
Implementation of the Metal
Privileged Architecture

by

Fatemeh Hassani

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Masters of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2020

c© Fatemeh Hassani 2020

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The privileged architecture of modern computer architectures is expanded through
new architectural features that are implemented in hardware or through instruction set
extensions. These extensions are tied to particular architecture and operating system
developers are not able to customize the privileged mechanisms. As a result, they have
to work around fixed abstractions provided by processor vendors to implement desired
functionalities. Programmable approaches such as PALcode also remain heavily tied to
the hardware and modifying the privileged architecture has to be done by the processor
manufacturer. To accelerate operating system development and enable rapid prototyping
of new operating system designs and features, we need to rethink the privileged architecture
design.

We present a new abstraction called Metal that enables extensions to the architecture
by the operating system. It provides system developers with a general-purpose and easy-
to-use interface to build a variety of facilities that range from performance measurements to
novel privilege models. We implement a simplified version of the Alpha architecture which
we call µAlpha and build a prototype of Metal on this architecture. µAlpha is a five-stage
pipelined processor with a multi-level cache hierarchy. Lastly, we implement a few facilities
in Metal including system calls and transactional memory to show the practicality of Metal.

iii

Acknowledgements

I would like to thank my supervisor, Dr. Ali Mashtizadeh, for his patient guidance and
support throughout my degree. I greatly appreciate the time and effort he put into helping
me with this research project.

I would also like to thank the thesis committee members, Dr. Bernard Wong and Dr.
Samer Al-Kiswany for their insightful comments and feedback.

I owe much gratitude to my friend, Aimilios Tslapatis, for his valuable ideas and help
with this project.

I wish to thank my parents for their support and encouragement throughout my study.
Most importantly, I want to express my deepest gratitude to my loving and supportive
husband, Shervin. Without him, I would not have been able to finish this degree. I
dedicate this thesis to him.

iv

Table of Contents

List of Figures viii

List of Tables x

List of Code Listings xi

1 Introduction 1

2 Alpha Architecture 3

2.1 Overview . 3

2.2 Instructions . 3

2.3 µAlpha Design . 5

2.4 Pipeline Organization . 5

2.4.1 Pipeline Hazards . 7

2.5 EBox: Fetch and Decode . 8

2.5.1 Instruction Fetch . 8

2.5.2 Instruction Decode . 9

2.5.3 Pipeline Controller . 9

2.6 IRF: Register File . 11

2.6.1 Operand Forwarding . 12

2.7 IBox: Integer Operations . 13

v

2.8 MBox: Memory Operations . 15

2.9 Cache . 15

2.9.1 Replacement Policy . 18

2.9.2 Arbiter . 18

2.9.3 Cache Implementation . 19

2.9.4 Cache Coherence . 21

2.9.5 Lock Mechanism . 21

3 Metal: An Alternative Privileged Architecture 23

3.1 Overview . 23

3.2 Metal Design . 23

3.2.1 Design Overview . 23

3.2.2 Design . 24

3.3 Metal Implementation . 24

3.3.1 Metal Memory . 25

3.3.2 Metal Registers . 25

3.3.3 Metal Instructions . 25

3.3.4 Security . 26

3.3.5 Exception Handling with Metal . 27

4 Metal Applications and Evaluation 28

4.1 System Calls . 28

4.2 Transactional Memory . 31

4.2.1 TInit . 32

4.2.2 TStart . 32

4.2.3 TRead . 33

4.2.4 TWrite . 34

4.2.5 TCommit . 35

vi

4.3 Other Applications . 36

4.3.1 Protection Rings and IPC Mechanism 36

4.3.2 Capability-based Security . 37

4.3.3 Secure Enclaves . 37

4.3.4 Virtualization . 38

4.4 Evaluation . 38

4.4.1 Performance . 38

4.4.2 Implementation Complexity . 39

4.4.3 Developer Experience . 39

5 Related Work 40

5.1 Programmable Architectures . 40

5.1.1 Microcode . 40

5.1.2 Millicode . 40

5.1.3 PALcode . 41

5.2 Architectural Extensions . 41

5.2.1 Protection Rings and IPC Mechanism 41

5.2.2 Capability-based Security . 42

5.2.3 Secure Enclaves . 42

5.2.4 Virtualization . 42

6 Conclusion 44

References 46

APPENDICES 50

A ISA 51

vii

List of Figures

2.1 Instruction formats in Alpha architecture [34]. 4

2.2 µAlpha general design diagram. 6

2.3 Pipeline organization. 7

2.4 EBox block diagram. 9

2.5 Fetch unit block diagram. 10

2.6 Pipeline controller block diagram. 11

2.7 IRF block diagram. 12

2.8 IBox block diagram. 14

2.9 IBox U1 block diagram. 14

2.10 IBox U4 block diagram. 15

2.11 MBox block diagram. 16

2.12 Cache hierarchy. 17

2.13 Arbiter interface. 19

2.14 State machine for the bus arbiter. 20

2.15 Cache interface. 20

2.16 Tag finder and PLRU8 units inside a cache. 20

2.17 State machine for the cache. The inputs and outputs shown in this state
machine are based on the signals shown in Figure 2.15 and Figure 2.16 (WT
is a module parameter, not an actual input). 22

4.1 A typical Metal call. The mechanism’s strength lies in its simplicity and
generality. 29

viii

4.2 Structure of the LogStruct buffer for each transaction. 33

ix

List of Tables

2.1 Specifications of different levels of the cache hierarchy. 16

2.2 PLRU lookup and state transitions (x means do not care, means unchanged). 18

3.1 Instructions for the Metal architecture. 25

3.2 The format and operation of the Metal instructions. 26

4.1 Comparison of µAlpha synthesized with and without Metal using the Syn-
opsys cell library. 39

x

Listings

4.1 Syscall implementation in Metal. 28

4.2 Example of using a system call. 30

4.3 Example of a system call. 30

4.4 Sysreturn implementation in Metal. 30

4.5 Metal subroutine for reading and writing in a protected register. 31

4.6 TInit implementation in Metal (no inputs and outputs). 32

4.7 TStart implementation in Metal (Input: LogStruct address at R16, Output:
None). 33

4.8 TRead implementation in Metal (Input: LogStruct address at R16, Read
physical address at R17, Output: Read value in R27). 33

4.9 TWrite implementation in Metal (Input: LogStruct address at R16, Write
physical address at R17, Write value at R18, Output: None). 34

4.10 TCommit implementation in Metal (Input: LogStruct address at R16, Out-
put: Commit (1) or Fail (0) in R27). 35

xi

Chapter 1

Introduction

The privileged architecture of a processor provides firmware and operating systems with
mechanisms to protect shared resources such as memory, I/O devices, and CPU to enable
resource management, partitioning, and security. It consists of instructions, privilege levels,
and policies that protect different components of the application stack and define the
interface between them. The privileged architecture provides functionalities and hardware
facilities required for running the operating system and connecting external devices. For
most commercial and research systems the privileged architecture design dates back to the
PDP-11 [33] and the rise in popularity of the UNIX operating system. UNIX requires two
privilege levels, user level and kernel level. The transitions between these two levels are
constrained with system calls.

The privileged architecture is created and expanded using hardware extensions. In this
approach, instruction sets need to be extended in each generation of processors to provide
primitives for a variety of features such as virtualization, security enclaves, system call
interface. Often these primitives are not suitable for all applications and multiple versions
of them are added to fit different kinds of applications. Furthermore, these primitives are
part of the hardware and cannot be removed once published. As a result, privileged archi-
tectures have an inflexible design, and extending them is a complex and time-consuming
process.

Operating system researchers and developers need a way to extend the privileged ar-
chitecture easily to support new operating system designs and features. Furthermore, it is
essential to be able to iterate quickly through different approaches to privileged primitives
in order to accelerate the evolution of operating systems. As a result, a mechanism for
quick expansion of the privileged architecture is desired.

1

In this thesis, we present Metal, a programmable architecture for privileged architecture
extensions. Privileged primitives that are implemented in hardware, closely resemble the
software abstraction from which they originate. Metal enables rapid expansion of the
privileged architecture through software rather than hardware. Using this simple and
powerful tool, operating system developers can build new abstractions and organizations.
Metal provides basic blocks that can be used to construct all kinds of high-performance
low-level mechanisms related to the privileged architecture. Applications include but are
not limited to security models, secure enclaves, and virtualization.

We implement a simplified version of Alpha [34] architecture using Verilog. We imple-
ment the Metal programmable privileged architecture on this processor to demonstrate its
capabilities and several different applications.

The thesis is organized as follows. In Chapter 2, we describe the Alpha architecture and
our implementation of this architecture. We present Metal, the programmable privileged
architecture in Chapter 3, and we explain its design and implementation on our alpha
processor. In Chapter 4, we evaluate different applications of Metal. Finally, we review
the related work in Chapter 5 and our conclusions in Chapter 6.

2

Chapter 2

Alpha Architecture

This chapter gives an overview of the Alpha architecture and the design of the µAlpha,
our implementation of the architecture and its features.

2.1 Overview

Alpha is a 64-bit RISC architecture with 32-bit instructions. Memory operations are only
loads and stores and all calculations are performed with register-to-register instructions.
Alpha supports 8-bit (byte), 16-bit (word), 32-bit (longword), and 64-bit (quadword) inte-
gers. It has 32 integer registers, R0 to R31. All the registers are 64-bit, and R31 is always
set to zero. Alpha uses a 64-bit virtual address space and supports both little-endian and
big-endian byte addressing.

We use the Alpha architecture because of its simplicity. There are no condition codes,
no branch delay slots, no load delay slots, no precise arithmetic exceptions, and no single
byte writes to memory in the Alpha architecture [34]. It has a very relaxed memory model
that allows for a lot of flexibility in the implementation while requiring compilers to enforce
ordering through barriers.

