternative hierarchical extension for AXCs that
are constructed based on the Williamson d-transform, along with corresponding inference
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procedures. Going forward it would be interesting to compare the various estimation
techniques proposed in Chatelain (2019) with the maximum (full and composite) likelihood
methods. Furthermore, we could theoretically and empirically explore the similarities and
differences between CAXCs and HAXCs.

Multivariate time series probabilistic forecasting with GMMN
quasi-random samples

Following the investigation into the use of GMMNs as dependence models in Chapters 4
and 5, a natural subsequent research direction would be to study whether GMMN quasi-
random samples could be used to produce better probabilistic forecasts (EPDs). As
demonstrated in Chapter 4, GMMN transforms typically preserve the low-discrepancy of
the input RQMC point set. Thus, the next step would be to theoretically and numerically
analyze the extent to which the low-discrepancy properties observed in GMMN quasi-
random samples propagate through the ARMA-GARCH and PCA components of our
proposed MTS modeling framework. Provided that these composite transforms that arise
from our framework are sufficiently smooth, we should be able to construct EPDs that
possess low-discrepancy properties and consequently low-variance risk measure forecasts. In
a broader context, it would be interesting to explore the impact that marginal time series
models and dimension reduction techniques have on the preservation of the low-discrepancy
observed in GMMN quasi-random samples upon transformation.

Extensions of the GMMN-GARCH framework

In our current GMMN-GARCH setup, once we account for temporal dependencies within
each marginal time series using ARMA-GARCH models, we assume that the resulting joint
innovation distribution is constant across time. Thus, a potential extension of our GMMN-
GARCH framework is to incorporate time-varying cross-sectional dependence structures.
However, it can be fairly challenging to train such time-varying GMMN dependence models.
Given a fitted GMMN trained on sufficiently large training data, one approach would be
to then re-train the GMMN after every subsequent 7., time periods, while initializing
the neural network with the previously fitted parameters. Adopting this approach, we
can reduce the computational time and resources needed, i.e., using fewer epochs for the
re-training, by leveraging features of the cross-sectional distribution that we have already
learned from prior training. For example, if our fitted GMMN had captured the upper/lower
tail dependencies, asymmetries or singular components present in the original (or previously
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used) training data, we do not have to re-learn these features when re-training. Of course,
if there is a drastic change in the nature of the dependence structure itself, we would need
to expend greater computational resources to learn the new underlying cross-sectional
dependence. However, in most real-data, we commonly observe a more gradual shift in the
strength of dependencies across time rather than fundamental changes to the salient features
of the underlying distribution. Furthermore, we could also explore utilizing change-point
analysis to more strategically identify when we need to re-fit our GMMN-GARCH models.

In Chapter 5, we focused on financial time series applications with the goal of constructing
EPDs and forecasting risk measures. Within the context of risk management and finance,
we could also consider utilizing our GMMN-GARCH models for derivative pricing and
portfolio-risk optimization. Furthermore, potential future research projects could involve
exploring other application areas for GMMN-GARCH models such as weather, energy and
demand probabilistic forecasting.

Finally, we could investigate using a variety of other marginal time series models and
dimension reduction techniques in the first two modeling steps of our GMMN-GARCH
framework. For modeling different types of temporal dependencies found in time series data,
we could explore other models within the GARCH family such as IGARCH, EGARCH
or GJR-GARCH. Alternatively, we could also more broadly fuse GMMN and (marginal)
stochastic volatility models to create, for example, GMMN-Heston or GMMN-CEV models.
Furthermore, while we only considered PCA as a dimension reduction technique in Chapter 5,
it would be interesting to work with more sophisticated models such as auto-encoders to
better characterize higher dimensional MTS data.

Multivariate time series modeling with generative neural networks:
An alternate approach

In this thesis, we solely worked with generative neural networks that were constructed using
feedforward neural networks. An alternate approach for MTS modeling would be to utilize
generative models that are constructed based on recurrent neural networks (RNNs); for
further details on RNNs see Goodfellow et al. (2016, Chapter 10). RNNs were specifically
designed to model sequential data. So instead of relegating the task of modeling temporal
dependence to classical time series models such as GARCH models, we could jointly model
temporal and cross-sectional dependence using RNNs. However, since we are particularly
interested in producing EPDs or probabilistic forecasts, we would have to adapt our RNN
model setup and loss function appropriately. To that end, we could develop generative
models with (embedded) RNNs by using either the average MSE metric, defined in (5.2), or
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the average variogram score, defined in (5.3), as loss functions for training. These generative
neural networks would then be geared towards producing good probabilistic forecasts.
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Appendix A

Additional details for Chapter 2

A.1 Proofs and additional details for the asymptotic
framework

A.1.1 Proof of Proposition 2.2.2

Proof. We begin by explicitly writing out the population version of our measure of associa-
tion. For a general collapsing function S,

X(X,Y) =p{S(X),S(Y)} = \/Iu Njyuz\l;:uy_ MQI

Case 1: S is a p-variate function

Based on the n independent random samples, define

1 & 1 &
m = =3 S(Xi), m) =3 S(Y), mf) =
iz Nz

1 n 1 n
mgjz) ==Y S(Y,)? mgy) = 3 S(X)S(Y5).
=1 i=1

n.—

By Hoeffding (1948), m{!, mél), mil), mély), mg}y) are U-statistics for piz, fhy, flaws fyys Hay

respectively. Following from Hoeffding’s decomposition theorem, see Lee (1990, Chapter 3),
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we can conclude that, as n — oo,
vam{) — ) =
Vi(mi) — p,) =
Va(mby) — pie.) =

N1
\/ﬁ(mﬁ) — Hyy) = \/15 ;{S(Yi)z — Hyy} + 0p(1),
V(D) = f1y) = jﬁ i{S(X»S(Y )~ tiay} + 0p(1)

Combining all the terms, it follows that, for n — oo,

\/ﬁ(mg}) — Has mél) = My, M ém) Kz, T &J) = Hyy, M g(cy) /v%y) i> N5<07 E1)7
where ¥; is the covariance matrix of the random vector (S(X),S(Y),S(X)? S(Y)?,
S(X)5(Y)).

Then, we construct an estimator for the population version of the measure of association,
X(X,Y), as a function of U-statistics.

(1) _ (D ()
Xn<X7Y) = f( 1) m() m® m m(l)) = m"”y My My

y otz tyy o Ny \/m(xlx)— \/m (1)

where mg(gl), mé ) m{l) m( , and m ) are the sample quantities as previously defined. Then,

by the delta method we have as n —> 00,

Via{xa(X,Y) - x(X,Y)} -5 N(0,02),

where 032( = (Vfsx1lu) "21(V fsx1],) and the gradient vector is evaluated at g = (fiz, fy, fas,
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Case 2: S is a 2p-variate function

Consider
m? = S Y S(XL X)), mP = Y Y SV YY),
2) =1 5>t 2) =1 5>t
1 n 1 .
mgﬁ) = TZZS(XMXJ)Qv mg} - TZZS(Y“YJ)2,
2) =1 7>1 (2> =1 7>1
1 n.on

Yy n
2 =1 j>1

Similar to the setup presented in Case 1, these sample quantities are natural U-statistics for
their corresponding population versions. Again following from Hoeffding’s decomposition
theorem, we have that, as n — oo,

\/ﬁ(mg) - ,ux) =

v

[]EX’{S(XZ" X,)} — fhe] + Op(1>:

=1

NE

V() — ) = [y {S(Y5, Y)} = 1] + 0p(1),

.

