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Abstract

Effective fusion of data from multiple modalities, such as video, speech, and text, is
a challenging task due to the heterogeneous nature of multimodal data. In this work, we
propose fusion techniques that aim to model context from different modalities effectively.
Instead of defining a deterministic fusion operation, such as concatenation, for the network,
we let the network decide how to combine given multimodal features more effectively. We
propose two networks: 1) Auto-Fusion network, which aims to compress information from
different modalities while preserving the context, and 2) GAN-Fusion, which regularizes
the learned latent space given context from complementing modalities. A quantitative
evaluation on the tasks of multimodal machine translation and emotion recognition suggests
that our adaptive networks can better model context from other modalities than all existing
methods, many of which employ massive transformer-based networks.
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Chapter 1

Introduction

Multimodal deep learning is an active field of research where, for a single event, one is
presented with information across multiple modalities, such as video, speech, and text, so
that they may be combined to gain a better contextual understanding. Combining, or
more precisely, fusing information from multiple modalities is, thus, a vital step for any
multimodal task. Better fusion results in richer combined representation of inputs from
multiple modalities. However, multimodal data is highly heterogeneous, making fusion a
challenging task. Moreover, the extent to which signals from complementing modalities
are helpful for a downstream task is not always clear. In such a case, using a convoluted
fusion method would only add to computation with little guarantee of improvement in the
performance. On the other hand, using a simple fusion method may not capture the context
even if sufficient information exists. Therefore, for a challenging NLP task such as machine
translation, where we need to combine the unimodal features and extract complementary
signals from other modalities, we need to model context better, while avoiding significant
computational overhead.

The most common fusion technique used in the literature is concatenation, which in-
volves the concatenation of representations from all the modalities. However, this results
in a shallow network [91], and the network focuses more on learning intra-modal features,
instead of learning inter-modal features. Later, Zadeh et al. [110], proposed Tensor Fusion
Network (TFN), in which, the unimodal, bimodal, and trimodal interactions are modelled
using a 3-fold Cartesian product. TEFN is shown to be better than simple concatenation;
however, it imposes high computational requirements as information from all the modalities
is projected as-is, without any prior information extraction. The computational overhead
grows exponentially as the dimensions in unimodal features increase. Liu et al. [79], then,
proposed a low-rank multimodal fusion technique (LMF) to address the previous prob-



lem. Such fusion techniques are useful but often result in a complex architecture with
much computation. Moreover, the aforementioned fusion methods focus only on combin-
ing individual unimodal features rather than combining and extracting useful information
simultaneously.

1.1 Contributions

In this thesis, we propose adaptive fusion techniques that allow the model to decide “how”
to combine multimodal data for an event in the best possible manner. The first technique,
Auto-Fusion, aims to compress multimodal information while preserving as much meaning
as possible. The second technique, GAN-Fusion, employs an adversarial network that
regularizes the learned latent space for a target modality (text, in our case) according
to information presented by the remaining complementary modalities. Since our models
are generic, the need to specify a pre-determined fusion operation such as concatenation
or Cartesian product is alleviated, and this further incentivizes the network to model
multimodal interactions by itself. Moreover, our techniques involve simple components
such as linear transformation layers, thereby checking unnecessary computational load,
when compared to a heavy component such as the transformer network [127].

We evaluate our models on three benchmark datasets: 1) the How2 dataset [I11]
with multimodal input for English-Portuguese translation 2) the Multi30K dataset [37],
which contains parallel corpora for multimodal machine translation, and 3) the IEMOCAP
dataset [14] which contains multimodal data for emotion detection. The quantitative eval-
uation shows that our models outperform the existing state-of-the-art methods in terms of
BLEU scores [96] for machine translation and Precision, Recall, and F1-score for emotion
recognition.

Fusion is a vital core aspect of multimodal deep learning. Addressing it will pave ways
for a more thorough and robust integration of multimodal communication into embodied
or non-embodied Al systems. It may also prove helpful in improving existing systems
by replacing rule-based decision-making modules with an adaptive and more robust fu-
sion module. For instance, Simsensei [31], the first application of multimodal learning for
healthcare, can benefit immensely from better fusion modules. It also holds exciting av-
enues for development in the future, like a better understanding of unimodal contribution.
We hope the lessons learned in this work serve as a guiding light and bolster research in
multimodal fusion.

The rest of the thesis is structured as follows: Chapter 2 introduces required back-
ground, Chapter 3 covers relevant work, Chapter 4 discusses the proposed methodologies,



Chapter 5 describes the experimental setup and quantitative results, Chapter 6 shows
analysis, and Chapter 7 contains our concluding remarks.



Chapter 2

Background

Multimodal Deep Learning (MMDL) involves relating features from multiple modalities —
the different sources of information — such as images, audio, and text. The goal is to learn
a shared representation of the inputs from different modalities, which a neural network
may exploit to make intelligent decisions for the desired task. The earliest attempts to
develop such a system involve the work by Ngiam et al. [91], where sparse RBMs and deep
autoencoders were employed to demonstrate the improvement of introducing information
from different sources. Section 3 covers various such frameworks in much more detail.

The subsequent sections in this chapter are divided as follows: Section 2.1 - 2.7 briefly
discuss different components from the machine learning and deep learning literature. They
are recommended for a thorough understanding of the proposed work; however, if the
reader is already comfortable with the concepts and terminologies discussed, they can skip
to Section 2.8, which briefly touches upon multimodal frameworks in the literature.

2.1 Multi-layer Perceptron (MLP)

A multi-layer perceptron (MLP) is the simplest type of feedforward artificial neural network
(ANN). For the same reason, they are also sometimes known as “vanilla” neural networks.
The simplest MLP has three layers: 1) an input layer, 2) a hidden layer, and 3) an output
layer. MLPs are fully-connected, i.e., each node in one layer is connected to every node in
the subsequent layer with a certain weight. The nodes, also known as neurons, in those
layers except the input layer, use a non-linear activation function. This means that a non-
linear transformation function exists in every node that maps the weighted inputs to each
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input layer hidden layer output layer

Figure 2.1: Architecture of a multi-layer perceptron (MLP) [1].

neuron’s output. A non-linear activation function, such as sigmoid or ReLU [90], allows
the network to model complex data distributions using a lesser number of neurons, thereby
also allowing them to distinguish between data that is not linearly separable. Figure 2.1
shows the different components of an MLP.

The learning process of an MLP is straight-forward — it learns by updating the connec-
tion weights based on the accumulated error difference between generated and expected
output, after processing a single data sample or a batch of data samples. This process
is carried out through the back-propagation algorithm [107], which is widely used in the
supervised-learning paradigm. It is also simply known as backprop. Backprop computes
the gradient of the network with respect to individual connection weights, given a loss
function, such as the mean-squared error (MSE) loss.

Theoretically, an MLP with a single hidden layer and sufficient hidden nodes is proven
to be a universal approximator [56, 32]. This means that it can approximate any continuous
function mapping f : R — R, arbitrarily closely and is, therefore, able to model any data
distribution. However, empirical results suggest otherwise, and recurrent neural networks
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Figure 2.2: Computational graph of a recurrent neural network (RNN). Input sequence x
is mapped to its corresponding output sequence o. L represents the loss function, which
measures the distance between o and y, the target sequence [12].

(RNNs) have been proven to be more suitable for more convoluted tasks, such as text-
generation, and time-series modelling.

2.2 Recurrent Neural Network (RNN)

A recurrent neural network (RNN) is a class of ANN where the nodes are connected to
form a directed graph along a temporal sequence. Their internal state, better known as
“memory,” allows them to process inputs of variable length; hence, they are more suitable
for complex tasks such as speech recognition, and time-series analysis.

A basic RNN is simply a network of neurons arranged into successive layers. The con-
nections are uni-directional, and every neuron has a real-valued activation function. Figure
2.2 shows the computational graph of a simple RNN along with its different components.

The learning process of an RNN in a supervised, discrete temporal setting involves pro-



cessing real-valued input vectors. At each time step, the non-input nodes apply appropriate
non-linear activation on the weighted inputs, and the final generated output is compared to
the expected output value for loss calculation. Standard optimization methods for training
RNNs involve gradient-based “backpropagation through time,” or simply BPTT, which is
a generalization of the backprop algorithm for feed-forward networks [89, , . A
significant problem with using such gradient-based methods for training basic RNNs is
the vanishing /exploding gradient problem [53], where the error gradient vanishes/explodes
exponentially quickly with increasing time steps. Many variations of RNNs were proposed
in order to mitigate this issue. We discuss one such relevant variant next in this chapter.

2.3 Long Short-Term Memory (LSTM)

Long short-term memory (LSTM) [54, 10] is a unique RNN architecture which, unlike
standard RNNs, consists of feedback connections. An LSTM unit consists of three different
gates: 1) the input gate, 2) the output gate, and 3) the forget gate. The three gates are
enclosed within a “cell” that remembers relevant information over different time intervals,
while the three gates regulate the flow of information into and out of the cell. The gating
mechanism helps the LSTMs to capture distant temporal dependencies.