2.2 Instructions

We show the subset of Alpha instructions that µAlpha implements in Appendix A. Floating-
point instructions are not implemented in the µAlpha (See [35] for a full list of Alpha
instructions).

3

OP RA RC
RB

LITERAL 1

0

Func

Func

Operate Format
31 26 21 13 12 5 0

6 5 5 3 7 5

OP

Integer, Literal

Integer, Register

RA RB Displacement

OP RA Displacement

Memory Format
31

31

6 5 5 16

26

26

21

21

16 0

0

6 5 21

Branch Format

Figure 2.1: Instruction formats in Alpha architecture [34].

All Alpha instructions are 32-bit long and are placed at longword aligned addresses in
memory. Appendix A shows the Alpha instructions that our system supports. These in-
structions can be divided into five categories: integer arithmetic, logical, byte-manipulation,
load/store, and branch instructions. We use three instruction formats as shown in Fig-
ure 2.1. All of them include a 6-bit opcode field.

The operate format is used for integer arithmetic, logical, and byte manipulation in-
structions. These instructions contain three 5-bit register number fields (RA, RB, and RC),
7-bit function field, and 8-bit literal field. These instructions calculate RC = RA operate RB.
The operation is specified by the opcode and the function bits. RB can be replaced with
a zero-extended literal if the 13th bit shown in Figure 2.1 is set [35].

The memory format contains two register numbers (RA and RB) and a 16-bit displace-
ment field. It is used for loads, stores, jumps, and some Metal instructions. In load and
store instructions, the RA value and the sign-extended displacement are used to calculate
the virtual byte address and RB is the source register in stores and destination register
in loads. For jump instructions, the RB value and the sign-extended displacement specify
the target address, and RA is used to save the program counter (PC) [35].

Branch format includes a 5-bit register number field (RA) and a 21-bit displacement
field. This format is used for branch instructions and also two Metal instructions. The
displacement is used to calculate the PC-relative target address. In conditional branches,
RA is tested against the condition specified by the opcode and in unconditional branches,
RA is used in a similar fashion to jump instructions [35].

Metal instructions are explained in section 3.3.3. There is another instruction format
in Alpha architecture that is used for PALcode. We do not need this format because Metal
replaces PALcode.

4

2.3 µAlpha Design

Figure 2.2 shows an overview of the µAlpha design with its major functional units. The
general design is similar to the Alpha processor presented in [12]. The execution box (EBox)
is connected to all other components and contains the fetch, decode, and control units. The
integer register file (IRF) contains the integer register file and data forwarding paths and
provides two operands to the IBox. The integer box (IBox) is the integer arithmetic and
logic unit and produces a 64-bit result that is either a calculated address for accessing the
memory or a value that needs to be saved in one of the registers. The memory box (MBox)
contains the memory reference unit. It gets input from the IRF and the IBox and issues
loads and stores to the data cache. Additionally, the MBox delivers the write-back data
to the IRF. The ICache and DCache are instruction and data caches. They both connect
to the L2 cache through the bus interface (BI). The MetalMem is a memory that keeps
Metal instructions, which is similar to a microcode ROM in other architectures. Metal
design is explained in Chapter 3. The following sections give a detailed description of each
functional unit.

2.4 Pipeline Organization

We use a 5-stage pipeline for executing Alpha instructions efficiently. In Figure 2.3 the
pipeline is demonstrated with the main functional units. The five stages of the pipeline
are described in the following paragraphs.

• Stage 1: Instruction Fetch
In this stage, an instruction is read from either the ICache or the Metal memory
based on the range of the PC. Also, the calculation to determine the next PC is
performed during this stage. The fetched instruction is passed to the decoder and
pipeline controller. The instruction fetch unit is implemented in the Ebox.

• Stage 2: Register Read
The second stage of the pipeline is handled by the IRF. During this stage, the
operands are read from the integer register file. The data from the registers, dis-
placement, literal, or the bypass data is saved and passed to the next stage. If the
instruction is branch, jump, or Metal enter or exit, the target address is determined
during this stage. For conditional branches, this means the register value is also
compared against the specified condition.

5

MetalMem ICache

Execution Box (EBox)

Integer Box
(IBox)

Integer
Register
File (IRF)

Memory Box (MBox)

DCache

Bus
Interface

Figure 2.2: µAlpha general design diagram.

6

IRF IBox MBox IRFEBox

Stage 1
Instruction Fetch

Stage 2
Register Read

Stage 3
Execute

Stage 4
Memory Access

Stage 5
Write Back

Figure 2.3: Pipeline organization.

• Stage 3: Execute
The execution stage occurs in the IBox where all calculations are performed on the
input operands and the result is saved for the next stage.

• Stage 4: DCache Access
This stage is implemented as a part of the MBox. Load and store instructions access
the data cache and Metal instructions can read and write the Metal register file
during this stage.

• Stage 5: Write Back
In the last stage of the pipeline, instructions write their result into the destination
register. The register file is accessed at the same time in stage 2 and 5 of the pipeline.
To avoid a resource hazard, the register file performs the write operations in the first
half of the cycle for stage 5 and read operations in the second half cycle for stage 2.

2.4.1 Pipeline Hazards

Data Hazards

All instructions in the pipeline are executed in order and the only type of data dependency
that can cause a hazard in the pipeline is read after write. The register read is performed
in the second half cycle of stage 2 and register write is completed in the first half cycle of
stage 5. So, the problem occurs when the destination register of an instruction is the same

7

as one of the source registers of the immediate next instruction or the one after that. We
use data forwarding to ensure the correctness of the execution in these situations.

Control Hazards

We use bubbling to eliminate control hazards that occur after branch, jump, and Metal
enter and exit instructions. The pipeline controller inserts a bubble after these instructions,
to make time for the target address to be calculated and loaded to the PC.

2.5 EBox: Fetch and Decode

Figure 2.4 shows the internal design of the EBox which can be divided into three sections:
instruction fetch logic, instruction decode logic, and pipeline controller.

2.5.1 Instruction Fetch

Instruction fetch logic is shown in Figure 2.5. It contains a Program Counter (PC) table
that keeps the virtual addresses of all in-flight instructions in the pipeline. It also contains
the logic for updating the PC. Only one instruction per cycle is fetched. If the virtual
instruction address is within the last 64KB of the address space, the instruction is fetched
from the Metal memory, otherwise, it is fetched from the ICache (Check Range unit in
Figure 2.4). We explain Metal in more detail in Chapter 3. The next instruction address
is calculated based on the category of the previous instruction that is now in Stage 2 of
the pipeline. The following list explains the next address calculation after each type of
instruction (illustrated as Mux 1 inputs in Figure 2.5).

• Branch: The comparator tests the value of register RA against the condition specified
by the opcode. The PC gets the target address only if the condition is satisfied. To
calculate the target address, the displacement bits in the instruction are shifted 2
bits to the left, sign-extended to 64 bits, and then added to the updated PC.

• Jump or Exit Metal: PC gets the target address directly from register RB. The two
least significant bits of RB are ignored.

• Enter Metal: The first 6 bits of displacement are shifted 2 bits to the left, sign-
extended to 64 bits, and then added to the starting address of Metal memory.

• Other: The next address is simply calculated by adding 4 to the current PC.

8

virtual_address

Fetch
Unit Check

Range

Mux
stall

instructions

Pipeline
Controller

Decoder

instruction

ICache

instruction

Metal Memory

0 1
IStall

EBox

Figure 2.4: EBox block diagram.

2.5.2 Instruction Decode

The decoder consists of a combinational logic that prepares the inputs for other hardware
units based on the instructions in the pipeline. Some instruction bits are used directly and
others go through a set of logic gates.

2.5.3 Pipeline Controller

The pipeline controller keeps all the in-flight instructions. It contains the hazard detection,
the stall logic, and the exception logic. Figure 2.6 shows the pipeline controller diagram.
It inserts a NOP instruction after branch, jump, MENTER, and MEXIT instructions. It
also inserts a bubble when a load or MRPCR dependency occurs. This type of data hazard
is explained in Section 2.6.1. When an exception is generated in stage 3 or 4, the pipeline
controller kills the instructions in the earlier stages. Another function of this unit is stalling
the pipeline when a stall signal is received from the ICache or the DCache.

9

Mux
1

+ PC+4

+ br_addr

reg_b
jmp_addr

menter_addr

0

1

2

3

4

<<2br_disp sign
extend

~3

<<2mem_disp sign
extend

21 64

16 64

menterjump
mexit

menter
branch

reg_a

Compare
ctrlreg

0

1

exc_addr
stall

exception

Mux
2

1

0

2 01

PC PC2 PC3 PC4

virtual_address

PC Table

Fetch Unit

~0xffff

clk

Figure 2.5: Fetch unit block diagram.

10

ins1

Mux
1NOP

clk

ins2

Reg Mux
2NOP

0

1

2

0

1

2

clk

ins3

Reg Mux
3NOP

0

1

2

clk

ins4

Reg Mux
4NOP

0

1

clk

ins5
Reg

m4_sel

m3_selm2_sel

m1_sel

stall_pc
Hazard Control

Pipeline Controller

Figure 2.6: Pipeline controller block diagram.

2.6 IRF: Register File

Figure 2.7 shows the internal design of the IRF which consists of a register file and logic
for delivering two operands to the IBox. The register file has two asynchronous read ports
and one synchronous write port and keeps 32 64-bit registers (R0-R31). The value of
R31 is always zero and any write to this register is ignored. In Figure 2.7, read addresses
read addr1 and read addr2 come directly from instruction bits, but write inputs write addr,
write data, and write en are received from the MBox.