M§I‘N§‘M
i

Vi(mE) = i) = [Ex{S(X i, X')} = aa] + 0p(1),

.
—_

Vi(m) = jryy) = B, {S(Y1, Y2} = 1] + 0p(1),

=
—_

-

.
Il
—

Vi(mG) = ) = [Eeern{S(X i, X)S(Y i, Y') } = jiay] + 0 (1),

Sl Sl G
M=

where the conditional expectations in the expressions above represent the first-order Ho-
effding decomposition of the corresponding U-statistic. Combining all the terms, it follows
that

d
\/ﬁ(m;(f) — Mz, mg(f) = My m;(EQx) = Mz, mg(fy) = Hyy; mg(c2y) - ,u:ry)T — N5<07422)7
where 5 is the covariance matrix of the random vector

(Ex{S(X, X"}, B AS(Y, Y}, Eo{S(X, X'}, B, {S(Y, Y},
B {S(X, X)S(Y,Y")}).
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We can then construct an estimator for the population version of the measure of association
x(X,Y) exactly as we did in Case 1 but instead with the use of the sample quantities m(?,

mf), m2), méi), m%). By the delta method we have that, as n — oo,
d
Vi{xn(X,Y) = X(X,Y)} =5 N(0,0%),
where 02 = (V fox1lw) " E2(V foxiln)- -

A.1.2 Additional details for estimation of the asymptotic vari-
ance

Analytical forms of the components of the gradient vector are given below; note that
m = (Mg, My, Mys, My,, Myy) acts as a place holder for both m™® and m® defined in
Remark 2.2.3:

M (Mg — Mypmy)

m
Vilm = 213/2 2 2y 2’
(Maa —m3) \/myy —my \/mx:v - mm\/myy -y
_ my(mwy - mzmy) My
Vfalm = 213/2 2 2 2’
(myy —m7) \/mm —mg \/mm - mx\/myy -y
Mgy — My Mgy — MM
Vf3|m:_ xyz 321’ 2 57 vf4|'rn:_ = e )
2<m$$ o mx) / Myy — My 2(myy - mg2/)3/2 \/ Mz — m%
1
Vf5|7n =

02 — 2
Mgz — M2y /My, — m?2

A.1.3 Additional asymptotic results

An estimator 7, of 7{S(X),S(Y)} = p[1{S(X) < S(X')},1{S(Y) < S(Y')}] can be
constructed through the U-statistic framework with the corresponding asymptotic results
following as a consequence of Proposition 1.

Corollary A.1.1 (Asymptotic distribution of 7,))
Let (X', Y"), (X", Y"), and (X", Y"") be independent copies of (X,Y"). Suppose 7,,(X,Y")
is constructed as a function of U-statistics. Then, as n — oo,

Va[n{S(X), S(Y)} - 7{S(X),S(Y)}] -% N(0,02),
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where

2 _ 4V faxln) "21(V faxalu), if S is a p-variate function,
T 16(V fax1lu) "22(V faxily), if S is a 2p-variate function.

Here, V f5.1], denotes the gradient vector of the function

c—ab

f(a’b’C):mm’

evaluated at the population mean pu = (114, fy, flay), Where p, = P{S(X) < S(X")},
py =P{S(Y) < S(Y')} and p,y = P{S(X) < S(X'),S(Y) < S(Y")}. Furthermore, %;

denotes the covariance matrix of

(P{S(X) < S(XN [ X}, P{S(Y) <S(Y') Y}, P{S(X) <S(X'), S(Y)<S(Y')[X,Y})
and Y9 denotes the covariance matrix of

(P{S(X,X") < S(X",X")| X}, P{S(Y,Y') < S(Y".Y")| Y},
P{S(X,X') < S(X",X"), S(Y,Y') < S(Y".Y")| X,Y}), (A.1)

where P{-|-} denotes a conditional probability.

Proof. We begin by writing the population version of our measure of association explicitly.
For a general collapsing function S,

H{S(X), S(V)} = p[1{S(X) < S(X')}, 1{S(Y) < S(Y")}] = Lt

\/ux - M%\/uy e

Case 1: S is a p-variate function

Based on a random sample (X1,Y),...,(X,,Y,), estimators m{!, mél), and mgy) can be
constructed using the setup of the proof of Case 2 of Proposition 1. The convergence result

follows from a similar delta-method argument.
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Case 2: S is 2p-variate function

The sample quantities

m? =< > 1{S(X;, X)) < S(XY, X))},

(4) 1<j<k<l

1 / " 1"
mP = —— S S(Y,Y)) < S(Y,Y])},

(4) <j<k<l

1 / I "m / "o
m® =0 3 1{S(X,, X)) < S(X},X!"),S(Y.,Y) <S(YILY])}

xy — (n
4) 1<j<k<l

are natural U-statistics for their corresponding population versions. Then, following
Hoeftding’s decomposition theorem, we have that, as n — oo,

-

s
Il
—

NGO P{S(X;, X') < S(X", X") | X} = | + 05(1),

V() — ) = P{S(Y;,Y') <S(Y",Y") [V} = ] + 0p(1),

-
Il
_

P{S(X,,X') < S(X",X"),

™

@
Il
=

\/ﬁ(m:(fy) — fay) =

Sl Sl Sl
NE

SV, Y) <S(Y"Y") [ X, Y} = pay| + (1),

where the conditional probabilities in the expressions above represent the first order
Hoeffding decomposition of the corresponding U-statistic. Combining all the terms, it
follows that

\/ﬁ(mgcz) = Ha, mz(f) T Hy, M (xy) ,ny) | N3(0,16%,),

where 35 denotes the covariance matrix of the random vector defined in (A.1). One can
then construct an estimator using 7,{S(X), S(Y)} = f(m{?, m{», m{2)) where f is defined
as in the claim Using the delta method, the convergence result follows. O]

Remark A.1.2
In the U-statistic framework, one usually works with symmetric kernels as noted in Lee
(1990, Chapter 1). For choices of collapsing functions which would yield non-symmetric
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kernels, one can easily replace the kernel with a symmetric variant. Suppose for example

&(X1,...,X,,) is a kernel of order m. Then, the symmetric variant can be constructed as
1
¢(X177Xm>:% Z ¢(Xa17"'7XOcm)7
SOy Qm
where the summation is taken over all permutations (s, ..., a,,) of (1,...,m). By replacing

any non-symmetric kernel with its symmetric variant, the rest of the derivation for the
asymptotic distribution would then naturally follow.

A.2 Additional example of a collapsed copula for the
maximum collapsing function

Example A.2.1 (Meta Archimax copula model and the maximum collapsing function)
Let Z = (X,Y) ~ Fxy(m,y) = C{Fx(21), ..., Fx(x,), Fr(n), .., Fr(yy) }, where X ~
Fx,j€{l,....,p},and Y, ~ Fy, k € {1,...,q}, are continuously distributed. Furthermore,
let C' be an Archimax copula with generator ¢ and stable tail dependence function ¢, that
is,

Clur, sy, v1, -y vg) = [ (), 7 (), 7 (01), - 8 (0g) };

see Charpentier et al. (2014b) for more details. By Aulbach et al. (2015), £ allows for the
representation

1, - Tp, 1, -5 yg) = Blmax{ max (|2;|Wyy), max (jyx[War)},

where the generators Wiy, ..., Wiy, Way, ..., Wy, satisty Wy; > 0, E(Wy,;) = 1 for j €
{1,...,p} and Wy, > 0, E(Wy) =1 for k € {1,...,q}.

