
Nanoparticles as X-ray CT Imaging 
Contrast Agents in Saturated Porous 

Media 
 
 

 

by 

Jacob William Carlos 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Masters pf Applied Science 

in 

Civil Engineering 

 

 

Waterloo, Ontario, Canada, 2020 

 

©Jacob William Carlos 2020 



ii 

AUTHOR'S DECLARATION 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any 

required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

 

 

 



iii 

Abstract 

Parallels exist between medical imaging techniques, such as X-ray computed tomography (CT) or 

magnetic resonance imaging, and geophysical methods used to analyze the subsurface, such as ground 

penetrating radar, electromagnetic induction, magnetic susceptibility, or nuclear magnetic resonance. 

These methods measure a property (or properties) of electromagnetic radiation as it travels through a 

porous medium, which in turn allows information about the area of interest (i.e., a patient’s body or 

subsurface feature) to be gathered. The use of nanoparticles (NPs) as imaging contrast agents for 

electromagnetic detection methods is well established in the medical industry but has not been part of 

the toolbox used to characterize contaminated sites.  

X-Ray CT measures differences in X-ray attenuation between two or more materials. The density 

and the effective atomic number of the material the X-rays are passing through influence attenuation. 

Thus, in theory, NPs comprised of elements with higher atomic numbers than geologic materials and 

water should attenuate X-rays more strongly and, therefore, should be distinguishable from the 

background material. The objective of this research was to evaluate the ability of X-ray CT to monitor 

the transport of engineered NPs in saturated geologic porous media at a typical column scale. The 

research findings serve to demonstrate the use of NPs with X-ray CT as a potentially valuable tool to 

assess hydrodynamic behavior at the bench-scale, and as a proof-of-concept for the use of NPs as 

imaging contrast agents for field scale EM geophysical techniques. 

A 240 kV, GE Phoenix v|tome|x m compact micro CT system was used with three column 

designs: glass column (15.24 cm long, 2.54 cm inner diameter), acrylic column (10.16 cm long and 0.9 cm 

internal diameter), and acrylic cuvettes (4.5 cm long, 1 cm by 1 cm cross section). Columns were packed 

with 150-212 µm acid-washed glass beads and saturated with Milli-Q water. This study assessed the use 
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of two NP solutions (Fe3O4 and bismuth ferrite) as X-ray CT contrast agents for use in saturated porous 

media columns in comparison to a known contrast agent, NaI.  

 The minimum concentration of NaI needed to attenuate the X-ray beam enough to be 

distinguished in processed X-ray CT images was found to be 15 gI/L in the saturated glass column and 

acrylic cuvettes. Qualitative comparisons of the relative X-ray attenuation between NaI and the NP 

solutions were made by scanning two stacked cuvettes, one containing a 15 gI/L NaI solution and the 

other containing the respective NP solutions. Results showed that the X-ray attenuation due to Fe3O4 

NPs was inadequate when used at concentrations < 70 g/L. At this concentration, the Fe3O4 NP 

suspension was too viscous for transport through the column, and thus ineffective as X-ray CT imaging 

contrast agents in a saturated glass bead porous medium. The bismuth ferrite NP solution had a higher 

relative X-ray attenuation than the 15 gI/L solution. These bismuth ferrite NPs were injected at a 

concentration of ~7.8 gBi/L into a saturated glass column, and the monitoring of NP transport was 

successful.  

This study marks the first use of engineered NPs as X-ray CT imaging contrast agents in a 

saturated representative geologic porous medium at the column scale. NPs offer the potential benefit of 

target-specific binding to impacted soil media in comparison to traditional X-ray CT contrast agents such 

as NaI, thus opening exciting opportunities for future geological X-ray CT studies. As X-ray CT is an 

electromagnetic imaging technique, the work presented here serves as a proof-of-concept for the use of 

NPs as imaging contrast agents for electromagnetic geophysical methods.  
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Chapter 1 

Introduction 

1.1  Background 

Nanoparticles (NPs) are an attractive option for in situ remediation due to their enhanced 

reactivity, relatively low cost, and ability to be delivered to the subsurface (Karn et al., 2009; Wang and 

Zhang, 1997). Wang and Zhang (1997) showed that iron NPs could be as much as 10 to 100 times more 

reactive than commercially available iron powders. Karn et al. (2009) also reported that remediation 

cost savings using nanotechnologies could be as high as 80 to 90% compared to permeable reactive 

barriers and pump and treat systems. NPs smaller than porous medium pore throats are capable of 

transport in subsurface environments and have been used for reservoir characterization, oil recovery, 

CO2 sequestration, and contaminant remediation (An et al., 2017; Elliott and Zhang, 2001; Hashemi et 

al., 2013; Javadpour and Nicot, 2011; Rahmani et al., 2015). In some applications, NP coating materials 

such as polymers and surfactants are used to ensure both NP mobility in the porous medium and 

binding to a target non-aqueous phase liquid (NAPL). For example, Linley et al. (2019) added a 

copolymer coating to the surface of iron oxide (Fe3O4) NPs which promoted hydrophobic interactions 

with the target NAPL (i.e., crude oil). They demonstrated preferential binding with ~45 % more NPs 

bound to crude oil impacted silica sand compared to clean silica sand. Linley et al. (2019) also 

demonstrated the use of X-ray computed tomography (CT) as a novel non-destructive technique to 

detect NPs in porous media. Specifically, they showed that NPs are discernable when present in clean 

silica sand, and when bound to crude oil in oil impacted silica sand, in dry conditions, acting as contrast 

agents in the reconstructed 3-D X-ray CT images.  



2 

The use of NPs as imaging contrast agents for electromagnetic detection methods such as X-ray 

CT or magnetic resonance imaging (MRI) has been investigated in the medical industry but has not been 

part of the toolbox used to characterize contaminated sites. Many parallels exist between medical 

imaging and electromagnetic geophysical methods used to analyze the subsurface, such as ground 

penetrating radar (GPR), electromagnetic induction (EMI), magnetic susceptibility (MS), or nuclear 

magnetic resonance (NMR). In both cases, some property (or properties) of electromagnetic radiation is 

measured as it travels through a porous medium, which in turn allows information about the area of 

interest (i.e., a patient’s body or subsurface feature) to be gathered. Geophysical methods are excellent 

tools for site characterization and monitoring as they are non-destructive, allow information about the 

subsurface to be obtained relatively quickly, and are often cost-effective (relative to other 

characterization methods such drilling). In theory, a conductive or magnetic NP slug at sufficient 

concentration in the subsurface would alter the electrical or magnetic properties so that 

electromagnetic geophysical methods could detect its presence. The introduction of such geophysical 

imaging contrast agents could provide many benefits for site characterization, including identification of 

NAPL impacted regions. 

Geologic material is generally resistive, and thus the measured conductivity by EMI geophysics, 

for example, is governed primarily by the electrolytic conduction of the pore water (Godio and Naldi, 

2009). Immiscible organic contaminants, such as petroleum hydrocarbons (PHCs), are typically resistive 

(Mazáč et al., 1990). However, they can undergo numerous complex reactions in the subsurface which 

can influence the ionic composition of surrounding pore water resulting in a wide range of measured 

resistivities (Godio and Naldi, 2009). Studies have reported both conductive and resistive anomalies 

associated with subsurface hydrocarbon contamination (Atekwana et al., 2000; Delgado-Rodríguez et 

al., 2014; Estella a et al., 2002). Furthermore, geophysical methods are not always capable of detecting 
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NAPL contaminants present in low concentrations (on the order of parts per billions) that may be of a 

regulatory concern (Godio and Naldi, 2009).  

Figure 1-1 shows a conceptual schematic of contamination by crude oil (a light non-aqueous 

phase liquid or LNAPL) and the use of conductive NPs as geophysical imaging contrast agents to reduce 

the shortcomings of electromagnetic induction geophysics. Following a baseline EM scan, NPs designed 

to migrate through the subsurface and preferentially bind to crude oil are injected and allowed to 

transport into and through the target detection zone. By design, these NPs will preferentially bind to 

areas of NAPL presence proportional to the bulk soil NAPL concentration. As a result, a post-injection 

EMI scan may detect areas of increased conductivity based on the NP concentration. Consequently, the 

reconstructed subsurface image of the EMI scans will provide an indication of the crude oil body 

location and a sense of the relative mass present. This information may lead to improved remediation 

design and associated cost savings. While the conceptual schematic shown in Figure 1-1 represents an 

EMI geophysics application, similar principals would apply for GPR, MS, or NMR. 

To date, few studies have assessed the use of NPs as geophysical imaging contrast agents. 

Modeling efforts by Rahmani et al. (2015, 2014) and by Hu et al. (2016) have shown that subsurface 

measurements of MS would be sensitive to an injected magnetic or conductive slug (e.g., the presence 

of conductive or magnetic NPs) and that the movement of such a slug could be observed. Laboratory 

experiments performed by Buchau et al. (2010) and by Morrow et al. (2015) demonstrated the use of 

nanoscale zero-valent iron and magnetite particles to enhance the MS in porous media. Many 

geophysical measurement tools are developed for field scale use and as such, bench-scale geophysical 

studies typically involve measuring the parameters that influence a geophysical method, but do not use 

the actual geophysical measurement device. Field scale experiments are often more resource-intensive 

than bench-scale studies. Thus, it is beneficial to initially investigate the use of NPs as geophysical 
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imaging contrast agents using another EM method, such as X-ray CT, as a proxy proof-of-concept before 

moving to field scale experimentation.  

X-ray CT has found many uses in geoscience applications and could serve as a suitable bench-

scale proof-of-concept method for the use of NPs as imaging contrast agents for EM geophysical 

methods. Although not typically considered amongst the common geophysical tools, X-rays have found 

field applicability through X-ray surface and downhole fluorescence (a technique that uses a portable X-

ray fluorescence analyzer to obtain information on element types and concentrations) (Ge and Li, 2019; 

Knoll, 2005; Stromberg et al., 2019). Bench-scale implementations of X-ray CT often place emphasis on 

assessing pore-scale processes, finding usage for a range of applications such as pore characterization, 

grain size analysis, fracture analysis, ore analysis, monitoring of dynamic structural processes, fossil 

characterization, plant root characterization, and petroleum applications (Cnudde et al., 2006; Taina et 

al., 2008; Zhang et al., 2019). Some X-ray CT studies have also reported on the visual observations of 

flow processes. For instance, Clausnitzer and Hopmans (2000), and Zhang et al. (2019) successfully used 

X-ray CT to visually observe the transport of sodium iodide (NaI, a commonly used contrast agent) slug 

through a soil column. 

The initial and successful X-ray CT observations presented by Linley et al. (2019) highlight the 

potential for the use of NPs as an imaging contrast agent to support site characterization needs. NPs 

provide an advantage over traditional X-ray CT contrast agents, such as NaI, as they can be engineered 

to bind to target NAPLs and may be functionalized for treatment. Thus, the use of NPs as imaging 

contrast agents could potentially open new avenues to detect and treat contamination in shallow 

subsurface environments. While the findings reported by Linley et al. (2019) are encouraging, their work 

was conducted using a relatively small spatial scale (acrylic cuvettes measuring 1 cm by 1 cm by 4.5 cm 

in height) static system packed with dry porous media. To advance this novel NP geophysical monitoring 
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application as envisioned (see Figure 1-1), the ability of X-ray CT to detect the presence and transport of 

NPs under saturated conditions at a larger spatial scale must be established. 
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Figure 1-1: Conceptual schematic showing the use of conductive nanoparticles as imaging contrast agents for electromagnetic geophysical scanning of 
subsurface LNAPL contamination. An example of a LNAPL contaminated site is shown (A). First, a background electromagnetic scan reveals subsurface regions of 
higher and lower conductivity (B). Then, injection wells are installed upgradient of the presumed contamination zone, and highly conductive NPs, designed for 
both transport and targeted binding to the LNAPL, are injected and migrate to the areas of LNAPL contamination where they preferentially bind to the areas of 
highest contaminant concentration (C). A subsequent electromagnetic scan detects areas of higher conductivity where the NPs have bound to the LNAPL, 
resulting in a delineation of the contamination zone and regions of varying concentrations of the LNAPL (D).
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1.2 Research Objective 

In this research, X-ray CT is used as a potential tool to assess geologic behavior at the bench-

scale, and as a proof-of-concept for the use of NPs as imaging contrast agents for field scale EM 

geophysical techniques. The overarching objective of this research is to evaluate the ability of X-ray CT 

to monitor the transport of engineered NPs in saturated geologic porous media at a typical column 

scale. If successful, this will be the first research to visualize the transport of NPs through a column 

packed with a representative porous medium using X-ray CT. The overall objective will be considered 

complete upon the achievement of the following sub-objectives: 

1. Establish NP solution contrast in an aqueous environment. 

2. Establish NP solution contrast in a saturated porous medium. 

3. Isolate and examine X-ray CT artifacts that may impact the use of NPs as imaging contrast agents 

in column tracer experiments.  

4. Determine the effects of concentration and flow rate on X-ray CT contrast agent transport and 

monitoring. 

5. Develop an appropriate methodology to assess the suitability of NP solutions as X-ray CT 

imaging contrast agents in a saturated porous medium through comparison to a known X-ray CT 

contrast agent.  

1.3 Thesis Scope 

This thesis consists of four main chapters. The first (current) chapter outlines the motivation for 

this research and the main research objective. Chapter two introduces concepts relevant to this 

research by reviewing literature related to NP transport through porous media, the principals of 

electromagnetic geophysical methods, current uses of NPs in geophysical studies, the principals of X-ray 
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CT, fluid flow studies using X-ray CT, and existing applications of NPs as X-ray CT contrast agents in 

geologic studies. Chapter three examines the use of Fe3O4 and bismuth ferrite NPs as imaging contrast 

agents. Troubleshooting of X-ray CT flow-through experiments is covered in detail. Comparative X-ray CT 

scans to qualitatively determine the relative X-ray attenuation between NaI and both NP solutions are 

included. This chapter also describes NaI tracer transport results and their accompanying X-ray CT scans, 

performed using three concentrations of NaI at three flow rates through glass bead packed columns. 

The capability to use bismuth ferrite NPs as an X-ray CT imaging contrast agent is demonstrated through 

the results of a bismuth ferrite transport and scan experiment. Finally, the fourth chapter summarizes 

the principal conclusions, implications of this research, and recommendations for future research.  
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Chapter 2 

Background Literature 

2.1 Nanotechnology for Environmental Hydrogeologic Applications 

Wang and Zhang (1997) first suggested the use of nanoscale zerovalent iron (nZVI) for 

subsurface remediation of trichloroethylene (TCE) and polychlorinated biphenyls (PCBs) when they 

showed vastly improved dechlorination of TCE and PCBs using nZVI and palladized nZVI (Fe/Pd) in 

comparison to commercially available ZVI and palladized ZVI powders. This study was followed by the 

first field scale pilot test of NPs for in situ remediation by Elliott and Zhang (2001), successfully showing 

proof-of-concept for in situ injections of Fe/Pd to remediate TCE. 

NPs are a promising technology that has been extensively studied at both the laboratory and 

field scale across the world. For example, reviews by Mueller et al. (2012) and Karn et al. (2009) together 

report a total of 58 field scale sites, in 7 different countries (US, Canada, China, Czech Republic, 

Germany, Italy, and Slovakia), where NPs have been used for in situ remediation applications. Of all 

these studies, 98% made use of nZVI (about 29% of which were bimetallic nZVI particles), with the 

remaining 2% being metal oxides such as nano peroxide (Karn et al., 2009; Kuiken, 2010; Mueller et al., 

2012). Most of these field sites were using NPs for the remediation of PCE, TCE, or PCBs. However, other 

target contaminants include chromium, nickel, nitrates, and BTEX (benzene, toluene, ethylbenzene, and 

xylene) compounds (Karn et al., 2009; Mueller et al., 2012). 

While the high reactivity of NPs renders them effective for breaking down target contaminants, 

it can also hinder both their stability and mobility in porous media. NPs tend to aggregate due to 

magnetic and Van der Waals forces, both reducing their ability to migrate through pore spaces and their 
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specific surface area (i.e., total surface area per unit mass) (Donselaar and Philipse, 1999). Moreover, 

the high reactivity of NPs can result in interactions with surrounding aquifer materials before reaching a 

target contaminant. For instance, a study completed in a model aquifer (10 m by 10 m by 2.4 m deep) 

found completely oxidization of the leading edge of an injected nZVI plume by aquifer material (Johnson 

et al., 2013). Many research efforts have focused on modifying the surface characteristics of NPs to 

enhance their stability and mobility in porous media to address these challenges. The substances used 

to achieve this modification are typically given the broad term of “stabilizers” (Liu et al., 2015; Thomé et 

al., 2015). See Appendix A-1 for additional details on NP stabilizers. 

2.1.1 Subsurface Nanoparticle Transport  

The mobility of NPs is typically accessed at the lab scale using column breakthrough 

experiments. These lab-scale NP transport studies are most commonly conducted in natural and acid-

washed sands, however, glass beads, sandstone, and limestone have also been used (Kmetz et al. 2016; 

Becker et al. 2015; Xue et al. 2014; Ding et al. 2013; Shen et al. 2011; Kotsmar et al. 2010; Tiraferri and 

Sethi 2009; He et al. 2007; Lecoanet et al. 2004). The columns used in these tests have mostly ranged 

from 3-20 cm in length and 1-4 cm in diameter, with the larger columns being used for foam transport 

experiments, and nearly all studies reporting breakthrough concentrations of greater than 90% for the 

respective stabilized NPs tested (Becker et al., 2015; Ding et al., 2013; He et al., 2007; Kmetz et al., 2016; 

Kotsmar et al., 2010; Lecoanet et al., 2004; Mystrioti et al., 2015; Shen et al., 2011; Tiraferri and Sethi, 

2009; Xue et al., 2014). There is little doubt that stabilized NPs are more mobile through subsurface 

media than non-stabilized NPs. Lecoanet et al. (2004) compared the mobility of CMC stabilized Fe/Pd 

NPs in a packed column of loamy sand and achieved a breakthrough of 98%, but only ~0.2% using non-

stabilized Fe/Pd NPs under the same conditions. Tiraferri and Sethi (2009) found similar results using 
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reactive nanoscale iron NPs (RNIP), where breakthrough of non-stabilized RNIPs was negligible in a 

packed sand column, but NPs stabilized in guar gum achieved a breakthrough of 87%. 

 Kmetz et al. (2016) conducted an extensive study highlighting the many factors that can 

influence NP subsurface mobility. These factors include the stabilizer used, pre-coating of the porous 

medium, NP concentration, injection velocities, and the composition/geochemistry of the porous 

medium itself. They studied the mobility of stabilized nano magnetite (nMag) mixed with additional 

polymers and surfactants as amending agents through Ottawa sand and crushed Berea sandstone. NP 

recoveries were shown to increase by 33 to 44 % depending on the amendment used. Tiraferri and Sethi 

(2009) also found differences in NP mobility, depending on the stabilizers used. Further, Xue et al. 

(2014) showed the ability to “optimize” stabilizers. They conducted adsorption tests of PAMPS-AA 

stabilized iron oxide NPs on silica sand and studied the effect of altering the ratio of PAMPS:AA from 1:1 

to 20:1. They found reduced adsorption when the ratio was increased from 1:1 to 3:1, but that 

increasing the ratio further had little effect. Kmetz et al. (2016) also showed that pre-washing the Berea 

sandstone before NP injection increased recovery by 54%, and an increase in the injection flow velocity 

from 2 to 10 m/d resulted in a NP recovery increase from 39 to 55%. Findings from tests done in Ottawa 

sand indicated that increasing the injection slurry concentration of from 625 mg/L to 2500 mg/g 

increased recovery from 80 to 97%. While maintaining all other experiment conditions, changing the 

porous medium from Ottawa sand to crushed sandstone resulted in a decreased recovery from 97% to 

38%. 

In the study completed by Kmetz et al. (2016), the decrease in recovery due to a change in the 

porous media is attributed to a reduction in grain size. However, geochemical changes can also affect NP 

transport. For instance, Mystrioti et al. (2015) found that the elution of GT-nZVI NPs transporting 
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through a sand/soil mixture, in which the soil had a calcareous composition, decreased from 50 to 0% 

(after 40 pore volumes) relative to acid washed silica sand. The authors attributed this decrease to 

neutralization reactions within the NP slurry. Clay and humic acid content have also influence NP 

transport (Jung et al., 2014). Furthermore, nZVI injected at the field scale has been related to decreased 

dissolved oxygen in groundwater and oxidized NPs have been collected as far as 1.5 m away from the 

injection point (Busch et al., 2015; Chowdhury et al., 2015; Johnson et al., 2013).  

Other field scale studies have reported NPs traveling as far as 0.8-5.3 m in primarily sand or sand 

and gravel aquifers, with CMC, stabilized nZVI being the most commonly used NP at the field scale 

(Busch et al., 2015; Chowdhury et al., 2015; Elliott and Zhang, 2001; Johnson et al., 2013; Kocur et al., 

2014). It is worth noting that some field studies do not directly measure NP concentrations and use 

proxies, such as total iron content, to infer NP transport (Elliott and Zhang, 2001). Unfortunately, field 

studies assessing the mobility of NPs are difficult to compare due to differences in injection rates, 

injection concentrations, aquifer parameters (i.e., porosity, conductivity, ect.), and geochemistry. 

Most lab studies make use of columns that are approximately 10 cm in length and use flow 

conditions that are more representative of injection conditions rather than natural flow conditions. 

Studies have shown that pre-coating a porous media with stabilizer can result in increased mobility, 

likely due in part to the adsorption of those stabilizers onto the grain surfaces. Thus, smaller columns 

may not be representative of actual NP mobilities as the initial NPs coat the grains allowing for larger 

recoveries after several pore volumes. Further, assessing NP transport under injection flow conditions 

may be adequate if the intent is for NP transport to halt after a certain distance, but where further 

travel distances are required, it would be best to study transport under natural groundwater flow 

conditions.  
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2.2 Electromagnetic Geophysics.  

