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Abstract 

Two studies investigated what eye movements can reveal about how we process 

surprising information and use it to update mental models. Mental models guide our actions 

to make decisions in a dynamic environment. Participants made saccades to visual targets 

presented one at a time, radially, around an invisible perimeter, while their eyes were tracked. 

Target locations were normally distributed and changed at an unannounced point during the 

task. In Experiment 1, the distribution changed to one with non-overlapping regions of target 

locations. Saccadic latencies were slower when targets appeared in areas of low as opposed 

to high spatial probability. The length of time participants looked at targets, dwell time, 

increased when unexpected, low probability events occurred. In a second study, the mean of 

the distribution was held constant, but variance changed in three ways; a narrow-to-wide 

variance shift; a wide-to-narrow shift, and a no-shift condition. Hence distribution shifts were 

not as apparent as study 1, especially for the wide-to-narrow variance shift. Participants 

reported trials on which they perceived a shift in the target distribution, via a mouse click. 

Participants were poor at determining the distributional shifts. On trials with reported 

distribution change, participants dwelled on the target longer and were slower to generate 

saccades. When presented with a narrow-to-wide distribution shift, saccadic latencies were 

slower for targets from the new wide-distribution (unexpected, low probability), however, no 

changes were observed in dwell time, suggesting that participants deemed the highly 

surprising events as random noise with no predictive value for future events, and hence felt 

no need to update their predictive model. Results suggest that slower saccadic latency reflects 

surprise, whereas longer dwell time reflects updating of a mental model. 
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Chapter 1 

General Introduction 

1.1 Purpose 

Humans are not capable of representing everything in their environment. The world is 

both noisy and ever-changing, demanding that we create and update condensed representations 

that encapsulate the rules and regularities governing the environment. The utility of any given 

representation – or mental model – depends on the accuracy with which it represents regularities 

in the world and how flexibly it can be updated when contingencies change (Tenenbaum, Kemp, 

Griffiths, & Goodman, 2011; Danckert, Stöttinger, Quehl, & Anderson, 2012). For example, a 

baseball player at bat may have a mental representation of the pitcher he is facing. Perhaps, 

through prior experiences with this pitcher he expects to see mainly fastballs. This highlights an 

important component of mental models – they derive utility from their predictive success. If the 

pitcher now throws a fastball, the model is deemed accurate. If the pitcher throws a slider the 

batter now faces a dilemma – is this new pitch just random noise (a fluke), or does the batter 

need to update his mental model to include new expectations (Filipowicz, Valadao, Anderson, & 

Danckert, 2018; Johnson-Laird, 2010). 

In the everyday example given above, the unexpected information may prompt an 

updating event. In some sense, the batter must determine whether unexpected or surprising 

events are: random fluctuations where the existing model need not be changed; events that 

necessitate a fine tuning of an existing model; events that warrant the adoption of a completely 

new model. There is an important distinction to be made here between low probability but 
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unexpected events and expected events (unlikely in a particular observation) – both of which 

may be surprising to us, but for different reasons (O’Reilly et al., 2013). In statistical learning 

terms, one can create a mental model capturing the regularities of events that can be defined 

stochastically (Collins & Koechlin, 2012). Low probability events, although surprising, are still 

predicted by the model. An unexpected event on the other hand, is one that is surprising because 

it is not predicted by the model in any way (Nassar, Wilson, Heasly, & Gold, 2010; O’Reilly et 

al., 2013; Teigen & Keren, 2003).  

Regardless of what makes an event surprising, research has suggested a linear 

relationship between surprise and updating (McGuire, Nassar, Gold, & Kable, 2014) – with more 

surprising events leading to an increased probabilistic updating of the associated motor response 

(Mars et al., 2008). However, work by Filipowicz and colleagues (2018) suggests that this may 

not be the case. Participants in this study estimated the distribution of ball drops in a virtual 

Plinko game. At unannounced time points the distribution presented to subjects shifted in various 

ways that could be quantified in terms of surprise level. Poor updating performance was 

observed for shift in distributions that were characterised by the highest level of surprise, as 

though participants discounted the most surprising events relative to a learned distribution 

(Filipowicz, et al., 2018).   

Research by O’Reilly and colleagues (2013) examined different responses to surprising 

events using eye tracking as a metric of updating performance. Participants were asked to make 

saccades to targets presented in an annular array around a fixation. Targets were chromatically 

coloured, each colour was associated with a distinct distribution of target locations (e.g., all the 

targets from the first distribution would be red, and targets from the subsequent distribution 
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would be blue). A change in target colour signaled to the participant that there had been a shift in 

the distribution. In addition, grey targets, not belonging to either distribution were presented on 

20% of the trials. These events were surprising but uninformative – they did not signal any 

change to the underlying distribution of target locations. In contrast, a change in target colour 

was surprising but was also informative to the subject. In both instances, the time to initiate a 

saccade (saccadic latency) to the surprising event was slower. In other words, regardless of 

whether or not a surprising event signalled a change in distribution (e.g., target colour changed 

from red to blue) or was uninformative (i.e., a grey target), saccadic latencies were slowed. In 

contrast, the amount of time participants spent looking (i.e., dwell time) at these surprising, 

unexpected events did differ. Participants looked longer at targets signalling a change in 

distribution (e.g., a red target where previous targets had been blue), when compared to targets 

that did not signal a change (i.e., grey targets). In other words, saccadic latency seemed to track 

whether or not an event was unexpected/surprising, whereas dwell time was associated with the 

need to update a mental model of the expected distribution of target locations.  