Figure 2.3 shows an overview of an LSTM cell. We enumerate the equations for those
components below for the sake of completeness:

fi =0,(Wszy + Urhy_y + by) (2.1a)
i = og(Wizy + Uhy—1 + b;) (2.1b)
o = 0y(Woxy + Uyhy—1 + b,) (2.1¢)
¢ = op(Wewy + Uchy—y + be) (2.1d)
¢t = froci1+i;06 (2.1e)

hy = oy 0 op(cy) (2.1f)

Here, ; € R is the input vector to the LSTM unit, f; € R i, € R", and o, € R" are
the outputs of the forget gate, the input gate, and the output gate, respectively. h; € R"
is the hidden vector of the LSTM unit (also known as the output of the LSTM unit,)
¢ € R" is the cell input activation vector, ¢, € R" is the actual cell state vector. Finally,
W e R4 7 ¢ R"*4 and b € R" are the weights and bias matrices, respectively, to be
learned during the training process and o represents the activation functions.

7
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input gate rget gate utput gate

Figure 2.3: General overview of an LSTM cell. Multiple cells are connected recurrently to
each other, unlike through hidden units in vanilla RNNs. First, an input feature is obtained
through a regular neuron, and its value is accumulated based on whether the sigmoid gate
allows for it. The state unit has a linear self-loop whose weight is controlled by the forget
gate. The output gate controls the final output of the cell. The black box in the self-loop
denotes delay of one time-step [12].

LSTMs were initially introduced to counter the vanishing gradient problem in RNNs
discussed earlier because they allow some gradients to flow unchanged. However, they still
suffer from the exploding gradient problem.

Since their introduction, LSTMs have revolutionized many application domains with
their astounding improvement. They have been extensively employed for various tasks,
such as speech recognition, language modelling, and improved machine translation. LSTMs
have also been combined with other types of neural networks, such as convolutional neural
networks (CNNs), to improve automatic image captioning [128].
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Figure 2.4: Overview of a Convolutional neural network (CNN) [11].

2.4 Convolutional Neural Network (CNN)

Convolutional neural networks (CNNs) are a class of ANNs most popularly used for visual
analysis. In very simple terms, CNNs are regularized MLPs. As the name suggests, CNNs
use the convolution operation in at least one of their layers instead of general matrix
multiplication. While MLPs are prone to over-fitting due to their fully-connected nature,
CNNs use small and simple patterns to learn bigger, more complex patterns in data. This
results in lesser connections and complexity.

A CNN has three types of layers: 1) an input layer, 2) an output layer, and 3) hidden
layers. The hidden layers consist of a series of convolution operations, which convolve with
an operation such as multiplication or dot product. These layers are commonly followed by
additional convolutional layers, such as multiple pooling and fully-connected layers. The
pooling layers reduce data-dimension by reducing outputs from a group of data points to
a single value. Different pooling operations result in different types of features. Global
pooling [27, T1], maz pooling [133, 20], and average pooling [36] are the most common
pooling operations employed. Figure 2.4 shows an overview of a simple CNN.

Even though CNNs were primarily introduced in the computer vision community, they
have been extensively explored for many natural language processing (NLP) tasks [28].
For instance, they have shown promising results in tasks such as semantic parsing [16] and
text classification [00]. They are also being explored in combination with RNNs to process
multimodal data [128].



2.5 Generative Adversarial Network (GAN)

Generative adversarial networks (GANs) [13] are a class of deep generative models, which
take a slightly different approach to generate novel data samples. A GAN can generate
new data samples whose characteristics match the dataset it was trained on. For instance,
a GAN trained on a dataset of anime character images can generate novel anime charac-
ters [20]. GANs were originally introduced as an unsupervised algorithm for synthesizing
realistic images that looked authentic, at least superficially. However, they have been
successfully adapted for semi-supervised learning [110], fully supervised learning [60], and
even reinforcement learning [52].

A GAN consists of two main components: 1) a generator, and 2) a discriminator. The
task of the generator is to generate (fake) candidate samples, while the discriminator tries
to guess if a given sample is real or fake. The generator eventually learns a latent space
mapping to the given data distribution. Formally, the objective of the generative network
is to increase the error rate of the discriminator, i.e., generate images such that the dis-
criminative network is unable to determine if the generative network generated the image
or it was a part of the real data distribution, thereby, “fooling” the discriminator. The
discriminator is usually a binary classifier with a CNN, and the generator is generally a
deconvolutional network. GANs are trained using backprop, and the overall objective func-
tion of a GAN, V, is given by Equation 2.2, where D and G represent to the discriminator
and the generator networks, respectively; z represents the latent variable, and x represents
a data sample. As evident from the equation, it uses cross-entropy as the loss function,
which may sometimes lead to a vanishing gradient problem. To tackle this issue, Mao et
al. [33] proposed an alternative objective function using least squares. Figure 2.5 shows
an overview of vanilla GAN architecture.

minmax V(D, G) = Exepy,[08(D(X))] + Eyrpyioloa(l - D(G(2)]  (22)

GANs have been successfully applied to many applications, such as modding video
games [130], motion analysis in video [129], and super-realistic image generation [(4], to
name a few. They have even been employed for many text generation tasks such as text
style transfer [01, |. Despite the high-quality generation, GANs suffer from “mode-
collapse” problem, wherein they fail to capture entire modes in the real data distribution.
For instance, a GAN trained on the MNIST dataset — a collection of handwritten digits
from one to ten — might neglect a subset of digits from its output. Many solutions have been
proposed to tackle this issue [71, 73, 78]. Some of these solutions also lay the foundation
of future directions for the proposed work in this thesis.

10
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Figure 2.5: Overview of a Generative Adversarial Network (GAN) [11].

The subsequent sections touch upon the application of the architectures discussed until
now. For instance, how embeddings are learned for data from different modalities (Section
2.6), and how to extract meaningful information from raw data for a given task (Section
2.7 -2.38).

2.6 Embeddings

In the context of machine learning, embeddings refer to a mapping of discrete variables to
a vector in continuous space. These vectors partially represent the semantics of the raw
input data, which otherwise may not be easily comprehensible to a neural network. For
instance, training a neural network to classify an image into one of the target classes using
just raw pixels is not plausible without first transforming it into an embedding space. We
discuss embeddings for inputs from different modalities in the following subsections.

2.6.1 Word Embeddings

In the context of NLP, word embeddings are a vector representation of all the words in
the vocabulary. Most techniques to learn word embeddings are unsupervised in nature;
however, many supervised and semi-supervised techniques to learn word embeddings have
been proposed. The embeddings are learned such that words appearing in similar contexts
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Figure 2.6: Mapping of words in the embedding space. It can be observed that similar
words such as “coffee,” and “tea” are mapped closer to each other. [2]

are close to each other. For instance, words “apple” and “mango” will appear close to each
other as they belong to the same family of entities — fruits. Figure 2.6 shows such a plot.
Different techniques to learn word embeddings include Word2vec [$5], Glove [100], ELMo
[L01], FastText [62], Skip-thoughts [69], Quick-thoughts [80], InferNet [29], and Google’s
universal sentence encoder [17].

2.6.2 Speech Embeddings

Similar to word embeddings, speech embeddings are a rich representation of sound waves.
They, too, are learned such that sonically similar sounds will end up near each other in
the embedding space. Inspired by Word2vec [85], Chung et al. [21] proposed Speech2Vec,
which learns acoustic embeddings based on neighbouring acoustic regions. It splits an
audio segment by word, learns a fixed embedding for that audio segment. Later, Haque et

12



al. [18] proposed to learn similar embeddings on a sentence-level.

Researchers are still exploring the benefits of using speech embeddings over classical
features like Mel-frequency cepstral coefficients (MFCC), or zero-crossing rate (ZCR). How-
ever, they have been shown to contain richer information than plain word-embeddings [24]
and are being used to learn better cross-modal embeddings [25].

2.6.3 Visual Embeddings

Pre-trained embeddings for visual modality aim to learn a meaningful representation of
images; however, employed methods to learn such embeddings are not entirely unsuper-
vised. Most pre-trained visual embeddings used are simply feature-vectors from the hidden
layers of a (convolutional) neural network trained on a specific task. For instance, the most
popular choices for obtaining pre-trained image embeddings, such as, Inception [123], VGG
[111], SqueezeNet [59], and DeepLoc [70], are all trained on an image classification task.
Embeddings from such pre-trained networks are now being used for visual grounding in
many NLP tasks, such as question answering (QA) [0, 15, , , ].

Learning a joint representation of visual and other modalities is still an active field of
research. We will discuss more about such frameworks in Section 2.8 and Chapter 3.

2.7 Unimodal Frameworks

This section discusses popular unimodal frameworks for each modality and should serve
as a primer for multimodal frameworks to be discussed later in this thesis. Furthermore,
proposed multimodal techniques in this thesis also borrow from these frameworks.

