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Abstract

This thesis focuses on the Node-Connectivity Tree Augmentation Problem (NC-TAP),
formally defined as follows. The first input of the problem is a graph G which has vertex
set V and edge set E. We require |V | ≥ 3 to avoid degenerate cases. The edge set E is
a disjoint union of two sets T and L where the subgraph (V, T ) is connected and acyclic.
We call the edges in T the tree edges and the edges in L are called links. The second input
is a vector c ∈ RL

≥0 (a vector of nonnegative real numbers indexed by the links), which is
called the cost of the links. We often refer to this graph G and cost vector c as an instance
of NC-TAP. Given an instance G = (V, T ∪L) and c ∈ RL

≥0 to NC-TAP, a feasible solution
to that instance is a set of links F ⊆ L such that the graph (V, T ∪ F ) is 2-connected.
The cost of a set of links F is denoted c(F ) :=

∑
l∈L cl. The goal of NC-TAP is to find a

feasible solution F ∗ to the given instance such that the the cost of F ∗ is minimum among
all feasible solutions to the instance.

This thesis is mainly expository and it has two goals. First, we present the current best-
known algorithms for NC-TAP. The second goal of this thesis is to explore new directions
in the study of NC-TAP in the last chapter. This is an exploratory chapter where the
goal is to use the state of the art techniques for TAP to develop an algorithm for NC-TAP
which has an approximation guarantee better than factor 2.
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Chapter 1

Introduction

1.1 Introduction

One of the most fundamental and well-studied family of problems in Combinatorial Op-
timization and Operations Research is the family of Survivable Network Design Problems
(SNDPs). These are problems of finding structures within a network, of minimum cost,
such that the structure is still connected in the event of some specified number of node or
edge failures. This is a very large family of problems and it includes problems with many
applications in transportation and telecommunications. However, this class of problems is
too large to study in its entirety in this thesis. Instead we restrict ourselves to the study
of a subset of SNDPs.

The Tree Augmentation Problem (TAP) is an SNDP where one is given a base network
that is a spanning tree. We may assume that the edges of the base network have zero costs.
Then we want to purchase additional links between nodes such that the network will still
be connected even if any one link fails. This problem was introduced by Frederickson and
Jájá in their 1981 paper [10], though they called it the Connected Bridge-Connectivity
Augmentation Problem. Frederickson and Jájá also prove that the problem is NP-hard,
and they give an algorithm that returns a solution that has cost at most 2 times the cost of
the cheapest solution. Their work was inspired by an earlier paper of Eswaran and Tarjan.
Since then TAP has been the subject of much study.

Several more algorithms have since been developed for TAP. Some of these are general-
purpose algorithms that apply to more general classes of SNDPs, such as the iterative
rounding algorithm due to Jain [13] and the primal-dual algorithm due to Goemans et
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al., [11]. However, none of these algorithms have been able to achieve an approximation
guarantee of less than 2. Improvements have only been obtained in certain special cases.
In the case where the base network is such that any pair of nodes can reach each other
using a constant number of edges, Cohen and Nutov give an algorithm that outputs a
solution of cost at most (1 + ln 2) times the cheapest solution [6]. In the case where all
of the purchasable links have the same cost, which we can assume is one, Kortsarz and
Nutov presented an algorithm with an approximation guarantee of 3/2 [14]. We call this
case where all links have cost 1 the unweighted case. The current best algorithm for the
unweighted case is due to Grandoni, Kalaitzis, and Zenklusen who obtain an approximation
guarantee of 1.458 [12]. Finally, the last special case of interest to us in this thesis is when
all of the purchasable links have a cost between 1 and some constant. Note that this
is a generalization of the unweighted case. With this assumption, Adjiashvili gives an
algorithm that has an approximation guarantee of (1.965 + ε) [1]. This was improved by
Fiorini, Groß, Könemann, and Sanità to (3/2 + ε) [9].

Despite all of the attention that has been given to TAP, very little study has been done
of the related problem where we want to augment a base network that is connected to
survive any single node failure. This problem, which we call the Node-Connectivity Tree
Augmentation Problem (NC-TAP) is the focus of this thesis. NC-TAP was also introduced
by Frederickson and Jájá in [10], though they call it the Connected Biconnectivity Augmen-
tation Problem. Like with TAP, they show that NC-TAP is NP-hard and give an algorithm
with approximation guarantee of 2. To the best of our knowledge, no improvements were
made, even for special cases of NC-TAP, until Nutov gave an algorithm for the unweighted
case of NC-TAP in [17] which has a factor (1.916 + ε) approximation guarantee.

This thesis is mainly expository and it has two goals. First, we present some of the
current best-known algorithms for NC-TAP. In Chapter 2 we present a primal-dual algo-
rithm due to Ravi and Williamson [18, 19] which has an approximation guarantee of 2 1.
Their algorithm is actually for a more general class of SNDPs, and they present it as a
subroutine for yet another SNDP. We present their arguments tailored for NC-TAP as this
allows for some simplification. In Chapter 3 we present the algorithm for the unweighted
case given by Nutov in [17], which applies the techniques developed by Byrka et al. in
[2]. The second goal of this thesis is to explore new directions in the study of NC-TAP,
which is done in Chapter 4. This is an exploratory chapter where we attempt to use the
state of the art techniques for TAP to develop an algorithm for NC-TAP which has an
approximation guarantee better than factor 2. In particular, we study the developments

1[18] claimed to have an algorithm for two different SNDPs which they call the {0,1,2}-SNDP and the
k-vertex-connectivity problem. A fatal flaw was found in this paper, however the authors published an
erratum [19] which addresses the flaw in the case of the {0,1,2}-SNDP, which NC-TAP is a special case of.
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made in [1] and apply them to NC-TAP. We have not yet been successful in creating such
an algorithm but we believe our study has merit. First, we pin down some core unsolved
questions that might motivate future research. Secondly, we uncover a simpler problem
related to NC-TAP which is of interest in its own right. We show that this new problem,
which we call the Two-Level Tree Augmentation Problem (TLTP), is NP-hard and present
an (11/6)-approximation algorithm for it.

Since this thesis is largely expository, many results presented are not original. Some
results, while new in a formal sense, are fundamentally based on earlier results and are
proven using similar arguments. Furthermore, where appropriate, we utilize figures which
appeared in previous publications. Naturally, we give citations for any content which is
not original.

Throughout this thesis, we will assume the reader is familiar with the content, defini-
tions, and notations that one might see in first year graduate courses in Graph Theory,
Mathematical Programming, and Combinatorial Optimization. If the reader encounters
any notation, definitions, or material that is unfamiliar, we refer them to the glossary of
this thesis, or else the following standard texts: [8, 20, 22].

1.2 Problem Statement

NC-TAP and TAP are optimization problems, formally defined as follows. The two prob-
lems have the same inputs. The first input of either problem is a graph G which has vertex
set V and edge set E. We require |V | ≥ 3 to avoid degenerate cases. The edge set E is
a disjoint union of two sets T and L where the subgraph (V, T ) is connected and acyclic,
ie it is a spanning tree. We often abuse notation and use T where it would make sense
to reference a graph, not a set of edges. In this event is is understood we are using T
as short-hand for the graph (V, T ). We call the edges in T the tree edges and the edges
in L are called links. The second input is a vector c ∈ RL

≥0 (a vector of nonnegative real
numbers indexed by the links), which is called the cost of the links. We often refer to this
graph G and cost vector c as an instance of NC-TAP. The cost of a set of links is the sum
of the costs of each edge in the solution and is denoted c(F ) :=

∑
l∈L cl. Given an instance

G = (V, T ∪ L) and c ∈ RL
≥0 to NC-TAP (or TAP), a feasible solution to that instance is

a set of links F ⊆ L such that the graph (V, T ∪ F ) is 2-connected (or 2-edge-connected).
The goal of NC-TAP (or TAP) is to find a feasible solution F ∗ to the given instance such
that the the cost of F ∗ is minimum among all feasible solutions to the instance.
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1.3 Notation, Definitions, and Assumptions

Before we can write a concise mathematical program for NC-TAP (or TAP), it will be
helpful to define some terminology and notation that will be used throughout this thesis.

Let G = (V,E) be a graph. Let F ⊆ E and S, S ′ ( V such that S and S ′ are
disjoint and nonempty. We define the cut from S to S ′ with respect to F as δF (S : S ′) :=
{uv ∈ F : u ∈ S, v ∈ S ′}. We define the vertex neighbourhood of S with respect to F as
ΓF (S) := {v ∈ V \ S : uv ∈ F for some u ∈ S}. We define ζF (S) := V \ (S ∪ ΓF (S)),
the set of all vertices which are neither in S nor in the neighbourhood of S with respect
to F . Further, for any subgraph H ⊆ G we let Comp(H) denote the set of connected
components of H. When talking about the components of a subgraph, we will often only
be interested in the vertices of that component. So we will abuse notation and often say
that the elements of Comp(H) are the vertex sets of the components of H. We will also
use the common notation that for x ∈ RI and S ⊆ I,

x(S) =
∑
i∈S

xi

Finally, for a spanning tree T , it is known that there is a unique path between any two
vertices u, v. For the spanning tree that is the base network of a TAP or NC-TAP instance,
we denote this unique u, v-path as Puv. For any link l ∈ V × V we use Pl to mean Puv
where u and v are the endpoints of l.

There is a key assumption that can be made about TAP and NC-TAP instances, that
relies on the following definition.

Definition 1. Given two link l1, l2 ∈ V × V we say l1 is a shadow of l2 if Pl1 ⊆ Pl2 .

The assumption is that if l ∈ L, then L contains all shadows of l. We show that this
is a valid assumption for NC-TAP, but the reader should note that it is also valid for
TAP [1]. Suppose F is an NC-TAP solution which contains a link l1 which is a shadow
of l2. We will show that (F \ {l1}) ∪ {l2} is also an NC-TAP solution. Suppose not, then
G′ = (V.(F \ {l1})∪{l2}) has a cut node w. Since F is an NC-TAP solution, F ∪{l2} is as
well. Thus l1 connects G′ − w. This implies that G′ − w has exactly two components and
w is a vertex on Pl1 . However, Pl1 ⊆ Pl2 since l1 is a shadow of l2. Thus the endpoints of
l2 are in different components of G′ − w, a contradiction.
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1.4 Linear Programs for Tree Augmentation

We will explain the Linear Programs (LPs) which we use to design algorithms for TAP
and NC-TAP. Throughout our explanation, we will refer to the following example instance.
Let the overall all graph be K4. Let the spanning tree be a star and label the centre node
v and the leaves u1, u2, u3. Let the links all have unit cost.

Linear Programs (LPs) for Survival Network Design Problems such as TAP and NC-
TAP usually are formed in a similar way. We start with variables xe ∈ R and costs ce ∈ R≥0

for each edge e ∈ E. Recall, that we only have costs for links. We can extend our cost
vector to all edges by saying ce = 0 for all e ∈ T . In this framework, TAP is the problem
of finding a minimum cost 2-edge-connected subgraph in G, and NC-TAP is the problem
of finding minimum cost 2-connected spanning subgraph. of G.

We begin by considering TAP. Consider a set of vertices, S. We want the solution to
be 2-edge-connected, so we know we need two edges from S to the rest of the graph. That
is x(δE(S : V \ S)) ≥ 2. Thus a valid LP for TAP is (TAP1), shown below.

(TAP1) min
∑
e∈E

cexe

subject to

x(δE(S : V \ S)) ≥ 2 ∀∅ 6= S ( V

0 ≤ xe ≤ 1 ∀e ∈ E

This LP has an exponential number of constraints, some of which are redundant, and as
mentioned above, is really the LP for finding a minimum cost 2-edge-connected spanning
subgraph of G. The (TAP1) LP for our K4 example described above is as follows.

min 0xvu1 + 0xvu1 + 0xvu1 + xu1u2 + xu1u3 + xu2u3
s.t.

xvu1 + xvu1 + xvu1 + 0xu1u2 + 0xu1u3 + 0xu2u3 ≥ 2
xvu1 + 0xvu1 + 0xvu1 + xu1u2 + xu1u3 + 0xu2u3 ≥ 2

0xvu1 + xvu1 + 0xvu1 + xu1u2 + 0xu1u3 + xu2u3 ≥ 2
0xvu1 + 0xvu1 + xvu1 + 0xu1u2 + xu1u3 + xu2u3 ≥ 2
0xvu1 + xvu1 + xvu1 + xu1u2 + xu1u3 + 0xu2u3 ≥ 2
xvu1 + 0xvu1 + xvu1 + xu1u2 + 0xu1u3 + xu2u3 ≥ 2
xvu1 + xvu1 + 0xvu1 + 0xu1u2 + xu1u3 + xu2u3 ≥ 2

0 ≤ xe ≤ 1 ∀e ∈ E

5



Note that many of the constraints are satisfied when we set xvu1 = xvu2 = xvu3 = 1.
This is because, some cuts are covered by enough tree edges that they don’t require any
links. It is natural to ask if there is a simpler LP which takes advantage of the additional
structure of TAP. For any tree edge e ∈ T , we know T −e has exactly two components. Let
S be the vertex set of one of these components. We let cov(e) = δL(S : V \ S). Consider
the following LP, labelled (TAP2) and referred to as the Cut LP.

(TAP2) min
∑
l∈L

clxl

subject to

x(cov(e)) ≥ 1 ∀e ∈ T
xl ≥ 0 ∀l ∈ L

Proposition 1. (TAP1) and (TAP2) are equivalent.

Now we consider the same process for NC-TAP. However, it becomes significantly more
complicated. We cannot just consider any set of vertices S and make sure there are two
internally disjoint paths between S and V \ S because any such path will have no internal
vertices. Instead we must consider each pair of disjoint subsets of vertices S ⊆ V and
S ′ ⊆ V \S, and make sure that these have two internally-disjoint paths between them. We
rely on the fact that if you remove some number, t, of vertices, from a k-connected graph,
the resulting graph is still (k − t)-connected, and thus (k − t)-edge-connected. For every
vertex v not in S or S ′, we assume that v is removed and thus the number of edges we require
between S and S ′ decreases by one. That is, we must satisfy x(δE(S : S ′)) ≥ 2−|V \(S∪S ′)|.
Consider again our instance on K4. Now let S = {u1}, and S ′ = {v, u2, u3}. We want
a 2-connected graph, which must also be 2-edge-connected, so we know a solution must
have two edges between these sets. Now consider consider leaving S = {u1} but instead
S ′ = {u2, u3}. We want the solution to be 2-connected, but there is already a path between
the two sets which uses the centre vertex. Thus we only need one more edge between these
two sets. This gives rise to the following LP for NC-TAP.

(NC − TAP1) min
∑
e∈E

cexe

subject to

x(δE(S : S ′)) ≥ 2− |V \ (S ∪ S ′)| ∀∅ 6= S, S ′ ( V, S ∩ S ′ = ∅
0 ≤ xe ≤ 1 ∀e ∈ E

6



Again, this LP has an exponential number of constraints and captures the more general
problem of finding a minimum cost 2-connected subgraph. However, just like with TAP,
it clear to see that some are redundant. Consider again our example instance of K4 where
the initial tree is a star. We know that the only vertex that is a cut node in the star is the
centre. So a solution is just a set of links that connects the remaining three vertices. So
if we partition the vertices other then v into two sets, no matter how we do it, a solution
should have a link between the two sets. In general, the vertices that are cut nodes in an
arbitrary tree are precisely the vertices which are not leaves. After removing a non-leaf
vertex v, we need the components of T −v to be connected. We use Comp(T −v) to denote
the set of components of T − v. If we look at any subset S of components, a solution must
have a link from a component in S to a component not in S. This gives us the following
LP, labelled (NC − TAP2), which we call the Set-Pair LP

(NC − TAP2) min
∑
l∈L

clxl

subject to

x(δL(S, ζT (S)) ≥ 1 ∀ non-leaf v, and ∀∅ 6= S ⊆ Comp(G− v),

S := ∪SS ′

xl ≥ 0 ∀l ∈ L

In our K4 example, the only non-leaf is v and Comp(T−v) = {{u1}, {u2}, {u3}}. Thus,
the possible choices for S are {u1}, {u2}, {u3}, {u1, u2}, {u1, u3}, {u2, u3}.

Proposition 2. LP (NC − TAP1) and LP (NC − TAP2) are equivalent.

Proof. First we note that since ce = 0 for any e ∈ T , if we take a feasible solution x and
replace xe with 1 for all e ∈ T , then the resulting vector is feasible and has the same
objective value. Furthermore, since we don’t actually want a minimum cost 2-connected
spanning subgraph, but rather a minimum cost set of links that augment the tree T , it
makes sense that we always include all tree edges in our solution. Thus we may replace
0 ≤ xe ≤ 1 with xe = 1 for all tree edges e ∈ T .

Next, note that if |V \ (S ∪ S ′)| ≥ 2 then the corresponding constraint is redundant
as x ≥ 0. So we turn our attention to when |V \ (S ∪ S ′)| = 1, say V \ (S ∪ S ′) = {v}.
Consider G− v. Clearly, S ′ = V \ (S ∪ v) = ζT (S) so it remains to show that S is a union
of components of T − v. The non-empty, non-exhaustive properties we get for free since
S, S ′ 6= ∅. Suppose that S is not the union of components of T − v, then T − v contains a
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component, say C such that S∩C and S ′∩C are nonempty. Let u ∈ S∩C and w ∈ S ′∩C.
Since C is connected, there exists a u,w-path that does not use v. There also must exist
some tree edge ab in this path such that a ∈ S and b ∈ S ′. Thus ab ∈ δT (S : S ′) and thus
the constraint x(δE(S : S ′)) ≥ 2− |V \ (S ∪ S ′)| = 1 is made redundant by the constraint
xab = 1. Thus, for any S, S ′ such that |V \ (S ∪S ′)| = 1, we need only keep the constraints
when S is the nonempty, non-exhaustive union of components of T − v for some vertex v,
and S ′ = ζT (S). Note that if v is a leaf of T , then T − v only has a single component and
thus no S satisfies this requirement, so we need only consider, non-leaf vertices.

Finally, consider when |V \ (S ∪ S ′)| = 0. If |δT (S : S ′)| ≥ 2 then the constraint is
implied by xe = 1 for all tree edges e ∈ T . Further, it is impossible that |δT (S : S ′)| = 0
since T is a spanning tree. So we must have that |δT (S : S ′)| = 1. Let uv be the unique
edge in δT (S : S ′) with u ∈ S, v ∈ S ′. At least one of u or v must be a non-leaf. Without
loss of generality, we will assume it is v. We note that S is a component of T−uv and v 6∈ S
and thus S is a component of T − v. Specifically it is a nonempty, non-exhaustive union
of (one) components of T − v. And S ′ = ζT (S)∪ v. Thus, δE(S : S ′) ⊇ δE(S : ζT (S))∪ uv.
But from above, we know that x(δE(S : ζT (S))) ≥ 1. Thus we have

x(δE(S : S ′)) ≥ xuv + x(δE(S : ζT (S))

≥ xuv + 1

= 2

And thus this constraint is redundant.

This approach is designing LPs is very robust, and works well for problems concerning
edge-connectivity, such as TAP. However, it is not useful for designing algorithms for NC-
TAP which achieve an approximation guarantee of less than factor 2. Figure 1.1 shows the
problem. Consider any (unweighted) TAP/NC-TAP instance where the tree is a star with
k ≥ 3 leaves, and the links form a cycle on the leaves. Both the Cut LP and the Set-Pair
LP are satisfied by assigning a weight of 1/2 to all of the links. This means the optimal
value for both the Cut LP and the Set-Pair LP is at most k/2. The optimal, integral, TAP
solution takes dk/2e links of the cycle, alternating between taking a link and not taking
a link. The worst case scenario is when k = 3 and thus the optimal solution uses 2 links.
Thus the integrality gap of the Cut LP on this instance is 4/3. However, Any integral
NC-TAP solution must use k − 1 links. Thus, the integrality gap of the Set-Pair LP is
arbitrarily close to 2.

