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Abstract

Quantum key distribution (QKD) [7, 22] is a cryptographic protocol in which two
legitimate parties, Alice and Bob, establish an information-theoretically secure secret key
using the properties of quantum mechanics. As such, the goal of this subfield is to design
a QKD protocol, prove its information-theoretic security, and, if the design is practical,
build an implementation. In this process, a major contribution of the theorist is to find
a good middle ground between an accurate representation of the implemented protocol
and the simplicity of the analysis when proving the information-theoretic security of the
implementation. For some time this middle ground was neglected by instead assuming
that Alice and Bob can send an infinite number of quantum signals to each other, which
no implementation can ever achieve. This point was resolved in Renner’s PhD thesis [71]
in which he developed the general framework of security of QKD with finite resources—
now known as finite key analysis. Unfortunately, the calculations of finite analysis are
difficult without nice symmetries and so most works since Renner’s thesis have focused on
simplified protocols with nice symmetries. In this thesis, we begin by both expounding
and improving the theory of finite key analysis. Our improvement of the analysis in turn
improves the amount of key that can be generated for protocols without nice symmetries.
Following this improvement, we present a numerical method for the finite key analysis
of QKD protocols that can be represented in finite-dimensional Hilbert spaces without
requiring specific symmetries. Lastly, we present the finite key analysis for variations of
the BB84 protocol [7] for both better understanding of the finite key analysis and proof of
the general applicability of our numerical method.
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Chapter 1

Introduction

Quantum key distribution (QKD) [7, 22] is a cryptographic protocol in which two legit-
imate parties, Alice and Bob, establish an information-theoretically secure key using the
properties of quantum mechanics. This protocol differs from historical cryptographic pro-
tocols because its security is derived from physical principles rather than assumptions on
Eve’s computational power. Furthermore, unlike many classical cryptographic protocols in
which an adversary may store all of the data exchanged during the protocol indefinitely, the
data exchanged during the QKD protocol is secure against later advancements in quantum
hacking. In other words, the secret key generated in QKD is as secure as it was at the
time of generation, or, formally speaking, QKD has the property of forward secrecy. The
information-theoretic security and forward secrecy of QKD makes it a desirable protocol
to have in one’s cryptographic toolbox.

For these reasons, in the past three decades since this protocol was invented, there
has been rapid advancement in both theory and implementation of QKD protocols. For a
QKD implementation to be useful, it must have (1) a feasible (though, ideally, practical)
implementation in the real world and (2) an information-theoretic security proof which
satisfactorily represents the feasible implementation.! The job/goal of those who work on
QKD is to make at least one of these two requirements easier to satisfy. This thesis is no
different as it is interested in constructing a numerical method of determining information-
theoretic security proofs for feasible and practical implementations of QKD protocols.

Historically, many proofs of information-theoretic security of QKD protocols rely on
the assumption that Alice and Bob exchange an infinite number of signals to establish

'We say ‘satisfactorily’ as no model perfectly models reality, but if we believe they are nearly the same,
we will be happy— until someone shows us why we should not have been.



their secret key. This is known as infinite or asymptotic key analysis and is in principle
impossible to implement.? Furthermore, the more signals Alice and Bob want to send
between each other, the more time the protocol will take. It follows that from an imple-
mentation standpoint it is important to know what length of secret key they can establish
using a reasonable amount of time/signals. Finite key analysis, first presented by Renner
[01], solves this gap between the real world implementation and the security proof by de-
termining an upper bound on the key length of an e-secure key using finite resources where
e represents the probability that Alice and Bob do not abort the protocol and the output
of the protocol is not information-theoretically secure.

Unfortunately, because of both the mathematical and conceptual difficulty of finite
key analysis, most works following Renner’s thesis only perform the analysis for simple
symmetric protocols with a simplified analysis. This is an issue as finite resources is a
reality of all protocols and many protocols are neither simple nor symmetric. Therefore
we need methods for performing finite key analysis for such protocols. In this thesis, we
present tools to remedy this gap by introducing a numerical method for determining the e-
secure key length of general (device-dependent) QKD protocols that can be represented in
finite-dimensional Hilbert spaces without forcing any required symmetries. In Chapter 2,
we present the necessary background in mathematics and physics to understand the thesis.
In Chapter 3, we present the theory of finite key analysis. This chapter expands upon
the points made in Renner’s thesis [71], documents important results in finite key analysis
since Renner’s thesis, and presents new results. Specifically, it presents an improvement
to the analysis of the parameter estimation subprotocol (Theorem 5), which can improve
the key rate for asymmetric observations in protocols, as well as a new discussion on the
completeness of device-dependent QKD protocols (Section 3.1.3). In Chapter 4, after a
review of the numerical method for asymptotic key rates [17, 68] which we are extending,
we present our tight and reliable numerical method for determining e-secure finite key
lengths of general device-dependent QKD protocols. In Chapter 5, we use our numerical
method to showcase both the generality of our numerical method as well as provide insights
on current finite key proof methods. Finally, in Chapter 6, we take stock of what we have
shown and look at what important topics remain to be solved in the field of finite key
analysis.

2We say in principle because, as we will we see in Chapter 5, one should be able to achieve the asymptotic
result for a sufficiently large finite number of signals.



Chapter 2

Background

In this chapter, we will review the mathematical framework of quantum mechanics neces-
sary for quantum key distribution. We then review semidefinite programming which is the
quintessential tool used in this thesis. Much of the notation is based on [60].

2.1 Quantum Mechanics

2.1.1 Operator Theory
Hilbert Spaces

Quantum mechanics fundamentally is concerned with describing physical systems which
fail to be properly predicted by the methods from classical mechanics and electrodynamics.
All such systems are represented in Hilbert spaces. This is not a trivial choice but rather
is the mathematical object that allows for unifying the matrix mechanics formalism and
the Schrédinger wave mechanics formalism [19].

Hilbert spaces are Euclidean inner product spaces which are complete and separable. In
the case of quantum mechanics, the Hilbert space in question is an inner product space over
the field of complex numbers. We note that the demands of the space being complete and
separable are non-trivial for infinite-dimensional Hilbert spaces. Conveniently, this thesis
is exclusively concerned with finite-dimensional Hilbert spaces where these nuances need
not be worried about. Throughout this thesis we denote the Hilbert space of a quantum
system A by H 4 as is popular among physicists. Furthermore, as we will only be concerned



with finite-dimensional Hilbert spaces over complex numbers, for every Hilbert space H
defined in this thesis, there will exist a finite set, or alphabet, >, which is the dimension
of the Hilbert space. That is to say, for any Hilbert space H, there exists ¥ such that
H = CP®l. This equivalence will be used often. For simplicity, we will write C*l as C>
throughout this thesis. It follows from this observation of finite-dimensional Hilbert spaces
that a vector v € H is a |X|-dimensional vector and we could index denote its entries by
v, where a € 3. We now summarize all of these points.

Hilbert Space

In this thesis, H 4 denotes a Hilbert space of a quantum system A. The Hilbert space
H 4 is equivalent to C* for some alphabet . Let u,v € H. The inner product of H

is defined as
(u,v) = Zu_ava = ulv
a€EYl

where 7, is the conjugate of complex u, and f represents the Hermitian conjugate.

Linear Operators

As one might expect from being formalized in Hilbert spaces, quantum mechanics is gen-
erally taken to be linear. Consequently, we will be greatly concerned with linear operators.
Given Hilbert spaces H4 = C*, Hp = C», the space of linear operators from H4 to Hp
will be denoted L(H 4, Hp).

By fixing a basis, we can associate a linear operator X € L(H4, Hp) with a matrix,
My, by the following relation:

MX = Z <€a,X€b>

a€MNbED

where e; denotes the vector with a 1 in the i"* entry and 0 elsewhere for the basis defined
by the relevant alphabet (i.e. it fixes an orthonormal basis). We will from now on refer to
both the matrix and the operator by X for simplicity.

When we are considering L(H 4, H 1), we will simply denote it L(H 4). Note that L(H )
corresponds to the set of square matrices of dimension |X|.

Trace
Given u,v € H,, the outer product of v and v is uv’ € L(#H,). The trace, denoted Tr, is



the unique linear map defined by Tr : L(#4) — C such that Tr(uvT) = (v,u). One can
then use this map to define an inner product on L(Ha, Hp). Given X,Y € L(Ha, Hp),

(A,B) = Tr(A'B)

Note that as one expresses matrices using an orthonormal basis, it follows from the defini-
tion of Tr that, in the case of L(H 4), it is equivalent to the definition

Tr(X) = Z(ea,Xea> for X € L(Ha) .

In other words, for a square matrix, the trace is the sum of the diagonal entries. We can
now summarize the sets of linear operators which will matter in this thesis.

Important Subsets of Linear Operators

Consider ‘H 4. We can then define the following subsets of L(#4):

1. Normal Operators:
{X € L(Ha): XX = XTX}

\)

. Hermitian Operators:

Herm(Ha) = {X € L(Ha) : X = X}

3. Positive Semidefinite Operators:

Pos(Ha) = {X € L(H4): X =YY, Y € L(Ha)}

4. Density Operators
D(Ha) ={X € Pos(H,) : Tr(X) =1}

5. Isometries
UX,Y)={V e L(X,Y) : VIV = 1.}

Note that D(H4) C Pos(Ha) C Herm(H,). Furthermore note YV € U(X,)),
Vx| = ||z|| V& € X which is what makes them isometries.

As we will see, this thesis is largely interested in positive semidefinite operators, and
so we note the following facts about them.



Positive Semidefinite Operators

Consider an arbitrary finite dimensional Hilbert space, H.

1. Equivalent Definitions: There exist equivalent definitions of positive semidefi-
nite operators. The following two are particularly useful:

Pos(H) = {X € L(H) : Yv € H, (X, vo') > 0}

where A\, (+) denotes the minimum eigenvalue.

2. Convex Cone: The set of positive semidefinite operators, Pos(#), is a convex
cone. That is to say if A > 0 and X € Pos(#H), AX € Pos(#). Furthermore, if
X,Y € Pos(H), then for A € (0,1), AX 4+ (1 — \)Y € Pos(H).

3. Partial Ordering Induced by Cone: There exists a partial ordering defined
using the positive semidefinite cone known as the Loewner ordering. Given
X,Y € L(H), X =Y if and only if X —Y € Pos(#). This is the only partial
ordering used in this thesis, so we use > to denote it.

Linear Maps

Just like linear operators take vectors to other vectors in a linear fashion, one can use linear
maps to take one Hilbert space to another Hilbert space in a linear fashion. Given H 4,
Hp, we denote the set of linear maps from H4 to Hp by T(Ha, Hp). Just as in the case
of linear operators, we define T'(Ha) = T (Ha, Ha).

Important Subsets of Linear Maps

1. Hermitian-Preserving Maps

{® € T(Ha, Hp):VH € Herm(H ), P(H) € Herm(Hp)}

2. Positive Maps:

{® €T (Ha, Hp) : VX € Pos(Ha),®(X) € Pos(Hp)}




3. Completely Positive (CP) Maps:

{® €T (Ha, Hp) : VHe, VX € Pos(Ha®H ), (@@idL(HC))(X) € Pos(Hp®Hc)}

4. Trace Non-Increasing (TNI) Maps:
{®eT(Ha Hp) : VX € L(Ha), Tr((X)) < Tr(X)}

(a) Trace Preserving (TP) Maps: Trace non-increasing maps which satisfy
the equality for all X € L(#H4).

5. Unital Maps:
{@€T(Ha, Hp) : @(1y,) = Luy}

where idy,3,) is the map which maps every element of L(H,4) to itself and ®
is the tensor product defined below.

Adjoint Map

Given a map ® € T(H 4, Hp), the adjoint map, denoted ®' is uniquely defined by

(2(X),Y) = (X, (V)

where X € Ha, Y € Hp.

\.

Tensor Product & Kronecker Product

The tensor product, denoted ®, is a way of constructing a Hilbert space out of other
Hilbert spaces. It is an interesting mathematical object but for our work all we need is the
following points:

1. Given Hy = C*, Hp = C*, H, ® Hp = C¥*N where x is the Cartesian product.

2. Given ® € T(Ha,Hp), ¥V € T(He, Hp), one can construct the tensor product of the
two linear maps, @@V € T'(Ha @ He, Hp @ Hp), by the action, (PR ¥V)(X ®Y) =
O(X) @ W(Y).

(a) As operators are also maps, an identical claim can be made for the tensor
product of operators.



3. Given X € H4 =C®, Y € Hp = C*, as the basis is already implicitly fixed by the
alphabets, we can write the operators in the following manner:

X = Z X (a,b)eqel Y = Z Y(c,d)e.el

a,bes c,dEA

then the operator X ® Y corresponds to the Kronecker product of the matrix repre-
sentations. That is X ® Y corresponds to the matrix

X®Y = Z X(a,b)Y (¢, d)eqe} @ ecel

a,bex
c,deEA

In summary, the first two points tell us how the tensor product works, the last point tells
us how we are going to represent tensor products in the numerics.

With this underlying mathematical framework, we can now expound the theory of
quantum information.

2.1.2 Quantum Probability Theory

Quantum probability theory is
an operator theory with a soul.

Quantum Channels and their
Capacities
Alexander Holevo

We can now breathe life into operator theory by using it to construct an extension of
classical probability theory induced by quantum mechanics.

Quantum States, Preparations, and Measurements

Physically, there is a quantum system A which is measured by a measurement apparatus
M which results in an outcome (a read-out on the measurement apparatus) of O; where
1 € Y. Generally, to run an experiment or an information processing scheme, the physicist
prepares the quantum system A many times and performs their measurement M on the
quantum system each time. This will always lead to an observed probability distribution



(often called a frequency distribution) over the outcomes {O;};ex. One might denote this
frequency distribution by f € P(X) where P(X) denotes the set of probability distributions
over the finite alphabet .

This empirical reality leads to the following formalism:

e A quantum system is represented by a density matrix ps € D(Ha).

e A measurement M is represented by a positive-operator valued measure (POVM)
which is a set of positive semi-definite operators that add up to identity

{T"; }iess € Pos(H 4) such that ZFi =1

1€

This choice of representation follows from Born’s rule, which states that given such a
representation one finds then that p(i) = Tr(pal';) where p(i) is the probability that one’s
measurement M results in outcome ¢ given one is measuring pa.

Furthermore, we note that if one takes a probability distribution p € P(X) which is a
vector, and write it as the diagonal of a matrix, denoted diag(p),one will note diag(p) €
D(Hp) where Hp = C*. This tells us probability distributions can be viewed as a subset
of density matrices. Alternatively, this tells us that quantum states are themselves a
generalization of probability distributions which gives rise to quantum probability theory,
and thereby quantum information theory.

Joint Quantum Probability Distributions and Entanglement

If quantum states are generalizations of probability distributions, we may wish to give
an account of the generalization of joint probability distributions, so that we might have
a notion of correlations. Fundamentally, a quantum joint probability distribution over
Hilbert spaces H4 and Hp would be any density matrix pap € Hap = Ha ® Hp. More
traditionally p4p would be referred to as a bipartite state as it is defined over two quantum
registers. We will use the two terms interchangeably depending on whichever is clearer.
There are two special classes of joint quantum probability distributions which we will be
interested in for this thesis: entangled states and classical-quantum states.



Separable and Entangled States

Consider two Hilbert spaces Ha,Hp. Consider a density matrix pap € D(Hap).
The operator is separable if there exists ¥ such that {0, : a € £} C D(Ha),
{7a:a €3} CD(Hp), p € P(X) such that pap = 5 p(a) 0, @ 7o

A density matrix p4p is entangled if it is not separable.

Entangled states are a special class of joint quantum probability distributions because
they satisfy certain properties:

e An entangled state pap can allow for non-local correlations between the two subsys-
tems, which is not possible for classical systems.

e Entanglement (the property of being an entangled state) may be a resource for certain
quantum information processing tasks.

e The set of separable states form a convex set, and so the entanglement of a system
may be detected via testing.

In other words, entangled states, a class of quantum joint probability distributions, can have
specific properties that classical joint probability distributions don’t, and these properties
at times can be utilized for information processing, as we will see in Section 2.2.

Classical-Quantum States

Consider two Hilbert spaces Hx,Hr where Hx = C*. Consider a density matrix
pxe € D(Hxgr). The operator is a classical-quantum state if there exists an or-
thonormal basis {|z)}.ex for Hx, a probability distribution p € P(X) and set of
density matrices {p%}.ex C D(Hg) such that

pxe =Y p(a) |e)Xe| ® g

\. .

As one can see from the definition of classical-quantum registers, one could trivially
extend the definition for any number of classical and quantum registers. Furthermore,
classical quantum states are a subset of the separable states, which gives us an upper bound
on how strongly correlated the systems may be. The use of the classical-quantum states is
that sometimes one will perform an operation that takes a (multipartite) quantum state

10



par and outputs a joint state with a classical register X which is correlated with another
register E which remains a quantum state. This sort of procedure, which is done in QKD,
results in classical-quantum states. Such an operation is modeled using a quantum channel.

Quantum Channels

So far we have treated quantum states as static quantum probability distributions. How-
ever, we know quantum systems are physical and they change, and these changes must
be modeled. This is done with quantum channels. Quantum channels are the most gen-
eral description of the evolution of (closed) quantum systems. This is easy to see in that
Schrodinger’s equation is a specific example of a unitary channel.

Quantum Channel

Given systems A and B represented by Hilbert spaces H,Hp, a quantum channel
is a completely-positive trace-preserving (CPTP) map ® € T(Ha, Hp).

A quantum channel is a good physical choice as its positivity along with its trace-
preserving property guarantees us it takes quantum probabilities to quantum probabilities.
That a quantum channel is completely positive tells us that even if there exists another
quantum state, say pc, then ® ®idy, ) (pac) will also be a proper quantum state, so that
quantum systems are well behaved ‘globally.’

While the definition of quantum channels is quite nice, one might want a more direct
way of representing them for calculations. There are a few such representations. However,
it will be sufficient to consider the Kraus representation of linear maps (and quantum
channels) for this thesis.

Kraus Representation

For any completely positive non-zero map, ® € T'(X,)), there exists a set {K, : a €
Y} € L(X,)Y) such that

Furthermore, if ® is also trace-preserving, > _y K] K, = 1y and consequently the

adjoint map ®' is unital.

aEX

11



There are all sorts of classes of channels, but for the needs of this thesis, these are the
classes we will need and the notation we will use.

Relevant Classes of Channels

Let Ha = C*, Hp = CA. All definitions will be for ® € T(Ha, Hp).

1. A state preparation channel is a channel of the form ®(X) = > (X, eqel)p,
where p, € D(Hp). Note in the case that X is a density matrix, the channel
prepares p, with probability X (a,a) which is why it is a preparation channel.

2. A measurement channel is a channel of the form ®p(X) = >\ (X, fj>eje}
where {fj}jeA is a POVM. We will also refer to this channel as a probability
map because when X is a density matrix, by Born’s rule, the channel outputs
the probability distribution of the measurement outcomes given that input

state.

3. A classical-to-classical channel [67] is a channel of the form ®q(X) =
> es p(bla) (X, eqel) where p(bla) is a conditional probability distribution. The
channel is given this name because if X is a density matrix, it is treated like
a classical probability distribution (only its diagonal elements matter) and the
output of the channel will be a probability distribution (and thus a classical
object).

2.1.3 Measures and Entropic Quantitites of Quantum Probabil-
ities

So far we have defined quantum probabilities, joint quantum probabilities, and how quan-
tum probabilities can be evolved over time. Information theory is concerned with quan-
tifying information. As probabilities are about what we expect to happen, information is
about what we learn when something happens given what we expected to happen. For this
reason, information theory quantifies information using measure-like functions over prob-
ability distributions. Identically, quantum information theory is concerned with measure-
like functions over density matrices. If the function is comparing the density matrices
themselves, these are (generally) considered measures. If the functions are quantifying the
information stored in the quantum state, then these are considered entropic quantities, or
entropies. There is an endless amount of literature on entropies and measures, but here
we just discuss the specific ones we will need. Generally both the measures and entropies

12



have operational interpretations which provide a language for the math, and so we include
these as they help us talk about QKD in the later section. Note for the rest of this thesis
log = log,. We begin with the measures.

Measures

A measure here simply means that it is a means to compare two quantum states, it does
not necessarily mean that it is a metric.

Trace Distance (Variational Distance)

Let p € L(H4) where H4 = C*. The trace distance is:

lelhi="D>_ (o)l (2.1)

a€Spec(p)

which is denoted in this manner as it is the trace norm of the difference between p
and o (see 2.13).

Operationally, when p, o are quantum states, the trace distance of 1||p — o||; equals

the optimal probability one can successfully distinguish the two states using the
best choice of POVM [32].

For historical reasons, when comparing two classical probability distributions, the
trace distance is also referred to as the total variational distance, and we will use
this phrase in the thesis.

Diamond Norm [34]
Let ® € T(Ha,Hp). The diamond norm is defined as:

]l = (@ ®idy, )(0)]]1 - (2.2)

max
0€Pos(HA®H ):||o]|1 <1

Operationally, if one has two channels, ® and W, it has been shown the diamond
norm £||® — ¥, characterizes how well one can successfully distinguish the two
channels using the best choice of input state and POVM [31].
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Quantum Relative Entropy

Let p,o € Pos(A). The quantum relative entropy is:

D —
(pllo) otherwise

{Tr(p(log(p) —log(0))) im(0) C im(p) (2.3)

Entropies

The von Neumann Entropy

Let py € Ha = C*. The von Neumann Entropy is defined as

HA)=- Y Alogh,

where )\, is the a'* eigenvalue of p.

This can be viewed roughly as how much one learns about the state p4 when one
performs a projective measurement in its eigenbasis.

While the von Neumann entropy is fascinating in and of itself, in this thesis we are only
interested in entropic quantities for bipartite quantum states which in some sense follow

from it. We now define these.

Measures of Quantum Informational Content

Let pap € D(Ha ® Hp),
e The quantum mutual information of the state is
I(A: B) = H(A) + H(B) — H(A, B) = D(pasllpa ® ps)
which can be viewed as measuring the information stored in p4 that is also
stored in pp.

e The quantum conditional entropy of A given B of the state pap is

H(A|B) = H(A, B) — H(B)
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which can be viewed as the amount of information in A which is not contained
B.

Smoothed Entropies

To be able to do finite key analysis, Renner introduced the min- and max-entropies as well
as their smoothed versions in [51].

Min- and Max-entropy

Let pap € D(Ha ® Hp).
1. The min-entropy is defined as
Hyin(A|B) = —logmin{Tr(op) : 14 ® o = pap} -

Operationally, this is the maximum amount of uniform randomness which one
can guarantee to extract from the register A given the side information of
register B.

2. The maz-entropy is defined as
Hyox(A|B) = log || Tr4 P42 ||

where || - || is the spectral norm and 1745 is the projection onto the support of
pap. Operationally, this is the maximum amount one can compress the register
A, without any risk of failure, given the side information of register B.

Note: Here we have used the definitions as written in [23] as they are more condensed
than those given in [51]. We also note the max-entropy written here is the quantum version
of the Hartley entropy which was proposed in Renner’s thesis [71] and has the presented
operational interpretation. This is defined using the @ = 0 Petz quantum Renyi divergence.
These days people generally define the max-entropy using the v = 1/2 sandwiched (or
‘minimal’) quantum Renyi divergence as that max-entropy then satisfies a duality relation
with the min-entropy [6]. See Section 5.2 of [62] for these definitions and Pg. 56 of [01]
for the discussion of the difference in choice of max-entropy.

The definitions given above can be seen as reasonable definitions of min- and max-
entropy in the sense that if one considers a classical probability distribution and lets the

15



register B be trivial. Then Hyin(A|B) = Hpin(A) = —log||pallec which is the entropy
of the most likely outcome and thus will contribute the least entropy, and Hp.x(A|B) =
Hyax(A) = logrank p4 which is the entropy of the uniform distribution on the support of
pa which would maximize the entropy on the support.

