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Abstract

Dialog response generation is the task of generating response utterance given a query
utterance. Apart from generating relevant and coherent responses, one would like the
dialog generation model to generate diverse and informative sentences.

In this work, we propose and explore a novel multi-stage dialog response generation ap-
proach. In the first stage of our proposed multi-stage approach, we construct a variational
latent space on the bag-of-words representation of the query and response utterances. In
the second stage, transformation from query latent code to response latent code is learned
using an adversarial process. The final stage involves fine-tuning a pretrained transformer
based model called text-to-text transfer (T5) (Raffel et al., 2019) using a novel training
regimen to generate the response utterances by conditioning on the query utterance and
the response word learned in the previous stage.

We evaluate our proposed approach on two popular dialog datasets. Our proposed
approach outperforms the baseline transformer model on multiple quantitative metrics
including overlap metric (Bleu), diversity metrics (distinct-1 and distinct-2), and fluency
metric (perplexity).
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the discriminator D, we pass zqr and ẑqr (obtained by concatenating zq with
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Chapter 1

Introduction

1.1 Problem Definition

The main goal in dialog response generation task is to generate response utterance given
a query utterance and the dialog history in the form of all the previous utterances. The
generated response utterance has to not only be coherent and fluent but relevant to the
query uttterance as well. Furthermore, information from the dialog history has to be taken
into account as well. Finally, an effective dialog response generation model should generate
diverse and informative responses rather than safe and generic responses. In this work, we
propose and explore a novel multi-stage dialog response generation approach.

1.2 Thesis Structure

We organize the rest of this work in the following way:

• We cover important background concepts related to our proposed approach in Chap-
ter 2.

• In Chapter 3, we describe the related work done on the dialog generation task and
describe the VAE-AM model which is an approach proposed in a previous joint work
which provides the foundation for the approach proposed in this work.
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• Chapter 4 contains details about the proposed dialog response generation approach.
We also report details about the experiments performed to evaluate the proposed
approach and results obtained.

• We conclude our work by summarizing it in chapter 5 and providing information
about the future work to be performed on the proposed approach.

1.3 Contributions

We propose a novel multi-stage approach for dialog response generation. We evaluate
our proposed approach on two dialog datasets and compare its performance against two
state of the art models and a baseline transformer model. We show using quantitative
metrics that our proposed approach generates fluent and diverse responses. Our proposed
approach outperforms the state of the art models in quantitative diversity metrics and
outperforms the baseline transformer model on all the quantitative evaluation metrics.
As part of our multi-stage approach, we propose a novel fine-tuning regimen for a large
transformer based pretrained model called text-to-text transfer (T5) (Raffel et al., 2019).
The fine-tuning trains T5 to generate response utterance conditioned on the the query
utterance and a set of words which are to be used in the response utterance generation.
We show empirically that our fine-tuned T5 model generates response utterance using the
provided response words.
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Chapter 2

Background

2.1 Natural Language Generation

Natural Language Generation (NLG) is one of the major research area under the broader
field of Natural language Processing (NLP). Natural Language Understanding (NLU) being
the other major sub-field of NLP under active research. The main goal in natural language
generation is to generate grammatically correct and coherent sequences of words in one of
the many currently existing human languages. In the past, natural language generation
systems have predominantly relied on template or rule based generation techniques (Reiter
& Dale, 1997). Additionally, probabilistic models such n-gram or log-linear models have
also been popular (S. F. Chen & Goodman, 1996; Koehn et al., 2003). In recent years,
however, neural network based models have attained state-of-the-art results in various
natural language generation tasks.

The field of natural language generation encompasses multiple applications including
but not limited to the following applications:

• In Neural Machine Translation the main objective is to convert the text given
in source language into semantically equivalent text of target language (Bahdanau
et al., 2014; Luong et al., 2015).

• Summarization involves processing a given body of text and producing a smaller
body of text containing only the most salient information contained in the original
text (Kryściński et al., 2019; Nallapati et al., 2016).
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• Text Simplification in which the objective is to simplify a given text such that the
generated text is simpler in terms of prose structure and grammar used while still
containing the same meaning and information (Nisioi et al., 2017; Surya et al., 2018).

• In Dialog Generation the main goal is to generate coherent and relevant response
conditioned on the given utterance (Gu et al., 2018; J. Li et al., 2016; Serban, Sordoni,
Bengio, et al., 2016).

2.2 Feedforward Neural Networks

Feedforward neural networks are one of the most commonly used neural network in
deep learning models and form the basis for more advanced and specialized deep neu-
ral networks such as recurrent neural networks (RNNs) and convolutional neural
networks (CNNs). Feedforward neural networks are sometimes also called multilayer
perceptrons (MLP) or Deep feedforward networks. As one of its alternative name
suggests, feedforward neural networks were inspired by perceptrons, originally proposed by
Rosenblatt in 1957 (Rosenblatt, 1957). Feedforward neural networks are used as function
approximators. Let f ∗ be some function which maps input x to output y i.e. f ∗(x) = y,
then a feedforward neural network can be thought of as a mapping ŷ = f(x;θ), where f is
an approximator of f ∗ and θ represents the learned neural network parameters which help
achieve the best approximation performance.

A feedforward neural network typically consists an input layer, an output layer
and one or more hidden layers. These networks can be represented as directed acyclic
graphs. We provide an example visual representation of feedforward neural network in
figure 2.1. During a forward pass of the network, the data passes from the input layer to
the first hidden layer and then from first hidden layer to the second hidden layer and so
on until the final hidden layer passes the data to the output layer. The data flow direction
is always forward, hence the name feedforward neural network. The intermediate layers
are called hidden layers because they are used to compute intermediate representations
of the data and do not produce the desired output. Each layer in the feedforward neural
network is made up of units. The input to these networks are typically vector-valued
and input layer units compute identity function on a specific individual dimension of the
input vector. Each unit in a layer is typically connected to every unit in the subsequent
layer by an edge with a weight. Each unit in the hidden layers of the network receives
the linear combination of the previous layer’s units and their connecting edge weights to
which it applies a linear or non-linear activation function. The output produced by the
activation function serves as the value of that particular unit.
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Figure 2.1: An Example of a feedforward neural network. [Source]

The number of hidden layers in the network determines its depth and the number
of units in the hidden layers determines its width. Both the depth of the network and
width of the network represent hyperparameters and their optimal values are determined
through experimentation. The weights associated with the edges are called parameters of
the neural network and are learned during the training of the neural network. An optimiza-
tion algorithm such as stochastic gradient descent (SGD) along with an automatic
differentiation technique called backpropagation is used to train the network.

The function being approximated by the neural network is called the loss function.
Most commonly used loss functions are mean squared error (MSE) or negative log
likelihood (NLL).

Let L be the loss function, x be the input data, and w represent the randomly initialized
parameters of a neural network. Then during the training, each iterative update of weights
is performed as follows:

5
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wi+1 = wi − η · ∇wL(x; wi) (2.1)

where η is a hyperparameter called learning rate and ∇w is the gradient of the loss
function with respect to the weights.

2.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are another type of artificial neural networks which
evolved from feedforward neural networks and are particularly effective in problems in-
volving variable length sequential data such as text, audio, etc. These networks are used
for processing sequential data where the data element at position or time step t in the
sequence is dependent on all the data elements upto time step t− 1 in the given sequence.
The goal of a recurrent neural network is to learn to predict the data element at time step
t when it is provided the sequence of length t−1 . For example, a recurrent neural network
can be trained to predict the next word when given all the prior words in sentence e.g.
when given the following sequence of words: ”I will talk with you”, the network predicts
the next word in the sequence would be ”tomorrow”.

The two main features which allow recurrent neural networks to model variable length
sequential data effectively are parameter sharing and recurrent connections between
hidden units. Parameter sharing refers to the fact that recurrent neural network processes
the input sequence one element at a time using the same neural network. Thus, same
parameters are shared across time steps allowing recurrent neural networks to handle vari-
able length input sequences with ease. Furthermore, each hidden unit in the network has
a recurrent connection with itself allowing it to pass information about the previously ob-
served sequence at each new time step. This allows the network learn the dependencies
between the elements in sequence. We provide a graphical depiction of a basic one hidden
unit unrolled recurrent neural network in figure 2.2.

We explain the notation used in the figure 2.2 below:

• xt is the input at the time step t.

• ot is the output at the time step t computed using the hidden state ht at the time
step t. The exact computation is dependent on the objective of the recurrent neural
network. For example, in a language modeling task one would want the output to
be a vector of probabilities across the vocabulary: ot = softmax(Wht).

6



Figure 2.2: A basic one-unit recurrent neural network. [Source]

• U , V , and W are weights shared across all the time steps.

• ht is the hidden state value at the time step t computed using the input xt at the
time step t and the hidden state ht−1 from the previous time state in the following
manner:

ht = f(Uxt +Wht−1) (2.2)

where f is typically an activation function such as tanh or ReLU.

As mentioned earlier, recurrent neural networks are effective at modeling sequential
data and are frequently used in natural language processing problems. They are used both
for natural language understanding and generation tasks (Bengio et al., 2003; Mikolov
et al., 2010; Morin & Bengio, 2005). In natural language understanding problems, RNNs
are used to obtain representation for textual input which can then be used perform tasks
such as question-answering, sentiment classification, etc. They are also used as language
models to perform natural language generation tasks.

2.3.1 Long Short Term Memory

One of the major shortcoming of recurrent neural networks is the problem of vanishing
or exploding gradients. The problem of vanishing or exploding gradients arises in deep
neural networks with deep computational graphs. Since recurrent neural networks repeat-
edly apply the same operation using the same parameters at each time step of typically

7
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long temporal sequences, it constructs a very deep computational graph. For example,
let’s say that we apply the operation of matrix multiplication of parameters denoted by
W at each time step. At time step t, it would be the same as multiplication by Wt. Let
the eigenvalue decomposition of W := Vdiag(λ)V−1. Then,

Wt = (Vdiag(λ)V−1)t = V(diag(λ))tV−1 (2.3)

This clearly illustrates the problem, any eigenvalue λi which is not close to 1 will either
explode if it is > 1 in magnitude or vanish if it is < 1 in magnitude. Since the gradients
in such computational graphs are also scaled according to diag(λ)t, this also causes the
gradients to explode or vanish as well.

Apart from vanishing or exploding gradients, recurrent neural networks also have dif-
ficulty learning long-term dependencies due to assigning exponentially smaller weights to
long-term interactions as opposed to short-term interactions (I. Goodfellow et al., 2016).

