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Abstract

This thesis is an exploration of certain algebraic and geometrical aspects of the Learning
With Errors (LWE) problem introduced in [Reg05]. On the algebraic front, we view it as
a Learning Homomorphisms with Noise problem, and provide a generic construction of a
public-key cryptosystem based on this generalization. On the geometric front, we explore
the importance of the Gaussian distribution for the existing relationships between LWE and
lattice problems. We prove that their smoothing properties does not make them special,
but rather, the fact that it is infinitely divisible and `2 symmetric are important properties
that make the Gaussian unique.
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Chapter 1

Introduction

“It is always the case, with mathematics, that a
little direct experience of thinking over things
on your own can provide a much deeper
understanding than merely reading about
them.”

— Roger Penrose

This thesis is a theoretical exploration of the Learning Problem in a context that makes
it suitable for its use for public-key cryptography, as well as the relation that it has with
other computational problems. The starting point of this journey is Learning With Errors
(LWE), as introduced by Regev in [Reg05]; and, closely related to it, Short Integer Solutions
(SIS), studied in [Ajt96, MR07]. These two problems are in the center of countless other
works that constitute a very large portion of what is known nowadays as Lattice Based
Cryptography. Our goal is to develop a deeper understanding of the Learning Problem
and some of the techniques and tools that are commonly used in this area.

Lattice-Based Cryptography, at large, is recognized for its versatility and the several
relations that it has with well-established problems in mathematics that are believed to
be hard, even for quantum algorithms. These are some of the reasons why cryptographic
constructions based on LWE and SIS have grown in popularity in the last decade, be-
ginning with the initial proposals [LPR10, DXL12, Pei14]. However, what makes LWE
and SIS particularly fascinating is their seamless combination of basic notions of algebra
and geometry. The algebraic component provides them with the versatility that allows for
the construction of a great variety of cryptographic primitives. The geometric component
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adds a new dimension of complexity—when we think about LWE or SIS as problems to be
solved, we do not only look for an algebraic solution, we instead look for a solution that
satisfies two types of constraints: algebraic and geometric. It is important to notice that
this feature is not exclusive to LWE and SIS. Rather, it is a characteristic property that
they share with lattice problems, which is what makes possible the connection between
these two kinds of problems.

Lattice-based cryptosystems are also known for being “simple”, when compared to their
elliptic-curve counterparts. This simplicity, however, manifests itself only computationally,
so to speak. It is not completely reflected in the description of the protocols—lattice-based
cryptosystems are notorious for having a large number of parameters and the relation
between them is often intricate or unclear—neither it is true that the simplicity can be
seen in the reductions from these constructions to mathematical problems, which are far
from simple and often misunderstood.

There are several essential aspects surrounding lattice-based cryptosystems— specifi-
cally those based on variants of LWE and SIS—that do not appear to be completely well
understood, yet we rely on them to build protocols and set parameters. In fact, a case
has been made in [CKMS17] and online forums that some of the existing reductions fail at
providing an argument for the effective security of the cyptographic constructions. That is
not to say that lattice-based cryptosystems are insecure—there are several reasons to be-
lieve that these constructions are safe even against adversaries with access to a full-fledged
quantum computer—rather, it gives the community another reason to study other aspects
of the problem that have not yet been explored.

In this work we dissect LWE to its core elements, with the goal of analyzing what role
each component plays in the construction of cryptographic primitives and in its relation
to lattice-problems.

1.1 The Learning Problem

Suppose that a function f : X → Y is defined between two sets X and Y (whose descrip-
tions are available) and, further, suppose that we have access to a collection of input/output
pairs

(
xi, f(xi)

)
∈ X×Y . Our task is to find a description of the function f using only the

provided information. Solving this problem is impossible since, in general, there several—
in fact, an exponential or even infinite number of—functions that, when evaluated at xi,
result in f(xi). Thus, without any restriction on f , the given pairs provide very little
information about the function.
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This problem becomes more interesting when the function f is limited to a well-defined
family of functions. This restriction sometimes provides additional information that makes
the task of finding the function possible. For example, if we know, in addition, that the
function is a quadratic polynomial defined over R, then three input/output pairs are enough
to (quickly) find a description of such polynomial.

Learning A Function

If we talk about generic groups then it is natural to wonder what does it mean to learn
a function?. To make sense of this question consider the following examples. A linear
function f over an n-dimensional vector space V is completely described by the set of images{
f(b) : b ∈ B

}
, where B is a given basis for V . Given any list n of input/output pairs(

vi, f(vi)
)
, assuming that the set {vi} is linearly independent, provides a characterization

of the function f . The same can be said in a more general setting. Suppose that M is a
free module over a ring R—in other words, M ∼=

⊕n
i=1 R. Then a module homomorphism

f : M → M ′ to any R-module M ′ is completely determined by its value on a basis of
{v1, . . . ,vn} of M .

Perhaps against our intuition, outlining the previous linear functions in such manner
generally does not provide a “useful” description of the functions. By “useful” we mean
that it allows us to efficiently evaluate the function on any element of the domain. In the
previous cases, in order to compute f(v) for an arbitrary element v we need to find an
expression of v as a linear combination of the generators v1, . . . ,vn. For generic groups,
there is no known classical algorithm that solves this problem.

We may circumvent this problem in the definition by outsourcing the task of evaluating
the function to the solver. In other words, we say that an algorithm A learns the function
f if it is able to find its value on any element of the domain. This is the notion we use
in this thesis working in the context of generic structures. We explain this idea in more
detail in Section 3.2.

This is sometimes equivalent to other conditions. For example, it is well known that
the problem of learning a linear function can be performed efficiently when the underlying
ring is Zq, and the module is Znq . Given a basis {v1, . . . ,vn} of Znq and an arbitrary element
v ∈ Znq , we can find an expression of v as a linear combination of the given basis by solving
the associated system of linear equations.
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Learning With Errors

Every module homomorphism f : Znq → Zq is given by an inner product. In other words,
there exists s ∈ Znq such that for any v, f(v) = 〈v, s〉. Then, in this case, learning the
function f is equivalent to finding the vector s. This can also be formulated as a system
of linear equations and thus be efficiently solved.

Intuitively, Learning With Errors (LWE) is the problem of solving “noisy linear equa-
tions modulo q”. Using the previous equivalence, we can describe LWE as the problem of
finding s ∈ Znq given a collection of pairs(

vi, 〈vi, s〉+ ei
)
∈ Znq × Zq, i ∈ {1, . . . ,m}, (1.1)

where ei is sampled from a known fixed distribution χ over Zq, and the vectors v1, . . . ,vm
are assumed to be uniformly random. The list of pairs outlined in Equation (1.1) describe
a probability distribution As,χ over Znq × Zq that depends on s, as well as on the error
distribution χ. The decision version of LWE is the problem of distinguishing As,χ from the
uniform distribution over Znq × Zq.

The problem was introduced by Regev in [Reg05], together with a quantum reduction to
it from classical lattice problems for which it is believed no efficient quantum solution exists.
Along with these results, in the same work the author describes the construction of a public-
key encryption scheme whose security is guaranteed by the hardness of LWE, thus also by
the quantum hardness the lattice problems this is related to. This attracted the attention
of the cryptographic community to evaluate its hardness and improve the efficiency of the
construction. To this day there is strong belief that, for certain parameterizations of LWE,
this problem remains hard even for quantum algorithms.

In turn, LWE is a generalization of classical problem known as Learning Parity with
Noise (LPN), a noisy version of a learning problem known as Parity Learning. The latter
is the problem of learning a function f : {0, 1}n → {0, 1} that computes the parity of the
number of bits of a string at some unknown fixed locations. When the correctness of the
value can only be guaranteed with probability χ ∈

(
1
2
, 1
]
, then this is the particular case

of LWE where the underlying ring is Z2.

Solving LWE

Regev’s average-case to worst-case reduction to classical lattice problems, such as GapSVPγ

and SIVPγ, is a strong indication that LWE is a hard problem in the average case. This
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had been a long desired property for a problem backing a cryptographic construction.
However, the given reduction is rarely used to set the parameters of LWE-based con-
structions. Instead, at the present moment we rely on the best-known solutions and
idealized attack models for this problem. These have been surveyed in several works
[APS15, Pla18, BLP+13, MP13].

There are three main paths to solve LWE. We may try to find the secret s, which
directly solves the problem. Another way is to try to find the error, which would yield a
solution of the problem by solving the resulting system of linear equations. Alternatively,
given a collection of m samples

(
ai, 〈ai, s〉

)
, we may try to find a short element x in the

kernel of the matrix A whose rows are the vectors a1, . . . , am. This way yields a method
to distinguish this distribution from uniform, since 〈x, e〉 is expected to be small. The
problem of finding a small vector in the kernel of a matrix is known as Short Integer
Solutions SIS.

To follow these strategies, there are two categories of algorithms besides the exhaustive
search and meet-in-the-middle kind of solutions. The more common is to transform an
LWE into a lattice-type problem and try to find the solution of the latter. The best
solutions of this kind are described in [Alb17, ADPS16]. These algorithms involve finding
a “good” basis for the lattice corresponding to the given instance. The effectiveness of a
solution of this type is thus affected by any improvement in lattice reduction algorithms.

On the other hand, Arora and Ge [AG11] proposed an algebraic solution for the asso-
ciated SIS problem that runs in subexponential time whenever the error is small enough.
This solution requires unlimited access to an oracle that generates samples of the LWE
distribution As,χ, which may not be the case in many practical situations.

In the particular case of LPN, the classic solution is the BKW algorithm proposed
by Blum, Kalai and Wasserman [BKW00]. Despite running in O

(
2n/ logn

)
time, its main

downside is that it requires O
(
2n/ logn

)
samples. Other modifications of this algorithm

have been proposed that require only a polynomial number of samples [Lyu05, Kir11].

Learning Homomorphisms With Noise

In [BFN+11], Baumslag et al. introduced Learning Homomorphisms with Noise (LHN),
which is a generalization of LWE to any abstract groups given a compact presentation
of it. They do so by endowing the group with the geometry that is induced by the word
distance—or Cayley distance, as it is called in the cited paper. As the authors mention, this
distance is not always easy to compute; moreover, the problem is known to be NP-complete
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for certain instances [RMUV10]. However, as a particular example the authors propose
the use of Burnside groups of exponent 3 (denoted as B3) to instantiate their construction.
In a follow-up paper, Fazio et at. [FIN+15] make a deeper study of the hardness of this
problem on B3, and provide a worst-case to average-case reduction of this problem, by
proving that it is random self-reducible.

Using this problem as a basis, Baumslag et al. construct in [BFN+11] a symmetric-key
cryptosystem that resembles Regev’s encryption scheme. An important difference is that
the noise in a ciphertext cannot be “erased” with the secret key, but can only distinguished
from an arbitrary element of the group. As a consequence the message space is strictly
limited to a single bit. Moreover, noise elements cannot be chosen to commute with the
rest of the group. This makes it complicated to use the symmetric-key cryptosystem to
obtain public-key encryption as done in [Reg05].

We addressed the problems described abobe in [LR19]. In this paper the authors
propose that, by keeping an additional piece of information secret—namely, a normal
subgroup of the image group—it is possible construct a public-key encryption scheme
without the necessity of a norm defined over the group. The noise is sampled from a secret
normal subgroup that is then collapsed in the decryption process.

Other Generalizations of LWE

The learning with errors problem has received special attention, and several efforts have
been made to improve its efficiency. As a consequence, cryptosystems based on LWE have
particularly enjoyed of a large number of improvements and generalizations. In 2009, Poly-
nomial Learning With Errors (PLWE) was introduced by Stehlé et al. [SSTX09] as a way
to optimize computation and key-sizes for the constructions based on LWE, apparently
without compromising the practical security of these constructions. Shortly after, Lyuba-
shevsky et al. [LPR10] independently proposed Ring Learning With Errors (RLWE), which
further generalizes PLWE by allowing the objects to belong to the ring of integers of a num-
ber field. The recently popular module-LWE—first introduced in [BGV12] with the name
general -LWE—is the generalization of RLWE to a multidimensional module over the same
ring, generalizing both LWE and RLWE. Lastly, Learning With Rounding (LWR)[BPR12]
is a variant of the original LWE problem on which the error is sampled deterministically.

There have been several works outlining generalized versions of LWE in different con-
texts. Short after Regev’s introduction of LWE in 2005 [Reg05], Peikert published a work
on the hardness of error-correction in the exponent [Pei06], on which he proves that, for
suitable parameters on the error, Bounded Distance Decoding (BDD) for a black-box cyclic
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group is at least as hard as the discrete logarithm problem on the same group. This work
lead to posterior analysis of the learning with errors problem in the exponent by Demarest
et al. [DFR18], which generalizes the original formulation of LWE to the problem of decod-
ing over the group Cn

p , and uses a new technique to provide a generic lower bound on the
number of queries necessary to solve the decoding problem in this group. Independently,
Dagdelen et al. studied the same problem in [DGG16], where they describe a relation of
this to a generalization of the computational Diffie-Hellman problem.

Another approach generalizing the learning problem was proposed by Gama et al.
in [GINX16]. They generalize the LWE and SIS problems to finite Abelian groups. The
authors show that the more general versions of the problems still enjoy the same worst-case
to average-case reductions that the original formulations have, provided that the instance
group is large enough.

Another attempt to use non-commutative groups is described in [CZZ16]. In this
manuscript, Cheng et al. study the learning problem over the group ring R[G], an al-
gebraic structure which consists of formal sums of element of G with coefficients in R. As
a concrete instance they choose R = Z and G = D2n, the dihedral group of order 2n.
Their main motivation is to recreate ring-LWE using a non-commutative (using integer
coefficients) instead of cyclic groups (using coefficients in the integers or in a cyclotomic
ring), to avoid attacks on principal ideal lattices.

Lastly, a recent work by Bootland et al. [BCSV19] describes a framework in linear
algebra that encompasses different problems that have appeared in lattice based cryptog-
raphy, such as LWE, MLWE and RLWE, as well as in code-based cryptography and the
recent constructions modulo Mersenne primes. This framework allows one to obtain a
generalization of problems such as LWE and SIS by choosing the environment: a parent
ring, a ciphertext, modulus and a rank.

1.2 Constructing a Public Key Encryption Scheme

Regev provided a blueprint for the construction of cryptosystems based on the learning
problem. The idea is to first consider a symmetric-key encryption scheme that works
in a manner that resembles that of ElGamal encryption scheme. Provided that samples(
a, b = 〈a, s〉 + e

)
are indistinguishable from the uniform distribution over Znq × Zq, an

encrypting party encodes a bit β as E(β) =
(
a, b = 〈a, s〉 + e + βτ

)
, with τ =

⌊
q
2

⌉
. To

guarantee that the construction is semantically secure, the pairs of this form must also be
indistinguishable from uniform.
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The decryption process consists of two steps. A decrypting party uses the secret to
compute b− 〈s, a〉 = βτ + e. If the resulting element is small we conclude that β = 0, and
β = 1 if otherwise. This is the strategy used by Regev in the first proposed cryptosystem,
and later adapted by Baumslag et al. in [BFN+11] in the construction of a symmetric-key
encryption scheme over generic groups. The correctness follows as long as the noise e is
bounded to the set

{
−
⌊
q
4

⌉
, . . . ,

⌊
q
4

⌉}
.

Using this mechanism and the bilinearity of the inner product, it is possible to obtain a
this into a public-key encryption scheme. The public-key is a collection of encryptions of 0.
To encrypt, choose a random subset of that collection. The summation of the elements of
this subset results in pair of the form

(
a, b = 〈a, s〉+e

)
, which follows an LWE distribution

with larger error rate. If the accumulated error is still in the set
{
−
⌊
q
4

⌉
, . . . ,

⌊
q
4

⌉}
, we can

encrypt and recover the message by using the algorithms described above.

This process can be easily generalized to a protocol that encrypts more than one bit per
ciphertext. Say the message space is Zt, with t < q. In this case, the constant τ is chosen
to be b q

t
e. To encrypt β ∈ Zt, consider β ∈ {0, . . . , t − 1} and encode it as µ = βτ ∈ Zq.

After this we proceed to complete the encryption process in the same way as before, by
adding µ to the second coordinate of an LWE sample.

The decryption procedure is similar to the one above. The knowledge of the secret s
allows the decrypting party to distinguish samples from the distribution As,χ. This is done
by reverting the action of the key on the second coordinate by computing b − 〈s, a〉 =
µ + e. After this, the error is erased by “rounding off” µ + e to the closest multiple of τ .
The correctness of the cryptosystem follows as long as the noise e is bounded to the set{
−
⌊
q
2t

⌉
, . . . ,

⌊
q
2t

⌉}
.

Transferring This Idea to Generic Groups

The construction of the cryptosystem described above is concerned with homomorphisms
f : Znq → Zq. In the context of generic groups, an LWE sample is a pair of the form(

g, ϕ(g)h
)
∈ G×H, (1.2)

where G and H are groups, ϕ : G → H is a group homomorphism, g is sampled from the
uniform distribution over G and h ∈ H is a “small” element of H. The public key is a
collection of elements

(
gi, ϕ(gi)hi

)
sampled from this distribution. From a group-theoretic

point of view, however, there are several important properties of these particular groups
which make the construction possible that can be easily overlooked.
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Combining Elements. The encryption procedure follows from the creation of a new
element of the LWE distribution by means of taking a subset-sum of the elements in the
public key. The commutativity of Zq allows to accumulate the error in an error term e as

∑
i

ri
(
〈ai, s〉+ ei

)
=

〈∑
i

riai, s

〉
+
∑
i

riei,

where
∑

i riei = e. When the group is non-Abelian, the error terms find themselves
interspersed with elements of the form ϕ(gi)—unless, of course, the error is sampled form
the center of the group; this is inconvenient for two main reasons. One is that the elements
ϕ(gi) cannot be recombined into an element ϕ(g). The second reason is that the error does
not accumulate on one side of the expression; thus it is not obvious what is the effect of
the noise terms in the combined sample.

Making the Noise Erasable. Erasing the noise by “rounding it off” to the closest
multiple of a public constant is possible, in part, because there is a notion of distance
between the elements of Zq. When speaking of generic groups, there are known notions
of distance that can be used, such as the word metric. However, in general it is a hard
problem to compute the word distance between two elements of a generic group. As a
consequence, the strategy of decoding the noise seems hard to generalize in the context
of abstract groups, since it is not clear what the proper notion of rounding is in general.
Moreover, because of the manner in which the encryption step is performed, any effort
of this kind will likely require the noise elements to be commutative with the rest of the
group.

A Purely Algebraic Solution. An alternative is to specify the nature of the noise by
algebraic means entirely, instead of using the geometry of the group. The idea is to erase
the noise by using a secret homomorphism that maps it to the identity element of a third
group K. Effectively this means that the noise elements are drawn from a secret normal
subgroup N of H and the error is erased by performing a projection of H onto the quotient
group H/N . An adversary without access to a description of the group N is then unable
to distinguish error elements from other group elements.

In the quotient H/N , elements of the denominator N become the identity element,
which commute with the rest of the elements of the quotient group. After erasing the
noise, the terms ϕ(gi) can now be recombined in a way that relates to the first coordinate.
However, the resulting combination is now in the quotient group. This strategy requires
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reversing the order of the steps in the traditional decryption algorithm for LWE. We
elaborate on this idea in Section 4.1.

A Generic Public Key Encryption Scheme

Building on the idea discussed above, we propose an encryption scheme that can be instan-
tiated with generic groups. We explain this construction in detail in Section 4.2. Consider
groups G, H and K as part of the setup.

Generating the Keys. Choose two homomorphisms ϕ : G→ H, ψ : H → K. Generate
a collection of m pairs

(
gi, ϕ(gi)ei

)
∈ G × H where, for all i, gi is chosen from a fixed

probability distribution over G and ei is chosen from a probability distribution over H
with support in Ker(ψ). The secret key is the pair of homomorphisms (ϕ, ψ). The public
key is the collection of pairs

(
g1, ϕ(g1)e1

)
, . . . ,

(
gm, ϕ(gm)em

)
along with an element τ ∈

H \Ker(ψ).

Encryption. Similar to Regev’s original encryption scheme, public-key encryption is
achieved by randomly mixing elements from the public key, generating a new pair (g, h) ∈
G×H. Contrary to the traditional setting, where mixing noisy elements by summing a ran-
dom subset of the public key generates an element with the same structure, in the generic
setting it is not guaranteed that the structure of the samples is preserved. Nevertheless,
the result of mixing public key elements is a pair with specific form

(g, h′) =
(
gi1 · · · gi` , ϕ(gi1)ei1 · · ·ϕ(gi`)ei`

)
.

This mixing can be done by forming an arbitrary word with the elements of the public key.
To encrypt a message β, encode it by computing µ = τβ and output

Enc(β) = (g, h′µ).

Decryption. To decrypt, it is necessary to reverse the steps of the traditional LWE
encryption scheme. More specifically, let (g, h) ∈ G × H. If this pair is a well-formed
ciphertext, then h is of the form

ϕ(gi1)ei1 · · ·ϕ(gi`)ei`τ
β,
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where gi1 · · · gi` = g. Thus, by applying ψ to h we obtain

ψ
(
ϕ(gi1)

)
· · ·ψ

(
ϕ(gi`)

)
ψ
(
τβ
)

= ψ
(
ϕ(g)

)
ψ(τ)β.

This step effectively eliminates the noise elements. By multiplying by ψ
(
ϕ(g)

)−1
on the

left, the right hand side becomes ψ(τ)β. The message β can be recovered computing the
discrete logarithm with base ψ(τ).

Finding Instances. This is a generic protocol; thus by nature it cannot specify how to
choose parameters and other specific details. These must be established once a particular
group is chosen to instantiate the protocol. Finding an appropriate group is then the first
step that needs to be taken. To instantiate this protocol, the corresponding groups must
satisfy the following properties:

(a) The groups G must have enough normal subgroups. Otherwise the key-recovery prob-
lem is trivially broken.

(b) The corresponding probability distributions must be efficient to sample from.

We explore these requirements in Section 4.3.

How Safe is This Construction?

The short answer to this question is that we do not know. Nevertheless, we are able to say
more than this. The conclusion is that the hardness of the underlying learning problem
is related to the algebraic properties of the group. On the one hand, when only given a
presentation of the group, the noiseless homomorphism learning problem is a generalization
of the Conjugacy problem. This problem is known to be undecidable for certain classes
of groups. For some others, such as Coxeter groups, a polynomial time solution has been
found [Kra94]. For the polycyclic, braid, Garside and other groups, this problem is believed
to be hard, yet still decidable.

In the presence of noise that is restricted to a normal group, the hardness of the problem
is even more unclear. In the case of non-Abelian groups, we are only able to claim that the
problem is at least as hard as the corresponding Conjugacy problem. More work has been
done in the case of Abelian groups. In [Pei06], Peikert showed that the underlying Bounded
Distance Decoding problem over a (finite) product of finite cyclic groups is at least as hard
as the discrete logarithm problem on that group. On the other hand, Leonardi and Ruiz
proved in [LR19] this construction is susceptible to quantum attacks when instantiated
with any Abelian group. The details of this attack are outlined in Section 4.4.
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Key Recovery. Given enough samples (gi, hi) ∈ G × H it is possible, by using Shor’s
algorithm, to find a combination of the elements gi to generate the neutral 0G element in
the group G. By applying this combination to the given pairs themselves we obtain a pair
of the form (0G, h), where h is in the secret normal subgroup of H. Repeating this attack
would yield a set of generators of the secret subgroup.

Message Recovery. An immediate way to counter the previous attack is to provide
the public key with fewer elements than the rank of G. However, this is far from a good
solution. With few elements in the public key, it is easy to recover the linear combination
performed in the encryption by using Shor’s algorithm, which makes the encryption scheme
completely insecure.

Hardness in the Classical Setting. It is important to notice that the previous attacks
require a quantum algorithm in a generic setting. The previous attacks depend on the
ability of the adversary to compute multidimensional discrete logarithms. An unanswered
question at the moment is to what extent that ability is necessary. A positive answer
would yield an interesting instance of an LWE-like cryptosystem using isogenies over elliptic
curves. This problem is left as an open question for the future.

1.3 The Nature of Noise, Why Gaussians?

Having explored some algebraic aspects of LWE, we turn now to the geometry that is
involved in the development of the theory around this problem. Geometry of numbers
is a vast area of mathematics with a long history that is concerned with the geometry
of the lattices themselves. It is in this area where we find the classical hard problems
on which lattice-based cryptography is supported. However, when we talk about “small
noise”, geometry is also present in the group on which the learning problem is given. It
is necessary to make use of a geometrical notion to define what a small group element is.
Then is it not surprising that the tools that allow us to relate these two different kinds of
geometries are very important. One of these tools is the Gaussian distribution.

Gaussians are ubiquitous in the theory of lattice-based cryptography. They are a funda-
mental tool for the construction of lattice cryptosystems, as well as for proving the security
of them. They allow us to make a seamless transition from a finite discrete universe to an
infinite continuous one. Thus perhaps it is natural to ask the question what makes Gaus-
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sians so special? Is it possible to obtain a similar transition from a different probability
distribution?

Smoothing Parameter

Micciancio and Regev’s reduction in [MR07] introduced a concept called the “smoothing
parameter”. This allows them to hide the discrete structure of a lattice in a quantifiable
manner. Intuitively speaking, the smoothing parameter is the minimum stretching of a
function f defined over the Euclidean space Rn that “hides the discreteness” of a lattice
L ⊂ Rn when centered at each v ∈ L. More concretely, it is the minimum scaling s of the
function f such that the overall weight of the function on a (possibly shifted) lattice,∑

x∈L+c

f(sx),

is approximately independent from the shift c. Equivalently, it is the minimum scaling s
of f such that the distribution of

g(z) =
∑

x∈L+z

f(sx), z ∈ P(B)

is approximately uniform over the fundamental parallelepiped P(B) of any basis B of L.
In each interpretation, the smoothing parameter is a function of the size of the lattice L
and a parameter ε ∈ (0, 1] which precisely quantifies these approximations.

It is not immediately clear from the description above that a smoothing parameter
must exist, and even when it does, that it is reasonably sized. In fact this is not always
the case. There exits integrable functions and lattices such that such scaling is not guar-
anteed to exist. Micciancio and Regev showed in [MR07] that for the Gaussian function
f(x) = ρ(x) = e−π‖x‖

2
2 , the smoothing parameter not only exists, but also only grows as

O
(√

log n
ε

)
, where n is the number of dimensions of the lattice L, and ε measures roughly

how far the distribution of g is from the uniform distribution over P(B).

The nature of smoothing parameters, the conditions for their existence, and methods
for finding them become more apparent once we leverage the Poisson summation formula,∑

x∈sL

f(x + c) =
detL∗

s

∑
y∈ 1

s
L∗
f̂(y)e−2πi〈c,y〉, (1.3)

where f̂ is the Fourier transform of f , and L∗ is the dual lattice of L. Using this expression,
it is possible to prove that under certain conditions, the weight of the shifted lattice becomes
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approximately independent from the shift—see [Reg05, Claim 3.8]. To see this, observe
that on the right hand side of Equation (1.3), the vector c appears only in the exponent

−2πi〈c,y〉. Thus, if
∑

y∈ 1
s
L∗\{0}

∣∣∣f̂(y)
∣∣∣ is small,

∑
y∈ 1

s
L∗\{0} f̂(y)e−2πi〈c,y〉 is also small since

the norm of e−2πi〈c,y〉 is bounded by 1. Moreover, for y = 0, the term f̂(y)e−2πi〈c,y〉 = f̂(0).
This implies that the overall weight of f over the shifted lattice L + c is approximately
detL∗
s
f̂(0), which is independent from the shift c.

The above discussion allows us to precisely define the smoothing parameter of a function
f with respect to a lattice L and a real ε > 0, as the minimum positive real number η such
that for every s ≥ η, ∑

x∈sL∗\{0}

∣∣∣f̂(x)
∣∣∣ < ε. (1.4)

Using the newly defined smoothing parameter, the authors of [MR07] also presented a
worst-case to average-case reduction from SIVPγ to SIS, by exploiting the ability to sam-
ple uniformly from cosets of P(B). Gentry, Peikert and Vaikuntanathan [GPV08] later
presented an algorithm that samples (almost exactly) from a discrete Gaussian distribu-
tion over a lattice, which hides the geometry of the choice of basis used. They then showed
how to use this algorithm to obtain tighter reductions from SIVPγ to SIS, and to instan-
tiate a trapdoor signature scheme that enjoys worst-case hardness via a reduction from
SIS.

The smoothing parameter is also essential to Regev’s worst-case to average-case reduc-
tion from SIVPγ to LWE [Reg05]. To carry out the reduction, Regev exploited properties
of a smoothening function as well as other properties of the Gaussian function—such as
the fact that the family of Gaussians is closed under convolution and Fourier transform.
Both the SIS and LWE reductions sparked many other derivative results, many of which
fundamentally rely on properties of Gaussians and the smoothing parameter.

Currently, the formal study of lattice-related problems involving probability distribu-
tions different from the Gaussian has been very limited. As a consequence, there are no
functions in the cryptographic literature, other than the Gaussian, for which the smoothing
parameter has been quantified. In this paper we make a study of the family of functions
that admit a smoothing parameter, and describe a subfamily that has been previously well
studied in the mathematical literature. Afterwards we analyze the consequences, limita-
tions and possible applications that these functions may have in the hardness of known
problems in lattice cryptography.
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Smoothening Functions, Smoothing Parameter and Tail Bounds

After briefly exploring part of the literature in lattice cryptography, it is perhaps not clear
what extent it is necessary to use a Gaussian distribution to obtain a worst-case guarantee
for a lattice-based cryptosystem. This leads us to wonder what is the largest family of
functions for which we have a similar behavior? We explore these questions in Chapter 5.

The left hand side of Equation (1.4) is a summation over the non-zero vectors in some
discrete set L ⊂ Rn, in other words, over vectors that are “far” from the origin. If the
shortest vector of the lattice is “large enough”, we can think of this sum as the weight of
the tails of f over the lattice. Whenever f decreases fast enough (e.g. if f(x) = e−‖x‖

2

)
then by scaling up the lattice, the weight of the function in the tails decreases. This means
the overall weight on the lattice

∑
x∈L f(x) tends towards f(0) or, alternatively, that the

ratio f
(
L \ {0}

)
/f(L) becomes negligible.

In [Ban93], Banaszczyk proved that, in the case of the Gaussian distribution, this ra-
tio decreases exponentially in the scaling factor. What is probably more important is to
observe that Banaszczyk actually proved an upper bound on this ratio which holds for
any lattice. This result allows the establishment of bounds for the smoothing parameter
depending only on the density of the lattice, which may be quantified by means of param-
eters associated to the lattice such as the successive minima λ1(L), λn(L), among others
[MR07, ZZX20].

To develop analogous tools in a more general scenario—for norms other than the Eu-
clidean norm and functions other than the Gaussian distribution—it is essential to under-
stand how the ratio

f(L \ rK)

f(L)
(1.5)

behaves whenever K is the ball of radius 1 of the norm that is being considered and r > 0.
More importantly, in order to establish a bound for the smoothing parameter that only
depends on the density of the lattice, we must find an upper bound νf (K) for Equation (1.5)
that holds for every lattice L. We refer to νf (K) as a tail bound for the function f . A tail
bound is thus a parameter associated to th function that measures the distribution of its
weight with respect to a certain region.

Generic Tail Bounds. In [MSD19], Miller and Stephens-Davidowitz make a study of the
tail bounds for a family of strictly positive but rapidly decreasing functions f whose Fourier
transform f̂ stays positive. Such is the case, for instance, for the Gaussian distribution
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itself. The results presented in their paper are thus a generalization of those in [Ban93].
We present a generalization of these results in Section 5.5.

For most applications in cryptography, f must be a non-negative function, as it is
used to represent a probability distribution. On the other hand, there is in general no
requirement for the characteristic function—the Fourier transform f̂—to be a probability
distribution over the dual space. Moreover, minor modifications to a function may dramat-
ically affect the behavior of its Fourier transform. Hence, several functions with potential
cryptographic applications are left out if we further require the Fourier transform to be
positive.

It is possible, however, to adapt some of these techniques to work in a more general case.
To that end it is enough to find a positive and strictly decaying function that accurately
describes the rate of eventual decay of the absolute value of f̂ . This is, perhaps, the more
technically challenging part of the process, since a description for f̂ is rarely available.
Once we get past this obstacle, finding a tail bound for

∣∣f̂ ∣∣ can be, roughly speaking,
reduced to find an upper and lower tail bound for the so-called “bounding” function. The
details are discussed in Section 5.7.

The procedure described above allows us to compute a tail bound for a function defined
over R. The last obstacle to overcome is to use it to compute a tail bound for a function
defined over Rn. Unfortunately, at the moment we do not know of a way to adapt this
process to work for any such function. Nonetheless, if a function is described as a product
of unidimensional functions evaluated on each coordinate, then it is possible to transform
the unidimensional tail bound into a tail bound for the multidimensional function.

Bounding the Smoothing Parameter. Finally, after a tail bound for a function has
been established, it is possible to bound the smoothing parameter. At fist sight, these
two notions must be related—after all, the smoothing parameter is found once most of the
weight of the characteristic function restricted to the dual lattice is found in the origin.
However, when we give a second look, we realize that the notion of a tail bound intrinsically
depends on a given geometry which determines whether a point is close or far from the
origin. Fortunately it is possible to find a transformation that is somewhat oblivious to
this, finding a smoothing parameter that only depends on the successive minima of the
lattice with respect of the aforementioned geometry.

Generalized Gaussians and Other Functions. In [MSD19], Miller and Stephens-
Davidowitz use the asymptotic geometry of the function 1/(1 + 2 cosh) to prove a trans-
ference theorem in the `1-norm by leveraging a transformation that uses the tail bound
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of the function. As a proof of concept, in Subsection 5.7 we use this number to obtain a
bound for the smoothing parameter of this function. This particular example bypasses the
necessity of finding a bounding function for the Fourier transform.

In the same work, the authors also bound the tails for the supergaussians ρ[p] : x 7→
e−|x|

p
, where p ∈ (0, 2]. Finding a smoothing parameter for these functions can be ac-

complished similar to the previous case. A more challenging endeavor is to compute the
smoothing parameter for the supergaussians when p ∈ R>2 since, in this case, little is
known about the characteristic function; moreover, it is possible to prove that they show
a behavior that is not compatible with the techniques presented in their work.

We circumvent this problem by making use of the saddle point to find an asymptotic
approximation for σp = ρ̂[p]. Nevertheless, this approximation has several limitations. For
instance, the obtained function is not positive, and the error rate—the difference between
σp and its approximation—is not specifically quantified. As a consequence, the resulting
bound is somewhat loose and the proof relies on experimental observations.