Unfortunately, the min- and max-entropy may change rapidly when the quantum state
is barely changed under the trace norm,! and so they need to be ‘smoothed.’

Smoothed Min- and Max-Entropies

Let pap € D(Ha ® Hp), the smoothed min-entropy is defined as

H: .. (A|B) = maX)Hmin(A|B) (2.4)

min peBe (p
and the smoothed max-entropy is defined as

H: . .(A|B) = min ) Hyax(A|B) (2.5)

pEBE(p

where for both B(p) = {p € D(Ha @ Hp) : ||p —pl1 < e}

Both functions have the operational interpretations of their respective unsmoothed
versions except one views ¢ as the accepted probability of the task failing.

\. J

I note that since 2009, B¢(p) is generally defined in terms of the purified distance [64]
rather than the trace norm. However, for our purposes this will be sufficient, as we only
need results from Renner’s thesis from 2005 [51].

While the smooth entropy calculus has a myriad of interesting results, the only one we
will need for this thesis is the following:?

!There is a good example of this in terms of max-entropy at the beginning of Section 3.2 of [51]. It
is harder to construct an example for min-entropy, but it must be the case by the duality of min- and
max-entropy (Definition 2 of [35])

2The well-read reader who knows where we are going in this thesis will ask why we use this result
which may be looser than the Quantum Asymptotic Equipartion (QAEP) Theorem [63]. In effect this is
because the statement of that theorem relies on a term, Y(A|B),,, which depends on Hpyi,(A|B), and
Hyax(A|B),. This would require solving two extra SDPs, which may have numerical error, for a correction
term that may not be that much better.

16



Variation of Corollary 3.3.7 of [51]

Let pxp € D(Hx ® Hp) be a classical-quantum state. Then for any € > 0,
1

n
where 6 = 2log,(rank(px) + 3)4 /10g2é2/e)‘

The ‘variation’ is simply that there is a well-documented mistake in the argument of
the square root in Theorem 3.3.6 of [51] which has been corrected in this statement and
that we take a less loose bound presented in the proof of Corollary 3.3.7 at the expense of
it not being in terms of entropies.

€
Hrnin

(PXBlPE") = H(XB) — H(B) — ¢ (2.6)

2.1.4 de Finetti Reductions

The last tool quantum information theoretic tool we will need in this thesis are de Finetti
theorems. Historically, information theory has been interested in identically and inde-
pendently distributed (i.i.d.) random variables. This means each random variable in a
sequence (Xi, Xy, ..., X;,) has been sampled from the same probability distribution p and
that the outcome of each random variable is independent of the others, p(X; = 21 A X; =
x9) = p(X = x1) *p(X = x9) for all 4, j € [n]. In the language of quantum mechanics, this
is when one considers a quantum state of the form p®".

To calculate properties of large systems (such as entropies) it is normally easiest to
consider i.i.d. states as they are of a very nice form, with nice behaviour under measures
(such as in Eqn. 2.6). However, assuming i.i.d. structure is quite unreasonable (if we send
a laser pulse that is prepared the same way every time through a fiber optic, it will not
come out of the fiber optic identically every time). Therefore we need an argument for
how we can reduce more general quantum states to i.i.d. quantum states. These always
require some promise on the symmetry of the general quantum state. We present two
such theorems here after defining a few classes of operators related to the symmetries
necessary. The first theorem is a statement of the Quantum de Finetti theorem from [13].
The second is a statement of the Finite Quantum de Finetti theorem from [51]. Those who
may want/need a further discussion of de Finetti reductions (as well as other reductions
to i.i.d.) in terms of quantum information processing tasks, we suggest they peruse [2].
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Permutation Invariant and Exchangeable States

Consider H 4. Consider [¢p) € HE™ and p,, € D(HY"). For each permutation of n ele-
ments, 7 € S, let the unitary operator which permutes the n Hilbert systems be W.

A pure state [1)) is permutation invariant if it satisfies
) =Wz ) VT €S, .
Permutation invariant pure states lie in the symmetric subspace which is defined as:
Sym(HE") ={u e HY"  Wou=u Vr € S,} .
Generalizing from pure states, a density matrix p, is exchangeable if

Pn = W,ran): VresS, .

A state p,, is n+k-exchangeable if for some fixed k > 0 there exists p,x € D(’Hi(wk))

such that p,.x is exchangeable and Trger prik = pn-

A state p,, is infinitely exchangeable if for all k € N there exists p,.x € D(’Hi}(mk))
such that p,.x is exchangeable and Trqer prir = pn-

\. J

One might note that i.i.d. states are infinitely exchangeable as Vk € N, Tr or p%" ®
p®F = p®". However, i.i.d. states are not the only exchangeable states. The de Finetti
theorems tell us relationships between these types of states and (almost) i.i.d. states.

Quantum de Finetti Theorem [13, 33]

Let p, € D(H%") be an infinitely exchangeable state. Then there exists a measure

v on D(H4) such that
‘ Pn — / a®"v(o)
c€D(Ha)

One can see this tells us that infinitely exchangeable states are in effect just mixtures of
ii.d. states. Of course infinitely exchangeable states are also a rather untenable demand
in experiment and so there exist Finite Quantum de Finetti theorems. We present the
one from [51] which tells us how well one can decompose an n + k-exchangeable state into

=0 (2.7)

1
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states that are almost like mixtures of i.i.d. states.

Space of Almost i.i.d. States [51]

Consider the Hilbert space H4. Let 0 < m < n. Fix a pure state |#) € H 4. Consider
the set of pure states which are partially i.i.d. pure states with respect to |0):

We can then consider the subspace of symmetric pure states which are composed of
partially i.i.d. states with respect to |):

Sym(HE",[0)°™) = Sym(HG") (| span (V(HS", |6)°™))

we call this space the space of almost i.i.d. states as they are symmetric states made
up of linear combinations of partially i.i.d. states and if m = n one recovers the
space of i.i.d. states.

Finite Quantum de Finetti Theorem [51]

Let ppix € Sym(?—li(wk)). Let 0 < r» < n. Then there exists a measure v on the
unit sphere S;(H4) and a pure state ¢/? € Sym(HE", |0)®" ") for each |0) € S;(H.)
such that

2.2 Quantum Key Distribution

k(r+1) | 1 3
< 9¢” 2wrm +3dim(Ha) Ink (2.8)
1

Tr gk (Ppik) — / U|0>V<|0>)

|6)ES1(HA)

Quantum key distribution (QKD) is the quantum information processing task of establish-
ing a secret key between two parties, traditionally named Alice and Bob. Fundamentally,
a QKD protocol is a protocol in which Alice and Bob try to generate a pair of keys
(Sa,Sp) which are the same (correct) and unknown to Eve (secret). To implement this
protocol, Alice and Bob are given access to a classical channel which Eve can listen to
but not tamper with (authenticated classical channel) and a quantum channel which Eve
may tamper with how she pleases (insecure quantum channel). The subprotocols involved
in QKD can be partitioned into the ones which use the quantum channel, referred to as

19



the quantum phase of the protocol, and the subprotocols involving the classical channel,
referred together as the classical phase of the protocol. The type of quantum state used
to implement the quantum phase is often used to partition QKD protocols into two types:
prepare and measure (PM) QKD protocols and entanglement-based (EB) QKD protocols.
In prepare and measure protocols, Alice sends signals to Bob from an ensemble {p., |¢.)}
where p, is the a priori probability she sends |¢,). In entanglement-based protocols Alice
(or Eve!) prepares a joint quantum state p4p which both Alice and Bob receive a half of
to measure. In this thesis we are interested in security proofs, and it turns out one can
always prove security of a PM QKD protocol by means of an equivalent EB QKD protocol
using the source-replacement scheme [18, 24]. This allows us, without loss of generality,
to present the general QKD protocol as being entanglement-based and then design our
numerics to prove security for EB QKD protocols. In this section, we present the generic
QKD protocol, the source-replacement scheme, and the definition of security for a QKD
protocol.

2.2.1 General QKD Protocol

Following Fig. 2.1, without loss of generality,> we now present the general implementation
of a QKD protocol.

1. State Preparation and Transmission: Alice prepares an entangled quantum state pap
and sends half of it to Bob. Alice does this N times.

2. Measurement and Data Partitioning: Alice and Bob measure each of the NV entangled
quantum states pap and store the data pertaining to each measurement. In view of
future communication, they partition their respective data from each measurement,
indexed by i, into private information, A;, B;, and public information AZ, B which
they announce publicly.

3. Parameter Estimation: Alice and Bob announce their fine-grained data about some
random subset of the N signals of size m to construct the frequency distribution
f(a,b). If f(a,b) is in a set of pre-agreed upon accepted statistics, Q, Alice and Bob
proceed. Otherwise, they abort the protocol.

4. Announcements and General Sifting: Alice and Bob throw out results of some subset
of the N — m signals based on public information made available in Step 2. The

3While the description here is referred to as entanglement-based, as we will review later, one can
mathematically describe prepare-and-measure-based protocols also as entanglement-based protocols.
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N times

1) Transmission A e e B
A e e B
2) Measurem(.ent'& N N
Data Partitioning A A, B. B
Public l’ri\'alte Public Private
3) Parameter A e e B
Estimation J
f(a,b)
4) Announcements A i e B

& General Sifting FE{0ky 1) G0,k —1}"

xe{0,.,d—1}"
[ ] P B
M J
¥ € {0, d =1} X e {0,..,d—1}"

7) Privacy A e e B
Amplification \ \Z

6) Error Correction A

Sa€e{0,.,d=1}  Spefo,.,d—1}

Figure 2.1: General QKD Protocol.

remaining private information forms their raw keys z € {0,...,k4 — 1}" and § €
{0,..., kg — 1} where k4 and kp are the number of possible outcomes for Alice and
Bob’s measurements respectively.

5. Key Map: Alice computes the key map,* a function of both her private data and the
public data of both parties to obtain a key, x € {0,1,...,d — 1}".

6. Error Correction: Alice and Bob publicly communicate to try and get § and z to
agree and thus Bob obtains 2’ € {0,1,...,d — 1}".

4 Alternatively, Bob can compute the key map. This is commonly referred to as reverse reconciliation,
and in this case Alice and Bob’s roles are reversed in steps 5. and 6.
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7. Privacy Amplification: Alice and Bob produce their final keys by using a two-
universal hash function on the key map result x (Theorem 5.5.1 of [71]). Privacy
amplification ends with Alice and Bob having keys S4 and Sp respectively.

2.2.2 Source-Replacement Scheme

As mentioned earlier, the source replacement scheme is a formulation of the prepare-and-
measure protocol in the language of entanglement-based protocols, which allows the de-
scription of the QKD protocol in the previous section to be general. It was first made
use of in the analysis of BB84 [3] and Gaussian CV-QKD [28]. The general method for
the equivalence was then expounded in [18, 24]. By formulating the prepare and measure
protocol in the language of entanglement-based protocols, whatever the key rate is for
the entanglement-based protocol is also the key rate for the original prepare and measure
protocol.

Imagine a prepare and measure protocol in which Alice sends the ensemble {p,, |¢.)}
where p, is the a priori probability of sending the signal state |p,). By the source-
replacement scheme, it is equivalent for Alice to prepare the entangled state:

B) 45 = D V/Pz|7) 410 s -

Alice first sends Bob’s portion of the state, the signal space S, to Bob through a quantum
channel £ : Hg — Hp leading to the resulting joint state:

pap = (idy, ® E)(|®) (D] 45)

where idy, is the identity channel on the A space. After Alice performs a local projective
measurement on the A space, she effectively sends |, ) to Bob with probability p, just like
in the prepare-and-measure scheme. Consequently Bob receives the conditional state

- 1
b= - Tralpas(|z) (x| ® 1p)]
Assume that in the original prepare-and-measure protocol Alice and Bob ended up with a
joint frequency distribution f(z,b) where b € 3 and |X| is the number of POVM elements
for Bob’s POVM {I'?};cx. It follows by the source-replacement scheme that asymptotically
it is equivalent for us to constrain psp by

Tr(pag(|z) (x| @ TY)) = f(x,b) Va,b.
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However, these observations alone will not be sufficient under source-replacement when
optimizing over a set of states as these correlations can be satisfied by a separable state,
and the whole point of source-replacement is in effect to make all QKD security proofs
about entanglement.

That a separable state can satisfy the above observations can be seen as follows. Let
|U') g = Dk [kXE| @ |ok)or|. Let plyp =idy, @ Easp ([¥'NY'|). Then we see that:

Te (s |R)K @ TF) = p(k.b) = Te(pap [R)k © TF) .

To solve this issue one needs constraints which determine the marginal of the joint state,
pa. A simple manner of doing this is to add an additional set of observations of the form
{Tr(pAFf‘) = 7; }ies which fix the marginal py.

2.2.3 Security

The history of QKD security is very interesting. The original security definition was about
the mutual information between Alice’s key S4 and the outcome, O, of Eve measuring
the quantum state(s) she used to eavesdrop: I(S4 : O) < e. (It is sufficient to show the
mutual information with Alice’s key is small as ideally Bob’s key is identical.) However, it
was shown that while the key S4 is secure, it is only secure so long as it is not used [30].
This meant that while the output of the protocol was secure under this security definition,
you could not use the key securely. The ability to use the key securely after the protocol
is referred to as universal composability and it is the goal of QKD implementations to
produce composably secure keys.

There exist a few frameworks for determining the security definition of composably
secure keys and in that sense all are sufficient for the security definition in this thesis.
However, of particular interest to the author of the thesis is the Abstract Cryptography
framework [17] which, by its construction, is a framework which derives only composable
security definitions from abstract notions. The security definition for QKD has been derived
in [50] using the Abstract Cryptography framework which is perhaps its most rigorous
defense of being a composably secure definition. We refer any reader to [417, 50] for further
justification of the security definition.

Composable e-Secure Key

A key is e-secure (sometimes referred to as e-secret) with respect to an adversary
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Eve if the joint state, pg, g, between Alice’s key, Sa, and Eve’s knowledge, £’ is if

1
§HPSAE/ —Ts, @ prrlli <e (2.9)

where 75, = IS_lAl > ses, 15)Xs] and ps, e is the output of the protocol conditioned on
not aborting.

1% Security Definition of a QKD Protocol

Definition 1. A QKD protocol is e-secure if for all input states, the output ps,s,r

satisfies
1
SlPsaspr = Tsasp ® perll < € (2.10)

where Ts, 5, = ﬁ Y sesy |Ks| @ |s)sl, psuspEr is the output of the protocol condi-
tioned on not aborting, and pr = Trg, s, (Ps.spE)-

It is crucial to note three aspects of the definition of e-secure key and e-secure QKD
protocol. The first is that because these definitions are in terms of trace distance, by
the operational interpretation of trace distance, we can see that the e-security may be
interpreted as the demand that the optimal amount the output key and the ideal key
could ever be distinguished is € from random guessing. The second is that these definitions
were defined on the output of the state conditioned on not aborting.” This means that one
could re-write the condition of e-secure key as

L .
(1 _pabort)é”pSAE’ — TS, ® pE’Hl <e

where Tr(ps, ') = (1 — Pavort) and ps, g = mpsAEu Note that the value of papore
A

will be dependent on the input state given this definition. The equivalent equation for
an e-secure QKD protocol is straightforward. This re-writing makes it clear that in some
sense you can build some very impractical but e-secure protocols. For example, if I just
have a QKD device that always aborts, then it is O-secure as (1 — paport) = 0. Furthermore
you could construct impractical QKD protocols which will abort with high probability to
drive down the e-term in exchange for a better key rate when the protocol outputs a key.

5We note one could define the security not conditioned on passing. However, this immediately implies
the definition conditioned on passing as when the QKD protocol aborts the distance between the ideal
output and the implementation output is zero. See the discussion leading up to Eqn. 3.2 of [4].
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We will return to this point in Section 4.2.1. The final point is to note that the security
definition requires a fixed output key space S4. This means that for any input, either the
protocol must abort or the output must be a key in this key space. This will ultimately
imply that the output key of the protocol will need to be of fixed length. We will return
to this point in Section 3.5.2.

With these observations we can note there are in fact alternative, but related, security
definitions for QKD protocols.

27 Security Definition of a QKD Protocol

Definition 2. A QKD protocol is e-secure where € = & + &" if the QKD protocol
outputs a €'-secret key and is €”-correct (i.e. Pr[Sa # Sp A —abort] < €”).

3'4 Security Definition of a QKD Protocol

Definition 3. Let ®9KP : (H,@Hp)®N — Hs,@Hs, be the CPTNI map which rep-
resents the implemented QKD protocol. Let W9EP represent the ideal QKD protocol.
The implemented QKD protocol is e-secure if

1
5H(I)QKD_ \I’QKDHO S e .
Operationally, one may view this as the deviation from random guessing one could

achieve in discriminating between the ideal and implemented QKD protocols simply
by testing on inputs.

It is worth showing quickly how these security definitions relate as these relations will
be used.

Proposition 1. The first QKD security definition is implied by the second.
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Proof. Assume a QKD protocol outputs a ’-secret and £”-correct key. Consider Eqn. 2.10:

1
§||pSASBE’ — Ts,85 ® per|li

1 s Sa=
=5lpsaspr = P Sas + s — Toasy © pel
S_HpSASBE PSASBEHI + —||PSASBE TSaSp @ PE||1
< Pr[Sa # Sp A —abort] + &
< +'=¢

]

Proposition 2. The third QKD security definition is always implied by the first and they
are equivalent in the case that one finds the smallest € which satisfies the first definition.

Proof. Let the first security definition be satisfied for a given QKD protocol. By the
definition of the diamond norm (Eqn. 2.2),

1
§||(I)QKD . \I’QKD“O

= max (@Y @idy,)(0) — (PP @ idy,) (o)L

UEH%gElHO’ngl
= max  [[(@¥P @idy,)(0) = Ts.ss © perl
ceHG N ol <1

<e

Where the inequality becomes an equality if € is the tightest security parameter under the
first security definition. O

2.2.4 Classes of Security Proofs

To prove security, we now know in effect one wants to prove that their QKD protocol
sufficiently maps to some mathematical promise that the output of the protocol, which
includes Eve’s output, is of the form in Eqn. 2.10. This cannot be done without any as-
sumptions. Therefore there is a trade-off between how few assumptions about the protocol
one makes and how easily they can implement the protocol and generate key from the
protocol. Assumptions come in roughly two forms: assumptions about the devices used

26



and assumptions about what Eve does.

There are many choices one can make in the assumptions on the devices. Here we de-
fine the two types of assumptions (device-dependent and measurement-device-dependent)
which we consider in Chapter 5 along with a third which we will use for comparison at
times.

(Subset of) Assumptions on Devices

e Device-Dependent (DD) QKD: Alice and Bob’s devices are both promised to
behave just as they did when they were constructed and tested prior to using
them for the protocol.

e Measurement-Device-Independent (MDI) QKD: Alice and Bob’s devices both
send signals and are promised to behave just as they did when they were con-
structed and tested. However, their signals are both sent to a third untrusted
party who performs the measurement and makes announcements. This third
party’s (measurement) device is completely uncharacterized. Conceptually,
MDI QKD may be seen as a subset of DD QKD protocols as Alice and Bob’s
devices are still characterized.

e Device-Independent (DI) QKD: Alice and Bob’s devices are not trusted, and
they must rely on a proof of quantum correlation between Alice and Bob to
generate a secret key.

\. J

Beyond our assumptions on the devices, to prove security against Eve, one must first
state what Eve can do. The power of Eve is normally broken down into two types. In
both cases Eve has as large of a quantum memory available to her as she wants. Under
the collective attack assumption, Eve is allowed to have a new ancillary system interact
with each signal Alice sends to Bob. She may then store all of her ancillary systems and
measure them at any point (even once the key has been generated or even used). Under
the coherent attack assumption, Eve may interact with all of the signals Alice sends to Bob
in a coherent fashion, which may lead to the total state Alice and Bob use to generate their
key being highly entangled across different ‘signals.” Lastly, while people generally assume
collective attacks lead to signal state structures that are i.i.d. (i.e. the total quantum state
of the protocol is of the form p®V), the definition of collective attacks does not seem to
imply this, so we refer to this special case as i.i.d. collective attacks.

Coherent attacks are what one would want to prove security against as it is clearly
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the least restrictive demand on Eve (in fact it tells Eve she can do whatever she pleases
according to quantum mechanics or any theory which retains quantum mechanics [15]).
In this thesis we will show that our numerical solver can calculate key rates for coherent
attacks, but we will focus on i.i.d. collective attacks as the belief is there will soon exist
a proof method for finite key analysis which gets nearly the i.i.d. collective attack secret
key rate under the coherent attack assumption.

2.3 Semidefinite Programming

Semidefinite programming is a specific subfield of convex optimization which optimizes
over the positive semidefinite cone. First we give a short review the standard form of a
semidefinite programming. We then introduce the specific tools which are useful in this
thesis.

Semidefinite Program [60]

Let ¥ € T(Ha,Hp) be a Hermitian-preserving map, A € Herm(H,), and
B € Herm(Hp). A semidefinite program is a triple (¥, A, B), with the following
associated optimization problems:

minimize (4, X) maximize (B,Y)
subject to ¥(X) =B (2.11) subject to ¥T(Y) < A (2.12)
X € Pos(X) Y € Herm(Y)

where W' is the adjoint map of VU; that is, U’ is the unique linear map that
satisfies the adjoint equation (Y, ¥ (X)) = (¥1(Y), X) for every X € L(H4) and
Y € L(Hgp). Eqn.(2.11) is referred to as the primal problem and Eqn.(2.12) is
referred to as the dual problem. We define A = {X € Pos(X)|¥(X) = B} and
B = {Y € Herm(Y)|¥T(Y) < A}. These sets are referred to as the feasible set of
the primal problem and dual problem, respectively.

Note: The definitions in Eqns. 2.11, 2.12 are not the exact definitions from [66] but
they are equivalent.

\. J

By weak duality, for all semidefinite programs, the optimal value of the primal problem,
denoted by «, is always greater than or equal to the optimal value to the dual problem,
denoted by . If a semidefinite program has that o = (3, it is said to have strong duality.
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A sufficient condition to show strong duality for SDP is Slater’s condition for the standard
from presented here.

Theorem 3. (Slater’s Condition) For a semidefinite program (¥, A, B), if A # 0 and there
exists a Hermitian operator Y which strictly satisfies the dual problem, that is, VT(Y) < A,
then o = B and the optimal value is obtained in the primal problem.

2.3.1 Trace Norm Semidefinite Program

Semidefinite programming is a powerful tool for quantum information theory as most
everything in quantum information theory is about positive semidefinite or Hermitian
matrices. For the use of this thesis we will be primarily interested in the semidefinite
program for the trace norm, or Schatten 1-norm, which was implicitly defined in Eqn. 2.1.

Trace Norm

Let X € L(Ha). The trace norm of X is:

IXh =T (VXX) = > |l (2.13)

AaESpec(X)

One might have an intuition that this should have an SDP as the trace norm is a convex
function. There in fact exists an SDP for calculating the trace norm for arbitary matrices
X € L(Ha,Hgp) [66], but we will only have to consider X € Herm(H 4) and so we present
an arguably more intuitive primal and dual that work in this case. For the general case,
we refer the reader to [60].

Trace Norm SDP for Hermitian Operators

Let X € Herm(#H4). The trace norm of || X||; is achieved by the following SDPs:

minimize  Tr(P) + Tr(Q) maximize (X, R) — (X, 5)

subject to P > X (2.14) subject to 0 X R =<1 (2.15)
Q= -X 0x5=1
P,Q € Pos(Ha) R, S € Herm(H 4)

\. J

By definition of primal and dual problem (Eqns. 2.11 & 2.12 respectively), Eqn. 2.14 is
the primal problem and Eqn. 2.15 is the dual problem. As we have stated the two problems
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both obtain the trace norm for Hermitian X, i.e. the SDP satisfies strong duality, we prove
that now for completeness by constructing the optimal solution for both SDPs.