We introduce a new LP for NC-TAP. The motivation and correctness is fairly clear.
After removing any vertex, if one imagines contracting all of the connected components
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Figure 1.1: Two Stars. One has an odd number of leaves and the other even. xl = 1/2
satisfies both the Cut LP and Set-Pair LP, but not the Partition LP.

into single vertices, then any NC-TAP solution for the original graph must contain a span-
ning tree on this new graph. One common LP for the Minimum Spanning Tree problem,
which is integral [20, Corollary 50.8], has a constraint for every partition of the vertices,
and ensures that the number of edges going between any two parts of the partition is
at least the total number of parts in the partition, minus one. We will use the notation
that P(S) is the set of partitions of the set S, |P| is the number of parts in the parti-
tion P ∈ P(S), and for a partition of sets of vertices, P , we let δF (P) denote the set
of edges in F which have each endpoint in different parts of the partition P . Again, we
will consider the example instance on K4 where the initial tree is a star with centre v
and leaves u1, u2, u3. Recall that Comp(T − v) = {{u1}, {u2}, {u3}}, so P(Comp(T −
v)) = {[u1|u2, u3], [u2|u1, u3], [u3|u1, u2], [u1|u2|u3]}. We also have that |[u1|u2, u3]| = 2 and
|[u1|u2|u3]| = 3. Finally, δF ([u1|u2, u3]) = {u1u2, u1u3} and δF ([u1|u2|u3]) = {u1u2, u1u3, u2u3}.
With this, we get the following LP, which we call the Partition LP.

min
∑
l∈L

clxl

subject to

x(δL(P)) ≥ |P| − 1 ∀ non-leaf v, and P ∈ P(Comp(T − v))

x ≥ 0

Note that the only non-leaf of the star is the centre, so the Partition LP for the NC-
TAP instances shown in Figure 1.1 has only one family of constraints. Furthermore, the
partition where every leaf is its own part tells us that the weight on all links must be at
least k−1, where k is the number of leaves. This means that there is no integrality gap for
the Partition LP on such instances. However, the Partition LP is not integral for NC-TAP.
It cannot be, since we know NC-TAP is NP-hard [10]. We will show in Section 4.6 that
NC-TAP is NP-hard even in some specific special cases, and in Section 4.7 we will show
that the Partition LP has an integrality gap of at least 4

3
.
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Chapter 2

2-Approximation via Primal-Dual

2.1 Introduction

In this chapter, we present an algorithm due to Ravi and Williamson [18], which they
call AUGMENT, that returns a solution F to a given instance of NC-TAP such that
c(F ) ≤ 2 ·OPT where OPT is the minimum cost of all solutions of the given instance. The
algorithm Ravi and Williamson created is actually a subroutine of an algorithm that solves
a slightly more general problem than NC-TAP, which they call the {0, 1, 2}-Survivable
Network Design Problem. In particular, when they use AUGMENT, the given set of edges
that they are augmenting need not form a spanning tree, and rather than a solution making
the graph 2-connected, a solution satisfies given connectivity requirements. Specifically, as
additional input, we are given integers rij ∈ {0, 1, 2} for each pair of vertices i, j ∈ V and
a solution must augment the given graph such that there are at least rij internally disjoint
paths between i and j. In our presentation of the algorithm, we assume that the set of
edges that we augment does form a spanning tree as this is all that is needed in the setting
of NC-TAP, and it simplifies many proofs. However, we keep the generalized connectivity
requirements, as this has some potential uses elsewhere in the study of NC-TAP.

We reiterate some notation which is used heavily throughout this chapter. Let G =
(V,E) be a graph. Let F ⊆ E and S ⊆ V . We define the vertex neighbourhood of S
with respect to F as ΓF (S) := {v ∈ V \ S : uv ∈ F for some u ∈ S}. Then we define
ζF (S) := V \ (S ∪ ΓF (S)).

Ravi’s and Williamson’s algorithm is a Primal-Dual algorithm, meaning that it is based
on a particular LP relaxation of NC-TAP and its dual LP. In particular, it is based on the
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Set-Pair LP for NC-TAP. This is sufficient for the goal of developing a factor 2 approxi-
mation algorithm but it does mean that the analysis is tight.

2.2 Equivalence of NC-TAP and AUGMENT

Ravi and Williamson, as a subroutine, describe a problem that they call AUGMENT. The
input to AUGMENT is a graph G = (V,E), a set of edges T ⊆ E, a cost ce for each edge
e ∈ L := E\T , and, for each pair of distinct vertices i, j a requirement rij ∈ {0, 1, 2}. They
then define an indicator function h : 2V → {0, 1} as follows. h(S) = 1 exactly when there
exists i ∈ S and j ∈ ζT (S) such that |ΓT (S)| ≤ rij − 1. A solution to AUGMENT is a set
of edges F ′ ⊆ L such that for every S ⊆ V such that h(S) = 1, then |δF ′(S : ζT (S))| ≥ 1.
They give an integer program, which they call (AUG) which captures AUGMENT.

(AUG) min
∑
e∈E\T

cexe

subject to ∑
e∈δL(S:ζT (S))

xe ≥ h(S) ∅ 6= S ( V

xe ∈ {0, 1} e ∈ L

We will show that the linear relaxation of the above integer program, when G = (V,E =
T ∪ L) and c ∈ RL

≥0 are an instance of the NC-TAP, and rij = 2 for every distinct pairs of
vertices i, j, is equivalent to the Set-Pair LP of that NC-TAP instance, which from Section
1.4 is

min
∑
l∈L

clxl

subject to

x(δL(S, ζT (S)) ≥ 1 ∀ non-leaf v, and ∀∅ 6= S ⊆ Comp(G− v),

S := ∪SS ′

xl ≥ 0 ∀l ∈ L
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Note that E \T = L. So we can show the equivalence by showing that h(S) = 1 exactly
when S is the non-exhaustive union of components of T −v for some non-leaf vertex v. Let
h(S) = 1. Thus there exists i ∈ S and j ∈ ζT (S) such that |ΓT (S)| ≤ 1. Note that since
T is a spanning tree of T , for any ∅ 6= S ( V we have |ΓT (S)| ≥ 1, so |ΓT (S)| = 1. Say
ΓT (S) = {v}. Note that S has no neighbours in T − v and thus S must be the non-empty
union of some components of T − v and it cannot be the union of all of them since ζT (S)
is non-empty.

Now suppose S is the nonempty, non-exhaustive union of components of T −v for some
non-leaf v. Since S is the union of components of T−v it must be that ΓT (S) = {v}. Thus S
and ζT (S) are both non-empty. Let i ∈ S and j ∈ ζT (S). Since |ΓT (S)| = 1 ≤ 2−1 = rij−1,
we have that h(S) = 1.

When we allow for arbitrary connectivity requirements, all that can no longer be said
is that all nonempty, non-exhaustive unions of components of T − v are violated sets.
However, we do still have that all violated sets must be such a set.

We will spend the rest of this chapter proving the following.

Theorem 3. [18] There exists a polynomial time algorithm that, given an instance of NC-
TAP, G = (V, T ∪ L) with cost vector c, computes an NC-TAP solution F ′ ⊆ L such that
c(F ) is at most twice the objective value of an optimal solution to the Set-Pair LP.

2.3 Uncrossing Violated Sets

Before describing the algorithm, we first give a few vital definitions and a key lemma from
[18].

Definition 2. A vertex set ∅ 6= S ( V is violated with respect to a set of links F ⊆ L if
h(S) = 1 and δF (S : ζT (S)) = ∅.

As a consequence, we have that, for any violated set S, ΓT∪F (S) = ΓT (S), and by
extension ζT∪F (S) = ζT (S). Also, |ΓT (S)| = 1. Also, for a violated set S, ζT (ζT (S)) = S.
Both of these are true for any set where |ΓT (S)| = 1 and δF (S : ζT (S)) = ∅, but we will
only need these facts for violated sets.

Definition 3. A vertex set ∅ 6= S ( V is active with respect to a set of links F ⊆ L if it is
violated with respect to F and no proper subset of S is violated with respect to F . That
is an active set is an inclusion-wise minimal violated set.
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S

C

Figure 2.1: S and C are examples of violated sets and C is also active.

An illustration of violated and active sets is given Figure 2.1. As will always be the
case in this thesis, solid lines are tree edges and dotted lines are links in F .

Definition 4. We say two sets, A and B, cross if A\B,B \A, and A∩B are all nonempty.

Active sets play a vital role in the algorithm and its analysis. The next lemma is useful
in its own right, but also has the important corollary that active sets, with respect to a
fixed F ⊆ L, are disjoint.

Lemma 4. [18, Lemma 3.6] Let F ⊆ L. If A and B are violated sets with respect to F
and they cross, then either A \ (B ∪ ΓT (B)) and B \ (A ∪ ΓT (A)) are violated, A ∩B and
A ∪B are violated, or A \B and B \ A are violated, with respect to F .

In the event that A \ (B ∪ ΓT (B)) and B \ (A∪ ΓT (A)) are violated, we will call A and
B type I crossing violated sets. Otherwise we call them type II crossing violated sets.

Proof. Let ΓT (A) = {γA} and ΓT (B) = {γB}. Because A and B cross, we know there
exists u ∈ A ∩ B and v ∈ B \ A. Consider the unique u, v-tree path. Specifically consider
the first vertex on this path which is not in A, starting from u. This vertex is a neighbour
of A and thus must be γA. We now consider two cases.

Case 1: γA ∈ B \ A

Figure 2.2 illustrates the structure arising from this case, which turns out to be type I
crossing violated sets. Recall from section 2 that we know that A is a union of components
of T − γA. In particular, this means that there is a path from A \B to γA. This path must
be entirely withing A (except for γA) and there is a point where it crosses from A\B to B.
Thus γB ∈ A\B. Hence the only neighbour of A is in B\A and the only neighbour of B is in
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γAγB

A B

Figure 2.2: Type I Crossing Sets (arising from Case 1 of Lemma 4)

A\B. But the graph is connected. Thus we must have that A∪B = V . In particular, since
A is violated, there exists iA ∈ A = ζT (B \ (A ∪ ΓT (A)) and jA ∈ ζT (A) = B \ (A ∪ ΓT (A)
such that riAjA = 2. Thus, B \ (A∪ ΓT (A) is violated. Similarly, since B is violated, there
exists iB ∈ B = ζT (A\ (B∪ΓT (B)) and jB ∈ ζT (B) = A\ (B∪ΓT (B) such that riBjB = 2.
Thus, A \ (B ∪ ΓT (B) is violated.

Case 2: γA 6∈ A ∪B

γA = γB

A B

Figure 2.3: Type II Crossing Sets (arising from Case 2 of Lemma 4)

Figure 2.3 illustrates the structure arising from this case, which turns out to be type
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II crossing violated sets. Consider a path from A \ B to B \ A. This must use γA and
thus this path leaves A ∪ B before entering B. Specifically, the vertex it uses right before
entering A ∪ B must be γB. However, any vertex in ΓT (A ∩ B) would be either in ΓT (A)
or ΓT (B) and thus must be either γA or γB. However, a vertex in ΓT (A ∩B) which is not
in A ∪ B would be in both ΓT (A) and ΓT (B). Since, γA, γB 6∈ A ∪ B, we must have that
ΓT (A) = ΓT (B) = ΓT (A ∪B).

Furthermore, A \ B, B \ A, and A ∩ B are all the nonempty, non-exhaustive union
of components of T − γA = T − γB, and thus all are potentially violated sets. Whether
or not they are violated depends on if there is a pair of vertices that are required to be
2-connected such that one is inside the set, and the other is outside of the set and its
neighbour set. Similarly, A ∪ B is also potentially violated, but this requires that there
exist vertices outside of A ∪B, which there may not.

Subcase 2.1: There exists i ∈ A ∩ B ⊆ A ∪ B and j ∈ ζT (A ∪ B) ⊆ ζT (A ∩ B) such that
rij = 2.

Then A ∩B and A ∪B are violated.

Subcase 2.2: There exists i ∈ A\B ⊆ ζT (B\A) and j ∈ B\A ⊆ ζT (A\B) such that rij = 2.

Then A \B and B \ A are violated.

Subcase 2.3: The previous cases do not apply.

There must exist iA ∈ A and jA ∈ ζT (A) such that riAjA = 2. Similarly there exists
iB ∈ B and jB ∈ ζT (B) such that riBjB = 2. One of the following must happen:

(1) iA ∈ A \ B ⊆ A ∪ B and jA ∈ ζT (A ∪ B) ⊆ ζT (A \ B). So A \ B and A ∪ B are
violated.

(2) iA ∈ A ∩ B ⊆ ζT (B \ A) and jA ∈ B \ A ⊆ ζT (A ∩ B). So B \ A and A ∩ B are
violated.

Similarly, one of the following must happen:

(i) iB ∈ B \ A ⊆ A ∪ B and jB ∈ ζT (A ∪ B) ⊆ ζT (B \ A). So B \ A and A ∪ B are
violated.
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(ii) iB ∈ A ∩ B ⊆ ζT (A \ B) and jB ∈ A \ B ⊆ ζT (A ∩ B). So A \ B and A ∩ B are
violated.

If (1) and (i) are true or (2) and (ii) are true, then A \B and B \A are violated. If (1)
and (ii) are true, or (2) and (i) are true, then A ∩B and A ∪B are violated.

2.4 Computing All Active Sets

We mentioned in the previous section that active sets are vital to the algorithm, which we
will present in the next section. In this section, we prove that given an instance of NC-TAP
and a set F ⊆ L, we can compute the collection of all active sets with respect to F , which
we denote as C, in polynomial time. The rest of the algorithm will be straightforward and
thus one can easily see it runs in polynomial time, as desired.

We will make use of the following lemma, which is a standard application of Network
Flow Theory.

Lemma 5. [20, ] Let G = (V,E) be an undirected graph and s, t ∈ V a pair of distinct,
non-adjacent vertices. One can compute the inclusion-wise minimal set C such that ΓG(C)
is a minimum size s, t-separating set.

Proof. Construct a directed graph D = (N,A) as follows. For each v ∈ V there are two
vertices vin, vout ∈ N and an arc (vin, vout) ∈ A of unit capacity. For each uv ∈ T ∪ F
there are two arcs (uout, vin), (vout, uin) ∈ A of infinite capacity. It is well known that the
maximum value of an sout− tin flow in D is equal to the number of internally disjoint s− t
paths in G. Furthermore, one can recover C from the residual directed graph of D with
respect to this maximum flow, which we will call D′. C will be the set of all vertices v ∈ V
such that vin and vout are both reachable from sout in D′, and ΓT∪F (C) will be the set of
vertices v ∈ V such that vin is reachable from sout in D′ but vout is not.

Lemma 6. [18, Theorem 5.1] For any set F ⊆ L one can compute the set of all active
sets with respect to F in polynomial time.

Proof. Suppose C is an active set with respect to F . The it must be the case that there is
some s ∈ C and t ∈ ζT (C) such that ΓT∪F (C) = ΓT (C) = {x}. We can determine C using
the above lemma with the graph (V, T ∪ F ).

Thus we can compute C as follows. Start with C = ∅. For each pair s, t ∈ V , compute
C and ΓT∪F (C) in polynomial time, adding C to C if and only if |ΓT∪F (C)| = 1.
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2.5 Description of the Algorithm

The AUGMENT algorithm described by Ravi and Williamson is adapted from the Primal-
Dual algorithm given by Williamson, Goemans, Mihail, and Vazirani [21]. As such the
algorithm has two stages. In the first stage, which is the loop from lines 4 to 8, we start
with F = ∅ and through a sequence of iterations, we will add edges to F until it is a
feasible solution to the instance of AUGMENT. In each iteration, the dual variable of all
of the active sets is increased until a dual constraint becomes tight for some link l, at which
point l is added to F and the active sets are recomputed. The second stage, which is the
loop on lines 10 to 14, considers all edges l in F , ordered in the reverse of the order they
were added to F in the first stage, and if the edge being considered is redundant for the
solution, that is is F \ {l} is still a feasible solution to the instance, it is removed from F .

Below is the Dual of the LP (AUG), and the full pseudo-code for the AUGMENT
algorithm is given in Algorithm 1.

max
∑
∅6=S(V

h(S)yS

subject to ∑
S:l∈δL(S:ζT (S))

yS ≤ cl ∀l ∈ L

y ≥ 0
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Algorithm 1: AUGMENT

// INITIALIZATION

1 yS ← 0 for all ∅ 6= S ( V
2 F ← ∅
3 C ← active sets with respect to F
// STAGE 1

4 while |C| > 0 do
5 Increase yC for all C ∈ C until the constraint

∑
S:l∈δL(S:ζT (S)) yS ≤ cl becomes

tight for some link l ∈ L
6 F ← F ∪ {l}
7 Update C with respect to new F

8 end
9 F ′ ← F
// STAGE 2

10 for each l ∈ F ′ in the reverse order they were added to F do
11 if F ′ \ {l} is feasible then
12 F ′ ← F ′ \ {l}
13 end

14 end
15 return F ′

One might notice that initializing yS ← 0 for all ∅ 6= S ( V would take exponential
time. However, only the variables corresponding to sets that are at some point active are
ever used, and as we saw in the previous section, there is a polynomial number of these.

2.6 Approximation Guarantee of the Algorithm

We wish to show that the algorithm obtains a 2-approximation. Let x∗ be an optimal
solution to (AUG). In particular, we will show, using LP duality, that∑

l∈F ′
cl ≤ 2

∑
∅6=S(V

h(S)yS ≤ 2
∑
l∈L

clx
∗
l

To do this, notice that for any l ∈ F ′, we have cl =
∑

S:l∈δF ′ (S:ζT (S)) yS and yS > 0 only if

h(S) = 1. Thus we can write the inequality we wish to show as∑
l∈F ′

∑
S:l∈δF ′ (S:ζT (S))

yS ≤ 2
∑
∅6=S(V

yS
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The left-hand side can be re-indexed as∑
∅6=S(V

yS · |δF ′(S : ζT (S))| ≤ 2
∑
∅6=S(V

yS

Note that this inequality is true when the algorithm starts, since yS = 0 for all S ⊆ V .
We will show by induction that this inequality holds after any iteration of the algorithm.
Fix some iteration of the algorithm, and assume that at the start of this iteration the
inequality holds. Then in the execution of this iteration, the left-hand side of the inequality
increases by ε ·

∑
C∈C |δF ′(C : ζT (C))|, while the right-hand side increases by 2ε|C|. Recall

that F is the set of edges chosen by the algorithm up to, but not including the current
iteration and C is the set of active sets with respect to F . It suffices to show∑

C∈C

|δF ′(C : ζT (C))| ≤ 2|C|

To do this, we will prove the following technical lemma.

Lemma 7. [19] For all l ∈
⋃
C∈C δF ′(C : ζT∪F (C)) there exists a witness set Sl ( V such

that:

(1) δF ′(Sl : ζT∪F (Sl)) = {l}

(2) Sl is violated with respect to F

(3) For each C ∈ C either C ⊆ Sl or C ∩ Sl = ∅

(4) The collection of sets L := {Sl : l ∈
⋃
C∈C δF ′(C : ζT∪F (C))} ∪ {V } is laminar

(5) If l ∈
⋃
C∈C δF ′(C, ζT (C)), Sl is the witness set for l and S ′ is the smallest set in L

properly containing Sl, then the smallest set in L that contains the active set C is
either Sl or S ′.

Any collection of sets satisfying (1), (2), and (3) we call a witness family. If we have
a laminar witness family, meaning that no two sets in the family cross, then that family
together with V forms a satisfactory L. We will abuse terminology and also call L, with
V , a witness family. Given a laminar witness family L, we can build a tree, denoted H,
that captures the structure of L in the canonical way: V (H) := L, we consider H rooted
at the vertex V and for every other vertex S ∈ L, the parent of S is the smallest set
S ′ ∈ L that properly contains S. Not that for any link l ∈

⋃
C∈C δF ′(C : ζT∪F (C)) there is
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a unique corresponding set Sl ∈ L \ {V } and thus a unique corresponding edge in H, the
edge {Sl, S ′} where S ′ is the parent of Sl.

We will now colour the tree H. The default colour for a vertex S ∈ L will be blue. For
each active set C, we colour the smallest set S ∈ L that contains C red. We say that C is
associated with S. Let Hr be the set of vertices of H coloured red. For each S ∈ Hr let
C(S) be the set of active sets associated with S.

Now consider any red vertex S. Now consider any active set C associated with S and
any l ∈ δF ′(C : ζT (C)). Let {Sl, S ′} be the edge in H corresponding to l. Then C is
associated with either Sl or S ′ by property (4) of lemma 7. But C is associated with S, so
S is one of the endpoints of this edge. Thus

∑
C∈C(S) |δF ′(C : ζT (C))| is less than or equal

to the degree in H of S, which we denote deg(S). Further, since each C ∈ C is associated
with exactly one S ∈ Hr we can say

∑
C∈C |δF ′(C : ζT (C))| =

∑
S∈Hr

∑
C∈C(S) |δF ′(C :

ζT (C))| ≤
∑

S∈Hr deg(S).

Note that any inclusion-wise minimal witness set S is violated, and thus must contain
an active set C, which would necessarily be associated with S. Thus such sets are coloured
red. Furthermore, the leaves of H are the inclusion-wise minimal witness sets, with the
possible exception of V which is not a witness set, but can be a leaf. Thus V is the only
vertex of H that can possibly be a blue leaf.