Electromagnetic geophysics methods are based on measuring changes in electromagnetic 

radiation as it travels through the subsurface. One issue that can arise from geophysical methods is a 

lack of uniqueness in data interpretation; that is, a measured anomaly could be due to several various 

factors. Imaging contrast agents, such as NPs that alter the electromagnetic properties of a porous 

media, could be injected subsurface to allow for improved interpretation of geophysical data and 

monitoring of chemical or structural changes (such as contaminant mass removal or fracking 

applications). Although non-electromagnetic geophysical methods exist, such as seismic reflection and 

refraction methods, they are less likely to be affected by NPs used as imaging contrast agents. As such, 

the methods that will be discussed in this review have been limited to ground penetrating radar (GPR), 

electromagnetic induction (EMI), magnetic susceptibility (MS), and nuclear magnetic resonance (NMR).  

2.2.1 Ground Penetrating Radar 

2.2.1.1 Theory and Fundamentals  

Ground-penetrating radar (GPR) is an EM technique that uses high-frequency (10 MHz-1 GHz) 

EM waves (radio waves) (Everett, 2013a, 2013b). GPR detects variations in EM impedance, or changes in 

dielectric properties, which alter the propagation and reflection of the EM waves. High-frequency EM 

waves are rapidly attenuated within the subsurface, and as such, GPR is used primarily for shallow 

applications (<100 m).  

Three main factors contribute to the energy loss of EM waves as they propagate through the 

subsurface, including geometric spreading, scattering, and absorption. Geometric spreading is the 

resulting loss of energy per unit volume as EM waves travel radially in a spherical shape away from their 
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emission source, effectively resulting in a loss of energy at the wavefront. Scattering is the fracturing of 

EM waves as they encounter changes in electric properties, which increases with increased subsurface 

heterogeneity. Lastly, some of the energy from an EM wave can be absorbed by a material and 

converted to heat (Burger et al., 2006a). The term attenuation is used to describe the decrease in wave 

energy by scattering and absorption, but not due to geometric spreading. Attenuation increases with 

both material conductivity and frequency; thus, while higher frequency surveys can produce higher-

resolution data, they are more limited in investigation depth (Burger et al., 2006a; Everett, 2013a). 

Further, Cassidy (2007) showed that an increase in the content of magnetic minerals results in greater 

signal attenuation. Most geologic materials have very low magnetic permeabilities (refer to Section 

2.2.3). As a result, many GPR surveys ignore the effect of magnetic permeability unless the area or 

target of interest is known to have a high content of magnetic material (Burger et al., 2006a). 

2.2.1.2 Dielectric Properties of geologic material 

Electrical permittivity is a constant of proportionality that is a measure of a substance’s ability to 

displace electric charge within an electric field. Relative electric permittivity, which is also referred to as 

the dielectric constant, is a material property that describes its electrical permittivity relative to that of 

free space, which is 8.85x10-12 Fm-1.  

Most geologic materials have dielectric constants between 3 and 8, air has a dielectric constant 

of 1, and water has a dielectric constant of approximately 80. Further, increasing salinity and 

temperature both result in decreases in the dielectric constant of water (Hizem et al., 2008). For a 

summary of some typical geologic materials and their respective dielectric constants, the reader is 

directed to other sources (Everett, 2013a). Due to the high dielectric constant of water, soil moisture 

can have a significant impact on the bulk dielectric constant of geologic material, raising it to values of 
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10-30 (Everett, 2013a). Topp et al. (1980) developed an empirical equation that describes the bulk 

dielectric constant of a material with changing water content. In addition to water content, the bulk 

dielectric constant of geologic materials can be influenced by frequency, the content of magnetic 

material, and the presence of various contaminants (Bradford, 2007; Cassidy, 2008; Heimovaara et al., 

1996; Knight, 2001).  

Heimovaara et al. (1996) studied the dielectric permittivity of air, demineralized water, tap 

water, saline water, and two types of sandy soil using both time-domain reflectometry (TDR) and 

frequency domain analyzer measurements at frequencies ranging from 0Hz to 3 GHz. They show 

dielectric permittivity to be a complex function of frequency and found that reasonable predictions of 

frequency-dependent permittivity can be made using a Debye relaxation curve for frequencies from 0-

1GHz. These results would have implications when using TDR or a network analyzer to quantify other 

medium parameters, such as soil moisture content, for example. The authors also conclude that the 

higher the complex dielectric permittivity of a material, the lower the useful frequency band is for TDR 

and network analyzer measurements. 

Cassidy (2008) prepared samples of pressed pellets consisting of pure powdered quartz and 

powdered quartz mixed with varying concentrations of nano-scale magnetite and found that increased 

magnetite concentration resulted in an increased dielectric permittivity. The dielectric permittivity of 

the pure quartz samples was found to be frequency independent. In contrast, samples of pure 

magnetite were found to have a generally decreasing dielectric permittivity with increasing frequency. 

Although average value for the complex dielectric permittivity appears to be constant from 20 MHz to 3 

GHz in this study, small fluctuations were observed indicating that the permittivity is indeed a complex 

function of frequency, thus agreeing with the results of (Heimovaara et al., 1996). These results also 
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suggest that the frequency dependency of complex permittivity may be negligible for field scale GPR 

applications unless a high content of magnetic minerals (likely magnetite) or perhaps magnetic buried 

objects are present.  

2.2.1.3 Research Gaps in GPR Geophysics 

When conducting GPR surveys, two issues that are of importance to understand are target 

polarization and the measurement of thin beds. For a buried target to be effectively detected using GPR, 

it is required that it scatters enough energy. Coil orientation can be important as scattering in a 

preferential direction can depolarize the incident electric field. This effect has been observed to occur 

when using GPR to detect buried pipes. In a study discussed by Everett, (2013a), GPR devices with coils 

parallel to a buried pipe target (referred to as TM mode) can identify the pipe while GPR devices with 

coils perpendicular to the target (referred to as TE mode) experience depolarization and are thus unable 

to detect the pipe. GPR devices can also operate in a cross configuration. Due to this effect, it is typically 

good practice to run surveys in multiple modes (Everett, 2013a). The other limitation of GPR is the 

ability to distinguish thin bedding. The thinnest bed that GPR surveys can effectively measure is given by 

Rayleigh’s criterion, defined as λ/4, where λ is the wavelength (Everett, 2013a). If beds are thinner than 

this value, then the reflections received above and below the bed will be indistinguishable.  

GPR data is typically qualitative and, like many other geophysical methods, suffer from an issue 

known as non-uniqueness. That is, a detected anomaly can often be attributed to multiple potential 

causes. Nonetheless, GPR has been used for the delineation of subsurface contamination, and several 

models have been developed to improve GPR analysis. 

Porous media impacted by PHCs tend to have higher resistivities; as a result, it could be 

expected that a PHC contaminated site would generate unexpected additional reflectors (Mazáč et al., 
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1990). LNAPL PHC pools can act as additional reflectors located above the water table, which is one 

potential characteristic of PHC contamination in GPR radar grams (Atekwana et al., 2000; Cassidy, 2007; 

Catapano et al., 2014; Mansi et al., 2002). Interestingly, however, shadow zones that are characteristic 

of landfill leachate or heavy metal contamination have also been identified at hydrocarbon 

contaminated sites (Atekwana et al., 2002, 2000; Cassidy, 2007). For instance, Atekwana et al. (2000) 

used GPR, ERT, EM, and soil boring analysis to characterize an old crystal refinery site in which release 

from storage tanks and pipelines were expected. They found a GPR reflector that corresponded to an 

oil-stained grey sand layer above the water table but also identified shadow zones in the GPR data that 

corresponded with zones of high conductivity both above and below the water table. One proposed 

theory is that zones of higher porewater conductivity arise due to increased mineral dissolution from 

the byproducts of weathering and biodegradation processes within the hydrocarbon impacted soil 

(Atekwana et al., 2000). Seasonal fluctuations in the groundwater table may have been responsible for 

the increased conductivity above and below the average groundwater table location. In agreement with 

Atekwana et al. (2000), a later study by Cassidy (2007) also discusses the complex response of GPR 

signals at hydrocarbon sites due to the processes that occur within the “smear zones” that are 

characteristic of LNAPL contamination. Cassidy (2007) compares GPR radargrams from an LNAPL 

contaminated site survey and nearby “clean” site surveys. A well-defined reflector in the contaminated 

surveys, which is attributed to the resistive LNAPL saturated sands, and a much weaker reflector in the 

clean samples, which can occur due to gradational changes in saturation above the water table due to 

capillary fringe, were found. The contaminated surveys also showed an increased signal attenuation at 

depth in comparison to the uncontaminated survey lines. An attenuation attribute analysis conducted 

on the surveys confirmed that overall signal amplitude was indeed larger for the uncontaminated survey 
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lines. These results agree with the findings of Atekwana et al. (2000). These studies show the issue of 

non-uniqueness. That is, both reflectors and shadow zones can be found at hydrocarbon impacted sites 

and these anomalies can arise from many factors such as the presence of other contaminants, buried 

metal objects, or changes in the natural electrical properties of the subsurface (Porsani et al., 2004; 

Reyes-López et al., 2008; Wijewardana et al., 2012). A need still exists to improve GPR survey or analysis 

methods for hydrocarbon contaminated sites to obtain higher quality information. 

Bradford (2007)Bradford derived a function for a dispersion parameter (assigned as ‘D’) that 

relates the frequency-dependent attenuation of GPR to the frequency-dependent reflection. A GPR 

survey over an uncontaminated pond indicated that the theoretically calculated D values based on 

expected values of dielectric permittivity were relatively close to those recorded. Although the method 

could not quantify the presence of LNAPL or DNAPL, it was successfully demonstrated to be a good 

“qualitative indicator of relaxation anomalies caused by the presence of organic contaminants” 

(Bradford, 2007). Carcione and Seriani (2000) created a model to determine the complex permittivity 

and conductivity of sand, clay, and silt with varying saturation of air, water, and hydrocarbons Carcione 

and Seriani (2000). They found that different hydrocarbons (methane and aviation gasoline) have large 

enough contrasts in dielectric permittivities to be theoretically disguisable by GPR signals. Catapano et 

al. (2014) used a tomographic inversion algorithm to show how tomographic reconstruction of GPR data 

can be used to better delineate a hydrocarbon plume. The model developed by Carcione and Seriani 

(2000) assumes homogeneous and isotropic conditions, which may limit its applicability in certain field 

scenarios. Another inversion algorithm developed by Catapano et al. (2014) suffered from some 

delocalization effects as it neglected the layered structure of the soil and assumed a constant wave 

propagation throughout. The results of these modeling efforts are encouraging with regards to the 
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improved ability of GPR to delineate hydrocarbon contamination. However, until these models are 

improved further, these results obtained remain qualitative. 

2.2.1.4 NPs as Imaging Contrast Agents for GPR Geophysics 

To the author’s knowledge, there have been no peer-reviewed publications implementing NP 

sensing using a GPR geophysical technique. This technique is based on detecting changes in electrical 

properties within the subsurface at high resolution. As such, there is potential for this method to detect 

and monitor NPs that change the bulk conductivity or dielectric permittivity of the medium. Increases in 

these properties could improve the issue of non-uniqueness and potentially allow quantitative 

information to be obtained from GPR surveys. GPR devices are not as commonly used in a laboratory 

setting (in comparison to magnetic susceptibility geophysics, for example), which may explain why there 

is a lack of literature on enhanced GPR imaging combined with nanotechnology.  

Several nanomaterials have been shown to change fluid or material conductivity. Alumina oxide 

nanofluids have been shown to increase in electrical conductivity with increasing concentration of 

alumina oxide (Ganguly et al., 2009). Conversely, nZVI has been demonstrated by Mar Gil-Díaz et al. 

(2014) to decrease overall conductivity in soil samples. It should be noted that in this study, the nZVI 

was coated with polyacrylic acid to stabilize the particles, which may have contributed to these results. 

Silver NPs have also been found to increase the conductivity of their suspension base fluid (Solanki and 

Murthy, 2011). 
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2.2.2 Electromagnetic Induction 

2.2.2.1 Theory and Fundamentals  

Electromagnetic induction (EMI) geophysics is based on the principles of Faraday’s Law of 

Induction and Amperes Circuital Law. The principles of the method can be described by a set of four 

equations, known as Maxwell’s equations (Boaga, 2017; Burger et al., 2006a): 
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These equations are based on Faraday’s Law (Equation 2-1), Ampere’s Law (Equation 2-2), 

Gauss’ Law (Equation 2-3), and a law for the magnetic field indicating that there are no magnetic 

monopoles (Equation 2-4). With I=σE, D=εE, and B=μH, and where E is the electric field intensity, f is the 

frequency, i = √−1, B is the magnetic induction, H is the magnetizing field density, I is the current 

density, D is the electrical displacement, σ is electric conductivity, ε is the dielectric permittivity, and μ is 

the magnetic permeability (Burger et al., 2006a). 

Ground conductivity meters used for EMI geophysics typically comprise of a transmitter and 

receiver coil that is operated at low frequencies (<10-40 kHz) (Burger et al., 2006a; Connell and Key, 

2013; Doolittle and Brevik, 2014; Godio and Naldi, 2009; Monteiro Santos et al., 2006). The transmitting 

electrical coil makes use of an alternating current to produce a magnetic field known as the primary 



 

21 

field. This field, in turn, induces electrical eddy currents within conductive subsurface bodies, which then 

produce another magnetic field, known as the secondary field. This secondary field is comprised of an 

in-phase (real) and out-of-phase (quadrature) component. A receiver coil detects the compounding 

effects of the primary and secondary fields. The strength of the secondary magnetic field is a complex 

function of the electrical properties of the material, size, and geometry of the target, the operating 

frequency, and coil spacing and orientation. However, the relationship of the secondary magnetic field 

to all these variables becomes simplified when operating within a certain frequency range, in what is 

known commonly as “low induction number” conditions (Boaga, 2017; McNeill, 1980): 

 2𝜋𝑓 ≪
2

𝜇0𝜎𝑠
2
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where μ0 is the magnetic permeability of a vacuum (4πx10-7 NA-2) and s is the inter-coil spacing, and f 

and σ are as previously defined. The complex relationship of the secondary field and the theory of 

operation at low induction numbers has been well described (Boaga, 2017; McNeill, 1980). Under these 

conditions a reading of the average conductivity between the ground conductivity meter and its 

effective depth of penetration, known as apparent conductivity, can be calculated from the ratio of the 

secondary to the primary field (Boaga, 2017; McNeill, 1980): 
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where σa is the apparent conductivity, ω is the angular frequency, Hs and Hp are the quadrature 

components of the secondary and primary field respectively, and all other variables are as previously 

defined.  

The effective depth of investigation for a given ground conductivity meter is referred to as the 

skin depth and is equal to the depth at which the primary field strength becomes 1/e of its original value 

(Böhm et al., 2015; Burger et al., 2006a; Godio and Naldi, 2009; Monteiro Santos et al., 2006; Wilt et al., 

1995). EM waves lose energy as they travel through the subsurface due to geometric spreading, wave 

scattering due to changes in electrical properties, and energy absorption by the geologic material 

(Burger et al., 2006a). Attenuation is a function of the conductivity, dielectric permittivity, and magnetic 

permeability of the material, given by the following relationship: 

 𝛼 = 1690(
𝜎

√𝜀𝑟
) 

2-7 

 α = 1690

(

 
𝜎

√(
𝜇
𝜖𝑟
)
)

  
2-8 

 

where α is the attenuation factor, and all other variables are as previously defined. Here Equation 2-7 

and 2-8 describe the behavior of non-magnetic and magnetic material, respectively (Burger et al., 2006a; 

Everett, 2013a).  

In general, rock-forming materials are poor conductors, and as a result, ions in pore water 

typically govern apparent conductivity measurements. However, so long as enough contrast exists, EMI 

can be used to delineate conductive or resistive targets. Some examples of targets that can be identified 
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through EMI geophysics include permafrost zones, caves, crystalline rock deposits, saltwater intrusions, 

clay lenses, archeological structures, buried metal objects, and inorganic and organic contaminant 

plumes (Everett, 2013b). 

2.2.2.2 Research Gaps in EMI Geophysics 

While most EMI surveys provide qualitative information, some empirical relations have been 

developed to provide quantitative data. For instance, Zia et al. (2010) showed the use of two models, a 

spatial regression model and the Dual Pathway Parallel Conductance (DPPC) model to predict soil 

properties from EMI survey results. While the various predicted parameters were generally in good 

agreement with measured values, the best fit parameter only had an R2 value of 0.89, showing the room 

for improvement. A recent review by Boaga (2017) agrees with the notion that there is still much 

potential to improve quantitative EMI relationships to determine hydrogeologic parameters. Boaga 

highlights the fact that advancements in inversion algorithms have aided in improving such predictive 

models, but many of the developed relationships remain empirical or site-specific.  

Like GPR, one of the largest drawbacks for EMI geophysics is the issue of non-uniqueness. Often 

interpretations are made based on historical land use or using other site characterization techniques. In 

a study by Monteiro Santos et al. (2006), for instance, a conductive anomaly was attributed to leachate 

contamination since it could not be attributed to any known geological feature. This guided 

groundwater sampling, which confirmed the presence of landfill leachate, this type of elimination 

process to guide further analysis or draw conclusions is typical in EMI interpretation (Monteiro Santos et 

al., 2006). As another example, both resistive and conductive anomalies have been attributed to 

hydrocarbon contamination (Atekwana et al., 2000; Delgado-Rodríguez et al., 2014; Estella a et al., 

2002). Other issues can arise if concentrations of a contaminant are too low to significantly alter the 
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electrical properties in the subsurface or if the contaminant zone is too thin to detect. Thus, there is still 

potential to improve the sensitivity of EMI devices to better understand the electrical response to 

specific contaminants, or potentially to artificially enhance contrast subsurface. 

2.2.2.3 NPs as Imaging Contrast Agents for EMI Geophysics 

To date, no practical use of NPs as imaging contrast agents for EMI geophysics has been 

reported. However, NPs have been assessed as imaging contrast agents for electromagnetic 

measurements at the laboratory scale and through modeling efforts. Burtman et al. (2015) show the 

addition of conductive organic polystyrene sulfonate and semi-conductive inorganic NPs (Fe3O4, Fe2O3, 

NiO, Al2O3) to samples of Saudi Arabian carbonate reservoir rocks, as well as to artificial rocks, to reduce 

complex resistivity measurements. The addition of these NPs produces a significant spectral induced 

polarization effect. It is concluded that NPs paired with electromagnetic measurement techniques could 

provide new possibilities for monitoring fluid movements in reservoirs.  

NPs have also been modeled as conductive and magnetic (or “ferrofluid”) slugs to influence 

cross-well electromagnetic tomography measurements. Rahmani et al. (2015, 2014) show the 

propagation and vertical boundaries of a magnetic slug can be sensed before the arrival at an 

observation well. 

2.2.3 Magnetic Susceptibility 

2.2.3.1 Theory and Fundamentals  

Magnetic geophysics devices induce magnetic fields in the subsurface and make use of 

manometers to measure small local variations in the Earth’s magnetic field due to differences in the 

magnetic properties of subsurface material. When a material becomes subject to a magnetic field it 
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becomes magnetized to an extent that is proportional to the applied field given by the following 

relationship: 

 M = χH 
2-9 

 

where M is the induced magnetization, H is the applied magnetic field, and χ is the magnetic 

susceptibility (MS). MS is a unitless constant of proportionality that is a measure of a material’s 

tendency to become magnetized when exposed to a magnetic field. It is like magnetic permeability, 

which describes the ability of a medium to form a magnetic field, and is related mathematically by: 

 μ = μ0(1 + χ) 2-10 

 

where μ is the magnetic permeability of a given material, μ0 is the permittivity of a vacuum. The terms 

are very similar in definition, but MS is commonly reported for magnetic geophysics. 

Most geologic materials possess a magnetic moment of zero, but when exposed to a magnetic 

field can either develop a net positive or negative (i.e., in line with or opposed to the applied magnetic 

field) value of magnetization (and thus MS) depending on how the magnetic domains align. Materials 

where domains do not alight perfectly parallel but have a net positive magnetization are termed 

paramagnetic, while materials with negative magnetization are termed diamagnetic. In some materials, 

such as iron, the magnetic domains align perfectly parallel within a material when subject to a magnetic 

field. If these domains all align in the same direction the material is known as ferromagnetic, if they align 

in parallel but opposite directions such that the resulting magnetic moment is zero the material is 

known as anti-ferromagnetic, and if domains parallel but opposite such that there is still a resulting 

magnetic moment the material is known as ferrimagnetic. Ferromagnetic materials will have the highest 
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values of MS, followed by ferri-, para- and diamagnetic, respectively. While ferromagnetic materials 

would have the most significant values of MS, they do not occur naturally on Earth (Burger et al., 2006b; 

Telford et al., 1990). Diamagnetic and paramagnetic rocks or minerals have very low MS values, meaning 

they do not typically provide enough contrast to be detected for subsurface delineation (Burger et al., 

2006b; Telford et al., 1990). Thus, ferrimagnetic materials are the typical target for magnetic geophysics. 

The most commonly occurring ferrimagnetic materials are magnetite, maghemite, and titanomagnetite. 

Often the MS response of a subsurface target is directly related to its magnetite content. Typical ranges 

of magnetic susceptibilities for various geologic materials can be found in (Telford et al., 1990). 

Magnetic fine-grained particles are understood to exist in four possible domain states (see 

review on environmental magnetism by Liu et al. (2012)). Larger particles (greater than approximately 

100 nm), which can form multiple magnetic domains are termed multidomain grains (MD). In 

comparison, smaller particles may form one single magnetic domain and are termed single domain 

grains (SD). Some particles behave in a transitional state between MD and SD behavior, in which a signal 

domain is still present but “fans out”. Such particles are termed pseudo-single domain grains (PSD). 

Finally, in very small SD grains, the magnetic domain can change orientation as it is dominated by 

thermal fluctuations. Particles that experience this behavior are termed superparamagnetic grains (SP). 

An understanding of these behaviors is useful in quantifying grain size, mineralogy, or even the genesis 

of some magnetic minerals (Ameen et al., 2014; Emmerton et al., 2013; Rijal et al., 2012). 

