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Abstract

Free-surface problems arise in many real-world applications such as in the design of ships
and offshore structures, modeling of tsunamis, and dam breaking. Mathematically, free-
surface wave problems are described by a set of partial differential equations that govern
the movement of the fluid together with certain boundary conditions that describe the
free-surface. The numerical solution of such problems is challenging because the boundary
of the computational domain depends on the solution of the problem. This implies that
there is a strong coupling between the fluid and the free-surface, and the domain must be
continuously updated to track the changes in the free-surface.

In this thesis we explore and develop space-time hybridizable discontinuous Galerkin
(HDG) methods for free-surface problems. First, we focus on a linear free-surface problem
in which the amplitude of the waves is assumed to be small enough so that the domain can
remain fixed. We initially consider a traditional approach for the numerical discretization
of time-dependent partial differential equations: we discretize in space using, in this case,
an HDG method to obtain an ordinary differential equation. Then, we use a second order
backward differentiation formula to discretize in time. We see that in comparison to an
interior penalty discontinuous Galerkin discretization, this HDG discretization results in
smaller linear systems (in general), and produces better approximations to the velocity of
the fluid.

Next, we consider the solution of the same linear free-surface problem with a space-time
hybridizable discontinuous Galerkin method. Unlike previous finite element discretizations
of this problem, we consider a mixed formulation in which the velocity of the flow can
be approximated with an optimal order of convergence. We develop a set of space-time
analysis tools that allow us to obtain a priori error estimates in which the dependency on
the spatial mesh size and the time step is explicit. This is in contrast to previous space-time
error analyses in which the error bounds depend on the size of the space-time elements.

Finally, we move on to incompressible nonlinear free-surface flow. We consider the two-
fluid (gas and liquid) Navier–Stokes equations and use a level set method in which the flow
and the level set equations are solved subsequently until a certain stopping criterion has
been met. The flow equations are solved with a space-time HDG method which is exactly
mass conserving. Furthermore, a space-time embedded discontinuous Galerkin method is
employed for the solution of the level set equation. This discretization possesses the same
conservation and stability properties as discontinuous Galerkin methods, but produces a
continuous approximation to the free-surface elevation. When a discontinuous approxima-
tion to the free-surface elevation is obtained, smoothing techniques have to be applied in
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order to move the mesh and track the interface. It has been shown in the past that such
techniques can lead to instabilities and stabilization terms have to be added to the dis-
cretization. Therefore, obtaining a continuous approximation to the free-surface elevation
in our discretization is crucial: not only can the mesh be deformed in a straightforward
manner, but it can also be done without introducing any potential sources of instabilities.
We present two numerical results that demonstrate the capabilities of the method. In the
first test case we compare against an analytical solution and we demonstrate how the mesh
conforms to the interface between the two fluids. Finally, we present a simulation of waves
generated by a submerged obstacle.
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Chapter 1

Introduction

Free-surface waves are of great interest in various fields of applied mathematics and engi-
neering. In addition to having many relevant real-life applications, such as in the modeling
of ships and offshore structures, free-surface wave problems are challenging and compelling
from the mathematical point of view as well.

Numerical modeling of free-surface waves involves the solution of a system of partial
differential equations that govern the movement of the fluid, coupled with a set of free-
surface boundary conditions that describe the free-surface. In these problems, the shape of
the domain where the partial differential equations are solved depends on the position of
the free-surface which leads to a strong coupling between the flow equations and the free-
surface. In order to effectively track the free-surface, we require an accurate discretization
technique that can handle moving domains. Moreover, it is desirable that the numerical
method is stable under mesh movement.

This thesis is concerned with the accurate numerical solution of free-surface problems
with space-time finite element methods, in particular, with space-time hybridizable dis-
continuous Galerkin methods, which are reviewed next.

Hybridizable discontinuous Galerkin methods. DG methods are a class of finite
element methods where the approximate solution is allowed to be discontinuous between
elements. These methods offer great conservation and stability properties, in particular for
convection-dominated flows where classic finite element methods usually fail. DG methods
have been criticized, however, because of the increase in the number of degrees-of-freedom
caused by the discontinuous nature of the approximate solution. This implies that the linear
system associated to DG methods is larger than for continuous finite element methods on
the same mesh, and therefore, are computationally more expensive.
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Figure 1.1: HDG DOFs for polynomials of total degree 1 on quadrilateral elements. The
blue circles denote the element DOFs, while the green squares denote the facet DOFs.

HDG methods are a class of DG methods that allow for static condensation. HDG
methods were introduced in [18] with the purpose of alleviating the computational load of
DG methods while maintaining all its desirable properties. Somewhat paradoxically, this is
achieved by introducing a variable that is defined on the facets of the mesh. The numerical
fluxes are chosen in such a way that the only communication between the element unknowns
is through the facet variable. Figure 1.1 depicts the HDG DOFs for polynomials of total
degree 1 on quadrilateral elements. The arrows indicate that there is no communication
between elements, only between elements and facets.

Thanks to the choice of numerical fluxes in HDG methods, static condensation can be
performed: the element unknowns are locally eliminated which results in a linear system
for the facet variables only [18]. This system is significantly smaller than the one corre-
sponding to DG methods, and, in some cases, comparable in size to the one obtained by a
continuous finite element method [44, 90]. Once the facet solution has been determined, the
element solution can be computed locally using the facet solution. The number of globally
coupled degrees-of-freedom can be further reduced by imposing that the facet variables
are continuous between facets, resulting in the Embedded discontinuous Galerkin (EDG)
method [20, 36].

Space-time hybridizable discontinuous Galerkin methods. For the discretization of
time-dependent problems, the traditional approach is to first discretize in space using, for
example, a (H)DG method, and then discretize the resulting ordinary differential equations
using an appropriate time stepping method. For problems where the domain is time-
dependent, however, such an approach is not possible since the approximate solution at a
given time level might not be well defined on the next time level because of the changes in
the domain. Arbitrary Lagrangian–Eulerian (ALE) methods can handle moving domains
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by mapping the physical domain to a reference domain. The equations are solved on
the reference domain using an approach like the one described above, and then mapped
back onto the physical domain. ALE methods however do not automatically satisfy the
Geometric Conservation Law (GCL) which states that a uniform flow on a dynamic mesh
remains uniform. The GCL has proven to be essential for the accuracy of the solution
[34, 51].

An alternative to ALE methods is to use a DG (or HDG) method both in space and
time. These space-time methods, in addition to achieving high order accuracy in both
space and time, can easily handle time-dependent domains. Moreover, space-time meth-
ods automatically satisfy the GCL. In [37], a space-time HDG method that is locally
conservative and energy stable, and that produces point-wise divergence-free and H(div)-
conforming velocity fields was presented. For incompressible flows, we can also refer to
[64, 77, 78, 81, 37].

Space-time DG and HDG methods have also been applied to compressible flows [47, 83],
two-fluid flows [71, 10] and nonlinear free-surface problems [84, 31, 56]. When a space-
time (H)DG method is applied to free-surface flow, a discontinuous approximation to the
free-surface elevation is obtained. This implies that the boundary of the domain is not
well defined and a smoothing technique has to be applied. In [2] it was shown that this
smoothing process may lead to instabilities unless extra stabilization terms are added to
the discretization.

Level set methods. Since a free-surface problem can be viewed as a two-fluid flow
problem, level set methods can be used for their discretization. Level set methods were
first introduced in [62] and have since then been used for multiphase flows [14, 76], and
for free-surface flows [33, 53, 54]. In the level set method, the fluid equations are solved
in a domain that contains both water and air phases. A level set function, which satisfies
an advection equation where the advection field is the velocity of the fluid, is defined
such that it is positive in one of the fluids and negative in the other. The zero level set
then corresponds to the interface between the two fluids. By solving the time-dependent
advection equation for the level set function we are able to track the movement of the
interface.

Objectives. The first objective of this research is to provide a theoretical and practi-
cal foundation of space-time hybridizable discontinuous Galerkin methods for free-surface
problems. To achieve this, we consider a linear water wave model, which is first discretized
with an HDG method combined with a second order Backward differentiation formula
(BDF). Then, we consider a space-time HDG discretization for a mixed formulation of the
linear free-surface problem. This formulation allows us to obtain optimal rates of conver-

3



gence for the velocity of the fluid. In contrast to other space-time error analyses, we obtain
anisotropic a priori error bounds. To achieve this, we first develop a set of analysis tools
that allow us to separate the dependency on the spatial mesh size and the time step.

The second objective of this thesis is to develop a space-time hybridizable/embedded
discontinuous Galerkin method for incompressible free-surface flows. We propose an interface-
tracking method where the domain can be updated in a straightforward manner without
appealing to smoothing techniques that could potentially lead to instabilities. We consider
a level set approach in which the two-fluid Navier–Stokes equations are solved with an
exactly mass conserving space-time HDG method. The time-dependent advection equa-
tion for the level set function is discretized using a space-time EDG method so that the
free-surface elevation is continuous. The mesh can then be updated without any smoothing.

In order to describe the problem, we first review some basic concepts in fluid mechanics.

1.1 Governing equations and basic concepts in fluid

mechanics

In this section, we will show the equation of mass conservation and various equations of
motion depending on the assumptions made on the flow. For a complete derivation of these
equations, see, e.g., [49].

In the following, we denote the velocity of the fluid by u ≡ (u, v, w), where u, v, w
are the velocity components in the x, y and z direction, respectively. We denote the fluid
density by ρ and the fluid pressure by p. We will assume that u, ρ and p are continuous
functions, which is usually known as the continuum hypothesis [49].

Given a scalar function f , the material derivative of f denotes the rate of change of f
with respect to time in a reference frame that is moving with velocity u. This operator is
defined as

D

Dt
:=

∂

∂t
+ u · ∇. (1.1)

1.1.1 Equation of mass conservation

Assume a fluid occupies a volume V bounded by a surface S. The principle of mass
conservation states that mass is neither created nor destroyed in the fluid, i.e., mass remains
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constant over time. This means that the rate of change of mass in V is equal to the rate
of mass flowing into V across S. Mathematically, we express this principle in the form

∂tρ+∇ ·
(
ρu
)

= 0. (1.2)

Expanding equation eq. (1.2) and using the definition of material derivative, equation
eq. (1.2) can be written as

Dρ

Dt
+ ρ∇ · u = 0.

For the study of water waves, we will assume that the fluid is incompressible, meaning,

∇ · u = 0. (1.3)

1.1.2 Incompressible Navier–Stokes equations

The incompressible Navier–Stokes equations describe the movement of a viscous fluid which
is assumed to be incompressible. Assuming that the density ρ is constant, and using the
material derivative, the incompressible Navier–Stokes equations are given by

ρ
Du

Dt
−∇ · σ(u, p) = F , (1.4)

where F = (F1, F2, F3) is the vector of external forces and σ(u, p) is the viscous stress
tensor defined as

σ(u, p) = −pI + µ∇u. (1.5)

Here, I is the identity matrix and µ is the dynamic viscosity, which is assumed to be
constant. The material derivative and the gradient operators are applied to each component
of u.

The Navier–Stokes equations are usually written together with the mass conservation
equation (1.3). Using the definition of the material derivative operator and the viscous
stress tensor, and including the mass conservation equation, we obtain the classic form of
the incompressible Navier–Stokes equations:

ρ
(
∂tu+

(
u · ∇

)
u
)

+∇p− µ∆u = F , (1.6a)

∇ · u = 0. (1.6b)
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Since eq. (1.6a) establishes that momentum is conserved, this equation is usually re-
ferred to as the momentum equation, while eq. (1.6b) is referred to as the continuity
equation.

In this thesis we will consider two types of boundary conditions: Dirichlet and Neu-
mann. On Dirichlet boundaries, we impose the value of the velocity, while on Neumann
boundaries we impose the value of σ(u, p)n.

1.1.3 Irrotational flow and the pressure equation

The vorticity of the fluid, ω, is defined as the curl of the velocity field, i.e.,

ω = ∇× u. (1.7)

The vorticity describes the local rotation of a fluid element. If ω ≡ 0, then the fluid
is said to be irrotational. In the case of an irrotational flow, the velocity field can be
expressed as the gradient of a potential function φ, i.e.,

u = ∇φ. (1.8)

An incompressible, irrotational flow is governed by Laplace’s equation for φ:

∆φ = 0. (1.9)

For this problem, we consider Neumann boundary conditions, i.e., we impose the value
of ∇φ · n on the boundary.

There is a lot of theory particular to irrotational flows since they are easier to analyze
than rotational flows and can be used to model many physical phenomena. For example,
once φ has been determined by (1.9), it can be shown that, for unsteady flows, the pressure
satisfies

∂tφ+
1

2
∇φ · ∇φ+

1

ρ
p+ Ψ = B(t), (1.10)

where B(t) is an arbitrary function and Ψ is such that F = −∇Ψ, where F is the vector
of external forces.

We are now ready to describe free-surface wave problems.
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ΓS(t)

ΓB

y = 0

y = −H

Ω(t)

Figure 1.2: Depiction of the flow domain Ω(t) ⊂ R2 for free-surface problems.

1.2 Free-surface wave problems

For simplicity, the following description is in two dimensions. The extension to three di-
mensions is straightforward. Let Ω(t) ⊂ R2 denote the time-dependent computational do-
main which is bounded by a free-surface, a bottom boundary and two vertical boundaries.
Choose a coordinate system so that the undisturbed free-surface is located at y = 0. We de-
note by ζ(x, t) the wave height, which in this thesis we define as the height of the fluid. The
time-dependent free-surface boundary is defined as ΓS(t) :=

{
(x, y) ∈ Ω(t) : y = ζ(x, t)

}
.

On the other hand, the bottom boundary is defined as ΓB :=
{

(x, y) ∈ Ω(t) : y = b(x)
}

,
where b(x) = −H +h(x), H is the average water depth and h(x) describes the topography
of the bottom. See fig. 1.2 for a depiction of Ω(t).

Next, we present the kinematic and the dynamic free-surface boundary conditions in
their general form as well as their linearizations.

1.2.1 Kinematic boundary condition

This condition establishes that if a particle of the fluid belongs to the free-surface, then it
stays on the surface throughout the motion of the fluid. Notice that the free-surface can
be defined as fS(x, y, t) = ζ(x, t)− y = 0 and that DfS/Dt gives the rate of change of the
free-surface with respect to the fluid. Therefore, if we impose that the free-surface moves
with the fluid so that it always contains the same fluid particles, then the free-surface must
satisfy

DfS
Dt

= 0. (1.11)
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This gives the kinematic boundary condition

∂tfS + u · ∇fS = 0 on y = ζ(x, t). (1.12)

Note that this equation implies that

v =
Dζ

Dt
on y = ζ(x, t). (1.13)

1.2.2 Dynamic boundary condition

The dynamic boundary condition states that the net force acting on a piece of the free-
surface is zero, which is a consequence of that piece of surface having zero mass. If we
neglect the effects of viscosity and surface tension, then the only force acting on the surface
is the atmospheric pressure, pa, which we will assume to be constant, and the pressure of
the fluid, p. Then the dynamic boundary condition states that

p = pa on y = ζ(x, t). (1.14)

Alternatively, the dynamic boundary condition in its most general form can be written as

σ(u, p)n = pan on y = ζ(x, t). (1.15)

If we assume that pa = 0 and use the definition of σ eq. (1.5), then(
−pI + µ∇u

)
n = 0 on y = ζ(x, t). (1.16)

In this thesis we will use (1.16) as a dynamic boundary condition.

In the case of an incompressible, irrotational, unsteady flow, the pressure must satisfy
(1.10). Setting Ψ = gy in (1.10) (since in this case the only force acting on the fluid is
gravity), we obtain

∂tφ+
1

2
∇φ · ∇φ+

1

ρ
p+ gy = B(t). (1.17)

By redefining the velocity potential φ, we can take B(t) =
1

ρ
pa. Then, since p =

pa on y = ζ(x, t), we obtain the following dynamic boundary condition for the case of
incompressible, irrotational, unsteady flow

∂tφ+
1

2
∇φ · ∇φ+ gζ = 0 on y = ζ(x, t). (1.18)

When the effects of viscosity and surface tension are taken into account on the free-
surface, an analogous condition can be derived, see, e.g., [43].
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1.2.3 Linearized free-surface boundary conditions

The boundary conditions presented above can be linearized by assuming that the amplitude
of the wave height and the velocity potential is small. In the case of an incompressible, ir-
rotational and unsteady flow, the linearized kinematic boundary condition can be obtained
from eq. (1.13) by dropping the nonlinear terms, to obtain

∇φ · n = ∂tζ on y = 0. (1.19)

and the linearized dynamic boundary condition is given by

∂tφ+ gζ = 0 on y = 0. (1.20)

This linearization is obtained by introducing a small amplitude parameter a through

ζ = aζ̃(x, t; a), (1.21a)

φ = aφ̃(x, y, t; a). (1.21b)

These expressions are then substituted in eq. (1.12) and eq. (1.18), and the terms of
O(a2) and higher are dropped. The linearized free-surface problem is then given by

−∆φ = 0 in Ω, (1.22a)

∇φ · n = ∂tζ at y = 0, (1.22b)

∂tφ+ gζ = 0 at y = 0, (1.22c)

∇φ · n = 0 at y = −H + h(x), (1.22d)

where we have dropped the tildes for simplicity. On the vertical boundaries of the domain
we will consider periodic boundary conditions. Note that Ω is now considered to be fixed
in time since the free-surface is located at y = 0.

This linearization significantly reduces the complexity of the free-surface boundary
conditions not only because they are linear, but also because they are now applied at a
fixed boundary, i.e., at y = 0.

This linearized problem has an analytical solution which will be derived next. We
assume that h(x) = 0 for simplicity.

Since the equations in eq. (1.22) are all linear with constant coefficients, inspired by
Fourier series, we guess a solution of the form

ζ(x, t) = a sin(ωt− kx), (1.23)
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where k is the wave number and ω is the frequency of the wave. Noticing that n = (0, 1)
on y = 0, eq. (1.22b) implies that

∂yφ(x, 0, t) = aω cos(ωt− kx), (1.24)

and eq. (1.22c) implies that

∂tφ(x, 0, t) = −ag sin(ωt− kx). (1.25)

Integrating with respect to time gives

φ(x, 0, t) =
a

ω
g cos(ωt− kx). (1.26)

Since we are interested in periodic solutions in x, this integration does not introduce any
function of integration that depends on x.

Guessing that the dependence on (x, t) of φ is of the form cos(ωt− kx), we set

φ(x, y, t) = aωf(y) cos(ωt− kx), (1.27)

where f is a function that satisfies f ′(0) = 1 (from eq. (1.22b)) and f ′(−H) = 0 (from
eq. (1.22d), noticing that n = (0,−1)). From eq. (1.22a), we have that f must satisfy the
following second order differential equation

f ′′ − k2f = 0, (1.28)

so that
f(y) = C1 sinh(k(y +H)) + C2 cosh(k(y +H)). (1.29)

Using f ′(−H) = 0 we obtain C1 = 0, and using f ′(0) = 1 we obtain C2 = 1/k sinh(kH).
Thus,

φ(x, y, t) = a
ω

k sinh(kH)
cosh(k(y +H)) cos(ωt− kx). (1.30)

Substituting eq. (1.23) and eq. (1.30) in eq. (1.22c), we obtain the dispersion relation

ω = ±
√
gk tanh(kH). (1.31)

This dispersion relation gives the relation between the frequency ω and the wave number k
for linear free-surface waves. In summary, the analytical solution for the linear-free surface
problem eq. (1.22) in two dimensions with h(x) = 0 is

φ(x, y, t) = a
ω

k sinh(kH)
cosh(k(y +H)) cos(ωt− kx), (1.32a)

ζ(x, t) = a sin(ωt− kx). (1.32b)
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ΓS
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y = 0

y = −H

Ω

Figure 1.3: Depiction of the flow domain Ω ⊂ R2 for the model eq. (1.33).

1.2.4 Free-surface wave models

In this thesis we will consider two different free-surface wave problems: a linear model and
a nonlinear model. For the linear model we will assume that the flow is homogeneous,
inviscid and irrotational. This model allows us to perform an extensive error analysis on
the discretization and have a better understanding of the problem which will facilitate
the design of the discretization of more complicated problems. On the other hand, for
the nonlinear problem we will consider the incompressible Navier–Stokes equations with
nonlinear free-surface boundary conditions. This is a very complex and general problem
that will allow us to simulate more realistic applications. Below is the description of both
models.

Model 1

The simplest model that we will consider is the case of irrotational, inviscid fluid with
linearized free-surface boundary conditions. In this case, Ω ⊂ R2 is a fixed domain that is
bounded by the free-surface, ΓS, a bottom surface, ΓB, and a set of periodic boundaries,
ΓP , such that ΓS, ΓB and ΓP do not overlap. Since we consider linearized free-surface
boundary conditions, ΓS =

{
(x, y) ∈ Ω : y = 0

}
. See fig. 1.3 for a depiction of Ω in two

dimensions.

11



Thus, the problem is the following

−∆φ = 0 in Ω, (1.33a)

∇φ · n = ∂tζ on ΓS, (1.33b)

∂tφ+ ζ = 0 on ΓS, (1.33c)

∇φ · n = 0 on ΓB, (1.33d)

with periodic boundary conditions on ΓP . Additionally, an initial condition is given for φ
and ζ.

Model 2

In this model we will consider the two-fluid Navier–Stokes equations. Let Ωl(t),Ωg(t) ⊂ R2

denote the liquid and gas domains, respectively.

The full computational domain Ω is defined as Ω = Ωl(t) ∪Ωg(t) and is assumed to be
fixed in time, while both Ωl(t) and Ωg(t) are time-dependent. Let ΓS(t) = ∂Ωl(t)∩ ∂Ωg(t)
denote the interface between the two domains which can be defined as

ΓS(t) :=
{

(x, y) ∈ Ω : y = ζ(x, t)
}
, (1.34)

where ζ(x, t) denotes the wave height. See fig. 1.4 for a depiction of Ω.

We introduce the level set function φ(x, y, t) = ζ(x, t) − y and the Heaviside function
H(φ) which is defined by

H(φ) =

{
1 if φ > 0,

0 if φ < 0.
(1.35)

We note that the interface corresponds to the zero level set, φ = 0.

Let k be a subscript to denote a liquid (k = l) or a gas (k = g) property. Then given the
dynamic viscosities µk ∈ R+, the constant densities ρk ∈ R+, and the constant acceleration
due to gravity g, the two-fluid Navier–Stokes equations for the velocity u : Ω → R2 and
pressure p : Ω→ R is given by

ρ
(
∂tu+ u · ∇u

)
+∇p− µ∆u = ρg in Ω, (1.36a)

∇ · u = 0 in Ω, (1.36b)

∂tφ+ u · ∇φ = 0 in Ω, (1.36c)
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y = 0

ΓS(t)

Liquid region Ωl(t)

Gas region Ωg(t)

Figure 1.4: A description of the two-fluid flow domain Ω ⊂ R2.

where g = [0,−g]T and

u = ug + (ul − ug)H(φ), p = pg + (pl − pg)H(φ), (1.37a)

ρ = ρg + (ρl − ρg)H(φ), µ = µg + (µl − µg)H(φ). (1.37b)

We refer to eq. (1.36c) as the level set equation, which establishes that the flow moves
together with the interface.