Although participants in the O’Reilly study were unaware of the timing of a change in 

distributions, the fact that a change had occurred was explicitly signalled by the change in target 

colour. In many instances changes in environmental contingencies are not so explicitly signalled 

(Albrecht & O’Brien, 1993). In this thesis, the aim was to examine the capacity of participants to 

update mental models when the change in distributions was not explicitly represented by a 

concomitant change in perceptual characteristics of the events to be represented. To do this, 

O’Reilly’s design was modified so that changes in the distribution of target locations occurred at 

unannounced time points and was not associated with any change in colour of the targets. In 
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addition, as in the work described above by Filipowicz and colleagues (2018), surprise was 

quantified so that the relation between updating and surprise could be examined.  

In the first experiment presented here there were no surprising but uninformative events 

(i.e., the grey targets in the O’Reilly et al., study). Rather, we contrasted saccadic latency and 

dwell time for low and high probability events within learned distributions. Essentially, we 

sought to ascertain whether these saccade metrics could distinguish between low and high 

probability events within an established mental model. In addition, these same metrics were then 

contrasted for target events across a shift in distributions. In other words, the pre-shift analyses 

examined whether saccade metrics would distinguish between low and high probability events 

that would both be predicted by a current mental model. Such low probability events may be 

considered surprising but expected, given they are predicted by the learned mental model. In 

contrast, examining how saccade metrics change in the post-shift distribution was cast in terms 

of responses to surprising unexpected events.  

The second experiment presented here replicated and extended the results of the first by 

presenting target distributions that overlapped (there was no overlap in distributions presented in 

Experiment 1), as well as presenting targets that were uninformative of the underlying 

distributions (10% of trials). In both experiments, an attempt was made to capture explicit reports 

of the participant’s mental representation of target distributions. In the O’Reilly work discussed 

above, saccade metrics were taken as an implicit measure of the underlying mental model 

participants are using to predict impending target locations. In the experiments presented here we 

sought to associate saccade metrics with more explicit reflections of the underlying 

representation (i.e., participants were told to make eye movements to locations where they 
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expected targets to appear in Experiment 1, and to click on a mouse when they detected a 

distribution shift in Experiment 2) – explicit measures which would reveal the mental model held 

by the participants. It was hypothesized that the participants would have slower saccadic 

latencies towards unexpected/surprising events, and would dwell on targets longer during fine 

tuning, and updating of their mental models. 
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Chapter 2 

Experiment 1 

2.1 Introduction 

In Experiment 1, saccades and dwell time metrics were observed while participants 

completed a saccadic eye movement response task. These objective metrics of performance were 

observed to examine their association with the contingencies manipulated in the experiment – 

whether individuals could build and update a mental representation of where the targets are 

likely to appear (i.e., spatial distribution of targets). In other words, we sought to address whether 

participants could utilize internal model to facilitate efficient saccadic responses to the targets, 

and make appropriate changes to their model when contingencies change (i.e., distribution shift). 

It is possible that future target locations could be anticipated due to the fact that targets generally 

appeared in similar location for the same distribution run. The task was similar to the O’Reilly et 

al., (2013) task, in which participants made speeded eye movements towards targets, and at an 

unannounced point, the distribution shifted. However, unlike the O’Reilly et al., task, the 

presentation of a new distribution of targets was not signalled explicitly by a colour change. 

Rather, the new distribution was indicated by targets in completely new locations that were never 

used in the preceding distribution. The goal was to examine whether participants could detect the 

distribution shift with the absence of explicit signals (i.e., colour change in the O’Reilly et al., 

task) and whether eye movements can implicitly reflect surprise and updating of mental models. 

It was hypothesized that participants would exhibit longer saccadic latencies for targets which 

appeared in low probability/unexpected locations (surprising events). Whereas, longer dwell 
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times would be expected when a shift in the distribution was noticed and prompted an updating 

of the mental model. 

2.2 Methods  

2.2.1 Participants 

Forty undergraduate and graduate students from the University of Waterloo participated 

in this in-lab experiment in exchange for a course credit or $10. Seven participants could not 

complete the study due to calibration difficulties. Therefore, a total of thirty-three participants 

were included in the analysis (median age = 20 years; 24 right eye-dominant; 28 female). This 

study was given ethics clearance by the University of Waterloo’s Office of Research Ethics, and 

all participants provided informed written consent prior to their participation. 

2.2.2 Apparatus and Procedure 

Participants viewed the stimuli from a gamma corrected 19-inch CRT monitor (horizontal 

refresh rate of 91.1 kHz, vertical refresh rate of 85.0 Hz). To reduce head movements, a chin and 

forehead rest was used with a fixed distance of 60 cm from the monitor. Eye movements were 

recorded using an EyeLink 1000 Plus eye tracker, with a sampling rate of 1000 Hz. The 

experiment began with a practice block with targets that appeared from a uniform distribution 

around a circular perimeter (i.e., the targets did not appear in one specific area of the circle, as 

they were equally distributed). In this block, the participants had the opportunity to be 

familiarized with making saccadic responses to targets that appeared in different areas of the 

circle. 
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In a single trial, participants fixated their gaze on a central fixation point which prompted 

a visual target to appear from an underlying spatial distribution. Participants were to make a 

saccade to the target as quickly as possible and were instructed to fixate back on the central 

fixation point to prompt a new target. Every five trials, they were instructed to look at the areas 

where they would predict the next few dots to appear (Figure 2.1). 

All targets were equidistant from the central fixation, appearing on a circular perimeter 

not visible to the participants. This was to ensure that the position of the targets was only 

controlled by a single parameter, the degrees of angle from horizontal; put differently, latency of 

saccades would not be influenced by saccadic amplitude, given that all targets were equidistant 

from the central fixation point. 

This experiment was designed to be gaze contingent. That is, targets were not presented 

until a central fixation was established. This was done by fixating within 1.5 degrees of visual 

angle from the fixation circle in the centre of the screen. Additionally, to ensure that participants 

did indeed process the target, it turned white only when the gaze was within 1.0 degrees of visual 

angle of the target location and remained white as long as the gaze was within 1.5 degrees of 

visual angle of the target.  