2.2.3.2 Research Gaps in MS Geophysics 

The most apparent drawback of magnetic geophysics is the limited range of geologic materials 

that can be detected. Magnetic geophysics will not be a useful tool to delineate contaminants unless the 

contaminant possesses magnetic properties that are significant enough to contrast the background 
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geologic material. Targets must be made of magnetic metals or typically be related to an increased 

concentration of magnetite. For instance, magnetic anomalies have been correlated to the presence of 

PHC contamination (Aldana et al., 2003; Foote, 2007; Menshov et al., 2016, 2015; Rijal et al., 2012). 

however, the cause of this anomaly is still not fully understood. It has been suggested that the presence 

of PHCs enhance the activity of iron-reducing bacteria to produce magnetic minerals such as magnetite 

(e.g., Batt et al., 1995; Beaver et al., 2016; Emmerton et al., 2013; Klueglein et al., 2013; Menshov et al., 

2016, 2015; Rijal et al., 2012). Emmerton et al. (2013) conducted an extensive study that found a 

correlation between biodegradation processes and magnetic properties in oil-bearing geologic media. 

However, Porsch et al. (2014) found that while the presence of a mobile organic carbon source did 

increase the activity or iron-reducing bacteria leading to the production of magnetite (and enhanced 

MS) when bioavailable iron was available, a hydrocarbon source did not produce better results than 

lactate/acetate as a carbon source. Further, Ameen et al. (2014) concluded that bioavailable iron had no 

significance to the formation of magnetite.  

Magnetic geophysics also suffers from the issue of nonunique qualitative information. For 

instance, in cases where magnetic geophysics is used to delineate PHC contamination, the results must 

be paired with other methods to confirm that the magnetic anomalies are indeed due to PHC 

contamination rather than some other magnetic target (Aldana et al., 2003; Rijal et al., 2012). There is 

still a research need to study the relationship between MS and various contaminants, with PHCs as one 

example. Alternatively, there is a potential gap to increase the contrast between the targets of a 

magnetic geophysics investigation and the background geologic material, which could result in an ability 

to obtain unique or even quantitative results. 
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2.2.3.3 NPs as Imaging Contrast Agents for MS Geophysics 

The use of NPs to alter the magnetic susceptibility of a medium they are in has been studied 

both at the lab-scale and through modeling efforts for applications such as reservoir characterization, 

increasing imaging contrast of proppants, delineating hydrocarbon contamination, and determining nZVI 

concentrations. (Chanzy et al., 1996; Estella a et al., 2002; Hu et al., 2016; Klueglein et al., 2013). 

Numerical simulation by Rahmani et al. (2014) assessed the use of magnetic susceptibility 

tomography for the sensing of superparamagnetic NPs in both single well and Crosswell applications. It 

was found that magnetic NPs can change magnetic susceptibility measurements, with the sensitivity of 

magnetic measurements being most significant near the source and receiver (or near the wellbore for 

single well simulations) but less significant in the inter-well regions (for cross-well simulations). The 

magnetic susceptibility was independent of frequency when measurements were taken at low induction 

numbers. 

Batch laboratory experiments by Morrow et al. (2015) demonstrated the use of nanomagnetite 

(nMag) to enhance the magnetic signature if present in sufficient concentrations, with higher levels of 

paramagnetic minerals in the background material requiring more substantial quantities of nMag. While 

this author suggests that this is evidence supporting the use of nMag mixed in proppant for fracking 

applications to better sense the nature of fractures, it also provides evidence to suggest nMag could act 

as a contrast agent for environmental geophysical applications if it were introduced in concentrations 

large enough to increase the magnetic signature relative to the background paramagnetic mineral 

concentrations and the magnetic susceptibility of a target contaminant.  

At a larger scale, using an equilateral triangular box with lengths of approximately 4 m and 

height of approximately 1.5 m, Buchau et al. (2010) also demonstrated the application of MS for NP 
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sensing. They measured the MS before and after the injection of nZVI and found small (~0.01 SI) changes 

in susceptibility post-injection. The authors highlight the need for MS equipment to be highly sensitive 

and stable, as a small concentration (5.5 g/L) of nZVI and specialized sensors were used for these 

experiments. A gap still exists to determine if higher concentrations could be detected with 

conventional field MS devices. 

Current field magnetic susceptibility meters can be as sensitive as 10-7 SI (ex: KT-20 Magnetic 

Susceptibility Meter (Terraplus, 2013)). The magnetic susceptibility for a range of geologic material can 

be found in Appendix A-2. Table 2-1, comparatively, shows the magnetic susceptibility of various NPs 

reported in literature. Based on these tables, nanomaterials do exist that could potentially act as 

contrast agents for some geologic materials (nMag in sedimentary material, for example). 
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Table 2-1: Magnetic susceptibility of various nanoparticles reported in literature. 

Nanoparticle MS measured Value (units) Reference 

MnFe2-xAgxO4 Mass Specific 1x10-5-4.5x10-5 (m3/kg) (Aslibeiki et al., 2013) 

Co/Au AC Susceptibility 0.04-0.065 (N/A) (Hrubovčák et al., 2015) 

Au-Fe3O4 AC Susceptibility 10x10-4 -4x10-2(N/A) (Frey et al., 2009) 

Citrate- Fe2O3 SQUID/VSM 0.04-8.9 (N/A) (Yoon et al., 2016) 

SP Magnetite AC Susceptibility 0.017-0.019 (N/A) (van Berkum et al., 2013) 

Magnetite AC Susceptibility 0.1-0.76 (N/A) (van Berkum et al., 2013) 

Cobalt Ferrite AC Susceptibility 0.01-0.22 (N/A) (van Berkum et al., 2013) 

Magnetite AC Susceptibility 1x10-4-0.2 (Allia and Tiberto, 2011) 

Magnetite Not specified 0.016-0.245 (Ali-zade, 2011) 
 

2.2.4 Nuclear Magnetic Resonance 

2.2.4.1 Theory and Fundamentals  

The key physical property that NMR geophysics makes use of is the magnetic spin of atoms. 

Magnetic spin is an intrinsic property of atoms that is described by angular momentum and associated 

magnetic moment. NMR geophysics specifically measures responses of the spin of hydrogen protons in 

water. Although this is sometimes visually depicted by the protons rotating about some axis, the angular 

momentum and magnetic moment exist without physically rotating (Behroozmand et al., 2015; Hertrich, 

2008). In the absence of any magnetic field, the spin magnetic moments will be randomly oriented. 

Conversely, when in a static magnetic field, such as the Earth’s Magnetic field, hydrogen protons will 

precess about the magnetic field at a frequency known as the Larmor frequency. In this case, at thermal 

equilibrium, the alignment of the spin magnetic moments will be such that a small net magnetic 

moment will be generated in the field direction (Behroozmand et al., 2015; Hertrich, 2008). The Larmor 

frequency is given by: 
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 𝑓𝐿 =
𝜔𝐿
2𝜋
= −

𝛾|𝐵0|

2𝜋
 2-11 

where ωL is the Larmor angular frequency, γ is the proton gyromagnetic ratio, and B0 is the static magnetic 

field. 

Similar to other geoelectric methods, NMR geophysics makes use of alternating current to 

generate an energizing magnetic field. The total energy induced in the subsurface is called the pulse 

moment, often denoted as q (Behroozmand et al., 2015; Hertrich, 2008). In surface NMR methods, the 

Earth’s magnetic field acts as the static field, but borehole NRM devices generate their own static field 

as well as the induced field. The perpendicular component of the generated field, in comparison to the 

static field, causes protons to become excited and tilt away from the static field. When this field is 

turned off, excited protons will transfer energy to surrounding mater through a process known as 

relaxation, in which the protons precess around axes both parallel and perpendicular to the static 

magnetic field. The relaxation time around the parallel axis is often denoted as T1, while the relaxation 

time around the perpendicular axis is denoted as T2 (Behroozmand et al., 2015; Hertrich, 2008). This 

precession generates a small alternating current allowing the amplitude and relaxations times to be 

measured by receiver coils.  

NMR relaxation times are influenced by several factors such as viscosity, temperature, the 

presence of paramagnetic material, and pore size (Bloembergen et al., 1947; Brownstein and Tarr, 1979; 

Senturia and Robinson, 1970). In general, relaxation times tend to decrease with increasing fluid 

viscosity (Bloembergen et al., 1947). The combined effects of the presence of paramagnetic sites within 

soil grains (such as manganese (II) or iron (III)), as well as the area to volume ratio of pore space, are 

termed surface relaxation (Behroozmand et al., 2015; Brownstein and Tarr, 1979; Hedberg et al., 1993; 

Senturia and Robinson, 1970). The amplitude of NMR signals is related to the number of hydrogen 
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atoms present, because of this NMR can be used to both distinguish fluids and quantify their volumes 

(Bloch, 1946). One of the main benefits of NMR geophysics is the ability to obtain quantitative as well as 

qualitative information of the subsurface. Typical uses of NMR geophysics include determination of 

water content, estimation of pore-size distributions, estimating hydraulic conductivity, petroleum 

exploration, contaminant delineation and quantification, and biogeophysical applications. Many of 

these, as well as a list of relaxation times for various natural and synthetic geologic material at different 

Larmor frequencies, are discussed in detail by (Behroozmand et al., 2015). 

2.2.4.2 Research Gaps in NMR Geophysics 

NMR geophysics is very sensitive to hydrogen protons, and as such, to water content. This 

sensitivity allows the method to provide both qualitative and quantitative hydrogeologic information 

and has found use in groundwater delineation, detection of unfrozen sediments below permafrost 

zones, estimation of hydraulic conductivity, identifying differences in formation conductivity, and 

determining water content (Behroozmand et al., 2015; Parsekian et al., 2013; Shushakov, 1996; Walsh, 

2008). Since NMR relaxation times are affected by the media surrounding the protons, it is also possible 

to use NMR geophysics to delineate contaminants in the subsurface. For example, studies have 

successfully used NMR to distinguish gasoline, diesel, toluene, crude oil, and TCE, in various geologic 

material (Bryar and Knight, 2008, 2003; Fay and Knight, 2016; Hedberg et al., 1993). However, it has also 

been shown that the response of NMR to the presence of the contaminants is complex and is dependent 

on the background material (Bryar and Knight, 2003; Fay and Knight, 2016). Since the NMR relaxation 

response is dependent on both the contaminant of interest and the material surrounding the 

contaminant, a research gap still exists to better understand these relationships. There is also a research 
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potential to artificially enhance or control the NMR response for a specific contaminant through NP 

technology. 

2.2.4.3 NPs as Imaging Contrast Agents for NMR Geophysics 

There exists a potential to use NPs as contrast agents for NMR geophysics since relaxation times 

of hydrogen protons are influenced by factors such as the surface charge or magnetic properties of the 

surrounding material. Several studies have already begun to assess the influence of NPs on NMR in 

aqueous and in geologic media (Klueglein et al., 2013; Medvedeva et al., 2014; Zhu et al., 2016). 

Medvedeva et al. (2014) assessed the effect of nanopowder magnetite suspended in water at 

various concentrations on the T2 relaxation times of NMR measurements. Their results show that T2 

relaxation times decrease with increasing magnetite. However, the authors note an increasing 

uncertainty in T2 measurements with increasing magnetite concentration due to the rapid aggregation 

of the nanopowder particles in the presence of the magnetic field generated by the NMR device. This 

effect could pose an issue for field applications of magnetic NPs used to enhance imaging of electro-

magnetic methods and shows a further need for research. 

In addition to iron oxide, NPs Zhu et al. (2016) recently demonstrated the zirconia oxide (ZrO2) 

NPs as a contrast agent for NMR sensing in sandstone cores. This laboratory experiment found that 

dispersions of ZrO2 NPs in the cores altered measurements of surface relaxivity. The effect on surface 

relaxivity was found to be complex, depending on many factors such as pH, the NPs surface charge, and 

the stabilizer used. While encouraging, these results are indicative that further research is still required 

to improve the use of NPs as contrast agents in subsurface NMR imaging. 
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2.3 X-ray CT as a Geophysical Tool 

X-ray technology is commonly known to be a useful tool for medical diagnosis and security 

purposes; however, it has also found many uses in geological fields of study. Although not typically 

considered a geophysical method, X-ray CT bears several similarities to electromagnetic geophysical 

methods, the primary one being that the method functions by measuring changes in electromagnetic 

radiation as it passes through a material. X-ray CT is well studied as a geologic tool and has found nearly 

40 years of use (e.g., Linley et al., 2019; Petrovic et al., 1982). Some surface and downhole X-ray 

fluorescent methods do exist (Ge and Li, 2019; Knoll, 2005; Stromberg et al., 2019); however, due to the 

shallow penetration depth of X-rays (0.01-10s of cm), they are not typically used for geophysical surveys.  

2.3.1 Principles of X-ray CT 

X-ray computed tomography (X-ray CT) is a non-destructive analysis tool that uses dedicated 

software to construct 3-D images, comprised of volumetric pixels (voxels) from multiple 2-D 

radiographs. X-ray CT scans can be performed in one of two ways. The X-ray source and detector can 

rotate around a fixed sample, as is typical for medical imaging applications, or the X-ray source and 

detector remain fixed while the sample rotates. Many laboratory set-ups used for geoscience 

applications make use of standard cone-beam micro-CT devices which use the later of the two 

mechanisms (Clausnitzer and Hopmans, 2000; Cnudde and Boone, 2013; Linley et al., 2019a; Taina et al., 

2008; Zhang et al., 2019). The distinction between X-ray CT and micro-X-ray CT is based on the 

attainable spatial resolution for a given device and has been defined as 200 μm or less (Cnudde and 

Boone, 2013).  
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X-ray CT is based on the principle that X-ray radiation is attenuated to different degrees as it 

penetrates various materials. For a monochromatic beam, this phenomenon is mathematically 

described by Beer’s law: 

 𝐼 = 𝐼0𝑒
−∫𝜇(𝑠)𝑑𝑠 2-12 

 

where I0 and I are the incident and attenuated X-ray intensity (photons/unit time), μ is the linear 

attenuation coefficient, and s is the ray path (Cnudde and Boone, 2013; Taina et al., 2008). μ is an 

energy-dependent value that is determined primarily by the mechanisms of the photoelectric effect and 

Compton scatter (incoherent scatter), and Rayleigh scatter (coherent scatter). The photoelectric effect is 

described as the complete loss of photon energy as it is absorbed by an atom followed by the ejection of 

an electron. Compton scatter involves the partial transfer of the photon energy to an atom followed by 

the deflection of the photon, and Rayleigh scatter is defined as an event in which a photon is deflected 

by the interaction with an atom but retains all of its energy (Knoll, 2005). These effects are influenced by 

the density (ρ) and the effective atomic number (Z) of the material the X-rays are passing through, given 

by (Denison et al., 1997; Taina et al., 2008; Wellington and Vinegar, 1987): 

 𝜇 = 𝜌 (𝑎 +
𝑏𝑍3.8

𝐸3.2
) 

2-13 

 

where a is a slightly energy-dependent coefficient, b is a constant, and E is the photon (or X-ray beam) 

energy. For situations where a mixture of atomic species is present the effective atomic number, Ze, is 

given by: 

 𝑍𝑒
3.8 =∑𝑓𝑖(𝑍)

3.8 
2-14 
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where fi is the fraction of electrons contributed by an element i over the total electrons in the structure 

for each element of atomic number Z. 

2.3.2 Considerations for X-ray CT Experiments 

Factors that can influence X-ray CT results include imaging artifacts, resolution limitations, and 

the dependence on operator interpretation. Micro CT scanners often produce a polychromatic X-ray 

beam, which influences the previously discussed principle behaviors of monochromatic beams. It can be 

seen from Equation 2-13 that lower energy radiation will be attenuated more easily than higher energy 

radiation. As a result, the makeup of a polychromatic beam contains less low energy radiation as is 

passes through a given material, describing an effect referred to as “beam hardening” (Clausnitzer and 

Hopmans, 2000; Cnudde and Boone, 2013; Taina et al., 2008). In X-ray CT processing, the 3-D images are 

produced based on a linear integration of the attenuation coefficient for each voxel. The beam 

hardening effect can thus influence scan results as the apparent attenuation of any given voxel is 

ultimately dependent on the attenuation of the surrounding material. Beam hardening can create a 

“cupping effect” in image results in which the outer edges of a sample show higher attenuation than the 

center (Hunter and McDavid, 2012). The effects of beam hardening can be mitigated through pre-

filtration of the X-ray beam, or post-scanning software corrections (Hunter and McDavid, 2012). Other 

imaging artifacts include the cone-beam effect, which affects slices at the outer edges of the cone, 

streak artifacts that can occur due to the presence of metals or other highly attenuating substances, and 

artifacts caused by the movement of the sample (outside of the intended rotation) during scanning. See 

review by Cnudde and Boone (2013) for more details.  
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A second factor that must be considered is that any feature of a sample that is smaller than the 

voxel size will not be discretely detected but rather will influence the overall attenuation coefficient of 

voxels that contain or partially contain that given feature. This occurrence is known as the partial 

volume effect, which must be considered when selecting the resolution of a scan and when assessing X-

ray CT image contrast. 

A final issue is a dependency on the operator in X-ray CT image acquisition, processing, and 

interpretation. In X-ray CT software, such as VGStudio Max, for example, a histogram of grey-values is 

produced, which the user can interact with to remove or isolate voxels below or above certain grey 

values, which can be used to define various sample features (Volume Graphics GmbH, 2001). 

Unfortunately, this grey-value thresholding is dependent on user interpretation. Further, X-ray CT 

imaging Micro CT devices often allow the adjustment of settings such as tube voltage, tube current, 

exposure time, number of images scanned, magnification, and beam filtering. As illustrated by equation 

2-13, X-ray attenuation depends on both the X-ray energy and the sample material. Thus the adjustment 

of the various scanning parameters can influence the linear attenuation coefficients and the grey-values 

that are generated to produce the image. Some researchers have developed algorithms or defined 

techniques to segregate elements of X-ray CT scans (see review paper by Taina et al. (2008)), but user-

defined thresholding is also practiced. As of yet, no standard accepted protocol exists for micro-X-ray-CT 

imaging (Cnudde and Boone, 2013; Taina et al., 2008).  

2.3.3 X-ray CT for Fluid Flow Tracking in Porous Media 

Interest in X-ray CT as a tool for geoscience-related applications began as early as the 1980s and 

still exists today (e.g., Linley et al., 2019; Petrovic et al., 1982). The work presented in this thesis involves 

the use of X-ray CT for fluid flow applications, which will be further discussed here. For more 
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information regarding other uses of X-ray CT, the reader is referred to other sources (Cnudde and 

Boone, 2013; Taina et al., 2008; Zhang et al., 2019). 

Water has a much higher X-ray attenuation relative to air and thus saturated, or partially 

saturated, systems can sometimes be more difficult to analyze depending on the objective. X-ray CT 

studies that assess fluid flow or other hydro-physical properties make use of high X-ray attenuating 

tracer solutions (referred to as imaging contrast agents) such as NaI or KI to enhance the contrast 

observed between wetting, non-wetting, and solid phases (Clausnitzer and Hopmans, 2000; Costanza-

Robinson et al., 2008; Culligan et al., 2006; Porter et al., 2010; Zhang et al., 2019).  

Clausnitzer and Hopmans (2000) successfully performed continuous X-ray CT scanning to 

visualize the transport of a NaI slug injected into a small saturated plexiglass flow cell (50 mm in length, 

4.76 mm inner diameter) packed with glass beads (0.5 mm diameter). The experiment consisted of a 30 

min period of water flow, followed by 90 min of NaI injection, and then 240 minutes of water flow. A 

thin section (0.44 mm vertical section) of the column was continuously scanned at a voxel resolution of 

23 μm3 during this process at a rate of ~ 20 minutes per scan, producing 16 scans. The edges of the 3-D 

cylindrical images produced were cut such that a cube remained for analysis. The authors note that a 

very low flow rate (0.1 mL/h) is required to ensure no temporal distortions occurred during the scanning 

process (i.e., to ensure that the NaI slug does not appear smeared or stretched in the final reconstructed 

3-D image it must remain stationary for the duration of each complete X-ray CT scan). Clausnitzer and 

Hopmans (2000) used results from scanned capillary tubes filled with various concentrations of NaI and 

from the saturated glass bead column before NaI injection to develop a calibration method to quantify 

NaI concentrations from X-ray CT scans. They derived the flowing equation: 
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 𝐶(𝑥) = [
𝜇(𝑥) − 𝜇𝐻2𝑂

𝑢𝑔𝑙𝑎𝑠𝑠(𝑟) − 𝜇𝐻2𝑂(𝑥)
] 𝑐𝑒𝑞𝑢𝑖𝑣(𝑟) 

2-15 

 

where C(x) is the NaI concentration at voxel location x, μ is the effective attenuation coefficient, μH2O is 

the effective linear attenuation coefficient of the voxel before NaI injection, and μglass(r) and Cequiv(r) are 

fitted functional expressions that describe the effective attenuation of the glass and the NaI 

concentration that has an effective attenuation equal to the glass for a given energy level and radius r 

away from the central axis. They obtained a relatively good fit (less than 4 g/L deviation) between 

experimental and measured data.  

Recently, Zhang et al. (2019) also used X-ray CT to observe a NaI slug moving through an acrylic 

column (95 mm in length, 32 mm inner diameter) packed with melamine resin particles. The column was 

saturated with a 10% wt. NaCl solution to reduce any potential density effects between the injected 10% 

wt. NaI slug and the saturation solution. A 0.13 mL slug of NaI was injected into the column followed by 

0.5 PV (dependent on the porosity of each column packed with various particle sizes of melamine resin 

particles) of NaCl with scans performed every 0.1 PV at a voxel resolution of 103 μm. Zhang et al. (2019) 

assessed the dispersion of the NaI plume as it transported through the column by identifying the wt. % 

concentrations in the 3-D scan images using a calibration curve related to the brightness of the CT 

images. 

Other studies that have assessed fluid transport or hydro-physical properties in porous geologic 

media using X-ray CT usually do so by scanning before and after a particular alteration to the samples 

(such as before and after saturation or various degrees of drainage), but do not scan during transport. 