We assume that the boundary of Ω is partitioned into a Dirichlet part ΓD and a Neu-
mann part ΓN such that there is no overlap between the two sets. Furthermore, we define
the inflow boundary Γ− as the portion of ΓN where u ·n < 0, and the outflow boundary Γ+

as the portion of ΓN where u ·n > 0. We then prescribe the following boundary conditions

u = 0 on ΓD, (1.38a)

[u · n−max (u · n, 0)]u+ (pI− µ∇u)n = f on ΓN , (1.38b)

−(u · n)φ = r on Γ−, (1.38c)

where the boundary data f : ΓN → R2 and r : Γ− → R are given. We furthermore
prescribe an initial condition u0 : Ω → R2 for the velocity, and for the level set function
φ0(x) := ζ0(x) − y with ζ0(x) the given initial wave height. Note that eq. (1.38a) is a
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standard no-slip boundary condition on a fixed wall, whereas eq. (1.38b) imposes the total
momentum flux on the inflow portion (u ·n < 0) of ΓN , and only the diffusive flux on the
outflow portion (u ·n > 0) of ΓN . Additionally, eq. (1.38c) is a standard inflow boundary
condition.

We remark that the two-fluid problem assumes a no-slip and a dynamic boundary
condition on the interface, i.e.,

ul = ug on ΓS(t), (1.39a)

(plI− µl∇ul)nS = (pgI− µg∇ug)nS on ΓS(t), (1.39b)

respectively, where nS is the normal vector on the interface ΓS(t) pointing outwards from
Ωl(t).

1.3 Outline

This thesis is structured as follows. In Chapter 2 we present an HDG discretization of
eq. (1.33) with a second order BDF time stepper. We demonstrate how a mixed formulation
results in an optimal approximation for the velocity of the fluid, in comparison to DG
discretizations. In Chapter 3 we present a novel space-time HDG method for problem
eq. (1.33). We show that the discrete formulation has a unique solution and perform an a
priori error analysis in which the dependency in the spatial mesh size and the time step
is explicit. This is in contrast to other a priori error estimates for space-time methods
that depend on the size of the whole space-time element. An interface-tracking space-time
hybridized/embedded DG method is introduced in Chapter 4 for the two-fluid Navier–
Stokes problem eq. (1.36). We show how using this mixed HDG/EDG discretization results
in a scheme that is exactly mass conserving and produces continuous approximations to
the wave height. Finally, we draw conclusions in Chapter 5.
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Chapter 2

A hybridizable discontinuous
Galerkin method for the linear
free-surface problem

In this chapter we extend the HDG method of [16] for elliptic problems to the linear free-
surface problem eq. (1.33). For the time discretization, we use a second order BDF time
stepper. We will consider a mixed formulation to obtain optimal rates for the approxima-
tion of the velocity of the fluid. We compare this discretization to the interior penalty DG
method in [82].

2.1 Mixed formulation

We introduce a variable q = −∇φ, which is the negative velocity of the fluid, and combine
eq. (1.33b) and eq. (1.33c) into one equation, to obtain the first order system

q +∇φ = 0 in Ω, (2.1a)

∇ · q = 0 in Ω, (2.1b)

q · n = ∂2
t φ on ΓS, (2.1c)

q · n = 0 on ΓB. (2.1d)

It has been shown that, for the advection-diffusion equation, the HDG method converges
with order p+1 in the L2-norm when polynomials of degree p are used to represent both the
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scalar variable and its gradient. Notice that for this problem, this is particularly relevant
since ∇φ represents the velocity of the fluid, which will be approximated optimally, in
contrast to, for example [82], where the velocity approximation converges suboptimally.
Additionally, the HDG method allows for a local postprocessing of the scalar variable
which results in superconvergence of the scalar variable, i.e., convergence of order p+ 2 in
the L2-norm [16].

2.2 The hybridizable discontinuous Galerkin method

Before deriving the discrete formulation, we introduce some useful notation.

2.2.1 Tessellation, function spaces and trace operators

Let Th denote a tessellation of a polygonal domain Ω ⊂ Rd, with d = 2, 3, with quadrilateral
elements K with maximum diameter h. Let E0

h denote the set of interior faces of Th, E∂h
the set of boundary faces, and Eh = E0

h ∪ E∂h . Moreover, we denote by ESh the set of faces
that lie on the free-surface boundary and by EBh the set of faces that lie on the Neumann
boundary.

Let Qp(D) denote the space of polynomials of degree at most p in each variable on a
domain D. We define the following finite element spaces

W p
h :=

{
w ∈ L2(Ω) : w|K ∈ Qp(K), ∀K ∈ Th

}
, (2.2a)

V p
h :=

{
v ∈

[
L2(Ω)

]d
: v|K ∈

[
Qp(K)

]2
, ∀K ∈ Th

}
. (2.2b)

We also introduce the trace finite element space

Mp
h :=

{
µ ∈ L2(Eh) : µ|e ∈ Qp(e), ∀e ∈ Eh

}
. (2.3)

Let e ∈ E0
h be an interior face shared by elements K1 and K2 in Th, and define the unit

normal vectors n1 and n2 on e pointing exterior to K1 and K2, respectively. We denote
by u1 and u2 the traces of u ∈ W p

h , and q1 and q2 the traces q ∈ V p
h. We define the jump

operator J·K as follows

Jq · nK = q1 · n1 + q2 · n2, JunK = u1n1 + u2n2. (2.4)
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For e ∈ E∂h the set of boundary faces, the definition is as follows

Jq · nK = q · n, JunK = un, (2.5)

where n is the exterior unit normal to e. For single-valued functions, the jump is zero.

For functions f and g in
[
L2(D)

]d
, we denote (f , g)D =

∫
D
f · g dD, where D ⊂ Rd.

If f and g are functions in L2(D), we denote (f, g)D =
∫
D
fg dD if D ⊂ Rd, and 〈f, g〉D =∫

D
fg ds if D ⊂ Rd−1. We will use the following notation

(w, v)Th =
∑
K∈Th

(w, v)K , 〈w, v〉∂Th =
∑
K∈Th

〈w, v〉∂K , 〈w, v〉Eh =
∑
e∈Eh

〈w, v〉e. (2.6)

2.2.2 The finite element variational formulation

To obtain the discrete variational form, multiply eq. (2.1a) and eq. (2.1b) by test functions
vh ∈ V p

h and wh ∈ W p
h , respectively, integrate over an element K ∈ Th, replace q by

qh ∈ V
p
h and φ by φh ∈ W p

h , and sum over all elements to find∑
K∈Th

∫
K

qh · vh dx dy +
∑
K∈Th

∫
K

∇φh · vh dx dy = 0, (2.7a)

∑
K∈Th

∫
K

wh∇ · qh dx dy = 0. (2.7b)

Applying integration by parts,∑
K∈Th

∫
K

qh · vh dx dy −
∑
K∈Th

∫
K

φh∇ · vh dx dy +
∑
K∈Th

∫
∂K

φ̂h vh · n ds = 0, (2.8a)

−
∑
K∈Th

∫
K

∇wh · qh dx dy +
∑
K∈Th

∫
∂K

whq̂h · n ds = 0. (2.8b)

Since φh and qh are allowed to be discontinuous across faces, we have introduced the

numerical fluxes φ̂h and q̂h which are approximations to φ and −∇φ, respectively, over
∂K. We consider the following form of the numerical flux

q̂h = qh + τ
(
φh − φ̂h

)
n, (2.9)
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where τ > 0 is a local stabilization parameter that penalizes the jump between φh and its
numerical trace φ̂h. To obtain optimal rates of convergence, we take τ to be of order one,
see [60].

In classic discontinuous Galerkin methods, the numerical flux φ̂h on the boundary ∂K of
an element K, would be a function of φh on the element K and on the neighboring element
K−. This means that the degrees-of-freedom associated with φh and qh are coupled from
one element to its neighbors. In HDG, we instead introduce a trace variable λh ∈Mp

h , and

express φ̂h as
φ̂h = λh on Eh. (2.10)

Substituting eq. (2.9) and eq. (2.10) into eq. (2.8a) and eq. (2.8b), we obtain(
qh,vh

)
Th
−
(
φh,∇ · vh

)
Th

+ 〈λ,vh · n〉∂Th = 0, ∀vh ∈ V p
h, (2.11a)

− (∇wh, qh)Th + 〈wh, qh · n〉∂Th + τ〈wh, φh〉∂Th − τ〈wh, λh〉∂Th = 0, ∀wh ∈ W p
h . (2.11b)

In addition to these two equations, we impose the following condition to ensure conti-
nuity of the numerical flux q̂h in the normal direction across faces:

〈Jq̂h · nK , µh〉Eh = 〈∂2
t φh, µh〉ESh , ∀µh ∈Mp

h , (2.12)

where we have also used the boundary condition eq. (2.1c).

Note that this equation states that q̂h · n = 0 on ΓB and q̂h · n = ∂2
t φh on ΓS.

Furthermore, over interior faces, we have the following identity

〈Jq̂h · nK , µh〉E0
h

= 0, ∀µh ∈Mp
h . (2.13)

Since Jq̂h · nK ∈Mp
h , we can take µh = Jq̂h · nK in eq. (2.13) to conclude that Jq̂h · nK = 0

point-wise over interior faces. In other words, the numerical flux is single-valued in the
normal direction across faces of the mesh. From a physical point of view, this equation
states that the numerical flux is conservative. Moreover, note that

〈Jq̂h · nK , µh〉Eh = 〈q̂h · n, µh〉∂Th . (2.14)

We apply integration by parts to the first term in (2.11b) and multiply equations (2.11a)
and (2.12) by -1, to obtain the following semidiscrete variational form: Find

(
qh, φh, λh

)
∈

V p
h ×W

p
h ×M

p
h such that

−
(
qh,vh

)
Th

+
(
φh,∇ · vh

)
Th
− 〈λh,vh · n〉∂Th = 0, (2.15a)(

wh,∇ · qh
)
Th

+ τ〈wh, φh〉∂Th − τ〈wh, λh〉∂Th = 0, (2.15b)

−〈qh · n, µh〉Eh − τ〈φh, µh〉Eh + τ〈λh, µh〉Eh = −〈∂2
t φh, µh〉ESh , (2.15c)
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for all
(
vh, wh, µh

)
∈ V p

h ×W
p
h ×M

p
h .

The discretization of the term ∂2
t φh will be described next.

2.3 Temporal discretization

We consider the time interval [0, tf ] which is discretized using a time step ∆t such that
t0 = 0 and tn = tn−1 + ∆t, n ≥ 1. To approximate ∂tφh at t = tn, we employ a first order
BDF for the first time step, and a second order BDF for the following time steps:

∂tφh|t1 ≈ σ1
h :=

1

∆t

(
φ1
h − φ0

h

)
, (2.16a)

∂tφh|tn ≈ σnh :=
1

∆t

(3

2
φnh − 2φn−1

h +
1

2
φn−2
h

)
for n ≥ 2, (2.16b)

where φnh = φh|tn , and φ0
h is the L2-projection of the initial condition φ0(x, y) onto W p

h .

Using these expressions, we can then approximate ∂2
t φh as follows

∂2
t φh|t1 ≈

1

∆t2
φ1
h −

1

∆t2
φ0
h −

1

∆t
σ0
h, (2.17a)

∂2
t φh|tn ≈

9

4∆t2
φnh −

3

∆t2
φn−1
h +

3

4∆t2
φn−2
h − 2

∆t
σn−1
h +

1

2∆t
σn−2
h for n ≥ 2, (2.17b)

where σ0
h is the L2-projection of the initial condition σ0(x, y) onto W p

h .

For the first time step, eq. (2.15c) can be written as

−〈q1
h · n, µh〉Eh − τ〈φ1

h, µh〉Eh + τ〈λ1
h, µh〉Eh +

1

∆t2
〈φ1

h, µh〉ESh = (2.18)

− 1

∆t2
〈φ0

h, µh〉ESh +
1

∆t
〈σ0

h, µh〉ESh , ∀µh ∈Mp
h .

For n ≥ 2, we approximate eq. (2.15c) by

−〈qnh · n, µh〉Eh − τ〈φnh, µh〉Eh + τ〈λnh, µh〉Eh +
9

4∆t2
〈φnh, µh〉ESh =

3

∆t2
〈φn−1

h , µh〉ESh −
3

4∆t2
〈φn−2

h , µh〉ESh (2.19)

+
2

∆t
〈σn−1

h , µh〉ESh −
1

2∆t
〈σn−2

h , µh〉ESh , ∀µh ∈Mp
h .
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The fully discrete weak formulation becomes: find (φnh, q
n
h, λ

n
h) ∈ W p

h ×V
p
h ×M

p
h such

that for all (wh, vh, µh) ∈ W p
h × V

p
h ×M

p
h , the following relations are satisfied for n = 1

−
(
q1
h,vh

)
Th

+
(
φ1
h,∇ · vh

)
Th
− 〈λ1

h,vh · n〉∂Th = 0, (2.20a)(
wh,∇ · q1

h

)
Th

+ τ〈wh, φ1
h〉∂Th − τ〈wh, λ1

h〉∂Th = 0, (2.20b)

−〈q1
h · n, µh〉Eh − τ〈φ1

h, µh〉Eh + τ〈λ1
h, µh〉Eh +

1

∆t2
〈φ1

h, µh〉ESh = (2.20c)

− 1

∆t2
〈φ0

h, µh〉ESh +
1

∆t
〈σ0

h, µh〉ESh ,

and for n ≥ 2

−
(
qnh,vh

)
Th

+
(
φnh,∇ · vh

)
Th
− 〈λnh,vh · n〉∂Th = 0, (2.21a)(

wh,∇ · qnh
)
Th

+ τ〈wh, φnh〉∂Th − τ〈wh, λnh〉∂Th = 0, (2.21b)

−〈qnh · n, µh〉Eh − τ〈φnh, µh〉Eh + τ〈λnh, µh〉Eh +
9

4∆t2
〈φnh, µh〉ESh = (2.21c)

3

∆t2
〈φn−1

h , µh〉ESh −
3

4∆t2
〈φn−2

h , µh〉ESh +
2

∆t
〈σn−1

h , µh〉ESh −
1

2∆t
〈σn−2

h , µh〉ESh .

Note that φnh is related to the wave height through equation (1.33c). Once φnh has been
obtained an approximation ζnh to the wave height can be computed using eq. (2.16).

In [19], it was shown that this HDG method for convection-diffusion problems converges
with order p+1 in both the scalar and vector variables. The free-surface problem considered
here is slightly different since we have a free-surface boundary condition. However, we
expect the rates of convergence in space to be similar.

2.4 Numerical results

Here we present some numerical results obtained when applying the HDG method de-
scribed above to two different test cases. First, we consider a linear free surface problem
in an unbounded domain where the analytical solution is known. We present rates of
convergence for linear, quadratic and cubic polynomials. In addition to the HDG method
described above, we show the results for the same case solved with an interior penalty
discontinuous Galerkin method that recreates the results in [82]. The second test case
that we present corresponds to the simulation of water waves generated by a wave maker.
All the simulations were carried out using the Modular Finite Element Method (MFEM)
library [25]. The stabilization parameter τ is chosen as τ = 5.
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2.4.1 Static condensation

As mentioned above, one of the most attractive features of HDG methods is that they
allow for static condensation, which we describe next. Let Q ∈ RdimV p

h , Φ ∈ RdimW p
h and

Λ ∈ RdimMp
h be the vectors that contain the coefficients of qh, φh and λh, respectively,

with respect to the basis of their corresponding vector spaces. Then, W =
[
QT ΦT

]
is the

vector of all element degrees-of-freedom. At each time step, a linear system of the following
structure must be solved [

A B
C D

][
W
Λ

]
=

[
0
F

]
. (2.22)

Thanks to the definition of the numerical fluxes eq. (2.10) and eq. (2.9), A has a block-
diagonal structure. Therefore, we can eliminate W by locally inverting A, to obtain the
reduced linear system

(
−CA−1B +D

)
Λ = F . To solve this reduced system, we use the

direct solver of MUMPS [5, 4] through PETSc [8]. Once Λ has been computed, we can
calculate W element-wise using W = −A−1BΛ.

2.4.2 Postprocessing

Since in HDG methods qh converges with optimal order, a local postprocessing can be
performed, which results in a numerical solution φ∗h ∈ W

p+1
h that converges to φ with order

p+2 To construct a superconvergent solution, we use that the average of φh superconverges
and that qh converges optimally. Following [90], the new variable φ∗h can then be computed
as the solution to (

1, φ∗h
)
K

=
(
1, φh

)
K
, (2.23a)(

∇w∗h,∇φ∗h
)
K

=−
(
∇w∗h, qh

)
K

∀w∗h ∈ W
p+1
h . (2.23b)

Note that this is a local problem, so it can be solved very efficiently.

2.4.3 Linear waves in an unbounded domain

In this example we consider time harmonic linear free-surface waves in an unbounded
domain. We consider Ω = [−1, 1] × [−1, 0] and apply periodic boundary conditions on
x = −1 and x = 1. The analytical solution for this problem is given by

φ(x, y, t) = A cosh(k(y + 1)) cos(ωt− kx), (2.24)
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where A denotes the amplitude of the velocity potential, k is the wave number, which is
related to the wavelength λw by k = 2π/λw, and ω is the frequency of the oscillations,
which satisfies the dispersion relation

ω2 = k tanh(k). (2.25)

This solution is obtained from the analytical solution in eq. (1.32) by settingA = a/ω cosh(kH).
The analytical wave height is then given by

ζ(x, t) = −∂tφ(x, 0, t) = Aω cosh(k) sin(ωt− kx). (2.26)

We take λw = 1, and A such that the maximum amplitude of the wave height is 0.05.
For each method, we show the approximation errors and convergence rates for φh and φ∗h
at tf = 2.5 for linear (p = 1) and quadratic (p = 2) polynomial approximations, and at
tf = 0.2 for cubic polynomials (p = 3). Note that for cubic polynomials the error in space
is of order 4, whereas the error in time is of order 2, so we require a very small time step in
order to make the spatial error dominant over the temporal one. This causes the method
to be very expensive computationally. In order to alleviate this, we choose the final time
for the cubic polynomials case to be smaller than for the linear and quadratic polynomials
cases. The initial time step is ∆t = 0.05 for linear polynomials, for quadratic polynomials
it is ∆t = 0.01 and for cubic polynomials it is ∆t = 0.004. Table 2.1 shows the number
of degrees-of-freedom (DOFs) for both the HDG method in section 2.2 and an interior
penalty DG (IP-DG) method, the L2(Ω)-errors of φh and φ∗h and the convergence rates
for both methods. Next, we give a brief description of the IP-DG applied to the problem
eq. (2.1). This method is similar to the one in [82].

Interior penalty discontinuous Galerkin method

We consider the same spaces W p
h and V p

h in eq. (2.2) and proceed as in section 2.2.2:
multiply eq. (2.1a) and eq. (2.1b) by test functions vh ∈ V p

h and wh ∈ W p
h , respectively,

integrate over an element K ∈ Th, replace q by qh ∈ V
p
h and φ by φh ∈ W p

h , and sum over
all elements to find ∑

K∈Th

∫
K

qh · vh dx dy +
∑
K∈Th

∫
K

∇φh · vh dx dy = 0, (2.27a)

∑
K∈Th

∫
K

wh∇ · qh dx dy = 0. (2.27b)
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Applying integration by parts (twice for eq. (2.27a)),∑
K∈Th

∫
K

qh · vh dx dy +
∑
K∈Th

∫
K

∇φh · vh dx dy +
∑
K∈Th

∫
∂K

(
φ̂h − φh

)
vh · n ds = 0,

(2.28a)

−
∑
K∈Th

∫
K

∇wh · qh dx dy +
∑
K∈Th

∫
∂K

whq̂h · n ds = 0.

(2.28b)

Next, we use the following relation [6]∑
K∈Th

∫
∂K

whvh · n ds =
∑
F∈Eh

∫
F

JwhnK · {{vh}} ds+
∑
F∈E0

h

∫
F

Jvh · nK {{wh}} ds, (2.29)

for any wh ∈ W p
h and vh ∈ V p

h, and where {{·}} denotes the average operator defined as
follows for F ∈ E0

h

{{q}} =
1

2

(
q1 + q2

)
. (2.30)

For F ∈ E∂h , the definition is as follows

{{q}} = q. (2.31)

The definition of {{·}} for scalar functions is completely analogous. Using eq. (2.29) in
eq. (2.28a) and eq. (2.28b), we obtain∑

K∈Th

∫
K

qh · vh dx dy +
∑
K∈Th

∫
K

∇φh · vh dx dy (2.32a)

+
∑
F∈Eh

∫
F

r(
φ̂h − φh

)
n

z
· {{vh}} ds+

∑
F∈E0

h

∫
F

Jvh · nK {{φ̂h − φh}} ds = 0,

−
∑
K∈Th

∫
K

∇wh · qh dx dy +
∑
F∈Eh

∫
F

JwhnK · {{q̂h}} ds+
∑
F∈E0

h

∫
F

Jq̂h · nK {{wh}} ds = 0.

(2.32b)

The IP-DG numerical fluxes are [6]

φ̂h = {{φh}}, q̂h = −{{∇φh}}+ αh−1
F JφhnK , F ∈ E0

h, (2.33a)

φ̂h = φh, F ∈ E∂h q̂h · n =

{
∂2
t φh, F ∈ ESh

0, F ∈ EBh
, (2.33b)
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where hF is the size of the face F and α > 0 is a penalty parameter that has to be chosen
large enough to ensure stability [6]. Substituting eq. (2.33) in eq. (2.32a) and eq. (2.32b),

and using that φ̂h and q̂h are single-valued, we obtain∑
K∈Th

∫
K

qh · vh dx dy +
∑
K∈Th

∫
K

∇φh · vh dx dy −
∑
F∈E0

h

∫
F

JφhnK · {{vh}} ds = 0, (2.34a)

−
∑
K∈Th

∫
K

∇wh · qh dx dy −
∑
F∈E0

h

∫
F

JwhnK · {{∇φh}} ds (2.34b)

+
∑
F∈E0

h

∫
F

αh−1
F JwhnK · JφhnK ds+

∫
ΓS

wh∂
2
t φh ds = 0.

Taking vh = ∇wh in eq. (2.34a) and adding with eq. (2.34b), we obtain

∑
K∈Th

∫
K

∇φh · ∇wh dx dy −
∑
F∈E0

h

∫
F

JφhnK · {{∇wh}} ds−
∑
F∈E0

h

∫
F

JwhnK · {{∇φh}} ds

+
∑
F∈E0

h

∫
F

αh−1
F JwhnK · JφhnK ds+

∫
ΓS

wh∂
2
t φh ds = 0. (2.35)

The semi-discrete form is then given by: find φh ∈ W p
h such that

∑
K∈Th

∫
K

∇φh · ∇wh dx dy −
∑
F∈E0

h

∫
F

JφhnK · {{∇wh}} ds−
∑
F∈E0

h

∫
F

JwhnK · {{∇φh}} ds

+
∑
F∈E0

h

∫
F

αh−1
F JwhnK · JφhnK ds+

∫
ΓS

wh∂
2
t φh ds = 0, (2.36)

for all wh ∈ W p
h . The fully discrete form is obtained in a similar fashion as in section 2.3.

Convergence rates

In table 2.2, we show the L2(Ω)-errors and convergence rates for qh and the L2(ΓS)-errors
and convergence rates for ζh.

Recall that the time stepping scheme used here is a second order method. Therefore,
when using quadratic and cubic polynomials, even though the error in space is of order 3
and 4, respectively, the full discretization error in space and time will not necessarily be of
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the same order as the one in space. This is why we see some loss in the rates of convergence
in the quadratic and cubic cases. Despite this shortcoming, we see that both the velocity
potential and the wave height converge at nearly optimal rates for both HDG and DG
methods. We can also see that in general, the errors for HDG are lower than those for DG.
In table 2.1, we can see that for quadratic and cubic approximations, the number of globally
coupled degrees of freedom for HDG are lower than for DG. Additionally, thanks to the
element-wise postprocessing in the HDG method, we obtain a variable φ∗h that converges
to φ with one order higher than φh.