Let Cx and Cy denote the p- and g-dimensional marginal copulas of C' corresponding to
X and Y respectively. Note that they are Archimax copulas with generator 1) and stable
tail dependence functions

lx =l(x,0,...,0) = E{max (|z;|W3;)} and ¢y =/£(0,...,0,y) = E{max (|zx| W)},

1<j<p 1<k<q
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Consider the maximum collapsing function S. Then,

S(X) ~ Fsx)(w) = Cx{Fx (), ..., Fx ()} = v (Cx[v"{Fx (@)}, ..., o {Fx(x)}])
= o {B(max|[j¢~ 1{FX( DHWaD)} = [0 {Fx (@) YE{max (W1,)}],
S(Y) ~ Fs)(y) = Cy{Fy (), -, Fy ()} = ¢ (&[0 {E )}, 0 Y (9)}])
= w{E(uax [[o~ {Fy (4)}[Wai]) } = @/»[zb‘l{Fy(y)}E{gggq(ng)}]-

For notational convenience let ¢; = E{max;<;<,(W1,)} and ¢; = E{maxj<j<,(Wax)}. The
quantiles of Fg(x)(z) and Fgy)(y) are

Fyox(u) = Fx [0 {ur! (w)/er}] and  Fgy(v) = Fy [Ua{e ! (v)/e2}],
respectively. Proposition 2.3.3 implies that the collapsed copula equals
Cs(x500) (1) = Frey { Faz) (), Fisoey (W), gy (0). - Fisyy (0}
—O{Fx(Fx[wwl /e}]),- .. Fx (Fx [ {0 (w)/er}]),
Fe (B [ptu o)/ead]), o B (Fy [ @)/e}]) )
— Clofe /el ... w{wl (w)/ery wfw () fea), . 0o () fer)]

= [ W) ers T W) e, M 0) o, T () /o)
=yY<{E max{f??é){w u)/cy|[Wh;}, 1%?24“@0 v )/02|W2j}D}
v

{E(
w{]E(maX max le)/]E{ max (Wu)}
) gggq(Wzk)/E{gggq(Wzk)}])}

= (B [max{v @7, v 05 ]
— [ {0 (w), 7 ()}

where /* denotes the stable tail dependence function constructed with the d-norm generator

(W W) = [ maxi <;<p(Wiy) max <p<q(War) ]
1> 2) — )

E{max;<;<,(Wi;)} " E{max;<p<g(War)}
notice that W}, Wy > 0 and E(W7) = E(W5) = 1.
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We thus see that for the maximum collapsing function and groupwise equal mar-
gins, the collapsed copula Cgx)s(y)(u,v) is also an Archimax copula with generator
1 but stable tail dependence function ¢*. Moreover, the generators Wy, W5 arise from
Wit, ..., Wip, War, ..., Wy, by applying the maximum collapsing function to Wiy, ..., Wy,
and Wy, ..., Wy, respectively, and scaling them appropriately to satisfy the constraints

E(W;) = E(W;) = L.

A.3 Measures of association related to the multivari-
ate Kendall distribution

In this section we provide examples which link measures of association the form y(X,Y)
with multivariate Kendall distributions. We start with the measure of association resulting
from the PIT collapsing function.

Example A.3.1 (Correlation via the joint Kendall distribution)
Since Kx(t1), Ky (t2) are the distribution functions of Fx(X), Fy(Y), respectively, and
Kx y(t1,t2) is the joint distribution function of (Fx(X), Fy(Y)), Hoeffding’s Identity
implies that
_ COV{Fx(X),Fy(Y>}

\/Var{Fx(X)} Var{ Fy (Y )}
- ff[OJ]Q KX7y(t1, tg) — KX (tl)Ky(tg) dtldtg

\/f[o,u Kx(t) — Kx(t1) dty fjoq) Ky (t2) — K3(ta) dto

X(X,Y) = p{Fx(X), Fy(Y)}

Note that the numerator is the (integrated) difference between the joint Kendall distribution
of X and Y and the joint Kendall distribution under independence of X and Y’; x(X,Y)
thus represents in some sense how far on average the random vectors X and Y are from
independence, thus mimicking the construction of standard bivariate measures of association.

Example A.3.2 (Spearman’s rho via the joint Kendall distribution)

One drawback of the measure presented in Example A.3.1 is that it depends on the marginal
distributions of the collapsed random variables. To rectify this, we can apply the marginal
Kendall distributions Kx and Ky to the collapsed random variables Fx(X) and Fy(Y),
respectively. The measure will then be a natural multivariate extension of Spearman’s
rho as it only depends on the Kendall copula. To this end, let U = Kx{Fx(X)} and
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V = Ky{Fy(Y)}. Then,

E[UV] - 1/4
1/12

=12 //[0’1]2 w dCk (u,v) — 3 = ps{Fx(X), Fy(Y)},

X(X.Y) = p[Kx{Fx(X)}, Ky{Fy(Y)}| = p(U,V) = = 12E[UV] -3

where Ck(u,v) denotes the Kendall copula introduced in (2.6). Thus, x(X,Y’) equals
Spearman’s rho of Fx(X) and Fy(Y).

Example A.3.3 (Kendall’s tau via the joint Kendall distribution)
Similarly, with U and V as defined in Example A.3.2 and that (X', Y”) is an independent
copy of (X,Y), for Kendall’s tau we have

X(X,Y) = p[{Fx(X) < Fx(X")}, {Fy(Y) < Fy (Y)}] = 7{Fx(X), Fy(Y)}
= 4/[0 . Ck(u,v)dCk (u,v) — 1,

where C (u,v) denotes the Kendall copula as before and the last equality follows by defini-
tion of Kendall’s tau of the collapsed random variables in the bivariate case. This measure
forms a multivariate extension of Kendall’s tau which only depends on the Kendall copula.
Note that another multivariate extension of Kendall’s tau as described in Section 2.2.3 is
given by p(1{X < X'}, 1{Y < Y'}) with the inequalities understood componentwise.

Example A.3.4 (Tail dependence via Kendall copulas)

In light of using (2.3) for measuring tail dependence between the collapsed random variables,
it is easy to see that when using the PIT collapsing function, (2.3) as measure of association
corresponds to computing (classical) coefficients of tail dependence of the underlying
Kendall copula C'x. For example, if X ~ Fx, Y ~ Fy with Kendall distributions Kx, Ky,
respectively, and if U = Kx{Fx(X)}, V = Ky{Fy(Y)} (note that (U,V) ~ Ck in this
case), then the coefficient of upper tail dependence can be expressed as

Ao {Fx(X), Fr(Y)} = lim P{Fy (Y) > Ky (u) | Fx(X) > Kx(u)} = lim P(V > u|U > u)

. 1 —=2u+ Ck(u,u)
= lim )
utl 1—u
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Appendix B

Additional details for Chapter 3

B.1 Density of Archimax copulas

For likelihood-based inference on AXCs, it is important to know their density. In this
section, we present the general form of the density of AXCs (if it exists) and address how it
can be computed numerically.

Proposition B.1.1 (AXC density)
If the respective partial derivatives of ¢ exist and are continuous, the density ¢ of a
d-dimensional AXC C' is given by

c<u>:{Hl<w1>'<uj>}kzw [ty @) S TIs0{ ), we o1

where ¢~ (u) = (¥ (u1),..., ¥ (ug)), I denotes the set of all partitions 7 of {1,...,d}
(with |7| denoting the number of elements of ) and (Dg¢)(¢)"!(u)) denotes the partial
derivatives of ¢ with respect to the variables with index in B, evaluated at ¢! (u).

Proof. By a multivariate version of Faa di Bruno’s Formula, see Hardy (2006), the dth
derivative of a composition of two functions f : R — R and ¢ : R — R is given by

D flofa)) = 115t TT Dasta)| =3 X [r0g(a)} TT Do

mell Bem k=1 rell: |7T\ k Bem

sz: > [f('“{g } I Doyl ] Zf Ho@)} > ]I Drylx)

k=1 nell:|n|=k Berm well:|r|=k BET
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where D = 0?/(0z4...0x,), D = 018/ [ljep Or;, and B € 7 means that B runs through
all partition elements of 7. Assuming that the appearing derivatives exist and are continuous,
we obtain from taking f(z) = ¢(z) and g(x) = ¢{¢p"!(x)} that

Z 9o ] X T gt )

well:|r|=k BEm

{H )} S @) S T 0s00 @) we 0.1

rEll:|w|=k BET

]GB au]

where the last equality holds since the derivatives of all of ¥~ (uy),..., ¥ (ug) (from
applying the chain rule) appear in each summand of the sum >, cyy.j,= and can thus be
taken out of both summations. O

As a quick check of Proposition B.1.1, we can recover the density of ACs and EVCs.