Finally this allows us to conclude,∑
C∈C

|δF ′(C : ζT (C))| ≤
∑
S∈Hr

deg(S)

=
∑
S∈H

deg(S)−
∑

S∈H\Hr

deg(S)

= 2(|V (H)| − 1)−
∑

S∈H\Hr

deg(S)

≤ 2(|V (H)| − 1)− 2(|V (H)| − |Hr| − 1)− 1

= 2|Hr| − 1

< 2|C|

where the third line holds because H is a tree, the fourth line holds because all but possibly
one blue vertex is not a leaf and thus has degree at least 2, and finally the last line holds
because each red vertex has at least one unique active set associated with it.

Thus, in order to prove Theorem 3, it suffices to prove Lemma 7.
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2.7 Existence of a Witness Family

Fix an iteration in the algorithm. Let C be the set of active sets at the start of this iteration.
Let F be the set of links chosen by the algorithm up to, but not including, this iteration.
Recall that F ′ is the set of links returned by the algorithm.

We will prove Lemma 7 by proving a short sequence of lemmas, getting increasingly
stronger. Here we simply prove that a witness family exists.

Lemma 8. [18, Lemma 4.5] For all l ∈
⋃
C∈C δF ′(C : ζT∪F (C)) there exists a witness set

Sl ( V such that:

(1) δF ′(Sl : ζT∪F (Sl)) = {l}

(2) Sl is violated with respect to F

(3) For each C ∈ C either C ⊆ Sl or C ∩ Sl = ∅

That is, there exists a witness family.

Proof. Let l ∈
⋃
C∈C δF ′(C : ζT∪F (C)). Specifically, l ∈ F ′ and so the algorithm considered

F ′ \ {l} and found it to not be a feasible solution. Let S be the violated set with respect
to F ′ \ {l} the algorithm found. So there is no other element f ∈ F ′ \ {l} such that
f ∈ δF ′(S : ζT∪F (S)). So S satisfies (1). Note that all edges of F were added before l and
so when considering l in the edge removal stage, no edge of F has been removed. Thus
there is no edge f ∈ F such that f ∈ δF (S : ζT (S)) so S is violated with respect to F .
Since S is violated with respect to F , and each C ∈ C is active with respect to F , we get
property (3).

Lemma 9. [18, Lemma 4.13] There exists a laminar witness family.

Proof. From Lemma 8, we know that a witness family exists. We will form a laminar
witness family by uncrossing any crossing pair of witness sets. Let A and B be crossing
sets in the witness family. By Lemma 4 one if the following pairs are violated with respect
to F : A \ (B ∪ ΓT (B)) and B \ (A ∪ ΓT (A)), A \ B and B \ A, or A ∩ B and A ∪ B.
Replace A and B in the witness family with the appropriate pair of sets. We will show
that this is still a witness family, and to show that we can obtain a laminar witness family,
we show that performing this substitution decreases the number of pairs of crossing sets in
the witness family. Note that A and B crossed, but the sets we replace them with do not.

Note that properties (2) and (3) still hold. Suppose A was the witness set for la and B
for lb. We now break into cases depending on what type of crossing sets A and B were.
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Case 1: A and B are type I.

γAγB

A B

la

lb

Figure 2.4: Type I Crossing Sets (arising from Case 1 of Lemma 9). Notice that one
endpoint of la must be within B \ (A ∪ ΓT (A)) and one endpoint of lb must be within
A \ (B ∪ ΓT (B)).

Figure 2.4 illustrates the structure arising from this case. We know that V = A ∪ B
and thus ζT (A) = B \ (A ∪ ΓT (A)). And since A is violated ζT (ζT (A)) = A. Thus
δF ′(B\(A∪ΓT (A)) : ζT (B\(A∪ΓT (A)))) = δF ′(ζT (A) : ζT (ζT (A))) = δF ′(ζT (A) : A) = {la}.
Similarly δF ′(A\ (B∪ΓT (B)) : ζT (A\ (B∪ΓT (B)))) = {lb}. Hence, property (1) still holds
and thus we still have a witness family.

We now show that the number of pairs of crossing sets in our family has decreased.

First, suppose X is a set in the witness family which crosses both A \ (B ∪ Γ(B)) and
B \ (A ∪ Γ(A)). Then X must have an element in A \B and another one in B \ A. So X
crosses both A and B and thus uncrossing A and B has decreased the number of crossing
pairs.

Now suppose X is a set in our witness family which crosses A \ (B ∪ Γ(B)), but does
not cross A. Thus there must be an element of X in A \ (B ∪ ΓT (B)) ⊆ A and an element
of X not in A \ (B ∪ ΓT (B)). However, this second element must still be within A and
thus must be in A ∩ B or ΓT (B). If this second element is in A ∩ B then X crosses B.
Suppose this second element is in ΓT (B). Recall that there is a single element of ΓT (B),
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γA = γB

A B

la

lb

Figure 2.5: Type II Crossing Sets (arising from Case 2 of Lemma 9). Notice that one
endpoint of la must be within B \ A and one endpoint of lb must be within A \B.

call it γB. Consider the subtree rooted at γB. Note that since X contains b which has a
neighbour in B which X cannot contain, in order for X to be violated, it must contain all
of the subtree rooted at γB. We will show that this subtree is all of A \ B, and thus that
A \ (B ∪ ΓT (B)) ( X and thus doesn’t cross X. Suppose there is a component of A \ B
that is not the subtree rooted at γB. Call the vertex set of this component X ′. Since (V, T )
must be connected, ΓT (X ′) is nonempty. But, as we saw earlier, A ∪ B = V and ΓT (X ′)
cannot intersect A \B. Thus ΓT (X ′) must be contained in B. But that means there is at
least one vertex of X ′ in ΓT (B) a contradiction.

A symmetric argument shows that we cannot have a set X in our witness family which
crosses B \ (A ∪ Γ(A)), but does not cross B.

Case 2: A and B are type II.

Figure 2.5 illustrates the structure arising from this case. Recall that in this case
ΓT (A) = ΓT (B) = ΓT (A \B) = ΓT (B \ A) = ΓT (A ∩B) = ΓT (A ∪B) = {γ}.

First suppose that A and B are replaced with A\B and B \A. Since these are violated,
they must be covered by at least one link in F ′. Let uv ∈ δF ′(A \ B : ζT (A \ B)) with
u ∈ A\B. Note that ζT (A\B) = B∪(V \(A∪B∪{γ})). If v ∈ B then, since A\B ⊆ ζT (B)
we have that uv ∈ δF ′(B : ζT (B)) and thus uv = lb. If v ∈ V \ (A ∪ B ∪ {γ}) ⊆ ζT (A)
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then uv ∈ δF ′(A : ζT (A)) then uv = la. A similar argument shows that if uv ∈ δF ′(B \ A :
ζT (B \ A)) then uv = la or uv = lb.

Thus δF ′(A \ B : ζT (A \ B)) ∪ δF ′(B \ A : ζT (B \ A)) ⊆ {ea, eb}. It suffices to show
that we cannot have la or lb in both δF ′(A \ B : ζT (A \ B)) and δF ′(B \ A : ζT (B \ A)).
This is true because a link in both of these cuts has an endpoint in A \B and the other in
B \ A. But then this link would be in both δF ′(B : ζT (B)) and δF ′(A : ζT (A)), which is a
contradiction.

Again, we now show that the number of pairs of crossing sets in our family has decreased.
Suppose X crosses A \ B but not A. Then we have that ∅ 6= (A \ B) ∩ X ⊆ A ∩ X and
∅ 6= (A \ B) \ X ⊆ A \ X. So it must be that X \ A = ∅, that is X ⊆ A. This tells us
that X does not cross B \A. Also, X \ (A \B) 6= ∅ so X intersects A ∩B. Thus we have
that X crosses B. Similarly, if X crosses B \ A but not B then it cannot cross A \B and
necessarily does cross A.

Now suppose that A and B are replaced with A ∩ B and A ∪ B. Again we see that
we cannot have an link in both δF ′(A ∩ B : ζT (A ∩ B)) and δF ′(A ∪ B : ζT (A ∪ B)). Such
a link has an endpoint in A ∩ B and one in ζT (A ∪ B). But ζT (A ∪ B) ⊆ ζT (A) and
ζT (A ∪ B) ⊆ ζT (B). Thus this link would be in both δF ′(A : ζT (A)) and δF ′(B : ζT (B))
which is impossible because δF ′(A : ζT (A)) ∩ δF ′(B : ζT (B)) = {la} ∩ {lb} = ∅. However,
since A ∩B and A ∪B are violated, they must be covered by at least one link in F ′.

Let uv ∈ δF ′(A∩B : ζT (A∩B)) with u ∈ A∩B. Note that ζT (A∩B) = (A \B)∪ (B \
A)∪ζT (A∪B). As stated above, It is impossible that v ∈ ζT (A∪B). If v ∈ A\B ⊆ ζT (B)
then uv ∈ δF ′(B : ζT (B)) = {lb} and thus uv = lb. Similarly, if v ∈ B \ A we get that
uv = la.

Now let uv ∈ δF ′(A∪B : ζT (A∪B)) with u ∈ ζT (A∪B). Note that A∪B = (A \B)∪
(B \A)∪ (A∩B) but v cannot be in A∩B. If v ∈ A \B then uv ∈ δF ′(A : ζT (A)) = {la}
and if v ∈ B \A then uv ∈ δF ′(B : ζT (B)) = {lb}. So δF ′(A∪B : ζT (A∪B))∪ δF ′(A∩B :
ζT (A ∩ B)) ⊆ {la, lb} but neither la nor lb can be in both cuts and thus one cut must
contian la and the other lb.

Again, we now show that the number of pairs of crossing sets in our family has decreased.
Suppose X crosses A ∩ B but not A. Then we have that ∅ 6= (A ∩ B) ∩X ⊆ A ∩X and
∅ 6= (A \ B) \ X ⊆ A \ X. So it must be that X \ A = ∅, that is X ⊆ A. This tells us
that X does not cross A ∪B. But X intersects A ∩B and thus X crosses B. If X crosses
A∪B but not A it must be the case that A ⊆ X or A∩X = ∅. If A ⊆ X then A∪B ⊆ X
and so A ∩ B and X do not cross. Also, B ∩X ⊇ B ∩ A 6= ∅, X \ B ⊆ X \ (A ∪ B) 6= ∅
and we must have that B \ X 6= ∅ else A ∪ B ⊆ X. Thus B crosses X. If A ∩ X = ∅

24



then (A ∩B) ∩X = ∅ so A ∩B and X do not cross. Also, we must have that B ∩X 6= ∅,
B \X ⊆ A ∩B 6= ∅ and X \B ⊆ A \ (A ∪B) 6= ∅ and so B and X cross.

We are now ready to prove Lemma 7, restated here, with slightly different terminology.

Lemma. 7. There exists a laminar witness family such that, if l ∈
⋃
C∈C δF ′(C, ζT (C)), and

(Sl, S
′) is the edge in H defined by l, then the active set C crossed be l must be associated

with either Sl or S ′.

Proof. We know a laminar witness family L exists. Suppose l = uv ∈ δF ′(C, ζT (C)) for
some C ∈ C, such that the edge in H corresponding to l is (Sl, S

′), but C is not associated
with either Sl or S ′.

Case 1: C ∩ S ′ = ∅

In order for S ′ to not be a witness of l we must have that u ∈ ΓT (S ′). Let v′ ∈ S ′ be
the neighbour of u in S ′. Let i ∈ S ′, j ∈ ζT (S ′) be a pair of veretices such that rij = 2.
Suppose j 6∈ C. The tree path between i and j must contain a vertex in ΓT (S ′) and since
S ′ is violated this must be u. However, since the path enters C and we know it must also
leave C there must be a vertex ΓT (C) other than u, a contradiction. This is shown in
Figure 2.6. If j ∈ C then ζT (S ′) crosses C and is also violated, contradicting that C is an
active set. This is shown in Figure 2.7 Thus this case cannot happen.

Figure 2.6: Case 1 of Lemma 7, j 6∈ C

Sl

S ′

C

uv

i j

l

Case 2: C ⊆ X ( Se for some witness set X

As is illustrated in Figure 2.8, such an X is also a witness set for l so this case cannot
happen.
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Figure 2.7: Case 1 of Lemma 7, j ∈ C

Sl

S ′

C

uv

i j

l

ζT (S ′)

Figure 2.8: Case 2 of Lemma 7

C

X

Sl

S ′

u

vl

Case 3: C ⊆ X ( S ′ for some witness set X

In order for X to not be a witness set for l we must have v ∈ ΓT (X). Say u′ ∈ X\C such
that u′v ∈ T . In order for X and Se to both be violated, u′ must be the unique neighbour
of Se and v the unique neighbour of X. Thus u′ and v are cut-nodes. Specifically, deleting
either should disconnect some i, j such that rij = 2. without loss of generality, let i ∈ X
and j ∈ Se. Note that we don’t add more edges crossing δ(Sl, ζT (Sl), except for l. So to
stop v from being a cut vertex we must add a link f crossing δ(Sl,ΓT (Sl)) = δ(Sl, {u′}).
That is, one endpoint of f is u′ and the other is in Sl \ {v}. Thus f is witnessed by X.
The edges that are witnessed are, by definition, crossing the boundary of a currently active
set. So one endpoint of f is in an active set C ′. Suppose that u′ ∈ C ′, which is illustrated
in Figure 2.9. Then we would have C ′ ( X. As a consequence, u′v would be an edge in
δ′F (C ′, ζT (C ′)) and u′ has a path to C so an edge of that path would be a second edge
in δ′F (C ′, ζT (C ′)). This would contradict that C ′ is active. So it must be that the other
endpoint of f is in C ′ and hence C ′ ⊆ Se, which is illustrated in Figure 2.10.
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Figure 2.9: Case 3 of Lemma 7, u′ ∈ C ′

X
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l
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It cannot be the case that C ′ ⊆ X ′ ( Se for some X ′ in the laminar witness family.
Such a set would be either a witness set for l or a witness set for f . So C ′ is associated
with Sl.

If we replace Sl with X − u′ (which is a witness for l) and replace X with Sl − v (a
witness for f), C will be associated with X − u′ and C ′ with Sl − u.

Figure 2.10: Case 3 of Lemma 7, u′ 6∈ C ′

X C
Sl

C ′

S ′

u
v

u′i j

l

f

Now that we have proven Lemma 7 we have also proven Theorem 3.
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Chapter 3

Beating Factor 2 in the Unweighted
Case

3.1 Introduction

As previously mentioned, NC-TAP has not received much study since its inception by
Frederickson and Jájá in their 1981 paper [10]. Algorithms, such as the one due to Ravi
and Williamson, presented in the previous chapter, offer more robustness and generality
than Frederickson and Jájá’s algorithm. However, these were not designed to specifically
solve NC-TAP, and in terms of approximation guarantee, do not outperform Frederickson
and Jájá’s algorithm. To the best of our knowledge, no improvements were made, even
for special cases of NC-TAP, until Nutov gave an algorithm for the unweighted case of
NC-TAP in [17] which has a factor (1.916 + ε) approximation guarantee.

But even this is really just another case of a more general algorithm being applied
to NC-TAP. In 2013, Byrka, Grandoni, Rothvoss, and Sanita [3] developed an iterative,
randomized rounding algorithm for finding approximately optimal solutions to the Steiner
Tree problem. It is known that many combinatorial optimization problems reduce to the
Steiner Tree problem. As such, in 2020, Byrka, Grandoni, and Ameli used this Steiner
Tree algorithm to develop an algorithm for the Cactus Augmentation Problem [2]. Soon
after, Nutov showed in [17] that the techniques in [2], which leverage the algorithm in [3],
could be used to solve several related SNDPs, including NC-TAP.

In this chapter, we present these techniques of [17] and [2], which are the only improve-
ments in NC-TAP for almost 40 years. In particular, we will prove the following.
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Theorem 10. [17, Theorem 1] There is a polytime algorithm for the unweighted NC-TAP
that returns a set of links F such that |F | ≤ (4 ln 2− 967

1120
+ ε)|F ∗| where F ∗ is an optimal

solution to the same NC-TAP instance.

3.2 Defining Incidence Graphs

Let G = (V,E = T ∪ L) be an (unweighted) instance of NC-TAP. Remember that T is a
spanning tree of G and L is the set of links we can use to augment T to be 2-connected.
Also recall that Puv is the unique tree path in T between u and v. We use |Puv| to denote
the number of edges in this path. Let F ⊆ L. It will be useful to think of F as an NC-TAP
solution.

The goal is to transform an instance of NC-TAP to a special instance of a (node
weighted) Steiner Tree Problem. To this end we will define a special auxiliary graph which
captures the structure of the NC-TAP instance. To keep the definitions clear, it is useful
to construct this auxiliary graph in stages. The following definitions are from [17]

Definition 5. The (F, T )-incidence graph has node set F ∪T and edge set {le : f ∈ L, e ∈
T, e ∈ Pl}.

In the context of a Steiner Tree Problem, we will always consider the nodes in T to be
the terminals and the nodes in L to be the Steiner nodes.

Definition 6. The short-cut (F, T )-incidence graph is obtained from the (F, T )-incidence
graph by adding edges such that for every terminal node e ∈ T , the neighbours of e form
a clique.

Definition 7. The reduced (F, T )-incidence graph is obtained from the short-cut (F, T )-
incidence graph by removing any terminals e ∈ T that are not leaf edges in (V, T ). We let
R denote the set of remaining terminals. So the node set of the reduced (F, T )-incidence
graph is F ∪ R, and in the context of the Steiner Tree Problem, R is the set of terminals
and F is the set of Steiner nodes.

The figure 3.1 from [17] shows an NC-TAP instance, and the corresponding (F, T )-
incidence graph and reduced (F, T )-incidence graph.

Normally, when talking about connectivity, we are concerned with the number of dis-
joint paths between two vertices. However, no elements of our auxiliary graphs correspond
to vertices in the original graph. To remedy this, we make the following definition.
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Figure 3.1: [17] (a) Shows an NC-TAP instance. (b) is the (F, T ) incidence graph and (c)
is the reduced (F, T )-incidence graph.

Definition 8. Let H be the (F, T )-incidence graph of G and let s, t be distinct vertices in
V . Let es and et be the edges in Pst incident to s and t, respectively. We say that s and t
are H-reachable if there is an es, et-path in H.

3.3 Reduction from NC-TAP to Steiner Tree

Now we present the lemma that is the main result of Nutov’s paper, which shows that the
Steiner Tree Problem on the auxiliary graphs we have defined is equivalent to the NC-TAP
on the original graph. The substance of this reduction is the following lemma.

Lemma 11. [17, Lemma 3] Let s, t be a pair of distinct vertices in V . There are two
internally disjoint s, t-paths in G′ = (V, T ∪ F ) if and only if s and t are H-reachable.

Before proving this, we show how it can be used to prove what we really want to show.

Lemma 12. [17, Lemma 3] G′ = (V, T ∪ F ) is 2-connected if and only if the reduced
(F, T )-incidence graph HR has a path between every two terminals.

Proof. We know G′ is 2-connected if and only if there are 2 internally disjoint paths between
every pair s, t of leaves of (V, T ). This is true, by Lemma 11, if and only if s and t are
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H-reachable. Since s and t are leaves, es and et are leaf edges and thus in R. We claim
that an es, et-path exists in H if and only if an es, et-path exists in HR.

Suppose that an es, et-path exists in H. For any node of this path which corresponds
to a non-leaf edge e in T , note that e is not an end node of this path. Thus there is a node
before and after it in the path. Call these l1 and l2 respectively. By the definition of the
short-cut (F, T )-incidence graph, an edge is added between l1 and l2. Thus we can see that
in the short-cut incidence graph, there is an es, et-path that is nearly identical to the one
in H except that it skips any non-leaf terminals. This will also be an es, et-path in HR.

Now suppose that an es, et-path exists in HR. The only edges that this may use that
do not exist in H are edges that go between nodes corresponding to links. Let l1l2 be such
an edge. Since l1l2 was added when constructing the short-cut (F, T )-incidence graph, it
must be the case that there exists a terminal e in H that is adjacent to both. Thus we can
replace the edge l1l2 with the path l1e, el2. Doing this for all such edges will produce an
es, et-walk in H, which guarantees the existence of an es, et-path in H.

The proof of Lemma 11 is a proof by induction. Since each part is non-trivial, for the
sake of clarity, we first prove a lemma which captures the inductive step.

Lemma 13. [17, Lemma 5] If |Pst| ≥ 3 and the last two edges of Pst are uv and vt = et
then

(i) If there are two internally disjoint paths between s and t in G′ then there are two
internally disjoint paths between s and v and between u and t in G′.