A total of nine fixation points were used to calibrate participants to the eye tracker prior 

to beginning the blocks. Once calibrated, participants were instructed to maintain their head 

rested on the chin and forehead rest to reduce head movement. If any head movement occurred, 

participants needed to be re-calibrated to the eye tracker. Re-calibration also occurred when the 

trial timed out, as prompted by the experiment (i.e., when participants were not able to locate and 

fixate on a target within 5 seconds).  
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Every five trials, the participants completed an “estimate” phase, and had the option to 

explicitly update their current model. To do so, participants gazed at a range of possible locations 

inside a darker grey ring (which visually guided their gaze to be within 5.0 to 11.0 degrees of 

visual angle away from the centre of the screen). To assist the participants with the awareness of 

their gaze positions, a trace of their last five gaze positions was visually represented on the 

screen (i.e., a trail of black dots). 

Participants completed a total of three blocks, with 150 experimental trials in a given 

block. Before the start of each block, participants were told to disregard their previously held 

information regarding the distribution of target locations. To avoid confusion, targets in each of 

the three blocks had a distinct target colour (i.e., red, green, or blue). Changes in the target colour 

were not related in any way to the changes in the target distributions; the target colour solely 

represented the beginning of a new block. 

Within each block there was a shift in the distribution. The shift occurred on average after 

75 trials (with shifts occurring between the 60th and 90th trial). Thus, two separate distributions 

were presented in a given block. The target dots were generated from a circular gaussian 

distribution, with a fixed mean (randomly selected to be between 0 and 2𝜋) and variance for each 

distribution run. The distribution mean and variance abruptly shifted to new values to signify the 

start of a new distribution run. The new distribution was selected from with a non-overlapping 

region from the circle (Figure 2.2). 
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Figure 2. 1. Time course of each trial for Experiment 1. Once the gaze was on the central fixation, a target 

appeared with no delay, from a gaussian distribution on an invisible circular perimeter, and participants 

were to saccade to the target as quickly as possible. Once participant’s gaze was fixated on the target, the 

target turned white, as a form of feedback. Every five trials, participants looked at the areas where they 

expect the next few target dots to appear. The black dots in the bottom panel indicate the fact that 

participants were instructed to look not at a single location, but to scan the range of possible locations 

they thought were most likely for the subsequent targets. 
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Figure 2. 2. The shift in the distribution of targets for Experiment 1 occurred at an unannounced time 

point and was only indicated by the non-overlapping region of target locations. The distribution change 

was not associated with any change in target colour, as the colour remained the same for the entire block 

(e.g., target colours were blue for both distribution 1 and distribution 2 in the same block). The colour 

differentiation in this figure is for visual illustration purposes, where blue displays targets drawn from the 

first distribution run, and the red target dots signify targets drawn from the subsequent distribution. 

Furthermore, targets were normally distributed, hence target appearance near the mean was more frequent 

than targets further away from the mean.  

 

2.2.3 Data Analytic Plan 

Participants learned two discrete distribution of targets in a given block. In a given 

distribution run, the targets appeared in similar region over multiple trials as it was normally 

distributed. Thus, most of the targets appeared around the mean of the distribution. Within a 

distribution, the targets appearing around the mean can be categorized as high probability, and 

targets appearing around the tails of the distribution as low probability. Specific details on how 

this was computed is discussed in the preceding section. Differences between high and low 

probability target locations were examined for both saccadic latency and dwell time. Saccadic 

latency was a reaction time (units of time in seconds) from the onset of the target, to the time 

taken to leave the central fixation threshold (i.e., 1.5 degrees of visual angle). In other words, the 

time taken to initiate a saccade. Dwell time was the time lapsed from the arrival of gaze on the 
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target threshold (i.e., 1.0 degrees of visual angle), to leaving the fixation (i.e., a threshold of 1.5 

degrees of visual angle). Saccadic latency and dwell time were measured using a Python script 

with elements from the PsychoPy library. 

Learning a Distribution Run 

Participants completed a total of three blocks, and within each block, participants 

completed two distribution runs (an original distribution whose properties participants had to 

learn about and a shifted distribution). A distribution run was categorized into high and low 

probability target locations. Low-probability targets were determined as the 10 target locations 

that deviated the most from the median. We then calculated the spread (𝜃1 and 𝜃2) of the low 

probability target points from both tails of the distribution. Lastly, high-probability targets were 

determined as targets that appeared between the lower threshold (mediandistribution – 𝜃1), and the 

upper threshold (mediandistribution + 𝜃2).  

Update to a Shifted Distribution 

To reiterate, in a given block, participants were presented with the initial distribution and 

were abruptly presented with a new shifted distribution of targets in which there was no spatial 

overlap with the initial distribution. To examine whether dwell time and saccadic latency 

differed for the targets from the shifted distribution, we computed the mean of both dwell time 

and saccadic latency for the 5 trials preceding the distribution shift, and 5 trials following the 

distribution shift. 

Estimate Phase 

The goal of the estimate phase was to provide a measure for when the participants’ updated 

their mental model. Given the exploratory nature of this study, it was observed that looked at 
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locations in the estimate phase were poor at capturing the explicit representation of updating. 

Participants were instructed to look at the areas where they expect the next few dots to appear, 

however based on their looking behaviour it was rather ambiguous as to whether they had updated 

their model in response to the shift in distribution. This is because the instructions were open to 

interpretation (e.g., “next few dots” may be interpreted as looking at all possible future target 

locations or looking solely at where the next five targets are going to appear). For instance, if 

subject 1 were to scan the range of all possible locations (e.g., estimate of the spatial distribution 

of target locations), versus subject 2 glancing at a specific area (e.g., high probability region), when 

computing for the differences in the mean gaze locations (angle in radians) between each of the 

estimate trials, the angular distance for subject 1 would be smaller compared to subject 2 (e.g., 

greater variation in the mean gaze locations across each estimate phase for subject 2), however no 

conclusion can be drawn about model updating. Thus, estimate phase was not analyzed for this 

study. 