Proof. Let X € Herm(#H,4) where H4 = C¥. By the spectral theorem, we can write
X =3 ies Mlly where {IIj } res are unique projectors and {A;}res C R are the eigenvalues
of X. Define the following operators

k:A>0 k:Ap<0

1T, E I, .
k:A>0 k:\ <0

%)
Il

R

One might notice that R is the projector onto the positive eigenspace of X and S is the
projector onto the negative eigenspace of X. Furthermore, P is the projection of X onto
its positive eigenspace and () is the projection of X onto its negative eigenspace.

Then it is clear by construction that P, Q are feasible for the SDP in Eqn. 2.14 and by
definition of the trace will have the objective function obtain the value of || X||; by Eqn.
2.13. Furthermore, any other feasible operator can only increase the objective function as
both P, () must be positive semidefinite.

Similarly, it is clear R, S are feasible for the SDP in Eqn. 2.15 and that they lead to
the objective function taking the value || X||;. We therefore have constructed solutions to
Eqgns. 2.14 and 2.15 and shown them to be equal. As weak duality holds for all SDPs, and

we have shown the primal and dual solutions may be equal, strong duality by definition
must hold. O

It was important that we see this SDP has strong duality as ultimately we will be
interested in another SDP which includes trace norms, and we might not expect it have
strong duality if the trace norm itself does not.
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Chapter 3

Theory of Finite Key Analysis

In this chapter we present the theory of finite key analysis. In some sense, as we will
see, once one has fixed their assumptions about the output of the quantum phase of the
protocol, finite key analysis is only about the analysis of the classical phase. For this reason,
this chapter focuses on the subprotocols of the classical phase in sufficient detail for this
thesis. Many of the ideas in this section are from Renner’s PhD thesis [51]. However, one
major result of this thesis is an improvement to the analysis of the parameter estimation
subprotocol of quantum key distribution (Theorem 5), which is presented in this chapter.
Furthermore, we present a discussion on calculating the completeness of device-dependent
QKD protocols, which the author does not know to be in any other work. Lastly, so that
the thesis is self-contained, we present a security proof for i.i.d. collective attacks which is
a simplification of the proof for Theorem 6.5.1 of [51]. Tt is the security proof implicitly
used in [53, 54] and works which followed from it, but it is not presented anywhere as far
as we know. This security proof is what allows us to guarantee our numerical method will
determine secure keys.

Subprotocol Security

Recall from Section 2.2.3 that the security of QKD can be reduced to making sure the
protocol is €’-secret and &”-correct. As one would expect, the security of the subprotocols
of QKD are what determine the security of the protocol. With a finite number of signals,
no subprotocol can be implemented ideally. These imperfections are represented with e-
terms which contribute to the &’-secrecy and &”-correctness of the QKD protocol. We give
these e-terms now:
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1. epg can be viewed as the probability of the parameter estimation protocol not abort-
ing and the state generated in the state transmission, which Alice and Bob tested m
times, not being included in their security analysis.

2. ¢ is the probability of Eve knowing the key because for each state feasible according
to parameter estimation, psp, Alice and Bob a priori consider the min-entropy of
the state p,p that maximizes the min-entropy over the set of states &-similar to pap.
In other words, this is the probability of failure due to considering the smooth min-
entropy (Eqn. 2.4) of the state in the security analysis rather than the min-entropy.

3. egc is the probability that Alice and Bob do not abort the protocol and obtain
outputs that differ, i.e. x # 2'.

4. epp is the probability that Alice and Bob do not abort the protocol and that the key
is known to Eve because the privacy amplification failed.

One may view the rest of this chapter as giving an account of these e-terms and how
they arise in the security proof used in our numerics.

3.1 Parameter Estimation

Recall from the description of a generic QKD protocol (see Fig. 2.1) that Alice and Bob
use their respective devices to perform measurements on the shared quantum state, pag,
N times.! The goal of parameter estimation is to determine the density matrices which
need to be considered in the security analysis given Alice and Bob sacrifice m signals for
sampling. To make this clear, we first describe the subprotocol of parameter estimation
in detail and then explain how the security statement put forth in [51] follows from the
description of the protocol.

The protocol is as follows. It is always assumed Alice and Bob’s measurement de-
vices are separable. That is to say, if Alice’s and Bob’s measurements are decribed with
POVMs {Ff}iegA and {FE}keZB, then their joint measurement is of the form {I';; »)} where
f(i,k) = Ff‘ ® FkB . This can be viewed as an assumption on the fact that Alice and Bob’s
measurement devices are non-signaling.? By this assumption, for each signal, Alice gets

'Recall we are using the entanglement-based framework without loss of generality.
2This is a security assumption that is implied by device-dependent QKD. When one only makes this
assumption without characterizing the device, one has something referred to as non-signalling QKD [1, 2,

].
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Figure 3.1: Diagram of the parameter estimation subprotocol. Alice and Bob perform their
measurements resulting in their respective sequences. They use classical communication to
construct a sequence of joint outcomes. From this they construct a frequency distribution
F which they then use to decide whether or not to abort the protocol.

a classical read-out from her measurement apparatus which is unaffected by Bob’s mea-
surement apparatus and likewise for Bob. We can therefore define ¥ = ¥4 x ¥ as the
alphabet for the joint outcome of Alice and Bob, Z as the corresponding random vari-
able, and {I';},ex as the corresponding POVM using the implicit mapping ¥ — ¥4 x Xp.
Following this construction, when Alice and Bob classically announce their respective out-
comes for a subset of the N measurements of size m, they are able to construct a sequence
2= (Z1,..., Zy) € X*™. From this sequence they are able to construct a corresponding
frequency distribution over Y, sometimes referred to as a type:

o=y WEMLZZ 2y (31)

Then if F'is included in a set of frequency distributions Alice and Bob have agreed to accept,
Q, they continue the protocol. Otherwise they abort. See Fig. 3.1 for a diagrammatic
depiction of this procedure.

Given the subprotocol, we would like to construct a set of states to consider in our
security proof and a corresponding security claim about this set of states. This requires
two observations.

First, we note that we cannot control what sort of attack Eve performs, and so we can
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never apply a probability distribution over the set of density matrices tested. Instead, we
need a way of determining the set of states our security analysis should consider purely on
the relationship between the input density matrix, Alice and Bob’s joint POVM {T';} e,
and the set of accepted frequencies, Q. For this reason, our security definition must be
interested in determining the probability Alice and Bob will continue the protocol given
they tested a specific density matrix.

The second observation is that we need to ignore (at least a subset of) the states which
have sufficiently low probability of being accepted given Alice and Bob testing them. The
need to ignore this set is worth explaining with an example. Imagine that Alice and Bob
let Eve construct the joint qubit state to send it to Alice and Bob N times. Furthermore,
Alice and Bob decide that they are only ever going to accept the parameter estimation if
the resulting F' is the same as if they had measured the maximally entangled state being
sent to them all m times. Certainly for large (but finite) m most of the time Alice and
Bob will abort if Eve does not send the maximally entangled state N times. However
it is also the case that there is a non-zero probability that Alice and Bob each receive a
maximally mixed state N times and yet their statistics from testing m times are as if they
are ideally correlated. Therefore, it is necessary to ignore the states which have some very
small probability of giving rise to F'. A state which will lead to the parameter estimation
subprotocol being aborted except with probability epg is said to be epg-securely filtered

[51].

It follows from these observations that we need a quantitative method of determining
the states that are epg-securely filtered so as to throw out the states which are epg-securely
filtered by parameter estimation. This will construct a set one can consider in the security
proof. We will now present in detail how this is done.?

Given the description of parameter estimation above, the parameter estimation sub-
protocol can be described using a CPTNI map constructed in the following manner. First,
let Dol ' € T((Ha @ Hp)®™, C¥ ™) be defined by

00 X w(sE) Y]
;EE xm

where IN“;. = fjl R .. ® fjm. In words, assuming X is a quantum state, this map takes
the input for the entire parameter estimation subprotocol and maps it to the probability
distribution over the possible observed sequences j € ¥*™ (i.e. it is the measurement

3While the result of these ideas was presented in [51], this discussion was not, and the detail is necessary
to understand our new result (Theorem 5).
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channel for the whole subprotocol). Next let ®5* € T(C**",C) be defined by:
A

In words, @itgp ? takes a probability distribution over the possible sequences j e xxm
for an input state and determines the probability that Alice and Bob will accept given
the definition of Q. Therefore, Ppg = PP ? 0 B! takes a state tested in parameter
estimation to the probability of Alice and Bob accepting.

R A(X) = (Mg, X) where Ilg = >

J‘ezxm:f]—.eQ

If a total of IV signals are exchanged, without any assumptions on the signals sent, the
total protocol signal state is any py € D((Ha ® Hp)®V). It follows that the marginal
which was tested by the parameter estimation is any state 0 € D((Ha ® Hp)®™). We can
therefore define the set of epg-securely filtered states:

S§€PE = {0' c D((HA X HB)®m) : (I)pE(U) S €pE} (32)

Unfortunately, m is going to be quite large and so in effect there is no hope of determin-
ing this set, which implies there is no way to determine the key rate over the complement
of this set as we would like to do. Instead, we do the following trick. In the security proof
(Section 3.5), we are going to promise py is an infinitely exchangeable state which will
allow us to approximate py by a convex combination of i.i.d. states using the Quantum
de Finetti Theorem (Eqn. 2.7). Therefore, rather than worrying about what arbitrary
states will be epg-securely filtered, we just worry about the set of i.i.d. states which will

be epg-securely filtered, which is clearly a subset of S., .

3.1.1 Securely Filtered i.i.d. States

Assume that the input to the parameter estimation subprotocol, @, is of the form oc®™.
We can then note the following:
iX

CD}:S)tISpl(U@m) = Z Tr<0®mf]v>
— Z TI‘(O'fﬁ) TI(O'fh)...TI'(O'fjm) |j17j2)"‘7jm><j17j27"'7jm| .

jeEXm
(41,325, Jm ) ERX™

4This trick was first done in [51] where it was instead assumed the state would be n+ k-exchangeable, so
that Renner could use his Finite Quantum de Finetti theorem (Eqn. 2.8) to reduce to a convex combination
of a set of states which are more complex than i.i.d. states.
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This tells us that, since both the state and the measurement are in tensor product form, the
probability of a given sequence of measurement outcomes is the same as the probability of
the sequence from i.i.d. sampling from the probability distribution, P € P(X), determined
by Born’s rule. Formally, the distribution P can be determined using the probability map
®p using the POVM for the QKD protocol.

This reduces the question of epg-securely filtering o®™ to a sampling problem: If one
constructs a frequency distribution F' by sampling m times from a probability distribution
P, except with probability at most epg, how different from P could I be? If we can
quantify this ‘how different,” then any ¢ which induces a probability distribution P which
is too different from any F' € Q must be epg-filtered as no frequency distribution Alice
and Bob would accept would arise from P except with epg probability.

The quantitative answer to this sampling problem is as follows, which is a simplification
of what is done in [51]:

Theorem 4. If |P—Flj; > p = ﬂ\/ln(l/a”)tf“n(m“), then, except with probability € pg,
F did not arise from i.i.d. sampling from P.

Proof. By Theorem 11.2.1 of [60], given a frequency distribution F' constructed from sam-
pling i.i.d. random variables from a probability distribution P which has |2| outcomes,

Prob[D(F||P) > ¢] < 2~ m(e-=I=2)
Furthermore, Lemma 11.6.1 of [60] states:

V2 2D(F||P) > ||F — P|

Therefore,

Prob [HF — Pl > v2In 26]

<Prob [\/2 m2D(F||P) > v2In 26]

1 1
(5—\2|%)

<2 "

=E€PE
Then except with probability epg, ||[F' — P||; < v2In2e = u We now just solve for p using
arithmetic:

2
epp = 27 "ztaz ~Flloga(m+1)/m

== ﬁ\/ln(l/ﬁPE) +n|12|ln(m_|_ 1)
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]

It therefore follows from Theorem 4 that, the set of i.i.d. states which are epg-securely
filtered by the parameter estimation subprotocol are defined by:

St = {0 € D(Ha® Hp) : gleigH‘I’P(U) — Fli > p}
and therefore, under the assumption of i.i.d. collective attack, one could optimize the key
rate over:

S = {0 € D(Ha® Ha) : min|[Bp(o) — Fll < ) (33)

as all other states would only be accepted with probability epg.

3.1.2 Multiple Coarse-Grainings

While the previous section is sufficient for obtaining key rates, we are interested in the
optimal key rates within the proof method. One would expect the previous section to
not be sufficient in general as one would notice that {o®™ : ¢ € SH4- 1 € S.... and so
we might expect there to be cases where getting a better approximation of S<.,, could
improve the key rate. This argument is furthered by the following simple intuition. The
variation bound g in Theorem 4 is a function of the size of 3. Therefore, u’s size is directly
determined by the size of 3. It follows that if in the parameter estimation subprotocol were
defined for the ‘fine-grained’ data which has a large alphabet, the variation bound y may be
large. However, if the parameter estimation subprotocol were defined over ‘coarse-grained’
(i.e. ‘data processed’) data, the alphabet is smaller and so the variation bound p is smaller
if all other terms are as before. This implies defining the parameter estimation subprotocol
over coarse-grained data may improve the keyrate. We will in fact see in Chapter 5 that
coarse-graining the fine-grained data will improve the keyrate. However, this is an issue
as this would suggest that Alice and Bob throwing out information about the protocol
can improve their security against Eve. We now solve this issue. First we introduce the
mathematical framework of coarse-graining, and then we solve the issue with Theorem 5
and Corollary 6. Theorem 5 is the most general way of stating the resolution. Corollary 6
is what will be useful for the numerics and is (a slight generalization of) what is stated in
our paper [20].
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Framework of Coarse-Grainings

Formally, one coarse-grains the data F' € P(X) using a conditional probability distribution
pajs- As we represent everything in terms of linear operators, the action of coarse-graining
is a classical-to-classical channel [67]. Using this framework of coarse-graining, one can
define a generalization of Eqn. 3.3:

S2 ={0 € D(H @ Hp) : min| N (®p(s)(0) — N (F)]s < s}
{0 € D(Ha & Hp) : min®p(7) — N(F) 1 < u} (3.4)

where we have let ®p(x;) be the probability map for the fine-grained data and ®p be the ef-
fective probability map defined using the effective POVM {I'} where T¢ = $° jex Pas (i, J )T;.
We use Eqn. 3.4 because in coding the optimization problem it will simplify discussing the
numerics.

Security of Multiple Coarse-Grainings

Theorem 5. Let = be a finite alphabet for indexing. Let epp > 0. Let D((Ha @ Hp)®™)
be treated as the universal set. For all k € Z, let Sy C D((Ha ® Hp)®™) such that for
all o & Sy, o is epg-securely filtered. Define S = ﬂkea Si. Then Yo & S,uui, 0 18
e pp-securely filtered.

Proof. For any set X C D((Ha ® Hp)®™), let X = {x € D((Ha ® Hp)®™)|z &€ X}. We
know by the definition of the sets S;, that Vk € =, Vo € Sy, o is epp-securely filtered. It
immediately follows that Vo € | J, S, 0 is epg-securely filtered. Note that N Sk = U, S,
Therefore Vo & (), Sk, 0 is epg-securely filtered. O

This tells us that given a set of sets where each set’s complement is a subset of S<.,,
the complement of the intersection of these sets is also a subset of S<.,,. This implies
optimizing over the intersection retains the same level of security. This proves we can
consider the sets defined for different coarse-grainings.

While the previous theorem is sufficient, it would be good to have an explicit statement
of its corollary in terms of i.i.d. states, which we now present.

Corollary 6. Fix epg > 0. Let = be a finite alphabet indexing these multiple coarse-
grainings. For each k € =, let

Sg. = {7 € D(Ha ® Hp) : min|®p, (0) = Ni(F)| < ju}
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where, ®p, (p) = > ica, Tr(pfic’“) |i)i| is the corresponding probability map, Np(X) =
> i Pam(le) (B X i) [4)] s the corresponding coarse-graining channel, and py is deter-
mined using Theorem 4 so that Yo & S,,, c®™ is epg-securely filtered. Define S =
i Spu- If 0 & Spuii, then o®™ is e pg-securely filtered.

The proof is identical to Theorem 5 except having to move between statements about
o and o®™.

Using Corollary 6, we can define the general set to optimize over under the assumption
of i.i.d. collective attack:

Se ={0€DHA@Hp)|VE€Z,3F € Q:||®p,(0) — Ne(Fi) |1 < i} (3.5)

EPE

where = is an alphabet for indexing the number of coarse-grainings. Thus, we can consider
multiple coarse-grainings.

There are two important observations to be made. The first is that for p € SEQPE one
does not need a single F' € Q which satisfies all £ variation bounds with respect to p
but rather (F1,...., Fig)) € Q%= so that Fj satisfies the k'™ variation bound with respect
to p. This is a property of the proof method we have used as we intersect the sets. An
alternative proof method that only considers one F' that satisfies all constraints at the
same time remains an open problem. The second observation is that to define SEQPE, each
Sgk being intersected must be defined using a coarse-graining which acts on fine-grained
statistics over the same alphabet . Otherwise more testing would be necessary which
would relate to a different set and a different security claim. To visualize Eqn. 3.5, see

Figure 3.2, which presents Eqn. 3.5 for a protocol which accepts only a single distribution
F.
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Figure 3.2: Here we see a visualization of using multiple coarse-grainings to improve the
key rate by decreasing the number of states which we need to optimize over. Here we let
Q = F. We then consider two coarse-grainings which result in the frequency distributions
F© and F©. Any probability distribution within s, of F must then be considered.
One can then use the corresponding coarse-grained POVM, {T'¢'}, to determine what set
of states, S,,, will map into the set of distributions around F. The intersection of S,
and S,,, denoted S, is the set of states that must be considered when proving security.
Here we have drawn S,, and S,, such that neither is a subset of the other. This is the
case where multiple coarse-grainings will be useful, though it is not necessarily always the
case.

3.1.3 Completeness of QKD protocols

The preceding approach to constructing the set SS relies heavily on the method of types
(the theorems used in the proof of Theorem 4 are results from the method of types). In this
section we show one could also use the method of types to calculate the completeness of
device-dependent QKD protocols. We also show how this relates to the previous analysis
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in [51].

-complete if on the honest implementation

of the (sub)protocol, the probability of aborting the (sub)protocol is at most e(csub)pmtocol.

In [51], a (sub)protocol was defined as e-robust for a given input @, if the probability of the
subprotocol aborting on that input was at most €. Therefore one can see a (sub)protocol

being 5(Csub)pmtocol—complete as being e(csub)pmtocol—robust on the honest implementation input.

Any (sub)protocol is defined as E(C

sub)protoco

In the case of device-dependent QKD, the completeness of the protcol, ngD, is upper
bounded by e + S + e5,. It is noted in [51] that in effect one may assume that the
error correction and privacy amplification are chosen in applications such that, for any
input on which the parameter estimation is eff¢’-robust, the error correction and privacy
amplification subprotocols are 0-robust. It would follow 58KD = eSp. We would therefore
like a method for determining the completeness of the parameter estimation subprotocol

so that we might determine the completeness of the QKD protocol as a whole.

Old Approach

In [51], for fixed Q and epg > 0, Renner claims to construct a set of epg-robust i.i.d. states
(Eqn. 6.2 of [51]):°

S = {0 € D(Ha® Ho) | minl@p(r) ~ N (F)1 > p}
where p is as defined in Theorem 4. Now one sees that if o € S;;g, then, by definition of the
set, VE &€ Q,||®p(c) — N(F)||1 > pu. By Theorem 4, it follows that when measuring o™,
each F' ¢ Q will not arise except with probability epg. This however does not prove that
s S;‘;‘; is epg-robust. This is because while the probability of Alice and Bob obtaining a
sequence with a frequency distribution F' ¢ Q is less than or equal to epg for all F' ¢ O,
the probability of Alice and Bob obtaining any frequency distribution F' ¢ O would be
> rgo Pr[F|o®™] where Pr[F|o®™] is the probability of getting the frequency distribution
F given testing c®™. In other words, a state 0®™ is epg-robust only if ®p(c®™) > 1—cppg,
but S;‘;‘; cannot guarantee this.

Calculation of Robustness

Given this, we propose a different approach for calculating the robustness of input i.i.d.
states. This in turn allows us to, in principle, determine the completeness of device-

°In Eqn. 6.2 of [71], Renner uses >, however given Theorem 2, it ought to be > as is used in this
definition of the set.
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dependent QKD protocols as well their robustness on the worst case-scenario not epg-
filtered i.i.d. collective attack. For this we need the following facts from the method of

types.

Summary of Method of Types (Section 11.1 of [60])

For every definition, assume one sampled from the probability distribution P € P(X)
m times in an i.i.d. fashion.

1. The frequency distribution Fz € P(X) constructed from a sequence 2’ € 3*™
(Eqn. 3.1) is known as a type.

2. The set of sequences which have the same type, F%, is called the type class and
is denoted T'(F%).

3. (Eqn. 11.17 of [60]) The number of sequences that give rise to the same type,

i.e. the size of the type class, is |T'(Fz)| = (mf(l) ) . mf(IEI))'

4. (Theorem 11.1.2 of [60]) The probability of obtaining the sequence Zz is
o—m(D(F||P)+H(Fs))

Proposition 7. Given 0 € D(Ha @ Hp), the parameter estimation protocol is e -robust
on o®™ where

Eg%b 1 Z |T ‘2 m(D(F||@p(0))+H(F))
FeQ
_ Z |T |2 m(D(F||®p(0))+H(F)) )
Fgo

Proof. Follows immediately from the definition of robustness, and Items 3 and 4 of the
preceding summary of method of types. m

Corollary 8. The parameter estimation protocol is €% ,-complete where

Cp=1-— Z |T(F) |2~ P Ep©)+H(EF))
FeQ
— Z |T(F)|2 P EII2p@)+H(E)
FgQ

and £ € D(Ha ® Hp) is the output of the honest implementation (i.e. £ is the state which
is a result of the (noisy) channel when Eve does not attack).
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In general, determing the robustness of the protocol on a given state will be a combi-
natorial nightmare. This is because, given Q C P(X), one needs to efficiently iterate over
the (finite) subset of the probability simplex P(3) that makes up the acceptance set Q.
However, in the case of @ C P({0,1}), it is easy (albeit not efficient) to iterate over the
types and so the robustness can be calculated.

However, in the case where such an approximation is untenable (as may be the case
even for @ C P({0,1}) as the number of tests grows, under the assumption that Q is
constructed in a specific but reasonable manner (as will be argued in Section 4.2), we may
use the same tools as Theorem 4 to determine completeness of the device-dependent QKD
protocol:

Proposition 9. Let p € D(Ha ® Hp) be the prototype of the output i.i.d. state in the
honest implementation.® Let {T;}ex be Alice and Bob’s joint POVM and Q = {F :
|Pr(p) — F|l1 < t} where t € (0,1). Let Alice and Bob use m signals for parameter
estimation. It follows by the same argument as in Theorem J that

2
- 575 — |21
8}63’E S 2 m<21n2 | | Ogg(m+1)/m>‘

3.2 Announcements, General Sifting, and the Key Map

Announcements, general sifting, and the key map (Steps 4 and 5 of Fig. 2.1), sometimes
known as blockwise processing, are rather straight forward but deserve of a bit of expla-
nation.

