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Abstract Recent years have seen an increased interest in crowdsourcing as a way of
obtaining information from a potentially large group of workers at a reduced cost. The
crowdsourcing process, as we consider in this paper, is as follows: a requester hires a num-
ber of workers to work on a set of similar tasks. After completing the tasks, each worker
reports back outputs. The requester then aggregates the reported outputs to obtain aggre-
gate outputs. A crucial question that arises during this process is: how many crowd workers
should a requester hire? In this paper, we investigate from an empirical perspective the opti-
mal number of workers a requester should hire when crowdsourcing tasks, with a particular
focus on the crowdsourcing platform Amazon Mechanical Turk. Specifically, we report the
results of three studies involving different tasks and payment schemes. We find that both the
expected error in the aggregate outputs as well as the risk of a poor combination of workers
decrease as the number of workers increases. Surprisingly, we find that the optimal number
of workers a requester should hire for each task is around 10 to 11, no matter the underlying
task and payment scheme. To derive such a result, we employ a principled analysis based on
bootstrapping and segmented linear regression. Besides the above result, we also find that
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overall top-performing workers are more consistent across multiple tasks than other work-
ers. Our results thus contribute to a better understanding of, and provide new insights into,
how to design more effective crowdsourcing processes.

Keywords Crowdsourcing · Human computation · Amazon mechanical turk

Mathematics Subject Classification (2010) 68T99 · 90B99

1 Introduction

Recent technological advances have facilitated the outsourcing of a variety of tasks to “the
crowd”, e.g., the decision support regarding various phases of managerial decision-making
and problem solving [15], the design of advertisements [33], the development and testing of
large software applications, the design of websites, professional translation of documents,
transcription of audio, etc. Such a practice of obtaining relevant information or services
from a large group of people, or outsourcing tasks to the crowd, is traditionally referred to
as crowdsourcing.

There are many different ways of outsourcing a task to the crowd. The crowdsourcing
process we consider in this paper is as follows: a requester hires a number of crowd workers
to work on a set of similar tasks. The term requester denotes an agent who wants to get the
task solved, e.g., an institution, a researcher, etc. The underlying tasks are homogeneous
in a sense that they are instances of the same class of tasks, e.g., content-analysis tasks,
prediction tasks, and so on.Workers then work on the same set of tasks, but without formally
communicating to each other. This is done to preserve the diversity of opinions throughout
the process.

After completing the tasks, each worker reports an output per task back to the requester.
Outputs are context-dependent. For example, for prediction tasks, each output can be
either a point estimate or a probability distribution over the plausible outcomes, whereas
in sentiment-analysis tasks, the output is usually a score inside a discrete set representing
how positive/negative the sentiment behind the underlying text is. After obtaining workers’
outputs, the requester then aggregates the reported outputs to obtain an aggregate output
per task. We focus on averages when aggregating workers’ outputs, a simple, yet robust
technique [14, 16]. Ideally, aggregate outputs are, in expectation, more accurate than any
individual output. This is the basic premise behind the so called collective intelligence.

A crucial question that arises during the above crowdsourcing process is: how many
crowd workers should a requester hire? Or, less specifically, how does the number of work-
ers influence the quality of the aggregate output? We first note that arguments can be made
in favor and against the use of multiple workers. On the one hand, hiring multiple workers
might bring diversity to the crowdsourcing process so that biases of individual judgments
can offset each other, which might result in a more accurate aggregate output. On the other
hand, a larger population of crowd workers might bring down the quality of aggregate
outputs due to the likely inclusion of poor-quality workers.

In this paper, we empirically investigate the above questions through a series of studies
using a popular crowdsourcing platform: Amazon Mechanical Turk. Our studies differ from
each other in terms of the underlying tasks and/or payment schemes. In our first study, we
ask workers to solve three content-analysis tasks, and we pay workers per completed task.
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In our second study, we also ask workers to solve three content-analysis tasks, but their
payments are based on the similarity of their reported outputs. In our third study, we ask
workers to solve two prediction tasks, and we pay the workers using a proper scoring rule
[42].

Due to the nature of the tasks in our studies, we are able to derive gold-standard out-
puts for each task, i.e., either ground-truth outputs or outputs of high quality provided by
experts with relevant expertise. The existence of gold-standard outputs allows us to inves-
tigate how different combinations of workers affect the accuracy of aggregate outputs. In
our first analysis, we find a substantial degree of improvement in expected accuracy as we
increase the number of hired workers, with diminishing returns for extra workers. More-
over, the standard deviation of errors in the aggregate outputs decreases with more workers,
which implies less risk when aggregating workers’ outputs.

Our next contribution is a principled method for determining the optimal number of
workers a requester should hire. Specifically, the proposed method combines bootstrapping
with segmented linear regression analysis to determine the point at which hiring an extra
worker has a negligible impact on the expected accuracy of the aggregate output. Surpris-
ingly, we find in our studies that the optimal number of workers a requester should hire for
each task is around 10 to 11.

Our experimental results also show that, given a set of similar tasks, combining outputs
only from the overall top-performing workers results in more accurate aggregate outputs
than combining outputs from the full population of workers. Furthermore, the performance
of top-performing workers across multiple tasks is more consistent than the performance
of other workers. Finally, more elaborate payment schemes, such as the output-agreement
method and proper scoring rules, increase the consistency of the workers’ performance
across multiple tasks. We conjecture that this result happens due to the fact that the
aforementioned payment schemes might induce honest reporting of private information.

Besides this introductory section, the rest of this paper is organized as follows. We review
the literature related to our work in Section 2. In Section 3, we describe Amazon Mechan-
ical Turk, the crowdsourcing platform we use in our studies. We describe our first study
in Section 4, together with our segmented linear regression analysis, which is also sub-
sequently applied to the data sets from our second and third studies in Sections 5 and 6.
Finally, we conclude in Section 7, where we suggest how a requester can take advantage of
our findings to design an effective crowdsourcing process. We also discuss some limitations
of our work, and suggest directions for future research.

2 Related work

In recent years, the crowdsourcing research community has tackled many problems of dif-
ferent nature, e.g., how to assign tasks to workers [21, 40], how to design optimal workflows
to coordinate the work of the crowd [25, 45], how to induce honest behavior in crowdsourc-
ing settings [8, 18], etc. We refer the interested readers to the papers by Yuen et al. [43] and
Quinn and Bederson [32] for comprehensive surveys on crowdsourcing-related works.