2.2.4 Hypothesis 

As individuals saccade toward target stimuli drawn from a single distribution with which 

they were familiar, it is predicted that the planning of saccades would be shorter for high-

probability (as opposed to low-probability) locations. Furthermore, since dwell time is linked to 

unexpected, rather than merely infrequent events, a non-significant difference in dwell time is to 

be expected between high and low probability-locations, since participants’ mental models 

include both types of locations. 

A distribution shift at an unexpected time point, which present targets from a non-

overlapping region from the learned distribution, would be a novel, unexpected, location. 
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Following such an unexpected event, it was hypothesized that participants will have longer 

saccadic latencies when compared to latencies from the preceding known distribution. Crucially, 

in accordance with the surprising event, they should spend a longer time looking at the target 

drawn from the new distribution (noted by an increase in dwell time).  

2.3 Experiment 1: Results 

2.3.1 Data Screening 

Outliers for saccadic latencies were determined by the Interquartile range rule, calculated 

by adding 1.5 * IQR to the third quartile. Therefore, saccadic latencies that were slower than the 

specified rule, were considered outliers (< 4.0%) and were removed from the analyses. Factors 

that may have contributed to such outliers were calibration inconsistencies and blinks. 

2.3.2 Learned Distribution 

Saccadic Latency 

Saccadic latencies were contrasted for high and low probability events in both 

distribution 1 and 2. A linear mixed-effects model was used to predict saccadic latency, using R 

Studio (RStudio Team, 2017) to run the nlme package (Pinheiro & Bates, 2019) in the R 

statistical analysis environment (R Core Team, 2017). With a fixed effect of probability 

conditions (i.e., high and low) and a random effect of participants to predict saccadic latency. 

The analysis yielded a marginal main effect of probability condition on saccadic latency, 

(estimatehigh-probability = -0.005, SE = 0.003, t(372) = -1.91, p = 0.057). Depicting shorter saccadic 

latencies for high probability events when compared to low probability events (Figure 2.3). 
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Dwell Time 

A linear mixed-effects model with a fixed effect of probability conditions (i.e., high and 

low) and a random effect of participants, predicting dwell time revealed a negligible effect, 

(estimatehigh-probability = 0.001, SE = 0.007. t(372) = 0.07, p = 0.94). No significant difference in 

dwell times were observed between high and low probability events. (Figure 2.4). 

2.3.3 Update to a New Distribution 

Saccadic Latency 

Saccadic latencies were contrasted between 5 trials preceding and 5 trials following the 

distribution switch. A repeated measures ANOVA with factors of distribution (i.e., distribution 1 

versus distribution 2) and block (i.e., block 1, 2, and 3) yielded a significant main effect of 

distribution shift, (F(1,32) = 7.70, MSE = 0.00, p < 0.05). Additionally, performance was 

homogenous across all blocks, (F(2,32) = 1.32, MSE = 0.00, p = 0.28). Lastly, there was no 

distribution by block interaction, (F(2,64) = 0.84, MSE = 0.00, p = 0.44). The analysis was 

followed up with a paired-samples t-test to make post hoc comparisons between distribution 

conditions, which revealed slower saccadic latencies to targets after the distribution switch, (MD 

= 0.02, t(34) = 2.97, p < 0.01; Figure 2.5) 

Dwell Time 

A repeated measures ANOVA with factors of distribution (i.e., distribution 1 and 2) and 

block (i.e., block 1, 2, and 3) revealed longer fixation times on targets from the new distribution, 

(F(1,32) = 12.11, MSE = 0.01, p < 0.005), and a main effect of block, (F(2,32) = 14.10, MSE = 

0.01, p < 0.001). In addition, there was no significant main effect of distribution by block 

interaction, (F(2,64) = 1.66, MSE = 0.01, p = 0.20). A paired-samples t-test post hoc analysis 
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revealed that participants dwell on the targets longer after the distribution switch, (MD = 0.03, 

t(34) = 2.81, p < 0.01; Figure 2.6) 

 

 

Figure 2. 3. Saccadic latency by target probability. Spatial distribution of target locations were 

categorized as low and high probability. Participants had shorter saccadic latencies (in seconds) for target 

locations that were more probable, as opposed to less probable locations 
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Figure 2. 4. Dwell time by target probability. No differences in dwell times were observed between low 

and high-probability target locations within a distribution. 

 

 

Figure 2. 5. Saccadic latency by distribution conditions. Mean saccadic latencies (in seconds), comparing 

5 trials preceding the distribution shift, and 5 trials following the distribution shift. Saccades planning 

were slower for the unexpected low probability events. 
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Figure 2. 6. Dwell time by distribution conditions. Comparing the mean dwell times (in seconds) of 5 

trials preceding the distribution shift and 5 trials following the distribution shift. There was an increase in 

dwell time following the distribution shift.   
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initiate a saccade was longer for low probability events). To perform optimally, participants 

would need to accurately represent where target dots were most likely to appear – in other words, 
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making speeded eye movements towards target dots. When learning a distribution, participants 
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elicit goal-directed saccades; accounting for all likely polar coordinates of future targets. The 

analysis revealed shorter saccadic latencies for high probability events compared to low 

probability events. Meaning, individuals were marginally better at planning their speeded eye 

movements to regions where targets appeared more frequently. However, it is important to note 

the speed and accuracy trade off. If a saccadic landing error occurs due to preference in speed 

over accuracy, a correction would need to be made by a secondary saccade towards the target, 

which could reflect the slower saccadic latencies for the low probability events (Wu, Kwon, & 

Kowler, 2010). Overall, slower generation of saccadic motor plan was observed for target 

locations that were infrequent (i.e., low probability), yet expected to be included in the 

distribution - suggesting that probability influences reaction time of saccade planning. 