Average-Case to Worst-Case Reductions

As mentioned at the beginning of this section, this part of our work was partially motivated
by questioning the possibility of obtaining a average-case to worst-case relation between
lattice problems and SIS/LWE that makes no use of Gaussians. We focus on the particular
case of LWE, following closely the ideas found in [Reg05]. To start investigating that
question, in Section 6.1 we identify the steps in the reduction where the Gaussian is used.

Narrow Discrete Gaussians and SIVP. The main idea of proof is to construct an
algorithm that outputs vectors according to a narrow discrete Gaussian distribution. Since
the Gaussian distribution is `2 spherical, a significant portion of the mass of the discrete
Gaussian lies outside of any proper subspace. Then it is expected—and it can be proven—
that after a polynomial number of calls to a discrete Gaussian sampling algorithm we will
obtain a set of n short and linearly independent vectors. Thus finding such a sampling
algorithm is the focus of the reduction. Notice, however, that this could potentially be
achieved by any discrete distribution whose weight is not concentrated on any proper
subspace.

From Wide Discrete Gaussian to Narrow Mountains. Sampling from an exponen-
tially wide discrete Gaussian can be done efficiently by leveraging the LLL algorithm. The

17



characteristic function (Fourier transform) of this distribution is, in the Fourier space, a
series of narrow Gaussians centered at each point in the dual lattice. Conversely, once one
is able to reproduce a series of wider Gaussians centered at each point in the dual lattice,
then we are able to simulate a narrower discrete Gaussian in the primal lattice. This wide-
narrow correspondence between a discrete distribution and its characteristic function is a
property of the Fourier transform itself, and not specific to Gaussian functions.

Building a Gaussian Quantum State and BDD. An elegant way to reproduce the
characteristic function of a discrete Gaussian in a useful way is to construct a quantum state
that simulates its behavior. The idea to construct this state is to have a superposition of
every point in the dual lattice in one register and form a narrow Gaussian around each one
of these points in a second quantum register. To obtain only a state encoding the value
of the function—to make the value from the two registers independent—it is necessary
to “erase” values stored in the first register. Since most of the weight of this function
is centered closely around (dual) lattice points, this step becomes a Bounded Distance
Decoding (BDD) problem over the dual lattice.

From BDD to LWE. Arguably the most important contribution of [Reg05] is the con-
nection between LWE and BDD. This idea—or slight variations of it—has been used
to provide an argument for the classical security of LWE-based constructions such as
[ACPS09, Pei08, LPR10, BCD+19]. Moreover, this step of the reduction is completely
classical, and it is the only one that makes use of the sampling algorithm that makes use
of the LWE oracle.

The idea is the following. We assume we have access to a polynomial number of
samples {v1, . . . ,vm} of the discrete Gaussian distribution over the primal lattice whose
generator matrix is B. Let x be a BDD instance in the dual lattice and call t the difference
between x and the vector that is closest to it in the dual lattice. Then we consider the
collection of pairs

(
B−1vi, 〈x,vi〉

)
. Each one of these new samples can be expressed as(

ai, 〈ai, s〉+〈t,vi〉
)
. When reducing modulo q, they now resemble LWE instances, however,

there is a caveat. The difference between them and legitimate instances of LWE is that the
probability distribution describing 〈t,vi〉 is not a Gaussian distribution. Furthermore, the
distribution itself depends on t and the given lattice. This issue is later fixed by adding the
right amount of Gaussian noise to the second coordinate, obtaining

(
ai, 〈ai, s〉+〈t,vi〉+e′

)
.

Finally, is possible to prove that the corrected error e = 〈t,vi〉 + e′ is described by a
continuous Gaussian (of unknown width), which makes it (almost) independent of these
two parameters.
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What Is Possible

We can summarize the impact of the results obtained in chapters 5 and 6 in the following
points:

• It is possible to generalize several classical results in lattice cryptography to a context
that is independent from the Gaussian distribution.

• There exists an infinite family of functions that admit a smoothing parameter.

However, this is not to say that average-case to worst-case reductions can be proved without
using Gaussians. In particular, the analysis of cryptographic constructions based on LWE
that use non-Gaussian distributions in the noise is still future work. Some of the remaining
roadblocks are covered in the following subsection.

Relating BDD to a Learning Problem. One important aspect of the transformation
described above, from an instance of BDD to a collection of instances

(
ai, 〈ai, s〉 + e

)
of

LWE, is that the distribution of the vectors ai is provably close to uniform. This is precisely
a consequence of the fact that the distribution of the auxiliary samples {v1, . . . ,vm} ⊂ L
is wide enough that is probably smoothening for the sublattice qL.

For this reason it is not hard to imagine that, using auxiliary lattice vectors sampled
from any distribution that is smoothening for qL, it is possible to transform a BDD instance
into a collection of instances of a learning problem. Nonetheless, as mentioned above, the
noise defining the problem is not independent of the BDD instance itself; hence it is not
possible to guarantee a connection from the worst case of BDD to an average case of this
learning problem.

Initializing the Quantum Sampler. The second part of the reduction consists of using
an oracle that solves the BDD on the dual lattice to sample vectors in the primal lattice
according to their Gaussian weight. This is done by means of a quantum algorithm. To
initiate this algorithm it is necessary to create a quantum state representing a (very) wide
Gaussian over the elements of the (dual) lattice—which is later used to represent a (very)
narrow Gaussian centered at every point in the dual lattice.

Despite the proof of correctness using similar techniques, the construction of the state
relies on several properties of the Gaussian distribution, in addition to it being smoothen-
ing. Since the state can only be a finite superposition of elements, we must guarantee that
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most of the information about the function is contained in a compact set—in other words,
that the tails of the function are negligible. In addition, the final state represents a slight
shift of the function. Thus we also rely in the function being somewhat “stable” around the
origin. More precisely, we need that the value of the function remains relatively constant in
a neighborhood on the origin containing the fundamental parallelepiped generated by the
(reduced) basis. We analyze this process and the requirements on the function in Section
6.2.

An important note is that we have not been able to circumvent the need for the function
to be positive. Since this is the characteristic function of a probability distribution, we
consider this to be a strong roadblock towards constructing a generic quantum sampler.

SIVP from DGS. The final step in the LWE–SIVP relation is to use discrete Gaussian
sampler to solve the SIVP problem. Intuitively, it should be sufficient to obtain a large
enough collection of samples from the algorithm to guarantee that this set contains a
short basis for the lattice. The proof technique followed by Regev exploits the fact that
the Gaussian distribution is `2-symmetric to prove that, with very high probability, the
algorithm will sample a vector outside any given hyperplane. However, by assuming that
the function is smoothening with respect to a proper sublattice, it is possible to argue
that the distribution that is obtained on the quotient is close enough to uniform. Thus
after a polynomial number of samples we obtain, with high probability, a set of linearly
independent vectors.

The next step is to quantify how small the resulting set is. To this end we make use
of the tools developed to bound the tails of a function, this time applied to the primal
function. These ideas are explored in Section 6.3.

What Seems Impossible

In summary, it is not possible to adapt the current techniques to obtain an average-case
to worst case reduction from lattice problems—say BDD—to LWE. The reason for the
previous statement is because a key part of the reduction outlined in [Reg05] uses an
additional property of the Gaussian, namely that the Gaussian is an invariant distribution.

Also, of independent but related interest, we prove that the only probability distribution
over Rn that is described as a joint unidimensional distributions on its coordinates and
some other coordinate system must be the Gaussian. In particular, this implies that the
any result requiring an `2-symmetric distribution must use the a Gaussian distribution.
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Recovering the Noise Shape. The last step of the BDD to LWE reduction—correcting
the noise distribution to obtain a sample that is compatible with the LWE oracle—is the
only step we identified that necessarily relies in characteristics that are almost exclusive to
Gaussian functions. As mentioned above, the raw error obtained after the transformation
is given as the inner product 〈t,v〉. The vector t is a small vector—the offset from the
dual lattice and the BDD instance. However, the vector v follows a discrete distribution
over the lattice. For this reason, the distribution of 〈f ,v〉 is intrinsically dependent on the
structure of the lattice as well as on the particular offset t.

There are several different approaches in the literature to solve this problem. In [Reg05],
Regev opted for correcting the noise by adding to it a “continuous noise”, then obtaining a
final error described as a continuous Gaussian. The continuity dispenses with the relation
between the noise and the lattice. Moreover, the noise is only related to the offset by its
magnitude—not the direction—which is dealt with separately.

The given equivalence between the corrected noise and the continuous Gaussian uses
a divisibility argument of the distribution to write the added noise e as an inner product
〈h, t〉, where h follows a Gaussian distribution.

Nearest Planes Discrete Gaussian Sampling. Finally, we address the possibility of
constructing lattice trapdoors following the strategy described in [GPV08]. This construc-
tion relies on an algorithm to sample from a discrete Gaussian distribution for any given
lattice. The algorithm proposed in the same work is a randomized variant of the Babai’s
Nearest Planes algorithm [Bab86].

This process starts by computing the Gram-Schmidt basis from the given basis of
the lattice. Notice that the resulting vectors, despite forming an orthogonal basis, have
somewhat arbitrary directions. The algorithm proceeds to sample integer multiples of the
vectors in the original basis according to a scaled discrete Gaussian. These scaling factors
yield the same proportion in each direction determined by the Gram-Schmidt vectors. As
a consequence, the resulting discrete distribution is proportional to a spherical Gaussian.

The correctness of the previous procedure relies on two important facts about Gaussian
functions. The first one is that it is spherical, which means that it is symmetrical with
respect to the `2-distance. The second (and, perhaps, most important) is that it factors
along any orthonormal basis, in other words, the random variable generated by sampling
from an n-dimensional Gaussian and projecting over any orthonormal basis generates n
independently distributed random variables. A consequence of Kac-Bernstein’s Theorem
[Kac39, Ber41] is that this is a property that characterizes the normal distributions over
Rn, among distributions with finite variance. A proof is given in Section 6.3. As a result,
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any discrete sampling algorithm that works for a non-Gaussian function must necessarily
follow a different strategy.

1.4 The Abstract Pieces

Motivated by the understanding acquired while working with abstract functions in the real
space we now explore the possibility to extend this understanding beyond Rn. The purpose
is to develop a framework that allows a different interpretation of the standard lattice
theory that is used for cryptography. In Chapter 7, we argue that several concepts and
results that are commonly used in lattice-based cryptography are not entirely geometrical,
or not geometrical at all, and can be seen in a more abstract algebraic framework.

What is a Lattice?

Instead of the more traditional expression of a lattice, as a integer linear combination
of vectors, we consider its alternative definition as a discrete subgroup of Rn. Discrete
subgroups exists in any (Hausdorff) topological group. However, in many cases these
subgroups lack a meaningful structure that relates them to the traditional lattices in Rn.
Particularly, we are interested in the idea that a lattice tessellates the space into regular
bodies of finite size. To replicate this behavior, we impose an additional restriction on the
discrete group, which is that the quotient group has a finite well-behaved volume function.

Haar Measures and Topological Groups. The idea of “volume” is formalized by the
notion of measure. In the real space, this is a well understood idea that allows the formal
study of integration and probability. Translating the same idea to other groups requires
to endow new group with a suitable topology—one that makes the group operations con-
tinuous. In such a group we are able to find a special measure that is invariant under the
group operation. In other words, as in the real space, moving a (measurable) body via the
group operation does not change its volume.

Pontryagin Duality and Fourier Analysis

The development and current understanding of lattice based cryptography strongly relies
on the properties of the Fourier transform, the ability of expressing a probability distri-
bution in terms of its characteristic function and so on. Using the Haar measure and
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the integral functions that are possible to construct based on it, we encounter a complete
theory of harmonic analysis that provides a similar relation between a group and its dual.
The most natural mathematical objects where all these concepts find natural definitions
are locally compact Abelian (LCA) groups. The commutativity allows for the set of all
continuous complex representations to be one-dimensional, hence to have a group structure
via a correspondence with its group of characters.

Given a finite group, any group homomorphism to (the multiplicative group of) C has
its image included in S1—the subgroup of elements of norm 1. In general, the set of
homomorphisms from an LCA group to S1 = R/Z forms a group, which is better known
as the dual group. In relation to traditional lattices, the underlying group where lattices
live is the real space Rn; moreover, the dual group of Rn is Rn as well. More generally,
the dual of an LCA group is itself an LCA group. However, the dual group is not always
isomorphic to the primal group.

Smoothening Functions over LCA groups

The intuition given in the case of the reals is that a function is smoothening whenever the
induced function over the quotient is close to constant. This intuition is usually presented
by centering a Gaussian, wider than the covering radius, around every point in the lattice.
This idea cannot be immediately translated to a generic LCA group. Nonetheless, the for-
mal description of a smoothening function that we described for real lattices—a description
in terms of the characteristic function of the distribution—can be easily interpreted in a
more abstract language.

In Section 7.2 we prove that some of the most important theoretical results—namely
[Reg05, Claim 3.8] and [MR07, Lemma 4.4]—can be obtained in the generic setting of
LCA groups. This opens the possibility of generalizing the theory of lattice cryptography,
including some cryptographic constructions, to other LCA groups.

1.5 The Roadmap

This thesis is roughly divided into four main parts. We first give an overview of the general
background that is utilized throughout the document. A reader familiar with most or all
of the topics is advised to start in the following chapters. The second part consists of
Chapters 3 and 4, where we make an exploration of the algebraic structure that makes
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possible constructing a public-key encryption scheme from the Learning With Errors prob-
lem. In Chapter 3 we view LWE as a learning problem and describe a model for learning
a homomorphism in the black-box group model. Chapter 4 explores the possible applica-
tions of the homomorphism learning problem in public-key cryptography. The contents of
Chapters 3 and 4 appear in [LR19].

The third part consists of chapters 5 and 6. This part is almost completely standalone.
Chapter 5 is the longest chapter of the thesis. In it we make an exploration of what it means
for a wide Gaussian to smoothen a lattice, and show that this property is not exclusive
of the Gaussian functions. Once we know this, in Chapter 6 we explore the possibility of
completely eliminating Gaussians from the classical reduction in [Reg05].

Finally, the last part, which consists only of Chapter 7, is dedicated to providing a
translation of the common concepts from lattice theory to the more abstract world of
harmonic analysis over LCA groups. To understand the final goal it is advised to be
familiar with the content of Chapter 5. We argue that some geometric ideas have their
underpinnings on a more general theory, which opens the door to explore similar ideas in
very different objects.

24



Chapter 2

Background

“Impara a vedere. Renditi conto che ogni cosa
è connessa con tutte le altre.”

— Leonardo Da Vinci

This chapter is dedicated to providing the theoretical background. Most of the contents
of this part of the thesis are only given for completeness and are meant to be for reference
exclusively. A reader comfortable with the topic corresponding to each section may skip it
completely.

2.1 Notation

We denote Z, R, Q, C the sets of integer, rational, real and complex numbers, respectively.
For a totally ordered set S and a ∈ S let S>a denote the set of element in S greater than
a. We use an analogous notation for the relations <, ≥, ≤, 6=. For n,m ∈ Z>0 and a ring
R, let Rn×m denote the set of matrices over R with n rows and m columns. Throughout
the thesis, we use boldfaced lowercase letters to denote elements in a module of the form
Rn. Let ei ∈ Rn denote the ith canonical vector, that is, the vector whose entries are all 0
except for the ith entry that is equal to 1. For n ∈ Z>0, let [n] denote the set {1, . . . , n}.

In chapters 5 and 6 we use boldfaced to denote multivariate functions—functions defined
over Rn.
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2.2 Groups and Semigroups

A semigroup is a set S together with an associative binary operation · : S × S → S,
sometimes called the semigroup law. An element e ∈ S is called identity if, for all s ∈ S,
s · e = e · s = s. The identity element is unique in S. Given s ∈ S, an inverse of s is
an element s′ ∈ S such that s · s′ = s′ · s = e. It follows that for all s ∈ S, the inverse
is unique. The inverse of s is denoted by s−1. A semigroup with an identity element and
closed under inverses is called a group. A semigroup is commutative (or Abelian) if, for all
s, s′ ∈ S, s · s′ = s′ · s. If S is a group, a subgroup of S is a subset H ⊆ S closed under the
group operation and inverses, and such that e ∈ H. The subgroup relation is denoted as
H ≤ S. The center Z(S) of a semigroup S is the set of elements z ∈ S such that for all s,
zs = sz. The subgroup generated by a collection {s1, . . . , s`} ⊆ S is the minimum subgroup
〈s1, . . . s`〉 of S containing them. The order O(s) of an element s ∈ S is the cardinality of
the group generated by s. A subgroup H of S is normal if, for all s ∈ S, s−1Hs = H. We
denote this relation as H E S. The center is a normal subgroup. The (left) cosets sH of a
normal subgroup H of S form a group under the operation sHs′H = ss′H. This is called
the quotient group, and it is denoted as S/H.

Given two semigroups S and S ′, a mapping ϕ : S → S ′ is a semigroup homomorphism if
for all s, s′ ∈ S, ϕ(ss′) = ϕ(s)ϕ(s′). If S and S ′ are groups, then it follows that ϕ(eS) = eS′
and for all s ∈ S, ϕ(s−1) = ϕ(s)−1. In this case ϕ is called a group homomorphism. A
bijective homomorphism is called an isomorphism. If e′ is the identity element of S ′, the
kernel of a homomorphism is the set Ker(ϕ) := ϕ−1(e′) ⊆ S. The kernel of a homomor-
phism is a normal subgroup of S, moreover, if ϕ : S → S ′ is a homomorphism, the image
of ϕ is a subgroup of S ′ isomorphic to S/Ker(ϕ). Given two homomorphisms ϕ : H → G
and ψ : G 7→ K, we say that the sequence

H
ϕ→ G

ψ→ K

is exact if ϕ(H) = Ker(ψ). A short exact sequence is a sequence of the form 0→ H → G→
K → 0, where every two consecutive morphisms form an exact sequence. In particular, in
this case, the morphism H → G is injective and the morphism G→ K is surjective.

For a subset Σ = {s1, . . . , sm} of a group S, a word on Σ of length ` is an expression
of the form sσ1w1

· · · sσ`w` , where ` is a non-negative integer and for all i ∈ {1, . . . , `}, wi ∈
{1, . . . ,m} and σi = ±1. The empty word is defined as the unique word of length 0. In
this thesis we denote the sequence of indices w1, . . . , w` as w, and the word sσ1w1

· · · sσ`w` as∏
w s

σi
wi

. A word is reduced if it contains no subwords of the form ss−1 or s−1s.

The free group with generating set Σ is the group of words over Σ with the concatenation-
and-reduction operation. Every (finitely generated) group G is isomorphic a quotient of
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a (finitely generated) free group. If Σ is a generating set of such free group and R is a
generating set of the kernel, we say that 〈Σ: R〉 is a presentation of G.

2.3 Metric and Normed Spaces

Let X be a set. A function d : X×X → R is called a metric if for all x, y, z ∈ X it satisfies

1. d(x, y) = d(y, x),

2. d(x, y) = 0 if and only if x = y,

3. d(x, z) ≤ d(x, y) + d(y, z).

Given two sets Y, Z ⊆ X, define d(X, Y ) = inf
{
d(x, y) : x ∈ X, y ∈ Y

}
.

Let V be a vector space over a field F ∈ {R,Q}. A function | · | : V → R≥0 is called a
norm if for every u,v ∈ V and every a ∈ F, it satisfies

1. |u + v| ≤ |u|+ |v|,

2. |au| = |a||u|,

3. if |u| = 0, then u = 0.

A subset S ⊆ Rn is said to be balanced if for all r ∈ [−1, 1], the set rS ⊆ S. For a
balanced set S containing 0 in its interior, the function ‖ · ‖S : Rn → R given by ‖x‖S =
inf{r ∈ R≥0 : x ∈ rS} defines a positive definite homogeneous function. The function ‖ ·‖S
is a norm if and only if S is convex. Let Kn be the set of balanced convex and compact
sets K ⊂ Rn.

`p Norms. Let p ∈ R>0. For x = (x1, . . . , xn) ∈ Rn define

‖x‖p :=

∑
i∈[n]

|xi|p
1/p

.

We extend this notion to p = ∞ by defining ‖x‖∞ := max
{
|xi| : i ∈ [n]

}
. For p ∈

R≥1∪{∞}, the quantity ‖x‖p is called the `p-norm of x. It is perhaps important to notice
that, for p in the interval (0, 1), the function ‖ · ‖p fails to satisfy the triangle inequality,
hence it does not define a norm.
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If S = {s1, . . . , sm} is a set of vectors, we write ‖S‖p = maxi ‖si‖p. For r ≥ 0 and
c ∈ Rn, the set

rBp
n(c) :=

{
x ∈ Rn : ‖x− c‖p ≤ r

}
is the `p ball of radius r centered at c. For r = 1 and c = 0, we simply denote 1Bp

n(0) as
Bp
n.

It is true that for p, q ∈ R>0, if p ≥ q then Bp
n ⊆ Bq

n. As a consequence, for any x ∈ Rn,
if p ≥ q then ‖x‖q ≤ ‖x‖p. Moreover, under these conditions on p and q,

‖x‖q ≤ ‖x‖p ≤ n1/p−1/q‖x‖q. (2.1)

This relation is a direct application of Hölder’s inequality [MVR97, Theorem 2].

2.4 Probability

Measure Theoretic Definitions

We use several concepts of probability theory in various different scenarios. While Chapters
5 and 6 use standard probability theory over Rn, certain parts in Chapters 3, 4 and 7
require the more general language of measure theory. To avoid repetition, in this section
we introduce the relevant concepts in their most general form.

Definition 2.1 (Measurable Spaces and Sets). For a non-empty set S let M be a subset
of the power set ℘(S) of S. The set M is called a σ-algebra in S if

1. ∅ ∈ M,

2. For all E ∈M, S \ E ∈M,

3. {Ei : i ∈ I} ⊆ M implies that⋃
i∈I Ei ∈M.

If M is a σ-algebra of a non-empty set S, then the pair (S,M) is called a measurable
space and the members of M are called the measurable sets in S. For any collection of
subsets S ⊆ P , the smallest σ-algebraM in S containing S is called the σ-algebra generated
by S.

In this thesis we mostly consider measures over topological spaces. Possibly the most
intuitive way to regard a topological space S as a measurable space is to consider the
σ-algebra consisting of arbitrary unions and intersections of open sets of S. Elements in
this σ-algebra are called Borel sets . In chapters 3–6 we only consider measures over Borel
sets.
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Definition 2.2 (Measures and Probability Spaces). Let (S,M) be a measurable space. A
measure over S is a function µ : M→ R≥0{∞} satisfying the following properties.

(i) µ(∅) = 0.

(ii) If {Ai : i ∈ N} ⊆ M is a collection of pairwise disjoint measurable sets, then∑
i∈N µ(Ai) = µ

(⋃
i∈NAi

)
.

We say that a property holds for almost every x ∈ S, if it fails to hold for only elements in
a set of measure 0. A measure µ is called a probability measure if µ(S) = 1. In this case,
the triple (S,M, µ) is called a probability space.

Definition 2.3 (Measurable Functions and Random Variables). Let (S,M), (S ′,M′) be
measurable spaces. A function φ : S → S ′ is said to be measurable if for all A ∈ M′, the
preimage φ−1(A) ∈M.

Let (S,M, f) be a probability space and let (S ′,M′) be a measurable space. A random
variable is a measurable function X : S → S ′.

It follows from the previous definition that, when considering the σ-algebra of Borel
sets on topological spaces, every continuous function is measurable.

Probability Over Rn

We now consider Rn as a measurable space with the σ-algebra of Borel sets. The usual
way to endow Rn with a measure is to consider the Lebesgue measure which, intuitively, is
given by the volume of a set.

A probability distribution over Rn is a non-negative integrable function f : Rn → R≥0

such that ‖f‖1 :=
∫
Rn f(x)dx = 1. A probability distribution induces a probability measure

on Rn given, for every Borel set A, by µ(A) =
∫
A
f(x)dx.

Given two probability distributions f1, f2 over Rn, the addition of their corresponding
random variables is described by the convolution defined as

(f1 ∗ f2)(x) :=

∫
Rn
f1(z)f2(x− z)dz.

The statistical distance between f1 and f2 is given by

∆(f1, f2) :=
1

2

∫
Rn

∣∣f1(x)− f2(x)
∣∣dx.
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Given a probability distribution f over R and n ∈ Z>0, the nth moment of f with respect
to c ∈ R is given by ∫

R
(x− c)nf(x)dx.

Gaussian Distributions. For s ∈ R with s 6= 0 and c ∈ Rn, the spheric Gaussian of

width s centered at c is the function ρs,c : Rn → R given by ρs,c(x) = exp
(
− (x−c)2

2s2

)
. If

the center c = 0, we denote ρs,0 as ρs.

Proposition 2.4. Let X1, . . . , Xn be a collection of independent Gaussian random variables
of widths s1, . . . , sn and center c1, . . . , cn, respectively. Then the random variable obtained
from the sum ∑

i∈[n]

Xi

is a Gaussian random variable of width
√∑

i∈[n] s
2
i centered at (c1, . . . , cn).

Proposition 2.4 allows us to prove the divisibility property of the Gaussians in the
opposite direction. More precisely, given s ∈ R>0 and n ∈ Z>0 it is possible to express ρs
as a sum of n identical independent (Gaussian) distributions. This property of Gaussian
is called infinite divisibility.

Given a discrete set A ⊂ Rn and s ∈ R>0, the discrete Gaussian is the probability
distribution DA,s over A defined as

DA,s : x 7→ ρs(x)

ρs(A)
, (2.2)

where ρs(A) :=
∑

x∈A ρs(x), whenever this series is convergent.

2.5 Lattices

Lattices are central objects of study in lattice-based cryptography and geometry of num-
bers. In this section we provide the fundamentals of lattices over Rn. A generalization of
this concept is presented in Chapter 7.
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Fundamentals

Definition 2.5. Let n be a positive integer and let B = {b1, . . . ,bd} ∈ Rn be a set of
linearly independent vectors. The lattice generated by B is the set

L(B) :=

{
v ∈ Rn : v =

n∑
i=1

aibi, ai ∈ Z

}
⊂ Rn.

The number of basis vectors d is called the rank of the lattice. We say that a lattice is full
rank whenever d = n. If L′ is a lattice contained in L, we say that L′ is a sublattice of L,
and L is a superlattice of L′.

Let L be a lattice generated by a basis B. The fundamental region P(B) generated by
B is the parallelepiped determined by the vectors in B. A matrix B whose rows are the
elements of the basis B is called a generator matrix. The determinant of a lattice with
generator matrix B is given by

√
detBTB.

Any set of linearly independent vectors generates a lattice, on the other hand, any
lattice has an infinite number of different bases. Moreover, two different bases generate
the same lattice if and only if one can be obtained from the other via an unimodular
transformation—a linear transformation whose determinant is ±1. Under the given defi-
nition, the determinant of a full rank lattice L is the absolute value of the determinant of
any generator matrix B of L. In this case, the determinant of a lattice is also the volume
of any if its fundamental regions.

Definition 2.6. Given a lattice L ⊂ Rn, its dual lattice is defined as

L∗ :=
{
u ∈ Rn : for all v ∈ L, 〈u,v〉 ∈ Z

}
.

Remark 2.7. If B is a generator matrix for a lattice L, then B∗ := (BT )−1 is a generator
matrix for the lattice L∗. It follows that, for s ∈ R>0, the dual lattice of sL is given by
1
s
L∗.

Definition 2.8 (Successive Minima). Let K ∈ Kn and let L ⊂ Rn be a lattice. Then, for
i ∈ {1, . . . , n}, let

λi(K,L) := min
{
λ ∈ R>0 : dim(λK ∩ L) = i

}
. (2.3)

When K = Bp
1 , we denote λi(B

p
1 ,L) as λpi (L). If p = 2, then the exponent is omitted, thus

λi(L) = λ2
i (L).
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The successive minima associated to a lattice can be related to their counterparts for
the dual lattice. These are known as transference theorems . As an example, the following
theorem provides an upper and lower bound for λi(L) in terms of λn−i+1(L∗).

Theorem 2.9 ([Ban93, Theorem 2.1]). For any lattice L ⊂ Rn, and i ∈ [1, n],

1 ≤ λi(L) · λn−i+1(L∗) ≤ n. (2.4)

Lattice Problems

We now review a few of the lattice problems that are relevant for the discussion in the
following chapters. The problems are presented in the most generic form, that is, for any
norm ‖·‖K , with K ∈ Kn. As before, if K = Bp

n inducing an `p norm, then K is substituted
for the letter p. If p = 2, then this parameter is omitted in the notation.

Definition 2.10 (Shortest Vector Problem (SVPK
γ )). Let γ > 1 be an approximation

function and let K ∈ Kn. Given a set B ⊂ Rn of linearly independent vectors, find a
non-zero vector v ∈ L = L(B) such that ‖v‖K ≤ γ(n) · λ1(K,L).

The following can be seen as a decision version of SVPK
γ . Notice, however, that not

every instance of the problem can be decided. In other words, the definition of the problem
allows for the existence of lattices that are neither YES or NO instances.

Definition 2.11 (Gap Shortest Vector Problem (GapSVPK
γ )). Let γ > 1 be an approxima-

tion function. Given a set B ⊂ Rn of linearly independent vectors and a number d ∈ R>0,
output {

YES if λ1

(
K,L(B)

)
≤ d,

NO if λ1

(
K,L(B)

)
> γ(n) · d.

The following problem can be seen as a variant of SVPγ. In this case, the goal is to
find a set of linearly independent lattice vectors where every element is “small”.

Definition 2.12 (Shortest Independent Vector Problem (SIVPγ)). Let γ > 1 be an ap-
proximation function and let K ∈ Kn. Given a set B ⊂ Rn of linearly independent vectors,
find a set of linearly independent vectors S ⊂ L = L(B) such that ‖S‖K ≤ γ(n)λn(K,L).

In definitions 2.13 and 2.14, let distK denote the metric function induced by the norm
‖ · ‖K . Then, in particular, for a set A ⊂ Rn and a vector t ∈ Rn,

distK(A, t) := inf
{
‖x− t‖K : x ∈ A

}
.

32



Definition 2.13 (Closest Vector Problem (CVPγ)). Let γ > 1 be an approximation func-
tion and let K ∈ Kn. Given a set B ⊂ Rn of linearly independent vectors and a target
vector t ∈ Rn, find a lattice vector v ∈ L = L(B) such that ‖v− t‖K < γ(n) · distK(L, t).

The Closest Vector Problem imposes no restrictions on the lattice L and the target
vector t. It is known to be NP-Hard for approximation factor γ(n) = n1/ log logn [DKRS03].
The following problem is a variant of CVP, where the target vector is required to be close
enough to the lattice.

Definition 2.14 (Bounded Distance Decoding (BDD)). Let d ∈ R>0. Given a set B ⊂ Rn

of linearly independent vectors and a target vector t ∈ Rn such that distp
(
L(B), t

)
< d,

find a lattice vector v ∈ L(B) such that ‖v − t‖K = distK
(
L(B), t

)
.

Finally, the following is a problem about sampling from a discrete Gaussian distribution,
as defined in Equation (2.2). Despite being relatively new, in recent years it has become a
standard problem in lattice cryptography literature. The parameter ϕ is an arbitrary real
valued function meant to represent a parameter related to the lattice, for instance, λ1(L).

Definition 2.15 (Discrete Gaussian Sampling (DGSϕ)). Let ϕ be a function associated
to the lattice. Given a set B ⊂ Rn of linearly independent vectors and r ∈ R>ϕ(L), output
a sample from the distribution DL,r.

2.6 Learning With Errors and Short Integer Solutions

There are several different versions of the Learning With Errors problem in the literature.
Here we review the original definition appearing in [Reg05].

Definition 2.16 (Learning With Errors (LWE) [Reg05]). Let n, q ∈ Z>0 and let χ : Zq →
[0, 1] be a probability distribution. For s ∈ Znq let As,χ be the distribution over Znq × Zq
obtained by sampling a ← U(Znq ), e ← χ, and outputting the pair

(
a, 〈a, s〉 + e

)
. Search

Learning With Errors is the problem of finding s ∈ Znq given a collection of samples
(ai, bi) ← As,χ. Decision Learning With Errors is the problem of deciding whether there
exists s ∈ Znq such that a given collection of pairs (ai, bi) ∈ Znq ×Zq are sampled according
to As,χ, or they are sampled uniformly.

The Short Integer Solutions problem, in its inhomogeneous form, first appeared in
[Ajt96]. In the cited paper, Ajtai constructed a one-way function and provided a reduction
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from the worst case of this problem to the average case of SVPγ and SIVPγ. A few
years later, in [MR07], Micciancio and Regev improved these results quantitatively and
qualitatively, by providing a tighter reduction and improving the approximation factors.

Definition 2.17 (Short Integer Solutions (SIS)). Let n,m, q ∈ Z>0, let β ∈ R and let
p ∈ [1,∞]. Short Integer Solutions over `p is the problem of finding a solution to a system
of linear equations Ax ≡ 0 mod q, with A ∈ Zn×m, such that x ∈ Zm \{0} and ‖x‖p ≤ β.

2.7 Elliptic Curves

Let F be field of characteristic different from 2 or 3. An elliptic curve is the set E(F) of
solutions to an equation of the form E : y2 = x3 + ax+ b over F and an additional identity
element. An elliptic curve has a natural associative operation such that it becomes an
Abelian group. The identity element is usually referred to as the point at infinity, and in
this thesis is denoted as 0. An isogeny over F is a non-constant map φ : E1(F)→ E2(F) of
the form

(x, y) 7→
(
f1(x)

g1(x)
,
f2(x)

g2(x)
y

)
that fixes the point at infinity, where f1, f2, g1, g2 are polynomials in F[x]. In this case, E1

and E2 are called isogenous. An isogeny induces a group homomorphism from E1(F) to
E2(F). The degree of an isogeny is max

{
f1(x, y), g1(x, y)

}
. An isogeny is called separable

if the derivative of f1(x)
g1(x)

is nonzero.

Not every two curves are isogenous, however, for any prime power q, two elliptic curves
E1, E2 are isogenous over Fq if and only if

∣∣E1(Fq)
∣∣ =

∣∣E2(Fq)
∣∣. Furthermore, given a fixed

curve E1(Fq) and a subgroup G ≤ E1(Fq) there exist a curve E2(Fq) and a separable isogeny
φ : E1 → E2 over Fq with kernel G; and, E2 and φ are unique up to Fq-isomorphism. This
isogeny can be computed from a set of generators of its kernel by using Velu’s formulas
[Vél71].

Definition 2.18 (Isogeny Problem). Let E1, E2 be two elliptic curves over Fq such that∣∣E1(Fq)
∣∣ =

∣∣E2(Fq)
∣∣. The isogeny problem is the problem of finding an isogeny φ : E1 → E2.
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Chapter 3

The Learning Problem

“Meaning lies as much
in the mind of the reader
as in the Haiku.”
— Douglas Hofstadter in Gödel, Escher, Bach:

An Eternal Golden Braid

Learning, as a human phenomenon, is perhaps easy to understand. After all, humans
experience learning on a regular basis. However, it is remarkably complicated to articulate
into words what the concept means. It goes without saying that establishing the appropri-
ate models for its formal study from the point of view of computers has been a particularly
complex problem. This challenge has motivated several attempts to formulate models for
learning that are appropriate for different scenarios [Val84, Val85, AL88, Kea98].