Our paper tackles the crowdsourcing problem of how many crowd workers a requester
should hire and, as a consequence, the problem of how the number of workers influences
the quality of the aggregate output. Regarding the latter question, it is well-known in deci-
sion analysis and operations research that combining information, such as forecasts, from
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multiple experts often leads to improved (forecasting) performance [14, 16, 41]. A canoni-
cal condition for this result to hold true is that experts’ errors are uncorrelated. In practice,
however, it is often the case that experts’ errors are highly correlated [2]. We further argue
that results and techniques that rely on calculations of correlations between experts’ errors
are not suitable for crowdsourcing settings since, due to the sheer number of workers, it
is unlikely that many workers repeatedly complete the same tasks. Our work suggests an
alternative way of analyzing the influence of the number of workers on the aggregate output
which is practical and suitable for crowdsourcing settings.

Sheng et al. [37] and Ipeirotis et al. [24] tackled a problem closely related to the prob-
lems we tackle in this paper. In particular, those authors investigated how many labels a
requester should obtain from crowd workers when (re)labeling a data set, which would later
be used for supervised learning. Generally speaking, those authors showed that labeling the
same data set using labels from different workers might sometimes improve the predictive
performance of a model. Besides the empirical nature of our studies, our work is different
from the aforementioned works in that we do not focus only on labeling tasks. Further-
more, instead of specific labeling strategies, we propose a general technique to determine
the number of workers a requester should hire.

To the best of our knowledge, the work by Carvalho et al. [9] was the first to propose a
method to determine the optimal number of workers a requester should hire. Specifically,
those authors suggested that such an optimal number occurs when hiring an extra worker
decreases the marginal expected error in the aggregate output by less than 2 %. In our paper,
we suggest a more principled approach based on bootstrapping and segmented linear regres-
sion analysis that does not rely on similar thresholds. We also demonstrate the robustness
of the proposed method in different empirical studies.

It is worth mentioning the connection between our work and machine learning, in par-
ticular the ensemble learning literature [17]. Ensemble methods are machine learning algo-
rithms that combine classifications/predictions made by individual classifiers/predictors
when classifying/predicting new data points. An ensemble method is more accurate than
any of its individual members when the individual classifiers/predictors are accurate and
diverse [19], where accuracy means that the error rate is lower than random guessing, and
diversity means that the errors made by the classifiers/predictors are uncorrelated. To a cer-
tain degree, one can think of a crowd worker in our setting as a classifier/predictor. Then,
our research question becomes: how many learning algorithms should an ensemble method
use? This was the question investigated by Oshiro et al. [29]. Specifically, the authors stud-
ied whether there is a point where increasing the number of trees inside a random forest
brings no significant performance gain. The authors found that adding extra trees beyond a
certain threshold might actually decrease the performance of a random forest. Our results
differ in that the expected accuracy of an aggregate output increases with the number of
workers.

3 Amazon mechanical turk

Over the years, Amazon Mechanical Turk (AMT)1 has emerged as the de facto crowdsourc-
ing platform. One of the reasons behind the popularity of AMT is that it has consistently
attracted thousands of workers, the so called MTurkers, willing to complete hundreds of

1https://www.mturk.com

https://www.mturk.com
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thousands of outsourced tasks for relatively low pay. Most tasks posted on AMT, tradi-
tionally called human intelligence tasks (HIT), are tasks that are relatively easy for human
beings, but nonetheless challenging or even currently impossible for computers, e.g., con-
tent analysis, audio transcription, filtering adult content, extracting data from images, etc.
Some studies have shown that AMT can effectively collect valid data in those settings [26,
38].

Besides business-related and data collection/cleaning applications, AMT has also been
widely used as a platform for conducting behavioral experiments. According to Mason and
Suri [27], the main advantage that AMT offers to behavioral researchers is the access to
a large, diverse, and stable pool of workers willing to participate in the experiments for
relatively low pay, thus simplifying the recruitment process and allowing for faster iterations
between developing theory and executing experiments. Furthermore, AMT provides a built-
in reputation system that helps requesters distinguish between good-quality and poor-quality
workers and, consequently, to ensure data quality. AMT also provides an easy-to-use built-in
mechanism to pay workers that greatly reduces the difficulties of compensating individuals
for their participation in the experiments.

Paolacci et al. [30] also suggested some advantages of using Amazon Mechanical Turk
for conducting experiments. For example, tasks are completed at a very fast rate since
several crowd workers might work simultaneously on a task. Moreover, a requester can
handpick workers by asking pre-screening questions as well as by defining certain crite-
ria that workers have to fulfill, such as location. Finally, due to workers’ unique IDs, a
requester is able to contact previously employed MTurkers and, thus, conduct longitudinal
experiments.

There are some discussions on whether the outputs from MTurkers are of acceptable
quality. Paolacci et al. [30] critically reviewed AMT by comparing this crowdsourcing plat-
form to other types of recruiting and data collection sources, such as studies performed
in laboratories, traditional web studies, and web studies with purpose-built websites. Pao-
lacci et al. [30] concluded, among other things, that AMT offers lower risk in terms
of susceptibility to coverage error and contaminated subject pool than the alternative
approaches.

Buhrmester et al. [5] also conducted some research on the quality of MTurkers. First,
the authors concluded that workers on Amazon Mechanical Turk are more diverse and rep-
resentative of the general population than subjects from some other internet samples and
typical American college samples. Furthermore, Buhrmester et al. [5] found that the quality
of the data generated by MTurkers is at least as high as the psychometric standard which
is associated with published research. Interestingly, those authors held a survey on AMT
which took approximately 30 minutes to complete, and the compensation per completion
was only $0.02. Even with this rather low payment of two American cents per 30 min-
utes, Buhrmester et al. [5] collected data from 25 crowd workers in about five hours. After
some experiments, the authors concluded that the level of compensation does not seem to
influence the quality of the collected data. However, the length of the tasks and higher com-
pensation rates are, respectively, inversely and directly proportional to how fast the data is
collected.

4 Study 1: Content-analysis tasks with payments per task

Our first experiment designed to study the influence of the number of crowd workers on
the quality of the aggregate outcome consists of a traditional setting on AMT, namely
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content-analysis tasks with payment per completed task. In what follows, we describe the
experimental design, our analysis, and the obtained results.