2.7.1 Text

NLP includes a wide range of subtasks, such as grammar induction, lemmatization, parsing,
word segmentation, text classification, machine translation, natural language generation,
and natural language understanding. Techniques proposed to solve these subtasks can be
broadly divided into two categories: rule-based and statistical. We will focus on the latter.
More concretely, we will limit our discussion to neural network based natural language
generation and understanding.
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NLP practitioners have leveraged recent advancements in deep learning. RNNs have
set performance records on numerous NLP tasks, outperforming previous rule-based ap-
proaches significantly [15, , 03, 8, 81, 41]. They are still widely employed for a variety
of NLP tasks, despite the introduction of supposedly more powerful transformer networks
[127]. One reason for preferring RNNs over transformers is that transformers are very heavy
architectures imposing much computational overhead. In fact, reducing the parameters in
transformers is an active field of research currently [112].

In the following subsections, we will discuss two pieces from NLP literature most rele-
vant to the proposed methodologies — sequence-to-sequence models and attention mecha-
nism.

Encoder

Figure 2.7: Architecture of a Sequence-to-Sequence (Seq2Seq) network. The network learns
to generate the output sequence yI, ... y™) given an input sequence V. ... x(™). The
final hidden state of the encoder, C is passed through the decoder RNN to generate a fixed-
length output sequence. Here, n, and n, denote the number of time steps in the output
and input sequence, respectively [12].
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Sequence-to-Sequence (Seq2Seq) models

Since their introduction, the Sequence-to-Sequence (Seq2Seq) model [121] has been widely
adopted for a variety of generation tasks. Seq2Seq refers to the family of generative models
that take as input, a sequence of fixed-length and outputs a fized-length sequence as well.
The input sequence could be a single sentence or a complete document, with words being
treated as individual tokens, or a word could be treated as an individual sequence as well.
In the latter case, characters serve as the tokens. If the input and target output sequences
are exactly the same, the model is known as an autoencoder.

A vanilla Seq2Seq model has two primary components: an encoder, and a decoder.
Both the components comprise an RNN, such as LSTM (to avoid the vanishing gradient
problem). Given an input sequence (z1,xs,z3---2r), the encoder RNN first learns a
vector/hidden representation of the fed input. The hidden representations are computed
iteratively, for every time-step, using the Equation 2.3. As evident from the equation, the
hidden vector for a given time-step is obtained by applying appropriate weights to the
previous step’s hidden vector and the current time-step’s input.

hy = o(Whe)g, 4 Whhp, ) (2.3)

The decoder RNN;, on the other hand, does the reverse of this process by generating an
output sequence of tokens using the vector/hidden representation learned by the encoder
RNN. More concretely, it generates an output sequence (y1, ¥z, y3 - - - Y7+ ), whose length may
not be the same as the input sequence’s length. Tokens for every time-step are calculated
by iteratively using Equation 2.4. It is notable in the equation that h; represents decoder
RNN'’s hidden state from the last time-step. It is initialized by the encoder RNN’s hidden
vector for the first time-step. Also, the softmax operation is used to generate a probability
vector, which is then used to find the next most probable token g; in the output sequence.
Figure 2.7 shows the complete architecture of the Seq2Seq model.

Yy, = softmax(W " h,) (2.4)

The goal of a decoder RNN comprising of LSTM may be alternatively described as the
estimation of the conditional probability p(y1,...,yr|x1,...,zr) given by Equation 2.5,
where v is the vector representation of the input sequence (xy,...,zr) as learned by the
encoder RNN.

p<y17 s 7yT/‘x17 s 7~1'T) = H?élp(yt‘va Y1, - - 7yt71) (25)
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Attention Layer

2 ST S TP xT
(a) Bahdanau attention [8] (b) Luong attention [31]

Figure 2.8: Overview of Bahdanau and Luong attention mechanisms.(a) Bahdanau at-
tention: The ¢-th target word y; given a source sentence (1, s, ...,2zr) is generated by
computing context vector, which is a weighted sum of the alignment vector o and the
hidden vector h. (b) Luong Global attention: At each time step ¢, the model infers
a variable-length alignment weight vector a; based on the current target state h; and all
source states hg. A global context vector ¢; is then computed as the weighted average,
according to a;, over all the source states.

The Seq2Seq architecture was originally proposed for machine translation [121], but
it has been adopted for numerous other tasks such as solving differential equations [72].
Very recently, Google released an open-domain chatbot, Meena [5], which employs Seq2Seq
architecture with over 2.6 billion parameters.

Attention mechanism

A Seq2Seq model learns vector representation of the input sequence; however, if the input
sentence is very long, the learned representation may not capture all the relevant informa-
tion in the input sentence. Attention mechanisms were proposed to solve such issues [3].
The basic idea of the Attention mechanism is to pay more focus on specific parts in the
input vector instead of learning a single vector for each entire sentence. It does so using
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Figure 2.9: Model architecture of the Transformer network [127]

attention weights learned during the training process.

Multiple types of attention mechanisms have been proposed, but all of them have at
least three primary components in common: 1) an alignment layer, 2) an attention weights
matrix, and 3) a context vector. Figures 2.8 shows architecture diagrams of the two most
famous attention mechanisms used in NLP. The transformer networks proposed recently
also comprise of multiple self-attention heads [127]. Figure 2.9 shows the outline of a
transformer network.

17



2.7.2 Audio

Before applying deep learning in the audio domain, techniques involved classic temporal
and non-temporal audio features such as MFCC and ZCR. However, that changed drasti-
cally once deep generative networks were applied successfully for acoustic modelling. One
of the first such networks were restricted Boltzmann machines (RBMs), and hidden Markov
models (HMMSs) [50]. More recently, Google released WaveNet [93], which established new
benchmarks for speech recognition. It uses specially designed CNNs to encode raw audio.
The next subsection discusses such CNN-based models in more detail.

CNN-based models

In this section, we will discuss WaveNet [93] and JukeBox [35], the two most successful
CNN-based models for encoding audio. Both models generate raw audio indicating that
one-second of generated audio clip involves thousands of prediction steps, like 44.1k for
generating a 44.1kHz audio clip.

WaveNet: WaveNet is a deep generative model designed for raw audio, which can
generate a more natural-sounding human voice. It reduced the performance gap between
existing text-to-speech systems and human performance by a significant margin of more
than 50% [93]. It is also able to synthesize realistic musical scores.

WaveNet uses PixelRNN [941] and PixelCNN [125] as its building block. The two net-
works were originally proposed to generate images one pixel at a time. They are entirely
autoregressive in nature and generate pixels such that pixel-prediction at a given step is
conditioned on previously predicted pixels. Moreover, they could not only generate images
one pixel at a time but also one colour-channel at a time. These properties make them
suitable for encoding raw audio waveforms, which have thousands of samples per second.
The two-dimensional PixelNets had to be simply adapted to one-dimensional WaveNet.

JukeBox: JukeBox [35] is a deep generative model recently proposed by OpenAl to
generate music at the audio level. It uses a quantization-based approach, VQ-VAE-2 [101],

a simplified variant of VQ-VAE [120], to compress audio to a discrete audio space. The
used VQ-VAE is hierarchical in nature with three levels and compresses a 44kHz audio by
8x, 32x, and 128x, respectively [35]. It then uses a stack of sparse transformers [22, 127] to

ultimately generate raw audio. Figure 2.10 shows the complete architecture of JukeBox.

Music generated by JukeBox is more realistic than prior methods *, but human-generated
music is still significantly better. For instance, generated music still has low music coher-

! Many non-cherry picked samples can be found here: https://jukebox.openai.com/
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Figure 2.10: Model architecture of JukeBox. First, three separate VQ-VAEs with different
temporal resolutions are trained. The top-most level learns the most abstract representa-
tion since it is encoding longer audio per token. Notably, audio can be reconstructed at
any of the abstraction levels, where the bottom-most level generates the highest quality
audio samples [35].

ence. Since the model uses heavy transformers and deep hierarchical VQ-VAEs, it poses
immense computational requirements; it can take as long as 9hrs to generate a one-minute
audio clip. Distilling such models is still an active field of research.

2.7.3 Vision

Computer Vision (CV) aims at understanding and automating the functioning of human
visual systems. It includes methods for processing and understanding digital images by rep-
resenting the high-dimensional data in images symbolically. CV also has many sub-domains
such as scene reconstruction, object detection, motion estimation, 3D scene modelling, and
image restoration [88].

Vision has perhaps benefited the most by the success of deep learning. Currently, CNNs
serve as state-of-the-art for most CV tasks. The performance of these networks is even
close to human performance in some cases [108]. In the subsequent subsections, we will
discuss two types of models that have set benchmarks on different CV tasks.
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Figure 2.11: Overview of the VGG architecture [3].

CNN-based models

CNNs have revolutionized many tasks in CV by setting incredible benchmarks. We will
briefly discuss the four most popular CNNs.