The IRF sends two 64-bit operands,A and B, to IBox. Mux 3 and mux 4 in Figure 2.7
select the source of these operands. In load and store instructions, A is the sign-extended
displacement and B comes from the register file or forwarding paths. Operate format
instructions use the register file output or bypass data as the source operands. If they
contain a literal constant, B comes from the sign-extended literal. In jump or MENTER

instructions, the updated PC value is passed to the IBox.

11

ra_addr

Register
File

5

rb_addr
5

write_addr 5

write_data
64

write_en

clk

bypass_data1

fwd_a

Mux
1

1

0
64

out1

out2

bypass_data2 fwd_b

Mux
2

64

is_literal

Mux
4

Sign
Extendliteral

pc2

ld_st

Mux
3displacement

Sign
Extend

64

64

8 64

64

64

64
16

64

1

0

0

1

2

0

1

menter jmp

01
64

64

A

B

IRF

Figure 2.7: IRF block diagram.

2.6.1 Operand Forwarding

In Figure 2.7, Mux 1 and Mux 2 select between the register file output and the bypass
data from other stages. Assume three consecutive instructions as follows:

i1 ra1, rb1, rc1

i2 ra2, rb2, rc2

i3 ra3, rb3, rc3

When i3 is in the second stage of the pipeline, the bypass data1 shown in Figure 2.7 comes
from:

1. The IBox result in stage 3, if i2 is an operate format instruction and ra3 is the same
as rc2, also if i2 is a jump or MENTER instruction and ra3 is the same as ra2.

2. The IBox result in stage 4, if the above conditions exist with i1 instead of i2.

3. The data read from the DCache in stage 4, if i1 is a load instruction and ra3 is the
same as ra1.

12

4. The Metal register file output in stage 4, if i1 is a MRPCR instruction and ra3 is the
same as ra1.

5. The value of rb2 in stage 3, if i2 is a conditional move instruction and ra3 is the
same as rc2.

6. The value of rb2 in stage 4, if i1 is a conditional move instruction and ra3 is the
same as rc1.

The bypass data2 is generated the same way, but rb3 is checked instead of ra3.

The above list includes all data hazard cases except for one. If i2 is a load or MRPCR

instruction and ra3 or rb3 are the same as ra2, then the register value that i3 needs in
stage 2 is not ready in any stages of the pipeline. In this case, the pipeline controller adds
a NOP instruction between i2 and i3. After that, bypass data is set in a similar fashion
to cases 3 and 4 of the above list.

2.7 IBox: Integer Operations

IBox is the Arithmetic and Logic Unit (ALU) that executes 64-bit integer operations in
one cycle. Figure 2.8 shows the IBox diagram which contains the following units:

• U1 that consists of a 64-bit barrel shifter, an adder, a logic unit that performs AND,
OR and XOR operations, and a compare unit (Figure 2.9).

• U2 that is a multiplier used for longword multiply (MULL), quadword multiply
(MULQ) and unsigned quadword multiply high (UMULH) instructions.

• U3 that is used for the following instructions:

– Pixel error (PERR)

– Count leading zero (CTLZ), Count population (CTPOP), Count trailing zero
(CTTZ)

– Pack bytes (PKxB), and unpack bytes (UNPKBx)

• U4 that executes mask (MSKxx), insert (INSxx), extract (EXTxx), and zero bytes
(ZAPx) instructions (Figure 2.10).

13

B
A

U1

U2

U3

U4

mux1_outMux
1

64

64

64

64

Mux
2

Sign
Extendmux1_out<31:0>

64

64

64

32 64
ibox_result

64

IBox

B
A

64

64

B
A

64

64

B
A

64

64

Figure 2.8: IBox block diagram.

n

B<5:0>

Mux
1

6

6

0

1

A

ctrl

Shifter
64

6

2

ctrl

result
ALU

64

B

ctrl

6464
u1_outMux

2

Compare
Unit

64

xor_in

64

64

64

diff 64

IBox U1

ctrl

~7

Figure 2.9: IBox U1 block diagram.

14

A

B<2:0>

ctrl

MSK/INS/
EXT Unit u4_outByte ZAP

Mux
1

B<7:0>

ctrl

input

mask

64

3

5

64

8

8

8

64

IBox U4

Figure 2.10: IBox U4 block diagram.

2.8 MBox: Memory Operations

MBox is the memory reference unit that performs load/store, Metal load/store (MLD/MST),
and Metal read/write processor control register (MRPCR/MWPCR) instructions. As
shown in Figure 2.11, the MBox is made up of the following components.

• DCache control unit: interfaces to the data cache, sign-extends or zero-extends the
memory value, and keeps a locked flag to implement load-locked (LDx L) and store-
conditional (STx C) instructions

• Metal registers: A 16-entry register file that can be accessed with MWPCR and
MRPCR instructions when the processor is running in Metal mode

• Register write-back unit: Prepares the data and the address for writing in the regis-
ters. The write data can be the result of an integer operation, the memory value for
a load instruction, the updated PC for a jump or MENTER, or the register value for
a conditional move or MRPCR.

2.9 Cache

The cache hierarchy in our implementation is shown in Figure 2.12. We use three levels of
8-way set-associative caches with the specifications summarized in Table 2.1. For simplicity
of the cache coherence protocol, L1 and L2 caches use the write-through policy, and L3
which interfaces with the memory uses the write-back policy.

15

ibox_result
reg_a

mem_write_en

DCache
Control Unit

64
64

addr

data

r/w

clk

Reg
64

ctrl

Sign/Zero
Extend reg_w_dataMux

1

clk

Reg

reg_b

64

64

clk

Metal
Register

File

64

0
1

0

1

2

3

64

output
rb_addr

exc

Mux
3

ibox_result
pc

exc

Mux
4

4

64

write_en

addr

w_data

r/w

0

1

0

1

rc_addr

ra_addr

reg_w_addrMux
2

5

menter ld_st

0

1

clk

ibox_result[0] Reg

reg_w
reg_w_en

cmov

MBox

mrpcr ld_st

jumpmrpcr

15

Figure 2.11: MBox block diagram.

Table 2.1: Specifications of different levels of the cache hierarchy.

Level Associativity Block Size Sets Size Write Policy
L1-Instruction 8 64 B 64 32 KB Write Through
L1-Data 8 64 B 64 32 KB Write Through
L2 8 64 B 512 256 KB Write Through
L3 8 64 B 4096 2048 KB Write Back

16

L1i L1d

CPU

Arbiter

L2

Arbiter

Core 2

Core 1

...

L3

Memory

Figure 2.12: Cache hierarchy.

17

Table 2.2: PLRU lookup and state transitions (x means do not care, means unchanged).

Current State PLRU Index
00x0xxxs 0
00x1xxx 1
01xx0xx 2
01xx1xx 3
1x0xx0x 4
1x0xx1x 5
1x1xxx0 6
1x1xxx1 7

Referenced Block Next State
0 11 1

1 11 0

2 10 1

3 10 0

4 0 1 1

5 0 1 0

6 0 0 1

7 0 0 0

2.9.1 Replacement Policy

The replacement policy in all caches is tree-based pseudo-LRU. Tree-PLRU is an efficient
and practical method of implementing the Least Recently Used (LRU) policy which uses
a binary search tree to keep track of recently accessed cache blocks in each set. Each node
of the tree has a binary flag showing whether the PLRU block resides in the left or right
subtree of the current node. To find the PLRU block, the tree should be traversed from
the root according to the flags. And, upon accessing a block, the binary flags on the path
from that block to the root are flipped.

In an 8-way set-associative cache the PLRU tree state can be represented in 7 bits.
Table 2.2 shows the mapping from the current state to the PLRU block and also the state
transition when a block is referenced. For example, if the cache receives a write request to
an address located in block 0 of a set, according to Table 2.2, the first, second, and fourth
bits of its current state change to 1. Another example is when a cache miss occurs, and
one of the blocks in a set needs to be replaced with the new data. For instance, if the
current state of the matching set is 1111000, then block 6 is evicted and replaced. When
the new block is read, the PLRU state changes to 0101001.

2.9.2 Arbiter

We design a bus arbiter to connect two or more upper-level caches to a lower level cache.
Figure 2.13 shows the arbiter ports and connections to two levels of caches. The state

18

r_data_i grant_i stall_i

{r_en_i,
w_en_i,
addr_i,
w_data_i}

Arbiter

{r_en_i,
w_en_i,
addr_i,
w_data_i}

CUL_i

req_i =

CUL_i+1

...

r_data stall

CLL

req =

Figure 2.13: Arbiter interface.

machine for the arbiter is demonstrated in Figure 2.14. It forwards requests and answers
using a round-robin scheme.

2.9.3 Cache Implementation

Figure 2.15 shows the cache interface to upper and lower-level resources. The upper level
is the CPU for L1 and arbiter for other caches. The lower level is the memory for L3 and
arbiter for others. The inv, and inv addr ports only exist in L1 and L2 caches, and st c
only exists in L1.

The cache design includes a data store and two modules that are shown in Figure 2.16.
The data store contains a number of sets indexed by idx bits of the address. Each set
keeps several blocks and an LRU state. Inside a block, tag, v (valid), d (dirty), and data
fields are stored. The tag finder module searches for a specific block based on tag and
idx inputs, if it exists inside the cache and is valid, the hit signal is set and bid gives the
block number. The PLRU8 unit shown in Figure 2.16 implements the replacement policy
as described in section 2.9.1. This module gets the LRU state of a set and the referenced
block number and produces the next state and also the LRU block number. The tag finder
and PLRU8 have combinational logic and do not change any states.