Corollary B.1.2 (AC density as special case)
For ((x) = Z;l 1 %, the density of ACs correctly follows from Proposition B.1.1 by noting
that

>, I®s0@) = > [l Ls-u= > Lypitraiben = Li—a)-

relli|n|=k Bem relli|n|=k Bem rell|n|=k

Corollary B.1.3 (EVC density as special case)
For 9 (t) = exp(—t), t > 0, the density of EVCs correctly follows from Proposition B.1.1 as
one has

d 1 d

c(u) = { I1 <—M> } Sexp|—t{-In(w)}| > [I[-DsOf{-In(w)}], we(©01)%
j=1 J k=1 w€ll:|n|=k Be™

see, for example, Castruccio et al. (2016) or Doyon (2013).

The following result provides the general form of the density of AXCs based on the
stable tail dependence function ¢ of a Gumbel copula.

Corollary B.1.4 (Density of AXCs with Gumbel stable tail dependence function as
special case)
For the stable tail dependence function ¢(x) = (xi/a + -+ mi/a) , x € [0,00)4, of a
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Gumbel copula with parameter a € (0, 1], the density ¢ of an AXC is given by

1

o) = o T o0

'zdjw(k)[{jéw1(%);}QH§¢1(U]’);}M > II(a)s, we(0,1),

k=1 mell:|r|=k BET

where (a)p| = Hﬂfl(a — 1) denotes the falling factorial.

Proof. For the stable tail dependence function ¢(x) = (xi/a + :ctli/a)o‘, x € [0,00)4,

€ (0, 1], one has

Dp {(z) = (@) (ji@m) o—|B| < 1 ) |B] I =/t

&) jeB
Since every index in {1,...,d} appears in precisely one B € T,

> Il Dslx) 1ﬁl/alz M B<ix;/a>a_wl

well:|r|=k Ben al mell:|n|=k Ben j=1
d

L (Sa) S T

j=1 rell|n|=k Bem

Q

Using the general form of the density as given in Proposition B.1.1 and & = ¢~!(u) leads
to the result as stated. ]

As we can see from Proposition B.1.1, the general form of the density of AXCs involves
the (possibly high-order) derivatives ¥*) and Dp¢. The former are well known to be
numerically non-trivial; see, for example, Hofert et al. (2012) or Hofert et al. (2013). We
therefore now address how the density of AXCs can be computed numerically. This is
typically done by computing a proper logarithm, that is, a logarithm which is numerically
more robust than just In ¢, and then returning the exponential (but only if required). As
we will see, two nested proper logarithms can be used to evaluate the logarithmic density
of AXCs, which is especially appealing.

Proposition B.1.5 (AXC logarithmic density evaluation)
If the respective partial derivatives of ¢ exist and are continuous, the logarithmic density
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In ¢ of a d-dimensional AXC C' is given by

I c(w Zln{ ) (1)} + b )HHXd:eXp{b}f’K( ) = Uix(w)}, w € (0,1)7

k=1

where the notation is as in Proposition B.1.1 and

0o () = In{(~1)* @} ({0 (w)}] + aff (w) + o Y explad ™ (u) — aj(u)},

well:|mw|=k

max

Bk () = mas b ()
for

= > n{(-DFDp (Hy ()}, ap(u) = max  ay™(u).

Ber relln|=k

Proof. Let u € (0,1)¢ and note that

{ﬁ }ZW (H{ ™ (u ]HZ kBre[WDBE{w u)}
(I s
IS

il

where the last equality follows from the fact that > gc. |B| = d and [, Dp ¢ is taken
over those m for which |7| = k, so Y gc, 1 = k; note that, as before, | B| denotes the number
of elements of B.

et @)} Y (1) T (D5 O (w))

well:|r|=k Ber

> ()
}Z Oy W)} 3 TP Dy 0 {e (w)},

rell:|n|=k Bexr

Since 1) has derivatives with alternating signs, (—1)¥®*) > 0 for all arguments; in
particular, (—¢~!) > 0, too. By Ressel (2013, Theorem 6), £ is fully d-max decreasing
which implies that, for all arguments of ¢, sign(Dg /) = (—1)/®I=1. This implies that
sign{(—1)B-1 Dg ¢} = 1 and so all terms a¥%* and b""* as defined in the claim are well-
defined.

Taking the logarithm, the first product in ¢ becomes Z In{(=v 1) (u;)} as in the
claim. By using the definitions in the claim, the logarithm of the remaining sum can be
written as

d

in Y exp nf (<) [ @] T Da e @)} | (B

k=1 well:|r|=k BeT
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where

(-1 @ [ @)}] 3 [THD Ds e (w)})

well:|n|=k BEm

= In((~ 1" @ [(fp~ @)}]) +m Y [[{(-1)" Dp 3 {y (w)}

w€ll:|w|=k BET

= In{(=1) @} @)} +In Y exp

5 In{(=1)! Dy (v ()]

well:|n|=k Benm
= m{(~=D)* ™} efy )} +m Y exp{artF(u)}
well:|n|=k

= {(=D)* ™} e{e " @)}] + apif(w) +In Yo explad () — ap(u)}

well:|w|=k

= b0 (u).

We thus obtain that the term in (B.1) equals

In Y~ exp{by(u)} = blc(u) +1n Y~ exp{by(u) — bl (w)}.
k=1 k=1

Putting the terms together, the logarithmic density has the form as in the claim. O]

A couple of remarks are in order here. First, note that due to the signs of the involved
terms, one can apply an exp — In-trick twice (nested) for computing the logarithmic density
of AXCs. The remaining logarithms of sums in the formula of the logarithmic density are
typically numerically trivial, as all summands are bounded to lie in [0, 1]. More importantly,
the nested exp — In-trick allows one to compute both (possibly high-order) derivatives )
and Dp ¢ in logarithmic scale (see 0¥ (w) and a¥“*(u), respectively); the non-logarithmic
values are never used. This is numerically an important result as the logarithmic terms
can typically be implemented efficiently themselves; for In{(—1)*y®} for well known
Archimedean families see, for example, Hofert et al. (2012), Hofert et al. (2013) or the R
package copula of Hofert et al. (2005).

B.2 On nested Archimax copulas

We now briefly explore the question whether, in principle, HAXCs can also be nested
copulas so nested Archimaz copulas (NAXCs), that is, whether there are HAXCs C' with
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analytical form C(u) = Co{Cy(uy),...,Cs(us)}, u € [0,1]%. Note that the only known
nontrivial class of copulas for which such nesting can be done (under the sufficient nesting
condition) is the class of nested Archimedean copulas. To this end, we make the following
assumption.

Assumption B.2.1 (Nested EVCs)
Assume that Dy, ..., Dg are EVCs such that D(u) = Do{D;(u1),...,Ds(ug)}, u =
(wy,...,ug) € [0,1]% is an EVC.

A D as in Assumption B.2.1 is referred to as nested extreme-value copula (NEVC). The
only known nontrivial copula family for which Assumption B.2.1 is known to hold is the
nested Gumbel family (under the sufficient nesting condition). It thus remains an open
question whether there are other families of EVCs or a general construction of NEVCs
besides the Gumbel.

B.2.1 Based on nested extreme-value copulas or nested stable
tail dependence functions

Our first result shows that Assumption B.2.1 is equivalent to the existence of a nested stable
tail dependence function.