VGG [114]: VGG was one of the first deep neural networks to be proposed. It has a
simple architecture, using convolutional layers whose size varied incrementally with depth.
It has two variants: VGG16 and VGG19. The numbers 16 and 19 correspond to the
number of weighted layers in the network, excluding dense and pooling layers. Figure 2.11
shows the complete VGG architecture.

ResNet [19]: Residual networks or ResNets were proposed slightly later than VGGs.
They consist of residual connections in the network, making the architecture modular, i.e.
it had a network within a network. The most popular variant of ResNet is the ResNet50,
where 50 corresponds to the number of layers excluding pooling and fully connected layers.
They showed a remarkable improvement over VGGs, and despite having more layers than
VGGs, they needed much less memory (nearly five times).

Inception [122]: The Inception model was introduced around the same time as the
VGG. However, unlike the VGG, it uses blocks with filters of different sizes, which are
ultimately concatenated to extract features at various levels. It was further optimized by
Szegedy et al. [123], but the underlying architecture remains the same. This model further
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Figure 2.12: Overview of the Inception module with dimensionality reduction [122].

Xception [23]: The Xception model is very similar to Inception, except that it re-
quires even lesser memory for computation. It optimizes convolutions by separating 2D
convolutions in the Inception model with two 1D convolutions. The optimization allowed
for performance gains on the task of image classification, as well as an increased capacity
of the model.

GAN-based models

GANs have set benchmarks on numerous generative tasks in CV such as style transfer
[60], image inpainting [98], and super-resolution [I34]. They have shown promising re-
sults in realistic image generation. In this section, we will discuss some interesting GAN
architectures.

CycleGAN [141]: CycleGANs are special types of GANs primarily used for image
style transfer. For instance, they can learn to transform a human’s face into a different
age group. The critical difference between a CycleGAN and a vanilla GAN is that, in
addition to the standard adversarial loss, CycleGAN introduces a cycle-consistency loss,
which enables the learning of a transformation, which is an inverse mapping of adversarial
loss’s learned transformation. Figure 2.13 shows the architecture of a CycleGAN.

StyleGAN [64]: StyleGAN is a unique formulation of GAN, allowing it to generate
very high-quality images. The underlying idea is to stack up layers incrementally, where
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initial layers learn to generate low-resolution images (2 x 2) and the resolution increases
gradually. Figure 2.14 compares the style-based generator of StyleGAN with a traditional
GAN generator.

text-2-image [105]: The text-2-image network made significant progress in generat-
ing meaningful images based on an explicit textual description. In this formulation, in
addition to the noise, the generator is also fed with the vector representation of the textual
description as input.

DiscoGAN [65]: DiscoGAN was proposed to infer cross-domain relationships in an
unsupervised manner. In terms of the fundamental idea, it is very similar to CycleGAN.
The only difference lies in the loss function - while CycleGAN uses a single cycle-consistency
loss, DiscoGAN introduces two reconstruction losses, one for both the domains.

2.8 Multimodal Frameworks

This section briefly discusses some generic multimodal frameworks proposed in the liter-
ature. We will limit our discussion to generative frameworks. Multimodal deep learning
is an active field of research, and many aspects of it can be individually targeted. For
instance, one could focus on fusion techniques or explore the interpretability of the shared
latent space. In this thesis, we will focus more on different fusion techniques.
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The subsequent subsections discuss some basic multimodal frameworks and fusion tech-
niques. Towards the end, we introduce the two tasks used for evaluating proposed method-
ologies in this thesis.

2.8.1 Generative Multimodal frameworks

We will now briefly discuss some generative multimodal frameworks.
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Deep Restricted Boltzmann Machines (Deep RBMs)

Restricted Boltzmann machines [116] were one of the first generative frameworks to be
used for multimodal deep learning. RBMs are a variant of Boltzmann machines [!], which
may also be interpreted as the stochastic, generative counterpart of Hopfield networks
[55]. A Boltzmann machine consists of two types of units: visible and hidden and allows
connections between any units. This leads to exponential learning time, thereby leading
to the development of restricted Boltzmann machines where a connection is allowed only
between a hidden and a visible unit. Figure 2.15 shows the architecture of an RBM.

Figure 2.15: RBM architecture. It is a bipartite graph with visible nodes (v;) on one side
and hidden nodes (h;) on the other. [12].

In Ngiam et al. [91], the authors use RBMs for multimodal learning in two different
configurations. The first configuration involves separately learning posteriors of hidden
units for each modality, and then concatenating vectors from each modality to construct
a shared representation. This results in a shallow network as the RBM cannot learn the
non-linear relationship between vectors from the two modalities. The second configuration
resolves these issues by using a deep autoencoder initialized using bimodal DBN weights.
A DBN, or a deep belief network, can be interpreted as a collection of RBMs where the
hidden units of the current layer serve as visible units for the next.

These networks were also used for cross-modal reconstruction, i.e., at inference time,
input from only one modality was present in the input vector. It showed some promising
results for the task of classification as well.

The next section briefly discusses fusion in the context of multimodal deep learning.
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2.8.2 Fusion

Fusion refers to the process of combining inputs from various modalities to construct a
joint representation so as to model the interaction from all the modalities [30]. It helps in
a better learning procedure; information absent from one modality may be compensated
by another modality, thereby, helping the model. Intuitively, too, this follows as a human
brain is continually processing multimodal input. Fusion can be broadly divided into three
types:

Early fusion: In early fusion, output vectors from each modality’s learner (or encoder)
are merged to make a decision.

Late fusion: In late fusion, the intermediate semantic information from each modal-
ity’s encoder is combined.

Hybrid fusion: In hybrid fusion, the integration procedure to combine multimodal
inputs involves a mixture of early and late fusion across different levels.

Multimodal fusion is an active field of research, and we will discuss more advanced
fusion techniques in Chapter 3. We will now discuss the two tasks we use to measure the
effectiveness of the proposed methods.

2.9 Multimodal Emotion Recognition

Emotion recognition in a multimodal setting refers to the task of understanding an indi-
vidual’s emotional state [103]. Inputs from different modalities such as facial expressions,
raw speech, and textual description of an utterance, are fed to the model during inference.

Formally, emotion recognition is a classification problem, and multiple methods have
been proposed to tackle this problem [103, , 79, , , 91]. They all use different
fusion techniques, but the most important take-away from these prior works is that a better
fusion method leads to better performance. It can also be inferred from these works that
a complex fusion technique will not always yield better results.

Identifying emotion autonomously is challenging because the information from the dif-
ferent modalities is heterogeneous in nature, and they need not be aligned. Perhaps the
most challenging aspect of emotion recognition is resolving ambiguity. For instance, the
sentence, “I am feeling surreal.” would generally indicate content in an individual, but the
same sentence could also be spoken in a sarcastic manner. Proposed multimodal frame-
works aim to handle such ambiguities; however, there is still room for improvement as the
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models still have a hard time distinguishing between closely related but different emotions,
such as happiness and calmness.

2.10 Multimodal Machine Translation

Multimodal machine translation is an extension of standard machine translation task in
NLP, which involves translating input sentences written in one language to a different
language. Here, too, we have inputs from multiple modalities; however, in this case, these
inputs are more diverse than for emotion recognition. For instance, we may have any type
of visual cue from the visual modality, ranging from a facial expression to an image of a
football ground.

In addition to resolving ambiguity, the network now needs to develop an understanding
of the presented scenario to generate better translations. For instance, knowing that the
text is about football may help the model in translating jargon words more easily, as such
words may not occur as frequently as “normal” words in the aligned dataset. Moreover,
multimodal machine translation is a generative task, which further increases the complexity
involved. These challenges make multimodal machine translation an arduous task.

Multiple methods have been proposed in the literature for this task; however, there is
room for significant improvement as the methods are still unable to exploit multimodal
information as effectively [119, 92, 10]. We will discuss more such models in the next
chapter.
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Chapter 3

Related Work

In this chapter, we will briefly review some previous works related to our task. Most
earlier works in multimodal deep learning focused on traditional shallow classifiers such
as support vector machines [31] and Naive Bayes classifiers [37] to exploit bimodal data.
Inspired by the success of deep learning over the last decade across multiple tasks, Ngiam
et al. [91] train end-to-end deep graph neural networks to reconstruct missing modalities
at inference time. They demonstrate that better features for one modality can be learned if
relevant data from different modalities is available at training time; however, they employ
simple concatenation for fusion. Hence, the joint representation learned is shallow and
is not guaranteed to model inter-modal interactions. Their findings were later verified
by Srivastava et al. [120], who use a Deep Boltzmann Machine [109] to generate data
from the image and text modality. Huang et al. [57] construct a multilingual common
semantic space to achieve better machine translation performance by extending correlation
networks [18]. They use multiple non-linear transformations to reconstruct sentences from
one language to another repeatedly and finally build a common semantic space for all the
different languages.