Despite the discussion above, we have an intuitive idea of what is to learn a function.
For instance, it is well known that a polynomial function p(x) = a0 + a1x + . . . + anx

n of
degree n over any field can be uniquely determined from n+1 input/output pairs

(
a, p(a)

)
.

We “determine” this function by computing the coefficients a0, a1, . . . , an of p(x). With
this information we can efficiently compute the polynomial function at any point in the
field, hence we can say we “learned” the function. The concept of “learning” a function
can thus be thought as the process of acquiring enough information to efficiently simulate
the behavior of the function at any point in the domain.

In [BFN+11], Baumslag et. al present a framework to study the Learning With Errors
problem over abstract groups. One of the missing pieces in that work, however, is a precise
definition of what “learning a homomorphism” means in the context of groups. Since this is
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a generalization of Regev’s definition in [Reg05], a suitable model for learning must be able
to accommodate the existing notions of learning in the context of LWE. In this chapter
we argue the reason why different existing models are not suitable for our purposes and
present a model that we deem appropriate and discuss its limitations.

Portions of this chapter are based on [LR19]. These portions represent my contribution
to the cited paper.

3.1 Learning Models

Blum, Kalai and Wasserman proposed, in [BKW00], an algorithm—widely known nowa-
days as BKW—that would turn into one of the best known solutions for LWE more than
half a decade before the publication of Regev’s work. In the mentioned paper, the authors
give a subexponential time solution for the Learning Parity with Noise problem. In that
context, the parity problem is thought as a boolean classifier—it returns 0 if the parity of
the input bits is even and 1 otherwise. By doing so, they prove that two models of learning
that have been previously proposed are not equivalent.

In [Val84], Valiant introduced the concept of Probably Approximately Correct (PAC)
learning in the context of boolean classifiers. In short, a family C of boolean functions
defined over {0, 1}n is said to be (efficiently) PAC-learnable if there exists a (polynomial
time) algorithm A such that, given a function c ∈ C, a probability distribution χ over the
domain, parameters ε, δ ∈

(
0, 1

2

)
, and a set Sn of m = Poly

(
1
ε
, 1
δ
, n
)

input samples x from
the distribution χ such that c(x) = 1, the algorithm A outputs a function h ∈ C such that

PrSn←χm
(

Prx←χ
(
h(x) = c(x)

)
≥ 1− ε

)
≥ 1− δ.

A possible downside of Valiant’s model is that it allows a learning algorithm to have access
to a distinguishing oracle—an oracle that, for any function c ∈ C, discerns whether or not
a particular input x is such that c(x) = 1. This feature is noticeably difficult to reconcile
when trying to model learning in the presence of noise.

The problem of establishing a model for learning in the presence of noise is addressed
by a number of works [AL88, Lai88, Kea98]. In [AL88], Angluin and Laird extend Valiant’s
PAC model by allowing the learning algorithm to have access to a possibly faulty verifica-
tion oracle. Kearns [Kea98] proposed a different approach, where instead of giving access
to a faulty sampling oracle, it provides access to an oracle that accurately estimates the
probability of the samples obtained from the given distribution χ to be faulty. A conse-
quence of the BKW algorithm is that these two models of learning, [AL88] and [Kea98],
are not equivalent.
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3.2 Homomorphism Learning

In order to establish the appropriate learning model for our purposes we start with a
simple example. Let V be a linear space over a field F of dimension n and consider
F = HomF(V,F), the set of all linear functions from V to its field of scalars—also called
functionals. Notice then that, by using the algebraic structure of V , it is possible to
learn f given n samples

(
v1, f(v1)

)
, . . . ,

(
vn, f(vn)

)
, provided that v1, . . . ,vn are linearly

independent. This can be done by writing v in terms of v1, . . . ,vn—as a linear combination
v =

∑n
i=1 bivi—computing the inverse of the matrix whose columns are the vectors vi.

Using the linearity of f we obtain f(v) =
∑

i bif(vi). Moreover, let e1, . . . , en be the
canonical basis and let si = f(ei)—this can be computed using Gaussian elimination.
Thus, for v = (a1, . . . an) we can write f(v) =

∑n
i=1 aisi = 〈s,v〉, where s = (s1, . . . , sn).

This means that every f ∈ F can be expressed as an inner product by a constant vector
s, where s depends only on f and can be found efficiently.

In the case of morphisms between algebraic objects, the precise notion of “learning
a morphism” is intrinsically dependent on the model used for the algebraic structures.
For instance, assume that we know (the encodings of) a generating set g1, . . . , gm for a
group G, as well as (the encodings of) their corresponding images ϕ(g1), . . . , ϕ(gm) under
a morphism ϕ : G → H. This information uniquely determines the morphism ϕ, as the
value of ϕ(g) for an element g ∈ G is given by

∏
w ϕ(gwi), where g =

∏
w gwi . However,

computing the word w may be a hard problem in the group G.

A black-box semigroup is a finitely generated semigroup S together with an injective
encoding function enc: S → {0, 1}∗, and an oracle O that returns the encoding result of
operations in a predetermined operation set Π, where Π contains, at least, the group law.
We say that an algorithm A has black-box access to a finitely generated semigroup S =
〈s1, . . . , sm〉 if it has access to the list of encodings

{
enc(s1), . . . , enc(sm)

}
and input/output

access to the oracle O.

Definition 3.1 (Homomorphism Learning). Let G and H be finitely generated semigroups
and let ϕ : G → H be a homomorphism. Let ξ be a probability distribution over G.
Suppose that an algorithm A has black-box access to G and H. We say that an algorithm
A learns the function ϕ with respect to ξ from m samples

(
gi, ϕ(gi)hi

)
, with hi ← χ, if

given g ← ξ
(
〈g1, . . . , gm〉

)
, the algorithm A outputs ϕ(g) with non-negligible probability,

where ξ(S) denotes the probability distribution ξ restricted to S ≤ G.

Notice that in the case of noiseless samples, the learning problem reduces to the problem
of finding an expression for g in terms of g1, . . . , gm. This problem, in the case of semigroups,

37



is called the constructive semigroup membership problem. In [CI14], Childs and Ivanyos
proved that the generic constructive semigroup membership problem has an exponential
quantum query lower bound.

Let G and H be groups. Notice that the set Hom(G,H) of homomorphisms ϕ : G→ H
is not empty, since the function that maps every element in G to the identity element in H
is itself a homomorphism. In general, however, this set may contain several other elements.
Let ϕ ∈ Hom(G,H) and let g1, . . . , gm ∈ G.

In order to frame this as a computational problem, we shall assume that it is possible
to efficiently sample from a probability distribution χ over G. For ϕ ∈ Hom(G,H) let Γξϕ,χ
be the probability distribution over G × H obtained by sampling g ∈ G according to ξ,
h ∈ H according to χ and outputing

(
g, ϕ(g)h

)
. If G is a finite group and ξ is the uniform

distribution over G, we will omit ξ and denote Γξϕ,χ as Γϕ,χ. The problem of learning ϕ
given samples from Γξϕ,χ is formally described in the following definition.

Definition 3.2 (Homomorphism Learning Problem). Let G and H be finitely generated
groups. Let ξ and χ be probability distributions over G and H, respectively. We say that
an algorithm A solves the learning homomorphism with noise problem (LHN) for G, H, ξ
and χ if for any ϕ : G → H, A is able to learn ϕ with respect to ξ given a set of samples
from the distribution Γξϕ,χ with non-negligible probability.

In the previous definition it is not required for the groups G and H to be finite, as this
restriction would leave out several basic examples, such as the integers. Ideally, we would
like to have the possibility to consider infinite groups for the distinguishing version of LHN.
Nonetheless, the distinguishing versions of hard problems are usually about differentiating
a particular distribution from uniform. To consider an infinite group, therefore, we need
to replace the uniform distribution with a fixed distribution defined on the group, as the
uniform distribution is not defined on infinite sets.

Definition 3.3 (Distinguishing Homomorphism Learning Problem). Let G and H be
finitely generated groups and fix a probability distribution Ξ over G×H. Let ξ and χ be
probability distributions over G and H, respectively. We say that an algorithm A solves
the distinguishing homomorphism with noise problem (DHN) for G, H and ξ and χ with
respect to Ξ if for any ϕ : G → H, A is able to distinguish the distribution Γχϕ,χ from the
distribution Ξ over G×H.
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3.3 Examples, Applications and Limitations

At the beginning of the previous section we argue that, given a functional f : V → F, it is
enough to determine its value on the canonical basis e1, . . . , en in order to find a vector s to
express f as an inner product. This implies that an algorithm that is able to learn f given
possibly noisy samples, in the sense of Definition 3.1, is also able to solve the Learning
With Errors problem, in the sense of Definition 2.16. Other examples that appear in the
literature are described next.

The Conjugacy Problem

Let 〈s1, . . . , sn : r1, . . . , rm〉 be a presentation of a group G. An instance of the conjugacy
(decision) problem is a pair of elements g1, g2 ∈ G. The goal is to decide whether there
exists g ∈ G such that g1 = gg2g

−1. Given a pair of conjugate elements g1, g2 ∈ G—that
is, a YES instance of the conjugacy problem—the conjugacy search problem is the problem
of finding g such that g1 = gg2g

−1.

Remark 3.4. Recall that group conjugation is an automorphism. As a consequence, the
conjugacy search problem is closely related the homomorphism learning problem. Nonethe-
less, there might not be a direct relation between them if we consider the model of learning
that is given above in Definition 3.1. An algorithm that learns a conjugation, according to
this definition, is able to evaluate the function h 7→ ghg−1. However, it is not clear how to
use this algorithm to find g.

The hardness of the conjugacy problem naturally depends on the particular group. It
is known to be undecidable in its generic form. On the other hand, it is known to have a
polynomial time solution for certain families such as Coxeter groups [Kra94]. Nonetheless,
several instances of this problem—and variants of this problem—have been used for the
construction of Diffie-Hellman type key exchanges and signature schemes. The literature
related to non-commutative cryptography is vast. Examples of this include [AAG99],
which is one of the earliest construction of a cryptosystem using groups and proposes a
key exchange based on the hardness of the conjugacy problem on braid groups; [KCCL02],
which proposes a construction of a signature scheme using braid groups; [EK04], where the
authors make use of polycyclic groups to construct a key exchange mechanism; and others
[KLC+00, Sti05, BFX06].
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Learning Isogenies

An isogeny between two elliptic curves φ : E1 → E2 is also a group homomorphism. The
isogeny problem, as described in Definition 2.18, asks to find an isogeny between to isoge-
nous curves. Naively, that would mean finding the corresponding polynomials that con-
stitute the isogeny. However, in practice this is not the case. Algorithms such as Vélu’s
[Vél71] allows us to completely describe the isogeny only by finding a set of generators of
its kernel. This yields a way to evaluate the isogeny on any point of E1.

The converse is also true in the context of quantum algorithms; that is, given access
to an algorithm that evaluates the isogeny, it is possible to recover a set of generators for
its kernel. To see this notice that, since φ : E1 → E2 is a group homomorphism, it defines
an instance for the Hidden Subgroup Problem. By using Shor’s algorithm, it is possible to
find a set of generators for the kernel of φ.

3.4 Generic Solutions to the Homomorphism Learn-

ing Problem

To finalize this chapter, we present two generic approaches to obtain information about
instances of the learning problem to solve the Distinguishing Homomorphism Learning
Problem (Definition 3.3). It is important to notice that the information obtained by both
of these methods, in general, do not yield a solution to the learning problem according to
Definition 3.1.

Order Finding Approach

Order Finding is the problem of finding the order of a group element, given oracle access
to the group, where the allowed operations are the group law and inverse. This problem,
to the best of our knowledge, is hard to solve classically. A quantum algorithm, however,
can solve the order finding problem by using phase estimation [Mos99]. The solution for
this problem is at the core of Shor’s algorithm for factoring and solving discrete logarithm
over Zn.

When trying to solve the Distinguishing Learning problem, the simplest case is when
the samples have not been altered by random noise, in other words, where the input of the
problem is a collection of samples of the form

(
g, ϕ(g)

)
. Let G and H be groups and let
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ϕ : G→ H be a homomorphism. By definition, ϕ(eG) = eH . Then, for g ∈ G, the order of
g, O(g), is bounded below by the order of ϕ(g). Moreover, O(g) is a multiple of O

(
ϕ(g)

)
.

Hence, given a collection of samples
(
gi, ϕ(gi)

)
∈ G ×H, an attacker can distinguish this

distribution from U(G×H), by observing that the order of the left coordinate is always a
multiple of the order of the right coordinate. Finding the order, in general, requires Shor’s
algorithm. However, this problem can be solved classically for several particular groups.

Noise in a Known Normal Subgroup

In [BFN+11], the authors remark that, for the distribution Γϕ,χ to be indistinguishable from
U(G×H), the support of ϕ should not be contained in a proper normal subgroup of H, as
otherwise an attacker can “factor out” this subgroup, and obtain a noiseless distribution,
on which the attacker can perform the order attack previously described to distinguish it
from the uniform distribution. In more detail, let N E H be a normal subgroup of H
containing the support of ϕ. Then the mapping

ϕ̄ : g 7→ ϕ(g)N

is a homomorphism ϕ̄ from G to the quotient group H/N . The distribution
(
g, ϕ̄(g)

)
is a

noiseless distribution over G×H/N .

Notice that in order to define ϕ̄, and to be able to perform operations in the group H/N ,
it is necessary to know what the group N is. Therefore, performing this attack requires
the knowledge of the normal subgroup on which the support of the noise is contained.
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Chapter 4

An Algebraic Approach to LHN

“Siempre estoy haciendo lo que no puedo
hacer, para poder aprender a hacerlo.”

— Pablo Ruiz Picasso

This chapter is a continuation of Chapter 3, where we focus on the possible applications
of the Learning Homomorphism with Noise problem to construct a public-key encryption
scheme. As in the previous chapter, portions of this chapter are based on [LR19]. These
portions represent my contribution to the cited paper.

4.1 Public-key cryptography from LHN

In 2011, Baumslag et al. proposed a generic framework for the study of the problem of
learning noisy homomorphisms over abstract groups, using the word norm as their tool to
measure noise. From a hard instance of this problem it is easy to derive a symmetric key
encryption scheme. The idea is to share a homomorphism ϕ : G → H as the secret key,
which allows one to recover eτµ from the pair

(
g, ϕ(g)eτµ

)
. If τ is large and the noise is

small, it is possible to distinguish whether µ is 0 or 1.

Deriving a public-key cryptosystem, however, is significantly more challenging. Using
this problem in a way that is similar to the one described in [Reg05], requires the group
to have certain properties. In generic language, the idea of Regev’s cryptosystem is to
randomly mix samples

(
gi, ϕ(gi)ei

)
∈ G ×H from the public key to obtain a new sample
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(g, h) whose distribution provides no information about the secret key ϕ. This allows us
to encode a message µ in an element τµ ∈ H by “hiding” it in the second coordinate as
(g, hτµ). To recover τµ it is enough to compute h from g and the secret key ϕ. However, h
is formed by alternating multiplication of ϕ(gwi) and elements from the error distribution

h =
∏
w

ϕ(gwi)ewi = ϕ(gw1)ew1ϕ(gw2)ew2 · · ·ϕ(gw`)ew` , (4.1)

while g is only related to gw1 · · · gw` ; in other words, the error elements are “in the way”
of h.

One way to solve this problem is to use private information to erase the errors first. As a
concrete example, let K be a group and let ψ : H → K be a second secret homomorphism,
and assume that the error distribution over H efficiently samples elements e ∈ Ker(ψ).
Hence we can erase the error elements by first applying ψ to h to obtain

ψ(h) = ψ
(
ϕ(gw1)

)
ψ(ew1)ψ

(
ϕ(gw2)

)
ψ(ew2) · · ·ψ

(
ϕ(gw`)

)
ψ(ew`)

= ψ
(
ϕ(gw1)

)
ψ
(
ϕ(gw2)

)
· · ·ψ

(
ϕ(gw`)

)
.

Since ϕ and ψ are group homomorphisms, we may now recover the relation of the second
coordinate with g by computing ψ ◦ ψ(g). This motivates the following definition.

Definition 4.1. Let G, H and K be groups and let ϕ : G → H, ψ : H → K be group
homomorphisms. Let χ be a probability distribution over H whose support is a subset
of Ker(ψ). We say that an algorithm A solves the normal-Learning Homomorphism with
Noise problem (normal-LHN) if A is able to learn ϕ from a set of samples from the
distribution Γϕ,χ.

Notice that if the group H is Abelian—or, more generally, if the errors are sampled
from the center of H—Equation (4.1) can be rewritten as

h =
∏
w

ϕ(gwi)
∏
w

ewi .

Nevertheless, this may lead to weaknesses in the construction. If the center Z(H) of H is a
proper subgroup, and the projection H 7→ H/Z(H) is efficiently computable, we may use
the generic solution described in Section 3.4 when the noise is restricted to a known normal
subgroup. This procedure does not provide additional information to an attacker when
H is an Abelian group, since the projection onto the quotient yields a trivial distribution
(g, 1). However, in Section 4.4 we describe a more effective way to solve normal-LHN in
this case.
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4.2 A Public Key Cryptosystem based on Normal-

LHN

In the previous section we argued the possible difficulties when using LHN to obtain cryp-
tographic primitives, and motivated the definition of normal-LHN based on this discussion,
with the possibility of arriving to a general procedure to construct a public-key cryptosys-
tem form a generic group. In this section we describe this procedure. As with constructions
based on LWE, we start by describing a symmetric encryption scheme that is later trans-
formed into a public-key encryption scheme using the algebraic properties inherent to LHN.
In Section 4.3 we describe two constructions using different algebraic objects: polynomial
rings and elliptic curves. However, in Section 4.4, we argue why these constructions are
insecure in the quantum setting.

Start by recalling that a subgroup N ≤ H is normal if and only if it is the kernel of a
homomorphism from H. Consider three finitely generated groups G, H and K, and let ξ
and χ be probability distributions over G and H respectively such that both distributions
can be sampled efficiently.

A Symmetric-Key Construction

KeyGen(1λ): Given the security parameter λ, choose efficiently computable homomor-
phisms ϕ : G → H and ψ : H → K, such that it is efficient to sample from χ
restricted to Ker(ψ) ≤ H. Let τ ∈ H \ Ker(ψ). The shared key is a description
of ϕ and ψ, together with the group element τ .

Enc(β): Given a message β ∈ {0, 1}, sample an element g from G according to ξ and h
from Ker(ψ) ≤ H according to χ. The encryption of β is

(
g, ϕ(g)hτβ

)
Dec(g, h′): Given a pair (g, h′) ∈ G×H, compute ν = ψ

(
ϕ(g)

)−1 · ψ(h′) and output

β′ =

{
0 if ν = 1K ,
1 if ν 6= 1K .

Correctness. Suppose that (g, h′) is a correctly formed encryption of β ∈ {0, 1}. Then the
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intermediate step of the decryption algorithm computes

ν = ψ
(
ϕ(g)

)−1 · ψ(h′)

= ψ
(
ϕ(g)

)−1 · ψ
(
ϕ(g)hτβ

)
= ψ

(
ϕ(g)

)−1 · ψ
(
ϕ(g)

)
· ψ(h) · ψ(τ)β

= ψ(τ)β.

The correctness then follows since τ is not in the kernel of ψ.

A public-key construction

KeyGen(1λ): Given the security parameter λ, choose efficiently computable homomor-
phisms ϕ : G→ H and ψ : H → K. For i ∈ {1, . . . ,m} compute(

gi, ϕ(gi)hi
)
∈ G×H,

where gi is sampled from ξ and hi is sampled from Ker(ψ) ≤ H according to χ. The
private key is a description of ϕ and ψ. The public key is the set{(

gi, ϕ(gi)hi
)

: i = 1, . . . ,m
}
⊆ G×H,

together with a public element τ ∈ H \Ker(ψ).

Enc(β): Given a message β ∈ {0, 1}, sample a word ω = w1 · · ·w` over the indices
{1, . . . ,m} of length ` and compute

(g, h′) =

(∏̀
i=1

gwi ,
∏̀
i=1

ϕ(gwi)hwi

)
.

Then output (g, h′τβ).

Dec(g, h): Run the decryption procedure described in Subsection 4.2.

Correctness. Suppose that (g, h) is a correctly formed encryption of β ∈ {0, 1}. Then the
intermediate step of the decryption algorithm computes

ν = ψ
(
ϕ(g)

)−1 · ψ(h)

= ψ
(
ϕ
(∏`

i=1 gwi

))−1

· ψ
((∏`

i=1 ϕ(gwi)hwi

)
· τβ
)

= ψ
(
ϕ
(∏`

i=1 gwi

))−1

·
(∏`

i=1 ψ
(
ϕ(gwi)

)
ψ(hwi)

)
· ψ(τ)β

= ψ
(
ϕ
(∏`

i=1 gwi

))−1

· ψ
(
ϕ
(∏`

i=1 gwi

))
· ψ(τ)β

= ψ(τ)β.
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The correctness then follows since τ is not in the kernel of ψ.

Properties

Despite being inspired by the traditional LWE cryptosystem, there are several differences
between this and the construction described in the previous subsection that may yield
different useful properties, as well as different lines of cryptanalysis.

Noise Accumulation and Decryption Errors. Due to the geometric nature of LWE,
it is necessary to be careful when handling the noise. Large noise yields decryption errors,
which in turn give way to key recovery attacks. Noise may accumulate during encryption,
making decryption errors difficult to mitigate—unless an error correcting code is imple-
mented alongside. Moreover, noise accumulation has been the main obstacle for the design
of effective homomorphic cryptosystems based on lattices, making necessary the use of
bootstrapping to achieve unbounded depth fully-homomorphic encryption.

A cryptosystem built as in the previous subsection does not suffer from noise accumula-
tion or decryption errors. Elements sampled from the noise distribution χ are all contained
in the kernel of the secret homomorphism ψ.

Unbounded Homomorphic. Suppose that H is a group with non-trivial center Z, and
assume that τ is a non-trivial central element of H of order 2 in the set H \Ker(ψ). Then
ψ(τ) is also a non-trivial central element in the image of ψ. Let β, β′ be two messages and
(g, h), (g′, h′) their corresponding encryptions. Then

hh′ =
(∏

w ϕ(gwi)hwi
)
τβ
(∏

w ϕ(gw′i)hw′i
)
τβ
′

=
(∏

w ϕ(gwi)hwi
)
·
(∏

w ϕ(gw′i)hw′i
)
· τβ · τβ′

=
((∏

w ϕ(gwi)hwi
)
·
(∏

w ϕ(gw′i)hw′i
))
· τβ′+β′ .

It follows that the coordinate-wise product (g, h) · (g′, h′) = (gg′, hh′) is a valid encryption
of β + β′.

It is worth noticing that this property itself does not imply that the construction is
unbounded fully homomorphic. In other words, the construction is only able to evaluate a
single operation, since it is based on a group. We conjecture that this is not a sufficient
condition to evaluate any complete set of gates.
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(Potentially) Small Keys. The encryption mechanism used in traditional LWE mixes
elements of the public key by taking a random linear combination of them, where the
coefficients are in {0, 1}. Such a restriction is necessary in order to keep the noise small.
This is, however, not necessary in this case since noise accumulation does not induce
decryption errors. In particular, the number of possible linear combinations of elements
g1, . . . , gm of an Abelian group increases according to their order. In the case of non-Abelian
groups, however, the number of combinations obtained—words in the set S = {g1, . . . gm}—
is strictly greater, and depends on the relations that hold for the set S.

(Potentially) Large Message Space. Suppose that a central element τ ∈ Z(G) is such
that the discrete logarithm can be solved efficiently in the group generated by ψ(τ). Then
there is a way to modify the decryption procedure in 4.2 to increase the size of the message
space. In particular this is true whenever the discrete logarithm is solvable in K. This
allows for the message space to be of size O

(
ψ(τ)

)
. Notice, however, that this depends on

ψ, which is part of the secret key.

4.3 Obtaining instances

In the previous section we described a way to obtain public-key encryption from the normal-
LHN problem over a generic group. However, the feasibility of the construction, as well
as the security of it, depend on the specific group that is chosen to instantiate it. In this
case, the chosen groups G, H and K, the homomorphisms ϕ : G → H, ψ : H → K, and
the corresponding probability distributions must have certain desired properties.

Large key space. The groups Hom(G,H) and Hom(H,K) must be of exponential size
in the security parameter.

Feasibility. There is an efficient algorithm to sample from the distribution χ. Since the
support of χ (the set of elements where χ is non-zero) must be contained in the kernel
of ψ, there must be an efficient algorithm to sample from Ker(ψ).

One way to ensure that the first condition is satisfied is to choose a group G with a
large number of normal subgroups, which holds trivially for Abelian groups. In this section
we present two instances of the construction described in Section 4.1 using Abelian groups.
We remark that both constructions are vulnerable to the attacks described in Section 4.4,
moreover, the attack to the first example, the instance using polynomials, does not require
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the use of a quantum algorithm, rendering the scheme completely insecure, as proved in
Section 4.4. The second condition is slightly more difficult to guarantee since the difficulty
of finding the kernel of a homomorphism depends on the way that the homomorphism is
described, and this, in general, might be a difficult task. In the following constructions this
problem is addressed by describing the homomorphisms through the description of their
corresponding kernels.

A polynomial ring instance

Let F be a finite field and let f(x) ∈ F[x] be a polynomial of degree n. For g(x) ∈ F[x] let
[g(x)] denote the coset in R = F[x]/f(x) containing g(x), and let g(x) denote the residue
of g(x) divided by f(x). Notice that g(x) is the unique polynomial of degree less than n
in the coset

[
g(x)

]
. We have that for every α ∈ F, the function

ψ : [g(x)] 7→ g(α)

is a group homomorphism from the additive group of R = F[x]/f(x) to the additive group
of F. Notice that this is not a ring homomorphism. The kernel of this homomorphism can
be described by the set of polynomials in F[x] of degree less than n that have α as a root:

Ker(ψ) =
{

[g(x)] : g(α) = 0, deg(g) < n
}

=
{

[(x− α)p(x)] : deg(p) < n− 1
}
.

If F is a finite field, the previous description yields an efficient procedure to sample from
the uniform distribution over Ker(ψ), by sampling uniformly a polynomial p(x) of degree
less than n− 1 and returning (x− α)p(x).

KeyGen(1λ): Pick a polynomial f(x) ∈ F[x]. Choose α, s0, . . . , sn−1 from the uniform
distribution over F and let s(x) =

∑n−1
j=0 sjx

j. For i ∈ {1, . . . ,m} choose ai(x)
uniformly from R and p(x) uniformly from the set of polynomials in F[x] of degree
less than n− 1. Compute

bi(x) = ai(x)s(x) + pi(x)(x− α).

The private key is the pair
(
s(x), α

)
. The public key is the set of pairs

(
ai(x), bi(x)

)
.

Enc(µ): Given a message µ, encode it as an element of the field F. Choose a random
subset J ⊆ {1, . . . ,m} and compute the ciphertext(

a(x), b(x)
)

=

(∑
i∈J

ai(x),
∑
i∈J

bi(x) + µ

)
∈ F[x]× F[x].
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Dec
(
a(x), b(x)

)
: Compute d(x) = b(x)− a(x)s(x) and output µ′ = d(α).

Isogeny LWE

Keeping the kernel of a homomorphism secret is the main idea behind isogeny-based cryp-
tography. The isogeny problem is the problem of computing an isogeny between two curves
E1, E2 just by knowing the equations that describe the curves, provided that this isogeny
exists (that the curves are isogenous). In constructions such as SIKE [JAC+17], it is as-
sumed that this problem remains hard even after giving away the image of two points in
the curve (specifically the generators of the 2 or 3 torsion subgroup of E1).

Let p be a prime number and Fp2 be the field with p2 elements.

KeyGen(1λ): For simplicity we divide this section into the isogeny generation and the point
generation.

• Isogenies: Choose k1, k2 ∈ Zn3 uniformly at random. Set G0 = [k1]R0 +[k2]S0 ∈
E0[3n], and find a point H0 ∈ E0[3n] which is independent from G0. Use G0 to
compute the isogeny φ : E0 → E1 with Ker(φ) = 〈G0〉, along with φ(H0).

Next, compute a basis R1, S1 for E1[3n]. Choose k3, k4 ∈ Zn3 uniformly at
random. Set G1 = [k1]R1 + [k2]S1 ∈ E1[3n], and test that G1 is independent
from φ(H0). Otherwise choose k3 and k4 again and repeat the previous line.
Once G1 and φ(H0) are independent, compute the isogeny use G1 to compute
the isogeny ψ : E1 → E2 with ker(φ) = 〈G1〉.
• Points: Construct points P1, Q1 ∈ E1[2n] such that 〈P1, Q1〉 = E1[2n]. Choose

2m points at random:
X1, . . . , Xm ∈R E0(Fp2),

Y1, . . . , Ym ∈R Ker(ψ) ⊆ E1[3n].

For each i ∈ {1, . . .m} compute the image of X1, . . . , Xm under φ. The public
key is P1, Q1 and the tuples

(
Xi, φ(Xi) + Yi

)
, for i ∈ {1, . . .m}. The private

key is k1, k2, k3, k4 ∈ Zn3 and ψ(P1), ψ(Q1).

Enc(µ): Encode the message µ into (M1, M2) ∈ (Zm2 )2, where not both M1 and M2 are
divisible by 2. Choose a random subset J ⊆ {1, . . . , t} and compute the ciphertext:

(X, Y ) =

(∑
i∈J

Xi,

(∑
i∈J

φ(Xi) + Yi

)
+ [M1]P1 + [M2]Q1

)
∈ E0(Fp2)× E1(Fp2).
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Dec(X, Y ): Given a ciphertext (X, Y ) ∈ E0(Fp2)× E1(Fp2), compute

Z = ψ
(
Y − φ(X)

)
.

Using the knowledge of ψ(P1), ψ(Q1) solve the two dimensional elliptic curve discrete
logarithm problem:

Z = [M ′
1]ψ(P1) + [M ′

2]ψ(Q1)

and recover the message M from (M ′
1, M

′
2).

4.4 Solving Normal-LHN for Abelian Groups

In this section we prove the impossibility of constructing a quantum-resistant cryptosystem
based on the hardness of normal-LHN for Abelian groups. As a warm-up, we start by
recalling the standard way to reduce LWE to SIS. Suppose that we are given m LWE
samples

(
ai, bi = 〈ai, s〉+ ei

)
. Finding the secret s is equivalent to solving the equation

As + e = b,

where the matrix A and the vectors e and b are formed with the entries of the samples.
To solve this one may try to “get rid of the action of s” by computing a vector t in the
null-space of AT and multiplying b by tT . This way we obtain

tTb = tTAs + tTe = tTe.

When t is a small vector, the product tTe is also small. Hence it is possible to solve the
decisional version of LWE.

The previous idea can also be used to solve LHN in the case of Abelian groups. When
the number of samples in the public key exceeds the rank of the group it is possible to
mount a key-recovery attack from the public key. In the other case, when the number
of samples that constitute the public-key is less than or equal to the rank of the group,
it is possible to recover a message from any encryption of it. Observe that any group
homomorphism is constant on the cosets of its kernel; hence a group homomorphism is a
hiding function of its kernel.
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Secret key recovery

Let G, H, K be Abelian groups (denoted additively) and let ϕ : G→ H and ψ : H → K be
two secret homomorphisms. Let ` be the rank of G and suppose that we are given m > `
samples of the form (

gi, ϕ(gi) + hi
)
∈ G×H

with hi ∈ Ker(ψ). Now consider the map f : Zm → G given by

f : (a1, . . . , am) 7→
m∑
i=1

aigi ∈ G.

This map is a group homomorphism. Using Shor’s algorithm it is possible to find a gener-
ating set for the kernel of f . If (a1, . . . , am) ∈ Ker(f), we have that

m∑
i=1

ai
(
gi, ϕ(gi) + hi

)
=

(
0,

m∑
i=1

aihi

)
∈ {0} × ker(ψ),

obtaining a random element in kerψ. By repeating this process we can obtain a generating
set of kerψ.

Message recovery

Suppose that we have the same setup as before, but this time m ≤ `. Let
{(
gi, ϕ(gi) +

hi
)

: i = 1, . . . ,m
}

be the public key and let (g, h) =
∑m

i=1 ri
(
gi, ϕ(gi) + hi

)
+ (0, βτ) be

an encryption of β. Consider the function f : Zm+1 → G given by

f : (a1, . . . , am, am+1) 7→ −am+1g +
m∑
i=1

aigi.

As before, this is a group homomorphism. Using Shor’s algorithm it is possible to find a
generating set for the kernel of f . Moreover, this has rank one and is generated by the
tuple (r1, . . . , rm, 1). Using these recovered coefficients and the public key, it is possible to
recover βτ from the given ciphertext.

51



4.5 Conclusion

In this chapter we proposed a generic adaptation of the construction proposed by Regev
in [Reg05] of a public-key cryptosystem that uses the hardness of solving a noisy learning
problem. Extending previous works in the area such as [BBFR08, BFN+11, BFX06],
here we proposed the first construction of this kind that is able to make use of non-
commutative groups, as long as these satisfy certain properties. We showed, however, that
instantiating this construction using Abelian groups results in an insecure cryptosystem,
when the attacker has access to a quantum computer.

There are several questions that remain unanswered. Finding an non-Abelian instanti-
ation of this construction is a work in progress, as well as the case of evaluating the security
of the Abelian instantiation in the classical setting—if no attack is found this would yield
a unbounded (additively) homomorphic construction.
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Chapter 5

A Generalized Notion of the
Smoothing Parameter

“(. . . ) un auteur ne nuit jamais tant à ses
lecteurs que quand il dissimule une difficulté.”

— Évariste Galois

We now turn our attention to certain geometric aspects of LWE and the lattice problems
associated to it. Specifically, in this chapter we make an exploration of the smoothing
parameter from a mathematical point of view. The smoothing parameter has been a
fundamental concept in the study of lattice theory and the development of lattice based
cryptography. Roughly speaking, among other things, it allows one to conceal the instance
of the lattice problem that is encoded in the instance of an LWE problem. Hence it is
a component that unlocks the possibility of an average-case to worst-case reduction from
LWE to lattice problems.

Intuitively speaking, the smoothing parameter can be thought of as the minimum
stretching of the Gaussian ρs,c over Rn that hides the discreteness of a lattice L ⊂ Rn

when centered at each v ∈ L. Under this understanding, the smoothing parameter is then
a quantity associated to the lattice. Nonetheless, it is perhaps expected that, for some other
functions, it is also possible to find an adequate stretching that accomplishes the same goal.
Thus a natural question is “is it necessary to consider a Gaussian noise for LWE to obtain
an average-case to worst-case reduction, or can we use other noise distributions?”.