We remark that the DG method in [82] and in section 2.4.3 is based on a primal
formulation in which the only unknown is φ. The velocity of the fluid can be obtained
from φ by calculating its gradient. If φ is approximated by polynomials of degree p, then
its gradient will be a piecewise polynomial of degree p− 1, meaning that it will converge,
at best, with a rate of p. In the present discretization we introduce the unknown q which
is the negative velocity of the fluid, and we approximate it with polynomials of degree p.
We see in table 2.2 that the rate of convergence for qh is p+ 1, which is superior to what
we would obtain from a primal DG formulation. Therefore, our HDG discretization allows
us to obtain a better approximation to the velocity of the fluid than using a DG method.

Thus, with the HDG method described in Chapter 2, we can approximate the wave height
and the velocity of the fluid with order p + 1, where p is the degree of the polynomials
employed for the approximations. Moreover, by performing a simple element-by-element
postprocessing, we obtain approximations for the velocity potential of order p + 2. In
contrast, the DG method in [82] only finds approximations for the velocity potential or
order p+ 1.

Simulation of a wavemaker

In this example we investigate waves generated by a piston-type wave maker. This simu-
lation is proposed in [82, 88]. In this case the domain is Ω = [0, 10] × [−1, 0]. We apply
homogeneous Neumann boundary conditions (no-normal flow) on x = 10 and y = −1. The
wave maker is located on the left side of the domain, i.e., at x = 0, where the boundary
condition is

∇φ · n = (y + 1)T (t) at x = 0, (2.37)
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Table 2.1: Convergence rates for φh and φ∗h computed with the HDG method in Chapter 2
and the DG method in [82].

nx× ny HDG (φh) HDG (φ∗h) DG (φh)
DOFs L2(Ω)-error Order L2(Ω)-error Order DOFs L2(Ω)-error Order

3× 3 42 8.18e-03 - 8.28e-03 - 36 5.52e-03 -
Q1 6× 6 156 2.03e-03 2.01 1.72e-03 2.27 144 3.62e-03 0.61

12× 12 600 3.74e-04 2.44 2.96e-04 2.54 576 1.01e-03 1.84
24× 24 2352 7.92e-05 2.24 4.56e-05 2.70 2304 2.55e-04 1.99
48× 48 9312 1.67e-05 2.25 6.05e-06 2.91 9216 6.38e-05 2.00

3× 3 63 1.90e-03 - 1.73e-03 - 81 2.68e-03 -
Q2 6× 6 234 2.76e-04 2.78 2.38e-04 2.86 324 3.98e-04 2.75

12× 12 900 2.27e-05 3.60 1.20e-05 4.31 1296 3.72e-05 3.42
24× 24 3528 2.70e-06 3.07 8.82e-07 3.77 5184 4.06e-06 3.19
48× 48 13968 3.37e-07 3.00 7.44e-08 3.57 20736 4.74e-07 3.10

3× 3 84 3.17e-04 - 2.22e-04 - 144 4.21e-04 -
Q3 6× 6 312 2.23e-05 3.83 1.10e-05 4.33 576 2.49e-05 4.08

12× 12 1200 1.41e-06 3.98 4.42e-07 4.64 2304 1.70e-06 3.87
24× 24 4704 8.90e-08 3.99 1.74e-08 4.67 9216 1.18e-07 3.85
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Table 2.2: Convergence rates for qh and ζh computed with the HDG method in Chapter 2
and the DG method in [82].

nx× ny HDG (qh) HDG (ζh) DG (ζh)
L2(Ω)-error Order L2(ΓS)-error Order L2(ΓS)-error Order

3× 3 7.44e-02 - 8.51e-02 - 7.51e-02 -
Q1 6× 6 2.36e-02 1.66 2.22e-02 1.94 3.86e-02 0.96

12× 12 5.00e-03 2.24 3.22e-03 2.79 1.05e-02 1.87
24× 24 1.47e-03 1.77 7.82e-04 2.04 2.23e-03 2.24
48× 48 3.72e-04 1.98 1.62e-04 2.27 5.65e-04 1.98

3× 3 2.03e-02 - 1.75e-02 - 2.49e-02 -
Q2 6× 6 4.20e-03 2.27 2.87e-03 2.61 8.84e-03 1.49

12× 12 4.97e-04 3.08 2.62e-04 3.45 1.29e-03 2.78
24× 24 7.37e-05 2.75 2.88e-05 3.19 2.53e-04 2.35
48× 48 1.15e-05 2.68 3.37e-06 3.10 5.73e-05 2.14

3× 3 4.00e-03 - 3.13e-03 - 5.22e-03 -
Q3 6× 6 3.60e-04 3.47 2.51e-04 3.64 1.25e-03 2.07

12× 12 2.75e-05 3.71 1.58e-05 3.99 4.54e-05 4.78
24× 24 1.91e-06 3.85 1.03e-06 3.94 3.59e-06 3.66
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Figure 2.1: Piston-type wave maker used in section 2.4.3.

where
T (t) = a sin(ωwt). (2.38)

Here, a represents the amplitude of the wave and ωw is the frequency of the wave. Figure 2.1
depicts the wavemaker.

The initial velocity potential and wave height are taken to be zero and we consider two
meshes: one with 1024 elements and one with 4096 elements. Figure 2.2a, fig. 2.2b and
fig. 2.2c show the free-surface elevation at t = 18.4, t = 32.96 and t = 51.04, respectively.
For each of these times, we compute the approximate solution using linear and quadratic
polynomials.

In fig. 2.2, we show the elevation of the free-surface at different times. At t = 18.4,
before the wave generated by the wavemaker has reached the opposite wall x = 10. At
time t = 32.96, the wave has just hit the opposite wall and is reflected back into the
domain. For this time, we start to notice a discrepancy between the linear and quadratic
polynomial cases on the mesh with 1024 elements. However, on the mesh with 4096
elements, the linear solution agrees with the quadratic one. When time is t = 51.04, the
wave has already started to travel back into the domain affecting the waves generated by
the wavemaker. Here we see that for linear polynomials, the solution is completely different
than when using a quadratic polynomial approximation. Nevertheless, on the finer mesh,
the solutions with p = 1 and p = 2 are very similar. The results obtained with the DG
method in [82] are very similar to the ones obtained with the HDG method described in
Chapter 2, and therefore they are not shown here.
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(a) Free-surface elevation at t = 18.4. (b) Free-surface elevation at t = 32.96.

(c) Free-surface elevation at t = 51.04.

Figure 2.2: Simulation of water waves generated by a wavemaker, see section 2.4.3. The
free-surface elevation (scaled by a factor of 50) at different time levels for polynomial degree
p = 1, 1024 elements (blue line), p = 2, 1024 elements (red line), and p = 1, 4096 elements
(green line).
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Chapter 3

A space-time hybridizable
discontinuous Galerkin method for
the linear free-surface problem

In this chapter we introduce a space-time hybridizable discontinuous Galerkin method for
the linear free-surface problem eq. (1.33). We consider a mixed formulation based on the
splitting introduced originally for the wave equation in [73]. This is different from previous
works on DG methods for free-surface problems in which the primal form of the problem
is considered [82, 84]. The reason to consider the mixed formulation is that it allows us
to immediately obtain the velocity of the fluid without post-processing. To the best of
our knowledge, such a splitting has not been considered for inviscid, incompressible and
irrotational free-surface flow problems. Furthermore, as opposed to standard discontinuous
Galerkin discretizations, our space-time HDG formulation uses weighted inner-products.
The idea of using weighted inner-products was previously applied in [27] to the wave
equation. Here, we use weighted inner-products to prove well-posedness of the space-time
HDG formulation of the linear free-surface waves problem.

The a priori error analysis in this chapter is projection based [19], but modified for
weighted inner-products and space-time prismatic elements. Additionally, we derive scaling
identities between the reference and physical space-time prisms that separate the spatial
dimension from the temporal dimension. Such anisotropic scaling identities were previously
derived in the context of anisotropic meshes in [32] and space-time meshes in [45, 75].
Furthermore, these scaling identities allow us to obtain a priori error estimates in which
the dependence on the time step and the spatial mesh size is explicit. This is in contrast to
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error bounds that depend on the space-time mesh size as derived, for example, for parabolic
problems in [12].

3.1 Space-time setting

To introduce the space-time HDG method we first formulate the mixed space-time formu-
lation of the linear free-surface problem eq. (1.33) in two spatial dimensions.

Space-time methods do not distinguish between temporal and spatial variables. A point
at time t = x0 with position vector x = (x1, x2) has Cartesian coordinates (x0,x). We
therefore pose the linear free-surface problem eq. (1.33) on a space-time domain defined
as E :=

{
(x0,x) ∈ R3 : x ∈ Ω, 0 < x0 < T

}
. The boundary ∂E of the space-time domain

E consists of Ω0 :=
{

(x0,x) ∈ ∂E : x0 = 0
}

, ΩN :=
{

(x0,x) ∈ ∂E : x0 = T
}

and QE :={
(x0,x) ∈ ∂E : 0 < x0 < T

}
. Furthermore, QE is subdivided as QE = ∂ES ∪ ∂EB ∪ ∂EP ,

where ∂ES :=
{

(x0,x) ∈ ∂E : x ∈ ΓS, 0 < x0 < T
}

, ∂EB := {(x0,x) ∈ ∂E : x ∈ ΓB, 0 <
x0 < T}, and ∂EP :=

{
(x0,x) ∈ ∂E : x ∈ ΓP , 0 < x0 < T

}
.

We next introduce two new variables, namely q = −∇φ and v = −∂tφ. A similar
choice of variables was introduced in [61] for the wave equation. The linear free-surface
problem eq. (1.33) on the space-time domain E can then be written as a mixed space-time
formulation which is given by

∂tq −∇v = 0 in E , (3.1a)

∇ · q = 0 in E , (3.1b)

−q · n = ∂tv on ∂ES , (3.1c)

−q · n = 0 on ∂EB, (3.1d)

q(0,x) = q0(x) on Ω0, (3.1e)

v(0,x) = v0(x) on Ω0, (3.1f)

where q0(x) and v0(x) are given initial conditions.

Note that the wave height ζ will be the restriction of v to the free-surface ΓS.

3.1.1 Space-time notation

Let I = [0, T ] denote the time interval. We partition the time interval into time levels
0 = t0 < t1 < t2 < · · · < tN = T and denote the nth time interval by In = (tn, tn+1).
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x0 = tn

x0 = tn+1

x2

x2 = 0

x1

x0

x2 = −H

Figure 3.1: Depiction of a space-time slab En ⊂ R3.

The length of each time interval is constant and is denoted by ∆t. The nth space-
time slab is then defined as En := E ∩

(
In × R2

)
. Define Ωn :=

{
(x0,x) ∈ E : x0 = tn

}
.

The boundary of a space-time slab, ∂En, can then be divided into Ωn, Ωn+1 and QnE :=
∂En\ (Ωn+1 ∪ Ωn). We can further subdivide QnE as QnE = ∂EnS ∪ ∂EnB ∪ ∂EnP , where ∂EnS :={

(x0,x) ∈ ∂E : x ∈ ΓS, tn < x0 < tn+1

}
, ∂EnB :=

{
(x0,x) ∈ ∂E : x ∈ ΓB, tn < x0 < tn+1

}
,

and ∂EnP :=
{

(x0,x) ∈ ∂E : x ∈ ΓP , tn < x0 < tn+1

}
.

For linear free-surface waves the spatial domain Ω does not change with time. We
therefore introduce a space-time mesh as follows. We first introduce a triangulation T :=
{K} of the domain Ωn, which is the same for all n. Each space-time element K ⊂ En is
constructed as K = K × In. The set of all space-time elements, T n := {K : K ⊂ En} is
then a triangulation of the space-time slab En. This is repeated for all n. See fig. 3.1 for
an illustration of En.

Consider a space-time element Knj ∈ T n. Let Kn
j := {(x0,x) ∈ ∂Knj : x0 = tn} ∈ T .

The boundary of a space-time element Knj ∈ T n is then composed of Kn
j , Kn+1

j and

QKnj := ∂Knj \∂Kn0 where ∂Kn0 := Kn
j ∪Kn+1

j .

The outward unit space-time normal vector field on ∂Knj is denoted by n̂nj = ((nt)
n
j ,n

n
j ),

where (nt)
n
j and nnj are, respectively, the temporal and spatial parts of the space-time

normal vector. Since the mesh does not change with time, n̂nj = (1,0) on Kn+1
j , n̂nj =

(−1,0) on Kn
j , and n̂nj = (0,nnj ) on QKnj .

In the remainder of this chapter we will omit the subscripts and superscripts when
referring to space-time elements, their boundaries, and the normal vector wherever no
confusion will occur.
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In a space-time slab En, the set and union of all faces in ∂ES are denoted by FnS and
ΓnS , respectively. Furthermore, the set of all interior and boundary faces in En that are not
on Ωn ∪ Ωn+1 is denoted by FnQ, and the union of all interior and boundary faces in En
that are not on Ωn ∪Ωn+1 is denoted by ΓnQ. On the other hand, faces on Ωn and Ωn+1 are
denoted by FnΩ(tn) and FnΩ(tn+1), respectively. Finally, ∂EnS (tn) denotes the set of edges
e ∈ ∂EnS at t = tn.

3.1.2 Finite element spaces

For triangular prismatic space-time elements we introduce the following local spaces:

Wh(K) := Pp(K)⊗ Pp(In), (3.2a)

V h(K) :=
[
Pp(K)⊗ Pp(In)

]2
, (3.2b)

Mh(F) := Qp(F) ∀F ⊂ QK, (3.2c)

where Pp(D) is the space of polynomials of degree at most p on a domain D and Qp(D)
denotes the tensor-product polynomials of degree p. The global finite element spaces are
then defined as:

Wh :=
{
w ∈ L2(En) : w|K ∈ Wh(K), ∀K ∈ T n

}
, (3.3a)

V h :=
{
v ∈

[
L2(En)

]2
: v|K ∈ V h(K), ∀K ∈ T n

}
, (3.3b)

Mh :=
{
µ ∈ L2(ΓnQ) : µ|F ∈Mh(F), ∀F ∈ FnQ

}
. (3.3c)

For scalar functions we introduce the following inner-products:(
v, w

)
K =

∫
K
vw dK, 〈v, w〉Q =

∫
Q
vw dQ, 〈v, w〉Kn

j
=

∫
Kn
j

vw dK,

〈〈v, w〉〉e =

∫
e

vw de, 〈v, w〉F =

∫
F
vw dF ,

(3.4)

and (
v, w

)
T n =

∑
K∈T n

(
v, w

)
K , 〈v, w〉FnQ =

∑
K∈T n

〈v, w〉Q,

〈v, w〉FnΩ(tn) =
∑
K∈T n

〈v, w〉Kn
j
, 〈〈v, w〉〉∂EnS (tn) =

∑
e∈∂EnS (tn)

〈〈v, w〉〉e,

〈v, w〉FnS =
∑
F∈FnS

〈v, w〉F .

(3.5)
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Similar notation is used for vector functions, for example,(
v,w

)
K =

∫
K
v ·w dK and

(
v,w

)
T n =

∑
K∈T n

(
v,w

)
K . (3.6)

The L2-norm of a function v on a domain D will be denoted by ‖v‖D.

3.2 The finite element variational formulation

In this section we derive the space-time HDG discretization for eq. (3.1) on a space-time
slab En. To be able to show existence and uniqueness of a solution to our discretization
we use weighted inner products, as done originally for the wave equation in [27].

Let fn be a weight function, depending only on time, which is defined as fn(t) =
e−α(t−tn), α > 0. Multiply eq. (3.1a) by rhfn, where rh ∈ V h and eq. (3.1b) by whfn,
where wh ∈ Wh. Integrate both equations over a space-time element K ∈ T nh and replace
q by qh ∈ V h and v by vh ∈ Wh. Sum over all space-time elements in En to obtain:(

∂tqh, rhfn
)
T nh
−
(
∇vh, rhfn

)
T nh

= 0, (3.7a)(
whfn,∇ · qh

)
T nh

= 0. (3.7b)

Integrating by parts both equations in space-time we obtain

−
(
qh, fn∂trh

)
T nh
−
(
qh, rhf

′
n

)
T nh

+ 〈q̂h, rhfn〉FnΩ(tn+1)

− 〈q̂h, rhfn〉FnΩ(tn) +
(
vh, fn∇ · rh

)
T nh
− 〈v̂h, rh · nfn〉FnQ = 0, (3.8a)

and
−
(
qh, fn∇wh

)
T nh

+ 〈q̂h · n, whfn〉FnQ = 0, (3.8b)

where we used that n̂ = (1, 0) on Kn+1
j , n̂ = (−1, 0) on Kn

j and n̂ = (0,n) on Q. The
numerical traces v̂h and q̂h introduced in eq. (3.8) are approximations to, respectively, v
and q over ∂K. They are defined as:

v̂h =λh on ΓnQ, (3.9a)

q̂h =qh − τ
(
vh − λh

)
n on ΓnQ, (3.9b)

q̂h =q−h on Kn
j , (3.9c)

q̂h =qh on Kn+1
j , (3.9d)
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where λh ∈ Mh is the facet approximation to v, τ > 0 is a stabilization parameter, and
q−h denotes the trace of qh at x0 = tn from the previous space-time slab En−1, or the initial
condition if n = 1. Note that the numerical flux eq. (3.9b) is the same as in eq. (2.9),
whereas eq. (3.9c) and eq. (3.9d) correspond to an upwind flux in time.

Normal continuity of the numerical flux q̂h across element boundaries is ensured by
imposing

〈µhfn, q̂h · n〉FnQ = −〈µhfn, ∂tλh〉FnS , ∀µh ∈Mh. (3.10)

Substituting the expressions for the numerical traces eq. (3.9) into eq. (3.8) and eq. (3.10),
integrating eq. (3.8b) by parts in space and eq. (3.10) by parts in time results in the space-
time HDG method for the linear free-surface problem: Find (qh, vh, λh) ∈ V h ×Wh ×Mh

such that for all (rh, wh, µh) ∈ V h ×Wh ×Mh the following relations are satisfied:

−
(
qh, fn∂trh

)
T nh
−
(
qh, rhf

′
n

)
T nh

+ 〈qh, rhfn〉FnΩ(tn+1)

+
(
vh, fn∇ · rh

)
T nh
− 〈λh, rh · nfn〉FnQ = 〈q−h , rhfn〉FnΩ(tn), (3.11a)

−
(
wh, fn∇ · qh

)
T nh

+ 〈τ (vh − λh) , whfn〉FnQ = 0, (3.11b)

and

〈qh · n− τ
(
vh − λh

)
, µhfn〉FnQ − 〈λhfn, ∂tµh〉FnS

− 〈λh, µhf ′n〉FnS + 〈〈λh, µhfn〉〉∂EnS (tn+1) = 〈〈λ−h , µhfn〉〉∂EnS (tn), ∀µh ∈Mh, (3.11c)

where λ−h denotes the known value of vh (= λh) at x0 = tn from the previous space–time
slab En−1, or the initial condition if n = 0.

3.2.1 Well posedness

We now show the existence of a unique solution to the space-time HDG method eq. (3.11).

Theorem 3.1 (Existence and uniqueness). A unique solution (qh, vh, λh) ∈ V h×Wh×Mh

to eq. (3.11) exists if the stabilization parameter τ is positive.

Proof. It is sufficient to show that if the data is equal to zero, the only solution to eq. (3.11)
is the trivial one. We only need to show this for an arbitrary space-time slab En assuming
λ−h = 0 and q−h = 0.
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Take rh = qh in eq. (3.11a), wh = vh in eq. (3.11b) and µh = λh in eq. (3.11c), and add
the three equations together:

−
(
qh, fn∂tqh

)
T n −

(
|qh|

2 , f ′n
)
T n + 〈|qh|

2 , fn〉FnΩ(tn+1)

+ 〈τ (vh − λh)2 , fn〉FnQ − 〈λhfn, ∂tλh〉FnS − 〈λ
2
h, f

′
n〉FnS

+ 〈〈λ2
h, fn〉〉∂EnS (tn+1) = 0. (3.12)

Note that since qh · ∂tqh = 1
2
∂t(|qh|

2), we may write the first term on the left hand side,
after integration by parts in time, as

−
(
qh, fn∂tqh

)
T n = 1

2

(
|qh|

2 , f ′n
)
T n −

1
2
〈|qh|

2 , fn〉FnΩ(tn+1) + 1
2
〈|qh|

2 , fn〉FnΩ(tn). (3.13)

Similarly, the fifth term on the left hand side of eq. (3.12) may be written as

− 〈λhfn, ∂tλh〉FnS = 1
2
〈λ2

h, f
′
n〉FnS −

1
2
〈〈λ2

h, fn〉〉∂EnS (tn+1) + 1
2
〈〈λ2

h, fn〉〉∂EnS (tn). (3.14)

Combining eq. (3.12)–eq. (3.14), we obtain

0 = −1
2

(
|qh|

2 , f ′n
)
T n + 1

2
〈|qh|

2 , fn〉FnΩ(tn+1)

+ 1
2
〈|qh|

2 , fn〉FnΩ(tn) + 〈τ (vh − λh)2 , fn〉FnQ
− 1

2
〈λ2

h, f
′
n〉FnS + 1

2
〈〈λ2

h, fn〉〉∂EnS (tn+1) + 1
2
〈〈λ2

h, fn〉〉∂EnS (tn). (3.15)

Since τ > 0, fn > 0,∀t, and f ′n < 0,∀t, we conclude that qh = 0 in En and on Kn
j ∪Kn+1

j ,
vh = λh on ΓnQ, and λh = 0 on ΓnS and on ∂EnS (tn)∪∂EnS (tn+1). Substituting into eq. (3.11a),

0 =
(
vh, fn∇ · rh

)
T n − 〈λh, rh · nfn〉FnQ

= −
(
∇vh, fnrh

)
T n + 〈(vh − λh) , rh · nfn〉FnQ

= −
(
∇vh, fnrh

)
T n ,

(3.16)

which holds for all rh ∈ V h. Since fn > 0 we conclude that ∇vh = 0 in En, implying that
vh depends only on time. To show that vh = 0 in En, consider the following. Since vh
depends only on time, then vh is constant on Ω × {t}, for all t ∈ (tn, tn+1). In addition,
vh = λh = 0 on ΓnS , so vh = 0 on En.

3.3 Analysis tools

In this section, we develop some of the tools needed to perform the error analysis in
section 3.4.
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3.3.1 Notation and anisotropic Sobolev spaces

Let the multi-index α be a vector of non-negative integers αi and let |α| be defined as
|α| =

∑
i αi. By Dαv we denote the partial derivative of order |α| of v, i.e.,

Dαv = ∂α0
x0
∂α1
x1
∂α2
x2
v. (3.17)

We define the Sobolev space Hs(Ω) =
{
v ∈ L2(Ω) : Dαv ∈ L2(Ω) for |α| ≤ s

}
. This space

is equipped with the following norm and seminorm:

‖v‖2
Hs(Ω) =

∑
|α|≤s

‖Dαv‖2
L2(Ω) and |v|2Hs(Ω) =

∑
|α|=s

‖Dαv‖2
L2(Ω) . (3.18)

For αi ≥ 0, i = 0, 1, 2, we introduce the anisotropic Sobolev space of order (st, ss) on
E ⊂ R3 by

H(st,ss)(E) =
{
v ∈ L2(E) : D(αt,αs)v ∈ L2(E) for αt ≤ st, |αs| ≤ ss

}
, (3.19)

where αt = α0 and αs = (α1, α2) and D(αt,αs)v = ∂αtx0
∂α1
x1
∂α2
x2
v. The anisotropic Sobolev

norm and seminorm are given by, respectively,

‖v‖2
H(st,ss)(E) =

∑
αt≤st
|αs|≤ss

‖D(αt,αs)v‖2

L2(E) and |v|2H(st,ss)(E) =
∑
αt=st
|αs|=ss

‖D(αt,αs)v‖2

L2(E) . (3.20)

Let K denote any space-time prism that is constructed as K = K × I, where K is a
spatial triangular element and I is an interval. Let hK and ρK denote, respectively, the
radii of the 2-dimensional circumcircle and inscribed circle of K. We will assume spatial
shape regularity, i.e., we assume there exists a constant cr > 0 such that

hK
ρK
≤ cr, ∀K ∈ T n. (3.21)

Additionally, we assume that T n does not have any hanging nodes. Throughout the
remainder of this chapter we will denote by C > 0 a generic constant that is independent
of hK and ∆t.