(ii) If s and v are H-reachable and u and t are H-reachable, then s and t are H-reachable.

(iii) If s and t are H-reachable, then s and v are H-reachable and u and t are H-reachable.

Proof. We prove the three parts in order.

Let C be the cycle in G′ formed by the two internally disjoint s, t-paths. If v ∈ C then
we are done. Otherwise, consider Psv (the unique s, v-tree path) and let a be the closest
node to v such that a is also in C. Note such a node exists since s is in C. Note that vt and
the s, t-path in C which does not use a, together make an s, v-path. also the subpath of
Psv from a to v and the s, a-path in C which does not use t is another s, v-path, internally
disjoint from the first. See Figure 3.2. One can apply the exact same analysis to find two
internally disjoint paths between t and u. This proves (i).
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v
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Figure 3.2: Existence of two internally disjoint s, v-paths given two internally disjoint
s, t-paths, for Lemma 13 part (i)

Note that s and v being H-reachable means that there is a path between es and uv
in H. Similarly, there is a path between uv and et in H. The union of these paths is an
es, et-path and hence, s and t are H-reachable, proving (ii).

Let Q be an es, et-path in H. It suffices to show that there exists f ∈ F that is a node
in the path Q which is adjacent to the node uv. This is because taking the subpath of Q
from es to f and then the edge from f to uv would be an es, uv path in H, which would
mean that s and v are H-reachable. Similarly, the subpath of Q from et to f and then
the edge from f to uv would be an et, uv path in H, which would mean that t and u are
H-reachable. Suppose no such f exists. Let Ts be the connected component of T \ {uv}
containing s and Tt the same for t.Then let Fs be the set of edges in F with both endpoints
in Ts. Similarly we define Ft. Note that no links can go from Ts to Tt as such a link would
be adjacent to uv in H. But then Fs and Ft partition F and no link in Fs is adjacent to
an edge in Tt in H. Similarly, no link in Ft is adjacent to an edge in Ts in H. Thus, there
is no path from es, which is in Ts, and et, which is in Tt, contradicting the existence of
Q.

Proof of Lemma 11. Fix a pair s, t of leaves of (V, T ) We prove the lemma by induction
on |Pst|. When |Pst| = 1 we have that es = et and thus s and t are trivially H-reachable.

We now show that Lemma 11 is true if |Pst| = 2. Let s, v, t be the nodes of Pst.

First suppose that there are two internally disjoint s, t-paths in G′. Thus there is an
s, t-path P ′ in G′ − v. Consider the sequence of components of T − v that are visited by
P ′. Call them B1, . . . , Bk. Also, let li be the link used by P ′ to go from Bi to Bi+1. Now
let ei be the edge with one endpoint in Bi and the other endpoint being v. It is clear that
this tree edge is on the tree path between the endpoints of any link which has exactly one
endpoint in Bi, in particular, it is on the tree path between the endpoints of li−1 and li.
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Thus e1, l1, e2, l2, . . . , ek−1, lk−1, ek is a path in H. Finally, since P ′ starts at s and ends at
t we know that e1 = es and ek = et so the above path is actually an es, et-path and thus s
and t are H-reachable.

We now show the induction to finish the proof. Suppose |Pst| ≥ 3 and uv and vt = et
are the last two edges of Pst.

If there are two internally disjoint paths between s and t in G′, then by Lemma 13(i)
there are two internally disjoint paths between s and v and between u and t. Then, by
induction, we know that s and v are H-reachable, and that u and t are H-reachable.
Finally by Lemma 13(ii), we have that s and t are H-reachable.

If s and t are H-reachable, then by Lemma 13(ii) we have that s and v are H-reachable,
and that u and t are H-reachable. The induction hypothesis guarantees that there are two
internally disjoint s, v-paths and two internally disjoint u, t-paths. To see that this guaran-
tees two internally disjoint s, t-paths, we apply Menger’s theorem. Consider removing any
vertex x ∈ V \ {s, t}. If x is not on s, t-tree path then clearly s and t are still connected.
If x is on the path, but is not v, then there is still a path from s to v. This path, plus
the edge vt is an s, t-path. Finally, if x = v then there is still a path from t to u and the
s, u-tree path is intact. The union of these two paths is an s, t-path.

Suppose we are given an unweighted instance of NC-TAP, G = (V, T ∪L). Consider the
reduced (L, T )-incidence graph HR. Let F ⊆ L be a feasible solution to the Node-weighted
Steiner Tree Problem on HR. That is H ′R := HR[T ∪ F ] has a path between every two
terminals. Note that H ′R is the reduced (F, T )-incidence graph. And thus, by Lemma 12,
G′ := (V, T ∪ F ) is 2-connected. Thus, we have successfully transformed an instance of
unweighted NC-TAP into the node-weighted Steiner Tree Problem. In total, our algorithm
will take a given instance of unweighted NC-TAP G = (V, T ∪ L), construct the reduced
(L, T )-incidence graph HR, use some algorithm to obtain a Steiner Tree ST , find F , the
set of Steiner nodes with non-zero degree in ST , and return F . So it suffices to develop an
algorithm for the node-weighted Steiner Tree Problem with an approximation guarantee
of better than 2.

It is important to note that the Steiner-Tree instance that we construct is not completely
general. It satisfies a few properties that we will take advantage of.

Proposition 14. [17] In HR, each Steiner node is adjacent to at most two terminals.

Proof. Note that the only terminals in HR correspond to leaf edges in T and Steiner nodes
correspond to links. A leaf edge is covered by a link if and only if the leaf is one of the
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endpoints of the link. Thus, in HR a Steiner node can only be adjacent to at most two
terminals, since the corresponding link only has two endpoints.

Proposition 15. [17] The neighbours of any terminal in HR are Steiner nodes and form
a clique.

Proof. We never add edges between terminals, so the neighbours of any terminal are Steiner
nodes. And we explicitly add edges so that the neighbours of any terminal form a clique.

Proposition 16. [2, Lemma 2] Given a feasible solution F to the Node-Weighted Steiner
Tree Problem on HR, there is a spanning tree in HR[T ∪ F ] where all the terminals are
leaves.

Proof. If every terminal e has one neighbour in F , we are done. Suppose e has two or more
neighbours in F . Call them l and l′. Since the neighbours of e form a clique, el, ll′, l′e is a
cycle. Thus HR[T ∪ F ]− l′e is still connected and thus contains a tree. Repeating we can
remove edges until e is a leaf.

3.4 Approximation Guarantee

Byrka, Grandoni, Rothvoss, and Sanita [3] developed an iterative, randomized rounding
algorithm for finding approximately optimal solutions to the Steiner Tree problem. How-
ever, taken as a black box, this algorithm is not good enough to prove an approximation
guarantee of less than 2. However, by tweaking their analysis to the special instances of
the Steiner Tree problem arising from unweighted NC-TAP instances, we can do better.
The analysis of this subroutine for the Steiner Tree problem bounds the cost of the solution
returned in terms of any feasible Steiner Tree ST ∗ rooted at an arbitrary node r. It also
relies on what the authors call a marking scheme where some child edge of each internal
node is marked. Every marking scheme defines a witness set W (e), and w(e) = |W (e)|, for
each edge e. W (e) is the set of all pairs of terminals {t′, t′′} such that the unique t′, t′′-path
in ST contains the edge e and precisely one unmarked edge. The following lemma, which
we use, is presented in [2], but follows from arguments of [3].

Lemma 17. [2, , Lemma 3] Let ST ∗ ⊆ E(HR) be a feasible Steiner Tree and ε > 0 a real
number. Consider any marking scheme of ST ∗. Then the Steiner-Tree subroutine runs in
nOε(1) time and the solution ST ⊆ E(HR) returned satisfies |ST | ≤ (1 + ε)

∑
e∈ST ∗ E[Hw(e)]

where Hi is the i-th harmonic number, ie Hi = 1 + 1
2

+ . . .+ 1
i
.
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Since we have a special instance of the Steiner Tree problem which possesses the afore-
mentioned properties, we can define a specific marking scheme, with a few properties that
will be exploited in the analysis. It will be important for our marking scheme and analysis
to define the following notation. For each Steiner node l ∈ F ∗ let d(l) be the number of
children of l, s(l) the number of children of l which are Steiner nodes, and t(l) the number
of children of l which are terminals. Note then that d(l) = s(l) + t(l).

By Proposition 16, we may assume that the optimal Steiner Tree ST ∗ has every terminal
being a leaf. Thus our marking scheme will only be defined for such trees. Root ST ∗ at
some Steiner node r which is adjacent to at least one terminal. For each Steiner node
l ∈ F ∗, if t(l) ≥ 1, select one terminal child of l uniformly at random and mark the edge
from l to this child. If t(l) = 0 select a Steiner child of l uniformly at random and mark
the edge from l to this child. Notice that we always favour marking edges that lead to
terminals, and that there is precisely one marked edge for each Steiner node, independent
of every random choice made by the marking scheme.

Proposition 18. [2] Conditioning on e being an unmarked edge, w(e) = 1 deterministi-
cally.

Proof. Every vertex is incident to at most two marked edges: one to a child and the other,
possibly, its parent. Thus, from any vertex v, once you fix a direction, descending or
ascending, their is a unique maximal path of marked edges, and this path continues to
either descend or ascend until its end. Descending will lead to a terminal, ascending will
always result in a Steiner node. Thus, very vertex v has a unique path of marked edges
ending in a terminal, and that path descends at every step, when considering v the starting
point.

Consider any pair of terminals {t′, t′′} in W (e). The tree path between t′ and t′′ must
use e and since e is unmarked, this can be the only unmarked edge in the path. If e = uv
the tree path between t′ and t′′ must be the union of the tree path between u and t′, the
tree path between v and t′′ and e. But there is a unique path of marked edges from u to
a terminal and likewise for v. Thus there is a unique pair of terminals that contain e and
no other unmarked edges.

Lemma 17 bounds the number of edges in the output solution by a function that
depends on the edges of another solution. However, we are concerned with the node-
weighted Steiner Tree Problem. The following definition from [2] translates the values of
w(e) to the appropriate corresponding Steiner node.
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Definition 9. Fix a marking scheme. For any Steiner node l the cost of l, denoted c(l) is
E[Hw(m(l))] where m(l) is the unique marked child edge of l.

Figure 3.3 shows the marking scheme on an example Steiner tree. The red dashed
edges are edges that are deterministically marked, because they go from the parent to the
unique terminal child. The green dotted edges come in pairs where each have a probability
of 1/2 of being marked. The black edges are deterministically unmarked. Three vertices
of interest are labelled in Figure 3.3: the root, which is required for defining the marking
scheme, and two Steiner nodes, l and l′. These are labelled since they have high cost.
c(l) = 2 + 7

120
and c(l′) = 2 + 1

12
. This gives us motivation for the remaining sections of

this chapter. l has high cost because it is far from an ancestor with a terminal child, and
thus one might have many paths from l which use marked edges. l′ has high cost simply
because it has a large number of children.

Root

l

l′

Figure 3.3: A Steiner tree which is marked via our random marking scheme. Red dashed
edges are deterministically marked and green dotted edges have a 1/2 probability of being
marked. c(l), c(l′) > 2.

We can now use Lemma 17 to get a bound on the approximation guarantee of our whole
algorithm.

Lemma 19. [2, Lemma 4] Let F ∗ ⊆ L be the optimal solution to a node-weighted Steiner
Tree instance, such that every Steiner node is adjacent to at most two terminals and the
neigbours of any terminal form a clique. The algorithm returns a solution F such that
|F | ≤ (1 + ε)E[

∑
l∈F ∗ c(l)] + 2ε|F ∗|.
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Proof. By Proposition 16 there is a spanning tree ST ∗ ⊆ E(HR[T ∪ F ∗]) where every
terminal is a leaf in ST ∗. Let t := |T | and s := |F |. Thus |ST ∗| = s+ t− 1. Consider the
marking scheme on ST ∗ given above.

By Lemma 17, the solution ST returned by the Steiner-Tree subroutine satisfies |ST | ≤
(1 + ε)

∑
e∈ST ∗ E[Hw(e)].

Let ST ∗mar be the (random) set of marked edges and ST ∗unm the (random) set of un-
marked edges. Every node in ST ∗mar corresponds to a Steiner node in F ∗. In particular∑

e∈ST ∗mar
E[Hw(e)] =

∑
l∈F ∗ E[Hw(m(l))] =

∑
l∈F ∗ c(l). Thus∑

e∈ST ∗
E[Hw(e)] =

∑
e∈ST ∗mar

E[Hw(e)] + |ST ∗unm| = E[
∑

e∈ST ∗mar

Hw(e)] + t− 1

This last equality holds because, deterministically, there are precisely s marked edges in
ST ∗, as we marked one edge for each Steiner node. Hence, there are t − 1 unmarked
edges. The second equality holds by Proposition 18. So Lemma 17 tells us |ST | ≤ (1 +
ε)
∑

l∈F ∗ c(l). Let F be the set of Steiner nodes with non-zero degree in ST . Now we can
see that

|F | = |ST | − t+ 1

≤ (1 + ε)

(∑
l∈F ∗

c(l) + t− 1

)
− t+ 1

≤ (1 + ε)
∑
l∈F ∗

c(l) + εt

≤ (1 + ε)E[
∑
l∈F ∗

c(l)] + 2ε|F ∗|

By dividing both sides of the inequality guaranteed by Lemma 19 by |F ∗|, we get

|F |
|F ∗|

≤ 2ε+ (1 + ε)
1

|F ∗|
∑
l∈F ∗

c(l)

We now know that, other then a small ε term, our approximation factor is given by the
average cost of a Steiner node in our marking scheme.
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3.5 Bounding the Cost of a Steiner Node

As previously stated, the first goal is to bound the cost of any Steiner node. To this end,
we give the following lemma which gives a messy, technical, and specific bound for each
Steiner node. We will refine this to a useable bound afterwards.

Lemma 20. [2, Lemma 5] Let l ∈ F ∗ be a Steiner node which is not the root. Consider
the path l = l1, l2, . . . , lq such that lq is the lowest proper ancestor of l with a child that is
a terminal. Then

c(l) =

q−2∑
i=1

(d(li+1)− 1)Hd(l1)+...+d(li)−i+1

d(l2) · . . . · d(li+1)
+
Hd(l1)+...+d(lq−1)−q+2

d(l2) · . . . · d(lq−1)

Proof. Let ll′ = e = m(l) the unique child edge of l which is marked. Recall c(l) = E[Hw(e)].
The elements of W (e) correspond one-to-one with paths in the tree between terminals such
that the path contains e and precisely one unmarked edge. Recall earlier that we showed
that starting at any non-leaf node, there is a unique path from that node to a terminal
which uses only marked edges, and furthermore, each edge in these paths is descending.
Thus, the paths corresponding to elements of W (e) are the union of an unmarked edge e′

and these unique paths of marked edges starting from the two endpoints of e′. Thus one
of the endpoints of any unmarked edge we use must be an ancestor of l′, since the paths
in W (e) must use e. Furthermore, this ancestor must be reachable via only marked edges.

Recall that c(l) = E[Hw(m(l))]. We condition the expected value we are trying to
compute on the event that the edge lili+1 is the first unmarked edge in the path l1, l2, . . . , lq.
Note that lq−1lq is deterministically unmarked. For 1 ≤ i ≤ q − 2 we know li+1 does not
have any terminal children and thus an edge is marked uniformly at random. Thus the
probability that lili+1 is the first unmarked edge in the path l1, l2, . . . , lq is 1

d(l2)
· . . . ·

1
d(li)

d(li+1)−1)
d(li+1)

for all 1 ≤ i ≤ q − 2. For, i = q − 1 the probability is 1
d(l2)
· . . . · 1

d(li)
.

We now need to count the umber of paths contributing to w(e), given that lili+1 is the
first unmarked edge in the path l1, l2, . . . , lq. To do this we focus on which unmarked edge
we can include in a path that contributes to w(e). For any 1 ≤ j ≤ i, we could use any
of the d(lj)− 1 unmarked child edges of lj. We could also the unmarked edge lili+1. This
gives a total of d(l1)−1+ . . .+d(li)−1+1 = d(l1)+ . . .+d(li)− i+1 paths that contribute
to w(e). Thus
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c(l) =

q−2∑
i=1

(
d(li+1)− 1

d(l2) · . . . · d(li+1)
Hd(l1)+...+d(li)−i+1

)
+
Hd(l1)+...+d(lq−1)−q+2

d(l2) · . . . · d(lq−1)

The right hand side of the equation in Lemma 20 motivates the following definition,
from [2].

Definition 10. For positive integer i we denote by Ĥi the i-th super-harmonic number
where

Ĥi :=
∑
j≥0

1

2j+1
Hi+j =

1

2
Hi +

1

4
Hi+1 +

1

8
Hi+2 + . . .

We will now present a series of properties of these super-harmonic numbers and how
they relate to the harmonic numbers. These proofs are mostly just algebraic manipulations,
so we defer their proofs to Appendix A.

Proposition 21. For any positive integer i, Ĥi+1 = 2Ĥi −Hi.

Proposition 22. [2] For any positive integer i, Ĥi+1 − Ĥi = Ĥi −Hi =
∑

k≥1
1

(i+k)2k
.

Proposition 23. For any positive integer i, Ĥi+1 − Ĥi = Ĥi −Hi ≤ 1
i+1

Proposition 24. Ĥ1 = 2 ln 2.

Now we introduce some extra machinery and propositions to move us from the very
local bounds obtained in Lemma 20 to useful ones. For the remainder of this section for a
finite sequence of positive integers, S = (d1, . . . , dk) we define

f(S) =
k−1∑
i=1

(di+1 − 1)Hd1+...+di−i+1

d2 · . . . · di+1

+
Hd1+...+dk−k+1

d2 · . . . · dk

Notice that this is the right hand side of the equation of Lemma 20 when S is the sequence
of degrees of the path from the given Steiner node to its lowest proper ancestor with a
terminal child. However, we can now extend the definition. For an infinite sequence of
positive integers S ′ = (d1, d2, . . .) we define

f(S ′) =
∑
i≥1

(di+1 − 1)Hd1+...+di−i+1

d2 · . . . · di+1
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Lemma 20 gives us a finite sum, we would like to compare this to the super-harmonic
numbers, an infinite sum. So for any finite sequence of positive integers S = (d1, . . . , dk)
we let S̄ = (d1, . . . , dk, 2, 2, . . .) be the infinite extension of S obtained by appending an
infinite sequence of 2 to S.

Proposition 25. [2] f(S) ≤ f(S̄) for any finite sequence of positive integers, S =
(d1, . . . , dk)

Proposition 26. [2] Let S̄ = (d1, . . . , dk, 2, 2, . . .) and assume that for some i ≥ 2 we have
di = 1. Let S̄i = (d1, . . . , di−1 − 1, di+1 + 1, dk, 2, 2, . . .). Then f(S̄) = f(S̄i).

The proofs of Proposition 25 and Proposition 26 are also deferred to Appendix A. We
now have what we need to prove a useful bound on the cost of a Steiner node.

Lemma 27. [2, Lemma 5] For any Steiner node l ∈ F ∗, c(l) ≤ Ĥd(l).

Proof. By Propositions 25 and 26, together with Lemma 20, it is sufficient to show that
f(S) ≤ Ĥd1 for any infinite sequence S = (d1, . . . , dk, 2, 2, . . .) with k ≥ 2 and di ≥ 2 for
all i ≥ 2. The proof proceeds by induction on k.

When k = 2,

f(S ′) =
(d2 − 1)Hd1

d2

+
Ĥd1+d2−1

d2

≤ Hd1

2
+
Ĥd1+1

2
= Ĥd1

For k > 2 we define S ′ = (d1 + d2 − 1, d3, . . . , dk, 2, 2, . . .). Thus,

f(S) =
(d2 − 1)Hd1

d2

+
f(S ′)

d2

≤ (d2 − 1)Hd1

d2

+
Ĥd1+d2−1

d2

≤ Hd1

2
+
Ĥd1+1

2
= Ĥd1

Where the first inequality holds by the induction hypothesis.

Consider applying this bound to the example we saw above, which is reproduced here
in Figure 3.4. Most nodes have at most two children and thus we can bound there cost by
Ĥ2 = 2 ln 2 − 1 < 1.8. But the root and l have 3 children, and thus we can only bound
their cost by Ĥ3 = 8 ln 2 − 7

2
> 2.045. Worse, l′ has 4 children and thus the bound we

would get on its cost is Ĥ4 = 16 ln 2− 53
6
> 2.257. This further suggests that we need more

techniques.
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Root

l

l′

Figure 3.4: Reproduction of Figure 3.3.