Announcements & General Sifting

In principle, Alice and Bob may have more information about the run of the protocol
than the outcome of their measurements. For example, in entanglement-based BB84, Alice
and Bob may choose their measurement apparatuses to measure in the X-basis or Z-basis.
Therefore they have information about the basis as well as the measurement of the outcome.
Alice and Bob then choose to decide to tell each other whether they measured in the X
or Z-basis because if they didn’t use the same basis, the result won’t be correlated. This
means they have chosen to make their basis choice public information, but they have kept
the measurement outcomes as private data. Using this public information they can throw
out, or sift, the a priori poorly correlated data where they didn’t measure in the same

6We use the output state rather than the state prior to transmission as the honest implementation may
include noise due to the channel.
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basis. This general idea can be abstracted to the idea that Alice and Bob partition the
information from running the transmission and measurement steps of the QKD protocol
into public and private data and then announcing the public data to throw out portions
of the private data they don’t want. As it is a generalization of the sifting step of BB84,
we refer to this as announcements and general sifting.

Key Map

At this point in the protocol, Alice and Bob still both have some subset of their private
data, {0, ...,ka—1}", {0, ..., kg—1}". They would like to convert that data into a key. To do
this, one of the parties, let’s say Alice, has a function f#,, : {0, ...,ka—1}" = {0, ...,d—1}"
which maps her remaining private data to the raw key x € {0, ...,d — 1}"'. In general, fi,,
does not have to be deterministic. Furthermore, n’ = n/b if it maps blocks of private data.
For this thesis it will be sufficient to assume n’ = n. An identical description can be made in
the case Bob performs the key map. In that case it is referred to as ‘reverse reconciliation’
whereas when Alice performs the key map it is referred to as ‘direct reconciliation.’

3.3 Error Correction

Once Alice has the raw key, x, from performing the key map, the goal is for Bob to acquire
the same key.” This is known as error correction (Step 6 of Fig. 2.1). In general, for
Bob to successfully guess Alice’s raw key using his data, Alice is going to have to provide
some information about her raw key to Bob. Unfortunately, any information she gives
Bob, she is also giving Eve. Therefore the goal is for Alice to give the minimum amount
of information about her raw key to Bob necessary for him to guess 2’ such that 2/ = x.

One can view this problem from a slightly different angle. Bob has fine-grained data
g €Y = {0,kg — 1} which is, to some degree, correlated with Alice’s raw key, = €
X =40,...,d — 1}™. This correlation means that Bob has some guess already as to what
Alice’s key is, i.e. Bob has some side information Y. One can therefore imagine Alice
needs to encode (i.e. compress) her information about the raw key such that it is enough
information for Bob to guess the raw key (i.e. decode the encoded message) and such that
it also encodes no more information than that so as to avoid leaking more information to
Eve than necessary. Therefore the problem of error correction in QKD can be seen as the
problem of encoding (by Alice) with decoding side information (held by Bob), which is a
special case of distributed source coding for correlated sources. The Slepian-Wolf coding

"Remember, Bob could also do the key map, in which case one can just flip the names of the parties in
this section.
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theorem (Section 15.4 of [60]) tells us that fundamentally this task can be done at a rate
of H(X|Y) where X and Y are random i.i.d. random variables.® However, this rate only
holds for asymptotic behaviour and our interest is in bounding the information needed for
error correction in the finite case.

In the finite case, one can simply imagine that for each z € X and y € ) there is a
transcript ¢ € C for the error correction protocol [51]. It follows that one can think of a
probability distribution over the classical communication conditioned on Alice’s raw key
and Bob’s fine-grained data: Prjgex jey. Then the amount of information leaked to Eve
fundamentally is [51]:

leakp = IOg |C| — 1$H§ Hmin(PC\xeX,gjey) . (36)

However, modeling the information leaked to Eve during error correction using this defini-
tion is not feasible. Therefore one needs a simpler method. There are multiple ways, but
we will consider two common choices.

1. (Corollary 6.3.5 of [51]) Given Alice’s raw key x € {0,...,d — 1}" and Bob’s fine-
grained data y can be treated as being obtained from sampling from a joint probability
distribution Pxy in an i.i.d. fashion, there exists a method of error correction using
two-universal hash functions with failure probability egc such that

leak.,. < nH(X|Y) + v/ny/3log(2/exc) log(d + 3) (3.7)

2. Given an error correction scheme applied to fixed blocks of x € {0,...,d — 1}", the
error correction scheme will not achieve the efficiency given by the Slepian-Wolf
coding rate. This inefficiency can be characterized by frc > 1 [31]. Then if fgc is
appropriately chosen,

leak.,, < nfpcH(X|Y) +log(2/crc) (3.8)

where the second term is due to the tolerated failure probability, egc, of using a
2-universal hash function to verify the success of the error correction scheme.’

81t is not a problem that this is under the assumption of i.i.d. sampling as asymptotically QKD can
always assume i.i.d. behaviour [51].
9Given a family of functions from set A to set B, F, and a probability distribution over F, Pr, (P, F)

is two-universal if Prrcz[f(2) = f(2/) Ax #2'] < R
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As one can see, both methods of bounding the information leaked to Eve in performing
error correction are methods of correcting for the difference between the encoding that
satisfies the Slepian-Wolf coding theorem. Furthermore, assuming a good choice of error
correction code, both will achieve the Slepian-Wolf coding rate in the limit of large block
length. Lastly, we note that while Eqn. 3.7 above provides better bounds, one would
expect more realistic bounds using Eqn. 3.8, and so this is what we will use throughout
this thesis.

3.3.1 Error Detection

In Eqn. 3.8 we have a term that is a function of the error correction failure probability,
egc. This is not due to the error correction scheme itself, though it may fail, but rather it
is the error probability of detecting that the error correction scheme has failed. In terms of
procedure, the basic idea is rather than making the error correction work except with small
probability, one can just use an easier to implement error correction scheme, and once Bob
has his guess, 2/, Bob can use a two-universal hash function, g, calculate g(z’) and then
send g(2’) and g to Alice. Then, by the choice of the two-universal hash function, the
probability Alice finds g(z) = g(2) and x # 2’ is less than or equal to the tolerated failure
probability egc and the amount of information leaked by g(x) and g is log(2/egc)."

3.4 Privacy Amplification

Once Alice and Bob have the same raw key except with some small probability, all that is
left is for them to make sure it is secure from Eve. Recall from Definition 2 that a protocol
is &’ + &”-secure if the QKD protocol outputs an &’-secret and £”-correct key. For the key
to be €’-secret, it is sufficient to demand (Eqn. 2.9)

1
§||pSAEl —T5, & PE’Hl <e

where 7, = \S_1A| > ses, 5)Xs]. Tt was shown by Renner [51] how this could be achieved
using two-universal hash functions.

10The proof is effectively the same as the one used for Lemma 6.3.3. of [51].
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Leftover Hashing Lemma (Corollary 5.6.1 of [51])

Let pxg € D(Hx @ Hg) be a classical-quantum state where Hyx = C*. Let F be a
family of two-universal hash functions from ¥ — {0,1}¢ and £ > 0. Then

1 1 1 €
il . — < 2—5<Hmin(X|E)—f—2) 3.9
2H10F(X)EF {0, 1] F(X) ® perlli <e+ (3.9)

One can see from the leftover hashing lemma (Eqn. 3.9) that Alice and Bob can use a
two-universal hash function to make their raw keys secret and, furthermore, it is a function
of the smooth min-entropy of the entire raw key conditioned on Eve’s state. This gives us
the following corollary.

Corollary 10. (Eqn. 11 of [5/]) Given pxp € D(Hx ® Hg) be a classical-quantum state.

—L(H (X|E)—t—2
Let cgpe = €'+ 2 2( min (X|1E)—¢ ), e > 0. Let epg = €5ec — € > 0. Then for a e,..-secret

key, the length of the key, ¢, must satisfy the following bound:
¢ < H: (X|E) —2log(1/epa) (3.10)

m

Note that the operational interpretation of epy as the probability of privacy amplifi-
cation failing is straightforward from this corollary as the goal of privacy amplification is
to generate a (£5.—)secret key and epy represents the distance from achieving this secrecy
goal.

The statement of this corollary versus other texts may be helpful. In [51] and [53], by
using careful choices for the relationships between the e-terms, the epa-term is not written
out itself. Here we have stated Corollary 10 in the manner of [51] where the smoothing
term on the min-entropy is in a sense decoupled from the privacy amplification failure
probability, epg.

3.5 Security Proof

With the different subprotocols of QKD and their failure probabilities accounted for, we
can use them to derive the security statement against i.i.d. collective attacks. We will
prove this for the slightly more general assumption that the output of the transmission
step of the protocol is infinitely exchangeable which as a corollary is the security statement
for i.i.d. collective attacks. The result and proof are a simplification of Theorem 6.5.1 of
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[1]. It is also implicitly the security proof used in [53, 51]. Lastly, once we have shown
security against i.i.d. collective attacks, we show how to extend these results to coherent
attack security in manners achievable with our numerical method in Chapter 4.

Theorem 11. (Security for Protocols with Infinitely Exchangeable Output of Transmission
Step) Let epp,€,epc,epa > 0. Assuming the output of the quantum phase of the QKD
protocol is infinitely exchangeable, the QKD protocol is € = epg + € + €gc + €pa-Secure
given that, when the protocol does not abort, the output key is of length ¢ where

0 < n(H,(X|E) - §(2)) — leak.,, — 21og,(1/eps) (3.11)

with the following definitions:

H,(X|E) = min H(X|E)g (3.12)
PESepp
leak. .. = nfecH(X|Y) + log, (2/epc)
| 2/
5(2) = 2log,(d + 3) % (3.13)

o= \/5\/111<1/5PE) +n|12‘ ln(m + 1) ’ (3'14)

SSJE 1s as defined in Eqn. 3.5, n is the number of signals used to generate key after
parameter estimation and blockwise processing, and G is a CPTNI map which represents a

round of the QKD protocol on (an arbitrary) purification of input p.

Proof. Denote the result of the output of the transmission step of the QKD protocol by
panpy € D((Ha @ Hp)®Y). Let the purification of panvpgn be pavgyvpy € D((Hape)®N)
where Hapr = Ha ® Hp @ Hg and Hg = Ha ® Hp. Assume pynpyvpy is an infinitely
exchangeable operator. By the Quantum de Finetti Theorem (Eqn. 2.7), we know there
exists a measure v such that

o g g — / eV () |y = 0
c€D(HaBE)

We now apply the parameter estimation map, ®** ®@idg : (Hape)®" — %f%‘m), to both
states. As the the trace distance cannot increase under the action of a CPTNI map, the
trace distance will stay 0. Thus,

wm—/ () = 0
c€D(HaBE)
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where the notation is to make things more clean. We now define the set V¥ = {7 €
D(Hape) : Tre(a) € S£_}. Therefore:

EPE

0 =||o"* - / ()
c€D(HaBE)

<= [ Pl [ aPue) - [ oMoy
oEVH oEVH c€D(HaBE)
<™= [ oot [ o)
oeVH oEVH

<= [ Euo)lh+ e
oeVH

where the second inequality comes from the fact D(H pr) = V* + V¥ and the third comes
from the fact v is a measure and ||o"F||; < epg, for all ¢ € V# by construction of VH.

As announcements, general sifting, and the key map can also be represented by (the
n-fold application of ) CPTNI maps and the trace norm is non-increasing under the action
of CPTNI maps, we can conclude

lpxy e —/ oxyve v(o)|h <epr (3.15)
gEVH

where E' is Eve’s register along with any classical communication from these steps, X is
the register of Alice’s raw key, and Y is the data available to Bob.

Using Corollary 10, where we fix ¢’ = £ + epg and replace the register E by E'C' where
C is a register that contains the communication from error correction,
0 < HE (XM E'C) = 2logy(1/2pa)
Note that n is the number of signals in the raw key. It excludes signals used for parameter

estimation or that were consumed as part of the announcements, general sifting, and key
map (i.e. blockwise processing).

Lemma 2 of [51] tells us we may remove the register C' from the min-entropy term by
subtracting the fundamental amount of information leaked during error correction, leakg
defined in Eqn. 3.6,

(< He, (X"|E') — leaky — 2log,(1/epy)

m
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We then replace leaky with the looser but manageable term, leak., . from Eqn. 3.8:

€EC

(< HE

e (X" E") —leak., . — 2logy(1/epa) -

We now need a method for showing we can convert this to a minimization problem. To
do this, realize one could consider an auxiliary (possibly infinitely-large) classical register
and define the classical-quantum (sub-normalized) state

o = / v(o) |o)oly, ® oxnpr
oeVH

where it is like a classical-quantum state as [o){(o|,, keeps track of which state in the set
V), is being considered, which is why we label that register with the subscript of the set.
We can then construct the following chain of inequalities:

>H;,

m

<Xn|E/)PXE/
in (X E) ar

zHriin(Xn‘VuEl)de

del%}iHilln(anE,)anEl I

where the first inequality follows from the definition of smooth min-entropy and Eqn. 3.15,

the second by the strong subadditivity of smooth min-entropy (Eqn. 3.19 of [71]), and the

third by a property of how smooth min-entropy behaves when conditioned on a classical
register (Eqn. 3.20 of [51]).

Then by using our variation of Corollary 3.3.7 of [51] (Eqn. 2.6) to replace the smooth
min-entropy term with a von Neumann entropy term, we find:

¢ <n(minH(X|E),,,,., —0(&)) — leak.,, —2logy(1/cpa) .

oeVy,

Finally, we note that o4pr € V, if and only if o4 € SstE and oxng is simply the output
of a round of the QKD protocol on (an arbitrary) purification of o4p5. Therefore, we may

equivalently write
{ <n(H,(X|E)—9§()) —leak,, — 2log,y(1/cpa) -

Furthermore we can verify the security parameter as epy = €gec — &' = Esec = EPE + & + Epa
and the key is egc-correct, so, by Definition 2 of QKD security, the protocol is € = epg +
€ + egc + epa-secure. ]
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First, we note that (our choice of) G which represents the action of a round of the QKD
protocol on a state p4p is presented in Section 4.1. We also note that under the assumption
of collective attacks, one would not need to use the series of inequalities to obtain the
minimization over the smooth min-entropy as the argument for the minimization would
simply follow from the fact there would be multiple collective attacks Alice and Bob may
not abort on. We now present the collective attack security as a corollary.

Corollary 12. (Security for i.i.d. Collective Attacks) Let cpp, €,epc,epa > 0. Assuming
i.i.d. collective attack, the QKD protocol is € = epg+ &+ egc+epa-secure given that, when
the protocol does not abort, the output key is of length € where

¢ <n(H,(X|E)—0(2)) — leak.,, — 21og,(1/epa) (3.16)
where the definitions are the same as from Theorem 11.

Proof. By definition, an i.i.d. collective attack results in the output of the transmission step
of the QKD protocol being in i.i.d. form, pfg - Allii.d. states are infinitely exchangeable.
Thus Theorem 11 completes the proof. ]

3.5.1 Coherent Attack Security Proofs

So far we have presented a way of calculating the security for i.i.d. collective attacks which
imposes special limitations on the power of Eve. However, the goal of QKD ultimately
is to provide information-theoretic security against coherent attacks so that Eve is only
limited by the laws of quantum mechanics. While in Chapter 5 we present results using
the key rate calculation for i.i.d. attacks, it is important to prove that in principle the
numerical method we present in Chapter 4 can be used for coherent attack analysis. To
do this we present two methods of ‘lifting’ the i.i.d. collective attacks, the Finite Quantum
de Finetti method [51] and the post-selection technique [11], and the extra requirements
to apply these methods.

Finite Quantum de Finetti Method

The Finite Quantum de Finetti Method is Theorem 11 where one replaces the Quantum
de Finetti theorem in the proof with the Finite Quantum de Finetti theorem (Eqn. 2.8).
This requires a few replacements and additional parameters. This was all done in [51] after
which this chapter is based. For one to use the Finite Quantum de Finetti theorem, Alice
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and Bob must randomly permute their signals after state transmission so as to force the
state into the symmetric subspace, but in principle one can always do this. As this method
was worked out in [51], we simply state a variation of the security result where instead
of fixing a specific relation between the security parameters of the subprotocol for a clean
result, we state the theorem so that it is straightforward to apply in generality.

Theorem 6.5.1 [51] Given a general QKD protocol as defined in Figure 2.1 where a
total of NV signals are transmitted, m of the signals are used for parameter estimation,
and n of the signals are used for key generation, let k£ € N and bn +m + k = N where b
accounts for block-wise processing. Let &, egc, €pa, €pr, eqar > 0. Then the QKD protocol
is (eqar + €pE + € + €rc + €pa)-secure if the error correction is epc-secure and if

{ <n[H,(X|E)—6(&)] —2(m + k) logy(dim(H 4 ® Hp)) — leak.,, — 2log2(i) (3.17)

EPA
where
_ 2\/h <L> logy(1/epg) + [E[logy (3 +1)
= —)+ - (3.18)
i) = (g log,(d) + 4)\/h(r/n) + %10g2(4/5) (3.19)
_ (bn Z m 1) (2 m(g;) + dim(H4 ® HB)an(k)) ~1<N (3.20)
Proof. See [51]. O

As one can see from the theorem statement, one will expect the key rate to be quite
bad unless one can make r < n and r < m or r = m. As such, people have remained
interested in ways of determining e-security under coherent attacks. One such method is
the following technique which gets tighter bounds.

Post-Selection Technique

The post-selection technique [11] stems from a similar intuition to that of a de Finetti
theorem. Physically, the use of the Finite Quantum de Finetti theorem in the security
proof tells us that if the total signal state of the QKD protocol, composed of many sub-
systems, is properly symmetric (i.e. invariant under permutation of the subsystems), one
can decompose the state into a mixture of almost i.i.d. states. This allows one to reduce
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the security to something like that of the protocol’s behaviour on (a convex combination
of) i.i.d. states. Rather than focusing on the signal state, the post-selection technique tells
us if the quantum channel which describes the protocol is permutation invariant, then the
behaviour of the protocol on general inputs can be characterized as being polynomial in
the security of the protocol on (convex combinations of) i.i.d. states.

Post-Selection Technique for Coherent Attack Analysis of QKD [14]

Let EKP . D(HY) — D(Hs, ® Hs,) be the CPTP map that models the physical
implementation of the QKD protocol. Let F@XP be the ideal operation of the QKD
protocol. Define A = £KP — FOKD Tt A be such that for any permutation 7 € Sy
of the subsystems there exists a CPTP map K, such that Aom = K,o0A. Let EKP
to be &’-secure on i.i.d. collective attacks. Then

|Alo < &(N+1)%s1=¢ (3.21)

Given the relationship between the diamond norm definition of QKD security and
the trace norm definition of QKD security (Proposition 2), this implies £?KP is
g-secure on any input.

Note: Here we stated the post-selection technique (Theorem 1 of [11]) just in terms
of QKD, which is observed as a corollary (Eqn. 4 of [11]).

It follows from the post-selection technique that if the theorem is satisfied, one simply
has to perform more privacy amplification than under the i.i.d. collective attack assumption
to acquire the security parameter they want for general attacks.

As one will note the theorem implicitly requires that £2XP is a permutation-invariant

map. This is not a trivial requirement and introduces further e-terms to approximate the
protocol by a permutation-invariant one. It was shown in Section 3.4.3 of [1] how this
could be done. Our interest for this thesis is not to focus on these coherent attack proof
techniques, but simply to justify that they can be rigorously applied to lift the calculation in
Corollary 12, which guarantees our numerical method has not lost this important generality.
We do not focus on the results of these proof methods as we expect in the future there will
be better proof methods for coherent attack analysis which will achieve much closer key
rates to those found using the i.i.d. collective attacks.
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3.5.2 Adaptive Security

It is worthwhile to now discuss what these security proofs have promised and what they
have not. Specifically we must note that these security proofs are the security for fized
length protocols. This means that either the QKD protocol aborts or it will produce a
key of some length ¢. The reason for this is that the e-security definition we used (Eqn.
2.10) demands that, when the protocol does not abort, the output is e-close to uniform
distribution over the key space. This is why in the security proof we must determine the
worst case of all accepted observations to perform the privacy amplification.

This is in fact not what the normal theorist or experimentalist thinks ought to be done,
and, understandably, they don’t like this seemingly unnecessary cost to the key when the
observations are better than the worst case accepted observations. As is perhaps natural,
we all think we should run our protocol, see our observations, and then perform privacy
amplification that, except with probability epg + & + epa, will be sufficient to obtain the
secrecy we would like conditioned on what we saw. It follows that such a procedure would
lead to adapting the length of the output key given our observations. This in turn requires
a different e-security definition. The e-security of an adaptive QKD protocol was first given
in [6].

Composable e-Secure QKD Protocol with Adaptive Key Length [(]

A QKD protocol with adaptive key length is e-secure if for all input states, the
output state satisfies

1 ~m m
> Pr(m) 5 |P5,s50 = 7855 @ Pl < € (3.22)
m=0

where m denotes a specific length of the output key and 75,
ot Camesy [ @ |75,

Our goal in noting this, unfortunately, is not to fix the break between fixed length
and adaptive security, but to make it clear why it exists as the author of this thesis,
almost everyone the author has ever spoken to about this, and most publications on finite
key analysis have seemed explicitly or implicitly to think one could make the following
connection between the adaptive key length and fixed key length security.
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Naive Adaptive Key Protocol from Fixed Key Protocol

Strategy:
1. Take a given device-dependent QKD protocol.

2. Run the QKD protocol up through obtaining the observed frequency distribu-
tion F'in the parameter estimation step.

3. Determine the length ¢ of a e-secure key for the QKD protocol if it were used
in the fixed length manner and only accepted the frequency distribution F.
(We will later refer to such a QKD protocol as a QKD protocol with unique
acceptance. See Section 4.2.1.)

4. Proceed to perform error correction and privacy amplification to achieve that
key length /.

Belief: If you always follow these steps, by using the fixed length analysis, one is
running an adaptive key length protocol with the same security parameter.

When written out in this manner, perhaps it is obvious this is not likely to be true.
Specifically, recall that for the fixed key length the e-security depends on how often the
QKD protocol aborts. Imagine originally I consider an observed frequency distribution
F such that ¢ < m/. Writing the fixed length protocol security in terms of the adaptive
key length security we have Pr(m') = (1 — paport) and Pr(0) = papors. However, I am now
going to accept other observations than just F'. For this new protocol, we may conclude
Pr(m’) > 1 — papore- However we don’t know about the distinguishability of ﬁg”/; SpE'
although realistically it should only stay the same or increase as no new procedure for
obfuscating information from Eve has been added. Furthermore, for m # m/, the output
of the protocol won’t in general be a 0-secure key either, so now that Pr(m : m # m’) # 0,
one is opening one’s self up to further security risks. It follows that if there is an input state
to the protocol which roughly saturates the e-security bound in the fixed length security,
then using the strategy above to construct the adaptive key length protocol will only be
g’-secure on that input state where € is (currently) unknown but is likely to satisfy & > €.

For this reason it is not obvious that using the strategy presented will ‘lift’ e-secure
fixed key length protocols to an adaptive key length protocol with no cost to the security.
Therefore we maintain, for the time being, we must consider and implement fixed length
QKD protocols if we want a method which holds with generality.
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Chapter 4

Theory of Numerical Finite Key
Analysis

Having explained the theory of finite key analysis, we now would like to be able to apply
it to general protocols. This requires numerical methods as in general there aren’t enough
symmetries and other simplifications to determine the key length analytically. In this
chapter we present the numerical method of calculating key rates for device-dependent
QKD protocols. The material in this chapter is largely the same as the presentation
in the paper resulting from this research, [26]. First we derive the asymptotic key rate
from Theorem 6.5.1 of [51]. We then explain how previous works [17, 68| developed a
reliable numerical method for determining the infinite key rate. The rest of the chapter is
then spent showing how this method may be extended to calculate secure key lengths for
collective attacks determined in Theorem 11 for finite key rates. In Section 4.2 we present
an SDP which may be used in the numerical method. Because of the technicality of this
Chapter, we present it in a simplified form of SDP which will make the subsequent proofs
simpler. This allows people to read Sections 4.1 and 4.2 alone to see how the extension
works. In Section 4.3, we prove for this simplified case that, just as in the asymptotic
case, our numerical method always provides a lower bound on the key rate (reliability) and
that, with an ideal computer/solver, we would achieve the true theoretical lower bound
(tightness). Finally in Section 4.4 we show that none of the proofs would have gone awry
for the most general formulation of the SDP. This gives us a practical numerical tool we
can implement for general device-dependent QKD protocols that can be represented in
finite dimensional Hilbert spaces.