Lemma B.2.2 (Nesting correspondence)
An EVC D is a NEVC if and only if the stable tail dependence function ¢ of D is nested,
that is,

() = Lo{li(xy),... ls(xs)}, x €]0,00)% (B.2)
Proof.
D(’U,) = Do{Dl(’u,l), . 7D5(’u,5)} = exp[—éo{— In Dl(ul), ey, In DS<U5)}]
= exp{—€0<— ln[exp{—ﬁl(— Inuyq,...,— lnuldl)}}, s
—1In {exp{—ég(— Inugy,...,—1n “Sds)}D}

= exp{—fo{él(— Inwuyg,...,—Inwuyg,),. ... ls(—Inugy,...,— lnuSdS)}}

= exp{—{(—Inuyy,...,—lnuge,)}, w €0, 114,
if and only if {(x) = lo{l1(x1), ..., ls(zs)}, = € [0,00)< O
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The following proposition is essentially a nested version of one of the two HAXC
extensions suggested in Section 3.3.2 which, based on Assumption B.2.1 leads to nested
AXCs (NAXCs) based on NEVCs or, equivalently, nested stable tail dependence functions;
see Lemma B.2.2.

Proposition B.2.3 (NAXCs based on NEVCs or nested stable tail dependence func-
tions)

Let Dy, s € {0,...,S}, be as in Assumption B.2.1 with respective stable tail depen-
dence functions £, s € {0,...,S}. Let V.~ F = LS '[¢] and Y = (Y1,...,Ys) =
(Yi1,.. .. Y14, Ysi1,...,Ys4y) ~ D be independent, where D is an EVC as in Assump-
tion B.2.1. Then the copula C of

o= (o(BE) . o(B2)
(o) () ()

is given, for all u € [0, 1]¢, by
Cw) = (b 6fe™ (w)}, . Ls{v (us)}))
= ¢ (lo[6 ™ ), T (wa) b LU (us), 0 (usas) )
that is, C' is an AXC with nested stable tail dependence function as given in (B.2).

Proof.
]P(U S 'U,) = IP{Yl S e_Vw_l(UI)a s 7YS S e—Vﬂ)_l(Us)}
—E[P{Y; <e V¥ @) yg<e V)| Y
= E[D{e V¥ ) VT s  B[DV { eV ) et s
= B(exp|-Ve{y (), ... (us)}]) = ¢ [({v™ (wa), ..., 07" (us)}]

The claim immediately follows from Lemma B.2.2 by noting that D is nested as of Assump-
tion B.2.1. O

Corollary B.2.4 (Pairwise marginal copulas)
Under the setup of Proposition B.2.3 the bivariate marginal copulas of C' satisfy

¢[£8{¢_1(u8i)7¢_1(u5j)}]7 if ¢t = 5,
Yllo{v N usi), v (uy)}], otherwise.

Therefore, the bivariate marginal copulas of C' are (possibly different) AXCs.

Cusi, ugj) = {
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Proof. For a stable tail dependence function ¢, one has that ¢(x) = z; if all components
except the jth of @ are 0. As such, for any s € {1,...,S5},

0, ifusj:1Vj€{1,...,dS},
gS{w_l(uﬂ)? s 7¢_1(u3ds)} - d}_l(uSk)? if Usj = 1 v] S {17 s 7d5}\{k}7

68{¢*1(u5k),@/}*1(u5l)}, if ug; =1Vje {1,...,ds}\{k, 1},
from which the result follows. O

B.2.2 Additionally nesting frailties

As in the second method for introducing hierarchies on AXCs presented in Section 3.3.2,
we could, additionally, impose a hierarchical structure on the underlying (multiple) frailties.
We focus on the two-level case with S different frailties. Assume, as before, the sufficient
nesting condition to hold, that is, ¥, € ¥, s € {0,..., S}, are Archimedean generators and,
for all s € {0,...,S}, the derivative of 1 ' o 1, is completely monotone.

Proposition B.2.5 (NAXCs based on nested frailties)

Let Dy, s € {0,...,S}, be as in Assumption B.2.1 with respective stable tail dependence
functions 45, s € {0,...,5}. Furthermore, let ¢ € ¥ be completely monotone, s €
{0,...,S}, and assume that the sufficient nesting condition holds. Assume Vj ~ Fy =
LS aho] and Voo | Vo ~ Fos = LS bos(-;V0)], s € {1,...,S}. Moreover, let Y =
(Y1,...,Ys) ~ D be independent of V4, V], ..., Vs and assume that

]E{]E(DO[Dl{e—VoN/Jfl(ul)}7 o Ds{e—Vosiﬁgl(us)}] ‘ ‘/b)}
— B{Dy(EIDu e T I Vi, EDsfe 00y )L (B

Then the copula C' of

- (o). ()

O('U,> = C’O{C'l(ul),...,CS(uS)}, u c [0,1}d,

is given by

where, for all s € {0,...,S}, C is Archimax with generator 1, and stable tail dependence
function 4.
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Proof.
]P(U < 'u,) ]P{Yl <e Vo1 (ul YS <e VOS’/)S us)}
:E( []P{Y1<€ Vol’/’l (u1 ] YS<6 VOSwS (ug) |‘/01,,‘/05}|‘/0]>

= E(E[D{e Vot w0 ¢Vosvs' @)} | 7))
_ ~Vorgy * (u1) ~Vostg ' (us)
(];3)1E{DO(1E[DI{6 @O} | Vo, B[Dg{em sV ()} ] |

Each component E[D,{e~"0=¥s @)} | V], s € {1,..., S}, satisfies

E[Ds{efvoﬁl);l(us)} ‘ %] — E[D;/()s{e*d);l(us)} ‘ Vb] _ ]E[eroS@s{dJ;l(us)} ’ VO]
= wOsws{d}s_l(us)}; Vb]v

P(U < w) = B{ Do (vorlfa (i (w)} Vil . doslls (05" (us) }: Vil }
(DO [e Vo, {Cl(ul)}’ o e*VOIle{CS(uS)}})

(

{e”

D(\J/o [6 w&l{cl(m)}? o ’efwgl{cs(us)}})
(

= ol {Cr ()}, - v {Cs(us)}|) = CofCilw), ... Cs(ug)}. O

The following corollary provides a condition under which Assumption (B.3) holds. Note
that this particular model can already be found in McFadden (1978).

Corollary B.2.6 (AC composed with AXCs)

If D(u) = [I5_, Ds(u,), (B.3) holds and C(u) = Co{Ci(uy),...,Cs(us)}, where Cy is
Archimedean and C,...,Cg are Archimax. In particular, if D is the independence copula,
(B.3) holds and C'is a NAC.

Proof. 1f D(u) = [I5_, Ds(uy), then, conditional on V;, the sector components are indepen-
dent and we obtain

E(Do[Dyfe o (), Ds{e—Vosw?(us) 1[15)

S
E| [[ D.{e 0w (w0} ‘VO} H]ED CRCRCN YA
s=1

s=1

Do(E[Dy{e”1 M0} | Vo), ..., BlDs{e™s%5 )} | 1)),
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and thus (B.3) follows by taking the expectation. The rest follows immediately by not-
ing that an EVC is the independence copula if and only if its stable tail dependence
function is the sum of its components, so the Archimax (sector) copulas Cs(us) =

Vs {Es{wgl(usl), . ,@D;l(usds)}] are Archimedean generated by v, s € {1,...,S5}.

O
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Appendix C

Additional details for Chapter 4

C.1 Analyzing GMMN QMC and GMMN RQMC es-

timators

C.1.1 QMC point sets

The idea behind quasi-random numbers is to replace pseudo-U (0, 1)? random numbers with
low-discrepancy points sets P, to produce a more homogeneous coverage of [0,1]? in
comparison to pseudo-random numbers. That is, with respect to a certain discrepancy
measure, the empirical distribution of the P, is closer to the uniform distribution U(0,1)?
than a pseudo-random sample.