3.6 Grouping

We have just seen that we can bound the cost of any Steiner node l ∈ F ∗ by Ĥd(l). However,
obtaining a constant approximation guarantee for the node-weighted Steiner Tree problem
using only this bound is hopeless. In order to do that, we rely on two key insights. The
first is that what we really need to bound is the average cost, that is 1

|F ∗|
∑

l∈F ∗ c(l). The

second is that for any Steiner node l with no Steiner children, c(l) ≤ Ĥd(l) = Ĥt(l) ≤ Ĥ2.
That is, these Steiner nodes with no Steiner children have relatively low cost, and we can
use that to offset the cost of more expensive Steiner nodes. Again the following definition
is from [2].

Definition 11. A Steiner node l is a leaf-Steiner node if it has no Steiner children. Oth-
erwise we call l an internal-Steiner node.

We will let F ∗lf and F ∗in be the sets of leaf-Steiner and internal-Steiner nodes, respec-
tively. The plan is to partition the Steiner nodes into groups such that each group contains
one internal-Steiner node l, and s(l) − 1 leaf-Steiner nodes. We do this via the following
algorithmic process.
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Algorithm 2: Grouping Steiner Nodes

1 Initialize all Steiner nodes as unprocessed
2 while there exists an unprocessed node l ∈ F ∗in do
3 Choose such an l whose children are either processed or leaf-Steiner nodes
4 Mark l as processed
5 Initialize g(l)← {l}
6 for each Steiner child l′ of l do
7 Consider the subtree rooted at l′

8 Let l′′ be the unique unprocessed leaf-Steiner node in this subtree
9 Mark l′′ as processed

10 g(l)← g(l) ∪ {l′′}
11 end
12 Arbitrarily choose some l′′ ∈ g(l) \ {l}
13 Mark l′′ as unprocessed
14 g(l)← g(l) \ {l′′}
15 end
16 Let l∗ be the remaining unprocessed leaf-Steiner node
17 Mark l∗ as processed
18 return (g(l))l∈F ∗in and l∗

Clearly, this process relies on the truth of the claim made in line 8: that there is a unique
unprocessed leaf-Steiner node l′′ in the subtree rooted at l′. We also implicitly make the
claim that when we are done processing the internal-Steiner nodes, there is exactly one
unprocessed leaf-Steiner node. Both of these follow from the following claim.

Lemma 28. The While loop on line 2 of Algorithm 2 maintains the invariant that the
subtree rooted at l, where l is either an unprocessed leaf-Steiner node or at a processed
internal-Steiner node that does not have a processed parent, contains exactly one unpro-
cessed leaf-Steiner node.

Proof. Clearly if l is an unprocessed leaf-Steiner node, the invariant is true because l is the
only Steiner node in the subtree rooted at l.

Also, when the algorithm begins there are no processed internal-Steiner nodes so the
invariant is true when the algorithm begins.

When processing an unprocessed internal-Steiner node l, we know that the children of
l are either leaf-Steiner nodes, or processed internal-Steiner whose parent is unprocessed.
Note that the leaf-Steiner children of l must be unprocessed because leaf-Steiner nodes
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only become processed when processing their ancestors, and internal-Steiner nodes are
processed from the bottom of the tree, up towards the root. Thus, the children of l satisfy
the hypothesis of the invariant. By induction, the subtree rooted at each child contains
exactly one unprocessed leaf-Steiner node. We process all of these, but then unprocess one
of them. Thus the subtree rooted at l will have exactly one unprocessed leaf-Steiner node
and the invariant still holds.

We define a(l) = 1
|g(l)|

∑
l′∈g(l) c(l

′), for all l ∈ F ∗in ∪ {l∗}. The important thing is that

1

|F ∗|
∑
l∈F ∗

c(l) ≤ max{a(l) : l ∈ F ∗in ∪ {l∗}}

Thus if a(l) ≤ α for all l ∈ F ∗in ∪ {l∗} then, (1 + ε)α+ 2ε is a bound on the approximation
guarantee of the algorithm.

To see how effective this technique is, we again refer to the Steiner tree example seen
earlier. It is reproduced in Figure 3.5, now also showing l∗ and the groups of all of the
Steiner nodes. l′ is in a group along with two leaf Steiner nodes. Thus the average cost of
a node in this group is 1

3

(
2 + 1

12
+ 1 + 1

)
= 49

36
< 1.37. Unfortunately l is in a group all by

itself, so we will have to employ another technique, which we will see in the next section.

Root

l

l∗

l′

Figure 3.5: A possible grouping for our example Steiner tree. Note one leaf Steiner node
has been designated l∗. c(l′) can now be shared with two other leaf Steiner nodes. Unfor-
tunately, l is in a group by itself.
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We now bound the averaged cost for an arbitrary group. For l∗, we have a(l∗) = c(l∗) ≤
Ĥ2. For any l ∈ F ∗in we have

a(l) =
1

|g(l)|
∑
l′∈g(l)

c(l′) ≤
Ĥs(l)+2 + (s(l)− 1)Ĥ2

s(l)
=
Ĥs(l)+2 − Ĥ2

s(l)
+ Ĥ2

Unfortunately, when s(l) = 1 we get the case we saw with the vertex labelled l in Figure
3.5, where a(l) ≤ Ĥ3 = 8 ln 2 − 7

2
≈ 2.045. The problem is that the terminal children of

l increase the cost of l but, unlike the Steiner children of l, they don’t contribute to
normalizing the average cost of the group.

3.7 Discharging

We have seen that we can bound the cost of any Steiner node l ∈ F ∗ by Ĥd(l). However,
this bound is not good enough to give us an improved approximation ratio for the node-
weighted Steiner Tree problem. We mentioned that the problematic nodes are those with
a non-zero number of terminal children, which leads to the following definition from [2].

Definition 12. A Steiner node l is a good father if it has at least one terminal child and a
bad father if it has zero terminal children. Steiner nodes which are children of good fathers
are called good and Steiner nodes which are not good are called bad.

We left F ∗gf , F
∗
bf , F

∗
g , F

∗
b be the sets of good fathers, bad fathers, good nodes, and bad

nodes, respectively, in F ∗.

We can immediately improve the bound on the cost of good Steiner nodes.

Proposition 29. For any l ∈ F ∗g we have c(l) ≤ Hd(l).

Proof. If l is the root, we saw that c(l) ≤ Hd(l)−1 ≤ Hd(l). Otherwise, let l′ be the parent of
l. Since l is good, we know l′ is a good father, and thus has terminal children. Thus, l′l is
deterministically unmarked. Let l′′ be the child of l such that l′′l is marked. Similar to the
proof for Lemma 20, we know that paths contributing to w(e) are uniquely determined by
their unmarked edge. Further, we know that one endpoint of such an unmarked edge must
be an ancestor of l′′ which is reachable via marked edges. The only way this is possible
is if l is this endpoint. Thus the unmarked edge used must be incident to l. There are
d(l)− 1 + 1 = d(l) such edges so c(l) ≤ Hd(l).
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Unfortunately, the nodes that give rise to groups whose average cost is greater than
2 are, in this new vocabulary, the good fathers, not the good nodes. There could still be
a node that is bad, but a good father. Thus we have yet to improve our approximation
guarantee. The last idea will be that we will use the cost savings experienced by good
nodes to offset the cost of the good fathers. More precisely, we will discharge some of the
cost of the good father to its Steiner children, which are by definition, good.

Figure 3.6 shows the same Steiner tree example we have been looking at throughout
this chapter. This time, every Steiner node is labelled with a g or a b, depending on if it is
good or bad, and with gf or bf depending on if it is a good father or a bad father. Note
that l is bad and a good father. l only has a cost above 2, in part at least, because it is
a good father, and has terminal children. It’s Steiner child, l∗ has a very low cost of 1. If
l∗ could take on some of the cost for l, we could easily show that that the average cost of
the Steiner nodes is strictly less than 2. Of course, we want the procedure to be general,
so we will discharge cost from every good father to its Steiner children. Say every good
father sends p of its cost to each of its Steiner children, which is denoted in Figure 3.6 by
blue arrowheads. What value of p would result in the most uniform distribution of costs?

Root

b, gf

g, bf

b, bf

l

b, gf

l∗
g, gf

b, gf

b, gf

l′

g, gf

g, gf g, gf g, gf

Figure 3.6: Example Steiner Tree with possible grouping. Steiner nodes are labelled as
good or bad and as good fathers or bad fathers. Blue arrows denote the discharging of
cost from a good father to its Steiner children.

Note that the discharging that happens on the right hand side of the root happens
within a group, or happens evenly between the groups g(Root) and g(l′) and thus cancels
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out. The only good nodes that are increasing in cost are the node directly left of the root,
and l∗. The node directly to the left of the root is part of a group with one other leaf
Steiner node and this group has an average cost of 11

8
so after discharging it has a cost

of 11
8

+ p
4
. After discharging, l∗ will have a cost of 1 + p. Thus, in order to ensure that

after discharging, all groups have an average cost of strictly less than 2, we have to pick
p ∈

(
7

120
, 1
)
. In fact, we can optimize our choice of p to get the best bound possible. If we

select p such that 1 + p = 2 + 7
120
− p we get p = 127

240
. After discharging with this p one

can check that all groups have an average cost of at most 1 + 127
240

< 1.53. Thus we know
that the algorithm due to Byrka, Grandoni, Rothvoss, and Sanita will return a Steiner tree
whose size is at most 1.53 times the size of our example.

We will now formalize the ideas used in the example above to work in general. Let
p ∈ [0, Ĥ2 − H2 = 4 ln 2 − 5

2
]. This is a parameter which we will optimize later. The

discharging rule is simple: every good Steiner nodes increases its own cost by p by taking
this amount away from the cost of its parent, which is a good father. Let c′ be the cost
function after discharging. Then it is clear that for any Steiner node l,

c′(l) ≤


Hd(l) + p− s(l)p if l ∈ F ∗g ∩ F ∗gf
Hd(l) + p if l ∈ F ∗g ∩ F ∗bf
Ĥd(l) − s(l)p if l ∈ F ∗b ∩ F ∗gf
Ĥd(l) if l ∈ F ∗b ∩ F ∗bf

Now we can reanalyze the average cost of each group. If l∗ is good then c(l∗) ≤ H2+p ≤
Ĥ2 and if it is bad then c(l∗) ≤ Ĥ2. For any l ∈ F ∗in

a(l) ≤


aggf (s(l)) =

Hs(l)+2−Ĥ2+p

s(l)
+ Ĥ2 − p if l ∈ F ∗g ∩ F ∗gf

agbf (s(l)) =
Hs(l)−Ĥ2+p

s(l)
+ Ĥ2 if l ∈ F ∗g ∩ F ∗bf

abgf (s(l)) =
Ĥs(l)+2−Ĥ2

s(l)
+ Ĥ2 − p if l ∈ F ∗b ∩ F ∗gf

abbf (s(l)) =
Ĥs(l)−Ĥ2

s(l)
+ Ĥ2 if l ∈ F ∗b ∩ F ∗bf

We know that for any approximation ratio α, we must have that

aggf (n), agbf (n), abgf (n), abbf (n) ≤ α

Also, we want to select p such that α is as small as possible. If we can restrict the domain
of n to a finite set, then our goal is to minimize a value subject to a finite number of linear
constraints, which is easily done via the theory of Linear Programming.
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Proposition 30. [2] For any real p ∈ [0, Ĥ2 − H2], aggf obtains its global maximum in
the range {1, 2, 3}, agbf obtains its global maximum when n = 1, abgf obtains its global
maximum in the range {6, 7, 8}, and abbf obtains its global maximum when n = 7.

The proof of Proposition 30 is deferred to Appendix B

This gives rise to the following linear program, with variables α and p.

minα

subject to

α ≥ H3

α ≥ H4 + Ĥ2 − p
2

α ≥ H5 + 2Ĥ2 − 2p

3

α ≥ H6 + 5Ĥ2 + p

6

α ≥ H7 + 6Ĥ2 + p

7

α ≥ H8 + 7Ĥ2 + p

8

α ≥ Ĥ3 − p

α ≥ Ĥ7 + 6Ĥ2

7

p ≤ Ĥ2 −H2

p ≥ 0

The optimal solution to this linear program is p = 7Ĥ3−6Ĥ2−H7

8
= 4 ln 2 − 2953

1120
and

α = Ĥ3+6Ĥ2+H7

8
= 4 ln 2− 967

1120
≈ 1.9092.

This, together with Lemma 19, proves Theorem 10.
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Chapter 4

Towards a General Algorithm
Beating Factor 2

4.1 Introduction

Since the barrier of a better than 2-approximation for unweighted NC-TAP has been bro-
ken, it is reasonable to attempt to do this for the weighted case. To the best of our
knowledge, the techniques in [2] and [17] have little hope of extending to weighted NC-
TAP. Instead, we attempt to find direction from another avenue, the bounded-costs case
of the (edge-connectivity) Tree Augmentation Problem (TAP). Recall, this problem has
the same input as NC-TAP, but a solution is a set of links F ⊆ L such that (V, T ∪ F ) is
2-edge-connected. For over 30 years, the best algorithms for TAP could only achieve an
approximation guarantee of 2, matching the algorithm of Frederickson and Jájá. In 2017,
Adjiashvili presented an improvement for the special case that the costs of the links are
bounded by a constant.

Lemma 31. [1, Theorem 1.1] For any fixed M ∈ R≥1 and ε ∈ R>0 there is an polynomial
time (1.96418 + ε)-approximation algorithm for TAP, restricted to instances where the cost
vector c satisfies cl ≤M for all l ∈ L.

Several papers have since improved on Adjiashvili’s redsult. First, Fiorini, Groß,
Könemann, and Sanità in 2017 [9] were able to give an algorithm which gives a 3

2
+ ε-

approximation guarantee for TAP under the same conditions: that the costs of the links
are bounded by a constant. In parallel, Nutov [16] was able to give an algorithm with
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a 12
7

+ ε-approximation guarantee. While this is a worse approximation guarantee than
that of [9], Nutov’s algorithm allows for the costs of the links to be bounded by a function
logarithmic in the input size, rather than a constant. Finally, in 2018 Grandoni, Kalaitzis,
and Zenklusen [12] improved on Adjiashvili’s result in the unweighted case, obtaining a
1.458-approximation algorthm. However, as mentioned in Chapter 1 Section 1.1, we were
not able to successfully use Adjiashvili’s techniques to develop an algorithm for NC-TAP.
As such, we do not explore the extensions of [9, 16, 12] in this thesis.

We recall for the reader, the Cut LP for TAP.

min
∑
e∈L

cexe

x(cov(e)) ≥ 1 ∀e ∈ T
x ≥ 0

where cov(e) = δF (S : S ′) and S, S ′ are the vertex sets of the components of T − v.

4.2 Summary of Adjiashvili’s Results

Adjiashvili’s 2017 paper introduced a few major insights into TAP. However, his main ideas
are all rooted in his discovery of an algorithm for solving TAP instances where the running
time was a function of the number of leaves. This gives us a clear idea for an algorithm.
First, decompose the tree into subtrees which have a bounded number of leaves. Second,
get an optimal solution for each of these subtrees. Finally, combine these solutions for
subtrees into an optimal solution for the original instance. Of course, this is not exactly
what Adjiashvili’s algorithm does, and it likely isn’t possible, but it captures the general
idea of the algorithm and motivates the following definition.

Definition 13. Given a tree T and positive number β, a β-bundle is a union of at most
β, not necessarily disjoint, paths in T , such that this union is connected. The set of all
β-bundles in T is denoted Bβ.

Note that in [1], Adjiashvili’s definition of β-bundles do not require that they are
connected. However, it was pointed out by Nutov in [16] that we only need to consider
β-bundles which are connected. Figure 4.1, which is a modification of a figure from [1],
illustrates a 3-bundle in a tree. The idea is that a (connected) β-bundle, B, is a subtree
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Figure 4.1: [1] The dashed green edges can be obtained as a union of three paths, hence
they comprise a 3-bundle.

of the TAP/NC-TAP instance with a bounded number of leaves and thus we can use
Adjiashvili’s algorithm to determine the cheapest set of links that form a TAP or NC-TAP
solution for the subtree given by B. Say that the cheapest set of links that forms a TAP
solution for B, which is equivalent to saying the set of links covers the edges in B, has cost
OPT′(B). A solution to the original TAP instance also must cover the edges in B, and
thus among all of the links in cov(B) :=

⋃
e∈B cov(e), we must use a subset of cost at least

OPT′(B). This leads of the following family of valid constraints.∑
l∈cov(B)

clxl ≥ OPT′(B) ∀B ∈ Bβ

With the addition of these constraints to the Cut LP, we arrive at what Adjiashvili
calls the Bundle LP. What these constraints ensure is that, at least for any bundle, that
we don’t allow a fractional solution which is cheaper than the integer optimal. Thus, the
integrality gap of the Bundle LP will be 1 if the instance is a β-bundle. We will also add
the similar bundle constraints to the Partition LP. Any link that contributes to preventing
a vertex in B from being a cut node must be in cov(B), so we keep the left-hand side of the
inequality the same. Making use of shadows, we can map all of the links in cov(B) to links
whose endpoints are in the subtree defined by B, and these links must make this subtree
2-connected. We use OPT(B) to mean the minimum cost of a set of links which makes
the subtree given by B 2-connected. Then our family of bundle constraints for NC-TAP
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are the following. ∑
l∈cov(B)

clxl ≥ OPT′(B) ∀B ∈ Bβ

Adjiashvili’s second key idea is really just an extension of the first. Since Adjiashvili
is now basing his approximation off of the Bundle LP, which obtains no integrality gap
for instances with a bounded number of leaves, the integrality gap must be caused by
global properties of the graph. Thus, Adjiashvili introduces a step in which he decomposes
the instance into several ”small” instances. Again, these, unfortunately, are not β-bundles
themselves, but rather several β-bundles glued together at a vertex. We will give the formal
definition of these ”small” structures, called β-simple pairs, in Section 4.3. Adjiashvili
shows that he can obtain a nearly optimal solution to each of these β-simple pairs, and
then combine them into a solution for the original instance by only paying an epsilon factor.

After this decomposition, the main obstacle is rounding the fractional solution to each
β-simple pair to an integral solution. Before detailing how this is done, we need the
following definitions.

Definition 14. Given an instance of TAP G = (V, T ∪ L) with cost vector c, and a root
vertex r ∈ V , we call a link uv ∈ L a cross-link if the tree path between u and v contains
r. Otherwise we call uv an in-link. We let Lcr and Lin denote the set of cross-links and in-
links, respectively. We also use xcr and xin to denote the vectors in RL

≥0 such that xcr
l = xl

for all l ∈ Lcr, xcr
l = 0 for all l ∈ Lin, and xin

l = xl for all l ∈ Lin, xin
l = 0 for all l ∈ Lcr

If the fractional solution to a β-simple pair used entirely in-links, then we can split the
instance into disjoint β-bundles such that the fractional solution to each of the bundles
is also disjoint. Thus we could find an integral solution to each β-bundle separately and
this would be directly comparable to the fractional solution. If the fractional solution uses
entirely cross-links, then it turns our that the problem is equivalent to a simpler problem,
which we can solve directly.

Of course, it is most likely that the fractional solution will use both in-links and cross-
links. However, using the known 2-approximation, Adjiashvili can transform any instance
into one that uses only in-links, or one that uses only cross-links. This gives two algorithms
which give two different approximation guarantees. By taking the minimum cost solution,
which will be dependent on whether the cost of the fractional solution comes mostly from
in-links, or mostly from cross-links, he achieves an approximation guarantee of better than
2.
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To be specific, Adjiashvili proves that, for an instance of TAP which is a β-simple pair
with fractional solution x to the Bundle LP, a solution can be found in polynomial time
with cost at most c>xin + 2c>xcr or 2λc>xin + 4λ

3(λ−1))
c>xcr where λ is a parameter that can

be optimized.

This gives rise to a reasonable path in applying the techniques of [1] to NC-TAP. There
are 3 keys questions that need answering.

• Can we decompose an instance of NC-TAP into small instances?

• Can we solve a small instance so that we only pay a small factor on the in-links?

• Can we solve a small instance so that we only pay a small factor on the cross-links?

It is these questions that we explore in the remainder of this thesis. We would like to
reiterate that many of the results in Section 4.3 and Section 4.4 are analogous to results
proven by Adjiashvili in [1] and the proofs given are fundamentally the same as in that
paper.

4.3 Decomposition

In this section, we present the formal definition of β-simple pairs, as well as the procedure
for taking an arbitrary instance and decomposing it into such structures. In doing so, we
will uncover some of the difficulties that arise when converting these ideas from TAP to
NC-TAP.