Furthermore, while it turned out to not be necessary to prove directly, one can prove
a certain property needed for the proof of tightness directly via the introduction of semi-
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infinite programming to quantum information theory, which has not previously been done
in this manner.! As this turned out to be not necessary, but is a tool the author hopes
may benefit someone else at some point, it has been relegated to Appendix A.

4.1 Background: Asymptotic Numerical Framework

Consider the generic QKD protocol as was depicted in Section 2.2. Under the assumption
Alice and Bob are able to send an infinite number of signals, the security proof greatly
simplifies as we now only care about the key rate rather than the key length. Define the
key rate R as a function of the number of signals used, N, as R(N) = ¢/N. Then the
key rate of a protocol is defined as Ry, = limy_,oo R(NNV). Using Theorem 6.5.1 of [51], we
see that as N goes to infinity, one has an infinite number of test signals so that u — 0,
n/N — ppass, and all correction terms go to zero, leaving

Roc = PpaslimipH(X|E) = fooH(X|Y) (4.1
where
S={peDHs®Hp)| Tr(pl;) = v, Vi € A} (4.2)

and {I';};en € Herm(Ha ® Hp) is a set of observables. One can see that H(X|E) is
the privacy amplification term, frcH (X|Y) is the error correction term,? and ppag is the
probability each signal can be used to generate key. One may then expect, as this is just
the rate when Alice and Bob have infinite resources, that this should be the fundamental
rate of generating secret keys. This can be verified as it can be viewed as a re-writing and
rescaling of the Devetak-Winter bound [19] which is the fundamental bound of establishing
secret key. Note that Eqn. 4.1 also tells us that in the asymptotic limit coherent attacks are
in effect i.i.d. attacks and so asymptotically one expects information processes to behave
in an i.i.d. manner which is an important insight of finite information processing.

Given that R, gives the fundamental bound for QKD protocols, it followed that people
wanted a means for calculating the key rate for arbitrary device-dependent QKD protocols

!There is one other work we know of which makes use of semi-infinite programming for quantum

information theory [57], but it is more specific than the proofs we provide which are necessary for the
framework to be applied for general problems. The author of this thesis owes thanks to Jamie Sikora, one
of the authors of [57], for bringing semi-infinite programming to the attention of the author of this thesis.

2In principle, fgc is also a function of N and by the Slepian-Wolf Coding theorem we know for a good
choice of error correction code fgc — 1 as N — oo. However, we don’t get rid of this term as we are in
reality still modeling QKD protocols done with finite resources.
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that always provides a lower bound (i.e. reliable) and in principle could produce the ‘true
theoretical bound’ (i.e. tight). A method for doing this was worked out in [17, 68]. In it
the idea is to minimize H(X|FE) over the set of matrices in Eqn. 4.2. To do this, the idea
was to simulate a round of the QKD protocol in a coherent fashion so that H(X|E), can
be calculated using the quantum relative entropy [16]:

f(p) = D(G(p)I|2(G(p))) (4.3)

where G is the CPTP map which coherently represents the QKD protocol and Z is a
completely dephasing map on the register representing the key map. This method of de-
termining the conditional entropy between Eve and the key is known as the post-processing
framework and we refer the reader to Appendix A of [39] for an in-depth account of it.

Using the post-processing framework, by the joint convexity of quantum relative en-
tropy, the function f(p) is a convex function in p and thus can be used as the objective
function for a semidefinite program. Furthermore, the set in Eqn. 4.2 is clearly a convex

set over the semidefinite cone. It follows that one can view HS (X|E) as a semidefinite
pE

program. Therefore the authors of [17, 65| define

o = minf () (4.4)

However, as they wanted a lower bound that also holds if the numerical optimization
routines returns before reaching the true mathematical minimum, they needed to acquire
the dual problem of the SDP so that they have a maximization problem. This would guar-
antee the computer always returns an answer approaching from below the true minimum of
the conditional entropy so that they can always guarantee that the answer provides a reli-
able lower bound on the key rate. Unfortunately, the quantum relative entropy is a highly
non-linear function and so determining the dual of this problem is difficult in general. For
this reason, they linearized the function about a given density matrix. They were then
able to acquire the dual of the linearization of the original problem SDP, maxgeg«(o) 7 - ¥/
where

S*(0) = {7 € RN Zyirz- <Vf(o)} (4.5)

where 7 is just the vector of the set of expectation values {;}ica.

Then the lower bound for any optimal or suboptimal attack ¢ can be calculated as

Blo) = f(o) = Tr(oV f(0)) + maxy - § (4.6)



because it can be shown that for all p € S, > B(p) so long as V f(p) exists (Theorem 1 of
[68]). Here we have defined the gradient of f at point p represented in the standard basis

{|k)} as:?
df (o)

aO'jk

Vi(p) =) de|k) (], with dj =
7,k

o=p

and o, = (j| o |k). Moreover, we can write the gradient of f(p) as:

Vf(p) = G'(log, G(p)) — G (logy Z(G(p))) (4.7)

Lastly, one can guarantee V f(p) exists via perturbing the state sufficiently by mixing the
output of G(p) with the maximally mixed state such that all eigenvalues are non-zero.

The expression of (o) in Eqn. 4.6 gives a valid lower bound for the key rate for any
o, but the bound will be tighter the closer o is to the true optimum. We thus use a near-
optimal evaluation of the primal problem (Eqn. 4.4) . This is referred to as Step 1 (see
Algorithm 1). For further information on the specifics of this method, we refer to [65].

3Note that we have defined the derivative differently than in [65] by absorbing the occuring transposition
into the definition of the gradient. This removes transpositions in many equations. Every statement is
kept consistent with this definition throughout this thesis.
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Algorithm 1: Asymptotic Key Rate lower bound

Result: lower bound on miélH(X|E) [68]
pe

1.
Step 1
2.

3.

10.

Let € > 0, pg € S, maxlter € N, and ¢+ = 0.

Compute Ap := arg ming, Tr[(0p)V f(pi)] subject to Ap+ p; € S.
If Tr[(Ap)V f(pi)] < €, then proceed to Step 2

Find X\ € (0, 1) that minimizes f(p; + AAp)

Set pis1 = pi + AAp, i — i+ 1.

If + > maxlIter, proceed to Step 2

Let p be the result of Step 1. Let ¢ > 0 be the maximum constraint violation of p
from the original set S constraints which satisfy this.

Calculate V f(p) to use for constructing S*

Expand S* such that states which violated the original constraints by ( are
included.

Calculate 8 using the SDP defined above Equation 4.5

4.2 Extension to Finite Key Analysis

Having seen the numerical method for the infinite key analysis, the idea is to be able to
use the method for finite key analysis. It is perhaps worth noting the primary issue in
determining finite key rate is the optimization problem H,(X|E) = min H (X|E), (Eqn.

PESepy

3.12). Given the previous section, clearly the goal is to be able to get a good lower bound
on the solution to this optimization problem in an efficient manner. To do this using the
method of the previous section, we will need to be able to guarantee San . 18 a convex set.
In general, this may not be the case as Q@ C P(3) which allows for SEQPE to not be convex.
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The non-convexity of this set of density matrices SEQPE in general can be seen from the
following simple example. Let Alice and Bob have a joint measurement for two qubits
which can detect the entanglement of certain states. This is not an unreasonable demand
as in effect this is what parameter estimation is trying to do. Let no coarse-graining
be applied (i.e. N is the identity channel). Let Q = {F.u, Finixea} Where Fiy is the
probability distribution if Alice and Bob were to have measured the maximally entangled
state and Flieq 18 the probability distribution if they were to measure the maximally
mixed state. By Born’s rule and the linearity of quantum mechanics, it follows that one
can get a linear combination of these two statistics, F)\ = AFuy 4+ (1 — \) Finixea for any
A € (0,1) simply by measuring the corresponding mixture of the maximally entangled state
and maximally mixed state. Then if 4 < 0.5, the equal mixture of the maximally mixed
and maximally entangled state cannot be included in SEQP ., yet the maximally mixed and
maximally entangled state are included. Thus the set is not convex as a convex combination
of two elements is not also included.

This example tells us we need to impose some further constraint on ©Q if we wish to
use semidefinite programming. The obvious requirement is that we should force Q to be
a convex set (this will be sufficient as all frequency distributions when written as matrices
are a subset of the positive semidefinite cone). However it is important to note we are
not losing much in this requirement. Generally the key rate is a function of the observed
frequency distribution in a smooth manner. This tells us that over a closed convex set
of frequency distributions the worst case will be an extreme point of the set of frequency
distributions. For this reason, it should suffice to define Q as a closed convex set.* We
therefore define the set of accepted frequency distributions from now on as:

Q={FePX): NF)-NF)h <t} (4.8)

where X is the alphabet of the fine-grained data of the protocol, N s a coarse-graining
so that one may abort on data-processed data, F', and consequently J\KF_), is a preferred
frequency distribution, and ¢ is the accepted variation threshold from N (F).

Using this specific choice of form for the set of accepted frequency distributions, we
can write the most general set to optimize over for i.i.d. collective attacks which allows
for considering multiple coarse-grainings and considering constraints on Alice’s marginal
state due to source-replacement. In other words, we can rewrite Eqn. 3.5 so that it can

4We also note this decision is not specific to device-dependent QKD. In device-independent QKD the
entropy term is a function of (generally) a CHSH inequality and also seems to behave in a smooth manner.
Furthermore the set of accepted frequency distributions is demanded to be convex (see Section 9.2.3 of

[2)-
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be handled numerically for any device-dependent QKD protocol that can be represented
in finite dimensional Hilbert spaces:

Sepp, ={0 € Pos(Ha® Hp) : Vhk € E,3F, € P(2) :

[®p, () = Ni(Fi)lls < pue & [IN(E) = N(F)|: <t (4.9)
& Tr(oly) = Vie A}

where {T";};en C Herm(H 4 ®Hp) are a set of observables which pertain to properties of the
state of which we are certain in the protocol. For all protocols one may assume I'; = 14, ,
which imposes ¢ is a quantum state. The set of observables also contains constraints to
guarantee o4 for source-replacement scheme versions of prepare and measure protocols (see
Section 2.2.2). We again note that ®p, is the measurement channel under the action of
the k'™ coarse-graining which simplifies the analysis of the numerics.

While it may not be immediately obvious that Eqn. 4.9 can be written as a semidefinite
program, note that it is just a set of trace norms and inner products (traces) of the state
o with observables. As in Section 2.3 we showed the trace norm is a semidefinite program
and inner products are trivially Hermitian-preserving maps, the combination of these form
an SDP.

For the rest of the chapter the consideration of multiple coarse-grainings will make
the notation in the proofs more difficult to follow without adding any nuance. Therefore
for the rest of the chapter we will provide proofs for the SDP which considers a single
coarse-graining. Once these proofs are understood, it will be easy to see how they trivially
extend for the multiple coarse-grainings case as is explained in Section 4.4. Therefore we
now define the set to optimize over for a single coarse-graining;:

S, ={0€Pos(Ha@Hp) : IF € P(X): ||Pp(0) = Ni(F)|li < p (4.10)
& |IN(F) = N(F)|y <t& Tr(oly) = Vi€ A}

Using Eqn. 4.10, we can now define the linearized version of the semidefinite program:

minimize (Vf(p),o)
subject to  Tr(T';o) = Vie A
|®p(0) = N(F)[l < g

[N(F) - NP < (4.1)
Tr(F) =1
o, FF>=0.
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When reformatted properly (see Section 4.3) the semidefinite program has the following
dual problem: _

maximize ¥-y+ f-Z—ap—at—>b

subject to Z yl' + Z zjfj < Vf(p)

J

— —
N'@) - Ntz <ol (4.12)
—al<z<al
—al<z<al
a,a> 0,7 e RA
—

where f is the vector version of A(F) and N is the action as the adjgnt of the map N,

N1, on the diagonal entries of a matrix. It is sufficient to consider AT on the diagonal
entries of a matrix because N7 only acts on the diagonal entries of a matrix, and so it

is easy to see that the N7 map applied to the vector formed by the diagonal entries of a
matrix gives the equivalent action as NT on the matrix.

These semidefinite programs are important as the first is the optimization problem used
in Step 1 of Algorithm 1 (i.e. one replaces S with S,) and the dual problem is what is used
in Step 2 (by replacing S* by the constraints in Eqn. 4.12). In effect this completes the
explanation of the extension of the method to finite key analysis. The rest of the chapter
are technical details. In the following subsection we consider a specific simplification of
the above problem used in many previous works which we will use in Chapter 5. Then in
Section 4.3 we prove that our method is reliable and tight (as well as deriving the dual
problem stated in Eqn. 4.12). In Section 4.4 we show that nothing is lost when we consider
multiple coarse-grainings.

4.2.1 SDP for Unique Acceptance

Historically, many works have been interested in the case where Alice and Bob accept only
a single frequency distribution as it is easier to analyze and perhaps due to a misunder-
standing of the relationship between adaptive and fixed key length protocols (See Section
3.5.2). We refer to protocols in which Alice and Bob accept a single frequency distribution
as a QKD protocol with unique acceptance. As we will consider it in our numerics, we
derive the SDP for a QKD protocol with unique acceptance from the general version above
as it is a simpler SDP. Most generally, a protocol with unique acceptance may be viewed

63



as picking N (F) to be the only distribution Alice and Bob accept on. Then the constraint
pertaining to @ in Eqn. 4.10 vanishes as it must be the case N'(F) = N(F). It follows F
could be allowed to vary over all F' such that N'(F) = N'(F). However, in previous works
[10, 11, 53, ]_,tEIS nuance is lost as only one coarse-graining is considered, and so it is
assumed F' = N (F). For consistency, we also make this assumption in defining a protocol
with unique acceptance. We denote N'(F) by F'ir to make it clear it is fixed rather than a
variable. Using this notation, we can define the following set:
UA _
Seor ={p € Pos(Hs @ Hp)|
D2 (p) = N (Fx)lh < o, Tre(pl) =, Vi € A}

where it must be the case that N coarse-grains data from the alphabet of F'5; as otherwise
it would not be well-defined. From this definition we get the following primal problem:

minimize (V f(p), o)

subject to  Tr(T;o) = Vie A
Tr(A+) + Tr(A_) <
AT = dp(0) — N(F
A” = —(2p(0) = N(Fy))
o, AT, AT =0

(4.13)

The dual of this problem is:
maximize -7+ f -7 — ap

subject to Z%’Fi + Z zjfj < Vf(p)

- - (4.14)

al

a>0,

where f is the vector version of A/ (F5). As this presents a simpler SDP, the numerical
method has less free parameters and so, when applicable, this simpler SDP gives less
chance to the computer to suffer from numerical imprecisions which can undermine Step
2 of Algorithm 1 as we will discuss next in the following section.

4.3 Tightness and Reliability of Finite Key Method

In this section we prove the tightness (Eqn. 4.28) and reliability (Eqn. 4.23) of our solver,
which are stated together in Theorem 13. The tightness tells us that if numerical impre-
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cisions were not to occur, the computer would find us the ‘true’ solution. The reliability
property tells us that even when numerical imprecisions do occur, the computer gives us a
lower bound on the conditional entropy, and so it is safe to use in determining the secure
key length in actual experiment. As both of these properties are in terms of numerical im-
precisions, we begin with an account of those. We then present the SDP when it considers
numerical imprecisions. Finally, we prove tightness and reliability.

4.3.1 Numerical Imprecision

We recall two sets of constraints defined in the previous section: The set of constraints
that are not subject to statistical fluctuation, denoted by {I';}ica, referred to as certainty
constraints, and the constraints {fj}jeg that are subject to statistical fluctuation, which
are referred to as uncertainty constraints.

As noted in Sec. 4.1, when one acquires a solution py after the first step in Algorithm
1, the answer may not truly be feasible; that is, py is not in the correct set S, but rather
in an enlarged set gu- This issue arises from the imprecise numerical representation of
the POVMs as well as the imprecision of the numerical optimization solver which lead
to violation of constraints in the optimization problem. To resolve this issue, one needs
to consider the larger set S, to guarantee that py is included. Reference [68] presents a
method for the asymptotic case. In Ref. [68], one has to consider only violations pertaining
to certainty constraints {I';}. In the finite key scenario, we also need to consider the
uncertainty constraints {f]} To rigorously account for numerical imprecision, we now
adapt the method in [6%] to finite key analysis.

An imprecise solver may lead to a solution p; which is not positive semidefinite or that
does not satisfy these constraints. To handle the first issue, if the state p; has negative
eigenvalues, one first perturbs the state to be p’s = ps+|Amin(py)|1 so that p; does not have
negative eigenvalues. Then one checks the maximum violation of the certainty constraints
of oy, and define €, = r?e%xx| Tr (p’fFi) — %l

Imprecise representations can be seen as deviations from the true POVM and proba-
bility representations. One can therefore denote the imprecise representations as follows:

where ||0T;||gg < e and [67;] < e for all i € A. By defining €,e, = €1 + €2, it is shown in
Lemma 10 of Ref. [65] that | Tr(Fi) —7:] < €ep, Vi € A. One then defines € = max(€egol, €rep)
and considers p subject to the constraints {| Tr(pl;) —7;| < €'}.
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These imprecisions may also lead to violation of the variational distance constraint.
Therefore, one should redefine p for the second step to guarantee the ps is considered
in the second step. Since the uncertainty constraints pertain to the variational distance
which takes the imprecisions as a whole, to properly enlarge 1 to take constraint violations
into account, one can use the Cauchy-Schwarz inequality along with Lemma 10 of [6%] to
expand p as p' = max(u + ne', || Pp(pf) — F|j1 + ne’) where n = |A].

_ Lastly, there is the possibility that the solver finds an optimal solution (0,F) such that
NV (F) =N (F)|ly > t. In this case, one should expand ¢. Thus define ' = max(t, |V (F) —
N(F)||1). Then one defines S, to play the role of S, by the following:

Sev ={p € Pos(Ha ® Hp) || Tr(Tip) — 7, < € Vi € A, (4.15)
127 (p) = N(F)ll < 1, IN(F) = N(F)[lL <t} 28, .

Clearly, if € =0, t' = t, and p’ = p, one reconstructs the original set S,,. This alternative
set is used for deriving the dual problem in the second step in the following section. By
optimizing over this set S, v, we handle the numerical imprecision related to certainty
and uncertainty constraints.

It is important to note that when G(p) is singular, the derivative in Eqn. 4.7 may not
exist. To tackle this issue, Ref. [08] introduces a small perturbation as

Ge(p) = (1= €)G(p) +el/d,
fe(p) = D(Ge(p)||Z[Gc(p)]),

where d’' is the dimension of G(p), and € > 0 is chosen in a way such that G.(p) is not
singular. The derivative of f.(p) is obtained by replacing G with G, in Eqn. 4.7.

(4.16)

4.3.2 Finite Key SDP with Numerical Imprecisions

We present the SDP that also takes into account the numerical imprecision discussed above.
(However, for ease of writing, we still use {I';} to denote certainty constraints and {I';} to
denote uncertainty constraints.) For simplicity, we present here derivations in the case of
one variation bound and state the result related to multiple coarse-grainings in Sec. 4.4.
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The primal problem of our SDP at p € S,y is

minimize (Vf.(p), o)
subject to  Tr(G) + Tr(H) < 1/

G N(F) - Ty (4.17)
H = Fy— N(F)
Tr(F) =1

o,F.G,H,G, H > 0.

where Fiy = N(F). We use this notation to emphasize N(F) is fixed and is not an
optimization variable because F and N are both fixed. Let aq(p) denote the optimal value
of this primal problem. To derive its dual problem, Eqn. 4.17 can be reformatted to fit
the definition of the primal problem of an SDP, Eqn. 2.11, as follows:

A= diag<vfe(p)76>
B = diag(i/,0,0,t', Fyy, ~F, 1, Z(E +7:) [4) (il 72(6 —7:) |4) (i)

W(X) = diag(TH(G) + Te(H) + 2, G — N(F) + ®p(o) + I
— H+N(F) = ®p(0) + J, Tr(G) + Tt (H) +z, (4.18)
— G+ N(F)+1,—H - N(F)+J,Tr(F),
o(0) + My, —Po(0) + Mo)
X = diag(o, F, G, H,2,1,J,G, H,z,1, ], My, M)

where 0 is a shorthand notation to mean that all other blocks are zero matrices of ap-
propriate size, diag means it is a matrix whose diagonal blocks I have named, ®¢(X) =
> ien Te(XTo) i), N(X) = 32, p(yle) [y) (2| X |z) {yl, N(X) = 32, , Dyle) [y) (x] X [z) (],
and 2,z € C,1 € L(C*®),J € L(C®N, T € L(C*el), J € L(C*el), M; € L(CA) and
M, € L(C™) are slack variables. Furthermore Y represents the alphabet for the coarse-
graining. It is easy to verify using the definition of adjoint map, (Y, ¥(X)) = (¥7(Y), X),
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that the adjoint of W is:

UH(Y) = diag(®f (W, — Wa) + OL(K — L), N'(L — K) + N'(K — L) + by,

- o (4.19)
CLILW — K,Cl]lw — L,CL, K, L,EILW - K,a]lw — L,E,K,L, Wl,WQ)
where YV = &ija/g(a, K,La,K,Lb W, W,),
= Wi, i), OR(V) = V()T (4.20)

i€A jes

If we substitute these definitions in the standard form of SDP from Eqns. 2.11 and
2.12 and flip signs of a,a,b, K, L, K, and L, we then get the following dual problem:

maximize (> (€ + ) [i)i] W) + (O (¢ =) [i)i] , Wa)

ieA ieA
+(Fy, L — K) —pla—ta—b
subject to Z[Wl(z',z — Wh(i,1)] +Z (7,7) — K(j, j)]fj =< Vfp)
ieA jes (4.21)
NI -F) =N (L - K) b1y
0<K <aly 0=<K <aly
0=<L <alyy 0=<L <alyy
a,a >0, Wi, Wy <0,

where W = C*l. Let $y(p) denote the optimal value of this dual problem.

From Eqn. 4.21, we observe that off-diagonal entries of K, L, K, L, W; and W,
are not important for thls optimization problem since for any optlmal solution Y* =
dlag(a K* L* @, K ,L",b*, Wr,W}) of this problem, if K’ L’ K L', W] and W} are
matrices obtamed by taklng only the diagonal parts of K*, L*, K. L VV1 and W5, respec-
tively, then the matrix Y’ = diag(a*, K', L/ ,F/,f/, w1, W2') is also optimal as it is feasible
and achieves the same optimal value. Moreover, we may optimize over the difference L — K
(L — K) subject to the constraint —aly, < L—K < aly, (—aly < L—K < alyy) as only
the difference L— K (L— K ) matters in the optimization and its range is —al < L—K =< al
(—al = L—-—K < al) which is determined by the two constraints 0 < K =< al and
0=<L=<al (0K =<al and 0 < L <al). If we write ¥ as the vector whose i-th entry
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is v; and f = diag(Fy), the dual problem in Eqn. 4.21 is simplified as
maximize (6’+?)-yﬁ+(e’—i)-y}—l—?-?—u’a—t’a—b
subject to Z[yl(z) I; + Z T, < V1.(p)

(IS JEX
O .
N'(Z) - N'(2) = bl (4.22)
—al<7<al
—al<z<al
a>0 1,75 < 0.

where m is defined such that diag(NT(2)) = /\_/'T>(diag(Z)) for arbitrary Z € L(C/cl). We
remark that when ¢ = 0, we can replace y; and y5 by i = y; — y3 subject to the constraint
7 € RIM, When ¢/ = p, ' =t, and € = 0, Eqn. 4.22 reduces to the dual presented in
Section 4.2, Eqn. 4.12 .