4.1 Experimental design

We asked workers on AMT to review three short texts under three different criteria: gram-
mar, clarity, and relevance. The first two texts are extracts from published poems, but with
some original words intentionally replaced by misspelled words. The third text contains ran-
dom words presented in a semi-structured way. Appendix A contains detailed information
about the texts. For each text, we presented three questions to the workers, each one having
three possible responses ordered in increasing positivity:

• Grammar: does the text contain misspellings, syntax errors, etc.?

a) A lot of grammar mistakes
b) A few grammar mistakes
c) No grammar mistakes

• Clarity: does the text, as a whole, make any sense?

a) The text does not make sense
b) The text makes some sense
c) The text makes perfect sense

• Relevance: could the text be part of a poem related to love?

a) The text cannot be part of a love poem
b) The text might be part of a love poem
c) The text is definitely part of a love poem

We intentionally used words with subjective meaning so as to emphasize the subjective
nature of content analysis, e.g., “a lot”, “a few”, etc. In order to conduct a numerical analysis,
we translate each individual response into a score inside the set {0, 1, 2}. In particular, we
assign 0 to the most negative response, 1 to the middle response, and 2 to the most positive
response. Thus, each worker reported a vector of 9 scores (3 criteria for each of the 3 texts).
In this section, we denote by output a vector of 3 scores for a given text. Thus, each worker
reported 3 outputs.

We recruited a total of 50 workers on AMT, all of them residing in the United States of
America and older than 18 years old. We asked the workers to complete the three tasks in
at most 20 minutes. After completing the tasks, every worker received a payment of $0.20.
Ipeirotis [23] estimated that more than 90 % of the tasks on AMT have a baseline payment
less than $0.10, and 70 % of the tasks have a baseline payment less than $0.05. Thus, our
baseline payment is much higher than the payment from the vast majority of other tasks
posted on AMT.

Since we knew the source and original content of each text a priori, i.e., before conduct-
ing the content-analysis experiment, we were then able to derive gold-standard outputs for
each task. In order to avoid confirmation bias,2 we asked five professors and tutors from the

2The tendency to interpret information in a way that confirms one’s preconceptions [31].
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English and Literature Department at the University of Waterloo to provide their outputs for
each task. We set the gold-standard score for each criterion in a text as the median of the
scores reported by the professors and tutors. Coincidentally, each median value was also the
mode of the reported scores. We show the gold-standard outputs in Appendix A.

4.2 Accuracy of aggregate outputs by the number of workers

In order to determine the optimal number of workers a requester should hire, we start by
applying a bootstrapping technique to our collected data. In particular, for each number
of workers n ∈ {1, . . . , 50} and each one of the three content-analysis tasks, we create
100,000 bootstrap resamples by randomly sampling with replacement n workers’ outputs.
For example, for n = 5, we randomly sample with replacement 5 outputs for a total of
100,000 times for each task.

For each bootstrap resample, we aggregate the n outputs by taking their average. We next
measure the accuracy of each aggregate output. In particular, we calculate the mean square
error (MSE) between each aggregate output and the respective gold-standard output. For
example, consider the case where a bootstrap resample contains two workers’ outputs for
Text 1, namely (1, 2, 0) and (2, 2, 1). Thus, the aggregate output for that bootstrap resample
is (1.5, 2, 0.5). Given that the gold-standard output for Text 1 is (1, 2, 2) (see Appendix A),
the MSE between the aggregate output and the gold-standard output is:

(1.5 − 1)2 + (2 − 2)2 + (0.5 − 2)2

3
≈ 0.8334

Clearly, the lower the MSE, the more accurate the aggregate output. For a given num-
ber of workers n, the average MSE, henceforth called average error, can be seen as the
expected error when aggregating outputs from n workers. For example, the average of the
100,000 MSEs for n = 2 is an estimate of the expected error when aggregating outputs
from 2 workers chosen at random. Figure 1 shows the average error and the standard devi-
ation of the errors for each content-analysis task and number of workers n ∈ {1, . . . , 50}.
Appendix B shows statistics regarding workers’ errors.

An interesting feature of Fig. 1 is that the influence of the number of workers on the
accuracy of the aggregate output is qualitatively the same for all tasks. That is, the aver-
age error decreases as the number of workers n increases, which means that the expected
accuracy of the aggregate output increases with more workers. Figure 1 also shows that the
standard deviation of the errors decreases with the number of workers n, which is just a
consequence of the central limit theorem. The initially high standard deviation indicates an
opportunity to get considerably low error with a single worker. Obviously, the other side of
the coin is a greater risk of high error due to a single poor-quality worker. As the number
of workers increases, that risk decreases because combinations of exclusively poor-quality
workers become less likely.

Another interesting aspect of Fig. 1 is that the average error quickly converges to val-
ues other than zero. In particular, the 99 % confidence intervals for n = 50 and Task
1, 2, and 3, are, respectively, [0.2892, 0.2904], [0.1877, 0.1885], and [0.3754, 0.3768]. In
practical terms, this result highlights a potential limitation with crowdsourcing, in that aver-
aging outputs frommany workers does not necessarily translate into a perfect, gold-standard
output.

Looking at Fig. 1, a natural question that arises is: at which point does the average error
become stable? By “stable”, we mean that the average error no longer significantly changes
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Fig. 1 The average error and the standard deviation of the errors per content-analysis task for each number
of workers n ∈ {1, . . . , 50}

with one extra worker. We note that such a point denotes the optimal number of work-
ers a requester should hire given that hiring extra workers thereafter does not significantly
affect the average error. A potential solution to the above question is to keep track of the
marginal decrease in average error for different number of workers. Then, the optimal num-
ber of workers would be the point where the marginal decrease is below some predefined
threshold. The problem with such a solution lies in how to define such a threshold.

To answer the above question in a more principled way, we perform a piecewise (seg-
mented) linear regression analysis. The rationale behind this approach is to approximate the
error curves in Fig. 1 with a series of line segments, where the last line segment shall capture
the (almost) constant part of the error curve. Consequently, the breakpoint that separates the
last two line segments is the starting point where the average error can be considered stable,
i.e., it represents the optimal number of workers a requester should hire.

We now have to deal with the question on the optimal number of line segments (or
breakpoints) in our model. We estimate the optimal number of breakpoints by using the
dynamic programming algorithm for minimizing the segmented residual sum of squares
suggested by Bai and Perron [4], and implemented by Zeileis et al. [44]. For all content-
analysis tasks, we obtain that the optimal number of breakpoints is equal to 2. Moreover, the
resulting breakpoints for all the three tasks occur at the x-values 3 and 11. Figure 2 shows
the error curves in Fig. 1 approximated by the obtained 3 line segments.

The slopes of the line segments in Fig. 2, here referred to as β, allow us to derive intuitive
interpretations of our results. First, we note that there is a considerable average error when
aggregating outputs from 3 or less workers (β < −0.11). Second, the average error is
moderate when aggregating outputs from 4 to 10 workers (−0.009 < β < −0.007). Finally,
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Fig. 2 Approximation of the error curves in Fig. 1 with 3 line segments

the average error becomes stable when aggregating outputs from 11 or more workers (β ≈
−0.0005), and changes in the average error after the 11th worker are negligible. Thus, we
conclude that 11 workers is the optimal number of workers to hire in our first study.