3.3.2 Space-time mappings

Let K̂ denote the reference triangle defined by the vertices (0, 0), (1, 0), (0, 1), and with
reference coordinates x̂ = (x̂1, x̂2). Furthermore, let HK denote the affine mapping HK :

K̂ → K defined as HK(x̂) = BKx̂+ c, where BK is a matrix and c is a vector.
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FK GK

Figure 3.2: An illustration of the different space-time mappings.

To construct each space-time prism we follow a similar approach as [75]. Consider a

reference prism K̂ defined by the vertices (−1, 0, 0), (−1, 1, 0), (−1, 0, 1), (1, 0, 0), (1, 1, 0),

(1, 0, 1). The reference coordinates in K̂ are denoted by (x̂0, x̂). The space-time prism K is
obtained as follows. First, we construct an intermediate element Ǩ from an affine mapping
FK : K̂ 7→ Ǩ defined as FK(x̂0, x̂) = AK [x̂0, x̂]T + b, where AK = diag

(
∆t
2
, 1, 1

)
and b is a

vector of the form [b0, 0, 0]T , where b0 ∈ R. The coordinates on Ǩ are (x̌0, x̌). Then, K is
obtained via the affine mapping, GK : Ǩ 7→ K defined as:

GK(x̌0, x̌) =

[
1 0

0T BK

][
x̌0

x̌

]
+

[
0
c

]
, (3.22)

where 0 = [0, 0] and BK denotes the matrix associated with the mapping HK defined
above. See fig. 3.2.

We denote by ∂K̂1 the boundary face of K̂ with x̂1 = 0. Similarly, ∂K̂2 and ∂K̂3 are
the boundary faces of K̂ with, respectively, x̂2 = 0 and x̂1 + x̂2 = 1. By ∂K̂0 we denote the
boundary faces of K̂ with x̂0 = −1 and x̂0 = 1. Furthermore, ∂Ǩi, i = 0, 1, 2, 3, will denote
the boundary faces of Ǩ which are obtained by applying the transformation FK to K̂.

3.3.3 Trace and inverse trace identities

In this section we prove anisotropic trace and inverse trace identities. This is achieved by
first considering different scaling identities. Similar identities were shown on hexahedra in
[32, 75], but are modified here for prisms.
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Lemma 3.1. Let ǔ ∈ H(st,ss)(Ǩ), αt = α0, αs = (α1, α2), and α = (αt, αs). Then, the
following identities hold for α = (αt, αs), αi ≥ 0, i = 0, 1, 2,

‖Ďαǔ‖2

Ǩ =

(
2

∆t

)2α0−1

‖D̂αû‖
2

K̂ , (3.23a)

‖Ďαǔ‖2

∂Ǩ0
=

(
2

∆t

)2α0

‖D̂αû‖
2

∂K̂0
, (3.23b)

‖Ďαǔ‖2

∂Ǩj =

(
2

∆t

)2α0−1

‖D̂αû‖
2

∂K̂j , j = 1, 2, 3, (3.23c)

where û = ǔ ◦ FK.

Proof. Note that by the chain rule,

Ďαǔ =

(
2

∆t

)α0

D̂α (ǔ ◦ FK) ◦ F−1
K . (3.24)

We first show eq. (3.23a). By eq. (3.24)

‖Ďαǔ‖2

Ǩ =

(
2

∆t

)2α0
∫
Ǩ

(
D̂α (ǔ ◦ FK) ◦ F−1

K

)2

dx̌0 dx̌. (3.25)

Changing variables, we obtain

‖Ďαǔ‖2

Ǩ =

(
2

∆t

)2α0
∫
K̂

(
D̂α (ǔ ◦ FK) ◦ F−1

K ◦ FK
)2

|detAK| dx̂0 dx̂

=

(
2

∆t

)2α0
∫
K̂

(
D̂α (ǔ ◦ FK)

)2

|detAK| dx̂0 dx̂

=

(
2

∆t

)2α0 ∆t

2

∫
K̂

(
D̂αû

)2

dx̂0 dx̂

=

(
2

∆t

)2α0−1

‖D̂αû‖
2

K̂ .

(3.26)

To show eq. (3.23b) we note that time is fixed on ∂Ǩ0. Furthermore, since x̌ = x̂ we
note that for any function v̌ on Ǩ we have v̌(tn+1, x̌) = v̂(1, x̂), i.e., v̌|∂Ǩ0

= v̂|∂K̂0
. In

particular, if v̌ = Ďαǔ, (
Ďαǔ

)
|∂Ǩ0

=

(
2

∆t

)α0 (
D̂α
(
ǔ ◦ FK

))
|∂K̂0

. (3.27)
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Therefore,

‖Ďαǔ‖2

∂Ǩ0
=

∫
∂Ǩ0

(
Ďαǔ

)2
dx̌

=

(
2

∆t

)2α0
∫
∂K̂0

(
D̂αû

)2
dx̂

=

(
2

∆t

)2α0

‖D̂αû‖
2

∂K̂0
,

(3.28)

which concludes the proof for eq. (3.23b).

Finally, we prove eq. (3.23c) for j = 1. The proofs for j = 2, 3 are analogous. First let

us define the mapping J∂K that maps ∂K̂1 onto ∂Ǩ1. This mapping is given by

J∂K(x̂0, x̂2) =

[
∆t
2

0
0 1

][
x̂0

x̂2

]
+ d, (3.29)

where d is a constant two dimensional vector. Then, by the chain rule,(
Ďαǔ

)
|∂Ǩ1

=
(
Ďαǔ

)
(x̌0, 0, x̌2)

=

(
2

∆t

)α0 (
D̂α
(
ǔ ◦ FK

))
|∂K̂1
◦ J−1

∂K

=

(
2

∆t

)α0
[(
D̂α
(
ǔ ◦ FK

))
(x̂0, 0, x̂2)

]
◦ J−1

∂K .

(3.30)

We now find:

‖Ďαǔ‖2

∂Ǩ1
=

∫
∂Ǩ1

(
Ďαǔ

)2
dx̌0 dx̌2

=

(
2

∆t

)2α0
∫
∂Ǩ1

([(
D̂α
(
ǔ ◦ FK

))
(x̂0, 0, x̂2)

]
◦ J−1

∂K

)2

dx̌0 dx̌2.

(3.31)

Note that the determinant of the Jacobian of J∂K is ∆t/2. Changing variables,

‖Ďαǔ‖2

∂Ǩ1
=

(
2

∆t

)2α0 ∆t

2

∫
∂K̂1

(
(D̂αû) (x̂0, 0, x̂2)

)2
dx̂0 dx̂2

=

(
2

∆t

)2α0−1 ∫
∂K̂1

(
(D̂αû) (x̂0, 0, x̂2)

)2
dx̂0 dx̂2

=

(
2

∆t

)2α0−1

‖D̂αû‖
2

∂K̂1
.

(3.32)

The result follows.
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In what follows we use the following inequalities that can be shown by standard scaling
arguments:

|detBK | ≤ Ch2
K , (3.33a)

‖ũ‖2
F̃ ≤ Ch−1

K ‖u‖
2
FK
, (3.33b)

‖u‖2
FK
≤ ChK‖ũ‖2

F̃ , (3.33c)

where FK ∈ ∂K, and where ũ = û and F̃ = FK̂ ∈ ∂K̂, or ũ = ǔ and F̃ = FǨ ∈ ∂Ǩ.

Lemma 3.2. Let u ∈ H(st,ss)(K). The following inequalities hold

‖u‖2
K ≤ Ch2

K ‖ǔ‖
2
Ǩ , (3.34a)

‖ǔ‖2
Ǩ ≤ Ch−2

K ‖u‖
2
K , (3.34b)

‖ǔ‖2
FǨ
≤ Ch−1

K ‖u‖
2
FK , (3.34c)

where ǔ = u ◦GK, FǨ ∈ QǨ, and FK ∈ QK.

Proof. We begin by proving eq. (3.34a).

‖u‖2
K =

∫
K

((
u ◦GK

)
◦G−1

K

)2

dx0 dx

=

∫
Ǩ

(u ◦GK)2|detBK | dx0 dx̌

≤ Ch2
K

∫
Ǩ
ǔ2 dx0 dx̌ (by eq. (3.33a))

= Ch2
K‖ǔ‖

2
Ǩ .

(3.35)

The proof of eq. (3.34b) is completely analogous.

Finally, we prove eq. (3.34c). Notice that

‖ǔ‖2
FǨ

=

∫ tn+1

tn

‖ǔ‖2
FǨ

dx̌0, (3.36)

where FǨ denotes the face of Ǩ corresponding to FǨ. Then, by eq. (3.33b),

‖ǔ‖2
FǨ
≤
∫ tn+1

tn

Ch−1
K ‖u‖

2
FK

dx̌0, (3.37)
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Note that time is left invariant under the mapping from Ǩ to K. Therefore,

‖ǔ‖2
FǨ
≤ Ch−1

K

∫ tn+1

tn

‖u‖2
FK

dx0 = Ch−1
K ‖u‖

2
FK , (3.38)

and the result follows.

We end this section by stating a continuous and a discrete trace inequalities, and two
inverse trace inequalities.

Lemma 3.3 (Continuous trace inequality). Let K = K × In. For φ ∈ H(0,1)(K), the
following holds: ∥∥φ∥∥2

QK
≤ C

(
‖∇φ‖K + h−1

K ‖φ‖K
)
‖φ‖K . (3.39)

Proof. The proof is analogous to the proof of [24, Lemma 1.49].

Lemma 3.4. Let Xh(K) ⊂ Wh(K) be a finite dimensional subspace such that the trace
map γFK : Xh(K) 7→ Mh(F) defined by γFK(vh) = vh|FK, for a face FK ⊂ QK is injective,
then

‖vh‖2
K ≤ ChK ‖vh‖2

FK , ∀vh ∈ Xh(K). (3.40)

Proof. By eq. (3.34a), we obtain

‖vh‖2
K ≤ Ch2

K ‖v̌h‖
2
Ǩ . (3.41)

Since vh is a polynomial and γFK is injective, we have ‖v̌h‖2
Ǩ ≤ C ‖v̌h‖2

FǨ
. Combining this

with eq. (3.41), the result follows after using eq. (3.34c).

Lemma 3.5. Let K = K × In be a space-time element in T n, F ⊂ ∂EnS a face on the
free-surface boundary and ∂F0 the two edges of the face F that are on the time levels. For
vh ∈ Wh(K) and λh ∈Mh(F), the following inverse trace inequalities hold

‖λh‖2
∂F0
≤ C∆t−1 ‖λh‖2

F , (3.42a)

‖vh‖2
∂K0
≤ C∆t−1 ‖vh‖2

K , (3.42b)

‖vh‖2
QK ≤ Ch−1

K ‖vh‖
2
K . (3.42c)
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Proof. Since the face F is a quadrilateral, the proof for eq. (3.42a) can be found, e.g., in
[32, Corollary 3.49]. We first show eq. (3.42b). Notice that

‖vh‖2
∂K0

= ‖vh‖2
Kn
j

+ ‖vh‖2
Kn+1
j

=

∫
K

(vh(tn,x))2 dx+

∫
K

(vh(tn+1,x))2 dx (by definition)

≤ Ch2
K

∫
K̂

(v̌h(tn, x̂))2 dx̂

+ Ch2
K

∫
K̂

(v̌h(tn+1, x̂))2 dx̂ (by eq. (3.33a))

= Ch2
K ‖v̌h‖

2
∂Ǩ0

(by definition)

= Ch2
K ‖v̂h‖

2
∂K̂0

(by eq. (3.23b))

≤ Ch2
K ‖v̂h‖

2
K̂ (vh ∈ Wh(K))

= Ch2
K2∆t−1 ‖v̌h‖2

Ǩ (by eq. (3.23a))

≤ C∆t−1 ‖vh‖2
K (by eq. (3.33a)).

(3.43)

In order to show eq. (3.42c), note that

‖vh‖2
QK =

∫ tn+1

tn

‖vh‖2
∂K dt (by definition)

≤ ChK

∫ tn+1

tn

‖v̌h‖2
∂K̂ dt (by eq. (3.33c))

= ChK‖v̌h‖2
QǨ

(by definition)

= ChK
∆t

2
‖v̂h‖2

QK̂
(by eq. (3.23c))

≤ ChK
∆t

2
‖v̂h‖2

K̂ (vh ∈ Wh(K))

= ChK‖v̌h‖2
Ǩ (by eq. (3.23a))

≤ Ch−1
K ‖vh‖

2
K (by eq. (3.34b)).

(3.44)
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3.4 Error analysis

In this section we present an a priori error analysis for the space-time HDG method
eq. (3.11). For this we require the following subspaces of Wh(K) and V h(K):

W̃h(K) := Pp−1(K)⊗ Pp(In), Ṽ h(K) :=
[
Pp−1(K)⊗ Pp(In)

]2
. (3.45)

We require also the fn-weighted L2-norm defined on a domain D. For any v ∈ L2(D) this
norm is defined as ‖v‖2

fn,D
:= (fnv, v)D while for q ∈ [L2(D)]

2
it is defined as ‖q‖2

fn,D
:=

(fnq, q)D.

3.4.1 The projection

The projection Πh onto V h ×Wh used here is based on the projection defined in [19], but
tailored to the space-time finite element spaces used in this work. The projected function
is denoted by Πh (q, v) or (ΠV q,ΠWv), and is defined by requiring that the following
equations are satisfied on each space-time element K ∈ T n:

(ΠV q, shfn)K = (q, shfn)K ∀sh ∈ Ṽ h(K), (3.46a)

(ΠWv, zhfn)K = (v, zhfn)K ∀zh ∈ W̃h(K), (3.46b)

〈ΠV q · n− τΠWv, σhfn〉F = 〈q · n− τv, σhfn〉F ∀σh ∈Mh(F), F ∈ QK. (3.46c)

Notice that Πh is well defined for functions q and v such that their traces are in L2(QK).

Therefore, the domain of Πh is in
[
H1(T n)

]2 ×H1(T n), where H1(T n) :=
∏
K∈T n H

1(K).

In order to show existence and uniqueness of the projection and its approximation
properties, it will be useful to define the following spaces:

W⊥
h (K) :=

{
w ∈ Wh(K) :

(
w, w̃fn

)
K = 0,∀ w̃ ∈ W̃h(K)

}
, (3.47a)

V ⊥h (K) :=
{
v ∈ V h(K) :

(
v, ṽfn

)
K = 0,∀ ṽ ∈ Ṽ h(K)

}
. (3.47b)

The following lemma will be useful when showing the existence and uniqueness of the
projection and its approximation properties.

Lemma 3.6. For any space-time element K, the following is satisfied for any face FK ∈
QK:

wh ∈ W⊥
h (K) and wh|FK = 0, implies wh = 0 on K, (3.48a)

vh ∈ V ⊥h (K) and vh · n|QK\FK = 0 implies vh = 0 on K. (3.48b)
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Moreover, the following estimates are satisfied

‖wh‖fn,K ≤ Ch
1/2
K ‖wh‖fn,FK ∀wh ∈ W⊥

h (K), (3.49a)

‖vh‖fn,K ≤ Ch
1/2
K ‖vh · n‖fn,QK ∀vh ∈ V ⊥h (K). (3.49b)

Proof. We first show eq. (3.48a). Take wh ∈ W⊥
h (K) such that wh|FK = 0 and let L be a

nonzero linear function that is constant in time and that vanishes on FK. Then, wh can be
written as wh = Lp̃, where p̃ ∈ W̃h(K) [11, Lemma 3.1.10]. Since wh ∈ W⊥

h (K), we have
that

(
Lp̃, fnp̃

)
K = 0. Since L cannot be zero on K, we conclude that p̃ must be zero and

therefore, wh is zero on K.

We next show eq. (3.48b). Let ph = vh · nF , for any face F different than FK. Notice
that ph ∈ W⊥

h (K) and ph|F = 0. Using a similar argument as above, we can conclude that
ph = 0 on K. Therefore, vh · nF = 0 on K. Since the set

{
nF : F ∈ QK\FK

}
is a basis of

R2, we conclude that vh must be zero on K.

To show eq. (3.49a), we use the identities from section 3.3.3. Since ‖·‖fn,K is a weighted

norm and whfn, for wh ∈ W⊥
h (K), is not a broken polynomial, as required in the proof of

Lemma 3.4, we cannot use Lemma 3.4 directly. However, since fn is uniformly bounded,
there exists a constant Cfn > 0 such that supt fn(t) ≤ Cfn for all n. Therefore,

‖wh‖2
fn,K ≤ Cfn ‖wh‖

2
K . (3.50)

Notice that eq. (3.48a) implies that the trace map γFK : W⊥
h (K) 7→ Mh(FK) defined by

γFK(wh) = wh|FK is injective. By Lemma 3.4 we then obtain

‖wh‖2
fn,K ≤ ChK ‖wh‖2

FK . (3.51)

Equation (3.49a) now follows by equivalence of norms on finite-dimensional spaces.

Finally, we show eq. (3.49b). Let F1,F2 ∈ QK with F1 6= FK and F2 6= FK. Notice
that {nF1 ,nF2} is a basis of R2, therefore, we can write vh as vh = v1vh ·nF1 +v2vh ·nF2 ,
where v1,v2 ∈ R2 are constant vectors. Thus,∥∥vh∥∥fn,K =

∥∥v1vh · nF1 + v2vh · nF2

∥∥
fn,K

≤
∥∥v1

∥∥
fn,K

∥∥vh · nF1

∥∥
fn,K

+
∥∥v2

∥∥
fn,K

∥∥vh · nF2

∥∥
fn,K

≤ C
(∥∥vh · nF1

∥∥
fn,K

+
∥∥vh · nF2

∥∥
fn,K

)
.

(3.52)
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Applying eq. (3.49a) to the scalar functions vh · nF1 and vh · nF2 , we have∥∥vh∥∥fn,K ≤ Ch
1/2
K

(∥∥vh · nF1

∥∥
fn,F1

+
∥∥vh · nF2

∥∥
fn,F2

)
≤ Ch

1/2
K ‖vh · n‖fn,QK ,

(3.53)

proving the result.

We next prove existence and uniqueness of Πh.

Lemma 3.7. The projection Πh defined by eq. (3.46) exists and is unique.

Proof. To see that Πh exists and is unique, we first verify that eq. (3.46) is a square system.
First, recall that in two dimensions,

dimPp(K
n
j ) = 1

2
(p+ 1)(p+ 2), dimQp(F) = (p+ 1)2. (3.54)

Thus,

dimWh(K) = 1
2
(p+ 1)2(p+ 2),

dimV h(K) = (p+ 1)2(p+ 2),

dimMh(F) = (p+ 1)2.

(3.55)

Moreover,

dim W̃h(K) = 1
2
p(p+ 1)2,

dim Ṽ h(K) = p(p+ 1)2.
(3.56)

It follows that the number of unknowns in eq. (3.46) is

dimWh(K) + dimV h(K) = 3
2
(p+ 1)2(p+ 2). (3.57)

Since any space-time prism element K has only three faces in QK, the number of equations
in eq. (3.46) is

dim W̃h(K) + dim Ṽ h(K) + 3 dimMh(F)

= 1
2
p(p+ 1)2 + p(p+ 1)2 + 3(p+ 1)2 = 3

2
(p+ 1)2(p+ 2). (3.58)

Since the number of equations and unknowns in eq. (3.46) coincide, eq. (3.46) is a square
system.
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Now, taking q = 0 and v = 0 in eq. (3.46), we see that

(ΠV q, shfn)K = 0 ∀sh ∈ Ṽ h(K), (3.59a)

(ΠWv, zhfn)K = 0 ∀zh ∈ W̃h(K), (3.59b)

〈ΠV q · n− τΠWv, σhfn〉F = 0 ∀σh ∈Mh(F), F ⊂ QK. (3.59c)

Let wh ∈ W⊥
h (K). By eq. (3.59a), since ∇wh ∈ Ṽ h(K), we have

(ΠV q,∇whfn)K = 0. (3.60)

Applying integration by parts in space,

− (∇ ·ΠV q, whfn)K + 〈ΠV q · n, whfn〉QK = 0. (3.61)

Since ∇ ·ΠV q ∈ W̃h(K), then
(
∇ ·ΠV q, whfn

)
K = 0, thus

〈ΠV q · n, whfn〉QK = 0 ∀wh ∈ W⊥
h (K). (3.62)

By eq. (3.59c) and recalling that τ > 0, we have

〈ΠWv, whfn〉QK = 0 ∀wh ∈ W⊥
h (K). (3.63)

Note that by eq. (3.59b), ΠWv ∈ W⊥
h (K). Thus, taking wh = ΠWv in eq. (3.63), we see

that ΠWv = 0 on QK. Then, using eq. (3.48a) we conclude that ΠWv = 0 in K. Taking
σh = ΠV q · n in eq. (3.59c), since ΠWv = 0, we see that ΠV q · n = 0 on QK. Using
eq. (3.48b), we conclude that ΠV q = 0 in K. The result follows.

In addition to the projection Πh, we define also P fn
M as the fn-weighted L2-projection

onto Mh, so that

〈P fn
M v, σhfn〉F = 〈v, σhfn〉F ∀σh ∈Mh(F),F ⊂ QK. (3.64)

Note that the domain of P fn
M is L2(ΓnQ).

We next show approximation properties of Πh. For this, let P fn
W , P fn

W̃
, and PV

fn denote,

respectively, the fn-weighted L2-projections onto Wh, W̃h, and V h.

Theorem 3.2 (Approximation properties of the projection). Assume that τ is uniformly
bounded above and below by constants Cmax

τ and Cmin
τ , respectively. The projection Πh

satisfies the following bounds

‖v − ΠWv‖fn,K ≤‖v − P
fn
W v‖fn,K + CCτh

1/2
K ‖v − P

fn
W v‖fn,QK

+
C

Cmin
τ

hK ‖∇ · q − P fn

W̃
∇ · q‖

fn,K
,

(3.65a)
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‖q −ΠV q‖fn,K ≤‖q − PV
fnq‖fn,K + Ch

1/2
K ‖(q − PV

fnq) · n‖fn,QK
+ CCmax

τ h
1/2
K ‖v − P

fn
W v‖fn,QK ,

(3.65b)

‖q −ΠV q‖fn,∂K0
≤‖q − PV

fnq‖fn,∂K0
+ C∆t−1/2 ‖q − PV

fnq‖fn,K
+ C∆t−1/2 ‖q −ΠV q‖fn,K ,

(3.65c)

where Cτ = Cmax
τ /Cmin

τ .

Proof. Let δq := ΠV q − PV
fnq and δv := ΠWv − P fn

W v. Note that δq and δv satisfy the
following equations

(δq, shfn)K = 0 ∀sh ∈ Ṽ h(K), (3.66a)

(δv, zhfn)K = 0 ∀zh ∈ W̃h(K), (3.66b)

〈(δq · n− τδv) , σhfn〉F = 〈(Iq · n− τIv) , σhfn〉F ∀σh ∈Mh(F), F ⊂ QK, (3.66c)

where Iq = q − PV
fnq and Iv = v − P fn

W v.