Various solutions have been proposed with varying degree of success to address these
shortcomings of recurrent neural networks such as leaky units, adding skip connections
through time, removing connections, etc. But the most effective and frequently used
techniques have been the so called gated RNNs such as long short term memory and
gated recurrent unit. The main idea behind gated RNNs is to create paths through time
with gradients which neither vanish nor explode. This is accomplished by using connection
weights which may change at each time step. Furthermore, gated RNNs have mechanism
to reset the old state allowing them retain only the most useful information.

Long short term memory (LSTM) were proposed by Hochreiter et al. in 1997 (Hochre-
iter & Schmidhuber, 1997). The main idea which allowed LSTMs to alleviate the vanishing
or exploding gradients problem was to introduce self-loops within the unit to create paths
where gradients could flow for longer duration. Figure 2.3 shows a block diagram of LSTM
unit.

The LSTM unit consists of the following gates: the input gate (gt), the forget gate
(ft), and the output gate (qt). Each of these gates are sigmoid activation functions which
produce a value between 0 and 1. The output of these adaptive gates basically produce a
weight which regulates how much of the incoming information and the previously stored
information is retained. We provide the equations for these gates below:

gt = σ(Wg · xt + Ug · ht−1 + bg) (2.4)

ft = σ(Wf · xt + Uf · ht−1 + bf ) (2.5)

8



Figure 2.3: Block diagram of a LSTM Unit (I. Goodfellow et al., 2016)

qt = σ(Wq · xt + Uq · ht−1 + bq) (2.6)

where σ denotes the sigmoid activation function, xt the current input, ht−1 the hidden
state for previous time step. Each gate has their own weights and bias parameters which
we denote using U , W , b (the subscripts identify the specific gate).

The cell state is updated using:

st = ft ⊗ st−1 + gt ⊗ σ
(
b+ U · xt +W · ht−1

)
(2.7)
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where st−1 is the internal cell state of the previous time step and b, U , and W respec-
tively denote the biases, input weights, and recurrent weights into the LSTM cell. ⊗ refers
to the elmentwise multiplication.

Finally, the hidden state for the current timestamp is computed:

ht = tanh(st)⊗ qt (2.8)

LSTMs outperform simple recurrent neural networks in learning long term dependen-
cies which make them suitable for a variety of natural language processing tasks such as
neural machine translation (Sutskever et al., 2014), coreference resolution (Lee et al., 2017),
reading comprehension (Seo et al., 2016), named entity recognition (Chiu & Nichols, 2016),
language modeling (Sundermeyer et al., 2012), etc.

2.4 Regularization

Regularization refers to a variety of techniques used in deep learning models to improve the
model’s generalization capabilities. Examples of such techniques include parameter norm
penalties, dataset augmentation through noise injection, early stopping, dropout, etc.

2.4.1 Dropout

Dropout is a regularization technique proposed by Srivastava et al. (Srivastava et al.,
2014) to prevent overfitting on the training data by deep learning model and consequently
improving its generalization capabilities.

Dropout can be thought of as a computationally practical way to apply bagging to an
ensemble of an exponentially large number of neural networks. Dropout works by dropping
non-output units within a neural network during the training with a predefined probability.
During test time, the output of the units are scaled by the same predefined probability
value to obtain an approximately averaged output from the ensemble of the thinned neural
network models. Dropout have been shown to improve the generalization capabilities of
neural network model on many computer vision tasks (Srivastava et al., 2014).
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Figure 2.4: A visual representation of the dropout technique (Srivastava et al., 2014)

2.4.2 Batch Normalization

Batch normalization was proposed by Ioffe et al. to improve the training speed and stability
of deep neural networks (Ioffe & Szegedy, 2015). Batch normalization works by reducing
the so called internal covariate shift. Internal covariate shift is defined as the change in the
distribution of the network unit outputs due to the change in the network parameter values
(Ioffe & Szegedy, 2015). The reduction in internal covariate shift is obtained through batch
normalization transformation of a layer’s input defined as:

y =
x− E[x]√

Var[x]
∗ γ + β (2.9)

where x is the layer inputs and γ, β are learnable parameters.

2.5 Text Representations

For a neural network based model to work with textual data, we need to convert the
textual data into a suitable numerical representation before using it as the model’s input
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and/or output. There are many ways to accomplish this including using bag-of-words
representations and Term frequency-inverse document frequency (tf-idf) weight-
ing statistics representations.

Typically in bag-of-words representations, an input text document is represented
using an n-dimensional vector, where n is the size of the chosen vocabulary of the whole
text corpus. Each index in the n-dimensional vector is used to represent a specific word
in the vocabulary and contains either 1 indicating that the word is present in the input
document or 0 indicating the absence of the word. Sometimes the word count is used to
indicate the presence of a word in the vector representation of the input text document.

Tf-idf weighting statistics representation works similarly to bag-of-words representa-
tion with one major difference: for each word in the input document, we replace 1 or the
word count in the input document’s n-dimensional vector representation with that word’s
tf-idf weighting.

Term frequency is usually denoted as tf(t, d) where t refers to the term or word and
d is the document under consideration. As the name suggests, most simplest choice is to
use the raw word count in the document. Sometimes boolean word frequencies are used
instead of the word count: 1 if the word is present in the document, 0 otherwise.

Inverse document frequency (idf) measures the amount of information the word pro-
vides. For example, words which are commonly used and are present in high number of
documents in the corpus are not likely to be informative at all whereas rare words have
high informational value. Idf is usually denoted using idf(t,D) where D refers to the set
of all documents in the corpus. Idf is computed in the following way:

idf(t,D) = log
N

|{d ∈ D : t ∈ d}|
(2.10)

where N is the total number of documents in the corpus.

Now, we can compute the tf-idf weight:

tfidf(t, d,D) = tf(t, d) · idf(t,D) (2.11)

2.5.1 Word Embeddings

Although text representation methods such as Bag-of-words representations and tf-idf
weighting statistics representations are useful, they do have certain shortcomings. One
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such shortcoming is the drastic increase in computational costs when working with large
scale diverse text corpus with large vocabulary. Another major shortcoming is the inability
to model the semantic and syntactic relationships between different words.

Word embeddings refer to the fixed size continuous vector representations of the words
i.e. word embeddings map a word w in the vocabulary V to a vector v ∈ Rn where n is
called the dimension of the word embedding. Since the dimension of the vector is fixed,
the computational costs do not increase with the vocabulary size. Furthermore, the word
embeddings usually map the semantically related words in the vocabulary to vectors in the
nearby spaces.

Most commonly used word embeddings are Word2Vec proposed by Mikolov et al.
(Mikolov et al., 2013) and GloVe by Pennington et al. (Pennington et al., 2014). Word2vec
uses a shallow neural network to learn the distributed representations of the words using
the following two tasks: (i) continuous bag-of-word (CBOW): the shallow neural net-
work is trained to predict the current word using the words from the context window, and
(ii) continuous skip-gram model (Skip-gram): the current word is used to predict
the words present in the context window (Mikolov et al., 2013). GloVe method uses a
specific weighted least squares model trained on global word co-occurrence statistics to
obtain the word representations (Pennington et al., 2014). Pennigton et al. argue that
the proposed global log-bilinear regression model has the necessary properties to produce
linear directions of meaning and it combines global matrix factorization & local context
window methods effectively (Pennington et al., 2014).

2.6 Autoencoders

Autoencoders are neural networks which learn to reconstruct its input. An autoencoder
has two main components: an encoder and a decoder. The input is fed to the encoder to
obtain a latent code. The decoder takes the latent code as input and tries to reconstruct
the corresponding input. Figure 2.5 shows the basic autoencoder architecture.

Formally, an autoencoder can be thought of as a combination of two functions: an
encoder function f and a decoder function g. Let x denote the input, h the corresponding
latent code, and x

′
the reconstruction. Then, h = f(x) and x

′
= g(h) = g(f(x)).

Typically, the dimension of h is much lower than the dimension of the input x to encourage
the model to prioritize learning the most salient features of the input.

Since the encoder maps the high dimensional input to a low dimensional latent code,
autoencoders can be used for dimensionality reduction as well as feature learning.
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Figure 2.5: Basic Autoencoder Architecture [Source]

As the name suggests, dimensionality reduction refers to techniques which can be used
to obtain a meaningful low dimensional representation of a high dimensional data element.
Feature learning is learning to extract specific features from input data which can be
used to perform downstream tasks such as classification more effectively.

Variational autoencoders (VAE) (Kingma & Welling, 2013) and Wasserstein au-
toencoders (WAE) (Tolstikhin et al., 2017) are extensions to the basic autoencoders
where deterministic encoder and decoder functions are replaced by stochastic mappings
pencoder(h|x) and pdecoder(x|h).
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2.6.1 Variational Autoencoders

Variational autoencoder (VAE) (Kingma & Welling, 2013) is a generalization of basic
autoencoder where the deterministic encoder-decoder functions are replaced by stochastic
mappings. Figure 2.6 shows the block diagram of a variational autoencoder.

Figure 2.6: Variational Autoencoder Block Diagram [Source]

Similar to an autoencoder, a variational autoencoder also has two components: a recog-
nition model (probabilistic encoder) denoted by qφ(z|x) and a generative model (prob-
abilistic decoder) denoted by pθ(x|z) where x is the input variable, z is the corresponding
latent variable, and φ & θ are the parameters are of the encoder and decoder respectively.
The recognition model qφ(z|x) serves as the approximation to the intractable true posterior
pθ(z|x).

During training, the encoder is trained to map the input x to the parameters of ap-
proximate posterior distribution µ and Σ. To ease the computational requirements, Σ is
constrained to be diagonal. Since sampling z directly from the distribution parameters ob-
tained from the encoder qφ(z|x) removes the option of using backpropagation for training,
reparameterization trick is employed to sample z:

z = µ+ Σ ∗ ε (2.12)

where ε ∼ N (0, I).
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The decoder is trained to reconstruct the original input x using the sampled latent code
z. In addition to the reconstruction loss, the variational autoencoder has an additional
regularization term in its overall objective. The regularization term computes the KL
divergence between the approximate posterior of the latent variable and its prior. Typically,
an isotropic gaussian distribution with 0 mean and unit variance i.e. N (0, I) is used as
the prior for the latent variable. Therefore, the overall loss function used for training a
variational autoencoder is given by:

LVAE = Ez∼qφ(z|x) [log(pθ(x|z)]−KL(qφ(z)||p(z)) (2.13)

where p(z) is the prior distribution of the latent variable.