Definition 15. Let G = (V, T ∪L) be an instance of TAP or NC-TAP with cost vector c.
Let x be a fractional TAP or NC-TAP solution for G. Then the pair (T, x) is β-simple if
there exists a node r ∈ V , called a β-centre for T , such that for every tree T ′ ∈ Comp(T−r)
the following hold:

•
∑

l∈L∩(V (T ′)×V (T ′)) clxl ≤ β

• T ′ has at most β leaves

Figure 4.2, from [1], illustrates a 4-simple pair.

The algorithmic decomposition of an arbitrarily TAP instance, and its fractional solu-
tion, into these β-simple pairs is given by the proof to the following theorem.
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K1 K2 Kt· · ·

· · ·

· · ·

Figure 4.2: [1] A 4-simple pair (T, z) of an (unweighted) TAP instance. The full node is
a 4-center. The shown links represent the support of z, with integral (dashed) and half-
integral (dotted) links. The number of leaves, as well as the total fractional weight in each
subtree is at most 4.

Lemma 32. [1, Theorem 3.4] Let ε ∈
(
0, 1

4

)
and α > 1 and let x be a solution to the Cut

LP on a given TAP instance G with the property that x(cov(e)) ≤ α for all e ∈ T . There is
a polynomial time algorithm that computes a decomposition (T 1, z1), . . . , (T k, zk) such that

(1) T j is a subtree of T and zj is a fractional TAP solution for T j using only links in
V (T j)× V (T j) for all j ∈ [k]

(2) The subtrees T 1, . . . , T k are obtained from T by removing exactly k − 1 edges of T

(3) (T j, zj) is a β-simple pair for all j ∈ [k] where β = 6αM
ε

(4)
∑

j∈[k] c
>zj ≤

(
1 + ε

6

)
c>x

(5) For any j ∈ [k] and any set of edges B ⊆ T j we have
∑

l∈cov(B) clz
j
l ≥

∑
l∈cov(B) clxl

Property (1) guarantees that our decomposition does in fact result in several disjoint
TAP instances, and property (3) guarantees that they are β-simple. Property (5) tells us
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that the fractional solutions to each smaller instance still satisfies the bundle constraints
for any bundle contained within the smaller instance. Property (4) tells us that when we
add up the cost of the (fractional) solutions to each of these smaller instances, we are
within an epsilon factor of the cost of the original LP solution that we are comparing to,
while property (2) is essential in proving that we can combine disjoint integral solutions
to the smaller instances, by only adding a small number of extra edges. In other words,
these properties tell us that this strategy of decomposing an instance into several smaller
instances, and then joining the solutions together, will only overpay by a negligible amount.

One should notice the extra assumption in the theorem: that x(cov(e)) ≤ α for all
e ∈ T . This assumption is necessary because of how the decomposition algorithm works.
As one might guess from the properties guaranteed by the theorem, the decomposition
works by removing a tree edge, and then recursing on the resulting two subtrees. When
a tree edge uv is removed, we must consider all of the links in the support of x that have
each endpoint in a different subtree, that is, the links which cover uv. These links do not
appear in either smaller instance, but they contribute to satisfying the constraints present
in each smaller instance, and thus must be accounted for. If u′v′ is such a link where u′ is
in the subtree rooted at u and v′ is in the subtree rooted at v, then the weight assigned to
u′v′ is added to the weight assigned to uu′ and vv′, and then any weight on u′v′ is removed.
We will now formalize this process.

Definition 16. Let G = (V, T ∪ L) and c be an instance of TAP and let z ∈ RL
≥0. Let

uv ∈ T be a tree edge. Let T u be the tree containing u in T−uv, and T v the tree containing
v. The splitting of z at uv produces two vectors zu, zv ∈ RL

≥0 defined as follows, for any
pq ∈ L

zupq =


zpq if p, q ∈ V (T u) \ {u}
0 if p, q ∈ V (T v)

zpq +
∑

l∈cov(uv):q∈l zl if p = u, q ∈ V (T u)

zv is defined analogously. Note that supp(zu) ⊆ V (T u)× V (T u) and supp(zv) ⊆ V (T v)×
V (T v).

Figure 4.3, from [1], shows how to split a fractional solution at an edge e.

When we split x at a tree edge e, we end up paying for the links in cov(e) in both of the
smaller instances. This, is why we require that x(cov(e)) ≤ α, so that we can bound the
cost incurred by ”double counting” cov(e). This requirement that x(cov(e)) be small turns
out to only be a technical detail in the case of TAP, but proves to be more of a challenge
in NC-TAP.
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u v

Tu Tv

e

Figure 4.3: [1] The splitting of z at e. The fractional value of the link crossing the cut
(dashed) is added to zu-value and zv-value of the left and right shadows (dotted) of the
link, respectively.

Let T h = {e ∈ T : x(cov(e)) ≥ α}. Adjiashvili preprocesses these heavily covered edges
as follows. First, contract all edges in T \T h. Contracting an edge in a tree will still result
in a tree, so the resulting graph will still be an instance of TAP. Moreover, 1

α
x will be a

fractional solution to this instance, since 1
α
x(cov(e)) ≥ 1

α
α = 1 for all e ∈ T h. Thus, we

can use a 2-approximation algorithm for this TAP instance to obtain L0, which covers all
of the edges in T h and has cost c(L0) ≤ 2

α
c>x. It is known that for any graph G, any

pair of vertices u, v ∈ G, and any edge e 6= uv that κ′G(u, v) = κ′G/e(u, v), where κ′G(u, v)

denotes the edge-connectivty betwenn u and v, in G. Thus, all of the edges of T h are still
covered by L0 in the original graph. By contracting all of the edges that are covered by
L0, we obtain an instance of TAP where x(cov(e)) ≤ α for all tree edges e. Any solution
to this new instance, together with L0, will be a solution to the original TAP instance.

This is where we encounter our first problem when applying these techniques to NC-
TAP. While contracting or uncontracting an edge preserves edge-connectivity, both of
those operations can effect vertex-connectivity. This is captured by the respective LPs
as well. Each tree edge corresponds to a constraint in the Cut LP, and contracting an
edge is equivalent to removing the corresponding constraint. However, there is no such
relationship between tree edges and constraints of the Set-Pair LP. For example, consider
an (unweighted) instance where the overall all graph is K4 and the spanning tree is a
star. Label the centre node v and the leaves u1, u2, u3. Here is the Cut LP for this TAP
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instance.
min xu1u2 + xu1u3 + xu2u3
s.t.

xu1u2 + xu1u3 + 0xu2u3 ≥ 1
xu1u2 + 0xu1u3 + xu2u3 ≥ 1

0xu1u2 + xu1u3 + xu2u3 ≥ 1
xl ≥ 0 ∀l ∈ L

And here the Cut LP for the instance one gets by contracting the tree edge vu3 into a
node, which we continue to call v. Note that the links u1u3 and u2u3 become u1v and u2v
respectively.

min xu1u2 + xu1v + xu2v
s.t.

xu1u2 + xu1v + 0xu2v ≥ 1
xu1u2 + 0xu1v + xu2v ≥ 1

xl ≥ 0 ∀l ∈ L
Note that the only difference is the removal of the third constraint. In contrast the Set-Pair
LP for this instance, before contracting the edge vu3 is as follows.

min xu1u2 + xu1u3 + xu2u3
s.t.

xu1u2 + xu1u3 + 0xu2u3 ≥ 1
xu1u2 + 0xu1u3 + xu2u3 ≥ 1

0xu1u2 + xu1u3 + xu2u3 ≥ 1
xl ≥ 0 ∀l ∈ L

And after contracting the tree edge vu3 the resulting NC-TAP instance has the following
Set-Pair LP.

min xu1u2 + xu1u3 + xu2u3
s.t.

xu1u2 + 0xu1u3 + 0xu2u3 ≥ 1
xl ≥ 0 ∀l ∈ L

Again, this is to be expected because contractions preserve edge-connectivty, but not
vertex-connectivity. For now, we will simply assume that no tree edge is heavily covered.

The decomposition for NC-TAP is modified in some technicalities, but is essentially the
same procedure. Thus, we will only prove the decomposition result for NC-TAP. But first,
we must redefine splitting a tree edge. This is necessary, because if we split our fractional
solution at an edge uv and the simply solve T u and T v in isolation, then when we put their
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solutions together, u and v will be cut nodes. Of course, in TAP there is the analogous
problem that uv will be a bridge, but this can be fixed by covering uv with some link,
which doesn’t necesarrily stop either u or v from being cut nodes.

Definition 17. Let G = (V, T ∪ L) and c be an instance of NC-TAP and let z ∈ RL
≥0.

Let uv ∈ T be a tree edge. Let T u be the tree containing u in T − uv, and T v the tree
containing v. Let T ′u be the tree where all of T v is contracted into a single vertex, v′, any
self loops at v′ are removed, and the edge uv is replaced with uv′. Similarly, T ′v is the tree
where all of T u is contracted into a single vertex, u′, any self loops at u′ are removed, and
the edge uv is replaced with u′v. Call the link sets of these trees Lu and Lv. The splitting
of z at uv produces two vectors zu ∈ RLu

≥0 and zv ∈ RLv

≥0 defined as follows, for any pq ∈ Lu

zupq =


zpq if p, q ∈ V (T u)

0 if p, q ∈ V (T v)

zpq +
∑

l∈cov(uv):q∈l zl if p = v′, q ∈ V (T u)

zv is defined analogously.

Note that this is just a formal way of saying that to split z at uv we create two trees,
one where we contract T u into a single vertex, and the other where we contract T v into a
single vertex. In both cases we preserve the weight on the links in the obvious way. Figure
4.4, together with Figure 4.3, shows how to split a fractional solution at an edge e in the
NC-TAP context.

Note that the operation of splitting z at e for TAP clearly gave rise to a new instance
and feasible fractional solution of TAP where we kept the constraints corresponding to
edges in T u or T v, depending on which of the two smaller instances we are looking at.
Similarly, the splitting operation for NC-TAP produces two NC-TAP instances, one where
we have the family of constraints for each non-leaf vertex in T ′u, and the other has the
family of constraints for non-leaf vertices in T ′v. Notably, u and v could not have been
leaves before splitting z at e, and still are not afterwards. Also, the contracted nodes
u′ and v′ are always leaves and thus don’t have any constraints associated with them.
Furthermore, the coverage of an edge is preserved. That is zu(cov(e)) = z(cov(e)) for all
e ∈ T ′u. Recall that we are assuming that x(cov(e)) ≤ α for all tree edges e ∈ T and thus
this preservation is vital. With this updated notion of splitting our NC-TAP instance and
solution into two smaller instances and solutions, we wish to prove the following lemma.

Lemma 33. Let ε ∈
(
0, 1

4

)
and α > 1 and let x be a solution to the Partition LP with

Bundle constraints on a given NC-TAP instance G with the property that x(cov(e)) ≤
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u′ v
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Figure 4.4: The splitting of z at e. The fractional value of the link crossing the cut in
Figure 4.3 (dashed) is added to zu-value and zv-value of the corresponding links to the
contracted node, shown above (dotted).

α for all e ∈ T . There is a polynomial time algorithm that computes a decomposition
(T 1, z1), . . . , (T k, zk) such that

(1) T j is an instance of NC-TAP (that is also a minor of T ) and zj is a fractional
NC-TAP solution for T j using only links in Lj for all j ∈ [k],

(2) If F j is a solution to T j for each j ∈ [k] then
⋃
j∈[k] F

j is a solution to T ,

(3) (T j, zj) is a β-simple pair for all j ∈ [k] where β = 6Mα
ε

,

(4)
∑

j∈[k] c
>zj ≤

(
1 + ε

2

)
c>x,

(5) For any j ∈ [k] and any set of edges B ⊆ T j we have
∑

l∈cov(B) clz
j
l ≥

∑
l∈cov(B) clxl.

In particular this means that the bundle constraints are still satisfied.

Proof. The decomposition algorithm is going to make use of the splitting z at e operation
we just described. Exactly how it is used will be discussed later. First, we will show
properties (1), (2), and (5) are true after one splitting, say splitting z at uv. It is easy
to see how to apply induction to prove these properties hold after any finite number of
splitting operations.
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Since T ′u is obtained from T by contractions, it is still a spanning tree, and thus the
resulting contracted graph is a valid NC-TAP instance. To see that zu is a fractional
solution, consider any non-leaf vertex w in T ′u, and any partition P ′ ∈ P(Comp(T ′u−w)).
We will show that zu(δLu(P ′) ≥ |P ′| − 1. As noted above, v′ is a leaf so w 6= v′. So w
is a non-leaf vertex in T . Let P be obtained from P ′ by replacing v′, in whatever part
it is in, by T v. P ∈ P(Comp(T − w)). Thus the original Partition LP had a constraint
z(δL(P) ≥ |P| − 1 and since z was a feasible solution, z(δL(P) ≥ |P| − 1. Furthermore,
|P| = |P ′| and δL(P) = δLu(P ′). Thus we have that

zu(δLu(P ′)) = z(δL(P)) ≥ |P| − 1 = |P ′| − 1

Thus T ′u is an NC-TAP instance and zu satisfies its Partition LP. The same argument
shows that T ′v and zv also satusfy Property (1).

Now suppose F u ⊆ Lu and F v ⊆ Lu are solutions to the NC-TAP instances T ′u and T ′v.
We will show that F u ∪F v is a solution to the original instance. Suppose not. Then there
is a non-leaf vertex w such that T ∪ F u ∪ F v − w is disconnected. Note that w must be a
non-leaf vertex in either T u or T v. Without loss of generality, say it is the former. Then Tv
is connected in T∪F u∪F v−w. Thus, there is a connected component, S, of T∪F u∪F v−w
which is entirely contained in Tu and thus in T ′u. However, F u is a solution for T ′u, so there
is a link l ∈ δFu(S : ζT ′u(S)) but as we saw above, δFu(S : ζT ′u(S)) = δF (S : ζT (S), since
[S|ζT (S)] ∈ P(Comp(T −w). Thus we arrive at a contradiction, proving that Property (2)
must hold.

To prove Property (5) we will assume B ⊆ T ′u. Now consider any link pq ∈ cov(B)
such that pq 6∈ Lu. It must be that, up to relabeling, p ∈ V (T ′u) and q ∈ V (T ′v). The
fractional weight of this link, zpq, gets added to the weight of the shadow zupv′ and so the
property holds.

We now look to prove property (4). We can easily see that if l ∈ V (T u)× V (T u) then
l ∈ Lu, l 6∈ Lv. Similarly, if l ∈ V (T v)× V (T v) then l ∈ Lv, l 6∈ Lu. So, l ∈ Lu ∩ Lv if and
only if l ∈ cov(e). Thus

c>zu + c>zv = c>z +
∑

l∈cov(e)

clzl

Thus, if e1, . . . , ek−1 are the tree edges that we split on in our decomposition algorithm,

59



then we can say

∑
j∈[k]

c>zj = c>x+
k−1∑
j=1

∑
l∈cov(ej)

clxl

≤ c>x+
k−1∑
j=1

∑
l∈cov(ej)

Mxl

= c>x+M
k−1∑
j=1

x(cov(ej))

≤ c>x+M
k−1∑
j=1

α

= c>x+ (k − 1)Mα

≤ c>x+ kMα

Thus, to prove property (4) it suffices to show that kMα ≤ ε
2
c>x. This goal motivates our

decomposition algorithm.

Initialize T = {(T, x)}. When T = ∅, terminate. Let (T̂ , z) ∈ T . Let uv ∈ T̂ such that∑
l∈L,l∈V [T̂w]×V [T̂w]

clzl ≥
2Mα

ε
for both w = u and w = v (4.1)

If no such e ∈ T̂ exists, report (T̂ , z) as part of the final decomposition and remove it
from T . Otherwise, obtain (T̂ ′u, zu) and (T̂ ′v, zv) from splitting z at uv, add them to T ,
and remove (T̂ , z) from T . It is clear that a tree edge can only be split at once, so the
algorithm must terminate after |T | iterations, and is thus polynomial time.

For each (T j, zj) in the final decomposition, let T̄ j be the subtree of T j where any
contracted nodes, which recall are always leavesa, have been removed. By how the decom-
position procedure works, we know

∑
l∈L∩(V [T̄ j ]×V [T̄ j ]) clz

j
l ≥ 2Mα

ε
. Thus,

c>x ≥
k∑
j=1

∑
l∈L∩(V [T̄ j ]×V [T̄ j ])

clz
j
l ≥

2kMα

ε

Thus proving property (4) holds.
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We will now prove that property (3) holds, that is that each (T j, zj) is a 6Mα
ε

-simple
pair. Fix some (T j, zj).

Note that when (T j, zj) was reported by the decomposition algorithm, it was because
there was no edge uv such that∑

l∈L,l∈V [(T j)w]×V [(T j)w]

clzl ≥
2Mα

ε
for both w = u and w = v

Thus, for every tree edge e ∈ T j we must have that for at least one endpoint w of e,∑
l∈L,l∈V [(T j)w]×V [(T j)w]

clzl <
2Mα

ε

We direct each tree edge so that the head satisfies the above inequality. If both endpoints
satisfy the inequality, the edge can be directed arbitrarily. By properties of directed trees,
there must be a vertex r with in-degree zero. If there is more than one, pick one arbitrarily
to be r. We will show that r is an 6Mα

ε
-centre.

By design, for every connected component K of T j − r,
∑

l∈L,l∈V [K]×V [K] clzl <
2Mα
ε

<
6Mα
ε

, so the first property of 6Mα
ε

-simple pairs hold. It remains to show that K has at
most 6Mα

ε
leaves. Assume for a contradiction that it has more. Since each link costs at

least 1, all leaves must be incident to some link, and a link can be incident to at most 2
leaves, any fractional solution covering K must have cost strictly greater than 3Mα

ε
. Let

e′ be the tree edge connecting K to r. Then zj fractionally covers K using only links in
LK := (L ∩ (V [K]× V [K])) ∪ cov(e′). However∑

l∈LK

clz
j
l <

2Mα

ε
+Mα ≤ 3Mα

ε

Thus (T j, zj) is a 6Mα
ε

-simple pair and r is its 6Mα
ε

-centre, proving property (3).

In the remaining sections we will assume our instance and fractional solution are a
β-simple pair and that we have a β-centre, r. We will analyze these instances in total
isolation.

4.4 Bundle Rounding

In this section we aim to prove the following.
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Theorem 34. Assume that G = (V, T ∪L) is an NC-TAP instance, x is a solution to the
β-Bundle LP and (T, x) are a β-simple pair with β-centre r. There is an algorithm which

computes a set of links F ⊆ L, in time nO(β)O(1)
, such that F is an NC-TAP solution of

cost
c(F ) ≤ c>xin + 3c>xcr

Adjiashvili proved an analogous result in [1], obtaining a solution to TAP of cost at
most c>xin + 2c>xcr. The algorithm, which is essentially the same for both TAP and NC-
TAP, is quite simple. As mentioned earlier in this chapter, there is an algorithm, proven
in Lemma 35 later in this section, for solving instances with a bounded number of leaves,
to optimality. A β-simple pair is just an instance comprised of many such instances, glued
together at the β-centre. The idea will be to modify the fractional solution x such that we
can unglue these subtrees, solve them optimally, and put them back together.

Recall that (T, x) is a β-simple pair with β-centre r. For every T ′ ∈ Comp(T − r), let
T̄ ′ be the subtree of T induced by V (T ′)∪{r}. These T̄ ′ are the instances with a bounded
number of leaves we will solve in isolation using Lemma 35, which appears later.

In order to consider each T̄ ′ separatly, we want there to be no cross-links in supp(x). We
remove the cross-links from supp(x) with the following simple transformation. Construct
y ∈ RL

≥0 as follows. Start with y = x. For any cross link uv, which doesn’t have r as
one of it’s endpoints, yuv = 0 and yur ← yur + xuv and yvr ← yvr + xuv. The idea is we
move the weight from any cross link uv to the two shadows ur and vr, and we know that
c>y ≤ c>xin + 2c>xcr This construction need not, and actually cannot, be a fractional NC-
TAP solution to G. However, it is still a fractional solution for each T̄ ′. In fact, the only
constraints that will be violated by y are the partition constraints obtained from deleting
r.

We know that each T ′ ∈ Comp(T − r) has at most β leaves and thus T̄ ′ has at most
β+1 leaves, including r. This tells us that T̄ ′ can be solved to optimality using Lemma 35.
Also, T̄ ′ is the union of the paths from r to each other leaf. Thus, each T̄ ′ is a β-bundle.
Since x was a solution to the β-Bundle Partition LP, it satisfied the constraint that∑

l∈cov(B)

clxl ≥ OPT(B) ∀B ∈ Bβ

In particular y also satisfies these constraints. Thus the cost of the solutions for each T̄ ′

returned by the subroutine will be less than or equal to the cost of y restricted to those
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subtrees. Since supp(y) is partitioned by these subtrees, we can say that the union of these
solutions, which we will call F ′, satisfies c(F ′) ≤ c>y ≤ c>xin + 2c>xcr.