We first prove eq. (3.65a). Notice that for any wh ∈ W⊥
h (K), wh|F ∈ Mh(F), for any

F ⊂ QK. Therefore, by eq. (3.66c),

〈(δq · n− τδv) , whfn〉QK = 〈(Iq · n− τIv) , whfn〉QK ∀wh ∈ W⊥
h (K). (3.67)

Using integration by parts in space, note that

〈δq · n, whfn〉QK =
(
∇ · δq, whfn

)
K +

(
δq, fn∇wh

)
K . (3.68)

Since ∇ · δq ∈ W̃h(K) and wh ∈ W⊥
h (K), then

(
∇ · δq, whfn

)
K = 0. Also, since ∇wh ∈

Ṽ h(K), by eq. (3.66a),
(
δq, fn∇wh

)
K = 0. Thus,

〈δq · n, whfn〉QK = ∀wh ∈ W⊥
h (K). (3.69)

Similarly,

〈Iq · n, whfn〉QK =
(
∇ · Iq, whfn

)
K +

(
Iq, fn∇wh

)
K ∀wh ∈ W⊥

h (K). (3.70)

By definition of Iq, the second term on the right hand side is zero. Furthermore, note that(
∇ · Iq, whfn

)
K =

(
∇ · q, whfn

)
K −

(
∇ · PV

fnq, whfn
)
K , (3.71)

48



and
(
∇ · PV

fnq, whfn
)
K = 0 since ∇ · PV

fnq ∈ W̃h(K) and wh ∈ W⊥
h (K). Therefore,(

∇ · Iq, whfn
)
K =

(
∇ · q, whfn

)
K . (3.72)

Also, since P fn

W̃
(∇ · q) ∈ W̃h(K) and (w̃h, whfn)K = 0 for all w̃h ∈ W̃h(K), we can write(

∇ · Iq, whfn
)
K =

((
Id − P fn

W̃

)
∇ · q, whfn

)
K
, (3.73)

where Id denotes the identity operator. Thus,

〈Iq · n, whfn〉QK =
((

Id − P fn

W̃

)
∇ · q, whfn

)
K
∀wh ∈ W⊥

h (K). (3.74)

Using eq. (3.69) and eq. (3.74) in eq. (3.67) and rearranging terms, we obtain

〈τδv, whfn〉QK = 〈τIv, whfn〉QK +
((
P fn

W̃
− Id

)
∇ · q, whfn

)
K
∀wh ∈ W⊥

h (K). (3.75)

By eq. (3.66b), δv ∈ W⊥
h (K). Taking wh = δv in eq. (3.75) we obtain

〈τδv, δvfn〉QK = 〈τIv, δvfn〉QK +
((
P fn

W̃
− Id

)
∇ · q, δvfn

)
K
. (3.76)

Apply the Cauchy–Schwarz inequality to the right hand side of eq. (3.76):

〈τδv, δvfn〉QK ≤ ‖τIv‖fn,QK ‖δv‖fn,QK + ‖(Id − P fn

W̃
)∇ · q‖

fn,K
‖δv‖fn,K . (3.77)

Using eq. (3.49a) on the right hand side,

〈τδv, δvfn〉QK ≤ ‖τIv‖fn,QK ‖δv‖fn,QK + Ch
1/2
K ‖

(
Id − P fn

W̃

)
∇ · q‖

fn,K
‖δv‖fn,QK . (3.78)

Since τ is uniformly bounded above and below by constants Cmax
τ and Cmin

τ , respectively,

Cmin
τ ‖δv‖2

fn,QK ≤ Cmax
τ ‖Iv‖fn,QK ‖δv‖fn,QK + Ch

1/2
K ‖

(
Id − P fn

W̃

)
∇ · q‖

fn,K
‖δv‖fn,QK .

(3.79)
Canceling terms and using eq. (3.49a) on the left hand side, we obtain the following bound

h
−1/2
K

C
Cmin
τ ‖δv‖fn,K ≤ Cmax

τ ‖Iv‖fn,QK + Ch
1/2
K ‖

(
Id − P fn

W̃

)
∇ · q‖

fn,K
. (3.80)

Rearranging,

‖δv‖fn,K ≤ CCτh
1/2
K ‖Iv‖fn,QK +

C

Cmin
τ

hK ‖
(
Id − P fn

W̃

)
∇ · q‖

fn,K
. (3.81)
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The estimate eq. (3.65a) follows by applying the triangle inequality.

We next prove eq. (3.65b). We first find an estimate for δq. Note that by eq. (3.66a),
δq belongs to V ⊥h (K). Therefore, by eq. (3.49b), we have

‖δq‖fn,K ≤ Ch
1/2
K ‖δq · n‖fn,QK . (3.82)

Taking σh = δq · n in eq. (3.66c), we obtain

‖δq · n‖2
fn,QK = 〈Iq · n, δq · nfn〉QK − τ〈Iv, δq · nfn〉QK + τ〈δv, δq · nfn〉QK . (3.83)

Since δv ∈ W⊥
h (K), by eq. (3.69), 〈δv, δq · nfn〉QK = 0. Thus,

‖δq · n‖2
fn,QK = 〈Iq · n, δq · nfn〉QK − τ〈Iv, δq · nfn〉QK . (3.84)

Applying the Cauchy–Schwarz inequality and substituting into eq. (3.82), we obtain

‖δq‖fn,K ≤ Ch
1/2
K

(
‖Iq · n‖fn,QK + Cmax

τ ‖Iv‖fn,QK
)
. (3.85)

The estimate eq. (3.65b) follows by applying the triangle inequality.

Finally, we show eq. (3.65c). Note that, by the triangle inequality,

‖q −ΠV q‖fn,∂K0
≤ ‖q − PV

fnq‖fn,∂K0
+ ‖PV

fnq −ΠV q‖fn,∂K0
. (3.86)

Next, we apply the inverse trace inequality in eq. (3.42b) to the second term on the right
hand side to obtain:

‖q −ΠV q‖fn,∂K0
≤ ‖q − PV

fnq‖fn,∂K0
+ C∆t−1/2 ‖PV

fnq −ΠV q‖fn,K . (3.87)

The result follows after adding and subtracting q to the second term on the right hand
side and applying the triangle inequality.

We next prove the equivalence between the standard and the weighted L2-projections.

Lemma 3.8. Let K ∈ T n and F ∈ FnQ. Let PW ,PV and PM denote the L2-orthogonal pro-
jections onto Wh, V h and Mh, respectively. If fn is uniformly bounded, then the following
relations are satisfied

‖v − P fn
W v‖fn,K ≤ C ‖v − PWv‖K , (3.88a)

‖q − PV
fnq‖fn,K ≤ C ‖q − PV q‖K , (3.88b)

‖v − P fn
M v‖fn,F ≤ C ‖v − PMv‖F . (3.88c)
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Proof. We will only show eq. (3.88a). The proofs for eq. (3.88b) and eq. (3.88c) are
analogous. Note that by definition of P fn

W , for all wh ∈ Wh(
P fn
W v − PWv, fnwh

)
K =

(
v − PWv, fnwh

)
K . (3.89)

Let wh = P fn
W v − PWv, then,∥∥P fn

W v − PWv
∥∥2

fn,K
=
(
v − PWv, fn (P fn

W v − PWv)
)
K

≤
∥∥v − PWv∥∥fn,K∥∥P fn

W v − PWv
∥∥
fn,K

.
(3.90)

Thus, ∥∥P fn
W v − PWv

∥∥
fn,K
≤
∥∥v − PWv∥∥fn,K ≤ C

∥∥v − PWv∥∥K , (3.91)

since fn is uniformly bounded. The result follows by the triangle inequality.

We next find L2 projection esimates of the different projection operators.

Theorem 3.3 (L2 orthogonal projection estimates). Let K = K × In and F be a face on
the free-surface boundary, i.e., F ∈ FnS . Let ∂F0 denote the two edges of the face F that
are on the time levels. Assume that the spatial shape-regularity condition eq. (3.21) holds
and that the triangulation T n does not have any hanging nodes. Suppose that (q, v) are

such that q|K ∈
[
H(st,ss)(K)

]2
, v|K ∈ H(st,ss)(K), where 1/2 < st ≤ p+1 and 1 ≤ ss ≤ p+1.

Then we have the following estimates:

‖v − PWv‖K ≤ C
(
hssK + ∆tst

)
‖v‖H(st,ss)(K) , (3.92a)

‖v − PWv‖QK ≤ C (h
ss−1/2
K + h

−1/2
K ∆tst)‖v‖H(st,ss)(K) , (3.92b)

‖q − PV q‖K ≤ C (hssK + ∆tst)‖q‖H(st,ss)(K) , (3.92c)

‖(q − PV q) · n‖QK ≤ C (h
ss−1/2
K + h

−1/2
K ∆tst)‖q‖H(st,ss)(K) , (3.92d)

‖v − PWv‖∂K0
≤ C (∆t−1/2hssK + ∆tst−1/2)‖v‖H(st,ss)(K) , (3.92e)

‖q − PV q‖∂K0
≤ C (∆t−1/2hssK + ∆tst−1/2)‖q‖H(st,ss)(K) , (3.92f)

‖v − PMv‖F ≤ C (hssK + ∆tst)‖v‖H(st,ss)(F) , (3.92g)

‖v − PMv‖∂F0
≤ C (∆t−1/2hssK + ∆tst−1/2)‖v‖H(st,ss)(F) . (3.92h)

Proof. First note that eq. (3.92c) and eq. (3.92f) result from applying eq. (3.92a) and
eq. (3.92e), respectively, on each component of q, so the proof for those estimates is not

51



shown. Since the face F is a quadrilateral, the proof for eq. (3.92g) and eq. (3.92h) can be
found in [74, Lemma B.14].

Let πt and πs denote the orthogonal L2-projections onto L2(K) ⊗ Pp(In) and onto
Pp(K)⊗ L2(In), respectively. We can define PW as PW := πt ◦ πs.

We first show eq. (3.92a). Notice that

‖v − PWv‖2
K =

∥∥v − πt ◦ πsv∥∥2

K =
∥∥v − πtv + πt(v − πsv)

∥∥2

K

≤ C
(∥∥v − πtv∥∥2

K +
∥∥πt(v − πsv)

∥∥2

K

)
. (3.93)

Since πt is bounded and
∥∥πt∥∥ = 1, then

‖v − PWv‖2
K ≤ C

(∥∥v − πtv∥∥2

K +‖v − πsv‖2
K
)
. (3.94)

Let us treat each term separately. For the second term on the right hand side of eq. (3.94),
by [24, Lemma 1.58], since we assume eq. (3.21) and no hanging nodes,

‖v − πsv‖2
K =

∫ tn+1

tn

∫
K

(v − πsv)2 dx dx0 ≤ Ch2ss
K

∫ tn+1

tn

|v|2Hss (K) dx0

≤ Ch2ss
K ‖v‖

2
H(0,ss)(K) , (3.95)

where 0 ≤ ss ≤ p+ 1. Similarly, for the temporal projection we have

∥∥v − πtv∥∥2

K =

∫
K

∫ tn+1

tn

(v − πtv)2 dx0 dx ≤ C∆t2st‖v‖2
H(st,0)(K) , (3.96)

where 0 ≤ st ≤ p+ 1. Equation (3.92a) follows by combining eq. (3.95) and eq. (3.96).

Next, we show eq. (3.92b). Similarly as above, we have

‖v − PWv‖2
QK ≤ C

(∥∥v − πtv∥∥2

QK
+‖v − πsv‖2

QK

)
. (3.97)

For the spatial projection, using [24, Lemma 1.59], we have

‖v − πsv‖2
QK =

∫ tn+1

tn

∫
∂K

(v − πsv)2 dx dx0

≤ Ch2ss−1
K

∫ tn+1

tn

|v|2Hss (K) dx0 ≤ Ch2ss−1
K ‖v‖2

H(0,ss)(K) . (3.98)
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For the temporal projection, similarly as above,

∥∥v − πtv∥∥2

QK
=

∫
∂K

∫ tn+1

tn

(v − πtv)2 dx0 dx ≤ C∆t2st‖v‖2
H(st,0)(QK) . (3.99)

Combining eq. (3.98) and eq. (3.99), we obtain

‖v − PWv‖2
QK ≤ Ch2ss−1

K ‖v‖2
H(0,ss)(K) + C∆t2st‖v‖2

H(st,0)(QK) . (3.100)

Note that, by Lemma 3.3, since v ∈ H(st,ss)(K) with ss ≥ 1, we have∥∥∂αtx0
v
∥∥2

QK
≤ C

∥∥∇∂αtx0
v
∥∥
K

∥∥∂αtx0
v
∥∥
K + Ch−1

K

∥∥∂αtx0
v
∥∥2

K , (3.101)

for all 0 ≤ αt ≤ st. Thus,

‖v‖2
H(st,0)(QK) ≤ C‖v‖2

H(st,ss)(K) + Ch−1
K ‖v‖

2
H(st,ss)(K) , (3.102)

and the result follows.

To show eq. (3.92d), we note the following

‖(q − PV q) · n‖QK ≤ ‖q − PV q‖QK . (3.103)

The result follows by applying eq. (3.92b) component wise.

Finally, we show eq. (3.92e). For the spatial component of the projection, notice that

‖v − πsv‖2
∂K0

=‖v − πsv‖2
Kn+1
j

+‖v − πsv‖2
Kn
j

≤ Ch2ss
K

(
|v|2Hss (Kn+1

j ) +|v|2Hss (Kn
j )

)
≤ Ch2ss

K ‖v‖
2
Hss (∂K0) .

(3.104)

By the Sobolev embedding theorem, the definition of fractional Sobolev norms [11, Chapter
14], and a standard scaling argument, we have for st > 1/2,

‖v‖Hss (∂K0) ≤ C∆t−1/2‖v‖H(st,ss)(K) . (3.105)

Thus,
‖v − πsv‖2

∂K0
≤ C∆t−1h2ss

K ‖v‖
2
H(st,ss)(K) . (3.106)
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For the temporal projection, we have∥∥v − πtv∥∥2

∂K0
=
∥∥v − πtv∥∥2

Kn+1
j

+
∥∥v − πtv∥∥2

Kn
j

=

∫
K

(
(v − πtv)(tn+1,x)

)2
dx+

∫
K

(
(v − πtv)(tn,x)

)2
dx (by def.)

≤ h2
K

∫
K̂

(
(v − πtv)(tn+1, x̂)

)2
dx̂+ h2

K

∫
K̂

(
(v − πtv)(tn, x̂)

)2
dx̂ (by eq. (3.33a))

= h2
K

∥∥v̌ − πtv̌∥∥2

∂Ǩ0
(by def.)

= h2
K

∥∥v̂ − π̂tv̂∥∥2

∂K̂0
(by eq. (3.23b))

= h2
K

∫
K̂

(
(v̂ − π̂tv̂)(1, x̂)

)2
dx̂+ h2

K

∫
K̂

(
(v̂ − π̂tv̂)(−1, x̂)

)2
dx̂ (by def.)

≤ Ch2
K

∥∥∂stx̂0
v̂
∥∥2

K̂ (by [39])

= Ch2
K

(
∆t

2

)2st−1∥∥∂stx̌0
v̌
∥∥2

Ǩ (by eq. (3.23a))

≤ Ch2
K

(
∆t

2

)2st−1

h−2
K

∥∥∂stx0
v
∥∥2

K (by eq. (3.33a))

≤ C∆t2st−1‖v‖2
H(st,0)(K) .

(3.107)
Note that here we have used that

∣∣v̂ − π̂tv̂(±1)
∣∣ ≤ C ‖∂stx̂0

v̂‖
Î

which was shown in [39,
Lemma 3.5]. This concludes the proof.

Corollary 3.1. Under the same assumptions as in Theorem 3.3, the following estimates
are satisfied:

‖v − P fn
W v‖fn,K ≤ C (hssK + ∆tst)‖v‖H(st,ss)(K) , (3.108a)

‖v − P fn
W v‖fn,QK ≤ C (h

ss−1/2
K + h

−1/2
K ∆tst)‖v‖H(st,ss)(K) , (3.108b)

‖q − PV
fnq‖fn,K ≤ C (hssK + ∆tst)‖q‖H(st,ss)(K) , (3.108c)

‖(q − PV
fnq) · n‖fn,QK ≤ C (h

ss−1/2
K + h

−1/2
K ∆tst)‖q‖H(st,ss)(K) , (3.108d)

‖v − P fn
W v‖fn,∂K0

≤ C (∆t−1/2hssK + ∆tst−1/2)‖v‖H(st,ss)(K) , (3.108e)

‖q − PV
fnq‖fn,∂K0

≤ C (∆t−1/2hssK + ∆tst−1/2)‖q‖H(st,ss)(K) , (3.108f)

‖v − P fn
M v‖fn,F ≤ C (hssK + ∆tst)‖v‖H(st,ss)(F) , (3.108g)

‖v − P fn
M v‖fn,∂F0

≤ C (∆t−1/2hssK + ∆tst−1/2)‖v‖H(st,ss)(F) . (3.108h)
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Proof. Equation (3.108a), eq. (3.108c) and eq. (3.108g) follow directly from Lemma 3.8
and Theorem 3.3. Moreover, eq. (3.108d) and eq. (3.108f) follow from eq. (3.108b) and
eq. (3.108e), respectively. Therefore, we only show eq. (3.108b), eq. (3.108e) and eq. (3.108h).

In order to prove eq. (3.108b), notice that since fn has a uniform upper bound, and
using the triangle inequality, we obtain

‖v − P fn
W v‖fn,QK ≤ C ‖v − PWv‖QK + C ‖PWv − P fn

W v‖QK . (3.109)

By eq. (3.42c), we obtain

‖v − P fn
W v‖fn,QK ≤ C ‖v − PWv‖QK + Ch

−1/2
K ‖PWv − P fn

W v‖K . (3.110)

Since fn(t) is positive for all t, with a uniformly positive lower bound independent of t and
n for all t, we have that

‖vh‖K ≤ C ‖vh‖fn,K , ∀vh ∈ Wh. (3.111)

Using the triangle inequality, we arrive at

‖v − P fn
W v‖fn,QK ≤ C ‖v − PWv‖QK + Ch

−1/2
K ‖PWv − v‖fn,K

+ Ch
−1/2
K ‖v − P fn

W v‖fn,K . (3.112)

Equation (3.108b) follows by recalling that fn is uniformly bounded and using the estimates
eq. (3.92b), eq. (3.92a) and eq. (3.108a).

In order to show eq. (3.108e), since fn has a uniform upper bound, we obtain by the
triangle inequality

‖v − P fn
W v‖fn,∂K0

≤ C ‖v − PWv‖∂K0
+ C ‖PWv − P fn

W v‖∂K0
. (3.113)

Using eq. (3.42b) on the second term of the right hand side of eq. (3.113),

‖v − P fn
W v‖fn,∂K0

≤ C ‖v − PWv‖∂K0
+ C∆t−1/2 ‖PWv − P fn

W v‖K . (3.114)

By the triangle inequality,

‖v − P fn
W v‖fn,∂K0

≤ C ‖v − PWv‖∂K0
+ C∆t−1/2 ‖PWv − v‖fn,K

+ C∆t−1/2 ‖v − P fn
W v‖fn,K . (3.115)

Then, eq. (3.108e) is obtained by eq. (3.92e), eq. (3.108a) and eq. (3.92a).
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Finally, we show eq. (3.108h). Using that fn is uniformly bounded and by the triangle
inequality,

‖v − P fn
M v‖fn,∂F0

≤ C ‖v − PMv‖∂F0
+ C ‖PMv − P fn

M v‖∂F0
. (3.116)

By eq. (3.42a),

‖v − P fn
M v‖fn,∂F0

≤ C ‖v − PMv‖∂F0
+ C∆t−1/2 ‖PMv − P fn

M v‖F . (3.117)

By the triangle inequality, we then obtain:

‖v − P fn
M v‖fn,∂F0

≤ C ‖v − PMv‖∂F0
+ C∆t−1/2 ‖PMv − v‖fn,F

+ C∆t−1/2 ‖v − P fn
M v‖fn,F . (3.118)

Equation (3.108h) follows by the uniform boundedness of fn and the estimates eq. (3.92h),
eq. (3.92g), and eq. (3.108g).

To conclude this subsection, we show the error estimates of our projection Πh.

Lemma 3.9. Under the same conditions as in Theorem 3.3, the following estimates hold:

‖q −ΠV q‖fn,K ≤ C (hssK + ∆tst)‖q‖H(st,ss)(K)

+ C (hssK + ∆tst)‖v‖H(st,ss)(K) ,
(3.119a)

‖q −ΠV q‖fn,∂K0
≤ C (∆t−1/2hssK + ∆tst−1/2)‖q‖H(st,ss)(K)

+ C (hssK∆t−1/2 + ∆tst−1/2)‖v‖H(st,ss)(K) .
(3.119b)

Proof. These estimates follow from substituting eq. (3.108b), eq. (3.108c), eq. (3.108d),
and eq. (3.108f) in Theorem 3.2.

3.4.2 The a priori error estimates

In this section we present the main result of this chapter, namely a priori error estimates
for the space-time HDG method eq. (3.11).

In order to obtain a priori error estimates, we first require to obtain the error equations
and a bound for the projection errors. Define these projection errors as

εqh = ΠV q − qh, εq−h = ΠV −q − q−h , εvh = ΠWv − vh,
ελh = P fn

M v − λh, ελ−h = P
fn−1

M− v − λ−h ,
(3.120)
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where ΠV − and P
fn−1

M− denote the projection onto the spaces V h and Mh, respectively,

defined on the time slab n − 1 for n > 0. We furthermore remark that εq−h = 0 and
ελ−h = 0 when n = 0.

The following lemma describes the error equations.

Lemma 3.10. The error equations are given by(
εvh, fn∇ · rh

)
T n −

(
εqh, rhf

′
n

)
T n + 〈εqh, rhfn〉FnΩ(tn+1)

−
(
εqh, fn∂trh

)
T n − 〈ε

λ
h, rh · nfn〉FnQ

=〈εq−h , rhfn〉FnΩ(tn) −
(
ΠV q − q, fn∂trh

)
T n −

(
ΠV q − q, rhf ′n

)
T n

+ 〈ΠV q − q, rhfn〉FnΩ(tn+1) − 〈ΠV −q − q, rhfn〉FnΩ(tn),

(3.121a)

(
εqh, fn∇wh

)
T n − 〈ε̂h · n, whfn〉FnQ = 0, (3.121b)

〈ε̂h · n,µhfn〉FnQ − 〈ε
λ
h, fn∂tµh〉FnS − 〈ε

λ
h, µhf

′
n〉FnS + 〈〈ελh, µhfn〉〉∂EnS (tn+1)

=〈〈ελ−h , µhfn〉〉∂EnS (tn) + 〈〈P fn
M v − v, µhfn〉〉∂EnS (tn+1)

− 〈〈P fn−1

M− v − v, µhfn〉〉∂EnS (tn),

(3.121c)

where ε̂h = εqh − τ
(
εvh − ελh

)
n.

Proof. Substituting the exact solution (q, v) to eq. (3.1) into the space-time HDG method
eq. (3.11), we find:

−
(
q, fn∂trh

)
T n −

(
q, rhf

′
n

)
T n + 〈q, rhfn〉FnΩ(tn+1)

+
(
v, fn∇ · rh

)
T n − 〈v, rh · nfn〉FnQ = 〈q, rhfn〉FnΩ(tn), (3.122a)

−
(
wh, fn∇ · q

)
T n = 0, (3.122b)

〈q · n, µhfn〉FnQ − 〈v, fn∂tµh〉FnS − 〈v, µhf
′
n〉FnS + 〈〈v, µhfn〉〉∂EnS (tn+1)

= 〈〈v, µhfn〉〉∂EnS (tn). (3.122c)

Subtracting now (3.11) from (3.122), we obtain

−
(
q − qh, fn∂trh

)
T n −

(
q − qh, rhf ′n

)
T n + 〈q − qh, rhfn〉FnΩ(tn+1)

+
(
v − vh, fn∇ · rh

)
T n − 〈v − λh, rh · nfn〉FnQ = 〈q − q−h , rhfn〉FnΩ(tn), (3.123a)
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−
(
whfn,∇ · (q − qh)

)
T n − 〈τ (vh − λh) , whfn〉FnQ = 0, (3.123b)

〈
(
q − qh

)
· n+ τ

(
vh − λh

)
, µhfn〉FnQ − 〈v − λh, fn∂tµh〉FnS

− 〈v − λh, µhf ′n〉FnS + 〈〈v − λh, µhfn〉〉∂EnS (tn+1) = 〈〈v − λ−h , µhfn〉〉∂EnS (tn). (3.123c)

We next split the numerical errors as q−qh = q−ΠV q+εqh, q−q
−
h = q−ΠV −q+εq−h ,

v− vh = v−ΠWv + εvh, v− λh = v− P fn
M v + ελh and v− λ−h = v− P fn−1

M− v + ελ−h . Note also
that

q − q̂h = q − qh − τ
(
λh − vh

)
n = q − qh − τ

(
v − vh − v + λh

)
n

= εqh − τ
(
εvh − ελh

)
n+ q −ΠV q − τ

(
v − ΠWv −

(
v − P fn

M v
))
n

= ε̂h + q −ΠV q − τ
(
v − ΠWv −

(
v − P fn

M v
))
n.