4.3.3 Reliability and Tightness

Now that we have the dual problem needed for Step 2 of Algorithm 1 which takes into
account numerical imprecisions from Step 1, we prove that the lower bound obtained using
this algorithm is reliable and tight. That is, in the limit where the numerical imprecisions
go away, the program will obtain the true answer (tightness) and when the numerical
imprecisions don’t go away, we always have a lowerbound (reliability). In this section
we present the precise mathematical statement of tightness for the SDP in Eqn. 4.17 in
Theorem 13 which considers the issues of numerical imprecision discussed in Sec. 4.3.1.
We then prove it. The extension to multiple coarse-grainings is then straightforward as
we show in Section 4.4 This theorem is a finite-size version of Theorem 3 in Ref. [08]. In
proving this theorem, we will adapt the proofs in Appendixes D and E of [65] as well as
technical lemmas in Appendixes A-C of [68].

As our optimization problem comes from a physical scenario and we are only interested
in the situation where the set S,/ is not empty (otherwise we may trivially set the key
rate to be zero), we restrict our attention to this situation.

Theorem 13. (General Proof of Tightness of Numerical Method) Let S,y be defined in
Eqn. (4.15) and assume Sy # 0. Let p € Sy where G(p) is of size d x d' and € > 0.
For 0 <e<1/[e(d —1)], then

a > Bueve(p) — Ce (4.23)
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where

a = grensri f(o), (4.24)
ﬁu’e’t’s(a) = fs(g)_Tr[Uer(U)]+ max [(e’+i’)y_i+(e’—ﬁ')y}—}—f%—u'a—t'&—b],
(a,ﬁ,y‘i Y3 Ef,b)ES*,E,t, (U)
(4.25)
and '
c=2¢(d —1)logy ——. 4.26
The set S;,.,(0) is defined by
Sivew(0) ={(a, @, 41,45, 7, Z,b) € (R, R, RN R R R R
a,a>0,—al <Z<al,—al <zZ<al,q; <0,4 <0,
N [ S ) (4.27)
(1) = gL+ ) 2())F; 2 Vf(0), N'(Z) = N'(2) < bI}
€A JEX
Moreover, if p* is an optimal solution to the primal problem,
EE%EF Exlir&[ﬁu’t’ee’(ﬁ ) =G = o (4.28)
W=
t'—t

To prove Theorem 13, we first show that for any p € S,/ve., the primal optimal value
ap(p) is equal to the dual optimal value y(p) as Lemma 14. Then, we break down the
proof of theorem into two parts: reliability in Eqn. (4.23) and tightness in Eqn. (4.28).

Lemma 14. If Syov # 0, then ag(p) = Bo(p) for any p € Syev.

Proof. As Syev # 0, to apply Slater’s condition, we just find a strictly feasible solution
to the dual problem. We consider the dual problem in the form of Eqn. (4.21). Let
a =7a = 3. Let W} = diag(x — 3,—1,—1,...,—1) where x = —|Anin(Vfc(p))|. Thus
Wy < 0. Let Wy = —1 < 0. Without loss of generality, let I'y = 1 as we always
have the constraint Tr(c) = 1 in the primal problem. Let L = 21 and K = 1.Thus
—aly < L — K < aly. Furthermore, . [K(j,7) — L(j,j)]fj =1 as {fj} is a POVM.
Thus, Zi[Wl(i,i)—Wg(i,i)]FZ-—I—Zj[K(j,j)—L(j,j)]fj = (z—1)1 < Vf(p) by construction
ofz. Let L =21, K =1 and b = 2. Then —aly < L — K < aly and./T/’T(Z—F) —
NT(L — K) =0 < blyy. The last equality followed from the fact A is a quantum channel
and so its adjoint is unital. Thus all inequalities are strictly satisfied. O
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We now adapt the proof in Appendix D.3 of [68] to finite-key scenario.

Lemma 15. In the context of Theorem 13, a > Bepe(p) — (e for any p € S,pe, which is
Eqn. (4.23).

Proof. Let ayope = Uergin fe(o). Suppose that ,0;;,6,15,E € S,sep is an optimal solution of
wet!

this optimization. For any p € S,/¢y, since f. is convex,

eve = f(ppeve) = fe(p) + ((Ppeve — p), VIe(p))
) _

> f.(p) — (p, Vf.(p)) + Uergigt,w, Ve(p)) (4.29)

= fe(p) — (p, Vfe(p)) + aolp)
= fe(p) = (0, Vf(p)) + Bo(p) = Buwec(p),

where first two inequalities follow from the same argument about this linearization of our
convex objective function as it is used in Eqns. (77)-(79) of Ref. [68] and the last line
follows from Lemma 14 and the definition of B pec(p). Since S, C S,yev,

= min f(O') > min f(O‘) > min fe(g) - Ce = Quette — Ce: (430)

O’GS” Uesu’e’t’ O'Gsulelt/

where the last inequality follows from a continuity argument (which is Lemma 8 and Lemma
9 in Ref. [68]). Combining this result with Eqn. (4.29) leads to Eqn. (4.23). O

As we have shown the reliability of our numerical method, we now proceed with the
tightness in Eqn. (4.28). If p* is an optimal solution, an immediate consequence of Lemma
15 is that for any p € S,v, the following equation holds:

min Tr[(o — p")Vf(p*)] <O0. (4.31)

O'ESulelt/
As Eqn. (4.31) holds for any feasible density operator in the set S, O S, we want
to show that if p* optimizes the objective function f, then misn Tr[(o — p" )V f(p*)] = 0
geS,

where the optimization is over S, as Eqn. 4.28 pertains to the limit where that is the set
we are interested in. Therefore we just need to prove

min Tr[(c — p")Vf(p*)] >0 (4.32)

O'GSM/E/t/
when Su’e’t’ 7& @
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Lemma 16. When S, v # 0,

min Tr[(c — p")Vf(p*)] >0 (4.33)

O'ESMlelt/

Proof. Let S, v # 0. By Lemma 14, we know that Eqn. 4.17 obtains its optimal value. Let
p* optimize f over S,y # 0. As f is a differentiable, convex function (one may consider f.
to guarantee differentiability), it is the case that for all o € S, TY[V fu (p*) (0 — p*)] > 0
(Eqn. 4.21 of [9]). Tt follows min Tr[(c — p*)Vf(p*)] >0 O

o M’C’t’
Eqn. (4.31) and Lemma 16 imply that, given p* that optimizes f over S, /oy,

min Tr((c — p")Vf(p")) =0

O'ESMIEIt/
We can therefore conclude the following:

f(p*) = f(p") + min Tr[(c —p")Vf(p")]

O'ESMIEIt/

this completes the proof of Eqn. 4.28 and Theorem 13.

Note: While we used Eqn. 4.21 of [9] in proving Lemma 16, one can prove Lemma 16
directly using semi-infinite programming. While this isn’t necessary as we can just use this
cited result, we have presented this approach in Appendix A because it shows how one can
introduce semi-infinite programming for quantum information theory and one application.
If this interests the reader, we refer you to Appendix A.

4.4 Multiple Coarse-Graining SDP

In Chapter 3, we showed that we could consider multiple coarse-grainings in hopes of
reducing the number of density matrices we need to consider in proving our security.
In Eqn. 4.9 we presented this set for our numerics, but then in Section 4.3 we proved
reliability and tightness for a single coarse-graining. We now show that it is easy to extend
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to the case where one considers multiple coarse-grainings so that nothing is lost. First,
we define X; as the alphabet indexing the fine-grained statistics of the experiment. Let
k index the set of conditional probability distributions pertaining to coarse-grained data,
{ps.=; }x- Bach conditional probability distribution induces a channel Ny, which applies the
coarse-graining to the statistics. Define the POVM which pertains to the k' conditional
probability distribution as {F?}jezk which induces a measurement channel ®p,. In this
case j is implicitly dependent on k as different coarse-grainings will construct probability
distributions of different sizes. Then, the primal problem may be written as:

minimize  (Vf.(p), o)

subject to  Tr([;o) = Vie A
@5, (0) = Ni(Fi)ll1 < Vk
— (4.34)
IV (F) = N(F)ll <t Wk
F, =0 Vk
oc=0

where @p, (X) = 3y, Tr(XTH) 1) (il Mu(X) = S, yess, Pty (l2) {2l X ) [}yl
We stress that Fj is indexed by k given the set considered in Corollary 6.

To convert this linearized primal problem into a semidefinite program, we effectively
are just optimizing k copies of Eqn. 4.17 at the same time. This means we can write the
equivalent form of Eqn. (4.17):

minimize  (Vf.(p), o)

subject to  Tr(Gy) + Tr(Hy) < py, Vk
Gy = @p,(0) — Fi, Yk
Hy = F, — ®p (0) Yk
Tr(Gy) + Tr(Hy) < t), Vk
Gy = N(Fy) — Fy Vi
Hy = Fyr—N(F,) Vk
| Tr(Tio) — i < ¢
Fy,Gr, Hy, Gy, Hy = 0 Vk
oc>=0

(4.35)

where we have let ¢} be indexed by k in case different coarse-grainings violate the Q set
by different amounts.
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To reformat Eqn. (4.35) into the definition in Eqn. (2.11) we can extend the definitions
in Eqn. (4.18) in a block diagonal fashion using the matrix direct sum, @, over k.

A = diag(Vfc(p),0)
B = diag(Sritk, B0, ©r0, Bxt, Or Fxp, @ — Fr, i1, Z(G + i) 1) (il Z(G — i) [2) (i)

@k [~Gr + N(Fy) + Ii), @[~ Hi = N(Fy) + T, @ Te(F),

@0(0’) —+ Ml, —@0(0') + MQ)
X = CTivag(U, ®rFy, ©LGr, BrHy, Drzr, Orly, Ordy, BrGr, ®rHy, ®xZr, Brlr, Ord g, My, My)

It is straightforward to see the adjoint map of W in this case is
k
@y, [arlw — Ky, ®xlar Ly — Ly, Brar, ©x Ky, @1 Ly, ®rlarly — K|, ®rlarlw — Ly,

By, Ar, DKy, O L, W1, Wa)

where
Y = d/;z;g(@kaky EBkKk7 ®kLk7 @kaka @kaJ EBkaa @kz_)kv W17 WQ)

Finally, again because all of the ks are independent, this dual problem is ultimately
simplified to:
maximize 27§k+ (€+7) -G+ (€ —=7) Go—fi-a—1t-a— bl
k

subject to Z[yl(z) — y2(1)]T + Z(Z Zk(])ff) < Vfdp)

NG - NO(3) < belo v (430)
—aply < Zp < aply Vk

— Gl < Zp < aplw Vk

ia>0  §,5<0
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where ,1;’ is just the vector whose k-th entry is given by pj. From these forms, it is clear
that strong duality and tightness proofs follow from the single POVM case by indexing
over the variable k and scaling things properly in the proof of strong duality. Therefore in
this chapter we have shown that we have constructed a numerical method for determining
reliable, tight key rates which can consider multiple coarse-grainings.
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Chapter 5

Examples of Numerical Finite Key
Analysis

So far we have improved the theory of finite key analysis and developed a numerical method
for determining the key length for general device-dependent QKD protocols. We would
now like to prove that our improved understanding and our numerical method are useful.
To do this we consider variations of the Bennett-Brassard 1984 (BB84) protocol [7] un-
der collective attack. Specifically, we consider the efficient single-photon BB84 protocol
[11] under simple conditions in which an analytic security proof [53] is known as well as
when the channel induces a reference frame misalignment. We also consider measurement-
device-independent BB84 [12] and discrete-phase-randomized BB84 [12] which is an optical
implementation of BB84. Lastly, as we present all of these results in the case of unique
acceptance, we consider the reference frame misaligned BB84 and how it behaves when the
protocol accepts a set of observations.

As all of these examples are based on BB84, we begin the chapter with a brief overview
of efficient BB84 and its security proof to provide intuition for the discussions of the
following protocols. We note these examples are the ones we presented in [20] and the
presentation is largely taken from that work, but has been expanded. Lastly, as all of the
numerics require the construction of Kraus operators for the G map in the post-processing
framework (See Section 4.1), we have put this information in Appendix B for completeness.
Furthermore, we note the code is not provided in this thesis as it would take up too much
space. It is planned to be part of upcoming open-source software [10], at which point it
will be available.
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5.1 Background: BB84 and its Asymptotic Security

Protocol 2: Efficient BB84 [11]

N Number of signals Alice sends to Bob
p. Probability of sending in the Z-basis
Q Set of frequency distributions Alice and Bob will accept

Protocol:

1.

Transmission: For i € [N], Alice draws b € {0, 1} according to p(b = 0) = p,. Alice
draws s € {0, 1} with uniform probability. She then sends the following state
depending on her results:

(b, s) (0,0) | (0,1) | (1,0) | (1,1)
State Sent | |0) 1 | |+ | |-

where [+) = £(|0) + [1)) and |-) = £(]0) — [1)). Alice lets 4; = s and A =b.

. Measurement: For i € [N], Bob draws r € {0,1} according to p(r = 0) = p,. If

r =0, Bob uses the POVM {|0)0], [1)1|} If » = 1, Bob uses the POVM
{|+X+],|=X—|}. Bob stores the outcome of his measurement g as 0 if the outcome
is |0) or |[+) and 1 otherwise. He stores A; = ¢ and A; = 7.

Parameter Estimation: Alice picks a random subset of the N signals sent of size
m = (1 — p,)?. For each of the m signals, Alice and Bob announce (b, s) and (q,)
respectively to construct their frequency distribution F'. If F' € O, they proceed.
Otherwise, they abort.

Announcements & General Sifting: Alice and Bob announce ;L and EZ (i.e. 7 and
b). If m # b, Alice and Bob throw out that signal.

Key Map: For any signal that has not been thrown out where b = 0, Alice sets
x; = s;. This results in z € {0,1}" where n ~ p*(N —m).

Error Correction € Privacy Amplification: Performed as is standard.

Note: We skipped the Data Partitioning step as the protocol is simple enough to
embed it into transmission and measurement steps.

BB&84 is the first QKD protocol and will probably forever be the most well-behaved
protocol. As it is in some sense the foundation of QKD and all of the examples in this thesis,
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we present the efficient BB84 prepare-and-measure variation of the protocol (Protocol 2)
including the steps that will be used in the finite case. We then present a summary of the
asymptotic security proof using the source-replacement.

Protocl 2 is an ‘efficient” BB84 protocol because one can see that as the total number
of signals sent, NV, goes to infinity, one can use an increasingly small fraction of states for
parameter estimation, and send almost all states in the Z-basis, which results in effectively
all signals sent contributing to the secret key. Furthermore, the observations one expects
to see in parameter estimation asymptotically are straightforward:

2 2 z 1_ €T zZ 1_ z
%(1—%) %ex p(4p) p(4p)
. p_gex p_§<1 —e,) pz(1—p2) pz(1—p:)
p(la.]) = pz(zl_pz) pz(l_pz) (l_pz)2 41 (1_173)2 (51)
(1p:) (1p:) T (>2_ ) i
Pz n Pz Pz n Pz 2pz e, 2pz (1 _ ez)

where (i,7) € {(0,0),(0,1),(1,0),(1,1)} and e, and e, are known as the phase error and
the bit error respectively.

With all of this in mind, all that is left is a brief discussion of the security. The security
of this protocol is given in Appendix A of [52], and so we just note the points we will need
in the rest of this chapter from this security proof. First, as is always the case in this
thesis, one does the source-replacement. In the case of the BB84 protocol, this means that
Alice will always sends the Bell state |®*) = 1(|00) 4 |11)). As we previously saw, since
we are considering the asymptotic security, the attack may be assumed to be collective. It
turns out that by the symmetries of the BB84 protocol, one may also the output of the
collective attack will be diagonal in the Bell-basis:

pas = M ON@H 20 07N g [N £ | (52)

where [®7) = 1(|00) + |11)) and |¥*) = 1(|01) £ [10)). Using these observations, [52] is
able to show that, under the assumption, the asymptotic key rate for the efficient BB84
protocol is:

BBsa = pi[l — h(es) — fech(e:)] (5.3)

where h(p) = —plog(p) — (1 —p) log(1 — p) is the binary entropy function and the Shannon
limit of error correction is h(g) as can be verified given the conditional probability table
(Eqn. 5.1). Furthermore, this would be expected as the number of bits that need to be
corrected when doing the key map in the Z-basis is just asymptoitcally the expectation of
the error rate in the Z-basis.

With these points established, we can continue to our numerical results.
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5.2 Efficient BB84 with Phase Error Estimation

In [53], they use the asymptotic efficient BB84 key rate presented in the previous section
to determine the key length, and thus rate, in the finite regime. They do this in the
following manner. First, note that by the asymptotic key rate (Eqn. 5.3) we know only
the fluctuations in the phase error will effect the privacy amplification term, 1 — h(e,). It
follows that if one accepts only one observed frequency distribution, the worst-case scenario
privacy amplification term in the finite regime will be, h(e, 4 4§). We note that the factor
of two is because the largest amount of the total variational bound, u, that can be added
to the outcome e, is ;1/2 as one must then remove /2 from the rest of the observations to
preserve it being a probability distribution. This differs from [53] in which they add the
entirety of p to e,. Given this analysis, by the key length under i.i.d. Collective attacks
(Eqn. 3.16) one can conclude that analytically we know the finite key length under i.i.d.
collective attacks for the efficient BB84 protocol to be:

twss < PN —m)[1 — hlea +5) — fich(e.) — 5(2)] - 1og2(%) .y 1og2($) (5.4)

where H,(X|E) =1 — h(e, + %) and H(X|Y) = h(e.).

To calculate the key length and rate, one would want to minimize the variational bound
{4 so as to minimize the increase in the cost of privacy amplification. As the variation bound
of u is partially determined by the size of the parameter estimation alphabet, one would
like to reduce the alphabet of parameter estimation. As the key rate only cares about the
phase error e,, it makes sense to assume Alice and Bob only check the phase error, e,,
using the coarse-grained POVM, {Il.,, 1 — I, } where Il,, = (1, ® 1 —ox ® 0x)/2 and
ox is the Pauli-X operator.

To show that our approach works, we consider our numerical key rate against the
analytical key rate calculated using Eqn. 5.4 in Fig. 5.1. Following [53] and the description
of Protocol 2, we assume Alice and Bob sacrifice (1 — p.)?N of the signals to parameter
estimation. This is a good choice since as N goes to infinity, one can test an increasingly
smaller fraction, so p, can approach unity, which this a priori decision takes into account.
Furthermore, in the simulation we assume that our observations yield that the error rates
satisfy e, = e, to let H(X|Y) = h(e;). As can be seen in Fig. 5.1, for this protocol
our solver produces a lower bound that effectively matches the analytical result perfectly.!

!The theory curve is always slightly higher than the numerical curve by the construction of the numerical
method. However, by slightly differ, for this protocol, we mean that the rate differs by roughly less than
half a percent.
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Furthermore, in this example, we let fgc = 1.2 as this is a realistic model of the inefficiency
of error correction in current experiments [11, 53, 51].

061 e,=0.01
| — e,=0.03
e, =0.05
057 e,=0.07
80.4—
©
0.3+
X~ o0® e-eoveee®
o"... ’
0.2 ...o°.
0.1
0_0 T T T T 1 T T T T
104 105 106 107 108

Number of Signals, N (log-scale)

Figure 5.1: Numerical key rate versus analytic key rate for BB84 for four error rates with
EPE = € = €RC = EpA = i x 1078 so that € = 1078, The lines are the theory curves, and
the dots are the corresponding solutions by our numerical method. We let e, = e, and
p. = 0.9. We assume here that the sample size is still larger than the block length of error
correction, which then gives frc =1.20. Results generated using SDPT3.

5.2.1 Coherent Attack Rates

The current belief of the field is there should exist information-theoretic theorems which
will show that the secure key length of QKD protocols under coherent attacks should
behave roughly, i.e. up to an O(1) correction term, the same as the security of collective
i.i.d attacks. This belief is primarily based on intuition and the fact this is true for the set
of QKD protocols which satisfy the requirements of the Entropy Accumulation Theorem
[21]. As such, this chapter focuses on the i.i.d. collective attack key length. However, it
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is worthwhile to present a comparison of the i.i.d. collective attack to the coherent attack
analysis using the post-selection technique and the Finite Quantum de Finetti theorem
for this simple protocol so that readers might have some intuition for how things work
currently.

In Fig. 5.2, we consider unique acceptance about the phase error statistics with 1%
observed phase error for efficient BB84. As this example is simple enough to not need
numerics, the results are analytic and have been optimized over choice of p, at each point.
For all three curves we let the protocol be ¢ = 10 8-secure. For the collective attack
that means letting all the e-terms be a fourth of the entire term. For the post-selection
technique (see Eqn. 3.21), we just take the collective attack e-terms and divide them all by
(N + 1)%5-12 We note there may be better ratios for the e-terms for this specific choice
(See [53]), but as a simple random sampling over both e-ratios and observed frequencies
at the same time numerically did not show a specific choice, I use the flat distribution for
e-terms since the actual protocol will fix these terms anyways.

For the Finite Quantum de Finetti coherent attack analysis (see Eqn. 3.17), there is
more to be said. First we let each of the five e-terms be a fifth of the entire term. Second,
we must decide on the number k of the total signals N Alice and Bob should throw out to,
in effect, force Eve’s attack to be i.i.d.-esque. As one can see from Eqn. 3.17, one needs the
fraction of signals k/N to approach 0 as the number of total signals used, N, approaches to
infinity as a correction term is proportional to k. However, as the parameter r (Eqn. 3.20)
is proportional to In(k)/k, and the variational distance p (Eqn. 3.18) and the correction
term § (Eqn. 3.19) depend on h(r/m) and h(r/n) respectively, one must make sure that
k is small enough that r does not grow too big. The optimal choice of k is therefore not
obvious. As such, for each number of signals we optimize over both p, and the fraction
of N which we take for k. This is the correct choice as it turns out the optimal value of
these two parameters does not seem well behaved at low key rates, as can be seen in Fig.
5.2. We do note however that it becomes well behaved once the number of signals is large
enough to achieve at least ~ 1/2 of the asymptotic key rate. This also tells us how much
more complicated using the Finite Quantum de Finetti coherent attack analysis is than
applying the post-selection technique.

As one can see in Fig. 5.2, the post-selection technique does quite well for this protocol
compared to the collective attack. It follows that as long as the dimension of the shared
quantum state of Alice and Bob remains relatively small, the coherent attack curve will

2This isn’t totally rigorous as really there should be an extra e-term due to the fact error correction is
not normally a permutation invariant map (See Sec. 3.4.3, and specifically Eqn. 3.92, of [1]), but for our
purposes this is sufficient.
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Figure 5.2: Here we consider the two types of coherent attack analysis from Chapter 3.
At every point p, has been optimized for each respective curve. We assume here that the
sample size is still larger than the block length of error correction, which then gives fgc
=1.20. The Quantum de Finetti theorem does not converge to the same asymptotic result
due to how it handles correlations between Eve’s purification of the states sifted.

not cost too many signals (depending on if ‘too much’ gets to be decided by the theorist
or someone who actually has to make this work efficiently). We do note though that the
range of the plot was chosen because for more signals you have to use a high-precision
float to avoid having Matlab round the e terms to zero for the post-selection technique.
In contrast, beyond the aforementioned annoyance that the Quantum de Finetti coherent
attack analysis requires one to carefully optimize over multiple parameters, one can see
it also requires many signals to achieve a positive key rate or approach the asymptotic
limit. It in fact requires ~ 5.6 x 10 signals to achieve 99% of the asymptotic limit for
this very simple protocol. It therefore follows that while the Quantum de Finetti Theorem
proves that coherent attack analysis reduces to i.i.d. attack analysis in the limit, it is not
particularly practical for applications.
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5.3 Reference Frame Misaligned Efficient BB84

One may notice in the previous section one was able to improve the key rate by using the
coarse-grained POVM to reduce the value of the variational bound p. This would imply
that somehow Alice and Bob throwing out information allowed them to be more secure
against Eve. In this section we explore the effect of fine-grained data versus coarse-grained
data on the key rate and the increased importance of the difference in the finite regime.
Furthermore we show the advantage of considering multiple coarse-grainings (Theorem 5)
rather than only one, which resolves the idea that Alice and Bob throwing out information
may allow them to be more secure against Eve.