19

r_en_i
||

w_en_i

! stall

Round Robin Grant

WaitForward

grant_i = 0
i = (i + 1) % n

r_data_i = r_data
stall_i = 0

! r_en_i
&&

! w_en_i
grant_i = 1

req = req_i
stall_i = 1stall

Figure 2.14: State machine for the bus arbiter.

addr_i
{tag, idx, offset, byte}

Cache

w_data_i
r_data_o

w_en_i
r_en_i
stall_o

st_c

addr_o
w_data_o
r_data_i
w_en_o
r_en_o
stall_i
grant
inv
inv_addr

Upper Level Lower Level

Figure 2.15: Cache interface.

b

tag
idx

hit

bid

Tag
Finder

Cache
DS

lru_state[idx]

bid

LRU

next_state
PLRU8

Figure 2.16: Tag finder and PLRU8 units inside a cache.

20

The state machine of cache is illustrated in Figure 2.17. WT is a parameter, not an in-
put signal, which is only used at the module generation time and determines whether
the cache is write-through. Since L3 is write-back, it does not have Write Through,
WT Granted, and WT Done states. Both write-through and write-back caches use write
allocate approach when a miss occurs. Conditional stores are handled by L1, therefore,
Fail and Conditional Store states only exist in L1. Figure 2.17 summarizes the overall
operation of the cache except for cache coherency which is explained in the next section.

2.9.4 Cache Coherence

We use bus snooping for maintaining cache coherency. The w en i and w addr i signals
of the L3 cache are connected to inv and inv addr of L2 and L1 caches respectively. The
snooping unit works in parallel with the main operation of the cache. A separate tag finder
module is used to find inv addr in its corresponding set. If inv is high and inv addr exists
in the cache (and the current cache is not the one writing to this address), the valid bit
of matching block is set to 0. Additionally, if the cache receives an invalidation in the
middle of processing a read or a write to the same address, in L2 caches, the current state
immediately changes to Idle and L1 caches go to the Search state. In this case, the request
is retried from the top by L1.

2.9.5 Lock Mechanism

Load locked and store conditional instructions are used in pairs to perform atomic memory
updates. The processor keeps a lock flag that is set by LDx L instructions. The succeeding
STx C instruction only executes if the lock flag is still set. The lock flag is cleared after a
conditional store or a context switch. In this case, if the program is interrupted between
an LDx L/STx C pair, the store fails. To guarantee that the locked data is not modified
by another core, the L1 only executes a conditional store on a cache hit. A successful
STx C comes after an LDx L without any other memory references in between, therefore,
the requested address should be available on the cache. If a miss occurs, it means that
another core might have written to the same address and the data is invalidated. As shown
is Figure 2.17, r data o is 1 when conditional store succeeds and 0 when it fails.

21

r_data_o = b[idx][bid].data
stall_o = 0

Read

r_en_i

w_en_i

b[idx].LRU_state = next_state
Hit

WT

!WT
Write

b[idx][bid].data = w_data_i
if !WT: b[idx][bid].d = 1

grant

Write_Through

! stall_i
! st_c

WT_Granted
addr_o = addr_i
w_data_o = b[idx][bid].data
w_en_o = 1

st_c

stall_o = 0
WT_Done

r_data_o = 1
Conditional_Store

r_en_i
|| w_en_i

Idle

! hit && ! st_c &&
(WT || ! b[idx][LRU].v
|| ! b[idx][LRU].d)

! hit
&& st_c

stall_o = 1
Search

grant

Evict

! stall_i Evict_Granted
addr_o = {b[idx][LRU].tag, idx, 0}
w_data_o = b[idx][LRU].data
w_en_o = 1grant

Fetch

! stall_i

Fetch_Granted
addr_o = addr_i
r_en_o = 1

Fetch_Done
b[idx][LRU].v = 1
b[idx][LRU].d = 0
b[idx][LRU].tag = tag
b[idx][LRU].data = r_data_i

hit

! hit && ! WT && ! st_c
&& b[idx][LRU].v
&& b[idx][LRU].d

Fail
r_data_o = 0
stall_o = 0

! grant

! grant

! grant

stall_i

stall_i

stall_i

Figure 2.17: State machine for the cache. The inputs and outputs shown in this state
machine are based on the signals shown in Figure 2.15 and Figure 2.16 (WT is a module
parameter, not an actual input).

22

Chapter 3

Metal: An Alternative Privileged
Architecture

3.1 Overview

The privileged architecture for many systems consists of functions implemented in hard-
ware and made available to the operating system through instruction set extensions. This
means changing the existing mechanisms or creating new designs is impossible for oper-
ating system developers. We propose Metal, a new abstraction that allows the privileged
architecture to evolve through software rather than hardware. In the following sections,
we describe the Metal design and implementation.

3.2 Metal Design

3.2.1 Design Overview

The Metal architecture consists of a special operating mode, six new instructions, and some
processor control registers (PCR). It replaces the privileged architecture of conventional
systems. We consider the following design goals for Metal:

• Instantaneous control transfers to Metal mode

• Interpose on the operating system, hypervisors, and applications

23

• Secure from the system software component

Only two operating modes exist in Metal, normal mode, and Metal mode. Transitions be-
tween these two modes are available through two new Metal instructions. All architectural
features of the processor are controlled in Metal mode through the addressable processor
control register space.

Any number of privilege levels can easily be implemented with Metal. Changing the
privilege mode is done by a Metal call. The processor enters the Metal mode and then
checks the legality of the transition between the two privilege modes. If the transition is
allowed, it properly changes the state in PCR and then exits to normal mode and returns
control to the target. Application, kernel, or hypervisor code all run in normal operation
mode.

3.2.2 Design

The Metal architecture consists of Metal memory, registers, and instructions which can be
added to any microarchitecture. Metal code is written in standard machine code with the
addition of Metal instructions and is kept in a microcode-like RAM for fast access. The
six new instructions used by Metal are listed in Table 3.1. MENTER instruction changes
the operation mode from normal to Metal and then jumps to an address in Metal memory.
In contrast, MEXIT is used for leaving the Metal mode. It performs like a regular jump
to a given location in the instruction address space. MWPCR and MRPCR are used to
move a value from general-purpose registers to Metal registers and vice versa. MLD and
MST bypass the memory management hardware and access the physical memory directly.
All Metal instructions except for MENTER can only be executed in Metal mode.

All architectural features are controlled through the addressable processor control reg-
ister space. Architectural features include basic CPU information, virtual memory, perfor-
mance counters, and registers reserved for Metal.

3.3 Metal Implementation

This section describes our implementation of Metal for Alpha architecture in µAlpha.

24

Instruction Description

MENTER Enter Metal Mode
MEXIT Exit Metal Mode
MRPCR Metal Read Processor Control Register
MWPCR Metal Write Processor Control Register
MLD Metal Load from Physical Memory
MST Metal Store to Physical Memory

Table 3.1: Instructions for the Metal architecture.

3.3.1 Metal Memory

The last page (64 KB) of the address space is assigned to Metal. If the PC value falls in
this range, the instruction is fetched from the Metal RAM in pipeline stage 1. The Metal
RAM resembles the microcode storage in microcode machines. Metal programs are loaded
in this RAM for low latency control transfers.

The first 64 words of the RAM act as a table for Metal subroutines. They are the entry
points for Metal calls and can be filled with jumps to different subroutines. We explain
more about Metal calls in section 3.3.3.

3.3.2 Metal Registers

We use a 32-entry register file as the processor control registers, MR0 to MR31. Similar to
load and stores to the main memory, this register file is accessed in stage 4 of the pipeline
in order to move a value from general registers to Metal registers or vice versa. These
registers can be used for any purpose in a Metal code, for example, to keep the user/kernel
status.

3.3.3 Metal Instructions

We use the branch format for MENTER and MEXIT instructions and the memory format
for the other Metal instructions. Table 3.2 lists the format and operation of each Metal
instruction.

MENTER saves the old PC in RA and then updates it with a Metal address based
on the number specified in the displacement field. For example MENTER R26,#1 jumps to

25

Instruction Format Operation

MENTER Ra, disp Branch format

{update PC}

Ra <- PC

va <- {4 * ZEXT(disp)} AND 0x3f

PC <- va OR 0xffffffffffff0000

PS <- 1

MEXIT Ra, disp Branch format
PS <- 0

PC <- Ra

MRPCR Ra, MRb, disp Memory format
IF PS == 1 THEN

Ra <- MRb

MWPCR Ra, MRb, disp Memory format
IF PS == 1 THEN

MRb <- Ra

MLD Ra, Rb, disp Memory format
IF PS == 1 THEN

pa <- Rb + SEXT(disp)

Ra <- (pa)

MST Ra, Rb, disp Memory format
IF PS == 1 THEN

pa <- Rb + SEXT(disp)

(pa) <- Ra

Table 3.2: The format and operation of the Metal instructions.

the second instruction in Metal RAM which has the address 0xffffffffffff0001, and saves the
return address in R26.

As mentioned in the previous sections, there are two processor modes, Metal and nor-
mal. The current mode is stored in the Processor Status mode bit (PS). MENTER enters
the Metal mode and MEXIT leaves it by changing the PS. MRPCR, MWPCR, MLD, and
MST instructions only execute if the PS is set to Metal mode.

3.3.4 Security

The Metal code and data are isolated from the operating system, so the OS can not tamper
with them directly. In addition to separated instruction RAM and register file, Metal keeps
its data in a small portion of the main memory which is hidden from the system software
and can only be accessed with MLD and MST instructions.

MENTER can only jump to the first 256 bytes of the Metal RAM. This prevents the
programs from bypassing the security checks by jumping in the middle of Metal subroutines.

26

Even if a normal jump is used for entering the Metal code, the processor mode has not
been changed to Metal so Metal instructions (MWPCR, MRPCR, MLD, and MST) can
not be executed and Metal data remains secure.

3.3.5 Exception Handling with Metal

When executing an instruction generates an exception, the following steps are taken:

• The address of the instruction causing the exception is saved in one of the processor
control registers. Metal register 15 is reserved for this purpose.