2.6.2 Bag-of-Words Variational Autoencoders

Miao et al. proposed an unsupervised generative model of text based on the variational
autoencoders called Neural Variational Document Model (NVDM) (Miao et al., 2015)
(Figure 2.7).

Figure 2.7: Neural Variational Document Model (Miao et al., 2015)

The main objective of the proposed NVDM is to obtain a continuous latent represen-
tation for each document’s semantic content. The model consists of an encoder (inference
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network) parameterized by a multilayer perceptron (MLP) which operates upon the bag-
of-words document representation and returns its continuous latent representation, and a
softmax decoder (generative model) which reconstructs the document by generating the
words independently. The NVDM achieved state of the art perplexities when applied to
document topic modeling tasks using multiple datasets such as 20NewsGroups and RCV1-
v2.

2.7 Sequence-to-Sequence Models

Sequence to sequence models were proposed by Sutskever et al. as way to model the trans-
formation of variable length source sequences to variable length target sequences (Sutskever
et al., 2014). The transformation learned by the model depends on the task that the model
is trained to perform. For example, Sutskever et al. applied the proposed sequence to se-
quence model to perform the WMT’14 English to French translation task (Sutskever et al.,
2014). Figure 2.8 shows the components of a typical sequence to sequence model.

Figure 2.8: Sequence-to-sequence Model [Source]

Similar to an autoencoder, a sequence to sequence model is made up of an encoder and
a decoder. The encoder takes the source sequence as input and produces a fixed size vector
representation of the whole source sequence. The decoder uses the vector representation of
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the source sequence to produce the target sequence in a sequential manner. Typically, both
the encoder and decoder are implemented using recurrent neural networks such as Long
Short Term Memory or Gated Recurrent Unit. The encoder RNN’s hidden state corre-
sponding to the last time step of the source sequence is usually used as the fixed size vector
representation of the source sequence. This vector representation of the source sequence is
used to initialize the hidden state of the decoder when generating the corresponding target
sequence.

Since their introduction, sequence to sequence models have been successfully applied
to a variety of natural language generation tasks including, but not limited to, dialog
generation (Shang et al., 2015; Vinyals & Le, 2015) , question answering (Yin et al., 2015),
text summarization (See et al., 2017; Zhou et al., 2018), etc.

2.8 Generative Adversarial Networks

Generative adversarial network (GAN) (I. J. Goodfellow et al., 2014) is a frame-
work for learning generative models through the use of an adversarial process. The GAN
typically contains two neural networks called the generator denoted by G and the dis-
criminator denoted by D. The adversarial process contains training both the generator
G and the discriminator D simultaneously. The generator G is to trained to learn the
true data distribution. The discriminator D, on the other hand, acts as the adversary of
the generator and is trained to distinguish between the real data samples and the sam-
ples generated by the generator G. Figure 2.9 provides a high level overview the GAN
architecture.

Let pg denote the true distribution over the data x ∈ X and pz(z) denote the input
noise’s prior. Then, the generator G(z; θg) represents a mapping from the noise space
to the data space and is paramterized by a multilayer perceptron with parameters θg.
The discriminator D(x; θd) is also parameterized by a separate multilayer perceptron with
parameters θd and produces a singular probability value. The higher the output probability
the more likely it is that the input to the discriminator was sampled from the true data
distribution. The generator is trained to output samples which increasingly mimic the true
data distribution and fool the discriminator. The discriminator is simultaneously trained
to output probabilities which can be used to correctly identify whether input sample was
sampled from the true data distribution or generated by generator. More formally, the
discriminator D and the generator G play the following minimax game with the value
function V (G,D):
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Figure 2.9: GAN architecture [Source]

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z))] (2.14)

In practice, during initial phase of the GAN training the generator distribution differs
from true data distribution significantly which makes it very easy for the discriminator
correctly tell apart the real samples from the samples produced by the generator. This, in
turn, makes the signals generated by the discriminator gradients weak and not very useful
for training the generator. Therefore, it is suggested that instead of training G to minimize
log(1−D(G(z))), it is more useful to train G to maximize log(D(G(z))) (I. J. Goodfellow
et al., 2014).

Since their introduction GANs have become widely used for generative modeling tasks
in both vision (Bao et al., 2017; Brock et al., 2018; Dai et al., 2017) and NLP (Xu et al.,
2018; Zhang et al., 2017) domains with great success.

2.8.1 Conditional GAN

One of the shortcoming of the GANs is that there is no way to control the data samples
generated by the generator. Mirza et al. proposed conditional generative adversarial
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nets (CGANs) to mitigate this problem (Mirza & Osindero, 2014). The proposed CGANs
allowed the generation of data samples by the generator which were conditioned on some
auxiliary information about the input data items. Let y denote some auxiliary information
about the data denoted by x. Then, the GAN can be extended to CGAN by simply
feeding the y to both the generator and the discriminator (Mirza & Osindero, 2014) using
additional input layers. The new objective function is:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y))] (2.15)

2.8.2 Auxiliary Classifier GAN

Despite the high popularity and widespread usage, GANs have certain limitations includ-
ing, but not limited to, the mode collapse problem and difficulty of training (Arjovsky &
Bottou, 2017). The mode collapse problem results in a lack of diversity in the samples
generated by the generator. Various techniques have been proposed to mitigate these prob-
lems without fully resolving these issues. A variant of GAN called an auxiliary classifier
GAN (ACGAN) was proposed by Odena et al. and was shown to generate high quality
and diverse images while exhibiting higher training stability (Odena et al., 2016). The
structure of an AC-GAN is similar to a CGAN where the generated samples are condi-
tioned on some class label. The main difference being that the discriminator is trained
to produce a probability distribution over the class labels in addition to the probability
distribution over the sources (Odena et al., 2016). Figure 2.10 shows the architectures of
GAN, CGAN, and ACGAN.

2.9 Transformers

Recurrent neural networks such as long short term memory and gated recurrent unit have
achieved tremendous amount of success on various NLP tasks but due to their recurrent
nature do not easily lend themselves to parallelization. This puts an upper bound on the
size of the training set which can be used train recurrent neural network based models. To
alleviate this problem Vaswani et al. proposed a novel encoder-decoder model architecture
based entirely on attention mechanism and without any use of recurrent neural networks
called the Transformer (Vaswani et al., 2017). The transformer model uses the atten-
tion mechanism extensively to model global dependencies between the input and output.
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Figure 2.10: GAN, CGAN, and ACGAN architectures (Mino & Spanakis, 2018)

The transformer model, due to its architectural choices, also allows for significantly more
parallelization which enables training on significantly larges training sets using distributed
computational resources (Vaswani et al., 2017). Figure 2.11 shows the architecture of the
transformer model.

As mentioned earlier, the transformer model uses the encoder-decoder structure. The
left half of the figure 2.11 shows the encoder architecture and the right half shows the
decoder architecture. The encoder is made up of N = 6 identical layers. Each layer
itself is made up of two sub-layers. The first sub-layer is a multi-head attention layer
and the second sub-layer is a position-wise, fully connected feedforward network. Residual
connections are used around each of the sub-layer. The output of the sub-layer and the
residual connection value are added and layer normalization is performed. The decoder is
also made up of N = 6 identical layers. Each layer contains three sub-layers. The first
sub-layer is masked multi-head attention which uses masking to prevent positions from
attending to subsequent positions. The second sub-layer is another multi-head attention
layer which performs attention over the output of the encoder stack. The third sub-layer
is a position-wise, fully connected feedforward network. The decoder also uses residual
connections around each sub-layer in the same way as the encoder. The outputs fed to the
decoder are shifted to the right by one position. This along with the fact that position can
not attend to the subsequent position due to masking ensures that the predictions for the
position i can only make use of the known outputs at positions less than i (Vaswani et al.,
2017).
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Figure 2.11: Transformer Architecture (Vaswani et al., 2017)

Transformer relies entirely on self-attention mechanism to compute the representa-
tions of its input and outputs without making use of any recurrent neural networks or
convolutional neural networks. Self-attention, sometimes also called intra-attention,
refers to applying attention mechanism to capture dependencies between different positions
within a single sequence. Vaswani et al. refer to the attention used in the proposed trans-
former model as scaled dot-product attention. The input to the attention mechanism
is made up of queries, keys, and values. The queries and keys are of the same dimension
dk and values are of the dimension dv. For each query, dot products are computed with
all the keys and the results are divided by

√
dk. Finally, a softmax function is applied to

obtain the weights which are used to scale the values. Practically, this is all computed
using matrix operations. Let Q, K, V be the matrices denoting queries, keys and values
respectively. Then, the attention function is computed in the following way:
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Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.16)

The transformer performs this attention function h = 8 times, calling it a multi-head
attention, by linearly projecting the queries, keys, and values h times with different,
learned linear projections (Vaswani et al., 2017). The output values of each of the atten-
tion function is concatenated and once again projected to obtain the final output values.
Formally:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

where headi = Attention(QWQ
i , KW

K
i , V W

V
i )

(2.17)

Where the WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv , and WO ∈ Rhdv×dmodel

are the projection parameter matrices.

The transformer model was evaluated on the language translation task and achieved
state of the art results (Vaswani et al., 2017).

2.9.1 T5

As mentioned earlier, the transformer model lends itself to effective parallelization of the
model training process. This opened up the possibility of training very large transformers
based models on massive NLP corpus using distributed computational resources. Re-
searchers discovered that training very large transformer based models on massive NLP
corpus using various unsupervised objectives such as language modeling, next sentence pre-
diction, etc. can be used to train the model to learn general purpose abilities and knowledge
which significantly improve the model performance on various downstream tasks. Multiple
such models have been proposed including BERT (Devlin et al., 2018), GPT2 (Radford
et al., 2019), XLNet (Yang et al., 2019), RoBERTa (Liu et al., 2019), etc.