4.3 Accuracy of aggregate outputs from top-performing workers

Our previous analysis is based on combinations of workers from the full population of work-
ers. An interesting follow-up question is: can the requester improve accuracy by restricting
attention to combinations of outputs from the overall top-performing workers? In order to
answer this question, workers must be somehow ranked based on their previous performance
on content-analysis tasks. However, such information is not readily available on AMT.

We circumvent the above issue by sorting workers based on their overall error on the
three content-analysis tasks. Recall that each worker reported three outputs, each one con-
sisting of three scores. We denote by overall output a vector of all nine reported scores.
Likewise, we denote by overall gold-standard output the vector of all nine scores from the
gold-standard outputs. Then, the overall error of a worker is the MSE between his overall
output and the overall gold-standard output. For example, suppose that a worker reports the
following outputs for Task 1, 2, and 3: (1, 2, 2), (1, 2, 0), and (1, 0, 0). Hence, his overall
output is (1, 2, 2, 1, 2, 0, 1, 0, 0). Recall that the gold-standard outputs for Task 1, 2, and 3
are, respectively, (1, 2, 2), (1, 2, 1), and (0, 0, 0). Thus, the overall gold-standard output is
(1, 2, 2, 1, 2, 1, 0, 0, 0). Consequently, the worker’s overall error is x/9 ≈ 0.2222, where
x = (1−1)2+(2−2)2+(2−2)2+(1−1)2+(2−2)2+(0−1)2+(1−0)2+(0−0)2+(0−0)2 =
2.
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Fig. 3 The average error per task, number of workers, and different populations

After ordering workers in terms of overall errors, we create bootstrap resamples. In
particular, for each one of the three content-analysis tasks and each number of workers
n ∈ {1, . . . , 50}, we randomly sample with replacement n workers’ outputs from the full
population of workers as well as the subpopulation defined by the top n workers. For exam-
ple, for n = 5, we randomly sample with replacement 5 outputs for each task from the full
population of workers as well as from the top 5 workers. We repeat this sampling procedure
for a total of 100,000 times.

Similarly to the procedure described in the previous subsection, we aggregate the n out-
puts in each bootstrap resample by taking their average. We next measure the accuracy of
each aggregate output by calculating the MSE between the aggregate output and the respec-
tive gold-standard output. Figure 3 shows the resulting average error per task, number of
workers, and different populations.

Focusing first on Task 1 and 3, we note that any combination of the top 3 workers results
in a perfect aggregate output with zero error. Generally speaking, the average error tends
to increase with more overall poor-quality workers. The striking result comes from Task 2,
where the average error for the full population of workers becomes lower than the average
error for the top n workers after the 23rd worker. As we elaborate in the following subsec-
tion, the reason for this counter-intuitive result is that there are workers among the overall
worst-performing workers who excel in Task 2, while performing poorly in Task 1 and 3.
The above results are statistically significant for any n ∈ {1, . . . , 49} (rank-sum test, p-
value < 10−15). As expected, we find no significant difference in the average errors for the
top 50 and full population of workers (n = 50), since these two populations contain exactly
the same number and the very same workers.
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For completeness’ sake, Fig. 3 also shows the other side of the coin, i.e., the average
performance of the bottom n workers. Generally speaking, the average error decreases with
the number of workers and, except for Task 2, the average error from the bottom n workers
is never less than the average error from the top n workers as well as from n random workers
from the full population of workers.

4.4 On the consistency of workers across multiple tasks

Our previous analysis shows that the relative performance of some workers is not neces-
sarily consistent across multiple tasks. In order to further investigate this issue, we first
calculate the overall ranking of workers in terms of overall errors, i.e., we sort workers in
ascending order according to their overall errors. Next, we calculate the individual rankings
of each worker in terms of individual errors, i.e., for each reported output, we sort workers in
ascending order according to their errors. Thus, we rank each worker three times according
to his individual errors.

In the following analysis, we use the standard deviation of a worker’s individual rankings
as a measure of how stable the overall ranking of that worker is, where a high standard
deviation indicates more ranking inconsistency across multiple tasks. For example, suppose
that the outputs of a worker result in the lowest error for Task 1, the third lowest error for
Task 2, and the second lowest error for Task 3. Then, the standard deviation of that worker’s
individual rankings is equal to 1, thus showing high consistency across multiple tasks. On
the other hand, a worker with individual rankings equal to 5, 48, and 22 is much more
inconsistent across multiple tasks since the standard deviation of his individual rankings is
21.66.

Figure 4 shows the standard deviation of individual rankings as a function of workers’
overall rankings. We also fit a regression line through the origin to the data (R2 = 0.73, sum
of the squared residuals = 2551), and display its 95 % confidence interval. The resulting
linear function is:

f (x) = 0.403 ∗ x (1)

where x is a worker’s overall ranking, and f (x) is the estimate of the standard deviation of
that worker’s individual rankings. Figure 4 shows that the overall top-performing workers
tend to be more consistent across multiple tasks than the other workers. For example, the
standard deviations of the individual rankings of the top 5 workers are always less than 7,
whereas 2 out of the 5 worst-performing workers have standard deviations greater than 7.
In general, the most inconsistent workers are the ones with overall ranking between around
20 and 40. The coefficient of the regression line in (1) means that an increase by 1 in a
worker’s overall ranking implies an expected increase of 0.403 in the standard deviation
of that worker’s individual rankings (the 99 % confidence interval being [0.3091, 0.4958]),
i.e., higher inconsistency across multiple tasks.

The results presented in this subsection together with the results from the previous sub-
section suggest that restricting the population of workers to a few overall top-performing
workers is likely to produce more accurate aggregate outputs because these workers
consistently report outputs with low errors.
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Fig. 4 The standard deviation of individual rankings as a function of workers’ overall rankings

5 Study 2: Content-analysis tasks with payments based on number
of agreements

Our second study to investigate the optimal number of crowd workers a requester should
hire is a replication of our first study, but with one major change: the payment structure.
In particular, we pay the workers based on how popular their reported outputs are. Our
primary objective with this second study is to understand whether the underlying payment
structure qualitatively changes the results from our first study. In what follows, we describe
the experimental design, our analysis, and the obtained results regarding our second study.