In an attempt to mitigate issues presented by shallow fusion methods such as con-
catenation, techniques such as the Tensor Fusion Network (TFN) [140], and Low-rank
Multimodal Fusion (LMF) [79], were proposed; however, the problem of effectively mod-
elling context in multimodal samples remains unsolved. The subsequent sections discuss
different fusion/alignment strategies from the literature.
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3.1 Concatenation

Concatenation is the simplest way of constructing a joint representation of feature vec-
tors from multiple modalities. This method requires individual learners (encoders) for all
input modalities. Each encoder aims to learn feature vector (generally, the hidden repre-
sentation) for the provided input. The concatenation operation, depending on the type of
fusion, is executed at an appropriate stage of the learning process for the desired entities.
For instance, if using early fusion, output vectors of individual learners are concatenated.
Therefore, concatenation of the vectors occurs after the learners encode their respective
inputs. This is not an effective way to fuse multimodal inputs as modelling non-linear inter-
modal interaction becomes difficult in such scenarios [91]. In contrast, if using late fusion,
input vectors from individual learners are concatenated, i.e., concatenation of feature vec-
tors occurs before the learners have encoded their respective inputs [110]. Therefore, late
fusion can not adequately model inter-modal interactions.

213 2]

/—/R Concatenation

21 z3

Figure 3.1: Simple concatenation fusion. Note: ; denotes concatenation

Despite several disadvantages, concatenation serves as a good litmus test as it is the
most straightforward fusion technique to implement amongst all. It may not be the best
way to learn a joint multimodal representation, but it does boost a unimodal framework’s
performance on a given task. This is helpful in quickly estimating the effectiveness of
introducing multiple modalities. For this reason, simple concatenation is used as a baseline
in all major works. Figure 3.1 shows simple concatenation for fusion.
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3.2 Tensor Fusion Network (TFN)

Tensor Fusion Network (TFN) [140] was one of the first fusion techniques to show a sig-
nificant improvement over simple concatenation. Unlike previously proposed multimodal
frameworks, it aims to capture both intra- and inter-modal dynamics simultaneously, in
an end-to-end fashion. The network has two essential components: 1) a Modality Em-
bedding Subnetwork for each modality to capture intra-modal dynamics, and 2) a Tensor
Fusion module to capture inter-modal dynamics. It has an additional module for perform-
ing inference, but we will focus only on the two mentioned components. The Modality
Embedding Subnetworks are tasked with outputting a rich modality embedding when fed
input unimodal features as input. The Tensor Fusion module, on the other hand, explicitly
aggregates uni-, bi-, and tri-modal interactions by performing a 3-fold Cartesian product
from previously obtained modality embeddings. Figure 3.2 shows the complete architecture
of the TFN in detail.

é

Unimodal Early Fusion Unimodal Tensor Fusion

Visual(z") Acoustic(z”) Language(z')
Visual(z") Acoustic(z®) Language(z')

Figure 3.2: Left: Commonly used Early Fusion (multimodal concatenation) Right: Ten-
sor Fusion Network with uni-, bi, and tri-modal subtensors [1410].

TFN showed significant improvements for multimodal sentiment analysis, outperform-
ing previously existing techniques by a large margin. However, it had a major drawback:
the Cartesian product operation in the Tensor Fusion module makes the algorithm very
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inefficient, thereby leading to massive computational overhead. The memory costs expo-
nentiate, especially when modelling trimodal interactions. Next, we will look at a method,
which tries to mitigate this issue.

Visual

— Multimodal
Representation

Low-rank w
Xq— fa Multimodal

Fusion

Prediction [— Task output

= |

Low-rank factors

Figure 3.3: Overview of Low-rank Multimodal Fusion (LMF). First unimodal represen-
tations z,, 2,, z are obtained by passing the unimodal inputs z,, x,, x; into three
sub-embedding networks f,, f., fi respectively. Then, low-rank multimodal fusion with
modality-specific factors is performed to obtain fused multimodal representation, which
can later be used for prediction [79].

3.3 Low-rank Multimodal Fusion (LMF)

Low-rank Multimodal Fusion (LMF) [79] was proposed in an attempt to scale up prior fu-
sion techniques while maintaining reasonable model complexity, and without compromising
model-performance. It was an improvement over prior methods such as Zadeh et al. [110]
and Fukui et al. [38], whose computation and memory costs increase exponentially. LMF
addresses these issues by decomposing the weight tensors into low-rank factors, thereby,
lessening parameters in the model. The decomposition process is further optimized by
leveraging parallel decomposition of low-rank weight tensor and input tensor to compute
tensor-based fusion [79]. Figure 3.3 shows a general overview of the LMF network.
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LMF was able to reduce the parameters by several-folds (~ 11 times when compared
against TFN) while maintaining competitive performance across different tasks such as
multimodal emotion recognition, and multimodal sentiment regression. Additionally, it
scales linearly with increasing modalities, which is significantly better than an exponential
increase in prior networks.

Multimodal Prediction 7
Transformer { reqeon Y
. . Self
Transformer Transformer .
Attention
ZL c RTL # 2dd ZV c RT‘- % 2d Z4 c ]RT_.; * 2
Concatenation I
(A4 L) [ fasv) |
Crossmodal [ Crossmodal | Crossmodal Crossmodal
Transformer Transformer Transformer rossioda
V= 1) (L=V) (L—}A) Attention

O

Positional @ é// ®‘,A// ®—» -

Embedding w T
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XL c IR.I'L xdp, _X\ c R-‘j-‘» wdy X4 e R}.“A xda

Figure 3.4: Architecture of Multimodal Transformer (MulT) for modalities (L, V, A) [124].

3.4 Multimodal Transformer (MulT)

Multimodal Transformers (MulT) [121] were recently proposed to align data from different
modalities implicitly. On a high-level, MulT has cross-modal attention modules for each
modality, whose outputs are merged through a feed-forward fusion mechanism. Each cross-
modal attention module iteratively learns the alignment (or attention) vector between its
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target modality and the remaining two modalities’ feature vectors. For instance, the cross-
modal attention module with target modality as the text will learn the attention vector
between text, and combined visual and speech features. Figure 3.4 shows the complete
model architecture of MulT, which also contains self-attention transformers for prediction.

Due to its cross-attention modules, MulT can latently adapt to streams from one modal-
ity to another without explicit data alignment. It has shown encouraging results on the
tasks of emotion recognition and multimodal sentiment analysis. Moreover, the generic
nature of the model makes it suitable for a variety of other tasks. For instance, it could
be potentially adapted for Visual Question Answering (VQA), where the input signal is a
mixture of static and time-evolving signals. Figure 3.5 exemplifies the task of VQA.

O: Is this a healthy meal?  Textual Justification Visual Pointing

...because it
is a hot dog
with a lot of

toppings.

_..because it
confains a
variety of
vegetables on
the table.

Figure 3.5: Example of visual question answering (VQA) task [58]. Here, additional in-
formation from an image is used during input to answer the given question along with its
visual and textual justification.

3.5 Variational Mixture-of-Experts Autoencoders

Variational Mixture-of-Experts Autoencoders [113] are a class of deep generative multi-
modal frameworks that aim to learn a synergic shared representation for multiple modali-
ties. They follow the objective of importance weighted autoencoder [13] along with a K-
sample estimator, which results in a tighter lower bound than originally proposed VAEs.
Additionally, they model the joint multimodal posterior as a mixture of unimodal posteri-
ors.
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This method shows promising results for cross-modal generation, and the model is able
to generate correlated images for given captions, and vice versa. However, the scaling of
the Mixture-of-Experts method still needs to be studied thoroughly as we increase input
modalities for the network.

Multimodal generation is an active field of research with a lot to achieve. However,
prior works to tackle this issue establish foundational stones to build-up on. In Chapter
4, we will discuss our proposed methodologies, focussing primarily on fusion techniques
that can easily be plugged into a generative/discriminative framework for better genera-
tion/understanding.
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Chapter 4

Approach

In this chapter, we will discuss the proposed methodologies for effectively fusing inputs from
multiple modalities. A majority of the fusion techniques proposed in the literature, such
as concatenation, and TFN, involve a deterministic operation for constructing the joint
multimodal representation. For instance, in concatenation, the model is presented with a
concatenation of all unimodal features for making a decision. Similarly, in TFN, the 3-fold
Cartesian product of unimodal features is used for prediction. In both cases, the algorithm
focuses more on learning rich unimodal features. However, there is no such “learning”
procedure for joint representation; they are simply constructed by combining unimodal
features in a specific fashion. In this thesis, we will refer to such techniques as static
fusion techniques. Since there is no special learning procedure for the joint representation,
it becomes challenging for the final predictor module to model the complex dynamics of
multimodal features. In other words, the model is unable to utilize multimodal information
effectively.

On the other hand, fusion methods such as LMF, and MulT are adaptive because they
involve a cognitive feature processing step to construct the joint representation. In LMF it
is the decomposition module, and in MulT, it is the final feed-forward fusion mechanism,
which takes care of constructing the joint representation such that it may only contain
the most essential features from each modality. However, these algorithms themselves are
either not very straightforward to implement or impose high computational and memory
costs. In this thesis, we aim to address the above issues, and propose two adaptive fusion
techniques that are easy to implement and posit reasonable complexity.