Text-to-Text Transfer Transformer (T5) (Raffel et al., 2019) is a transformer
based model which uses the encoder-decoder structure. It uses the same basic architecture
as proposed in the original transformer paper (Vaswani et al., 2017) with some minor
variations. It is based on the basic idea that the most problems in NLP can be formulated
as text to text transformation. In other words, given a sequence of words as input the
model produces another sequences of words as output. Figure 2.12 shows how the input
and output are formulated for performing a variety of NLP tasks using the T5 model.
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Figure 2.12: Text-to-Text Transfer Transformer (T5) Framework (Raffel et al., 2019)

Raffel et al. generate a new very large unlabeled text dataset called the colossal clean
crawled corpus (C4) using the common crawl dataset. The C4 dataset is generated by
applying some filtering rules to the common crawl dataset to only retain clean English
language documents which contain natural language text rather than computer generated
boilerplate text or computer code (Raffel et al., 2019). The newly generated C4 dataset
dataset, which is about 750 GB in size and orders of magnitude larger than other datasets
used for pretraining, is used for pretraining the T5 model using the encoder-decoder setup
and a basic denoising objective (figure 2.13). The pretraining uses teacher forcing and
cross entropy loss. After pretraining, the T5 model is fine-tuned on individual supervised
tasks by adjusting the input and output sequences. T5 achieved state of the art results on
multiple NLP tasks including reading comprehension, machine translation, entailment, etc
(Raffel et al., 2019).

Figure 2.13: Inputs and outputs for the denoising objective (Raffel et al., 2019)
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Chapter 3

Related Work and VAE-AM

3.1 Dialog Response Generation

The main goal of a dialog response generation model is to generate response utterance
based on the query utterance while taking previous utterances in the same dialog into
account. The generated response utterance should be coherent and relevant to the query
utterance. Furthermore, an effective dialog response generation model should generate
diverse and informative response utterances rather than generic response utterances.

Dialog response generation is an active area of research and rapid advances in deep
learning methods have motivated researchers to explore generative deep learning models
for dialog generation task. Various approaches have been explored to develop an effec-
tive dialog generation model. After Sutskever et al., 2014 introduced sequence-to-sequence
(Seq2seq) models for machine translation task, they were successfully applied to the di-
alog generation tasks by multiple researchers (Shang et al., 2015; Sordoni et al., 2015).
Soon after, it became evident that the Seq2seq based models tend to generate trivial and
safe response responses such as ”I don’t know” or ”I’m ok” (Vinyals & Le, 2015). To
improve the diversity of the responses generated by Seq2seq model, various variants have
been proposed which include using objective which promotes diversity (J. Li et al., 2016),
incorporating situational information for response selection (Sato et al., 2017), etc. Var-
ious dialog generation models which are based on the variational framework (Kingma &
Welling, 2013) have also been proposed including, but not limited to, variable hierarchical
recurrent encoder decoder (VHRED) (Serban, Sordoni, Lowe, et al., 2016) which models
the encoded utterances in a dialog using latent variables at various levels, Collaborative
VAE (Shen et al., 2018) which trains a pair of collaborating autoencoder and conditional
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VAE (Sohn et al., 2015) to improve the overall performance, etc. Generative adversarial
networks (GANs) (I. J. Goodfellow et al., 2014) have shown impressive generational capa-
bilities when applied to image generation tasks. Application of GANs to text generation is
difficult due to its inherent discrete nature but various workarounds have been proposed.
J. Li et al., 2017 combine adversarial learning with reinforcement learning for dialog gener-
ation. They propose adversarial REINFORCE algorithm where the generator is rewarded
for generating utterances which resemble human generated utterance as determined by the
discriminator. Another approach is to apply GANs to the latent space representations of
the utterances. An example of this approach is DialogWAE (Gu et al., 2018) where an
adversarial process is used to match the generator’s output latent code with the autoen-
coding latent code. Our proposed approach is similar in the sense that we apply a GAN
to the latent space representation of the utterances.

3.2 VAE-AM

In the next few sections we describe the joint work done previously on dialog response
generation. The multi-stage approach proposed in this previous work called VAE-AM
and described in the next two subsections provides the foundation and motivation for the
approach proposed and explored in this thesis. We first provide a high level overview of
the proposed approach in the next paragraph and then provide more details in the next
subsections.

The proposed multi-stage approach uses adversarial learning on the latent space of the
dialog utterances for dialog response generation. In the first stage, a variational autoen-
coder (VAE) (Kingma & Welling, 2013) is trained to reconstruct the utterances. This allows
us to obtain a semantic continuous vector respresentation for all the query and response
utterances in the dialog dataset. In the second and final stage, a generative aderversarial
network (GAN) is trained on the latent space of the VAE. The second stage GAN is trained
to transform the latent code of a query to the latent code of the corresponding response.
At inference time, we use the encoder to obtain the latent code of the response and then
use the generator to transform it into the corresponding response latent code. Finally,
the decoder is used to generate the response utterance text using the previously obtained
response uttarance latent code. Since the GAN is applied to the continuous latent space,
no reinforcement learning is needed, and we can benefit from the GANs mode-capturing
property. This simplifies the training procedure, and our model generates informative sen-
tences. Further, a mean squared error (MSE) auxiliary loss is used on the generator during
the adversarial learning process, which mitigates the mode-missing problem in GANs (Che

26



et al., 2017), resulting in more relevant and diverse responses.

3.2.1 Approach

Figure 3.1: Step 1: Variational Autoencoder. During the training, the encoder takes an
utterance s as input and produces its semantic continuous vector representation. This
representation is then projected to obtain the parameters of the approximate posterior
distribution. Using the reparameterization trick, a latent code zs obtain. The decoder is
trained to use this latent code to reconstruct the original utterance s.

Figure 3.2: Step 2: Pretrained encoder from step 1 is utilized to get the latent codes zq
and zr of the query (q) and response (r) utterances, respectively. After that, query latent
variable (zq) is fed to the generator (G) which maps it to the corresponding response latent
variable ẑr. When training the generator, we aim to match zr and ẑr through the generator
loss combined with a mean-squared error loss. When training the discriminator, we pass
zqr and ẑqr (obtained by concatenating zq with zr and zq with ẑr, respectively) through a
classification layer that tries to guess its source of input. Note:

⊕
denotes concatenation..

Figure 3.1 and 3.2 provide a high level overview of the proposed approach.

We start by formulating our task formally. We use Q & R to denote the set of all
the query utterances and response utterances respectively in the dialog dataset under
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consideration. q ∈ Q and r ∈ R denote the individual query and the corresponding
response utterance. Let S denote the set of all the utterances made up of query and
response utterances i.e. S = Q ∪ R. An utterance s ∈ S containing n words is denoted
by s = (x1, x2, x3, ..., xn). We use zq & zr to denote the latent codes corresponding to a
query and response utterance respectively. Finally, p(zq) = p(z|q) and p(zr) = p(z|r) refer
to the approximate posteriors of the query and response utterance learned by the VAE.

The problem statement is: given a query utterance q ∈ Q, generate the corresponding
response utterance r ∈ R.

It is easy to see that generating the response utterance for a given query utterance can
be viewed as learning the conditional distribution p(zr|zq). We propose a two-step method
to learn the conditional distribution.

Step 1. Our main objective in step 1 is to effectively learn the posterior distribution
of the continuous latent variables of the utterances in the dialog corpus. We need to be
able to obtain the posterior distribution of the continuous latent distribution of a given
utterance and conversely, be able to reconstruct the utterance given a latent code sample
from a posterior distribution.

Towards this end, we adopt a variational autoencoder (VAE) (Kingma & Welling, 2013)
for our first step. A VAE encodes an input utterance s to a probabilistic, latent continuous
representation z, from which VAE further decodes the input utterance s.

Given an utterance s, the encoder produces the parameters of the posterior distribution
Enc(s) = p(z|s) = N (µ, diagσ2), where µ and σ are the mean and standard deviation
of the distribution respectively. We use the standard training objective of the VAE which
minimizes the expected reconstruction loss and a regularization term which penalizes the
KL divergence between the posterior and the prior. We use the typical standard normal
p(z) = N (0, I) as the prior distribution of z. This is given by

JAE(θEnc, θDec) = −Ez∼p(z|s)(log p(s|z)) + λKLKL(p(z|s)||p(z)) (3.1)

where θEnc, θDec are encoder and decoder parameters respectively, λKL balances the two
terms.

When compared to a deterministic autoencoder, VAE learns a smoother latent space
due to the KL regularization. This is especially useful due to the fact that the second step
might not learn the conditional distribution perfectly and during inference, the generator
might predict response latent codes which are not perfectly aligned with the ground truth
response latent codes. But due to the smooth latent space, the non-perfectly aligned
response latent code still produce reasonable response reconstruction.
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Step 2. The main goal of the second step is to effectively predict the latent code
of the response utterance given the latent code of the corresponding query utterance.
During inference time, the query utterance latent code can then be used to predict the
corresponding response utterance latent code and the decoder trained in the first step can
be used to reconstruct the response utterance text.

For this purpose, we use a conditional GAN (CGAN) (Mirza & Osindero, 2014) which
is trained to learn the conditional distribution p(zr|zq). During training, we use the VAE
encoder trained in step 1 to obtain the query utterance latent code zq and the response
utterance latent code zr. The generator G is trained to transform the query utterance
latent code zq to response utterance latent code ẑr i.e. G(zq) = ẑr. The discriminator D
is trained to distinguish between the samples: zq⊕ zr and zq⊕ ẑr. We use zq⊕ zr denotes
the concatenation of the ground truth query utterance latent code and the corresponding
response utterance latent code which is treated as the real sample. Similarly, zq ⊕ ẑr is
used to denote the concatenation of the ground truth query utterance latent code and the
corresponding response utterance latent code generated using the generator and treated as
the fake sample. The adversarial loss for the CGAN is given by:

JCGAN = min
G

max
D

V (D,G) (3.2)

where V (D,G) = Ezr∼p(zr)[logD(zr|zq)] + Ezq∼p(zq)[log(1−D(G(zq)))] (3.3)

In addition, we use an auxiliary mean square error (MSE) loss on the generator G:

JMSE = ||zr −G(zq)||2 = ||zr − ẑr||2 (3.4)

The MSE loss on the generator helps stabilize the GAN training and reduce the severity
of the mode collapse problem associated with the GANs (Che et al., 2017). Thus, the overall
training objective is given by

J = JCGAN + αJMSE (3.5)

where α is a hyperparameter that moderates the effect of the MSE loss.

The proposed approach is trained and evaluated in two different settings: single-turn
and multi-turn. In the single-turn setting, every possible pair of consecutive utterances
belonging to the same dialog is extracted to form the query-response instance. In the
multi-turn setting, every response utterance is paired with every preceding utterances in
the same dialog i.e. response latent code is predicted using the latent codes for all the
preceding utterances using a recurrent neural network as the generator in the CGAN.
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3.2.2 Experiments and Results

In this section we provide the details about the evaluation results of the approach described
in the preceding section.