No difference in dwell times were observed for low and high probability events, meaning 

participants spent equal amount of time fixating on targets that appeared in both low and high 

probability events. Unlike saccadic latency, low probability, yet expected events did not 

influence dwell time. 

2.4.2 Surprise and Updating 

Both saccadic latencies and dwell times were longer for targets, when a distribution shift 

had occurred. Targets from the new distribution were novel, unexpected, and hence surprising 

events, as they fell in locations that never contained targets in the previous distribution. 

Furthermore, the distribution shift itself would be surprising to the participants, as it was abrupt 

and unannounced. Despite the absence of an explicit representation by a change in a perceptual 

characteristic (i.e., new distribution was explicitly signaled by a change in target color in the task 
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by O’Reilly and colleagues, (2013)), participants were able to reorient their saccadic responses to 

targets presented from the new distribution, however slower saccadic latencies were observed. 

The slower saccadic latency could reflect the time needed to extract information from noisy 

sensory signal (Carpenter & Williams, 1995), thus when the target is unexpected (e.g., 

surprising), the saccadic latency is longer. Longer saccadic latencies were followed by longer 

dwell times, possibly reflecting the participants updating their mental model. 

2.4.3 Limitations 

 The present study failed to investigate the relationship between eye movement metrics 

with a more explicit report of the underlying representation (i.e., via explicit looking behaviour 

reflecting where participants predicted future target locations to lie based on their mental model 

of the distribution). Thus, Experiment 2 was designed to address this issue. Furthermore, changes 

in environmental contingencies may not be as transparent (i.e., distribution shift to non-

overlapping target locations). Hence, the question to address is whether eye tracking metrics 

could provide insight on surprise and updating when changes in the environment are more 

ambiguous. Lastly, there were no surprising but uninformative events (i.e., an event with no 

predictive value for future events), therefore, this was also examined in the second Experiment. 
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Chapter 3 

Experiment 2 

3.1 Introduction 

 The first Experiment demonstrated that individuals can detect statistical regularities of an 

environment, and saccadic latencies were responsive to target probabilities. Furthermore, longer 

saccadic latencies reflect infrequent target locations, where longer dwell time reflects updating 

following surprising events. Experiment 2 examined whether saccadic latencies and dwell times 

could provide an implicit representation of surprise and updating when distribution shifts are not 

as evident. Thus, less salient distribution shift conditions were implemented: a wide to narrow 

variance shift (wide-to-narrow), a narrow to wide variance shift (narrow-to-wide), and a no shift 

in mean or variance (no-shift) (Figure 3.1). The different shift conditions allowed to vary the 

surprise factor, as wide-to-narrow would be considered a medium-surprise condition, as opposed 

to narrow-to-wide (high-surprise condition) (Filipowicz et al., 2018). Furthermore, this 

Experiment incorporated trials that had no predictive value relating to the distribution of target 

locations (uninformative trials). This was done to dissociate the effects of surprise from the 

process of updating a mental model. In theory, participants would be surprised by low 

probability events from both the trials with predictive value and uninformative trials. However, 

would solely update on the trials with predictive value, as participants were informed in advance 

that uninformative trials are not related in any way to the underlying distribution of targets 

locations. The uninformative trials were not perceived by a colour change (i.e., grey targets in 

O’Reilly et al., task (2013)), but rather by their spatial location. This was done by varying the 

distance of the target locations from the centre (Figure 3.2). Lastly, a refinement of explicit 
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report was made, as individuals were to make a single mouse click as soon as they detected a 

shift in the distribution, this report was measured to examine the relationship between implicit 

and explicit representation of updating. 

 

 

Figure 3. 1. A diagram of distribution shift conditions for Experiment 2. At an announced point in the 

experiment, the distribution shifted: narrow-to-wide (both distributions had the same mean, but different 

variance) or wide-to-narrow (same mean, but different variance as well), or no shift occurred (same mean 

and variance). The blue dots in this diagram represent potential targets from distribution 1, and red dots 

represent possible targets from distribution 2. The colour difference in this diagram is for visual 

illustration purposes, the participants viewed a series of target dots and the targets remained the same 

colour for the entire experimental block (e.g., same target colour for narrow-to-wide shift). Furthermore, 

the circular perimeter was not visible to the participants. 

 

 

Figure 3. 2. A diagram of potential target locations in a given block, which consisted of two distribution 

runs. Uninformative trials were the targets that appeared closer or further away from the central fixation 

by 2.0 degrees of visual angle. This diagram is an example of a narrow-to-wide distribution shift. 



 

  23 

3.2 Methods  

3.2.1 Participants 

Ninety-eight undergraduates from the University of Waterloo participated in the study in 

exchange for a course credit. Fourteen participants were not able to continue with the study, due 

to calibration issues. Thus, a total of eighty-four participants were included in the data analyses. 

(Median age = 19; 49 right eye-dominant; 66 female). The experiment was approved by the 

University of Waterloo's Office of Research Ethics and all participants provided informed 

written consent prior to their participation. 

3.2.2 Apparatus 

 Experiment 2 used the same monitor, display settings, viewing distance, eye-tracker, chin 

and head rest, and sampling rate as the first experiment (see 2.2.2). In addition to target locations 

that were previously used, (8.0 degrees of visual angle away from the central fixation), this 

current study included uninformative trials, with targets that appeared 6.0 and 10.0 degrees of 

visual angle away from the central fixation. There was a total of 15 uninformative trials (10%) in 

a block of 150 trials, put differently, ~7 uninformative trials (10%) in a distribution run. 

3.2.3 Procedure 

Experiment 2 followed a similar procedure to the first Experiment, with a few changes. 