Established notions of the discrepancy of a point set P, ., are as follows. The discrepancy
function of P, in an interval I = [0,b) = TI}_,[0,b;), b; € (0,1}, j =1,...,p, is defined

gen

by
1 Ngen
D(I7 Pngen) = Z ]‘{U'LEI} - )\(I)’
Migen ;=1

where () is the p-dimensional Lebesgue measure of I. Thus the discrepancy function is the
difference between the number of points of P, in I and the probability of a p-dimensional
standard uniform random vector to fall in I. For A = {[0,b) : b € (0,1]}, the star
discrepancy of P, . is defined by
D*(P,

Ngen

gen

) - Sup |'D(‘[’ Pngen)l'
IcA
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If P,

Ngen

sequence (Lemieux, 2009, p. 143).

satisfies the condition D*(P,

ngen) € O(Nger, (10g Ngen )P), it is called a low-discrepancy

There are different approaches to construct (deterministic) low-discrepancy sequences;
see Lemieux (2009, Chapters 5—6). The two main approaches involve either lattices
(grids which behave well under projections) or digital nets/sequences. In our numerical
investigations presented in Sections 4.3-4.4, we worked with a type of digital net constructed
using the Sobol” sequence; see Sobol” (1967).

C.1.2 Analyzing the GMMN QMC estimator

In this section, we will derive conditions under which the (non-randomized) GMMN QMC
estimator

1 Ngen Ngen

Z U(q(vs)) = Z h(v;),

Ngen ;=1 Ngen ;=1

where ¢ = fy o F landh=Vog=Vo foolFy ! has a small error when approximating
E(¥(Y)). In the following analysis, we need to further assume that supp(Fx ) and supp(Fy )
are bounded.

The Koksma-Hlawka inequality (Niederreiter, 1992) for a function g : [0, 1]?» — R says
that

ng10n i:ng(vi) —E(g(U)| < V(9) D" (Poy,),

where U’ ~ U(0,1)? and the variation V (g) is understood in the sense of Hardy and Krause;
we refer to the right-hand side of the inequality as Koksma—Hlawka bound. From this
Koksma-Hlawka inequality, we can establish that if g has finite bounded variation, that
is V(g) < oo, then the convergence rate for Klen ST g(v;) is determined by D*(P,,..) =

O(n, 1 (logngen)?).

We can use the Koksma—-Hlawka inequality to analyze the convergence of the GMMN
QMC estimator ng% ST U(y;) of E(Y(Y)), where y; = q(v;), i =1,...,ngey and Y ~ Fy,
by establishing the conditions under which V'(h) is bounded. To that end, consider the
following proposition.

Proposition C.1.1 (Sufficient conditions for finiteness of the Koksma—Hlawka bound)
Assume that supp(Fy) is bounded and all appearing partial derivatives of ¢ and ¥ exist
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and are continuous. Consider ¢ = f; 0 F;"', the point set P = {01, U} € [0,1)P
and let y;, = q(v;), i = 1,..., Ngen, denote the GMMN quasi-random sample. Suppose that

1. U(y) < oo for all y € supp(Fy) and

P (y)
051y1 C 65dyd

for all 8= (B1,...,84) C{0,...,d}* and |8 :Z?:lﬁj < d;

2. there exists an M > 0 such that | DF F§]1| < M, for each k,j = 1,...,p, where D
denotes the k-fold derivative of its argument;

< 00, Y € Supp(FY)7

3. there exists, for each layer [ = 1,...,L + 1 of the NN f;, an N; > 0 such that
|ID*¢y| < Ny for all k=1,...,p; and

4. the parameter vector 6 = (Wl, e Wi, by, ... ,br41) of the fitted NN is bounded.

Then there exists a constant ¢ independent of nge,, but possibly depending on W, 9, M
and Ny,..., Ny, such that

- 3 W)~ BOY) < D' (P,,.)

Proof. To begin with note that for any ¢ such that ¢(U’) ~ Fy, we know that Y is in
distribution equal to ¢(U’) and thus E(¥(Y)) = ]E(llf(q(U'))) = E(h(U")). Based on
this property, we can obtain the Koksma-Hlawka bound V' (h)D*(P,,.,) for the change of

variable h.
Following Lemieux (2009, Section 5.6.1), we can derive an expression for V' (h). To this

end, let

PR (v, ..., V)

g, - .. Ovy,

VO (h; a) = /
0.1

dvg, ... dvg,,

where h(® (vg,, . .. Vo) = h(01,...,0) for Oy = vy if k € {1, ..., a5} and © = 1 otherwise.
Then

V(h) = 22 .|§|j_.v<f>(h; @), (C.1)
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where the inner sum is taken over all & = (ay, ..., ;) with {oq,...,a;} C{1,...,p} —
see also Niederreiter (1992, pp. 19-20), Hlawka (1961, eq. (4)) and Hlawka and Miick
(1972, eq. (47)). Following Hlawka and Miick (1972) and Constantine and Savits (1996,
Theorem 2.1), we then have

IR (vg,, ... Vay) |
Qg - .. OV,

Oy L )
0Py, ... 0Py, . Qfimi Vayj - - L 0",

1=1(k,k)Em;(k,k) m=1

Y

1I<IBh <y

(C.2)

where ,8 € N¢ and where 7;(k, k) denotes the set of pairs (k, k) such that k = (ky,... k) €
{1,...,d} and & = (K1,..., k) With Ky = (K1, .-, 6mg) € {0,117, m = 1,...,i, and
1 kmi = Lfori=1,...,7; see Constantine and Savits (1996) for more details on m;(k, k)
and the constants ¢,.. Furthermore, for index j =1,...,d, q(a) ("Ual, Vo) = @ (D, Tp)
and q;(v1, . . /&p) ¢r+1(Wrsyj.ap + bri), where a; = d(Wiai_y +b) for 1 =1,....L
with ag = F;'(®) and where WLH] denotes the jth row of Wy, .

Based on the decomposition in (C.2), a sufficient condition to ensure that V' (h) < oo is

that all products of the form

BIEERY, i 3|Nm|1ql(€?:l)(qu7 V)
OPryy ... 0Payy ~2  OFmivg, ...0"mv,,

i=1,....7,

are integrable.

To that end, Assumptions 2-4 imply that all mixed partial derivatives of ¢ = f; 0 F;'
are bounded. By the assumption of continuous partial derivatives of ¢, this implies that
finite products of the form

allﬁmh (Uala . 7Uaj)

Y
D3 Uy, - DI,

i=1,...,7j,

m=1

are integrable. By Assumption 1, decomposition (C.2) and Holder’s inequality, the quantity
in (C.1) is bounded. This implies that h has bounded variation, so that the Koksma-Hlawka
bound is finite.

]

The following remark provides insights into Assumptions 2—4 of Proposition C.1.1.
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Remark C.1.2

U(a,b)? for a < b, which is a popular choice for the input distribution, clearly satisfies
Assumption 2 in Proposition C.1.1. Assumption 3 is satisfied for various commonly used
activation functions, such as:

1. Sigmoid. If ¢;(x) = 1/(1 + e~ %) for layer [, then N; = 1.

2. ReLU. If ¢y(x) = max{0,x} for layer [, then N; = 1. In this case, only the first
derivative is (partly) non-zero. Additionally, note that the ReLU activation function
is not differentiable at x = 0. However, even if ¢, = max{0,z} foralll=1,... L+1,
the set of all pointwise discontinuities of the mixed partial derivatives of ¢ is a null
set. Hence, the discontinuities do not jeopardize the proof of Proposition C.1.1.

3. Softplus. If ¢;(x) = log(1l + e*) for layer [, then N; = 1. The Softplus activation
function can be used as a smooth approximation of the ReLLU activation function.