Datasets. We evaluate the approach using DailyDialog (Y. Li et al., 2017) and Switch-
Board (Godfrey et al., 1992) dialog datasets. DailyDialog (Y. Li et al., 2017) is a manually
labeled, human written, multi-turn dialog dataset. The dialogs included in the dataset are
day-to-day conversations which occur in life on a variety of topics. We use the original
splits provided by the dataset after deduplicating the validation and test sets (Bahuleyan et
al., 2018). Switchboard (Godfrey et al., 1992) dataset contains transcriptions of telephone
conversations on various topics.

Baselines. We compare the proposed approach’s performance against the following
baseline models. Seq2Seq: The standard sequence to sequence model based on LSTMs;
WED-S: a stochastic wasserstein encoder decoder model (Bahuleyan et al., 2019); and
DialogWAE: a recent model based on adversarial regularization of autoencoders (Gu et
al., 2018) which reports state of the art results on the selected datasets.

Evaluation Metrics. We use the following evaluation metrics to compare the perfor-
mance of the proposed approach against the baselines models quantitatively. For each of
the following metric, we compute the metric for each individual query and then report the
average over the entire test set.

• BLEU Bleu metric measures the overlap of n-grams between the reference response
and the generated hypotheses responses (Papineni et al., 2002). Higher bleu score in-
dicates better performance. For each query, 10 responses are generated. We compute
smoothed 3-gram bleu scores for each of the responses using smoothing 7 (B. Chen &
Cherry, 2014). Following Zhao et al., 2017, we compute recall (R) bleu and precision
(P) bleu by taking the maximum and average of the bleu scores for the 10 responses
generated for a query. We also report the harmonic mean (F) of the precision and
recall values.

• Diversity We measure the diversity of the generated responses by computing the
ratio of the unique unigrams and bigrams with the total number of unigrams &
bigrams in the generated responses. Intra distinct 1 and intra distinct 2 denote the
ratio of the unique unigram & bigrams to total number of unigrams & bigrams for
each response. On the other hand, Inter distinct 1 and inter distinct 2 denote the
ratio of the unique unigrams & bigrams to total number of unigrams & bigrams over
the 10 responses generated for a query. Higher scores indicate higher diversity in the
generated responses.
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• Token Type Ratio (TTR) TTR measures the lexical diversity of the generated
responses. We compute it by taking the dividing the number of unique words by
the total number of words in the generated responses. We only use one response per
query for this purpose. Higher TTR scores indicate better overall lexical diversity in
the generated responses.

• Perplexity (PPL) The PPL metric measures the fluency of the generated responses
and how similarly structured the generated responses are to utterances found in the
dataset. For computing perplexity, we train a trigram Kneser-Ney trigram language
model (Kneser & Ney, 1995) on the entire dataset. Lower PPL scores are better
and indicate that model generates fluent responses which strucutred similar to the
ground truth responses. The PPL is computed in the following way:

PPL = e−
1
N

ΣNi=1log(p(wi)) (3.6)

where N is the total number of words in the sequence, wi is the i-th word in the
sequence and p(wi) is the probability of the assigned to wi by the language model.

Implementation Details. We implement the VAE encoder and decoder with single
layer Bidirectional LSTM (Hochreiter & Schmidhuber, 1997) and unidirectional LSTM
with a hidden size of 512 respectively. We use word2vec word embeddings of size 300 for
the input and set the latent code dimension to 128. Furthermore, we adopt KL-annealing
and word dropout from (Bowman et al., 2016) to stabilize VAE’s training. For the GAN,
both the generator and the discriminator are implemented using two layer feedforward
network using LeakyReLU activations. In multiturn setting, we replace the feedforward
network with a bidirectional LSTM to generate the response latent code using the ground
truth latent codes of all the previous utterances in the same dialog.

We use the training set for training the model, bleu metric performance on the validation
set is used for selecting the best performing model and the final evaluation is performed
on the test set. We also compute the average length of the responses generated by the
models and compare it with the average lengths of the responses in the test set. Ideally,
a model should generate responses with lengths similar to the average length of responses
in the test set.

Results and Analysis. We provide the results for the single-turn and multi-turn
settings for the DailyDialog test set in table 3.1. Results for Switchboard test set for
both the single-turn and multi-turn settings are provided in table 3.2. Since in single-
turn settings, DialogWAE and our approach are the best performing models on most of
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the metrics, we compare only these 2 models for the multi-turn setting. Apart from the
baselines models and our full model, we also provide results for our model which have some
its components removed. VAE-AM refers to our full model, VAE-A refers to the model
where we only use the adversarial loss to train the CGAN and do not apply MSE loss to
the generator, and VAE-M refers to the model where we train the generator only using
the MSE loss. We also provide some select responses generated by our model and the
DialogWAE model for comparison.

We also performed a small scale human evaluation on 50 randomly selected queries
from the DailyDialog test set. We ask 4 human evaluators to assign a rating on a scale
of 1-5 (1 being the worst and 5 being the best) to each response based on the fluency
of the generated response and the relevance to the query. We report the result in table
3.3. We compare samples generated using our model with the samples generated using the
DialogWAE model. Our model outperforms the DialogWAE model on both criteria.

For the DailyDialog dataset, we can see from the quantitative results that our model
outperforms the baseline models on most of the metrics in both the single-turn and multi-
turn settings. We see that our model generates diverse and fluent responses in addition
to being more related to the queries. We get strong results on the switchboard dataset
as well. In the reported results, we note that the seq2seq baseline models performs really
well on diversity and PPL metric but this is mainly due to the fact seq2seq model tend to
generate really short and generic responses for all the queries as evidenced by the much
lower bleu scores and average sentence length.

We hypothesize that our model learns to generate diverse and fluent responses due
to the fact that we operate on the smooth latent space of the variational autoencoder.
We somewhat mitigate the mode collapse problem of the GAN by using MSE loss on the
generator. This allows the GAN to capture multiple modes present in the training set
while simultaneously learning to transform query latent code to response latent code more
effectively.
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Model
BLEU Diversity Fluency

P R F Intra-1 Intra-2 Inter-1 Inter-2 ASL (14.43) TTR PPL
Seq2Seq 0.143 0.217 0.172 0.99 0.99 0.46 0.49 4.63 0.019 18.45
WED-S 0.215 0.357 0.268 0.94 0.99 0.48 0.74 10.42 0.034 33.91

DialogWAE 0.296 0.356 0.323 0.85 0.97 0.42 0.74 19.34 0.005 20
VAE-M (ours) 0.191 0.293 0.231 0.98 0.99 0.5 0.79 9.36 0.029 19.7
VAE-A (ours) 0.295 0.359 0.323 0.93 0.99 0.46 0.76 13.64 0.035 21.38

VAE-AM (ours) 0.306 0.367 0.334 0.91 0.99 0.46 0.82 16.90 0.034 17.01
Multi-turn results

DialogWAE 0.279 0.365 0.316 0.79 0.92 0.35 0.68 19.84 0.007 161.86
VAE-AM (ours) 0.314 0.371 0.34 0.847 0.98 0.41 0.73 15.3 0.036 119.39

Table 3.1: DailyDialog Dataset results, suffix A- adversarial loss, suffix M - MSE loss.

Model
BLEU Diversity Fluency

P R F Intra-1 Intra-2 Inter-1 Inter-2 ASL (8.49) TTR PPL
Seq2Seq 0.088 0.176 0.118 0.989 0.956 0.816 0.927 2.66 0.026 23.62
WED-S 0.193 0.395 0.259 0.941 0.989 0.404 0.525 10.41 0.032 35.63

DialogWAE 0.235 0.375 0.289 0.739 0.712 0.354 0.571 10.32 0.017 25.36
VAE-M (ours) 0.231 0.3 0.261 0.954 0.998 0.322 0.479 8.84 0.045 24.58
VAE-A (ours) 0.229 0.376 0.285 0.725 0.751 0.218 0.354 11.73 0.053 27.55

VAE-AM (ours) 0.259 0.364 0.303 0.989 0.999 0.436 0.569 7.08 0.062 21.87
Multi-turn results

DialogWAE 0.267 0.394 0.318 0.779 0.844 0.325 0.513 14.7 0.019 183.82
VAE-AM (ours) 0.271 0.372 0.313 0.954 0.966 0.412 0.559 8.72 0.065 136.81

Table 3.2: Switchboard Dataset results, suffix A- adversarial loss, suffix M - MSE loss.

Model Relevance Fluency
VAE-AM 2.3625 3.2225

DialogWAE 2.3125 3.1775

Table 3.3: Human evaluation results on the subset of samples selected from DailyDialog
test set
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Generated Responses
Query: o . k . well , go to google.com , and type in battle of gettysburg .

VAE-AM: oh , there are a lot of things that i need to do .
DialogWAE: then ill have to check the details . what can i do for you today ?

Query: yes . i m going to the untied states for travel . what places do you recommend ?
VAE-AM: here are some leaflets detailing everything . i have nt seen you in ages .
DialogWAE: it s very nice to see you again , but i think it s a good idea to do .

Query: medium one will be perfect , thank you
VAE-AM: is that all ?

DialogWAE: in that case , i have to be able to get some of them .
Query: the annual charge rate is NUM .

VAE-AM: that s a lot of money . can you make it a little cheaper ?
DialogWAE: then what about the <UNK> ? i mean , i am not sure .

Query: but it is too loose.do you have the smaller size ?
VAE-AM: ok , we will . how about this one ?

DialogWAE: in that case , i have to be able to get some of them . i think i can get a new one .

Table 3.4: Generated responses in single-turn setting for DailyDialog dataset

Generated Responses
Query: allan, i am really disappointed by your lack of effort on this project .

VAE-AM: it seems you are not aware of the actual work split . i have done more than anyone else.
DialogWAE: ok , it’s not that bad . but it’s not that bad . i don’t want to have any other questions about it .

Query: when is he coming ?
VAE-AM: next week . he is enjoying his month long vacation in miami .
DialogWAE: sorry , he’s not very serious . he’s got a lot of money to do .

Query: i ll try my best to make a good impression on the interviewer .
VAE-AM: do nt worry pal. only weak candidates should. just dress properly and try to make it alive there haha ...
DialogWAE: that is ok , we ’ ll be able to get a raise in the next few days . we will have to pay you a lot of money .

Query: can you tell me where the pots and pans are ?
VAE-AM: absolutely not . i m not letting you cook today . you messed it real bad yesterday .