Instead of measuring explicit representation of updating with explicit looking behaviour (i.e., by 

having participants look at regions where they predict the next few target locations to appear); 

participants were instructed to click the mouse when they detected a distribution shift (Figure 

3.3). Furthermore, uninformative trials were introduced, and the participants were informed that 
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the targets that appeared closer or further away had no predictive value relating to the 

distribution of target locations they had to learn. Additionally, the last block of the experiment 

was always the no-shift in distribution condition, and the first two blocks were counter balanced 

to be either wide-to-narrow or narrow-to-wide shift. The no-shift in distribution condition was 

forced to be the last block of the experiment to provide a contrast between the subtle shifts in 

distributions (of which potentially some participants may not have been aware), and a no-shift 

condition. Similar to Experiment 1, the distribution shift occurred abruptly, however it occurred 

exactly half-way through the block (75 trials per distribution), which ensured that all distribution 

runs received even exposure – equal number of trials. Participants completed a total of 3 blocks, 

and the duration of the experiment took roughly twenty minutes. 

3.2.4 Data Analytic Plan 

Data Screening 

A total of eighty-four participants were included in the data analyses. In this experiment, 

we extracted the saccadic latencies and dwell times from the EDF files of the EyeLink 1000 plus 

eye-tracker. Trials with multiple saccades to detect a target were excluded from the analyses 

(~30% of trials), factors such as blinks, calibration inaccuracies causing overshoot of saccadic 

responses, other user errors, played a role in saccadic landing errors. Of course, it is important to 

address, the limitation of this exclusion criteria, as saccadic landing errors could have been due 

to participants preference in speed over accuracy (Wu et al., 2010). Furthermore, outliers were 

excluded from the data analyses, determined by the Interquartile range rule, calculated by adding 

1.5 * IQR to the third quartile. Thus, saccadic latencies that were slower than a specified rule 

were considered outliers (< 1.1%). 
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Distribution Shift Conditions 

 The mean latency in saccades and mean dwell times were analyzed for the three 

distribution shift conditions. Similar to Experiment 1, 5 trials preceding and following the 

distribution shift were analyzed. Recall that the distribution shifts were designed to be less 

transparent compared to the first Experiment (i.e., distribution shift had non-overlapping target 

locations). It was hypothesized that a narrow-to-wide distribution shift would be more evident, 

hence it was expected to be followed by longer saccadic latencies and dwell times. Furthermore, 

a wide-to-narrow distribution shift was predicted to be a very subtle shift that most participants 

would be unable to detect. The distribution shift would result in targets appearing from what was 

a high probability target location from the preceding distribution, thus it was hypothesized to 

observe shorter saccadic latencies for wide-to-narrow shift, and no changes in dwell-time – 

failing to update their model. Lastly, no difference in saccadic latencies and dwell times was 

predicted for the no-shift condition. 

Explicit Reports of Distribution Shift 

Mean saccadic latencies and dwell times on trials with reported distribution shift (i.e., 

reported via mouse clicks) were compared to trials in which participants did not report a change 

in the distribution (i.e., no mouse clicks). The analysis of the explicit report was independent of 

the distribution shift conditions, meaning the mouse clicks were collapsed across narrow-to-

wide, wide-to-narrow, and no-shift distribution shift conditions. It was hypothesized that longer 

saccadic latencies and dwell times would be observed on trials where participants reported a 

distribution shift – participant’s belief that a change in distribution has occurred.  
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Uninformative Trials 

Uninformative trials (i.e., nears and fars) were analyzed to dissociate the effects of 

surprise from updating. To reiterate, these trials did not have any predictive value to future target 

locations, and since it only occurred 10% of the trials, uninformative trials could be deemed 

surprising, but uninformative. To examine whether uninformative trials were in fact surprising, 

difference in mean saccadic latencies were examined against uninformative trials and trials 

where individuals explicitly reported a change in the distribution – updating trials. It was 

hypothesized that no difference in saccadic latencies would be observed, as both events are 

expected to be surprising. To determine, whether individuals implicitly updated their mental 

model for uninformative trials, mean dwell times for uninformative trials were compared to 

mean dwell times for updating trials. It is then hypothesized that participants would not update 

their model for uninformative trials, thus longer dwell times for updating trials, as compared to 

uninformative trials, would be expected. 
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Figure 3. 3. Time course of each trial for Experiment 2. Once the gaze was on the central fixation, a target 

appeared with no delay, from a gaussian distribution around the invisible circle, and participants were to 

locate the target as quickly as possible. Once participant’s gaze was fixated on the target, the target turned 

white, as a form of feedback. Participants clicked the mouse, when they believed that the distribution has 

shifted. 
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3.3 Experiment 2: Results 

3.3.1 Distribution Switch Conditions 

Narrow-to-Wide  

A linear mixed-effects model predicting saccadic latency, with distribution shift 

condition as a fixed effect, and participants as a random effect, yielded a significantly longer 

saccadic latencies when the distribution shifted from narrow-to-wide, (estimatewide= 0.023, SE = 

0.008, t(80) = 2.81, p < 0.01) (Figure 3.4).  

A linear mixed-effects model predicting dwell time, with a fixed effect of distribution 

shift, and a random effect of participants, revealed a non-significant difference in dwell time for 

a narrow-to-wide shift, (estimatewide= 0.003, SE = 0.016, t(80) = 0.16, p = 0.87) (Figure 3.5). 

Wide-to-Narrow 

A linear mixed-effects model predicting saccadic latency, with a fixed effect of 

distribution shift condition and participants as a random effect, yielded a significant main effect 

of distribution shift, (estimatenarrow = -0.019, SE = 0.008, t(81) = -2.48, p < 0.05), with shorter 

saccadic latencies for the wide-to-narrow shift (Figure 3.4).  

Similarly, a linear mixed-effects model predicting dwell time, with the fixed effect of 

distribution shift and the participants as a random effect yielded a significantly shorter dwell 

times when the distribution shifted from wide-to-narrow, (estimatenarrow = -0.055, SE = 0.020, 

t(81) = -2.78, p < 0.01) (Figure 3.5). 