For example, several studies have used X-ray CT to assess air-water or water-NAPL interfacial areas at 
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different degrees of saturation by scanning samples at (or near) saturation and then again after a 

drainage event (Costanza-Robinson et al., 2008; Culligan et al., 2006; Porter et al., 2010). These 

experiments often used an iodide-doped saturating solution to increase the contrast between the air, 

solid, and NAPL phase. Further, many geologic X-ray CT fluid property studies have been performed on 

small sample sections (5.5 mm vertical slices or less) at fine resolutions (~10-17 μm voxels) (Costanza-

Robinson et al., 2008; Culligan et al., 2006; Porter et al., 2010). 

2.3.4 X-ray CT Imaging of Nanoparticles in Geologic Porous Media 

Although the use of NPs as imaging contrast agents for X-ray CT is relatively common in the 

medical field, their use for such an application in the geoscience field is relatively new. Linley et al. 

(2019) recently demonstrated the use of iron oxide NPs as imaging contrast agents in silica sand 

samples. The iron oxide NPs used were coated with an amphiphilic block copolymer (Pluronic), which 

serves both to stabilize the NPs in and to allow for targeted binding to crude oil. Linley et al. (2019) 

demonstrated a clear, discernable contrast between silica sand and silica sand containing Fe3O4 NPs, and 

an apparent increase in contrast between crude oil impacted silica sand and crude oil impacted silica 

sand with bound NPs. These experiments were performed in dry conditions in 4.5 mL cuvettes. They 

found that the Fe3O4 NPs could be detected at concentrations as low as 1 mg/kg.  
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Chapter 3  

Nanoparticles as X-ray CT Contrast Agents 

3.1 Overview 

The primary objective of this research is to evaluate the ability of X-ray CT to monitor the 

transport of engineered NPs in a saturated geologic porous medium at the column scale. The sub-

objectives are as follows: 

1. Establish NP solution contrast in an aqueous environment. 

2. Establish NP solution contrast in a saturated porous medium. 

3. Isolate and examine X-ray CT artifacts that may impact the use of NPs as imaging contrast agents 

in column tracer experiments.  

4. Determine the effects of concentration and flow rate on X-ray CT contrast agent transport and 

monitoring. 

5. Develop an appropriate methodology to assess the suitability of NP solutions as X-ray CT 

imaging contrast agents in a saturated porous medium through comparison to a known X-ray CT 

contrast agent.  

The following experiments were performed using glass columns, an acrylic column, and in 4.5 mL 

acrylic cuvettes to achieve these objectives: 

1. Placement of glass beads saturated with Fe3O4 NPs in the glass column via wet packing followed 

by X-ray CT scanning to determine NP contrast potential. 

2. Injection of Fe3O4 NPs through a saturated glass column with multiple X-ray CT scans performed 

during NP migration. 



 

42 

3. X-ray CT scans between two cuvettes stacked on top of each other to determine the relative X-

ray attenuation between two respective solutions. 

4. Troubleshooting experiments performed in the packed and saturated acrylic column to examine 

a reoccurring X-ray CT artifact. 

5. Injection of various concentrations of NaI into a packed and saturated glass column or cuvettes 

to determine the lowest concentration of NaI required to establish X-ray CT contrast. 

6. Injection of three concentrations NaI through a packed and saturated glass column at three 

different flow rates to assess the use of X-ray CT to monitor the migration of a known contrast 

agent.  

7. Injection of bismuth ferrite NPs through a packed and saturated glass column with multiple X-

ray CT scans performed during NP migration. 

An appreciation of the chronology is required to understand the experimental progression 

followed to meet the objective of this research. Fe3O4 NPs were initially utilized to achieve sub-

objectives 1 and 2 due to their availability and previous success as X-ray CT contrast agents in dry porous 

media by Linley et al. (2019). X-ray scans of aqueous Fe3O4 NP suspensions in saturated glass columns, 

and the acrylic cuvette, both packed with glass beads, were conducted to determine the relative 

contrast and visibility in a processed X-ray CT image. It was revealed that the Fe3O4 NPs had a stronger X-

ray attenuation relative to Milli-Q water, meeting sub-objective 1. However, early results also indicated 

that NP contrast could not be achieved in a saturated glass bead porous medium at any scale used in 

this work. During these early experiments, an X-ray CT imaging artifact was recognized in which a conical 

shape of X-ray attenuation contrast was observed. To achieve sub-objective 3, several troubleshooting 
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experiments were performed using an acrylic column in an attempt to isolate and eliminate the origin of 

this “conical effect” artifact. This artifact was determined to be the result of a sample misalignment 

issue within the X-ray CT system and may be eliminated where the difference in X-ray attenuation 

contrast is large enough. To assess the inability of the Fe3O4 NP solution to generate an observable X-ray 

attenuation contrast, and to respond to sub-objective 5 of this research, the NP solution was directly 

compared to a known X-ray contrast agent, NaI. First, NaI was used at the smallest scale (cuvette) to 

determine the minimum concentration of NaI required for contrast to be observed. Then, stacked 

cuvette contrast scans were then used to determine the relative X-ray attenuation relationship between 

NaI and Fe3O4 NP solutions. This evaluation revealed that the Fe3O4 NPs do not provide sufficient X-ray 

attenuation for contrast to be observed at any of the column scales. However, it did prove an effective 

method to assess the suitability of NP solutions as X-ray CT imaging contrast agents in a saturated 

porous medium, thus meeting the requirements of sub-objective 5. While a new NP solution, comprising 

of a higher atomic number element to increase X-ray attenuation, was under development, a series of 

NaI transport experiments were performed at various concentrations and flow rates to satisfy sub-

objective 4. The flow rate was found to have little effect on the ability to monitor tracer movement 

using X-ray CT; however, evidence of viscous fingering due to gravity was observed due to the high 

concentrations of NaI used. Thus, it was determined that the density of a NP X-ray CT contrast agent 

solution must be considered. Finally, bismuth ferrite NPs (with a higher atomic number and thus a 

stronger X-ray attenuation than the Fe3O4 NPs) were synthesized, and the transport of these NPs 

through the packed and saturated glass column was successfully monitored with X-ray CT. This objective 

was achieved following a stacked cuvette comparison between the bismuth ferrite NP and NaI solutions, 

thus satisfying the requirements of sub-objective 5 and the overarching objective of this research. 
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3.2 Materials and Methods 

3.2.1 Chemicals  

The following chemicals were used as received: 

• 1-Pentanol (≥ 99%; from Sigma Aldrich, St. Louis, MO, USA) 

• Ammonium hydroxide (NH4OH, 28-30% in water; from Sigma Aldrich, St. Louis, MO, USA) 

• Bismuth (III) nitrate (Bi(NO3)3, ≥ 98.0%; from Sigma Aldrich, St. Louis, MO, USA) 

• Dichloromethane (DCM, > 99%; from Sigma Aldrich, St. Louis, MO, USA) 

• Ethanol (ACS grade, 99%; from Fisher Scientific, Hampton, NH, USA) 

• Hexane (ACS grade; ≥ 98%; from Sigma Aldrich, St. Louis, MO, USA) 

• Hydrochloric acid (37%; from Sigma Aldrich, St. Louis, MO, USA) 

• Iron (III) chloride hexahydrate (FeCl3∙6H2O, > 99%; from Sigma Aldrich, St. Louis, MO, USA) 

• Iron (III) Nitrate (Fe(NO3)3, ≥ 98%; from Sigma Aldrich, St. Louis, MO, USA)  

• Iron (II) sulfate heptahydrate (FeSO4∙7H2O, > 99%; from Sigma Aldrich, St. Louis, MO, USA) 

• Nitric Acid (HNO₃, ACS Grade >90 %; from Sigma Aldrich, St. Louis, MO, USA) 

• Oleic acid (>90%; from Sigma Aldrich, St. Louis, MO, USA) 

• Pluronic co-polymers P104, L62, and L121 (gifted by Brenntag, Essen, Germany, and BASF, 

Ludwigshafen, Germany) 

• Potassium Hydroxide (KOH, ACS Grade ≥85%, pellets; from Sigma Aldrich, St. Louis, MO, USA) 
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• Sodium Bromide (NaBr >99%; from Sigma Aldrich, St. Louis, MO, USA)  

• Sodium Hydroxide (NaOH, ≥ 98%; from Sigma Aldrich, St. Louis, MO, USA) 

• Sodium Iodide (NaI > 99%; (from Sigma Aldrich, St. Louis, MO, USA) 

3.2.2 Porous Media 

The porous medium used in all column experiments was Sigma Aldrich G1145 150-212 μm acid-

washed glass beads. The glass beads were acid-washed after being received to further remove any 

potential impurities. They were immersed in a beaker for 24 hours covered with aluminum foil 

containing enough 5 M nitric acid to submerge the beads and were stirred occasionally. Following these 

24 hours, the beads were rinsed in deionized water until the pH of the DI water containing the 

submerged beads was ~ 7. Then the wet beads were placed in a drying oven at 237°C for a minimum of 

3 hours. The density of the glass beads was estimated gravimetrically to be 1.46 ±0.02 g/cm3 (see 

Appendix B-3) which is in agreement with other sources that have cited the density of 150-212 μm glass 

beads (Nsugbe et al., 2016) 

3.2.3 Fe3O4 NPs 

The Fe3O4 NPs used in this research were synthesized following the method provided by Linley 

et al. (2019). A molar ratio of 2:3 (FeSO4:FeCl3) of FeSO4∙7H2O and FeCl3∙6H2O were added to 

deoxygenated water, followed by the addition of NH4OH to achieve concentrations of either 4 or 0.22 

mol/L. The solution was stirred for 1 hour at 70°C followed by an additional hour of stirring at 90°C 

under flowing N2 to purge NH3 gas. The resultant black precipitate was recovered by magnetic 

decantation, rinsed by deoxygenated Millipore DI water, and dried under flowing N2. The dried NPs were 

then added to a mixture of 1% oleic acid in hexane (v/v) such that the NP concentration was 90 g/L. This 
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solution was sonicated for 10 minutes, and the suspension was added at 10% (v/v) to aqueous Pluronic 

copolymer(s) followed by another 30 minutes of sonication. Finally, the emulsified NPs were separated 

over 48 h using a separatory funnel. Analysis performed by Linley et al. (2020) indicated that this 

method produces spherical NPs with an average diameter of 7 ± 2 nm. Higher concentrations of the 

stabilizing surfactant were required when modifying this method to generate higher concentration NP 

solutions (Linley et al., 2020).  

3.2.4 Bismuth ferrite NPs 

Bi-metallic bismuth ferrite NPs were developed as NPs comprising of higher atomic number 

elements relative to Fe3O4 NPs were required. The synthesis of the bismuth ferrite NPs involved the 

production of Fe-oleate and Bi-oleate. To create the Fe-oleate, 21.46 mL oleic acid and 20 mL ethanol 

were mixed in a beaker until fully dissolved and then added to a round bottom (RB) flask containing 10 

mL of 264 g/L NaOH while stirring. 6.464 g Fe(NO3)3∙9H2O was dissolved in 10 mL Milli-Q water and 

added to the RB flask while stirring. 20 mL of hexane was added to the solution in the RB flask, which 

was then fitted with a reflux condenser and heated to 85°C in an oil bath while stirring slowly for 1 hour. 

The solution was left to cool and separate. Then the bottom aqueous phase was removed using a 

Pasteur pipette. The solution was washed thrice with 20 mL Milli-Q water, 5 mL of ethanol, 5 mL of 

hexane, and refluxed for 30 minutes. Once washed, 15 mL of 1-pentanol was added, and the remaining 

hexane was evaporated under heat with no reflux for 30 minutes. The remaining solution was stored in 

an appropriately sized vial and placed in a fridge (4°C) until used.  

To create the Bi-oleate a mixture of 20 mL Milli-Q water, 40 mL of ethanol and 60 mL of hexane 

was prepared in an Erlenmeyer flask and added to 2.192 g of Na-oleate and 0.5821 g Bi(NO3)3∙5H2O in an 
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RB flask while stirring vigorously in an oil bath at a temperature of 70°C. Then 2 mL of 1.8 M/L KOH was 

added by pipette to the RB flask and left to stir under reflux for 4 hours at 70°C. The RB flask containing 

the solution was then removed from the oil bath and allowed to cool before transfer into a separatory 

funnel. The bottom aqueous phase was discarded, and the organic phase was returned to the RB flask. 

30 mL of Milli-Q water, 7.5 mL of hexane, and 7.5 mL of ethanol was added to the remaining organic 

phase and boiled for 30 minutes under reflux. The solution was left to cool, transferred to the 

separatory funnel, and the aqueous phase was again discarded. The organic phase was poured back into 

the RB flask, 15 mL of 1-pentanol was added, and the solution was heated to 85°C in an oil bath to 

evaporate the remaining hexane. The temperature was increased by 10°C each time no boiling/bubble 

formation was observed until a temperature of 115 °C was reached. The final solution was left to cool 

and was stored in an appropriately sized vial that was placed in a fridge (4°C) until used. 

Once both oleate solutions were prepared, an equimolar amount of each (typically ~20 mL of Bi-

oleate and ~2.5 mL Fe-oleate) were added to a 125 mL Teflon-lined stainless steel reaction vessel, 

followed by 32 mL of 1-pentanol and 27 mL of Milli-Q water before sealing the reaction vessel, shaking 

vigorously, and placing in an oven at 180°C for 10 hours. The product was left to cool, decanted into 50 

mL centrifuge tubes, and centrifuged at ~1.28 xg for 5 minutes. The excess 1-pentanol and water were 

then decanted, leaving the brown solid at the base of the centrifuge tubes. The NPs were then washed 

with ethanol or hexane and re-centrifuged an additional five times before being stored in glass vials for 

use.  
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3.2.5 X-ray CT Characterization 

X-ray CT is a method in which multiple X-ray images of a sample are obtained at different angles 

(achieved either using a fixed X-ray source and detector with a rotating sample, or a fixed sample and a 

rotating X-ray source and detector) and are digitally reconstructed by computer algorithms to produce a 

3-D image of the sample being scanned. For this research, the term “X-ray CT Scan” is defined as the 

complete collection of X-ray images obtained on a sample that is to be reconstructed, the term “raw 

images” is used to describe the individual images collected during an X-ray CT scan, and the term 

“processed image” or “3-D image” refers to the final 3-D reconstruction of the sample. X-ray CT scans 

were completed using an open directional high-power micro-focus X-ray tube (240 kV, GE Phoenix 

v|tome|x m compact micro CT system) equipped with a GE DXR detector array. This device is the same 

as the one used by Linley et al. (2019). The X-ray scan settings used varied between experiments. The 

acceleration voltage used in this study ranged from 80-150 kV, the beam current ranged from 80-150 

μA, and the voxel (volumetric pixel) size ranged from approximately 29.06-141.96 μm3. 1000 images 

were obtained for nearly all scans at a timing of 333 ms per image. The number of images taken during 

scanning influences the resolution of the processed X-ray CT image, however, it has little impact on 

whether a contrast (i.e., a difference in X-ray attenuation) between two solutions or materials is 

discernable. Thus, for experiments where the resolution was not important, such as for liquid to liquid 

static contrast scans performed in 4.5 mL cuvettes, “quick scanning” was performed by decreasing the 

number of images obtained to 100. The X-ray CT scanning parameters used for each experiment are 

listed in Table 3-1. The raw images from each scan were processed using Volume Graphics Software 

(VGStudio Max version 2.2). The scans were processed using beam hardening correction factors 

between 5.5 and 9.7.  
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 Each voxel in the processed X-ray CT image is assigned a grey-value representative of its X-ray 

attenuation, with higher grey-values being assigned to more strongly attenuating materials. A grey-value 

histogram is produced as part of the 3-D X-ray CT image processed by VGStudio Max. By changing the 

grey-value threshold, the user indicates which voxels should be displayed and can adjust the image to 

show a contrast between areas of high and low X-ray attenuation. For example, consider a highly 

attenuating material “A” with a grey-value of 100, and a slightly attenuating material “B” with a grey-

value of 10. Choosing a grey-value threshold of 50 would result in only voxels of material “A” being 

displayed, selecting a threshold value of 200 would cause neither to be displayed, and choosing a 

threshold value of 1 would cause both to be displayed. Thus, a comparison of relative X-ray CT 

attenuation can be made between two NP suspensions, or between a NP suspension and another fluid 

such as water, by determining a grey-value threshold that causes the voxels of only one of the 

suspensions to be displayed. 
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Table 3-1: X-ray CT scanning parameters used for all experiments. 

Experiment Description Voltage (kV) Current (μA) Voxel Size (μm3) Images Timing (ms) Scan Time (min) 

Fe3O4 NP Contrast Scan 1 150 150 93.0 1000 333 25 

Fe3O4 NP Contrast Scan 2 150 150 110.9 1000 333 25 

Fe3O4 flow-through and scan 
experiment* 

150 150 140.4 1000 333 25 

Fe3O4 NP contrast Scan in acrylic column 100 100 97.6 1000 333 25 

Glass column NaI contrast scans 100 100 142.0 100 333 2.5 

NaI lower detection limit scans* 100 100 142.0 1000 333 25 

Static cuvette contrast scan (water to 
Fe3O4 NPs) 

80 80 33.9 1000 333 25 

Static cuvette contrast scan (water to 
Fe3O4 NPs in saturated glass beads) 

80 80 34.0 1000 333 25 

Static cuvette contrast scan (Fe3O4 NPs 
to NaI, ~15g/L to 15 gI/L) 

100 100 97.6 100 333 2.5 

Static cuvette contrast scan (bismuth 
ferrite NPs to NaI, ~15g/L to 15 gI/L) 

100 100 97.6 100 333 2.5 

NaI flow-through and scan experiments 
(i.e. all IFT experiments) * 

100 100 142 1000 333 25 

Bismuth ferrite NP flow-through and 
scan experiments* 

100 100 142 1000 333 25 

* Scanning parameters were constant across all scans for given experiments. 
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3.2.6 Column Design 

Two aspects required consideration when designing a column for this work: the material, and 

the dimensions. Lower density column materials were preferable to reduce background X-ray 

attenuation by the experimental apparatus. Additionally, transparent materials were desirable to enable 

visualization of the coloured NP suspensions as they propagated through the columns. The column 

dimensions were constrained by the scanning zone of the X-ray CT system, and the column structure 

should maximize uniform laminar flow (i.e., minimize preferential flow paths). 

The maximum scanning height of the X-ray CT system is approximately 15 cm, and the maximum 

width was non-restrictive. Uniform laminar flow-through a column is influenced by factors including 

inlet and outlet conditions, diameter, length, diameter to length ratio, the ratio of column diameter to 

grain size, and wall effects. Table 3-2 outlines recommendations for column design found in the 

literature that was followed in this work.  

The primary column design was made of glass (15.24 cm in length, 2.54 cm internal diameter) 

with threaded caps at each end containing Teflon seals and a built-in mesh to distribute flow at the 

inlet/outlet (see left-hand side of Figure 3-1). A secondary column design made of acrylic (10.16 cm in 

length, 0.9 cm internal diameter) was constructed to reduce background X-ray attenuation compared to 

the glass walls of the primary column design (see right-hand side of Figure 3-1). This column was also 

used to troubleshoot a potential X-ray CT scanning and processing issue that was recognized during 

experiments using the glass column. A custom Styrofoam support was built to mount the acrylic column 

in the X-ray CT machine. Both columns approximately satisfied the 15 cm maximum height restriction 

imposed by the X-ray CT machine and thus could be scanned in (or near) their entirety. The materials 
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used in both columns are comprised of elements with lower atomic numbers than iron (glass = SiO2 

[Si=14, O=8], acrylic C5O2H8 [C=6, O=8, H=1], relative to iron [Fe=26]) and thus theoretically should allow 

for a detectable contrast between the column and the NPs (See Equation 2-13 (Denison et al., 1997; 

Taina et al., 2008; Wellington and Vinegar, 1987)). Acrylic is of a lower density than glass (the density of 

common glass =2.4-2.8 kg/m3, the density of acrylic =1.19 kg/m3 (Engineering ToolBox, 2009)) and thus 

allows for even less X-ray attenuation. 

 

Figure 3-1: Large glass column (left) and small acrylic column (right). The glass column is 15.24 cm in 
length (excluding endcaps), has an inner diameter of 2.54 cm, and an external diameter of 
approximately 3.04 cm. The acrylic column has a length of 10.16 cm (including endcaps), an inner 
diameter of 0.9 cm, and an outer diameter of approximately 1.3 cm. 
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Table 3-2: Summary of column design recommendations found in literature, including justification and 
associated reference. 

Recommendation Justification Reference 

Introduce a baffle zone at the inlet 
and outlet of the column that is at 

least the length of the column 
radius. 

Non-uniform flow can occur for 
lengths up to 2/3 the column 
radius at the inlet and outlets 
were a baffle is not present. 

(Barry, 2009; Gibert et al., 
2014) 

Columns with diameters greater 
than 7.59 cm result in larger solute 
dispersivity than smaller columns 

Columns with diameters greater 
than 7.59 cm result in larger 

solute dispersivity. 
(Bromly et al., 2007) 

Length to radius ratio > 3:1 
Ensures there is at least a section 

of laminar flow. 
(Barry, 2009) 

Length to Diameter =>4:1 
Minimizes the occurrence of 

sidewall flow. 
(Gibert et al., 2014; Lewis 

and Sjöstrom, 2010) 

Column to particle diameter ratio > 
50:1 

Wall effects are significant were 
column to particle diameter ratio 

is < 50:1 

(Gibert et al., 2014; 
Mehta and Hawley, 1969) 

3.2.7 Column Packing and Saturation 

Dry packing was the primary method selected to fill the columns with the glass beads. However, 

a wet packing method was also used so the NPs could be placed at discrete locations in the column 

while maintaining saturated conditions. Wet packing was used in early experiments where the goal was 

only to establish a contrast between the saturated glass bead medium and the NPs using X-ray CT. When 

packing the glass and acrylic columns, approximately 2.5 cm and 1 cm of glass wool were packed just 

before the inlet and outlet, respectively, to act as a baffle to distribute flow.  