5.1 Experimental design

The experimental design of our second study follows very close the experimental design of
our first study. Specifically, we recruited a total of 50 workers on AMT, all of them living
in the United States of America, to review the three texts described in Appendix A. As
before, each worker reviewed each text under three different criteria: grammar, clarity, and
relevance.

Besides recruiting different workers, we also used a different payment scheme to reward
the workers. In particular, after completing the content-analysis tasks, each worker received
a baseline payment of $0.20. Moreover, each worker could earn an additional bonus of up
to $0.10. We informed the workers that their bonuses would be proportional to the number
of answers similar to their reported answers. Recall that each worker reported 9 answers
(3 texts times 3 criteria). For each answer reported by a worker i, we calculated the total
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number of agreements (#agreements) between worker i’s reported answer and the answers
reported by worker i’s peers. Consequently, for each reported answer, there could be at most
49 similar reported answers because we recruited 50 workers. We then used the formula
10
9 × #agreements

49 to calculate the bonus for an individual reported answer.
Rewarding crowd workers based on pairwise comparisons between reported answers

has been empirically proven to be an effective payment structure in different domains. For
example, Huang and Fu [22] showed that informing the workers that their rewards will be
based on how similar their answers are to other workers’ answers results in more accu-
rate answers than informing the workers that their rewards will be based on how similar
their answers are to gold-standard answers. Moreover, Shaw et al. [36] found that payment
schemes based on the similarity of reported answers result in more accurate answers.

The payment scheme we used to calculate workers’ bonuses is often referred to as the
output-agreement method [1]. Carvalho et al. [8] suggested a potential explanation for the
effectiveness of the output-agreement method, namely that it induces honest reporting of
private information under the assumption that the psychological phenomenon called social
projection holds true. Specifically, when communication between workers is not allowed
and a risk-neutral worker believes that his true answer to a multiple-choice question is the
most popular answer amongst other workers, then the action that maximizes that worker’s
expected reward is to honestly report his true answer, as opposed to something else.

5.2 Accuracy of aggregate outputs by the number of workers

We perform the same bootstrapping technique and analysis described in Section 4.2 to inves-
tigate the optimal number of workers a requester should hire in our second study. Figure 5
shows the average error and the standard deviation of the errors for each content-analysis
task and number of workers n ∈ {1, . . . , 50}. Appendix B shows statistics regarding work-
ers’ errors. Similar to the results of our first study, the influence of the number of workers
on the quality of the aggregate output is qualitatively the same for all texts, in a sense that
the average error and the standard deviation of the errors decrease as the number of work-
ers increases. Furthermore, the average error quickly converges to values other than zero,
thus showing again that aggregating outputs from many workers does not necessarily trans-
late into a perfect, gold-standard output. In particular, the 99 % confidence intervals for
n = 50 and Task 1, 2, and 3, are, respectively, [0.2696, 0.2706], [0.1423, 0.1429], and
[0.2102, 0.2112].

We also find the optimal number of workers a requester should hire using the segmented
linear regression analysis suggested in Section 4.2. Specifically, for all content-analysis
tasks, we obtain that the optimal number of breakpoints is equal to 2. Moreover, the resulting
breakpoints for all the three content-analysis tasks occur at the x-values 3 and 11. Thus, we
conclude once again that 11 workers is the optimal number of workers a requester should
hire. Figure 6 shows the error curves in Fig. 5 approximated by the obtained three line
segments. The slopes of the first, second, and third line segments are inside the following
ranges: [−0.126,−0.118], [−0.009, −0.007], and [−0.0005,−0.0004].

An interesting point to note is that even though we obtain the same results regarding the
optimal number of workers to hire in our first and second studies, the error curves for each
task are quite different from each other. For example, for Tasks 1, 2, and 3, and n = 50,
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Fig. 5 The average error and the standard deviation of the errors per content-analysis task for each number
of workers n ∈ {1, . . . , 50}
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Fig. 6 Approximation of the error curves in Fig. 5 with 3 line segments.
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Fig. 7 Kernel density estimates of workers’ overall errors for Study 1 and 2

the average errors in our first study (0.2898, 0.1881, and 0.3761) are always greater than
the average errors in our second study (0.2701, 0.1426, and 0.2109). These results are all
statistically significant (t-test, p-value < 10−15), and allow us to conclude two things. First,
using more elaborate payment structures, such as the output-agreement method, seems to
result in more accurate aggregate outputs (at least in expectation). This result can also be
seen in Fig. 7. Specifically, we calculate the overall error for each individual worker in
Studies 1 and 2, and plot the kernel density estimates for both cases using the Gaussian
kernel. One can see that the kernel density estimate for Study 2 can almost be obtained
from the kernel density estimate for Study 1 by shifting probability mass towards 0, which
means that workers in Study 2 are often more accurate than workers in Study 1. Second, our
approach to find the optimal number of workers is robust in that different payment schemes
do not seem to affect its results. That is, even though the workers in our second study are,
on average, more accurate than the workers in our first study, our method suggests that, in
both cases, the average error becomes nearly constant at around 11 workers.

5.3 Accuracy of aggregate outputs from top-performing workers

For our second study, we also investigate whether a requester can increase accuracy by
combining only the outputs from the overall top-performing workers. Similar to Section 4.3,
we start by ranking workers based on their overall error on the three content-analysis tasks.
Thereafter, for each one of the three content-analysis tasks and each number of workers
n ∈ {1, . . . , 50}, we randomly sample with replacement n workers’ outputs from the full
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Fig. 8 The average error per task, number of workers, and different populations

population of workers as well as the subpopulation defined by the top n workers. In total,
we create 100,000 bootstrap resamples per combination of task, number of workers, and
population. Finally, we aggregate the outputs in each bootstrap resample by taking their
average, and we measure the accuracy of each aggregate output by calculating the MSE
between the aggregate output and the respective gold-standard output. Figure 8 shows the
resulting average error per task, number of workers, and different populations.

We note that, for all tasks, any combination of the top 4 workers results in a perfect
aggregate output. Moreover, the average error non-monotonically increases with more over-
all poor-quality workers. However, different than the results from our first study, the average
error for the full population of workers is always greater than or equal to the average error
for the top n workers. The above results are statistically significant for any n ∈ {1, . . . , 49}
(rank-sum test, p-value < 10−15).

A potential explanation for the above result is that more elaborate payment schemes, such
as the output-agreement method, might induce less inconsistency across multiple tasks. In
other words, top-ranked (low-ranked) workers are more often accurate (inaccurate) across
multiple homogeneous tasks. We further investigate this point in the following subsection.