No-Shift  

Lastly, linear mixed-effects models, with a fixed effect of distribution shift, and 

participants as a random effect, revealed no significant differences in saccadic latencies 
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(estimateno-shift = 0.002, SE = 0.009, t(79) = 0.25, p = 0.81) (Figure 3.4) as well as, dwell time 

(estimateno-shift= 0.000, SE = 0.014, t(79) = -0.02, p = 0.98) for the no-shift (i.e., control) 

condition (Figure 3.5).  

 

Figure 3. 4. Saccadic latency by distribution shift conditions. Participants’ saccadic latencies (in seconds) 

were longer when the distribution shifted from narrow-to-wide, whereas shorter saccadic latencies were 

observed when the distribution shifted from wide-to-narrow. No differences were observed in saccadic 

latencies for no-shift condition. 
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Figure 3. 5. Dwell time by distribution shift conditions. No differences in dwell times (in seconds) were 

observed for the narrow-to-wide and no-shift conditions. However, in the wide-to-narrow shift condition, 

shorter dwell times were observed for the “narrow” distribution, when it shifted from the “wide” 

distribution. 

 

3.3.2 Explicit Reports of Distribution Shift 

 The median explicit reports of distribution shift (i.e., mouse clicks) that participants 

reported in this task was Mdn = 8, SD = 13.61. (Figure 3.6).  

Linear mixed-effects models, with a fixed effect of explicit reports, and participants as a 

random effect of yielded a significantly longer saccadic latencies on trials with reported 
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distribution shift, (estimatereported= 0.012, SE = 0.005, t(347) = 2.49, p < 0.05) (Figure 3.7), and 

yielded a significantly longer dwell times on trials with reports of distribution shift, 

(estimatereported= 0.080, SE = 0.014, t(347) = 5.88, p < 0.001) (Figure 3.8).  

 

 

Figure 3. 6. Histogram of number of explicit reports of distribution shift (i.e., via mouse click) that 

participants made throughout this experiment. 
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Figure 3. 7. Saccadic latency by explicit report. This box plot displays participants’ saccadic latency (in 

seconds) on trials with reports of distribution shift, compared to trials with no reports in shift. Saccadic 

latencies were longer on trials with explicit reports of distribution shift. 

 

 

Figure 3. 8. Dwell time by explicit report. Boxplot of dwell time (in seconds) by explicit report of 

distribution shift condition. Dwell time spent on target fixation was contrasted between the conditions: no 

report of distribution shift (i.e., no mouse clicks) and explicit report of distribution shift (i.e., via mouse 

clicks). As seen in this graph, participants spent longer on trials with explicit report of distribution shift. 
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3.3.3 Uninformative Trials 

Surprise 

 A linear mixed-effects model with interactions between two fixed effects: trial conditions 

(i.e., updating vs. uninformative trials) and block (i.e., block 1, 2, and 3), and a random effect of 

participants, predicting saccadic latency revealed a negligible effect, (estimateuninformative= -0.007, 

SE = 0.009, t(352) = -0.79, p = 0.43) (Figure 3.9).  

Updating 

A linear mixed-effects model with interactions between fixed effects of trial conditions 

(i.e., updating vs. uninformative trials) and block (i.e., block 1, 2, and 3), and a random effect of 

participants, predicting dwell time revealed significantly shorter dwell times for uninformative 

trials, (estimateuninformative= -0.071, SE = 0.025, t(352) = -2.81, p < 0.01) (Figure 3.10). 
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Figure 3. 9. Saccadic latency by trial conditions. Box plot of a comparison in saccadic latencies (in 

seconds) between uninformative trials (i.e., targets with no predictive value to future events, and the 

reported distribution shift trials (i.e., via mouse click). No differences in saccadic latencies were observed 

between the two conditions. 

 

 

 

Figure 3. 10. Dwell time by trial conditions. A box plot with a comparison between the uninformative 

trials (i.e., nears and fars) and the reported distribution shift trials (i.e., update trial). Overall, the 

participants had shorter dwell times for the uninformative trials. 
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3.4 Discussion 

Participants were poor at determining the true distributional adjustments manipulated in 

this Experiment, as the median number of explicit reports of distribution shifts in the task was 8. 

This aligned with the goal of this task, where distribution shifts were intended to be less 

transparent compared to the first Experiment. Although, there were only two real distribution 

shifts in this task, it is expected for individuals to construct the initial internal model of the 

spatial distribution of targets (which may not be perfect), and would need to fine tune or update 

one’s model to capture a more accurate representation of future events. The high variation in the 

number of explicit reports, with a standard deviation of 13.61 reflects the discrepancies between 

observers’ strategies of how their model captured future target locations. For instance, an 

observer with a much higher number of reported distribution shifts (e.g., 50) could be interpreted 

as having a model that predicts a much smaller spatial area of where future target locations can 

be expected, thus would have to update their model more frequently. Despite having poor 

explicit representations of when contingencies changed, implicit measures, saccadic latencies 

and dwell times were analyzed to determine if there were any behavioral costs associated with 

the distribution shifts. 

 When distribution shifted from narrow-to-wide, participants had longer saccadic 

latencies, but no differences in dwell times were observed. This abrupt shift in the distribution 

lead to targets appearing from novel areas with greater angular displacement from the mean of 

the previous distribution – which could be interpreted from the observer’s point of view as 

targets appearing from the “extreme” tails of distribution 1. These surprising events were 

unexpected and low in probability. Although these events were unexpected and surprising, we 
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inferred that no updating of internal model occurred since dwell times did not increase. While 

longer dwell times were expected to be observed when distribution shifted, it is important to note 

that surprising events do not necessarily lead to updating. Filipowicz et al., (2018) found that 

higher levels of surprise lead to poorer performance in updating. Whilst surprising events can 

provide participants with evidence for a change in the environment, highly surprising events can 

sometimes be treated as “outliers” (Filipowicz et al., 2018; Summerfield & Tsetsos, 2015). 