(3.124)

We will write eq. (3.123) in terms of the projection and approximation errors.

Consider first eq. (3.123a):

−
(
εqh, fn∂trh

)
T n −

(
εqh, rhf

′
n

)
T n + 〈εqh, rhfn〉FnΩ(tn+1) +

(
εvh, fn∇ · rh

)
T n

− 〈ελh, rh · nfn〉FnQ
= −

(
ΠV q − q, fn∂trh

)
T n −

(
ΠV q − q, rhf ′n

)
T n + 〈ΠV q − q, rhfn〉FnΩ(tn+1)

+
(
ΠWv − v, fn∇ · rh

)
T n − 〈P

fn
M v − v, rh · nfn〉FnQ

+ 〈εq−h , rhfn〉FnΩ(tn) − 〈ΠV −q − q, rhfn〉FnΩ(tn), (3.125)

which simplifies to

−
(
εqh, fn∂trh

)
T n −

(
εqh, rhf

′
n

)
T n + 〈εqh, rhfn〉FnΩ(tn+1)

+
(
εvh, fn∇ · rh

)
T n − 〈ε

λ
h, rh · nfn〉FnQ = −

(
ΠV q − q, fn∂trh

)
T n

−
(
ΠV q − q, rhf ′n

)
T n + 〈ΠV q − q, rhfn〉FnΩ(tn+1)

+ 〈εq−h , rhfn〉FnΩ(tn) − 〈ΠV −q − q, rhfn〉FnΩ(tn), (3.126)

using the properties of the projections ΠW and P fn
M . This proves eq. (3.121a).

We consider next eq. (3.123b). Integrating eq. (3.123b) by parts in space,(
q − qh, fn∇wh

)
T n − 〈

(
q − qh

)
· n− τ

(
λh − vh

)
, whfn〉FnQ = 0. (3.127)
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We next write this equation in terms of the projection and approximation errors:(
εqh, fn∇wh

)
T n − 〈ε̂h · n, whfn〉FnQ

=
(
ΠV q − q, fn∇wh

)
T n − 〈τ

(
P fn
M v − v

)
, whfn〉FnQ

− 〈(ΠV q − q) · n− τ
(
ΠWv − v

)
, whfn〉FnQ .

(3.128)

Using the properties of the projections Πh and P fn
M , we obtain(

εqh, fn∇wh
)
T n − 〈ε̂h · n, whfn〉FnQ = 0, (3.129)

proving eq. (3.121b).

Finally, we write eq. (3.123c) in terms of the projection and approximation errors:

〈ε̂h · n,µhfn〉FnQ − 〈ε
λ
h, fn∂tµh〉FnS − 〈ε

λ
h, µhf

′
n〉FnS + 〈〈ελh, µhfn〉〉∂EnS (tn+1)

=〈(ΠV q − q) · n− τ
(
ΠWv − v

)
, µhfn〉FnQ + 〈τ

(
P fn
M v − v

)
, µhfn〉FnQ

− 〈P fn
M v − v, fn∂tµh〉FnS − 〈P

fn
M v − v, µhf ′n〉FnS + 〈〈P fn

M v − v, µhfn〉〉∂EnS (tn+1)

+ 〈〈ελ−h , µhfn〉〉∂EnS (tn) − 〈〈P fn−1

M− v − v, µhfn〉〉∂EnS (tn).

(3.130)

Using the properties of the projections Πh and P fn
M , we obtain

〈ε̂h · n,µhfn〉FnQ − 〈ε
λ
h, fn∂tµh〉FnS − 〈ε

λ
h, µhf

′
n〉FnS + 〈〈ελh, µhfn〉〉∂EnS (tn+1)

=〈〈ελ−h , µhfn〉〉∂EnS (tn) + 〈〈P fn
M v − v, µhfn〉〉∂EnS (tn+1)

− 〈〈P fn−1

M− v − v, µhfn〉〉∂EnS (tn),

(3.131)

proving eq. (3.121c).

Next, we prove a bound for the projection errors.

Lemma 3.11. The following bound holds for the projection errors:

α
2
‖εqh‖

2
fn,T n + α

2
‖ελh‖

2

fn,FnS
+ e−α∆t ‖εqh‖

2
FnΩ(tn+1) + e−α∆t ‖ελh‖

2

∂EnS (tn+1)

≤‖εq−h ‖
2

FnΩ(tn) + ‖ελ−h ‖
2

∂EnS (tn) + C∆t−2 ‖q −ΠV q‖2
fn,T n

+ C ‖ΠV q − q‖2
fn,T n + C∆t−1 ‖ΠV q − q‖2

fn,FnΩ(tn+1)

+ C∆t−1 ‖ΠV −q − q‖2
fn,FnΩ(tn) + C∆t−1 ‖P fn

M v − v‖2

fn,∂EnS (tn+1)

+ C∆t−1 ‖P fn−1

M− v − v‖
2

fn,∂EnS (tn)
.

(3.132)
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Proof. Take rh = εqh in eq. (3.121a), wh = εvh in eq. (3.121b) and µh = ελh in eq. (3.121c).
Adding the resulting equations we obtain

−
(
εqh, fn∂tε

q
h

)
T n −

(
f ′nε

q
h, ε

q
h

)
T n + 〈fnεqh, ε

q
h〉FnΩ(tn+1)

+
(
εvh, fn∇ · ε

q
h

)
T n − 〈ε

λ
h, ε

q
h · nfn〉FnQ +

(
εqh, fn∇ε

v
h

)
T n − 〈ε̂h · n, ε

v
hfn〉FnQ

+ 〈ε̂h · n, ελhfn〉FnQ − 〈ε
λ
h, fn∂tε

λ
h〉FnS − 〈f

′
nε

λ
h, ε

λ
h〉FnS + 〈〈fnελh, ελh〉〉∂EnS (tn+1)

=〈εq−h , εqhfn〉FnΩ(tn) + 〈〈ελ−h , ελhfn〉〉∂EnS (tn)

−
(
ΠV q − q, fn∂tεqh

)
T n −

(
ΠV q − q, εqhf

′
n

)
T n

+ 〈ΠV q − q, εqhfn〉FnΩ(tn+1) − 〈ΠV −q − q, εqhfn〉FnΩ(tn)

+ 〈〈P fn
M v − v, ελhfn〉〉∂EnS (tn+1) − 〈〈P fn−1

M− v − v, ελhfn〉〉∂EnS (tn).

(3.133)

Applying integration by parts with respect to time on the first and ninth terms, integration
by parts with respect to space on the sixth term, and expanding out some terms:

− 1
2

(
f ′nε

q
h, ε

q
h

)
T n + 1

2
〈fnεqh, ε

q
h〉FnΩ(tn+1) + 1

2
〈fnεqh, ε

q
h〉FnΩ(tn)

+ 〈τ
(
εvh − ελh

)
, fn
(
εvh − ελh

)
〉FnQ −

1
2
〈f ′nελh, ελh〉FnS + 1

2
〈〈fnελh, ελh〉〉∂EnS (tn+1)

+ 1
2
〈〈fnελh, ελh〉〉∂EnS (tn)

=〈εq−h , εqhfn〉FnΩ(tn) + 〈〈ελ−h , ελhfn〉〉∂EnS (tn) −
(
ΠV q − q, fn∂tεqh

)
T n

−
(
ΠV q − q, εqhf

′
n

)
T n + 〈ΠV q − q, εqhfn〉FnΩ(tn+1) − 〈ΠV −q − q, εqhfn〉FnΩ(tn)

+ 〈〈P fn
M v − v, ελhfn〉〉∂EnS (tn+1) − 〈〈P fn−1

M− v − v, ελhfn〉〉∂EnS (tn).

(3.134)

Moving the first two terms on the right hand side to the left hand side, we obtain

− 1
2

(
f ′nε

q
h, ε

q
h

)
T n + 1

2
〈fnεqh, ε

q
h〉FnΩ(tn+1) + 1

2
〈fnεqh, ε

q
h〉FnΩ(tn)

− 〈εq−h , εqhfn〉FnΩ(tn) + 〈τ
(
εvh − ελh

)
, fn
(
εvh − ελh

)
〉FnQ −

1
2
〈f ′nελh, ελh〉FnS

+ 1
2
〈〈fnελh, ελh〉〉∂EnS (tn+1) + 1

2
〈〈fnελh, ελh〉〉∂EnS (tn) − 〈〈ελ−h , ελhfn〉〉∂EnS (tn)

=−
(
ΠV q − q, fn∂tεqh

)
T n

−
(
ΠV q − q, εqhf

′
n

)
T n + 〈ΠV q − q, εqhfn〉FnΩ(tn+1) − 〈ΠV −q − q, εqhfn〉FnΩ(tn)

+ 〈〈P fn
M v − v, ελhfn〉〉∂EnS (tn+1) − 〈〈P fn−1

M− v − v, ελhfn〉〉∂EnS (tn).

(3.135)

Notice that

1
2
〈fnεqh, ε

q
h〉FnΩ(tn) − 〈εq−h , εqhfn〉FnΩ(tn)

= 1
2
〈εqh − ε

q−
h , εqhfn〉FnΩ(tn) − 1

2
〈εq−h , εqhfn〉FnΩ(tn)

= 1
2
〈εqh − ε

q−
h , (εqh − ε

q−
h ) fn〉FnΩ(tn) − 1

2
〈εq−h , εq−h fn〉FnΩ(tn).

(3.136)
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Similarly,

1
2
〈〈fnελh, ελh〉〉∂EnS (tn) − 〈〈ελ−h , ελhfn〉〉∂EnS (tn)

= 1
2
〈〈ελh − ελ−h , (ελh − ελ−h ) fn〉〉∂EnS (tn) − 1

2
〈〈ελ−h , ελ−h fn〉〉∂EnS (tn).

(3.137)

Substituting these expressions in eq. (3.135) and rearranging terms, we obtain

− 1
2

(
f ′nε

q
h, ε

q
h

)
T n + 1

2
〈fnεqh, ε

q
h〉FnΩ(tn+1) + 1

2
〈εqh − ε

q−
h , (εqh − ε

q−
h ) fn〉FnΩ(tn)

+ 〈τ
(
εvh − ελh

)
, fn
(
εvh − ελh

)
〉FnQ −

1
2
〈f ′nελh, ελh〉FnS + 1

2
〈〈fnελh, ελh〉〉∂EnS (tn+1)

+ 1
2
〈〈ελh − ελ−h , (ελh − ελ−h ) fn〉〉∂EnS (tn)

=1
2
〈εq−h , εq−h fn〉FnΩ(tn) + 1

2
〈〈ελ−h , ελ−h fn〉〉∂EnS (tn)

−
(
ΠV q − q, fn∂tεqh

)
T n

−
(
ΠV q − q, εqhf

′
n

)
T n + 〈ΠV q − q, εqhfn〉FnΩ(tn+1) − 〈ΠV −q − q, εqhfn〉FnΩ(tn)

+ 〈〈P fn
M v − v, ελhfn〉〉∂EnS (tn+1) − 〈〈P fn−1

M− v − v, ελhfn〉〉∂EnS (tn).

(3.138)

Recall that fn = e−α(t−tn), where α > 0 is constant, and so f ′n = −αfn. Moreover,
fn(tn) = 1 and fn(tn+1) = e−α∆t. With these definitions and by the Cauchy–Schwarz
inequality applied to the right hand side of eq. (3.138), we obtain

α
2
‖εqh‖

2
fn,T n + α

2
‖ελh‖

2

fn,FnS
+ e−α∆t

2
‖εqh‖

2
FnΩ(tn+1) + e−α∆t

2
‖ελh‖

2

∂EnS (tn+1)

≤1
2
‖εq−h ‖

2

FnΩ(tn) + 1
2
‖ελ−h ‖

2

∂EnS (tn)

+ ‖q −ΠV q‖fn,T n ‖∂tε
q
h‖fn,T n + α ‖ΠV q − q‖fn,T n ‖ε

q
h‖fn,T n

+ ‖ΠV q − q‖fn,FnΩ(tn+1) ‖ε
q
h‖fn,FnΩ(tn+1) + ‖ΠV −q − q‖fn,FnΩ(tn) ‖ε

q
h‖fn,FnΩ(tn)

+ ‖P fn
M v − v‖fn,∂EnS (tn+1) ‖ε

λ
h‖fn,∂EnS (tn+1) + ‖P fn−1

M− v − v‖
fn,∂EnS (tn)

‖ελh‖fn,∂EnS (tn) .

(3.139)

Note that, by eq. (3.42b) and eq. (3.42a),

‖εqh‖fn,FnΩ(tn) ≤ C∆t−1/2 ‖εqh‖fn,T n ,

‖ελh‖fn,∂EnS (tn) ≤ C∆t−1/2 ‖ελh‖fn,FnS .
(3.140)

Furthermore, combining a standard inverse inequality and using equivalence of the norms
‖·‖K and ‖·‖fn,K we also have

‖∂tεqh‖fn,T n ≤ C∆t−1 ‖εqh‖fn,T n . (3.141)
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Using eq. (3.140) and eq. (3.141) for the right hand side of eq. (3.139) and multiplying by
2,

α ‖εqh‖
2
fn,T n + α ‖ελh‖

2

fn,FnS
+ e−α∆t ‖εqh‖

2
FnΩ(tn+1) + e−α∆t ‖ελh‖

2

∂EnS (tn+1)

≤‖εq−h ‖
2

FnΩ(tn) + ‖ελ−h ‖
2

∂EnS (tn)

+ C∆t−1 ‖q −ΠV q‖fn,T n ‖ε
q
h‖fn,T n + 2α ‖ΠV q − q‖fn,T n ‖ε

q
h‖fn,T n

+ C∆t−1/2 ‖ΠV q − q‖fn,FnΩ(tn+1) ‖ε
q
h‖fn,T n

+ C∆t−1/2 ‖ΠV −q − q‖fn,FnΩ(tn) ‖ε
q
h‖fn,T n

+ C∆t−1/2 ‖P fn
M v − v‖fn,∂EnS (tn+1) ‖ε

λ
h‖fn,FnS

+ C∆t−1/2 ‖P fn−1

M− v − v‖
fn,∂EnS (tn)

‖ελh‖fn,FnS .

(3.142)

Applying Young’s inequality to the right hand side of eq. (3.142), we obtain

α ‖εqh‖
2
fn,T n + α ‖ελh‖

2

fn,FnS
+ e−α∆t ‖εqh‖

2
FnΩ(tn+1) + e−α∆t ‖ελh‖

2

∂EnS (tn+1)

≤‖εq−h ‖
2

FnΩ(tn) + ‖ελ−h ‖
2

∂EnS (tn) +
C

4δ1

∆t−2 ‖q −ΠV q‖2
fn,T n + δ1 ‖εqh‖

2
fn,T n

+
C

4δ1

‖ΠV q − q‖2
fn,T n + δ1 ‖εqh‖

2
fn,T n +

C

4δ1

∆t−1 ‖ΠV q − q‖2
fn,FnΩ(tn+1)

+ δ1 ‖εqh‖
2
fn,T n +

C

4δ1

∆t−1 ‖ΠV −q − q‖2
fn,FnΩ(tn) + δ1 ‖εqh‖

2
fn,T n

+
C

4δ2

∆t−1 ‖P fn
M v − v‖2

fn,∂EnS (tn+1) + δ2 ‖ελh‖
2

fn,FnS

+
C

4δ2

∆t−1 ‖P fn−1

M− v − v‖
2

fn,∂EnS (tn)
+ δ2 ‖ελh‖

2

fn,FnS
,

(3.143)

where δ1, δ2 > 0 are free to choose constants. Collecting terms,

(α− 4δ1) ‖εqh‖
2
fn,T n + (α− 2δ2) ‖ελh‖

2

fn,FnS
+ e−α∆t ‖εqh‖

2
FnΩ(tn+1) + e−α∆t ‖ελh‖

2

∂EnS (tn+1)

≤‖εq−h ‖
2

FnΩ(tn) + ‖ελ−h ‖
2

∂EnS (tn) + C∆t−2 ‖q −ΠV q‖2
fn,T n

+ C ‖ΠV q − q‖2
fn,T n + C∆t−1 ‖ΠV q − q‖2

fn,FnΩ(tn+1)

+ C∆t−1 ‖ΠV −q − q‖2
fn,FnΩ(tn) + C∆t−1 ‖P fn

M v − v‖2

fn,∂EnS (tn+1)

+ C∆t−1 ‖P fn−1

M− v − v‖
2

fn,∂EnS (tn)
.

(3.144)
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The result follows by choosing δ1 = α/8 and δ2 = α/4.

Remark 3.1. If (q, v) ∈ [H(st,ss)(En)]
2×H(st,ss)(En), with 1 < st ≤ p+1 and 1 ≤ ss ≤ p+1,

then combining Lemma 3.11, Corollary 3.1 and Lemma 3.9 gives the following leading order
terms

α
2
‖εqh‖

2
fn,T n + α

2
‖ελh‖

2

fn,FnS
+ e−α∆t ‖εqh‖

2
FnΩ(tn+1) + e−α∆t ‖ελh‖

2

∂EnS (tn+1)

≤‖εq−h ‖
2

FnΩ(tn) + ‖ελ−h ‖
2

∂EnS (tn)

+ C
(
∆t−2h2ss + ∆t2st−2

)
‖q‖2

H(st,ss)(En)

+ C
(
∆t−2h2ss + ∆t2st−2

)
‖v‖2

H(st,ss)(En)

+ C
(
∆t−2h2ss + ∆t2st−2

)
‖v‖2

H(st,ss)(∂EnS ) ,

(3.145)

where h = maxK hK.

To prove the a priori error estimates we will use the following lemma:

Lemma 3.12. Let An, Bn, Dn ≥ 0 for all n = 0, 1, · · ·N − 1, and α > 0. Moreover,
assume that there exists a constant C ≥ 0 such that C∆tBn ≤ An for all n. If B0 = 0,
(N − 1)∆t = T and

An + e−α∆tBn ≤ Bn−1 +Dn, (3.146)

then,

An ≤ C
n∑
i=1

Di, (3.147)

where C > 0 depends on α and T .

Proof. Since C∆tBn ≤ An, by eq. (3.146), we have(
C∆t+ e−α∆t

)
Bn ≤ Bn−1 +Dn. (3.148)

Let γ = C∆t+ e−α∆t. By induction, we have the following

Bn ≤ γ−1Bn−1 + γ−1Dn

≤ γ−2Bn−2 + γ−2Dn−1 + γ−1Dn

≤ γ−3Bn−3 + γ−3Dn−2 + γ−2Dn−1 + γ−1Dn

...

≤
n∑
i=1

γi−n−1Di,

(3.149)
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where we used that B0 = 0. Note that −n ≤ i− n− 1 ≤ −1, i ∈ {1, . . . , n}. This implies
that if γ ≥ 1 then γi−n−1 ≤ γ−1 ≤ 1 while if γ < 1 then γi−n−1 ≤ γ−n. We next bound
γ−n. Note that

e−α∆t ≤ C1∆t+ e−α∆t = γ. (3.150)

Since n ≤ N−1, we have that γ−n ≤ eαn∆t ≤ eαT ≤ C2. Therefore γi−n−1 ≤ max {1, C2} =
C.

We may therefore bound Bn in eq. (3.149) as:

Bn ≤ C

n∑
i=1

Di. (3.151)

In order to obtain the final result, recall that, by eq. (3.146), we have the following:

An ≤ Bn−1 +Dn. (3.152)

Using eq. (3.151) we obtain

An ≤ C
n−1∑
i=1

Di +Dn ≤ C
n∑
i=1

Di, (3.153)

which completes the proof.

The following theorem gives the final error bounds.

Theorem 3.4. Let h = maxK∈T n hK. Assume that the spatial shape-regularity condition
eq. (3.21) holds and that the triangulation T n does not have any hanging nodes. Suppose

that (q, v) solves eq. (3.1), with q ∈ [H(st,ss)(En)]
2

and v ∈ H(st,ss)(En), with 1/2 < st ≤
p+ 1 and 1 ≤ ss ≤ p+ 1. Then we have the following estimates:

N−1∑
n=0

∥∥q − qh∥∥fn,T n +
N−1∑
n=0

∥∥v − λh∥∥fn,FnS
≤ C

(
∆t−1hss + ∆tst−1

)
‖q‖H(st,ss)(En)

+ C
(
∆t−1hss + ∆tst−1

)
‖v‖H(st,ss)(En)

+ C
(
∆t−1hss + ∆tst−1

)
‖v‖H(st,ss)(∂EnS ) ,

(3.154)

where C > 0 depends on α and the final time T .
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Proof. Let

An = α
2
‖εqh‖

2
fn,T n + α

2
‖ελh‖

2

fn,FnS
,

Bn = ‖εqh‖
2
FnΩ(tn+1) + ‖ελh‖

2

∂EnS (tn+1) .
(3.155)

Note that

Bn−1 = ‖εqh‖
2
Fn−1

Ω (tn) + ‖ελh‖
2

∂En−1
S (tn) = ‖εq−h ‖

2

FnΩ(tn) + ‖ελ−h ‖
2

∂EnS (tn) . (3.156)

By eq. (3.42b) and the equivalence of the norms ‖·‖K and ‖·‖fn,K, we have the following:

C∆tBn ≤ ‖εqh‖
2
T n + ‖ελh‖

2

FnS
≤ CAn. (3.157)

Moreover, let Dn be defined as follows:

Dn =C
(
∆t−2h2ss + ∆t2st−2

)
‖q‖2

H(st,ss)(En)

+ C
(
∆t−2h2ss + ∆t2st−2

)
‖v‖2

H(st,ss)(En)

+ C
(
∆t−2h2ss + ∆t2st−2

)
‖v‖2

H(st,ss)(∂EnS ) .

(3.158)

With these definitions, Lemma 3.12 gives the following bound for the projection errors:

α
2
‖εqh‖

2
fn,T n + α

2
‖ελh‖

2

fn,FnS

≤ C
(
∆t−2h2ss + ∆t2st−2

) n∑
k=0

‖q‖2
H(st,ss)(Ek)

+ C
(
∆t−2h2ss + ∆t2st−2

) n∑
k=0

‖v‖2
H(st,ss)(Ek)

+ C
(
∆t−2h2ss + ∆t2st−2

) n∑
k=0

‖v‖2
H(st,ss)(∂EkS) .

(3.159)

Summing over all time slabs, we obtain:

α
2

N−1∑
n=0

‖εqh‖
2
fn,T n + α

2

N−1∑
n=0

‖ελh‖
2

fn,FnS

≤ C(N − 1)
(
∆t−2h2ss + ∆t2st−2

)
‖q‖2

H(st,ss)(E)

+ C(N − 1)
(
∆t−2h2ss + ∆t2st−2

)
‖v‖2

H(st,ss)(E)

+ C(N − 1)
(
∆t−2h2ss + ∆t2st−2

)
‖v‖2

H(st,ss)(∂ES) .