• Instructions in the earlier stages of the pipeline are killed.

• The processor status bit (PS) is set to Metal mode.

• The PC is loaded with the address of the Metal subroutine for handling exceptions.

27

Chapter 4

Metal Applications and Evaluation

This chapter describes our implementation of system calls and transactional memory as
two examples of Metal application. Metal can be used in many different areas to improve
the security and reliability of future operating systems. We discuss some other applications
and benefits of Metal at the end of this chapter. Finally, we provide a qualitative evaluation
of the Metal programming model.

4.1 System Calls

In this section, we describe a system call example that we implemented using Metal. Fig-
ure 4.1 shows the mechanism of a system call for a UNIX-like operating system. Privilege
levels, in this case, user and kernel, are defined by Metal. We use one of the Metal regis-
ters (MR0) to keep the privilege mode. This is different from the processor status register
which keeps the Metal/normal mode. Two Metal subroutines, syscall and sysreturn,
are defined for transitions between the privilege levels. The syscall code is as follows:

1 # Input: Syscall number in R16

2 SyscallEntry:

3 MWPCR R31, MR0, 0 # Set to kernel mode

4 AND R16, 0x3f, R1 # Syscall number range

5 SLL R1, 3, R1

6 LDQ R1, R1, SYS_TABLE_ADDR # Read syscall table

7 MEXIT R1, 0 # Jump to syscall code

Listing 4.1: Syscall implementation in Metal.

28

MENTER

MEXIT

MENTER

MEXIT

#SYSCALL
Entrypoint

User
Program

OS
Syscall
Handler

#SYSRET
Routine

User
Program

User Mode

Kernel Mode

User Mode

Normal Mode Metal Mode

Figure 4.1: A typical Metal call. The mechanism’s strength lies in its simplicity and
generality.

29

First, the code sets the mode register (MR0) to 0, which means the kernel mode, and
then looks up the syscall number in the syscall table and jumps to the obtained address.
By using MEXIT to jump to the syscall code, we leave the Metal mode but remain in kernel
mode. In order to execute a system call, The user needs to put the system call number in
an argument register (R16) and then use MENTER with the syscall subroutine number,
which is 1 in our implementation. The return address should be saved in R26. The return
address and other possible arguments are passed to the OS syscall code. The following
example shows calling system call number 1 with an argument set to 0:

1 ADDQ R31, 0x1, R16

2 ADDQ R31, R31, R17

3 MENTER R26, 1

Listing 4.2: Example of using a system call.

Every system call code starts with saving the return address and ends with calling the
sysreturn subroutine and passing the return address to it. The following code shows a
system call example:

1 ADDQ R31, R26, R9 # Back up return address

2 ADDQ R31, R31, R16

3 MENTER R26, 3 # Read the protected data (MR1) [Output: R27]

4 ADDQ R27, 1, R17 # Increment by 1

5 ADDQ R31, 1, R16

6 MENTER R26, 3 # Write the protected data [Input: R17]

7 ADDQ R31, R9, R26 # Restore return address

8 MENTER R31, 2 # Sysreturn

Listing 4.3: Example of a system call.

At line 8 of the above code, MENTER is used with R31 (which is ignored as a destina-
tion register) because the next instruction address is not needed and the execution never
returns to this point. The following code shows the sysreturn subroutine:

1 # Input: Return address in R26

2 SysreturnEntry:

3 ADDQ R31, 1, R1

4 MWPCR R1, MR0, 0 # Set to user mode

5 MEXIT R26, 0 # Return to user code

30

Listing 4.4: Sysreturn implementation in Metal.

The privileged reads from and writes to a protected memory location or register are
performed by Metal subroutines in which the current mode is checked before accessing
the secured data. An exception is generated if these Metal subroutines are called outside
of a system call where the code is running in user mode. In the above example, Metal
subroutine number 3 is called for reading and writing to MR1 which contains a value that
can only be modified in kernel mode. This subroutine is defined as follows:

1 # R16: Read or write, R17: write data, R27: read data

2 MRPCR R1, MR0, 0

3 BNE R1, 5 # Check kernel mode

4 BEQ R16, 2

5 MWPCR R17, MR1, 0 # Write

6 MEXIT R26, 0

7 MRPCR R27, MR1, 0 # Read

8 MEXIT R26, 0

9 MWPCR R26, MR15, 0 # Exception

10 ADDQ R31, R31, R16

11 MENTER R31, 0 # Jump to exception handler

Listing 4.5: Metal subroutine for reading and writing in a protected register.

4.2 Transactional Memory

Transactional memory is a concurrency control mechanism similar to database transactions
and provides controlled access to regions of the memory that are shared between concurrent
processes. Transactional memory was originally proposed to be implemented in hardware.
It was first introduced by Knight [24] and then popularized by Herlihy and Moss [17].
Shavit and Touitou [32] propose a software-only implementation for the first time that can
be implemented on arbitrary hardware using load-linked/store-conditional primitives.

In this section, we present a simple transactional memory (TM) interface implemented
in Metal that provides controlled access to specific regions of memory that are shared
between several processes. Those regions of memory are only accessible through atomic
and serializable transactions and are protected against direct modifications by user-space
processes. Atomicity ensures that either all changes made by a transaction are applied (in

31

case transaction successfully commits) or none of them are applied (in case transaction
fails). Serializability ensures that changes made by transactions appear to be the result
of running transactions in a specific sequential order (i.e., the steps of one transaction are
never interleaved with the steps of another transaction).

The simple transactional memory that we implement requires two global variables called
Global_Lock and Global_Version that should reside in a memory address that is private
to Metal (not accessible from user-space). Global_Lock is set to 1 when a transaction is
being committed and is 0 when no transaction is currently committing. Global_Version

is a counter that keeps track of the version of the TM which is increased by one whenever
a transaction is successfully committed.

Our transactional memory implementation is composed of five Metal subroutines: TInit,
TStart, TRead, TWrite, and TCommit. TInit initializes the TM interface globally and
should be called only once. The rest of the subroutines are specific to a single transaction.
A buffer called LogStruct should be allocated by the user-space process that is starting a
new transaction. This buffer will contain all information and buffers for a single transac-
tion and needs to be passed to all TM calls related to that transaction. Also, all read and
write operations are done on quad-words and physical address is used for read and write
operations.

4.2.1 TInit

TInit is called only once before all TM operations. It initializes the Global_Lock and
Global_Version to 0 to enable the correct functionality of other subroutines. Code 4.6
shows TInit subroutine.

1 TInitEntry:

2 MST R31, R31, VERSION_ADDR # Reset Global_Version to 0

3 MST R31, R31, LOCK_ADDR # Reset Global_Lock to 0

4 MEXIT R26, 0 # Return

Listing 4.6: TInit implementation in Metal (no inputs and outputs).

4.2.2 TStart

TStart is called to start a new transaction. It will initialize the LogStruct buffer allo-
cated by the user code to represent an empty transaction created at that time. The size

32

of the allocated LogStruct should be at least 2 + MAX WRITES × 2 quad-words with
MAX WRITES being the maximum number of writes allowed for the transaction. Fig-
ure 4.2 shows the different fields inside the LogStruct buffer. TStart sets the ”Write Buffer
Length” field to 0 and copies the current Global_Version to the Start_Version field.
Start_Version is examined at commit time to check if another transaction has been com-
mitted since this transaction has begun. Write buffer keeps track of all modifications made
in the transaction by storing (Written Address, Written Value) pairs.

Start Version
Write Buffer

Length
Write Buffer

Address1

Write Buffer
Value1

... Write Buffer Write Buffer
Addressn Valuen

Figure 4.2: Structure of the LogStruct buffer for each transaction.

1 TStartEntry:

2 MLD R1, R31, VERSION_ADDR # Read Global_Version

3 STQ R1, R16, 0 # LogStruct.Start_Version = Global_Version

4 STQ R31, R16, 8 # LogStruct.Write_Buffer_Length = 0

5 MEXIT R26, 0 # Return

Listing 4.7: TStart implementation in Metal (Input: LogStruct address at R16, Output:
None).

4.2.3 TRead

TRead is used to perform a read operation in a transaction. TRead scans the write buffer
in the LogStruct to see if the read address is previously written in the current transaction.
If it is written, it returns the modified value from the write buffer. Otherwise, it returns
the value directly read from the physical address.

1 TReadEntry:

2 LDQ R1, R16, 8 # R1 = LogStruct.Write_Buffer_Length

3 ADDQ R31, R31, R2 # R2 = 0 (Loop Iterator)

4 loop:

5 CMPLT R2, R1, R3. # R3 = R2 < R1 (Loop Condition)

6 BEQ R3, +9 (loop_end) # Break loop if R2 >= R1 (Buffer Length)

7 SLL R2, 4, R3 # R3 = R2 x 16 (2 words)

8 ADDQ R16, R3, R3 # R3 += LogStruct address

33

9 LDQ R4, R3, 16 # R4 = LogStruct.Write_Buffer[R2].address

10 CMPEQ R4, R17, R5 # R5 = R4 == read_address

11 BEQ R5, +2 (continue) # Go to next iteration if R5 is False

12 LDQ R27, R3, 24 # Result = LogStruct.Write_Buffer[R2].value

13 BR R31, +3 (exit) # Break Loop and Exit

14 continue:

15 ADDQ R2, 1, R2 # Increment R2 (Loop Iterator)

16 BR R31, -11 (loop_start) # Loop

17 loop_end:

18 MLD R27, R17, 0 # Read the actual physical address

19 exit:

20 MEXIT R26, 0 # Return

Listing 4.8: TRead implementation in Metal (Input: LogStruct address at R16, Read
physical address at R17, Output: Read value in R27).