All dry-packed columns were filled in 0.2 cm lifts (Oliviera et al., 1996). After the addition of each 

lift, the material was packed down manually using a rubber plunger (diameter of ~ 2.54 cm) for the glass 

columns and a wooden plunger (diameter of ~ 0.9 cm) for the acrylic column. Dry packed columns were 

flushed with CO2 for approximately five minutes and then saturated from bottom to top with DI or Milli-
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Q water until about 3 pore volumes were passed through the column to minimize the potential for 

entrapped air.  

The wet packing method used was also based on recommendations by Oliviera et al. (1996). 

First, water (or NP suspension) was added into the column such that it raised the water level by 

approximately 0.25-0.5 cm. Then glass beads were sprinkled into the column while stirring slowly as the 

beads settled. This process was repeated until the column was completely packed.  

3.2.8 Column Characterization 

The hydraulic conductivity of the packed columns was estimated using a series of falling head 

tests based on the ASTM D5084-16a test method (ASTM International, 2016). The hydraulic conductivity 

was estimated in four separate glass columns, dry-packed with glass beads and saturated. Falling head 

tests were performed in triplicate for each column.  

Two bromide tracer experiments were performed in glass columns, the first in triplicate and the 

second in duplicate. The first bromide tracer experiment referred to as Br-1, comprised of three columns 

run in parallel, Br-1-A, Br-1-B, and Br-1-C. For Br-1-A and Br-1-B, the flow was periodically stopped by 

shutting the inlet and outlet valves for ~35 minutes to mimic the time that would be required to 

perform an X-ray CT scan. Br-1 ran with a continuous bromide injection rather than a slug. The second 

experiment, referred to as Br-2, comprised of two glass columns, Br-2-A and Br-2-B, and was performed 

using continuous flow. The conditions for these experiments are summarized in Table 3-3. Note that, in 

trials where stop-flow time was incorporated, the porosity and dispersivity were calculated as though 

the flow was continuous.  
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The effective porosity of the packed glass columns was estimated based on modeled results 

from bromide breakthrough curves (BTCs) using an optimization platform, OSTRICH (Optimization 

Software Toolkit for Research Involving Computational Heuristics), developed by Matott (2013) coupled 

with 1-DUSAT, a solute transport model (Thomson, 2019). The diffusion coefficient for bromide used for 

1-DUSAT modeling was assumed to be 1.18x10-9 m2/s (Cussler, 2009). 

Table 3-3: Summary of conditions for bromide tracer experiments. 

Experiment 
Flow Rate 
(mL/min) 

Injection 
Concentration (mgBr/L) 

Injection 
Time (Min) 

Sampling 
duration (min) 

Interval Between 
Samples (min) 

Br-1-A 0.36 500 27.66 4 2 

Br-1-B 0.36 500 27.66 4 2 

Br-1-C 0.36 500 Continuous 4 2 

Br-2-A 0.8 500 5.5 2 2 

Br-2-B 0.8 500 5.5 2 2 

3.2.9 Experiments to Establish X-ray CT Contrast 

3.2.9.1 Glass Column NP Contrast Scans 

Two preliminary scans that assessed the use of Fe3O4 NP as X-ray CT imaging contrast agents in 

the packed and saturated glass column were performed. For the first contrast scan (referred to as Fe3O4 

NP Contrast Scan 1), the glass column was wet packed with glass beads, however, rather than stirring, 

the column was placed on a shaker table (~0.035-0.142 xg). The beads were sprinkled into small lifts of 

water (approximately 0.5 cm) until the height of the beads in the column was about 7.6 cm from the 

bottom. This process was repeated, using 500 mg/L NP suspension instead of water, until the column 

was fully packed, resulting in a NP section that was also approximately 7.6 cm long. For the second 



 

56 

contrast scan (referred to as Fe3O4 NP Contrast Scan 2), the wet packing method was used to create 

several layers of glass beads saturated with varying concentrations of a Fe3O4 NP solution that were 

each separated by fitted septum disks. First, a 2.5 cm thick layer of beads in Milli-Q water was packed 

into the column, then a septum disk cut to the diameter of the column was placed above the bead layer. 

This process was repeated moving up the column with a second 2.5 cm thick layer of beads in Milli-Q, 

followed by five 1.3 cm thick layers of beads in 100, 200, 300, 400, and 500 mg/L NP solutions, 

respectively. Finally, the column was completed by adding two more layers of beads in Milli-Q water 

with lengths of 2.5 cm and 0.6 cm, respectively.  

3.2.9.2 Acrylic Column NP Contrast Scans 

A 6500 mg/L solution of Fe3O4 NPs was injected into an acrylic column that was dry-packed with 

glass beads and saturated with water. These NPs were injected at a flow rate of 0.35 mL/min until they 

were visible approximately 5 cm into the column (see Figure 3-2). X-ray CT scanning was then performed 

to investigate contrast.  

This experiment was repeated substituting plastic pellets (cylindrical in shape, approximately 

0.5cm in length, 0.2 cm in diameter, density < 1 g/cm3) instead of glass beads as the column packing 

material (to lower background X-ray attenuation). These pellets were dry-packed into the column, and 

X-ray scans were performed before and after NP injection. 
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Figure 3-2: Acrylic column in Styrofoam holder showing injected NP solution (brown). 

3.2.9.3 Glass Column NaI Contrast Scans 

Various concentrations of NaI were injected into dry-packed glass columns saturated with Milli-

Q water to determine if X-ray CT contrast was attainable. The NaI was injected at 0.35 mL/min for 

approximately 20 minutes (corresponding to a slug that was approximately 5 cm long), followed by 

about 10.5 minutes of Milli-Q water to ensure the slug would be visible by X-ray CT scanning in the 

bottom or center of the column. The lowest concentration of NaI required to obtain contrast (referred 

to as the NaI lower detection limit) was determined by repeating contrast scans using decreasing 

concentrations of NaI until X-ray attenuation appeared uniform along the entire column. A grey-value 
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threshold was manually selected for each processed X-ray CT image to show blue and green sections of 

contrast, representing areas of higher and lower X-ray CT attenuation, respectively.  

3.2.10 Static Cuvette Contrast Scans 

X-ray CT contrast between water and NP suspension was established by scanning stacked 

cuvettes supported by a custom-built Styrofoam holder. Four X-ray CT cuvette contrast scans were 

performed between solutions of Fe3O4 NPs and water; one between Milli-Q Water and a 6500 mg/L 

Fe3O4 NP solution, one between Milli-Q water and a 650 mg/L NP solution, one between two cuvettes 

containing glass beads wet packed with Milli-Q water and a 6500 mg/L solution respectively, and lastly 

one between two cuvettes containing glass beads wet packed with Milli-Q water and a 650 mg/L Fe3O4 

NP solution respectively. Similar static cuvette contrast scans were also performed between solutions of 

Fe3O4 NPs and various concentrations NaI, as well as between solutions of bismuth ferrite NPs and NaI. 

3.2.11 Column Operation: Flow-through and X-ray CT Scan Experiments 

Due to space restrictions and the risk of water damage, conducting column flow within the X-ray 

CT instrument was not possible. Instead, during NP or NaI transport and X-ray CT scan experiments, the 

flow was periodically stopped, and the column disconnected from the main tubing so that the column 

could be placed in the X-ray CT. To achieve this, three-way ball valves were attached at the inlet and 

outlet of each column that allowed the flow to bypass the column when required. Before shutting off 

the flow, the inlet bypass valve was closed, followed by the outlet valve. The pump was then shut down 

and all necessary tubing was clamped to prevent leakage. After each scan was completed, all 

appropriate tubing was reconnected, the pump was turned back on, and the column flow was resumed 

by opening both inlet and outlet valves. This setup was used for both the glass and acrylic column 
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experiments. Between 6-8 scans were obtained for all NP and NaI transport and X-ray CT scan 

experiments. 

A MasterFlex®L/S® peristaltic pump was used in all column transport experiments. The flow rate 

was measured before each test directly from the connected tubing before being attached to the column. 

Additional flow rate measurements were also made from this tubing when it was disconnected from the 

column to allow for X-ray CT scanning to be performed.  

3.2.11.1 Fe3O4 NP Transport and X-ray CT Scans 

NP transport experiments were designed using the glass column to confirm the transport of the 

Fe3O4 NPs through the glass beads. Two glass columns were dry-packed with glass beads and saturated. 

Then a 500 mg/L Fe3O4 NP slug was injected into each column at a flow rate of 0.35 mL/min for 

approximately 20 minutes. Effluent samples were collected for four minutes at an interval of two 

minutes between each sample. In NP transport experiments where X-ray CT scanning was not 

performed the column was still periodically disconnected from the flow system using the methodology 

outlined in Section 3.2.11 for approximately 35 minutes (including set up and take down) to mimic the 

stop-flow periods required for X-ray CT scanning and transport experiments. These alternating periods 

of flow were repeated until six simulated scan times were completed. Flow was then continued until 

approximately 1-2 pore volumes of Milli-Q water had passed through the column after the colour of the 

effluent samples changed from brown to clear.  

3.2.11.2 Bismuth ferrite NP Transport and X-ray CT Scans 

Bismuth ferrite NP transport and X-ray CT scan experiments were performed to monitor NP 

transport through a packed column. A bismuth ferrite NP flow-through and X-ray CT scan experiment 
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was completed within a glass column dry-packed with glass beads and saturated with Milli-Q water. This 

experiment was performed at a flow rate of 0.8 mL/min. The NP solution was injected for approximately 

9.5 minutes. Scan 1 and Scan 2 were performed before injection and after the NP solution was visible 

about 2.5 cm from the bottom, respectively. Effluent samples were collected approximately every 10-12 

minutes for 2 minutes until the NPs reached the top of the column, after which samples were collected 

continuously every 2 minutes. Once the colour of the effluent changed from brown to clear, sampling 

was again performed every 10 minutes.  

3.2.11.3 NaI Transport and Scan Experiments 

Experiments in which NaI was injected through a packed and saturated glass column were 

developed to assess the effects of flow rate and concentration on X-ray CT contrast agent transport. A 

NaI solution of 50, 75, or 100 gI/L was injected at a flow rate of 0.35, 0.8, or 1.2 mL/min. A scan was 

completed before injection to serve as a baseline and ensure X-ray CT attenuation was equal throughout 

the column (i.e., the packing was homogeneous, and the density did not vary significantly throughout 

the column). Nine experiments were performed, the assigned naming scheme and associated 

experiment conditions are shown in Table 3-4. The NaI injection period and the sampling interval was 

dependent on the flow rate used (see Table 3-5) 
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Table 3-4: Naming scheme for NaI flow-through and X-ray scan experiments with associated flow rate 
and NaI solution injection concentrations. 

Experiment Name Injected NaI Concentration (gI/L) Flow Rate (mL/min) 

IFT-1 100 0.35 

IFT-2 100 0.8 

IFT-3 100 1.2 

IFT-4 75 0.35 

IFT-5 75 0.8 

IFT-6 75 1.2 

IFT-7 50 0.35 

IFT-8 50 0.8 

IFT-9 50 1.2 

 

Table 3-5: Summary of parameters for NaI flow though and scan experiments. The NaI slug injection 
times, the duration of flow with Milli-Q before the second X-ray CT scan, the total duration of flow 
between subsequent X-ray CT scans, and the effluent sampling interval are listed. 

Flow Rate 
(mL/min) 

NaI Injection 
Time (min) 

Milli-Q flow period before the 
second X-ray CT scan (min) 

Flow Interval between 
X-ray CT Scans (min) 

Sample Collection 
Length (min) 

0.35 10.75 20 15-25 5 

0.8 5.5 5 15-25 5 

1.2 3.5 4-5 8-14 2 

 

3.2.12 Troubleshooting X-ray CT Scanning and Image Processing  

Two troubleshooting experiments were performed to assess a conical shaped X-ray CT artifact 

observed in multiple processed images. First, a test was performed to evaluate if this effect was the 

result of shifting in the bead pack due to the effects of flow. An X-ray CT scan was performed after the 

packed acrylic column was subject to water transport at a low flow rate (0.1 mL/min) for approximately 
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2 hours, and again after the column had been subject to water transport at a high flow rate for around 2 

hours (36 mL/min). A second experiment was designed to determine if this effect was the result of the 

scanning or image processing. The acrylic column was dry-packed with glass beads and saturated with 

water, was scanned by X-ray CT while “up-right” (I.e., with the inlet on the bottom and outlet on the 

top) and again after flipping the column (i.e., with the inlet on the top and the outlet on the bottom).  

3.2.13 Flow-through Cuvette Contrast Scans 

Flow-through column experiments were downscaled further, to the size of a 4.5 mL cuvette, to 

determine the minimum concentration of NaI at which an X-ray contrast could be observed in a 

saturated glass bead column. A small hole (~3 mm) was drilled into the bottom and the lid of a 4.5 mL 

cuvette sufficient to accommodate small tubing (approximately 3 mm outer diameter and 1 mm inner 

diameter). The tubing was inserted in the bottom and the lid of the cuvette and was sealed in place 

using EVA glue sticks and a hot glue gun. These cuvettes were dry-packed using repeated 0.2 mm lifts 

followed by manual compaction with a plastic plunger cut to fit the dimensions of the cuvette (1 cm x 1 

cm square) until the cuvette was fully packed. Approximately 0.5 cm thick layers of glass wool were 

placed at the inlet (bottom) and outlet (top) of the cuvette to act as a baffle to distribute flow. Once the 

cuvette was fully packed, the lid was secured onto the cuvette and sealed using EVA glue sticks and a 

hot glue gun. Each cuvette designed in this fashion was used for a single test. In each experiment, a 

small slug was injected into the cuvette at a flow rate of 0.35 mL/min for approximately 2.5 minutes. 

The ends of each cuvette were then sealed by cutting the tubing and inserting a small amount of EVA 

hot glue into each of the tubing ends prior to X-ray CT scanning. 
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3.2.14 NaI Pycnometer Density Measurements 

The density of the NaI solutions was measured using a 10 mL pycnometer based on ASTM D369 

(ASTM International, 1985). The pycnometer was calibrated by filling it with DI water and leaving it in a 

water bath at room temperature for 30 minutes. The temperature of this bath was recorded to be 

constant at 22°C. The pycnometer was then dried, weighed, and the actual volume calculated based on 

the known density of water at 22°C (~0.99776 g/cm3 (Engineering ToolBox, 2003)), calibration data can 

be found in Appendix B-8). NaI solutions were prepared and placed in the pycnometer, left to sit in the 

room temperature water bath for 30 minutes, and then dried and weighed. The density of these 

solutions was calculated based on the known volume of the pycnometer. 

3.2.15 Analytical Methods  

The total iron and total bismuth concentration in samples collected from Fe3O4 and bismuth 

ferrite flow-through experiments were quantified through inductively coupled plasma (ICP) analysis 

using an OES detector. 1 mL of the Fe3O4 or the bismuth ferrite NPs, were digested in 0.2 mL of 

concentrated (12.1 M) hydrochloric acid or nitric acid, respectively, with under constant mixing on a 

shaker table for 12 hours. Then 8.8 mL of dilute (0.121 M) hydrochloric acid was added to each sample 

such that samples were diluted by 10x. The sample order was randomized to reduce systematic error. 

Total iron concentrations were then converted into nanoparticle concentrations based on the oxygen 

fraction of the nanoparticle structure (Fe3O4), as given by  

 [𝐹𝑒3𝑂4 𝑁𝑃𝑠] =
[𝐹𝑒]

1 − 0.27
 3-1 
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The Fe3O4 NP structure was previously characterized using energy dispersive X-ray spectroscopy 

in work by Linley et al. (2019). The exact composition of the bismuth ferrite NPs is not known with 

certainty, and thus the NP concentration could not be determined from total Bi measurements. As such, 

analysis of the bismuth ferrite NPs was performed using total bismuth concentration.  

NaI concentrations were analyzed using Ion Chromatography (IC; Dionex DX-500). Effluent NaI 

samples were diluted by a factor of 100 before IC analysis. Ten batches of NaI samples (between 25-50 

samples each) were analyzed with a new calibration curve being generated for each batch. The average 

calibration curve is shown in Appendix B-1.  

3.3 Results and Discussion  

3.3.1 Column Characterization 

An estimation of the porosity was required to determine the pore volume (PV) of each column 

system, which was used in determining the total duration of experiments (all tracer experiments ran 

until approximately 3 PVs had passed through the column). Modeling results of the Br tracer BTCs 

indicate the average effective porosity for the glass column packed with glass beads is approximately 

27.6 ± 8.2 %. The fitted porosity, dispersivity, and root mean square error (RMSE) for each bromide 

tracer experiment are displayed in Table 3-6, the BTCs showing observations and the fitted curves as 

generated by the model are found in Appendix B-2. The difference in the fitted effective porosity was 

large between Br-1 and Br-2 experiments, resulting in the large standard deviation on the estimate. 

Separately examining the effective porosities of Br-1 and Br-2 are 21.7 ± 2 %.and 36.4 ± 1.6 %, 

respectively. Columns were packed identically in all experiments, and as such, it is believed that the flow 

rate as measured from the inlet tubing was not representative of the flow-through the column systems 



 

65 

resulting in the large discrepancy between these two average porosities. While the flow rate does not 

affect the porosity of the system, it does influence the modeling results (as the porosity is estimated 

based on a calculation of average linear velocity and the flow rate input). During Br-1, for example, the 

flow rate was measured as 0.36 mL/min coming from the inlet tubing before connection to the columns, 

however, the flow rate measured from the effluent of columns A and B during Br was 0.325 and 0.37 

mL/min respectively. The flow rate was only measured from the influent tubing for Br-2. Recovery 

percentages for all tracer experiments were calculated based on a trapezoidal approximation on the 

area under the curve and the assumption of a constant flow rate. As such, fluctuations in the flow rate 

may have influenced the accuracy of these calculations, see (Section 3.3.3). 

Table 3-6: Summary of fitted porosity and dispersivity by 1-DUSAT modeling coupled with OSTRICH 
optimization for all bromide tracer experiments. 

Experiment Porosity Dispersivity (m) RMSE 

Br-1-A 0.21 8.91E-04 28.8 

Br-1-B 0.24 1.12E-03 29.4 

Br-1-C 0.20 7.69E-03 56.5 

Br-2-A 0.38 5.37E-04 8.3 

Br-2-B 0.35 6.60E-04 12.5 

Average 0.28 2.18E-03  

Standard Deviation 0.08 3.09E-03 

 

3.3.2 Glass Column X-ray CT Scans to Establish Fe3O4 Nanoparticle Contrast  

To evaluate the ability of X-ray CT to monitor the transport of engineered NPs in a saturated 

representative geologic porous medium at a typical column scale, the capacity of the NPs to generate a 

discernable contrast relative to the background saturated porous material needed to be verified. Two 

preliminary scans were performed to confirm that the Fe3O4 NPs would be distinguishable from the 

saturated glass beads. 
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The result of Fe3O4 NP Contrast Scan 1 is shown in Figure 3-3. In this figure, and all subsequent 

X-ray CT scan results, the blue and green colors represent areas of higher and lower X-ray attenuation, 

respectively. The location of the blue section in Figure 3-3 (left) generally aligns with the location of the 

NPs (brown section), as seen in the photo of the column in Figure 3-3 (right). It must be noted that the 

3-D spatial image produced from an X-ray CT scan provides attenuation information through the entire 

sample, and thus, can give an indication of the NP tracer location within the core of the packed column. 

Conversely, visual inspection only provides evidence on the NP slug location near the column wall. 

Indeed, the uniformity of the processed scan image is inconsistent with the visual NP distribution 

evidenced by the column photo. To assess the cause of this discrepancy, the column was carefully 

unpacked in thin layers (approximately 1 cm thick) to obtain visual confirmation of the NP distribution 

throughout the column (see Appendix B-4 for images). It was revealed that NP fingering had occurred, 

likely due to gravity (see Section 3.3.10), resulting in an uneven spatial distribution of the NPs. Overall, 

these results indicated that glass beads saturated with Fe3O4 NP suspension at 500 mg/L were 

distinguishable from glass beads saturated with Milli-Q water using X-ray CT.  

The result of Fe3O4 NP Contrast Scan 2 (Figure 3-4) shows eight layers comprising of (from 

bottom to top) glass beads saturated with Milli-Q water, 100, 200, 300, 400, and 500 mg/L NP solutions, 

and finally, two layers saturated with Milli-Q water. The increasing concentration of blue pixels from 

Layer 3 to 7 coincide with increasing NP concentrations, providing evidence that X-ray attenuation is 

influenced by the concentration of nanoparticles in a sample. However, the attenuation observed in 

Layer 8 (which is absent of NP) appeared equivalent to that seen in Layer 7 (which contained 500 mg/L 

NP). Furthermore, Layer 2 (Milli-Q only) exhibits similar attenuation to Layer 4 (300 mg/L NP), and the 

attenuation between the three layers saturated with only Milli-Q water (Layers 2, 8 and 9) vary 
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substantially, with higher X-ray attenuation evident at the top of the column. Two key factors influence 

X-ray attenuation, the density of the material the X-rays are passing through, and the atomic numbers of 

the elements that comprise the material (Denison et al., 1997; Taina et al., 2008; Wellington and 

Vinegar, 1987). The identical composition of layers 2, 8, and 9 should result in equivalent or similar X-ray 

attenuation between these sections in the processed image. The X-ray attenuation is higher than 

expected for these layers and cannot be explained by NP diffusion from adjacent layers or differences in 

density due to packing, suggesting that the observed differences in X-ray attenuation are not solely due 

to the presence of NP the column.  

The results of the processed images presented in Figure 3-3 and Figure 3-4 both display an 

observable contrast in the column where the NPs are present. However, they also show X-ray 

attenuation to be stronger at the top of the column relative to the bottom regardless of the location of 

the NPs. This contrast shape is discussed in more detail in Section 3.3.6. 
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Figure 3-3: X-ray CT contrast scan of glass column wet packed with glass beads using only Milli-Q water 
in the bottom half and Fe3O4 NP solution in the upper half (left), and a photo of the same column (right). 
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Figure 3-4: Segmented Column NP Contrast Scan 2 showing the processed X-ray CT scan (left) and a 
photo of the column before the scan (right). The processed image shows (from bottom to top) a Milli-Q 
saturated bead section, 100, 200, 300, 400, 500 mg/L NP sections, and then two sections of Milli-Q 
beads.  