However, as mentioned earlier, y, and F ′, do not satisfy the partition contraints ob-
tained from removing r. We now find a set of links just for satisfying the parition con-
straints obtained from removing r. However, recall that the family of partition constraints
for a single vertex correspond to a Spanning Tree Polytope, which we know is integral [20,
Corollary 50.8]. Furthermore, we know that x is in this Spanning Tree Polytope, since it
satisfies those constraints. Furthermore, the only links that contribute to satisfying the
partition constraints obtained from removing r are by definition, cross-links. Hence xcr is
in this Spanning Tree Polytope. Thus, we can compute, in polynomial time, a set of links
F ′′ that satisfy the partition constraints obtained from removing r such that c(F ′′) ≤ c>xcr.

Then F = F ′ ∪ F ′′ is a solution to this NC-TAP instance and c(F ) ≤ c>xin + 3c>xcr,
proving Theorem 34.

We finally formalize the subroutine that we have alluded to all chapter, which (in-
tegrally) solves instances of NC-TAP optimally, and thus finishes the proof of Theorem
34.

Lemma 35. An optimal solution to any NC-TAP instance can be computed in time nk
O(1)

,
where k is the number of leaves in the tree.

Note that this algorithm and proof are exactly the same as given by Adjiashvili in [1].

Proof. Let W be the set of vertices of degree 3 or greater. Since the tree has k leaves,
|W | ≤ k. Let Q1, . . . , Qp be the paths obtained by splitting each node w ∈ W into deg(w)
copies, each connected to a distinct neighbour of w. Note that these paths Q1, . . . , Qp

correspond to paths in T , the endpoints of which are either in W or are leaves. It is
clear that 2p = k +

∑
w∈W deg(w) and since we started with a tree,

∑
w∈W deg(w) =

2(n− 1)− 2(n− k− |W |)− k = 2|W | − 2 + k. Thus we get that p = |W |+ k− 2 ≤ 2k− 2.

Next we will show that any optimal solution has at most 2 links between any pair of
paths Qi and Qj. Suppose not. Then for an optimal solution F ∗ we have three links
between one pair of paths, Qi and Qj. Call the three links a1a2, b1b2, and c1c2. Without
loss of generality we assume Pa1a2 ⊆ Pb1b2 ∪ Pc1c2 . Consider T ∪ F ∗ − a1a2. This has a cut
vertex v. Since v is not a cut vertex T ∪ F ∗, we must have that v is a vertex on Pa1a2 and
that T ∪ F ∗ − a1a2 − v has precisely two components. However, v can only be on one of
Pa1c1 or Pb2a2 . Without loss of generality, we assume v is not a vertex on Pa1c1 . But then
Pa1c1 ∪ {c1c2} ∪ Pc2a2 is a a1, a2-path in T ∪ F ∗ − a1a2 − v, implying that it is connected,
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a contradiction. Thus any optimal solution has at most 2 links between any pair of paths
Qi and Qj.

This means that any optimal solution will have at most 8k2 links between paths. As-
sume we know what these links were, and call them F ′. The remaining links in the optimal
solution are fully contained within a path. Call the links that are fully contained in one Qi,
Lpath. Links in Lpath only contribute to satisfying partition constraints for vertices which
are internal vertices in their path. Such vertices have degree 2 in the original tree and thus
there are only two components when you remove such a vertex. For such a vertex v let
these two components be Sv and S ′v. The remaining constraints which need to be satisfied
are of the form

x(δLpath(Sv : S ′v)) ≥ 1

where v is the internal vertex to some path Qi. We will show that these constraints form
a Totally Unimodular (TU) matrix, and thus, the polytope defined by these constraints is
integral. Note that not every internal vertex of each Qi need have a constraint that still
needs to be satisfied, but we will assume they do. And if this matrix is TU, the actual
constraint matrix we are concerned with will also be TU.

We prove that the constraint matrix is TU by showing its rows satisfy the Ghouila-
Houri condition.Note that any subset of constraints corresponds to a subset of vertices.
Let X be a subset of vertices. We will show that there exists a subset X+ such that if one
sums all rows of the constraint matrix corrresponding to X+, and subtracts all rows of the
constraint matrix corresponding to X \X+, the resulting vector has entries in {0, 1,−1}.
For each path, Qi, starting from one of the ends of the path, put every other vertex into
X+, not counting vertices which are not in X. The resulting vector has the following entry
for any link uv ∈ Lpath.

|{w ∈ X+ : w is an internal vertex of Puv}|−|{w ∈ X\X+ : w is an internal vertex of Puv}|

However, Puv ⊆ Qi for some pathj Qi, and thus the internal vertices on the path Puv,
ignoring those not in X alternate between X+ and X \X+, so the above is one of 1,−1,
or 0.

With this, the algorithm is simple. First, separate the tree at the vertices in W to
obtain the paths Q1, . . . , Qp. Next, iterate through each possible subset F ′ of links going
between paths such that no pair of paths has more than two links between them. For each
of these subsets, compute the minimum cost set of links that 2-connects each path Qi, call
them Fi. Finally, consider F = F ′ ∪ F1 . . . ∪ Fp. If F is a NC-TAP solution, record it
and its cost. Once this is done for all possible F ′, take the solution of minimum cost and
output it. One can verify that the running time of this algorithm is indeed nk

O(1)
.
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4.5 Star Rounding

In this section and subsequent sections, we are interested in finding a rounding scheme that
does not overpay too much for cross-links. Much like the previous rounding scheme, which
worked by simplistically dealing with the cross-links and then having a more sophisticated
algorithm for the in-links, this rounding scheme would simplistically deal with the in-links
and then round the cross-links in a more careful and sophisticated way.

The result proved by Adjiashvili for TAP is as follows

Lemma 36. [1, Lemma 3.1] Assume that G = (V, T ∪ L) is an TAP instance, x is a
solution to the Cut LP and cross-links and in-links are defined with respect to a vertex r.
Given any real constant λ > 1, there is an algorithm which computes a set of links F ⊆ L,
in polynomial time, such that F is an TAP solution of cost

c(F ) ≤ 2λc>xin +
4λ

3(λ− 1)
c>xcr

The way Adjiashvili deals with in-links is as follows. Let Tλ be the of set of tree edges
such that they are 1

λ
-covered by in-links. Formally, Tλ = {e ∈ T : λxin(cov(e)) ≥ 1}.

Adjiashvili then uses a simple 2-approximation algorithm for TAP to find a set of links Lλ
that covers Tλ such that c(F ) ≤ 2λc>xin. Then he contracts all covered edges and turns
his attention to the resulting TAP instance, which is fractionally solved by λ

λ−1
xcr.

As mentioned in section 3, when the only links that are available are cross-links, NC-
TAP and TAP reduce down to (different) easier problems. In the case of TAP, this simpler
problem is the Edge Cover Problem. We say a a vertex is covered by a set of edges (or
links) if it is incident with at least one edge in the set. The Edge cover problem is the
problem of, given a set of vertices V , and edges E with cost vector c ∈ RE

≥0, find a minimum
cost F ⊆ E such that F covers all of the vertices in V . The reduction is a corollary of the
following lemma.

Lemma 37. [1, Lemma 5.2] Let G = (V, T ∪ L) be a TAP instance where L = Lcr with
respect to a vertex r. Then F ⊆ L is a feasible solution if and only if F covers all leaves.

Proof. First, assume F is a feasible solution. Consider any leaf u and its corresponding leaf
edge, eu. Since F is feasible, it must cover eu. After removing eu, one of the components
is just the isolated vertex u. Thus, in order to cover eu, F must contain a link incident to
u.
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Now assume F covers all leaves. Let e ∈ T be arbitrary. Consider the two components
of T − e. One of these contains r. Let u be a leaf of the other component which is also a
leaf in T . Consider a link uv ∈ F which is incident to u. Since all links in L, and thus in F
are cross-links, Puv contains r. Since e is the only tree edge that goes from the component
containing u and the component containing r, v must be in the latter component. Thus uv
covers e. Since e was arbitrary, F covers all tree edges and thus is a feasible solution.

From here, the reduction is simple. Contract all non-leaf vertices into r, then delete the
tree edges. Add a special link l0 which is a self loop at r of cost 0. The Edge Cover Problem
on the resulting graph with edge set L ∪ {l0} is equivalent to TAP on the original graph.
Note that the contraction will delete any link that is not incident to at least one leaf, but
Lemma 37 tells us that these are not needed. The special link l0 simply exists so that the
vertex r, which need not be a leaf and thus need not be covered by a TAP solution, can be
covered in the Edge Cover Problem at cost 0. Note that we would not want to be able to
do this if r was a leaf and thus truly did need to be covered. However, the condition that
all links are cross-links implies that if r is a leaf, then every link is incident to r. Thus,
in covering the other leaves, r will also be covered, without the need for using l0. Here,
Adjiashvili relies on the following lemma.

Lemma 38. [1, Lemma 5.3] There is a polynomial time algorithm that, given a graph G,

a cost vector c ∈ RE[G]
≥0 , and a fractional edge cover x ∈ RE[G]

≥0 , computes an edge cover
F ⊆ E[G] with cost c(F ) ≤ 4

3
c>x.

We would like to follow this same procedure to find a similar reduction for this special
class of NC-TAP instances. However, there is currently no known way to deal with the
in-links. We can use the 2-approximation algorithm given in Chapter 2 to get a partial
solution, but there is no nice combinatorial object in an NC-TAP instance we can associate
each constraint with; each non-leaf vertex gives a family of constraints. However, we will
continue by studying the case where an NC-TAP instance has only cross-links. Not only
could this be useful if the above problem is resolved, but it is also interesting in its own
right.

The analogous result to Lemma 37 is the following.

Lemma 39. Let G = (V, T ∪ L) be a NC-TAP instance where L = Lcr with respect to a
vertex r. Then F ⊆ L is a feasible solution if and only if F covers all leaves and r is not
a cut vertex.
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Proof. First, assume F is a feasible NC-TAP solution. That is, T ∪F is 2-connected. Thus
T ∪ F is 2-edge-connected, so F is also a TAP solution and by Lemma 37 F must cover
all leaves. Also, since T ∪ F is 2-connected, r is not a cut vertex.

Now assume that F covers all leaves and r is not a cut vertex. Consider any vertex
v 6= r. We will show that an arbitrary vertex w in T ∪ F − v has a path to r. If w = r,
the empty path suffices. If w is in the same component as r in T − v, then the tree path
Prw suffices. Otherwise, it must be that v is a vertex on Prw. Consider any leaf u is a
descencdent of w, so Prw ⊆ Pru. We know u is covered by some link uz ∈ F . We claim
that v cannot be on Prz. This is because r must be on Puz since uz must be a cross link,
and by the uniqueness of tree paths Puz = Pru ∪ Prz and we know v is on Pru. Thus
Pwu ∪ {uz} ∪ Prz is a w, r-path in T ∪ F − v.

At this point we don’t have a specific problem we are trying to reduce to, but we
would like to do something similar to the reduction above from TAP to the Edge Cover
Problem, so that we have a concrete, structured, and simpler problem that we can focus on.
We want to do the same contracting of internal vertices, so that we are only considering
leaves, which are the important vertices. However, we also need to ensure removing r
does not disconnect the graph. If we contract all of the vertices into r then removing the
new contracted node r does much more than removing r did in the original graph. Also,
removing r removes links that could be used to cover leaves. We contract all edges of the
tree which are not incident to any leaves, and are also not incident to r. Then we remove
any links which are loops. The resulting graph, with the exception of the links, is a tree
with the special property that it is rooted at a vertex r and there is a path of length two
or less between r and any other vertex. We say that the tree has height two.

The Two-Level Tree Problem (TLTP) is the problem of given a graph G = (V, T ∪ L),
where T is a spanning tree rooted at a vertex r ∈ V and of height two, and a cost vector
c ∈ RL

≥0, find a minimum cost set of links F ⊆ L such that F covers every leaf and T ∪F−r
is connected. We will categorize the different types of vertices in a TLTP instance. One
category will be just r itself which we continue to call the root. We also care about the
leaves of the tree. The remaining vertices will be called subroots. Note that while TLTP
arised from NC-TAP instances which only used cross-links, for a general TLTP instance it
need not be the case that all links are cross-links with respect to the root. For any TLTP
instance which only contains cross-links, TLTP is equivalent to NC-TAP.

The Two-Level Tree Problem will be the subject of the next few sections and is the
main new contribution of this thesis.
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4.6 Hardness of TLTP

In this section we will prove that this new problem, TLTP, is NP-hard. Note that the Edge
Cover Problem, which TAP reduces to in these special instances, is known to be in P [20].
This highlights a significant difference between NC-TAP and TAP.

Theorem 40. TLTP is NP-hard.

The reduction is from the 3-Dimensional Matching Problem (3DM). Here is the formal
description of the variant of 3DM we will use. Let W,X, and Y be finite sets such that
|W | = |X| = |Y | = p. Let A ⊆ W × X × Y . A 3-dimensional matching M is a subset
of A such that if (w1, x1, y1), (w2, x2, y2) ∈ M then w1 6= w2, x1 6= x2, and y1 6= y2.
The 3-Dimensional Matching Problem is the problem of, given the above, determining
whether there exists a 3-dimensional matching M such that |M | = p, caled a perfect 3D
matching. Note that this problem can be viewed as finding a perfect matching in a tripartite
hypergraph where edges are incident to exactly 3 vertices, one from each part. Also, we
can make the assumption that every element in W,X, and Y is in at least 2 triplets in
A. This assumption is a technical one that makes the reduction simpler, but it is a valid
assumption. If w ∈ W were only in one triplet (w, x, y) ∈ A, then we would know that
(w, x, y) would have to be in any perfect 3D matching. As such we could remove w, x, and
y from the instance, along with any triplet containing any of these elements. Then the
resulting instance has a perfect 3D matching M , if and only if M ∪ {(w, x, y)} is a perfect
3D matching of the original instance. We can do the same with any x ∈ X or y ∈ Y such
that x or y appear in only one triplet of A.

Assume we are given an instance of 3DM. We will construct an instance of TLTP, of
polynomial size compared to the size of the 3DM instance, which we can use to determine
whether our instance of 3DM is a ”YES” instance, or a ”NO” instance, thus proving that
3DM polynomially reduces to TLTP and thus that TLTP is NP-hard.

Here is the reduction. We will assume W = {w1, . . . , wp} and the elements of X and
Y are similarly defined. First, create a subroot, labelled W whose leaves are precisely the
elements of W . For each j ∈ {1, . . . , p} we create two different subroots: one labelled xj,
the other labelled x′j. Also, for each k ∈ {1, . . . , p}, create a leaf connected directly to the
root, labelled yk. Now for each (wi, xj, yk) ∈ A we create a vertex ai,j,k which is a leaf of the
subroot xj and a second vertex a′i,j,k which is a leaf of the subroot x′j. Then we add three
links of unit cost such that wi, ai,j,k, a

′
i,j,k, yj is a path. An example of this construction is

shown in Figure 4.5. The idea will be that taking (wi, xj, yk) to be in M will correspond
to taking wiai,j,k and a′i,j,kyk to be in our TLTP solution, and not including (wi, xj, yk)
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x′2

w1 w2 a1,1,1 a2,1,2

a′1,1,1 a
′
2,1,2

a1,2,1 a2,2,2

a′1,2,1 a
′
2,2,2 y1 y2

Figure 4.5: The reduction from 3DM to TLTP where p = 2 and |A| = 4. The upper figure
shows a graphical representation of a 3DM instance and the lower figure is the TLTP
instance where the root has been omitted. Subroots are shown as square nodes and leaves
as round nodes.
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will correspond to taking ai,j,ka
′
i,j,k in our TLTP solution. It is clear that this instance is

constructible in polynomial time. Theorem 40 is a corollary of the following lemma.

Lemma 41. Let |A| = q then there exists a 3-dimensional matching M of size p if and
only if the TLTP instance constructed above has a solution of cost p+ q.

Proof. First note that the constructed TLTP instance has 2p + 2q leaves and a link can
cover at most 2 leaves. Thus any solution will have cost at least p+ q.

Now we will assume that M is a 3-dimensional matching of size p. As mentioned
above we will construct F such that for each (wi, xj, yk) ∈ M we have wiai,j,k, a

′
i,j,kyk ∈ F

and for each (wi, xj, yk) ∈ A \M we have ai,j,ka
′
i,j,k ∈ F . No other links are in F . We

have c(F ) = 2|M | + |A \M | = |M | + |A| = p + q. Now we show F is feasible. Every
wi ∈ W must be covered by some (wi, xj, yk) ∈ M . Thus every leaf wi is incident to a
link, specifically the link wiai,j,k. Similarly every leaf yk must be covered by some link
a′i,j,kyk where (wi, xj, yk) ∈ M . Furthermore, we see that every ai,j,k and a′i,j,k is covered
since either (wi, xj, yk) ∈M and thus wiai,j,k, a

′
i,j,kyk ∈ F or (wi, xj, yk) 6∈M in which case

ai,j,ka
′
i,j,k ∈ F . Finally we show that F connects the graph T − r by showing that every

component of T − r has a path to the tree rooted at the subroot W . Notice that each yk
leaf must be connected to some a′i,j,k and thus is connected to some x′j subroot. Each xj
must be in some triplet (wi, xj, yk) 6∈ M , since we are assuming that every element of the
3DM instance appears in at least two triplets of A. Thus the link ai,j,ka

′
i,j,k ∈ F which

connects each x′j subtree to it’s corresponding xj subtree. Finally, since each xj is covered
by some (wi, xj, yk) ∈ M , we have that wiai,j,k ∈ F and thus each xj subtree is connected
to the W subtree.

Now we assume that F is a solution to the TLTP instance of cost p+ q. We will show
that it must have the same form as the one we would construct from a perfect 3-dimensional
matching, and thus we can use it to construct such an M . Recall that the instance has
2p+ 2q leaves and thus it must be the case that each leaf is incident to exactly one link in
F . In particular every wi leaf must be matched with a ai,j,k leaf and every yk leaf must be
matched with a a′i,j,k leaf. What we wish to show is that, for a fixed i, j, k ∈ {1, . . . , p} wi
is matched with ai,j,k if and only if yk is matched with a′i,j,k. Suppose not. Without loss of
generality we can assume wi is matched with ai,j,k but yk is not matched with a′i,j,k. But
a′i,j,k is only incident with two links in the TLTP instance: a′i,j,kyk and ai,j,ka

′
i,j,k. So we

must have ai,j,ka
′
i,j,k ∈ F but then ai,j,k would be incident to both ai,j,ka

′
i,j,k and wiai,j,k , a

contradiction.

Also, note that the TLTP instance that we reduced 3DM to uses only cross-links. As
such any solution to this TLTP instance is also an NC-TAP solution on the same graph.
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Thus, as a corollary, we know that NC-TAP is NP-hard even in the special case where the
tree is of height 2 and all links are cross links.

4.7 An Approximation Algorithm For TLTP

We present an LP based approximation algorithm for the Two-Level Tree Problem. This
algorithm is a greedy algorithm, based off of a Hp-approximation algorithm for the Set
Cover Problem, which the Edge Cover Problem is a special case of. For more information,
see [22].

Let L be the set of leaves of T . Then the following is an LP relaxation for TLTP.

(P ) min
∑
l∈L

clxl

subject to

x(δL(v) ≥ 1 ∀v ∈ L
x(δL(P)) ≥ |P| − 1 ∀P ∈ P(Comp(T − r))

x ≥ 0

One should note that this LP is a relaxation of the Partition LP for the same graph
viewed as an NC-TAP instance. The leaf covering constraint for a given leaf u is one of the
partition constraints that one gets when they consider removing the unique neighbour of u.
The family of partition constraints ensuring that the T − r is connected is the same family
of partition constraints in the NC-TAP instance obtained by deleting r. This LP gives
a very straight forward 7

3
-approximation algorithm. First find a minimum cost spanning

tree F ′ on the components of T − r. F ′ will satisfy the partition constraints and have cost
at most c>x. The remaining leaf-covering constraints form the same Edge-Cover Problem
mentioned above, abd we know how to obtain an integral solution F ′′ of cost at most
4
3
c>x. Thus F = F ′ ∪ F ′′ will be a TLTP solution of cost at most 7

3
c>x. This can easily

be improved to a 2-approximation because there is an LP formulation for the Edge-Cover
Problem which is integral and valid for TLTP. Thus, using that LP, the F ′′ we obtain
above would have cost at most c>x. However, we want an approximation guarantee of
better than 2.
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We now take the dual of this LP to obtain the following.