The main result of this chapter is the following.
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Theorem 5.1 (Main (informal)). There exists an infinite family of functions that admit
polynomially large smoothing parameters for every lattice.

The analysis of the possible applications, such as its use in LWE and BDD, is left for
Chapter 6.

5.1 Analytic Background

Notation

Throughout this and the next chapter, we use boldface letters to denote multivariate
functions. The reason for this is to differentiate between single and multivariate functions.
Several properties that are given for functions over R do not hold—or are difficult to
prove—for functions over Rn.

Given a function f : Rn → R, a vector c ∈ Rn and a scalar s ∈ R let fs,c denote the
function

fs,c : x 7→ f

(
1

s
(x− c)

)
.

When the shift c = 0, we denote fs,0 as fs.

Smooth and Integrable Spaces

Given k ∈ Z≥0, let Ck denote the set of functions f : R→ R such that the all the derivatives
f = f (0), f (1), . . . , f (k) exists and are continuous. In particular, C0 denotes the set of real
valued continuous functions over R.

For p ∈ R>0, let Lp(Rn) be the set of functions f : Rn → R such that the value

‖f‖p :=

(∫
Rn

∣∣f(x)
∣∣p dx)1/p

exists and is finite. A function f ∈ L1(Rn) is said to be integrable over Rn. We include the
case p =∞ by defining the ∞-norm as

‖f‖∞ := inf
{
b ∈ R : for almost all x ∈ Rn, f(x) ≤ b

}
.1

1The quantifiers for almost all and almost everywhere are formally defined as “for all except for a set
of measure zero”.
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The L∞ space thus consists of the functions that are bounded almost everywhere. In the
literature, these functions are also known as essentially bounded.

Fourier Transform

The Fourier transform is central in the development of lattice theory. In particular, it is a
fundamental tool for the analysis of probability distributions over Rn—or any measurable
space.

Definition 5.2. Let f : Rn → C be an integrable function. The Fourier transform of f is
the function f̂ : Rn → C defined as

f̂(y) :=

∫
Rn

f(x)e−2πi〈x,y〉dx. (5.1)

For f ∈ L∞(Rn) let f̂ denote the inverse Fourier transform of f . This is given by

f̂(y) :=

∫
Rn

f(x)e2πi〈x,y〉dx. (5.2)

It is possible to obtain a relation between the 1-norm of a function and the ∞-norm
of its Fourier transform, which is given by the Hausdorff-Young inequality. This results in
the following relation.∫

Rn
f(x)dx = f̂(0) ≤ ‖f̂‖∞ ≤ ‖f‖1 =

∫
Rn

∣∣f(x)
∣∣dx.

In particular we obtain an equality whenever f is a non-negative function.

Proposition 5.3. Let f ∈ L1(Rn) and let s ∈ R6=0 and c ∈ Rn. Then the Fourier transform
of fs,c is given by

f̂s,c(y) = sne−2πi〈c,y〉f̂ (sy) .

55



Proof. Let s ∈ R6=0 and c ∈ Rn. The Fourier transform of fs,c is given by

f̂s,c(y) =

∫
Rn

fs,c(x)e−2πi〈x,y〉dx

=

∫
Rn

f

(
1

s
(x− c)

)
e−2πi〈x,y〉dx

=

∫
Rn
snf(z) exp

(
− 2πi

〈
sz + c,y

〉)
dz

= e−2πi〈c,y〉sn
∫
Rn

f(z)e−2πi〈z,sy〉dz

= sne−2πi〈c,y〉f̂ (sy) .

Notice that the change of variables in the third equality, z = 1
s
(x−c), yields the differential

dx = sndz. This observation finishes the proof.

The Schwartz Space

For α = (α1, . . . , αn) ∈ Zn≥0 let ∂α denote the operator ∂α1 · · · ∂αn , and given x ∈ Rn let
xα be the polynomial xα1

1 · · ·xαnn . Let C∞(Rn) denote the set of functions f : Rn → R
such that for all α = (α1, . . . , αn) ∈ Z≥0, the derivative ∂αf exists and is continuous. For
f ∈ C∞(Rn) and α, β ∈ Z≥0 let

‖f‖α,β = sup
x∈Rn

∣∣xα∂βf(x)
∣∣. (5.3)

Definition 5.4 (Schwartz Function). A function f : Rn → C is a Schwartz function if for
all α, β ∈ Zn≥0, ‖f‖α,β is finite. The set of Schwartz functions defined over Rn is denoted
by S(Rn).

Any Schwartz function f is eventually bounded by the inverse of any polynomial. As
a consequence, any Schwartz function is integrable; thus the Fourier transform of any
element in S(Rn) is defined. Moreover, the set of Schwartz functions over Rn has the
following properties.

Proposition 5.5. Let f ,g ∈ S(Rn). Then the functions
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• f + g : x 7→ f(x) + g(x),

• f · g : x 7→ f(x) · g(x),

• f̂ : y 7→
∫
Rn f(x)e−2πi〈x,y〉dx and

• f ∗ g : x 7→
∫
Rn f(z)g(x− z)dz

all belong to S(Rn).

For this reason S(Rn) is commonly referred as the Schwartz space over Rn. The Gaus-
sian function ρ(x) = e−x

2
is a common example of a Schwartz function. Other common

examples are the functions f ∈ C∞(Rn) with compact support, which are better known as
bump functions.

The Poisson Summation Formula

Another property satisfied by any Schwartz function is the following relation between it
and its dual with respect to any given lattice.

Lemma 5.6 (Poisson Summation Formula). Let f : Rn → R be a Schwartz function. Then
for any lattice L ⊂ Rn,

f(L) = det(L∗)f̂(L∗). (5.4)

It is known that this result can be extended to a larger family of functions. In this and
the following Chapter we denote by Dn ⊂ L1(Rn) the set of functions such that, for every

lattice L ⊂ Rn, Equation (5.4) holds and both, f(L) and f̂(L∗) are absolutely convergent.
By [MSD19, Theorem A.1], Dn contains every continuous function f such that

1. there exists δ ∈ R>0 such that f(x) = O
(

1 + ‖x‖−(n+δ)
2

)
and

2. for every lattice L ⊂ Rn, the series
∑

x∈L

∣∣̂f(x)
∣∣ converges.

In turn, this is a relaxation of a well known set of conditions that appear in the literature.
See, for instance, [SW71, Chapter VII, Corollary 2.6].2

Combining Equation (5.4) with Proposition 5.3 we obtain the slightly more general
expression, ∑

x∈kL

f(x + c) =
detL∗

k

∑
x∈ 1

k
L∗

f̂(x)e−2πi〈c,x〉. (5.5)

2Several other works have presented other generalizations of the Poisson Summation Formula—
generalizing to other families and generalizing Equation (5.4) itself. See, for example [BZ97, NU15].
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A consequence of the previous lemma is that the weight of a function over a lattice
coset L + c is maximized at c = 0, whenever the Fourier transform of the function is
non-negative over the dual lattice.

Proposition 5.7. Let f ∈ S(Rn) and let L ⊂ Rn be a lattice. Suppose that for every

y ∈ L∗, f̂(y) ≥ 0. Then for any c ∈ Rn, f(L − c) ≤ f(L).

Proof. Let c ∈ Rn. Then, by Proposition 5.3 and Lemma 5.6,

f(L − c) = fc(L)

=
∑
y∈L∗

f̂c(y)

=
∑
y∈L∗

e2πi〈c,y〉f̂(y)

≤
∑
y∈L∗

∣∣e2πi〈c,y〉∣∣ f̂(y)

≤
∑
y∈L∗

f̂(y)

= f(L),

as required.

Normalization and Standard Form

Definition 5.8 (Normalization and Standard Form). We say that a function f ∈ L1(Rn)

is normalized if
∫
Rn f(x)dx = f̂(0) = 1. The function f is said to be in standard form if

f(0) = f̂(0) = 1.

Given a function f ∈ L1(Rn), we denote

Df :=
1

f̂(0)
f .

For s ∈ R>0 and c ∈ Rn, the normalized scaled and translated function is denoted by

Df ,s,c := Dfs,c : x 7→ 1

f̂(0)
f

(
1

s
(x− c)

)
.
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Similarly, the discrete probability distribution over a discrete set A is the mapping defined
as

DA,f ,s,c : (x) 7→ fs,c(x)/fs,c(A).

When s = 1 or c = 0, the corresponding parameter is omitted in the notation. Notice that
the Fourier transform of Df is given by

D̂f =

̂(
1

f̂(0)
f

)
=

1

f̂(0)
f̂ .

5.2 Intuition of the (Gaussian) Smoothing Parameter

There are several different ways to think about the current notion of the smoothing pa-
rameter that appear in the literature. Perhaps the most intuitive way is to think about it
as the minimum stretching of a Gaussian function that is above the covering radius of a
lattice. This way, by centering a Gaussian on every point of the lattice and adding them
all up, we obtain a function over Rn that is very close to constant.

Equivalently it can be thought as the largest scaling k of the space such that the overall
weight of any translation of the (scaled) lattice,∑

v∈kL

ρ(v + c), (5.6)

is approximately the same, in the sense that its value is approximately independent from
the shift c.

According to this intuition, we define a smoothing parameter below with respect to a
lattice L ⊂ Rn, and a value ε > 0 that bounds how much the value of Equation (5.6) can
vary for different shift vectors c ∈ Rn. The nature of smoothing parameters, under what
conditions they exist, and how to find them becomes more approachable by leveraging
Lemma 5.6. Combining this result with Proposition 5.3∑

v∈kL

f(v + c) =
detL∗

k

∑
v∈ 1

k
L∗

f̂(v)e−2πi〈c,v〉, (5.7)

where f̂ is the Fourier transform of f , and L∗ is the dual lattice of L. Using this expression,
it is possible to prove that under certain conditions, the weight of the shifted lattice becomes

59



approximately independent from the shift—for the formal proof see Lemma 5.14 or [Reg05,
Claim 3.8]. To see this intuitively, observe that on the right hand side of Equation (5.7),
the vector c appears only in the exponent −2πi〈c,v〉; moreover, for v = 0, the term

f̂(v)e−2πi〈c,v〉 = f̂(0). Thus, if
∑

v∈ 1
k
L∗\{0} f̂(v)e−2πi〈c,v〉 is sufficiently small for every c, the

overall weight of fc over the lattice is approximately detL∗
k

f̂(0). An important observation

is that this condition can be guaranteed if
∑

v∈ 1
k
L∗\{0}

∣∣∣̂f(v)
∣∣∣ is small, as

∣∣e−2πi〈c,v〉
∣∣ ≤ 1.

This observation is the motivation for the following definition.

Definition 5.9 (Smoothing Parameter (Gaussian)). Given a lattice L ⊂ Rn, the smoothing
parameter ηε(L) of L, is the minimum positive real s such that for every s′ ≥ s,

1̂
s′ρs′

(
L∗ \ {0}

)
=

∑
v∈L∗\{0}

ρ 1
s′

(v) < ε. (5.8)

This description of the smoothing parameter is a generalization of the original definition
in [MR07] by Micciancio and Regev, where it is only defined for the Gaussian distribution.
There are a few details about the previous definition that must be taken into account.
Since f is an integrable function, the Fourier transform f̂ exists; however, integrability is not
enough to guarantee that the weight of the function over every lattice is finite. Moreover, if
f̂ is a decreasing function, then for any real number s larger than the smoothing parameter
ηf ,ε, we have that ∑

v∈sL∗\{0}

∣∣∣̂f(v)
∣∣∣ ≤ ∑

v∈ηf ,ε(L)·L∗\{0}

∣∣∣̂f(v)
∣∣∣ < ε.

However, it is impossible to guarantee that f̂ is a decreasing function. The Fourier trans-
form of a probability distribution on Rn is commonly an oscillating function. This might
go against our intuition, since we might expect that if a particular scaling of a function
hides the discrete structure of a lattice, every wider scaling will do so as well, but in general
this is not true. To permit an additional degree of freedom in our language, we say that
a function f is ε-smoothening with respect to a lattice L ⊂ Rn if |̂f |

(
L \ {0}

)
< ε, and

note that the smoothing parameter is the smallest scaling of the function f such that every
wider scaling of the function is an ε-smoothening function.

5.3 Smoothening Functions

We dedicate this section to introducing two different definitions that generalize the concept
of smoothing parameter that appear in the literature for Gaussian functions. The first
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definition is of an analytic nature, and captures only the necessary requirements for a
function to itself hide a given lattice. The second is of geometric nature, which is perhaps
a more natural generalization of the traditional concept, and we expect it to better capture
the intuition of a reader who is already familiar with the literature.

Definition 5.10 (Smoothening Function). Let L ⊂ Rn and let ε ∈ R>0. A function
f ∈ L1(Rn) is said to be ε-smoothening for L if∣∣∣D̂f

∣∣∣ (L∗ \ {0}) =
1

f̂(0)

∑
y∈L∗\{0}

∣∣∣̂f(y)
∣∣∣ < ε. (5.9)

If a function f is ε-smoothening for a lattice L, intuitively we may expect that this
property is preserved by translating the domain of the function. Moreover, scaling the
domain or the image of the function should only affect the parameter ε that quantifies how
smoothening the function is. In fact, this intuition can be verified and quantified, but only
in certain cases, as in the following claim.

Claim 5.11. Let ε ∈ R>0 and let f ∈ L1(Rn) be an ε-smoothening function for a lattice L.
Consider s ∈ R>0 and c ∈ Rn. Then the following hold.

1. The function fs,c is ε-smoothening for the lattice sL.

2. If s ∈ R≥1 and f̂ is decreasing on rays, then fs,c is ε-smoothening for L.

3. If s ∈ Z≥1, then fs,c is ε-smoothening for L.

Proof. Let c ∈ Rn, and r, t ∈ R≥1. Then, using Proposition 5.3, we have the following
observation. ∑

y∈(rL)∗\{0}

∣∣∣D̂f ,t,c(y)
∣∣∣ =

1

f̂t,c(0)

∑
y∈ 1

r
L∗\{0}

∣∣∣f̂t,c(y)
∣∣∣

=
1

tnf̂(0)
tn

∑
y∈ 1

r
L∗\{0}

∣∣∣e2πi〈c,y〉f̂ (ty)
∣∣∣

≤ 1

f̂(0)

∑
y∈ t

r
L∗\{0}

∣∣∣̂f (y)
∣∣∣

=
∑

y∈ t
r
L∗\{0}

∣∣∣D̂f (y)
∣∣∣ .
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By making r = t = s, Part 1 follows since
∑

y∈L∗\{0}

∣∣∣D̂f (y)
∣∣∣ < ε. For parts 2 and 3,

consider r = 1, t = s. If f̂ is decreasing on rays, since s ∈ R≥1, we have that for every

y ∈ Rn, D̂f (y) ≤ D̂f (sy). Therefore∑
y∈sL∗\{0}

∣∣∣D̂f (y)
∣∣∣ ≤ ∑

y∈L∗\{0}

∣∣∣D̂f (y)
∣∣∣ < ε. (5.10)

Part 2 follows. For Part 3, notice that for s ∈ Z≥1, sL∗ is a sublattice of L∗. Thus we have
that Equation (5.10) holds, and the proof follows.

Definition 5.12 (Smoothing Parameter). Given a lattice L ⊂ Rn, a function f ∈ L1(Rn)
and ε > 0, the smoothing parameter ηf ,ε(L) of f over the lattice L, if it exists, is the
minimum positive real s such that for every s′ ∈ R>s, the function fs′ is ε-smoothening.

It is important to remark that definitions 5.10 and 5.12 refer to different concepts.
Though they are very similar in nature, it is important to understand the subtle differ-
ences that they entail. In short, not every smoothening function possesses a smoothing
parameter. Traditionally, we think of the smoothing parameter as the minimum stretching
of the Gaussian distribution that induces a distribution on the quotient that is ε-close to
uniform. Since the Gaussian is strictly decreasing—in addition to being its own Fourier
transform—we have that every stretching larger than the smoothing parameter makes it
also a smoothening function. This is not true in general, since the Fourier transform of
arbitrary probability distributions is not strictly decreasing, in general. Thus the weight
of the Fourier transform over increasing scalings of the dual lattice may fluctuate.

Example 5.13. For instance, consider the function f which is the characteristic function
of the interval

[
−1

2
, 1

2

]
⊂ R, that is

f(x) =

{
1 if x ∈

[
−1

2
, 1

2

]
,

0 otherwise.

Intuitively, every non-integer stretching of this function will assign more weight to some
elements than to others in the quotient R/Z. This intuition is reflected in the Poisson
summation formula. Since f is normalized, then Df = f . The Fourier transform of Df is
given by

f̂(y) = sinc(y) :=

{ sin(πy)
πy

if y 6= 0,

1 if y = 0.
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Thus the series
∑

y∈Z\{0}

∣∣f̂(y)
∣∣ = 0. This indicates that the probability distribution in-

duced by f on the quotient is (perfectly) uniform. On the other hand, for any positive
integer k,

∑
y∈ 2k+1

2
Z\{0}

∣∣f̂(y)
∣∣ =

∑
y∈Z\{0}

∣∣∣∣∣2 sin
(
(2k + 1)yπ/2

)
(2k + 1)y

∣∣∣∣∣
=

1

2k + 1

∑
y∈Z\{0}

∣∣∣∣∣2 sin
(
yπ/2

)
y

∣∣∣∣∣
=

1

2k + 1

∑
y∈2Z+1

∣∣∣∣∣2 sin
(
yπ/2

)
y

∣∣∣∣∣+
∑

y∈2Z\{0}

∣∣∣∣∣2 sin
(
yπ/2

)
y

∣∣∣∣∣
=

1

2k + 1

∑
y∈2Z+1

2

|y|
,

which is not convergent. As a result, there exists arbitrarily large s ∈ R \ Z such that the

series
∑

y∈sZ\{0}

∣∣f̂(y)
∣∣ is not convergent. Thus the function f cannot have a smoothing

parameter for the lattice Z, despite the fact that, for every ε, f itself is ε-smoothening for
Z.

By now it is probably clear that the existence of smoothing parameters for an arbitrary
function is not obvious from the definition and, in fact, this may be a rare property in
real-valued functions. Indeed, we start the following section by giving an example of an
integrable, infinitely differentiable function for which a smoothing parameter does not exist
(with respect to Z). Moreover, to the best of our knowledge, the concept of smoothing
parameter has been studied and its existence proved only in the case of the Gaussian
distribution.

Properties of Smoothening Functions

There are several results in the literature that are proved for Gaussians that are wider
than the smoothing parameter. In this subsection we argue that many of the important
and useful results can be proved for smoothening functions. Moreover, we argue that the
results given in this subsection can all be seen as a direct consequence of a generalized
version of [Reg05, Claim 3.8].
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Lemma 5.14. Let L ⊂ Rn be a lattice and let ε ∈ R>0. Consider an ε-smoothening
function f ∈ L1(Rn) for the lattice L. Then for any c ∈ Rn,

f(L+ c) ∈ det(L∗)f̂(0) (1− ε, 1 + ε) .

Proof. Consider the function f−c given by f−c : x 7→ f(x + c). Then the weight of f over
the shifter lattice is expressed as

f(L+ c) =
∑

x∈L+c

f(x)

=
∑
x∈L

f−c(x).

By the Poisson summation formula (Lemma 5.6) and Proposition 5.3,∑
x∈L

f−c(x) = det(L∗)
∑
y∈L∗

f̂−c(y)

= det(L∗)
∑
y∈L∗

f̂(y)e2πi〈y,c〉

= det(L∗)

f̂(0) +
∑

y∈L∗\{0}

f̂(y)e2πi〈y,c〉

 ,

= det(L∗)f̂(0)

1 +
∑

y∈L∗\{0}

D̂f (y)e2πi〈y,c〉

 ,

where the second equality follows from Proposition 5.3. Now, recall that f is a real-valued
function, and Re

(
e2πi〈y,c〉) = cos

(
2π〈y, c〉

)
∈ [−1, 1]. Therefore, from Equation (5.9) we

have that
∑

y∈L∗\{0} D̂f (y)e2πi〈y,c〉 ∈ (−ε, ε), as required.

Corollary 5.15. Let f an ε-smoothening function with respect to a lattice L ⊂ Rn. Then
for any c ∈ Rn,

f(L+ c) ∈ det(L∗)
∫
Rn

f(x)dx (1− ε, 1 + ε) .

Proof. If follows from f̂(0) =
∫
Rn f(x)e2πi〈x,0〉 dx =

∫
Rn f(x) dx.
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This proposition demonstrates that the total measure of a ε-smoothening function
cannot deviate very much (in terms of ε) under arbitrary shifts c of the measure—or,
equivalently, shifts of the lattice. Note that since Lemma 5.14 and Corollary 5.15 hold for
any c ∈ Rn, they can be alternatively stated in terms of cosets of a lattice, that is, fs(L+c)
via the change of variables fs(L+ c)− c = fs,−c(L).

Proposition 5.16. Let ε ∈ R>0, and let f be a ε-smoothening function for a lattice L.
Then for any c1, c2 ∈ Rn, we have

fc1(L) ∈
(

1− ε
1 + ε

,
1 + ε

1− ε

)
· fc2(L).

Proof. Let c1, c2 ∈ Rn. By Lemma 5.14,

f̂(0) det(L∗) (1− ε) ≤ fc1(L) ≤ f̂(0) det(L∗) (1 + ε) .

Similarly for c2. Thus, combining these two inequalities we obtain

1− ε
1 + ε

=
f̂(0) det(L∗) (1− ε)
f̂(0) det(L∗) (1 + ε)

≤ fc1(L)

fc2(L)
≤ f̂(0) det(L∗) (1 + ε)

f̂(0) det(L∗) (1− ε)
=

1 + ε

1− ε
.

The result follows.

Lemma 5.17. Let ε ∈ R>0, and let f be an ε-smoothening function for a lattice L = L(B).
Then the distribution over the fundamental domain P(B) given by

Df mod P(B)

is within statistical distance ε/2 from the uniform distribution over P(B).

Proof. Write ψ = Df mod P(B). Then, for x ∈ P(B), ψ(x) is given by

ψ(x) =
1

f̂(0)

∑
y∈L

f(x + y) =
1

f̂(0)
f(L+ x).

Therefore by Lemma 5.14,

ψ(x) =
1

f̂(0)
f(L+ x) = detL∗

(
1 + δ(x)

)
,
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where δ(x) ∈ (−ε, ε). On the other hand, the density function of the uniform distribution
over P(B) is given by

U(x) = 1/ vol
(
P(B)

)
= det

(
L∗
)
.

Hence, the statistical distance ∆(U, ψ) between ψ and U is

2∆(U, ψ) =

∫
x∈P(B)

∣∣ψ(x)− U(x)
∣∣dx

≤ vol
(
P(B)

)
max

x∈P(B)

∣∣ψ(x)− detL∗
∣∣

= detL max
x∈P(B)

∣∣∣ detL∗
(
1 + δ(x)

)
− detL∗

∣∣∣
= detL detL∗ max

x∈P(B)

∣∣∣1 + δ(x)− 1
∣∣∣

< ε,

which completes the proof.

Lemma 5.18. Let L ⊂ Rn be a lattice and let ε ∈ R>0. Consider an ε-smoothening
function f for L such that ‖f‖∞ = f(0) = 1. Then for any s ∈ Z≥2,

DL,f ,s,c(x) ≤ s−n
(

1+ε
1−ε

)
.

Proof. First, note that by Corollary 5.15,

sn det(L∗) · (1− ε) ≤ fs,c(L) ≤ sn det(L∗) · (1 + ε).

Now, since ‖f‖∞ = f(0) = 1, it follows that

DL,f ,s,c(x) =
fs,c(x)

fs,c(L)

≤ 1

snf̂(0) det(L∗) · (1− ε)

≤ f(L)

snf̂(0) det(L∗) · (1− ε)

≤ f̂(0) det(L∗)
snf̂(0) det(L∗)

· (1 + ε)

(1− ε)
≤ s−n

(
1+ε
1−ε

)
,

as required.
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5.4 Families of Smoothening Functions

Intuitively speaking, a function is smoothening whenever one is able to confine the majority
of the weight of its Fourier transform to a bounded set. This intuition may lead us to think
that a function is smoothening whenever its Fourier transform is integrable. This intuition,
however, ignores the fact that the smoothening property is defined with respect to a discrete
set. We elaborate on this argument more in the following example.

Example 5.19. For each n ∈ Z consider the function

bn(x) =

 exp

(
1

1−
(
2n+1(x− n)

)2

)
if x ∈

(
n− 1

2n+1 , n+ 1
2n+1

)
,

0 otherwise.

This is a bump function supported on a set centered around n with diameter 1
2|n|

. Its
maximum value is 1, which is reached at x = n. Since the function is positive and bounded
by 1, the integral of bn over R is bounded by 1

2|n|
. Using these functions as building blocks,

construct the function b =
∑

n∈Z bn. It is clear that b is bounded and has finite integral
(moreover, it is infinitely differentiable). Therefore, its inverse Fourier transform is an
integrable function f .

Consider the lattice L = Z ⊂ R. Notice that for any non-zero rational s ∈ Q, the
lattice 1

s
L∗ = 1

s
Z has an infinite number of integers. Thus the series

∑
x∈ 1

s
L∗ b(x) does not

converge for any non-zero rational s. As a consequence, no positive rational s can be a

smoothing parameter for f̂ with respect to Z.

A consequence of this example is that not every integrable function has a smoothing
parameter. This is stated more precisely with the following claim.

Claim 5.20. For every n ∈ Z>0 there exist a function f ∈ L1(Rn) and a lattice L ⊂ R such
that for all s ∈ R, s is not a smoothing parameter of f with respect to L.

Proof. Let n ∈ Z>0 and let g be the function described in Example 5.19. Consider the
function g : (x1, . . . , xn) 7→

∏
i∈[n] g(xi). Then, for any non-zero rational s ∈ Q, the lattice

1
s
ZN has an infinite number elements in Zn. The result follows.

Remark 5.21. Recall that Dn denotes the set of real-valued functions over Rn that admit
the Poisson summation formula over any given lattice. In particular, for any f ∈ Dn and
for any lattice L ⊂ Rn, the series

∑
x∈L∗ f(x) is absolutely convergent. It follows, by

definition, that for ε =
∑

x∈L∗\{0}

∣∣f̂(x)
∣∣, the function f is ε-smoothening for L.
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In the rest of this section we present different conditions for a function to have smoothen-
ing properties. As a result we have the following theorem.

Theorem 5.22. For each n ∈ Z>0 there exist families of functions F ′ ⊂ F ⊂ Dn, which
are infinitely large, such that the following holds.

• For every f ∈ F , lattice L ⊂ Qn and ε > 0, the smoothing parameter ηf ,ε(L) is finite.

• For every f ∈ F ′, lattice L ⊂ Qn and ε > 0, ηf ,ε(L) ∈ O
(

poly
(
n, 1

log ε
, λn (L)

))
.

Absolutely Convergent Functions

Our first example is the family of functions that are absolutely convergent over every
lattice. This is a standard pre-requisite for the application of the Poisson summation
formula. Moreover, following Remark 5.21 we have that for every function f ∈ Dn there
exists ε ∈ R>0 such that f is ε-smoothening.

Consider a rational lattice L ∈ Qn generated by a basis b1, . . . ,bn and let D be the
set of denominators of all the entries of all the basis vectors. Notice that, by taking m to
be the lowest common multiple of the members of D, we have that for every i ∈ [n], the
vector mbi has integer entries. Therefore mL ⊂ Zn. If d = 1/m, then L ⊂ dZn.

Proposition 5.23. Let f : Rn → R be a function and consider the mapping defined by
f : (x1, . . . , xn) 7→

∏
i∈[n] f(xi). Suppose that for every L1 ⊂ Q, the series

∑
x∈L1 f(x)

converges absolutely. Then for every L ⊂ Qn, the series
∑

x∈L f(x) converges absolutely.

Proof. Let L ⊂ Qn. Following the discussion above, there exists d ∈ Q such that L ⊂ dZn.
Then the summation of the absolute values of f(x) is bounded by∑

x∈L

∣∣f(x)
∣∣ ≤ ∑

(x1,...,xn)∈dZn

∏
i∈[n]

∣∣f(xi)
∣∣ =

∏
i∈[n]

∑
xi∈dZ

∣∣f(xi)
∣∣ <∞.

The proof follows.

Claim 5.24. Let f : Rn → R be a function and let L ⊂ Rn be a lattice. Consider a balanced
set K such that 0 is contained in its interior. If the series

∑
x∈L f(x) converges absolutely,

then for every ε ∈ R>0 there exists η ∈ R such that
∑

x∈L\ηK f(x) < ε.
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Proof. Consider the function W : r 7→
∑

x∈L\rK f(x). For every r, W (r) is finite. Moreover,
since K is balanced and contains the vector 0 in its interior, the function W is non-
increasing and for every x ∈ Rn there exists r0 such that for every r ≥ r0, x ∈ rK.
Therefore limr→∞W (r) = 0. The result follows.

Proposition 5.25. Let f : Rn → R be a function and let L ⊂ Rn be a lattice. If the
series

∑
x∈L f(x) converges absolutely, then for every ε ∈ R>0 there exists η ∈ R such that∑

x∈ηL\{0} f(x) < ε.

Proof. Let ε > 0. Consider the ball B2
n(0). By Claim 5.24, there exists r0 ∈ R>0 such that∑

xL\rB2
n(0) f(x) < ε. Consider η =

⌈
r0/λ1(L)

⌉
∈ Z>0. Then λ1(ηL) ≥ r0, which implies

that ηL ∩ r0B
2
n(0) = {0}. Moreover, since η is an integer, ηL ⊆ L. As a consequence∑

x∈ηL\{0}

∣∣f(x)
∣∣ =

∑
x∈ηL\r0B2

n(0)

∣∣f(x)
∣∣ ≤ ∑

x∈L\r0B2
n(0)

∣∣f(x)
∣∣ < ε,

as desired.

A consequence of the previous proposition is that, given a lattice L and ε ∈ R>0, every
function in Dn admits an integral dilation of the domain that makes it ε-smoothening for
L.

Proposition 5.26. Let k be a positive integer and consider a function f ∈ L1(R) such

that for every ` ≤ k, f (`) exists and belongs to L1(R). Then
∣∣∣f̂(y)

∣∣∣ ∈ O(y−k).
Proof. Since f ∈ L1(R), limx→±∞ f(x) = 0. Thus, expressing f̂ as an integral by parts, we
have that

f̂(y) =

∫
R
f(x)e−2πixy dx

= −f(x)

2πiy
e−2πixy

∣∣∣∣∞
−∞

+
1

2πiy

∫
R
f ′(x)e−2πixy dx

=
1

2πiy
f̂ ′(y).

Inductively, using the same approach we obtain f̂(y) =
(

1
2πiy

)k
f̂ (k)(y). Since f̂ (k) ∈ L∞,

its absolute value is bounded by a positive constant ϑf,k ∈ R. Therefore∣∣∣f̂(y)
∣∣∣ ≤ ϑf,k

(
1

2πy

)k
,
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as required.

Notice that the constant ϑf,k in the last proposition is the∞-norm of the function f̂ (k),
which is equal to

∥∥f (k)
∥∥

1
=
∫
R f

(k).

Corollary 5.27. Let f be a function in L1(R) such that its first and second derivative both

exist and belong to L1(R). Then for every lattice L ∈ R, the series
∑

y∈L∗ f̂(y) converges
absolutely.

Proof. Let L ⊂ R be a lattice. Then, there exists a ∈ R such that the dual lattice L∗ is
equal to aZ. By Proposition 5.26,∑

y∈L∗

∣∣∣f̂(y)
∣∣∣ =

∑
y∈Z

∣∣∣f̂(ay)
∣∣∣

≤ ϑf,2

(
1

2πa

)2∑
y∈Z

1

y2

=
ϑf,2
6

( π

2πa

)2

,

as required.

Schwartz and Rapidly Decreasing Functions

Integrability is a property that only bounds the volume of the function. The function b
described in the last example diverges over a lattice because the integrability property still
allows it to “misbehave” on an infinite number of points. Nonetheless, Proposition 5.26
provides us with sufficient analytic conditions on the function that dictate its asymptotic
behavior. We combine this result with the following lemma by Betke et.al. to prove that
rapidly decreasing functions are absolutely convergent over any lattice.

Lemma 5.28 ([BHW93], Theorem 2.1). Let K ∈ Kn and let L ⊂ Rn be a lattice. Then

|K ∩ L| ≤
⌊

2

λ1(K,L)
+ 1

⌋n
.

Proposition 5.29. Let K ∈ Kn and let f : Rn → R. Suppose there exists δ ∈ R>1 such that∣∣f(x)
∣∣ = O

(
(1 + ‖x‖K)−n−δ

)
. Then for every lattice Λ ⊂ Rn, the series f(Λ) is uniformly

convergent.
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Proof. The idea is to divide Rn into shells S1, S2, . . ., and bound the number of lattice
points in every shell L ∪ Si by a polynomial of degree n. Thus, by the hypothesis on f ,
the sum of the function over the lattice points in every shell,

∑
v∈L∪Si |f(v)|, is bounded

by the inverse of a superlinear function. By considering all the shells, the series
∑

v∈L f(v)
converges absolutely.

Formally, let S1 = K and for each integer r > 1, let Sr = rK \ (r− 1)K. By definition,
for any r > 0, λ1(rK,L) = 1

r
λ1(K,L). Thus, following Lemma 5.28, we have that for any

r > 0,

|rK ∩ L| ≤
⌊

2r

λ1(K,L)
+ 1

⌋n
.

Hence, since Sr ⊆ rK,

|Sr ∩ L| ≤
⌊

2r

λ1(K,L)
+ 1

⌋n
. (5.11)

On the other hand, by definition, there exists a constant c ∈ R>0 and N ∈ Z>1 such that

for all x ∈ Rn such that ‖x‖K ∈ R>N ,
∣∣f(x)

∣∣ ≤ c
(

1
r

)n+δ
. Therefore, for any r ∈ Z>N ,

∑
v∈Sr∩L

∣∣f(x)
∣∣ ≤ c

(
2

λ1(K,L)
+

1

r

)n(
1

r

)δ
≤ c

(
2

λ1(K,L)
+ 1

)n(
1

r

)δ
.

By adding up for all r ≥ 1,∑
x∈L

∣∣f(x)
∣∣ = f

(
(N − 1)K ∩ L

)
+
∑
r∈Z≥N

∑
x∈Sr∩L

∣∣f(x)
∣∣

≤ f
(
(N − 1)K ∩ L

)
+
∑
r∈Z≥N

c

(
2

λ1(K,L)
+ 1

)n(
1

r

)δ

= f
(
(N − 1)K ∩ L

)
+ c

(
1

λ1(K,L)
+

1

2

)n ∑
r∈Z≥N

(
1

r

)δ

≤ f
(
(N − 1)K ∩ L

)
+ c

(
1

λ1(K,L)
+

1

2

)n((
1

N

)δ
+

(
1

N

)δ−1
)

<∞

This completes the proof.
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Product of Smoothing Functions Over Rational Lattices

In the following claim we construct a partition of a rational lattice L into an infinite
collection of parallel copies of an (n−1)-dimensional sublattice of L, all of them orthogonal
to a given vector.