3.3.3 Fe3O4 NP Transport and X-ray CT Scans 

After establishing the relationship between NP concentration and X-ray attenuation (Figure 3-3 

and Figure 3-4) a NP transport and scan experiment was performed. During this experiment, six X-ray CT 

scans were completed. Table 3-7 lists the duration of the flow and stop-flow periods between scans. The 

NP slug (brown) is seen migrating from the bottom (Figure 3-5 A) to top (Figure 3-5 C) in the images of 

the column, which were taken just before Scans 2, 4, and 6, respectively. The position of the 

nanoparticle slug in the column did not correlate with areas of high X-ray attenuation from the 
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corresponding X-ray CT scan image. This result suggests that the attenuation occurring as a result of the 

NP presence is not significant enough to be distinguished from the attenuation resulting from the 

saturated glass beads and column. Possible reasons explaining the absence of X-ray contrast at the 

location of the NP slug include (1) high background X-ray attenuation by the column or porous media, or 

(2) insufficient X-ray attenuation from the NP slug. Potential options to improve X-ray CT contrast 

include (1) decreasing the scale and density of the porous medium and column which will reduce the 

background X-ray attenuation, (2) increasing the concentration of the Fe3O4 NP solution X-ray 

attenuation by the NPs, or (3) developing a NP solution that has a higher X-ray attenuation. The only 

changed condition between this Fe3O4 NP tracer and scan experiment, Fe3O4 NP Contrast Scan 1 (see 

Figure 3-3) and Fe3O4 NP Contrast Scan 2 (see Figure 3-4) is the method in which the NPs were 

introduced into the column (i.e., wet packed into place rather than injected). Thus, the inability to 

distinguish the NP slug in the processed X-ray CT images during this experiment implies that the contrast 

observed in the two previous Contrast Scan experiments may have been due to a “conical effect” 

artifact (more details in Section 3.3.6). 

Figure 3-6 shows the NP BTC developed from effluent samples measured by ICP analysis. The 

standard deviation on ICP NP concentration measurements (after conversion of total iron to NP 

concentration) was determined to be ± 0.11 mg/L based on results from calibration checks made every 

10 samples using a stock 10 mg/L total iron solution. Assuming a constant flow rate of 0.36 mL/min, the 

estimated mass recovery was 86.4 ± 0.02% (error calculated based on propagation of error from a 

trapezoidal approximation of the curve). The estimated mass recoveries calculated from the BTCs of four 

Br- tracer experiments performed in the saturated glass bead packed glass columns were found to range 

from 84-85 %, assuming a constant flow rate throughout the experiment, which was measured from the 



 

71 

inlet tubing before connection to the column. The cause for deviation from an expected 100% mass 

recovery is an indication that the measured flow rate was not representative of the column system since 

NaBr is a known conservative tracer. The flow was measured at the beginning of each experiment 

directly from the connective tubing before being attached to the column. Thus the actual flow rate 

during column operation may have been affected by back-pressure. The same issue is believed to have 

occurred for the Fe3O4 NP transport experiment. Thus, the similar mass recoveries between the Fe3O4 

NPs and the Br tracer experiments suggest that the NPs employed in this work exhibit efficient transport 

through in an inert glass bead porous medium for a distance of at least 15.24 cm. This result is in 

agreement with previous Fe3O4 transport experiments performed in a 15 cm long column in clean 

Borden sand (Linley et al., 2019b). 
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Figure 3-5: Fe3O4 NP transport X-ray CT results showings (A) Scan 2, (B) Scan 4, and (C) Scan 6. A phot of 
the column taken immediately before each scan is placed to the right of each processed scan image. In 
these processed images, the white regions represent areas of higher X-ray attenuation, while the black 
regions represent areas of lower X-ray attenuation. 
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Figure 3-6: Fe3O4 NP breakthrough curve. Injection began after 12 minutes of flow with Milli-Q water 
and was stopped after approximately 21.5 minutes of flow. The time of the stop-flow periods required 
for each X-ray CT scan have been removed for clarity. The stop-flow periods relative to effluent sample 
points is shown by the vertical black dashed lines. Scan 1 was performed before sample collection. The 
stop-flow periods for Scans 2, 3, 4, 5 and 6, were approximately 61, 50, 34.5, 40, and 45 minutes, 
respectively.  
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Table 3-7: Flow and stop-flow time before X-ray CT scans for the Fe3O4 NP transport and scan 
experiment. 

Scan ID Flow Duration Before Scan (min) Stop-flow Time by end of Scan (min). 

Scan 1 26.5 (21.5 min NP injection + 5 min Milli-Q water) 55.2 

Scan 2 10 61 

Scan 3 12 50 

Scan 4 12 34.5 

Scan 5 10 40 

Scan 6 10 45 

3.3.4 Fe3O4 NP Cuvette Contrast Scans 

Although there are several differences between the experiments performed in this research and 

those performed by Linley et al. (2019), the largest are the scale and saturated condition. Linley et al. 

(2019) successfully established Fe3O4 NP X-ray CT contrast from clean sand in 4.5 mL cuvettes under dry 

conditions. Thus, a series of contrast experiments were designed at the same scale to investigate if a 

Fe3O4 NP solution could be distinguished from water using X-ray CT. Four contrast scans were performed 

on two stacked cuvettes filled with (A) 6500 mg/L Fe3O4 NP solution (top cuvette) and Milli-Q water 

(bottom cuvette), (B) 650 mg/L Fe3O4 NP solution (top cuvette) and Milli-Q water (bottom cuvette), (C) 

glass beads wet packed with 6500 mg/L Fe3O4 NP solution (top cuvette) and glass beads wet packed with 

Milli-Q water (bottom cuvette), and (D) glass beads wet packed with 650 mg/L Fe3O4 NP solution (top 

cuvette) and glass beads wet packed with Milli-Q water (bottom cuvette). The processed images of 

these scans are shown in Figure 3-7. In Figure 3-7 A the high concentration of blue pixels in the top 

cuvette indicates that the Fe3O4 NPs have a higher X-ray attenuation that water and can be 

distinguished. In Figure 3-7 B, C, and D, the same observation holds as the grey-value threshold was 

selected such that the lower X-ray attenuating voxels in the bottom cuvette were completely removed 
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from the image leaving only the higher attenuation voxels in the top cuvette. This observation indicates 

that the variation in X-ray attenuation between the Fe3O4 NP solution and Milli-Q water is sufficient for 

X-ray CT contrast to exists, which further indicates that the attenuation resulting from the glass beads 

and the glass column high enough to mask this difference. These findings support the prior conclusion 

that decreasing the scale and density of the porous medium and column or an increase in the 

concentration of the Fe3O4 NP solution was required for the difference in X-ray attenuation to be 

sufficient enough to observe X-ray CT contrast. However, it is also recognized in Figure 3-7 B, C, and D 

that the remaining voxels show a conical X-ray attenuation pattern. Thus, this contrast may be the result 

of a “conical effect” artifact (see Section 3.3.6 for more details) rather than due to an uneven 

distribution of the Fe3O4 NPs. 
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Figure 3-7: Liquid to liquid X-ray CT processed images between water (bottom cuvette) and Fe3O4 NP 
solution (top cuvette). Showing (A) 6500 mg/L Fe3O4 NP solution compared to water, (B) 650 mg/L Fe3O4 
NP solution compared to water, (C) glass beads wet packed with 6500 mg/L Fe3O4 NP solution compared 
to glass beads wet packed with water, and (D) glass beads wet packed with 650 mg/L NP solution 
compared to glass beads wet packed with water. In (A), The blue and green sections represent areas of 
higher and lower X-ray attenuation, respectively. In (B), (C) and (D), the grey-value threshold has been 
set such that the lower X-ray attenuating voxels have been removed from the image and thus the 
remaining dark grey voxels shown here represent the higher X-ray attenuating regions of the sample.  
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3.3.5 Acrylic Column X-ray CT Scans to Establish Fe3O4 Nanoparticle Contrast  

Results from the cuvette contrast scans suggested that the X-ray attenuation resulting from the glass 

beads and glass column may have effectively masked the difference in X-ray attenuation between the 

Fe3O4 NPs and the Milli-Q water-saturated pore spaces. Thus, Fe3O4 NP contrast scans were performed 

in a less dense (relative to glass) and smaller acrylic column, which should result in a lower X-ray 

attenuation by the apparatus and packing material (Denison et al., 1997; Taina et al., 2008; Wellington 

and Vinegar, 1987). Furthermore, the X-ray CT results in the glass column suggested that Fe3O4 NP 

contrast may be observed when the NPs are wet packed into place rather than injected. Thus, the 

column was dry-packed, saturated with water, and the NPs were introduced by injection to ensure that 

the observed contrast was due to the presence of the NPs in the column and not due to variations in 

density distributions introduced during the wet packing process. A scan of the packed and saturated 

acrylic column before an injection Fe3O4 NP at 6500 mg/L shows a higher X-ray attenuation in the center 

of the column, followed by the top and then the bottom (Figure 3-8 A). After injection, these zones of 

contrast seem to shift slightly, with the bottom of the column showing higher X-ray attenuation than the 

center. However, the top of the column, where no NPs were present, also displayed a higher 

attenuation than the center (Figure 3-8 B), which is an indication that this change, in contrast, is not 

solely due to the presence on the Fe3O4 NPs. This result suggests that the attenuation resulting from the 

glass beads and the acrylic column sufficiently high to mask the difference in attenuation between the 

Fe3O4 NP solution and Milli-Q. Thus, the Fe3O4 NP solution is not suitable as an X-ray CT contrast agent in 

saturated glass beads at the scale of this acrylic column (0.9 cm diameter, approximately 10 cm length) 

at a concentration of 6500 mg/L. 
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Figure 3-8: Processed X-ray CT images of the acrylic column packed with glass beads. Showing (A) the 
packed column saturated with water before NP injection and (B) after NP injection. Lower X-ray 
attenuating voxels “vanish” from the figure first during processing, the remaining dark grey voxels 
shown here represent the higher X-ray attenuating regions of the sample.  

 

3.3.6 Acrylic Column Scans for X-ray CT Troubleshooting 

A consistent observation in many of the X-ray CT column images was a “conical effect”, in which 

a higher X-ray attenuation was observed near the top of the column that extends downward in the 

shape of an upside-down cone (for example see Figure 3-4, Figure 3-7 B, C, and D). No change, in 

contrast, was observed in an acrylic column that was wet packed with glass beads and scanned after 

periods of water injection of low and high flow (0.1 and 36 mL/min). This result suggests that a change in 

fluid pressure due to fluid flow did not impact the density profile within the column (Figure 3-9 A and B). 

A second NP contrast scan was performed in the acrylic column to verify the results observed in Figure 
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3-8. A 6500 mg/L NP solution was injected into the column until it was visible approximately 5cm from 

the inlet before performing a third X-ray CT scan. The processed image of this scan revealed no change 

in the observed X-ray attenuation following this injection (Figure 3-9 C). This further indicates that the 

attenuation resulting from the glass beads and the acrylic column is too high for the difference in 

attenuation between the Fe3O4 NP solution and Milli-Q water to be distinguished.  

To assess if the conical shape of X-ray CT attenuation was an artifact arising from the scanning 

or image processing the acrylic column was scanned both “upside right” (i.e., the inlet of the column on 

the bottom and outlet on the top) and after being inverted (i.e., the inlet of the column on the top and 

outlet on the bottom). This column was packed with plastic pellets (cylindrical in shape, approximately 

0.5cm in length, 0.2 cm in diameter, density < 1 g/cm3), to minimize the attenuation resulting from the 

porous media (Denison et al., 1997; Taina et al., 2008; Wellington and Vinegar, 1987). Figure 3-10 shows 

the resulting processed images. The conical contrast shape is observed before and after inversion, which 

confirms that this effect is an artifact of the X-ray CT scanning or processing. If the observed X-ray 

attenuation was the result of material variations (such as packing density), then the conical contrast 

should have been inverted with the column. A conceptual schematic of the proposed explanation for the 

cause of this artifact is shown in Figure 3-11. Theoretically, X-ray attenuation will be highest passing 

through the core (i.e., along the longitudinal central axis) of the column as the X-rays pass through more 

material (Figure 3-11 A). The bottom of the column is clamped into a rotating sample holder; thus, any 

alignment issue is more exaggerated near the top. As a result, the thickest part of the column (i.e., the 

center) is farther away from the central axis relative to the sample holder, skewing the area of highest X-

ray attenuation to the left and right of this axis as the sample rotates (Figure 3-11 B). Such misalignment 
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may result in a broader range of high attenuation voxels near the top of the column, moving downward 

once the scan is reconstructed into the 3-D image (Figure 3-11 C). 

The results of these troubleshooting experiments suggest that the presence of the NPs may not 

have caused the change in contrast observed in the initial acrylic column scan to establish Fe3O4 NP 

contrast (Figure 3-8). The absence of contrast observed in the acrylic column flow rate experiment 

following the injection the Fe3O4 NP (Figure 3-9) confirmed that the attenuation caused by the NPs was 

not sufficient to be distinguished from the attenuation of the acrylic column saturated and packed with 

glass beads. Furthermore, the confirmation of the “conical effect” being an artifact of the X-ray CT 

scanning or image processing provides evidence that the findings from Fe3O4 NP Contrast Scan 1 and 2 in 

the glass column, and from the two Fe3O4 NP contrast scans performed in the acrylic column, were due 

to an off-axis column alignment. The stacked cuvettes in the Styrofoam holder also had a sample height 

of approximately 10 cm (similar to the acrylic column), thus, the observations made in the 3.3.4 Fe3O4 

NP Cuvette Contrast Scans (see Figure 3-7 B, C and D) may have also been impacted by sample 

misalignment. 
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Figure 3-9: X-ray CT scan of the acrylic column showing (A) glass beads saturated with Milli-Q water after 
low flow (0.1 mL/min), (B) the column after high flow (36 mL/min), and (C) the column after injection of 
6500 mg/L NPs. Only voxels above the selected threshold grey value are visible in the processed scan 
images, thus, the remaining dark grey voxels shown here represent the higher X-ray attenuating regions 
of the sample.  
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Figure 3-10: X-ray CT scans of (A) the acrylic column packed with plastic pellets and saturated with 
water, and (B) the same column after being inverted. Only voxels above the selected threshold grey 
value are visible in the processed scan images, thus the remaining dark grey voxels shown here 
represent the higher X-ray attenuating regions of the sample.  
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Figure 3-11: Conceptual schematic of the presumed cause for the “conical effect” scanning artifact for a 
cylindrical homogenous sample, such as the glass column that is saturated and packed with glass beads. 
(A) represents a top view of the X-ray CT system and highlights the thickest portion of a column relative 
to the X-ray source and detector. (B) depicts a column that is slightly off-center of its central axis relative 
to the sample holder as it rotates in the X-ray CT system, the theoretical zone of highest X-ray 
attenuation as a result of sample thickness is highlighted. (C) shows a potential 2-D slice from the 
resulting 3-D reconstructed image of the X-ray CT scan. 

3.3.7 Flow-through Cuvette Contrast Scans with Fe3O4 NPs and NaI  

A cuvette was modified to allow flow-through and was subject to an injection with a 6500 mg/L 

Fe3O4 NP solution before X-ray CT scanning to determine if the attenuation contrast observed in the 

Fe3O4 NP Cuvette Contrast Scan between two stacked cuvettes, the top cuvette containing glass beads 

wet packed with 6500 mg/L Fe3O4 NP solution and the bottom cuvette containing glass beads wet 

packed with Milli-Q water (Figure 3-7 D), was the result of a “conical effect” artifact or due to the 

presence of the Fe3O4 NP solution. This cuvette was dry-packed with glass beads and saturated with 

Milli-Q water before NP injection. In the processed image (Figure 3-12), no change in X-ray attenuation 
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is observed following the injection of the NP solution. This result suggests that the X-ray attenuation 

occurring due to the glass beads under saturated conditions is large enough to mask any differences in 

attenuation arising due to the presence of the NPs at the cuvette scale (i.e., 1 cm cx 1 cm x 4.5 cm and 

an X-ray CT voxel size of approximately 95-97 μm). Furthermore, a conical contrast is apparent in Figure 

3-12, indicating that the “conical effect” artifact can arise in longitudinally dominating samples where 

the sample height: width ≥ 4.5:1 (i.e., the scale of the 4.5 mL cuvettes).  

To confirm that an injected fluid could be distinguished from the glass beads and water, a high 

concentration NaI solution (100 gI/L) was injected approximately 2.25 cm into a flow-through cuvette 

that was dry-packed and saturated with water. The resulting processed image is shown in Figure 3-13, 

with the green and dark grey represents areas saturated NaI and water, respectively. A clear contrast is 

discernible with the high concentration of NaI used resulted in a “shine-through artifact” (e.g., (Abdul-

Fatah et al., 2009)). This confirms that if the difference in X-ray attenuation is sufficient between an 

injected contrast agent and the background saturating fluid, porous media, and column, a contrast will 

be discernable. 

Additional flow-through cuvettes were injected with decreasing concentrations of NaI solutions 

to a distance of approximately 2.25 cm from the inlet and scanned to determine the NaI concentration 

threshold where contrast was no longer observed in a processed image for the given sample conditions 

(see Appendix B-5). A concentration of 15 gI/L was determined as the lower detection threshold for the 

packed and saturated flow-through cuvettes. Based on this lower NaI detection threshold, any solution 

with an X-ray attenuation equal or higher than that of a 15 gI/L solution should be distinguishable by the 

X-ray CT system once injected into a cuvette packed with glass beads and saturated with water.  
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Figure 3-12: Processed X-ray CT scans of flow-through cuvette packed with glass beads and saturated 
before 6500 mg/L Fe3O4 NP injection (A) and after injection (B). Only voxels above the selected threshold 
grey value are visible in the processed scan images, thus the remaining dark grey voxels shown here 
represent the higher X-ray attenuating regions of the sample.  
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Figure 3-13: Processed X-ray CT image of a flow-through cuvette saturated with water and packed with 
glass beads after injection with 100 gI/L NaI solution. The green areas represent the areas of highest X-
ray attenuation followed by grey and then black areas, respectively.  

 

3.3.8 Static Cuvette Contrast Scans Between Fe3O4 NPs and NaI  

In the previously reported stacked cuvette contrast scans between water and Fe3O4 NP 

suspensions, the relative X-ray attenuation was successfully compared (Section 3.3.4). Thus, similar 

experiments were repeated to compare the Fe3O4 NP and NaI solutions. Known concentrations of Fe3O4 

NP solution were compared to varying concentrations of NaI until the relative X-ray attenuation 

between the two stacked cuvettes was approximately equal (i.e., the grey-value threshold for the voxels 

should be roughly equivalent). The NP solution was placed in the bottom cuvette to avoid any false 

contrast observations that may have arisen from the “conical effect” artifact. 
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The results from these liquid to liquid contrast scans are summarized in Figure 3-14 (see Figure B 

7 in Appendix B-6 for the processed X-ray CT images). The highest concentration of NP suspension 

tested was 120 g/L. At this concentration, the solution was very viscous and difficult to manipulate. 

Furthermore, any mixing or pipetting of the 120 g/L NP solution resulted in foaming, likely due to the 

increased amount of stabilizing surfactant used to achieve this high concentration. The highest 

concentration that was observed to be workable (i.e., had a workable viscosity to flow and potentially 

be injected into a cuvette or column) was 50 g/L. A linear relative X-ray attenuation relationship was 

found to exist between the Fe3O4 NPs and Nai with an equivalence ratio of ~5:1 NP:NaI (e.g., 1 gI/L NaI is 

equivalent in X-ray attenuation to 5 g/L Fe3O4 NP) up to a 50 g/L NP solution, (Figure 3-14). Observations 

indicated that the X-ray attenuation of a ~70 g/L Fe3O4 NP solution would be approximately equivalent 

to a 15 gI/L solution. The viscosity of the NPs at this concentration was deemed too high to be injected 

into a flow-through cuvette. Thus, no X-ray CT contrast scan was performed at this concentration. 

Therefore, Fe3O4 NP solution is not suitable for use as an X-ray CT contrast agent in a glass bead 

saturated porous medium at any of the three scales used in this work (i.e., the glass column, acrylic 

column, or cuvettes). 
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Figure 3-14: Comparison of equivalent X-ray CT attenuation between NaI and Fe3O4 NP solutions. The 
lower detection limit of NaI in saturated glass beads, as well as the observed NP workability threshold, 
are shown. The R2 value of the trendline shown is 0.9998.  

  



 

89 

3.3.9 Glass Column NaI Contrast Scan 

To utilize NaI as an X-ray CT imaging contrast agent for tracer experiments it was first necessary 

to determine an injection concentration NaI at which attenuation contrast would be observed. Thus, 

Two contrast scans were performed using 50 and 100 gI/L NaI solutions, respectively (Figure 3-15). In 

both processed images, a clear contrast is observed at the bottom of the column where the NaI is 

present. 

The lower detection threshold of NaI in the glass column saturated and packed with glass beads 

was established by injecting decreasing concentrations of NaI into a packed and saturated glass column 

and performing X-ray CT scans. In Figure 3-16 A and B, it is evident by the blue pixels at the bottom of 

the column that the NaI injected at concentrations of 25 and 15 gI/L has a high enough attenuation to 

generate an observable contrast. This contrast is also apparent for injection concentrations of 5 and 10 

gI/L (Figure 3-16 C and D), however, the presence of the blue pixels at the top of these processed images 

indicates that the “conical effect” impacted results at these concentrations (Section 3.3.6). This suggests 

that either there were no issues with alignment in the 15 and 25 gI/L scans, or that “conical effect” 

artifacts are negligible when differences in relative X-ray attenuation are large enough. Although 

contrast is observed at the base of the processed image for the 5 and 10 gI/L injection scans, the lower 

detection threshold for NaI in the glass column saturated and packed with glass bead was determined to 

be 15 gI/L due to the absence of this artifact (Figure 3-16 B) at this concentration. 
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Figure 3-15: Initial glass column NaI X-ray CT contrast scans showing injection of (A) 50 gI/L and (B) 100 
gI/L NaI solutions. The bright white and grey regions represent areas of higher and lower X-ray 
attenuation, respectively. 
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Figure 3-16: Glass column NaI minimum detection limit X-ray CT contrast scans for injections of (A) 25 
gI/L, (B) 15 gI/L, (C) 10 gI/L, and (D) 5 gI/L solutions. 
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3.3.10 Glass Column NaI Transport Experiment and Scans 

X-ray CT tracer experiments were performed using NaI to assess the effects of concentration 

and flow rate on the transport of an X-ray CT contrast agent. Nine NaI tracer and X-ray CT scan 

experiments were performed using concentrations of either 50, 75, or 100 gI/L at flow rates of either 

0.36, 0.8, or 1.2 mL/min. As an example, Figure 3-17 shows the X-ray CT scan results for experiment IFT-

9 (50 gI/L injection and flow rate of 1.2 mL/min), the processed scan images for IFT-1, and IFT-3 to 8 

experiments are provided in Appendix B-7. The migration of the NaI slug is apparent after injection as 

the concentration of blue pixels moves from the bottom to the top of the column. This behavior was 

observed for the other IFT experiments, thus indicating that the migration of a NP solution with 

sufficient X-ray attenuation should be observable in X-ray CT “snap-shots” of the column. 