Looking at the symmetric case in Fig. 8, i.e., the bottom n workers, one can see that,
except for n = 1 in Task 1, the average error from the bottom n workers is never less
than the average error from the top n workers as well as from n random workers from the
full population of workers. Recall that workers are sorted based on their overall errors. So,
it might happen that one worker performs quite well in one task, but then performs very
poorly in the remaining tasks, thus significantly lowering his rank. That is precisely what
is happening in Fig. 8. Specifically, the overall worst-performing worker performed quite
well in Task 1, but very poorly in Tasks 2 and 3. This explains why the average error of the
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Fig. 9 The standard deviation of individual rankings as a function of workers’ overall rankings

bottom 1 worker is considerably lower than that of the bottom 2 workers for Task 1, but the
same is not true for Tasks 2 and 3.

5.4 On the consistency of workers across multiple tasks

Figure 8 shows that the average error increases non-monotonically with the number of over-
all poor-quality workers. This lack of monotonicity might be taken as an indication that
workers are, relatively speaking, still inconsistent across multiple tasks. Similar to Sec-
tion 4.4, we further investigate this issue by analyzing the relationship between workers’
overall rankings and the standard deviations of their individual rankings. Recall that the
standard deviation of a worker’s individual rankings is a measure of stability of that worker’s
overall ranking. Figure 9 shows the standard deviation of individual rankings as a function
of workers’ overall rankings. We also fit a regression line through the origin to the data
(R2 = 0.77, sum of the squared residuals = 1811), and display its 95 % confidence interval.
The resulting linear function is:

f (x) = 0.38 ∗ x (2)

Figure 9 shows that the overall top-performing workers tend to be more consistent across
multiple tasks than the other workers. The coefficient of the regression line in (2) means that
an increase by 1 in a worker’s overall ranking implies an expected increase of 0.38 in the
standard deviation of that worker’s individual rankings, the 99 % confidence interval being
[0.3011, 0.4584].

We note that the slope in (2) is lower than the respective coefficient in (1), which is
equal to 0.403. Consequently, given that the expected increase in inconsistency is lower in
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Chicago Bulls is playing against Oklahoma City Thunder on Sunday (March 15th, 2015)

In your opinion, what is the result of this game?

Based on your choice, you will receive the following extra payment (bonus) if Bulls wins the game: 9.04 cents

Based on your choice, you will receive the following extra payment (bonus) if Thunder wins the game: 5.24 cents

Bulls wins both teams are equally likely to win Thunder wins

Fig. 10 Example of the graphical interface used in our third study

our second study than in our first study, though not necessarily statistically significantly
so, we conjecture with a larger participant pool that the output-agreement method causes
workers to be more consistent across multiple tasks. The reduction in the sum of the squared
residuals (from 2551 to 1811) as well as the increase in the R2 value (from 73 to 77) also
show that a regression line with a positive slope better fits the data in our second study than
in our first study, thus supporting the above conclusion.

6 Study 3: Prediction tasks with payments based on proper scoring rules

In our third study to determine the optimal number of crowd workers a requester should
hire, we investigate the robustness of our previous findings. In particular, our experiments
now involve prediction tasks, as opposed to content-analysis tasks, a reduced number of
workers (40 instead of 50) and tasks (2 instead of 3), and payments based on proper scoring
rules [42].

6.1 Experimental design

We asked 40 workers on AMT, all older than 18 years old and residing in the United States
of America, to complete two prediction tasks. Specifically, workers had to predict the out-
comes of two NBA games per task. The first task was about one home and one away game
played by the Chicago Bulls team, whereas the second task was about one home and one
away game played by the Los Angeles Lakers team. For each task, each worker’s output
was a vector containing two probability values, each one describing the likelihood that the
home team would win a certain game. Consequently, each worker reported 4 probability
values in our third study (2 games times 2 tasks).

Similar to our previous studies, we were able to derive gold-standard outputs for the
prediction tasks. To do so, we observed the result of each predicted game: if the home team
was the winner of the game, then the gold-standard probability was set to 1. Otherwise,
the gold-standard probability was set to 0. Consequently, each gold-standard output was a
vector containing either zeros or ones.

For each game, we informed the workers about the names of the teams playing the game
and the date of the game. We also informed the workers that besides the baseline payment
of $0.10 for completing the task, each worker could earn an additional bonus of up to $0.10
per game based solely on the accuracy of the reported prediction. To compute such a bonus,
we used a proper scoring rule [42].



How many crowdsourced workers should a requester hire? 63

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40

Number of Workers

A
v
e
r
a
g
e
 E
r
r
o
r

Task 1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40

Number of Workers

A
v
e
r
a
g
e
 E
r
r
o
r

Task 2

Fig. 11 The average error and the standard deviation of the errors per prediction task for each number of
workers n ∈ {1, . . . , 40}

Scoring rules are traditional techniques for measuring the accuracy of forecasts as well as
to promote honesty in forecasting settings [34, 42]. Consider a set of exhaustive and mutu-
ally exclusive outcomes θ1, θ2, . . . , θz, for z ≥ 2, and a prediction q = (q1, q2, . . . , qz),
where qx is the probability associated with the occurrence of outcome θx , for x ∈ {1, . . . , z}.
Formally, a scoring rule is a real-valued function, R(q, θx), that provides a score for the
prediction q upon observing the outcome θx , which in our setting is the winner of a game.
Scoring rules measure the accuracy of predictions in a sense that the more probability mass
is assigned to the observed outcome, the higher the resulting score. The condition that R

is proper implies that the prediction reported by a worker maximizes his expected score
when the worker is honest, i.e., when the worker reports his true prediction as opposed to
something else [6, 34, 42]. Proper scoring rules have been used as a tool to promote honest
reporting in a variety of domains, e.g., when sharing rewards based on peer evaluations [10–
12], to incentivize agents to accurately estimate their own efforts to accomplish a task [3], in
prediction markets [20], to incentivize honest reporting in the peer-review process [7], etc.
In our experiments, we used the following positive affine transformation of the well-known
proper scoring rule called quadratic scoring rule3:

R(q, θx) = 5 ×
(
2qx −

n∑
k=1

q2
k

)
+ 5

3The proof that the quadratic scoring rule is indeed proper as well as some of its interesting properties can
be seen in the work by Selten [35].
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Fig. 12 Approximation of the error curves in Fig. 11 with 3 line segments

The range of the resulting proper scoring rule is [0, 10], which means that a worker
could receive a bonus of up to 10 cents per reported prediction. It is worth mentioning that
instead of reporting probability values directly, the workers reported their predictions by
sliding a horizontal bar. The more a worker moved the bar towards the left side, the higher
the probability value associated with the home team would be. Figure 10 shows an example
of the graphical interface used in our experiments. For each possible outcome, the workers
could also visualize the resulting bonus they would receive if the outcome turned out to be
true.