(3.160)
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By the triangle inequality note that

N−1∑
n=0

‖q − qh‖fn,T n ≤
N−1∑
n=0

‖q −ΠV q‖fn,T n +
N−1∑
n=0

‖εqh‖fn,T n ,

N−1∑
n=0

‖v − λh‖fn,FnS ≤
N−1∑
n=0

‖v − P fn
M v‖fn,FnS +

N−1∑
n=0

‖ελh‖fn,FnS .

(3.161)

The result follows by Lemma 3.9 and eq. (3.160).

Remark 3.2. Assuming q ∈ [H(p+1,p+1)(E)]
2

and v ∈ H(p+1,p+1)(E), the error estimates in
Theorem 3.4 give the following leading order terms:

N−1∑
n=0

‖q − qh‖fn,T n +
N−1∑
n=0

‖v − λh‖fn,FnS ≤ C
(
∆t−1hp+1 + ∆tp

)
. (3.162)

3.5 Numerical results

In this section we verify the theoretical results of the previous sections. The space-time
HDG method for the linear free-surface problem eq. (3.1) is implemented using the modular
finite-element method (MFEM) library [25]. The linear systems of algebraic equations are
solved by the direct solver MUMPS [4, 5] through PETSc [7, 9]. We will consider the same
test cases as in Chapter 2.

3.5.1 Linear waves in an unbounded domain

We consider the time harmonic linear free-surface waves example in an unbounded domain.
We consider the domain Ω = [−1, 1]× [−1, 0] and apply periodic boundary conditions at
x1 = −1 and x1 = 1. As in section 2.4.3, the analytical solution to this problem is given
by

φ(x, t) = A cosh(k(x2 + 1)) cos(ωt− kx1), (3.163a)

ζ(x1, t) = −∂tφ(x1, 0, t) = Aω cosh(k) sin(ωt− kx1), (3.163b)

where ω2 = k tanh(k).

We take k = 2π and A such that the maximum amplitude of the wave height is 0.05.
In table 3.1, table 3.2, and table 3.3 we show the approximation errors and convergence
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rates for the velocity qh on the entire space-time domain E and for the free-surface height
λh on the entire free-surface boundary ∂ES . We test convergence in space, in time, and in
space-time separately.

We first test convergence in space. To ensure the spatial error dominates over the
temporal error we take a small time step ∆t = 10−5 when p = 1 and ∆t = 10−4 when
p = 2. We compute the error after 200 (when p = 1) or 20 (when p = 2) time steps. As
observed in table 3.1, the error is of order O(hp+1).

We next consider convergence in time. For this we compute up to a final time T = 1.
To ensure that the temporal error dominates over the spatial error we use a mesh consisting
of 73728 elements when p = 1 and 36864 elements when p = 2. We observe in table 3.2
that the error is of order O(∆tp+1).

We note that the rates of convergence in space and time separately are better than
predicted from remark 3.2. We now consider convergence in space-time in which we refine
the spatial mesh and time step simultaneously. We compute the solution up to a final time
of T = 1. The initial time step is ∆t = 0.25 and the initial mesh has 18 elements. We
observe in table 3.3 that the error is of order O(∆tp + hp), as expected from our analysis,
see remark 3.2.

Finally, we consider a case where h is fixed so that the spatial mesh consists of 1152
triangles and the number of global degrees-of-freedom is 13920. We take p = 1 and solve
the problem up to a final time T = 1. From remark 3.2, we see that if h is fixed, eventually
the dominant term in the error will be of order O(∆t−1hp+1), which results in divergence of
the solution. This effect can be observed in table 3.4 where the errors start to increase after
three levels of refinement in time. Unlike standard time stepping methods, for space-time
methods ∆t has to be chosen carefully depending on its relation to the spatial mesh size
h.
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Table 3.1: Spatial rates of convergence for linear waves in an unbounded domain, see
section 3.5.1.

qh λh
DOFs L2(E)-error Order L2(∂ES)-error Order

228 1.1e-3 - 2.5e-2 -
p = 1 888 3.2e-4 1.7 1.4e-2 0.9

3504 8.5e-5 1.9 3.4e-3 2.0
13920 2.2e-5 2.0 8.2e-4 2.1
55488 5.4e-6 2.0 1.9e-4 2.1

486 4.0e-4 - 1.5e-3 -
p = 2 1890 6.0e-5 2.7 2.3e-4 2.8

7452 7.9e-6 2.9 3.5e-5 2.7
29592 1.0e-6 3.0 4.8e-6 2.9

Table 3.2: Time rates of convergence for linear waves in an unbounded domain, see sec-
tion 3.5.1.

qh λh
∆t L2(E)-error Order L2(∂ES)-error Order

1 1.7e-2 - 1.7e-2 -
p = 1 1/2 5.1e-3 1.8 5.1e-3 1.8

1/4 1.2e-3 2.1 1.2e-3 2.1
1/8 3.0e-4 2.0 3.0e-4 2.0
1/16 8.2e-5 1.9 7.9e-5 1.9

1 3.8e-3 - 3.8e-3 -
p = 2 1/2 4.8e-4 3.0 4.8e-4 3.0

1/4 5.9e-5 3.0 5.9e-5 3.0
1/8 7.5e-6 3.0 7.5e-6 3.0
1/16 1.6e-6 2.3 1.3e-6 2.5
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Table 3.3: Space-time rates of convergence for linear waves in an unbounded domain, see
section 3.5.1.

qh λh
DOFs L2(E)-error Order L2(∂ES)-error Order

228 3.5e-2 - 3.4e-2 -
p = 1 888 1.7e-2 1.1 1.5e-2 1.2

3504 7.2e-3 1.2 5.9e-3 1.3
13920 3.2e-3 1.2 2.7e-3 1.2
55488 1.5e-3 1.1 1.3e-3 1.1

486 1.6e-2 - 1.3e-2 -
p = 2 1890 3.4e-3 2.2 2.3e-3 2.5

7452 6.7e-4 2.4 4.4e-4 2.4
29592 1.4e-4 2.3 9.8e-5 2.2
117936 3.1e-5 2.2 2.4e-5 2.1

Table 3.4: Time rates of convergence for a coarse mesh for linear waves in an unbounded
domain, see section 3.5.1.

qh λh
∆t L2(E)-error Order L2(∂ES)-error Order

1 1.8e-2 - 1.8e-2 -
1/2 5.3e-3 1.7 5.2e-3 1.8
1/4 1.8e-3 1.6 1.5e-3 1.8
1/8 1.4e-3 0.3 9.9e-4 0.6
1/16 2.0e-3 -0.5 1.5e-3 -0.6
1/32 3.2e-3 -0.7 2.6e-3 -0.8
1/64 5.6e-3 -0.8 5.0e-3 -0.9
1/128 1.0e-2 -0.9 9.5e-3 -0.9
1/256 1.8e-2 -0.8 1.8e-2 -0.9
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3.5.2 Simulation of water waves in a water tank

In this example we consider waves generated by a piston-type wavemaker. This test case is
proposed in [88]. In this case we consider the spatial domain Ω = [0, 10]×[−1, 0]. We apply
homogeneous Neumann boundary conditions on x1 = 10 and x2 = −1. The wave maker
is located on the left side of the domain, i.e., at x1 = 0, where the boundary condition is
given by

q · n = T (t), (3.164)

where T (t) = a sin(ft) with a = 0.05 the amplitude of the wave and f = 1.8138 the
frequency of the wave. We compute the solution for t ∈ [0, 53.4] and take ∆t = 0.2.
The mesh consists of 512 prismatic elements which are constructed by extruding spatial
triangles in the time direction. Figure 3.3 shows the free-surface elevation or wave height
at different time levels for polynomial orders p = 1, p = 2 and p = 3. At time t = 4, the
first wave leaves the wave maker which is located at x1 = 0. At t = 25.8 the waves reach
the right wall of the water tank. At time t = 53.4, waves have hit the right wall and have
started traveling in the opposite direction. We furthermore note that the discretization is
less diffusive as the polynomial degree increases.
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(a) Free-surface elevation at t = 4. (b) Free-surface elevation at t = 25.8.

(c) Free-surface elevation at t = 53.4.

Figure 3.3: Simulation of water waves in a water tank, see section 3.5.2. The free-surface
elevation at different time levels for polynomial degree p = 1 (blue line), p = 2 (red line),
and p = 3 (green line).
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Chapter 4

A space-time hybridizable/embedded
discontinuous Galerkin method for
nonlinear free-surface waves

In this Chapter we consider the nonlinear water wave problem eq. (4.3). This problem
requires a discretization that can handle time-dependent domains and moving meshes. For
this, we present a novel interface-tracking space-time hybridizable/embedded discontinuous
Galerkin method with a level set approach for the numerical solution of the two-fluid
Navier–Stokes equations. The Navier–Stokes equations are solved with a space-time HDG
method that is point-wise divergence-free andH(div)-conforming, which implies exact mass
conservation. For the level set equation we use a space-time EDG method which allows
straightforward updating of the mesh without having to rely on smoothing techniques that
could potentially lead to instabilities, as was shown in [2].

The space-time HDG method used for the two-fluid incompressible flow problem is
compatible with the space-time EDG method for the level set equation, i.e., given the
discrete velocity the space-time EDG method is able to preserve the constant solution. We
remark that for discontinuous Galerkin methods compatibility is a stronger statement than
local conservation of the flow field [22]. It was furthermore shown in [22] that if a method
is not compatible it may produce erroneous solutions.

We first recast eq. (1.36) in a space-time setting and introduce the notation that will
be used in this chapter.
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x2 = 0

Γs(τ)

Liquid region Ωl(τ)

Gas region Ωg(τ)

Figure 4.1: A description of the two-fluid flow domain Ω ⊂ R2 at time t = τ .

4.1 The space-time incompressible two-fluid flow model

Let Ω ⊂ R2 be a bounded domain and let I = (0, tN ] be the time interval of interest.
Furthermore, let E := Ω×I ⊂ R3 denote the space-time domain. We assume that the space-
time domain E is divided into two non-overlapping polygonal regions, El and Eg such that
E = El∪Eg. In what follows, El and Eg represent, respectively, the liquid and gas regions of
the space-time domain. Let x = (x1, x2), then the liquid and gas regions at a particular time
level τ are denoted by Ωl(τ) := {(x, t) ∈ El : t = τ} and Ωg(τ) := {(x, t) ∈ Eg : t = τ}.
Note that the spatial domains Ωl and Ωg are time-dependent.

The space-time interface between the liquid and gas regions is defined as

S :=
{

(x, t) ∈ E : x2 = ζ(x1, t)
}
, (4.1)

where ζ(x1, t) is the wave height. We will denote the interface at time level τ by Γs(τ) :=
{(x, t) ∈ S : t = τ}. A plot of the domain at time level τ is given in fig. 4.1.

The position of the interface eq. (4.1) is not known a priori. To find its position we
introduce the level set function φ(t, x) = ζ(t, x1) − x2 and the Heaviside function H(φ)
which is defined by

H(φ) =

{
1 if φ > 0,

0 if φ < 0.
(4.2)
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We note that the interface corresponds to the zero level set, φ = 0.

Let k be a subscript to denote a liquid (k = l) or a gas (k = g) property. Then given the
dynamic viscosities µk ∈ R+, the constant densities ρk ∈ R+, and the constant acceleration
due to gravity g, the space-time formulation of the incompressible two-fluid flow model for
the velocity u : E → R2 and pressure p : E → R is given by

ρ
(
∂tu+ u · ∇u

)
+∇p− µ∆u = −ρge2 in E , (4.3a)

∇ · u = 0 in E , (4.3b)

∂tφ+ u · ∇φ = 0 in E , (4.3c)

where e2 is the unit vector in the x2-direction and

u = ug + (ul − ug)H(φ), p = pg + (pl − pg)H(φ), (4.4a)

ρ = ρg + (ρl − ρg)H(φ), µ = µg + (µl − µg)H(φ). (4.4b)

Let Ω0 := {(x, t) ∈ ∂E : t = 0} and similarly ΩN := {(x, t) ∈ ∂E : t = tN}. Then the
boundary of the space-time domain E is partitioned such that ∂E = ∂ED ∪∂EN ∪Ω0∪ΩN ,
where there is no overlap between the four sets. Here, ∂ED and ∂EN denote, respectively,
the Dirichlet and Neumann parts of the space-time boundary. The space-time outward
unit normal vector to ∂E is denoted by (nt, n), with nt ∈ R the temporal component and
n ∈ R2 the spatial component. We will define the inflow boundary ∂E− as the portion of
∂EN on which nt + u · n < 0. The outflow boundary is then defined as ∂E+ := ∂EN\∂E−.
We prescribe the following boundary and initial conditions:

u = 0 on ∂ED, (4.5a)

[nt + u · n−max (nt + u · n, 0)]u+ (pI− µ∇u)n = f on ∂EN , (4.5b)

u(x, 0) = u0(x) in Ω0, (4.5c)

−(nt + u · n)φ = r on ∂E−, (4.5d)

φ(x, 0) = φ0(x) in Ω0, (4.5e)

where the boundary data f : ∂EN → Rd and r : ∂E− → R, and the divergence-free initial
condition u0 : Ω0 → Rd are given. Furthermore, φ0(x) := ζ0(x1)− x2 with ζ0(x1) the given
initial wave height. Here, I is the 2× 2 identity matrix.

We remark that the two-fluid problem assumes a no-slip and a dynamic boundary
condition on the interface, i.e.,

ul = ug on S, (4.6a)

(plI− µl∇ul)ns = (pgI− µg∇ug)ns on S, (4.6b)
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respectively, where ns is the normal vector on the interface Γs(t) pointing outwards from
Ωl(t).

4.2 The space-time hybridizable/embedded discontin-

uous Galerkin method

In this section we will introduce the space-time discretization for the two-fluid problem
eqs. (4.3) and (4.5). In particular we will introduce a space-time HDG for the momentum
and mass eqs. (4.3a) and (4.3b) coupled to a space-time EDG discretization of the level
set equation eq. (4.3c).

4.2.1 Space-time notation

We will use notation similar to for example [38]. For this we first partition the time
interval I into time levels 0 = t0 < t1 < t2 < . . . < tN and denote the nth time interval
by In = (tn, tn+1). The length of each time interval is denoted by ∆t = tn+1 − tn and we
denote the nth space-time slab as En := E ∩

(
R2 × In

)
. Define Ωn := {(x, t) ∈ E : t = tn}.

The boundary of a space-time slab, ∂En, can then be divided into Ωn, Ωn+1, and QnE :=
∂En\ (Ωn+1 ∪ Ωn).

Following [37, 38] we consider a tetrahedral space-time mesh which is constructed as
follows. First, the triangular spatial mesh of Ωn is extruded to the new time level tn+1

according to the domain deformation prescribed by the wave height. (Note that the wave
height is not known a priori and so, as we will describe in section 4.3, an iterative procedure
is used to find the final approximation to the domain at time level tn+1.) Each element of
this prismatic space-time mesh is then subdivided into three tetrahedrons. We denote the
space-time triangulation in space-time slab En by T n := {K}. The space-time elements
K ∈ T n that lie in the liquid region of the space-time slab form the triangulation T nl . T ng is
defined similarly but for the gas region. The triangulation of the whole space-time domain
E is denoted by T := ∪nT n.

The boundary of a space-time tetrahedron Kj ∈ T n is denoted by ∂Kj and the outward

unit space-time normal vector on the boundary of Kj ∈ T n is given by (n
Kj
t , n

Kj). The

boundary ∂Kj consists of at most one face that belongs to a time level (on which |nKjt | = 1).

We denote this face by Kn
j if n

Kj
t = −1 and by Kn+1

j if n
Kj
t = 1. The remaining faces

of ∂Kj are denoted by QnKj := ∂Kj\Kn
j . or QnKj := ∂Kj\Kn+1

j . In the remainder of this
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Chapter we will drop the sub- and superscript notation when referring to the space-time
normal vector and the space-time cell wherever no confusion will occur.

In a space-time slab En, the set of all faces for which |nt| 6= 1 is denoted by Fn while
the union of these faces is denoted by Γn. By FnS we denote all the faces in Fn that lie
on the interface S. Similarly, the set of all faces in Fn that lie on the boundary of the
space-time domain is denoted by FnB. The remaining set of (interior) faces is denoted by
FnI . Then Fn = FnI ∪ FnS ∪ FnB. Furthermore, we will denote the set of faces that lie on a
Neumann boundary, ∂EN ∩ ∂En, by FnN .

On each space-time slab En we consider the following discontinuous finite element spaces
on T n:

V n
h :=

{
vh ∈ [L2(T n)]

2
: vh|K ∈

[
P k(K)

]2
, ∀K ∈ T n

}
, (4.7a)

Qn
h :=

{
qh ∈ L2(T n) : qh|K ∈ P k−1(K), ∀K ∈ T n

}
, (4.7b)

Mn
h :=

{
mh ∈ L2(T n) : mh|K ∈ P k(K), ∀K ∈ T n

}
, (4.7c)

where P l(D) denotes the space of polynomials of degree l on a domain D. Additionally,
we consider the following facet finite element spaces:

V̄ n
h :=

{
v̄h ∈ [L2(Fn)]

2
: v̄h|F ∈ [P k(F)]

2
, ∀F ∈ Fn, v̄h = 0 on ∂ED ∩ ∂En

}
, (4.8a)

Q̄n
h :=

{
q̄h ∈ L2(Fn) : q̄h|F ∈ P k(F), ∀F ∈ Fn

}
, (4.8b)

M̄n
h :=

{
m̄h ∈ L2(Fn) : m̄h|F ∈ P k(F), ∀F ∈ Fn

}
∩ C(Γn). (4.8c)

Note that the facet velocity field in V̄ n
h and facet pressure field in Q̄n

h are discontinuous
while the facet level set field in M̄n

h is continuous. We note that the left and right traces of
a function uh ∈ V n

h at an interior facet F ∈ FnI ∪FnS are denoted by ulh and urh. In general,
ulh 6= urh, so it will be useful to introduce the jump operator Juh · nK = ulh · nl + urh · nr. On
a boundary facet F ∈ FnB, the jump operator is defined as Juh · nK = uh · n. Analogous
definitions apply for functions in Qn

h.

To simplify the notation, we introduce Xv,n
h := V n

h × V̄ n
h , Xq,n

h = Qn
h × Q̄n

h, Xn
h =

Xv,n
h ×X

q,n
h , and Xm,n

h = Mn
h ×M̄n

h . Function pairs in Xv,n
h , Xq,n

h , and Xm,n
h will be denoted

by boldface, e.g., vh = (vh, v̄h) ∈ Xv,n
h , qh = (qh, q̄h) ∈ Xq,n

h and mh = (mh, m̄h) ∈ Xm,n
h .

We will make use of the H(div;D) space, where D ⊂ Rd, which is defined as

H(div;D) =
{
u ∈ [L2(D)]

d
: ∇ · u ∈ L2(D)

}
. (4.9)
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4.2.2 Discretization of the momentum and mass equations

An exactly mass conserving space-time HDG discretization for the single-phase Navier–
Stokes equations was introduced in [37, 38]. Here we modify this discretization to take
into account that the density and viscosity may be discontinuous across elements (see
eq. (4.4b)).

Since the density and viscosity is constant on each element K ∈ T n we define ρK = ρg
if K ∈ T ng and ρK = ρl if K ∈ T nl (and µK is defined similarly).

First, we focus on eq. (4.3a). Note that since ∇·u = 0, we can write u·∇u = ∇·(u⊗ u),
where, ⊗ denotes the outer product. For two vectors a ∈ Rn and b ∈ Rm, a ⊗ b ∈ Rn×m

with elements
(
a⊗ b

)
ij

= aibj. Multiply by a test function vh ∈ V n
h integrate over a space-

time element K ∈ T n and replace u by uh ∈ V n
h and p by ph ∈ Qn

h. Sum over all space-time
elements in En to obtain∑
K∈Th

∫
K
ρK
(
∂tuh · vh +∇ · (uh ⊗ uh) · vh

)
dx dt+

∑
K∈T n

∫
K
∇ph · vh dx dt

−
∑
K∈T n

∫
K
µK∆uh · vh dx dt = −

∑
K∈T n

∫
K
ρKge2 · vh dx dt. (4.10)

Applying integration by parts in both space-time, we obtain

−
∑
K∈Th

∫
K
ρK
(
uh · ∂tvh + (uh ⊗ uh) : ∇vh

)
dx dt+

∑
K∈T n

∫
∂K
HK(uh, uh; ρK, nt, n) · vh ds

−
∑
K∈T n

∫
K
ph∇ · vh dx dt+

∑
K∈T n

∫
K
µK∇uh : ∇vh dx dt

+
∑
K∈T n

∫
QK

σ̂hn · vh ds = −
∑
K∈T n

∫
K
ρKge2 · vh dx dt. (4.11)

Here we have introduced the space-time upwind numerical flux HK(uh, uh; ρK, nt, n) and
the diffusive numerical flux σ̂h. The upwind flux is defined as

HK(uh, uh; ρK, nt, n) =


ρ̂K(nt + uh · n)(uh + λ(ūh − uh)) on QK,
ρKuhnt on Kn+1,

ρKu
−
h nt on Kn,

(4.12)

where λ = 1 if nt + u · n < 0 and λ = 0 otherwise, and u−h = limε→0 uh(tn− ε, x) for n > 0.
When n = 0 then u−h is the projection of the initial condition u0 into V 0

h ∩H(div; Ω0) such
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that it is exactly divergence-free. Here, ρ̂K = (ρK + ρK−)/2, where K− is the neighboring
element to K that shares a facet on QK. We consider an interior penalty-type diffusive
numerical flux

σ̂h = −µK∇uh + p̄hI +
µKα

hK
(uh − ūh)⊗ n, (4.13)

where α > 0 is a penalty parameter that has to be large enough to ensure stability [46].
Substituting these definitions in eq. (4.11), we obtain

−
∑
K∈Th

∫
K
ρK
(
uh · ∂tvh + (uh ⊗ uh) : ∇vh

)
dx dt+

∑
K∈T n

∫
Kn+1

ρKuh · vh dx

+
∑
K∈T n

∫
QK

ρ̂K(nt + uh · n)(uh + λ(ūh − uh)) · vh ds−
∑
K∈T n

∫
K
ph∇ · vh dx dt

+
∑
K∈T n

∫
K
µK∇uh : ∇vh dx dt+

∑
K∈T n

∫
QK

p̄hvh · n ds−
∑
K∈T n

∫
QK

µK
∂uh
∂n
· vh ds

−
∑
K∈T n

∫
QK

µK
∂vh
∂n
· (uh − ūh) ds+

∑
K∈T n

∫
QK

µKα

hK
(uh − ūh) · vh ds

= −
∑
K∈T n

∫
K
ρKge2 · vh dx dt+

∑
K∈T n

∫
Kn

ρKu
−
h · vh dx. (4.14)

The last term on the left-hand side of eq. (4.14) is consistent and usually added for sym-
metry of the diffusive terms. To obtain a consistent discretization, we add the following
term to the left-hand side of eq. (4.14)∑

K∈T n

∫
QK

(
ρK − ρ̂K

) (
nt + w · n

)
uh · vh ds. (4.15)

Now, we move on to eq. (4.3b). Multiply by a test function qh ∈ Qn
h, integrate over a

space-time element K ∈ T n and replace u by uh ∈ V n
h . Sum over all space-time elements

in En to obtain ∑
K∈T n

∫
K
∇ · uhqh dx dt = 0. (4.16)

Integrating by parts twice, and introducing the numerical flux ûh · n = ūh · n in the first
integration by parts, we get∑

K∈T n

∫
K
∇ · uhqh dx dt−

∑
K∈T n

∫
QK

(uh − ūh) · nqh ds = 0. (4.17)
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In addition to eq. (4.14) and eq. (4.17), we introduce an equation that imposes that
the sum of the space-time normal components of the numerical fluxes HK(uh, uh; ρK, nt, n)
and σ̂h is single-valued on the faces of the mesh:

−
∑
K∈T n

∫
QK

ρ̂K(nt + uh · n)(uh + λ(ūh − uh)) · v̄h ds−
∑
K∈T n

∫
QK

p̄hv̄h · n ds

+
∑
K∈T n

∫
QK

µK
∂uh
∂n
· v̄h ds−

∑
K∈T n

∫
QK

µKα

hK
(uh − ūh) · v̄h ds

+

∫
∂E+

ρK(nt + ūh · n)ūh · v̄h ds = −
∑
F∈FnN

∫
F
f · v̄h ds. (4.18)

Collecting eq. (4.14), eq. (4.17) and eq. (4.18), the space-time HDG discretization for
the momentum and mass equations eqs. (4.3a) and (4.3b) is given by: find (uh,ph) ∈ Xn

h

such that

tnh(uh,uh,vh) + anh(uh,vh) + bnh(ph,vh)− bnh(qh,uh)

= −
∑
K∈T n

∫
K
ρKge2 · vh dx dt−

∑
F∈FnN

∫
F
f · v̄h ds+

∫
Ωn

ρKu
−
h · vh dx, (4.19)

for all (vh, qh) ∈ Xn
h . The convective trilinear form is given by

tnh(w;u,v) :=−
∑
K∈T n

∫
K
ρK (u · ∂tv + u⊗ w : ∇v) dx dt+

∑
K∈T n

∫
Kn+1

ρKu · v dx (4.20)

+
∑
K∈T n

∫
QK

ρ̂K (nt + w · n) (u+ λ (ū− u)) · (v − v̄) ds

+

∫
∂E+

ρK (nt + w̄ · n) ū · v̄ ds+
∑
K∈T n

∫
QK

(ρK − ρ̂K) (nt + w · n)u · v ds,

and the bilinear forms are given by

anh(u,v) :=
∑
K∈T n

∫
K
µK∇u : ∇v dx dt+

∑
K∈T n

∫
QK

µKα

hK
(u− ū) · (v − v̄) ds (4.21a)

−
∑
K∈T n

∫
QK

µK [(u− ū) · ∂v
∂n

+ ∂u
∂n
· (v − v̄)] ds,

bnh(p,v) :=−
∑
K∈T n

∫
K
p∇ · v dx dt+

∑
K∈T n

∫
QK

(v − v̄) · np̄ ds. (4.21b)
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To find the solution of the nonlinear discrete problem eq. (4.19), we use a Picard
iteration scheme: in every space-time slab, given (ukh,p

k
h) we seek a solution (uk+1

h ,pk+1
h )

to the linear discrete problem

tnh(ukh;u
k+1
h ,vh) + anh(uk+1

h ,vh) + bnh(pk+1
h ,vh)− bnh(qh,u

k+1
h )

= −
∑
K∈T n

∫
K
ρKge2 · vh dx dt−

∑
F∈FnN

∫
F
f · v̄h ds+

∫
Ωn

ρKu
−
h · vh dx, (4.22)

for all (vh, qh) ∈ Xn
h and for k = 0, 1, 2, . . . until the following stopping criterium is met:

max

{
‖ukh − uk−1

h ‖∞
‖ukh − u0

h‖∞
,
‖pkh − pk−1

h ‖∞
‖pkh − p0

h‖∞

}
< εu,p, (4.23)

where εu,p is a user given parameter. We then set (uh,ph) = (uk+1
h ,pk+1

h ).