(D) max
∑
v∈L

yv +
∑

P∈P(Comp(T−r))

(|P| − 1)zP

subject to ∑
v∈l∩L

yv +
∑

P∈P(Comp(T−r)):l∈δL(P)

zP ≤ cl ∀l ∈ L

y, z ≥ 0

The algorithm works by only considering one partition at once, rather than the pos-
sibly exponential number of them. In particular, the only partition considered at a given
iteration, which we refer to as the active partition, is the one where every connected com-
ponent of T ∪ F is a part, where F is the set of links selected by the algorithm so far.
More formally, that active partition is one where two elements of Comp(T − r) are in the
same part if and only if there is a link in F with an endpoint in each component. By
restricting ourselves to just one partition at a time, not only does it become possible for
the algorithm to run in polynomial time, but also we obtain an important property: a link
can only contribute to at most three constraints that are currently being considered. In
particular a link can possibly cover two leaves, and it could also cover the active partition.
For a link l, we will let Sl be this set of uncovered objects l covers, restricting ourselves
to only allowing the active partition. Again note that the elements of Sl are a mixture of
vertices, in particular, leaves, and partitions. Each Sl changes with each iteration, but it
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never has a size greater than three. Below is the pseudo-code for the algorithm.

Algorithm 3: Greedy Algorithm for TLTP

1 F ← ∅
2 P is the partition where every component of T − r is its own part // P is the

active partition

3 while F is not an TLTP solution do
4 for each link l ∈ L do
5 Sl is the set of leaves incident to l which are currently not covered by F
6 if l ∈ δL(P) then
7 Sl ← Sl ∪ {P}
8 end
9 ĉl ← cl

|Sl|
10 end
11 Let l∗ ∈ L have minimum ĉl
12 for µ ∈ Sl∗ do
13 wµ ← ĉl∗
14 end
15 F ← F ∪ {l∗}
16 if P ∈ Sl∗ then
17 Let P ′ be obtained from P by combining the two parts in P that contain

an endpoint of l∗ into one part
18 P ← P ′
19 end

20 end
21 return F

Consider a given instance of the Two-Level Tree Augmentation Problem, where L is
the set of leaves of T and s = |Comp(T − r)|. Also consider a run of Algorithm 3 on this
instance and let P1,P2, . . . ,Ps−1 ∈ P(Comp(T − r)) be the partitions that the algorithm
considers active in some iteration and assigns weights to, such that |Pi| = s− i+ 1. Let F

be the solution that the algorithm outputs and w ∈ RL∪P(Comp(T−r))
≥0 the weights assigned

to leaves and partitions. Define y ∈ RL≥0 and z ∈ RP(Comp(T−r))
≥0 as follows.
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yu = wu ∀u ∈ L
zP1 = wP1

zPiv = wPiv − wPi−1
v

∀i ∈ {2, 3, . . . , s− 1}
zP = 0 ∀P ∈ P(Comp(T − r)) \ {P1, . . . ,Ps−1}

Lemma 42. 1
H3
y, 1

H3
z are a feasible solution to (D), the dual of the Two-Level Tree Aug-

mentation LP.

Proof. Let l ∈ L be an arbitrary link. We will show that∑
v∈l∩L

yv +
∑

P∈P(Comp(T−r)):l∈δL(P)

zP ≤ H3 · cl

which is sufficient to prove the desired result, since the nonnegativity constraints are clearly
satisfied.

Note that since zP = 0 for all P ∈ P(Comp(T − r)) \ {P1, . . . ,Ps−1}, we have that∑
P∈P(Comp(T−r)):l∈δL(P) zP =

∑
Pi∈{P1,...,Ps−1}:l∈δL(Pi) zPi .

Furthermore, if l ∈ δL(Pj) for some 1 ≤ j ≤ s − 1, then l ∈ δL(Pi) for all 1 ≤ i ≤ j.
Thus, if we assume l ∈ δL(Pi) for some 1 ≤ i ≤ s − 1, we can let k be the largest index,
such that l ∈ δL(Pk), and then we have that

∑
P∈P(Comp(T−r)):l∈δL(P)

zP =
k∑
i=1

zPi = wP1 +
k∑
i=2

(
wPi − wPi−1

)
= wPk

Also,
∑

v∈l∩L yv =
∑

v∈l∩Lwv, so
∑

v∈l∩L yv +
∑
P∈P(Comp(T−r)):l∈δL(P) zP =

∑
v∈l∩Lwv +

wPk . If l 6∈ δL(Pi) for any 1 ≤ i ≤ s − 1 then
∑

v∈l∩L yv +
∑
P∈P(Comp(T−r)):l∈δL(P) zP =∑

v∈l∩Lwv.

Let Sl be the set of elements (leaves and/or partitions), µ that contribute wµ to the sum,∑
v∈l∩L yv +

∑
P∈P(Comp(T−r)):l∈δL(P) zP . Note that |Sl| ∈ {1, 2, 3} and that the elements of

Sl can be ordered by when Algorithm 3 assigned a weight to that element, say µ1, . . . , µ|Sl|.
Consider the iteration where µi was assigned a weight. Note that if Pk = µj for some
i ≤ j ≤ |Sl| then l always crosses the active partition until µj = Pk is assigned a weight.
Similarly, if there is a leaf v such that v = µj for some i ≤ j ≤ |Sl| then l is incident to v
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and v is not incident to any link the algorithm has already purchased. Thus the algorithm
considered purchasing l and dividing its cost between µi, . . . , µ|Sl|. Thus we must have

wµi ≤
cl

|Sl| − i+ 1

And thus we have

∑
v∈l∩L

yv +
∑

P∈P(Comp(T−r)):l∈δL(P)

zP =

|Sl|∑
i=1

wei

≤
|Sl|∑
i=1

cl
|Sl| − i+ 1

= cl

|Sl|∑
i=1

1

i

= H|Sl| · cl
≤ H3 · cl

As a corollary, we obtain the following result.

Theorem 43. Algorithm 3 outputs a solution F such that c(F ) ≤ H3 · LPOPT, where
LPOPT is the optimal value of (P ).
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Proof. Note that the objective value of 1
H3
y, 1

H3
z as solutions to (D) is

1

H3

∑
v∈L

yv +
∑

P∈P(Comp(T−r))

(|P| − 1)zP


=

1

H3

(∑
v∈L

yv +
s−1∑
i=1

(s− i)zPi

)

=
1

H3

(∑
v∈L

wv + (s− 1)wP1 +
s−1∑
i=2

(s− i)(wPi − wPi−1
)

)

=
1

H3

(∑
v∈L

wv +
s−1∑
i=1

(s− i)wPi −
s−2∑
i=1

(s− i− 1)wPi

)

=
1

H3

(∑
v∈L

wv +
s−1∑
i=1

wPi

)

=
1

H3

· c(F )

And thus c(F ) ≤ H3 · LPOPT by duality.

It turns out that the analysis of this algorithm is tight. Figure 4.6 shows an instance of
TLTP where tightness occurs. Notice that, other than the link labelled l∗, each link satisfies
one constraint. The link of cost 2 covers the left-most leaf, the link of cost 3 covers the
right-most leaf, and the link between the subroots satisfies the only partition constraint. l∗

satisfies all three at once. The algorithm will begin by considering the adjusted cost of l∗

which is cl∗
3

, since l∗ satisfies three constraints. However, for any ε > 0 this is still greater
than 2, so instead the algorithm will select the link of cost 2. In the next iteration, the
algorithm will give l∗ an adjusted cost of cl∗

2
, since l∗ satisfies two constraints that are not

yet satisfied. However, this is greater than 3, so the algorithm will select the link of cost 3.
In the final iteration, the algorithm will give l∗ an adjusted cost of cl∗ since the partition
constraint is the only constraint left to satisfy. This is greater than 6, so the algorithm
will select the link of cost 6. Thus the algorithm selects a solution of cost 2 + 3 + 6 = 11
however, just l∗ is a solution of cost 6 + ε.

In fact the integrality gap of the above LP for TLTP has an integrality gap of at least
4
3
. Figure 4.7 shows an instance of TLTP with an optimal solution of cost 2 and where the

76



Root

2 3
6

6 + ε

l∗

Figure 4.6: An instance of TLTP where Algorithm 3 returns a solution of cost 11
6

times
the optimal cost

above LP has an optimal solution of cost 3
2
. In fact, this example only uses cross-links, and

thus the TLTP LP above is exactly the same as the Partition LP for NC-TAP. Thus not
only is the integrality gap for the TLTP LP 4

3
but so is the integrality gap of the Partition

LP for NC-TAP, even on instances where the spanning tree has height 2 and which only
have cross-links.

Root

0 0

1 1

1

Figure 4.7: An instance of TLTP/NC-TAP where the Partition LP has an integrality gap
of 4

3
. An integer solution must take two links of cost 1 to cover the leaves. The LP optimum

will assign xl = 1 to the links of cost 0, and xl = 1
2

to the links of cost 1. The objective
value of this LP solution is 3

2
.
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4.8 Next Steps

Unfortunately, there is still a lot of work to be done to use the techniques laid out in [1] for
TAP in the setting of NC-TAP. First, we have to do away with the assumption that no tree
edge is covered by more than a constant amount in the optimal fractional solution. Second,
we have to find a way to transform instances with a large proportion of their cost coming
from cross-links into instances where there are only cross-links. However, if we can do this
last step by paying a factor of 2 on the in-links, as is done in the case of TAP, we would
succeed in extending Adjiashvili’s techniques to NC-TAP and obtain 25

13
-approximation for

NC-TAP with bounded costs.
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Appendix A

Properties of the Super-Harmonic
Numbers and the Related Function

Here we prove propositions 21 through 26, which are about the super-harmonic numbers
and the function f which was defined on sequences of integers.

Proposition. 21. For any positive integer i, Ĥi+1 = 2Ĥi −Hi.

Proof.

2Ĥi = 2
∑
j≥0

1

2j+1
Hi+j = 2

(
1

2
Hi +

∑
j≥0

1

2j+2
Hi+j+1

)
= Hi + Ĥi+1

Proposition. 22. [2] For any positive integer i, Ĥi+1 − Ĥi = Ĥi −Hi =
∑

k≥1
1

(i+k)2k
.

Proof. From Proposition 21 we have

Ĥi+1 − Ĥi = (2Ĥi −Hi)− Ĥi

= Ĥi −Hi

83



And

Ĥi −Hi =

(∑
j≥0

1

2j+1
Hi+j

)
−Hi

=
∑
j≥0

1

2j+1
(Hi+j −Hi)

=
∑
j≥0

1

2j+1

(
j∑

k=1

1

i+ k

)

=
∑
k≥1

1

i+ k

(∑
j≥k

1

2j+1

)

=
∑
k≥1

1

(i+ k)2k

Proposition. 23. For any positive integer i, Ĥi+1 − Ĥi = Ĥi −Hi ≤ 1
i+1

Proof. From Proposition 22 we know

Ĥi −Hi = Ĥi −Hi =
∑
k≥1

1

(i+ k)2k
≤
∑
k≥1

1

(i+ 1)2k
=

1

i+ 1

Proposition. 24. Ĥ1 = 2 ln 2.

Proof.

Ĥ1 =
∑
j≥1

(
1

2j

j∑
i=1

1

i

)
=
∑
i≥1

1

i

∑
j≥i

1

2j
=
∑
i≥1

2

i2i
= −2

∑
i≥1

(−1)i+1(1
2
− 1)i

i
= −2 ln

1

2

Where the last equality follows from the Taylor Series of lnx at 1.
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Recall that for a finite sequence of positive integers, S = (d1, . . . , dk) we define

f(S) =
k−1∑
i=1

(di+1 − 1)Hd1+...+di−i+1

d2 · . . . · di+1

+
Hd1+...+dk−k+1

d2 · . . . · dk

And for an infinite sequence of positive integers S ′ = (d1, d2, . . .) we define

f(S ′) =
∑
i≥1

(di+1 − 1)Hd1+...+di−i+1

d2 · . . . · di+1

Proposition. 25. [2] f(S) ≤ f(S̄) for any finite sequence of positive integers, S =
(d1, . . . , dk)

Proof.

f(S̄)− f(S) =
∑
i≥1

(di+1 − 1)Hd1+...+di−i+1

d2 · . . . · di+1

−
k−1∑
i=1

(di+1 − 1)Hd1+...+di−i+1

d2 · . . . · di+1

− Hd1+...+dk−k+1

d2 · . . . · dk

=
∑
i≥k

(di+1 − 1)Hd1+...+di−i+1

d2 · . . . · di+1

− Hd1+...+dk−k+1

d2 · . . . · dk

≥
∑
i≥k

Hd1+...+dk−k+1

d2 · . . . · di+1

− Hd1+...+dk−k+1

d2 · . . . · dk

=
Hd1+...+dk−k+1

d2 · . . . · dk

(∑
i≥k

1

dk+1 · . . . · di+1

− 1

)

=
Hd1+...+dk−k+1

d2 · . . . · dk

(∑
i≥1

1

2i
− 1

)
= 0

Proposition. 26. [2] Let S̄ = (d1, . . . , dk, 2, 2, . . .) and assume that for some i ≥ 2 we
have di = 1. Let S̄i = (d1, . . . , di−1 − 1, di+1 + 1, dk, 2, 2, . . .). Then f(S̄) = f(S̄i).

Proof. We will show these two sums have equal terms. Note that for j < i − 1 the j-th
terms of f(S̄) and f(S̄i) are identical. For j = i− 1, since dj+1 − 1 = di − 1 = 0 the j-th
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term in f(S) is 0, corresponding to the now non-existent term in f(S̄i). For j > i− 1, the
j − 1-th item of the sequence S̄i is the j-th entry of S̄, and the j − 1-th term of f(S̄i) is

(dj+1 − 1)Hd1+...+dj−di−(j−1)+1

d2 · . . . · dj+1
1
di

=
(dj+1 − 1)Hd1+...+dj−1−j+1+1

d2 · . . . · dj+1

=
(dj+1 − 1)Hd1+...+dj−j+1

d2 · . . . · dj+1

which is the j-th term of f(S̄).
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Appendix B

Bounding the Domain of Averaged
Cost Functions for Steiner Tree
Algorithm

Proposition. 30. [2] For any real p ∈ [0, Ĥ2 − H2], aggf obtains its global maximum in
the range {1, 2, 3}, agbf obtains its global maximum when n = 1, abgf obtains its global
maximum in the range {6, 7, 8}, and abbf obtains its global maximum when n = 7.

Proof. We will look at ai(n + 1) − ai(n) for all i ∈ {ggf, gbf, bgf, bbf}. We will prove
this discrete derivative is decreasing, and then find points where it is negative independent
of our choice of p. Occassionally we can also find a point where the discrete derivative
is positive, giving a lower bound on the domain where the maximizer may exist. Since
abbf (n) is independent of p we start with it.

abbf (n+ 1)− abbf (n) =
Ĥn+1 − Ĥ2

n+ 1
− Ĥn − Ĥ2

n

=
1

n(n+ 1)

(
nĤn+1 − (n+ 1)Ĥn + Ĥ2

)
≤ 1

n(n+ 1)

(
1 + Ĥ2 − Ĥn

)

87



It is clear that this is decreasing. Furthermore,

abbf (8)− abbf (7) =
1

56

(
7

8
− Ĥ7 + Ĥ2

)
=

1

56

(
7

8
− 124 ln 2 +

5101

60

)
<

1

56

(
7

8
− 124

665

960
+

5101

60

)
=

1

56

(
−4

960

)
< 0

and

abbf (7)− abbf (6) =
1

42

(
6

7
− Ĥ6 + Ĥ2

)
=

1

42

(
6

7
− 60 ln 2 +

2447

60

)
>

1

42

(
6

7
− 60

437

630
+

2447

60

)
=

1

42

(
27

1260

)
> 0

Thus we know that abbf (n) must obtain its maximum when n = 7. Hence, the only value
of abbf (n) we are concerned with is

abbf (7) =
Ĥ7 + 6Ĥ2

7
=

152 ln 2

7
− 5521

420
< 2

So we see that it is possible that the correct choice of p will give us an approximation
guarantee better than 2. It turns out that the next easiest function to analyze is abgf .
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abgf (n+ 1)− abgf (n) =
Ĥn+3 − Ĥ2

n+ 1
− Ĥn+2 − Ĥ2

n

=
1

n(n+ 1)

(
nĤn+3 − (n+ 1)Ĥn+2 + Ĥ2

)
≤ 1

n(n+ 1)

(
1 + Ĥ2 − Ĥn+2

)

Again, this is decreasing and

abgf (2)− abgf (1) =
1

2

(
1

4
− Ĥ3 + Ĥ2

)
=

1

2

(
1

4
− 4 ln 2 +

5

2

)
<

1

2

(
1

4
− 4

69

100
+

5

2

)
=

1

2

(
−1

100

)
< 0

Thus agbf (n) must obtain its maximum when n = 1 and thus the only value of abgf (n) we
are concerned with is

abgf (1) = Ĥ3 − p

Since we want our approximation ration to be strictly less than 2, we will need Ĥ3−p <
2, which gives p > 8 ln 2 − 11

2
. With this new lower bound on p, we turn our attention to

agbf aggf .
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agbf (n+ 1)− agbf (n) =
Hn+1 − Ĥ2 + p

n+ 1
− Hn − Ĥ2 + p

n

=
1

n(n+ 1)

(
nHn+1 − (n+ 1)Hn + Ĥ2 − p

)
≤ 1

n(n+ 1)

(
1 + Ĥ2 −Hn − p

)

Again, this is decreasing and

agbf (9)− agbf (8) =
1

72

(
8

9
−H8 + Ĥ2 − p

)
=

1

72

(
8

9
− 761

280
+ 4 ln 2− 1− p

)
<

1

72

(
8

9
− 761

280
+ 4

7

10
− 1− p

)
=

1

72

(
−73

2520
− p
)

< 0

Also,

agbf (6)− agbf (5) =
1

30

(
5

6
−H5 + Ĥ2 − p

)
≥ 1

30

(
5

6
−H5 + Ĥ2 − Ĥ2 +H2

)
=

1

30

(
3

60
− p
)

> 0

Thus agbf (n) must obtain its maximum when n ∈ {6, 7, 8} and thus the values of agbf (n)
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we are concerned with are

agbf (6) =
H6 + 5Ĥ2 + p

6

agbf (7) =
H7 + 6Ĥ2 + p

7

agbf (8) =
H8 + 7Ĥ2 + p

8

Finally,

aggf (n+ 1)− aggf (n) =
Hn+3 − Ĥ2 + p

n+ 1
− Hn+2 − Ĥ2 + p

n

=
1

n(n+ 1)

(
nHn+3 − (n+ 1)Hn+2 + Ĥ2 − p

)
≤ 1

n(n+ 1)

(
1 + Ĥ2 −Hn+2 − p

)

Again the bound is decreasing and

aggf (4)− aggf (3) =
1

12

(
3

6
−H5 + Ĥ2 − p

)
<

1

12

(
1

2
− 137

60
+ 4 ln 2− 1− 8 ln 2 +

11

2

)
<

1

12

(
3− 17

60
− 4

41

60
+

)
=

1

12

(
−1

60

)
< 0

Thus aggf (n) must obtain its maximum when n ∈ {1, 2, 3} and thus the values of aggf (n)
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we are concerned with are

aggf (1) = H3

aggf (2) =
H4 + Ĥ2 − p

2

aggf (3) =
H5 + 2Ĥ2 − 2p

3
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Glossary

ΓF (S) := {v ∈ V : ∃u ∈ S, uv ∈ F} the vertex neighbourhood of S
ζF (S) := V \ (S ∪ ΓF (S))

δF (S : S ′) := {uv ∈ F : u ∈ S, v ∈ S ′} the cut from S to S ′

Comp(H) the set of all connected components of subgraph H ⊆ G
κH(s, t) the maximum size of a set of internally-disjoint s, t-paths in H ⊆ G
κ′H(s, t) the maximum size of a set of edge-disjoint s, t-paths in H ⊆ G

Pst the unique s, t-path in T
Shadow (of a link l) a link l′ such that Pl′ ⊆ Pl
P(S) the set of partitions of an arbitrary set S
|P| the number of parts in a partition P

δF (P) := {uv ∈ F : u and v are in different parts of P}
Hi :=

∑i
j=1

1
j

the i-th harmonic number

Ĥi :=
∑

j≥1
1

2j+1Hi+j the i-th super-harmonic number

β-bundle a union of at most β paths of T such that the union connected
Bβ the set of all β-bundles

β-simple pair a union of at most β paths of T such that the union connected
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