DialogWAE: yes , of course .
Query: what kind of personal information ?

VAE-AM: your name , height , sex , and contact . also tick this check box if you have faced this issue before .
DialogWAE: not at the moment . but there is a lot of money in the city , but we have to pay a lot of money for the money .

Table 3.5: Generated responses in multi-turn setting for DailyDialog dataset
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Chapter 4

Approach

In this chapter, we briefly describe the motivation behind our proposed approach. We
describe our proposed approach in a detailed manner. Furthermore, we discuss the exper-
iments performed to evaluate the proposed approach and analyse the reported results.

4.1 Approach

We provide a high level overview of the proposed approach in Figure 4.1, 4.2, and 4.3.
Our proposed approach is an extension of the approach described in the previous chapter.
We start by training a bag-of-words variational autoencoder and a language model which
is used to encode the dialog history. Next, we train an auxiliary classifier GAN which
learns to transform the concatenation of the query latent code and the encoded context
into the response latent code. Finally, we finetune a pretrained T5 model (Raffel et al.,
2019) to generate dialog responses conditoned on the query and the predicted response
bag-of-words.

We observe that the variational autoencoder used in the approach described in the
previous chapter tries to encodes the whole utterance into the latent code. An utterance
contains both the semantic and syntactic component. A reasonably successful reconstruc-
tion requires access to both kind of information. It is possible that the VAE assigns same
significance to both kind of information while encoding. While this does not negatively
affect the autoencoding performance, it will have a negative effect on the second step where
we are trying to learn to transform the query latent code to response latent code. Intu-
itively, it is reasonable to assume that having more semantic information retained in the
latent codes will make it easier to transform the query latent code to response latent code.
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Figure 4.1: Step 1: Bag-of-words Variational Autoencoder (BOW-VAE). During the train-
ing, the encoder takes one hot encoded vector s containing upto n words from an utterance
as input and produces its semantic continuous vector representation. This representation is
then projected to obtain the parameters of the approximate posterior distribution. Using
the reparameterization trick, a latent code zs is obtained. The decoder is trained to use
this latent code to independently predict the words contained in the input bag-of-words s.
We additionally, train a Bidirectional LSTM based language model LM to be used later
for encoding the context.

We once again start by formulating our task formally. We use U & V to denote the
set of all the query utterances and response utterances respectively in the dialog dataset
under consideration. m ∈M and v ∈ V denote the individual query and the corresponding
response utterance. Similarly, we use Q & R to denote the set of all the query and response
utterance bag-of-words (BOW) one hot encoded vectors respectively in the dialog dataset
under consideration. Each of the one hot encoded vectors encode upto n words extracted
from the corresponding utterance. q ∈ Q and r ∈ R denote the individual query and
the corresponding response utterance bag-of-words vectors. Let S denote the set of all the
utterance bag-of-words vectors i.e. S = Q∪R and s ∈ S denote a single utterance bag-of-
words vector. We use zq & zr to denote the latent codes of a query q and the corresponding
response r utterance BOW respectively. Similarly, zs is used denote the latent code for a
given utterance BOW s. Finally, p(zq) = p(z|q), p(zr) = p(z|r) and p(zs) = p(z|s) refer
to the approximate posteriors of the query q, response r, and utterance s learned by the
VAE.

The problem statement is: given a query utterance u ∈ U, generate the corresponding
response utterance v ∈ V.

We again formulate it as a distribution estimation problem. We learn the conditional
distribution p(zr|zq) and use it to generate the response BOW. We use the predicted
response words along with the query utterance to generate the full response utterance.
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4.1.1 First Stage - Bag-of-Words Variational Autoencoder

The main objective of the first step is to learn the latent variable posterior of the query
and response utterance bag-of-words. The model chosen for this purpose should be able
to effectively encode the utterance bag-of-words one hot encoded vectors into meaningful
latent codes and conversely, be able to reconstruct the original bag-of-words given a latent
code corresponding to an utterance.

Most of the details in step 1 remain the same as in the step 1 of the approach described
in the previous chapter, please refer to section 3.2.1 for details. We highlight the differences
below and give the objective function.

One major difference is that we train a bag-of-words (BOW) VAE instead of a sentence
VAE. We adopt the neural variation document model (NVDM) (Miao et al., 2015) based
on the variational autoencoder (VAE) (Kingma & Welling, 2013) for our first step. We use
one hot encoded vector representations for each utterance. We select upto n words using
tfidf weighting statistics for encoder input vectors and we select words corresponding to
top n probabilities while decoding.

The objective function for the BOW VAE is given by:

JAE(θEnc, θDec) = −Ez∼p(z|s)(log p(s|z)) + λKLKL(p(z|s)||p(z)) (4.1)

where θEnc, θDec are encoder and decoder parameters respectively, λKL balances the two
terms, s is the one hot encoded vector of an utterance, and z is the latent code.

Additionally, we train a language model using the next word prediction objective and
cross entropy loss. We use this language model to encode the context of query-response
pair. This encoded context is used in the next step to train the auxiliary discriminator.

4.1.2 Second Stage - Adversarially Learning the Latent Bag-of-
Words

The main goal of the second step is to effectively predict the latent code of the response
utterance zr given the latent code of the corresponding query utterance zq. During infer-
ence time, the query utterance latent code can then be used to predict the corresponding
response utterance latent code and the decoder trained in the first step can be used to
obtain the subset of words in the response utterance.
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To fulfil the goal of learning the transformation of the query latent code zq to zr, we
adopt an auxiliary classifier GAN (AC-GAN) (Odena et al., 2016). AC-GAN is a simple
extension of the conditional GAN which yields multiple benefits in the form of improved
generation and stabilized training (Odena et al., 2016). AC-GAN extends the CGAN by
not only conditioning the generator on the additional class labels but also adding additional
loss function to the discriminator to produce probability distribution over the class labels.
Hence, the name auxiliary classifier GAN.

In addition to using the query latent code zq, we also use the dialog history in the
form of a fixed size continuous vector representation, denoted as c, obtained using the
language model trained in first step. We use c as auxiliary class labels to setup the
auxiliary classifier loss. The main intuition underlying the usage of the language model
encoded context c is the fact that due to semantic relationship between the context c and
the response latent code zr, it should be possible to distinguish between correctly and
incorrectly paired c and zr. This allows us to use the source of this pair as the class label
for the auxiliary classifier. Furthermore, instead of using the same discriminator D to
generate the probability distributions over the sources and class labels we use an auxiliary
discriminator Daux which is trained to generate the probability distribution over the class
labels.

We train the generator G to transform the concatenation of the query utterance latent
code zq and the encoded dialog history c to the response utterance latent code ẑr i.e.
G(zq, c) = ẑr. The discriminator D is trained to distinguish between the samples: zq⊕ zr

and zq⊕ ẑr. We use ⊕ to denote the concatenation. Similarly, the auxiliary discriminator
Daux is trained to distinguished between the following pairs: c⊕ zr and c⊕ ẑr.

The adversarial loss for our adaption of the AC-GAN is given by:

JAC-GAN = min
G

max
D,Daux

V (G,D,Daux) (4.2)

where V (G,D,Daux) = Ezr∼p(zr)[logD(zr|zq)] + Ezr∼p(zr)[logDaux(zr|c)]+

Ezq∼p(zq)[log(1−D(G(zq)))]+

E(zq,c)∼p(zq,c)[log(1−Daux(G(zq, c)))]

(4.3)

We use an auxiliary mean square error (MSE) loss on the generator G:

JMSE = ||zr −G(zq)||2 = ||zr − ẑr||2 (4.4)
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To reiterate, we use MSE loss on the generator to stabilize the GAN training and reduce
the severity of the mode collapse problem associated with the GANs (Che et al., 2017).

Furthermore, we use the pretrained encoder and decoder from step 1 to help train the
generator using a reconstruction objective. This also results in further finetuning of the
encoder and decoder. We use the same reconstruction loss as used in the VAE objective:

JREC = −Eẑr∼G(zq)(log p(r|ẑr)) (4.5)

Thus the overall objective is given by:

J = JAC-GAN + αJMSE + γJREC (4.6)

where α and γ are hyperparameters that moderate the effect of the MSE and recon-
struction loss.

4.1.3 Third Stage - Text Generation Using the Learned Bag-of-
Words

In the third step, we aim to train a model which can be used to reconstruct the response
utterance by conditioning on the predicted response words and the query utterance. To-
wards this end, we finetune a pretrained text-to-text transfer (T5) model (Raffel et al.,
2019) to perform this task.

Text-to-text transfer (T5) model is a transformer based model which uses encoder-
decoder structure (Raffel et al., 2019). T5 is trained on a large text corpus called C4
corpus in an unsupervised manner using a denoising objective. After training on the C4
dataset, the T5 model was fine-tuned for several NLP tasks such as translation, entailment,
summarization by casting them as text to text transformation. For each NLP task, the
T5 model was fine-tuned using the task specific dataset in a supervised manner. For each
specific task, the input sequences are prefixed with a task specific phrase enabling T5 to
recognize the transformation to be performed during the inference. For example, while fine-
tuning for English-to-German translation tasks, the prefix ”translate English to German”
was used. T5 was shown to achieve state-of-arts performances on various NLP tasks using
this fine-tuning mechanism.

We fine-tune T5 using a custom prefix which enables it generate query responses based
on both the query utterance and predicted response keywords. Please refer to figure 4.3 to
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see how the input sequences were formed during the training and inferences stages. When
fine-tuning T5, we use the teacher forcing and a standard cross-entropy loss.

4.2 Experiments

We evaluate our proposed approach on two dialog datasets. We provide details about the
experiments and report results in the following sections.

4.2.1 Datasets

DailyDialog (Y. Li et al., 2017) dataset is popular multi-turn English language dialog
dataset. The dataset is human written and contains dialogs from everyday human life
covering a variety of topics. We use the original train, valid, and test split provided by the
dataset after deduplicating the valid and test set following (Bahuleyan et al., 2018).

Switchboard (Godfrey et al., 1992) dataset contains transcriptions of telephone con-
versations. We use the train, valid, and test split provided by (Gu et al., 2018).

4.2.2 Baseline Models

We saw from the results in the previous chapter that on both the DailyDialog and the
Switchboard dataset, the best performing models on various quantitative evaluation met-
rics were our proposed approach (VAE-AM) and DialogWAE (Gu et al., 2018) model.
Therefore, we use those two models as our baseline model. Since our approach uses the
whole dialog history to predict the keywords, we compare our results against the multi-turn
results for these two models. Additionally, we use the pretrained T5 model fine-tuned on
dialog generation tasks on each of the datasets as an additional baseline model.