4. Linear. If ¢;(x) = x for layer [, then N; = 1. Only the first derivative is non-zero.
5. Tanh. If ¢;(x) = tanh(z) for layer [, then N; = 1.
6. Scaled exponential linear unit (SELU); see Klambauer et al. (2017). If, for layer [,

Aa(exp(—z) — 1), ifz <0,
AT, if x>0,

du(x) = {

where A and « are prespecified constants, then N; = max{\, Aa,1}. The same
argument about discontinuities made with the ReLLU activation function applies
equally well to the case of the SELU activation function.

Assumption 4 of Proposition C.1.1 is satisfied in practice because NNs are always trained with
regularization on the parameters, which means 8 always lies in a compact set. Additionally
note that in the general case where ¢ is characterized by a composition of NN layers and
F,' with a different (but standard) activation function in each layer, all partial derivatives
of ¢ exist and are continuous. Moreover, for the activation functions and input distributions
listed above, all mixed partial derivatives of ¢ are bounded.

C.1.3 RQMC point sets

In Monte Carlo applications, we need to randomize the low-discrepancy sequence P, ., to
obtain unbiased estimators and variance estimates. To that end, we can randomize P,
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via a U’ ~ U(0,1)? to obtain a randomized point set ﬁngen = Pngen(U’) ={01,..., Vnn 1
where v; = r(U’,v;), i = 1,...,Ngen, for a certain randomization function r. A simple
randomization to obtain an RQMC point set is to consider v; = (v; + U')mod 1, i =
1,..., Ngen, for U' ~ U(0,1)?, a so-called random shift; see Cranley and Patterson (1976).

In practice, more sophisticated alternatives to the random shift are often used. One such
slightly more sophisticated randomization scheme is the digital shift method; see Lemieux
(2009, Chapter 6) and Cambou et al. (2017). In the same vein as the random shift, one
adds a random uniform shift to points in P, ., but with operations in 7, where b is the
base in which the digital net is defined, rather than simply adding two real numbers. We
use Ps;n to denote the RQMC point set obtained using the digital shift method.

Another randomization approach is to scramble the digital net. This technique was
originally proposed by Owen (1995). In particular, the type of scrambling we work with
is referred to as the nested uniform scrambling (or full random scrambling) method; see
Owen (2003). Since we primarily use this method throughout the chapter, B, . will
denote specifically the RQMC point set obtained using scrambling. The digital shift
method is more computationally efficient in comparison to scrambling but because the
distortion of the deterministic point set is fairly simple in the digital shift method, there
are bad functions one can construct such that the variance of the RQMC estimator is
larger than that of the corresponding MC estimator; see Lemieux (2009, Chapter 6).
Furthermore, when RQMC points are constructed with scrambling, we can justify (see
Appendix C.1.4) that an improved rate of O(ng (10g ngen)?~ ") is achievable for Var(ﬂ}jgljn);

this translates to O(ng3/?(1og ngen)*~"/2) on the root mean squared error (RMSE) scale,
which is more directly comparable to the convergence rate of O(n,J (logngen)?) implied
by the Koksma-Hlawka bound for the mean absolute error (MAE) of iy using QMC
points (see Appendix C.1.2). Hence, even though the aforementioned bad functions do not
often arise in practice, we primarily work with the scrambling randomization method to
construct our RQMC point sets. Both the scrambling and the digital shift methods are
available in the R package qrng and can be accessed via sobol(, randomize = "Owen")

and sobol(, randomize = "digital.shift") respectively.

The randomization schemes discussed above preserve the low-discrepancy property
of P,,., and the estimators of interest obtained using each type of RQMC point set are
unbiased. Computing the estimator based on B such randomized point sets and computing
the sample variance of the resulting B estimates then allows us to estimate the variance of

the estimator of interest.
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C.1.4 Analyzing the GMMN RQMC estimator
GMMN RQMC estimators constructed with scrambled nets

For RQMC estimators KID S g(v) based on scrambled nets, Owen (1997b) initially
derived a convergence rate for the variance of the estimators under a certain smoothness
condition on g, where g : [0,1]? — R. Owen (2008) then generalized his earlier result
to allow a weaker smoothness condition for a larger class of scrambled nets. Specifically,
if Pngen {D1,...,0n,,} is a so-called relaxed scrambled (X, ¢, m,p)-net in base b with
bounded gain coefficients — for example, Sobol’ sequences randomized using nested uniform
sampling belong to this class — then we have the following result as a direct consequence
of Owen (2008).

Theorem C.1.3 (Owen (2008))
If all the mixed partial derivatives (up to order p) of g exist and are continuous, then

Var ( Z g ) geg;l(log ngen)pil) .

Ngen ;=1

Proof. See Owen (2008, Theorem 3). O

Now, for the GMMN RQMC estimator, i, = ng%n ST W(q(00) = o SET (D),

the corollary below naturally follows from Theorem C.1.3 with some added analysis of the
composite function h.

Corollary C.1.4
If all the mixed partial derivatives (up to order p) of h =W oqg=Wo fyoF, ! exist and are
continuous, then Var(fin ) = O(ng3 (1og ngen)?™").

To analyze the mixed partial derivatives of h, it suffices to analyze each component
function separately.

For popular Choices of input distributions (such as U(a, b)? for a < b or N(0, 1)?), the
k-fold derivative DF F;! 7, exists and is continuous (on [a,b] or R depending on the choice of
input distribution) for ‘each k Jg=1,...,p.

For each layer [ = 1,..., L+1 of the NN f, D* ¢, exists and is continuous for k = 1,...,p
— provided that we use (standard) activation functions; see Remark C.1.2 for further details
on suitable activation functions. For NNs constructed using some popular activation
functions such as the ReLU and SELU, note that the set of all pointwise discontinuities of
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the mixed partial derivatives of fj is a set of Lebesgue measure zero and hence the proof
of Theorem C.1.3 holds. Alternatively, we can use the softplus activation function as a
smoother approximation of ReLU. Now in the most general case of NNs f; being composed
of layers with different (but standard) activation functions, all mixed partial derivatives
(up to order p) of f; exist and are continuous almost everywhere.

Finally, it is certainly true that, for many functionals W that we care about in practice,
such as those considered in Sections 4.4 and 4.5.3, all of its mixed partial derivatives (up to
order p) exist and are continuous almost everywhere on R%.

GMMN RQMC estimators constructed with digitally shifted nets

For GMMN RQMC estimators ﬂ%jg;ds constructed using digitally shifted RQMC point sets

15,?:“, we can obtain an expression for Var(ﬂ,lfglj;ds) under the condition that the composite
function h is square integrable; see Cambou et al. (2017, Proposition 6).

With added assumptions on the smoothness of A, one can obtain improved convergence
rates (compared to MC estimators) for Var(ﬂrlfglj;ds). For example, under the assumptions
of Proposition C.1.1, h has finite bounded variation in the sense of Hardy—Krause, which
implies that Var(jiy~:%) = O(ng2 (log ngen)*); see L'Ecuyer (2016).

In practice, we observe that GMMN RQMC estimators constructed using both scrambled
and digitally shifted nets achieve very similar convergence rates despite differences in the
theoretical convergence rates. To that end, Figure C.1 shows plots of standard deviation
estimates for estimating E(Wo(X)) where we use the RQMC point sets pﬁ:en for the same
copula models as considered for Figure 4.12 (which is based on GMMN RQMC estimators
constructed using scramble nets) in Section 4.4. The approximate convergence rates as
implied by the regression coefficients « displayed in both figures are very similar across the
various examples.

C.2 Run time

Run time depends on factors such as the hardware used, the current workload, the algorithm
implemented, the programming language used, the implementation style, compiler flags,
whether garbage collection was used, etc. There is not even a unique concept of time
(system vs user vs elapsed time). Although none of our code was optimized for run time,
we still report on various timings here, measured in elapsed time also known as wall-clock
time.
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Figure C.1: Standard deviation estimates based on B = 25 replications for estimating
E(¥,(X)) via MC based on a pseudo-random sample (PRS), via the copula RQMC estimator
(whenever available; rows 1-2 only) and via the GMMN RQMC estimator (based on digitally
shifted nets). Note that in rows 1-3, d € {2,5,10}, whereas in row 4, d € {3,5,10}.
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C.2.1 Training and sampling

The results in this section are reproducible with the demo GMMN_QMC_timings of the R
package gnn.