4.2.4 TWrite

TWrite is used to perform a write operation in a transaction. TWrite scans the write buffer
in the LogStruct to see if the write address is previously written in the current transaction.
If it is written, it updates its value in the write buffer. Otherwise, it increases the length
of the write buffer by one and adds the new (Address, Value) pair to the write buffer.

1 TWriteEntry:

2 LDQ R1, R16, 8 # R1 = LogStruct.Write_Buffer_Length

3 ADDQ R31, R31, R4 # R2 = 0 (Loop Iterator)

4 loop:

5 CMPLT R2, R1, R3 # R3 = R2 < R1 (Loop Condition)

6 BEQ R3, +9 (loop_end) # Break loop if R2 >= R1 (Buffer Length)

7 SLL R2, 4, R3 # R3 = R2 x 16 (2 words)

8 ADDQ R16, R3, R3 # R3 += LogStruct address

9 LDQ R4, R3, 16 # R4 = LogStruct.Write_Buffer[R2].address

10 CMPEQ R4, R17, R5 # R5 = R4 == write_address

11 BEQ R5, +2 (continue) # Go to next iteration if R5 is False

12 STQ R18, R3, 24 # LogStruct.Write_Buffer[R2].value = R18

13 BR R31, +8 (exit) # Break Loop and Exit

14 continue:

15 ADDQ R4, 1, R4 # Increment R2 (Loop Iterator)

16 BR R31, -11 (loop) # Loop

17 loop_end:

18 SLL R1, 4, R2 # R2 = Buffer Length (R1) x 16 (2 words)

34

19 ADDQ R16, R2, R2 # R2 += LogStruct address

20 STQ R17, R2, 16 # LogStruct.Write_Buffer[R1].address = R17

21 STQ R18, R2, 24 # LogStruct.Write_Buffer[R1].value = R18

22 ADDQ R1, 1, R1 # Increment buffer length by 1

23 STQ R1, R16, 8 # LogStruct.Write_Buffer_Length = R1

24 exit:

25 MEXIT R26, 0 # Return

Listing 4.9: TWrite implementation in Metal (Input: LogStruct address at R16, Write
physical address at R17, Write value at R18, Output: None).

4.2.5 TCommit

TCommit is used to commit a transaction. First, it attempts to acquire the Global_Lock by
performing a compare and swap operation (implemented using load-linked/store-conditional
primitives). If acquiring the lock is unsuccessful, it terminates and returns 0. If the lock
is acquired, it compares Global_Version to Start_Version stored in the LogStruct. If
the version does not match, it means that another transaction has committed since the
current transaction has begun. So, it releases the lock and returns 0. Otherwise, the cur-
rent transaction is successful and the write buffer should be flushed to the memory. In this
case, TCommit iterates over the (Address, Value) pairs in the write buffer and writes the
updated values to modified addresses. Then, it increments Global_Version by 1, releases
the Global_Lock and returns 1 to show a success.

Line 1 to Line 8 implement a compare and swap mechanism using the load-linked/store-
conditional primitives. Store conditional stores the new value only if the address is not
modified since the previous load-linked operation on the same address. Otherwise, it will
not perform the store and overwrites the source register with 0.

1 TCommitEntry:

2 LDQ_L R27, R31, 0x1008 # R27 = Global_Lock (load-linked)

3 CMPEQ R27, 0, R1 # R1 = Lock == 0

4 BNE R1, +2 (acquire) # If R1 is True, acquire the lock

5 ADDQ R31, 0, R27 # Otherwise, Result = 0

6 BR R31, +22 (exit) # Exit

7 acquire:

8 ADDQ R31, 1, R27 # R27 = 1

9 STQ_C R27, R31, 0x1008 # Global_Lock = 1 (store-conditional)

10 BEQ R27, +19 (exit) # If store conditional fails, exit

11 LDQ R1, R31, 0x1000 # R1 = Global_Version

35

12 LDQ R2, R16, 0 # R2 = Start_Version

13 CMPEQ R1, R2, R27 # R27 = (R1 == R2)

14 BEQ R27, +14 (release) # If R27 is False, release and exit

15 LDQ R1, R16, 8 # R1 = LogStruct.Write_Buffer_Length

16 ADDQ R31, R31, R2 # R2 = 0 (Loop Iterator)

17 loop:

18 CMPLT R2, R1, R3 # R3 = R2 < R1

19 BEQ R3, +7 (loop_end) # Break loop if R2 >= R1 (Buffer Length)

20 SLL R2, 4, R3 # R3 = R2 x 16 (2 words)

21 ADDQ R16, R3, R3 # R3 += LogStruct address

22 LDQ R4, R3, 16 # R4 = Write Address

23 LDQ R5, R3, 24 # R5 = Updated Value

24 STQ R5, R4, 0 # Store R5 in *R4

25 ADDQ R2, 1, R2 # Increment R2 (Loop Iterator)

26 BR R31, -9 (loop) # Loop

27 loop_end:

28 LDQ R1, R31, 0x1000 # R1 = Global_Version

29 ADDQ R1, 1, R1 # Increment R1

30 STQ R1, R31, 0x1000 # Global_Version += 1

31 release:

32 STQ R31, R31, 0x1008 # Release Lock

33 exit:

34 MEXIT R26, 0 # Return

Listing 4.10: TCommit implementation in Metal (Input: LogStruct address at R16, Out-
put: Commit (1) or Fail (0) in R27).

4.3 Other Applications

Metal is a powerful tool that enables the operating system developers to create new designs
and abstractions. It can be used to improve microkernel design and define flexible ring
models and inter-process communication (IPC) mechanisms. Many system features such
as hardware capabilities, security enclaves, and virtualization that were traditionally built
using microcode can be implemented with Metal.

4.3.1 Protection Rings and IPC Mechanism

Metal can be used to implement protection models beyond the basic user/kernel mode
abstraction, such as ring models akin to VMS [13] with four rings and Multics [30] with

36

seven rings. Metal also enables designs that are not strictly hierarchical. The Metal code
can easily enforce a flexible set of rules for various control transfers between rings.

Microkernels can use Metal to support fast transitions between a group of system ser-
vices. Metal allows fast remote procedure calls (RPCs) into system services without requir-
ing a full context switch. Applications or system services can quickly change permissions
using the TLB page keys (PKEYs). This is similar to the use of memory segmentation in
L3 and L4 microkernels to support fast RPCs [27].

4.3.2 Capability-based Security

Metal can enable a capability operating system through mechanisms similar to that of prior
systems. Metal can protect a region of physical memory to keep all of its data structures
and bookkeeping protected from even the operating system kernel. In this architecture,
Metal manages the memory layout and TLB hardware directly.

We can build a capability model by defining Metal subroutines for creating a domain,
destroying a domain, entering a domain, and exiting from a domain. Creating a domain
returns a capability that enables one to destroy or call into a domain. A domain can dele-
gate capabilities to sub-domains through a set of calls for manipulating capabilities. This
includes creating a capability associated with a domain, subsetting a capability, reading
the type of capability, reading the permissions, and reading the size. Another subroutine
is required for the domains to get the base pointer.

Memory capabilities represent regions of memory that will be mapped into a domain.
Memory mapped IO (MMIO) works similarly. Capabilities that give privileges to special
Metal routines to modify the processor are passed as arguments to the specific Metal
subroutine. Metal can provide coarse grain protection while compiler and language runtime
support can provide fine-grained capabilities for application code.

4.3.3 Secure Enclaves

A secure enclave provides an isolated and highly protected environment for running an
application and guarantees the security of its data at run-time. Secure enclaves can protect
the data even from physical attacks and root-level compromise. Many architectures have
built these mechanisms using a combination of hardware and microcode. On the other
hand, some research systems have shown how to implement enclaves in software. We can
use these software techniques to build secure enclaves in Metal, with minimum hardware
requirements.

37

4.3.4 Virtualization

Virtualization is a good example of a feature that can be implemented with Metal. Using
Metal for virtualization reduces some complexity and issues that existed in previous sys-
tems. For example, the Alpha microarchitecture had been designed with a fixed number of
rings for VMS. So, when they created the hypervisor using PALcode they were forced to
use ring compression, which compromised the security of the VMS operating system [23].
Perhaps, the ring compression problem also existed in VAX hypervisor [14]. A more generic
architecture, such as Metal, that has a TLB with PKEYs and ASIDs may have avoided
this oversight.

4.4 Evaluation

4.4.1 Performance

Placing Metal code in RAM associated with the instruction fetch unit enables low la-
tency entry and exit of Metal mode. This local memory inside the processor resembles
the microcode ROM. It enables Metal programs to be cached in the processor’s prefetch
stage. Therefore it takes approximately one cycle to get in and leave Metal routines. This
design provides performance very close to the traditional microcode approach for most
applications.

Another design component that has a role in enhancing Metal’s performance is its
exclusive register file. Metal uses these registers as quick storage for Metal operations.
This helps minimize the number of registers we must save when entering and exiting the
Metal mode, and allows those registers to be saved to the spare Metal register file. Metal
routines can operate faster because fewer memory references are required.

Metal can also be used with a TLB that implements address space identifiers (ASIDs)
and protection keys (PKEYs). Using ASIDs allows Metal code to activate a subset of TLB
entries to avoid a TLB flush on every context switching. PKEYs enable quick changes to
page permissions without requiring expensive modifications to TLB when switching modes
or privilege levels. Combining these techniques can allow for efficient paging, virtualization,
and enclave applications.

38

4.4.2 Implementation Complexity

In this section, we evaluate the overhead of implementing Metal on a processor. To do so,
we synthesize µAlpha using the Yosys [37] synthesis tool and the Synopsys [2] cell library.
We compare resource utilization before and after adding Metal to the design. In both
cases, we measure resource utilization after optimizations. Table 4.1 shows the number of
wires, the total number of cells, and the chip area.