Claim 5.30. Let L ⊂ Qn be a full-rank lattice. For every e ∈ Qn such that ‖e‖2 = 1, there
exists a collection of subsets {Ai : i ∈ Z}, such that the following properties are satisfied.

1. The lattice L is the disjoint union

L =
⋃
i∈Z

Ai.

2. A0 =
{
x ∈ L : 〈x, e〉 = 0

}
is an n− 1 dimensional lattice.

3. There exists a vector v ∈ L \ A0 such that for each i ∈ Z, Ai − iv = A0.

Proof. Without loss of generality, it is enough to show the claim for e = e1 = (1, 0, . . . , 0).
Clearly, A0 contains the vector 0 and is closed under addition; thus A0 is a lattice. We
show that there exists v 6= 0 also contained in A0. Note that, in this case, a vector
v = (v1, . . . , vn) is in A0 if and only if v1 = 0.

Let B = {b1, . . . ,bn} be a basis for L. If there is a vector in B contained in A0, then
the statement above is clear. Otherwise, b1,b2 6∈ A0. (in other words, their component
perpendicular to A0 is non-zero). Since b1,b2 ∈ Qn, there exist integers x and y such that
x〈b1, e〉+ y〈b2, e〉 = 0. Hence 〈xb1 + yb2, e〉 = 0, which implies that the integer combina-
tion xb1 + yb2 ∈ A0. Moreover, xb1 + yb2 6= 0 as b1 and b2 are linearly independent. As
a consequence, A0 is a non-trivial lattice.

To show that A0 has exactly n − 1 dimensions, assume, without loss of generality,
that the first coordinate of b1 ∈ B is different from 0. By the process above, for each
i ∈ {2, . . . , n}, we can find a linear combination ai = xib1 + yibi ∈ A0, with xi, yi ∈ Z.
Additionally, as the first coordinate of b1 is non-zero, we have that both xi and yi are
different from 0. Hence, since all bi are linearly independent, we have that a2, . . . , an are
n − 1 linearly independent vectors, and thus the lattice contained in A0 has dimension
n− 1.

Finally, let v ∈ L \ A0 be a vector that is closest to the hyperplane e⊥ =
{
x ∈

Rn : 〈x, e〉
}
⊃ A0 and, for each i ∈ Z, let Ai = iv + A0. Notice that for i 6= j, the sets Ai

and Aj are disjoint—a1 + jv = a2 + iv with a1, a2 ∈ A0, implies that jv− iv ∈ A0. Since
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0 is the only multiple of v contained in A0, it follows that j = i. Now, consider u ∈ L,
and let i ∈ Z be such that the distance between the affine space Ki containing Ai and u is
minimal. Take a vector w ∈ Ai; then u−w ∈ L. Moreover, the distance between u−w
and e⊥ = Ki − w is minimal for vectors in L \ e⊥. Therefore u − w 6∈ A0, which is a
contradiction for the choice of v. Thus the collection {Ai : i ∈ Z} is a partition of L. The
result follows.

The previous claim is a very useful tool to describe some properties of functions that
factor over an orthogonal basis. Consider a function f(x1, . . . , xn) =

∏
i∈[n] f(xi). With

the notation used in the claim, let v = 〈v, en〉 and u =
(
v−〈v, en〉en

)
∈ e⊥n . Then we can

express the value of f over a rational lattice L as∑
x∈L

f(x) =
∑
i∈Z

∑
x∈A0+iv

f(x)

=
∑
i∈Z

∑
x∈A0+iv

f(x1)g
(
(x1, . . . , xn−1)

)
=
∑
i∈Z

f(iv)
∑

x∈A0+iu

g
(
(x1, . . . , xn−1)

)
.

(5.12)

The previous expression then allows us, in certain cases, to use induction for generalizing
properties that hold for functions over R to a family of functions over Rn. This can be
seen in the following results.

Claim 5.31. Let f : Rn → R and consider the product f : (x1, . . . , xn) 7→
∏

i∈[n] f(xi).

Suppose that there exists κ ∈ R such that for all L1 ⊂ Q and all c ∈ Q, f(L1+c) ≤ κf(L1).
Then, there exists κ′ ∈ R such that for all L ⊂ Qn and all c ∈ Qn, f(L+ c) ≤ κ′f(L).

Proof. We proceed by induction on n. For n = 1, this is given by hypothesis. Now let
n ∈ Z>2.

Let L ⊂ Qn be a lattice and let c ∈ Qn. Consider the decomposition L =
⋃
i∈ZA0 + iv

with respect to en described in Claim 5.30. Recall that A0 is a lattice contained in e⊥n ={
x ∈ Rn : 〈x, en〉 = 0

}
—the hyperplane orthogonal to en. Let A0 be the lattice Rn−1

formed by the vectors (x1, . . . , xn−1) such that (x1, . . . , xn−1) ∈ A0, and let g denote the
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mapping g : (x1, . . . , xn−1) 7→
∏

[n−1] g(xi).∑
x∈L

f(x + c) =
∑
i∈Z

∑
x∈A0+iv

f(x + c)

=
∑
i∈Z

f(iv + cn)
∑

x∈A0+iu

g
(
x + (c1, . . . , cn−1)

)

≤

κ1

∑
x∈A0

g(x)

∑
i∈Z

f(iv + cn)

≤

κ1

∑
x∈A0

g(x)

κ2

∑
i∈Z

f(iv)

≤ κ1κ2

∑
i∈Z

f(iv)

κ3

∑
x∈A0+iu

g(x)


= κ1κ2κ3

∑
x∈L

f(x),

(5.13)

as desired.

Proposition 5.32. Let f ∈ F1(Q) be a positive function in standard form. Suppose
that there exists κ ∈ R such that for every lattice A0 ⊂ Q and for every shift c ∈ Q,
f(A0 +c) ≤ κf(A0). Then the mapping given by the product f : (x1, . . . , xn) 7→

∏
i∈[n] f(xi)

is an element of Fn(Qn).

Proof. We proceed with the proof using induction on n. The case n = 1 is then given by
our hypothesis on f . Let n ∈ Z≥2.

Let L ⊂ Qn be a lattice and let ε ∈ R>0. Notice that the dual L∗ is also a rational
lattice. Consider the decomposition of L∗ =

⋃
i∈ZA0 + iv with respect to en described

in Claim 5.30. Let A0 be the lattice Qn−1 formed by the vectors (y1, . . . , yn−1) such that
(y1, . . . , yn−1, 0) ∈ A0, and let g denote the mapping g : (x1, . . . , xn−1) 7→

∏
[n−1] g(xi).

Recall that ĝ(y1, . . . , yn−1) =
∏

i∈[n] f̂(yi). Then, for any s ∈ R>0,∑
y∈L∗\{0}

∣∣f̂s(y)
∣∣ =

∑
i∈Z\{0}

∑
y∈A0+iv

∣∣f̂s(y)
∣∣+

∑
y∈A0\{0}

∣∣f̂s(y)
∣∣

=
∑

i∈Z\{0}

∣∣f̂s(iv)
∣∣ ∑

y∈A0+iu

∣∣ĝs(y)
∣∣+ f(0)

∑
y∈A0\{0}

∣∣ĝs(y)
∣∣. (5.14)
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Where v = 〈v, en〉 and u =
(
v−〈v, en〉en

)
∈ e⊥n . Now, it is necessary to bound

∣∣ĝs ∣∣(A0 +
ui). To do so, recall that by Proposition 5.3,∑

y∈A0+ui

∣∣ĝs(y)
∣∣ = sn−1

∑
y∈A0+ui

∣∣ĝ(sy)
∣∣ ≤ κn−1sn−1

∑
y∈A0

∣∣ĝ(sy)
∣∣ = κn−1

∑
y∈A0

∣∣ĝs(y)
∣∣.

Then, by Equation (5.14),
∣∣f̂s∣∣(L \ {0}) is bounded by

∑
y∈L∗\{0}

∣∣f̂s(y)
∣∣ ≤ κn−1

∑
y∈A0

∣∣ĝs(y)
∣∣ ∑

i∈Z\{0}

∣∣f̂s(vi)∣∣+
∑

y∈A0\{0}

∣∣ĝs(y)
∣∣.

= κn−1

1 +
∑

y∈A0\{0}

∣∣ĝs(y)
∣∣ ∑

i∈Z\{0}

∣∣f̂s(vi)∣∣+
∑

y∈A0\{0}

∣∣ĝs(y)
∣∣.

(5.15)

Notice that the functions f and g are also in standard form. By induction the hypothesis,
the smoothing parameter ηg,1 is finite. Then, in particular, for s ≥ ηg,1(A0), the weight∣∣ĝs∣∣(A0) ≤ 2.

Now, let ε1 = ε/ (4κn−1) and ε2 = min{ε/2, 1}, and consider

η = max
{
ηg,ε1

(
〈v, en〉Z

)
, ηf,ε2(A0)

}
.

By induction the hypothesis, η is a finite real number since both smoothing parameters in
the set are finite. Then, by Equation (5.15) we have that, for s ≥ η,∑

y∈L∗\{0}

∣∣f̂s(y)
∣∣ < (κn−1 min{2, 1 + ε2}ε1 + ε2

)
≤ ε

2
+
ε

2
= ε.

Therefore, the smoothing parameter of f with respect to L is ηf ,ε(L) ≤ η <∞, as required.

5.5 Tail Bounds

The traditional method to find (or bound) the smoothing parameter for Gaussian functions
is to bound the proportion of the weight of the function over a lattice that is outside a
certain region. This is better known in the literature as the tail bound of the function.
The following definition formally captures this intuition.
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Definition 5.33 (Tail Bound Functions). Let f : Rn → R be a continuous function and
let A be a family of discrete sets A ⊂ Rn. A function νf is said to be a tail bound for f if
for every K ⊂ Rn and every A ∈ A,

νf (K,A) :=
f(A \K)

f(A)
. (5.16)

A tail bound for f and the family A is defined as

νf ,A(K) := sup
A∈A

νf (K,A), (5.17)

whenever the supremum on the right hand side of (5.17) is well defined.

Notice that the quantity νf (K,L+ v) denotes the fraction of weight of the function fv
over L outside of the set K. It follows from the definition above that for every arbitrary
subset K of Rn and every lattice L ⊂ Rn,

f(L+ v \K) ≤ νf (K)f(L).

Obtaining A Generic Tail Bound

In [MSD19], Miller and Stephens-Davidowitz provide a construction of a tail bound νf (K)
for a class of functions that admit the Poisson summation formula. We now show how
to derive bounds on the smoothing parameter in terms of various lattice quantities using
similar ideas. We begin by generalizing the main result from [MSD19], by allowing the
Fourier transform of the function to present a non-monotonous behavior. To do so we
introduce a new parameter that allows to bound the potential growth of the function.

Lemma 5.34 (Tail Bounds for Eventually Decreasing functions). Let b : Rn → R>0 be a
continuous real-valued positive function for which the Poisson summation formula holds.
Further, assume that its Fourier transform b̂ is positive and define β : R≥1 → R>0 as

β(t) := sup
y∈Rn

b̂(ty)

b̂(y)
.

Then, for any v ∈ Rn and K,L ⊂ Rn, where L is a lattice and K is any set, we have that∑
x∈L

x+v 6∈K

b(x + v) ≥ νb(K)
∑
x∈L

b(x),
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where νb(K) is given by

νb(K) = inf
u∈(0,1]

sup
z∈Rn\K

β
(
u−1
)

un
b(z)

b(uz)
.

Proof. Start by noticing that, by definition of β, we have that for all y ∈ Rn and t ∈ R≥1,

b̂(ty) ≤ β(t)b̂(x). Let L ⊂ Rn be a lattice, and let u ∈ (0, 1] and v ∈ Rn. By the
Poisson summation formula we have that the summation of the shifted and scaled lattice
is bounded above by∑
x∈L

b
(
u(x + v)

)
≤ 1

un detL
∑
y∈L∗

b̂
(
u−1y

)
≤ 1

un detL
∑
y∈L∗

β
(
u−1
)
b̂(y) =

β(u−1)

un

∑
x∈L

b(x).

On the other hand, this same summation is bounded below by∑
x∈L

b
(
u(x + v)

)
≥

∑
x∈L

x+v 6∈K

b
(
u(x + v)

)
≥ inf

z∈Rn\K

b(uz)

b(z)

∑
x∈L

x+v 6∈K

b(x + v)

These two inequalities combined imply that for all u ∈ (0, 1),∑
x∈L

x+v 6∈K

b(x + v) ≤
β
(
u−1
)

un
sup

z∈Rn\K

b(z)

b(uz)

∑
x∈L

b(x).

The result follows.

The parameter function β accounts for the maximum rate of eventual growth of b̂.
When b̂ is monotonically decreasing on rays, β is the constant function 1. In fact, the
proof itself does not restrict β to have any particular behavior. However, the utility of the
bound obtained in Lemma 5.34 is closely dependent on the behavior of β. Thus, of course,
large upper bounds on β would negatively impact the usefulness of the result.

Increasing the Dimension

We now describe a general procedure to transform a tail bound for a function g over R to
the function g : (x1, . . . , xn) 7→

∏
i∈[n] g(xi). In the following results consider the following

sets. For r ∈ R≥0 and i ∈ {1, . . . , n} let rQ
(i)
n :=

{
x = (x1, . . . , xn) ∈ Rn : |xi| < r

}
and

rB∞n =
{
x ∈ Rn : ‖x‖∞ ≤ r

}
.
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Lemma 5.35 (From rQ
(i)
n to rB∞n ). Let g : R → R>0 be a non-negative function and

consider g : Rn → R defined by g(y) =
∏n

i=1 g(yi). Suppose that for all i ∈ [n], νg(rQ
i
n) is

known. Then
νg(rB∞n ) ≤ n ·max

i∈[n]
νg(rQ

i
n).

Proof. We have that

L \ rB∞n =
⋃
i∈[n]

(
L \ rQ(i)

n

)
.

Therefore, since g is non-negative,

g(L \ rB∞n ) = g

⋃
i∈[n]

(
L \ rQ(i)

n

)
≤
∑
i∈[n]

g
(
L \ rQ(i)

n

)
≤
∑
i∈[n]

νg
(
rQ(i)

n

)
g (L)

= nmax
i∈[n]

νg
(
rQ(i)

n

)
g (L) ,

as desired.

In the following theorem we make use of the lattice decomposition for rational lattices
described in Claim 5.30 in a different context. This is perhaps not a coincidence, as the
following theorem can be thought as the analog result to Proposition 5.32 for tail bound
functions. The requirement that the weight of the function has bounded growth when
shifted—in other words, that for all c, f(L + c) ≤ κf(L)—is also present as a hypothesis
for the function. Notice, however, that when the function and the dual are both positive,
this is automatically satisfied from Proposition 5.7, by taking κ = 1.

Theorem 5.36. Let g : R→ R>0 be a non-increasing function with g(0) = 1 and consider
g : Rn → R defined by g(x) =

∏n
i=1 g(xi). Suppose that there exists a constant κ ∈ R≥1

such that for every c ∈ Rn and every lattice L ⊂ Qn, g(L + c) ≤ κ · g(L). Given a tail
bound function νg for g we have that, for any n-dimensional lattice L ⊂ Qn,

νg
(
rQ(i)

n ,L
)

= κ · g
(

(−r, r) ∩ L(i)
1

)
· νg
(

(−r, r),L(i)
1

)
,

where L(i)
1 denotes the projection of L to the subspace generated by ei.
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Proof. Let L ⊂ Qn be a lattice. Without loss of generality, we fix i = 1. Consider the
lattice decomposition for L with respect to e1 described in Claim 5.30,

L =
⋃
j∈Z

Aj,

where Aj = A0 + jw. Let v = 〈w, e1〉e1 be the projection of w onto e1. Thus v is a

generator for L1 = L(1)
1 . Let v = 〈w, e1〉 = ‖v‖2 and, for r ∈ Z, let A<r denote the union

of the of sets Aj such that j ∈ Ir = (−v/r, v/r) ∩ Z. Then

g(L \ A<r) =
∑
j∈Ir

g(Aj)

=
∑
j∈Ir

g(A0 + jw)

=
∑
j∈Ir

g
(
A0 + j(w − v) + jv

)
=
∑
j∈Ir

g
(
A0 + j(w − v)

)
g(jv),

where the last equality is given by the definition of g, since j(w − v) ∈ e⊥1 and jv is a
multiple of e1. Now we bound g

(
A0 + j(w − v)

)
. To that end, observe that for every

vector c ∈ e⊥1 we have, by hypothesis,

κg(A0)
∑
j∈Z

g(jw) = κg

(⋃
j∈Z

Aj

)
= κg(L)

≥ g
(
L+ c

)
=
∑
j∈Z

g(Aj + c)

= g(A0 + c)
∑
j∈Z

g(jw)

As a consequence, we can bound the value of g over a shift of K0 by the same constant κ
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times g(A0). In particular, g
(
A0 + j(w − v)

)
≤ κg(A0). Hence,

g(L \ A<r) =
∑
j∈Ir

g
(
A0 + j(w − v)

)
g(jv)

≤
∑
j∈Ir

κg(A0)g(jv)

= κg(A0)
∑
j∈Ir

g(jv)

≤ κg(A0) ·
νg
(
(−r, r),L1

)
1− νg

(
(−r, r),L1

) · g((−r, r) ∩ L1

)
≤ κg(A<r) ·

νg
(
(−r, r),L1

)
1− νg

(
(−r, r),L1

) · g((−r, r) ∩ L1

)
,

(5.18)

where the second to last inequality is given since A0 ⊆ A<r and∑
j∈Ir

g(jv) ≤ νg
(
(−r, r),L1

)∑
j∈Ir

g(jv)

= νg
(
(−r, r),L1

)(
g
(
(−r, r) ∩ L1

)
+
∑
j∈Ir

g(jv)

)
.

For ease of notation, let R denote the fraction

R =
νg
(
(−r, r),L1

)
1− νg

(
(−r, r),L1

) .
With this, the bound for g(L \ A<r) given in (5.18) is given as

g(L \ A<r) ≤ κ ·R · g
(
(−r, r) ∩ L1

)
· g(A<r)

= κ ·R · g
(
(−r, r) ∩ L1

)[
g(L)− g(L \ A<r)

]
,

which yields the following alternate bound,

g(L \ A<r) ≤ κ · R

1 + κ ·R · g
(
(−r, r) ∩ L1

) · g((−r, r) ∩ L1

)
· g(L)

≤ κ · R

1 +R
· g
(
(−r, r) ∩ L1

)
· g(L)

≤ κ · νg
(
(−r, r),L1

)
· g
(
(−r, r) ∩ L1

)
· g(L).
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where

R

1 + κ ·R · g ((−r, r) ∩ L1)
≤ R

1 +R
=

νg

(
(−r,r),L1

)
1−νg

(
(−r,r),L1

)
1 +

νg

(
(−r,r),L1

)
1−νg

(
(−r,r),L1

) = νg
(
(−r, r),L1

)
,

as κ ≥ 1 and g
(
(−r, r) ∩ L1

)
≥ g(0) = 1. Finally, note that L ∩ A<r = L ∩ rQ(1)

n as both
consist of the set of vectors (x1, . . . , xn) ∈ L with x1 < r. Hence,

g
(
L \ rQ(1)

n

)
= g(L \ A<r) ≤ κ · g

(
(−r, r) ∩ L1

)
· νg
(
(−r, r),L1

)
· g(L).

This finishes the proof.

Corollary 5.37. Suppose the function g satisfies all the conditions of Theorem 5.36. Then

νg,L(rB∞n ) = n · κ ·max
i∈[n]

g
(

(−r, r) ∩ L(i)
1

)
· ν

g,L(i)1
(−r, r).

If the function additionally satisfies the following properties:

1. For all y ∈ Rn, ĝ(y) ≥ 0.

2. r ≤ λ∞1 (L).

Then
νg,L(rQ(i)

n ) = ν
g,L(i)1

(−r, r)

and
νg,L(rB∞n ) = n ·max

i∈[n]
ν
g,L(i)1

(−r, r).

Proof. Composing Lemma 5.35 and Theorem 5.36 immediately gives

νg,L(rB∞n ) = n ·max
i∈[n]

νg,L
(
rQ(i)

n

)
≤ n · κ ·max

i∈[n]
g
(

(−r, r) ∩ L(i)
1

)
· ν

g,L(i)1
(−r, r).

Additionally, ĝ(y) ≥ 0 for all y ∈ Rn implies that κ = 1 (by Proposition 5.7), and

r < λ∞1 (L) implies that (−r, r) ∩ L(i)
1 = {0} for all i. Hence

max
i∈[n]

g
(

(−r, r) ∩ L(i)
1

)
= g(0) = 1
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which implies
νg,L

(
rQ(i)

n

)
= ν

g,L(i)1
(−r, r)

and
νg,L(rB∞n ) = n ·max

i∈[n]
ν
g,L(i)1

(−r, r)

if the additional conditions are satisfied.

Remark 5.38. If lattice invariant tail bounds are known, the corollary gives us

νg,L
(
rQ(i)

n

)
= νg

(
(−r, r)

)
and

νg,L(rB∞n ) = n · νg
(
(−r, r)

)
.

5.6 Bounding the Smoothing Parameter

The first application of the tools developed in the previous sections is to bound the smooth-
ing parameter of a function.

Lemma 5.39 (Tail Bounds from Tail Bounds on Bounding Functions). Let K ⊂ Rn be
an arbitrary subset. Let J be a family of lattices in Rn and consider functions f : Rn → R
and b ∈ L1(Rn) satisfying the following properties.

1. For all y ∈ Rn,
∣∣f(y)

∣∣ ≤ b(y).

2. There exists a constant C such that for every lattice L ∈ J , b(L) ≤ C · |f |(L).

Then for all L ∈ J and for all c ∈ Rn,

ν|f |(K,L+ c) ≤ C · νb(K,L+ c).

Proof. Let L ∈ J and let c ∈ Rn. By the hypotheses of the lemma we have that

|f |(L+ c \K) ≤ b(L+ c \K)

≤ νb(K)b(L)

=

(
νb(K)

b(L)

|f |(L)

)
|f |(L)

≤ C · νb(K) · |f |(L).

The result follows.
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Lemma 5.40. Let L, K ⊂ Rn, where L is a lattice and K is an arbitrary set. Consider
a function g : Rn → R such that g(0) = 1 and let νg be a tail bound function for g. Let
ε ∈ (0, 1) and assume that there exists r ∈ R>0 such that

νg(rK,L) ≤ ε

1 + ε
.

Then,

g

((
r

λ1(K,L)

)
L \ {0}

)
< ε. (5.19)

Proof. Let t denote λ1(K,L). Since tK ∩ L = {0}, it follows that for all s ∈ R>0,

g1/s

(
L \ {0}

)
= g

(
sL \ {0}

)
= g(sL \ stK).

Consider s = r
t
.

g1/s

(
L \ {0}

)
= g(sL \ stK)

≤ νg
(
stK,L

)
g(sL)

= νg
(
rK,L

)(
g(0) + g

(
sL \ {0}

))
.

As g(0) = 1, using the previous inequality we have that

g

((
r

λ1(K,L)

)
L \ {0}

)
= g1/s

(
L \ {0}

)
≤

νg
(
rK,L

)
1− νg

(
rK,L

) < ε
1+ε

1− ε
1+ε

= ε, (5.20)

as required.

Corollary 5.41. Let L ⊂ Rn, where L is a lattice and K is an arbitrary set. Let f ∈ Dn
and let g =

∣∣∣D̂f

∣∣∣. Consider a tail bound function νg for g. Suppose that for ε ∈ (0, 1) there

exists r ∈ R>0 such that

νg(rK,L) ≤ ε

1 + ε
.

Then for s = r/λ1(K,L), the function fs is ε-smoothening for the lattice L. Moreover, if
the mapping s′ 7→ νg(s′K,L) is monotonically decreasing, then the smoothing parameter
ηf ,ε < s.

Proof. By Proposition 5.3, Equation (5.19) is equivalent to∣∣∣D̂f ,s

∣∣∣ (L \ {0}) = g1/s

(
L \ {0}

)
< ε.
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Thus f is ε-smoothening. Suppose now that the mapping s′ 7→ νg(s′K,L). Then, by
Equation (5.20), for s′ > s

g1/s′
(
L \ {0}

)
≤

νg
(
s′tK,L

)
1− νg

(
s′tK,L

) ≤ νg
(
stK,L

)
1− νg

(
stK,L

) < ε,

where t = λ1(K,L). The proof follows.

5.7 Smoothing Parameter for Non-Gaussian Functions

In this section we quantify the smoothing parameter for an infinite set of non-Gaussian
functions by using the tools developed in the previous sections. We start by giving an
overview of the general procedure starting with an arbitrary function in D1—the set of real
valued functions over R which are suitable for the application of the Poission Summation
Formula. Next we provide a short example by computing the smoothing parameter of a
function for which a tail bound has been previously computed. We finalize this section by
computing the smoothing parameter for the family of generalized Gaussian distributions.

An Overview of the Process

We now provide an overview of the general methodology for finding smoothing parameters
This description is used as a reference in the forthcoming sections of this chapter. Every
step of the sequence essentially subsumes all the previous ones; that is, depending on the
available information, it is possible to start the process at any given step. For instance,
finding a bounding function (Step 1) is not necessary if we know an appropriate represen-
tation for the Fourier transform. Similarly, the availability of νf̂ (rB

∞
n ) bypasses the need

to obtain νf̂

(
rQ

(i)
n

)
. The evolution of the information is then given by the following flow

chart.

b(y)
5.34−−→ νb

(
(−r, r)

) 5.39−−→ νf̂
(
(−r, r)

) 5.37−−→
∗

νf̂
(
rQ(i)

n ,L
) 5.35−−→ νf̂ (rB

∞
n ,L)

5.41−−→ ηf ,ε(L).

The arrow marked with * marks the transition from 1-dimensional function to an n-
dimensional one.
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In the following steps, let f ∈ D1 be a positive normalized function and consider
f : Rn → R given by f(x) =

∏
i∈[n] f(xi). Let K denote the set (−r, r) ⊂ R, where r ∈ R>0

is fixed in Step 4.

Step 1 We start by finding a suitable bounding function for
∣∣f̂ ∣∣, that is, a function b

satisfying the conditions of Theorem 5.34 (in other words, the function is Poisson
admissible and has a positive Fourier transform) and such that for all y ∈ R, b(y) ≥∣∣∣f̂(y)

∣∣∣. This may require manipulation and piece-wise completion such that we can

evaluate the expression

νb(K) = inf
0<u≤1

sup
y∈Rn\K

β(u−1)
b(y)

unb(uy)
, where β(u−1) = sup

y∈R

b̂(u−1y)

b(y)
.

Step 2 Obtain an upper-bound on νf̂ (K) ≤ C · νb(K). Start by finding C1, C2 ∈ Rn

such that
C1 · b(L) ≤ b(L ∩K) ≤ C2 · |f̂ |(L ∩K).

From the expression above we obtain b(L) ≤ C2

C1
|f̂ |(L) and the bound follows from

Lemma 5.39.

Remark 5.42. Notice that b(L∩K)/b(L) = 1−νb(K,L). Thus finding C1 is equivalent
to finding an upper bound on νb(K,L).

Step 3 Use Corollary 5.37 to lift the tail bound ν|f̂ |
(
(−r, r)

)
to the function η|̂f | (rB

∞
n ,L)

(passing through η|̂f |

(
rQ

(i)
n ,L

)
). Note that the choice of r in Step 4 always satisfies

the extra condition of Corollary 5.37.

Step 4 Use the tail bound ν|̂f |(rB
∞
n ,L) to find a scaling of the lattice s such that sL∗∩

rB∞n = 0. Then use the tail bound from Step 3 (as r ≤ λ∞1 (sL∗) by construction) to
obtain a smoothing parameter for f . This is formalized in Corollary 5.41.

Note 5.43. Notice that Step 3 implicitly requires that the function f can be written as
f(x) =

∏
i∈[n] f(xi). This property of f , however, is not reflected in Step 4, since Corollary

5.41 may be applied to an arbitrary function.
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Smoothing Parameter for 1/(1 + 2 cosh)

Throughout this subsection, let f denote the function

f : (x1, . . . , xn) 7→
∏
i∈[n]

1

1 + 2 cosh
(
2πxi/

√
3
) , (5.21)

where cosh(x) = 1
2
(ex + e−x) is the hyperbolic cosine. This function is used in [MSD19]

to obtain a transference theorem for the `1 norm—this is since f is approximately `1

symmetrical.

For C∗ ≈ 0.425 and α ≥
√

3
2π

, let

Kα :=
{
x ∈ Rn : ‖x‖1 ≤ (1 + C∗)αn

}
be the `1 ball of radius (1 + C∗)α. By [MSD19, Lemma 3.7],

νf (Kα) ≤
(

2πα√
3

)n
e
−
(

2πα√
3
−1
)
n

= θ(α)n,

with θ(α) =

(
2πα√

3
e
−
(

2πα√
3
−1
))

. By definition, this means that

f(L \Kα) ≤ νf (Kα)f(L). (5.22)

One of the more important properties of f is the fact that it is self-reciprocal. In other
words, the function

f : x 7→ 1

1 + 2 cosh
(
2πx/

√
3
)

is its own Fourier transform [Tit48, pages 262,263]. In the following proposition, we use
this fact to convert the expression in Equation (5.22) for a tail bound of f into a smoothing
parameter for f , for a particular choice of ε.

Proposition 5.44. Let L ⊂ Rn be a lattice and let ε = 2−n. Then the smoothing parameter
of f with respect to L is bounded as

ηf ,ε(L) ≤ (1 + C∗)n

λ
(1)
1 (L∗)

.
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Proof. Let ε = 2−n. Note that Kα = (1+C∗)αnB1
n by definition, and consider the equation

νf
(
(1 + C∗)nB1

n

)
= νf (Kα) ≤

(
2πα√

3

)n
e
−
(

2πα√
3
−1
)
n ≤ ε

1 + ε
=

2−n

1 + 2−n
.

Note that for α = 1, we have that(
2πα√

3

)n
e
−
(

2πα√
3
−1
)
n

=

(
2π√

3
e
−
(

2π√
3
−1
))n

<

(
1

3

)n
<

2−n

1 + 2−n
,

so the equation holds for any α ≥ 1. Thus, by Corollary 5.41, as Kα=1 = (1 +C∗)nB1
n, we

have that

ηf ,ε(L) ≤ (1 + C∗)n

λ
(1)
1 (L∗)

,

as required.

In the following proposition we provide an alternative bound for the smoothing param-
eter of f that works for any ε ∈ R>0. To express this bound we use the product-logarithm
function W .3 This is the inverse of the mapping z 7→ zez. Over the reals, the W function
is divided into two branches. Given the nature of the relevant quantities, we are only
interested on the branch −1. For a comprehensive study of this function see [CGH+96].

Proposition 5.45. Let L ⊂ Rn and let ε ∈ R>0. Then the smoothing parameter of f with
respect to L is bounded as

ηf ,ε(L) ≤ −
√

3(1 + C∗)

2πλ∞1 (L)
W−1

(
−1

e

(
ε

n(1 + ε)

))
.

Proof. The function f is written as the product of f evaluated on each coordinate; thus it
is enough to find a tail bound for f . As before, by [MSD19, Lemma 3.7], a one-dimensional
tail bound for f is given by

νf
(
(1 + C∗)αB1

1

)
≤
(

2πα√
3

)
e
−
(

2πα√
3
−1
)
.

Then by Corollary 5.37, an n-dimensional tail bound is expressed as

νf
(
(1 + C∗)αB∞n

)
≤ n

(
2πα√

3

)
e
−
(

2πα√
3
−1
)
.

3In the literature, the function W is also known as the Lambert W function.
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We now use this tail bound function to find a bound for the smoothing parameter. Bound-
ing the right hand side of the previous inequality by ε

1+ε
yields

−
(

2πα√
3

)
e
−
(

2πα√
3

)
> −

(
ε

ne(1 + ε)

)
.

By applying the (branch −1 of the) product logarithm function W−1 we have

α >
−
√

3

2π
W−1

(
−1

e

(
ε

n(1 + ε)

))
.

Notice that when evaluating both sides on W−1 the direction of the inequality is inverted
since this branch is a strictly decreasing function. Finally, applying Corollary 5.41 we
obtain that the smoothing parameter is bounded by

ηf ,ε(L) ≤ −
√

3(1 + C∗)

2πλ∞1 (L)
W−1

(
−1

e

(
ε

n(1 + ε)

))
,

as required.

Smoothing Parameter for Generalized Gaussians

In [MSD19], Miller and Stephens-Davidowitz successfully compute a tail bound for a set of
p-supergaussians—a set of functions that generalize the Gaussian distribution. Their work
strongly depends on the assumption that the Fourier transform is a positive function. In
this section we consider the p-supergaussians for p ∈ 2Z>0, where we do not enjoy such a
guarantee. As a result, we are able to compute the smoothing parameter for an infinite
family of functions, each of which is symmetric over an `p norm.

Definition 5.46 (p-supergaussian). Fix p ∈ R>0. For s ∈ R>0 and c = (c1, . . . , cn) ∈ Rn,
the p-supergaussian (or supergaussian of degree p) centered at c of width s is the function

ρ
[p]
c,s : Rn → R defined for x = (x1, . . . , xn) as

ρ[p]
c,s(x) := exp

(
− 1

sp

n∑
i=1

|xi − ci|p
)
. (5.23)

For the sake of simplification, in the rest of this work the function ρ
[p]
0,1 is denoted as ρ[p].
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In the literature, (the normalized versions of) these functions are also commonly known
as the generalized normal distributions. We use the name “supergaussians” to be relatively
consistent with the nomenclature in [MSD19]. The traditional Gaussian distribution is

obtained by setting p = 2. Its 1-norm is given by
∫
R f

[p]
s (x)dx = 2sΓ(1/p)

p
. Similar to the

Gaussian function, the functions in this family show a nice interplay with the `p norms.

Proposition 5.47. The p-supergaussian function ρ[p] is symmetric with respect to the
homogeneous function ‖ · ‖p.

Proof. It follows from ρ[p](x) = exp
(
−
∑

i∈[n] |xi|p
)

= exp
(
− ‖x‖pp

)
.

Proposition 5.48. The p-supergaussian function ρ[p] factors over the canonical basis
{e1, . . . , en}.

Proof. Let x =
∑

i∈[n] xiei. Then we have that

ρ[p](x) = exp

−∑
i∈[n]

|xi|p
 =

∏
i∈[n]

exp
(
− |xi|p

)
=
∏
i∈[n]

ρ[p](xi),

as desired.