6.2 Accuracy of aggregate outputs by the number of workers

In order to investigate the optimal number of workers a requester should hire in our third
study, we run the same bootstrapping technique and segmented linear regression analysis
described in Section 4.2 and 5.2. The main changes are that the number of workers n is
inside the set {1, . . . , 40}, and the MSE calculations involve probability values. Figure 11
shows the average error and the standard deviation of the errors for each prediction task and
number of workers n ∈ {1, . . . , 40}. Appendix B shows statistics regarding workers’ errors.

Similar to the results from our first and second studies, the average error and the stan-
dard deviation of the errors decrease as the number of workers increases. Furthermore,
the average error quickly converges to values greater than zero. In particular, the 99 %
confidence intervals for n = 40 and Task 1 and 2 are, respectively, [0.2690, 0.2696] and
[0.2804, 0.2809].

We also find the optimal number of workers a requester should hire using the segmented
linear regression analysis suggested in Section 4.2. In particular, for both prediction tasks,
we obtain that the optimal number of breakpoints is equal to 2 according to the dynamic
algorithm by Bai and Perron [4]. Moreover, the resulting breakpoints for both prediction



How many crowdsourced workers should a requester hire? 65

0.0

0.4

0.8

1.2

0 10 20 30 40

Number of Workers

A
ve

ra
ge

 E
rr

or

All workers

Bottom n workers

Top n workers

Task 1

0.0

0.4

0.8

1.2

0 10 20 30 40

Number of Workers

A
ve

ra
ge

 E
rr

or

All workers

Bottom n workers

Top n workers

Task 2

Fig. 13 The average error per task, number of workers, and different populations

tasks occur at the x-values 2 and 10. As a consequence, the optimal number of workers a
requester should hire is 10. The closeness of this value to the previously found value of 11
in our first and second studies indicates the robustness of our approach. Figure 12 shows
the error curves in Fig. 11 approximated by the resulting 3 line segments. The slopes of the
first, second, and third line segments are inside the following ranges: [−0.044,−0.029],
[−0.003, −0.002], and [−0.0003,−0.0001].

6.3 Accuracy of aggregate outputs from top-performing workers

For our third study, we also investigate whether a requester can increase predictive accuracy
by combining only the predictions from the overall top-performing workers. Similar to Sec-
tions 4.3 and 5.3, we start by ranking workers based on their overall errors. An important
difference, however, is that each overall error is now equal to the average of the squared
differences between the 4 probability values reported by a worker and the 4 gold-standard
(0/1) probability values.

Thereafter, for each one of the two prediction tasks and each number of workers n ∈
{1, . . . , 40}, we randomly sample with replacement n workers’ outputs from the full pop-
ulation of workers as well as the subpopulation defined by the top n workers. In total, we
create 100,000 bootstrap resamples per combination of task, number of workers, and pop-
ulation. After aggregating the outputs in each bootstrap resample, we calculate the MSE
between the aggregate output and the respective gold-standard output. Figure 13 shows the
resulting average error per task, number of workers, and different populations.

We note that, for both tasks, no combination of top-performing workers results in a per-
fect aggregate output. Surprisingly, for Task 2, the average error considerably decreases first
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Fig. 14 The standard deviation of individual rankings as a function of workers’ overall rankings

before non-monotonically increasing with more overall poor-quality workers. We believe
this result happens due to the small number of games per task in our third study. We con-
jecture that, with more games per task, the average error would (almost monotonically)
increase with more overall poor-quality workers. We also observe that, similar to our second
study, the average error for the full population of workers is always greater than or equal to
the average error for the top n workers (rank-sum test, p-value < 10−15). As we mentioned
in Section 5.3, this result might be due fact that payment schemes that induce honest report-
ing, such as proper scoring rules, result in less inconsistency in terms of performance across
multiple tasks.

Finally, Fig. 13 also shows that an alternative analysis in terms of the bottom n workers
supports our first analysis in that the average error from the bottom n workers is never less
than the average error from the top n workers as well as from n random workers from the
full population of workers.

6.4 On the consistency of workers across multiple tasks

For completeness’ sake, we also investigate the consistency of workers’ performance across
the prediction tasks. Similar to Sections 4.4 and 5.4, we analyze the relationship between
workers’ overall rankings and the standard deviations of their individual rankings. Recall
that the standard deviation of a worker’s individual rankings is taken as a measure of how
stable the overall ranking of that worker is. Figure 14 shows the standard deviation of indi-
vidual rankings as a function of workers’ overall rankings. We also fit a regression line
through the origin to the data (R2 = 0.34, sum of the squared residuals = 3176), and display
its 95 % confidence interval. The resulting linear function is:

f (x) = 0.275 ∗ x (3)
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Figure 14 shows that, in general, workers are more consistent in our third study than in
our first and second studies. This is reflected in the coefficient of the regression line in (3),
which means that an increase by 1 in a worker’s overall ranking implies an expected increase
of 0.275 in the standard deviation of that worker’s individual rankings, the 99 % confidence
interval being equal to [0.1109, 0.4393]. We note, however, that this result might be due to
a smaller number of tasks (2 as opposed to 3) in our third study.

7 Conclusion

In this paper, we empirically studied the question of how many crowd workers a requester
should hire. To this end, we started by investigating the influence of the number of workers
on the accuracy of aggregate outputs. Specifically, we performed three studies involving
different tasks and payment schemes. In our first study, we asked workers to complete three
content-analysis tasks, and we paid workers using the canonical payment-per-completed
task. Our second study involved the same three content-analysis tasks as in our first study,
but we made extra payments based on the output-agreement method, which, under certain
conditions, might induce honest reporting [8]. Finally, in our third study, we asked workers
to complete two prediction tasks, and we made extra payments based on proper scoring
rules [42], another technique which also induces honest reporting.

In all studies, we obtained that the average error of the aggregate output decreases with
the number of workers. In other words, the expected accuracy of the aggregate output
increases as the number of workers providing outputs increases. Our results also showed that
there are diminishing returns for extra workers. Moreover, hiring extra workers also implies
that the risk of obtaining a combination of exclusively poor-quality workers decreases
because the standard deviation of errors in aggregate outputs decreases as the number of
workers increases.