4.2.3 Discretization of the level set equation

The space-time EDG discretization for the level set equation eq. (4.3c) is based on the
space-time discretization presented in [45]: In each space-time slab En, for n = 0, 1, . . . , N−
1, given u find Φh ∈ Xm,n

h such that

ch(Φh,mh;u) =
∑
K∈T n

∫
Kn

φ−hmh dx+

∫
∂E−

rm̄h ds ∀mh ∈ Xm,n
h , (4.24)

where φ−h = limε→0 φh(tn − ε, x) for n > 0. When n = 0 φ−h is the projection of the initial
condition φ0 into M0

h . The bilinear form is given by

ch(Φ,m;u) = −
∑
K∈T n

∫
K

(φ∂tm+ φu · ∇m) dx dt+
∑
K∈T n

∫
Kn+1

φm dx

+
∑
K∈T n

∫
QK

(nt + u · n)
(
φ+ λ (φ̄− φ)

)
(m− m̄) ds+

∫
∂E+

(nt + u · n)φ̄m̄ ds. (4.25)

4.2.4 Properties of the discretization

In this section we discuss properties of the space-time HDG/EDG discretization, eqs. (4.19)
and (4.24), of the two-fluid flow model. We start by showing that the discretization con-
serves mass exactly. Note that the discrete version of the mass conservation equation
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eq. (4.3b) is ∑
K∈Th

∫
K
qh∇ · uh dx dt+

∑
K∈Th

∫
QK

(uh − ūh) · nq̄h ds = 0. (4.26)

Therefore, in order to obtain exact mass conservation, we require (i) that ∇ · uh = 0
point-wise, i.e., for all (x, t) ∈ K ∈ T , and (ii) that Juh · nK = 0 on all interior faces. The
following proposition shows these two properties.

Proposition 4.1 (Exact mass conservation). If uh ∈ Xv,n
h satisfy eqs. (4.19) and (4.24)

then uh is exactly divergence free, i.e., ∇ · uh = 0 for all (x, t) ∈ K ∈ T n and uh ∈
H(div; En).

Proof. The proof follows that of [38, Prop. 1] and included here only for completeness.

First, we show that ∇ · uh = 0 for all (x, t) ∈ K ∈ T . First, note that (∇ · uh) ∈ Qn
h.

Take vh = 0, v̄h = 0, q̄h = 0 and qh = ∇ · uh in eq. (4.19) to obtain∑
K∈Th

∫
K

(∇ · uh)2 dx dt = 0. (4.27)

It follows that ∇ · uh = 0 for all (x, t) ∈ K ∈ T .

To show that uh ∈ H(div; En), note that ((uh − ūh) · n) ∈ Q̄n
h. Take v̄h = 0, qh = 0 and

q̄h =
q
(uh − ūh) · n

y
in eq. (4.19) to obtain∑

F∈FnI ∪F
n
S

∫
F

q
(uh − ūh) · n

y2
ds+

∑
F∈FnB

∫
F

(
(uh − ūh) · n

)2
ds = 0. (4.28)

Since ūh is single-valued on interior facets, we simplify this equation to∑
F∈FnI ∪F

n
S

∫
F

Juh · nK2 ds+
∑
F∈FnB

∫
F

(
(uh − ūh) · n

)2
ds = 0. (4.29)

We see that uh ·n is single-valued on interior facets, and uh ·n = ūh ·n on boundary facets,
i.e., uh ∈ H(div; En), see [42, Lemma 4.11].

It was shown in [22] for different flow/transport discretizations that loss of accuracy
and/or loss of global conservation may occur if a discretization is not compatible. (Note
that the compatibility for discontinuous Galerkin methods is a stronger statement than
local conservation of the flow field [22].) The next result shows that since uh is exactly
divergence free, the space-time HDG discretization of the two-fluid model eq. (4.19) and
the space-time EDG discretization of the level-set equation eq. (4.24) are compatible.
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Proposition 4.2 (Compatibility). If uh ∈ V n
h is the velocity solution to the space-time

HDG discretization eq. (4.19), then the space-time EDG discretization eq. (4.24) is: (i)
globally conservative; and (ii) able to preserve the constant solution.

Proof. We first note that global conservation of the EDG discretization was shown in [87].
To show that the space-time EDG discretization eq. (4.24) is able to preserve the constant
solution we present a space-time extension of the discussion in [13, Section 3.4]. For this,
let the boundary and initial conditions in eqs. (4.5d) and (4.5e) be given by, respectively,
φ0(x) = ψ and r = −(nt+uh ·n)ψ, where ψ is a constant. Consider now the first space-time
slab E0. The constant Φh = (ψ, ψ) is preserved by eq. (4.24) if and only if

ch((ψ, ψ),mh;uh) =
∑
K∈T 0

∫
Kn

ψmh dx−
∫
∂E−

(nt + uh ·n)ψm̄h ds ∀mh ∈ Xm,n
h . (4.30)

If ψ = 0 it is clear that eq. (4.30) holds. Consider therefore the case that ψ 6= 0. Writing
out the left hand side, dividing both sides by ψ, and integrating by parts in time, we find
that eq. (4.30) is equivalent to

−
∑
K∈T 0

∫
K
uh · ∇mh dx dt−

∑
K∈T 0

∫
QK

ntmh ds+
∑
K∈T 0

∫
QK

(nt + uh · n) (mh − m̄h) ds

+

∫
∂E+

(nt + uh · n)m̄h ds = 0, (4.31)

for all mh ∈ Xm,n
h . Using that ∇ · (uhmh) = uh · ∇mh + mh∇ · uh on each element K,

integration by parts in space, single-valuedness of m̄h and uh · n on interior facets (by
Proposition 4.1), we find that the constant Φh = (ψ, ψ) is preserved by eq. (4.24) if and
only if ∑

K∈T 0

∫
K
mh∇ · uh dx dt = 0. (4.32)

The result follows since ∇ · uh = 0 by Proposition 4.1.

We emphasize that compatibility in Proposition 4.2 between the space-time HDG dis-
cretization eq. (4.19) and the space-time EDG discretization eq. (4.24) is a direct conse-
quence of Proposition 4.1, i.e., that ∇ · uh = 0 pointwise and that uh · n is continuous
across element boundaries. A discretization that does not satisfy Proposition 4.1 may not
be compatible with eq. (4.24).

We end this section by showing consistency of the space-time HDG/EDG discretization.
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Proposition 4.3 (Consistency). Let u(x, t), p(x, t), and φ(x, t) be the smooth solution to
the two-fluid model, eqs. (4.3) and (4.5). Let u = (u, u), p = (p, p), and Φ = (φ, φ). Then

tnh(u,u,vh) + anh(u,vh) + bnh(p,vh)− bnh(q,uh)

= −
∑
K∈T n

∫
K
ρKge2 · vh dx dt−

∑
F∈FnN

∫
F
f · v̄h ds+

∫
Ωn

ρKu · vh dx ∀(vh, qh) ∈ Xn
h ,

(4.33)

and

ch(Φ,mh;u) =
∑
K∈T n

∫
Kn

φmh dx+

∫
∂E−

rm̄h ds ∀mh ∈ Xm,n
h . (4.34)

Proof. We first show eq. (4.33). By definition eq. (4.20), integration by parts, and using
that ρ̂K, u and v̄h are single-valued on faces, we find

tnh(u;u,vh) =
∑
K∈T n

∫
K
ρK (∂tu+ u · ∇u) · vh dx dt+

∑
K∈T n

∫
Kn

ρKu · vh dx

−
∫
∂E−

ρK (nt + u · n)u · v̄h ds. (4.35)

Similarly, by definition eq. (4.21a) and integration by parts,

anh(u,vh) = −
∑
K∈T n

∫
K
µK∆u · vh dx dt+

∑
K∈T n

∫
QK

µK
∂u

∂n
· vh ds, (4.36)

and by definition eq. (4.21b), integration by parts, and using that ∇ · u = 0,

bnh(p,vh)− bnh(qh,u) =
∑
K∈T n

∫
K
∇p · vh dx dt−

∑
K∈T n

∫
QK

v̄h · np ds. (4.37)

Combining eqs. (4.35) to (4.37), we obtain

tnh(u;u,vh) + anh(u,vh) + bnh(p,vh)− bnh(qh,u) (4.38)

=
∑
K∈T n

∫
K
ρK
[
(∂tu+ u · ∇u) +∇p− µK∆u

]
· vh dx dt+

∑
K∈T n

∫
Kn

ρKu · vh dx

−
∑
K∈T n

∫
QK

(pI− µK∇u)n · v̄h ds−
∫
∂E−

ρK (nt + u · n)u · v̄h ds.
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The last two terms may be combined using that v̄h = 0 on ∂ED and the single-valuedness
of (pI− µK∇u)n on element boundaries:

tnh(u;u,vh) + anh(u,vh) + bnh(p,vh)− bnh(qh,u) (4.39)

=
∑
K∈T n

∫
K
ρK
[
(∂tu+ u · ∇u) +∇p− µK∆u

]
· vh dx dt+

∫
Ωn

ρKu · vh dx

−
∫
∂EN

(
[nt + u · n−max (nt + u · n, 0)]u+ (pI− µ∇u)n

)
· v̄h ds.

Equation (4.33) follows using eq. (4.3a) and eq. (4.5b).

We next show eq. (4.34). By definition eq. (4.25), integration by parts, and using that
φ, m̄h, and u are single-valued on faces, we find

ch(Φ,mh;u) =
∑
K∈T n

∫
K

(∂tφ+ u · ∇φ)mh dx dt+
∑
K∈T n

∫
Kn

φmh dx−
∫
∂E−

(nt + u · n)φm̄h ds.

(4.40)
Equation (4.34) follows using eqs. (4.3c) and (4.5d).

4.3 The solution algorithm

In this section we describe how we iteratively solve the discretization of the two-fluid model
and the level set equation, and how we update the mesh in each space-time slab.

4.3.1 Coupling discretization and mesh deformation

Given the level set function φh from space-time slab En−1 we create an initial mesh for
the space-time slab En. Using Picard iterations we solve the space-time HDG discretiza-
tion eq. (4.22) for the momentum and mass equations until we satisfy eq. (4.23). The
velocity solution to the space-time HDG discretization is then used in the space-time EDG
discretization eq. (4.24) to update the level set function. With this level set function we
update the mesh. We continue updating the mesh and solving the space-time HDG and
EDG discretizations in space-time slab En until the following stopping criterium is met:

‖φn,mh − φn,m−1
h ‖∞

‖φn,mh − φn,0h ‖∞
< εφ, (4.41)
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where εφ is a user given parameter and φn,mh is the approximation to φh after m iterations
in the nth space-time slab. The algorithm is described in Algorithm 1.

Algorithm 1 Coupling the discretization and mesh deformation

Initialize the flow properties and the level set function.
Set n = 0, tn = 0.
while tn < tN do

Set m = 0.
Create an initial space-time mesh for space-time slab En given φn,mh .
while φn,mh does not satisfy eq. (4.41) do

Solve the space-time HDG discretization eq. (4.19) using Picard iterations
eq. (4.22).
Given un,mh from the previous step, solve the level set equation eq. (4.24) to obtain
φn,m+1.
Modify the space-time mesh according to φn,m+1.

end

Set unh = un,m+1
h , pnh = pn,m+1

h , φnh = φn,m+1
h , and tn = tn+1.

end

4.3.2 Mesh deformation

Recall that the shape of the subdomains Ωl(t) and Ωg(t) depends on the position of the
free-surface Γs(t). Once the discrete level set function φh is obtained by solving eq. (4.24),
the wave height must be obtained in order to update the mesh nodes. Traditionally, using
standard discontinuous Galerkin methods for free-surface problems, the approximation to
the wave height is discontinuous. This implies that the free-surface of the domain is not
well defined and a postprocessing of the free-surface is required to address this [31, 84].
This mesh smoothing, however, may require extra stabilization terms (see [2]).

Using the space-time embedded discontinuous Galerkin method eq. (4.24) for the level
set function, mesh smoothing is not required. This is because the facet approximation to
the level set function φ̄h is continuous on the mesh skeleton, see eq. (4.8c). We therefore
avoid any smoothing of the mesh that may lead to instabilities while maintaining all the
conservation properties that discontinuous Galerkin methods provide.

We next describe how to obtain the wave height from the level set function and subse-
quently how to move the mesh nodes. We first note that φ̄h is the trace of an H1 function.
Denoting by M c

h the space of functions of Mh which are continuous on En, we denote by
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φch the function in M c
h that coincides with φ̄h on the element boundaries. We note that it

is computationally cheap to find φch because it can be found element-wise. By definition
φ(t, x1, x2) = ζ(t, x1)−x2 and so an approximation to the wave height, ζh, can be obtained
by evaluating φch at x2 = 0.

Once we have obtained ζh we update mesh nodes as follows. Let (x0
1,i, x

0
2,i) denote

the coordinates of node i of the undisturbed mesh (ζh = 0), and let (xk1,i, x
k
2,i) denote the

coordinates of the node i at time tk. Denote by Tb(x1) (Bb(x1)) the maximum (minimum)
x2 value in Ω on the vertical direction through x1. Then:

� If x0
2,i < 0,

xk+1
2,i = x0

2,i + γki ζh(tk+1, x
k
1,i) where γki =

Bb(x
k
1,i) + x0

2,i

Bb(xk1,i)
. (4.42)

� If x0
2,i > 0,

xk+1
2,i = x0

2,i + γki ζh(tk+1, x
k
1,i) where γki =

Tb(x
k
1,i)− x0

2,i

Tb(xk1,i)
. (4.43)

4.4 Numerical results

All the simulations in this section were implemented using the Modular Finite Element
Method (MFEM) library [25]. Furthermore, as is common with interior penalty type
discretizations, we set the penalty parameter to α = 10k2 [68].

4.4.1 Sloshing in a water tank

We consider a small-amplitude periodic wave that is allowed to oscillate freely in a rectan-
gular tank with length that is twice the depth of the still water level. The computational
domain is Ω = [−1, 1] × [−1, 0.2]. Initially the fluid is at rest and the wave has a profile
given by

ζ0(x1) = 0.01 cos (κ(x1 + 0.5)) , (4.44)

where κ = 2π is the wave period. An analytical solution to the linearized free-surface flow
problem is given in [89]; given a high enough Reynolds number and assuming a negligible
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influence of the finite depth of the tank, the analytic wave height ζref is given by

ζref(x1, t)

ζ0(x1)
= 1− 1

1 + 4ν2κ2/g

[
1− e−2νκ2t

(
cos(
√
κgt) + 2νκ2 sin(

√
κgt)

√
κg

)]
, (4.45)

where ν is the kinematic viscosity of the liquid which is set to ν = 1/2000. The densities
are ρl = 1000 and ρg = 1, and the viscosities µl = 0.5, µg = 1/2000. We consider two
meshes, a structured mesh with 1152 spatial triangles (3452 space-time tetrahedra), and
a finer mesh with 2756 spatial triangles (8268 space-time tetrahedra) that is more refined
around the free-surface. At x2 = −1 we apply no-slip boundary conditions, and at x2 = 0.2
we apply a homogeneous Neumann boundary conditions. The polynomial degree is k = 2
and the time step is ∆t = 0.02. In fig. 4.2 we show the wave height elevation at the middle
of the tank (x1 = 0) with the analytical solution and with the numerical method described
in algorithm 1 with the two meshes described above. We see that for the coarser mesh
there is some discrepancy with the analytical solution. However, for the finer mesh, there
is a better agreement with eq. (4.45).

To show how the mesh moves with the interface, in fig. 4.3 we plot the mesh and wave
height at times t = 0 and t = 3.86.

4.4.2 Waves generated by a submerged obstacle

In this example, we consider waves in a channel generated by a submerged cylinder. The
computational domain is Ω = [−1, 2]× [−0.75, 0.5] and the initial wave height is ζ = 0. A
cylinder of radius 0.1 is located at (0,−0.25). See fig. 4.4.

On the left, top and bottom boundaries of the domain we impose u = [1, 0]T whereas on
the right boundary of the domain we impose a homogeneous Neumann boundary condition.
On the boundary of the circle, homogeneous Dirichlet boundary conditions are imposed.
Moreover, u0(x) = [1, 0]T . For the level set function, we set r = 0 at the inflow part of the
boundary (x = −0.75). The densities are set to ρl = 1000, ρg = 1 and the viscosities are
set to µl = 1/200 and µg = 1/200. In fig. 4.5 we show the velocity magnitude at different
moments in time. For visualization purposes, we plot only the liquid domain Ωl(t). The
wave continues to oscillate in a similar way until about time t = 8 when the oscillations
become less pronounced. Figure 4.6 shows the velocity streamlines behind the cylinder
at different moments in time. We see that the vortices oscillate up and down. In [33], a
similar test case was presented. In that case, the submerged obstacle is a box instead of
a cylinder. We see that the wave and the streamlines behind the obstacle show a similar
behavior.
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Figure 4.2: Wave elevation at x = 0 with the anaytical solution eq. (4.45) (blue line),
coarser mesh (red line) and finer mesh (green line) for the test case section 4.4.1.
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(a) Spatial mesh and wave height at t = 0.

(b) Spatial mesh and wave height at t = 3.86

(c) Spatial mesh and wave height at t = 0. (d) Spatial mesh and wave height at t = 3.86

Figure 4.3: The spatial mesh at two instances in time for the test case described in sec-
tion 4.4.1. The top two figures are an extract of the mesh in [−1, 1] × [−0.1, 0.1]. The
bottom two figures zoom into the region [−0.1, 0.1] × [−0.1, 0.1]. We indicate the wave
height in all figures in red. Note that the mesh conforms to the interface.
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x2 = 0

x2 = 0.5

x2 = −0.75

x1 = −1 x1 = 2

Figure 4.4: Depiction of the flow domain Ω ⊂ R2 for the test case in section 4.4.2.

(a) Velocity magnitude at t = 1. (b) Velocity magnitude at t = 1.5

(c) Velocity magnitude at t = 2. (d) Velocity magnitude at t = 2.5

Figure 4.5: Velocity magnitude in the liquid domain Ωl(t) at different moments in time for
the test case described in section 4.4.2.
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(a) Velocity streamlines at t = 1. (b) Velocity streamlines at t = 1.5

(c) Velocity streamlines at t = 2. (d) Velocity streamlines at t = 2.5

Figure 4.6: Velocity streamlines behind the cylinder at different moments in time for the
test case described in section 4.4.2.
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Chapter 5

Conclusions

In this thesis, we have presented novel analyses and techniques for the solution of free-
surface problems with space-time hybridizable discontinuous Galerkin methods. In Chap-
ter 2 we presented an HDG method for the linear free-surface problem with a second order
BDF time stepper. We compared our results to those of [82] in which a DG method is used
for the same problem, and we conclude that due to our mixed formulation, we can obtain
a better approximation to the velocity of the fluid and superconvergence of the velocity
potential.

In Chapter 3, we introduced and analyzed a novel space-time HDG method for the
linear free-surface problem. In contrast to some analyses of space-time methods, e.g. [12],
we obtained error estimates in which the dependency on the spatial mesh size and the
time step is explicit. To achieve this, we derived anisotropic space-time analysis tools. We
presented numerical results that demonstrate the validity of our analysis. The space-time
analysis tools developed in this thesis can be used and extended to other problems and
discretizations.

A novel interface-tracking space-time HDG/EDG level set method for the two-fluid
Navier–Stokes equations was developed in Chapter 4. The space-time HDG method applied
to the Navier–Stokes equations is H(div)-conforming and produces point-wise divergence-
free velocity fields. This results in a scheme that is locally mass conserving. Since the mesh
conforms to the interface, there is no smoothing of the flow properties, as it is usually done
in level set methods [33, 53, 54]. A continuous approximation to the wave height was
obtained by a space-time EDG method. This allowed us to move the mesh according to
the interface without relying on smoothing techniques that could result in instabilities.

For future projects, it would be interesting to apply the space-time HDG/EDG method
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in Chapter 4 to more general two-phase flows where topological changes are allowed. This
would involve defining a projection of the solution from one domain to another ideally
without loss of accuracy. This extension would allow for more general applications, such
as a bubble rising in a column, dam braking, etc. The next step would be to consider
fluid-structure interaction with free-surface flows as done in [85]. For such an application,
a discretization for the solid structure has to be developed first. In terms of analysis, we
could explore if the analysis in Chapter 3 can be extended to linear partial differential
equations on moving domains.
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