An inductive argument is enough to prove that for any p ∈ 2Z≥1, the p-supergaussian
is a Schwartz function. For the rest of this document we refer to a function of this form as
an even degree supergaussian.

As has been argued in this chapter, the Fourier transform of a function is fundamental
for study the smoothing properties of a function. For the p-supergaussian, in this thesis
we denote the Fourier transform of ρ[p] as

σp(y) := ρ̂[p](y) =

∫
R
e−x

p

e−2πixydx. (5.24)

Proposition 5.49. Let p ∈ 2Z>0. Then the Fourier transform of ρ[p] is asymptotically
approximated by the function

σp(y) ≈

√
(p− 1)

y(p+2)/(p−1)

( p
2π

)3/(p−1)

(p−2)/2∑
k=0

exp

(
iπ

(
p− 2− 4k

4(p− 1)

)
− (p− 1)

(
2πy

p

)p/(p−1)

eiπ
p−2−4k
2(p−1)

)
.
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We compute the previous approximation in Appendix A by means of an asymptotic
approximation technique. Specifically, we make use of the saddle point method. Please
refer to the appendix for a full proof of the proposition, along with an overview of the
technique.

Step 1—Finding a Bound for σp. We begin by finding a bounding function for |σp|
and computing its tail bounds. Using a saddle-point method described in Appendix A, we
can show that, for all p ≥ 4 and for all y 6= 0,

|f̂ [p]|(y) = |σp(y)| ≈ ξ(p)|y|−α(p)e−ϑ(p)|y|τ(p) (5.25)

where

α(p) =
(p+ 2)

2(p− 1)
, ϑ(p) = (p− 1) cos

(
π

p− 2

2(p− 1)

)(
2π

p

) p
p−1

, τ(p) =
p

p− 1

and

ξ(p) =
p− 2

2

√
(p− 1)

( p
2π

)3/(p−1)

To ease the notation, when p is clear from context, we sometimes use α, ϑ, τ to denote
α(p), ϑ(p), τ(p), respectively.

Note 5.50. There are several limitations with the approximation of σp obtained in Ap-
pendix A. As such, the function described in Equation (5.25) is only an asymptotic ap-
proximation, that is not itself a function that bounds |σp|. The distance between the
obtained function and σp is asymptotically decreasing; however, the proportion between
the two grows with |y|. Nonetheless, we have experimental evidence that this growth is,
at most, linear in |y|, which leads us to conjecture that this is the case. Thus, assuming
that this conjecture is indeed true, we obtain a bounding function by a slight adjustment
in the parameter α(p).

As discussed at the beginning of this section, we define the bounding function as the
following continuous piecewise completion

bp(y) := ξ(p) ·

{
b1(y) := e−ϑ|y|

τ |y| ≤ 1

b2(y) := |y|−αe−ϑ|y|τ |y| ≥ 1

where α, ϑ, τ ∈ R>0 are defined as above.
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We now proceed to compute the tail bounds for the bounding function b[p]. By Lemma 5.34,
a tail bound for the function b is given by

νbp
(
[−r, r]

)
= inf

0<u≤1
sup
|y|≥r

β(u−1)
bp(y)

ubp(uy)
. (5.26)

Note 5.51. Computing the exact value of β(u−1) would require the exact computation of b̂.
This is, naturally, a big obstacle to obtaining an exact expression for νbp . However, we can

make some observations about this function. Since b̂ is positive and eventually decreasing,
we expect β to be decreasing. Moreover, based on our experiments we conjecture that
its value close to 1 is bounded. Thus, in our computations, we regard β as some fixed
constant, and use β = 1 when evaluating expressions. However, note that the final value
of any evaluated expression needs to be adjusted since β > 1.

Evaluating Equation (5.26), we find that

νbp
(
[−r, r]

)
≤ β

(
1

r

)α−1

exp
(
− ϑ(rτ − 1)

)
. (5.27)

The computations are summarized in Appendix B. Recall that σp denotes the Fourier
transform of the standard form of the supergaussian (see the notation part of Section 5.1).

It follows that σp is bounded by bp(y) := 1
ap
bp

(
y
ap

)
. Using Equation (5.27), a tail bound

for bp is given by

νbp
(
[−r, r]

)
=

1

ap
· νb
([
− r

ap
,
r

ap

])
=

β

ap

(ap
r

)α−1

· exp

(
−ϑ
(
r

ap

)τ
+ ϑ

)
. (5.28)

Step 2—A Tail Bound Function for σp. The next step is to convert a tail bound
of bp to a tail bound of |σp|. As described at the beginning of this section, the idea is to
use Lemma 5.39. Thus the goal is to find a constant C ∈ R>0 such that for every lattice
L1 ⊂ R for which λ1(L1) > r,

bp(L) ≤ C · |σp|(L). (5.29)

Once C is found we obtain the bound

ν|σp|
(
[−r, r]

)
≤ C · νbp

(
[−r, r]

)
= C

β

ap

(ap
r

)α−1

· exp

(
−ϑ
(
r

ap

)τ
+ ϑ

)
. (5.30)

91



Remark 5.52. Notice that the defining property of C, which is Equation (5.29), must hold
for every lattice L. Thus, after scaling both sides of the inequality, as well as every lattice
by ap, it is equivalent to consider

bp(L) ≤ C · |σp|(L). (5.31)

Note 5.53. We now follow the methodology described at the beginning of this section.
Following a naive method for finding C = C2/C1, the more technically challenging part
becomes finding an appropriate value for C1. In the process below, we start by setting a
value for C1. We use this and the bound described in Equation (5.27) to get a condition
for the set K = (−r, r) ⊂ R for which we can apply Lemma 5.39. We note that only by
forcing the bound for νbp in Equation (5.27) to be non-trivial (that is, less than 1) can
we establish a similar condition on K. As a consequence, we are only able to provide a
statement valid for a fixed family of lattices with a certain property.

Fix δ ∈ (0, 1). Bounding the right hand side of Equation (5.27) by δ, we obtain

ϑ+ ln(βδ−1) < ϑrτ + (α− 1) ln r. (5.32)

It is difficult to obtain an expression for r in terms of p from the above inequality. To
obtain an alternative inequality, first observe that for all r ∈ R>0, ln r < rτ . Moreover,
for r > e1/τ > 1, the fraction rτ/ ln r is strictly increasing and approaches infinity as r
increases. Consider r1 ∈ R>1 such that for all r ≥ r1,

rτ

ln r
>
−2(α− 1)

ϑ
. (5.33)

Notice that α < 1, thus the right hand side is positive. Under this restriction, we then
have that for all r > r1,

−ϑ
2
rτ < (α− 1) ln r. (5.34)

On the other hand, let

r2 =

(
2
(
ϑ+ ln(βδ−1)

)
ϑ

)1/τ

. (5.35)

Since rτ is an increasing function of r, we have that for all r > r2,

ϑ+ ln(βδ−1) <
ϑ

2
rτ . (5.36)
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Putting equations (5.34) and (5.36) together, we have that for all r > r0 := max{r1, r2},

ϑ+ ln(βδ−1) <
ϑ

2
rτ = ϑrτ − ϑ

2
rτ < ϑrτ + (α− 1) ln r, (5.37)

thus satisfying Equation (5.32).

Notice that r0 is a function of p. Since ϑ(p) → 0 as p → ∞, the behavior of r0 is

dominated by
(

1
ϑ

)1/τ
as p grows. Now observe that for p ∈ Z>1,

ϑ(p) = (p− 1) cos

(
π

p− 2

2(p− 1)

)(
2π

p

) p
p−1

= (p− 1) sin
π

2(p− 1)

(
2π

p

) p
p−1

∼ (p− 1)

(
π

2(p− 1)

)(
2π

p

) p
p−1

= Θ
(
p−

p
p−1

)
.

Hence,

r0 = O
(
p

p
p−1

) 1
τ(p)

= O
(
p

p
p−1

) p−1
p

= O(p).

We conclude that, by letting K = [−r0, r0], we have C1 = 1
2
. To find C2, recall that

K ∩ L1 = {0} in the context of finding a smoothing parameter. Hence, we have

C2 ≤
bp(0)

σp(0)
≤ ξ(p) · 1

1
= ξ(p).

Note that a slightly more complex argument allows us to find a C2 that is lattice invariant,
leading to lattice invariant tail bounds.

Substituting the above estimate for r0, C1, and the definition of bp(0), we get

C =
C2

C1

≤ 2ξ(p)

= 2 · (p− 2)

2

√
(p− 1)

( p
2π

)3/(p−1)

= O
(

(p− 2)
√

2(p− 1)
)

= O
(
p1.5
)
.
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Thus, for any lattice L1 ⊂ R with λ1(L1) > r,

ν|σp|
(
(−r, r),L1

)
≤ C · νbp

(
(−r, r)

)
= O

(
p1.5
)
·
aα−2
p β

r
· exp

(
−ϑ
(
r

ap

)τ
+ ϑ

)
.

Step 3—n Dimensional Tail Bound. Note that, in Step 4, the lattice that is consid-
ered is such that λ∞1 (L) > r, for a given r > r0. Thus it is enough to apply Corollary 5.37
to get

ν|σ[p]|

(
rB∞n ,L

)
≤ n · ν|σp|

(
(−r, r),L1

)
≤ nO

(
p1.5
)
·
aα−2
p β

r
· exp

(
−ϑ
(
r

ap

)τ
+ ϑ

)
. (5.38)

Note 5.54. In the above application of Corollary 5.37 we assumed that the constant κ—
which bounds the weight of a coset in terms of the weight of the lattice—has value 1. In
general this is guaranteed if the Fourier transform of a function is positive by Proposition
5.7. However, at the moment we do not have concrete evidence that the Fourier transform
of |σp| is a positive function. We conjecture, however, that the weight of the coset is indeed
maximized by the lattice itself, which is the reason for out assumption.

Step 4—Bounding the Smoothing Parameter. Finally, we find the smoothing pa-
rameter for f [p] using Corollary 5.41. Let ε ∈ (0, 1). To find the smoothing parameter
η
f [p],ε

, we must find r such that

ν|σ[p]|(rB
∞
n ,L) ≤ ε

1 + ε
.

To satisfy the above inequality, we use Equation (5.38) by bounding its right hand side by
ε/(1 + ε), obtaining

r ≥ ap

 ln
(
O (p1.5) βneϑaα−2

p

(
1 + 1

ε

) )
+ 5

ϑ


1
τ

.
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Thus, by Corollary5.41, the smoothing parameter is given by

s =
ap

λ1(L∗)

 ln
(
O (p2.5) βneϑaα−2

p

(
1 + 1

ε

))
+ 5

ϑ


1
τ

=
ap

λ1(L∗)

 ln
(
O (p2.5)n

(
1 + 1

ε

) )
ϑ


1
τ

=
2Γ
(

p
p+1

)
λ1(L∗)

(
ln

(
O
(
p2.5
)
n

(
1 +

1

ε

))
·O
(
p

p
p−1

)) p−1
p

=
O(p)

λ1(L∗)

(
ln

(
O
(
p2.5
)
n

(
1 +

1

ε

))) p−1
p

,

where the second equality holds as

aα−2
p =

(
2Γ

(
p

p+ 1

)) (p+2)
2(p−1)

−2

≤ 1.

for f [p] for the lattice L. Thus, for all even p ≥ 2,

ηf [p],ε(L) ≤ O (p)

λ1(L∗)

(
ln

(
O
(
p1.5
)
n

(
1 +

1

ε

))) p−1
p

.

5.8 Conclusion

In this chapter we studied the smoothening property that is present in the Gaussian dis-
tributions, and we extended this notion to any function for which the Poisson summation
formula can be applied, which we defined as smoothening functions. In addition, we defined
what the smoothing parameter of a lattice with respect to a function is. We clarified that a
function being smoothening with respect to a lattice does not imply that the lattice has a
smoothing parameter with respect to the function. We identified the necessity of studying
the behavior of the Fourier transform of a function, in particular, the behavior of the tails
of the function. To do so, we extended the tools presented in [MSD19] to bound the tails
of a function, by allowing its Fourier transform to oscillate around 0; we provided a way
to transform tail bounds for one-dimensional functions to n-dimensional functions; and we
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provided a direct connection between how smoothening a function is to the tail bound of
its Fourier transform.

In addition, we proved that several classical results can be proved generically for
smoothening functions. This proves the following points:

• Current proof techniques can often be adapted and extended to a generic setting.

• Several parts of the theory of lattice based cryptography can be generalized to a
wider family of functions.

Finally, we described an infinite family of smoothening functions, and an infinite sub-
family of functions for which the smoothing parameter exists and is sufficiently small.
Based on our observations and examples—the fact that the Gaussian seems to be the
function that converges “faster” to the uniform distribution in the quotient Rn/L, inde-
pendently of what the lattice L is—we conjecture that, even though the Gaussian is not
the only distribution that can be used to obtain certain results, the Gaussian is often the
optimal choice of distribution, in regards to the parameters that are necessary to obtain
the generalized result.
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Chapter 6

Average-Case to Worst-Case
Reductions Without Gaussians

“A technical argument by a trusted author,
which is hard to check and looks similar to
arguments known to be correct, is hardly ever
checked in detail.”

— Vladimir Voevodsky

This work was partially motivated by the questions “is it possible to use a distribution
different from Gaussians for LWE while still enjoying an average-case to worst-case reduc-
tion to lattice problems?”, “What is the underlying structure that makes the arguments
work?”. Before starting to explore this question it is necessary to understand and differ-
entiate the multiple roles that the Gaussian distribution has in the reductions that exist
in the literature.

For this we first turn our focus on Regev’s work [Reg05], since this is the blueprint of
subsequent related works such as [Pei08, LPR10, PRS17]. We start by making a detailed
analysis of the main parts of the process and identify the main steps. We then describe
what are the different properties of the Gaussian that are used in each step, and explore
the possibility of using different distributions in each one.

One of the main steps of the reduction is the relation between the Discrete Gaussian
Sampling (DGS) and Shortest Independent Vectors problems. In addition, the ability to
sample from a discrete Gaussian has been used as an intermediate step for several other
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reductions and security proofs [MR07, Pei08, LPR10, ADS15], as well as many construc-
tions [GPV08, MP12]. For this reason, we pay special attention to the Discrete Sampling
problem and some of its different uses in lattice cryptography.

6.1 An Overview of [Reg05]

The main result in [Reg05] is a reduction from LWE to two lattice problems, namely the
approximation version of GapSVP and SIVP within polynomial factors over a full-rank
lattice L. The road map of this reduction, however, is far from straightforward. The
solutions for GapSVP and SIVP are found by solving the Discrete Gaussian Sampling
problem over L

The General Idea. Let W be an oracle that solves the (search) LWE problem for n, q
and a Gaussian distribution χ. The main idea of the reduction is to use W to construct a
quantum algorithm that efficiently samples vectors from a discrete Gaussian distribution
of small enough radius. The algorithm starts by sampling a collection of vectors in L
from a discrete Gaussian distribution of a large width. If the width is large enough, say
exponentially large on the dimension, then this step can be efficiently done by means of a
lattice reduction algorithm such as LLL.

The intention now is to progressively shorten the radius of the vectors by a constant
factor. It does so by iterating an algorithm A that takes as input a collection of vectors
V from the discrete Gaussian distribution over L of radius r, and outputs a collection
of vectors U from the discrete Gaussian distribution over L of radius r/2 (or less). By
iterating this algorithm over its own output eventually we obtain a collection of vectors of
a sufficiently small radius.

The Iterative Step. For a given radius r—which is sufficiently greater than the smooth-
ing parameter ρ with respect to L—the algorithm constructs a quantum state representing
the Fourier transform of DL,ρr/2 . This is a series of thin Gaussians centered at every vector
in the dual lattice L∗. The desired sample vector is obtained after applying the quantum
Fourier transform to the constructed state and collapsing the result.1 For this construc-
tion, however, it is necessary to call an oracle that solves a BDD instance on L∗ that arises
during the process. Thus the BDD oracle is the piece to be constructed next.

1The Fourier transform of DL,ρr/2 is a continuous function; therefore there is naturally some loss of
fidelity when computing this state.
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From LWE to BDD. This is arguably the most important part of the reduction, to such
an extent that it has subsequently been used to show worst-case to average-case reductions
from LWE to itself under weaker conditions [ACPS09, BCD+19, GMPW20].

The relationship between solving LWE on a “random” lattice and solving BDD on any
lattice is given by a simple transformation of instances of the latter problem to instances
of the former. This transformation, however, in addition assumes access to a number
of samples from a discrete distribution over the dual lattice. This part itself consists of
several pieces that are implied by more general results, some of which we have covered in
the previous chapter.

At this step we have a collection V = {v1, . . . ,vk} of samples from DL,ρr—which are
obtained either from a previous iteration or is the starting collection of exponentially long
vectors. Suppose that L is given by the matrix B. Given an instance x of the BDD problem
over L∗, we compute(

ai := B−1vi, 〈x,vi〉
)

mod q, for i ∈ {1, . . . , k}. (6.1)

This expression is very close to an LWE sample. To see this, let u be the closest lattice
vector to x—the solution of the BDD problem—and consider the difference t = x − u =
(t1, . . . , tn). Then we have

〈x,vi〉 ≡ 〈u,vi〉+ 〈t,vi〉 mod q. (6.2)

Now, since (B∗)−1 = BT , the first term can be written as

〈u,vi〉 = uTvi = uTBB−1vi =
(
BTu

)T
B−1vi =

〈
(B∗)−1u, B−1v

〉
. (6.3)

By defining s := (B∗)−1u, we obtain the more familiar expression

〈x,vi〉 ≡ 〈u,vi〉+ 〈t,vi〉 = 〈ai, s〉+ 〈t,vi〉 mod q. (6.4)

Thus the BDD problem is solved once s is recovered. Notice that 〈t,vi〉 is small, since t
is bounded by a small real parameter, and vi is a sample from DL,ρr . Nevertheless, the
above expression is not precisely a sample from the traditional instantiation of the LWE
problem with Gaussian noise.

Noise Analysis. Write vi = (vi,1, . . . , vi,n). Then error term is given by

〈t,vi〉 =
∑
j∈[n]

tjvi,j. (6.5)
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The vector vi is distributed according to a discrete Gaussian distribution over L. However,
the distribution of its coordinates vi,1, . . . , vi,n over R is significantly harder to describe.
Moreover, our assumption is that W solves the LWE problem where the noise is sampled
from a particular Gaussian distribution χ. To guarantee that the noise in our sample is
described by such a distribution, we add a small Gaussian error e. The distribution of the
resulting noise is statistically close to a Gaussian distribution.

In fact, the distribution of e can be expressed as a linear combination of independent
Gaussian random variables. This property of the Gaussian distribution is called infinite
divisibility. Thus e can be written as 〈t,h〉, where h = (h1, . . . , hn) is described by a
Gaussian distribution over Rn. Thus the final noise is described by

e′ = 〈t,vi〉+ e = 〈t,h + vi〉 =
∑
j∈[n]

tj(hj + vi,j). (6.6)

Finally, the distribution of h + vi—or equivalently, in this case, the distribution of each
coordinate vi,j over R—which is an addition of a discrete and a continuous random variable,
can be proved to be statistically close to a Gaussian. Therefore, after carefully selecting e,
the distribution of e′ is statistically close to χ.

6.2 The Critical Steps

In the analysis of [Reg05] given in the previous section we can observe that the Gaussian
distribution is used as a tool in several different parts of the process, and for several different
purposes. In this section we isolate every instance where a Gaussian distribution is used,
and study the possibility of using a different distribution for the corresponding goal.

Initialization of the Quantum Sampler.

The quantum discrete Gaussian sampler is initialized with a quantum state representing
an n-dimensional wide Gaussian distribution. It uses an algorithm by Grover and Rudolph
[GR02] to create the 1-dimensional components of the state, and the smoothening property
of the Gaussian, as well as the Gaussian’s own tail bounds, to argue that the resulting
state—after a careful manipulation—is sufficiently close to the desired state.

In the following propositions we show sufficient conditions on a function to construct
the quantum state used to initialize the discrete sampler. We do so utilizing the language
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and tools related to smoothening functions and tail bound functions developed in Chapter
5. It is worth noticing, however, that this algorithm is later used to simulate a continuous
distribution over the dual space.

In the setting for [Reg05, Lemma 3.12], the relevant function is a Gaussian that is wide
with respect to the lattice. This width allows us to guarantee that for two vectors that are
not far from the origin and not far from each other, the corresponding weight assigned to
each by the Gaussian is very similar. Consequently the function is also smoothening for
the lattice.

Lemma 6.1. Let ε ∈ R>0 and let f be a non-negative ε-smoothening function for a lattice
L ⊂ Rn. Consider a compact set K ⊂ Rn and let ν be a tail bound function for f . Let
c ∈ Rn and let γc : x 7→ f(x)/f(x − c). Let L be a lattice and assume that there exists a
constant κ such that for every x ∈ L, γc(x) < κ. If for all x ∈ K ∩ L,

∣∣1 − γc(x)
∣∣ < ε′,

then the statistical distance between DL,f and DL,f ,c is bounded by

2ε(1 + ε′)

1− ε
+

(
κ

(
1 +

2ε

1− ε

)
+ 1

)
νf (K,L).

Proof. Following the corresponding definitions, the statistical distance ∆ between DL,f and
DL,f ,c is given by

∆ =
∑
x∈L

∣∣∣DL,f (x)−DL,f ,c(x)
∣∣∣ =

∑
x∈L

∣∣∣∣ f(x)

f(L)
− f(x− c)

f(L − c)

∣∣∣∣ .
On the other hand, since f is ε smoothening we have that, by Proposition 5.16, f(L+ c) =
δ(c)f(L), with δ(c) ∈

(
1−ε
1+ε

, 1+ε
1−ε

)
=
(
1− 2ε

1+ε
, 1 + 2ε

1−ε

)
. Thus we can rewrite the above

expression as

∆ =
1

f(L)

∑
x∈L

∣∣∣∣f(x)− f(x− c)

δ(c)

∣∣∣∣
=

1

f(L)

∑
x∈L

∣∣∣∣f(x)− γc(x)

δ(c)
f(x)

∣∣∣∣
=

1

f(L)

∑
x∈L

∣∣∣∣1− γc(x)

δ(c)

∣∣∣∣ f(x)

=
1

f(L)

 ∑
x∈L∩K

∣∣∣∣1− γc(x)

δ(c)

∣∣∣∣ f(x) +
∑

x∈L\K

∣∣∣∣1− γc(x)

δ(c)

∣∣∣∣ f(x)

 .

(6.7)
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The behaviour of γc provided by the hypotheses is only guaranteed for x ∈ K—exploiting
this information is the main reason for splitting the above summation into two parts.
Consider x0 ∈ L ∩ K such that

∣∣1 − γc(x)/δ(c)
∣∣ is maximized, and let γ0 = γ(x0, c).

Additionally, since γc is bounded, both parts of the summation can be bounded as in the
following expression.

∆ ≤ 1

f(L)

∣∣∣∣1− γ0

δ(c)

∣∣∣∣ ∑
x∈L∩K

f(x) +

(
1 +

∣∣∣∣ κ

δ(c)

∣∣∣∣) ∑
x∈L\K

f(x)


≤ 1

f(L)

(∣∣∣∣1− γ0

δ(c)

∣∣∣∣ · f(L) +

(
1 +

∣∣∣∣ κ

δ(c)

∣∣∣∣) νf (K,L) · f(L)

)
=

∣∣∣∣1− γ0

δ(c)

∣∣∣∣+

(
1 +

∣∣∣∣ κ

δ(c)

∣∣∣∣) νf (K,L).

(6.8)

Finally, notice that 1/δ(c) is also a number in the interval
(
1− 2ε

1+ε
, 1 + 2ε

1−ε

)
. Thus∣∣∣∣1− γ0

δ(c)

∣∣∣∣ ∈ [0, 2ε

1− ε
(ε′ + 1)

)
and

∣∣∣∣ κ

δ(c)

∣∣∣∣ ∈ [0, κ(1 +
2ε

1− ε

))
.

The result follows.

Notice that the third equality in the series of equations (6.7) depends on the function
being positive. When this is not the case, the last expression in (6.8) is multiplied by a
factor of |f |(L)/f(L), which is difficult to bound.

Moving on to the next part of the analysis, the construction of the quantum state given
in the following proposition relies on an algorithm proposed by Grover and Rudolph. In
[GR02], they describe a procedure to obtain the superposition∑

i∈I

√
f(i) |i〉

representing a probability distribution f over a set I ⊂ R, whenever the function is effi-
ciently integrable, which means that there exists an algorithm such that, for every i, j ∈ I,
efficiently computes the sum

∑
i≤k≤j f(k). The authors of the aforementioned paper make

mention of enough conditions for the function to have the above property, namely, whenever
the function is log-concave it is possible to compute the sum using Monte-Carlo integration.

Remark 6.2. Notice that for any a, b ∈ R>0 we have (a− b)2 < a2 − b2. As a consequence,
given real valued positive functions f and g defined over a discrete set A ⊂ Rn, we may
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bound the `2-distance between the states∑
x∈A

f(x) |x〉 and
∑
x∈A

g(x) |x〉

by computing—or bounding—the statistical distance between the probability distributions
they induce over A.

Proposition 6.3. Let f ∈ D1 be a positive function which is efficiently integrable over
B1 and consider the function f : (x1, . . . , xn) 7→

∏
i∈[n] f(xi). Consider as well a tail bound

function νf for f and for c ∈ Rn consider the mapping γc : x 7→ f(x)/f(x−c). Furthermore,
suppose that f satisfies the following properties.

1. There exists a constant κ such that for every x, c ∈ Zn, γc(x) < κ

2. For r ∈ R0 there exists ε′ ∈ R>0 such that for all x ∈ Zn∩B∞n and c ∈ Zn, γc(x) < ε.

Then there exists an efficient quantum algorithm that, on input a set B ⊂ Zn of n linearly
independent vectors, outputs a quantum state |ψ〉 such that∥∥∥∥∥∥|ψ〉 −

∑
x∈L(B)

√∣∣f(x)
∣∣ |x〉

∥∥∥∥∥∥
2

<
2ε(1 + ε′)

1− ε
+ nκ′νf (rB

∞
n ) +

√
nνf (rB∞n )f(Zn),

where ε =
∑

x∈L(B)∗\{0}

∣∣f̂(x)
∣∣.

Proof. For i ∈ [n], use the algorithm by Grover and Rudolph given in [GR02] to compute
the superposition

|φi〉 =
∑

xi∈Z∩rB∞1

f(xi) |xi〉.

By taking the tensor product |φ1〉 ⊗ . . . ⊗ |φn〉 of the states obtained above, we obtain a
superposition of integer vectors

|φ〉 =
∑

x∈Zn∩rB∞n

f(x) |x〉.

This state is a finite superposition of vectors in the integer lattice. Nonetheless, if the func-
tion f has negligible tails, this information should be enough to simulate a superposition
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over the entirety of Zn. Using the given tail bound for f , the `2 distance is thus bounded
by ∥∥∥∥∥|φ〉 −∑

x∈Zn

√
f(x) |x〉

∥∥∥∥∥
2

=

 ∑
x∈Zn\rB∞n

f(x)

1/2

<
√
nνf (rB∞n )f(Zn).

On the other hand, let B′ be the result of applying the LLL basis reduction to B, and
let P(B′) be the parallelepiped generated by B′. Using an ancillary quantum register,
compute the reduction of x modulo P(B′), thus obtaining the state∑

x∈Zn

√
f(x)

∣∣x, x mod P(B′)
〉
.

When the second register is collapsed to an element c ∈ P(B′), the resulting state,
contained in the first register, is the superposition over all vectors x ∈ Zn such that,
x ≡ c mod P(B). Thus it can be written as∑

x∈L+c

√
f(x) |x〉.

After subtracting c we obtain the superposition over lattice points

|ψ2〉 :=
∑

x∈L+c

√
f(x) |x− c〉 =

∑
x∈L

√
f(x + c) |x〉.

Finally, to compare |ψ2〉 with the desired state |ψ1〉 =
∑

x∈L(B)

√
f(x) |x〉, we compare

the probability distributions they induce on the lattice by computing the statistical distance
between them. For x ∈ L, the amplitude square of the ket |x〉 in |ψ1〉 is f(x), whereas the
amplitude square of the same ket in |ψ2〉 is f(x + c). Thus the corresponding distributions
are DL,f and DL,f ,c, respectively. By Lemma 6.1, the statistical distance between DL,f and
DL,f ,c is negligible. The proof follows by Remark 6.2.

From Discrete Sampling to A Learning Problem

As described by equations (6.1)-(6.4), the association between BDD and LWE is facilitated
by the interplay between the lattice L on which the BDD problem is given, and its dual L.
The solution u is written in terms of the primal lattice as s = (B∗)−1u ∈ L, whose residue
modulo q is then the secret that is to be recovered by an LWE solver. It is important to
keep in mind that this reduction, as well as every other variant of it that appears in the
literature, requires a list of samples {v1, . . . ,vm} from a discrete distribution DL,f over L.
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Uniform Samples of a Learning Problem. Let q ∈ Z>2 and let f be a real valued
function over Rn. If f is ε-smoothening for the lattice qL, the smoothening property
guarantees that the function induces a distribution over Rn. Then, intuitively, the discrete
distribution DqL,f induces a uniform distribution over the cosets of qL modulo L

Recall that, in the case of Gaussian functions, the smoothing parameter is in direct
proportion with the covering radius of the lattice. Since the covering radius of a superlattice
is no larger than that of the lattice, the smoothing parameter is also smaller. Thus it is
natural to expect that, given a smoothening function for a lattice, this function is also
smoothening for every superlattice. We show this in the following claim.

Claim 6.4. Let L ⊆ L′ ⊂ Rn be two lattices. If a function f : Rn → R is ε-smoothening for
L then f is ε-smoothening for L′.

Proof. Since L is a sublattice of L′, it follows from the definition that (L′)∗ ⊆ L∗ ⊂ R.
Therefore ∣∣∣D̂f

∣∣∣ ((L′)∗ \ {0}) ≤ ∣∣∣D̂f

∣∣∣ (L∗ \ {0}) < ε,

as required.

The following corollary is a discrete analogue of Lemma 5.17, which shows that samples
from an ε-smoothening distribution over a lattice L are themselves close to uniform modulo
any sub-lattice L′. This result is implicit in the proof of [Reg05, Claim 3.11], but was later
better quantified in [GPV08].

Corollary 6.5. Let L′ ⊆ L ⊂ Rn be two lattices. For ε ∈
(
0, 1

2

)
, consider a ε-smoothening

function f for L′. Then for any c ∈ Rn, the distribution of DL,f ,c mod L′ is within statistical
distance at most 2ε of uniform over L mod L′.

Proof. Let x ∈ L and let c ∈ Rn. An implication of Claim 6.4 is that f is ε-smoothening
for L. By Proposition 5.16, it follows that

DL,f ,c(x + L′) =
∑

v∈x+L′
DL,f ,c(v) =

1

fc(L)

∑
v∈x+L′

fc(v) =
fc−x(L′)
fc(L)

= δ(x)
fc(L′)
fc(L)

,

where δ(x) ∈
(

1−ε
1+ε

, 1+ε
1−ε

)
. For ε ∈

(
0, 1

2

)
, ε(1 ± 2ε) ≥ 0. As a consequence 1 + ε ≤

(1− ε)(1 + 4ε) and (1− 4ε)(1 + ε) ≤ 1− ε. Since fc(L′)
fc(L)

≤ 1, putting it all together we have
that for all x ∈ L,

DL,f ,c(x + L′) = δ(x)
fc(L′)
fc(L)

∈ (1− 4ε, 1 + 4ε)
fc(L′)
fc(L)

⊆
(

fc(L′)
fc(L)

− 4ε,
fc(L′)
fc(L)

+ 4ε

)
.

The result follows.
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Noise Correction

An important component of the BDD to LWE reduction part is the analysis of the noise
constituting the LWE instance. To this end, Regev uses a re-shaping technique by adding
a small error e, as described in Equation (6.6). When the added error e follows a Gaussian
distribution, it can be expressed as a linear combination of independent Gaussian random
variables. This is implied by the following remark, which itself follows from Proposition
2.4.

Remark 6.6. Given X1, . . . , Xn be a collection of independent identically distributed Gaus-
sian random variables of width s and a vector t = (t1, . . . , tn) ∈ Rn, the random variable
obtained from the linear combination

∑
i∈[n] tiXi is a Gaussian random variable of width

s‖t‖2.

In particular, given t and any desired width for the distribution of e, it is straightforward
to obtain s. As a consequence, e can be written as 〈t,h〉, where h = (h1, . . . , hn) is
described by a Gaussian distribution over Rn. Performing this step in a more general
setting may require our desired distribution of e to satisfy a property that is analogous to
that given by Remark 6.6.

After the addition of e, the final noise is described by

e′ = 〈t,vi〉+ e = 〈t,h + vi〉 =
∑
j∈[n]

tj(hj + vi,j). (6.9)

Here z = h + vi is the result of an addition of a discrete and a continuous random variable
over Rn (or over R if we consider zj = hj + vi,j). This can be proved to be related to the
addition of the two continuous random variables, independently of their shape, whenever
certain conditions about the functions with respect to the lattice are satisfied.

Proposition 6.7. Let L ⊂ Rn be a lattice. Consider functions f ∈ Dn and g ∈ L1(Rn)
and suppose that for x ∈ Rn, the function hx(y) := f(y)g(x− y) is ε-smoothening for L.
Then (

DL,f ∗ g
)
(x) ∈ detL∗

f(L)

(
f ∗ g

)
(x) + (−ε, ε).
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Proof. By the Poisson summation formula (Lemma 5.6),(
DL,f ∗ g

)
(x) =

∑
y∈L

DL,f (y)g(x− y)

=
1

f(L)

∑
y∈L

hx(y)

=
detL∗

f(L)

∑
z∈L∗

ĥx(z)

=
detL∗

f(L)

ĥx(0) +
∑

z∈L∗\{0}

ĥx(z)

 .

Since hx is ε-smoothening,
∑

z∈L∗\{0} ĥx(z) ∈ (−ε, ε). As for ĥx(0) we have that

ĥx(0) =

∫
Rn

hx(y)e2πi〈0,y〉dy

=

∫
Rn

hx(y)dy

=

∫
Rn

f(y)g(x− y)dy

=
(
f ∗ g

)
(x),

which completes the proof.

It is worth noticing, however, that this portion of the proof in the case of the Gaussians
can be completed without the necessity of continuous distributions thanks to the recent
work by Genise et al. [GMPW20]. In the cited paper the authors analyze the behavior of
convolutions of discrete Gaussians.