Our fusion methods involve concatenating unimodal embeddings at the first step.
Hence, to avoid any conflicts with past works, we will only consider the steps after con-
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Figure 4.1: Proposed architectures. (a) Auto-Fusion network: Assuming that 22 , 222 |

z;‘ffg) represent the video, speech, and text latent vectors respectively, we first concatenate
them to obtain z* . It is then passed through 7 which outputs the “autofused” vector z! .
We then obtain the reconstructed concatenated vector 28 by passing the autofused vector
through F,, another transformation layer. Finally, we optimize the loss between 2 and
zk . (b) GAN-Fusion module for the text modality: Assuming that z,, 2,, and z; are the
latent speech, video, and text vectors, respectively, we first autofuse z, and z, to give zy,.
Simultaneously, we pass z; through the generator G to get z,. The generator loss tries
to match z; and z, and discriminator D tries to distinguish between z;,. and z,, the two

sources of input. Note: @ denotes concatenation.

and

catenation as a part of our fusion method. This is because we do not use the concatenated
vector for final prediction, rather, it is only an introductory step. The next few sections
describe the proposed fusion techniques and the end-to-end training process in detail.

4.1 Model Overview

In order to mitigate the “staticness” of existing fusion methods, we propose two adap-
tive yet simple fusion techniques, Auto-Fusion and GAN-Fusion. They aim to effectively
combine multimodal inputs and mitigate the problem of shallowness and computational
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overhead in fusion techniques. As described at the beginning of the chapter, most fusion
methods proposed in the past, such as concatenation, either result in a shallow network
[91], or are computationally expensive, such as tensor fusion [1410], and there is no intel-
ligent feature extraction. In both cases, the fusion operation is specified beforehand, and
the network does not have the freedom to learn multimodal interaction on its own. In
this section, we describe the two methods developed for effectively combining multimodal
inputs.

4.2 Auto-Fusion

This method encourages the model to extract intermodal features by maximizing the cor-
relation between multimodal inputs. In this method, we first concatenate individual uni-
modal features, and then pass them through a transformation layer to get an autofused
latent vector. We use appropriate learners for individual modalities. We then try to re-
construct the originally concatenated vector from the autofused latent vector. Finally,
we minimize the Euclidean distance between the original and reconstructed concatenated
vector. This process ensures that the learned autofused vector does not contain arbitrary
signals from the input concatenated latent vector. Additionally, the model is incentivized
to “compress” information without losing any critical cues as much as possible. In other
words, it increases the correlation between the autofused and the concatenated latent vec-
tor. This method applies to any scenario where multiple features need to be combined.
For example, it can even be used to combine the forward and backward hidden states of
LSTMs [541], instead of pooling methods such as 1D pooling, max pooling, sum pooling or
even simple concatenation.

We now discuss the Auto-Fusion network in detail. We pose the fusion of multimodal
inputs as a compression problem, where we must retain as much information from the
individual modalities as possible. Given n (< 3 in our case) d-dimensional multimodal
latent vectors, z;‘f%l, szQ, . ,sz;n, we first concatenate them to obtain a vector, z* | where
k =3""d;. Then, we apply a transformation, 7, to zF reducing its number of dimensions
to t. Then, we use 2z to reconstruct the originally concatenated vector £E. Finally, we
calculate the loss, J;,., between 2¥ | and zF . The simplest version of Auto-Fusion network
employs the mean squared error (MSE) loss function, which aligns with our motivation to
compress multimodal features, so as to filter out the less useful signals. These steps could

be followed in Figure 4.1(a) and the MSE loss for Auto-Fusion network is given by:

Jo =l 25— 25 (4.1)

m
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4.3 GAN-Fusion

In addition to the “staticness” of existing methods, there is also the challenge of distin-
guishing between ambiguous cases. For instance, the sentence “Kevin, this is hilarious,”
could be said in a funny, or sarcastic manner. Resolving ambiguity becomes especially
important when working on social problems such as hate speech detection. Existing meth-
ods, even when fed with the corresponding speech vector, cannot effectively distinguish
between similar but different emotions such as happiness and calmness. We hypothesize
that this is because they do not learn the conditional distribution of sentiment given an
utterance (an utterance includes input from all available modalities).

In order to mitigate this issue, we propose an adversarial training regime that is incen-
tivized to learn the desired conditional distribution. For a task such as emotion recognition,
the objective would be sentiment given an utterance. For a more challenging generation
task, the model could learn a more complex behaviour, such as the association of different
sentences based on how similar they sound and their polarity. In our experiments, we show
that our GAN-based approach is better able to learn multimodal dynamics compared to
the existing methods.

We now describe GAN-Fusion’s architecture in detail. For a given multimodal sample
x, we first encode the inputs from each modality (speech, visual and text) to get the
respective latent vectors, zs, z,,, and z;. Choosing a target modality such as, text, we pass
z; through a generator to obtain z, = G(z;) and autofuse the remaining latent vectors,
zs, and z, simultaneously to obtain z;.. In the event where we have input from only
one modality in addition to text, we do not need an Auto-Fusion, and can simply treat
the other modality’s vector as zg.. Finally, we train the network in adversarial fashion,
labelling z¢,. as positive samples and z; as negative samples. The adversarial loss, Juq,, is
given below:

mgin max Jado(D, G) = Epp,, ()[logD(7)] + E.p., (z)[log(1 — D(zy))] (4.2)

Overall, the generator GG tries to align features of the target modality with features
from the complementary modalities and the discriminator tries to identify the type of its
input. Such a translation between latent vectors has been shown to learn an “intermediate”
latent vector denoting their joint representation [102, 39]. Learning the latent space in
such an adversarial manner induces a clustering effect on the latent space, where texts
associated with similar sounds and visuals are grouped together. We hypothesize that
adversarial training helps the model to learn the relative topology of the complementary
modalities’ latent space, which, in turn improves sampling for the target modality. This is
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Figure 4.2: Influence of complementary modality on the topology of the target modality’s
latent space. For the sake of simplicity, we only have one complementary modality (video)
in this example. We hypothesize that adversarial learning in GAN-Fusion incentivizes the
model to learn the text latent space such that it is able to preserve the relative topology
from the video latent space. For example, latent embeddings for tokens related to Soccer
and Golf would follow similar relative positioning in the latent space as present in the
video latent space. Furthermore, embeddings for Soccer and Golf — falling under the
general category of Sports — will be mapped closer to each other compared to embeddings
from an unrelated topic such as Cooking. For multimodal machine translation, this means
that if the model is fed with a Golf video along with the source text as input, it may be
better able to sample jargon words from Golf due to this topology inheritance, ultimately
improving generation quality.

also explained in Figure 4.2. Figure 4.1(b) shows GAN-Fusion module for the text modality.
We have one such module for each modality. We concatenate outputs of each module, and
pass the concatenated vector through a feed-forward layer. This output represents the
fused multimodal representation.

4.4 Training Process

In this section, we describe the end-to-end training process for using the proposed fusion
methods for 1) Classification (e.g. speech emotion recognition, hate speech detection) and
2) Generation (e.g. visual question answering, machine translation).
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Figure 4.3: Using proposed fusion techniques for classification. Unimodal inputs xz,, zs, z;
are passed to their respective learners L., L,, L; to obtain unimodal representations
2y, 25, 2¢- Here, v, 5,1 correspond to visual, speech, and text modalities respectively. The
individual unimodal representations are then passed through the fusion module (either
Auto-Fusion or GAN-Fusion,) which outputs the fused multimodal representation zj,s..
Finally, 2, is passed through a fully-connected layer F,. Predictions can be obtained by
applying a softmax on these outputs.

4.4.1 Classification

The training process for classification is straightforward. Figure 4.3 shows the end-to-end
model pipeline for using the proposed fusion techniques for classification. Since both Auto-
Fusion and GAN-Fusion are modular in nature, using them is as simple as plugging them
between the individual learners and the final predictor. The overall loss function can be
described as follows:

Jtotal = )\1 qusion + )\2Jclassification (43)

Here, Jfusion refers to the loss function of the fusion network. It equals .J;,. (from equa-
tion 4.1) when using Auto-Fusion, and J,4, (from equation 4.2) when using GAN-Fusion.
Furthermore, Jeqassification Tefers to the classification loss, for instance, cross-entropy loss.
A1 and Ay are hyperparameters to tune.
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Figure 4.4: Using proposed fusion techniques for classification. Unimodal inputs x,, z, z;
are passed to their respective learners L,, L,, L; to obtain unimodal representations
2y, Zs, 2¢. Here, v, s,t correspond to visual, speech, and text modalities respectively. The
individual unimodal representations are then passed through the fusion module (either
Auto-Fusion or GAN-Fusion,) which outputs the fused multimodal representation zjse.
Finally, zfyse is passed through a decoder, which generates outputs for the desired target
modality.