4.2.3 Evaluation Metrics

We use the same evaluation metrics as were used in the experiments detailed in the previous
chapter. We cover them here briefly, please refer to section 3.2.2 for details.

We use n-gram smoothed bleu score (n < 4) (Papineni et al., 2002) to measure the
n-gram overlap between the generated responses and the ground truth response. We use
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smoothing 7 proposed in B. Chen and Cherry, 2014. We generate 10 responses for each
query and compute the recall and precision bleu (Zhao et al., 2017). Higher bleu score
indicates more overlap. Harmonic mean (F) of the recall and precision bleu are also re-
ported. We measure diversity of the generated response by computing the ratio of the
unique unigrams and bigrams with total number of unigrams and bigrams. We compute
this for each of the generated responses (Intra Distinct 1 & Intra Distinct 2) and across all
the 10 generated responses for a given query (Inter Distinct 1 & Inter Distinct 2). We also
measure the lexical diversity of all the generated responses by computing ratio of unique
tokens generated for one response per query over the total tokens generated. Higher di-
versity metrics indicate higher diversity in the generated responses. We use the perplexity
metric to measure the fluency of the generated responses. For the purpose of measuring
the perplexity, we train a trigram Kneser-Ney trigram language model (Kneser & Ney,
1995) on the respective dataset. We also report the average sentence length (ASL) of all
the generated responses.

We note that even though higher bleu scores of the generated responses is an indication
that the generated responses are more related to the query, the converse is not always
true. This is due to the fact that for each query, there are usually multiple valid responses
which do not overlap at all with the ground truth response used to measure the blue score.
Therefore, it is imperative to evaluate the performance of a dialog generation model using
a combination of metrics.

Apart from 1-gram bleu, we also report the precision and recall metric for the first and
second step models:

Precision =
tp

tp + fp
(4.7)

Recall =
tp

tp + fn
(4.8)

where tp, fp, and fn refer to true positive, false positive, and false negative respectively.
In our second stage, we predict 10 response latent codes for a given query latent. These
10 predicted response latent codes are used to generate 10 corresponding bag-of-words
using the decoder. Finally, we compute recall and precision 1-gram bleu for the generated
bag-of-words following (Zhao et al., 2017).
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4.2.4 Implementation and Training Details

We implement the language model trained in step 1 which is used to encode the context
using three layer bidirectional LSTM (Hochreiter & Schmidhuber, 1997) with 64 hidden
units. We use word2vec (Mikolov et al., 2013) word embeddings obtained using a word2vec
model trained on the respective datasets.

The encoder and decoder in the bag-of-words variational autoencoder are implemented
using three layers of fully connected feedforward network. We utilize batch normalization
(Ioffe & Szegedy, 2015) between layers to prevent overfitting to the training set. We use
LeakyReLU activation function. Input to the encoder is in the form of one-hot encoded
vector with upto n = 6 words selected from each utterance. We use tfidf-weighting statistics
to select the words from each utterance. Higher tfidf-weighting of a word indicates that the
word is more informative as opposed to less informative words such as stopwords. While
decoding, we select n = 6 words corresponding to the highest probabilities. We utilize KL-
annealing to prevent posterior collapse using a tanh function based scheduling. We evaluate
the performance of the BOW VAE model using the 1-gram, precision, and recall metric.
We provide the results of the selected BOW VAE model on DailyDialog and Switchboard
datset in table 4.1. We also provide an example of the utterance reconstructions for both
DailyDialog and Switchboard dataset in tables 4.2 and 4.3 repectively.

Dataset Bleu Precision Recall
DailyDialog 0.73 0.73 0.78
Switchboard 0.71 0.71 0.76

Table 4.1: BOW VAE evaluation results on the DailyDialog and Switchboard test set

Utterance Input BOW Reconstruction
BOW

I just don’t know how to bring it up. Well, all
right. She has the right to know anyways.

anyways, bring,
has, know, right,
she

has, know,
mean, now,
right, she

Table 4.2: BOW VAE reconstruction example from DailyDialog test set

For our AC-GAN implementation, we use similar architectures for the generator, dis-
criminator, and the auxiliary discriminator. We again use three layers of fully connected
feedforward network with ReLU activation functions. We also use dropout (Srivastava
et al., 2014) with p = 0.33 after each layer in the generator to prevent overfitting to the
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Utterance Input BOW Reconstruction
BOW

aspect to the human rights issues and the sort
of things that democracy in this country has
really stood for and you know and brought it
back to the limelight compared to the sixties
and seventies

aspect,
democracy,
human,
limelight,
sixties, stood

capital, certainly,
democracy,
hopefully,
human, people

Table 4.3: BOW VAE reconstruction example from Switchboard test set

training set. During inference on the validation and test set, we sample 10 latent codes
from the query utterance BOW latent posterior which are used to generate 10 correspond-
ing response uterrance BOW latent codes. We report the results for the selected AC-GAN
model on the test set of the DailyDialog dataset and Switchboard dataset in table 4.4. We
compare the performance of the CGAN with AC-GAN on the DailyDialog test set in table
4.5. In CGAN model, we condition on just the query BOW latent whereas in AC-GAN
we condition on the encoded dialog history in addition to the query BOW latent code.
Finally, we present examples of the predicted response words for both the DailyDialog and
Switchboard datasets in tables 4.6 and 4.7.

Dataset Precision Bleu Recall Bleu Precision Recall
DailyDialog 0.08 0.19 0.06 0.07
Switchboard 0.05 0.17 0.05 0.05

Table 4.4: AC-GAN evaluation results on the DailyDialog and Switchboard test set

Model Precision Bleu Recall Bleu Precision Recall
GAN 0.05 0.14 0.03 0.03

AC-GAN 0.08 0.19 0.06 0.07

Table 4.5: CGAN vs AC-GAN on the DailyDialog test set

For our final stage, we use the pretrained t5-base model provided by the huggingface’s
pytorch transformer module (Wolf et al., 2019). We finetune the pretrained T5 model on
each of the dialog dataset’s train set for generating the response utterance by conditioning
on the query utterance and ground truth response utterance BOW. Refer to figure 4.3 to
see how we format the input and target sequences. For inference on the test set, we use the
response keywords predicted by our second stage AC-GAN generator. We verify that the
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Query Utterance sorry, i am not sure. can i take a message?
Query BOW am, message, not, sorry, sure, take
Ground Truth Response Utterance No, thanks. I will call back later.
Ground Truth Response BOW back, call, later, no, thanks, will
Predicted Response BOW #1 call, help, ll, no, ok, thanks
Predicted Response BOW #2 can, he, him, know, may, take
Predicted Response BOW #3 emory, facial, is, skim, thanks, that
Predicted Response BOW #4 all, are, other, thank, that, you
Predicted Response BOW #5 for, it, john, player, re, you
Predicted Response BOW #6 me, much, owe, tell, thank, you
Predicted Response BOW #7 change, gift, on, the, was, why
Predicted Response BOW #8 call, right, single, that, was, when
Predicted Response BOW #9 are, feel, her, what, where, you
Predicted Response BOW #10 are, know, me, no, what, you

Table 4.6: AC-GAN predicted response words example from DailyDialog test set

finetuned T5 model does indeed generate responses using the response words predicted by
our second stage model by computing the percentage of generated responses in the test set
of the datasets which use at least one predicted in the generated response. Additionally,
we compute average number of predicted words used in the generated responses. We
report these numbers for both datasets in table 4.8. Note that we predict 6 words for each
response.

4.2.5 Results and Analysis

We report the results of the experiments on the DailyDialog and Switchboard dataset test
sets in tables 4.9 and 4.10. We also provides the some of the response samples generated
for the DailyDialog and Switchboard datasets in tables 4.11 and 4.12. We provide the
query utterance, the predicted response words, and the generated response utterance.

We see that the proposed approach outperforms the T5 baseline model on every re-
ported quantitative metric for both the DailyDialog and Switchboard datasets. When
comparing the results of both the T5 baseline model and our proposed approach with
the DialogWAE and VAE-AM models, we notice that, on the whole, these models seem
to generate more diverse outputs. Our proposed approach outperforms the DialogWAE
model on the perplexity measure for both the datasets but lags behind the VAE-AM model.
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Based on the bleu scores, the DialogWAE and the VAE-AM do generate responses which
have much higher n-gram overlap with the ground truth response when compared to our
proposed approach. We hypothesize that the one of the reason could be due to the low
recall and precision scores achieved by our second step model on both the datasets. We
believe that improvement in our second step model could lead to much higher bleu scores.
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Figure 4.2: Step 2: Auxiliary Classifier GAN (AC-GAN). Pretrained encoder from step 1
is utilized to get the latent codes zq and zr of the query (q) and response (r) utterance bag-
of-words, respectively. We use the pretrained language model from step 1 to encode the
context as a fixed size continuous vector c. The input to the generator is the concatenation
of the query latent code zq and the context vector c which maps it to the corresponding
response latent code ẑr. When training the generator G, we aim to match zr and ẑr

through the generator loss combined with a mean-squared error loss. When training the
discriminator D, we pass zqr and ẑqr (obtained by concatenating zq with zr and zq with ẑr,
respectively) through a classification layer that tries to guess its source of input. We train
the auxiliary discriminator to perform a similar task except we use the c for concatenation
instead of zq. Note: ⊕ denotes concatenation.
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Figure 4.3: Step 3: T5 Finetuning. We finetune T5 to perform the task of dialog response
generation using the keywords predicted by the AC-GAN in step 2. During training, we use
the keywords extracted from the ground truth response. We limit the number of extracted
keywords to be the same as the number of keywords used during the BOW-VAE training.
During inference, we use the keywords predicted by the AC-GAN in step 2.
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Query Utterance use their influence in not always the most positive ways
Query BOW always, influence, most, positive, use, ways
Ground Truth
Response Utterance

yes that’s true i think they do things that make it easier for our
elected representatives to live the good life