The final piece is to describe the inner product 〈t, z〉, where t is a bounded vector
and z is distributed according to some known function ψ. At this point we make our
final assumption. We assume that ψ can be written as a product ψ(x) =

∏n
i=1 ϕi(xi). This

implies that the random variable Z that describes z can be written as a sum of independent
random variables e1Z1, . . . , enZn, where for each i, Zi is a random variable over R. Under
this assumption,

〈t,Z〉 =
n∑
i=1

tiZi. (6.10)
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If the distribution ϕi describing each Zi has finite variance then, by the Central Limit The-
orem, the expression in (6.10) is “close” to a Gaussian distribution (of unknown width).
The distance is determined by the distance of each ϕi to a Gaussian. The Berry-Essen
inequality provides a polynomial bound on the ∞-distance between (6.10) and a Gaus-
sian. A polynomial bound on the `1 norm—which is the statistical distance between the
distributions—is given by Goldstein in [Gol10]. This limits the possibilities for χ to dis-
tributions that are polynomially close to a Gaussian. When χ is a Gaussian, the width
problem is cleanly dealt with by leveraging 6.6 to add additional noise. While the possibil-
ity of being polynomially far from a Gaussian could yield a useful relaxation for practical
hardness with more effort, this approach to the reduction seems to necessarily produce
some form of “bell” shaped distribution very different from the choice of smoothening
function.

The Necessity of Correcting the Noise. The noise given prior to the correction step

e′ = 〈t,v〉 =
∑
j∈[n]

tjvj. (6.11)

is an arbitrary yet bounded linear combination of the entries of the vector v. Since v is
sampled according to a discrete distribution with support on a lattice L, each vj follows a
discrete distribution supported on the projection of L onto the subspace generated by ej.
The projection of L onto ej is also a lattice generated by a vector ajej. Thus, for a fixed
instance L and t of BDD, the error is follows a distribution over R with support

L1 = t1a1Z + . . .+ tnanZ ⊂ R.

It is clear that L1 is a lattice, whose structure is inherently dependent on the given BDD
instance.

The noise correction technique described at the beginning of this subsection aims to
eliminate this dependency by making the noise continuous. After adding a small amount
of noise, the resulting distribution is virtually independent from a lattice in the BDD.

If the noise correction step is omitted, the element e′ is then distributed according to a
discrete distribution over L1.

6.3 Discrete Sampling

In the final part of this chapter we turn our attention to the Discrete Sampling problem.
The hardness of sampling from a discrete Gaussian varies significantly, depending on the
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width of the desired distribution. When the width is small, sampling from a discrete
Gaussian is hard, since a vector obtained from this distribution is a small vector of the
lattice (with high probability). When the width is (exponentially) large, however, sampling
form this distribution can be performed in polynomial time after pre-processing the input
basis using LLL.

Sampling Algorithms.

Many existing lattice samplers use `2 spherical symmetry as a convenient shorthand to
argue independence of the output distribution from the private information (in other words,
the secret basis) used to produce short elements in the lattice. Sampling statistically close
to any distribution over a lattice which is independent from a particular choice of basis
is also similar. For example, we could choose some other “spherical” distribution for a
different choice of `p.

The framework of [MP12, LW15] allows sampling from a variety of distributions for
certain specially constructed lattices. However, the components of samplers which work for
arbitrary lattices (given a short basis) rely on spherical symmetry and additional properties
of Gaussians.

The “randomized nearest planes” samplers of [Kle00, GPV08] exploit the spherical
symmetry of the Gaussian in their analysis to make use of samples from DZ,s, independently
of the direction of the Gram-Schmidt vectors. In particular, in the analysis of [GPV08] it
is shown that ∏

i ρs

(
ci · |b̃i|2

)
= ρs

(∑
i ci · b̃i

)
.

The Gaussian factors not only along the axis, but through any inner-product norm, which
gives the result through orthogonality of the Gram-Schmidt vectors. In the following sub-
section we prove that the Gaussian is the only distribution with finite variance which
can be factored simultaneously along different orthonormal bases as independent distribu-
tions from the same family. This is a fundamental barrier to generalizing any sampling
algorithm following the [GPV08] strategy, which analyzes the joint distribution of many
samples drawn from scaled/re-centered versions of the same one-dimensional distribution.
However, the same algorithm and analysis can still be adapted directly if we restrict to lat-
tices with axes-aligned Gram-Schmidt vectors. This is sufficient for sampling statistically
close to a distribution over Zm, as well as reductions where we are allowed to rotate the
lattice to impose this condition a priori—but not for cryptographic constructions relying
on uniformly random lattices.
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We can try to get around this limitation in two ways. As noted in [GPV08], smoothening
functions are also amendable to rejection sampling by quantizing samples from Df ,s (or
DZm,f ,s) by “rounding” to the lattice using a short basis. Smoothening ensures every point
in the lattice with non-negligible measure has a preimage. However, ensuring efficiency
requires f to be sufficiently “flat” to lower the probability of rejection. A bound on the
number of draws before a sample is accepted can be quantified by β satisfying

Px←DL,f ,s(x)

[
DL,f ,s(x)/DL,f ,s,d(x) < β

]
= 1− negl(n).

where d arises from the shift induced by rounding to the lattice. The shift is bounded by
the decoding radius of the Nearest Planes Algorithm [Bab86]. In the Gaussian case this

requires taking s proportional to the diameter of the Gram-Schmidt basis B̃, rather than
simply |B̃|. The other component which quantifies the probability of rejection depends
on the rate of decay of f , which can also be quite unfavourable for functions which decay
appreciably faster than the Gaussian. Another possible direction is to apply rejection
sampling to samples from a distribution over a suitably rotated lattice. This strategy
also requires increasing s when the distribution is not `2 symmetric, but of a choice of
distribution which has other useful geometric properties—this could conceivably require
smaller s than required when bounding the effect of large shifts.

Later approaches to sampling over lattices such as [Pei10] do not directly require spher-
ical symmetry. However, these constructions rely on decompositions of Gaussians being
well defined (as elliptical Gaussians). A possible direction of future research is to see if we
can instantiate such samplers with decomposable smoothening functions, but this neces-
sarily rules out smoothening functions which (loosely speaking) cannot be decomposed as
a convolution of two density functions. In a separate direction, since we know the Schwartz
space is closed under convolution, an interesting question is whether we can precisely an-
alyze iterative samplers in a way which produces distributions that are independent from
private information, while allowing the one-dimensional and final smoothening functions
to differ.

A Characterization of Gaussian Functions

We now provide a characterization of the Gaussian distribution in terms of a property of it
that is commonly used in proof techniques appearing in the lattice cryptography literature.
Namely, a spherical Gaussian distribution can be factored over any given orthogonal basis.
A direct application of Theorem 6.9 is that the spherical Gaussian is the only distribution
with this property.
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Definition 6.8. Consider a function f : Rn → R and let B = {b1, . . . ,bn} be a set of
n linearly independent vectors. We say that f factors over B if there exist functions
f1, . . . , fn : R→ R such that for all x ∈ Rn, f(x) =

∏
i∈[n] fi

(
〈bi,x〉

)
.

Recall that a set of real random variables {Z1, . . . , Zn} is pairwise independent if and
only if for all x = (x1, . . . , xn) ∈ Rn, the probability distribution function f of the combined
random variable (Z1, . . . , Zn) can be written as

f(x) =
∏

fi(xi).

As a consequence, f factors over a basis {b1, . . . ,bn} if and only if the random variables

Zi = 〈bi,X〉

are pairwise independent. The following result, better known as the Kac-Bernstein’s The-
orem, is a characterization of the Gaussian distribution—originally proved by Bernstein
[Ber41] and Kac [Kac39] independently—and later generalized by Lukacs and King in
[LK54].

Theorem 6.9 ([LK54]). Let X1, . . . , Xn be independently distributed random variables.
For each suppose that the nth moment of Xi exists and let si denote its variance. Given
two vectors (a1, . . . , an), (b1, . . . , bn) ∈ Rn consider the random variables given by the linear
combinations Z1 =

∑
i∈[n] aiXi and Z2 =

∑
i∈[n] biXi. Then Z1 and Z2 are independent

random variables if and only if

1. for each i ∈ [n], if aibi 6= 0, then Xi is Gaussian and

2.
∑

i∈[n] aibis
2
i = 0.

Corollary 6.10. Let f be a probability distribution over Rn which factors over two different
orthonormal bases B1 and B2. If B1∪B2 has no two collinear vectors, then f is a Gaussian
distribution. Moreover, if B2 contains a vector whose coordinates are all non-zero with
respect to B1, then f is `2-symmetric.

Proof. Let X denote the random variable associated to f . Without loss of generality, f
factors over the bases B1 and B2, where B1 = {e1, . . . , en} is the canonical basis. Then, for
every x = (x1, . . . , xn) ∈ Rn, f(x) =

∏
i∈[n] fi(xi). Thus the random variables X1, . . . , Xn

describing each coordinate of X are pairwise independent.

To show that each coordinate of X is a Gaussian random variable, fix and index i ∈ [n].
Notice that B2 contains, at least, two vectors u = (a1, . . . , an),v = (b1, . . . , bn) such that
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aibi 6= 0—as otherwise, since B2 is an orthonormal basis, the uniqueness of such vector
in B2 implies that the corresponding entry is ±1, therefore we conclude that ±ei ∈ B2,
contradicting the hypotheses. Let Z1 = 〈u,X〉, Z2 = 〈v,X〉. Since f factors over B2, the
random variables Z1 and Z2 are independently distributed. Thus, by Theorem 6.9, Xi is a
Gaussian distribution.

Finally, we prove that for all i ∈ [n], the variance si is equal to a constant. Let
B2 = {v1, . . . ,vn} and for each i ∈ [n] write vi = (vi,1, . . . , vi,n). Without loss of generality,
assume that every coordinate of v1 is non-zero. Consider the matrix

M =

 v1,1 ·

v2,1
...
vn,1

 v1,2 ·

v2,2
...
vn,2

 · · · v1,n ·

v2,n
...

vn,n


 .

Since v1,1, . . . , v1,n are all non-zero, M is equivalent to a matrix whose rows are the vectors
v2, . . . ,vn. Thus it is clear that the rank of M is n− 1. Let V ⊂ Rn be the space spanned
by the rows of M . Notice that, for every row of M , the sum of its entries is equal to 0.
It follows that V ⊥ is the subspace generated by the vector (1, . . . , 1), since this sum is the
inner product of the corresponding vi with v1. Since the vector (s2

1, . . . , s
2
n) ∈ V ⊥, the

result follows.

Notice that the last condition is necessary to prove the `2-symmetry of f in the previous
result.

From DGS to SIVP

In Chapter 5, we showed how to find smoothening functions and smoothing parameters
from tail bounds of the function f̂ living in the Fourier space. Beyond smoothening, we often
require that samples from a discrete distribution have bounded norm with high probability.
To this end we may make use of the tools developed for tail bounds on functions in the
primal space. Recall that when f is a probability measure over the lattice, we can also
interpret tail bounds as probabilities

Pr
x∼DL,f

[
‖x‖p > r

]
= Pr

x∼DL,f
[x ∈ L \ rBp

n]

=
f (L \ rBp

n)

f (L)

≤ νf (rB
p
n).
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It follows that the probability of a sample having `p norm bounded by r can be expressed
as

Pr
x∼DL,f

[
‖x‖p ≤ r

]
≥ 1− νf (rBp

n).

Hence, by taking a suitably large r, we can ensure a large amount of the measure is
assigned to lattice points with a proportionally bounded norm. Although this approach is
very general, the exact statements we can make necessarily depend on what tail bounds we
can demonstrate for a particular function—which may be challenging even given a closed
form expression. Similar bounds on elements sampled from normalized scalings/shifts of
the function also follow analogously. In the latter case, this is achieved by leveraging a tail
bound that holds for all cosets. Hence, a weaker tail bound which holds only for the family
of lattices in Rn may be insufficient for this purpose. However when f is ε-smoothening,
the effect of the shift can also be bounded in terms of ε, in which case a limited tail bound
may be extensible.2 These intuitions are formally expressed in the next lemma.

Lemma 6.11. Let L ⊂ Rn be an n-dimensional lattice, and let f ∈ F . For p ∈ R>1

consider the `p norm over Rn. Then for any ε ∈ (0, 1), s ≥ ηf ,ε(L), r ∈ R>0, and vector
c ∈ Rn we have

Pr
x∼DL,f ,s,c

[
‖x− v‖p > sr

]
≤ 1 + ε

1− ε
· νf (rBp

n). (6.12)

Additionally, for any vector c ∈ L (e.g. c = 0),

Pr
x∼DL,f ,s,c

[
‖x− v‖p > sr

]
≤ ηf (rB

p
n). (6.13)

Proof. We can write the probability in Equation (6.12) as

fs
(
(L − c) \ rBp

n)
)

fs,c(L)
.

First, note that the numerator is upper bounded as

fs
(
(L − c) \ srBq

n

)
≤ νf

(
(1/s) · srBq

n

)
· fs(L)

= νf (rB
q
n) · fs(L).

2Note that in the case of c ∈ L as in the second case of Lemma 6.11, it is also sufficient to take s ∈ R≥1
and any f ∈ Dn.
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which is well-defined for any r such that ηf (rB
q
n) ∈ (0, 1]. Next, if f is ε-smoothening, by

Proposition 5.16 it follows that

fs(L)

fs,c(L)
· νf (rBp

n) ≤ 1 + ε

1− ε
· ηf (rBp

n).

Conversely, for any c ∈ L, we have fs,c(L) = fs(L), which yields the second result.

Lemma 6.12. Let L = L(B) ⊂ Rn be a full-rank lattice and let ε ∈ (0, 1
2
). Consider a

normalized positive function f : Rn → R that is ε-smoothening for L. Then after n2 samples
from DL,f we obtain a set of n linearly independent vectors from L with probability, at least,
1−

(
1
2

+ 2ε
)n

.

Proof. We consider the following event. Sample a set x1, . . . ,xn ∈ L according to DL,f and
consider the matrix A whose columns are these vectors. Let C = B−1A mod 2 ∈ Zn×n2 .
By hypothesis, the function f is ε-smoothening for 2L; therefore, by Corollary 6.5, the
distribution of the column vectors of C within 2ε in statistical distance from the uniform
distribution over Zn2 . Since applying a function does not increase the statistical distance,
the mapping C 7→ det C induces a probability distribution over Z2 that is within 2ε from
uniform. Thus, det C = 0 with probability, at most, 1

2
+ 2ε.

By repeating this experiment n times, we obtain a matrix C with determinant 1 with
probability at least 1−

(
1
2

+ 2ε
)n

. Since reducing modulo 2 (or any modulus) maps matrices
of determinant 0 to matrices of determinant 0; we can conclude that the matrix B−1A has
non-zero determinant, thus it is invertible over R. As a consequence, the column vectors
of A are linearly independent. The result follows.

We now show a generalization of the SIVP to DGS reduction. The core approach of
the reduction is the same as [Reg05, Lemma 3.17], and gives a result that is very similar
to the natural generalization of the original, with two slight modifications. First, while the
original reduction only found solutions to SIVPγ in the `2 norm, our solution allows us to
find solutions in any `p norm directly (as opposed to passing through norm inequalities),
based on the tail bounds of the function f . This allows us to exploit symmetries in the
function f , such as factoring through the `p norm. A second change is that the reduction
works even when a lower bound on the smoothing parameter is not known, with the caveat
that we can only guarantee solutions up to the best known upper bound h for ηf ,ε(L).

Lemma 6.13 (SIVP to DSf ,ϕ). Let ε ∈ (0, 1
2
), and consider any `p norm. Let f : Rn → R

be a function in F ′n and suppose there exists k ≥ 1 such that 1−νf (kBp
n) is non-negligible in

n. Then, for every choice of full-rank lattice L ⊂ Rn, any efficiently computable function
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h(n) = Ω
(

1
poly(n)

)
such that h(n) · λpn(L) > ηf (L), and any function ϕ(L) ≥ h(n) · λpn(L)

there exists a polynomial time reduction from SIVPp
2kϕ to DSf ,ϕ.3 Additionally, given any

efficiently computable function π(n) = 1
poly(n)

such that ηf (L) ≥ π(n) ·λpn(L), this holds for

any ϕ(L) ≥ ηf (L).

Proof. To show this, we follow the reduction of [Reg05, Lemma 3.17]. Given a lattice L,
we first apply the LLL algorithm to obtain n linearly independent vectors of length at most

2nλn ≤ 22nλpn (by norm inequalities), which we label S, and denote ‖S‖p as λ̃pn.

If ϕ(L) > λ̃pn, then S is already shorter than 2kϕ(L). Otherwise, assume ϕ(L) ≤ λ̃pn.

For each i ∈
[⌈

log2
22nλpn
h(L)λpn

⌉]
, call the DSf oracle O(n2) times with the pair

(
L, ri = λ̃pn2−i

)
,

and let Si be the resulting set of vectors. Then, look for a set of n linearly independent
vectors in each of S, S0, . . . , S2n and output the shortest set (in the `p norm) found. To

prove correctness, note that ϕ(L) ≤ λ̃n implies there must exist an i ∈ {1, . . . , 2n} with

ϕ(L) < ri ≤ 2ϕ(L). Note that since ϕ(L) ≥ h(n) ·λpn(L) = Ω
(

1
poly(n)

)
·λpn(L), the number

of i’s we need to consider is⌈
log2

22nλpn(L)

ϕ(L)

⌉
≤
⌈

log2

22nλpn(L)

h (n) · λpn(L)

⌉
< log2

22nλpn(L)
1

poly(n)
· λpn(L)

< poly(n).

The case where ϕ(L) ≥ ηf (L) ≥ π(n) · λpn(L) for some π(n) = 1
poly(n)

is similar. By
Lemma 6.12, Si contains n linearly independent vectors with very high probability. Finally,
by Lemma 6.11, all vectors output by the DSf oracle, which come from the distribution
of fri over the lattice L, are in the set kriB

p
n and satisfy ‖xi‖p ≤ kri ≤ 2kϕ(L) with

probability at least
1− νf (kBp

n),

which is non-negligible by the primal tail bound assumption. This completes the proof.

Remark 6.14. Note that any bound on ηf (L) given in terms of 1/λ∞1 (L∗) (e.g. those given
by Corollary 5.41) can be expressed in terms of λpn(L) using transference theorems (e.g.
Lemma 2.9) and norm inequalities.

3The condition f ∈ F ′n restricts this reduction to interesting instantiations—that is, instantiations that
have polynomially sized smoothing parameters, and hence (potentially) polynomially sized approximation
factors for SIVPγ . The lower bound requirement for h(n) or ϕ(L) is needed to guarantee a polynomial
time reduction and is the only limitation we include, although we note that choosing an exponentially
large h(n) or ϕ(L) would yield similarly sized approximation factors.
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6.4 Conclusion

In this chapter we answer the question: is it sufficient to consider the smoothening prop-
erty of the Gaussian for the purposes of lattice cryptography, in particular LWE? More
precisely, we explore the possibility of using a generic smoothening function to reconstruct
an average-case to worst-case reduction from lattice problems to LWE. Our conclusion can
be summarized in the following points:

• In the case of LWE, the techniques used in [Reg05] cannot directly be adapted to
use a generic smoothening function. Nonetheless, we believe that the remaining
roadblocks can be circumvented using alternative paths, as is the case for the proof
of Lemma 6.13.

• There are results in the literature whose proofs can only work for Gaussian func-
tions. As an example, the sampling algorithm using Nearest Planes, as described in
[GPV08], can only work for Gaussian distributions.
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Chapter 7

A Geometric Approach to LHN

“Every explorer is therefore, by necessity, a
revolutionary, and every successful
revolutionary is a peacemaker.”

— Jordan B Peterson in Maps of Meaning:
The Architecture of Belief

We dedicate this chapter to exploring what is beyond the boundaries of the real space
with regards to the underlying theory behind lattice cryptography. In Chapter 5, we
developed a general theory of the smoothing parameter that extends to an infinite family
of functions. By doing so we proved that several properties that were only previously
known for the Gaussian distribution can be found in an infinite family of functions. This
opens the possibility of instantiating certain lattice problems and cryptosystems with non-
Gaussian errors. In Chapter 6 we studied the possibility of obtaining an average-case to
worst-case reduction that is independent from Gaussians. We do so by making an analysis
and identifications of the specific properties of the Gaussian that are used in classical
reductions such as [Reg05, LPR10].

Continuing with that philosophy, in this chapter we intend to extend the theory of
smoothening functions to non-real spaces. We start this study by compiling what is known
and relevant to the theory in the field of locally compact Abelian groups, and proving that,
from an abstract point of view, being smoothening can be seen as a structural property of
the function and the group.

It is worth mentioning that several results and techniques shown in this chapter are

117



similar to those appearing in recent works of probability in abstract structures. As an
example, Proposition 7.15 is a generalization of [App17, Theorem 6.1].

7.1 Locally-Compact Abelian Groups

The algebraic structure present in the set of real numbers is intuitively different from that
of a generic group. The structure of the operations in it is far from arbitrary, in the sense
that both addition and multiplication preserve closeness between elements. This idea is
traditionally abstracted formally in the following definition.

Definition 7.1. A topological group is a group G endowed with a topology such that the
functions

G×G→ G : (g, h) 7→ gh and G→ G : g 7→ g−1

are both continuous, where the topology considered for G×G is the product topology.

Another important property of R as a topological group is that it shows a certain
degree of regularity. Two points can always be separated, and every point can be seen as
contained in a compact space. This important property is known as local compactness in
topology. We are particularly interested in topological groups with such a property.

Definition 7.2 (Locally Compact Group). A topological space is said to be locally compact
if every element of it has a compact neighborhood. A locally compact Abelian (LCA) group
is a topological Abelian group whose underlying topological space is locally compact and
Hausdorff.

Measures on Locally Compact Groups

The structure of a topological space allow us to regard it as a measurable space—by
considering the σ-algebra of its Borel sets (see Section 2.4). When this space is a group, it
is natural to wonder whether this structure is compatible with the group operation.

Definition 7.3 (Invariant Measure). Let G be a locally compact group. A measure µ
over G is called left invariant (respectively right invariant) if for every g ∈ G and every
measurable set E ∈ M, µ(E) = µ(gE) (respectively, µ(E) = µ(Eg)). The measurable
space is called left invariant (respectively right invariant) if every element in M is left
invariant (respectively right invariant). A measure is called invariant if it is both left and
right invariant.
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An invariant measure then allows us to say that volume of a set does not change under
translations. This is an important feature of the Euclidean space Rn. In particular, for a
lattice L ⊂ Rn, any translation of a fundamental region has the same volume.

Note 7.4. Recall the definition measure and Borel sets given in Section 2.4 from Chapter 2.
To provide a topological space with a measure, a slight variation of this is to consider Baire
sets , which are the elements of the σ-algebra generated by the Gσ sets—the compact sets
that can be expressed as a countable intersection of open sets. If X is second countable
(in other words, it its topology has a countable basis), locally compact and Hausdorff,
these two concepts are equivalent. In the rest of this chapter, we will only consider second
countable spaces; thus measurable sets, Borel sets and Baire sets refer to the same concept
in the context of a topological space. This distinction is important as it allows us to give a
simplified version of Haar’s Theorem. In general this version only holds for the σ-algebra
of Baire sets.

Theorem 7.5 (Haar’s Theorem). Let G be a second countable locally compact topological
group. Then there exists a left invariant measure over G that is finite on every compact
set. Moreover, any two left invariant measures over G are equal up to multiplication by a
constant.

A (left) Haar measure is then defined as a (left) invariant measure over an LCA
group. It follows then that if G is an LCA group, then there exist a unique—up to scalar
multiplication—Haar measure for G. Theorem 7.5 result can be extended to topological
groups that are not necessarily second countable, by requiring the Haar measures to satisfy
inner and outer regularity properties. However, in this Chapter we only consider spaces
that are second countable.

Integrals. The theory of Lebesgue integration allows us to define an integral over a
measurable space by leveraging the σ-algebra of Borel sets. Thus a function is integrable
if and only if it is measurable and the value of the integral over the group is finite. The
set of integrable functions defined over a locally compact group G is denoted as L1(G).

Over a locally compact group with a Haar measure, this integral function is better
known as the Haar integral. In this case, the change of variables x 7→ cx does not imply a
change in the differential. A general change of variables, however, implies a change in the
differential.

Definition 7.6. Let (X,M), (X ′,M′) be two measurable spaces and let µ : M→ [0,∞]
be a measure over X. For a surjective measurable function f : X → X ′, the pushforward
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measure of µ along f is the measure over X ′ defined for A ∈M′ as

f∗µ(A) := µ
(
f−1(A)

)
.

It is not immediate from the previous definition that a pushforward measure must be
invariant. In the following proposition we use the surjectivity of the function to prove that
ϕ ∗ µ is indeed a Haar measure over H.

Proposition 7.7. Let G, H be locally compact groups and let ϕ : G→ H be a measurable
surjective homomorphism. Then the pushforward of the Haar measure in G is a Haar
measure in H.

First proof of Proposition 7.7. Let x ∈ G and let A be a measurable set in H. Then we
have that

ϕ∗µ(xA) = µ
(
ϕ−1(xA)

)
= µ

(
x−1 · ϕ−1(xA)

)
≤ µ

(
ϕ−1

(
ϕ
(
x−1ϕ−1(xA)

)))
= µ

(
ϕ−1

(
ϕ(x−1) · ϕ

(
ϕ−1(xA)

)))
= µ

(
ϕ−1

(
x−1 · (xA)

))
= µ

(
ϕ−1(A)

)
= ϕ∗(µ)(A).

Therefore
ϕ∗µ(A) = ϕ∗µ

(
x−1 · (xA)

)
≤ ϕ∗µ(xA) ≤ ϕ∗µ(A),

which implies that ϕ∗µ(x + A) = ϕ∗µ(A). This proves that ϕ∗µ is left-invariant, thus by
Haar’s Theorem (Theorem 7.5), ϕ∗µ is a Haar measure over H, as desired.

Harmonic Analysis on Locally Compact Groups

The theory that has been presented up to this point in the chapter is independent of
whether the corresponding group is Abelian. This is somewhat intentional. We leave the
restriction to Abelian groups until this subsection to emphasize that this the point where
the commutative structure of the group becomes important. Although harmonic analysis
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has been studied on non-Abelian groups, it is unclear whether is possible to develop a
similar theory as the one presented here. Thus, for the rest of this chapter, we focus our
attention on locally compact Abelian groups, and use the additive notation to denote the
group operation.

Pontryagin Duality. In the theory of lattices on the Euclidean space it is common to
study or quantify properties of a lattice in terms of properties of the dual lattice. Classic
examples include the smoothing parameter, successive minima, transference theorems etc.
In this particular case, from an algebraic point of view, this duality allows us to regard
vectors as functions defined over the primal space as y : x 7→ e−2πi〈x,y〉. This idea in tradi-
tionally encapsulated and transported to a more general framework through the following
definition.

Definition 7.8 (Dual Group). For a topological Abelian group G, the dual group Ĝ =
Hom(G,T) is the set of continuous homomorphisms y : G→ T = R/Z.

In the case of LCA groups, the set Ĝ is also known as the Pontryagin dual of G. This
set has a group structure with the operation given by pointwise multiplication, that is,(
σ · τ

)
(g) := σ(g)τ(g). Moreover, Ĝ can be endowed with a particular topology which

makes Ĝ a topological group. Furthermore, if G is a LCA group, then Ĝ (with the afore-
mentioned topology) is also LCA. For completeness we describe this topology in the
following definition.

Definition 7.9 (Compact-Open Topology). Consider a LCA group G and let S1 ∼= R/Z
be the unit circle in C. Let C(G,S1) denote the set of continuous functions G → S1.
For a compact subset K ⊆ G and an open set U ⊆ S1. Let V (K,U) be the subset of
C(G,S1) consisting of the functions f that map K into U ; in other words, V (K,U) ={
f ∈ C(G,S1) : f(K) ⊆ U

}
. The compact-open topology on C(G,S1) is the minimal

topology such that for every compact set K ⊆ G and open set U ⊆ S1, the set V (K,U)
is open. Thus the set C(G,S1), endowed with the compact-open topology, is a topological
group under pointwise multiplication.

By definition of the group operation on Ĝ, (x, y) 7→ y(x) defines a bilinear form from

G× Ĝ to R. For this reason, given x ∈ G and y ∈ Ĝ we denote 〈x, y〉 := y(x). In the case
of the real space, the dual group of Rn is isomorphic to the same group. As mentioned
before, the elements of the dual group can, more precisely, be described as the functions
x 7→ e−2πi〈x,y〉. Pointwise multiplication of two of these functions, e−2πi〈x,y〉 and e−2πi〈x,y〉,
agrees with the addition of the corresponding defining vectors y, y′.

121



It is, perhaps, expected that not every group is isomorphic to its dual. Consider the
group Zn. Then any homomorphism from Zn to S1 is given by x 7→ e2πi〈x,y〉, for some
y ∈ Rn. However, for a ∈ Zn we have that e2πi〈x,y〉 = e2πi〈x,y+a〉. As a consequence, the
dual group of Zn is isomorphic to Rn/Zn.

A group that is isomorphic to its dual group is called self-dual. By the previous example,
not every group is self-dual. Nonetheless, it is possible to draw a relationship between an
LCA group and its double dual via the following theorem.

Theorem 7.10 (Pontryagin Duality). Let G be an LCA group. Then the mapping

ev : x 7→
(
y 7→ 〈x, y〉

)
is an isomorphism between G and its double dual (̂Ĝ).

Finally we state an important consequence of Theorem 7.10. Recall that a short exact
sequence is a sequence of homomorphisms 0→ H → G→ K → 0 where the image of one
homomorphism equals the kernel of the following. Given a short exact sequence of LCA
groups, their duals are also in a sequence.

Proposition 7.11 ([Rud62, Section 2.1]). Let G, H, K be LCA groups and suppose that

0→ H → G→ K → 0

is a short exact sequence. Then their corresponding dual groups form the short exact
sequence

0→ K̂ → Ĝ→ Ĥ → 0.

Quotient Measure. A sequence LCA of groups 0→ H → G→ K → 0 is a short exact
sequence of LCA groups if H is closed in G and H and K are equipped with the subset
and quotient topologies, respectively. Given such a sequence, then there exists a measure
µK over K such that for any integrable function f : G → C, we have that the following
Fubini-type formula—which is also known as the Weil formula—holds.∫

G

f(g)dµG =

∫
K

∫
H

f(h+ k)dµHdµK , (7.1)

where
∫
H
f(h+ k)dµH denotes

∫
H
f(h+ g)dµH , where g ∈ G is any element that maps to

k ∈ K. (See [RRS00, p. 87-88].)

Definition 7.12 (Quotient Measure). Given an LCA group G and a subgroup H ≤ G, the
quotient measure of G/H is the measure obtained from Equation (7.1) after considering
the sequence 0→ H → G→ G/H → 0.
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The Fourier Transform. Real-valued integrable functions over R can, traditionally,
be related to their counterparts over the dual space via the Fourier transform. It is a
fundamental tool for the content of chapters 5 and 6. For LCA groups, this concept can
be derived from their Haar measure.

Definition 7.13 (Fourier Transform over LCA groups). Let G be an LCA group and let µ
be a Haar measure over G. Given a f ∈ L1(G), the Fourier transform of f is the function

f̂ : Ĝ→ R defined as

f̂ : y 7→
∫
G

f(x)〈x, y〉dµ(x). (7.2)

Stretching and Translating Maps. In an LCA group G, let x, c ∈ G. For s ∈ Z let

s · x := sign(s)

|s|∑
i=1

x =

{ ∑|s|
i=1 x if s ∈ Z≥0,

−
∑|s|

i=1 x if s ∈ Z<0.

Since group operations are continuous, this is a continuous function from G to itself. More-
over, since G is Abelian, s ·(x+y) = sign(s)

∑n
i=1(x+y) = sign(s)

∑n
i=1 x+sign(s)

∑n
i=1 y.

Thus this mapping is a group homomorphism. Moreover, it is an injective homomorphism
whenever the s-torsion subgroup of G is trivial.

Consider an injective homomorphism φ : G → H between two groups. We say that φ
is a section if there exists a homomorphism ψ : H → G such that ψ ◦ φ = IdG. Whenever
x 7→ s · x is a section, its retraction is a continuous surjective homomorphism. We denote
this function as x 7→ s−1 · x. Furthermore, for c ∈ G denote

τs,c(x) := s−1 · (x− c).

Corollary 7.14. Let G be a locally compact Abelian group and let s ∈ Z be such that the
map x 7→ s ·x is a section. Let µ be a Haar measure on G and let c ∈ G. Then there exists
a constant κs so that the pushforward measure of µ along τs,c is κs times µ.

Proof. Since x 7→ s · x is a section, τs,c is a measurable surjective homomorphism. Thus,
by Proposition 7.7, τs,c ∗ µ is a Haar measure. The result follows from Theorem 7.5.

Proposition 7.15. Let G be a LCA group written additively and fix a Haar measure µ
over G. Consider f ∈ L1(G) and let f̂ denote its Fourier transform. For c ∈ G and s ∈ Z
let

fs,c(x) := f ◦ τs,c(x) = f
(
s · (x+ c)

)
.
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Then, for y ∈ Ĝ, we have that

f̂s,c(y) =
〈c, y〉
κs

f̂(s−1y),

where κs ∈ C is a constant that depends on s.

Proof. Let c ∈ G, s ∈ Z and y ∈ Ĝ.

f̂s,c(y) =

∫
G

fs,c(x)y(x) · dµ(x)

=

∫
G

f
(
τs,c(x)

)
y(x)dµ(x)

By Corollary 7.14, the pushforward measure of µ along τs,c is κsµ. Making z = τs,c(x) =
s · (x+ c) we have∫

G

f
(
τs,c(x)

)
y(x)dµ(x) =

∫
G

f(z)y
(
s−1z − c

)
· d(τs,c ∗ µ)(z)

=
1

κs

∫
G

f(z)y
(
s−1z

)
y(−c) · dµ(z)

=
y(c)

κs

∫
G

f(z)
(

(s−1y)(z)
)
dµ(z)

=
y(c)

κs
f̂
(
s−1y

)
,

as required.

Lattices Over LCA groups. Up to this point, the theory of locally compact Abelian
groups is, perhaps, still quite distant from the traditional theory of lattices over Rn. An
important missing element is the concept of lattice itself. Recall that lattices over the
Euclidean space are characterized as the discrete subgroups of Rn. In general, a subgroup
A of a topological group G is said to be discrete if its induced topology as a subspace of
G is discrete.

Definition 7.16 (Lattice). Let G be an LCA group and consider a Haar measure on G.
A discrete subgroup L ≤ G is called a lattice if the quotient G/L is compact.
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An equivalent condition for an LCA group to be compact is that its Haar measure is
finite. Notice that, under this notion, a lattice L ⊂ Rn is also a lattice in the sense of LCA
groups if and only if the rank of L is n.

Another important missing element is the dual of a lattice L ≤ G. A priori, a reader
might be tempted to take it as the Pontryagin dual L̂ of L. However, it follows from
Proposition 7.11 L̂ is not necessarily (isomorphic to) a subgroup of Ĝ. In fact, it rarely is.
To construct the “dual of a lattice”, we first look at the following proposition.