4.4.2 Generation

The training process for generation is similar to that of classification. Figure 4.4 shows the
end-to-end model pipeline for using the proposed fusion techniques for generation. It can
be seen that the pipeline looks very similar to a vanilla Seq2Seq network. We have just
introduced a fusion module between the encoder and the decoder module. We only validate
this process for generating text, but this method could very well be used for generating
outputs for different target modalities. The overall multi-task loss function, in this case,
can be described as follows:

Jtotal = )\1 qusion + )\2 Jgeneration (44)

Here, Jyysion carries the same meaning as described for the classification network, and
Jgeneration T€fers to the generation loss, for instance, cross-entropy loss for a Seq2Seq model.
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A1 and Ay are hyperparameters to tune.

In the next chapter, we discuss the experiments performed to measure the effectiveness
of the proposed techniques.
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Chapter 5

Experiments

This chapter describes the experimental setup used to evaluate our techniques. We mea-
sure the effectiveness of proposed fusion techniques on two tasks: 1) multimodal machine
translation, and 2) multimodal emotion recognition.

The subsequent sections describe the datasets used, implementation details, and eval-
uation results.

5.1 Datasets

To aid multimodal research, numerous datasets have been introduced in the past. We
choose three such datasets: 1) the IEMOCAP dataset to test our methods on emotion
recognition, 2) the How2 dataset, and 3) the Multi30K dataset to test our methods on
multimodal machine translation. We now briefly describe the three datasets used.

5.1.1 IEMOCAP

We use the benchmark Interactive Emotional Dyadic Motion Capture (IEMOCAP) database
[11] for emotion recognition. The dataset contains emotion-annotated utterances that we
split to obtain a wav file for each transcribed sentence. The dataset is already split into
multiple utterances for each session, and we further split each utterance file to obtain wav
files for each sentence. We split each utterance file to obtain a wav file for every sentence
using the start and end timestamp provided for the transcribed sentences. This results in
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a total of ~ 10K audio files, which are then used to extract features to predict a given
utterance’s emotion. Concretely, we identify the task as an emotion recognition problem,
where, given a sentence and its audio signal, we aim to infer the correct emotion for that
utterance.

5.1.2 How?2

We evaluate Auto-Fusion and GAN-Fusion on the multimodal How2 dataset [111], which
offers 79,114 instructional videos in addition to word-level time alignments to the ground-
truth English subtitles and their respective crowd-sourced Portuguese translations. A brief
description of the video clip is also included to encourage future work on image captioning.
This dataset was created by scraping videos along with their metadata from YouTube
using a keyword-based spider, and manually extracting and processing visual, auditory,
and textual features. Figure 5.1 shows a multimodal sample from the How2 dataset.

Unlike other popular datasets frequently featured in the multimodal deep learning
literature, such as CUAVE [99] and AVLetters [34], the How2 dataset is, in fact, trimodal,
therefore making it suitable to evaluate the contribution of each modality towards different
tasks.

Further, as a large-scale multilingual dataset, it enables a convenient medium for neural
machine translation in our thesis.

I'm very close to the green but I didn’t get it on the green
s0 now I'm in this grass bunker.

Eu estou muito perto do green, mas eu ndo pus a bola no green,
entdo agora estou neste bunker de grama.

In golf, get the body low in order to get underneath the gulf\
ball when chipping out of thick grass from a side hill lic.

Figure 5.1: A multimodal sample from the How2 dataset [111]

5.1.3 Multi30K

In addition to the How2 dataset, we also run experiments on the Multi30K dataset [37]
extended for French, where each sample has an image, its description in the source lan-
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guage and its translated version. We choose the En-Fr version of the dataset to run our
experiments. Figure 5.2 shows a data sample from the Multi30K dataset.

translate

——b Ein brauner Hund ...

Ievaluate

Gold Target:
Ein brawner Hund rennt dem schwarzen Hund
hinterfher

Source:
A brown dog is running after the black dog.

Figure 5.2: A multimodal sample from the Multi30K dataset [I19]

5.2 Implementation Details and Hyperparameters

In this section, we enumerate the implementation details and hyperparameters for our
models.

5.2.1 Implementation framework and computational resources

All the networks in our experiments are implemented in PyTorch [97]. To train the different
classification networks and generation networks on the Multi30K dataset, we use either an
Nvidia GTX 1080Ti GPU with 12GB of RAM or an Nvidia RTX 2080Ti with 12GB of
RAM. However, to train our network on the How2 dataset, we use Nvidia P100 with 16
GB RAM! as raw video vectors required needed extra memory.

5.2.2 Hyperparameters

We use an LSTM encoder with 256 hidden units as the learner for textual description. To
encode audio vectors in the IEMOCAP dataset, we first pre-process the raw audio vectors

!These GPUs were accessed through Sharcnet clusters set up at the University of Waterloo
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and compute an 8-dimensional feature vector. We then use an LSTM encoder with 50
units as a learner for those feature vectors. For the How2 dataset, raw audio vectors are
already present, and we use a LSTM encoder with 256 hidden units for encoding. For the
visual modality, we use the Kaldi vectors already provided for videos in the How2 dataset
and use a VGG to encode the images in the Multi30K dataset. In all our networks, we use
100 dimensions to represent the latent vectors for all modalities, except for audio in the
IEMOCAP dataset, where we use 50 units to express the latent vector.

5.3 Evaluation Metrics

We now enumerate the different benchmark metrics to evaluate the generation and classi-
fication quality of our models quantitatively.

5.3.1 Precision

We report Precision, Recall, and F1-score for all our classification experiments. We now
describe each of them in detail below.

Precision, also known as positive predictive value, is the fraction denoting the number
of relevant instances out of all the retrieved instances. It is expressed as in equation 5.1a,
and can be described as the ratio of true positives (TP) and the sum true positives and
false positives (FP), i.e., total instances labelled as belonging to the positive class. In our
case, the classes are emotions such as happy, angry, sad, and neutral.

In the context of classification, a perfect precision score of 1.0 for a class, say, C' means
that every item labelled as belonging to class C' does indeed belong to class C' (but says
nothing about the number of items from class C' that were not labelled correctly).

5.3.2 Recall

Recall, also known as sensitivity, is the fraction of relevant instances actually retrieved.
For classification, it can be expressed as in equation 5.1b, and can be described as the ratio
of true positives and the sum of true positives and false negatives (FN), i.e., total number
of instances that actually belong to the positive class.

For classification, a perfect recall of 1.0 means that every item from class C' was labelled
as belonging to class C' (but says nothing about how many items from other classes were
incorrectly also labelled as belonging to class C).
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Model Source | BLEU 1 | BLEU 2 | BLEU 3 | BLEU 4
Sanabria et al. [111] t - - - 54.4
Sanabria et al. [111] s-v-t - - - 54.4
Lal et al., (2019) s-v-t - - - 51.0
Raunak et al., (2019) t - - - 55.5
Wu et al., (2019) s-v-t - - - 56.2
t 48.32 30.63 20.79 14.60
Seq2Seq S 20.11 7.01 3.12 1.57
v 19.28 6.35 2.33 1.03
Seq2Seq + attn t 79.21 67.34 52.67 47.34
) st 56.31 33.82 24.63 21.45
Auto-Fusion (Ours) Sv-t 57.18 34.71 25.15 22.10
i s-t 80.34 67.83 61.27 55.01
Auto-Fusion + attn (Qurs) —— 85.23 71.95 69.54 57.80
) st 60.65 37.43 30.01 28.87
GAN-Fusion (Ours) Sv-b 61.23 38.76 31.23 29.31
) S-t 82.25 69.43 64.33 56.5
GAN-Fusion + attn (Ours) ——= 89.66 74.48 71.29 59.83

Y

Table 5.1: Results for machine translation experiments on the How2 dataset. ‘t’, ‘s’, ‘v
represent the text, speech, and video modalities, respectively. ‘4 attn’ shows the inclusion
of word-level attention [31] to the model. Note: Model names in bold denote that the
networks were implemented by the author, and the attention module attends to text only.

5.3.3 F-Score

Based on Precision and Recall’s description, we can observe that we need to consider both
the metrics to judge a prediction system in terms of relevance. The F-score (or the F1-
score) metric considers both the Precision (P) and Recall (R) to compute a score. It takes
the harmonic mean of precision and recall, as shown in equation 5.1c.

TP
p__ 1
TP + FP (5-1a)
TP
o r 1b
R= 55 PN (5.1b)
PR
F=2 5.1
X PR (5.1¢)
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Model BLEU 4 | Meteor
Seq2Seq baseline 36.3 56.9
Aalto [17] 44.1 64.3
Auto-Fusion + attn (Ours) 42.31 61.7
GAN-Fusion + attn (Ours) | 44.23 63.8

Table 5.2: Results for machine translation on the Multi30K dataset. All methods use ‘v’
and ‘t’ as the source modalities except the unimodal Seq2Seq baseline, which uses only
text. Note: Model names in bold denote that the networks were implemented by the
author.