Thereafter, by employing a principled approach based on bootstrapping and segmented
linear regression analysis, we found that the optimal number of workers a requester should
hire for each task in each study was either 10 or 11. This is a rather surprising result in
a sense that different tasks and payment schemes do not seem to influence the optimal
number of workers much. The conclusions we derive on the number of workers to hire is
a necessary first step in studying crowdsourcing. However, with any empirical study, the
conditions we consider are by no means exhaustive and the optimal number of workers to
hire may change with additional task conditions. As such, an interesting research direction
would be to perform further empirical studies in order to validate and to better understand
our initial results.

One can argue that a potential limitation of our analysis is that the optimal number of
workers is defined solely in terms of expected errors in the aggregate output. We note,
however, that one can easily incorporate costs into our analysis. In particular, after finding
the optimal number of workers for a certain type of task, the requester can apply a very
straightforward rule: given the current budget, the requester should hire as many workers as
possible up to the optimal number of workers. Nonetheless, an interesting and relevant open
question is on how to determine the optimal number of workers by also considering other
criteria, such as risk reduction.

We then moved to analyze the question of whether it is beneficial to focus only on combi-
nations of outputs from the overall top-performing workers. Generally speaking, we found
that there is a considerable gain in expected accuracy when a requester combines outputs
only from the overall top-performing workers. A potential explanation of this result is that
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the performance of overall top-performing workers tend to be more consistent across mul-
tiple tasks than the performance of other workers. Another interesting finding regarding
consistency was that payment schemes that induce honest reporting, such as the output-
agreement method and proper scoring rules, caused workers to be more consistent across
multiple tasks.

Based on our results, our first recommendation for a requester designing a crowdsourc-
ing process is: in the absence of prior knowledge about the accuracy of the crowd workers,
hiring more workers is always beneficial because both the expected error in the aggregate
output and the risk of obtaining a poor combination of workers decrease as the number of
workers increases. Clearly, the marginal benefits of hiring extra workers must be consid-
ered in practice. Our results showed that most of the (accuracy-wise) benefit occurs with
the first 10 to 11 workers. Thereafter, the marginal benefit of hiring another worker is
very low.

Our second recommendation for a more efficient design of crowdsourcing processes con-
cerns the case when there exists prior knowledge about the accuracy of the crowd workers
for specific tasks. In this case, the requester should focus only on combinations of the overall
top-performing workers since this greatly reduces the expected error in the aggregate out-
put. Our last recommendation is for a requester to use payment structures that induce honest
reporting, such as the output-agreement method and proper scoring rules, since these tech-
niques apparently also increase the consistency of workers’ performance across multiple
tasks.

As we have suggested throughout this section, our research opens up many avenues
for future research. One particular direction concerns the use of monetary payoffs. In this
regard, a valid and relevant research question is to what extent increasing monetary incen-
tives would improve individual and collective accuracy. One can argue, for example, that
individual accuracy increases with the amount of money. If that is the case, then less high-
paid workers would be needed to achieve a certain accuracy in comparison to low-paid
workers. This point raises the question: what is the relationship between the optimal group
size and monetary incentives? In particular, from both cost and accuracy perspectives, would
it be better to hire more low-paid workers or fewer high-paid workers?

On a final note, it is worth mentioning two limitations of our work that lead to an interest-
ing research question. First, our analyses focused on simple averages to combine workers’
outputs. Although simple averages have been shown to perform well empirically and to
be robust when eliciting information from the crowd in different domains [14, 16], there
are several other aggregation procedures, from voting protocols to sophisticated consensus-
based algorithms [13]. Second, although our studies included different combinations of
tasks and payment schemes, we by no means argue that those combinations are exhaustive.
Thus, an exciting open question is whether the results obtained in our studies hold true in
different settings, e.g., for different aggregation procedures, tasks, payment schemes, etc.
An answer to this question is of great importance to the crowdsourcing community given its
potential to create more effective crowdsourcing processes.
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Appendix A: Description of the texts in the first and second studies

We describe in this appendix the texts we used in our experiments in Sections 4 and 5.
We also describe the gold-standard scores reported by the five professors and tutors, here
called experts, from the English and Literature Department at the University of Waterloo in
Canada.

Text 1. An excerpt from the “Sonnet XVII” by Neruda [28]. Intentionally misspelled words
are highlighted in bold.

I do not love you as if you was salt-rose, or topaz
or the arrown of carnations that spread fire:
I love you as certain dark things are loved,
secretly, between the shadown and the soul

Table 1 shows the experts’ reported answers. The gold-standard answer for each question
is the median/mode of the reported answers.

Table 1 Answers reported by the experts for Text 1

Criterion Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Median/Mode

Grammar 1 0 1 0 1 1

Clarity 2 2 2 1 2 2

Relevance 2 2 2 2 2 2

Text 2. An excerpt from “The Cow” by Taylor et al. [39]. Intentionally misspelled words
are highlighted in bold.

THANK you, prety cow, that made
Plesant milk to soak my bread,
Every day and every night,
Warm, and fresh, and sweet, and white.

Table 2 shows the experts’ reported answers. The gold-standard answer for each question
is the median/mode of the reported answers.

Table 2 Answers reported by the experts for Text 2

Criterion Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Median/Mode

Grammar 1 1 1 1 1 1

Clarity 2 2 2 1 2 2

Relevance 1 0 0 1 1 1

http://creativecommons.org/licenses/by/4.0/
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Text 3. Words randomly generated in a semi-structured way. Each line starts with a noun
followed by a verb in a wrong verb form. In order to mimic a poetic writing style, all the
words in the same line start with a similar letter.

Baby bet binary boundaries bubbles
Carlos cease CIA conditionally curve
Daniel deny disease domino dumb
Faust fest fierce forced furbished

Table 3 shows the experts’ reported answers. The gold-standard answer for each question
is the median/mode of the reported answers.

Table 3 Answers reported by the experts for Text 3

Criterion Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Median/Mode

Grammar 0 1 0 0 0 0

Clarity 0 0 0 0 0 0

Relevance 0 1 0 0 0 0

Appendix B: Basic statistics regarding workers’ errors

In this appendix, we present basic statistics regarding workers’ errors. Specifically, for
each task in each study, we calculate the MSE between each worker’s output and the cor-
responding gold-standard output. Table 4 shows the resulting average MSE and standard
deviation.

Table 4 Basic statistics regarding workers’ errors

Study Task Average MSE Standard deviation

Study 1
Task 1 0.71 0.79

Task 2 0.57 0.43

Task 3 0.73 0.74

Study 2
Task 1 0.63 0.63

Task 2 0.51 0.49

Task 3 0.55 0.72

Study 3
Task 1 0.4 0.24

Task 2 0.37 0.21
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