As can be seen, after adding Metal, the number of wires is increased by 16%, the
number of cells is increased by 14%, and the chip area is increased by 17%. The majority
of this is dominated by the Metal memory and Metal register file. The remaining hardware
changes are minimal.

For superscaler or out-of-order processors the resource requirements will negligible com-
pared to the total processor size. The µAlpha is a very simple five-stage pipeline version
of the Alpha architecture. This leads the numbers to be a worse case scenario for most
practical implementations.

Table 4.1: Comparison of µAlpha synthesized with and without Metal using the Synopsys
cell library.

Metric Without Metal With Metal Percentage Increase
Number of Wires 170264 197705 16.1%
Number of Cells 180546 206384 14.3%
Chip Area (µm2) 1231906 1442709 17.1%

4.4.3 Developer Experience

wIn this section, we evaluate the overhead of implementing Metal on a processor. To do so,
we synthesize µAlpha using the Yosys [37] synthesis tool and the Synopsys [2] cell library.
We compare resource utilization before and after adding Metal to the design. In both
cases, we measure resource utilization after optimizations. Table 4.1 shows the number of
wires, the total number of cells, and the chip area.

As can be seen, after adding Metal, the number of wires is increased by 16%, the number
of cells is increased by 14%, and the chip area is increased by 17%. The µAlpha is a very
simple five-stage pipeline version of the Alpha architecture. For superscalar or out-of-order
processors, the resource requirements will negligible compared to the total processor size.

39

Chapter 5

Related Work

5.1 Programmable Architectures

5.1.1 Microcode

Microcode is a hardware abstraction technique that was introduced mainly to simplify the
control logic in a processor. It is used to implement ISAs on much simpler machines that
can have different internal designs but still provide a unified architecture to programmers.
Another benefit of using microcode is that fixing logical hardware errors can be done easily
by reloading microcode.

The early CMOS S/390 processors used vertical microcode instead of the traditional
horizontal microcode. The micro-instructions were very similar to the machine language
instructions. They were kept on special storage and executed on separate processor chips
to implement complex functions [16].

5.1.2 Millicode

Millicode is a type of vertical microcode with some differences. It was first introduced in
S/390 G4 and then used in other generations including the IBM zSeries processors [16].
Millicode is very similar to normal code, however, some instructions and hardware facilities
are only available to millicode. Unlike the prior models, It runs on a single chip and does
not require distinct microprocessors. In addition to a special read-only cache, the millicode
programs can be stored in the standard memory like a normal program. Millicode is used

40

to implement complex instructions, both for backward compatibility and for adding new
functionality, like virtualization and transactional memory.

5.1.3 PALcode

A more programmable approach is offered by Alpha’s Privileged Architecture Library code
or PALcode. It was constructed to ease the transition from various preceding DEC archi-
tectures to a unified platform. That was done by conditionally extending the instruction
set with custom calls depending on the OS being run [11]. Like millicode, PALcode helps to
hide the internal details of the processor and support the operating system. Three versions
of the PALcode were created, one for each OS, VMS, Digital UNIX, and Windows NT.
PALcode is written in standard Alpha assembly with the addition of five new instructions
that modify the privileged microarchitectural state.

PALcode allows developers to use standard programming tools with minimal modifi-
cations. It also executed very fast on Alpha processors. However, PALcode and Millicode
are first and foremost tools for ISA architects. Their goal is compatibility across processor
generations with complex operations that are still hardware-dependent since they were
conceived as mechanisms for abstracting the microarchitecture. Millicode is not supposed
to be programmed, similarly to microcode [16]. PALcode, on the other hand, is prescribed
only for supporting DEC OSes and their slight variations [11].

5.2 Architectural Extensions

We discussed different Metal applications in Chapter 4. In the following sections, we
overview some of the existing methods related to these applications. A more sophisticated
and general version of these techniques can be built using Metal.

5.2.1 Protection Rings and IPC Mechanism

Multiple protection rings were first introduced by the Multics operating system which
supported eight rings on the GE 645 and Honeywell 6180 [30]. Many modern computers
have fewer rings. The X86 [20] and VAX [13] architectures have four rings of protection,
and Alpha only has two [34]. The OpenVMS operating system on VAX uses all the four
protection rings and the OS/2 on x86 uses three. However, most operating systems such
as Windows NT [29] and Unix only use two privilege modes.

41

Porting an operating system to an architecture with a fewer number of rings is difficult
because it requires emulating extra rings. However, the number of rings that the architec-
ture supports can easily be modified with Metal so the problem of incompatibility between
the OS and the architecture is solved.

Metal can implement different IPC mechanisms for transitions between address spaces
or privilege levels. IPC mechanisms similar to Doors in Spring [15], Gates in HiStar [38],
Call gates in Intel x86 [20], and Gates in Multics [7] can be built with Metal.

5.2.2 Capability-based Security

The IBM System/38 [18] and Intel iAPX 432 processors [26] are two examples of archi-
tectures that implement capability-based security in hardware using microcode. These
systems were the results of a decade-long evolution of capability systems, with the 432
hardware being inspired by the Hydra operating system [6].

5.2.3 Secure Enclaves

In the last few years, there has been an increase in interest in secure enclave technologies.
Most major architectures have created their version of this concept in hardware, each with
slightly different specifications. Examples of these architectures include Intel SGX [8],
AMD Secure Encrypted Virtualization [22], and ARM TrustZone [3].

Several research systems used software approaches to implement these mechanisms.
Sanctum [9] and Sanctorum [25] built software enclaves with very little hardware support.
These systems require a cryptographically secure random number generator, and optionally,
memory encryption hardware to protect against physical attacks. A startup, PrivateCore,
built a hypervisor that transparently encrypts memory to provide functionality like AMD
SEV without hardware support [1].

5.2.4 Virtualization

Virtualization was first introduced in the IBM VM/370 [10] and implemented in numerous
other architectures including the VAX [14], Alpha [23], POWER [19], Intel VT-x [21],
AMD SVM [4], ARM [31], SPARC [36], and MIPS [28] processors.

The IBM zSeries virtualization extensions are mostly implemented in millicode [16],
and Alpha hypervisor was built exclusively using PALcode [23]. Both of these systems

42

depend on their microarchitectures for virtualization. Using Metal, we can have our im-
plementation of virtualization without any ties to hardware that works on any system.

43

Chapter 6

Conclusion

Metal is a novel programmable approach to privileged architecture. It provides a flexible
privileged architecture that is programmable by software instead of being built in the
hardware. It enables operating system developers to explore the design space and quickly
prototype new privileged architectures.

Metal is inspired by PALcode and Millicode that both showed the practicality of this
approach. However, unlike PALCode and Millicode that abstract microarchitectural details
from the operating system and are used to implement custom privileged architectures in
hardware, Metal is part of the architecture specification and enables operating system
developers to implement privileged architectures using software.

The privileged architecture has evolved multiple times. To ensure backward compati-
bility, every time, a new set of primitives are added instead of modifying the existing ones.
Metal adds a layer between microarchitectural layers and the operating system layer and
can help to avoid such profusion. We believe that as Baumann [5] has noted, new complex
architectural primitives should be expressed using software rather than hardware.

Protection modes such as security enclaves and virtualization extension are being added
piecemeal to modern architectures. While this incremental approach is safer and isolates
failures of a component from the others, this approach does not consider compatibility.
Many protection mechanisms are composite entities that are built using finer-grained el-
ements in microcode. Finding these common elements helps to achieve interoperability
between these mechanisms. Furthermore, many security-oriented mechanisms have high
complexity but since they are implemented in hardware, it is not straightforward to reason
about the guarantees they provide. Using a framework such as Metal to implement these
mechanisms helps to avoid such problems.

44

Metal also enables operating system developers to prototype new security models. Even
though several privilege models have been proposed throughout the years, the Unix two-
level approach (User-mode/Kernel-mode) has become the default because of simplicity and
backwards compatibility across a wide variety of architectures. This two-level approach
may not be the best solution in the cloud era. Metal provides a second chance for venerable
ideas such as capability-based systems and partitioned operating systems (microkernels)
to be evaluated for modern use cases.

In this thesis, we present the design of Metal, create a simplified version of Alpha ar-
chitecture using Verilog, and implement Metal on this architecture. Implementing Metal
is straightforward as it only requires a few basic blocks. We can add it to any microarchi-
tecture with minimal hardware changes. The synthesis results show only a 14% increase
in the number of cells after adding Metal to µAlpha. Furthermore, we show the practical-
ity of Metal by discussing and implementing several different applications. We conclude
that Metal works as expected in the use cases that we evaluated, and adding it to proces-
sors can significantly accelerate the development of operating systems and instruction set
architectures.

45

References

[1] Privatecore Home Website. https://privatecore.com/. Accessed: 2019-06-07.

[2] Synopsys cell library. http://www.vlsitechnology.org/synopsys/vsclib013.lib.

[3] Tiago Alves and Don Felton. Trustzone: Integrated hardware and software security-
enabling trusted computing in embedded systems (july 2004), 2014.

[4] Inc. AMD. Secure Virtual Machine Architecture Reference Manual. 2005.

[5] Andrew Baumann. Hardware Is the New Software. In Proceedings of the 16th Work-
shop on Hot Topics in Operating Systems, pages 132–137. ACM, 2017.

[6] Ellis Cohen and David Jefferson. Protection in the hydra operating system. ACM
SIGOPS Operating Systems Review, 9(5):141–160, 1975.

[7] Fernando J Corbató, Jerome H Saltzer, and Chris T Clingen. Multics: the first seven
years. In Proceedings of the May 16-18, 1972, spring joint computer conference, pages
571–583, 1971.

[8] Victor Costan and Srinivas Devadas. Intel sgx explained. IACR Cryptology ePrint
Archive, 2016(086):1–118, 2016.