Table C.1 shows elapsed times in minutes for training a GMMN on training data from
t4, Clayton (C), Gumbel (G) and nested Gumbel (NG) copulas in dimensions 2, 3, 5 and
10 as described in Sections 4.3.2 and 4.3.3. As is reasonable, the measured times are only
affected by the dimension, not by the type of dependence model.

C d=23 d=5 d=10

17} 2.52 7.01 9.46
C 5.52 7.00 9.45
G 5.52 7.01 9.46
NG  6.01 7.01 9.44

Table C.1: Elapsed times in minutes for training GMMNs of the same architecture as used
in Sections 4.3.2 and 4.3.3 with nep, = 300, 14, = 60 000 and 1y, = 5000 on respective
copula samples; training was done on one NVIDIA Tesla P100 GPU.

Table C.2 contains elapsed times for generating ng, = 10° observations from the
respective dependence model and sampling method on two different machines, once on the
NVIDIA Tesla P100 GPU used for training and once locally on a 2018 2.7 GHz Quad-Core
Intel Core i7 processor. The results for the copula-based pseudo-random sampling method
are averaged over 100 repetitions. The results for the copula-based quasi-random sampling
method are obtained as follows. If the conditional copulas involved in applying the inverse
Rosenblatt transform of the respective copula model are not available analytically nor
numerically, NA is reported; this applies to the nested Gumbel copula. And if they are
only available numerically (by root finding), then a reduced sample size of 1000 is used and
the reported run times were obtained by scaling up to nge, by multiplication with 100; this
applies to the Gumbel copula. We also measured run times for nge, = 10° and nge, = 107
and they scale proportionally as one would expect.

We see from Table C.2 that quasi-random sampling from specific copulas is available and
can be fast, e.g., for t4 and Clayton copulas. However, we already see that quasi-random
sampling gets more time-consuming for larger d. For other copulas, such as Gumbel copulas,
it can be much more time consuming. Furthermore, as seen from the nested case and as
is currently the case for most copula models, a quasi-random sampling procedure is not
even available. By contrast, on the same machine, GMMNs show very close run times, are
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2018 2.7 GHz Quad-Core Intel Core i7 NVIDIA Tesla P100 GPU

Copula GMMN Copula GMMN

C  PRS QRS PRS QRS PRS QRS PRS QRS

C 0.0144 0.0230 1.3110 1.3140  0.0308 0.0400 3.6290 3.5820

G  0.0348 374.8000 1.3470  1.3310  0.0669  687.7000 3.6400 3.5750

(2,1) NG 0.0633 NA 1.3360  1.3260  0.1369 NA 3.6560 3.6530
5 ty 0.1410 1.4830 1.4490 1.3830  0.2567 3.0150 3.7330 3.6960
5 C  0.0425 0.0580 1.3890  1.5060  0.0936 0.1110 3.7670 3.6980

5 G 0.0523 1529.5000 1.3930  1.3860  0.1161 2939.9000 3.7380 3.7010
(2,3) NG 0.0989 NA 1.4020  1.4070  0.2167 NA 3.9450 3.7210
10 ty  0.2766 3.6080 1.5870  1.6720  0.4917 6.5290 3.9530 4.0990
10 C 0.0734 0.1190 1.6430 1.6630  0.1806 0.2320 3.9680 4.1910
10 G 0.0807 3579.6000 1.5500  1.5290  0.1984 7119.6000 4.0060 3.9370
(5,5) NG 0.1324 NA 1.5470  1.5280  0.3087 NA 3.9740  3.9530

d
2 ty  0.0642 0.4420 1.2960  1.2720  0.1045 0.8210 3.6140 3.5820
2
2

Table C.2: Elapsed times in seconds for generating samples of size nge, = 10°.

barely affected by the dimension and are not affected by the type of dependence model. For
d = 10, the GMMN quasi-random sampling procedure even outperforms the ¢4 quasi-random
sampling procedure for which the conditional copulas are analytically available; for d = 5
the two procedures perform on par, depending on the machine used.

This highlights the universality of using neural networks for dependence modeling
purposes. As an example, say a risk management application such as estimating expected
shortfall with variance reduction is based on a t4 copula and a regulator requires us to change
the model to a Gumbel copula for stress testing purposes. Suddenly run time increases
substantially. Also, if the regulator decides to incorporate hierarchies (as was more easily
done for the t4 model due to its correlation matrix) by utilizing a nested Gumbel copula,
then there is suddenly no quasi-random sampling procedure known anymore. It is one of
the biggest drawbacks of parametric copula models in applications that the level of difficulty
of carrying out important statistical tasks such as sampling, fitting and goodness-of-fit can
largely depend on the class of copulas used. These problems are eliminated with neural
networks as dependence models.
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C.2.2 Fitting and training times for data applications

We now briefly present the run times for fitting the parametric copula models and training the
GMMNSs used in Section 4.5. Recall that we considered three dimensions d € {3, 5,10} and
that fitting, respectively training, was only required once for each dimension, independently
of the number of applications considered.

Table C.3 contains the elapsed times in seconds. Recall from Section 4.5 that GMMNs
provided the best fit, followed by the unstructured ¢ copula. The latter is in general a
popular parametric copula model in practice; see Fischer et al. (2009). Comparing the last
two columns of Table C.3, we see that fitting the ¢ copula is comparably fast for d = 3,
however, already for d = 5, run time for training a GMMN is on par. For d = 10, training
a GMMN is significantly faster.

d Gumbel Clayton Normal (ex) Normal (un) ¢ (ex) ¢ (un) GMMN

3 1.078 0.437 0.388 1.000 3.315 9.064 43.336
) 1.291 0.455 0.435 6.071 5.932  41.131 41.235
10 1.344 0.531 0.981 82.982 11.966 783.406  55.555

Table C.3: Elapsed times in seconds for fitting the respective parametric copula model and
training the GMMN on one NVIDIA Tesla P100 GPU for the applications presented in
Section 4.5.

C.2.3 TensorFlow vs R

Finally, let us stress again what we initially said, namely, that run time depends on many
factors. In particular, one typically relies on TensorFlow for the feed-forward step of input
through the GMMN, which creates overhead especially for smaller data size n. In the demo
GMMN_QMC_timings, we also provide a pure R implementation for this step for GMMNs
considered in this work.

For each of d € {2,5,10}, we randomly initialize B = 10 GMMNSs as in Algorithm 4.2.1
and average the elapsed times of their feed-forward steps when passing through data of size
n (chosen equidistant in log-scale from 10 to 10°) from the input distribution, once with
TensorFlow, and once with our own R implementation. We then divide the averaged run
times of the R implementation by the ones of the TensorFlow implementation. Whenever
the ratio is smaller (larger) than one, the R implementation is faster (slower) than the
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TensorFlow implementation. We ran this experiment once locally on the 2018 2.7 GHz
Quad-Core Intel Core i7 processor and once on the NVIDIA Tesla P100 GPU. The results
are depicted on the left and on the right plot in Figure C.2, respectively. Depending on the
machine used, the R implementation can be significantly faster, especially for small n.

s 3
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N
—
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Elapsed time of R implementation / TensorFlow implementation
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Figure C.2: Ratio of averaged elapsed times of an R implementation over the TensorFlow
implementation when evaluating randomly initialized GMMNs, once run on a 2018 2.7 GHz
Quad-Core Intel Core i7 processor (left) and once on an NVIDIA Tesla P100 GPU (right).
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