A memory issue occurred with the X-ray CT computer during experiment IFT-2 that resulted in a 

2.5 h delay between Scan 3 and Scan 4 (see Figure 3-18 B and C). The change in contrast between Scan 3 

and Scan 4 suggests that the NaI slug sank towards the bottom of the column. Following this 

observation, water was injected into the column for approximately 26 minutes to migrate the slug to the 

top of the column (see Figure 3-18 D). The inlet and outlet valves were then closed, and the column was 

left for 2 hours before Scan 6 was performed, where the shape and location of the observed contrast 

shifted again (see Figure 3-18 E). After being left for approximately four days, no contrast was visible in 

the processed X-ray CT image of the column (see Figure 3-18 F). The absence of contrast in Figure 3-18 

(F) indicates that (1) the NaI slug may have sunk back into the injection tubing, or (2) the NaI 

concentration had dispersed equally within the column such that the X-ray attenuation was similar 

throughout. 
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The results of experiment IFT-2 suggest that the density difference between the NaI solution 

and the injected water was significant enough for viscous fingering to occur. Closer examination of 

processed images from Scan 2, Scan 3, and Scan 4 for experiment IFT-9 (Figure 3-17 A, B, and C) also 

reveals a longitudinal expansion of the observed contrast as flow and stop-flow periods continued. The 

displacement of freshwater by an above denser NaCl solution has also been observed by Menand and 

Woods (2005). Menand and Woods (2005) introduced a term known as the “gravity number” (NG) to 

describe the ratio of gravitational to background fluid velocity as a means of describing the gravitational 

instability between two miscible fluids. The gravity number was later modified by Flowers and Hunt 

(2007) and is given by: 

 𝑁𝐺 =
𝑘𝑔(𝜌𝑏𝑜𝑡 − 𝜌𝑡𝑜𝑝)

𝑛𝜇𝐷|𝑈|
 3-2 

where k is the permeability, g is the acceleration due to gravity, ρbot is the density of the lower fluid, ρtop 

is the density of the upper fluid, n is the porosity, μD is the dynamic viscosity of the displacing fluid, and 

U is the pore water velocity. Flowers and Hunt (2007) also discuss the idea of the “mobility ratio” (M), a 

parameter that describes the ratio of the resident fluid viscosity to the displacing fluid viscosity given by:  

 𝑀 =
𝜇𝑅
𝜇𝐷

 3-3 

where μR is the resident fluid viscosity and μD is the displacing fluid viscosity. Using the mobility ratio and 

the gravity number Flowers and Hunt (2007) show that the criterion for stable miscible displacement 

(i.e., the conditions that must be met for one fluid to displace another without the formation of viscous 

fingers), based off the original criterion for stable miscible displacement demonstrated by Hill and P 

(1952), is defined by: 

 𝑁𝐺 > 𝑀 − 1 3-4 
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Using this criterion, Flowers and Hunt (2007) show that stability or instability for a given 

displacement between two fluids can be quickly determined based on its position in one of four 

potential regions of stability (see Regions I, II, III, and IV in Figure 3-19). Regions II and IV represent 

inherently stable and unstable conditions, respectively, as both viscosity and density serve to either 

stabilize or destabilize the system. In regions I and III, the stability between the two fluids is dependent 

on the viscosity and density differences. In Region 1, the system is unstable due to viscous forces but can 

be stabilized by gravity (i.e., a less dense fluid above a more dense fluid). In contrast, in Region III, the 

system is gravitational unstable but can be stabilized by viscous forces (i.e., the viscosity of the 

displacing fluid is higher than the viscosity of the resident fluid). The NaI transport and scan experiments 

can be broken down into two experimental conditions; (1) the displacement of water by the NaI solution 

as NaI is initially injected into the column, and (2) the displacement of NaI by water as the NaI slug 

moves through the column. It is recognized that condition (1) also exits concurrently with condition (2) 

until the NaI slug reached the top of the column.  

Figure 3-19 plots the calculated values for NG and M for all IFT experiments during flow 

conditions (1) and (2). The viscosities of the water and the NaI solutions were not measured and were 

taken to be the viscosities of the respective fluids at 25°C and 100 kPa (Abdulagatov et al., 2006; 

Engineering ToolBox, 2004). As expected, the experimental conditions are stable for all NaI transport 

experiments during the injection of NaI. However, the conditions become unstable for all concentrations 

of NaI used once the water was injected into the column to facilitate the NaI slug to migrate, and thus 

viscous fingering is expected to occur. This analysis is in agreement with the movement and lateral 

elongation for the of the contrast regions observed in Figure 3-17 and Figure 3-18. Viscous fingering is 
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expected to have occurred even if the NaI was injected at a concentration of 15 gI/L (i.e., the lower 

detection threshold determined for the glass column saturated and packed with glass beads).  

The BTC for experiment IFT-9 ignoring the stop-flow times required for X-ray CT scanning is 

shown in Figure 3-20 (see Appendix B-9 for BTCs for the other NaI transport and scan experiments). 

Note that a complete BTC was not created for IFT-2 since effluent samples were not collected following 

the four days of no-flow used to assess the sinking and spreading of the NaI slug. The BTCs coupled with 

the processed scan images for all IFT experiments indicate that the flow-rate and concentration have 

little effect on the ability of X-ray CT to monitor the migration of a contrast agent through a saturated 

glass bead porous medium, outside of the viscous fingering observed. Thus, these results indicate that a 

NP solution can be used as an X-ray CT contrast agent at flow rates between 0.36 – 1.2 mL/min 

(corresponding to average linear velocities of 0.25 and 0.85 cm/min, respectively, in the glass column 

system when packed with glass beads). The concentration of a NP solution X-ray CT contrast agent must 

only be considered in terms of the value needed to obtain an X-ray attenuation contrast, and as it 

relates to density to predict viscous fingering effects.  
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Figure 3-17: IFT-9 X-ray CT processed images showing (A) Scan 2, (B) Scan 3, (C) Scan 4, (D) Scan 5, (E) 
Scan 6, and (F) Scan 7. Scan 1 was performed before NaI injection. The flow time before Scans 2 – 7 were 
3.5 minutes of NaI injection plus 11 minutes of flow with Milli-Q water, then 4.5, 4.5, 6, 6, and 6 minutes 
of flow with Milli-Q Water, respectively. The stop-flow periods required for Scans 2-7 were 55.5, 60.5, 
60.5, 62, 80, and 77 minutes, respectively.  
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Figure 3-18: IFT-2 X-ray CT processed images showing (A) Scan 2, (B) Scan 3, (C) Scan 4, (D) Scan 5, (E) 
Scan 6 and (F) Scan 7. Scan 1 was performed before NaI injection. The flow time before Scans 2 – 5 were 
5.5 minutes of NaI injection plus 5 minutes of flow with Milli-Q water, then 10, 8, and 26 minutes of flow 
with Milli-Q Water, respectively. The stop-flow periods for Scans 2-6 were 64.5, 90, 150, 40, 144 
minutes, respectively. The total stop flow period before scan 7 was four days. No flow occurred after 
scan 6. 
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Figure 3-19: Theoretical stability analysis for the displacement of two miscible fluids. The blue triangular 
region represents stable flow conditions. The conditions for all IFT experiments are shown by blue and 
red points. The red points represent the initial NaI injection where NaI is displacing water in the column 
(flow condition 1), and the blue points represent the subsequent displacement of the NaI solution by 
water (flow condition 2). Viscous fingering is expected as soon as water begins to displace NaI in the 
column. The orange points represent the theoretical stability of the system for a 15 gI/L solution. 
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Figure 3-20: BTC for IFT-9. The time of the stop-flow periods required for each X-ray CT scan has been 
removed for clarity. The location of each stop-flow period for each scan relative to the effluent sample 
points is shown by the vertical black dashed lines. Scan 1 was performed before sample collection. The 
stop-flow times for Scans 2 through 8 were approximately 55.5, 60.5, 66.5, 62, 80, 58 minutes, 
respectively. 

3.3.11 Bismuth ferrite NP Contrast and Flow-through Scans 

For the bismuth ferrite NPs to generate sufficient contrast to be distinguished from the glass 

beads and glass column they must have an X-ray attenuation approximately equivalent to that of a 15 

gI/L solution. Thus, a stacked cuvette contrast scan was performed between 15 gI/L and approximately 
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7.8 gBi/L bismuth ferrite NP solutions. As visible by the concentrations of blue pixels in Figure 3-21, the 

bismuth ferrite NP suspension in the top cuvette had a greater X-ray attenuation than the 15 gI/L 

solution. Thus, suggesting that the bismuth ferrite NPs will provide sufficient contrast to be 

distinguished by X-ray CT in a glass bead-packed column. 

The bismuth ferrite NP solution was injected at a concentration of approximately 7.8 gBi/L into a 

glass bead packed and saturated glass column to confirm their use as an X-ray CT imaging contrast agent 

for monitoring tracer transport. A concentration of blue pixels can be seen migrating from the bottom to 

the top of the column in the processed X-ray CT scans of the bismuth ferrite transport experiment 

(Figure 3-22). The synthesis of a NP solution comprising of a higher atomic number element (atomic 

number of bismuth, 83, is approximately three times larger than that of iron, 26) resulted in a much 

higher X-ray attenuation resulting in an observable contrast at a much lower NP concentration. Based on 

the results shown in Figure 3-14, the concentration of bismuth ferrite required to attain an observable 

X-ray attenuation contrast is nearly nine times less than the concentration of a Fe3O4 NP solution 

needed to attain this contrast in an identical column system. However, it appears that a concentration 

of ~7.8 g-Bi/L was not sufficient enough to overcome the “conical effect” artifact, which is visible before 

the NP injection (Figure 3-22 A) and in all other scans (Figure 3-22 B-F). As a result, it is difficult to 

discriminate between the NP slug and this artifact at the top of the column (Figure 3-22 D, E, and F). 

After Scan 6, effluent samples were collected, and Milli-Q water was injected for 76 minutes until the 

effluent ran clear. Then the column was scanned, inverted (such that the inlet was on the top and the 

outlet was on the bottom), and scanned again (see Figure 3-23). A vertical X-ray attenuation gradient is 

present from top-to-bottom in both scans, confirming the presence of the “conical effect” artifact. Thus, 

the bismuth ferrite NPs used in this work at a concentration of approximately 7.8 gBi/L are suitable as X-
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ray CT contrast agents in a saturated glass bead porous medium at the column scale used (15 cm length, 

2.54 cm inner diameter), however, a higher NP concentration would likely improve results and may be 

required to ensure “conical effect” artifacts are eliminated from results. 

The BTC produced for this experiment is shown in Figure 3-23. The standard deviation on a 

triplicate of samples from the injection solution was approximately ± 0.7 mg/L. Based on a trapezoidal 

estimation of the area below the BTC, assuming a constant flow rate of 0.8 ml/min, the mass recovery 

was found to be ~76.97 ± 0.01%. This mass recovery estimate is relatively in agreement with the results 

obtained in the Fe3O4 NP tracer experiment and with results obtained by Linley et al. (2019b), indicating 

that the bismuth ferrite NPs synthesized are suitable for transport in a saturated glass bead porous 

medium for distances of at least 15 cm. However, this mass recovery estimate may also have suffered 

from the same issue experienced with Br tracer experiments discussed in Section 3.3.3.  
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Figure 3-21: X-ray CT contrast scan of two 4.5mL cuvettes filled with ~7.8 gBi/L bismuth ferrite NP (top) 
and 15 g/L NaI (bottom). 
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Figure 3-22: Bismuth ferrite NP transport X-ray CT results showing processed images for (A) Scan 1, (B) 
Scan 2, (C) Scan 3, (D) Scan 4, (E) Scan 5 and (F) Scan 6. The flow time before Scans 2 – 6 were 9.5 
minutes of bismuth ferrite NP injection, then flow with Milli-Q water for 6, 10, 14, and 14 minutes, 
respectively. The stop-flow periods required for Scans 2-6 were 41.5, 38, 63, 41, and 44 minutes, 
respectively. 
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.  

Figure 3-23: X-ray CT processed images of the glass column immediately after water flushing to remove 
all bismuth ferrite NPs, showing the upright column (A) and the same column flipped (B). 
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Figure 3-24: BTC for bismuth ferrite transport experiment. The time of the stop-flow periods required for 
each X-ray CT scan has been removed for clarity. The location of each stop-flow period for each scan 
relative to the effluent sample points is shown by the vertical black dashed lines. Effluent sample 
collection began after Scan 2. The duration of the stop-flow periods for Scans 3 and 4, 5, and 6, were 
164, 41, and 44 minutes, respectively. 
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Chapter 4 

Major Findings and Future Work 

4.1 Conclusions 

The primary focus of this research was to assess the use of NPs as X-ray CT imaging to monitor 

the transport of NP contrast agents through a saturated geologic porous medium at the column scale. 

Three column systems were used to achieve this goal: glass column (15.24 cm length, 2.54 cm inner 

diameter), an acrylic column (10.16 cm length, 0.9 cm inner diameter), and 4.5 mL acrylic cuvette (4.5 

cm length, 1 cm by 1 cm cross section). The following sub-objectives were defined to achieve the overall 

objective: 

1. Establish NP solution contrast in an aqueous environment. 

2. Establish NP solution contrast in a saturated porous medium. 

3. Isolate and examine X-ray CT artifacts that may impact the use of NPs as imaging contrast agents 

in column tracer experiments.  

4. Determine the effects of concentration and flow rate on X-ray CT contrast agent transport and 

monitoring. 

5. Develop an appropriate methodology to assess the suitability of NP solutions as X-ray CT 

imaging contrast agents in a saturated porous medium through comparison to a known X-ray CT 

contrast agent.  

Experiments were first designed to determine the suitability of Fe3O4 NPs as X-ray CT contrast 

agents, but it was found that a NP concentration of approximately 70 g/L was required for the difference 

in X-ray attenuation between these NPs and the saturated glass bead porous medium to be observed at 

any of the column scales used. The high viscosity of the Fe3O4 NP solution above a concentration of 
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approximately 50 g/L would hinder their use as a tracer through a saturated porous column, thus, it is 

was concluded that the Fe3O4 NP solution used in this research is not suitable as an X-ray CT contrast 

agent in a saturated glass bead porous medium at any of the scales assessed (i.e., the glass column, 

acrylic column or cuvette scale).  

Only one X-ray CT artifact was observed to influence X-ray CT scanning results. This is a 

reoccurring contrast pattern in which X-ray attenuation was seemingly greatest at the top to the 

columns extending downward in a conical shape, which has been termed a “conical effect” artifact in 

this work. Through troubleshooting experiments performed in the acrylic column, this effect is 

suggested to occur due to column misalignment in the X-ray CT system during scanning. Results further 

indicate that the influence of artifact is negligible, where the difference in X-ray attenuation is 

sufficiently large between two or more materials. 

 Nine NaI tracer and X-ray CT scanning experiments were performed to assess the impact of 

concentration and flow rate on X-ray CT scans of a contrast agent tracer migrating through a saturated 

porous column. The flow rate was found to have little impact on the ability to monitor the transport of a 

contrast agent using X-ray CT; however, concentration was found to affect both the magnitude of X-ray 

attenuation and the density (and therefore transport) of the solution. Experimental results indicated 

that the concentration of a contrast agent must be high enough to produce an X-ray attenuation that is 

sufficiently larger than the attenuation caused by the saturated porous medium and column to generate 

an observable contrast in X-ray CT images. Furthermore, viscous fingering due to gravitational instability 

was observed in the column systems due to the higher density if NaI relative to that of Milli-Q water at 

the concentrations used.  
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Through comparative scans performed for NP suspensions and NaI solutions stacked in 4.5 mL 

cuvettes, and through experiments to determine the minimum concentration of NaI required for an 

observable attenuation contrast in a given column system, the following procedure was demonstrated 

to be a successful method of assessing the suitability of NP solutions as X-ray CT imaging contrast agents 

in a saturated porous medium: 

1. Determine the minimum concentration of NaI (or a similar known contrast agent) 

required to obtain X-ray CT contrast within a sample at given X-ray CT scanning 

parameters. 

2. Compare the X-Ray attenuation of the selected contrast agent at its minimum 

concentration to the candidate NP suspension  

3. Examine the processed X-ray CT image and determine if the relative X-ray attenuation 

of the NPs is less or greater than the NaI solution.  

a. If the NPs have a higher relative X-ray attenuation, then they will be suitable 

for use as imaging contrast agents in the given system using the X-ray CT scan 

parameters selected. 

b. If the NPs have a lower relative X-ray attenuation, then the NPs will not be 

suitable as imaging contrast agents. The system must either be modified, the 

concentration of the NP solution be increased, or a different engineered NP 

must be used. 

A bismuth ferrite NP solution was synthesized as a NP suspension comprising of a higher atomic 

number element was required to increase the X-ray attenuation of the NP contrast agent solution. X-ray 

CT scans performed at the cuvette scale proved this bismuth ferrite NP solution to be an effective X-ray 
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CT contrast agent in a saturated glass bead porous medium. The NP mass recovery was approximately 

77 % in a tracer experiment performed with the bismuth ferrite NPs, indicating that these NPs are 

capable of transport in a saturated glass bead porous medium for distances of at least 15 cm. Finally, the 

use of X-ray CT to monitor the transport of the bismuth ferrite NP solution was successfully 

demonstrated in a tracer experiment performed through a saturated glass bead porous medium at the 

glass column scale. Thus, it is concluded that the bismuth ferrite NPs are a suitable X-ray CT contrast 

agent in saturated glass bead porous mediums.  

4.2 Research Contribution 

This research expanded on the work presented by Linley et al. (2019) by demonstrating the 

potential to use engineered NPs as X-ray CT imaging contrast agents in saturated porous media. This 

study opens exciting opportunities for future X-ray CT soil studies as NPs offer the potential benefit of 

target-specific binding in comparison to traditional X-ray CT contrast agents such as NaI. Finally, as X-ray 

CT is an electromagnetic imaging technique, the work presented here serves as a proof-of-concept for 

the use of NPs as imaging contrast agents for electromagnetic geophysical methods. The inability of the 

Fe3O4 NPs to generate X-ray CT contrast followed by the synthesis and successful contrast obtained with 

the bismuth ferrite NPs highlights the ability to modify the properties of engineered NPs to generate a 

response from an electromagnetic imaging method. NPs could be designed, for example, to enhance the 

response of GPR by altering the dielectric permittivity, EMT by changing the conductivity, MS by 

modifying the magnetic response, or NMR by affecting the relaxation times, of the porous media they 

occupy. 
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4.3 Recommendations for Future Work 

Much of the research presented here involved the troubleshooting of a methodology to assess 

the suitability of engineered NPs as X-ray CT imaging contrast agents in a representative saturated 

geologic porous medium. The following general recommendations are made for future research efforts 

that expand on the work presented here: 

1. Column alignment in the X-ray CT system may result in “conical effect” artifacts. Thus, it is 

recommended that a specialized holder is constructed to ensure that the column is aligned with 

the central axis of the sample rotator. This holder must be designed such that it does not 

interfere with X-ray CT scanning results.  

2. High contrast agent concentration may be required to achieve an observable X-ray attenuation 

contrast within a saturated porous column. Thus, the density of the contrast agent should be 

considered to prevent the occurrence of viscous fingering in column transport studies. Any 

movement of the contrast agent slug during X-ray CT scanning, such as by viscous fingering, 

could result in temporal artifacts (an elongated zone of contrast, for instance) and thus should 

be eliminated for X-ray CT studies. Zhang et al. (2019) recently overcame this issue of 

gravitational instability in an X-ray CT study by substituting water for a denser NaCl solution as 

the saturating fluid. It is recommended that the density difference between the resident and the 

displacing fluids be minimized in future X-ray CT column studies.  

3. It is recommended that new NP suspensions being considered for use as an X-ray CT contrast 

agent in saturated porous systems be compared directly to a known X-ray CT contrast agent 

following the methodology outlined in Section 4.1. 
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4. Higher resolutions should be used where possible as this would improve the detection potential 

for NP contrast in saturated porous media. For instance, if the spatial resolution was at a 

nanoscale then clusters of NPs may be more easily distinguished.  

Several studies are recommended as avenues to expand upon the research presented here: 

1. The “conical effect” artifact that was observed in many of the X-ray CT scans in this research is 

still not fully understood and should be studied further. This issue highlights the sensitivity of X-

ray CT systems to small sample alterations. To further investigate this effect, a specialized 

support could be constructed in which a packed column can be held within an X-ray CT system 

that allows for small incremental changes to the column alignment relative to the central 

rotating axis of the X-ray CT sample holder. In this way, the extent of the “conical effect” artifact 

based on the magnitude of sample misalignment could be fully explored. Furthermore, the 

column could be injected with increasing concentrations of a known contrast agent, such as NaI, 

and scanned at various misalignment angles to determine if this artifact is negligible where the 

difference in X-ray attenuation between two or more materials is sufficiently high.  

2. The motivation for this research was to assess the use of NPs to enhance the quality of the 

information that can be obtained from X-ray CT and geophysical imaging. The bismuth ferrite 

NPs used here employs the same polymeric coating as the Fe3O4 NPs investigated by Linley et al. 