[9] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal hardware
extensions for strong software isolation. In 25th {USENIX} Security Symposium
({USENIX} Security 16), pages 857–874, 2016.

[10] Robert J. Creasy. The Origin of the VM/370 Time-Sharing System. IBM Journal of
Research and Development, 25(5):483–490, 1981.

[11] Digital Equipment Corporation. PALcode for Alpha Microprocessors: System Design
Guide. May 1996.

46

https://privatecore.com/
http://www.vlsitechnology.org/synopsys/vsclib013.lib

[12] Daniel W Dobberpuhl, Richard T Witek, Randy Allmon, Robert Anglin, David
Bertucci, Sharon Britton, Linda Chao, Robert A Conrad, Daniel E Dever, Bruce
Gieseke, et al. A 200-mhz 64-bit dual-issue cmos microprocessor. Digital Technical
Journal, 4:35–35, 1993.

[13] Judith S Hall and Paul T Robinson. Virtualizing the vax architecture. In Proceedings
of the 18th annual international symposium on Computer architecture, pages 380–389,
1991.

[14] Judith S Hall and Paul T Robinson. Virtualizing the VAX architecture. In ACM
SIGARCH Computer Architecture News, volume 19, pages 380–389. ACM, 1991.

[15] Graham Hamilton and Panos Kougiouris. The Spring nucleus: A microkernel for
objects. Citeseer, 1993.

[16] Lisa Cranton Heller and Mark S Farrell. Millicode in an ibm zseries processor. IBM
Journal of Research and Development, 48(3.4):425–434, 2004.

[17] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support
for lock-free data structures. In Alan Jay Smith, editor, Proceedings of the 20th Annual
International Symposium on Computer Architecture, San Diego, CA, USA, May 1993,
pages 289–300. ACM, 1993.

[18] Merle E Houdek, Frank G Soltis, and Roy L Hoffman. Ibm system/38 support for
capability-based addressing. In Proceedings of the 8th annual symposium on Computer
Architecture, pages 341–348. IEEE Computer Society Press, 1981.

[19] IBM Systems and Technology Group. PowerISA Version 3.0 B. March 2017.

[20] Inta Intel. Intel Architecture Software developer’s Manual, Vol 1: Basic Architecture.
Available as ordering, (243190):60056–7641, 2004.

[21] Intel Intel. IA-32 Architectures Software Developer’s Manual Combined Volumes 2A
and 2B: Instruction Set Reference. Technical report, AZ. Technical Report. Intel Corp,
2011.

[22] David Kaplan, Jeremy Powell, and Tom Woller. Amd memory encryption. White
paper, 2016.

[23] Paul A Karger. Performance and Security Lessons Learned From Virtualizing the
Alpha Processor. In ACM SIGARCH Computer Architecture News, volume 35, pages
392–401. ACM, 2007.

47

[24] Thomas F. Knight. An architecture for mostly functional languages. In Proceedings of
the 1986 ACM Conference on LISP and Functional Programming, LFP 1986, August
4-6, 1986, Cambridge, Massachusetts, USA, pages 105–112. ACM, 1986.

[25] Ilia Lebedev, Kyle Hogan, Jules Drean, David Kohlbrenner, Dayeol Lee, Krste
Asanović, Dawn Song, and Srinivas Devadas. Sanctorum: A lightweight security
monitor for secure enclaves. arXiv preprint arXiv:1812.10605, 2018.

[26] Henry M Levy. Capability-based computer systems. Digital Press, 2014.

[27] Jochen Liedtke. Improving ipc by kernel design. In Proceedings of the fourteenth ACM
symposium on Operating systems principles, pages 175–188, 1993.

[28] MIPS Tech, LLC. MIPS64 Architecture for Programmers Volume IV-I: Virtualization
Module of the MIPS64 Architecture. December 2013.

[29] M Pietreck. Windows internals: The implementation of the windows operation envi-
ronment, 1993.

[30] Michael D Schroeder and Jerome H Saltzer. A hardware architecture for implementing
protection rings. Communications of the ACM, 15(3):157–170, 1972.

[31] David Seal. ARM architecture reference manual. Pearson Education, 2001.

[32] Nir Shavit and Dan Touitou. Software transactional memory. In James H. Anderson,
editor, Proceedings of the Fourteenth Annual ACM Symposium on Principles of Dis-
tributed Computing, Ottawa, Ontario, Canada, August 20-23, 1995, pages 204–213.
ACM, 1995.

[33] Daniel P Siewiorek, Gordon Bell, and Allen C Newell. Computer Structures: Principles
and Examples. McGraw-Hill, Inc., 1982.

[34] Richard L Sites. Alpha axp architecture. Communications of the ACM, 36(2):33–44,
1993.

[35] Richard L Sites and Richard T Witek. Alpha AXP architecture reference manual.
Digital Press, 2014.

[36] Sun Microsystems, Inc and Fujitsu Limited. SPARC JPS2: Common Specification.
September 2003.

[37] Clifford Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys/.

48

http://www.clifford.at/yosys/

[38] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making
information flow explicit in histar. Communications of the ACM, 54(11):93–101, 2011.

49

APPENDICES

50

Appendix A

Supported Instruction Set

Conditional move
CMOVEQ Conditional move if reg = 0
CMOVNE Conditional move if reg != 0
CMOVLT Conditional move if reg <0
CMOVLE Conditional move if reg <= 0
CMOVGT Conditional move if reg >0
CMOVGE Conditional move if reg >= 0
CMOVLBC Conditional move if reg low bit clear
CMOVLBS Conditional move if reg low bit set

51

Integer Computation
ADDL Add longword
S4ADDL Add longword, scale by 4
S8ADDL Add longword, scale by 8
ADDQ Add quadword
S4ADDQ Add quadword, scale by 4
S8ADDQ Add quadword, scale by 8
CMPEQ Compare signed quadword =
CMPLT Compare signed quadword <
CMPLE Compare signed quadword <=
CMPULT Compare unsigned quadword <
CMPULE Compare unsigned quadword <=
CMPBGE Compare byte, unsigned
MULL Multiply longword
MULQ Multiply quadword
UMULH Multiply quadword high, unsigned
SUBL Subtract longword
S4SUBL Subtract longword, scale by 4
S8SUBL Subtract longword, scale by 8
SUBQ Subtract quadword
S4SUBQ Subtract quadword, scale by 4
S8SUBQ Subtract quadword, scale by 8
AND AND logical
BIS OR logical
XOR XOR logical
BIC AND-NOT logical
ORNOT OR-NOT logical
EQV XOR-NOT logical
SLL Shift left, logical
SRL Shift right, logical
SRA Shift right, arithmetic

52

Integer Branch
BEQ Branch if reg = 0
BNE Branch if reg != 0
BLT Branch if reg <0
BLE Branch if reg <= 0
BGT Branch if reg >0
BGE Branch if reg >= 0
BLBC Branch if low bit clear
BLBS Branch if low bit set
BR Branch
BSR Branch to subroutine
JMP Jump
JSR Jump to subroutine
RET Return from subroutine
JSR COROUTINE Jump to subroutine, return

Address/Constant
LDA Load address
LDAH Load address high

53

Byte Manipulation
EXTBL Extract byte low
EXTWL Extract word low
EXTLL Extract longword low
EXTQL Extract quadword low
EXTWH Extract word high
EXTLH Extract longword high
EXTQH Extract quadword high
INSBL Insert byte low
INSWL Insert word low
INSLL Insert longword low
INSQL Insert quadword low
INSWH Insert word high
INSLH Insert longword high
INSQH Insert quadword high
MSKBL Mask byte low
MSKWL Mask word low
MSKLL Mask longword low
MSKQL Mask quadword low
MSKWH Mask word high
MSKLH Mask longword high
MSKQH Mask quadword high
ZAP Clear selected bytes
ZAPNOT Clear Unselected bytes

Load and Store
LDL Load sign-extended longword
LDQ Load quadword
LDL L Load sign-extended longword, locked
LDQ L Load quadword, locked
STL C Store longword, conditional
STQ C Store quadword, conditional
STL Store longword
STQ Store quadword

54

Miscellaneous
SEXTB Sign extend byte
SEXTW Sign extend word
CTPOP Count population
PERR Pixel error
CTLZ Count leading zero
CTTZ Count trailing zero
UNPKBW Unpack bytes to longwords
UNPKBL Unpack bytes to words
PKWB Pack words to bytes
PKLB Pack longwords to bytes

55

	List of Figures
	List of Tables
	List of Code Listings
	Introduction
	Alpha Architecture
	Overview
	Instructions
	Alpha Design
	Pipeline Organization
	Pipeline Hazards

	EBox: Fetch and Decode
	Instruction Fetch
	Instruction Decode
	Pipeline Controller

	IRF: Register File
	Operand Forwarding

	IBox: Integer Operations
	MBox: Memory Operations
	Cache
	Replacement Policy
	Arbiter
	Cache Implementation
	Cache Coherence
	Lock Mechanism

	Metal: An Alternative Privileged Architecture
	Overview
	Metal Design
	Design Overview
	Design

	Metal Implementation
	Metal Memory
	Metal Registers
	Metal Instructions
	Security
	Exception Handling with Metal

	Metal Applications and Evaluation
	System Calls
	Transactional Memory
	TInit
	TStart
	TRead
	TWrite
	TCommit

	Other Applications
	Protection Rings and IPC Mechanism
	Capability-based Security
	Secure Enclaves
	Virtualization

	Evaluation
	Performance
	Implementation Complexity
	Developer Experience

	Related Work
	Programmable Architectures
	Microcode
	Millicode
	PALcode

	Architectural Extensions
	Protection Rings and IPC Mechanism
	Capability-based Security
	Secure Enclaves
	Virtualization

	Conclusion
	References
	APPENDICES
	ISA