Proposition 7.17 ([Fol94, Proposition 4.4]). Let G be an LCA group. Then G is compact

if and only if Ĝ is discrete.

Remark 7.18. It follows from Theorem 7.10 that the converse also follows. In other words,
an LCA group G is discrete if and only if its dual Ĝ is compact.

As we remark above, the Pontryagin dual L̂ of L is rarely a subgroup of Ĝ. On the
other hand, if follows from Proposition 7.11 that

0→ Ĝ/L → Ĝ→ L̂ → 0 (7.3)

is a short exact sequence. Therefore Ĝ/L is—or, more precisely, can be seen as—a subgroup

of Ĝ. Moreover, since G/L is compact, it follows from Proposition 7.17, that Ĝ/L is a

discrete group. Furthermore, by Remark 7.18, L̂ is compact. Hence, since (7.3) is a short
exact sequence, the group

L̂ ∼= Ĝ
/
Ĝ/L

is compact. Thus Ĝ/L is a lattice. This motivates the following definition.

Definition 7.19 (Orthogonal Lattice). Let G be an LCA group and let L ≤ G be a lattice.

The orthogonal lattice of L is defined as the group L⊥ := Ĝ/L.

Poisson Summation Formula. The Poisson Summation Formula presented in Chapter
5 for lattices and functions over Rn has its equivalent counterpart over LCA groups. In
this context, the result is well-known to hold for functions in the Schwartz-Bruhat space,
which is the natural generalization of the Schwartz space over Rn. However, recently it was
proved to hold for functions in the Feichtinger algebra S0(G) (see [Jak18, Theorem 5.7]).

Lemma 7.20 (Poisson Summation Formula). Suppose we have a group G, a subgroup
A ≤ G, and C = G/A. If we equip these sets with the Haar measures µA, µG, µC respectively
satisfying Equation (7.1), then for any function f ∈ S0(G), we have∫

A

f(a)dµA(a) =

∫
Ĉ

f̂(ĉ)dµĈ(ĉ). (7.4)
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Remark 7.21. If A is a lattice, then G/A is a compact LCA groups. Therefore, by Propo-

sition 7.17, Ĝ/A is also discrete, and Equation (7.4) becomes∑
x∈A

f(x) =
1

µ(G/A)

∑
y∈Ĝ/A

f̂(y).

In particular, if G = Rn and A = L is a real lattice, we recover the familiar expression

f(L) =
1

detL
f̂(L∗) = det(L∗)f̂(L∗).

7.2 Smoothening Functions Over LCA Groups

We dedicate this section to reconstructing the fundamentals of smoothening functions
that appear in Section 5.3 for locally compact Abelian groups. In particular, we show
that important results such as [Reg05, Claim 3.8] (Lemma 5.14) and [MR07, Lemma 4.4]
(Proposition 5.16) can be seen as results that are independent from the specific structure
of Rn.

In this section, let G be an LCA group and fix a Haar measure µ over G. This choice
allows us to consider a unique integral over G. In addition, similar to chapters 5 and 6, for
a function f ∈ L1(G) let Df denote the mapping

Df : x 7→ 1

f̂(0)
f(x),

which represents the probability distribution induced by f over G.

Smoothening Functions Over LCA groups

We start with the definition of smoothening function. This is a direct generalization of
Definition 5.10 for real lattices.

Definition 7.22 (Smoothening function). Let L ≤ G be a lattice. Given ε ∈ R>0, we say
that a function f ∈ L1(G) is ε-smoothening for L if∣∣∣Df̂

∣∣∣ (L⊥ \ {0}) =
1

f̂(0)

∑
x∈L⊥\{0}

∣∣f(x)
∣∣ < ε. (7.5)
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Claim 7.23. Let ε ∈ R>0 and let f ∈ L1(G) be an ε-smoothening function for a lattice
L ≤ G. Then for every s ∈ Z>0 and c ∈ G, the function fs,c is ε-smoothening for L.

Proof. The proof is a generalization of that given for Claim 5.11. Let c ∈ G, and s ∈ Z>1.
Then, using Proposition 7.15, we have the following observation.∑

y∈L⊥\{0}

∣∣∣D̂f,s,c(y)
∣∣∣ =

1

f̂s,c(0)

∑
y∈L⊥\{0}

∣∣∣f̂s,c(y)
∣∣∣

=
1

κsf̂(0)
κs

∑
y∈L⊥\{0}

∣∣∣〈c, y〉f̂ (ty)
∣∣∣

≤ 1

f̂(0)

∑
y∈sL⊥\{0}

∣∣∣f̂ (y)
∣∣∣

=
∑

y∈sL⊥\{0}

∣∣∣D̂f (y)
∣∣∣

≤
∑

y∈L⊥\{0}

∣∣∣D̂f (y)
∣∣∣ < ε,

where the second to last inequality holds since for s ∈ Z>0, sL⊥ is a subgroup of L⊥. This
finishes the proof.

Smoothing Parameters on LCA groups. In Section 5.3 we argue the difference be-
tween smoothening functions and functions for which the smoothing parameter exists. In
short, a smoothening function f may not have a smoothing parameter (for the same lattice).

Given an arbitrary dilation fs, this may yield a Fourier transform whose weight outside
the origin is arbitrarily large. There are two main reasons for this. The more evident one
is that the Fourier transform may not be decreasing; thus its weight outside the origin may
increase. The second (and, perhaps, less evident reason) is that the definition of smoothing
parameter requires that any real dilation is smoothening. This requirement follows since
Rn, the domain of the function, is an R-module.

Nonetheless, in general this situation is different because a generic LCA group is only
guaranteed to be a Z module. By Claim 7.23, any integer dilation of an ε-smoothening
function remains ε-smoothening.

Definition 7.24 (Discrete Smoothing Parameter). Let G be an LCA group and let f ∈
L1(G). For a lattice L ≤ G and a number ε ∈ R>0, define the discrete smoothing parameter
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for f with respect to L, if exists, to be the minimum s ∈ Z>0 such that the function fs is
ε-smoothening.

Smoothening Functions and Lattices

The following result is a direct generalization of Lemma 5.14—which, in turn, generalizes
[Reg05, Claim 3.8]. As we argue in Chapter 5, this result is a cornerstone for a large part
of the theory and tools developed related to lattice cryptography.

Lemma 7.25. Let G be an LCA group and let L ≤ G be a discrete subgroup. Let ε > 0
and let f be an ε-smoothening function over G for L. Then for any z ∈ G,

f(L+ z) ∈ f̂(0)

µ(G/L)
(ε,−ε) .

Proof. Let z ∈ G and let h(x) := f(x+ z). Then the weight of the function on the shifted
lattice can be expressed as

f(L+ z) =
∑
x∈L+z

f(x)

=
∑
x∈L

h(x).

By the Poisson summation formula (Lemma 7.20)∑
x∈L

h(x) =
1

µ(G/L)

∑
y∈L⊥

ĥ(y)

=
1

µ(G/L)

∑
y∈L⊥

f̂(y)〈y, z〉

=
f̂(0)

µ(G/L)

1 +
∑

y∈L⊥\{0}

D̂f (y)〈y, z〉

 .

Recall that f is a real-valued function and the real part of 〈y, z〉 ∈ [−1, 1]. Therefore, since

f is ε-smoothening we have that
∑

y∈L⊥\{0} D̂f (y)〈y, z〉 ∈ (−ε, ε), as required.

Lastly, we state some of the results given in Section 5.3 in their most generic form,
which are directly derived from Lemma 7.25. Since the proofs are both identical to their
real counterparts, we omit their corresponding proofs.
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Corollary 7.26. Let f be an ε-smoothening function with respect to a discrete subgroup
L ≤ G. Then for any z ∈ G,

f(L+ z) ∈ 1

µ(G/L)

(∫
G

f dµ+ (−ε, ε)
)
.

Corollary 7.27 ([MR07, Lemma 4.4]). Let ε ∈ R>0 and let f : G→ R be an ε-smoothening
function for a lattice L ≤ G. Then for any x, y ∈ G,

f(L+ x) ∈
(

1 + ε

1− ε

)
f(L+ y).

7.3 A Case for Other Groups

In this last section we explore the possibility of using smoothening functions to obtain an
average-case to worst-case relation among lattice problems over LCA groups. In addition,
we propose a few directions for future research.

The Longest Vector Problem Over Local Fields. Another example of an LCA
group is the p-adic reals. The field of p-adic numbers is defined as the set of formal power
series

Qp :=

∑
i∈Z≥j

aip
i : ai ∈ {0, . . . , p− 1}, j ∈ Z

 .

We may then consider the group G = Qn
p .

In [DLX18], Luo et. al. proposed several computational problems over the p-adic
fields that are analogs to SVP and CVP. In the cited manuscript, the authors provide an
argument for why, in the case of the p-adic fields, finding the shortest vector in a lattice
is not a well-defined problem. Nonetheless, every lattice over Qp has a longest non-trivial
vector. The nature of the computational problems that can be defined in a certain group
inherently depends on the geometry that the group is endowed with.

Groups With No Geometry. At the beginning of this thesis we mentioned that one of
the most appealing characteristics of LWE and SIS is their seamless combination of algebra
and geometry. More precisely, LWE is a combination of the algebraic and geometric and
geometric aspects of a particular example, the group Rn and the lattices over it. However,
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in this chapter we argue that most of the relevant ideas can be materialized with topological
and algebraic concepts.

This leads us to formulate the following questions:

• What is the topological nature of lattice problems over LCA groups?

• Is it possible to find an LCA group where the average case of LWE is connected to
the worst case of a lattice problem?

7.4 Conclusion

The development of lattice cryptography accelerated in the last one and a half decades.
This was greatly motivated by landmark publications such as [Reg05] and [MR07]. Since
then, many aspects of the results and constructions that appear in these papers have
changed, mainly for the sake of practicality. However, the amount of choices that have
been made along the way has made us wonder if any of those are arbitrary, and to what
extent some of them are indeed necessary.

In this chapter we explored the possibility of extending these ideas to the most abstract
conceivable scenario, while still keeping part of the geometric and algebraic components
that characterize the area. We do so with the hope of eventually finding other instantiations
of LWE and SIS that yield cryptographic constructions that have different properties, are
more efficient or depend on a different kind of mathematical problem.
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Appendix A

Asymptotic Behavior of σp

We dedicate this appendix to giving a formal proof of Proposition 5.49. Explicitly, we use
the steepest descent method to find an asymptotic approximation of the Fourier transform
of the p-supergaussian

σp(y) :=

∫
R
e−x

p

e−2πixydx, (A.1)

where p is a positive even integer. There are several reasons to use this method. On one
hand, approximations given by Taylor/Laurent series, by definition, are only well-behaved
locally, but they provide no information about the asymptotical behavior of the function.
On the other hand, other approaches to find asymptotic approximations—such as Laplace’s
method or method of stationary phase—have different requirements on the behavior of the
integrand in Equation (A.1), which are not satisfied in our case.

We remark that there have been previous attempts to use the steepest descent method
to find an approximation of σp in the literature, for instance, [Boy14, DBPS18]. However,
we should mention that, in [Boy14], the author backs up the claim that the found function
is an asymptotic approximation, by observing that the difference between the obtained
result and a numerical approximation of the real function does indeed decrease for p = 4.
However, there is a fatal flaw in the provided argument which makes the result invalid
for p > 4. 1 This flaw becomes evident once we provide a more rigorous proof of the
correctness of the process.

1Precisely, the summation (A.7) must range over all the critical points whose level curves approximate
the real line in a “closed” manner. In our case, this is the collection of critical points existing in the lower
half of the complex plane.
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The Steepest Descent Method, An Overview. Suppose a function I : R → C is
given by

I(κ) =

∫
C
f(t) exp

(
κψ(t)

)
dt, (A.2)

where f and ψ are analytic functions in some open set U ⊂ C that contains the contour
C. The exponential part of the integrand can be expressed as

exp
(
κψ(t)

)
= exp

(
κRe

(
ψ(t)

))
exp

(
iκ Im

(
ψ(t)

))
.

The first factor provides the magnitude of the function, and the second provides the di-
rection. Let Σ be the set of critical points of ψ. The idea behind this process—which is
similar to all saddle-point approximations—is to deform C to a new contour C ′ contain-
ing a critical point ω ∈ Σ, leaving fixed the endpoints of the contour and avoiding poles
throughout the deformation. Thus, by Cauchy’s Integral Formula, the value of the integral
is the same when it is taken over C ′. However, when integrating over C ′, for large values
of κ, most of the weight of the integral is centered around ω and (possibly also) around
the endpoints. If, furthermore, the value of the function is negligible at the endpoints, the
weight of the function on the tails can be disregarded. Finally, by obtaining the Taylor
expansion of ψ around ω, we obtain a sufficiently good approximation of the exponential
in this neighborhood.

The formalization of this process can be found in [Mur12, Chapter 3]. The following
proposition gives an approximation of the integral over the steepest path of Re

(
ψ(t)

)
.

Proposition A.1 ([Mur12, Equation 3.29]). Let f, ψ : C → C be analytic in some open
set U ⊂ C. Let I(κ) =

∫
C f(t) exp

(
κψ(t)

)
dt, where C ⊂ U is a steepest contour for the

function Re
(
ψ(t)

)
. Assume that C contains a single saddle point ω ∈ Σ. Then

I(κ) = f(ω) exp
(
κψ(ω)

)√ −2π

κψ′′(ω)
+O

(
exp

(
κψ(ω)

)
κ

)
. (A.3)

Notice, however, that there are two possible values to choose for
√

−2π
κψ′′(ω)

. The chosen

value determines the direction of integration. To understand this relation, it is useful to
analyze part of the derivation of Proposition A.1. In [Mur12], Equation (A.3) is obtained
after parameterizing the path of the steepest descent C of Re(ψ) following the relation

ψ(t)− ψ(ω) = −s2.
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Since ψ is a holomorphic function, by the Cauchy-Riemann equations, a path of steepest
descent for Re(ψ) is a level curve of the function Im(ψ). As a consequence, ψ(t)− ψ(ω) is
a real negative number; thus s is real. Expanding the Taylor series of ψ around ω gives

1

2
(t− ω)2ψ′′(ω) +O

(
(t− ω)3

)
= −s2

which implies that

t− ω = s

√
−2

ψ′′(ω)
+O

(
s2
)
. (A.4)

This approximation is only useful in a neighborhood of ω. Nonetheless, by our previous
discussion, this is enough for our purposes. From Equation (A.4) we have that for points

t over C close to ω, t − ω is close to a scalar multiple of
√

−2
ψ′′(ω)

. Thus the direction of

integration is given by the derivative of the curve at the point ω.

A Preliminary Transformation. This is a good point to remember that our goal is to
find an approximation for the expression in Equation (A.1). We first start by modifying

this equation to obtain an expression as in Equation (A.2). 2 Let x =
(

2πy
p

)1/(p−1)

t. Then

σp is expressed as follows.

σp(y) =

∫
R
e−x

p

e−2πixydx

=

∫
R

exp (−xp − 2πixy) dx

=

(
p

2πy

)1/(p−1) ∫
R

exp

(
−
(

2πy

p

)p/(p−1)

tp − 2πiy

(
2πy

p

)1/(p−1)

t

)
dt

=

(
p

2πy

)1/(p−1) ∫
R

exp

(
(2πy)p/(p−1)

(
1

p

)1/(p−1)(−1

p
tp − it

))
dt

=

(
p

2πy

)1/(p−1) ∫
R

exp
(
κ(y)ψ(t)

)
dt,

where

κ(y) :=

(
1

p

)1/(p−1)

(2πy)p/(p−1) ∈ Ω(y) and ψ(t) :=
−1

p
tp − it (A.5)

2Notice that the naive attempt of taking ψ(t) = −2πiyt yields no critical points for ψ. Thus it is not
suitable for the application of any saddle-point method.
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The newly defined ψ is a holomorphic function. Its derivatives are given by ψ′(t) = −tp−1−i
and ψ′′(t) = −tp−2

p−1
. Thus the set of critical points for ψ is described by Σ = {ω : ωp−1 = −i}.

Deforming the Integration Path. For each ω ∈ Σ, consider the level set given by the
equation

Zω : Im
(
ψ(t)

)
= Im

(
ψ(ω)

)
. (A.6)

It is then clear that the path Cω of steepest descent of the function Re
(
ψ(t)

)
that passes

through ω is contained in the set Zω. However, these two sets, Zω and Cω are not the
same in general. In our particular case, Zω consists of several connected components, one
of which is Cω.

As discussed before, the idea is to deform the integration path, which in this case is R,
into a steepest path Cω. In this case, however, such deformation cannot be performed in a
straightforward manner. The reason is because none of the level curves Cω share the same
“endpoints” with R; in other words, none of these curves approximate R in both tails.

Here we give the intuitive idea for the solution of this problem. We start by noticing
that the curves Cω divide the lower half of complex plane into several regions. Moreover,
two of the curves in this half have tails approximating the positive and the negative tails of
R. The remaining curves in the lower half approximate their neighboring curves in the tails.
Thus, intuitively, when integrating along each one of them, the tails of two neighboring
curves “cancel out”, except for the tails that approximate R. This intuition is made formal
with the following claims.

Claim A.2. Let Cp−1 be the the group of p− 1 roots of unity. Then Σ = −ip+1Cp−1.

Proof. Let z ∈ Cp−1. Then we have(
ip+1 · z

)p−1
= ip

2−1 · zp−1 = i−1 · 1 = −i,

which completes the proof.

As a consequence of Claim A.2, it is possible to write any element ω ∈ Σ as

ω = exp

(
−2πi

(
k

p− 1
+

1

4(p− 1)

))
,

with k ∈ {0, . . . , p − 1}. In particular, exp
(

iπ
2(p−1)

)
is an element of Σ. Let Σ− be the

subset of elements in Σ whose imaginary part is negative. A consequence of Claims A.3
and A.4 is that the lower half of the complex plane is roughly divided by the curves Cω
into p/2 regions, each of which contains one element of Σ−.
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Claim A.3. The set Σ− has exactly p/2 elements.

Proof. To see this, observe that, by the pigeonhole principle, it follows that if p ≡ 0
mod 4, there are exactly p/2 elements in Cp−1 whose real part is negative. Similarly, if
p ≡ 2 mod 4, Cp−1 has exactly p/2 elements whose real part is positive.

Claim A.4. For k ∈ {0, . . . , p − 1} let Rk be the ray e−2πik/pR>0 and if 0 ≤ k < p/2 let

ωk = exp
(
−2πi

(
k
p−1

+ 1
4(p−1)

))
∈ Σ−. Then the curve Cωk is asymptotically close to the

rays Rk and Rk+1.

Sketch of the proof. Consider the function f(t) = Re
(
Ψ(t)

)
. For large values of |t|, the

function ψ(t) = −1
p
tp − it behaves like −1

p
tp, whose real part has a valley exactly on the

rays Rk for k ∈ {0, . . . , p− 1}. Therefore f has a valley whose center approaches each one
of these rays—to prove this formally, we would need to prove that as r approaches infinity,
the minimum of f restricted to the elements of norm r is reached in elements every time
closer to the rays.

Notice that the Rk with k ∈ {0, . . . , p/2} divide the lower half of the complex plane
into p/2 regions, and each one of these regions intersects Σ− in exactly one element. As

a consequence, ωk = exp
(
−2πi

(
k
p−1

+ 1
4(p−1)

))
∈ Σ−, is contained in the region between

the rays Rk and Rk+1. Thus the curve Cωk asymptotically follows the centers of the valleys
of f(t) closer to ωk, which in turn asymptotically follows the rays Rk and Rk+1.

Proposition A.5. For any κ > 0,∫
R

exp
(
κψ(t)

)
dt =

∑
ω∈Σ−

∫
Cω

exp
(
κψ(t)

)
dt, (A.7)

where every curve Cω is parameterized counterclockwise.

Proof. The idea is to consider a bounded version of the curves Cω and use Cauchy’s integral
theorem to approximate

∫
R exp

(
κψ(t)

)
dt. Formally, let r ∈ R>1 and let Cω,r = Cω ∪ Br.

Consider the straight line segments Tω,ω′,r that are the closest to the ends of the curves
Cω,r and Cω′r whenever these are in adjacent areas. Finally let T0,r and T1,r be the straight
line segments joining the two remaining unmatched ends with −r, r ∈ R ∩Br.

It is clear that the union of the previously defined curves

Cr = T0,r ∪ T1,r ∪

(⋃
ω

Cω,r

)
∪

(⋃
ω,ω′

Tω,ω′,r

)
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forms a closed curve. Thus by Cauchy’s Integral Theorem,
∮
Cr∪[−r,r] f(z)dz = 0, which

implies that ∫
[−r,r]

exp
(
κψ(t)

)
dt =

∫
Cr

exp
(
κψ(t)

)
dt,

where the parameterization of Cr starts from (its point closest to) −r.

To finalize, observe that Claim A.4 implies that the length of the segments Cω,r, T0,r,
T1,r decreases to zero as r goes to infinity. However, since the real part of the exponent is
negative, the value of the function on these curves is bounded in absolute value. Therefore

lim
r→∞

∫
Cω,r

exp
(
κψ(t)

)
dt = 0 and lim

r→∞

∫
Tβ,r

exp
(
κψ(t)

)
dt = 0, (A.8)

for β ∈ {0, 1}. Since
∫
Cω exp

(
κψ(t)

)
dt = limr→∞

∫
Cω,r exp

(
κψ(t)

)
dt, the result follows.

Computing An Approximation of σp. We now combine propositions A.1 and A.5.
This allows us to obtain the following approximation of σp:

σp(y) =

(
p

2πy

)1/(p−1) ∑
ω∈Σ−

exp

(
κ(y)

(
−1

p
ωp − iω

))√
−2π

κ(y)−ω
p−2

p−1

+ E(y, ω), (A.9)

where E is an error term which appears in each element of the summation, given by

E(y, ω) = O

(
exp

(
κ(y)ψ(ω)

)
κ(y)

)
.

Observe that for every ω ∈ Σ−, the real part of ψ(ω) is negative. Consequently, since the
function κ(y) is in Ω(y), the error function E rapidly approximates 0 as y tends to infinity.
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As a result, σp is approximated by the following expression.

σp(y) ≈
(

p

2πy

)1/(p−1) ∑
ω∈Σ−

exp

(
κ(y)

(
−1

p
(−iω)− iω

))√
−2π

κ(y) i
(p−1)ω

=

(
p

2πy

)1/(p−1) ∑
ω∈Σ−

exp

(
κ(y)

(
−1

p
(−iω)− iω

))√
2π(p− 1)iω

κ(y)

=

(
p

2πy

)1/(p−1) ∑
ω∈Σ−

exp

(
−iωκ(y)

(
−1

p
+ 1

))√
2π(p− 1)iω

κ(y)

=

(
p

2πy

)1/(p−1) ∑
ω∈Σ−

exp

(
−iωκ(y)

(
p− 1

p

))√
2π(p− 1)iω

κ(y)

=

(
p

2πy

)1/(p−1)
√

2π(p− 1)

κ(y)

∑
ω∈Σ−

√
iω exp

(
−iωκ(y)

(
p− 1

p

))
.

(A.10)

The expression above is well defined up to the choice of
√
iω. As discussed previously, the

particular value represents the direction of integration at each Cω. Moreover, the chosen
value of

√
iω approximates the derivative of the curve at ω. Since we are integrating

counterclockwise, the corresponding value of
√
iω is that which has a positive real part.

For ω ∈ Σ−, write

iω = exp

(
iπ

(
1

2
− 1

2(p− 1)
− 2k

(p− 1)

))
= exp

(
iπ

(
p− 1− 1− 4k

2(p− 1)

))
= exp

(
iπ

(
p− 2− 4k

2(p− 1)

))
,

where k ∈
{

0, . . . , (p − 2)/2
}

. Then we have that
√
iω = exp

(
iπ
(
p−2−4k
4(p−1)

+ β
))

with

β ∈ {0, 1}. Thus the real part is given by Re
√
iω = cos

(
π
(
p−2−4k
4(p−1)

+ β
))

. Since this

value must be positive, we have that for all ω, the corresponding β = 0. Hence we simplify
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the expression in (A.10) as follows. The factor outside the summation can be expressed as(
p

2πy

)1/(p−1)
√

2π(p− 1)

κ(y)
=

(
p

2πy

)1/(p−1)
√√√√ 2π(p− 1)(

1
p

)1/(p−1)

(2πy)p/(p−1)

=

(
p

2πy

)1/(p−1)
√

(p− 1)p1/(p−1)

yp/(p−1)(2π)1/(p−1)

=

(
p

2πy

)1/(p−1)
√

(p− 1)

yp/(p−1)

( p
2π

)1/(p−1)

=

√
(p− 1)

y(p+2)/(p−1)

( p
2π

)3/(p−1)

,

and the summation is given by∑
ω∈Σ−

√
iω exp

(
−iωκ(y)

(
p− 1

p

))

=
∑
ω∈Σ−

√
iω exp

(
−iω

(
1

p

)1/(p−1)

(2πy)p/(p−1)

(
p− 1

p

))

=

(p−2)/2∑
k=0

exp

(
iπ

(
p− 2− 4k

4(p− 1)

))
exp

(
−eiπ

p−2−4k
2(p−1)

(
1

p

)1/(p−1)

(2πy)p/(p−1)

(
p− 1

p

))

=

(p−2)/2∑
k=0

exp

(
iπ

(
p− 2− 4k

4(p− 1)

)
− eiπ

p−2−4k
2(p−1)

(
2πy

p

)p/(p−1)

(p− 1)

)
.

Thus, σp is asymptotically approximated by the expression

σp(y) ≈

√
(p− 1)

y(p+2)/(p−1)

( p
2π

)3/(p−1)

(p−2)/2∑
k=0

exp

(
iπ

(
p− 2− 4k

4(p− 1)

)
− (p− 1)

(
2πy

p

)p/(p−1)

eiπ
p−2−4k
2(p−1)

)
.

(A.11)

A Positive Approximation for σp. We now use the result obtained above to construct
a positive approximation for σp. The main idea is to smooth out the oscillations from
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that function to obtain a smooth bound. Note that σp is a real valued function—as the
Fourier transform of any real function is a real function—so we only need to consider the
real part of the approximation. Consider one term inside the sum of Equation (A.11). For
k ∈

{
1, . . . , p−2

2

}
we have

exp

(
iπ

(
p− 2− 4k

4(p− 1)

)
− (p− 1)

(
2πy

p

) p
p−1

e(iπ(
p−2−4k
2(p−1) ))

)

= exp

(
iπ

(
p− 2− 4k

4(p− 1)

)

−(p− 1)

(
2πy

p

) p
p−1
(

cos π

(
p− 2− 4k

2(p− 1)

)
+ i sinπ

(
p− 2− 4k

2(p− 1)

)))

= exp

(
−(p− 1)

(
2πy

p

) p
p−1

cosπ

(
p− 2− 4k

2(p− 1)

))

exp

(
iπ

(
p− 2− 4k

4(p− 1)

)
− (p− 1)

(
2πy

p

) p
p−1

sin π

(
p− 2− 4k

2(p− 1)

))
Since for all θ ∈ R,

∣∣Re(eiθ)
∣∣ ≤ 1, the real part of each term is upper bounded by

exp

(
−(p− 1)

(
2πy

p

) p
p−1

cos

(
π
p− 2− 4k

2(p− 1)

))
,

as the only imaginary term comes from the second exponent in the last expression. Note
that 0 ≤ k ≤ p−2

2
; thus the argument of the cosine in the above expression is in the range

(−π/2, π/2). (See the discussion above about the simplification of Equation (A.10)). Thus
we have that for every term,

cos

(
π
p− 2− 4k

2(p− 1)

)
> 0.

Thus,

exp

(
−(p− 1)

(
2πy

p

) p
p−1

cos

(
π
p− 2− 4k

2(p− 1)

))

≤ exp

(
−(p− 1)

(
2πy

p

) p
p−1

cos

(
π

p− 2

2(p− 1)

))
= exp

(
−ϑ(p)y

p
p−1

)
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where ϑ(p) := (p− 1)
(

2π
p

) p
p−1

cos
(
π p−2

2(p−1)

)
. Thus, combining all the terms of the sum, we

get that

σp(y) ≈
√

(p− 1)
( p

2π

)3/(p−1)

y−(p+2)/2(p−1)

(p−2)/2∑
k=0

exp

(
iπ

(
p− 2− 4k

4(p− 1)

)
− (p− 1)

(
2πy

p

)p/(p−1)

e(iπ(
p−2−4k
2(p−1) ))

)

≤
√

(p− 1)
( p

2π

)3/(p−1)

y−(p+2)/2(p−1)

(p−2)/2∑
k=0

exp
(
−ϑ(p)y

p
p−1

)
=
p− 2

2

√
(p− 1)

( p
2π

)3/(p−1)

y−(p+2)/2(p−1) exp
(
−ϑ(p)y

p
p−1

)
= ξ(p)y−(p+2)/2(p−1) exp

(
−ϑ(p)y

p
p−1

)

(A.12)

where ξ(p) := p−2
2

√
(p− 1)

(
p

2π

)3/(p−1)
.
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Appendix B

Tail Bound for σp

In this appendix show how to compute the tail bounds of the bounding function for the
Fourier transform of supergaussians. For the rest of the section, we only consider this
function restricted to R≥0, as the same techniques apply to R≤0 by symmetry since f [p]

and
∣∣∣f̂ [p]

∣∣∣ are both even functions. Recall that the bounding function is given by

b(y) := ξ(p) ·

{
b1(y) := e−ϑy

τ
0 ≤ y ≤ 1

b2(y) := y−αe−ϑy
τ

y ≥ 1

with α = (p+2)
2(p−1)

, ϑ = (p − 1) cos
(
π p−2

2(p−1)

)(
2π
p

) p
p−1

and τ = p
p−1

. Note that for the

computation of a tail bound, we can assume ξ(p) = 1, as both b(y) and b(uy) are scaled
by the same factor ξ(p).

Consider a β that satisfies the conditions of Lemma 5.34. As pointed in Note 5.51,
we assume that β is a constant. Let r ∈ R≥1.1 There are two cases to consider, if
b(uy) = b1(uy) and if b(uy) = b2(uy). The first case happens if y ≤ 1

u
. This case is

dependent on the chosen completion of the bounding function.

The second case happens if y ≥ 1
u
. Note that this case is independent of the chosen

completion of the bounding function. In that case,

b(y)

ub(uy)
=

y−αe−ϑy
τ

u(uy)−αe−ϑ(uy)τ
= uα−1e−ϑy

τ (1−uτ ).

1This will only allow us find tail bounds for sets of a given minimum size (namely, at lest [−1, 1]), which
will be sufficient for all of our applications. Should tail bounds for smaller sets be needed, they can be
computed using the same method.
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Thus,

sup
|y|≥r

b(y)

ub(uy)
= sup
|y|≥r

uα−1e−ϑy
τ (1−uτ ) = uα−1e−ϑr

τ (1−uτ ),

as the function is monotonically decreasing for y ≥ 0.

Since y ≥ r, we get case 2 for any u ≥ 1
r

(as uy ≥ ur ≥ 1
r
r = 1). Moreover, given that

r ≥ 1, the interval I =
[

1
r
, 1
]
⊂ (0, 1] is non-empty, and we get case 2 for all y for any

u ∈ I. Note that as long as I ∩ (0, 1] = I is non-empty, we have that

inf
0<u≤1

sup
|y|≥r

b(y)

ub(uy)
≤ inf

u∈I
sup
|y|≥r

b(y)

ub2(uy)
= inf

u∈I
uα−1e−ϑr

τ (1−uτ ).

By taking the second derivative of the left-hand side for u over I ∩ (0, 1] = I =
[

1
r
, 1
]
, we

have that the infimum for the last equation occurs at u = 1/r. As a consequence,

inf
0<u≤1

uα−1e−ϑr
τ (1−uτ ) =

(
1

r

)α−1

e−ϑr
τ (1− 1

rτ
) =

(
1

r

)α−1

e−ϑ(rτ−1).

Thus,

νb[p]
(
[r, r]

)
≤ β inf

0<u≤1
sup
|y|≥r

b(y)

ub(uy)

≤ β

(
1

r

)α−1

e−ϑ(rτ−1).
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Index

Symbols
Bp
n 28

DA,f ,s,c see Discrete probability distribution
DA,f see Discrete probability distribution
Df 58
Df 126
E(F) see Elliptic curve
L1 126
Lp 54
Z(G) see Center
[n] 25
`p-norm see p-norm
ηf ,ε(L) 62
λi(K,L) see Successive minima
Qp 129
Z>a 25
ei see Canonical vector
Dn 57
Kn 27
L(B) see also Lattice
P(B) see Fundamental region
S(Rn) see Schwartz, Space
νf ,A(K) 76
νf (K,A) 76
distK 32
ρ see Gaussian
ρ[p] see p-supergaussian
σ-algebra 28
σp 89, 140
τs,c 123

ε-smoothening see Smoothening function

f̂ see Fourier transform, Inverse

Ĝ see Group, Dual

f̂ see Fourier transform

nth moment 30

p-norm 27

p-supergaussian 88

B
Baire set 119

Borel set 28

Bounded Distance Decoding (BDD) 33

C
Canonical vector 25

Center 26

Closest Vector Problem (CVP) 33

Compact open topology 121

Conjugacy problem 39

Convolution 29

D
Discrete Gaussian Sampling (DGS) 33

Discrete probability distribution 59

E
Elliptic curve 34

Exact sequence 26

Short 26, 122
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F
Fourier transform 55, 123

Inverse 55
Fubini formula 122
Fundamental region 31

G
Gaussian 30
Group 26

Abelian 26
Dual 121
Free 26
Locally compact 118
Locally compact Abelian (LCA) 118
Presentation 27
Quotient 26

I
Integrable 54
Isogeny 34, 49

K
Kernel 26

L
Lattice 31

Discrete Group 124
Dual 31
Full-rank 31

Learning
Homomorphism 37
Homomorphism Noise (LHN) 38
Normal, Homomorphism with Noise 43
With Errors (LWE) 33

M
Measurable

Function 29
Set 28
Space 28

Measure 29
Haar 119
Invariant 118
Lebesgue 29
Probability 29
Pushforward 120
Quotient 122

Metric 27

N
Norm 27
Normalized 58

O
Order 26

P
Poisson summation formula 57, 125
Pontryagin duality 122
Probability

Distribution 29
Space 29

S
Schwartz

Function 56
Space 56

Semigroup 26
Short Integer Solutions (SIS) 34
Shortest Independent Vector Problem

(SIVP) 32
Shortest Vector Problem (SVP) 32
Smoothening function 61, 126
Smoothing parameter 62

Gaussian 60
Standard form 58
Statistical distance 29
Steepest descent 141
Subgroup 26

Discrete 124
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Normal 26
Successive minima 31

T
Tail bound function 76
Topological group 118

Transference theorems 32

W
Weil formula see Fubini formula
Word 26

Length 26
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