In the case of constraining the set of density matrices using a single frequency dis-
tribution F', there are two competing effects— the rate at which the variation bound u
goes to 0 and the value of the asymptotic key rate. As one can see from Eqn. 3.14, the
number of POVM outcomes effects the size of the variation bound . This means that
more coarse-grained data F¢ has a variation bound sy that converges to 0 faster than
that of the fine-grained data. It follows that for a case such as in the first example where
an element of a coarse-grained probability distribution (e,) determines the key rate (Eqn.
5.4), the coarse-grained data will lead to a better or equal key rate to the fine-grained data
for any amount of signals.

However, we know that if one applies a unitary rotation about the Y-axis on the Bloch
sphere to each signal sent to Bob, then the fine-grained statistics will detect the rota-
tion, thereby leaving the key rate unchanged. In contrast, the phase error coarse-grained
statistics cannot determine the rotation, thereby decreasing the coarse-grained key rate.
This can be seen in the following manner. Consider the efficient BB84 protocol under the
source-replacement scheme where Alice sends Bob’s half of the Bell state |®*) through
a channel that is the composition of two channels. The first channel is the depolarizing
channel with noise value ¢ defined as:

where pg = 1 — %,pl =p, = p3 = { and 09 = 13,01 = 0x,00 = 0y,03 = 0z Where
ox,0y,0z are the Pauli operators. The depolarizing channel induces a qubit error rate
of ¢ in the output state. The second channel is a unitary channel that rotates the state

about the Y-axis on the Bloch sphere by an angle 6, ®;(X) = 7Y XY It follows the
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output state will be of the form

pout = (ida ® (@pr 0 ) (|27} @*])

3
= (ida ® ®p) (1 — Zq | DTN + %(\qrxqr] YT+ |\If‘><\If‘]))
acos?d +bsin?0 (b — a)cosfsinf ccosfsinf ccos® 0
| (b—a)cosfsinf bcos?d + asin® 0 dsin’ 0 —ccosfsind
N ccos 6 sin 6 dsin? 0 beos® O+ asin?@ (¢ —b) cosfsind
ccos® 0 —ccosfsinf  (c—b)cosfsinf acos®f + bsin®f

wherea = (3(1-2)+ %), b=% c= (1(1-2)-9), d= (3(-1+2)+ 2), and the
matrix is written in the computational basis. Using this output state from the channel
model, we can construct the joint probability distribution table of Alice and Bob’s obser-

vations just as we did for the simpler case (Eqn. 5.1) using that both Alice and Bob’s local
POVM is {p- [0)0], p= [1X1], (1 = p2) [+)+], (1 = p2) [ =)=}

Sra) G(-p) BRIy BLEE (1)
%(1 _ m) %(1 + x) pz(14—pz)<1 + y) pz(lll_pz)(l _ y)

3 3 K ER (5.5)
BOG (1 g y) 201 —y) S P(1gy) Bl

)
— _ _ 2 _ 2
BUN(1 —y) BOE1 4y SRR —r) B4

where 2 = (1 — ¢) cos 20 and y = (1 — ¢) sin 26.

It follows from this calculation that in the asymptotic limit where we recover this
probability distribution, the asymmetries induced by the rotation can be detected. As
a unitary rotation leaks no information to Eve, one could use this to ignore the error
due to rotation when determining how much privacy amplification is needed to decouple
from Eve. However, if one coarse-grained the results to just check the phase error, this
information would be lost and so one would have to perform privacy amplification as if all
of the error were due to Eve, therefore reducing the key rate. This means asymptotically
we understand that the fine-grained key rate is better than the coarse-grained key rate in
the event of such a rotation. Therefore it follows that in the finite regime, even though the
coarse-grained statistic variation bound converges to zero faster, the fine-grained key rate
must be better than the coarse-grained key rate at some threshold of number of signals
used.

We note that this point has been addressed independently of finite size effects in the
literature where the fact that certain POVMs are robust to rotations has been utilized
in the invention of the ‘reference frame independent’ and ‘6-state 4-state’ protocols [37,
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|. The idea is that the information extracted by the POVM determines how robust the
protocol is to differences in Alice and Bob’s reference frames. This is because the signals
sacrificed for the parameter estimation step allow them to in effect align their relevant
reference frame [3]. For example, if we had rotated the states about the X-axis of the
Bloch sphere, not even in the asymptotic limit would the fine-grained data of the BB84
protocol be able to determine the rotation. However, the six-state protocol, which is
tomographically complete, would be robust to such a rotation about the Bloch sphere. In
this section we present an example of this misalignment in reference frames in BB84 to
explore its relation to finite size effects and the advantage of doing parameter estimation
with multiple-coarse grainings.

We consider BB84 where we constrain with one or more of the following three condi-
tional probability distributions where for intelligibility we write the corresponding POVM
rather than the conditional probability distribution:

1. The fine-grained joint POVM constructed by both Alice and Bob having the local
POVM:

This corresponds to applying the identity conditional probability distribution to the
fine-grained statistics.

2. The phase error POVM {II., 1 —II., }. This corresponds to mapping the frequencies
corresponding to Alice and Bob both using the X-basis POVM and getting different
results to a single outcome and all other fine-grained outcomes to a second.

3. The agreement POVM which simply checks how often Alice and Bob agree:

{pznmpznb (1 - pz)2H+> (1 - pz)zn—a Helse}

where I, = |a) (a| ® |a) (a| and Il s is the POVM element that completes the
POVM. This corresponds to a conditional probability distribution that retains the
statistics pertaining to Alice and Bob getting the same outcome and mapping all
other fine-grained outcomes to a single outcome.

To evaluate the resulting key rates, we need to work with simulated observations, to con-
struct the unique the frequency distribution F' that Alice and Bob accept on. To do this,
we consider the channel previously discussed in which Alice prepares |®7) and then sends
half of it to Bob through the channel &y o CIDZP for the case where the rotation is by 12°.
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We then get the statistics by having Alice and Bob perform measurements on the state
(ida @ (@ o @) (|2T) (P7[) using one of the POVMs previously described to generate
the probabilities.

In Fig. 5.3, we plot the key rate for all three coarse-grainings individually as well
as the key rate when we consider both the phase-error statistics and the fine-grained
statistics. To look at this, in Fig. 5.3, whenever m < 10® we construct a frequency
distribution by randomly sampling the simulated probability distribution using a pseudo-
random function and then calculate the key rate for the protocol with unique acceptance
which accepts on that obtained frequency distribution. To see how much the key rate
fluctuates when sampling m times depending on the frequency distribution Alice and Bob
accept, we chose to repeat the simulation 20 times to determine the average key rate
and standard deviation of the protocol with unique acceptance with all other parameters
fixed. The standard deviation is represented by the error bars in Fig. 5.3. Furthermore,
to make the comparison between the different POVMs fair, we optimize the choice of p,
at each point by maximizing the average key rate over p, for each value of N we plot.
As in the previous example, we let m = (1 — p.)?N and assume they do the key map
only in the Z-basis. Lastly, the (observed) error correction cost for all four key rates is
fecH(X|Y) = frch(e.) where frc = 1.2 and e, is the bit error frequency determined by
the fine-grained statistics in the key-generation basis Z.

Given Fig. 5.3, we now see how in some regime coarse-graining does better than fine-
grained data due to the coarse-grained variational bound pu; converging to zero faster
than the fine-grained variational bound. However, we also see that as NV increases, the
fine-grained data begins to outperform the coarse-grained data because asymptotically the
fine-grained data provides a better key rate. We also see that considering both the coarse-
grained and fine-grained data together improves the key rate for all N. This is because
whatever density matrix satisfies both sets of constraints has the phase error lower than
just the fine-grained data and the unitary can be ‘undone’ to a greater degree than by just
using the phase error coarse-grained data. For this reason in the finite regime it will only be
beneficial to always optimize over the fine-grained data as well as relevant coarse-grainings.
The ability for our solver to do this regardless of the number of outcomes is one property
which makes our solver truly general and practical.
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Figure 5.3: We consider four different parameter estimation constraints for BB84 trans-
mitted through a depolarizing channel with ¢ = 0.02 when the signal states have been
rotated by 12° about the Y-axis on the Bloch sphere. Each point has p, numerically
optimized for maximum key rate. The error bars are from checking the key rate for 20
trials of sampling the distribution whenever the number of signals used for parameter es-
timation was less than 10% and calculating the standard deviation. For all curves we let
EPE = & = €RCc = €pA = %1 x 1078, Results generated using SDPT3.
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5.4 Measurement-Device-Independent BB84

In this section we consider the simple extension to MDI-QKD protocols which are designed
to be immune to side-channel attacks on measurement devices [12]. Specifically we consider
MDI-BB84 with perfect single photon sources in which Alice and Bob both send BB84
states to an untrusted third party Charlie who performs Bell state measurements on the
two signals. Charlie then announces on which signals his measurement was successful as
well as the outcome. Alice and Bob then do sifting on this subset and finally construct the
key. The primary extension for finite key is that in MDI-QKD there is a third party. This
means that there is a joint probability distribution over three alphabets and a joint POVM
over three parties. This however is an immediate extension to our previous discussion on
parameter estimation as parameter estimation can be defined for tripartite states and the
third party in MDI QKD is a classical announcement and so does not effect Alice and
Bob’s fine-grained data.

To simulate data for the protocol, we apply source-replacement to both Alice and
Bob’s signal states resulting in a state papap/. In our calculation, we assume the setup is
using linear optics, so Charlie can only discriminate unambiguously two of the Bell state
measurements, W, and W_ where U, = \%(!01) + (10)). For simulating the statistics,
we consider that the signal portions of the states, A’ and B’, each go through a separate
depolarizing channel @gp as they are sent to Charlie. Lastly, we assume Alice and Bob
only do the key map in the Z-basis for simplicity. In Fig. 5.4 we consider MDI-BB84
with p, = 0.5 for two depolarizing parameter values to see the rate of converging to the
asymptotic key rate as a simple example.
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Figure 5.4: Here we see the MDI-BB84 protocol with unique acceptance converging to
its asymptotic value as the number of signals is increased for depolarizing channels with
depolarizing parameter values ¢ = 0.01 and ¢ = 0.03. For all curves, the security is defined
by epg = & = €gc = €pa = }1 x 1078, Results generated using SDPT3.

5.5 Discrete-Phase-Randomized BB84

We next apply our method to a QKD protocol optically implemented with weak coherent
pulses. Since each state that Bob receives is an optical mode and is in principle manipulated
by Eve, a full description of the POVM usually involves an infinite-dimensional Hilbert
space (e.g. Fock space). This also means that the density operator p4p in our optimization
problem is infinite-dimensional such that no numerical optimization algorithm can solve
the problem directly. Fortunately, for many discrete-variable QKD protocols, there exists
a squashing model [5, 18, 69] that reduces the apparent infinite-dimensional representation
to an effective finite-dimensional subspace representation. Here, we present our finite key
analysis for the discrete-phase-randomized BB84 protocol [12], which is based on phase-
encoding and has a squashing model [7].
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We consider the following simple model for determining the statistics.

Alice / \ / \ Bob
—— | R — —— PR
50/50 BS

Laser >— PM |—

*PM*‘ ‘ ’ ‘* PM |—

50/50 BS PBS PBS

Figure 5.5: Schematic for discrete-phase-randomized BB84. PM stands for phase modula-
tor, PBS stands for polarizing beam splitter, BS stands for beam splitter, PR stands for
polarization rotator, and D1 and D2 are two threshold detectors.

As depicted in Fig. 5.5, the quantum part of the protocol is

1. Alice sends two-mode coherent states |\/ﬂe"9>r ’\/;ei(9+¢f‘)>s, to Bob where the first
mode is the reference pulse and the second mode is the signal pulse. The global phase
0 is chosen at random from the set {@ :k=0,...,c— 1} where ¢ is the number
of different global phases. The key information is encoded in the relative phase ¢4
chosen from the Z basis {0, 7} or X basis {Z, 3}

2. After receiving states from Alice, Bob may choose to measure in one of the two
basis by applying a relative phase ¢p € {0, 3} to the reference pulse, where ¢p = 0
corresponds to Z basis and ¢p = 7 to X basis. This results in either one, none, or
both of Bob’s detectors clicking. In the case where both detectors click, Bob assigns
the result to either just detector 1 clicking or just detector 2 clicking.

We remark that the protocol with ¢=1, in which case Alice does not randomize the
global phase, is also studied in [38, 13].

For our simulation, unlike previous examples, we consider a lossy channel parameterized
by the single-photon transmittance n = 10~*«L/10 for a distance L (in kilometers) between
Alice and Bob. We also introduce a channel noise parameterized by (, which describes

90



the relative phase drift between the signal pulse and the reference pulse. In addition,
imperfection of Bob’s detectors is taken into account by the dark count probability p; and
the dectector efficiency 7. To obtain simulated statistics, we choose ng; = 0.045, p; =
8.5 x 1077, and let the attenuation coefficient be ayy; = 0.2 dB/km, from the experimental
parameters reported in [27]. We also set ¢ = 11°, which produces a misalignment error of
1% at 0 km distance and let fgc = 1.16 as was done in [38]. Due to the fact in most optical
QKD analyses there are approximations used such that the probability of the observations
considered do not sum to unity, which is an assumption for our solver to give correct lower
bounds, the derivation of the observed statistics for this protocol was done for this work
specifically. For completeness, this derivation has been included as Appendix C.

Under the squashing model and source-replacement scheme, the fine-grained statistics
for this protocol are generated by a 20c-outcome joint POVM constructed by Alice and
Bob’s local POVMs where Alice has 4c POVM elements which are projectors on to her 4c
possible signal states and Bob has a 5-outcome POVM defined as:

{1/210) (0] ®0,1/21) (1| @ 0,
1/2|4) (+] ©0,1/2|=) (=] @ 0, [vac) (vac]}

In other words, Bob’s local POVM is the standard fine-grained local BB84 POVM (Eqn.
5.6 with p, = 1/2) embedded in a three-dimensional space plus a projector onto the third
dimension where the third dimension is the vacuum state and |vac) denotes the basis of
the third dimension.

We take L = 100 km and L = 20 km and consider both ¢ = 1 and ¢ = 2 scenarios as an
example to show the method works for multiple discrete phases and loss regimes. In this
model the dark counts are the primary source of error. In generating this plot, to improve
the key rate when less signals are sent, we optimize the fraction of signals that would be
used for parameter estimation, which we denote gpg = m/N, heuristically. The fraction is
determined as follows:

L—20km 0.99 N < 1.31 x 101
9rE ~ \ Lixio!! logo(N)/4
L0+ (0.5)'810 else
L—to0km _ J 0.9 N < 2.75 x 10™
9PE 2.35;{1014 + (0.5)10&0(1\7)/5 else

The first term of line 2 of each gpr was determined by numerically determining for how
many signals the key rate could be made positive for ¢ = 1. The extra term was decided
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Figure 5.6: Key rate of discrete-phase-randomized BB84 with unique acceptance when not
randomizing the global phase (¢ = 1) and randomizing it over 2 choices (¢ = 2). Every
point is for optimized coherent state intensity v. For all curves, the security is defined by
EpE = € = ERC = E€pA = }1 x 1078, For this protocol we let fgc = 1.16. Results generated

used Mosek.
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so as to sacrifice a smaller fraction to parameter estimation as N grows so that the key
rate is improved.

We notice that with our simulation parameters, at L = 100 km considered in Fig.
5.6, a significant amount of signals needs to be sent before the key rate becomes nonzero.
The reason is that at L = 100 km, the probability of the outcomes that will lead to key
generation is quite low, at the order 107% in the ¢ = 1 case. It follows that if the variation
bound p is of an order greater than 1079, there exists a probability distribution P such
that ||P — F||; < p and P corresponds to a density matrix that lacks sufficient correlation
for any key to be distilled. Therefore one needs to sacrifice enough signals to parameter
estimation such that the variation bound g is sufficiently small with respect to the portion
of the frequency distribution relevant to key distillation.

Lastly, we note that in Fig. 5.6, we see a jump in the ¢ = 2 key rates at a given number
of signals. This is not a poor behaviour of our numerical solver as one can check that the
second step of our algorithm improves upon the Frank-Wolfe Algorithm benchmark we use
to see if our better lowerbound is behaving properly. Rather we believe this to because at
this point the variational bound p is tight enough to force Eve’s optimal attack to change.
Such observations are one major advantage of using numerics.

5.6 BB84 with Practical Acceptance Set

So far we have only presented protocols with unique acceptance. However, protocols
with unique acceptance are impractical as the probability that an experiment yields the
exact frequency distribution of outcomes that match the acceptance criteria is usually very
low. Thus one introduces a range of accepted statistics, where the key rate is now to be
taken over the worst case scenario of the accepted statistics. Therefore, there is a trade-off
between how often one aborts, and the length of the secret key generated when the protocol
does not abort. In some cases, especially where the accepted statistics is only based on
one observable, such as an error rate, and the key rate has some monotonic behaviour, it
is easy to identify the worst-case acceptable statistics. In these cases one can relate the
case of a set of accepted statistics back to the case of a single accepted statistics, namely
the identified worst case statistics. However, in cases where the observed statistics needed
for determining the key rate of the protocol are more complex, it is often not as simple to
identify the worst case statistics. In these scenarios, our numerical method is a powerful
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tool for determining a tight lower bound of the secret key rate. Here we present an example
of determining the secure key rate for single-photon BB84 in the practical setting where
multiple frequency distributions are accepted by Alice and Bob to show how our numerical
approach may help.

We again return to the efficient BB84 protocol. We consider two sets of frequency
distributions to accept corresponding to whether their protocol has ideal behaviour or is
suffering from misalignment due to the quantum channel. Following the notation in Eqn.
4.8, the first set, @y, is defined by letting N'(F') be the two-outcome frequency distribution
of ‘phase error’ and ‘no phase error’ with no observed phase errors (e, = 0). We refer to
Q; as the phase set. The second set, Qs, is defined by letting N'(F) = F be the asymptotic
results of the fine-grained statistics given the model from Section 5.3. We refer to Qs as
the rotated set. In both cases, the variation threshold, ¢, is 2(1 — p.)%*¢, where €, is the
maximum tolerated observed error from F. For this example we let e, = 0.02. The factor
of (1 —p,)? is so that the variation threshold stays the same as p, is varied to optimize the
key rate.

Given the definition of the phase set, Q;, the key rate can be determined analytically
as one can replace e, in Eqn. 5.4 by €,. Furthermore, as no data more fine-grained than
the phase error is needed in this case, it is clear that the multiple coarse-grainings will
not further improve the key rate. These observations are verified numerically in Fig. 5.7a.
However, in the case where the observed statistics would be contained in Qs rather than
in @y, an analytical tight lower bound of the key rate is not a reasonable task as the
structure of the worst case scenario is no longer simple. This is seen in Fig. 5.7b, where
our numerical result shows that multiple coarse-grainings helps to obtain a tighter key rate
when Qs is used. It follows that obtaining a tight key rate analytically would be difficult
as one needs to utilize both fine-grained statistics and multiple coarse-grainings.

More generally, this tells us the optimal choice of Q in certain implementations may
be difficult due to issues such as misalignment errors. In such cases, even in the honest
implementation, the statistics one ought to accept are fine-grained data that, because of
complications, lack certain symmetries in Alice and Bob’s results. This in turn limits one’s
a priori knowledge of what form the worst-case scenario observed statistics will take. This is
further aggravated by the trade-off between how often the protocol will be aborted and the
length of the secret key when the protocol does not abort. For these reasons, constructing
a good choice of @ is a non-trivial task due to common issues in implementing QKD
protocols. As it is designed for generic protocols, our numerical method allows for further
exploration of these difficulties which cannot be explored analytically.
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Chapter 6

Conclusions and Open Problems

It is good to now summarize what we have done and learned. In Chapter 3 we delved into
the theory of finite key analysis. In particular we focused on the parameter estimation
subprotocol, the definition of e-securely filtered states, and the description of completeness
and robustness of (sub)protocols. In doing this, we showed how one can consider multiple
ways of processing one’s data to decrease the set of states of which we don’t know whether
or not they are e-securely filtered. This new result we saw to improve the key rates for
asymmetric observations in QKD protocols in Chapter 5. In Chapter 4, we derived a
general numerical method for determining the finite key rate of device-dependent QKD
protocols that can be represented in finite-dimensional Hilbert spaces. Finally, in Chapter
5, beyond showing our ability to improve the finite key rate for asymmetric observations,
we showed the generality of our method in its ability to determine the secure key length for
MDI QKD and optically implemented QKD protocols. These considerations tell us that
we need to use all of the information available to us to get the best key rates, particularly
when we consider asymmetric observations, and we now have a numerical method that
allows us to do this when we cannot analytically.

With all of these points handled, we can therefore conclude that finite key analysis
has been solved and we all may move on to new and exciting research problems. Just
kidding. We all know that is not how this works. In fact, for a field that presented a clean
framework more than a decade ago, the field of finite key analysis seems to continuously
get more complicated. We therefore briefly summarize what avenues should be taken next,
though the ordering of the paths to be taken is unclear.
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Extension of Method for More Protocols

This work has spoken nothing of continuous-variable QKD which is a current popular QKD
implementation. The issue in implementing our numerics for this protocol is that they do
not (currently) admit a squashing model and thus can’t be handled in finite-dimensions
directly. This has been handled under some assumptions in the asymptotic regime [39],
but the unification of these approximations with the finite-size is not immediate.

There is also the notion of decoy state protocols which are another popular method of
implementing QKD. In principle, one could handle it the same way as was done for the
discrete-phase-randomized BB84 in this thesis (Section 5.5). However, this would lead to
large demands on the memory of the computer. Therefore, more tools must be developed
for practical use of the numerics for decoy state protocols.

Adaptive Security

First we should note that in terms of security definitions, things are finished. As noted
in the thesis, there are multiple frameworks [0, 17, 50] for establishing the formal security
definition of a QKD protocol. However, as we saw in Section 3.5.2, finite key security proofs
are effectively done exclusively for fixed length protocols in which the QKD protocol either
aborts or produces an e-secure key of fixed length. This is a problem as intuitively this
seems inefficient in terms of the ratio of total bits of key generated over all runs to total
number of signals used over all runs.

There is, to the author of this thesis’s knowledge, a single publication [30] in which
adaptive key length security is proven for a protocol. However, this is proven under the
assumption that for all inputs Alice’s raw key is a uniform distribution. This does not
seem to be a reasonable assumption in coherent attack analysis nor would one expect it
to hold for general protocols— even for noisy honest implementations. Furthermore, the
proof of adaptive key security in [30] relies on bounding the trace norm between the ideal
output key and the implementation’s output key using the phase error correction finite key
framework rather than the Renner finite key framework.! Therefore, it remains an open
problem how one can prove adaptive key length security for general protocols. Specifically,
it would be ideal if one could construct a near optimal method for constructing a e-secure
adaptive key length security protocol using &’-secure fixed length security.?