(2019), and as such, they are also expected to show preferential binding to crude oil. Future 

work for this research should include assessing the ability of the bismuth ferrite NP to bind to 

crude oil and evaluating the degree of image contrast enhancement they provide for X-ray CT 

scans of a porous medium impacted with crude oil. First, batch experiments should be 

performed to confirm targeted binding. Then, transport and binding column experiments in 
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which a small section of the packed column is impacted with crude oil and X-ray CT scanning is 

performed before, during, and after an injection of bismuth ferrite NPs should be completed to 

determine if the contrast of the impacted section is enhanced by the NPs. Such a study could 

result in a better understanding of NP binding to the crude oil by highlighting binding location 

and density. These visual observations could provide valuable insights related to contaminant 

remediation such as the total NP-NAPL binding area and expected binding concentrations. This 

work should first be performed using an inert saturated glass bead medium but should then be 

replicated using natural aquifer materials. 

3. The relative attenuation of the bismuth ferrite NP contrast agents, as determined by the X-ray 

CT to NP concentration, should be investigated. This could be achieved by developing identical 

porous media packed columns, each containing a “control” area (such as separated water-

saturated section), injecting them with various concentration of bismuth ferrite NP solutions, 

and relating the relative attenuation of the bismuth to that of the control for each sample. 

Through modeling, it may be possible to quantify the concentration distribution of the NPs in 

each column.  

4. In addition to improving contaminant delineation, the use of NPs as imaging contrast agents 

may be useful in assessing contaminant remediation. For instance, a given contaminant could be 

placed or injected into a porous media, followed by the addition of NPs designed for the 

remediation of that contaminant as well as image enhancement. Multiple X-ray CT scans over 

some length of time may then provide additional visual confirmation of mass removal, 

supplementing information obtained by traditional batch studies or column BTC studies to 

assess treatment effectiveness.   
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Appendix A: Supplementary Literature Information 

A-1 Stabilization of Nanoparticles 

In general, NP stabilizers can be broken into three categories, surfactants, polymers, and 

polyelectrolytes (Busch et al., 2015). All these compounds work to prevent NP aggregation either 

through steric (i.e., entropic stabilization due to particle “crowding”), electrostatic (i.e., Columbic 

repulsion effects), or electrosteric stabilization (i.e., a combination of the two effects). A more detailed 

discussion of these stabilization mechanisms can be found in work by Piacenza, Presentato, and Turner 

(2018) (Piacenza et al., 2018). Figure A 1 schematically illustrates these stabilization mechanisms.  

Stabilizers can be applied to NPs either before the formation of any NP aggregates, or after 

aggregates have formed (i.e., applying surface modifications to re-disperse the particles), known as pre-

agglomeration stabilization or post agglomeration stabilization respectively (He and Zhao, 2007). The 

method by which stabilizers are added to NPs has been found to influence particle size and reactivity. 

For instance, He and Zhao (2008) found that palladized nZVI synthesized in CMC solution (pre-

agglomeration stabilization) resulted in enhanced TCE degradation (He and Zhao, 2008). Phenrat et al. 

(2009) found that palladized nZVI stabilized in CMC solution after synthesis (post-agglomeration 

stabilization) resulted in decreased reactivity of the NPs with TCE (Phenrat et al., 2009). Phenrat et al. 

note that this contrast in results could be due to the smaller particle sizes achieved by the pre-

agglomeration synthesis used by He and Zhao and due to the blocking of reactive sites by the 

physiosorbed CMC. A further benefit of pre-agglomeration stabilization is the potential to control 

particle size and thus reactivity (He and Zhao, 2007). 
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Most stabilizers studied are polymers or polyelectrolytes. These include polyethylene glycols, 

sodium polyasparate, polystyrene sulfonate, poly(2-acrylamido-2-methyl-1-proanesulfonic acid) 

(PAMPS),-PAMPS-acrylic acid (PAMPS-AA) copolymer, and poly(methacrylic acid)-block-poly(methyl 

methacrylate)-block-poly(styrenesulfonate) tri-block copolymers (Becker et al., 2015; Ding et al., 2013; 

Kmetz et al., 2016; Phenrat et al., 2009; Raveendran et al., 2003; Saleh et al., 2005; Shen et al., 2011; 

Xue et al., 2014). Furthermore, many natural “biopolymers” have also attracted interest, particularly 

(CMC) which has been studied at both the lab and field scale (Busch et al., 2015; Chowdhury et al., 2015; 

He et al., 2007; He and Zhao, 2008; Johnson et al., 2013; Kocur et al., 2014; Phenrat et al., 2009). 

Biopolymers are attractive due to their relatively low cost, biodegradability, and low toxicity (Tratnyek et 

al., 2011). Other biopolymers that have been studied include polyphenol (green tea extract), starch, 

citrate, guar gum, gum Arabic and hydroxyethyl cellulose (He and Zhao, 2005; Kmetz et al., 2016; 

Kotsmar et al., 2010; Mystrioti et al., 2015; Tiraferri and Sethi, 2009). Finally, several surfactants have 

also been used for iron NP stabilization, such as dodecylbenzene sulfonic acid, sodium lauryl ether 

sulfate, and sodium dodecyl sulfate (Ding et al., 2013; Lecoanet et al., 2004; Shen et al., 2011). These 

stabilizers have all found varying degrees of success under different conditions.  

The stability of NPs for subsurface applications is typically assessed by the duration for which they 

can remain in suspension without agglomerating and settling. Many studies have reported that non-

stabilized iron NPs (including Fe/Pd, nMag, and nZVI) aggregate and settle from solution within a matter 

of minutes due primarily to Van der Waals or magnetic attraction forces between particles (He and 

Zhao, 2005; Kotsmar et al., 2010; Phenrat et al., 2007). However, stabilized NPs have been found to 

remain in solution on the scale of days to months Green tea extract supported nZVI particles (GT-nZVI) 

have been reported to be stable in an aqueous solution for greater than 10 days (Mystrioti et al., 2015). 
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Further, nMag supported with PAMPs and PAMPS-AA have been found to remain stable in API brine 

solutions (8 wt % NaCl + 2 wt% CaCl2 (Kmetz et al., 2016)) for 1 to 3 months (Becker et al., 2015; Kotsmar 

et al., 2010). 

 

 

Figure A 1: Schematic illustration of a) electrostatic repulsion forces that arise between particles with 
like surface charges as they approach each other b) the steric repulsion that arises from the adsorption 
of polymers onto NP surfaces and c) electrosteric stabilization from the combined effects of electrostatic 

b

a

c) 
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and steric repulsion forces that arise from polyelectrolytes that are adsorbed onto NP surfaces. The 
schematics here were originally generated by Piacenza et al. (2018).  
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Several factors have been found to influence NP stability in solution. Saleh et al. (2005) showed 

that a higher degree of polymerization resulted in increased stabilization of nZVI particles that were 

surface modified by a tri-block copolymer (Saleh et al., 2005). Kotsmar et al. studied the effects of pH 

and salinity on the stability of citrate stabilized iron oxide NPs(Kotsmar et al., 2010). Solutions with NP 

concentrations of 0.1 wt % were prepared with salinities ranging from 0.1-4 wt % (ionic strength of 

0.017M to 0.683 M) and pH values between 6-10. The NPs were found to be stable at pH values of 6 and 

8 in salinity of 3.5% for 2 and 3 months, respectively. They were found to aggregate into a gel that could 

not be redisposed with sonication within 5 minutes at a pH of 10 and a salinity of only 0.5%. 

Interestingly, the hydrodynamic diameters of the NPs were found to increase in size with increasing 

salinity at a pH of 8 but were found to change very little at a pH of 6. The surface charge potential of the 

NPs was measured and found to be related to pH. The coated particles exhibited potentials between 35 

and -55 mV between pH values of 6-10, with a zero-charge occurring approximately at a pH of 2. 

Conversely, equivalent non-stabilized NPs were found to have a zero-charge value at a pH of 

approximately 7. The authors note that while it is surprising that the NPs remained stable at high 

salinities, it is possible that forces from specific ion adsorption in the Stern layer of the electric double 

layer and hydration were sufficient to maintain the stability of the particles at a pH of 6 an 8. However, 

at a pH of 10, the growth of the nanoclusters was too large, and thus these forces were not strong 

enough to keep the particles in suspension. Finally, background environmental, such as clay content, the 

presence of humic acid, and dissolved oxygen content have also been found to affect NP stability (Ding 

et al., 2013; Hu et al., 2010; Jung et al., 2014; Ponder et al., 2001).  
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A-2 Magnetic Susceptibility of Geologic Material 

Table A 1: Magnetic Susceptibility of Geologic Material, adapted from (Telford et al., 1990). 

Category Material Susceptibility Range (unitless) Susceptibility average (unitless) 

Sedimentary Dolomite 0—0.9 0.1 

Limestones 0—3 0.3 

Sandstones 0—20 0.4 

Shales 0.01—15 0.6 

Av. 48 Sedimentary 0—70 0.9 

Metamorphic Schist 0.3—3 1.4 

Gneiss 0.1—25  

Quartzite — 4 

Serpentine 3—17  

Slate 0—35 6 

Av. 61 Metamorphic 0—70 4.2 

Igneous Granite 0—50 2.5 

Rhyolite 0.2—35 - 

Dolerite 1—35 17 

Augite-Syenite 30—40 — 

Diabase 1—160 55 

Porphyry 0.3—200 60 

Gabbro 1—90 70 

Basalts 0.2—175 70 

Diorite 0.6—120 85 

Peridotite 90—200 150 

Andesite — 160 

Av. Acidic Igneous 0—80 8 

Av. Basic Igneous 0.5—97 25 

Minerals Graphite — 0.1 

Quartz — -0.01 

Rock Salt — -0.01 

Anhydrite, gypsum — -0.01 

Calcite -0.001—0.01 — 

Coal — 0.02 

Clays — 0.2 

Chalcopyrite — 0.4 

Sphalerite — 0.7 

Cassiterite — 0.9 

Siderite 1—4 — 

Pyrite 0.05—5 1.5 

Limonite — 2.5 

Arsenopyrite — 3 

Hematite 0.5—35 6.5 

Chromite 3—110 7 

Franklinite — 430 
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Pyrrhotite 1—6000 1500 

Ilmenite 300—3500 1800 

Magnetite 1200—192000 6000 

 

 

Appendix B: Additional Experimental Information 

B-1 NaI Calibration Curve 

 

Figure B 1: Average IC NaI calibration curve showing trendline with an R2 value of 0.9985. 
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B-2 Bromide BTCs and OSTRICH Modeling Results 

 

Figure B 2: Br tracer BTCs observations and 1-DUSAT modeling results showing (A) Br-1-A, (B) Br-1-B, (C) 
Br-2-A, and (D) Br-2-B. 
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Figure B 3: Br tracer BTC observations and 1-DUSAT modeling results for Br-1-C. 

B-3 Sigma Aldrich 150 μm Glass Bead Characterization Data and Calculations 

Table B 1: Summary of glass bead density estimation results 

Trial 
Mass 

(g) 
Volume (cm3) Density (g/cm3) Average 

Standard 
Deviation 

1 20 14 1.43 

1.46 0.02 

2 25 17 1.47 

3 25 17 1.47 

4 25 17 1.47 

5 50 35 1.43 

6 25 17 1.47 

 

B-4 Dissection of Sigma Aldrich Bead Packed Column 
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Following the first Sigma Aldrich glass bead packed contrast scan, the column was dissected to assess 

the visible interior distribution of NPs. Figure B 4 shows the packed column just before scanning and 

highlights the fingering of NPs that occurred.  

Figure B 5 shows the distribution of NPs within the interior of the column as visible to the naked eye. 

 

Figure B 4: Sigma Aldrich glass bead wet packed column, showing the column containing NPs before X-
ray CT scanning (left) and the column showing obvious NP fingering during column dissection. 

 

Figure B 5: Interior distribution of NPs visible during column dissection. 

4.3cm from top 5.6cm from top 8.8cm from top 
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B-5 Flow-through NaI Detection Threshold Scans 

 

Figure B 6: X-ray CT scan of glass bead packed and saturated flow-through cuvette injected with NaI 
solutions of 2 gI/L (A), 10 gI/L (B), 15 gI/L (C), 25 gI/L (D), 50 gI/L (E), 75 gI/L (F), and 100 gI/L (G). 
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B-6 Liquid to Liquid NaI to Fe3O4 NP Cuvette Comparison Scans 

 

 

Figure B 7: X-ray CT scan liquid to liquid NaI (top in each scan) to Fe3O4 NP (bottom in each scan) cuvette 
contrast scans showing (A) 2 g/L NaI vs 10 g/L NP, (B) 5g/L NaI vs 25 g/L NP, (C) 10g/L NaI vs 50 g/L NP. 
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B-7  IFT Experiment X-ray CT Scan Results 

 

Figure B 8: IFT-1 X-ray CT results showing (A) Scan 2, (B) Scan 3, (C) Scan 4, (D) Scan 5, (E) Scan 6 and (F) 
Scan 7. Scan 1 was performed before NaI injection. The flow time before Scan 2 – 7 were 10.75 minutes 
of NaI injection followed by 9.25 minutes of flow with Milli-Q water, then flow with Milli-Q water for 15, 
15, 20, 20, and 20 minutes, respectively. The stop-flow periods required for Scans 3 – 7 were 49, 64, 40, 
44, and 54 minutes, respectively. 
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Figure B 9: IFT-3 X-ray CT results showing (A) Scan 2, (B) Scan 3, (C) Scan 5, (D) Scan 6, (E) Scan 7 and (F) 
Scan 8. Scan 1 was performed before NaI injection. The flow time before Scan 2, Scan 3, Scans 4 and 5, 
and Scans 6 – 8, were 3.5 minutes of NaI injection followed by 11 minutes of flow with Milli-Q water, 
then flow with Milli-Q water for 4.5, 10.5, 6, 6 and 6 minutes, respectively. The stop-flow periods 
required for Scan 3, Scans 4 and 5, and Scans 6–8 were 63.5, 128.5, 78, 73, and 66 minutes, respectively. 
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Figure B 10: IFT-4 X-ray CT results showing (A) Scan 2, (B) Scan 3, (C) Scan 4, (D) Scan 5, (E) Scan 7 and (F) 
Scan 8. Scan 1 was performed before NaI injection. The flow time before Scan 2 –5, Scans 6 and 7, and 
Scan 8 were 11.5 minutes of NaI injection followed by 10 minutes of flow with Milli-Q water, then flow 
with Milli-Q water for 26, 29, 25, 50 and 25 minutes, respectively. The stop-flow periods required for 
Scans 3–5, Scans 6 and 7, and Scan 8 were 47, 44, 51, 84, and 39 minutes, respectively. 
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Figure B 11: IFT-5 X-ray CT results showing (A) Scan 2, (B) Scan 3, (C) Scan 4, (D) Scan 5, (E) Scan 6 and (F) 
Scan 7. Scan 1 was performed before NaI injection. The flow time before Scan 2 – 7 were 5.5 minutes of 
NaI injection followed by 5 minutes of flow with Milli-Q water, then flow with Milli-Q water for 10, 10, 
10, 10, and 14 minutes, respectively. The stop-flow periods required for Scans 3–7 were 57, 62, 59, 55, 
and 57 minutes, respectively. 
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Figure B 12: IFT-6 X-ray CT results showing (A) Scan 2, (B) Scan 3, (C) Scan 4, (D) Scan 6, (E) Scan 7 and (F) 
Scan 8. Scan 1 was performed before NaI injection. The flow time before Scans 2 – 4, Scans 5 and 6, and 
Scans 7–8 were 3.5 minutes of NaI injection followed by 4 minutes of flow with Milli-Q water, then flow 
with Milli-Q water for 7.5, 7.5, 15, 11.5 and 12.5 minutes, respectively. The stop-flow periods required 
for Scans 3-4, Scans 5 and 6, and Scans 7-8 were 56.5, 62.5, 121, 51.5, and 48.5 minutes, respectively. 
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Figure B 13: IFT-7 X-ray CT results showing (A) Scan 2, (B) Scan 3, (C) Scan 4, (D) Scan 5, (E) Scan 6 and (F) 
Scan 7. Scan 1 was performed before NaI injection. The flow time before Scan 2 – 7 were 10.75 minutes 
of NaI injection followed by 9.25 minutes of flow with Milli-Q water, then flow with Milli-Q water for 15, 
15, 20, 20, and 20 minutes, respectively. The stop-flow periods required for Scans 3–7 were 49, 64, 38, 
46, and 52 minutes, respectively. 
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Figure B 14: IFT-8 X-ray CT results showing (A) Scan 2, (B) Scan 3, (C) Scan 4, (D) Scan 5, and (E) Scan 6. 
Scan 1 was performed before NaI injection. The flow time before Scan 2 – 6 were 5.5 minutes of NaI 
injection followed by 5 minutes of flow with Milli-Q water, then flow with Milli-Q water for 10, 8, 10, 
and 12 minutes, respectively. The stop-flow periods required for Scans 3–6 were 165, 64, 53, and 44 
minutes, respectively. 

  



 

155 

B-8  Pycnometer Calibration and NaI Density Data 

Table B 2: Pycnometer Calibration Data. 

Parameter Measurement 1 Measurement 1 Measurement 1 Average St. Dev 

Mass of Pycnometer (g) 10.7193 10.7195 10.7194 10.7194 1.0E-04 

Known Density of DI 
Water @ 22 C (g/cm3) 

0.99776 (Engineering ToolBox, 2003) 

Volume of Pycnometer 10.00805137 

 

Table B 3: NaI density measurements. 

NaI 
Concentration 

(gI/L) 

Weight (g) 
Average St. Dev 

Density 
g/cm^3 Measurement 1 Measurement 2 Measurement 3 

25 20.8782 20.8783 20.8778 20.8781 2.6E-04 1.0151 

50 21.0618 21.0616 21.0613 21.0616 2.5E-04 1.0334 

75 21.2497 21.2495 21.2496 21.2496 1.0E-04 1.0522 

100 21.4284 21.4282 21.428 21.4282 2.0E-04 1.0700 

125 21.614 21.6139 21.6138 21.6139 1.0E-04 1.0886 

150 21.7924 21.7925 21.7922 21.7924 1.5E-04 1.1064 

175 21.9686 21.9689 21.9684 21.9686 2.5E-04 1.1240 

200 22.1755 22.1758 22.1756 22.1756 1.5E-04 1.1447 

Milli Q Water 20.6954 20.6954 20.6951 20.6953 1.7E-04 0.9968 

DI Water 20.7062 20.7045 20.7044 20.7050 1.0E-03 0.9978 

  

B-9  All IFT Experiment BTCs 

The calculated standard deviation on each IC NaI measurement was ± 0.206 g/L (accounting for 

dilution factor and ignoring errors introduced by the dilution process) based on the standard deviation 

of all 100 mgI/L standard measurements. The BTCs for IFT-1, 2, 3, 5, 6, 7, 8, are shown in Figure B 15-

Figure B 22, respectively. 
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Figure B 15: BTC for IFT-1. The time of the stop-flow periods required for each X-ray CT scan have been 
removed for clarity. The vertical black dashed lines represent the location of each stop-flow period for 
each scan relative to the effluent sample points. Effluent sample collection began after Scan 1. The stop-
flow times for Scans 2 through 7 were approximately 143, 49, 64, 80, 88, and 54 minutes, respectively. 
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Figure B 16: BTC for IFT-2. The time of the stop-flow periods required for each X-ray CT scan have been 
removed for clarity. The vertical black dashed lines represent the location of each stop-flow period for 
each scan relative to the effluent sample points. Effluent sample collection began after Scan 2. The stop-
flow times for Scans 3 through 6 were approximately 170, 56, 40, and 87 minutes, respectively. 
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Figure B 17: BTC for IFT-3. The time of the stop-flow periods required for each X-ray CT scan have been 
removed for clarity. The vertical black dashed lines represent the location of each stop-flow period for 
each scan relative to the effluent sample points. Effluent sample collection began after Scan 2. The stop 
flor times for Scans 2 through 8 were approximately 82.5, 63.5, 61.5, 67, 78, 73, and 66 minutes, 
respectively. 
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Figure B 18: BTC for IFT-4. The time of the stop-flow periods required for each X-ray CT scan have been 
removed for clarity. The vertical black dashed lines represent the location of each stop-flow period for 
each scan relative to the effluent sample points. Effluent sample collection began after Scan 2. The stop 
flor times for Scans 3 through 8 were approximately 47, 44, 51, 48, 36, and 39 minutes, respectively. 
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Figure B 19: BTC for IFT-5. The time of the stop-flow periods required for each X-ray CT scan have been 
removed for clarity. The vertical black dashed lines represent the location of each stop-flow period for 
each scan relative to the effluent sample points. Effluent sample collection began after Scan 2. The stop 
flor times for Scans 3 through 7 were approximately 57, 62, 59, 55, and 57 minutes, respectively. 
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Figure B 20: BTC for IFT-6. The time of the stop-flow periods required for each X-ray CT scan have been 
removed for clarity. The vertical black dashed lines represent the location of each stop-flow period for 
each scan relative to the effluent sample points. Effluent sample collection began after Scan 2. The stop 
flor times for Scans 3 through 8 were approximately 56.5, 62.5, 59.5, 61.5, 51.5, and 48.5 minutes, 
respectively. 
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Figure B 21: BTC for IFT-7. The time of the stop-flow periods required for each X-ray CT scan have been 
removed for clarity. The vertical black dashed lines represent the location of each stop-flow period for 
each scan relative to the effluent sample points. Effluent sample collection began after Scan 2. The stop 
flor times for Scans 2 through 7 were approximately 44, 49, 64, 38, 46, and 52 minutes, respectively. 
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Figure B 22: BTC for IFT-8. The time of the stop-flow periods required for each X-ray CT scan have been 
removed for clarity. The vertical black dashed lines represent the location of each stop-flow period for 
each scan relative to the effluent sample points. Effluent sample collection began after Scan 2. The stop 
flor times for Scans 3 through 6 were approximately 165, 64, 53, and 44 minutes, respectively. 

 