Ground Truth
Response BOW

easier, elected, life, live, representatives, true

Predicted Response
BOW #1

call, executive, hum, into, manager, um

Predicted Response
BOW #2

are, live, not, re, still, think

Predicted Response
BOW #3

much, politically, that, themselves, think, true

Predicted Response
BOW #4

absolutely, do, expect, oh, we, yes

Predicted Response
BOW #5

budget, do, okay, so, we, what

Predicted Response
BOW #6

but, easier, know, mean, that, life

Predicted Response
BOW #7

care, checks, deductible, purchase, them, without

Predicted Response
BOW #8

help, little, lot, of, things, way

Predicted Response
BOW #9

good, idea, see, that, true, very

Predicted Response
BOW #10

can, more, of, on, or, that

Table 4.7: AC-GAN predicted response words example from Switchboard test set

Dataset % of responses with at least one predicted word used Avg. Words Used
DailyDialog 99.71 4.76
Switchboard 99.92 5.18

Table 4.8: Computing percentage of generated responses using at least one predicted re-
sponse word and the average number of predicted response words used on the DailyDialog
and Switchboard test set
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Model
BLEU Diversity Fluency

P R F Intra-1 Intra-2 Inter-1 Inter-2 ASL (14.43) TTR PPL
T5 0.155 0.226 0.184 0.82 0.98 0.50 0.84 11.49 0.076 236.09

DialogWAE 0.279 0.365 0.316 0.79 0.92 0.35 0.68 19.84 0.007 161.86
VAE-AM 0.314 0.371 0.34 0.847 0.98 0.41 0.73 15.3 0.036 119.39

Ours 0.221 0.274 0.245 0.84 0.99 0.52 0.89 13.05 0.051 127.06

Table 4.9: DailyDialog Dataset results

Model
BLEU Diversity Fluency

P R F Intra-1 Intra-2 Inter-1 Inter-2 ASL (8.49) TTR PPL
T5 0.129 0.188 0.153 0.79 0.98 0.48 0.84 7.55 0.073 321.64

DialogWAE 0.267 0.394 0.318 0.779 0.844 0.325 0.513 14.7 0.019 183.82
VAE-AM 0.271 0.372 0.313 0.954 0.966 0.412 0.559 8.72 0.065 136.81

Ours 0.19 0.247 0.215 0.84 0.99 0.52 0.89 10.90 0.064 163.07

Table 4.10: Switchboard Dataset results

Query Utterance Predicted
Response
Words

Generated
Response
Utterance

good morning, mr zhang, i wonder whether you
have got an answer from your superior.

afraid, leave,
someone, to,
today, told

I’m afraid not. I
told you to leave
today.

do you eat a lot of vegetables? all, lot,
much, of,
them, too

I eat a lot of
them, too much
of them. All of
them

I’m sorry, hold on a moment. I’ll check it out. But
we have already shipped it to you last month.
Would you like us to contact the express company
to know what’s going on?

going, hope,
things, time,
to, work

i hope things are
going to work
out in time.

i’ll tell you what, i can get you some hamsters and
we’ll take it from there.

good, great,
of, that, the,
would

that would be
great. That
would be good of
you.

which book? this one? about,
conditions,
here, one,
our, which

here. Which one
is about our
conditions?

Table 4.11: DailyDialog Generated Response Samples
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Query Utterance Predicted
Response
Words

Generated Response
Utterance

blues are okay i tell you i do like
i grew up on blue grass music my
dad is a big blue grass fan and so

for, huh, kinds,
like, music, uh

uh-huh yeah i like all kinds of
music for that

so that is another way of
budgeting

account,
amounts, bills,
financial,
investments,
money

you know you have to put
money in a financial account
and put money in investments
and bills

yeah so what are your favorite tv
shows

news, on, other,
the, tv, watch

i watch the news on the other
tv

i think twin peaks went off great, have, oh,
really, see, would

oh really oh that would have
been great to see

do you eat cheese do you eat
eggs an

don, kidding, no,
not, now, right

no kidding right now i don’t

Table 4.12: Switchboard Generated Response Samples
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Chapter 5

Conclusion and Future Work

5.1 Summary

In this work, we proposed a novel multi-stage approach for generating dialog response. In
the first stage of the proposed approach, we train a bag-of-words variational autoencoder
(Miao et al., 2015) to encode bag-of-words representation of each utterance in the dialog
corpus into a continuous fixed-size latent vector. We use tfidf-weighting statistics to ex-
tract upto n informative words from each utterance to build the one-hot encoded vector
representation to be used as the input. While decoding, we pick n words corresponding
to the top probabilities. Additionally, we train a language model to encode dialog history
into a continuous fixed size vector. In the second stage, we train an axuiliary classfier
GAN (Odena et al., 2016) to learn to transform the query utterance BOW latent code
and the encoded dialog history into the response utterance latent code. This predicted
response latent code is fed to the decoder from the first stage to obtain the predicted re-
sponse utterance words. In the third and final stage, we fine-tune a pretrained transoformer
based text-to-text transfer model (T5) (Raffel et al., 2019) to generate generate response
utterance conditioned on the query response utterance and the predicted response words.
While fine-tuning the T5 model on the training set of the dialog corpus, we use the ground
truth response utterance words. During the inference, we use the response utterance words
predicted by our second stage model and decoded using the decoder from the first stage.

We provide detailed description of a previous joint work on dialog response generation
which provided the motivation for the proposed approach. We evaluate the proposed
approach on two dialog datasets: DailyDialog (Y. Li et al., 2017) and Switchboard (Godfrey
et al., 1992). Using quantitative evaluation metrics, we showed that the proposed approach
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generates diverse and fluent sentences. Furthermore, as part of our multi-stage approach,
we proposed a novel fine-tuning regimen for pretrained T5 model which can be used to
generate response utterances conditioned on the query utterance and response words.

5.2 Future Work

There many directions in which we can extend this work. We showed using quantitative
metrics that the proposed approach generates diverse and fluent response utterances when
compared to the state of the art approaches but lags behind when using the n-gram bleu
metric. We would like to apply this method to a text generation task where diversity and
fluency are distinctly more important than overlap with the ground truth reference text.
One such example is the story generation task.

We would also like to explore ideas to improve the performance of the second stage
such as selecting word for bag-of-words using a different criteria such as part-of-speech tag,
thereby generating more meaningful latent codes. Using an end-to-end auto-regressive
model which combines the first and second stage allowing us to predict response words
using the entire dialog history. We fine-tune the T5 model in the third stage by updating
all the available parameters. Various strategies have been proposed for fine-tuning large
pretrained transformer based models which drastically reduce the number of updatable
parameters. One such strategy is using adaptable layers (Bapna et al., 2019). In the
future, we would like to explore adapting this strategy to reduce the computational resource
requirements which would allow us to use bigger T5 models for fine-tuning.
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Nisioi, S., Štajner, S., Ponzetto, S. P., & Dinu, L. P. (2017). Exploring neural text sim-

plification models, In Proceedings of the 55th annual meeting of the association for
computational linguistics (volume 2: Short papers), Vancouver, Canada, Association
for Computational Linguistics. https://doi.org/10.18653/v1/P17-2014

Odena, A., Olah, C., & Shlens, J. (2016). Conditional image synthesis with auxiliary clas-
sifier gans.

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: A method for automatic
evaluation of machine translation, In Proceedings of the 40th annual meeting on
association for computational linguistics, Philadelphia, Pennsylvania, Association
for Computational Linguistics. https://doi.org/10.3115/1073083.1073135

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word
representation (A. Moschitti, B. Pang, & W. Daelemans, Eds.). In A. Moschitti,
B. Pang, & W. Daelemans (Eds.), Proceedings of the 2014 conference on empirical
methods in natural language processing, EMNLP 2014, october 25-29, 2014, doha,
qatar, A meeting of sigdat, a special interest group of the ACL, ACL. https://doi.
org/10.3115/v1/d14-1162

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language
models are unsupervised multitask learners.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., &
Liu, P. J. (2019). Exploring the limits of transfer learning with a unified text-to-text
transformer.

Reiter, E., & Dale, R. (1997). Building applied natural language generation systems. Nat.
Lang. Eng., 3 (1), 57–87. https://doi.org/10.1017/S1351324997001502

Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton project para.
Cornell Aeronautical Laboratory. https : / / books . google . ca / books ? id = P % 5C
XGPgAACAAJ

56

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.18653/v1/P17-2014
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.1017/S1351324997001502
https://books.google.ca/books?id=P%5C_XGPgAACAAJ
https://books.google.ca/books?id=P%5C_XGPgAACAAJ


Sato, S., Yoshinaga, N., Toyoda, M., & Kitsuregawa, M. (2017). Modeling situations in
neural chat bots, In Proceedings of ACL 2017, student research workshop, Vancou-
ver, Canada, Association for Computational Linguistics. https://www.aclweb.org/
anthology/P17-3020

See, A., Liu, P. J., & Manning, C. D. (2017). Get to the point: Summarization with
pointer-generator networks. CoRR, abs/1704.04368 arXiv 1704.04368. http://arxiv.
org/abs/1704.04368

Seo, M. J., Kembhavi, A., Farhadi, A., & Hajishirzi, H. (2016). Bidirectional attention
flow for machine comprehension. CoRR, abs/1611.01603 arXiv 1611.01603. http :
//arxiv.org/abs/1611.01603

Serban, I. V., Sordoni, A., Bengio, Y., Courville, A., & Pineau, J. (2016). Building end-
to-end dialogue systems using generative hierarchical neural network models, In
Proceedings of the thirtieth aaai conference on artificial intelligence, Phoenix, Ari-
zona, AAAI Press.

Serban, I. V., Sordoni, A., Lowe, R., Charlin, L., Pineau, J., Courville, A., & Bengio, Y.
(2016). A hierarchical latent variable encoder-decoder model for generating dia-
logues.

Shang, L., Lu, Z., & Li, H. (2015). Neural responding machine for short-text conversation.
CoRR, abs/1503.02364 arXiv 1503.02364. http://arxiv.org/abs/1503.02364

Shen, X., Su, H., Niu, S., & Demberg, V. (2018). Improving variational encoder-decoders
in dialogue generation. CoRR, abs/1802.02032 arXiv 1802.02032. http://arxiv.org/
abs/1802.02032

Sohn, K., Yan, X., & Lee, H. (2015). Learning structured output representation using deep
conditional generative models, In Proceedings of the 28th international conference
on neural information processing systems - volume 2, Montreal, Canada, MIT Press.

Sordoni, A., Galley, M., Auli, M., Brockett, C., Ji, Y., Mitchell, M., Nie, J.-Y., Gao, J.,
& Dolan, B. (2015). A neural network approach to context-sensitive generation of
conversational responses.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res., 15 (1), 1929–1958. http://dl.acm.org/citation.cfm?id=2670313
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