LA recent publication [65] argues the phase error correction and Renner framework are identical. An
interesting way to understand this equivalence better might be to see how to convert the adaptive security
argument from the phase error framework to the Renner framework using the conversions of [65].

2 An intuitive starting point would be to fix an ¢’ > 0 and then carefully construct a finite family of fixed
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Coherent Attack Analysis- Methods of Bounding H;;,
In this thesis we discussed two methods for performing coherent attack analysis- the post-
selection technique and the Quantum de Finetti theorem. Fundamentally, as is understood
from the Leftover Hashing Lemma, the secure key that Alice and Bob can generate depends
on the smooth min-entropy of the entire raw key with respect to Eve. Therefore, a more
recent form of coherent attack analysis has been the Entropy Accumulation Theorem (EAT)
[20, 21] which is able to bound the smooth min-entropy of the entire raw key by the i.i.d.
collective attack rate (up to an O(y/n) correction term) [2] at the demand that, roughly,
the output of the entire protocol is a Markov chain between the first j rounds of public
announcements and the j + 1,...n bits of the raw key for all 7 € [N — 1]. In effect, this
means the QKD protocol’s side information needs to be seeded exclusively by randomness.
However, the Finite Quantum de Finetti coherent attack analysis tells us this Markov
condition shouldn’t be necessary at least asymptotically, though it should come at some
cost to how quickly the finite key rate converges to the asymptotic key rate. We therefore
need a result which can interpolate between this ideal Markov chain property and the
Finite Quantum de Finetti result. One such proposal [21] would be to find a variation of
the EAT for approximate quantum Markov chains [58]. Such a result would allow us to
extend the numerical method in this thesis to get key rates for coherent attacks which we
would expect to be relatively close to those presented in Chapter 5.

length protocols, {QKDj }jes, for the same implementation as follows. First construct a set of disjoint sets
of accepted frequency distributions {Q;};ex and fix a number of signals used for parameter estimation m
such that the set of states considered which will be accepted by each fixed length protocol is disjoint from
the others, i.e. S7 N Sfj = () for all j,j’ € ¥ such that j # j/. It will certainly follow ¢ # ¢i" for j # j’.
Then if one hashes to ¢/ whenever F € Q, is observed, the protocol should be ~ &’-secure (though a
correction term is necessary due to the e-filtered states having probability of leading to each observation).
This however is presumably not the best we can do.
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Appendix A

Direct Proof of Tightness

In this appendix we are officially interested in proving Lemma 16 for multiple coarse-
grainings in a direct manner. More honestly we are interested in the connection be-
tween semi-infinite programming (SIP) and semidefinite programming (SDP) for finite-
dimensional quantum information theory. As such, we are interested in proving that when

S,u’e’t’ 7& (2)7
min Tr[(oc — p")Vf(p*)] =0 (A1)

O'esu/e’t’
where p* is the optimal solution to the original problem, misn f(p). We split the proof of
PESL
this into a series of lemmas. I would like to acknowledge Jamie Sikora and Jie Lin who

read and gave feedback on various forms of this section and acknowledge Jie Lin helped
with the proof of Lemma 24.

First we recall that S, ¢ is defined as the set of density matrices p which satisfy the
constraints in the following SDP:

minimize  f(p)
subject to [|®p(p) — N (F)[ly < 1/
IN(F) —Fly < ¢
| Tr(pl;) — 75| < € Vie A
FeP(Ey)
p=0
where p € Pos(Ha4 ® Hp) and X is the alphabet for the fine-grained statistics of the

QKD protocol. ®p maps density matrices to probability distributions in P(X), N' maps a
frequency distribution F' to a frequency distribution in P(X%).
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Motivation for Semi-Infinite Programming

First we note the motivation for using semi-infinite programming to prove Eqn. A.1l.
In [68] (Lemma 2) the authors were able to directly prove this property for the set of
density matrices considered in asymptotic QKD, S, using the Karush-Kuhn-Tucker (KKT)
conditions for optimality (Section 5.5.3 of [9]). This was because the constraints were all
of the form Tr(pI';) = =; which made the proof straightforward. The issue with using
the same approach for finite key is that one has to consider the frequency distributions,
{F:}, which makes converting the set optimized over into one expressed in just terms of
Tr (pfi) < 7, non-trivial. This is not only in the case of considering multiple frequency
distributions, but because the coarse-graining may make comparing F' to ®p(p) in such a
manner to reduce it to a restriction on p impossible. However we note that the type of
constraints we want are just by definition descriptions of half-spaces. It is well-known [J]
that a closed convex set may be written as the intersection of (a possibly infinite set of)
halfspaces. Therefore if our set is is a closed convex set of density matrices, then we could
convert it into this type of constraint and possible prove tightness that way. This requires
using semi-infinite programming as the number halfspaces may be infinite. Then (using
an argument where we take a limit) we can use the semi-infinite program to prove this
property directly.!

To prove what we want, we first show how to write a semi-infinite program over the
semidefinite cone. This uses definitions relevant to semi-infinite programs as defined in
[55]. We then move on to a series of theorems to prove we can write our semi-definite
program in Eqn. A.2 as a semi-infinite program as we can write it as the intersection of a
set of half spaces. From there we prove that the problem is discretizable which effectively
means there exists a sequence of finite subsets of the constraints such that the optimal
value of the finite problem will approach the optimal value of the semi-infinite program.
As the tightness property holds for any of these problems defined by a finite intersection
of half spaces (as then KKT is clearly well defined and the approximations satisfy Slater’s
condition since the original problem did), one can conclude we get what we want in the
limit (or up to arbitrary precision, however you'd like to view it).

IDepending on what your view of ‘directly’ proving something is, I suppose.
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A.1 Semi-Infinite Programming for Quantum Infor-
mation

In this section we convert semi-infinite programming [55] from optimizing over R" to op-
timizing over L(X).
Definition 4. (Variation of Definition in [55]) A semi-infinite program over the linear
operators L(X) is of the form

minimize f(o)

subject to g(o,w) <0 Yw € Q (A.3)

o€ L(X)

where ) is a (possibly infinite) index set, f : L(X) — R where R = R|{J{—o00,c} , and
g:L(X)—R.
Definition 5. Let X = C®l, & : L(X) — R. Define the following linear bijections:

o U : CPl — R2*I which in matriz representation can be seen as
a; + iby
, T
: —>(al,...,a‘g|,b1,...,b|g‘)
ajy| + ib‘2|

¢ £ =V RV CHlgCH —» RI¥ g R
o ¢: R gRI¥ RA= 45 an 1somorphism map between the two spaces.
e The vec mapping [00] vec: L(X,Y) — X ® Y where in this case Y = X

Thus we define the corresponding vector map of ® by ® = ®ovec toflog: R4 5 R,
An identical de@z’tz’on of corresponding vector map may be used in the case that ® maps
to R instead of R.

The isomorphisms used in the definition of the corresponding vector map also tell us
that Definition 4 is equivalent to the one over R". Furthermore, from Definition 4, one can
define a semi-infinite program that is over the positive semidefinite cone by making the
objective function f such that it has a finite value for some p € Pos(X') and such that for
any 0 # 0, f = +00.2

2Alternatively, one can guarantee that the set of functions {g,(c) = (u,ou) : u € X} is a subset of
{g9(0,w)},eq since such constraints are sufficient for defining the positive semidefinite cone.
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Proposition 17. If & : L(X) — R is convex, the corresponding vector map d is also
CONveL.

Proof. Let ® be convex. Let ® = ®ovec ot logland U =vec ot 1og !, As the
composition of linear maps are linear, U is linear. Let v, w € R4®’ ¢ e (0,1).

-

O(tv+ (1 —t)w) = U (tv + (1 — t)w)
= (LU (v) + (1 — 1)U (w))
<tdU(v) + (1 —t)0V(w)
— tB(v) + (1 — )P (w)

Thus, ® is convex. O

Definition 6. A function f: X — R|J{—o00, 00} is lower semi-continuous at a point x, if
for every y < f(x,) there exists a neighborhood V' of x, such that y < f(x) for allx € V.
Furthermore, a function f : X — R is lower semi-continuous if f is lower semi-continuous
at x, for all x, € dom(f).

Definition 7. A function f : X — R is proper convez if f is a convex function taking
values on R and 3x € X such that f(x) < 400 and Vx € X, f(z) > —oc.

Proposition 18. If ¢ : L(X) — R is proper convex, the corresponding vector map d is
proper convex.

Proof. Follows from Definitions 5 and 7 as well as Proposition 17. [

Definition 8. (Definition 1.1 of [75]) A semi-infinite program is convez if the objective
function is lower semi-continuous and proper convex and that for all w € Q, g(o,w) is
convex in the first argument.

Definition 9. (Definition 3.1 of [55]) Given a semi-infinite program P, a finite approz-
imation of the program P, which is denoted by P,,, is called a discretization of P if P,
s constructed by taking m € N of the constraints in P. The semi-infinte program P is
discretizable if for all 6 > 0, there exists a discretization P,, such that o — o, < & where
« denotes the optimal value for P and ., denotes the optimal value for P,,.

Proposition 19. (Corollary 3.1 of [55]) If the semi-infinite program P is convez, and its
set of optimal solutions Sol(P) is non-empty and bounded, then P is discretizable.

109



A.2 Direct Proof of Lemma 16

We will now use the results of the previous section to prove Lemma 16 from which one can
prove tightness Eqn. 4.28.

Lemma 20. (Page 36 of [9]) A closed convex set can be written as the intersection of
halfspaces.

Proposition 21. The set of density matrices optimized over in the SDP in Eqn. A.2,
Sy, s a closed convex set.

Proof. First re-write Eqn. A.2 as:

minimize  f(p)
subject to  g(p,
h(p,
| Tr(p
Te(F

p, F'=0

(A4)

<u
<t
) vl <€ VieA

F)
F)
r;
)

where g(p, F) = ||®p(p) — N'(F)||1, and h(p, F) = ||N(F) — F||;. As norms are continuous
functions, and [0, 1], [0,#], and [0, €] are closed intervals, the pre-images of g~1([0, i]),
R=1([0,¢]), | Tr(pl;) — %] 71([0, €]) are closed sets. Thus the set

{(p, F) € Pos(X) x Pos(Y) : g(p, F) < u',hip, F) < t',| Tr(pl;) — vi| <€ Vie A and Tr(F) =

where Y = CI*l is a closed convex set. We can rewrite this set as:

{(p,F) € D(X) x DY) : glp, F) < i, f(p, F) < t'Vk € Z and | Tr(pl';) — vi| < € Vi € A}
(A.5)

where D¢ (X) = {X € Pos(X) : Tr(X) < 1+ ¢}. This can be done as without loss of
generality T; = 1 and so p € DY(X) and F is a probability distribution and thus in the
set of density matrices. As the set of density matrices is compact [60], the projection map
7 : DY (X) x D(Y) — D(X) is a closed map and so applying this projection onto the set
in Eqn. A.5 recovers S,/ which tells us that S,/ is a closed convex set. ]

Note: In principle F' may numerically fail to be a probability distribution. In that

case, if ||[F||; > 1, just let ' € D () where ¢’ = ||F||; — 1. This set is also compact as
norms are continuous and [0, 1 + €”] is compact by the Heine-Borel theorem.
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Lemma 22. S,y can be written as the intersection of halfspaces.

Proof. Follows from Lemma 20 and Proposition 21. [

Proposition 23. The SDP in A.2 can be written as the following semi-infinite program:

. . . /
minimize
. o o (A.6)
subject to (p, ;) <7; VieQ

where

() = { (o) = DG(P)IZ(G(p) ’ ; 0 } (A7)

and 2 is an (infinite) index set.

Proof. This follows directly from Lemma 22, Definition 4, and the definition of f'(p). O

We now wish to prove the semi-infinite program in Eqn. A.6 is convex. By Definition
8, as we know all of the constraints are convex, we just need to show f’ is proper convex
and lower semi-continuous.

Lemma 24. The function f': L(X) — R is proper conver and lower semi-continuous.

Proof. That f’ is proper convex follows from the positive definiteness of the quantum
relative entropy. We therefore focus on proving it’s a lower semi-continuous function (see
Definition 6). As the positive semidefinite cone, Pos(X), is closed, the issue is the boundary
points. We will construct the neighbourhood of an arbitrary boundary point necessary to
satisfy Definition 6. Let x, be a boundary point of the positive semidefinite cone. As z, is
positive semidefinite, f'(x,) is finite, and so y < f’(x,) is finite. For any point T € Pos(X),
it follows from the continuity of quantum relative entropy that for every y < f'(Z) one
can construct a neighbourhood of Z, V, such that y < f/(z') for all # € V. Therefore, for
all y < f'(z,) there exists a neighbourhood of z,, V, such that the set V = V (| Pos(X)
is such that y < f'(z) for all = € V. Thus by Definition 6, we may conclude f’ is lower
semi-continuous. [

Therefore we know that Eqn. A.6 is a convex semi-infinite program.

Lemma 25. The semi-infinite program in FEqn. A.6 is discretizable when the feasible set
15 nonempty.
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Proof. Let P denote the semi-infinite program in Eqn. A.6. Let A # () as that is the
only case we are interested in. By Lemma 14, we know that Eqn. A.2 attains its optimal
solution. It follows Eqn. A.6 also attains its optimal solution as they optimize over the
same set, and so its set of optimal solutions, Sol(P), is non-empty. The feasible set is
bounded as D°(X) is bounded and the subset of a bounded set is bounded. As Sol(P)
is a subset of the feasible set, it must also be bounded. Thus Sol(P) is non-empty and
bounded. Furthermore, we know P is convex. Therefore, by Proposition 19, the problem
is discretizable. O

Proposition 26. For all discretizations of the semi-infinite program in Eqn. A.6 it holds
that

i Tr((c —p*)Vf(p*)] >0 A8
L N (43)

where p* optimizes f over the intersection of the feasible set of the discretization of Eqn.

d . og . . . d
A.6, denoted S}, with the positive semidefinite cone, Sj, () Pos(X).

Proof. Consider an arbitrary discretization of the semi-infinite program in Eqn A.6, which
can be written in the following form:

minimize  f'(p)

~ _ (A.9)
subject to  (p,I;) <7; VieQ

where Q C Q such that |©2] € N. This is well defined for any discretization of Eqn. A.6 as
dom(f") = L(X).

One can then define the following SDP using the discretization:

minimize  f(p)
subject to (p, fz> <7 VieQ (A.10)
p=0

By the definition of f’(p) and f(p), we see the optimal values of Eqn. A.9 and A.10 must be
the same as every discretization contains some positive-semidefinite matrices if the original
problem, Eqn. A.2, is feasible.

As the original problem satisfies Slater’s condition and is a subset of the positive-
semidefinite cone, not only must the discretization also satisfy Slater’s condition (as S, C
SZ), but the intersection of the discretization and the positive-semidefinite cone must also
satisfy Slater’s condition (as S, C S Pos(X)). As the set S (| Pos(X) is convex and
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satisfies Slater’s condition, the Karush-Kuhn-Tucker (KKT) conditions (Page 243 of [9])
hold. Therefore we have the following KKT conditions:

Vi) +> vli—Z=0

vi((p',T) —=31) =0 Vie Q
Tr(p*Z) =0

v, >0Vie
Z =0

It follows: Let o € S§ (| Pos(X). It follows,
Tr[(o = p")V f(p")]

=Tr|(c—p")(— Zl/zfz +7Z)

= Z Vi(Tl"<p*/F\i> - Tr(aﬁ)) +Tr(0cZ) — Tr(p*Z)

=3 wi(Tr (p*ﬁ> R4 F —Tr (afi)) 4 Tr(0Z)

)

- Z vi(Fi — Tr(af’i)) + Tr(0Z)

>0

Where the first and fourth equality follows from the KKT conditions and the inequality
follows from the definition of the feasible set. The inequality follows from 7, —Tr ((Ifi) >0

for all i € Q for all feasible o by Eqn. A.10 along with the KKT conditions. O

Proposition 27. Let A,, be the feasible set of the discretization P, of Eqn. A.6 such that
o —ap < 6. Let 8% = Ay, () Pos(X). Then

li in T —p* >0 A1l
Jim min Trl(o = p)VF(p)] 2 (A.11)
Proof. Follows from Propositions 19 and 26. m

One could then use Proposition 27 in proving tightness in Chapter 4.
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Appendix B

Post-processing Maps for Examples

In this section we provide the post-processing maps, G, for each example for completeness.

Single-Photon BB84

The examples in Sections 5.2 and 5.3 use the same map G. In singe-photon BB84, Alice
and Bob perform von Neumann measurements in the Z and X bases with probabilities p,
and 1 — p, respectively, the public information Alice and Bob announce are what bases
they measure in, the private information is what outcome they got (represented by a 0 or
1) in both bases, and the sifting throws out any measurement where Alice and Bob did
not use the same basis. Lastly we note that in Sections 5.2 and 5.3, we assumed Alice
only performs the key map in the Z-basis. Therefore we have the following definitions for
constructing the G map:

Kz = /p:10) (01, ©10) 7 ® [0)5 + /b= 1) (1], @ |0>~® 1)z
Ky =1-p:[+) (+4 @) z@ 1007+ V1 -p: =) (-, ® 1)z ® 1)z
K7 =/p=10) (0] ®10)5 ® [0)5 + /= [1) (1, ® [0)5 @ [1)5
KR =V1=p:[4) (+p @ [1)5 @105+ V1-p:[-) (- ®0)5 @ [1)5
=10) (0[z ®0) {015 + [1) (1 z @ [1) (1|5
V =10)z®0) {0l 3 ©10) (0] @ [0) {0l 5 + [1) p ©[0) (0] ® [1) (1|3 ©[0) (0|5
We note that while we used the source-replacement method, we used the Gram-Schmidt

process to return Alice’s space to the original size as explained in [24], which in this case
reconstructs Alice’s original POV M.
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MDI BB8&4

For MDI BB84, as we consider the case where Alice and Bob only distill key from the
7 basis, using the source-replacement scheme on both Alice and Bob’s sources and the
simplification rules explained in Appendix A of [39], there is only one Kraus operator for
the entire map G:

Kz = (10 ®10) (0, + 1) @ [1) (1],) @ (|0) (0] g + |1) (1] 5) © (10) (O], + [1) (L])

Discrete-phase-randomized BB84

In the discrete-phase-randomized BB84, we begin from the use of the squashing model
which results in Alice preparing 4 states for each global phase, and Bob having the 5-
outcome POVM described in Section 5.5. Then by the source-replacement scheme on Alice,
Alice’s portion of the signal is a 4c-dimensional Hilbert space H 4 where c¢ is the number of
global phases Alice uses. In other words, H4 = @&.H4 where H, is a 4-dimensional Hilbert
space and @ is the direct sum. To make the expression of the Kraus operators concise,
define the projector II,, = |n)n| where n € {0,1,2,3}. Then, using that Alice performs
the key map along with the simplifications from Appendix A of [39], we have two Kraus
operators which describe the action of G:

Kz =10)r® (@(m)) ® v/p-(10) (0l + 1) (1]5) ©10) 1

+hp® (@(H1)> ® v/p:(10) 0l + 1) (1) @ 10) 1

[

C

Ky =0),® <@(H2)> ® V1 =p(|+) (+Hlp + =) (=) @)z

+Hhp@ (@(Hs)) ® V1 =p.(4) (Hlp + 1) (=p) @ 1)z

[

where @.I1,, is well defined for all n as II,, € Hy and H4 = O H,.
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Appendix C

Derivation of Expected Observations
of DPR BB&8&4

In this appendix we derive the expected observed statistics for the discrete-phase-randomized
BB84 which are used for the numerics in Section 5.5. We refer the reader to Fig. 5.5 for
visualizing the protocol.

First recall that for input coherent states |, |5),, the output of a beamsplitter is
Via + ei‘pﬁﬂ> + ‘—\/Fe’woz + \/1_55>
c d

where ¢ is the transmittance, r is the reflectance, and ¢ is a phase where r +¢ = 1.
Furthermore, when the phase is taken to be trivial, you can just parameterize it by a single
parameter, 7, as t = n implies r =1 — .

Denote 6 as the discrete phase, ¢ as the phase encoding of the signal,  as the relative
phase drift in the channel, and ¢ as Bob’s choice of phase for basis choice. Then we can
determine the output state as follows:

‘\/2u> Alice’s laser output
— ‘\/2uei9> Discrete phase added (PM1)
= |VEE) | VEE) 50:50 BS
— ‘\/ﬁei(9+¢)>s ‘\/ﬁei9>R Phase Mode Encoding (PM2)
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— ‘\/Wei(9+¢)>s |\/W€i9>R Channel Loss n BS

— ‘\/nuei(9+¢+<)>s ’\/nuew>R Relative phase drift ¢
— ‘\/n,uewei(d)*c» ‘\/nueieei@ Bob makes basis choice (PM3)

— ‘ﬁ / %eie (ei(¢+<) + ei"")> ‘1 / %ew (e“’" — ei(¢+<))> Output to detectors (50:50 BS)

where we will refer to the first mode as the coherent state |A) and the second mode as the
coherent state |7).

As we are interested in threshold detectors, both detectors have the following POVM:
Fvacz(l_db)‘())() Fclick:]l_Fvac
where dp is the probability of dark counts.!
This means the joint POVM is of the form:
Fno click — (]- - dB)2 |O><0| ® |0><0|
Fclick 1= (1 - dB)IL ® |O><0‘ - Fno click
Fclick 2 = (1 - dB) |O><O’ Q1 — Fno click
del click — 1 ® 1-— (]- - dB) [:H- & |0><0| + |0><0| X ]]-] + Fno click -
From this we need to calculate the basic probabilities of these detectors. Given the way

I have expressed the joint POVM, we will just need the overlap of these coherent states
the vacuum state:

018) = exp (3 (L)(e 50 + )0 7)) 5= 58 ol a0

n=0
_ exp<_%(2 1 i) e—i(¢+c—w))>
= exp(—%(l + cos g))

where g = ¢ — ¢ — ¢ and the second equality follows from noting (0| (a")"|0) = 6,0. By
the same sort of calculation, we find

(0l) = exp(~"2-(1 — cosg)) .

I'We note this is a simple model for the detectors. A more realistic model that has been handled in the
asymptotic case using the numerical framework can be found in [69].
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Using these, the calculations are straightforward:

Proo aick = (1 — dp)?| (0]A) 2] (01y) |* = (1 — dp)? exp(—2npu)

Paiec1 = Tr((1 = dp)(1 @ [0)0]) [AXA] @ [y)7]) = Pao click
- (]- - dB)| <0|A> |2 - Pno click
= (1 —dp) exp(—nu(l — cosg)) — (1 — dp)* exp(—2npu)

Paiak 2 = Tr((1 — dp)(|0X0] @ 1) [AXA[] @ [y)XY]) = Pao click
= (1 —dp) exp(—nu(1l + cosg)) — (1 — dp)? exp(—2np)

Pipratick = 1 — (1 — dp)[exp(—nu(1 + cos g)) + exp(—nu(1 — cos g))]
+ (1 — dp)* exp(—2np)

Using these, as we need Bob to map double clicks to single clicks with a fair coin to
satisfy the squashing model [5], we have our actual probabilities:

Pyac = Pho click Pp1 = Paick 1 + 1/2Papi click Pps = Pk 2 + 1/2Pap cliek -

Then if the optical states are mapped to the BB84 states in the same manner proposed
in [35],

0 ee=0 Ded=r |[Hedé=s [Dedé=T,

then the Z- basis and X0-basis measurements are when Bob choose ¢ = 0 and ¢ = II

respectively. Lastly, if dg,( = 0, then D; clicks if both ¢ and ¢ equal zero or %i, and
D, clicks if (¢, ¢) € {(I1,0), (25, 2)}. Given the squashing model for optical BB84 with

272
threshold detectors in [5], this completes the explanation of simulating the statistics for

discrete-phase-randomized BB&4.
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