5.3.4 Bilingual Evaluation Understudy (BLEU)

Bilingual Evaluation Understudy (BLEU) [96] is a metric for evaluating the quality of
machine-translated text from one natural language to another. We use BLEU to evalu-
ate the quality of translated sentences. This metric has shown the highest correlation with
human judgements on similar tasks [95, 16]. The calculation of the metric is quite inexpen-
sive; it involves computing n-gram overlap between a generated sentence, and some good
quality reference translations. These scores for individual sentences are then averaged over
the complete corpus to obtain the final BLEU score. It is a real number between 0 and 1.
More formally speaking, BLEU is nothing but a modified version of the precision metric to
compare a candidate translation against multiple reference translations. We report BLEU
1, BLEU 2, BLEU 3, and BLEU 4 — which compute 1-gram, 2-gram, 3-gram, and 4-gram
overlap between candidate and reference translations — for all our generation experiments.
A higher value of BLEU for a task such as machine translation indicates better generation
quality as it shows more overlap between the generated and ground truth text. Notably,
the significance of improvement in BLEU-n score increases as we increase the value of n.
For instance, a 0.04 point improvement in BLEU 4 is much more significant than a 0.04
point improvement in BLEU 1.

5.3.5 METEOR

METEOR [9] is another metric for evaluating machine translation systems that shows a
high correlation with human judgement. It was designed to address some of the deficiencies
inherent in the BLEU metric. While BLEU is a purely precision-based metric, METEOR
uses the weighted harmonic mean of unigram precision and unigram recall, thereby, pro-
viding a better indication of translation quality.
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Model P R F A

LSTM + attn (uni) 532 | 40.6 | 434 | 43.6
LSTM + attn (bi) 66.1 | 65.0 | 64.7 | 64.2
Yoon et al. [138] - - - 71.8
Yoon et al.[137] - - - 76.5

Auto-Fusion + attn (Ours) | 75.3 | 77.4 | 76.3 | 77.8
GAN-Fusion + attn (Ours) | 77.3 | 79.1 | 78.2 | 79.2

Table 5.3: Precision (P), Recall (R), Fl-score (F), and Accuracy (A) scores for emotion
recognition. The LSTM+attn (uni) baseline uses only text to predict emotions, while
LSTM-+attn (bi) uses inputs from the speech and text modality, and simple concatenation
is used for fusion. Note: Model names in bold denote that the networks were implemented
by the author.

5.4 Results

Results of our experiments on the How2, Multi30K and IEMOCAP dataset are shown in
Tables 5.1, 5.2 and 5.3, respectively. For emotion recognition, we observe that our models
perform well across all the evaluation metrics. For the relatively tricky task of machine
translation, we note that our best performing model beats the existing methods in terms of
BLEU scores and is competitive in terms of METEOR [9], despite being much lighter than
the transformer-based baselines. Further, we note that including a word-level attention
mechanism consistently improves performance. It is important to note that the attention
module only attends to text, and not to the input from any other modality. We discuss
some ablation studies in Chapter 6, revealing some interesting insights.
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Chapter 6

Analysis

In this chapter, we discuss some ablation studies that reveal some interesting insights.

6.1 Robustness of multimodal features

It is very important that the learned multimodal latent features are robust, i.e., they should
work reasonably well even in the presence of some noise. In order to measure robustness
of the learned multimodal features, we conduct an ablation test on the How2 dataset. In
this test, we randomly replace some tokens in the test sentence with the unknown token,
<UNK>, and translate the sentence using our best performing model, GAN-Fusion + attn.

The ablation study reveals that the complementary modalities are able to compensate
for nearly 30% of the missing text as beyond that, we see a sharp drop in the BLEU scores.
This shows that our method does not rely just on the textual description for translation.
It also follows that the learned joint representation indeed contains rich information from
other modalities, which can compensate for the absence of information from some other
modality, and enhance the capability of the system.

6.2 Comparison against other baselines

For the machine translation task on How2 dataset, we use multiple baselines including
the pyramidal encoder-decoder framework presented in the How2 paper as well as some
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Figure 6.1: Ablation test on the How2 dataset. Word drop probability v/s BLEU 4. A
sudden drop in BLEU scores as we move from 0.3 to 0.4 indicates that our model was able
to compensate for ~ 30% of the missing text.

top performing models from the How2-challenge.! For the Multi30K dataset, we compare
our models against the best performing system on the dataset, Aalto [17], a transformer-
based network for machine translation. Despite being significantly less complex than the
transformer networks, our method emerges as the best performing model in terms of BLEU
scores on both the datasets, and it produces competitive results in terms of METEOR on
the Multi30K dataset as well. This shows the benefits of using adaptive fusion techniques
for complex multimodal tasks such as machine translation.

6.3 Contribution from each modality

Our extensive set of experiments on the How2 dataset also measure the effect of adding/removing
input from one of the modalities. Table 5.1 reports results when using different combi-
nations of source modalities. It reveals that while both acoustic and visual modalities
contribute to enhanced translation, the video’s contribution is slightly lower. This was
also observed in some prior works such as Gronroos et al. [17]; however, it needs further
validation as this might be addressed by simply using a better visual learner. Knowing
the contribution from each modality will be crucial in understanding multimodal aspects
of communication in detail. Our ablation study also suggests that we may have essential

!The How2 Challenge has three tasks: Speech Recognition, Machine Translation, and Summarization.
We choose our baselines from the Machine Translation task. More information about the competition can
be found here: https://srvk.github.io/how2-challenge/
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signals from complementary modalities. Therefore, a more thorough set of experiments is
needed to derive a concrete conclusion.
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Chapter 7

Conclusions and Future Work

This chapter contains a summary of the proposed methodologies in this thesis and throws
light on prospective directions of exploration.

7.1 Summary

In this thesis, we propose two adaptive fusion techniques that allow for effective multimodal
fusion. Instead of “fixing” the fusion operation beforehand, we let the model decide “how”
to extract signals from different modalities. Our results indicate that such adaptive models
are more effective than their heavier counterparts, such as transformer networks. Moreover,
the joint multimodal representations learned by these models are robust, which allows
them to extract complementary signals from other modalities when partially deprived of
information from one modality.

Our models achieve state-of-the-art results on many metrics and are highly competitive
against existing systems on other metrics. It is, however, essential to remember that there
are many less understood aspects as well to these networks. For instance, a more systematic
analysis is required to measure the contribution of each modality. Similarly, the degree of
information that the methods can extract for each modality is still unknown. The nature
of the learned latent space of the joint distribution is also unexplored. Clearly, there is a
vast scope of improvement for the current work in terms of understanding the nature of
the learned models and multimodality. We discuss some possible directions to explore in
the future that may aid in solving the current mysteries.
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7.2 Future Directions

Following up on the discussion so far, we identify prospective aspects to multimodal deep
learning for exploration. Out of all the exciting aspects of multimodal research, we believe
feature alignment, i.e., aligning signals from each modality, and interpretability, i.e., un-
derstanding the learned latent space are the most important. While alignment might help
address the heterogeneity in data, solving the latter problem may bear us crucial insights
into such models’ decision-making process. Currently, the dynamics of the learned latent
space are not completely known. For instance, there still is not a concrete metric for mea-
suring distance between two data points in the latent space. While most use the Euclidean
distance, some argue the use of other metrics such as Riemmanian distance [21]. Unveiling
this black-box will not only solve such trivial problems, it may also bear revolutionary
insights about the functioning of neural networks, in general.

7.2.1 Better GANs

GANSs, in general, exhibit numerous issues in practice. These issues, including inconsis-
tency with originally claimed theoretical guarantees, are well-documented in the literature
7, , 30]. Recently, such implicit assumptions about GANs have been probed for better
understanding [73]. Perhaps the most critical issue that was addressed was the mode-
collapse problem. In Li et al. [75], the authors argue about the need to return to the
principle of maximum likelihood, insisting on full recall, as opposed to generation by a net-
work with unknown recall. They propose to use Implicit Maximum Likelihood Estimation
(IMLE) for training GANs in order to increase the network’s capacity as a whole. The
application of IMLE on tasks such as high-resolution image synthesis [77] and multimodal
image synthesis [70] achieve excellent results, and it would be interesting to see the effect
of using IMLE for training the GAN-Fusion network proposed in this thesis.

7.2.2 Understanding Latent Space

Understanding of the latent space of the learned multimodal joint distribution remains an
unsolved problem. A good understanding of the nature of such systems may pave ways for
human inputs into the learning algorithms. Moreover, achieving true interpretability will
unravel mysteries of the current “black-box” networks. Some initial works explain some
interesting insights about the implicit behaviour of multimodal networks [, 19]; however,
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real much remains to be explored. It would be interesting to see the results of similar
systematic approaches for text generation.

We believe tackling the two aforementioned core tasks will help not only the researchers
indulged in multimodal deep learning but the entire deep learning community as a whole.
We look forward to advancing towards such a goal, one step at a time.
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