For the wide-to-narrow shift condition, both saccadic latencies and dwell times were 

shorter when the distribution shifted from wide-to-narrow. While shorter saccadic latencies were 

predicted, the observation of shorter dwell times was not expected. Since the distribution shifted 

from a wide variance to a narrow variance, new targets would appear from high probability 

locations from the preceding distribution. Thus, these events were high probability under the 

model and would be well predicted by observers’ mental model. This was reflected by shorter 

saccadic latencies. However, no conclusion can be drawn from the shorter dwell times. Factors 

such as outliers – longer dwell times observed before the distribution shift could be driving this 

effect (see Figure 2.5). These longer dwell times observed prior to the distribution shift could be 

due to possible updating behaviors before the actual distribution shift had occurred. However, no 

conclusion can be made.  

Lastly, observations from the control condition, no-shift in distributions confirmed our 

hypothesis, as no difference in saccadic latencies and dwell times were observed. Overall, in 

these three distribution shift conditions (i.e., narrow-to wide, wide-to-narrow, no-shift) saccadic 

latencies were responsive to target probabilities – shorter latency of saccades for expected/high 

probability events and longer saccadic latencies for surprising/low probability events. However, 
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dwell times did not reflect the distribution shifts, as these changes in the distribution may not 

have been noticed by the observer. To determine that this was the case (i.e., absence of longer 

dwell time due to observer’s belief that no change has occurred), explicit reports were examined 

(i.e., observer believed they detected a change in the underlying distribution of target locations). 

 On trials where individuals reported a distribution shift, longer dwell times and longer 

saccadic latencies were observed. Longer saccadic latencies could reflect the between-trial 

processes of the possible need to update, and the behavioral reorienting processes induced by 

surprising events (O’Reilly et al., 2013). Furthermore, the linear mixed-effects model suggested 

that longer dwell times were better predicted by the explicit reports of distribution shift 

(compared to saccadic latencies). Which is consistent with our findings that longer dwell times 

reflect updating. It can be seen that surprise and updating are strongly associated. To dissociate 

the effects of surprise from updating, uninformative trials were analyzed. 

In line with the hypothesis, participants did not update their model for the uninformative 

trials (i.e., events with no predictive value to future events) although these events were surprising 

(i.e., occurred 10% of the trials). Shorter dwell times were observed for uninformative trials 

when compared to trials where individuals updated. Furthermore, no difference in saccadic 

latencies were found between uninformative trials and updating trials (i.e., reported shift in 

distribution). This suggests that uninformative trials are just as surprising as trials where an 

observer perceived a change in the distribution (i.e., explicit reports). It is important to address 

that the saccadic amplitudes differed between uninformative trials (i.e., 6.0 and 10.0 degrees of 

visual angle) and updating trials (i.e., 8.0 degrees of visual angle). Although individuals 

generated different magnitudes of saccades for these different trial conditions, a study by Darrien 
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and colleagues (2001) reported no difference in saccadic latencies for varying saccadic 

amplitudes for target displacements. In other words, saccadic latencies are not influenced by the 

angular distance the eye needs to travel.  

Overall, our findings from this Experiment align with the findings from Experiment 1. 

Although, the participants were poor at determining the true distributional adjustments, saccadic 

latencies were sensitive to surprising target locations, moreover, dwell times reflect the updating 

of predictive internal models. 
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Chapter 4: General Discussion 

 In this thesis, the aim was to examine the capacity to update mental models when the 

change in distributions was not explicitly signaled by an accompanying change in perceptual 

characteristics of the observations to be represented, and whether eye movement metrics could 

reflect surprise and updating. This study demonstrated that individuals were able to learn spatial 

distributions of target locations and detect distributional changes, with the absence of explicit 

signals. However, when the environmental changes were far more subtle, it resulted in poor 

updating performance. Furthermore, this research demonstrated an important distinction between 

surprising events that are unexpected and expected, but low probability observations. Although 

the uninformative events were surprising, they were also expected, as the experimenter informed 

participants that they would occur. Thus, these expected surprising events did not lead to the 

updating of one’s mental model. By contrast, the target locations following the distribution shifts 

were surprising and unexpected – a combination that led to the updating of participants’ mental 

models. Supporting the evidence that surprise and updating are distinct constructs. 

Across the two studies, there was an increasingly compelling evidence that saccadic 

latencies are responsive to target location probabilities. On the other hand, dwell times reflect the 

updating of one’s mental model. The first Experiment demonstrated that individuals were able to 

detect statistical regularities dispersed spatially, where longer saccadic latencies were observed 

for both expected and unexpected surprising events, whereas longer dwell times were observed 

for surprising events that were unexpected. This pattern of results suggests that participants were 

able to build a mental model of the probability distribution to facilitate speeded eye movements 

towards more probable locations.  
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The second Experiment provided support of the findings from the first Experiment, as 

saccadic latencies were responsive to target probabilities and surprise, despite having distribution 

shift conditions that were very subtle. Additionally, the dissociation between surprise and 

updating was demonstrated. This was done by contrasting trial conditions that were both equally 

surprising, however longer dwell times were solely observed for the trials with predictive value 

to future events. Although the current study provided the dissociation effect with the evidence 

that surprise does not always lead to updating; the current research was not able to demonstrate 

the possibility that updating can be triggered with the absence of surprising observations. In 

other words, longer dwell times with the absence of longer saccadic latencies.  

Overall, the current research has demonstrated that saccadic latencies and dwell times can 

reflect implicit representations of surprise and model updating. This research provides an insight 

into the way we process information from our environment and make appropriate updates to our 

model when contingencies change. Although surprise is associated with behavioral costs (e.g., 

slower saccadic latencies), it provides valuable evidence for a change in the environment, which 

facilitates the updating of mental models.
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